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Abstract of the Dissertation
The Brown Dwarf Kinematics Project
by

Jacqueline K. Faherty

Doctor of Philosophy
in
Physics
Stony Brook University
2010

Brown dwarfs are a recent addition to the plethora of objects
studied in Astronomy. With theoretical masses between 13 and
75 M jupiter, they lack sustained stable Hydrogen burning so they
never join the stellar main sequence. They have physical proper-
ties similar to both planets and low—mass stars so studies of their
population inform on both.

The distances and kinematics of brown dwarfs provide key statisti-
cal constraints on their ages, moving group membership, absolute
brightnesses, evolutionary trends, and multiplicity. Yet, until my
thesis, fundamental measurements of parallax and proper motion
were made for only a relatively small fraction of the known pop-
ulation. To address this deficiency, I initiated the Brown Dwarf
Kinematics (BDKP). Over the past four years I have re-imaged
the majority of spectroscopically confirmed field brown dwarfs (or
ultracool dwarfs—UCDs) and created the largest proper motion cat-
alog for ultracool dwarfs to date. Using new astrometric informa-
tion I examined population characteristics such as ages calculated
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from velocity dispersions and correlations between kinematics and
colors. Using proper motions, I identified several new wide co-
moving companions and investigated binding energy (and hence
formation) limitations as well as the frequency of hierarchical com-
panions.

Concurrently over the past four years I have been conducting a
parallax survey of 84 UCDs including those showing spectral sig-
natures of youth, metal-poor brown dwarfs, and those within 20
pc of the Sun. Using absolute magnitude relations in J,H, and K, I
identified overluminous binary candidates and investigated known
flux-reversal binaries. Using current evolutionary models, I com-
pared the Mg vs J-K color magnitude diagram to model predictions
and found that the low-surface gravity dwarfs are significantly red-
ward and underluminous of predictions and a handful of late-type
T dwarfs may require thicker clouds to account for their scatter.
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Chapter 1

Introduction

1.1 Brief History of Astrometry

In ancient times stars were thought to be fixed points in the sky, drilled
into a celestial sphere that circled the Earth as it stayed in its central position
of the Universe. Our acceptance of stars having their own intrinsic proper
motion and a detectable parallax is grounded in the assertion that the stars
are not fixed points in the sky and the Earth is moving and not the center
of the Universe. Thus early astrometrists were the true scientific rebels of
the astronomical community seeking to overthrow the traditional model of the
cosmos in which the Earth was central and immobile.

1.1.1 Astrometric Measurements

The term ’Astrometry’ was not coined until the 19"" century but the his-
tory of astrometric measurements traces as far back as Ancient Egypt and
Mesopotamia when star charts first appeared. By the age of antiquity, Greek
and Roman astronomers such as Hipparcos and Claudius Ptolemy were creat-
ing stellar catalogs that eventually served as references for thousands of years.
Prominent Greek astronomers identified that the ecliptic provided a fundamen-
tal astronomical coordinate system. They noted that the geometrical points in
the sky where the ecliptic and equatorial planes intersected formed a natural
origin for coordinate systems. Ptolemy as well as his contemporaries desig-
nated the ascending node of the ecliptic as the delineator for the stellar day
and the reference position for navigational stars. This “First Point of Aries”
was recognized to change, an observation which marked the establishment of
Earth’s precession, a fundamental achievement of early astrometric work.

By the late 16" century , the Copernican revolution had occurred and it



was surmised that if the Earth was indeed moving around the Sun the ge-
ometry of the constellations should shift seasonally. Tycho Brahe was among
the early astronomers who unsuccessfully attempted to measure the first stel-
lar parallax. His failed attempts led him to identify three major factors that
were necessary for advances in high precision astrometric measurements: in-
strument innovation, refined techniques, and an alertness to potential sources
of error. The development of instruments in the 17** and 18" centuries such
as astronomical quadrants, telescopic sights, micrometers and verniers, was
strongly driven by astronomical desire to detect the elusive stellar parallax.
The search also led to advances in other areas of astronomical research. For
instance, in 1650 Christian Huygen’s recognized that graduated scales were
insufficiently refined to detect a parallax. Up until that time it was thought
that the brightest stars had to be the closest. Many failed parallax attempts
were targeting stars such as Sirius which were bright but had stellar parallaxes
well outside the bounds of possibility for the precision possible in the 17" and
18" centuries.

The quest for stellar parallax also led Robert Hooke, John Flamsteed, and
James Bradley to the invention of the zenith sector (a long-focus telescope hung
to point exactly at the zenith). Independent attempts at stellar parallaxes by
each, but most noteably by Bradley, led to the discovery of a “New Found
Motion”. This stellar aberration was quickly understood to be the apparent
displacement of a star from its mean position on the celestial sphere due to the
velocity of the Earth in its orbit around the Sun. While this was not the long
sought parallactic motion; the discovery was considered a triumph of refined
astrometric techniques and proof of the Earth’s motion in space.

One important advancement in early astrometric studies was in our under-
standing about the motion of stars. Through the 17" century it was generally
assumed that stars were fixed in their positions. But in 1718 Edmund Halley
published a paper which showed that Aldebaran, Sirius, and Arcturus dis-
played independent motion against the stellar background. This measurement
was a product of a catalog comparison between the positions recorded by Hip-
parcos, and Ptolemy against positions current in Halley’s time. The paper is
the first recorded publication of proper motion and was a key to advancing
all other astrometric measurements. The discovery and increasingly accurate
quantification of stellar proper motion over the decades that followed identi-
fied a means for differentiating the relative closeness of stars and hence their
suitability for parallax measurements.

By the middle of the 19*" century all the great observatories of Europe were
primarily dedicated to astrometric work. In the years between 1838 and 1840
bonafide parallaxes were reported by Friederich Bessel, Thomas Henderson,



and Friederich Wilhem Struve all using different instruments and astronomical
techniques. These parallax measurements were made possible because of the
discovery of proper motion as a target criterion, the innovation of instrumen-
tation, and the advancement in our understanding of positional uncertainties
(most prominent stellar aberration and atmospheric distortion).

1.1.2 Modern Day Astrometry

Astrometric work blossomed in the 20" century. The invention of pho-
tography in 1839 and the introduction of photographic plates led to major
advances . In addition to allowing significantly more precise measurements, it
liberated the astronomer from the eyepiece of a telescope. In the 1960’s the
advent of large-aperture, high precision reflector telescopes as well as more
recent technological advances in silicon based CCD instruments provided the
largest modern day advances in ground-based astrometric programs.

Numerous large-scale ground-based astrometric surveys have been con-
ducted over the past century. The Guide Star Catalog (GSC) was prepared to
support the operation and requirements of the Hubble Space Telescope (HST)
by providing accurate positions of nearly 20 million stars (Lasker et al.l2008]).
The United States Naval Observatory (USNO) has published stellar positions
and proper motions for almost half a billion stars (Monet/[1998; [Monet et al.
2003). Many large scale proper motion surveys have been published including
notable ones by (Wolfl (1919), Rossl (1926]), Luyten| (1979)), [Lépine et al. (2002)).
Optical ground-based parallax surveys have been conducted in the North and
South and prominent catalogs include the General Catalogue of Trigonomet-
ric Stellar Parallaxes (Jenkins 1952; van Altena et all[1995), and the CTIOPI
catalog (Henry et al|2006, Weichun et al. 2005, [Costa et al.|2006]).

Atmospheric distortion remains the largest deterrent to precise ground-
based astrometry. Therefore space based observatories were the last and most
significant advancement in astrometry. The High Precision Parallax Collecting
Satellite, Hipparcos, is responsible for the largest parallax sample to date and
the most precise proper motion catalog (Perryman et al|1997).

1.1.3 ASIDE: How to Measure Proper Motion and Par-
allax

Proper motion, the angular change in stellar position over time, can be
measured with just two images separated by a significant time baseline (typi-
cally several years). Parallactic motion is a subtle effect. As the Earth orbits
the Sun, several observations over a six month period of a nearby star against



the background of distant, stationary stellar objects reveal an annual shift in
its position. Parallax, 7, is related to the distance to a star, r, by w:% where 7
is expressed in arcseconds and r is in parsecs. To be precise, the instantaneous
motion of a star must be measured relative to the Solar System barycentre in
a plane perpendicular to the line of sight. Figure [[.T] demonstrates the annual
parallactic displacement, p;, which can be written as

0 —60 = 7™ Rsin6
or

pr = m™Rsin 6 (1.1)

Figure 1.1: Plotted is a circular representation of the Earths orbit at position E
and E; (six months later). B indicates the Solar System barycenter, R is the Earth’s
orbital radius, S is the position of a star at distance r, and 6 is an angle (varying
with time) between the direction to the Sun and to the star.

The annual parallax factor is separated as

P, = R sinf (1.2)



A textbook description of parallax and proper motion using classic astro-
metric modeling dealing with angles and geodescic triangles can be found in
van de Kamp| (T967). As described there-in, the parallax displacement of a
star toward the Solar System barycenter can be calculated with parallactic
displacement in longitude and latitude as:

ry = m R sin 0 sin ¢
ys = —m R sin 6 cos ¢ (1.3)

where 7 is the parallax, ¢ is shown on Figure [[2] A and 3 are the longitude
and latitude of the parallax star, and x and y are the displacements in the two
directions.

Equator

Figure 1.2: S is the star and S’ is the stellar position seen from Earth (E). B is
the Solar System barycenter at coordinate (A,D), Y is the position of the vernal
equinox, and € is the obliquity of the ecliptic.



Applying spherical trigonometry the parallactic ellipse is described as:

2
X Ys _
mR? w2 R2%sin?p

(1.4)

The small inclination of the ecliptic relative the Earth’s equator leads to the
majority of parallactic displacement occurring in the right ascension direction.
Therefore, the parallax factors can be further re-written as:

P, = R (cos € cos a sin B — sin a cos B)

Ps = R|(sin € cos § — cos € sin « sin §) sin B — cos « sin § cos B[1.5)

where € is the obliquity of the ecliptic, («,0) are the right ascension, declina-
tion positions of the star, and B is the Solar System barycenter (see Figure[L.2]).

The final equations for decoupling the proper motion from the parallax are:
T =20+ pa(t —to) + Pom (1.6)

Yy :yo—F,u(s(t—to)—i—Pg?T (1.7)

where xg, yo are initial positions; ji, s are the proper motion in right ascen-
sion, declination (respectively); P,, Ps are the parallactic factors, (t-to) is the
baseline between measurements, and m is the parallax.

1.2 Modern Day Astrometric Accomplishments

Over the past 150 years, astrometric measurements have significantly changed
our understanding of the local solar neighborhood, the Galaxy and beyond. In
the following section I detail a number of the major advances astrometry has
contributed to over the years. These highlights primarily target contributions
that are discussed within this thesis (in the context of Brown Dwarfs) so this
is by no means a complete discussion of the vast contributions of astrometric
measurements.

1.2.1 3D Space Motions

Understanding the motion of a star or population of objects can be in-
formative about parameters such as age or origin and can provide crucial
information regarding both the structure and evolution of the Milky Way.
Combining proper motion, parallax and radial velocity (the element of stellar
motion toward or away from the Sun) the full space motion or velocity of an



object can be calculated. There are three components of space velocity in
the Milky Way’s Galactic coordinate system (using a right-handed coordinate
system): U which is positive in the direction of the Galactic center, V which
is positive in the direction of Galactic rotation, and W which is positive in
the direction of the North Galactic Pole. The Sun has its own peculiar mo-
tion with respect to the Local Standard of Rest (LSR)T which is (U,V,W) =
(10.0040.36, 5.254-0.62, 7.17 £0.38) km s~! (Dehnen & Binney|[1998)) .

As early as 1908, Karl Schwarzschild interpreted a sample of stellar ran-
dom velocities as forming a triaxial 'velocity ellipsoid” which Oort B. Lindbland
and Stromberg related to the large-scale structure of the Galactic disc. Subse-
quent studies by [Parenago| (1950) and [Roman! (1952, 1950) noted that stellar
kinematics systematically vary with stellar type identifying that younger stars
have (on average) smaller velocity dispersions and larger mean Galactic rota-
tion velocities than older stellar constitutents. Multiple authors explained this
correlation between age and velocity in terms of the diffusion of stars through
phase space as the Galactic disk ages (Wielen! (1977, [Spitzer & Schwarzschild
1953, Barbanis & Woltjer|[1967)).

The Geneva-Copenhagen survey of the solar neighborhood has produced
one of the most up to date kinematic samples by combining Hipparcos paral-
laxes and proper motions with measured high precision radial velocities. They
used this sample to investigate ages and metallicities for a sample of over
14,000 F and G dwarfs and to assign Galactic disk membership to investigate
large scale structure (Nordstrom et all2008; [Nordstrom et all 2004). The
space motions and Galactic orbits of stars as a function of age provide key
information regarding the parallel dynamical evolution of the Galaxy and the
degree of mixing of stellar populations from different regions of the disk (see
Freeman & Bland-Hawthorn/2002] and references there in).

Substructures of the Galactic disk have also been identified using space
motion. Aside from the overall Galactic structure of a young thin disk, older
thick disk, and a halo population (Eggen![1989; (Gilmore et al.l[T989; [Gilmore &
Reid/ 1983} [Chiba & Beers 2000; [Soubiran et al.l2003]) co-moving associations
of stars including young moving groups, open clusters, and Galactic streams
have been identified (Chereul et al.l[1999; Montes et all2001; Bensby et al.
2007; [Dehnen & Binney|[1998). Such kinematic associations are key clues to
understanding stellar dynamics and the Galactic history.

LA point defined as instantaneously centered on the Sun and moving in a perfectly
circular orbit along the solar circle about the Galactic center



1.2.2 Identifying Companions

Multiple stellar systems (with two or more bound objects) are ubiquitous in
the Milky Way. They have been found in a wide range of configurations, from
tight spectroscopic binaries with separations < 10 AU to loosely bound wide
binaries with separations > 20,000 AU (e.g. [Halbwachs et al.2003], [Chanamé
& Gould 2004). Multiplicity characteristics such as periods, mass ratios, and
eccentricities provide key constraints on theoretical models of star formation
(e.g. Batell2000], Delgado-Donate et al2004, [Goodwin et al.2007). Specifically
the separation distribution of low mass star and brown dwarf companions has
been used as a constraint on the low mass end of star formation (Reid et al.
2001 Burgasser et al| (2003c)). The observed distribution of wide binaries is
of particular interest, because the low binding energy of these systems makes
them susceptible to disruption. Models suggest that over timescales compa-
rable with the age of the Milky Way, these weakly bound systems should be
disrupted due to repeated and separate encounters with other field stars, giant
molecular clouds, and/or hypothetical dark matter bodies (Retterer & King
1982 Weinberg et al.|[I987 Yoo et all2004).

The main problem in searching for wide systems is distinguishing between
chance alignments and true physical pairs. Astrometric measurements have
been instrumental in both identifying and confirming wide multiple system
candidates. Using catalogs of high proper motion stars (typically > 100 mas
yr~1) searches for common proper motion candidates greatly reduces the prob-
ability of chance alignment. Early studies by [Luyten| (I988)) catalogued over
6000 wide systems. Luyten noted at the 1969 Double Star Conference in Nice
that these common proper motion pairs constituted the most common, and
the most representative physical binaries in space (at least based on what
was known through the middle of the 20" century). More wide binaries were
detected through common proper motion searches of the Hipparcos catalog
where precise parallaxes were also available for critical mapping of the HR
diagram of co-eval stars as well as investigations of the projected physical sep-
aration between components which can be directly compared with theoretical
models. Hundreds of wide Hipparcos pairs were investigated in [Chanamé &
Gould (2004) and Lépine & Bongiorno| (2007).

1.2.3 Color Magnitude and HR Diagrams

The Hertzsprung-Russell diagram, developed independently by Hertzsprung
in 1911 and Henry Norris Russell in 1913, empirically illustrates the relation-
ship between stellar spectral types and luminosities. It stems from the basic
relation for an object emitting thermal radiation as a black body:



L = 4o R*T};; (1.8)

where L is the luminosity, o is the Stefan-Boltzmann constant, R is the radius
and T,z is defined as the effective temperature of a hypothetical black body
of the same radius R radiating the same luminosity L. The structure of a star
changes with time due to nuclear fusion. As a result, L and T.; change as a
star evolves. On an HR-diagram, any given star will follow a path that is a
function of its mass and chemical composition so it is a powerful diagnostic of
a star’s structure and evolution during its whole life. In order to construct an
observational HR diagram, stellar luminosities and therefore precise distances
are required. Until the publication of the Hipparcos catalog (Perryman et al.
1997)), the several thousand ground-based stellar parallax measurements with
precisions on the order of 10-20% were the foundation for our understanding of
stellar luminosity. This collection of stars was used to develop various meth-
ods for indirect distance estimates including spectroscopic and photometric
parallaxes, secular and statistical parallaxes, the moving-cluster method, and
main-sequence fitting to specific features in the observational HR diagram of
open and globular clusters Mihalas & Binney|[198T)).

Different populations of stars have different loci in the HR-diagrams. Glob-
ular clusters (GC) have sequences in which almost all evolutionary phases, in-
cluding a stellar main sequence, the horizontal and asymptotic giant branches,
are detectable. Close examination of GC HR and color-magnitude diagrams
revealed that metallicity was the most influential factor governing their hor-
izontal branch morphologies but a second parameter effect, most likely age,
must be included to completely describe the horizontal branch sequence ( e.g.
Arp et al. [1952] Sandage|[1953] [Sandage & Wallerstein [1960), Searle & Zinn
1978, Dotter et all2010). HR diagrams of nearby well observed star clusters
such as the Pleiades and the Hyades, have led to an improved understanding
of stellar physics. They serve as excellent tests for how well interior mod-
els, which make use of model atmospheres, can reproduce observations (e.g.
Mitchell & Johnsonl 1957, lJohnson & Mitchell [1958] |Vandenberg & Bridges
1984; [Perryman et al|[I998)). For instance, a detailed look at the HR diagram
of the Hyades cluster shows a well-defined main sequence with two “gaps” or
“turn-offs” showing observational support for the theoretical prediction of the
onset of surface convection (de Bruijne et al.|2001).

As a whole, HR diagrams provide sharp constraints on stellar evolutionary
theories and a rigorous framework for exploring the evolutionary history of the
Milky Way.



1.3 Brown Dwarfs

The last quarter of the 20th century was marked, within a small portion of
the astronomical community, by a race to detect the first substellar mass ob-
ject. The quest began on the heels of the pioneering theoretical works of Kumar
(1962) and [Hayashi & Nakano| (1963). Both groups independently predicted
that below stellar masses between roughly 0.07-0.08 M, central temperature
and density would be too low to sustain nuclear fusion reactions. These so-
called brown dwarfs (Tarter/1975) were thought to have significantly different
characteristics than stars thereby necessitating an entirely new class of objects.

1.3.1 Formation

The standard model for stellar formation is through the gravitational col-
lapse and subsequent fragmentation of dense gas within giant molecular cloud
cores (e.g., [Shu et all[I987). Initially, radiant energy is generated through
the transformation of gravitational potential energy into heat. In the process,
the core becomes dense enough to trap radiation and the central temperature
(T.) and density rise rapidly enough to slow the contraction (with temperature
scaling roughly as T, oc R™!; [Stahler![1988). The conditions eventually reach
a level where thermonuclear fusion is possible within the core of the protostar
(for solar type stars Tc ~3 x 10°K). Gas and radiation pressure generated
by initial nuclear burning support the protostar against any further gravita-
tional contraction bringing it into hydrostatic equilibrium on the stellar main
sequence.

For lower mass objects, higher densities are required for the collapse be-
fore achieving the critical temperature required for fusion. In the perfect gas
regime, the thermal energy and gravitational potential energy are in balance:
GM?/R ~ (M/m,)kT. or M/R ~ constant for a given T.. Consequently,
the density < p> scales as M2, At a high enough density, the stellar core
becomes partially degenerate measured by the parameter o (Reid & Hawley
2005):

N h? electron chemical energy
2(2rM — EKT)3/2 kT
where ap < -4 implies that the material can be treated as a perfect gas gov-

erned by Maxwell Boltzmann statistics and ap > 20 implies that the material
is fully electron degenerate governed by Fermi-Dirac statistics.

(1.9)

g =

As the degeneracy parameter rises, the potential energy is increasingly
absorbed into reducing the separation between degenerate electrons rather
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than transformed into thermal energy. The core pressure (Burrows & Liebert
1993): -
103 L \5/3 e —2
Pe ~ 10 (Me) (1+ 2,lm)dyrbecrn (1.10)
increases under the influence of electron degeneracy pressure and eventually
halts further contraction. If this occurs before the protostar has reached the
critical temperature for sustained stable Hydrogen fusion (below a mass of

~ 0.072Mg; [Chabrier & Baraffel [1997)); the object simply continually cools
off and is categorized as a brown dwarf. Figure BII] demonstrates the core

temperature versus age based on the evolutionary models of Burrows, et al.
(1997).

F 010
4+ —
B 009
: S s |
3 4
r 008 -
< F — ]
S C ]
G Al ]
— 20 /// B ]
B 7 ]
B 7 4 — .
: 7 007 A
1 / — 0.06
e . ]
— ) ) 004 -
- 003 |
. 02 ]
0 L L L L L L L L L L ‘ L L L L L L L L L ‘ L L L L L L L L L ‘ \\\TTTTﬁ L TT\‘O\O] L B

-3 2 -1 0 1

log(age)[Gyr]

Figure 1.3: The core temperature (T, versus age of low mass stars and brown
dwarfs based on the (1997)) evolutionary models. Lines of constant
mass are labeled in Mg. As in Burrows et _all 2001l the red lines are for models
with masses equal to or below 13 M jypiter, the green lines are for objects above 13
M jupiter and below the edge of the main sequence (here marked at 78 M jypiter ), and
the blue are for Hydrogen burning stars.

Some initial nuclear burning is possible in brown dwarfs before electron
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degeneracy reduces the temperature below what is required for fusion. The
nuclear energy generation can be reduced to one branch of the p — p chain
(Burrows & Liebert![1993):

p+p—d+et +u, (1.11)

p+d—> He+ry (1.12)

Depending on the mass, nuclear burning is achieved for 0.1< 7 <10 Myr
during which 95% of the total emitted luminosity is generated via the above
branch of the p — p chain (Grossman et all[1974). For objects less massive
than 0.013 Mg, temperatures do not reach a level where this initial deuterium
fusion is possible (Burrows et all[1997; [Chabrier et al.l2000). |Oppenheimer
et_all (2000) proposed this mass cut-off as the boundary between low-mass
brown dwarfs and planets, and subsequent works (such as [Basri & Brown
(2006)) have adopted this designation.

1.3.2 Detection and Observable Properties

The lack of stable hydrogen burning in brown dwarfs makes them intrin-
sically very dim. They peak in brightness in the near-IR (due to their low
effective temperatures) and because of their intrinsic faintness (see Figure
[[4), they are primarily detected in the nearby solar neighborhood. The first
bonafide brown dwarf discoveries came after many false positives and null re-
sults were reported in the literature from deep cluster surveys, radial velocity
monitoring, and companion searches (e.g. [Leggett & Hawking [1988; [Forrest
et all[1989; Murdoch et alll1993). In the mid 90’s Gliese 229B, a faint < 1200
K companion to a nearby M dwarf, was reported by Nakajima et al| (1995).
This is often considered the first bonafide brown dwarf verified in the literature
although GD 165B (Becklin & Zuckerman!T988)); Teide 1 (Rebolo et al.[T995);
and PP1 15 (Basri et all[1996) also stake that claim.

12



0ITIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Logye [Luminosity) {in solar units)

|
-3 25 -2 -15 -1 -5 0 5 1
Logyo (Age) (Gyrs)

Figure 1.4: Luminosity versus age of low mass stars and brown dwarfs as published
in Burrows et all (2001)). Lines of constant mass are labeled in M jypiter (~1073 Mg.)

By the end of the 20" century a number of surveys made possible what
is now called substellar observational astronomy. Astronomers working with
the Two Micron All-Sky Survey (2MASS; [Skrutskie et al|2006), the Deep
Near-Infrared Survey of the Southern Sky (DENIS; [Epchtein et al|1997), and
the Sloan Digital Sky Survey (SDSS; [York et all2000) identified hundreds of
brown dwarf candidates that were confirmed with spectroscopic follow-up (e.g.
[Cruz & Reid 2002} [Cruz et all2003; Burgasser et al.|[1999] 2003d}; West et all
2004}, [Kirkpatrick et al.|2000; [Chiu et _al.l2006], 2008; Knapp et al.|2004). The
spectral classification scheme was expanded to encompass the variety of new
objects. The standard OBAFGK M classifications were extended to include
“L” dwarfs (objects with temperatures typically between 2400<T<1300K)
and “T” dwarfs (objects with temperatures typically below ~1300K; see [Kirk-|
and references there in).
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Figure 1.5: The optical spectral sequence from M7 to T8 dwarfs as published in

Kirkpatrick (2005).

As objects cool from M dwarfs into L dwarfs, their optical spectra become
dominated by strong metal hydride bands (FeH, CrH, MgH, CaH) and promi-
nent alkali metal lines (Na I, K I, Cs I, Rb I). Titanium oxide (TiO) and
vanadium oxide (VO), which are dominant in M dwarfs, are depleted with de-
creasing temperature as dust formation is believed to remove these molecules
from the atmosphere. As objects cool even further into the T dwarfs, as-
tronomers turn to near-IR spectra as a classification scheme where CHy, the
distinguishing T dwarf spectral feature, and HoO dominate. Figure shows
the optical spectral sequence of M7 through T8 dwarfs taken from
(2005), and Figure shows the near-IR spectral sequence of L dwarfs taken
from Kirkpatrick et al (2010) and T dwarfs taken from Burgasser et al (2006).
The standard spectral classification for L dwarfs is in the optical using the
Kirkpatrick et al (1999) scheme and for T dwarfs is in the near-IR using the
Burgasser et al (2006) scheme (see also Geballe et al. 2002; Kirkpatrick et al.
2010; Cushing et al. 2005).
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Figure 1.6: At left, the near-IR spectral sequence from L0 to L9 taken from
Kirkaptrick et al (2010). At right, the near-IR spectral sequence from L8 to T8
taken from Burgasser et al (2006). The standard classification scheme for L dwarfs
is from Kirkpatrick et al 1999 using optical data. The standard for T dwarfs is from
Burgasser et al (2006) using near-IR data.

Using a combination of optical and near-IR filters, apparent magnitude dif-
ferences in near-IR bandpasses have been used to photometrically select brown
dwarf candidates as well as study overall population characteristics. The latest
type T dwarfs emit a significant percentage of their light in mid-IR wavelengths
therefore Spitzer Infrared Array Channel (I RAC) bands have also been used
to study photometric characteristics of the coldest brown dwarfs (Leggett et al.
2010; [Patten et all2006). The most widely used color for studying L and T
dwarfs in the field has been J-K. L dwarfs have increasingly red J-K colors
due to decreasing T.ss and condensate dust in their photospheres. T dwarfs
have increasingly blue J-K colors as CH4 absorption removes significant longer
wavelength flux and their photospheres are generally considered cloudless or
clear of dust. Figure [ZR shows the J-K color difference versus spectral type
for the L and T dwarfs listed on dwarfarchives.org as well as the recent SDSS

2The dwarfarchives website is a compendium of spectroscopically confirmed field L and
T dwarfs maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser
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sample from [Schmidt et al. (2010).

J-K, (2MASS)

-2 | | | | |
LO L5 TO T5 T9
Spectral Type

Figure 1.7: 2MASS near-IR J-K; color of L. and T dwarfs listed on the dwar-
farchives.org website (as of September 2010) as well as those listed in a recent SDSS
study by [Schmidt et al. (2010)). Low surface gravity dwarfs are marked by red filled
circles, subdwarfs are marked with blue filled circles, and normal field dwarfs are
marked as black filled circles.

1.3.3 Influence of Clouds, Gravity, and Metallicity

The early models of brown dwarfs predicted a sensitivity of observables to
different surface gravities, metallicity, and dust precipitation (Burrows et al.
2002; Marley et al|2002)). The range of photospheric pressures (0.1-10 bar)
and temperatures (~500-3000 K) covered by brown dwarfs leads to complex
atmospheric chemistry. The atmospheres of substellar mass objects contain
clouds of oxides, iron, silicates and various other refractory condensates which
cause a reddening of the spectral energy distribution and a shallowing of ab-
sorption bands (Tsuji et al|[I996]). The elemental depletion and wavelength
distribution of the opacity of these dust clouds influence the photometry as
well as the emergent spectral energy distribution.
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A range in age among the known field population leads to gravity and/or
metallicity differences. The surface gravity modulates the photospheric gas
pressure. This affects both pressure-sensitive features as well as gas/condensate
chemistry which in turn influences colors and spectral features. Low-surface
gravity objects have weakened alkali lines, enhanced metal oxide absorption
and reduced Hy absorption all leading to a redder near-IR color. High surface
gravity objects have inverse features all leading to a bluer near-IR color.

Differences in metallicity influence brown dwarf colors and spectral fea-
tures (e.g. Burrows et al 2006). For metal-poor brown dwarfs there is an
enhancement in collision-induced Hy absorption that preferentially supresses
flux at K band (Linsky|1969; [Saumon et al/[1994). Combined with a reduc-
tion in metal opacity at shorter wavelengths; low-metallicity results in bluer
near-IR colors (see [Burgasser et al.|2008d, Bowler et _all2009, [Cushing et al|
2010). Conversely, metal-rich dwarfs have greater dust production due to the
availability of metals for grain condensation.

Relative to the mean J-K colors of known L and T dwarfs, both red
and blue photometric outliers have been observationally identified. They have
spectral peculiarities attributable to suppressed or enhanced metallicity, grav-
ity or atmospheric properties as described above. The red photometric outliers
have their observable features attributed to low-surface gravity; dusty photo-
spheres; or a high metallicty (e.g. [Kirkpatrick et al|2006}; [Cruz et al.l 2009}
Allers et all2007; [Looper et al|2008b). Low-surface gravity outliers tend to
have weak Na and K lines as well as reduced VO bands in their optical spectra.
The near-IR spectra of the blue photometric outliers show strong H,O, FeH
and K I features (e.g. [Cruz et all2003, [Cruz et all2007; [Knapp et al.|2004],
2000, Burgasser et al. 2008, 2009, |Cushing et al.|
2010). Their observable features have been attributed to low-metallicty, old
age, or patchy-cloud atmospheres. Extreme examples of these are the handful
of halo brown dwarfs identified in the field ([Burgasser et al|2003al;
let_all2004; Burgasser|2004a); [Sivarani et all2009; [Cushing et al.|2009).

Several models are available for testing the effects of clouds, gravity, and
metallicity on brown dwarf observables. Prominent evolutionary models in-
clude [Chabrier et all (2000), Burrows et al.l (1997), and [Saumon & Marley|
2008. Prominent atmospheric models include: PHOENIX models (Hauschildtl
et_al.l1999, 1997; [Allard et. all200T) 2003; Helling et al|2008), Burrows mod-
els (Burrows et all2006; Burrows & Liebert/[1993); Marley & Saumon models
(Ackerman & Marley| 2001} [Saumon & Marley|2008); and Tsuji models (Tsuji
2005, 2002). Each approaches the problem of dust condensation and opacity
with a different methodology. (2008)) shows that even with vastly

different approaches, atmospheric models agree on the global cloud structure
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but differ in opacity relevant details such as grain size, dust quantity, etc.,
leading to slightly different theoretical predictions. Testing the predictions of
both model atmospheres and brown dwarf isochrones requires knowledge of
critical brown dwarf parameters such as well defined distances and ages.

1.4 Determining Brown Dwarf Ages

Determining the age of an individual brown dwarf is challenging. Their
thermal evolution leads to a degeneracy between mass, age, and physical prop-
erties derived from observables such as luminosity and effective temperature
(Tesr). One method for breaking this degeneracy is to sample the age of the
population using kinematics. Combining distance with proper motion yields
the tangential velocity (vie,) of an individual source. The dispersion of vy,
for a population reveals high or low velocity outliers as well as age informa-
tion about the population (Wielen 1977). [Vrba et all (2004) compared the
distribution of v;,, among L. and T dwarfs and conclude that the kinemat-
ics indicate that, in general, the T dwarfs are an older population than the
L dwarfs. Combining proper motion, distance, and radial velocity, |Zapatero
Osorio et _all (2007) examined the space motion of a sample of 18 ultracool
dwarfs. They concluded that L and T dwarfs are kinematically younger than
solar-type to early M stars with likely ages in the interval 0.5-4 Gyr.

Individual brown dwarf ages have been determined by tying them to ob-
jects with well defined ages. Brown dwarfs have been found in very young
star-forming regions such as Orion and Taurus (ages <1-2 Myr); intermediate-
age moving groups such as 3 Pictoris and AB Doradus (< 10 Myr); and older
associations such as the Hyades (~ 600 Myr) and Pleiades (~ 100 Myr) open
clusters (e.g. Bouvier et all2008 Bihain et all2006; [Jameson et al.l2008b:
Ribas 2003). They have also been found as companions to well characterized
main-sequence stars (e.g. [Kirkpatrick et al|2001al [Wilson et al. 2001], Bur-
gasser et al|2000a, Nakajima et al|[1995 ). Assuming co-evality between the
pair; the age of the main-sequence star can be applied to the brown dwarf.
For these objects, ages can range from as low as a few hundred Myr to several
Gyr.

Spectral analysis techniques have also proven effective for determining indi-
vidual brown dwarf ages. For T dwarfs, comparing the HoO and Hy—sensitive
spectral ratios between empirical data and theoretical atmospheric models
calibrated to brown dwarfs with well-characterized ages yields effective tem-
peratures and surface gravities (Burgasser et al|2006al). These in turn can be
combined with evolutionary models to yield individual age estimates. Several
groups have successfully applied such age dating methods within the litera-
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ture (Saumon et all2007; Warren et all2007; [Cushing et al.|2008), although
this method relies on having well calibrated brown dwarf benchmarks (such as
those described above) to anchor the analysis.

1.5 Astrometry of Brown Dwarfs

The first multi-object brown dwarf astrometric program was by
(2002). In that work astrometry was reported for 17 L dwarfs and three
T dwarfs. One year later (2003) reported astrometry for 10
T dwarfs and the following year (2004) reported measurements
for 22 L dwarfs and 18 T dwarfs. Some overlap exists between the various
programs; but with these three samples in combination with companions to
nearby parallax stars (e.g. [Nakajima et al|[1995} Kirkpatrick et al]2001a;
Wilson et all 2001) and a handful of individual measurements
& Kirkpatrick! 2003 [Burgasser et al|2008c; [Smart et al.l[2010), the sample of
brown dwarfs with well defined distance and proper motion measurements was
defined.

A number of intrinsic characteristics of the brown dwarf population emerged
from early astrometric studies. By combining parallax measurements with
bolometric corrections (Golimowski et al.l[2004b) and an assumed radius (see
Vrba et all2004), the mean luminosity and temperature ranges were defined
for spectral types. Spectrophotometric relations were defined in the near-IR
and optical enabling distance calculations for objects without trigonometric
parallax measurements. Close examination of absolute magnitude as a func-
tion of spectral type revealed a brightening in near-IR color (primarily in the
J band) for TO-T5 dwarfs (Dahn et al.2002; Vrba et all2004). Further studies
revealed this to be an intrinsic feature of brown dwarfs with the most prob-
able explanation being complex atmospheric physics (Burgasser et al.[2002b);
Looper et al2008a; [Liu ef alJ2006).

A number of parallax sources were followed up with adaptive optics imaging
and resolved into close binary companions 2008;Martin et all
2006; Burgasser et al|R2003c). A number of groups have been monitoring
these sources to measure orbital parameters and consequently the dynamical
masses (Dupuy et al.|2008; Dupuy et al.|2009; Konopacky et al|2010al). The
handful of objects with precise mass measurements have been used to test
the accuracy of evolutionary models. The most recent studies have found
significant discrepancies between empirical measurements tracing brown dwarf
isochrones to those predicted by the most reliable models (Burrows et al.[1997:
[Chabrier et_all2000% Zapatero Osorio et al]2004).

The scatter of brown dwarfs in color-magnitude diagrams has been at-
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tributed to a second parameter influence which could be gravity, metallicity,
unresolved binarity, and/or atmospheric differences within the brown dwarf
population (Saumon & Marley|2008]). The J band brightening is now firmly
attributed to atmospheric effects largely caused by either cloud disruption or a
sharp variation in the efficiency of condensation across the temperature regime
of the early type T dwarfs (Burgasser et al.|2002b} [Knapp et al|2004). The
scatter of luminosity among the latest-type T dwarfs has been attributed to
gravity or metallicity effects (Leggett et al.|2009; Patten et all2006]). Novel
techniques have successfully identified an increasingly large population of un-
resolved close binaries (Burgasser et al.]2010a). Such systems would appear as
over-luminous sources on color-magnitude diagrams. Increasing the number
of brown dwarfs with well-characterized distances, ages, metallicities, and/or
surface gravities will enable robust investigations of the second parameter ef-
fect.

1.6 The Brown Dwarf Kinematics Project

In order to address pressing issues with our understanding of brown dwarf
evolutionary trends, multiplicity, and atmospheric properties, I and collabora-
tors at the American Museum of Natural History, MIT, United States Naval
Observatory (USNO), Cerro Tololo Inter-American Observatory (CTIO), and
the University of Washington initiated the Brown Dwarf Kinematics Project
(BDKP). We set out to measure proper motions for all known L and T dwarfs
and determine parallax as well as radial velocity measurements for all brown
dwarfs within 20pc of the Sun and select sources of scientific interest. The
scientific goals of this project are to (1) construct a “clean” (free of binary and
spectrally-peculiar objects) sample for luminosity function measurements, (2)
search for spatial and kinematic structure associated with moving groups, (3)
construct robust absolute magnitude, luminosity and T.ss relations particu-
larly across the poorly-sampled L dwarf/T dwarf transition region, (4) exam-
ine correlations between kinematics and physical properties, and (5) identify
unresolved multiples and wide companions to nearby stars.

The following chapters describe the results of the first few years of the
BDKP and the projects for which I was the lead investigator. Chapter 2
describes a campaign to re-image known L and T dwarfs. With this work
I created an astrometric catalog of the majority of known brown dwarfs and
examined kinematic trends within the population. Chapter 3 describes a cross-
correlation between the BDKP astrometric catalog and the Hipparcos and
Lepine Shara Proper Motion North (LSPM-N) catalog in search of companions
to nearby stars. Extensive follow-up of 9 systems is described in that chapter
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where I test age-diagnostic tools for brown dwarfs and stars and examine the
stability of the low-binding energy systems discovered. Chapter 4 describes
an extensive parallax campaign in the South to determine distances to all
late-type L and T dwarfs within 20pc of the Sun as well as select sources
of scientific interest (namely low-surface gravity dwarfs and subdwarfs). In
that chapter I create robust absolute magnitude diagrams and explore various
color magnitude diagrams which test various levels of gravity, metallicity, and
atmospheric properties. Finally, in Chapter 5 I discuss the impact of this work
and the future of brown dwarf astrometry.
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Chapter 2

Proper Motions and Tangential
Velocities

At the start of my thesis it was clear that there was a large gap in our un-
derstanding of the basic astrometric properties of the brown dwarf population
because the majority of L and T dwarfs were missing proper motion mea-
surements. As a result myself, and collaborators initiated the Brown Dwarf
Kinematics Project (BDKP) with one of the primary goals being to re-image
all known L and T dwarfs lacking proper motion measurements. In this chap-
ter I describe the results of a 1.5 year observing campaign using optical and
near-IR imaging facilities in the North and the South to obtain accurate kine-
matic data for ultracool dwarfs. This chapter is a reprinting of a paper, of
which I am the primary author, published in the Astronomical Journal with
co-authors Adam J Burgasser, Michael M. Shara, Frederick M. Walter, Kelle
L. Cruz, and Chris Gelino.

2.1 Introduction

Kinematic analyses of stars have played a fundamental role in shaping our
picture of the Galaxy and its evolution. From early investigations (e.g. [Lind-
bladl 1925, [Oortl 1927) where the large scale structure of the Galactic disk
was first explored, through more recent investigations (e.g. [Gilmore & Reid
1983, [Gilmore et _all[T989, [Dehnen & Binney 1998, [Famaey et al.|2005) where
the structure of the Galaxy was refined to include a thick disk and promi-
nent features such as streams, moving groups, and superclusters, kinemat-
ics have played a vital role in understanding the Galactic origin, evolution,
and structure. Combining kinematics with spectral features, several groups
have mapped out ages and metallicities for nearby F,G,K, and M stars (e.g.
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Nordstrom et all2004). The ages of these stars have become an important
constraint on the Galactic star formation history and their kinematics have
become a vital probe for investigating membership in the young thin disk,
intermediate aged thick disk or older halo portion of the Galaxy.

One population that has yet to have its kinematics exploited is the recently
discovered population of very low-mass ultracool dwarfs (UCDs). These ob-
jects, which include those that do not support stable hydrogen fusion (Kumar
1962} [Hayashi & Nakano|/[1963)), occupy the late-type M through T dwarf spec-
tral classifications (e.g., Kirkpatrickl 2005, and references therein). UCDs emit
the majority of their light in the infrared and thus were only discovered in large
numbers with the advent of wide-field near-infrared imaging surveys such as
the Two Micron All Sky Survey (hereafter 2MASS; [Skrutskie et al.2006]), the
Deep Infrared Survey of the Southern Sky (hereafter DENIS; [Epchtein et al.
1997) and the Sloan Digital Sky Survey (hereafter SDSS; [York et al.l2000).
Their very recent discovery has largely precluded astrometric measurements
which require several-year baselines to produce useful measurements. There-
fore, while UCDs appear to be comparable in number to stars (e.g., Reid et al.
1999)), their role in the structure of the Galaxy has yet to be explored.

In addition, the thermal evolution of brown dwarfs (the lowest temperature
ultracool dwarfs) implies that there is no direct correlation between spectral
type and mass, leading to a mass/age degeneracy which makes it difficult
to study the mass function and formation history of these objects. While
some benchmark sources (e.g. cluster members, physical companions to bright
stars) have independent age determinations, and spectroscopic analyses are
beginning to enable individual mass and age constraints (e.g. [Burgasser et al.
2006at [Saumon et al.2007, Mohanty et al|]2004), the majority of brown dwarfs
are not sufficiently characterized to break this degeneracy. Kinematics can be
used as an alternate estimator for the age of the brown dwarf population.

Moreover, kinematics can also be used to characterize subsets of UCDs.
With hundreds of UCDs now known, groupings of peculiar objects - sources
whose photometric or spectroscopic properties differ consistently from the ma-
jority of the population - are becoming distinguishable. Currently defined
subgroups of late-type M, L and T dwarfs include 1) low surface-gravity, very
low-mass objects (e.g. McGovern et _all 2004, Kirkpatrick et al|20006], [Allers
et all2007, [Cruz et all2007), 2) old, metal-poor ultracool subdwarfs (e.g. Bur-
gasser et al.2003al, Lépine et al.|2003], (Gizis & Harvin/2006, Burgasser et al.
2007al), 3) unusually blue L dwarfs (hereafter UBLs; e.g. [Cruz et all2003|
Cruz et all2007; [Knapp et al|2004, [Chiu et all2006]), and 4) unusually red

! An up-to-date list of known L and T dwarfs is maintained by C. Gelino, D. Kirkpatrick
and A. Burgasser at http://www.dwarfarchives.org
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and possibly dusty L dwarfs (e.g. (Looper et al|2008b; [McLean et all2003)).
While observational peculiarities can overlap between these groups (e.g. both
young and dusty L dwarfs can be unusually red), they appear to encompass
objects with distinct physical traits (e.g., mass, age, composition, and cloud
properties) so they are important for drawing a connection between obser-
vational characteristics and intrinsic physical properties. Kinematics can be
used to investigate the underlying physical causes for the peculiarities of these
groups.

In the past decade a number of groups have conducted astrometric surveys
of UCDs, including subsets of low mass objects (e.g. [Vrba et al.2004] Dahn
et al.2002) (GGizis et al.[2000b, Tinney et al.2003) Schmidt et al.[l2007, [Jameson
et_all 2008al, [Zapatero Osorio et al|R2007, and [West et al.l 2008, 2006]). We
have initiated the Brown Dwarf Kinematics Project (BDKP) which aims to
measure the positions and 3D velocities of all known L and T dwarfs within 20
pc of the Sun and selected sources of scientific interest at larger distances (e.g.
low surface-gravity dwarfs, subdwarfs). In this article we add 332 new proper
motion measurements and combine all published proper motion measurements
and distance estimates into a uniform sample to examine the ultracool dwarf
population as a whole. Section 2 of this paper outlines the observed sample and
describes how proper motion measurements were made. Section 3 discusses the
expanded sample and how distances and V},,, measurements were calculated.
Section 4 examines the full astrometric sample and subsets. Section 5 reviews
the high tangential velocity objects in detail. Finally, section 6 applies an age-
velocity relation and examines resultant ages of the full sample and red/blue
outliers.

2.2 Observations and Proper Motion Measure-
ments

2.2.1 Sample Selection

Our goal is to re-image all known late-type M, L, and T dwarfs to obtain
accurate uniformly measured proper motions for the entire ultracool dwarf
population. In our sample we focused on the lowest temperature L and T
dwarfs that were lacking proper motion measurements or whose proper motion
uncertainty was larger than 40 mas/yr. We gave high priority to any dwarf
that was identified as a low surface-gravity object in the literature. Our sample
was created from 634 L and T dwarfs listed on the Dwarf Archives website
as well as 456 M7-M9.5 dwarfs gathered from the literature (primarily from
Cruz et al. 2003, 2007). The sample stayed current with the Dwarf Archives
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website through April 2008. Figure 2] shows the histogram of spectral type
distributions for the entire sample. The late-type M and early-type L dwarfs
clearly dominate the ultracool dwarf population. Plotted in that figure is the
current distribution of objects with proper motion values and the distribution
of objects for which we report new proper motions. To date we have re-imaged
427 objects. As of June 2008 and including all of the measurements reported in
this article, 570 of the 634 known L and T dwarfs and 277 of the 456 late-type
M dwarfs in our sample have measured proper motions.

Number of Dwarfs

LO L5 TO T5
Spectral Type

Figure 2.1: Spectral type distribution of all late-type M, L, and T dwarfs. The
overall histogram is the distribution of all ultracool dwarfs in our sample. The blue
shaded histogram shows ultracool dwarfs with proper motion measurements. The
diagonally shaded histogram shows the distribution of ultracool dwarfs with new
proper motions reported in this paper.

2.2.2 Data Acquisition and Reduction

Images for our program were obtained using three different instruments
and telescopes in the northern and southern hemispheres. Table 2.1 lists the
instrument properties. For the northern targets the 1.3m telescope at MDM
with the TIFKAM IR imager in J band was used. For the southern targets
the 0.9m and 1.5m telescopes at CTIO with the CFIM optical imager in I
band and the CPAPIR wide field-IR imager in J band (respectively) were
used. The CTIO data were acquired through queue observing on 11 nights
in March, September and December 2007, and standard user observing on
9 nights in January 2008. The MDM targets were imaged on five nights in
November 2007 and 7 nights in April 2008. Objects were observed as close to
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the meridian as possible up to an airmass of 1.80, and with seeing no greater
than 2.5” FWHM. Exposure times varied depending on the target and the
instrument. For CPAPIR the exposure times ranged over 15—40s with 4 co-
adds per image and a five-point dither pattern. At MDM the exposure times
ranged over 30—120s with up to 6 co-adds per image and a three to five-point
dither pattern. For the 0.9m observations the exposure times ranged over
180—1800s per image with no co-adds and a three-point dither pattern. The
dither offset between positions with each instrument was 10”.

All data were processed in a similar manner using standard IRAF and
IDL routines. Domeflats were constructed in the J or I band. CPAPIR and
CFIM domeflats were created from 10 images illuminated by dome lamps,
and TIFKAM domeflats were created by subtracting the median of 10 images
taken with all dome lights off from the median of 10 images taken with the
dome lights on. A dark image constructed from 25 images taken with the
shutter closed was used to map the bad pixels on the detector. Domeflats
were then dark subtracted and normalized. Sky frames were created for each
instrument by median-combining all of the science data taken on a given night.
Science frames were first flat-fielded, then sky-subtracted. Individual frames
were shifted and stacked to form the final combined images.

2.2.3 Calculating Proper Motions

The reduced science frames were astrometrically calibrated using the 2MASS
Point Source catalogue. 2MASS astrometry is tied to the TYCHO 2 positions
and the reported astrometric accuracy varies from source to source. In gen-
eral the positions of 2MASS sources in the magnitude range 9 < K, < 14 are
repeatable to 40-50 mas in both RA and DEC.

Initial astrometry was fit by inputting a 2x2 transformation matrix con-
taining astrometry parameters which were first calculated from one image in
which two stars with known 2MASS RA and DEC values and second epoch
X,Y pixel positions were known. The reference RA, DEC and pixel values
were first set to the pointing RA and DEC values and the center of the chip
respectively.

RA and DEC values for all stars in the field were then imported from the
2MASS point source catalogue and converted to X,Y pixel positions using the
initial astrometric parameters. We worked in X,Y positions of the second epoch
image so we could overplot point source positions on an image and visually
check that we converged upon a best fit solution. We detected point sources
on the second epoch image with a centroiding routine which used a detection
threshold of 5 sigma above the background. We matched the 2MASS X,Y
positions to the second epoch positions by cross-correlating the two lists. We
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refined the astrometric solution by a basic six parameter, least-squares, linear
transformation where we took the positions from the 2MASS image (X1,Y7)
and the positions from the second epoch image (Xy,Yy) and solved for the
new X,Y pixel positions of the second epoch image in the 2MASS frame. Due
to the large field of view, we checked for higher order terms in the CPAPIR
images and found no significant terms. The following equations were used:

X = Top + A(Xl — Xo) + B(Yi — YE)) (21)

Y = Y20 + C(Xl — Xo) + D(Yi — Y'(-)) (22)

where x9, and 15, were set to the center of the field, A, B, C, D solve for the
rotation and plate scale in the two coordinates.

The sample of stars used to compute the astrometric solution for each
image were selected according to the following criteria:

1. Only stars in the 2MASS J magnitude range 12 < J < 15 were used,
as objects in this intermediate magnitude range transformed with the
smallest residuals from epoch to epoch.

2. The solution reference stars were required to transform with total abso-
lute residuals against 2MASS of < 0.2 pixels. From testing with images
taken consecutively using each instrument, the best astrometric solution
always generated between 0.1 and 0.2 pixel average residuals. Therefore
the stars used to calculate the solution were required to fall in or below
that range.

As the solution was iterated, the residuals were examined at each step,
and stars that did not fit the above criteria were removed. For CPAPIR, the
process converged on a solution that had between 100 and 200 reference stars
with average residuals < 0.15 pixels. TIFKAM and CFIM have smaller fields
of view (~6 arcmin and ~ 5 arcmin respectively as opposed to 35 arcmin
for CPAPIR) so there were far fewer stars to work with. For these imagers
the process converged on a solution that had between 15 and 60 reference
stars. The astrometric solution was required to converge with no less than
15 reference stars and when this criterion could not be met, the other two
criteria above were relaxed. As a result TIFKAM and CFIM had slightly
larger residuals on the astrometric solution (average residuals < 0.25 pixels).

Once an astrometric solution was calculated, final second epoch positions
were computed using a Gaussian fit for each 2MASS XY position on an image.
For the science target, a visual check was employed to ensure that it had been
detected and X,Y positions were manually input for the Gaussian fit. Final
X,Y positions were then converted back into RA and DEC values using the best
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astrometric solution and the proper motion was calculated using the positional
offset and time difference between the second epoch image and 2MASS.

The residuals of the astrometric solution were converted into proper mo-
tion uncertainties by multiplying by the plate scale of the instrument and then
dividing by the epoch difference. The baselines ranged from 6-10 years and our
astrometric uncertainties range from 5 to 50 mas/yr. Positional uncertainties
for each source were also calculated by comparing the residuals of transform-
ing the XY position for our target over consecutive dithered images. These
uncertainties are dominated by counting statistics with the high S/N sources
having negligible positional uncertainties compared to the uncertainties in the
astrometric solution. We added the positional and astrometric solution un-
certainties in quadrature to determine the total proper motion uncertainty.
Figure shows the distribution of proper motion uncertainties and baselines
for all new proper motion measurements reported in this paper. The median
uncertainty was 18 mas/yr.
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Figure 2.2: (Top): Distribution of proper motion uncertainties for the sample
of 427 measurements reported in this paper. The median value is 18 mas yr—!.
(Bottom): Distribution of proper motion baselines (time between first and second

epoch measurements) used in this survey.
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Of the 427 proper motion measurements we report in this paper, 332 are
presented here for the first time. Twelve objects were purposely remeasured
with multiple instruments as a double check on the accuracy of the astrometric
solution, and 42 objects were remeasured to refine the proper motion uncer-
tainties. Thirty-two measurements were published in lJameson et al.|[2008a-
hereafter JO7-, and 11 in [Caballerol (2007) while our observations were under-
way. The proper motion measurements presented in this paper agree to better
than 20 in 84 of the 97 cases of objects with prior measurements. Table
lists those cases where the proper motions are discrepant by more than 20 with
a published value. For nine of the objects, there is a third (fourth or fifth)
measurement by an independent group with which we are in good agreement.
We are discrepant with six objects reported in[Deacon et all (2005]) but we note
that there are no position angle uncertainties reported for these objects in that
catalogue therefore we cannot fully assess the accuracy of the proper motion
components. The difference in proper motion for 2MASSW J1555157-095605
is quite large (> 17 /yr difference) but there are two other measurements for
this object with which we are in close agreement. We have examined all of the
discrepant proper motion images carefully and see no artifacts that could have
skewed our measurements. Figure 2.3]compares the proper motion component
measurements from this paper with those from the literature for objects with p
< 0.5"/yr and prerr < 0.17/yr. With~90% agreement with published results,
this indicates that the 332 new measurements are robust. Table 2.T1] contains
all new measurements reported in this article, and Table [Z12l contains the
astrometric measurements for the full sample.
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Figure 2.3: Comparison of Right Ascension (top) and Declination (bottom) proper
motion measured in this paper and those measured in the literature. The straight
line represents a perfect agreement between measurements. The red highlighted
objects are the discrepant proper motion measurements (see Table 2.2])

2.3 Distances, Tangential Velocities, and Re-
duced Proper Motion

2.3.1 Expanded Sample

We extended our observational sample to include published late-type M,
L, and T dwarfs with proper motion measurements yielding a full combined
sample containing 841 objects. Thirty-three percent of ultracool dwarfs in
the full sample have multiple proper motion measurements. In these cases
we chose the measurement with the smallest uncertainty for our kinematic
analysis, typically objects from high precision astrometric surveys such as Vrba
et al 2004 or Dahn et al 2002. If there was a value discrepant by more than
20 amongst multiple measurements (> 2) for an object then regardless of
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Table 2.2. Discrepant Proper Motion Values
Name tacos(d) Ldec Hecos(d) Pdec Reference
"/yv) @) ) ("/yv)
This Paper This Paper Literature Literature

SIPS J0050-1538  -0.229 4+ 0.018  -0.494 + 0.019 -0.495 + 0.039 -0.457 £+ 0.038 16
2MASSJ0227-1624 0.426 £ 0.016  -0.297 £ 0.017 0.509 + 0.016 -0.303 £ 0.010 16
2MASSJ0939-2448 0.592 £ 0.019 -1.064 £ 0.021 0.486 + 0.031 -1.042 + 0.055 41
2MASSJ1155-3727 0.050 £ 0.012  -0.767 £ 0.015 0.113 £ 0.005 -0.861 £ 0.039 16
0.013 £ 0.015 -0.778 £ 0.013 9
0.06 + 0.04 -0.82 + 0.07 36
2MASSJ1341-3052 0.030 £ 0.013  -0.134 £+ 0.015 0.109 + 0.014 -0.163 + 0.022 17
2MASSJ1347-7610 0.203 £ 0.005 0.038 £ 0.020 0.257 £ 0.063 0.287 £ 0.063 22
0.193 £ 0.011 0.049 £ 0.019 35
2MASSJ1448+1031 0.262 £ 0.022 -0.120 £ 0.022 0.70 + 0.15 -0.10 £ 0.16 36
0.249 £ 0.015 -0.099 £ 0.016 10
2MASSJ1507-1627  -0.128 + 0.014  -0.906 + 0.015 -0.043 £ 0.011 -1.037 £ 0.255 16
-0.1615 4+ 0.0016  -0.8885 £ 0.0006 15
-0.147 £ 0.003 -0.890 +£ 0.002 12
-0.09 + 0.11 -0.88 £+ 0.06 36
2MASSJ1548-1636  -0.210 £ 0.016  -0.107 £ 0.017 -0.189 £ 0.016 -0.176 £ 0.015 17
-0.098 + 0.043 -0.161 + 0.042 22
2MASSJ1555-0956 0.950 £ 0.015 -0.767 £ 0.015 0.929 £ 0.014 -2.376 £ 0.017 10
0.961 £ 0.017 -0.835 £ 0.014 16
-0.400 + 1.200 -1.900 + 1.100 9
2MASSJ1936-5502 0.169 £ 0.009 -0.298 £ 0.016 0.603 £ 0.037 -0.579 £ 0.035 16
0.22 + 0.29 -0.19 4+ 0.28 36
2MASSJ2255-5713  -0.216 £ 0.011  -0.260 £ 0.020 0.394 £ 0.321 -1.525 £ 0.319 22
-0.16 + 0.11 -0.32 £ 0.13 36
2MASSJ2330-0347 0.223 £ 0.022 0.014 £ 0.022 0.349 £ 0.051 -0.107 £ 0.016 16
0.232 £ 0.017 0.032 £ 0.013 10

Note. — Details on the discrepant proper motion objects. We note only objects whose proper motion values

were discrepant by more than 20. Proper motion references are listed in Table 2121
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uncertainty we defaulted to the numbers that were in agreement and chose the
one with the smaller uncertainty. Otherwise, if there was a discrepancy and
only two measurements, we quoted the one that had the smaller uncertainty
and made note of it during the analysis.

2.3.2 Distances and Tangential Velocities

True space velocities are a more fundamental measure of an object’s kine-
matics than apparent angular motions, so proper motions for the complete
sample were converted to tangential velocities using astrometric or spectropho-
tometric distances. As of January 2008, only 79 of the 634 L and T dwarfs
and 64 of the 456 late-type M dwarfs in our sample had published parallax
measurements. Therefore to include the other 83% of L and T dwarfs and
87% of late-type M dwarfs in a population analysis, published absolute mag-
nitude/spectral type relations were used for calibrating distances. [Dahn et al.
(2002) and Vrba et all (2004) both showed that M is well correlated with
spectral type for late-type M, L, and T dwarfs (see alsdWest et _al. 2005, and
Covey et al|2007). Since the initial relations were published several investiga-
tors have revised the absolute magnitude/spectral type relation after including
new measurements and removing resolved binaries. In this paper, the distances
for the M7-L4.5 dwarfs were calculated using the absolute 2MASS J magni-
tude/spectral type relation in [Cruz et all (2003) and the distances for the L5
T8 dwarfs were calculated using the absolute MKO K magnitude/spectral
type relation in [Burgasser| (2007)2. Both optical and near-IR spectral types
are reported for ultracool dwarfs. For late-type M through the L dwarfs, we
use the optical spectral type in the distance relation when available but use
near-IR spectral types when no optical spectral types are reported. We use
the near-IR spectral type in the distance relation for all T dwarfs. The Cruz
et al. (2003) relation was derived for the 2MASS magnitude system, while the
Burgasser] (2007)) relation was derived using the MKO system. In reporting
distances we maintain the magnitude system for which the relation was cal-
culated, converting a 2MASS magnitude to an MKO magnitude or vice versa
using the relation in [Stephens & Leggett| (2004) when necessary. The most
recent precision photometry for many L and T dwarfs (e.g. Knapp et al 2004;
Chiu et al. 2006, 2008) are reported on the MKO system; yet the majority of
objects explored in this paper have measured 2MASS magnitudes. We con-

2The coefficients of this polynomial relation reported in [Burgasser] (2007) did not list suf-
ficient significant digits, yielding a slightly different numerical relation than that used in the
paper’s analysis. The coefficients as defined should be {¢;} = [10.4458, 0.232154, 0.0512942,
-0.0402365, 0.0141398, -0.00227108, 0.000180674, -6.98501e-06, 1.05119¢-07], where Mg =
S0, SpT? and SpT(T0) = 10, SpT(T5) = 15, etc.
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vert MKO filter measurements to the 2MASS system when available using the
conversion relations of [Stephens & Leggett| (2004) so all of the ultracool dwarf
photometry in Table is reported on the 2MASS system.

The uncertainty in the derived distance is dominated by the uncertainty in
the spectral type (the photometric uncertainties are typically between 0.02-0.1
mag whereas the spectral type uncertainties are typically 0.5-1.0). This leads
to a systematic over- or underestimation of distance of up to 30%. There-
fore the kinematic results presented in this paper are largely sensitive to the
reliability of the spectrophotometric distances used to calculate V,,,. Further-
more, unresolved multiplicity leads to an underestimation of distance. Recent
work has shown that roughly 20% of ultracool dwarfs are likely to be binary
(Allen| 2007, Reid et all2008al), and this fraction may be even higher across
the L dwarf/T dwarf transition (Burgasser et al.|2006h). Seven percent (56)
of the dwarfs analyzed in this paper are known to be close binaries and of
these, most appear to be near equal-mass/equal brightness (e.g. Bouy et al.
2003; Burgasser et al.[2006b). For these objects we use the distances quoted in
the binary discovery papers where the contribution of flux from the secondary
was included in the distance estimate. Any remaining tight binaries probably
constitute no more than 10-20% of the sample and the contamination of their
inclusion in the kinematic analysis is relatively small.

2.3.3 Reduced Proper Motion Diagram

A reduced proper motion diagram is a useful tool for distinguishing between
kinematically-distinct stellar and substellar populations. This parameter was
used extensively in early high proper motion catalogues to explore Galactic
structure (Luyten|[I973). Proper motion is used as a proxy for distance mea-
surements following the expectation that objects with large proper motions
will be nearest to the Sun. The definition is analogous to that of absolute
magnitude:

H =m+ 5.0+ 5.0log10(p) (2.3)

or

H = M +5.0l0g10(Vian) — 3.38 (2.4)

where m and M are the apparent and absolute magnitudes (respectively), Vi,
is measured in km/s and p is measured in 7 /yr.

We can use reduced proper motion to search for the lowest temperature
objects. In Figure 2.4l we show the reduced proper motion at K, for our
astrometric sample. We find that below an Hg, of 18 there are only L and
T dwarfs regardless of near-IR color. Since the discovery of the first brown
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dwarfs, near-IR color selection has been the primary technique for identify-
ing strong candidates. But because M dwarfs dominate photometric surveys
(they are bright, nearby and found in large numbers), near-IR color cut-offs
were administered to maximize the L and T dwarfs found in searches. These
cut-offs have caused a gap in the near-IR color distribution of the brown dwarf
population, particularly around J — K, of 1 where early-type T dwarfs and
metal weak L dwarfs are eliminated along with M dwarfs. A reduced proper
motion diagram with the cut-off limit cited above allows a search which elimi-
nates the abundant M dwarfs and probes the entire range of J — K colors for
the ultracool dwarf population.
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Figure 2.4: Reduced proper motion diagram using the 2MASS J and Ky magni-
tudes. Late-type M dwarfs are marked with a black plus sign, L. dwarfs are marked
as a red 5 point star and T dwarfs are marked as blue diamonds. The line at Hg
of 18 marks where M dwarfs are segregated from the L and T dwarfs regardless of
near-IR color. This cut-off will also include subdwarfs and cool white dwarfs but
these objects will be rare.

Note that, while our cut-off limits are good guidelines for segregating the
coolest temperature dwarfs within the ultracool dwarf population, there is
likely to be contamination in selected regions of the sky from relatively rare
ultracool subdwarfs and cool white dwarfs, which are nonetheless of scientific
interest.
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2.4 Analysis

2.4.1 Kinematic Characteristics of the UCD Population

The ultracool dwarfs analyzed in this paper have a range of proper motion
values from 0.01—4.7"/yr and a range of proper motion uncertainties from
0.0002 — 0.3 /yr. While one of our goals is to refine proper motion measure-
ments of ultracool dwarfs to have uncertainties < 40 mas/yr, there are still
86 or 10% that have larger errors. Since the uncertainty in Vi, is generally
dominated by the uncertainty in distance (see subsection 3.2 above) we make
no restrictions on the accuracy of the proper motion measurements used in
the kinematic analysis. The median 1o detection limit for proper motion mea-
surements in this paper was 18 mas/yr (see Figure 2.2)). We use this number
as a proxy for the L and T dwarfs (where we are looking at all known field
objects as opposed to the late-type M dwarfs where we are looking at only a
subset) to determine the percentage of objects with appreciable motion. We
find that 32 move slower than our 20 detection limit and ten of those are at or
below our 1o limit. This indicates that according to our astrometric standard,
less than 6% of L and T dwarfs have no appreciable motion. Conversely, 32
objects (or 6% of the population) move faster than 1.0”/yr making them some
of the fastest proper motion objects known. As late-type dwarfs are intrinsi-
cally quite faint and have only been detected at nearby distances (generally
< 60 pc), the high proper motion values measured are not surprising. Using
the median proper motion values listed in Table as a proxy , we can also
conclude that at least half or more of the brown dwarf population would be
easily detectable on a near-IR equivalent of Luyten’s 2-tenth catalog (Luyten
1979) where the limiting proper motion was ~ 0.15 " /yr.

Table lists the average proper motion values and photometric data for
the entire population binned by spectral type. There is a trend within these
data for larger proper motion values with increasing spectral type. This is
clearest within the LO-L9 population where the sample is largest. We further
bin this group into thirds to compare a statistically significant sample. We
examine the L0-L2, L.3-1.5, and L6-L9 populations and find the median proper
motion values increase as (0.174, 0.223, 0.289) ”/yr. This trend most likely
reflects the fact that earlier type sources are detected to further distances.
Indeed when we examine the median distance values for these same groupings
we find values of (31, 27, 20) pc respectively.
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Table 2.3. Median Photometric and Kinematic Properties of UCDs

SpT N,LL Hmed Op Med Dist Odist NJ*KS (J - Ks)avg 2*C"J—I{S NRed NBiue
("/yr) ("/yr) (pe) (pe)

& &) (3) 4) (5) (6) (7) (8) 9) (10) (11)
M7 88 0.261 0.553 25 10 160 1.08 0.19 0 1
M8 114 0.210 0.403 23 8 147 1.14 0.18 1 1
M9 71 0.204 0.357 22 10 107 1.20 0.22 1 0
LO 93 0.111 0.211 32 19 92 1.31 0.37 4 1
L1 83 0.208 0.301 31 21 82 1.39 0.37 4 1
L2 58 0.185 0.209 32 17 63 1.52 0.40 5 1
L3 64 0.189 0.398 33 17 67 1.65 0.39 1 1
L4 50 0.183 0.284 27 12 44 1.73 0.40 2 2
L5 43 0.323 0.281 24 12 43 1.74 0.40 0 1
L6 36 0.215 0.339 26 12 31 1.75 0.40 4 2
L7 21 0.247 0.186 23 9 15 1.81 0.40 0 2
L8 16 0.280 0.368 19 8 16 1.77 0.33 2 0
L9 3 0.424 0.200 20 6 7 1.69 0.19 0 0
TO 9 0.333 0.165 18 4 8 1.63 0.40 0 0
T1 11 0.289 1.336 23 9 10 1.31 0.40 1 1
T2 13 0.350 0.285 15 7 15 1.02 0.40 1 0
T3 7 0.183 0.135 26 6 5 0.63 0.40 1 0
T4 13 0.323 0.219 23 9 6 0.26 0.40 0 0
T5 20 0.340 0.351 15 3 12 0.07 0.39 0 0
T6 15 0.594 1.217 11 18 5 -0.30 0.40 2 1
T7-T8 13 1.218 0.764 9 3 6 -0.08 0.40 0 1
M7-M9 273 0.222 0.445 23 9 414 1.12 0.22 2 2
LO0-L9 467 0.189 0.292 29 17 460 1.53 0.40 22 11
T0-T9 101 0.373 0.801 15 10 67 0.74 0.40 5 3
Note. — To calculate the (J — Ks)avg for each spectral type, we chose only objects that were not identified as

binaries,young cluster members, subdwarfs and/or had o; and ox, < 0.20.
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2.4.2 Kinematics of Full and 20pc Samples

We have conducted our kinematic analysis on two samples: the full as-
trometric sample and the 20 pc sample. Figure shows the distance dis-
tribution for all ultracool dwarfs regardless of proper motion measurements
to demonstrate the pertinence of the 20 pc sample. In this figure, both the
late-type M and L dwarfs diverge from an N oc d® density distribution around
20 pc. The T dwarfs diverge closer to 15 pc. Within the literature (e.g Cruz et
al. 2003) complete samples to 20 pc have been reported through mid-type L
dwarfs so we use this distance in order to establish a volume-limited kinematic
sample. We also examine the two samples with and without objects with V,,
> 100 km s~! in order to remove extreme outliers that may comprise a different
population.
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Figure 2.5: Cumulative distance distribution of all late-type M, L, and T dwarfs in
our database. Triangles refer to the M7-M9 dwarfs, the "X’ symbols refer to all LO-
L9 dwarfs and the plus symbols refer to all TO-T8 dwarfs. The solid line corresponds
to a constant density distribution (N o< d®). The L and M dwarfs deviate from this
distribution around 20 pc but the T dwarfs fall off closer to 15 pc.

Tables[2.4]-[2.5 contain the mean kinematic properties for the 20 pc sample
and the full astrometric sample respectively. Figure shows Vj., vs. spectral
type for both samples. As demonstrated in Figure 2.6 we find no difference
between the two samples, with median Vj,,, values of 26 km s~! and 29 km s—*
and o4, values of 23 km s~! and 25 km s~! for M7-T9 within the full sample
and the 20 pc sample respectively. Within spectral class bins, namely the M7-
M9, L0-L9, or T0-T9 groupings, we find no significant kinematic differences.
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This indicates that we are sampling a single kinematic population regardless
of distance and spectral type.
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Figure 2.6: Distribution of V;,, values binned by spectral type. The top panel is
the full astrometric sample and the bottom panel is the 20 pc sample. The asterisks
refer to the median Vi, values and the vertical bars refer to the standard deviation
or dispersion of velocities.

Figure 2.7 shows the distribution of tangential velocities. There are 14
objects with V., > 100 km s~! that fall at the far end of the distribution.
Exclusion of these high velocity dwarfs naturally reduces the median V;,, and
Otan Values. The most significant difference in their exclusion occurs within the
LO-L9 group as 10 of the 14 objects belong to that spectral class. We explore
the importance of this subset of the ultracool dwarf population in section 5.
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Figure 2.7: The overall histogram is the tangential velocity distribution for the
entire sample and the diagonally shaded histogram is the 20 pc sample. Both Vi,
distributions peak in the 10-30 km s~ bins.

In order to put our kinematic measurements in the context of the Galaxy
we compare with Galactic U,V,W dispersions. Proper motion, distance, and
radial velocity are all required to compute these space velocities. Therefore,
a direct Galactic U,V,W comparison with the ultracool dwarf population is
not possible because radial velocity measurements for ultracool dwarfs are
sparse, with only 48 of the L. and T dwarfs to date having been reported in
the literature (e.g. [Mohanty & Basri2003] [Zapatero Osorio et al.2007,
Jones/2004)). This is a similar problem to that for precise brown dwarf parallax
measurements, but there is no relationship for estimating radial velocities as
there is for estimating distances. However, we can divide our sample into
three groups along Galactiocentric coordinate axes (toward poles, in direction
of Galactic rotation and radially to/from Galactic center) in order to minimize
the importance of radial velocity in 2 out of the 3 space velocity components.
We create cones of 0 (all inclusive), 30, and 60 degrees around the galactic
X,Y, and Z axes. Inside of each cone we set either the U,V, or W velocity to
zero if the cone surrounds the galactic XY or 7Z axis respectively. In this way
we can set the radial velocity of each source to zero with minimum impact on
the component velocities of the entire sample and gather U VW information
for the known ultracool dwarf population. We emphasize that this analysis
is crude as the distribution of ultracool dwarfs is not isotropic (the Galactic
plane has largely not been explored), and while the cones help to minimize
the importance of radial velocity unless an object is directly on the XY, or
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Table 2.4. 20 pc Sample

SpT N N med Vian med Vian Otan Otan Age Age
High Vian w/ high Vian w/ high Vian w/ high Vian
(km s~1) (km s~1) (km s~1) (km s~1) (Gyr) (Gyr)

(1) (2) ®3) (4) (5) (6) (7) (8) )
M7 29 0 25 25 20 20 — —
M8 37 1 33 33 20 25 — —
M9 27 1 26 26 22 26 — —
LO 9 0 19 19 21 21 — —
L1 19 0 30 30 29 29 — —
L2 10 0 27 27 16 16 — —
L3 12 3 32 38 20 46 — —
L4 15 1 27 27 20 28 — —
L5 16 0 27 27 21 21 — —
L6 10 0 28 28 24 24 — —
L7 9 0 30 30 9 9 — —
L8 12 0 25 25 20 20 — —
L9 2 0 41 41 0 0 — —
TO 6 0 32 32 15 15 — —
T1 3 0 66 66 28 28 — —
T2 8 0 26 26 5 5 — —
T3 1 0 39 39 0 0 — —
T4 5 0 21 21 16 16 — —
TH 20 0 21 21 23 23 — —
T6 14 0 44 44 22 22 — —
T7 10 1 45 54 15 34 — —
T8 3 0 57 57 8 8 — —
M7-M9 93 2 29 29 21 24 3.0759 50717
LO-L9 114 5 27 27 21 26 3.27 00 6.6773
TO-T9 70 1 30 31 20 24 2.8759 4.617°5
Note. — The age range is calculated from the Wielen (1977) age-velocity relation for the disk which uses a value of

a of (1/3).

Z axis, the radial velocity component will contribute to the overall velocities.
Therefore, the spread of U, V,W velocities will be biased toward a tighter
dispersion than the true values. In order to calculate total velocities (V) for
objects, which requires U,V, and W velocities we choose a cone of 30 degrees
which provides a statistically significant sample. We create the cone around
the XY, or Z axis and assume that within that cone either the V,W or U,Z
or U,V components respectively are correct. To obtain the third component
we assume it to be the average of the two calculated ones. In this way we
can gather Vj,, information which will be used for age calculation purposes in
Section 6.
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Table 2.5. Full Astrometric Sample

SpT N N med Vian med Vian Otan Otan Age Age
High Vian w/ high Vian w/ high Vian w/ high Vian
(km s~1) (km s~1) (km s~1) (km s~1) (Gyr) (Gyr)

(1) (2) ®3) (4) (5) (6) (7) (8) )
M7 88 0 27 27 19 19 — —
M8 114 1 27 27 21 23 — —
M9 71 1 23 23 19 21 — —
LO 93 1 19 19 16 21 — —
L1 83 2 32 33 23 27 — —
L2 58 0 26 26 18 18 — —
L3 64 3 30 32 18 27 — —
L4 50 1 25 27 20 23 — —
L5 43 0 25 25 20 20 — —
L6 36 1 26 27 18 24 — —
L7 21 1 28 28 13 22 — —
L8 16 0 25 25 19 19 — —
L9 3 0 38 38 17 17 — —
TO 9 0 26 26 13 13 — —
T1 11 0 31 31 25 25 — —
T2 13 0 26 26 11 11 — —
T3 7 0 25 25 10 10 — —
T4 13 0 32 32 22 22 — —
TH 20 0 21 21 23 23 — —
T6 15 0 36 36 23 23 — —
T7 10 1 45 54 15 34 — —
T8 3 0 57 57 8 8 — —
M7-M9 273 3 26 26 19 21 2.570°2 3.2703
LO-L9 467 10 26 26 19 23 2,570 45178
T0-T9 101 1 29 29 20 23 27759 40111
Note. — The age range is calculated from the Wielen (1977) age-velocity relation for the disk which uses a value of

a of (1/3).

Figure 2.8 shows our resultant U,V,W distributions where we measure
(ou,ov,ow)=(28, 22, 17) km s~'. We compare these dispersions with the
kinematic signatures of the three Galactic populations, namely the thin disk,
the thick disk, and the halo. The overwhelming majority of stars in the solar
neighborhood are members of the Galactic disk and these are primarily young
thin disk objects as opposed to older thick disk objects. The halo population
of the Galaxy encompasses the oldest population of stars in the Galaxy but
these objects are relatively sparse in the vicinity of the Sun. Membership in
any Galactic population has implications for the age and metallicity of the
object and kinematics play a large part in defining the various populations.
Soubiran_et_all (2003) find (oy,ov,ow)=(39 + 2, 20 + 2, 20 + 1) km s™*
for the thin disk and (oy, oy, ow)=(63 + 6, 39 £+ 4, 39 + 4) km s~! for the
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thick disk, and [Chiba & Beers| (2000)) find (oy, ov, ow)=(141 £ 11, 106 + 9,
94 4 8) km s! for the halo portion of the Galaxy. Our U,V,W dispersions
are consistent (albeit narrower in U ) with the Galactic thin disk.
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Figure 2.8: Histogram of U,V,W velocities. Plotted for each velocity is 1) each
object in the astrometric sample (large histogram) 2) a 30 degree restriction on
objects and 3) a 60 degree restriction (smallest histogram). The 30 and 60 degree
restrictions are placed on the X,Y or Z axis and correspond to removing the UV,
or W velocity respectively for objects in cones of noted radius around the respective
axis.

Zapatero Osorio et al. (2007) — hereafter Os07— examined 21 L and T dwarfs
and found (o, oy, ow)=(30.2, 16.5, 15.8) km s~!. Their velocity dispersions
are tighter than what is expected from the Galactic thin disk population. Our
calculated dispersions are tighter at U than the Os07 result (which is expected
due to the stated bias) but broader in V and W. In section 6 we discuss the
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implications on age of the differences calculated from our astrometric sample.

2.4.3 Red and Blue Photometric Outliers

As discussed in Kirkpatrick et al. (2005) the large number of late-type M,
L, and T dwarfs discovered to date has revealed a broad diversity of colors
and spectral characteristics, including specific subgroups of peculiar sources
that are likely related by their common physical properties. As a very basic
metric, near-IR colors provide one means of distinguishing between “normal”
and “unusual” objects. To investigate our sample for kinematically distinct
photometric outliers, we first defined the average color ((J — Kj)aug) as well
as standard deviation (0,_g,) as a function of spectral type using all known
ultracool dwarfs (i.e., both with and without proper motion measurements).
Defining the (J — Kj)qy for spectral bins has been done in previous ultracool
dwarf studies such as Kirkpatrick et al. (2000), Vrba et al. (2004), and [West
et_al (2008) but we have included all ultracool dwarfs in the dwarfarchives
complilation and the updated photometry reported in Chiu et al. (2006, 2008)
and Knapp et al. (2004) which we have converted from the MKO system to
the 2MASS system. Objects were eliminated from the photometric sample if
they fit any of the following criteria:

1. Uncertainty in J or K > 0.2 magnitude;
2. Known subdwarf;

3. Known binaries unresolved by wide-field imaging surveys (i.e. separa-
tions < 17 e.g. Martin et al.l[1999; Bouy et al|2003} Burgasser et al.
2006b} [Close et al. 2003}, [Liu et al.l20006; Reid et al.|2006]); and

4. Member of a star forming region (such as Orion) or open cluster (such
as the Pleiades) indicating an age < 100 Myr (e.g. [Allers et al.l2007;
Zapatero Osorio et al.|2002)

We then designated objects as photometric outliers if they satisfied the follow-
ing criterion :

AJ*KS :‘ (J - Ks) - (J - Ks)avg |Z maX(20J,KS,O.4) (25)

In other words, if an object’s J— K color was more than twice the standard
deviation of the color range for that spectral bin than we flagged it as a red
or blue photometric outlier. If twice the standard deviation was larger than
0.4 magnitudes then it was automatically reset to 0.4. We chose 0.4 as the
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maximum upper limit for 20;_g_ as this is the A;_g, for the entire ultracool
dwarf population.

There are relatively few objects in each spectral bin beyond L9. For spectral
type (SpT) < L9 there is a mean of 45 objects used per bin whereas for
SpT> L9 there is a mean of only 7 objects. So photometric outliers are
difficult to define for the lower temperature classes and may contaminate the
analysis. We grouped T7-T8 dwarfs to improve the statistics used to calculate
average values. The kinematic results for this subset of the ultracool dwarf
population are reported with and without the T dwarfs in Table2.6l Figure 2.9
shows the resulting J — K color distribution and highlights the photometric
outliers. Tables 2.7] - list the details of the red and blue photometric
outliers respectively. Table lists the resultant mean photometric values for
each spectral type.
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Figure 2.9: J — K colors of late-type dwarfs. We compute the average values for
each spectral type (binned by 1 subtype) from the 2MASS photometry of a select
sample of dwarfs and then flag objects as photometric outliers when they are either
twice the standard deviation of J — K or 0.4 magnitude redder or bluer than the
average value. Red symbols above the plotted range of J — K colors are the red
outliers and blue symbols below the plotted range of J — K colors are the blue
outliers.
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Table 2.6. Average Kinematics and Ages for the Subgroups

SpT N Median Vign Otan Age Range
km s~1 km s~1 Gyr
1) 2) ®3) (4) ()
M7-T9/BLUE 16 53 47 37.9112¢
M7-T9/RED 29 26 16 1.2792
M7-L9/BLUE 13 56 50 46.07152
M7-L9/RED 24 26 15 1.0793
UBLs 10 99 47 3797128
Low Gravity 26 18 15 1.0793

Note. — The age range is calculated from the Wielen (1977) age-
velocity relation for the disk which uses a value of « of (1/3).

46



SSVING Ul peajoseiun Areulq ® sT g ‘103sn[d Sunok ® ul st DA ‘Jremp A31ARIS-mo[ ® SI H ‘Jremp ] on[g A[jensnuf) ue st g ‘uoruedwod apmm ® st DINTA

4

‘9[qeY} SI} Ul 0} POIISJOI S9J0U pUR SIOULILJOI 10] [T 7] °19%l, 998

T

— gFo0e 9LT g9l o1 110°0 F ¥15°0- V100 F 6220 5900 F €6'CT 5900 F LV'9T  €PEV0E+HITEVPesr MSSVING
— ¢ Far o1 61 810°0 F &81°0- €10°0 F 1110 900 F 1961 L0°0 F 99°ST  1ELITH-0SP90Ta MSSVING
— 9 F gg 1 61 ¢10°0 F 130°0" V100 F 8.0 SO0 F G9°€T 800 F GL'GT  000TV¥E-€VSeISIar SSVING
— ¢ F o8 ¢'91 61 7200 F 95¥°0 810°0 F 0LL'0  T0'0 F LL'IT €00 F GT'FT  $6SE00F+EE9ISHIEr SSVING
— vFVE  SOL — o1 9100 F ¥65°0 €100 F 950°0 o900 F 66°'ST 5900 F LT'9T  6'TIEE9V+9F'G08SLIl SSAS
— € F el o1 o1 $10°0 F 8%0°0- €100 F 1800~ SO0 F 99°€T  L0'0 F L9°GT 618£GT+0009ZLT ISSVING
— 8F 1z 11 — 61 920°0 F 0v0'0  S20°0 F 9L0°0- G0'0 F 08'€T  90°0 F 84S TRCIVIIHHPEIIESIL SSVING
— g1 F 98 &L — 61 ¢z0'0 F ¢VE0- €10°0 F €700 =900 F 6%'GT 900 F 6L'9T  L'STHELS+HS0'08STVIL SSAS
— TeEF8E o9l 81 44 900°0 F L01°0-  800°0 F 986°0- 900 F LI'FT -90°0 F LE9T  S'168E00-¢8'629¢E1l dSSAS
— 9F 9 ol — 4 8V0°0 F 092°0-  F90°0 F €/£°0- 900 F 90FT 200 F 09°CT  ¥8T8GEI+H6SCEVTEIL SSVING
— 6F6r T — 61 120°0 F 1#1°0- 120°0 F $90°0 600 F 61'FT €10 F €191 0829080+68EECITII SSVING

DOINTA ¢ Fge 4| o1 ¢10'0 F €81°0-  OV0'0 F €61°0- €00 F 8L°2T  S0'0 F €8°%1T ae-961 D
— £F99 1L — 61 §20°0 F G200 €200 F 09L°0- »90°0 F 69FT =90°0 F 29T L'L9STe+ch E8380r SSAS
— LFgE 91 — 61 6100 F #12°0-  F10°0 F 861°0- 5900 F ¥EFT -90°0 F 1¢9T  T'GGrePF+10°696080r SSAS

DITA  ¥0 F 0T T — ve 01000 F GS¥0'0 80000 F T¥IO0 800 F ¥I¥T  OT°0 F 8T'9T qo1d gV
— cFsg 1 61 810°0 F ¥20°0- L10°0 F L10'0  90°0 F G8'ET  80°0 F LL'ST  96£0G61-86619650r SSVING
— € F el | 61 810°0 F 6600  910°0 F 820°0-  $0'0 F 62°€T  90°0 F 9%l VS6762-€908TS0r ISSVING
DT ¢ F e v 61 ¥10°0 F 681°0- 710°0 F 8S1°0  $0°0 F 96¢T 00 F 86'F1  ¢SFOL00-90FEL0SOr SSVING
D1 ITFI SN 61 7100 F 910°0 P10'0 F 6000  ¢0°0 F G6'6 €00 F 88'TT  8IFPFIVI-GSPISEVOr SSVING
D1 ¢ F gz o1 61 L10°0 F €19°0- LT0°0 F ¢61°0 00 F €5°TT 200 F GOFT  LEPESTTH+LEETESE0r SSVING
— ¢ F 9g o1 61 810°0 F 120°0 L00°0 F 7900 600 F $SPT P10 F G891  12€LI89-129IEHEOr SSVING
— S Fge 71 61 ¢10'0 F 9¥1°0- $10°0 T 80T'0  L00 F 26'€T 600 F €1'9T  LG0G0TT-STEPITE0r SSVING
D1 v F 91 01 61 610°0 F 010°0~ €10°0 F 0900 SO0 F OL'€T  L0°0 F 66°GT  LECLEIP-C00IEGEOr SSVING
— L0FO08T 9L — vy £00°0 F 802°0~  ¥00°0 F 883°0- 5900 F GZ'ST 5900 F &h'Sl 6TESFE-LETEVTOr ISSVING
— LOF89¥ o6 ¢l L0000 F 1Z0F'0- 8000°0 F L621°0 00 F 86°LT €00 F SF'€1  IE19965+S6806F10r SSVING
D1 vVFIC 01 01 61 7200 F 920°0~ L10°0 F 70T'0 €00 F OT'ST 00 F €% PLGEEIV-6T8STIVIOL SSVING
DT LFL 01 61 610°0 F 8100 010°0 F €00°0- 60°0 F ¢€FT T1°0 F I€9T  6LESHLG66STFTIOr SSVING
— €EF 69 o9l 81 vy 7000 F 160°0 L00°0 F 8290  ¥0°0 F IL'€L 900 F ¢8'ST  T'9GTP00+€€6SL0T0r dSSAS
DT G F 8l 01 61 020°0 F 10°0~ 010°0 F 6¥0°0 SO0 F 6G°€T  S0'0 F L&'ST  6329¥8S-90€FLE00r SSVING

(o1) (6) (8) (2) (9) (¢ ¥) (€) (2) (1)
(y_suey) (gD (3do) (3£/,) (£/,) (Bewr) (Bewr)
2N PN Ids 1ds ey orl (¢)so0™r 3 SSYINT £ SSVING oureN 921mog

(SIS SLIPOWOOYJ POY UO s[RI  :4°T OIqRL

47



Amongst the full sample, we find 16 blue photometric outliers and 29 red
photometric outliers. Many of the objects have already been noted in the
literature as having unusual colors, and several of these have anomalous spectra
and have been analyzed in detail (e.g. [Burgasser et al.|2008a, [Knapp et al.
2004, [Folkes et al.l2007, [Chiu et all2006]). Table lists the mean kinematic
properties for the blue and red subgroups of the ultracool dwarf population
and Figure [2.I0 isolates the outliers and plots their tangential velocity vs.
spectral type. The blue outliers have a median Vg, value of 53 km s~! and a

Otan Of 47 km s™! while the red outliers have a median Vg, value of 26 km s*
and a 044y, of 16 km s~! .
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Figure 2.10: The spread of tangential velocities for objects marked as red outliers
(top panel) and blue outliers (bottom panel). The red population has a fairly tight
dispersion and the blue population has a fairly wide dispersion compared to the full
sample suggesting a link between near-IR color and age. The dashed line in each

plot represents the median Vi, value for the outlier group and the solid black lines
represent the dispersion.
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Figure ZITshows the tangential velocity vs. J-K deviation for all objects
in the sample with the dispersions of the red and blue outliers highlighted.
There is a clear trend for V,,, values to decrease from objects that are blue
for their spectral type to those that are red. This is particularly significant
at the extreme edges of this diagram. The dashed line in Figure [2.I1] marks
the spread of Vi, values for the full sample and demonstrates the significant
deviations for the color outliers. We explore the age differences from these
measurements in section 6.

200¢[

150 : u .

Vtan (km/s)

Deviation from (J-K,)

avg

Figure 2.11: A scatter plot showing Vi, as a function of the deviation in J — K
color from the average at a given spectral type. The blue outliers appear to move
faster on average than the red outliers. To demonstrate this we have over-plotted
the average Viq, with dispersion for the blue and red photometric outliers as well
as for the full astrometric sample (dashed lines).

2.4.4 Low Gravity Objects

A number of ultracool dwarfs that exhibit low surface-gravity features have
been reported in the literature within the past few years (e.g. [Cruz et all2007,
Luhman & Rieke [1999; IMcGovern et_all2004, Kirkpatrick et al. 2006; [Allers
et_all 2007). Low surface-gravity dwarfs are distinguished as such by the
presence of weak alkali spectral features, enhanced metal oxide absorption,
and reduced H, absorption. They are most likely young , with lower masses
than older objects of the same spectral type. For ages < 100 Myr these objects
may also have larger radii than older brown dwarfs and low mass stars with

similar spectral types, as they are still contracting to their final radii (e.g.,
Burrows et _all[1997).
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We examine the kinematics of 37 low surface-gravity dwarfs in this paper.
Seven of these objects are flagged as red photometric outliers and were ex-
amined in the previous subsection. The overlap between these two subgroups
is not surprising as the reduced H, absorption in low surface-gravity dwarfs
leads to a redder near-IR color. The median V,,, value for this subgroup is
18 km s~! and the oy, value is 15 km s~! which is smaller than that of the
red photometric outliers as a whole and therefore points to the same conclu-
sion. The smaller median V,,,, and tighter dispersion of the low surface-gravity
dwarfs as compared to either the full or 20 pc sample indicates that they are
kinematically distinct.

2.4.5 Unusually Blue L Dwarfs

A subgroup of unusually blue L dwarfs (UBLs) has been distinguished
based on strong near-IR H,O, FeH and K I spectral features but otherwise
normal optical spectra. Burgasser et al| (2008a)) —hereafter BO8- identify ten
objects that comprise this subgroup (see Table 6 in B08). With the kinematics
reported in this article we are able to analyze all ten. There are several physical
mechanisms that can contribute to the spectral properties of UBLs. High
surface-gravity, low metallicity, thin clouds or unaccounted multiplicity are
amongst the physical mechanisms most often cited. B08 has demonstrated
that while sub-solar metallicity and high surface-gravity could be contributing
factors in explaining the spectral deviations, thin, patchy or large-grained
condensate clouds at the photosphere appears to be the primary cause for the
anomalous near-IR spectra (e.g. [Ackerman & Marley| 2001, Burrows et al.
20006)).

The median V,,, value for this subgroup is 99 km s~ with o4, of 47 km s~!
and this subgroup consists of dwarfs with the largest V., values measured
in this kinematic study. These kinematic results strengthen the case that
the UBLs represent an older population and that the blue near-IR colors and
spectroscopic properties of these objects are influenced by large surface-gravity
and/or slightly subsolar metallicities. Both of these effects may be underlying
explanations for the thin clouds seen in blue L dwarf photospheres. Subsolar
metallicity reduces the elemental reservoir for condensate grains while high
surface-gravity may enhance gravitational settling of clouds. In effect, the
clouds of L dwarfs may be tracers of their age and/or metallicity.

Eight of the ten UBLs examined in this subsection are also flagged as blue
photometric outliers and examined in detail above. The overlap between these
two subgroups is not surprising as many of the UBLs were initially identified by
their blue near-IR color (e.g. Cruz et al. 2007, Knapp et al. 2004). There are
8 other blue photometric outliers, one of which has a V,,, value exceeding 100

o1



km s~!. We plan on obtaining near-IR spectra for these outliers to investigate
the possibility that they exhibit similar near-IR spectral features to the UBLs.

While the UBLs are the most kinematically distinct subgroup analyzed in
this paper, their kinematics do not match those of the ultracool subdwarfs.
The subdwarfs were excluded from the kinematic analysis in this paper because
they are confirmed members of a separate population. The median V;,, value
for this subgroup is 196 km s=! with 0,4, of 91 km s~!. The UBLs move at
half this speed indicating there is a further distinction between UBLs and the
metal-poor halo population of ultracool dwarfs.

2.5 High Velocity Dwarfs

Table summarizes the properties of the 14 high velocity dwarfs whose
Vian measurements exceed 100 km s~'. A number of these have been discussed
in the literature, having been singled out in their corresponding discovery
papers as potential members of the thick disk or halo population. One high
velocity dwarf is presented here for the first time. SDSS J093109.56+032732.5
is an L7.5 dwarf and is classified as both a UBL and a blue photometric outlier.
We calculate Vg, for this object to be 108 4 23 km s~ .

Among the high velocity dwarfs, 11 have colors that are blue and 3 have
colors that are normal for their spectral type. Three objects belong to the UBL
subgroup. Three of the objects are late-type M dwarfs (2MASS J18261131+
3014201, 2MASS J03341218-4953322, and 2MASS J132352+4-301433), one is a
late T7.5 dwarf (2MASSJ 11145133-2618235) and the rest are early to mid-
type L dwarfs. Four of the objects are flagged as blue photometric outliers.
We explore the possibility that these objects are thick disk or halo objects in
detail in a forthcoming paper.

2.6 On the Age of the Ultracool Dwarf Popu-
lation

2.6.1 Kinematics and Ages

A comparison of the velocity dispersion for nearby stellar populations can
be an indicator of age. While individual V},, measurements cannot provide
individual age determinations due to scatter and projection effects, the random
motions of a population of disk stars are known to increase with age. This
effect is known as the disk age-velocity relation (AVR) and is simulated by
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fitting well-constrained data against the following analytic form:

o(t) = ool + 2)° (2.6)

where o(t) is the total velocity dispersion as a function of time, oy is the
initial velocity dispersion at t=0, 7 is a constant with unit of time, and « is
the heating index (Wielenl1977). o(t) is defined for U,V,W space velocities but
we can estimate the total velocity dispersion using our measured tangential
velocities assuming the dispersions are spread equally between all three velocity
components, such that:

o(t) = (3/2)"*oyan (2.7)

Hénninen & Flynn| (2002) calculate o from seven distinct data sets (both
pre and post- Hipparcos) and find « ranges from 0.3 to 0.6. This is a large range
of values and the authors are reluctant to assign a higher likelihood to any given
value as each have nearly equal uncertainties. One possible explanation for
the spread of values is that ¢ should be mass dependent B. If so, this would
make a large difference in the age calculations for the low mass ultracool dwarf
population. While the age-velocity relation in the nearby disk remains only
roughly determined, there is strong observational evidence for a relation so we
proceed with caution in examining the broad age possibilities implied by the
AVR for the ultracool dwarf population.

Recent findings have suggested that late-type M stars in the solar neighbor-
hood are younger on average than earlier type stars (Hawkins & Bessell [T988}
Kirkpatrick et al|1994 [Reid et all[1994). Several investigators have combined
kinematics with the Wielen! (1977) relationship (which uses a value of 1/3 for
a) to estimate age ranges for the ultracool dwarf population and concluded
that it is kinematically younger than nearby stellar populations (e.g. Dahn
et_all2002, [Schmidt et al. 2007, (Gizis et al. 2000bl Zapatero Osorio et al.
2007). We conducted a direct Vj,,, comparison with nearby stellar populations
to draw conclusions about the kinematic distinguishability of our ultracool
dwarf sample. We compared the kinematics of a 20 pc sample of F,G,K, and
early M stars from [Soubiran et al.l (2003)), [Kharchenko et al. (2004) and [Nord-
strom et all (2004) using a limiting proper motion of 25 mas/yr to our 20
pc sample and examined the resultant median V., 0tan, and Vi , 040 values
(where Vj,; comes from the U,V,W velocities). Figure shows our resultant
velocity dispersions for nearby stellar populations along with the dispersions
of our 20 pc sample. We show both the dispersions calculated using tangential

3Indeed MTwanowskal (1980 proposes the introduction of a mass term to account for the
importance of the exchange of energy between stars in the Galactic disk
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velocities and those calculated using U,V,W velocities. As expected the dis-
persions are tighter for the UCDs when U,V,W values are used since we have
attempted to minimize the importance of radial velocity. This effect is also
reflected in the younger ages estimated from these dispersions. The tangential
velocity dispersions are in good agreement between the UCDs and nearby stel-
lar populations (see also [West et al.2008/Bochanski et all2007al, and [Covey
et_all2008]). Table 210 contains the calculated kinematic measurements and
Wielen ages using both o4, and o4,;. With Wielen ages of 3-8 Gyr calculated
from o4,,, we conclude that our 20 pc sample is kinematically indistinct from
other nearby stellar populations and hence is not kinematically younger. The
ages calculated by the AVR for the 20 pc sample are in good agreement with
those predicted in population synthesis models where the mean ages for the
ultracool dwarf population range from 3-6 Gyr (Burgasser|2004b}; [Allen et al.
2005)).

We do find younger ages for the ultracool dwarf population when the high
velocity dwarfs are excluded. As stated in section 4, the median V;,, and oy,
values are naturally reduced when the high velocity dwarfs are excluded and
consequently the ages are also reduced. Kinematic analyses of the past have
regarded these objects as a separate older population and omitted them from
an age calculation (e.g. [Schmidt et all2007). Table 2.0 presents the ages
with and without the high velocity dwarfs for the 20 pc sample. When the
high velocity dwarfs are excluded the age ranges are reduced from 3-8 Gyr to
2-4 Gyr, which is still consistent with population synthesis models.

The Os07 study estimated mean ages of ~ 1 Gyr for the L and T dwarf
population . Even with the exclusion of the kinematic outliers, the ages cal-
culated in our full and 20 pc samples do not match this very young age. Os07
combined proper motions, precise parallaxes, and radial velocities to study the
3D kinematics of a limited sample of 21 objects. When we apply an age veloc-
ity relation to the red photometric outliers and the low gravity dwarfs we do
find ages that are on the order of ~ 1 Gyr. We discuss the red outliers below
but conclude that the low surface-gravity dwarfs are kinematically younger
than the full or 20 pc sample. This result is consistent with what has already
been reported through spectroscopic studies. There do not appear to be any
low surface-gravity dwarfs flagged in the Os07 sample however further exami-
nation of their L and T dwarf spectra might be warranted by the discrepancy
in ages between our samples. We suggest that kinematic studies of UCDs to
date, including Os07, may have been plagued by small number statistics or a
bias in the sample analyzed.
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Figure 2.12: Top: A plot of median V;,; and oy, values calculated from the U,V,W
velocities for the 20 pc sample of F through T objects. Bottom: A plot of median
Vian and o4y values calculated from the proper motions and distances for the 20 pc
sample of F through T objects.
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2.6.2 Ages of the Red and Blue Outliers

We have defined two subgroups of the ultracool dwarf population in this
article that are both photometrically and kinematically distinct from the full
or 20 pc samples. Objects whose J — K colors are sufficiently deviant are also
kinematically different from the overall population. While we again advise
caution in using the AVR, we can use it to compare the predicted ages of
the photometric outliers to the predicted ages for the full or 20 pc samples.
We find that the kinematics for the red outliers are consistent with a younger
population of ultracool dwarfs whereas the kinematics for the blue outliers are
consistent with an older population. The ~ 1 Gyr mean age for the red outliers
coincides with the prediction of Os07 for the entire L and T population. We
have examined the photometry of their sample and concluded that the J — K
colors of their objects are normal so the age calculation of their sample is not
influenced by a bias from inclusion of photometric outliers. The ~ 38 Gyr
mean age for the blue outliers is misleading. It indicates a large divergence
from the full and 20 pc samples but also indicates that the AVR must be
incorrect for these objects. The more informative number in this case is the
median Vj,,, which, at 56 km /s, is nearly twice the expected value for the thin
disk (see Reid & Hawley| 2005). The blue photometric outliers most likely
belong to an older population of the Galaxy such as the thick disk or the halo.
The Wielen AVR is only valid for thin disk objects and we are unaware of an
equivalent age relation for the halo or thick disk population.

From our kinematic analysis we conclude that there is an age-color relation
that can be derived for the UCD field population. A change in broad-band
collision-induced H, absorption that suppresses flux at K-band is partially
responsible for the near-IR color and consequently the age of the photometric
outliers (Linsky|T969; [Saumon et all[1994; [Borysow et al|1997). H, absorption
is pressure and hence gravity sensitive. Changes in H, absorption effect gravity
sensitive features which are used as an indicator of age. The overlap of red
photometric outliers with low surface-gravity dwarfs and the concensus within
the literature that low-g dwarfs are young demonstrates the age sensitivity of
H, absorption.

Cloud properties have also been linked to a change in near-IR color. The
analyses of BO8, and |Cushing et al.|[2008 have shown that the thickness of
patchy or large-grained condensate clouds at the photospheres of dwarfs will
lead to redder (thick clouds) or bluer (thin clouds) near-IR colors. The old
age implied by the kinematics of the blue outliers and the overlap with the
UBLs suggests that there is a correlation between cloud properties and age or
metallicity; but further investigation is warranted in this area.

Jameson et al| (2008b) have proposed a relation for inferring the ages of
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young L dwarfs using only near-infrared photometry and estimated distances.
Their work supports the argument for an age-color relation for the ultracool
dwarf population. The ages that they work with are no larger than ~ 0.7
Gyr. At these young ages, the surface gravities of UCDs change more rapidly
than for ages greater than a few Gyr, so the age-color relation may be much
stronger in the [Jameson et all (2008b)) sample than that seen for field dwarfs.

2.7 Conclusions

We present new proper motions for 427 late-type M, L, and T dwarfs and
combine all previous proper motion measurements with either parallax mea-
surements or spectrophotometric distances to compute tangential velocities for
841 M7-T9 dwarfs. We derive average kinematic and photometric values for
individual spectral types as well as for the late-type M,L, and T populations
as a whole. We conduct a crude U,V,W analysis and find that the full and 20
pc samples examined in this article have space velocities consistent with the
Galactic thin disk population. However, there are 14 objects in the ultracool
dwarf population that lie at the tail end of the velocity distribution and are
likely to be part of an older Galactic population. Ages for the 20 pc sample of
this kinematic study are consistent with the 3-6 Gyr values derived in popula-
tion synthesis models; we propose that one reason for prior kinematic reports
of ~1 Gyr mean ages for the L. and T dwarf population is due to small number
statistics or a bias in the sample analyzed.

We find a large difference in the kinematics between red and blue photo-
metric outliers and conclude that their velocity dispersions are kinematically
distinct from the full or 20 pc samples. Analysis of the low surface-gravity
and UBL subgroups also shows a distinction from the full and 20 pc samples.
Applying an age-velocity relation we conclude that the red outliers and low
surface-gravity subgroups are younger than the full and 20 pc samples and the
blue outliers and UBLs are older.

2.8 Post-Publication

Several pertinent papers have been published since this work. Schmidt et
al (2010) presented a study reviewing the kinematic and photometric details of
210 L dwarfs discovered in SDSS. Combining their sample with 274 previously
identified SDSS L dwarfs, they concluded that the spectroscopically-identified
sample was ~0.1 mag bluer in J-K; color at a given spectral type (L0-L4) than
the photometrically selected sample. The color selections chosen by previous
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groups biased the known selection toward redder colors. Schmidt et al (2010)
used radial velocity measurements for the L dwarf sample (totaling 484 objects)
and searched for correlations between kinematic and photometric properties.
Comparing to a Galactic model, they found evidence for both cold and hot
dynamical populations consistent with both young and old disk components.
Similar to our result, they found that J-K; color is correlated with velocity
dispersion with bluer objects sharing kinematics with the older population and
redder objects the younger.

Reiners & Basril (2009) reported on the kinematics of a sample of 63 ul-
tracool dwarfs (spectral type M7 — M9.5). Those authors examined U,V,W
velocities using proper motion, spectrophotometric distance and radial velocity
and concluded that the stars were predominantly members of the young disk
with a kinematic age consistent with 3.1 Gyr. [Seifahrt et al. (2010]) conducted
a similar kinematic analysis for 43 L0-L8 dwarfs. They found nine candidate
members of young moving groups (50- 600 Myr) but report an average kine-
matic age of ~5 Gyr for the rest of their sample. The authors speculate that
this slightly older kinematic age might be due to contamination from outliers.
The higher velocity stars would have gained speed by means of ejection from
multiple systems at formation skewing their kinematic age to slightly older
than predicted by previous works.

Kirkpatrick et al. (2010) reported discoveries of new L and T dwarfs from a
proper motion survey with spectroscopic follow-up. In that work, six new low
gravity field brown dwarfs were reported, five red L dwarfs, three L. subdwarfs,
eight blue L dwarfs and several T dwarfs. Objects were followed up based on
minimal color criteria therefore photometric biases of past studies should have
been limited. The kinematics of the blue L. dwarfs appear to be drawn from
a relatively old population consistent with results described in this chapter.
However, [Kirkpatrick et al| (2010) also find that the five red L dwarfs lack low-
surface gravity features and have kinematics consistent with an older Galactic
population. The authors speculate that the unusually red and blue L. dwarfs
might be explained by the same phenomena. One possible scenario is presented
that viewing angle determines the spectral appearance. This would be the case
if clouds are not homogenously distributed in latitude or if properties such as
grain size and cloud thickness vary in latitude. Such a hypothesis could be
readily tested by measuring the rotational velocities (v,.;) of examples in each
subsample to see if v, is smaller for red L. dwarfs.
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Chapter 3

Wide Common Proper Motion
Pairs

Once the astrometric catalog described in chapter one was complete, it was
possible to begin cross-checking the astrometry of individual brown dwarfs to
those of nearby stars in order to search for widely spaced common proper
motion companions. The majority of brown dwarf companions had been dis-
covered to date serendipitously or by vicinity to a nearby object on the sky.
The lack of proper motion measurements for the majority of brown dwarfs
precluded the most basic search for a wide companion.

In this chapter I describe the results of a cross-correlation of the BDKP
catalog to the Hipparcos and Lepine-Shara Proper Motion North (LSPM-N)
catalog and the subsequent discovery of a number of wide stellar-brown dwarf
pairs. This chapter is a reprinting of a paper, of which I am the primary author,
published in the Astronomical Journal with co-authors Adam J Burgasser,
Andrew A. West, John J. Bochanski, Michael M. Shara, Frederick M. Walter,
and Kelle L. Cruz.

3.1 Introduction

Ultracool dwarfs (UCDs) comprise the late-type M, L, and T dwarf spec-
tral classifications (e.g., Kirkpatrickl, 2005, and references therein) and include
brown dwarfs—objects that do not support stable hydrogen fusion (Kumar
1962; Hayashi & Nakano|1963). UCDs sample the low-mass extremum of star
formation processes and are abundant in nearly every Galactic environment.
The low temperatures and high pressures in the photospheres of UCDs give rise
to abundant molecular species, whose complex chemistry and opacities result
in highly-structured spectral energy distributions (SEDs). Disentangling the
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physical characteristics—mass, age, surface gravity, metallicity, atmospheric
properties, etc.— that modulate these spectral features is a critical step for
testing theoretical models. However, individual characterization of Galactic
brown dwarfs is challenging because their thermal evolution leads to a de-
generacy between mass, age, and physical properties derived from observables
such as luminosity and effective temperature (T.;r). While spectral analyses
can constrain physical properties for some systems (e.g. [Burgasser et al.[2006a:

Saumon et _all2007; Warren et _all2007; [Cushing et al|R2008]), calibration of
these techniques requires detailed studies of well-understood benchmark sys-
tems.

One useful group of UCD benchmarks are those which are resolved compan-
ions to nearby, well-characterized stars. Assuming coevality, the physical prop-
erties of the primary, such as metallicity and age—which are extremely difficult
to measure for low-mass stars—can be applied to the companion. In particular,
independent age determinations are critical to break the mass/age/observable
degeneracy for the brown dwarf companion. Despite the apparent scarcity of
wide UCD companions to nearby stars (~2-3%; [Gizis et all2001al,
ket all2008), several have been identified and used to calibrate spectral analysis
techniques (e.g., Burgasser et al.|2006a; [Saumon et al.2007), as well as to crit-

ically test atmospheric (e.g., [Leggett et al|2008)) and structure/evolutionary
models (e.g., [Mohanty et al|R2004; Dupuy et al|R2008). The frequency and

characteristics of widely-separated stellar-UCD pairs also puts important con-
straints on the star formation processes and the subsequent dynamical evolu-
tion of stellar systems (e.g., Burgasser et al|2003¢; [Close et all 2003, 2007
[Allen] 2007; Luhman et all 2009). However, the known population of UCD
companions remains small and does not yet fully sample the range of ages,
masses and metallicities found among unassociated field sources.

In the past decade, multiplicity surveys focused on the field UCD popula-
tion have distinguished two classes:

e Roughly 10-20% of the field UCDs are found to be closely-separated
(p < 20 AU), near-equal mass, small total mass (M, <0.2) UCD-UCD
multiples (e.g. Bouy et al|2003] [Close et. al./2003, Burgasser et al.[2003c,
Ahmic et al.l2007, Reid et al.2008a)

e A smaller fraction are found to be widely-separated (p > 100AU) from
a much more massive stellar companion (e.g. [Kirkpatrick et al.|2001al,
Wilson et all2001], [Allen et all2005)

In the first case, the typically tight separations for UCD binaries is well-
established (e.g. Allen et. al 2007), and early studies by Burgasser et al
(2003d)), and [Close et al.l (2003)) identified a maximum separation limit /minimum
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binding energy for field UCD-UCD pairs of E, ~ 2x10*? erg. However, the
recent discovery of a number of young UCD systems (ages <10 Myr) and a
handful of field systems that are more widely-separated (p > 100 AU) and
more weakly bound (E, << 10%? erg), questions whether separation limits can
be considered constraints for formation models or if wide UCD binaries are a
normal (albeit rare) mechanism of UCD formation (Kraus et all2005, 2006,
Konopacky et al.|2007, [Luhman et al. 2009, and [Allers et al.l 2009, Artigau
et al.2007, Billeres et al. 2005, [Phan-Bao et al.l2005] |(Caballero/2007, Radigan
et_al.l2009).

In contrast, systems in the second category (p >> 100 AU) have binding
energies that are several orders of magnitude smaller than the minimum set
for UCD-UCD pairs. Burgasser et al.| (2005) noted a higher binary frequency
among UCDs that are widely-separated from a stellar primary, suggesting the
need for higher masses or an angular momentum sink in multibody interac-
tions to form these systems. Recent work by Whitworth & Stamatellos (2006))
suggests that for a low-mass primary fragment formed in the cooler outer
parts of a circumstellar disk (p > 100 AU), and spinning at a fast enough rate,
H, dissociation is likely to trigger a Secondary Fragmentation phase, thereby
potentially giving rise to a closely-separated (a~5 AU (msysterm/0.1Mg) UCD
binary.

Current observational evidence suggests that widely-separated stellar com-
panions exist out to distances of ~0.1pc (Latham et allT984; [Weinberg et al.
1987). Beyond this separation, perturbations from passing stars and giant
molecular clouds will likely disrupt the companions over the lifetime of the
Galaxy. Separations of stellar-UCD and, especially, UCD-UCD multiples ap-
pear to fall well below the perturbation limit, suggesting dynamical sculpting
occurs only in the natal environment (Burgasser et al|[2003c; [Close et al.
2007). However, the current sample of such systems is far from complete.
In large part this is due to the challenge of covering a large area of the sky,
and ascertaining evidence for companionship between two objects. For stars,
common proper motions have been the standard characteristic for identifying
co-moving objects at large angular separations (van Biesbroeck (1961, [1944);
Luyten 1979, [Lépine et al|R2002). Historically, optical proper motion cata-
logs lacked the depth to detect late-type M, L, and T dwarfs. In addition,
the recent discovery of UCDs has largely precluded astrometric measurements
due to short temporal baselines, making an extensive common proper motion
search difficult. In the past few years, large UCD proper motion samples (e.g.,
Jameson et _al. 2008a}; [Casewell et all2008; [Faherty et al|2009) and near-IR
proper motion surveys have become available (e.g., [Deacon et all2005; Dea-
con & Hambly| 2007; Deacon et._all2009), making it possible to perform a
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search in the reverse direction: using the UCD proper motion to find a stellar
companion.

In this study, we used a proper motion catalog of UCDs from [Faherty et al.
(2009) (hereafter, the BDKP catalog) to conduct a common proper motion
search for main sequence companions to Hipparcos (Perryman et al.|[1997) or
LSPM-N (Lépine et al|2002)) catalog stars. We have uncovered nine systems,
six of which have been briefly noted in the literature and three of which are
presented here for the first time. In section 2 we discuss our target list, the
criteria for companionship and the reliability of our matches. In section 3
we discuss follow-up photometry as well as optical and near-IR spectroscopy
of our candidate systems. In section 4 we apply age diagnostic tests to the
primaries and secondaries and calculate masses of the UCD secondaries. In
section 5 we explore the stability of the nine systems as well as multiplicity
and formation mechanisms for a large sample of UCD field companions. We
summarize our results in section 6.

3.2 Wide Companion Discovery

3.2.1 Initial Target List and Selection Criteria

We began an astrometric search for common proper motion candidates to
UCDs using the BDKP catalog (Faherty et al.2009) of 842 late-type M, L, and
T dwarfs. The catalog is composed of 570 L and T dwarfs (all of which can
be found on the DwarfArchives compendium®) and 272 M7-M9 dwarfs drawn
from the literature. Objects span spectral types from M7-T8 and cover a wide
range of magnitudes, distances, and proper motions.

To avoid a large number of chance alignments with slowly moving objects,
we only considered the 681 UCDs in the BDKP catalog with proper motion >
100 mas yr~t. We compared the positions and motions of the UCDs to stars
in the Hipparcos (Perryman et al|[1997) and LSPM-N (Lépine et al.| 2002)
catalogs. An angular separation of up to 10 arcminutes and a proper motion
match criterion of better than 20 in both RA and DEC were required between
the system components. The average uncertainty for objects in the BDKP
catalog is 15 mas yr~! so we typically required an agreement in proper motion
< 30 mas yr—! between the stellar companion and UCD.

We also used distances to further rule out chance alignment pairs. All of
the UCDs listed in the BDKP catalog have photometric distance estimates
based on the [Cruz et all (2003)) relation for M7-L5 dwarfs or the Burgasser
(2007) relation for L6-T8 dwarfs. All of the stellar candidate companions

Thttp:/ /dwarfarchives.org
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had either photometric distances of their own (Lépine 2005) or had parallax
measurements from the Hipparcos catalog. We required a distance agreement
of better than 20, which generally meant < 10 pc difference.

3.2.2 New Candidate Companion Systems

After selecting by angular separation, proper motion, and distance we
were left with 30 possible wide common proper motion pairs with a Hip-
parcos or LSPM-N star. Twenty-one of these were previously known sys-
tems and are listed in Table B.I] and not discussed at length within this
study. Six systems with UCD components: 2MASS J0003-2822, 2MASS
J0025+4759, SDSS J0041+1341, SDSS J0207+1355, 2MASS J13204-0957,
and 2MASS J1320+0409, have been previously reported in the literature but
not studied in detail ( [Cruz et all2003 Pinfield et al. 2006] [Jameson et al.
2008al, Deacon et all2009). Three systems with UCD components 2MASS
J1200+2048, 2MASS J14164+5006, and SDSS J1758+4633, are reported here
for the first time. These nine systems are summarized in Table [3.2]

3.2.3 Reliability of Common Proper Motion Candidates

To quantify the probability that our pairs might be chance alignments,
we ran a Monte Carlo simulation of all stars in the LSPM-N and Hipparcos
catalogs that shared a common proper motion, but not necessarily distance
or position, with our UCDs (to within 20). We assumed that high proper
motion objects are rare so we can accurately sample the observed proper mo-
tion distributions in the LSPM-N and Hipparcos catalogs. For computational
purposes we created a simulation grid that was equal in angular size to the
area covered by the catalogs.

LSPM-N is over 99% complete at high galactic latitudes and over 90%
complete at low galactic latitudes so we assume an area of half the sky for
this survey. Hipparcos is an all-sky catalog and depending on galactic latitude
and spectral type, complete to V~7.3-9.0. The resolution of each grid point
was set to be the angular separation between the pairs discussed in Table [3.21
Our simulation drew N stars (where N is the number of stars with matching
proper motions) and placed them randomly in the grid. The number of times
two stars fell in the same grid region (or within the observed pair separation)
was determined. We iterated each simulation 10000, 100000 or 1000000 times,
depending on the iterations required to produce a chance alignment. The
ratio of matches to trials provided a probability for random association, as
listed in Table 3.3l The simulations are based solely on the distributions of
proper motions in empirical data and do not account for the spatial distribution
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Figure 3.1: Proper motion vs. separation of the known and potential common
proper motion pairs of Hipparcos stars (left panel) and LSPM-North stars (right
panel) to UCDs in the BDKP catalog moving faster than 100 mas yr—!. We required
a proper motion component match of 20 between star and UCD. There was no
distance requirement between potential pairs applied in this plot. Objects marked
by circles are previously published wide ultracool dwarf pairs. Objects marked
by asterisks are wide ultracool pairs discussed in this paper. In the right plot,
we rejected two objects within the 10 arc-minute radius because their photometric
distances were greater than 3¢ from the UCD. The contours in each plot represent
densities of 75, 200, 500, 750, and 2000 objects.
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of the stars on the sky or any models of Galactic structure, both of which
would likely decrease the probability of chance alignment. We found that the
likelihood that any of the nine systems in Table[3.2]is a chance coincidence is <
0.01%. Figure Bl illustrates the reliability of the new common proper motion
pairs. We investigated the spatial distribution of these matches and found no
preferred direction indicating that the matches are indeed randomly selected.
Only two objects within a 10 arcminute separation did not have matching
distances (see the LSPM-N matches in the right panel of Figure B.1]).

Lépine & Bongiorno| (2007) performed a similar proper motion reliability
check by comparing the entire LSPM-N catalog to the Hipparcos catalog. They
used over 4000 known Hipparcos stars that had a wide LSPM-N companion
and then simulated chance alignments in those fields by moving from 1 to 5
degrees away from the known pair and evaluating any additional systems that
shared the same proper motion. They derived the following relation which
is globally applicable for any pair of co-moving stars with p >0.15"/yr and
tests whether a common proper motion system has >50% probability of being
physically associated:

AOAp < (11/0.15)%® (3.1)

where Af is the angular separation (in ”), u is the mean total proper motion
of the pair in ” yr~!, and Ay is the magnitude of the difference between the
proper motion vectors in ” yr—!.

We have used this relation as a second reliability check on each of our pairs

and find that the nine systems from Table pass this criterion.
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3.3 Observations

3.3.1 Optical Spectroscopy with SMARTS
R-C Spectrograph

Optical spectra for six of the primaries were obtained with the R-C spec-
trograph on the CTTIO SMARTS 1.5m telescope over several nights in the fall
of 2008 and winter of 2009. Table B.4] provides details of our observations.
The R-C is a slit spectrograph, with a 300” long slit oriented east-west. We
employed various spectral setups that covered either the red or blue part of
the spectrum (see Table B4 for details). The detector is a Loral 1K CCD
with 1199 pixels in the direction of the dispersion. All spectra were acquired
through queue observing with time allocated through the SMARTS consor-
tium. The conditions for these observations were moderate with an average
seeing of 1.0 - 1.2 7. Targets were observed through a 110um (2.0”) wide slit.
Three images of each target were obtained and accompanied by a wavelength
calibration exposure of a Ne-Ar or Th-Ar arc lamp. A spectro-photometric
standard, either Feige 110 or LTT 4364, was observed each night for flux cali-
bration. Images were bias-subtracted, trimmed, and flattened, then co-added
using a median filter. Spectra were extracted using IDL routines that fit a
Gaussian in the spatial dimension at each column in the CCD. The net counts
at each pixel are the integrated counts in the Gaussian, less the interpolated
background fit to either side of the spectrum.

Echelle Spectrograph

High dispersion spectra of three of the primaries (Table[3.4] ) were obtained
with the bench-echelle spectrograph on the CTIO SMARTS 1.5m telescope
over three nights in the fall of 2008 and winter of 2009. Formerly mounted at
the Cassegrain focus of the Blanco 4m telescope, the echelle spectrograph is
fiber-fed from the 1.5m and uses a 31.6 line/mm echelle and a 226 line/mm
cross disperser feeding a 2K SITE CCD detector. Our observations employed
a 60 pm slit which corresponds to a 2 pixel resolution of R~40,000. All spectra
were acquired through queue observing. The conditions for these observations
were moderate with an average seeing of 1.0 - 1.2 7. A quartz lamp exposure
at the start of the night was obtained for flat fielding. Three images of 1500
s were obtained for each target followed by a wavelength calibration exposure
of Th-Ar. The data were reduced using IDL routines. We median filtered and
co-added the flat field and science spectra for each target. Using the quartz
lamp trace we extracted individual spectra, and then divided by the extracted
flat field spectra. The Th-Ar spectra were cross-correlated against a template
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Table 3.2. Astrometric Information on the Companion Candidates

Name Ref o ws SpT SpT Dist P p
Myr—1 Myr—1 Opt IR pc arcsec AU
(1) (2 ®3) (4) (5) (6) (7 (8) 9)
2MASSJ0003-2822 2 0.257 £ 0.016 -0.145 £ 0.018 M8 M8 26 £ 3
G 266-33 0.280 £ 0.001  -0.1431 =+ 0.0007 G8 39.5ti"2 66 2610
2MASSJ0025+4759AB 2 0.312 £ 0.039 -0.009 + 0.044 L4+L4* — 31 £ 62
G 171-58 0.2743 + 0.0007 0.0112 £ 0.0009 F8 42.2t%g 218 9202
SDSSJ0041+1341 3,9 -0.174 £ 0.024 -0.138 £ 0.036 Lo — 31+6
NLTT 2274 -0.201 £ 0.013 -0.178 £ 0.013 M4 M4 21 £8 23 483
SDSSJ0207+41355 3,7 0.260 £ 0.017 -0.161 +£ 0.018 L2 L2 355
G 73-26 0.262 £ 0.013 -0.186 + 0.013 M2 26 £ 10 73 2774
2MASSJ1200+2048 5 -0.159 £ 0.019 0.232 £ 0.019 M7 — 26 £ 3
G 121-42 -0.157 £ 0.013 0.241 + 0.013 M4 301! 204 5916
2MASSJ1320+0957 6,7 -0.236 £ 0.021 -0.129 + 0.021 M8 — 36 £ 3
G 63-23 -0.250 + 0.002  -0.144 % 0.002 K5 381726 169 6445
2MASSJ1320+0409 6,8 -0.483 £ 0.019 0.211 £+ 0.017 L3 — 33+3
G 62-33 -0.507 + 0.001  0.202 + 0.0009 K2 305710 66 2010
SDSSJ14164-5006 1 -0.297 £ 0.013 0.188 £ 0.021 — L4 44 £31
G 200-28 -0.3003 £ 0.0007 0.1861 £ 0.0007 G5 45.1t1'_g 570 25734
SDSSJ1758+4-4633 4 0.026 £ 0.015 0.594 £ 0.016 — T6.5 12 + 2
G 204-39 -0.017 + 0.002 0.575 + 0.002 M3 136193 198 2685
References. — 1 =|[Chiu et all (2006) 2 = [Cruz et all (2007) 3 = [Hawley et al.| (2002) 4 = [Knapp et al.| (2004) 5 =

Gizis et al.| (2000b) 6 =|Reid et al.l (2008b)) 7 = [Deacon et _all2009] 8 = [Pinfield et al.| (2006) 9 = lJameson et al.| (2008a))
aThis L4+4L4 distance is reported in [Reid et al.| (2006)

Table 3.3. Reliability of the Common Proper Motion Pairs

Name Num Match?® % Chance Alignment ~ Num Match® % Chance Alignment
LSPM-N LSPM-N Hipparcos Hipparcos
(1) (2) 3) (4)
2MASS J0003-2822 259 0.01 63 0.01
2MASS J0025+44759 283 0.85 68 0.02
SDSS J0041+4-1341 2336 0.44 294 <0.01
SDSS J020741355 230 0.04 49 <0.01
2MASS J1200+2048 55 0.07 15 <0.01
2MASS J1320+0957 418 1.03 73 0.02
2MASS J1320+0409 11 <0.01 6 <0.01
SDSS J1416+5006 40 0.12 13 0.01
SDSS J1758+4-4633 2 <0.01 3 <0.01

2These columns tabulate the number of stars in the entire Hipparcos or LSPM-N catalog that had
matching proper motion components to the UCD at the 20 level
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Table 3.4. Details of SMARTS Observations

Name Instrument Exposure Time Date Airmass Grating
(s)
(1 (2) ®3) (4) (%) (6)

G 266-33 R-C Spec 2100 12 November 2008 1.001 47/11
G 266-33 R-C Spec 1800 30 November 2008 1.313 26/1a
G 266-33 Echelle 1500 20 April 2009 1.370
NLTT 2274 R-C Spec 2700 29 September 2008 1.571 47/Ib
NLTT 2274 R-C Spec 1800 24 October 2008 1.387 26/1a
NLTT 2274 R-C Spec 2700 17 November 2008 1.413 26/1Ia
G 73-26 R-C Spec 1800 17 September 2008 1.883 47/Ib
G 73-26 R-C Spec 1800 02 October 2008 1.812 26/1a
G 73-26 R-C Spec 1800 16 November 2008 1.438 47/Ib
G 73-26 R-C Spec 2700 26 November 2008 1.393 47/11
G 121-42 R-C Spec 1500 25 December 2008 2.026 32/1
G 121-42 R-C Spec 1800 25 January 2009 1.766 26/Ia
G 121-42 R-C Spec 1500 25 December 2009 1.420 47/Ib
G 121-42 R-C Spec 1200 25 December 2009 1.827 47/11
G 63-23 Echelle 1800 14 November 2008 1.013
G 63-23 R-C Spec 1800 29 January 2009 1.647 26/1Ia
G 63-23 R-C Spec 1200 14 February 2009 1.669 47/Ib
G 63-23 R-C Spec 3600 24 February 2009 1.306 47/11
G 62-33 R-C Spec 1200 29 January 2009 1.637 26/1a
G 62-33 R-C Spec 1200 14 February 2009 1.660 47/Ib
G 62-33 Echelle 1500 21 February 2009 1.262
G 62-33 R-C Spec 1800 24 February 2009 1.223 47/11

Note. — Grating 26/Ia covers 3700-5400 A at 4.4 A spectral resolution, Gratings 47/Ib and 47 /11
cover 5600-6950 A at 3.1 A spectral resolution
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Table 3.5. Details of KPNO Observations

Name Instrument Exposure Time Date
(s)
1 (2) (3) 4)
G 62-33 Echelle 915 26,27 June 2009
G 63-23 Echelle 500 27 June 20009
G 200-28 Echelle 900 25 June 2009
G 171-58 Echelle 900 25 June 2009

spectrum to determine the pixel shifts. The wavelength stability of the system
is better than 0.5 km s~—! over the course of half a year. The extracted spectra
were linearized using the wavelength solution. Our detection equivalent width
for atomic absorption features, in a 1 hour exposure at V~9, is 3 mA.

3.3.2 KPNO Echelle Spectroscopy

High dispersion spectra of four of the primaries (Table BH]) were obtained
with the KPNO 4.0m echelle spectrograph during the nights of 2008 June
25-29 (UT). We used the 58.5 echelle grating, the 226-1 cross-disperser in
second order, and the CuSQO, filter to obtain spectra between about 3700
and 5000A. The weather conditions for these observations were poor with an
average seeing of 1-2 ”. The rapidly changing sky conditions precluded precise
focussing, and required hand-guiding. We observed with a 1" slit and a 9.73 "
decker. A ThAr lamp spectrum was obtained at each telescope position for
wavelength calibration. At the start of the night, we observed the pflat lamp
though a 15 ” decker. Data extraction used conventional techniques. The
bias was subtracted from the science frame which was then divided by the
lengthened flat. Targets were self-traced during extraction and the background
was estimated from the region above and below the target on the slit. For the
primary G 62-33, a weighted sum of the two spectra taken on 2008 June
26 and 27 was used to improve S/N. The reciprocal dispersion in the order
containing Ca II K&H is 0.05A /pixel and the nominal instrumental resolution
is R~33,000.

We followed the technique used by [Linsky et al.| (I979) to directly measure
Ry from the echelle data. First we normalized the spectrum by scaling it
to a flux-calibrated low-dispersion spectrum. This removed any residual in-
strumental signature remaining after flattening the spectrum. Then we scaled
to an absolute surface flux using Linsky’s calibration of [Willstrop| (1965) pho-
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tometry in the 3925-3975A bandpass. This calibration uses Johnson V — R
colors so we converted the B — V' colors to Cousins V' — R, and then used
the transformation in Bessell (I979) to convert to V' — R. We measured the
flux between the K; and H; minima and interpolated the photospheric contri-
bution to the flux between them using the data in [Linsky et al| (1979). R/,
is the net surface flux normalized to aT‘c}f ’

We verified the technique by measuring R’ for 5 calibration stars: £ Boo
A B, 61 Cyg A,B, and HD 128165. With the exception of & Boo B which
was high by~50%, all measurements agreed with published values to within
10-20%. We note that He is seen prominently in emission in the spectrum of
¢ Boo B, so the star was likely flaring. Examination of chromospheric emission
levels in Baliunas et all (I995) shows that variations of 10-50% are common
over the course of stellar magnetic cycles. We also measured the solar (twilight
sky) spectrum and calculated the solar log(Rl; ;) = -4.8703.

3.3.3 Optical Spectroscopy with MagEk

Optical spectra for five of the primaries and three of the UCD secondaries
were obtained with the Magellan Echellette Spectrograph (MAGE; [Marshall
et all2008) on the 6.5m Clay Telescope at Las Campanas Observatory over
several nights in October 2008, November 2008, and January 2009. Table
lists the details of our observations. Magk is a cross—dispersed optical spec-
trograph, covering 3,000 to 10,000 A at medium resolution (R ~ 4,100). Our
observations employed a 0.7” slit aligned at the parallactic angle, and the chip
was unbinned. These observations were made under clear conditions with an
average seeing of ~0.7”. The targets were first acquired with the MagE finder
camera using an R filter. For the primaries we used 5-30s exposures for the
brightest targets and 100-120s exposures for the faintest. For the UCD sec-
ondaries we used 1200-2400s. A ThAr lamp spectrum was obtained at each
telescope position for wavelength calibration and the spectrophotometric stan-
dard GD 108 was observed during each run for flux calibration purposes. Ten
Xe-flash and Quartz lamp flats as well as twilight flats were taken at the start
of each evening for pixel response calibration. The data were reduced using a
preliminary version of the MagE Spectral Extractor pipeline (MASE; Bochan-
ski et al., in prep) which incorporates flat fielding, sky subtraction and flux
calibration IDL routines.

3.3.4 Near-Infrared Spectroscopy with SPEX

Near-IR spectra for two of the primaries and three of the UCD secondaries
were obtained with the SpeX spectrograph mounted on the 3m NASA In-
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Table 3.6. Details of MagE Observations

Name Exposure Time Date Airmass
(s)
& (2 3) (4)

G 266-33 5 25 November 2008 1.227
2MASS J0003-2822 1200 25 November 2008 1.266
NLTT 2274 100 07 October 2008 1.443
2MASS J0041+1341 1500 07 October 2008 1.464
G 73-26 120 25 November 2008 1.463
2MASS J0207+1355 2400 08 October 2008 1.376
G 121-42 100 07 March 2009 1.111
G 62-33 10 11 January 2009 2.038
G 63-23 30 11 January 2009 2.264

Table 3.7. Details of SpeX Observations

Name Exposure Time Date Airmass Calibration Star
(s)
1 (2 (3) (4) (5)
2MASS J0003-2822 450 09 December 2008 1.499 HD 220455
2MASS J0025+4759 510 09 December 2008 1.186 HD 1561
NLTT 2274 360 09 December 2008 1.006 HD 6457
G 73-26 360 15 December 2008 1.070 BD+18 337A
2MASS J0207+1355 510 10 December 2008 1.037 V* Vz ari

frared Telescope Facility (IRTF) over several nights in December 2008. The
conditions of this run were variable with patchy clouds and average seeing (0.8
-1.0 " at J). Table B lists the details of our observations. We operated in
prism mode with the 0.8” slit aligned at the parallactic angle and obtained
low-resolution (A/A A ~90) near-infrared spectral data spanning 0.7 - 2.5 ym
. Each target was first acquired in the guider camera. Exposure times varied
from 120s to 150s depending on the brightness of the target. Six images were
obtained for each object in an ABBA dither pattern along the slit. An A0V
star was observed immediately after each target at a similar airmass for flux
calibration and telluric correction. Internal flat-field and Ar arc lamp expo-
sures were acquired for pixel response and wavelength calibration, respectively.
All data were reduced using SpeXtool version 3.3 (Vacca et al.ll2003], Cushing
et_all2004) using standard settings.
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Table 3.8. Details of ANDICAM Observations

Name Date Number of Images Band
(s)

(1) 2 3) )
G 62-33 16 February 2009 — 9 April 2009 54 B
G 62-33 16 February 2009 — 26 March 2009 30 \%
G 62-33 27 March 2009 — 9 April 2009 24 1
G 63-23 10 February 2009 — 3 April 2009 32 \%4
G 63-23 10 February 2009 — 3 April 2009 32 I
G 121-42 10 February 2009 — 31 May 2009 46 \%
G 121-42 10 February 2009 — 31 May 2009 46 1
G 73-26 4 December 2008 — 31 January 2009 31 \%
G 73-26 4 December 2008 — 31 January 2009 31 I

3.3.5 Photometric Follow-Up

Optical photometry for four of the primaries (Table B.8]) was obtained with
the ANDICAM dual channel photometer on the CTIO SMARTS 1.3m tele-
scope over several months in the winter of 2008 and spring of 2009. The
ANDICAM optical detector is a Fairchild 447 2048 x2048 CCD and was used
in 2x2 binning mode, yielding a nominal plate scale of 0.369 arcsec pixel™!.
The ~6.2 arcmin field of view allowed between 3-7 reference stars for photo-
metric comparison in each image. All data were taken by service (or queue)
observing in I, V', and/or B bands and nightly conditions varied. Domeflats
were taken at the start of each night and science frames were flat-fielded and
trimmed using standard IRAF tasks prior to delivery. Differential photome-
try was performed using IDL routines which utilized a 9 pixel aperture and a
background annulus evaluated between 19 and 36 pixels from the target.

3.4 Characterizing the Systems

Nearby solar-type stars are generally well-characterized with spectral type,
metallicity, activity, radial velocity, distance, rotation, and other measureable
diagnostic parameters. As such, these companions serve to constrain the prop-
erties of the UCD counterparts. The primaries discussed in this paper range in
spectral type from F8M4 and are all within 50 pc of the Sun. We combined the
data available for them in the literature with follow-up spectroscopy and pho-
tometry with the primary goal of obtaining an age. For the bright primaries,
we used standard and template spectra provided within the IDL package the
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Hammer (Covey et al|2007)2 as well as spectral standards from the Stony
Brook/SMARTS Spectral Standards Library® to characterize the stars. For
the fainter secondaries we used the M dwarf templates from |[Bochanski et al.
(2007D); the L dwarf standards from [Kirkpatrick et al| (1999) and Kirkpatrick
et all (2000), or data available from the SpeX Prism Libraries? to characterize
each source.

3.4.1 Age-Dating The Systems

There are a number of age-dating techniques for solar analogs that can
constrain ages to within a few Gyrs (Mamajek & Hillenbrand|2008, [Lachaume
et_all[T999). The techniques employed in this study were as follows:

e Gyrochronology: The ages of field stars are determined based on their
rotational rates. Barnes (2007) derived a color-dependent version of the
Skumanich! (T972) law basing the timescale for stellar rotational decay
on the Sun. For the systems for which we have rotation periods, we
derive gyro ages using the Mamajek & Hillenbrand (2008) reformulation
of Barnes’ (2007) formula. The Mamajek & Hillenbrand gyro ages are
typically about a factor of two larger than those derived using Barnes’
coefficients.

e X-ray emission: Coronal activity as traced by X-ray emission is an age
diagnostic, as magnetic activity declines as a star spins down over time
(e.g. [Fleming et al.|1995)).

e Ca Il H & K lines: The R/, index measures the amount of chromo-
spheric emission that arises in the cores of the Ca II H & K lines and
has been observed to decay with age (Wilson| 1963} [Skumanichl 1972}
Soderblom/1983; [Soderblom et all1991)). [Mamajek & Hillenbrand| (2008))
recently revised the Rl activity relation for F7-K2 dwarfs (0.5<B-
V<0.9 mag) and defined the following age:

log 71 = —38.053 — 17.912log R}, — 1.6675 log (R )° (3.2)

where 71 is in years?.

2http://www.cfa.harvard.edu/~kcovey /thehammer.html

3http://www.astro.sunysb.edu/fwalter/SMARTS /spstds.html

4http:/ /www.browndwarfs.org/spexprism/

IMamajek & Hillenbrand (2008) also define a 75 age inferred from converting the chro-
mospheric activity levels to a rotation period via the Rossby number and then converting
the rotation period to an age using the revised gyrochronology relation. We convert 7 into
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e Lithium abundances: Li is depleted in stellar cores early in the life of
solar-type stars, so it is commonly used as an age indicator. A compar-
ison of Li abundances to stars in clusters with well-determined ages is
likely the most appropriate usage of Li as an age diagnostic. However, as
in the case with nearly all other age diagnostics, there is a large scatter
in the observed EW(Li) even in coeval clusters. For field-aged stars there
are few to no clusters with well-determined ages to compare to. There-
fore, for older stars, one can use the [Pavlenko & Magazzul (1996) NLTE
curve of growth, to obtain a logarithmic depletion of Li from cosmic
abundances (log N(Li)=3.3) and use the models of [Pinsonneault et al.
(1990) to convert this depletion into an age.

e Theoretical isochrones: Ages can be determined directly by placing stars
on a theoretical HR diagram, using the observed T.fs, My, and [Fe/H]
(Nordstrom et al.l2004).

e Kinematics: While individual space motions can not be used to date
objects, general information can be obtained from U, V', W velocity dis-
tribution. Studies such as[Eggen| (1989) and [Leggett| (1992) have defined
velocity ranges that would indicate membership in the young or old part
of the galaxy. [Eggen & Iben| (1989) define a U-V criterion (called the
"Eggen box”) for the young disk as roughly -50 km s™* < U < +20 km
s7t and -30 km s7! < V< 0 km s™! (where the convention of U posi-
tive toward the Galactic center is used). While the age associated with
membership in the young or old part of the Galaxy is uncertain, [Eggen
(1989); [Eggen & Iben| (T989) roughly define the transition between the
two populations as 2-3 Gyr based on the kinematic analysis of well de-
fined cluster members (Hyades, Pleiades, NGC 752 etc.). Admittedly,
individual kinematics are a very poor age diagnostic tool and any use
of space motion to age date a star needs to be viewed with caution and
complimented with much more robust diagnostics. Therefore, through-
out the text we use kinematics primarily as a secondary check on other
more reliable age diagnostics.

e Metallicity: While metallicity is an important physical property of any
stellar system, it is not a reliable age indicator. [Nordstrom et al.l (2004))
construct an age-metallicity diagram for field stars, but as indicated in
Figure 27 of that paper the scatter is quite large. We cite metallicity
values throughout this section as being suggestive of an older or younger

To ages in this text using Table 13 from the Mamajek & Hillenbrand| (2008) study as these
are thought to be the more representative ages.
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age; but as with kinematics we refrain from placing a significant weight
on it in our analysis.

There are also a number of age-dating techniques for UCDs:

Lithium absorption: In fully convective low-mass stars and higher mass
brown dwarfs, primordial Li rapidly decays with age due to core fusion.
Dantona & Mazzitellil (1985), Burrows et al.l (1989), and Ushomirsky
et_all (1998) have shown that for masses under 0.06 My and ages 2
500 Myr the maximum central temperature is below what is required
for Lithium-burning. This mass can be converted to an age for a given
spectral type using theoretical models such as [Burrows et al. (1997).

Ha activity: [West et al.l (2008) suggest activity lifetimes for M0-M7
dwarfs based on Ha equivalent width and vertical distance from the
Galactic Disk Plane.

Surface gravity features: [Allers et al. (2007), Kirkpatrick et al. (2008),
and [Cruz et all (2009) have shown that the presence of weak alkali spec-
tral features, and enhanced metal oxide absorption in UCDs are best
explained by lower surface gravities, implying typical ages < 100 Myr.

J — K color: [Kirkpatrick et al. (2008)), [Jameson et al. (2008bl), and
Faherty et al| (2009) have all shown that J — K color can be used as a
rough indicator of age within the UCD population. [Faherty et al.| (2009)
combined this with v, and found that high v, objects (v, > 100
km s7!) tended to be unusually blue for their spectral type and were
considered to be older than the field population while low vy, objects
(Vian < 10 km s7!) tended to be unusually red for their spectral type
and were concluded to be younger than the field population (note that
this metric is only indicative of an older or younger age and does not
provide a direct mapping to age (however, see [Jameson et all2008D).

Age dating is fraught with large uncertainties, and some methods listed

above are more reliable than others. The analysis that follows gives details
on individual systems. In Tables and [B.10 we tabulate the observational
properties of the primaries and secondaries separately to permit comparison
of the age diagnostics. In Table [3.11] we provide our adopted ages for the
systems. While we have already discussed the reliability of the common proper
motion companionship in section 2, confirming similarities in the ages of the
components of each system establishes the more important criterion of co-
evality.
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3.4.2 Hipparcos Pairs
G 266-33 with 2MASS J00034227-2822410

G 266-33 lies just over 1.1 arcminutes from 2MASS J0003-2822 and the pos-
sibility of companionship between them was first noted in [Cruz et al.l (2007)).
Based on our MagE spectrum, this primary is a G8 dwarf. [Henry et al.| (1996))
report Ca II H & K emission with a log R’ value of -4.55. Using the [Mama-
jek & Hillenbrand| (2008)) relation for chromospheric activity places the age of
this star in the range 75=0.9-1.4 Gyr. The U, V velocities fall into the Eggen
Box supporting an age of <2 Gyr. There are two metallicity measurements
for G 266-33: [Holmberg et al] (2008)) report [Fe/H]=0.07 and [Rocha-Pinto &
Maciel (T998)) report [Fe/H]=0.097. The slightly metal-rich value for G 266-33
suggests a younger field age in agreement with the chromospheric and kine-
matic diagnostics. The absence of Lithium absorption in the optical spectrum
(W, (Li) <4 mA, logN(Li)<-2.5) is consistent with an age older than 600
Myr. Based on this compilation of diagnostics the age range for G 266-33 is
consistent with 0.9-1.4 Gyr.

The secondary, 2MASS J0003-2822, is classified as an M8 dwarf based on
a MagE spectrum and has very strong Ha emission, shown in Figure 3.2 The
measured Ha equivalent width is 9.0£0.08 A and the Hj3, Hé, and Hy lines
are also seen in emission. For comparison, [West et al. (2008)) examined 735
M8 dwarfs with Ha measurements, and only 25% of objects in that sample
have stronger Ha emission than 2MASS J0003-2822. Combining the equiva-
lent width of Ha with the x parameter from [Walkowicz et all (2004) gives a
log(Lga /L) of -4.26. Comparing this with other active late-type M dwarfs
in West et _al.l (2009), we find that 2MASS J0003-2822 is similar to the most
active M7 objects (there were no M8 dwarfs for comparison). The age de-
termined from the age-activity relation in the West et al. (2009) study would
place this object (if it were an M7) as younger than 1 Gyr. The MagE spec-
trum for 2MASS J0003-2822 does not display any low-gravity features (e.g.,
weak Na, strong VO) and is thus likely older than 0.1 Gyr (Kirkpatrick et al.
2008).
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Figure 3.2: The optical spectrum of the secondary 2MASSJ0003-2822 using MagE
(top plot) and IR spectrum using SpeX (bottom plot). Top: Over-plotted is the
template for an active M8 from [Bochanski et al. (2007b) (dotted line) normalized
at 8350 A. The inset shows strong Ho (6563 A) emission and a lack of Li (6708 A)
absorption. Bottom: Over-plotted is the M8 optical standard VB 10 from the SpeX
prism library (dotted line).

The J — K, color for 2MASS J0003-2822 is normal for its spectral type.
However the Hipparcos distance would indicate that its absolute magnitude is
overluminous by a factor of 1.5 for an MS8. This indicates, as noted in [Cruz
et_all (2007), that 2MASS J0003-2822 is a potential near-equal luminosity
unresolved binary which might affect the activity and age calculated from the
West et all (2009) relation (c.f. [Silvestri et al.2006]).
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Based on the consistent age diagnostics of the primary and the secondary,
an age of 0.9-1.4 Gyr is adopted for the system.

G 171-58 with 2MASS J00250365+4759191AB

G 171-58 is an F8 star and lies 3.6 arcminutes from the L4+1.4 close (sep-
aration 0.33"”or ~10 AU) binary dwarf 2MASS J0025+4759. The possibility
for companionship with G 171-58 was noted by Reid et al. (2006) and [Cruz
et all (2007). G 171-58 is itself a spectroscopic binary (Latham et al.2002)
resolved in Hipparcos images with a separation of ~ 200 mas and an orbital
period of just under 1 yr. [Holmberg et al| (2008) measure [Fe/H]=0.22, and
their age-metallicity relation suggests an age < 2 Gyr. In this same study, an
age of 0.2 Gyr with an upper limit of 1.5 Gyr was estimated based on theo-
retical isochrones calculated from the T.rr, M,, and [Fe/H] values. The U, V
velocities for G 171-58 fall into the Eggen box which also indicate an age < 2
Gyr.

The echelle spectrum of G171-58 shows clear Ky maxima surrounding a cen-
tral absorption core but the fairly low S/N coupled with the large magnitude of
the photospheric contribution between the K; minima makes a direct measure-
ment of R, problematic. Instead, we undertook a differential analysis with
respect to the F8 standard HD 187691, which has a measured log(R/;;)=-5.05
(Mamajek & Hillenbrand 2008). We normalized the spectra in the Ca II line
wings and subtracted the spectrum of the standard. We convert the excess
emission, seen in both the H and K lines, to surface flux, and add to this
the log(R/; ;- )=-5.05 we had subtracted. We find that log(R/; ;)=-4.81"03 for
G 171-58, corresponding to 7=2.2"3% Gyr.

2MASS J0025+4759 is resolved into two near-equal mass components by
Reid et all (2006). The combined spectrum exhibits Lithium absorption with
an equivalent width of 1042 A (Cruz et all2007) as seen in Figure B3] in-
dicating component masses of at most ~0.06My. For an L4 spectral type
at the bolometric luminosity calculated from the Hipparcos distance (see Ta-
ble B.I0) , this lead to an age upper limit of ~0.5 Gyr for 2MASS J0025+4759
based on the evolutionary models of Burrows et all (1997). The J-K color
for 2MASS J0025+4759 is normal for its spectral type. Despite the presence
of Li absorption, the spectrum for this L4 companion does not display any
low surface gravity features. Therefore the age of this secondary is consistent
with the range of 0.1-0.5 Gyr which is somewhat younger than indicated by
the chromospheric activity of the primary.
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Figure 3.3: The optical spectrum of the secondary 2MASS J0025+4759 using
published CTIO 4m data taken 2003 April 23 (Cruz et all2007)). The inset shows a
lack of Ha (6563 A) emission but strong Li (6708 A) absorption. As a reference, the
LRIS optical spectrum of the standard L4 2MASSW J1155+42307 from [Kirkpatrick
ct_alll (2000) is over-plotted and normalized between 8240-8260 A (dotted line).

We find a significant discrepancy between the age of the primary and sec-
ondary in this system. 2MASS J002544759 is likely younger than 0.5 Gyr
and G 171-58 is likely older than 1.8 Gyr therefore we cannot adopt a suitable
system age. Rather we note the inconsistency in age diagnostics and calculate
a mass for 2MASS J0025+4759 from the best age range of both the primary
and the secondary.

G 62-33 with 2MASS J13204427+40409045

G 62-33 is a K2 dwarf based on the MagE spectrum. The absence of Li
absorption (W (Li) < 4 mA, logN(Li)<-2.9) in the optical spectrum indicates
that this object is older than ~ 1 Gyr. The U, V velocities fall outside of the
Eggen box indicating an age >2 Gyr. The metallicity for G 62-33 provides
an upper bound on the age. Holmberg et al| (2008) determine [Fe/H]=0.15,

117



and [Ibukiyama & Arimoto| (2002) determine [Fe/H]=-0.18. The majority of
stars on the age-metallicity relation inNordstrom et all (2004)) that lie between
these two values are younger than 6 Gyr.

The photometric data for G 62-33 shows that the star is clearly variable
with peak-to-peak amplitudes increasing from 0.2 mag at I to 0.4 mag at B.
However, we were unable to recover a unique period from the data which would
have provided a gyro age. A characteristic period from minimum to minimum
is about 5 days for the first month of data, but this decreases to about 2-3 days
during the last month. The changes in variability amplitude with wavelength
are consistent with a spotted surface and the apparent period change may be
due to a rapid evolution of the spot structures.

We calculated log(RY; ) = -4.7770092 from the echelle data, where the un-
certainties are dominated by uncertainties in the positions of the minima.
Comparison of the R-C data with three other K2 dwarfs observed at the same
resolution with the R-C spectrograph, HD 22049, HD 4628, and HD 144628, in-
dependently showed that the emission strength lies between those of HD 22049
(log(Rlyx)=-4.51, 75=0.8 Gyr) and HD 4628 (log(R/; x)=-4.87, 7»=5.4 Gyr).
Although the 0.94 B — V color of G 62-33 is slightly outside the quoted
B — V=0.92 limit for the Mamajek & Hillenbrand (2008) chromospheric/age
relation, an extrapolation yields 75=4.2+0.9 Gyr, consistent with the other
age diagnostics.

The L3 companion 2MASS J1320+0409 lies 1.1 arcminutes away from the
primary. The spectrum used to type this UCD has a very low signal to noise
and leads to a £2 spectral type uncertainty. However, unless this is an unre-
solved binary, the absolute magnitude calculated from the Hipparcos measure-
ment is consistent with an L3 dwarf. This object has a normal J — K color
for an L3. It is difficult to ascertain whether the spectrum demonstrates low
surface gravity features, or Ha due to the low S/N. Hence, no firm constraint
of the age of the secondary can be made, but its photometric color suggests a
middle-aged dwarf.

Since the age of the secondary is unconstrained, we adopt a system age of
3.3-5.1 Gyr based on the chromospheric activity of the primary.

G 63-23 with 2MASS J132041594-0957506

Based on a MagE spectrum, we classify G 63-23 as a K5 dwarf. We place
a 20 limit on the Li absorption equivalent width in our echelle spectrum of
< 6 mA which corresponds to log N(Li)<-0.12 and a lower limit for the age
of ~1 Gyr. There is no metallicity measurement to aid in constraining the
age but the U, V velocities fall outside of the Eggen box indicating an age
>2 Gyr. The photometric data for G 62-33 shows no significant periodic or
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quasi-periodic variability therefore gyrochronology can not be used.

From the echelle data of G 63-23, we determined log (R/y ;)= -4.4970 0.
At this spectral type, it is probably not wise to extrapolate the Mamajek
& Hillenbrand (2008) age relation. Rather, we bound the age by comparing
the activity level of G 63-23 with the K5 dwarfs ¢ Boo B and 61 Cyg A.
Barnes (2007) find gyrochronology ages for these two systems of ~0.2 Gyr
and ~2 Gyr respectively and G 63-23 shows chromospheric activity between
them albeit much closer to the level of the older star 61 Cyg A. Using the
coefficients in Mamajek & Hillenbrand (2008) revises the age of 61 Cyg A to 4
Gyr. Assuming a Skumanich (1972)-like power-law decay of activity between
0.3 and 4 Gyr, we find a likely age of G 63-23 of 1.24+0.4 Gyr. Therefore we
conservatively date this system as 1-3 Gyr which is roughly consistent with
the Li and kinematic indications.
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Figure 3.4: The optical spectrum of the secondary 2MASS J1320+0957 using
published CTIO 4m data taken 2003 April 20 (Cruz et all2007). Over-plotted is
the template for an M8 from Bochanski et all (2007b)) normalized at 8350 A (dotted
line). The inset shows the region that contains Ha (6563 A) emission and Li (6708 A)
absorption neither of which are detected.
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2MASS J1320+0957 is an M8 dwarf that lies 2.8 arcminutes from G 63-23.
The J-K color and vy, values for this object are normal for an M8. We have
re-examined a published spectrum from [Cruz et al. (2003)) and find a lack of
Ha emission (Wy(Ha) < 300 mA) as seen in Figure B4l West_et all (2008)
find that M7 dwarfs are active for 8.0+%5 Gyr. M dwarf activity increases with
decreasing temperature through M7 dwarfs where, for the most part, all nearby
objects show Ha activity. However, it is not clear that this trend continues
at the cooler temperatures of M8 dwarfs and beyond where the photospheres
become increasingly neutral (Mohanty et al|2002; [Gelino et al.l2002)). So the
lack of Hav activity does not necessarily indicate that 2MASS J13204-0957 is
old for its spectral type. As a result we can only assume a field M dwarf age
range of 1-8 Gyr (Faherty et al|2009) for this M8 dwarf.

A system age of 1-3 Gyr is adopted for the G 63-23 and 2MASS J1320+0957
system based on the more reliable activity diagnostics of the primary. How-
ever, while the kinematics and distance estimates for this system are in good
agreement, we are concerned of the age discrepancy between an Ha inactive
M dwarf and a chromospherically active K dwarf.

G 200-28 with SDSS J141659.784-500626.4

The primary in this system is a G5 star and it lies 9.5 arcminutes from the
L5.5 dwarf SDSS J1416+5006. [Holmberg et al| (2008) determine a value for
[Fe/H] of -0.16, indicating a field age in the range of 1-5 Gyr. They further
determined an age range of 7-12 Gyr based on theoretical isochrones. The
kinematics of G 200-28 place this primary outside of the Eggen box for the
young thin disk, in agreement with an age >2 Gyr. There is no available
measurement of Li absorption for this primary to aid in the age diagnosis.

We obtained an echelle spectrum of the Ca II H&K region but despite
fairly good S/N, the Ca II emission cores are not clearly evident. The Ca II
line profiles are similar to those of the twilight sky, with deep central reversals.
We place a limit of R, < —5.0, suggesting 7» > 6 Gyr. G 200-28 appears
older than the Sun.

Therefore, based on the available diagnostics we adopt the theoretical
isochrone estimated age range for G 200-28 of 7-12 Gyr.

SDSS J14164-5006 is classified as an L5.5 dwarf by [Chiu et all (2006]). It
has a spectral-type uncertainty of 42 based on a low signal to noise SpeX prism
spectrum. We have reanalyzed these data and deduce that an L4+ /-1 is more
likely. The J— K color of 1.5640.09 for SDSS J1416+5006 is 0.18 magnitudes
bluer than a normal L4 or L5 dwarf (Faherty et al|2009) although the near-IR
spectrum appears normal. The blue near-IR color for its spectral type would
indicate that SDSS J1416+5006 is likely to be older than the average UCD
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field population (> 5 Gyr) or it is metal poor. However, the photometric
uncertainty of this color does not allow a conclusive age constraint.

A system age of 7-12 Gyr is adopted for this system from the isochrone
analysis of the primary.

G 204-39 with SDSS J175805.46+463311.9

The primary of this system is an M3 star that lies 3.3 arcminutes from
the T6.5 dwarf SDSS J1758+4633. This primary is sufficiently late that solar-
analog age/activity and age/rotation relations are not applicable, so we turn
instead to the M dwarf age/activity relations examined by West et al.l (2008)).
Ciizis et all (2002) measure an Ha absorption equivalent width of -0.215 A.
Due to the cool atmospheres of M dwarfs, Ha absorption is a sign of en-
hanced atmospheric heating and an indicator of magnetic activity. However,
the absorption phase likely represents the end of the active life of an M dwarf
(Walkowicz & Hawley|2009) indicating that G 204-39 is only weakly active.

It is also listed in the ROSAT All-Sky Faint Source Catalog (Voges et al.
2000) with a count rate of 2.53x1072 cts s™!, HR1=-0.58+0.18 and HR2=-
1.04£0.27. We used the count rate/flux relation from [Schmitt et all (1995
to estimate the X-ray flux as 1.32x107'® W m~2. The bolometric luminos-
ity is calculated from the Hipparcos distance and combined with L, yields
log (L, /Lpe;)=-5.3 which is slightly lower than the typical values for active M
dwarfs (log(L./Lpet) >-4; [Fleming et al[1995) . Comparing to X-ray datasets
of Hyades and Pleiades members where typical log(L,/Lyy) values are >-4.5
for objects with similar colors, G 204-39 appears to be older. These measure-
ments suggest that G 204-39 may be at the tail end of its active life, which
West et al.l (2008) find to be 2.0£0.5 Gyr for M3 dwarfs. [Eggen| (1990, 1993))
list G 204-39 as a member of the Hyades supercluster based on its proper
motion and luminosity. Age estimates for this supercluster span a relatively
broad range (e.g., [Chereul & Grenon| 2001 cite 0.5 to more than 2-3 Gyr) but
since it is not a coeval sample (e.g. [Famaey et al|2008|, 2007, 2005)), it is not a
useful age indicator. The kinematics of G 204-39 do not indicate membership
in the Hyades co-eval cluster and the chromospheric activity level discussed
above further confirms that this object is likely older then ~0.6Gyr.

The secondary of this system is the only T dwarf in our sample, and
its properties have been studied in detail by Burgasser et al| (2006al) (here-
after BBK06) through a comparison of empirically-calibrated model spec-
tral indices. BBKO06 find T.;; = 960-1000 K and log g = 4.7-4.9 (cgs) for
SDSS J1758+4633, consistent with an age of 0.3-0.9 Gyr and at the low end of
age estimates for the Hyades supercluster. As companionship with a Hippar-
cos star provides a precise distance determination for SDSS J17584-4633, we
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re-examined its properties as a check of the results of BBK06. We first deter-
mined the luminosity of this source using the method described in [Burgasser
et_all (2008c), by iteratively integrating its absolute flux-calibrated spectral
energy distribution over the range 0.3-1000 um. Near-infrared spectral data
from BBKO06 were used to calculate the 0.9-2.4 pum flux, after calibrating the
data to JH K photometry from Knapp et al|(2004). The 2.4-9.3 um flux was
determined by piece-wise flux-calibrating a T.;;=1000 K, log g = 5.0 cgs spec-
tral model from Burrows et al. (2005) with mid-infrared photometry obtained
with the Spitzer Space Telescope Infrared Array Camera (IRAC; [Fazio et al.
2004; program GTO-40198). Apparent magnitudes of [3.6] = 14.884+0.04,
[4.5] = 13.914+0.03, [5.8] = 13.64£0.10 and [8.0] = 13.15+0.04 were mea-
sured for SDSS J1758+44633 from basic calibrated data (version S18.5.0) us-
ing IRAF PHOT and standard calibration methods for aperture photometry
(Reach et all2005). Short- and long-wavelength fluxes were computed us-
ing a combination of spectral models and blackbody fluxes calibrated to the
ends of the near-infrared and mid-infrared data. This procedure provided a
luminosity measurement of log(Lyy /L) = -5.1840.06, where the uncertainty
includes astrometric and photometric uncertainties from the near-infrared and
mid-infrared data, and systematic uncertainties in the luminosity calculation
method (Burgasser et al|2008bl).

Combining just the luminosity measurement of the secondary, the age of the
Hyades supercluster, and evolutionary models from Burrows et al. (1997), we
derive an independent constraint on the T,y and log g of SDSS J1758+-4633 as
shown in Figure .8l At the lower end of the age range, our analysis indicates
Terr = 860-930 K, log g = 4.7 cgs and M = 0.02 Mg, for this source; at the
upper end we find T,y = 910-1030 K, log g = 5.25 cgs and M = 0.05 M. Note
that the T.s; estimates are broadly consistent with the H — [4.6] = 2.29£0.04
color of this source (Warren et all2007). Importantly, the T.ss/log g phase
space constrained by the luminosity and age do not overlap with the seemingly
tighter constraints provided by the BBKO06 analysis.

Examination of the absolute spectral fluxes of SDSS J17584-4633 appear to
favor the luminosity analysis (Figure B.0); spectral models from Burrows et al.
(2005)) tied to these constraints provide a closer match to the observed fluxes
than models tied to the BBKO6 constraints. However, if the systematic un-
certainties estimated for the BBK06 method are included (AT.f; = 50 K and
Alog g = 0.1 cgs), there is reasonable overlap in T, ;s and log g constraints over
the range 0.5-1.5 Gyr. This somewhat younger age is consistent with enhanced
K-band flux in the spectrum of SDSS J1758+4633, indicative of reduced Hy
opacity (see BBK06). However, it is also possible that this system is somewhat
metal-rich, as indicated by comparison of CaH2+CaH3 and TiOb5 for G 204-39
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to other M3 dwarfs in [West et _all (2008) (G 204-39 has (CaH2+CaH3)/TiO5
of 2.45 where the range for M3 dwarfs was from 2.25-2.55). Regardless, the
activity level of the primary is consistent with the 0.5-1.5 Gyr age computed
for the T dwarf, so we adopt this slightly younger age for the system.
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Figure 3.5: Effective temperature and surface gravity constraints for

SDSS J1758+4633, based on the measured luminosity of the source (vertical long
dashed lines), the estimated age of the system (0.5-3 Gyr leftmost parallelogram),
and the spectral index analysis of BBK06 (boxes to right; inner box indicates quoted
parameter range, outer box indicates additional systematic uncertainties). Labeled
isochrone and isomass lines based on the evolutionary models of [Burrows et al.
(1997) are indicated by short-dashed and dotted lines, respectively. The green, red
and blue circles correspond to spectral models shown in Figure

123



3.5 C T T T T T T T T T T T ]

- — SDSS J1758+4633 1

30 =

- —— Ty=980K,logg=480 7

N T, =1000K,logg=525

251 .

2 : T =90K. logg =470 ]

(e - 4

= 20 —

- - .

= C ]

~ - -

’:\ L 4

g 151 —_

N~ - -

> - .

o L i

10 .

05 ]
0.0

1.0 1.2 14 1.6 1.8 2.0 2.2 24
Wavelength (1um)

Figure 3.6: Comparison of observed absolute near-infrared spectral fluxes (F), at
10 pc) of SDSS J1758+4633 (black line; dashed line shows uncertainties) to solar-
metallicity spectral models from Burrows et all (2005) chosen from the T¢sy/log g
phase space constraint in Figure The green line shows T.r; = 900 K and log
g = 4.80 cgs, based on spectral index constraints from BBKO06; red and blue lines
shows T¢rr = 1000 K and log g = 5.25 cgs and T.ry = 1000 K and log g = 4.70 cgs
based on the luminosity /age constraints presented here.

3.4.3 LSPM-N Pairs
NLTT 2274 with SDSS J004154.54+134135.5

Jameson et al.l (2008al) first noted this system as a potential wide pair due to
its close separation (23”) and well matched proper motion components. Based
on a MagE spectrum, we classify NLTT 2274 as an M4 dwarf (Figure[3.7)). The
2MASS J band relation from Golimowski et al. (2009) was used to calculate a
spectro-photometric distance of 2148 pc. This is in statistical agreement with
the companion which has an estimated spectro-photometric distance of 31+6

pc.
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There is an absence of both Lithium absorption (W, (Li) < 30 mA) and
Ha emission (Wy(Ha) < 100 mA) in the optical spectrum of NLTT 2274.
According toWest et all (2008), M4 objects remain active for 4.510-5Gyr so we
use this as a lower bound on the age. There is no radial velocity measurement
available for this primary nor is there a defined metallicity relation for M
dwarfs to further constrain the age.

SDSS J0041+41341 was first identified in [Hawley et al.| (2002) and classified
as an LO from a low signal to noise spectrum. We re-observed this object
with MagE and confirm the L0 spectral type (Figure B.8]). Ha emission was
detected with an equivalent width of 2.2 A. There is an absence of Li absorption
(W, (Li) < 400 mA) in the optical spectrum indicating a mass > 0.06 My, and
a corresponding age > 0.5 Gyr. SDSS J0041+41341 does not show any low-
gravity features, such as weak Na or strong VO, indicating that it is older
than 0.1 Gyr. The J-K; color and vy, values are both normal indicating it is
a middle aged L dwarf (2-8 Gyr).

The age-activity relations applicable to G and K dwarfs become more com-
plicated in the late-type M and L dwarf regime. As stars become fully convec-
tive (~ 0.35 Mg,), the solar-type dynamo (Parker/T993] 1955, [Thompson et al.
2003)) can no longer produce magnetic fields because the radiative-convective
boundary (the tachocline) is not present to help generate and preserve the
field. However, the observed activity level of mid to late-type M dwarfs, which
are beyond the fully convective boundary, remains high suggesting that a tur-
bulent dynamo might be an alternate magnetic field source (Durney et al.
1993). Indeed, recent MHD simulations have produced large-scale magnetic
fields in fully convective stars (Browning/2008). But while late-type M dwarfs
are nearly all active, only a small fraction of L. dwarfs have measured Ha
(West_et_al.l2004); therefore these cooler objects mark a sharp change in ac-
tivity. |Gizis et all (2000b) and [Schmidt et al.l (2007)) investigated whether
active L dwarfs are likely to be younger than inactive L dwarfs at the same
spectral type but their results were inconclusive. It is likely that the drop in
emission at the M/L transition is reflective of ineffective chromospheric heat-
ing as the photospheres become neutral (Mohanty et al|2002 [Gelino et al.
2002; Reiners & Basri 2008). This inactive M + active L system presents an
interesting case for studying how the well-established age/activity relation for
M dwarfs might break down at the cooler L dwarf temperatures. Although we
can not at this time rule out a binary interaction with an equal-magnitude or
fainter companion as suggested for the active T dwarf 2MASSW J1237+6526
(Burgasser et al|l2000b), SDSS J0041+1341 could demonstrate that an early
type L dwarf can remain active at least through the activity lifetime of an M4
dwarf. If the relationship between youth and Ha emission breaks down for L
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dwarfs, activity metrics for these objects may prove to be poor indicators of
age.

An age range of 4.5- 8 Gyr is adopted for the NLTT 2274 and SDSS
J0041+4-1341 system based on the activity level of the primary and the up-
per age bound for normal field L dwarfs.
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Figure 3.7: The optical spectrum of the primary NLTT 2274 using MagE (top plot)
and IR spectrum using SpeX (bottom plot). Top: Over-plotted is the template for
an inactive M4 from Bochanski et all (2007h) (dotted line) normalized at 7400 A.
The inset shows a lack of both Ha (6563 A) emission and Li (6708 A) absorption.
Bottom: Over-plotted is the M4 optical standard LP 508-14 (Burgasser et al.[2004])
obtained from the SpeX Prism Library (dotted line).
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Figure 3.8: The optical spectrum of the secondary 2MASS J0041+1341 using
MagE. Over-plotted is the optical standard LO dwarf 2MASP J0345+2540, from
Kirkpatrick et al] (2000)) with spectra normalized at 8350 A (dotted line). The inset
shows strong Ho (6563 A) emission but no Li (6708 A) absorption.

G 73-26 with SDSS J020735.604135556.3

Based on our MagE spectrum, G 73-26 is an M2 dwarf (Figure 3.9). The
2MASS J band relation from Golimowski et al. (2009) yields a spectro-
photometric distance of 26410 pc. This is in statistical agreement with the L3
companion which has an estimated spectro-photometric distance of 3545 pc.
There is an absence of both Li absorption (W (Li) < 40 mA) and Ha emission
(Wi (He) < -400 mA) in the optical spectrum. West et all (2008) determine
that the active life of M2 stars ends at 1.2+0.4 Gyr placing a weak lower
bound on the age. A radial velocity (RV) of -1074+13 km s~! was obtained for
G 73-26 from an LDSS-3 spectrum. Combining the photometric distance and
available proper motion values with the RV yields (U, V', W)=(-44,-89,68) km
s~1 placing this object outside the Eggen box, favoring an age > 2 Gyr.
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Figure 3.9: The optical spectrum of the primary LSPM J0207+1355 using MagE.
Over-plotted is the template for an inactive M2 from [Bochanski et al.l (2007h) nor-
malized at 7400 A (dotted line). The inset shows a lack of both Ha (6563 A)
emission and Li (6708 A) absorption.

The V and [ band modulation are small for G 73-26 and a shortest string
analysis (Dworetsky|[1983) yields a likely period between 37 and 39 days. A
sinusoidal fit to the V-band data yields a period of 39.6 0.9 days with a semi-
amplitude of 0.00740.0007 mag and an I band period of 39.6 £0.6 days with a
semi-amplitude of 0.006£0.0003 mag. The resultant gyro age is 3.44+0.5 Gyr,
using the Mamajek & Hillenbrand (2008) coefficients, which is consistent with
an inactive M2 dwarf.

SDSS J0207+1355 was first identified as an L3 in Hawley et al. (2002)
and our MagE spectrum confirms this classification (Figure B.I0). There is an
absence of both Li absorption (Wy(Li) < 200 mA) and Ha emission (W (Ha)
< 300 mA) in the optical spectrum. The J-K; color is normal for an L3
implying a field age in the range of 2-8 Gyr.

We adopt an age range of 3-4 Gyr for this system based on the rotation
and activity level of the primary.
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Figure 3.10: The optical spectrum of the secondary 2MASSJ0207+41355 using
MagE (top plot) and IR spectrum using SpeX (bottom plot). Top: Over-plotted is
Kelu-1, the L2 optical standard from Kirkpatrick et al. (1999), normalized between
8240-8260 A(dotted line). The inset shows a lack of both Ha (6563 A) emission
and Li (6708 A) absorption. Bottom: Over-plotted is the L2 spectrum of SSSPM
0829-1309 (Burgasser et al.|2007al) from the SpeX prism library (dotted line).

G 121-42 with 2MASS J12003292+2048513

From its optical spectra we infer that G121-42 is an M4 dwarf. There is
a parallax measurement available which provides a distance of 3271 pc (vam
Altena et allT995). The optical spectrum of G 121-42 lacks both Li absorption
(W (Li) < 400 mA) and Ho emission (W (Ha) < 200 mA). West et all (2008)
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determine that the active life of M4 stars ends at 4.57)0Gyr placing a lower
bound on the age of the system. The photometric data shows clear long term
sinusoidal variability in the V' band although no modulation is seen in the [
band. The best fit sinusoid to the V' band data has a period of 47.0£0.9 days
and a shortest string analysis (Dworetsky|[1983)) shows a broad minimum at
4643 days. The semi-amplitude of the oscillation is 0.0114+0.0007 mag. The
B —V color of G121-42 is at the extreme of the stars Barnes (2007) used to
derive gyro ages but still yields an age of 4.0£0.6 Gyr.

2MASS J12004-2048 is an active M7 with an Ha equivalent width of
2.9 A (Gizis_et_all2000b; Reid & Cruz 2002). We combine this value with
the y parameter from Walkowicz et all (2004) and measure log (Lya/Lpo)=-
4.8. The age/activity relation of West et al.| (2009) suggests an age range of
5-7 Gyr for this object. Reid & Cruz (2002)) found an absence of Lithium in
the spectrum (<0.7 A), which is in agreement with an older field age. That
study also calculated (U, V, W)=(-35£3,264+2,-324+1) velocities for 2MASS
J12004-2048 which place it outside of the Eggen box favoring an age > 2 Gyr.

Given these diagnostics we adopt an age for G 121-42 and 2MASS J1200+
2048 of 4-5 Gyr. This is slightly younger then the age predicted for 2MASS
J12004 2048 from the Ha activity; however because the activity level of M
dwarfs can be variable, this younger range is perfectly reasonable.

3.4.4 UCD Mass Estimates

The evolutionary models from Burrows et _all (1997) were used to esti-
mate masses for the nine UCD secondaries. Comparisons to the models were
made using bolometric luminosities (L), which were computed by combin-
ing distances (using parallax measurements or spectro-photometic distances)
with apparent magnitudes and bolometric corrections with the exception of
SDSS J1758+4633, whose luminosity was calculated in Section 4.2.6. For L
and T dwarfs we converted K, apparent magnitudes from the 2MASS pho-
tometric system into the MKO system using the relations from [Stephens &
Leggett| (2004), and for M dwarfs we converted into the CIT photometric sys-
tem using the color transformations from [Carpenter| (2001). The bolometric
corrections were calculated using either the relation from |Golimowski et al.
(2004b) for L and T dwarfs or from the measurements in [Reid & Hawley
(2005) for M dwarfs. Figure B.I1] shows the estimated age vs. Ly, for the
UCD secondaries against the evolutionary tracks from Burrows et all (1997).
In general, masses for the substellar objects are very uncertain if the system age
was poorly constrained due to the rapid change in brown dwarf luminosities
with time. We conclude that 2MASS J0003-2822, SDSS J0041+1341, SDSS
J0207+1355, 2MASS J1200+-2048, 2MASS J1320+0409, 2MASS J1320+-0957,
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and SDSS J1416+5006 have masses above the hydrogen burning limit and
are very low temperature stars at the bottom of the traditional stellar main
sequence. SDSS J1758+4633 falls below the hydrogen burning limit and is
a brown dwarf. 2MASS J0025+4759 has a questionable age therefore an un-
determined mass. Table [3.10] lists our estimated ages, masses, and pertinent
spectral characteristics for all of the UCD companions.
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Figure 3.11: A plot of the (1997) evolutionary models with pa-
rameters (age and luminosity) for the nine candidate UCDs in wide pairs indicated
with labeled boxes. Masses from 0.01 through 0.15 My are shown. Only SDSS
J175844633 is clearly of substellar mass. 2MASS J0025+4759 is listed twice due to
the discrepancy in age diagnostics of the primary and the secondary in this system.
The box at left reflects the younger age calculated from the diagnostics of the sec-
ondary. The box at right reflects the older age calculated from the diagnostics of
the primary.
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3.5 Discussion

3.5.1 Dynamic Stability and Maximum Separation Scales

The separations of the nine companion systems discussed in this study are
rather large for field UCDs and require a check as to whether or not they should
have survived dynamical interactions within the Galaxy. We investigated this
question using the formalism of [Weinberg et al| (I987) where the impact of
perturbations from giant molecular clouds (GMCs) and close stellar encounters
was examined for wide companion systems. As in[Burgasser et al.| (2003d), and
Close et al.l (2003, 2007)), the analytic solution of the Fokker Planck coefficients
from Weinberg et al| (1987) describing the advective diffusion of a binary due
to stellar encounters was used to investigate the sample. We work in the single
kick limit® and investigate the occurrence of disruptive encounters using a rate
which is proportional to mass and separationT as f,,; oc aM~'. All systems but
that containing G 200-28 are subject to a frequency of disruptive encounters
< (20 Gyr) ~1. G 200-28 has a frequency of ~ (9 Gyr)~! which is approaching
the inverse lifetime of the Galaxy and within our age range estimate for this
system. The characteristic diffusive timescale (t, o a_lM) yields values > 15
Gyr for all of the systems. Therefore, close stellar encounters are not likely
to affect these companions over the ages listed in Table B.I1Il The impact
parameter for interactions with giant molecular clouds is proportional to mass
and separation as b&¥¢ oc M~/4a%*. This value is larger than the maximum
impact parameter by, o< a¥2M~1/2 for each of the nine companions, so such
interactions are also not likely to have disrupted these systems.

Recent results have shown that binding energies of the most weakly bound
very low—mass (M, <0.2Mg) binaries in the field are ~3 times larger than
those of higher mass systems, suggesting a separation distribution of the field
population that is sensitive to the conditions of formation. Burgasser et al.
(2003d)), and [Close et all (2003], 2007)), find a minimum binding energy for very
low—mass systems (nearly all of which have q > 0.8 and My,; <0.2M) of ~2
x 10*2 ergs. However this is clearly not the case for slightly more massive
UCD systems. Figure shows the binding energy (E,) versus total mass
for a compilation of companion systems. Stellar companions were gathered
from the catalogs of [Duquennoy & Mayor| (1991), [Fischer & Marcy (1992),
and [Tokovinin! (1997)); and young UCD companion systems from [Kraus et al.
(2005}, 2006)), [Konopacky et al| (2007), Luhman et al. (2009), and [Allers et al.

6 Assuming GM/eaV?,; <<(M/M,)?
“In all calculations we use V,q=20 km s~!, ¢=0.1, n,=0.1 pc™3, ngyc=4 x 1078
pc 3 Rame=20 pc, Maae=5 x 10° Mg, Netump=25 and M,=0.7 My, as in|Weinberg et al.

(1987) and [Close et al.l (2007)

3
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Table 3.11. Estimated Ages of the Systems

Name Name Age Age Age

(primary) (secondary) (primary) (secondary) (system)
(Gyr) (Gyr) (Gyr)
(1) (2) (3) (4) (3)
G 266-33 2MASS J0003-2822 0.9-1.4 0.1-1.0 0.9-1.4
G 171-58 2MASS J0025+4759 1.8-3.5 0.1-0.5 —
NLTT 2274 2MASS J0041+1341 4.5-10 2-8 4.5-8
G 73-26 2MASS J0207+1355 3-4 2-8 3-4
G 121-42 2MASS J1200+2048 4-5 5-7 4-5
G 62-33 2MASS J1320+40409 3.3-5.1 2-8 3.3-5.1
G 63-23 2MASS J1320+40957 1.0-3 1-8 1.0-3
G 200-28 2MASS J1416+5006 7-12 — 7-12
G 204-39 2MASS J1758+4633 0.5-3 0.5-1.5 0.5-1.5

(2009). Details on the field UCD systems were gathered from the Very Low
Mass Binary Archivéd. Table Bl lists the systems with widely-separated (>
100 AU) UCD companions; i.e. those with the lowest binding energies. The
addition of recent systems both young and old with varying ¢ values and small
total mass complicates the idea of a minimum binding energy set at formation.
Four of the systems discussed in this study have 0.2M, <M,,; <0.6My but
their binding energies are nearly ten times lower than the binding energies of
the widest M,; <0.2M, field systems. Indeed, there are several field pairs now
known with M, >0.1My and E, << 2 x 10*? ergs, as well as young, lower
mass, weakly bound systems (e.g. [Close et all2007; [Zuckerman & Song/2009).
The system containing NLTT 2274 is especially interesting as it has M, ~
0.3Mg, E, < 10?2 ergs and an intermediate q value of ~ 0.4. These new systems
indicate a gap in our sampling of intermediate mass companion systems, where
a transition between weakly bound low—mass stellar companions and tight
brown dwarf pairs occurs.

Zuckerman & Song] (2009) have applied Jeans mass considerations to the
problem of weakly bound very low- mass multiple systems. Using the minimum
fragmentation mass of a typical molecular cloud (7 M ,,; Low & Lynden-Bell
1976) and assuming an arbitrary separation cutoff of 300AU, they derive a
binding energy cut-off as shown in Figure 3121 However, a number of systems
found in the field and young clusters violate this boundary indicating that 300
AU may not be a meaningful separation limit.

8http://vimbinaries.org; see [Burgasser et al| (2007b)) and references therein.
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Figure 3.12: System binding energy vs. total mass. Mass ratios are color coded
on this plot with red symbols indicating q > 0.7, blue symbols indicating q<0.3
and black symbols indicating 0.3<q<0.7. Filled circles indicate systems containing
a UCD, filled squares indicate systems containing a UCD that is younger than
500 Myr. Open circles come from stellar companion catalogs. The nine systems
discussed in this paper are marked as five point stars. The minimum wide binding
energy for brown dwarf field binaries (Burgasser et al.|2003¢; [Close et al.ll2007) is
plotted as well as the minimum binding energy line from [Zuckerman & Song] (2009).
The two lines at the far right are our Jeans length criteria for q=1.0 and q=0.1
systems, respectively.

Instead, we explored the Jeans mass criterion for wide companion sys-
tems using a Jeans length criterion to set the separation scale. Two cases
were examined: (1) q=1.0 with the maximum separation equal to twice the
Jeans length; (2) q=0.1 with the maximum separation equal to the sum of
the Jeans length for a system of mass My and a system of 10 x M. We are
assuming that the minimal initial separation of a pair that formed together
should roughly equal the Jeans length. Subsequent dynamics such as grav-
itational infall and scattering or sub-fragmentation at the time of formation
will generally bring sources closer together and perturbations from Galactic
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encounters will generally pull systems further apart. However the Jeans length
is a good starting point for the widest separation of companions that formed
from the same molecular cloud. The resultant binding energy cut-offs are
shown in Figure[3.121 The difference between them is small and all but two of
the systems discussed in this paper have binding energies that fall within the
maximum scale set by the first fragmentation stage. Indeed the distribution
of all systems shown in Figure are well-constrained by these lines over
0.2Mg<My,r <10Mg), suggesting that this variable separation scale is a more
realistic limit than an arbitrary fixed separation limit. This envelope does not
attempt to explain why field systems with M;,; < 0.2Mg are almost all at
significantly tighter separations than what is predicted by the Jeans criterion.
It may be that dynamical effects are more important in the initial formation
of such low—mass objects than for more massive stellar systems (Reipurth &
Clarke 200T; Bate et all2002), although we still cannot rule out insufficient
sampling of the parameter space.

3.5.2 Higher Order Multiplicity Among Wide Systems

One explanation for the unusually low binding energies for some of the
UCD systems plotted in Figure [3.12] is that one or both components may
themselves be unresolved multiples. It has been suggested by |[Burgasser et al.
(2005) that there is a higher binary frequency among brown dwarfs when
they are found widely-separated from a common motion stellar primary versus
those found isolated in the field. The larger binary fraction could be indicative
of a formation mechanism which requires a higher order multiple system to
keep all components gravitationally bound, or requires an exchange of angular
momentum between wide and close components.

We have re-visited this conjecture with the objects listed in Table B.1l
There are 44 systems containing a UCD which is over 100 AU from the primary
star, of which 20 have had their UCD secondaries targeted with adaptive optics
or the Hubble Space Telescope to search for additional components down to
0.17-0.5" separations. This higher resolution probes the projected separation
space within 20 AU, which characterizes the majority (~90%) of UCD bina-
ries (Allen/2007). From this subset we calculate a resolved binary frequency
for UCDs of ¢,=50+11%. This is significantly larger than the resolved binary
frequency for field UCDs, which typically range over 10-20% (e.g. Reid et al.
2001, 2006; |Burgasser et al.|2003c, 2006b; Bouy et al.|2003; Siegler et al.2003]
2007; [Close_et_all2003). Our UCD multiplicity fraction is a ~20 deviation
from the field, consistent with the results of [Burgasser et al| (2005). We note
that our companion sample is not a volume-complete one and complex selec-
tion effects (other than those associated with formation mechanisms) may be
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present. In the worst case scenario of a magnitude limited sample that favors
unresolved multiples, the binary fraction of isolated field sources increases to
10-30%. But this is still well below the ~50% binary fraction found for the
wide multiples. This large fraction of triples is surprising.

For comparison, the 8pc sample (Reid & Hawley| 2005) contains 118 M
dwarfs, with 55 single stars, 26 binaries, 6 triples, and 1 quadruple system.
Hence the ratio of triples to binaries is roughly 1:4 and quadruples to binaries
is 1:26. Our wide UCD companion sample includes 20 binaries, 12 triples,
and 5 quadruples so we find these ratios to be 3:5 and 1:4 respectively. The
addition of a third or fourth component to these wide binaries may be required
to maintain the stability of the system. This high rate of multiplicity is also
relevant to the binding energies plotted in Figure .12 as the addition of an
unseen UCD or stellar companion could increase binding energies by as much
as 50%.

3.5.3 Discrepancy Among the Ages

Establishing common proper motion, distance and radial velocity are im-
portant checks on the likelihood of a co-eval pair. However, for the UCD
population, precise distances are difficult to establish and radial velocities are
rare. Consequently, establishing a common age via activity, kinematic and/or
metallicity diagnostics becomes a particularly important tool for confirming
companionship. But, as seen in this work, discrepancies still arise among the
available age diagnostics. While the differences in ages discussed in section 4
of this paper do not seem large enough to force us to disregard possible com-
panions, they do serve as intriguing cases for examining current age-activity
relations for both stellar and substellar objects. For instance, G 171-58 has
chromospheric activity levels which likely place it as older then ~1 Gyr while
its companion, 2MASS J0025+4759, has strong Li absorption and is most
likely younger then ~0.5 Gyr. G 63-23 has both chromospheric and rotation
ages which suggest it is younger than ~3 Gyr while its companion, an Ha
inactive M8, resembles an older field star. NLTT 2274 is a mid-type M dwarf
which shows no Ha activity making it among the older field stars while its
companion is an Ha active LO. These pairs may end up as excellent tests for
the low mass-star and substellar activity relations. Regardless, we encourage
future investigations of UCD companions to carefully examine coevality of a
proposed system before assuming companionship.
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3.6 Conclusions

We have provided a detailed analysis of nine wide companion systems con-
taining UCDs. Seven of the systems have parallax measurements, six of which
are precise Hipparcos measurements. Combining catalog information with new
spectroscopic observations of the primary and secondary components, a best
age range for each system was determined. Assuming co-evality with the sec-
ondaries and combining best age ranges with bolometric luminosity ranges,
masses were estimated from the Burrows et al. (I997) evolutionary models.
Seven of the UCDs were determined to be very low—mass stars, one was deter-
mined to be substellar, and one has a questionable age therefore undetermined
mass. Two of the nine systems, G171-58 with 2MASS J0025+4759 and G 63-
23 with 2MASS J1320+0957, have significant differences in the component
system ages indicating possible shortcomings in our understanding of the age
diagnostics of stars and ultracool dwarfs.

Using a compiled list of known wide companion systems containing a UCD,
we find that the frequency of tight resolved binaries is at least twice as high
for wide companion UCDs as for isolated field equivalents. The ratio of triples
to binaries is 3:5 and quadruples to binaries is 1:4 for wide companion systems
with resolved UCD secondaries versus 1:4 and 1:26 for the 8-parsec sample.
The higher frequency of higher order multiples suggests that a third or fourth
component may be required to maintain gravitational stability or to facilitate
the exchange of angular momentum in these loosely bound systems.

The Jeans criterion was investigated against a large sample of companion
systems and we conclude that using the Jeans length to set the separation
scale is sufficient for constraining the lowest binding energy UCD companion
systems down to M;, ~0.2M,. However, the tight separation of the closely
bound, near equal-mass UCD systems is not explained by the allowed envelope
set by the Jeans length. The distinguishing characteristics of objects now
known at varying mass ratios, total masses, separations, and ages suggests
that more specific predictions from relevant theories will help distinguish the
dominant formation mechanism for the UCD population.

3.7 Post-Publication

Since the publication of this work a number of relevant papers have fol-
lowed. Recent simulations by [Stamatellos & Whitworthl (2010, 2009) have been
successful in accounting for widely separated VLM binaries using gravitational
fragmentation of massive extended disks. In their smoothed particle hydro-
dynamic (SPH) simulations, a system with Mp;sx=0.7Mg, Rprsx=400AU,
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Mgi0r=0.7 Mg is evolved for up to 20 kyr followed by an N-body dynamical
evolution for up to 200 Kyr. After 12 simulations, 96 stars are formed with
brown dwarf or low—mass secondaries and among those companions, 9 are tight
VLM multiples. Based on statistics within their resultant systems, the authors
conclude that gravitational fragmentation can account for a higher population
of hierarchical systems when the UCD is widely separated from a more mas-
sive star. Furthermore, the simulations produce a significant population of low
mass (Msecondary < 100 M ;) companions at distances out to 10,000 AU.

Dhital et al.l (2010) presented a catalog of 1342 very-wide (projected separa-
tion >500 AU), low-mass (at least one mid-K to mid-M dwarf component) com-
mon proper motion pairs identified from astrometry, photometry, and proper
motions in the Sloan Digital Sky Survey (catalog identified as SLoWPoKES)
. Similar to our results, most of the SLoOWPoKES pairs violate the previously
defined empirical limits for maximum angular separation or binding energies.
Dhital et all (2010) used their sample to re-define empirical limitations and
their new log-normal relation encompass all the systems reported in this chap-
ter. They also report that the wide binary frequency (WBF) for the mid-K
to mid-M spectral types decreases as a function of Galactic height, suggest-
ing a time evolution of the WBF. In addition, the semi-major axes of the
SLoWPoKES systems exhibit a distinctly bimodal distribution, with a break
at separations (and corresponding binding energies) around 0.1 pc (beyond
the boundary of our widest system). Compared with theoretical predictions
for the disruption of binary systems with time, the authors conclude that the
SLoWPoKES sample comprises two populations of both old yet tightly bound
systems, and ”"young” weakly bound systems that will not survive more than
a few Gyr.

Law et _all (2010) analyzed a sample of 36 wide (separations ranging from
600 - 6500 AU) M dwarf (M1- M5) binaries in the field in search of hierarchical
multiples. They found ten new triple systems and one new quadruple system
and reported a bias-corrected total high-order-multiple fraction of 45ﬂg;‘;. All
the detected companions had masses similar to their primary components al-
though they did detect two very low mass secondaries, including a candidate

brown dwarf. They found a high-order-multiple fraction of 21f%;)% for systems

with separations up to 2000 AU compared to 77fg;7°% for systems with separa-

tions > 4000 AU. These results coincide with our own and suggest that the
very widest M dwarf companion systems require higher masses to form or to
survive.
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Chapter 4

Parallaxes

Arguably, the most difficult and time-consuming astrometric measurement
to make for a stellar or substellar object is a distance measurement. In this
chapter I detail an extensive 2-4 y ear astrometric campaign to obtain paral-
laxes for a subset of the BDKP catalog. It would have been observationally
impossible to obtain parallaxes for the entire sample described in chapter one,
therefore we chose a subset of objects that had the highest potential of provid-
ing insight into the intrinsic physical and atmospheric properties of the overall
population.

The following chapter is a manuscript in preparation for submission to the
Astrophysical Journal.

4.1 Introduction

For any new class of astronomical objects identified, distances are crucial
for investigating basic physical properties. Brown dwarfs, low mass mass ob-
jects that lack stable hydrogen burning in their core, are a recent addition
to the plethora of objects studied in astronomy. They were first predicted
by [Kumar (1962) and Hayashi & Nakano| (1963) but not observationally con-
firmed until the late 20th century (Nakajima et al|1995; [Rebolo et al.l[1992).
There are now over 500 spectrally confirmed brown dwarfs and two spectral
classes designated for their classification: ”"L” for objects with temperatures
ranging between 1300 and 2000K and ”T” for objects cooler than 1300K (see
Kirkpatrick/ 2005 and references there-in). Their masses range from 0.072Mg,
at the high end to 0.012 Mg at the low end thereby straddling the boundary
between the lowest mass stars and the highest mass exoplanets (Saumon et
al 1996; Chabrier & Baraffe 1997) . Distances are crucial for diagnosing the
brown dwarf population as standard stellar evolution does not apply to them.
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Rather than joining the main sequence, brown dwarfs do not have enough
mass for stable hydrogen burning therefore they continually cool after some
initial deuterium burning (Burrows et al.l[1997). Distances are necessary for
establishing the basic temperature and luminosity scale as well as identifying
unresolved binary candidates. Moreover, brown dwarfs are among the closest
systems to the Sun therefore determining distances is required for an overall
census of the local solar neighborhood.

With the early parallax programs of Dahn et al (2002), Tinney, Burgasser,
& Kirkpatrick (2003) and Vrba et al (2004) the near-IR color magnitude di-
agrams for brown dwarfs were first examined. Golimowski et al (2004) pub-
lished a relation for obtaining the bolometric correction for ultracool dwarfs
which was used in combination with parallax measurements to create the first
temperature classes for brown dwarfs (see also Vrba et al 2004). From these
works, initial spectrophotometric relations were created in the near-IR which
were used to estimate absolute magnitudes and hence distances for spectrally
classified brown dwarfs. Recent photometric work using Spitzer IRAC chan-
nels extended these relations into the mid-IR where the latest T dwarfs emit
the majority of their flux (Patten et al 2006; Leggett et al 2010). Furthermore,
objects were followed up with Hubble Space Telescope (HST) or adaptive op-
tics observations, confirmed as close binary pairs and subsequently found to be
over-luminous on color-magnitude diagrams(e.g. [Gizis et al.[2003; Bouy et al.
2008; Burgasser et al|2003d). Recent investigations have obtained dynamical
masses of close binaries with trigonemetric parallaxes using orbital monitoring
(Lane et al.l2001; Dupuy et al|2008, 2009; Konopacky et al.|2010b).

One of the main puzzling features of brown dwarf color-magnitude dia-
grams is the significant scatter detected among similar effective temperature
objects. Increasingly complex atmospheric and evolutionary models have ex-
plained this scatter as the result of variations in gravity, metallicity, sedimenta-
tion efficiency and/or binarity (e.g. [Tsuji et al.]1996; Tsuji & Nakajimal2003}
Burrows et _all20006; [Helling et al|2008; [Saumon & Marley|[2008). Differing
models disagree as to which parameter has the largest effect . Several groups
have used models to investigate the variations of observational color-magnitude
diagrams but the number of objects with independently measured ”second pa-
rameters” is still sparse (Knapp et al 2004; Patten et al 2006; Leggett et al
2010). It is difficult to test the spread of color magnitude diagrams due to dif-
fering metallicities and /or gravities without a bona-fide sample of each subset.
There are a handful of L subdwarfs known, objects with subsolar metallicity,
but only a small fraction have parallax measurements (Cushing et al|2009;
Burgasser et al.|2009; Burgasser et al.2003a;Burgasser|2004a;Schilbach et al.
2009). A number of low-surface gravity brown dwarfs have been identified in
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the field, but until this work, none have had parallaxes reported (Cruz et al.
20009; [Allers et all20T0; [Allers et al.l 2007; Kirkpatrick et al|2006). Investi-
gating the absolute magnitudes of broadly different gravity and/or metallicity
subsets of the brown dwarf population will help to disentangle the intrinsic
physics which drive their evolution and population diversity.

Another major anomaly of brown dwarf color magnitude diagrams is an
intriguing brightening in J (and to some extent H and K) band as objects
transition between the warmer L and cooler T dwarf spectral classes . Clouds
are especially influential on the 1 pym region for brown dwarfs therefore this
significant brightening (up to 1.5 magnitude; Vrba et al 2004) is attributed
to a redistribution of flux while cloud decks clear or sedimentation efficiency
improves (e.g. Burgasser et al|2002D; [Knapp et al|2004). In Golimowski et
al (2004) a near constant temperature of ~1450 K was obtained for L7-T4
objects supporting models that attribute the J band brightening to atmo-
spheric effects and hinting at unresolved binarity among the sample. In the
past decade, several L/T transition objects have been confirmed as flux re-
versal binaries indicating that the brightening is an intrinsic feature of brown
dwarfs (e.g. [Liu et all2006; Looper et al|2008a;Gizis et all2003; Burgasser
et_al. 2006b). However, a significantly larger binary fraction across the L /T
transition artificially enhances the bump (Burgasser|2007). Small numbers of
L/T transition objects with parallax measurements has hindered investigating
the true extent of this atmospheric transition.

In late 2006 we initiated the Brown Dwarf Kinematics Project (BDKP)
in order to address persistent questions of brown dwarf evolution and atmo-
spheric properties. The primary focus of the BDKP is to measure the proper
motion, parallax, and radial velocity of all brown dwarfs within 20pc. Our
aim is to search for spatial and kinematic association with moving groups as
well as kinematic correlations with physical properties. Also, using parallaxes,
we hope to construct a "clean” (free of binaries and extreme gravity and/or
metallicity objects) absolute magnitude diagram. In so doing we aim to dis-
entangle effects of gravity, metallicity, binarity, and /or atmospheric properties
on the brown dwarf population. In this work we report parallaxes for 84 ul-
tracool dwarfs (UCDs). We have primarily focused on objects that straddle
the boundary between L and T dwarfs as well as those classified as low-surface
gravity dwarfs. Section describes the target list as well as the data ac-
quisition and reduction. Section describes the parallax pipeline used to
determine distances. Section M.4] uses all parallax measurements reported in
this work in combination with literature values and photometric information
obtained from various catalogs to investigate color-magnitude diagrams and
spectrophotometric relations for the brown dwarf population. In section
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an updated brown dwarf near-IR color magnitude diagram is examined us-
ing evolutionary models. Section discusses the absolute magnitude vs.
spectral type relation for low-surface gravity dwarfs. Section K7 reviews the
kinematics for an ensemble of all known brown dwarfs with parallax measure-
ments and section describes individual objects of interest. Conclusions
are reported in section

4.2 Observations

4.2.1 Target List

We compiled the parallax target list from the BDKP astrometric sample re-
ported in Faherty et al. (2009). Instrumental limitations precluded measuring
parallaxes to the faintest, most distant L. and T dwarfs so we focused primarily
on ultracool dwarfs within 20pc. However we were also interested in subsets
of the ultracool dwarf population which included low-surface gravity dwarfs
(potentially young sources) and subdwarfs (potentially old sources). For these
scientifically interesting subsets we relaxed our astrometric constraint to in-
clude sources whose predicted spectrophotometric distance was up to 50pc.
Our full target list consisted of 84 ultracool dwarfs, including 19 M dwarfs, 37
L dwarfs and 28 T dwarfs (see Tables [41]- A.2)). Among this sample there
were 17 low-surface gravity dwarfs and 3 subdwarfs.
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4.2.2 Data Collection and Reduction
ANDICAM

We obtained parallax frames with the ANDICAM (A Novel Double-Imaging
CAMera- DePoy 2003) imager between November 2006 and March 2010 (~
500 hours of observations). ANDICAM is a dual channel near-IR and CCD
imager located on the 1.3m telescope at Cerro Tololo InterAmerican Obser-
vatory (CTIO). The optical detector is a 1024 x 1024 CCD and the near-IR
channel uses a Rockwell 1024 x 1024 HgCdTe Hawaii array. The near-IR field
of view is ~2.4 arcminutes with a plate scale of ~0.274 " /pixel. The optical
CCD field of view is slightly larger, ~6.2 arcminutes, with a plate scale of
~0.369 " /pixel. The optical and near-IR channels operate independently with
a dichroic filter directing light to the two independent cameras. Therefore, we
were able to take a set of near-IR images while integrating in the optical.

All ANDICAM data were acquired through queue observing with telescope
time allocated through the SMARTS (Small and Moderate Aperture Research
Telescope System) consortium. To ensure the same reference stars for each
parallax frame, we required the target star to always be placed in the same XY
position on the detector. We also required all observations to be made within
430 minutes of meridian crossing to minimize the corrections for differential
color refraction (DCR-see section B3] below). Typical seeing was 1” and
useable conditions for our parallax program were up to 2 ”.

In the optical we observed in the I. band with integration times that ranged
from 265s for our brightest targets to 610s for our faintest. In the near-IR we
observed in the J band with integration times that ranged from 20s with 5
coadds for our brightest targets to 130s with 8 coadds for our faintest. We
acquired 5-7 near-IR images in a 10 ” dither pattern.

The optical ANDICAM data was processed with overscan subtraction and
flat-fielding, prior to distribution. Initially we intended to use the near-IR
data for parallaxes and the CCD data as a check on the astrometric quality.
However, we quickly realized that the optical images were far superior to the
near-IR, which were plagued with imaging artifacts, an occasional elongated
PSF, and a smaller field of view (therefore fewer reference stars). As a result
we report parallaxes in this paper based only on the optical imaging.

Infrared Side Port Imager (ISPI)

We collected parallax data for our faintest targets with the Infrared Side
Point Imager (ISPI) on the CTIO 4m Blanco telescope van der Blick et al.
2004)). Observations were conducted over a period of just over 2 years (from
early March 2008 through late April 2010) and 15 observing runs. As opposed
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to ANDICAM, ISPI data were collected classically. All observations were
carried out in the J band under seeing conditions up to 2” full width half
maximum (FWHM) with typical conditions between 0.8-1.1". Most of the
parallax observations were made when the target was within £30 minutes of
the meridian to minimize the corrections for DCR (see section [M.3.1] below).
However, due to observational constraints (weather, instrument issues, etc)
some targets were observed within £1 hr of meridian crossing.

ISPI has an ~ 8 arcminute field of view and nominal plate scale of 0.303
" /pixel. In order to minimize the effects of distortion and to ensure the
same reference stars in each frame, we placed the target star on the same
X,Y pixel position for each parallax frame. On the first observing run for
a target, the frame was initially offset from the center of the chip to avoid
the four-quadrant seam along the detector. This initial frame was used in all
subsequent observing runs as a reference for determining where to place the
parallax star.

Integration times were set by the magnitude of the target and the con-
ditions at the telescope. They ranged from 30 to 60s with 5-10 coadds and
5-10 images in a 10 ” dither pattern. Depending on the weather and seeing
conditions, the typical integration time was between 15-40 minutes.

Dark frames and lights on/off dome flats were obtained at the start of each
evening. Reduction procedures were based on the prescriptions put together
by the ISPI teamT utilizing a combination of IRAF routines. J band flats
were created by median combining the lights on and lights off images then
subtracting the two. Bad pixel masks were created from a dome flat image.
Individual parallax frames were flat-fielded and corrected for bad pixels with
the resultant calibration images. All images were flipped to orient North up
and East to the left using the IRAF routine osiris in the cirred package.
Finally, the IRAF routine zdimsum was used to perform sky subtractions and
mask resultant holes from bright stars2

4.3 Parallax Pipeline

4.3.1 Source Extraction

Once all data were reduced, we used the Carnegie Astrometric Planet
Search software (from here-on ATPa) to extract all point sources and solve

Lhttp : / Jwww.ctio.noao.edu/instruments /ir instruments/ispi/

2We note that during observations the primary mirror would randomly slip causing he
PSF to appear elongated. When this occured we would halt and restart an integration. The
problem was sporadic but did not effect any of the final images.
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for parallaxes (Boss et all2009). Images were not co-added, rather sources
were extracted on every image at every dither position. We initiated the
ATPa centroiding algorithm by (1) defining the FWHM of each set of images
(2) defining the plate scale for the instrument and (3) designating the highest
quality image in the set as a template. The ATPa algorithm first detected
all point sources in the template image then used that list as a reference for
detection in all subsequent images taken on a given night. The centroiding
algorithm fit a one-dimensional PSF profile in both X and Y directions. A
number of apertures (typically 3) spaced by 0.20 pixels were used to deter-
mine the centroid and the average was adopted as the final position.

Once sources were extracted we used custom IDL routine to refine the ref-
erence star list. We ensured that the target star was acquired in each frame
and that spurious sources, such as cosmic rays or CCD artifacts, were not
selected as reference sources. Each parallax frame had a text file associated
with it (from now on referred to as plate files) containing, X, Y, and photo-
metric information of at least 20-25 common reference stars. We compared
the relative positions for all stars in an image and the scatter was used to
estimate positional uncertainties for individual stars. The typical positional
uncertainty for parallax targets in ISPI and ANDICAM was ~0.01 pixels.

DCR corrections are typically required because the parallax star and refer-
ence stars have very different colors. As a result, their positions shift relative
to one another due to different amounts of atmospheric refraction. The effect
is wavelength, weather, and zenith distance dependent. [Stonel (1996, 2002)
present a theoretical method for determining DCR effects. In that work, they
demonstrated that maintaining small zenith distances, DCR effects in I and
longer wavelengths (such as J) are minimal (typically < 1 mas). Similar re-
sults were found using the empirical methodology proposed by Monet et al.
(1992). The low-mass star optical parallax program of [Jao et all (2005) and
the brown dwarf optical parallax program of [Dahn et all (2002) also found
negligible I band DCR corrections (typically < 1 mas) as did the near-IR T
dwarf parallax program of [Tinney et al.| (2003)). Therefore, DCR corrections
are not applied to the positions in our pipeline. To ensure that even this small
effect was minimized, we observed targets (with few exceptions) within + 30
minutes of meridian crossing.

4.3.2 Parallax Solution

The reference stars in an image were used to transform the plate coor-
dinates to sky coordinates and model the motion of each star. For this we
used the Astrometric Iterative Solution available in the ATPa package. The
solution was initiated with the right ascension (RA) and declination (DEC)
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coordinates of the brightest star in the field. The highest quality image ob-
tained for a given parallax source was used as the template frame to which
everything was matched.

After one iteration a linear transformation was applied to each plate cata-
log to constrain the field rotation, plate scale and match all reference sources
to the template. Higher order transformations were tested but yielded neg-
ligible differences from linear solutions in both ANDICAM and ISPI images.
The apparent trajectory of each star was fit to a standard astrometric model
included in the ATPa software. The algorithms follow the astrometric solution
prescriptions laid out in the Hipparcos (Perryman et al|[1997) and Tycho Cat-
alogue (Hog et al|2000) descriptions?. A subset of well-behaved stars (RMS <
5 mas and at least 5 observations) was chosen and the second iteration begun
using those as reference point sources. All steps were automated and we set the
number of total iterations to 3-5 and required at least 10 stars (typically 20)
to converge upon the astrometric solution. The convergence was monitored
by propagating the RMS positional uncertainty of all stars and determining
the average RMS for the well-behaved reference sources.

The initial astrometric solution was used to identify the well-behaved stars
and to ensure that the following objects were not used as solution sources:
(1) the target parallax star, (2) high proper motion stars in the field, (3)
saturated stars, and (4) elongated or extended sources (e.g. galaxies). The
parallax plates were then processed a second time with an ”exclusion” list of
objects that were not to be used as reference stars.

The final catalog that was output by ATPa contained the following five
astrometric parameters and their uncertainties: (1) X position, (2) Y position,
(3) proper motion in RA (p,), (4) proper motion in DEC (us), and (5) parallax
(7). It also contained information about the number of observations employed,
the RMS of the residuals per epoch, and the reduced x? of the astrometric
solution for each star (Boss et all2009) :

o; (o

NE ochs y .
2 1 rog! |:<'I;L)bs - Imodel)Q (yzobs — ymodel)2
K3 (]

X 2Nepochs - Npars P 2 - 2 (41)
where Nepocns is the number of epochs, N, is the number of model param-
eters to be fit, x’;, and y’,_ are the measured positions of the star in a local
coordinate system, X,,oder and Vioder are the positions predicted by the best
fit model, and the summation is over all epochs. Each observation is weighted
using its own standard deviation o;.

As described in Boss et al (2009), to ensure that the uncertainties in the

3http : //www.rssd.esa.int/SAJHIPPARCOS/docs/voll,ll.pdf
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parameters from the astrometric least squares solution were more realistic than
the ones obtained using only the intra-night scatter, a small uncertainty was
added in quadrature to the estimated uncertainty derived from the calibration
step until an effective xy2=1 was obtained. The final uncertainty for the paral-
lax star was obtained by adding the uncertainty of the least squares solution
to the positional uncertainty for the parallax source.

4.3.3 Correction from relative to absolute parallax

The final parallaxes from the astrometric solution are relative to the mo-
tion of the background stars chosen as references. A correction is required
based upon the true parallaxes of the reference stars to convert to an absolute
measurement.

Typically there are three ways to convert from relative to absolute par-
allaxes: (1) using statistical methods which rely on a well-determined model
of the Galaxy and is most relevant for faint distant reference stars, (2) spec-
troscopic parallaxes which rely on spectral data obtained for every reference
star, or (3) photometric parallaxes for all reference stars. We determined the
parallax corrections using the third method because the reference stars are pri-
marily the brightest in the field and spectral data are not generally available
for all stars in the field.

In order to measure photometric parallaxes for the reference stars we as-
sume that all sources are main-sequence dwarfs. Following the prescription
described in [Vrba et all (2004]), we obtained 2MASS photometry for all refer-
ence stars then converted J,H K values to California Institute of Technology
(CIT) colors using the transformations detailed in Carpenter (2001). The CIT
J-H and H-K colors were used to estimate spectral types of the background
stars based on the relations detailed in Bessell & Brett (1988) for main se-
quence dwarfs. Absolute V magnitudes were taken from color spectral type
relations described in [Kitchin! (2004) and then converted to M; and Mg via
the Bessell & Brett (1988) calibrations?. Distances to reference stars were
determined by averaging (m-M); and (m-M)g values which were typically in
good agreement.

Each reference star was given equal weight in the astrometric solution. As
a result we averaged the parallaxes in mas to calculate the distance correction
and used a standard deviation of the mean for the correction uncertainty. We
added the distance correction to our relative parallax and added the correction
uncertainty in quadrature with our parallax uncertainty to obtain the final

4To our knowledge there is no relation for directly converting from JHK values to
Mgk and spectral type.
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absolute parallax. The average correction to absolute parallax for the full list
of targets is 2.340.3 mas ranging from [0.9,4.0] mas. See Table for the
final parallaxes with absolute corrections.

4.3.4 Comparison of Calibrators

There were 9 calibrator stars in our full astrometric sample; 4 imaged with
ISPI and 5 imaged with ANDICAM, that we obtained as a check on the relia-
bility of our methods. Table lists the astrometry for the calibrators mea-
sured in this work and compares those values with previous results reported in
the literature (see Figure [A.T]). For our calibrators we chose primarily nearby
brown dwarfs with J band magnitudes comparable to our sources. Of the 9
calibrators, 6 match within 1 ¢ and all match within 2. The mean difference
and scatter between literature and BDKP values is 0.114+ 3.6 mas. No sys-
tematic trends are detected in the parallax measurements. This indicates that
our parallax pipeline with conversion to absolute parallaxes produces reliable
results.

As a check on non-calibrator stars we show how well the proper motion
values match literature values for all sources in our sample (see Table E.J] for
references). The two lower panels in Figure [T]show plots of p, and us from
the literature versus our calculated values with uncertainties. We find that
30% of the sample match both components within 1o, 63% match within 2o,
82% match within 30 and all match within 40. The mean difference between
Lo and ps values was 2.2432.0 mas and -1.64+29.6 mas respectively and no
systematic trends were detected between values. This is significantly different
from a Gaussian error distribution. The deviation from a Gaussian distribution
could indicate an underestimation of uncertainty in either literature values or
within our astrometric solution.

4.4 Absolute Magnitude Relations

As of June 2010 there were 81 L and T dwarfs with published parallax
measurements. We have added 65 to this list, doubling the number of mea-
surements in some spectral bins (see Table E.4]). With a substantial increase
in the number of measurements, we can re-evaluate the color-magnitude and
spectral type-magnitude trends originally defined by Dahn et al (2002), Tin-
ney, Burgasser, & Kirkpatrick (2003), and Vrba et al (2004), particularly across
the poorly sampled L/T transition region.
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Figure 4.1: Top plot: The parallax measurement comparison of the 9 calibrator
dwarfs. Middle and lower plots: Comparison of literature proper motion components
to those measured in this work. In each plot blue crosses represents dwarfs that were
measured with ISPI and red crosses were measured with ANDICAM.
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Table 4.4. Absolute Magnitudes

Spectral Type BDKP Literature Total*>  Binaries My My Mg
1 &) (3) 4) (5) (6) (7) (8)

M6 0 8 8 0 10.23 4+ 0.43 9.67 + 0.42 9.33 + 0.41
M7 0 4 4 0 10.93 + 0.20 10.28 4+ 0.13 9.90 + 0.09
M8 0 6 6 0 10.99 +£ 0.75  10.30 £ 0.71 9.87 + 0.67
M9 1 2 3 0 11.74 £ 0.54 11.06 & 0.62  10.58 & 0.62
LO 0 6 6 2 11.69 + 0.25 11.05 &+ 0.19 10.51 £+ 0.21
L1 3 4 7 0 12.39 + 0.64 11.41 4+ 0.43 10.80 £ 0.46
L2 4 2 6 2 12.89 £ 0.09 12.13 £ 0.13 11.49 4+ 0.22
L3 1 5 6 2 12.93 £ 0.21  12.10 £ 0.17 11.36 £+ 0.11
14 0 4 4 1 12.90 + 0.55 12.01 +0.36  11.03 4 0.40
L5 2 5 7 2 13.37 £ 0.53  12.50 + 0.45 11.81 4+ 0.40
L6 4 3 7 2 14.48 + 0.46  13.48 + 0.45 12.27 4+ 0.50
L7 5 7 12 5 14.86 + 0.39  13.82 £ 0.37  13.03 £+ 0.39
L8 1 9 10 1 14.64 + 0.33  13.70 & 0.30  13.00 £+ 0.33
TO 1 0 1 0 0.00 % 0.00 0.00 £ 0.00 0.00 + 0.00
T1 1 2 3 1 15.36 & 0.54 14.77 £ 0.62  14.32 £+ 0.56
T2 3 2 5 1 14.54 + 0.18 13.77 + 0.17 13.69 4+ 0.13
T3 1 2 3 1 14.54 + 042 14.23 £ 0.35 14.16 4+ 0.24
T4 3 1 4 0 14.37 + 0.44 13.90 + 0.18 14.23 4+ 0.34
T5 6 3 9 1 14.88 + 0.22 15.05 + 0.23  15.08 £+ 0.29
T6 3 8 11 1 15.36 + 0.38  15.70 + 0.41  15.77 4+ 0.54
T7 3 5 8 1 15.96 + 0.60 16.42 4+ 0.58 16.63 £ 0.81
T8 3 3 6 1 16.53 £ 0.79 16.91 &+ 1.02 17.04 4+ 1.48

2 All low-gravity and subdwarfs are excluded from totals. Four objects, 2MASS J2043-1551, 2MASS J1764+1649,
2MASS J151140607, and SDSS 111040116, have been disregarded because they are suspiciously over or under-
luminous sources
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4.4.1 Absolute Magnitude/Spectral Type Relations

Color-magnitude diagrams and spectrophotometric relations are used to
investigate physical parameters that influence brown dwarf evolution and to
establish distances for spectroscopically confirmed objects. All brown dwarfs
have highly structured energy distributions, and magnitudes in JH K are ex-
tremely sensitive to the exact filter bandpass used. Therefore, we converted
all magnitudes onto the Mauna Kea Observatory filter set (MKO; Tokunaga
et all2002]), whose narrow bandpasses are less affected by atmospheric absorp-
tion than the CIT and 2MASS filter sets (particularly at J). If required, the
transformations from Stephens & Leggett (2004) were used to convert from
2MASS to MKO magnitudes.

Most of the L dwarfs in our sample were classified spectrally from red
optical data following the scheme of Kirkpatrick et al. (1999), while the T
dwarfs were largely classified in the near-IR (Burgasser et al. 2006). An
optical spectral type was used for any object classified as an L dwarf and a
near-IR spectral type was used for any object classified as a T dwarf. For any
L dwarf lacking optical data we used its near-IR spectral type.

We combined our parallax measurements from this work with all previ-
ous measurements, excluding known binaries, and objects classified as either
low-surface gravity dwarfs or subdwarfs, and re-examined absolute magnitude
trends and dispersions. Figure shows the My sequences. Only objects
with Mgy uncertainties < 0.3 mag are shown. Table .4 shows the median
absolute MKO J, H, and K magnitude values and their scatter for LO-TS8
dwarfs (binned by 1 spectral type). Two objects, 2MASS J2043-1551 and
2MASS J 175441649, are significantly under-luminous. Two other objects,
2MASS J15114-0607 and SDSS 111040116, are over-luminous with the former
is suspected to be a close binary (Burgasser et al 2010). These objects are
discussed in detail in section below.

We have used our new parallaxes to revisit the usefulness of spectrophoto-
metric relations as predictors of absolute magnitude for field dwarfs that lack
parallax measurements. Table lists the coefficients of a sixth order poly-
nomial fit to MKO JH K absolute magnitudes (excluding binaries, low-surface
gravity dwarfs, and subdwarfs). Among the three near-IR bands, we find K
band is the most reliable near-IR relation to use for absolute magnitudes. The
RMS scatter is equivalent for all bands in Table .4 but the significant and
still poorly understood transition bump is least prominent in K (see this sec-
tion). We have used resolved photometry for 8 of the L/T transition binaries
for a more detailed look at the spectrophotometric relation. Two known binary
sources, 2MASS J0518-2828 and 2MASS J1404-3159, had parallax measure-
ments reported in this work as did one suspected binary 2MASS J15114+0607
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Figure 4.2: Spectral type versus absolute magnitude in the MKO J, H, and
K filters for late-type M through T dwarfs. Unfilled circles are ultracool dwarfs
with parallax measurements gathered from the literature. Filled circles are ultra-
cool dwarfs with parallaxes measured in this work. Red symbols represent known
binaries. Overplotted on each is the best fit polynomial (see Table [ZH]).
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Table 4.5.  Coefficients of Polynomial Fits for L0 -T8 Dwarfs

MKO Filter co c1 Co c3 [ cs cg rms
1) (2) (3) (4) (5) (6) (7)
My -1.578 5.480 -9.937E-1  9.048E-2 -4.087E-3 8.622E-5 -6.516E-7  0.32
My -1.594 4.841 -8.105E-1 7.094E-2 -3.177E-3  6.814E-5 -5.364E-7 0.32
Mg -1.672 4.721 -7.934E-1 7.034E-2 -3.271E-3 7.556E-5 -6.749E-7  0.32
M2 -2.059 5.417 -9.484E-1 8.662E-2 -4.042E-3 9.074E-5 -7.649E-7  0.32
Mg? -1.673 4.722 -7.936E-1 7.035E-2 -3.272E-3  7.557E-5 -6.750E-7  0.32
Ms.6 3.260 1.155 -6.163E-2 1.269E-3 — — — 0.17
My 5 3.784  9.910E-1 -4.640E-2 8.315E-4 — — — 0.11
Ms s 2.185 1.402 -7.881E-2 1.569E-3 — — — 0.17
Msg.o 1.475 1.489 -8.233E-2  1.587E-3 — — — 0.17

aIncluding 8 L/T transition binaries with resolved photometry: SD0423-0414, 2M0518-2828, SD1021-
0304, 2M1404-3159, 2M1711+4-2232, SD15114-0607, epsIndi, SD15344-1615

Note. — Polynomial fits to optical L dwarfs and NIR T dwarfs (L dwarfs with no optical spectral type
have NIR spectral types_) excluding subdwarfs, low gravity dwarfs, and binaries. Function is defined as
My K=y 1o c(SpT)" and is valid for spectral types LO-T8 where 10=L0, 20=T0, etc.

(Burgasser et al 2010). The polynomial fit for this sample is listed in Table
and demonstrated in Figure .3

The initial JH K-SpT relations for brown dwarfs set by Vrba et al. (2004)
used a linear fit for LO to L8 dwarfs and a second order polynomial fit for T0.5
to T8 dwarfs. Subsequently a number of objects were found to be unresolved
binaries. Liu et al (2006) re-visited the relations and derived two polynomial
fits, one excluding all resolved binary systems and potential candidates and
one excluding only the former. Most recently, Looper et al (2008) re-visited
the absolute magnitude relations and found a sixth-degree polynomial fit for
LO to T8 dwarfs. The scatter in M ;Mg , Mg in that work was 0.29,0.29, and
0.33 respectively, similar albeit slightly smaller than what we found for a larger
sample.

We also examined the absolute magnitude/spectral type relations in the
mid-IR Spitzer (IRAC) bands using source photometry from Leggett et al
(2010) and Patten et al (2006). Only a small percentage of the full astrometric
sample has reported mid-IR photometry but we have included the coefficients
to a third order polynomial fit in Table HH Figure (A4 shows the IRAC
color sequence vs. spectral type. Spectrophotometric scatter is smallest in the
M, 5 as noted by Warren et al 2007, Stephens et al 2009, and Leggett et al
2010. With decreasing temperature, the coldest brown dwarfs emit significant
portions of their light in mid-IR wavelengths. Leggett et al (2010) noted that
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Figure 4.3: Spectral type versus absolute magnitude in the MKO J, and K fil-
ters for L and T dwarfs with resolved binary components. Light grey filled circles
represent field dwarfs (excluding subdwarfs and low surface gravity objects). Red
symbols are known binaries with five point stars representing L/ T transition binaries
with resolved photometry. Black filled circles are the subsequent resolved absolute
magnitudes of the binary components. Overplotted on each panel is the best fit
polynomial (see Table 5.
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Figure 4.4: Spectral type versus absolute magnitude in the TRAC 3.6, 4.5, 5.8,
and 8.0 filters for L and T dwarfs. Unfilled circles are ultracool dwarfs with parallax
measurements gathered from the literature. Filled circles are ultracool dwarfs with
parallaxes measured in this work. Red symbols represent known binaries. Overplot-
ted on each is the best fit polynomial (see Table [A.5]).

the drop in luminosity was much milder in the mid-IR than in the near-IR.
We confirm this trend.

The brightening of early T dwarfs is most apparent in J where there is a
1 mag difference between mean M; at T1 (mean M ;=15.364+0.54) to the M,
maximum at T4 (mean M ;=14.3740.44). At H there is a similar although less
significant (0.8 mag) brightening. At K the brightening has largely turned into
a plateau between T1 and T4; although there is a 0.6 magnitude brightening
between T1 and T2 dwarfs. L8 dwarfs have a surprisingly tight spread in each
filter (0.33, 0.30, 0.33 in J, H, and K respectively) even though they are the
gateway to the J band brightening.

In general, the loci for L dwarfs is tighter at J (median ¢ of 0.39 compared
to 0.47), H (median oy of 0.32 compared to 0.47), and K (median ok of 0.34
compared to 0.57) than for the T dwarf sequence. Unresolved binarity or
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significant variations in the age, metallicity, and/or atmospheric properties of
the T dwarfs compared to the L dwarfs could account for the difference in
spreads. Vrba et al (2004) found a broader distribution in v, values for the
T dwarfs in their astrometric sample compared to the L. dwarfs hinting that
the T dwarfs were kinematically older than the L dwarfs. Leggett et al (2010)
and Patten et al (2006) found evidence for significant gravity effects on the
latest-type T dwarf samples.

As temperatures cool among the T dwarfs, there is a significant increase
in the My scatter for the latest spectral types. The T8 dwarfs have the
largest spread in all bands (0;,=0.79; 0y =1.02; 0x=1.48). There are 5 objects
included in the mean and spread calculation for this bin and those are broken
down into 3 T8.0 dwarfs and 2 T8.5 dwarfs. If we narrow down the calculation
to half bins and compare the T8.0 to the T8.5 we find that the scatter dimin-
ishes to 0;,=0.26; 05=0.50; 0 x=1.02 for T8.0 objects and ¢;=0.03; 0 5=0.20;
ox=0.35 for T8.5 dwarfs. This indicates that temperature differences between
late T-dwarf subtypes are more pronounced than for early T’s or L dwarfs. As
noted in the literature, significant temperature changes may not cause large
enough spectral variations to warrant a later spectral type (Warren et al.[2007;
Burningham et al.|2009).

4.4.2 Color-Magnitude Trends for L and T dwarfs

We have collected photometric information for all known L and T dwarfs
with parallaxes, totaling 146 (see Tables [I1- [2)). We examined various
combinations of optical, near-IR and mid-IR colors to find the color-magnitude
diagrams that provided the strongest insight into differentiating brown dwarf
spectral types and/or physical properties of the population. Figures - 41
show some of those diagrams. The colors demarcate L0-L4 dwarfs (red filled
circles), L5-L8 dwarfs (blue filled circles), TO-T4 dwarfs (purple filled circles),
and T5-T8/T9 dwarfs (black filled circles).

We found three prominent trends among the various color plots. The first
are color vs. absolute magnitude diagrams that can be categorized as tightly
correlated in a (generally) monotonic relationship. Figure [L.5lshows two repre-
sentative examples. Patten et al (2006) found a relatively smooth progression
of M through T dwarfs in the Mg, versus K,-[4.5] diagram. We verify that
this relation separates the early and mid L dwarfs (0.5 < K-[4.5] < 1.4) from
the early and mid T dwarfs (1.2 < K-[4.5] < 3.8). However, it does not show a
monotonic progression with the later T dwarf spectral types. The degeneracy
is most clearly depicted for the T6.0 and T6.5 dwarfs which show a nearly 2.0
mag spread in K-[4.5] color. We also show the My versus H-[4.5] diagram
(bottom panel of Figure [1.5)) as this color is a good tracer of effective temper-
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Figure 4.5: Color-Magnitude diagrams for L and T dwarfs with measured paral-
laxes. The Mg vs. K-[4.5] and My vs H - [4.5] demonstrate the tight transition
between L and T dwarfs. L0O-L4 dwarfs are red filled circles, L5-L8 dwarfs are blue
filled circles, purple filled circles are T0-T4 dwarfs, and black filled circles are the
latest type T dwarfs (T5-T8).
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ature for the coldest brown dwarfs (Warren et al 2009; Stephens et al 2009;
Leggett et al 2010). The early to mid L dwarfs are nearly monotonic on this
figure as are the latest T dwarfs; however L7.5 through mid T dwarfs show
near constant My as the H - [4.5] color gets increasingly blue before redden-
ing through the mid to late T dwarfs. Interestingly, these two color-magnitude
diagrams are strikingly different from the J - [4.5] plot shown in Figure 1]
indicating that they are less sensitive to gravity, metallicity, or atmospheric
changes.

The second prominent trend is a color reversal as objects transition from L
into T dwarfs. The most studied version of this trend is the J - K color reversal
discussed in Section below. Figure shows two other representative
examples. The top panel of Figure shows the My 5 versus [4.5] - [8.0]
color and the bottom shows the My, versus J - L color. Condensate cloud
opacity is likely the dominate contributor to the increasingly red colors of L
dwarfs. In Figure (.6 the effect is much more pronounced in the near-IR (2.5
mag spread) as opposed to the mid-IR (0.5 mag spread) demonstrating that
atmospheric changes accompany this trend. As temperatures drop into the T
dwarf regime, clouds clear causing a brightening in .J as well as [4.5] while CHy
and HyO absorption remove significant flux in both L and [8.0] causing the
color reversal (Cushing et al 2006; 2008). This is enhanced in the [4.5]-[8.0]
color as there is a strong CO feature in the [4.5] band which remains relatively
constant with decreasing temperature. In the top panel of Figure H0, it is
interesting to note the near-uniform M, s magnitude for the late T dwarfs as
the [4.5] - [8.0] color becomes increasingly blue.

The third prominent trend of color-magnitude diagrams is two parallel
linear sequences for the L and T dwarfs, with L-T transition objects curving
back on themselves. The two sequences are similar in color but the L dwarfs
are generally 2-3 magnitudes brighter than the T dwarfs. Figure LT shows
two representative examples of this case. The top plot shows the M; versus
J-[4.5] diagram with the L dwarf sequence brighter but separated from the
T dwarf sequence. The bottom plot shows the Ms¢ versus H-[3.6] diagram
demonstrating larger scatter among the late-type T dwarf colors but a larger
magnitude break between L and T dwarfs. As in the above color reversal
trend, the L dwarfs redden through the later spectral types due to condensate
opacity removing significant flux in the near-IR. At the L /T transition, clouds
disperse and objects brighten in .J and H band just as CHy absorption begins
to remove significant flux in the [3.6] and some portion of the [4.5] bands.
Contrary to what happens in the color reversal described above, a significant
fraction of the flux shifts to mid-IR wavelengths for the T dwarfs (see Leggett
et al 2010) causing them to once again redden with decreasing temperature.
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Figure 4.7: Color-Magnitude diagrams for L and T dwarfs with measured paral-
laxes. The M vs. J-[4.5] and M3 vs H - [3.6] demonstrate the L. dwarf and T
dwarf sequences with similar slopes, separated by 1-2 magnitudes. L0-L4 dwarfs are
red filled circles, L5-L.8 dwarfs are blue filled circles, purple filled circles are T0-T4
dwarfs, and black filled circles are the latest type T dwarfs (T5-T8).

4.5 Comparison to Evolutionary Models

To put the observed trends on color-magnitude diagrams in context, we
compared the data to two sets of evolutionary models. Saumon & Marley
(2008) present a set of evolutionary models that include a cloud sedimentation
parameter which can be varied to explain (with different levels of accuracy)
the near-IR color magnitude diagram for L and T dwarfs. Burrows et al (2006)
present a model for refractory clouds as well as a completely cloudless model
with varying gravity and metallicity parameters. In Figures and we
examine the M vs. J-K diagram for L and T dwarfs using the full sample with
trigonometric parallaxes and the respective evolutionary models. In Figure
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Figure 4.8: The Mg vs J-K diagram for L and T dwarfs with the evolutionary
models of over-plotted. Varying the cloud thickness parameter fs.4 fits the L and T
dwarf sequences with varying degrees of accuracy.

1.8 the sedimentation parameter (fgq) from Saumon & Marley (2008) is shown
with increasing value to represent decreasing cloud thickness. In Figure L9 the
metallicity and gravity are varied using the clear model (upper left panel) and
refractory cloud model (three remaining panels) of Burrows et al (2006). All
early and late-type L and T dwarfs, low-surface gravity objects, and subdwarfs
with trigonometric parallaxes (o), < 0.3 mag) are over-plotted.

4.5.1 L Dwarfs

Varying gravity and metallicity within the cloud model of Burrows et al
(2006) encompasses the majority of early L dwarfs (top right and bottom two
panels of Figure [9]); however, late-type L dwarfs are still poorly represented.
Compared to the highest gravity, super solar metallicity track, there are a
number of late-type L dwarfs that are fainter and redward of predictions. In
Figure .8, the L dwarf sequence is best modeled with the f,.;=1,2 parameters
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(top and middle plot of Figure [A8]). There are a handful of red or potentially
"ultra-cloudy” objects that are not fit by the models. Significant outliers
include 2MASS J1442+6603, which is a close (~30 AU) companion to the M1.5
dwarf G239-25 (Forveille 2004), and 2MASS J0619-5802 which is a companion
(~260 AU) to the young K2 star AB Pic (Chauvin et al 2005). 2MASS
J1841+3117 is also significantly redward of the models. It is classified as
an Ldpec by Kirkpatrick et al (2000) because it shows feature strengths that
match an L4 but its optical color (between 6300 and 10000A4) is too blue.

T Dwarfs

The mid to late-type T dwarfs are best fit using the clear model from Bur-
rows et al (2006) and the f,.;=4 track from Saumon & Marley (2008). In the
case of the latter model (bottom right panel of Figure [4.8]) the predicted range
in both Mg and J-K shows very little spread whereas empirical measurements
show significant scatter. There are a handful of T dwarfs including 2MASS
J1114-2618, ULAS J0034-0052, and 2MASS J1754+1649 which are notably
under-luminous and red compared to the f,,;=4 model predictions. The col-
ors of these late-type T dwarfs are better fit by the f;.;=2 parameter (thicker
clouds) which also encompasses the majority of mid to late-type L dwarfs.
Comparing the spread to the Burrows et al (2006) clear model (top panel of
Figure [9) predictions show similar red, under-luminous outliers. The solar
and super solar metallicity tracks on the cloud model (bottom panels of Fig-
ure [L.9) fit a portion of the late-type T dwarfs but significant outliers remain.
Inconsistencies with both models indicates that thick condensate clouds might
continue to play a role in the photospheres of cooler dwarfs (see discussion
in [Burgasser et al|R2010b, Marley et al|2010). Measurements of the age of
each of these individual objects would prove useful as Burgasser et al.| (2010b))
suggests that thick clouds could explain spectral features of the low-surface
gravity (young) T dwarf Ross 458C.

4.5.2 L/T Transition Dwarfs

The L-T transition objects can not all be fit by a single f,.; parameter
using the Saumon & Marley (2008) models nor by any single combination of
gravity and/or metallicity on the Burrows et al (2006) models?. To address
this problem we created a hybrid cloud model using the Saumon & Marley
tracks. Similar to the work of Burgasser et al| (2002b)) we varied the sedi-
mentation parameter between the f,.;=2 and f;.4=4 models across the region

5Burrows et al 2006 also note that variations in cloud particle size can not account for
the transition objects.
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between 13.0< Mg < 15.0. We started with the f,.4=2 color, then added the
feeq=4 color in 10% increments across the transition. The result is plotted in
Figure HI0 The L-T transition objects lie within an absolute magnitude
range corresponding to model temperatures spanning £150 K from a mean
T.ss that depends on the log(g) chosen.

The steady and significant decrease in J — K color with near constant Mg
for the objects in the transition region indicates (as noted in Burgasser et al
2002 and Knapp et al 2004) that the clearing of clouds or change in cloud
thickness could explain a large part of the J band brightening. Two objects,
2MASS J0559-1404 and SDSS J0830+0128, are blueward of the hybrid model
predictions and brighter by nearly a magnitude at Mg than the late-type
T dwarf sequence. 2MASS J0559-1404 has been examined with HST for a
near-equal mass companion to explain its over-luminosity but nothing has
been resolved (Burgasser et al|2003c, [Zapatero Osorio et al|R2007%). SDSS
J0830+0128 has no spectral peculiarities noted within the literature.

4.5.3 L Subdwarfs

The four L subdwarfs with measured parallaxes demonstrate a range in
color. The Burrows et al (2006) models account for variations of both metal-
licty and gravity parameters. Three of the subdwarfs, 2MASS J0616-6407,
2MASS J05324-8246, and 2MASS J1256-0224 are fit with the clear model in
the upper right panel of Figure [4.9; however their large uncertainties preclude
distinguishing between metallicities. The L4 subdwarf 2MASS J1626+3925
fits nicely along the subsolar metallicity track of the clear model. L subdwarf
fits to the clear vs cloudy model indicates that cloud coverage may be corre-
lated with age. Younger L dwarfs might be dustier than older subdwarfs (see
section below). However, we note that the low-metallicity is also driv-
ing the cloudless properties (see Burgasser et al (2003, 2007); Gizis & Harvin
2006).

4.6 Low Surface Gravity Dwarfs

A subset of the parallax sample are the low surface gravity dwarfs. Within
this subsample there are 10 M dwarfs and 7 L. dwarfs. Their optical spectra
are characterized by unusual spectral features such as weak FeH absorption,
weak Na I and K I doublets and very strong vanadium oxide bands which
imply low surface gravities (Cruz et all2009; [Allers et all2010; [Allers et al.

6The [Zapatero Osorio et al/ (2007) null detection was using radial velocity variability
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Figure 4.10: The Mg vs J-K diagram for the evolutionary models of Saumon &
Marley 2008 over-plotted using the best-fit for the late-type L and T dwarfs (fseq=2,4
respectively) and our hybrid model created by varying the cloud thickness between
the two in 10% increments.
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Table 4.6. Low Gravity Dwarfs

Name Spt My Mg Mg AA{Ja AMHa A]\/[Ka
1 (2 (3) 4) (5) (6) (M (8)

2MASS J06195260-2903592 M6.03 11.70 £ 0.30 10.91 £ 0.30 10.08 £ 0.3 -2.0 -1.7 -1.0
2MASS J042214134+1530525  M6.0~ 9.60 £+ 0.24 8.72 +£ 0.24 8.17 £ 0.2 0.9 1.4 1.8
2MASS J04362788-4114465 M7.58 13.34 £ 0.34 12.72+0.34 12.33 £ 0.3 -4.5 -5.2 -5.7
DENIS-P J065248.5-574137 M8.0g 11.66 + 0.15 11.09 + 0.15 10.52 + 0.2 -0.7 -0.9 -0.8
2MASS J02212859-6831400 M8.03 10.93 £+ 0.21 10.33 4+ 0.21 9.81 £ 0.2 0.1 0.0 0.1
2MASS J06085283-2753583 M85y 11.60 £ 0.16 11.00 £ 0.16 10.44 £ 0.2 -0.7 -0.8 -0.7
2MASS J11020983-3430355 M8.5y 10.60 £+ 0.20 10.02 £ 0.20 9.49 £+ 0.2 0.4 0.3 0.4
2MASS J04433761+0002051 M9.08 13.21 +£0.39 12.62 +0.39 1191 £ 04 -1.6 -1.5 -1.3
2MASS J 20004841-7523070 M9.03 10.89 £+ 0.40 10.22 £ 0.40 9.71 £ 0.4 0.9 0.8 0.9
TWA 26 M9.0y 10.78 + 0.13  10.19 4+ 0.13 9.64 £+ 0.1 1.4 1.2 1.3
2MASS J00325584-4405058 L0.0y 13.77 £ 0.19 12,97 £ 0.18 12.32 + 0.2 -4.7 -5.2 -4.5
2MASS J02235464-5815067 L0.0vy 12.57 + 0.41 11.63 £ 0.39 1097 £ 04 -1.3 -1.0 -0.8
2MASS J23224684-3133231 L0.03 12.80 £ 0.19 12.11 £ 0.19 11.59 + 0.2 -2.5 -2.8 -2.7
2MASS J05361998-1920396 L1.08 13.68 = 0.80 12.78 = 0.79 11.84 + 0.8 -0.9 -1.1 -0.8
2MASS J07123786-6155528 L1.08 14.03 £ 0.37 13.27 £ 0.35 12.46 + 0.4 -1.6 -2.4 -2.0
2MASS J05012406-0010452 L4.0y 14.63 = 0.16 13.52 + 0.16 12.68 4+ 0.2 -2.4 -2.9 -2.9
2MASS J03552337+1133437 L5.0y 14.35 £ 046 13.05 £ 0.46 11.91 £ 0.5 -1.0 -0.6 -0.1

aA values are calculated from the mean absolute magnitudes in Table A4l Negative values indicate under-
luminous objects.

2007; Kirkpatrick et al|2006). They have extreme red near-IR colors and small
tangential velocities relative to the rest of the brown dwarf population (Faherty
et al 2009). Kirkpatrick et al. 2006 and Cruz et al. 2009 have suggested
that a number of the low-surface gravity dwarfs are candidate members of
nearby moving groups such as 3 Pictoris, Tucana-Horlogium, and AB Doradus,
implying ages roughly spanning 10- 50 Myr.

Figure [.I1] shows the near-IR absolute magnitude vs. spectral type dia-
grams for mid-type M through late-type L dwarfs with binaries removed. Table
lists the absolute magnitude for each object in J,H, and K as well as the
deviation from the median M;, My, and Mg values for each spectral bin.
Thirty percent of the objects (5 out of 17) are at least 20 (and at most ~5.70)
under-luminous for their spectral bin which translates to 10-50% closer than
expected. The average difference in M ;, My, and Mg values are (-0.8,-0.7,-0.6)
mag respectively. On Figure KT we have plotted the $ and v designations
assigned for each object to indicate intermediate and low-gravity respectively
(see discussion in Kirkpatrick et al 2005, 2006; Cruz et al 2009). Within this
sample, there does not appear to be a correlation between o, ar,, a1, and the
strength of low-surface gravity features.

The trend of low-surface gravity dwarfs appearing under-luminous for their
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spectral type is counter-intuitive. According to the evolutionary tracks of Bur-
rows et al (1997); 10 Myr objects with masses ranging from 10-75 M, have
radii which are 25-75% larger than 1- 3 Gyr equivalent temperature objects.
This translates into a luminosity or magnitude difference (overluminosity) be-
tween 0.2-0.6 mag. For 50 Myr objects radii can be 13-50% larger and have
magnitude differences between 0.1-0.4 mag. There are at least two factors that
could contribute to the under-luminosity: (1) Spectral types assigned to low
gravity objects do not necessarily correspond (in temperature or luminosity)
to spectral types assigned for field dwarfs. The low-surface gravity effects pro-
duce weaker alkali lines which in field dwarf classification translates into earlier
spectral types. Low surface gravity objects may be skewed toward earlier types
thereby making them seem ”under-luminous” on an H-R diagram. The same
issue occurs among the metal-poor subdwarfs and the solution is to derive a
new spectra type/T.ss mapping for these outliers (Burgasser et al 2007). (2)
Young objects could be dustier than field-aged dwarfs. Observationally, both
low-surface gravity dwarfs and dusty L dwarfs show near-IR colors that are
redder than normal field objects. They also share similar spectral characteris-
tics (Looper et al 2008, Allers et al 2010). Evolutionary models demonstrate
that the lower gravity and dustier (lower f.4) tracks have redder near-IR colors
than intermediate, high gravity, or larger f.., tracks (see Figure H.12)).

In Figure we isolate the low-surface gravity L dwarfs on a color-
magnitude diagram with the Saumon & Marley (2008) and Burrows et al
(2006) evolutionary tracks overplotted. The L0.0y and L1.08 dwarfs 2MASS
J0223-5815 and 2MASS J0536-1920 fall within the f,.;=1 low gravity track of
Saumon & Marley (2008) and the low gravity solar - super solar metallicity
tracks from Burrows et al (2006). The L5.0y dwarf 2MASS J0355+1133 is red-
ward of all predictions from either model. The L0.03 dwarf 2MASS J2322-3133
falls closest to the high gravity track or nearly 1 mag fainter than predicted for
the lowest gravity track on both models. The L4.0y dwarf 2MASS J2322-3133
has the same problem on the Saumon & Marley (2008) models. Using the
Burrows et al (2006) models, it is redward of all predictions. The L0.0y and
L1.08 dwarfs 2MASS J0032-4405 and 2MASS J0712-6155 are best traced by
the fseq=2 (thinner cloud) model however all three gravity tracks converge on
their position. They are nearly 1.5 magnitudes fainter than the lowest gravity
fseq=1 (thicker cloud) model. The Burrows et al (2006) models show very
little gravity variation in the color space occupied by these dwarfs on the HR
diagram.
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Figure 4.11: Spectral type versus absolute magnitude in the MKO J, H, and K
filters for late-type M through mid-L dwarfs. Unfilled circles are ultracool dwarfs
with parallax measurements gathered from the literature. Blue filled circles and five
point stars are low-surface gravity dwarfs with parallaxes measured in this work.
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Figure 4.12: The Mg vs J-K diagram for L and T dwarfs with the evolutionary
models of Saumon & Marley 2008 (top panel) and Burrows et al (2006-bottom panel)
over-plotted with the seven low-surface gravity L dwarfs in our parallax sample. The
the log g=[4.477,5.000,5.477], fs.q=1,2 parameters of the former are shown as are
the log g=[4.5,5.0,5.5], Metallicity=[0.0,3.0] parameters of the later.
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4.7 Kinematics

Combining the absolute parallax with the relative proper motion gives the
tangential velocity (Vi) of a source (see Table E.2 for v, values of objects
studied in this work). Our full astrometric sample is composed of objects in
the general solar vicinity therefore v, values can be used as a rough indicator
of age. In general, older objects will have had enough time to interact with
objects in the Galactic disk and have their orbits perturbed while younger
objects will maintain a nascent smaller value. The dispersion of a population
is more informative than individual values for determining age characteristics.
The full sample contains low-surface gravity objects and subdwarfs, as well as
normal field L and T dwarfs. Omitting the first two subsets from the general
population and using only objects with v4, uncertainties < 10 km s™!, we
compared the distribution of v, values for L and T dwarfs. The median V,,,
and o044, values for the 60 L dwarfs are 28 km s~! and 19 km s~! respectively.
For the 50 T dwarfs we find slightly larger values of 36 km s~! and 21 km s~*
respectively. These values are consistent with the kinematic results of previous
works (Dahn et al 2002; Vrba et al 2004; Osorio et al 2008). Based on the
significant difference in dispersion between the L and T dwarfs Vrba et al
(2004) concluded from their much smaller sample of UCDs that the L dwarfs
were a kinematically younger population than the T dwarfs. In part, their
conclusion was drawn from the fact that there were no T dwarfs with v,
values < 20 km s™!. In the full sample examined here, we find 15 T dwarfs
with Ve, values < 20 km s™!. Regardless we find a similar significant difference
between the L and T dwarfs indicating a kinematic age difference between the
two populations.

We isolated the low-surface gravity dwarfs and the subdwarfs and compared
their kinematics to the overall sample (note that we have included late-type
M objects in each subset). The former have significantly smaller v, values
and tighter dispersions than the overall population and the latter significantly
larger values. The median vy,, and oy,, values for the 17 low-surface gravity
dwarfs are 11 km s~! and 10 km s~! respectively. For the 4 subdwarfs, the
median vy, and o,, values are 204 km s~! and 114 km s~! respectively. The
considerable difference in values for each subset compared to the overall popu-
lation further confirms expectations that they are younger (low surface gravity
objects) and older (subdwarfs) than the overall ultracool dwarf population.
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4.8 Individual Objects

4.8.1 New low v, objects

As noted in previous works, individual v, values are a poor indicator of
individual ages. However extreme differences in kinematics from the overall
population in combination with spectral or photometric peculiarity can be
informative about an individual object. Within the full astrometric sample we
looked for extreme kinematic outliers (both significantly fast and significantly
slow movers).

We found no new significantly fast movers (v, > 100 km s™') but we
did identify two considerably slow (vi, < 5 km s7!) objects. The T4.5
dwarf 2MASS J08304-0128 and the L.6.5 dwarf 2MASS J171142232 move with
Vian values of 444 km s~! and 443 km s~! respectively. Neither object ex-
hibits low surface gravity features. In fact, in apparent contradiction, 2MASS
J0830+-0128 appears slightly blue for its spectral type (J-K,=-0.0440.12 as
opposed to the mean value of 0.26 for T4 dwarfs) and is identified as a po-
tentially high surface gravity dwarf in Knapp et al (2004) from its H-K color.
2MASS J17114-2232 was originally classified by Kirkpatrick et al (2000) as an
L6.5 dwarf using optical data. Given this spectral type, this dwarf is signifi-
cantly redder than equivalently classified objects (J-K;=2.36+0.20 as opposed
to the mean value of 1.75 for L6 dwarfs). The red outlier quality would suggest
a younger age (see Faherty et al 2009; Schmidt et al 2010); however, Burgasser
et al (2010) examined the near-IR spectrum and derived a later yet poorly con-
strained near-infrared classification of L942. Furthermore, they use composite
spectra and find this object to be a strong candidate for an unresolved binary
(L5.0£0.4 primary T5.54+1.2 secondary A J=0.924+0.30; see Figure [4.3). Ra-
dial velocity measurements for both of these dwarfs would be informative for
investigating the kinematic age using the full space motion.

4.8.2 2MASS J0616-6407

Cushing et al. (2009) reported the discovery of 2MASS J0616-6407 as the
first outer halo L. subdwarf, with a spectral type sdL5 and extreme kinemat-
ics (1.4054:0.008 7 yr=t: V,,q = 454415 km s71). They estimated a distance
of 5749 pc using near-infrared absolute magnitude/spectral type relations
constructed from a small sample of ultracool subdwarfs with parallax mea-
surements. Our astrometry confirms the high proper motion of this source,
and we measure a parallax of 2246 mas (d = 45+13 pc), which is closer but
statistically consistent with the spectrophotometric estimate of Cushing et al.
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From these values we find UVW velocities? of (80+10,-525+34,45+59) km s~
and Vi, = 286+£32 km s~ L.

Using our parallax measurements, we re-examined the orbit of 2MASS J0616-
6407, taking into account the uncertainties in its Galactic position and velocity
vectors. We used the same axisymmetric Galactic potential model as described
in Cushing et al. (2009), consistently primarily of Plummer spheres for the
disk, dark matter halo and bulge, using parameters from Dauphole & Colin
(1995). Orbits were computed over a 1 Gyr period centered on the current
epoch in time steps of 0.1 Myr, using the halo-dominant mass model of Binney
& Tremainel (2008). For each calculation, we randomly varied the input po-
sition and velocity vectors based on the uncertainties in position and velocity
vectors, assuming the errors are gaussian. Figure [4.14] displays the results of
these calculations, showing the distributions of maximum radius and maximum
vertical displacement from the Galactic plane, as well as comparison between
the nominal orbit and those with maximum and minimum kinetic energies
at the current epoch. The latter two plots illustrate how poorly constrained
the orbit of this source is based on current position and velocity measure-
ments; there is nearly a factor of 3 difference in the maximum orbit radius
between these extremes, with a mean value of 204+6 kpc. Due to the large
uncertainty in W, these orbits also vary from completely planar to | Z |,ae =
13 kpc (the mean | Z |0 = 2.42.4 kpc). Nevertheless, the halo kinematics
of 2MASS J0616-6407 is unambiguous; its orbit is completely retrograde to
the rotation of the Galactic disk. However, more precise distance and radial
velocity measurements are needed to constrain the shape of this orbit .

4.8.3 Over and Under-Luminous Sources

As noted in section M.4.T] four sources were disregarded in calculating the
median M ;g i values for spectral type bins because they were particularly over
or under-luminous compared to the rest of the field.

SDSS J1110+0116, originally identified in Geballe et al (2002) and classified
as a T5.5 by Burgasser et al (2006), is ~ 1 magnitude over-luminous in M g x
compared to the median value for its spectral bin. Knapp et al (2004) examined
this source in detail and concluded that the depth of the KI lines implied a low-
surface gravity. Comparing to the evolutionary models of Marley et al (2002)
they predicted that this source had an age of 1-3Gyr and a mass ranging from
10-15M jypiter- [Stephens et al. (2009) also examined this object in detail and

"We follow the convention that the U is positive toward the Galactic center (1=0, b=0)
and velocities are reported with respect to the Local Standard of Rest (LSR) using the solar
motion from [Johnson & Soderbloml (T987)
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Figure 4.13: The near-IR spectrum of 2MASS J1754+1649 using SpeX. T3 - T7
standards are over-plotted in red. We find a best fit of T5.5.
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Figure 4.14: The upper panels show the distributions of maximum radius (upper
left) and maximum vertical (upper right) displacement from the Galactic plane.
The lower panels show a comparison between the nominal orbit (blue) and those
with maximum (black—lower left panel) and minimum (red—lower right panel) kinetic
energies at the current epoch. The latter two plots illustrate how poorly constrained
the orbit of this source is based on current position and velocity measurements; there
is nearly a factor of 3 difference in the maximum orbit radius between these extremes,
with a mean value of 2046 kpc.
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concluded an even younger age of 0.1 - 1 Gyr and a mass of 7 - 25 M jypiter-
As discussed in Section above, the low-surface gravity L dwarfs appear
under-luminous for their spectral type, contrary to model predictions that they
should be noticeably over-luminous. The overluminosity of SDSS J1110+0116
could be attributed to an unresolved binary or to its youth.

2MASS J1511+40607, originally classified as a T0£2 in the near-IR, is more
than 1 magnitude over-luminous in My g compared to the other unresolved
TO with a parallax measurement (2MASS J2047-0718). It is also ~ 1 magni-
tude over-luminous in My x compared to the median value for T1 dwarfs.
The near-IR spectrum of 2MASS J151140607 was characterized as peculiar
compared to standard early T dwarfs as it had strong CH,; absorption at
1.1 and 1.6 pm but very weak absorption at 2.2um. Burgasser et al (2010)
re-examined the spectrum using composite template fitting and found that
an L5.5£0.8 primary and T540.4 secondary composite spectrum best-fit the
source and suggested this as a strong candidate unresolved binary. We show
the spectral components in Figure and find that the overluminosity sup-
ports the binary hypothesis.

Three other sources in this parallax work were identified as weak binary
candidates using the composite template method in Burgasser et al (2010).
2MASS J0949-1545 was identified as a likely T1.0+0.2 primary and T2.040.2
secondary with a AJ=-0.12+0.10. SDSS J2052-1609 was identified as a likely
L7.5+0.6 primary and T2.040.2 secondary with a AJ=0.04+0.18. If true
binaries, both would have smaller J flux reversals than other early T dwarf
binaries. SDSS J1207+40244 was identified as a likely L.6.540.7 primary and
T2.540.5 secondary with a AJ=0.4840.28.

Two sources appeared under-luminous compared to similar spectral type
objects. 2MASS J2043-1551 is classified as an L9 in the near-IR by Chiu et al
(2006). Only 3 L9 dwarfs have parallaxes although all have L8 optical spectral
types. Given that 2MASS J2043-1551 does not have any optical spectral type
for comparison, it is difficult to quantify if this source is truly under-luminous
or if it anchors the tail of the L dwarf sequence. There are no reported indi-
cations of spectral peculiarities connected to 2MASS J2043-1551.

2MASS J175441649 stands out as being a particularly under-luminous and
red T dwarf. It was originally discovered as part of a search of the 2MASS
survey for bright, nearby T dwarfs (Burgasser et al. 2003; Tinney et al. 2004;
Burgasser et al., in prep.). A low-resolution (A/AX & 120) near-infrared
spectrum of it was obtained with the IRTF SpeX spectrograph (Rayner et al.
2003) on 2006 June 1 (UT). Data were acquired and reduced (using SpeXtool;
Vacca et al. 2003; Cushing et al. 2004) as described in Burgasser et al. (2004
- AJ, 127, 2856). Figure {13l compares this spectrum to a set of T dwarf
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standards defined in Burgasser et al. (2006). The strengths of the various
H,0O and CH4 bands in the 1-2.5 pum region are most closely matched with
the T5 spectral standard. From the spectral indices defined in Burgasser et
al. (2006), we infer a numeric spectral type of T5.5. Comparison to a broader
sample of spectral templates from the SpeX Prism Spectral Libraries® confirms
this classification. 2MASS J175441649 is an almost identical match to the
T5.5 dwarf 2MASS J1828-4849, for which we infer M; = 16.8840.2 from our
parallax measurement, a full 2 magnitudes fainter at J. 2MASS J1754+1649
is also considerably redder than its counterparts. With J-K = -0.16£0.05,
it is ~0.2 mag redder than 2MASS J1828-4849 and ~1 mag redder than T
dwarfs with comparable My magnitudes. It is in fact quite isolated in the
near-infrared color magnitude diagram (Figure 8), lying along the fsq = 2
track from Saumon & Marley (2008). As such, the unusual presence of clouds
may explain the unexpected faintness and redness of 2MASS J1754+1649,
even though its near-infrared spectrum shows no obvious peculiarity.

4.9 Conclusions

We have measured 84 trigonometric parallaxes for late-type M, L and T
dwarfs in the local solar neighborhood. The target list consisted of 19 M
dwarfs, 37 L dwarfs, and 28 T dwarfs. Nine calibrator stars were included in
the sample to verify the reliability of our pipeline. The focus of this project
was on late-type M and L dwarfs including low surface gravity, L-T transition
objects, late-type T dwarfs within 20 pc of the sun, and nearby subdwarfs.
The 65 new L and T dwarf parallaxes significantly increases the number of
brown dwarfs with accurate distance measurements.

We combined our sample with literature measurements for a brown dwarf
astrometric catalog containing 146 objects. The loci for L dwarfs is tighter at
M,k than the T dwarf sequence. Unresolved binarity or significant variation
in the age, metallicity, and/or atmospheric properties of the T dwarfs com-
pared to the L dwarfs could account for the difference in spreads. We used the
full sample to re-define color-magnitude and spectrophotometric diagrams in
JHK as well as IRAC ([3.6], [4.5], [5.8], and [8.0]) bands. Scatter is smallest
in the TRAC [4.5] band although a smaller astrometric sample is available in
the mid-IR.

The brightening of early T dwarfs is confirmed with a significantly larger
scatter than previously measured. It is most apparent in J where there is a 1
mag difference between T1 and T4 dwarfs. There is also a 0.8 mag brightening

8http://www.browndwarfs.org/spexprism
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in H and a plateau in K for the L/T transition objects. Significant scatter is
detected among the latest type T dwarf spectral bins although when broken
into half spectral bins the scatter is largely dispersed.

We investigated the color-magnitude diagrams for brown dwarfs and found
that they can be categorized as (1) generally monotonic, (2) demonstrating a
color reversal, or (3) as two sequences (the L and T) offset from one another
by the transition objects that curve back on themselves. Falling into the first
category, the My versus K - [4.5] diagram is the most efficient at distinguishing
early and mid L and T dwarfs; however there is significant scatter among mid T
dwarfs. The latter two effects are best explained by L dwarf reddening caused
by condensate cloud opacity that affects the near-IR significantly more than
the mid-IR. Colors reverse as clouds clear and CH, as well as H,O absorption
become prominent for cooler temperatures. In the third case, significant flux is
shifted to longer wavelengths causing objects past the L/T transition to once
again redden.

We compared the Mg vs. J-K data for the full astrometric catalog to the
evolutionary models of Saumon & Marley (2008) and Burrows et al (2006).
The f,.q=1,2 parameters best fit the L dwarf sequence and f;.4=4 (correspond-
ing to a very thin cloud layer) best fit the late-type T dwarf sequence using the
Saumon & Marley (2008) models. The cloud model with varying gravity and
metallicity reproduce the L dwarfs and the clear model with similar variations
fit the T dwarfs using the Burrows et al (2006) models. However comparisons
to empirical data show significant red or potentially ”ultra-cloudy” L dwarf
outliers. Similarly there is significant scatter seen in the latest type T dwarfs
that is unaccounted for in the clear and f,.;=4 models indicating that conden-
sate clouds may play a role in the photospheres of these objects. The four L
subdwarfs are well fit by the Burrows et al (2006) clear model in stark contrast
to dusty field dwarfs. This supports evidence that cloudiness is correlated with
metallicity and/or age.

No single f,.4 parameter nor gravity or metallicity track in the evolutionary
models can account for the L/T transition objects. We constructed a hybrid
model between the f,.;=2 model which fits the latest type L’s and f,.q=4 which
fits the latest T dwarfs. Allowing the cloud layer to decrease in thickness by
10% (creating patchy clouds) for model temperatures corresponding to a range
of £150 K (dependent upon log(g)) we reproduce NIR color-magnitude trends
for the L-T transition objects.

The low-surface gravity objects with parallax measurements in this work
are not explained by varying gravity in the evolutionary models. Among the
17 objects investigated, thirty percent appear at least 20 (and as much as
5.70) under-luminous for their spectral bin or 10-50% closer than would be
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predicted by standard spectrophotometric relations. Possible explanations for
their underluminosity are that (1) low-surface gravity produces weaker alkali
lines which in field dwarf classification translates into earlier spectral types,
thereby making them seem under-luminous on an H-R diagram. (2) Young
objects could be dustier than field-aged objects.

Investigations of the kinematics of the normal (no low-gravity or subdwarf)
L and T dwarf v, dispersion shows differences between the two populations.
While contrary to previous studies there do appear to be slow moving (v,
< 20 km s71) T dwarfs, their larger dispersion compared to L dwarfs indi-
cates that there is a kinematics age difference between the two consistent with
populations synthesis models (e.g. Burgasser et al. 2004; Allen et al. 2005).
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Chapter 5

Conclusion

5.1 Chapter Conclusions

Observational studies of brown dwarfs are only 15 years old. This was
part of the appeal when I chose my research topic four years ago. Within this
thesis I have made basic astrometric measurements and used them to study
population characteristics. After an extensive observational campaign in both
the Northern and Southern hemispheres to re-image known L and T dwarfs, I
created a catalog of proper motions, tangential velocities (vi4,), and distances
(either from spectrophotometric relations or parallax when available) for 90%
of the known field brown dwarf population. Average kinematic and photomet-
ric values were updated for spectral bins using the large sample. I estimated
rough ages from the dispersion in v, and the population was concluded to
have a similar age to the predictions from population synthesis models. Pho-
tometric outliers were found to have significantly different kinematics than the
"normal” population. I concluded that objects that were red or blue for their
spectral type were statistically younger or older (respectively) than normal
field aged dwarfs.

Using the large sample of proper motions I conducted a cross-catalog search
for common proper motion companions in LSPM-North and Hipparcos. De-
tailed photometric and spectroscopic follow-ups were obtained for the nine
high probability wide companion candidates. Age ranges were deduced for
each system with varying degrees of precision. Some age discrepancies, based
on the activity of the brown dwarf versus the main sequence star companion,
suggest possible shortcomings in our understanding of the age diagnostics of
stars and UCDs. I examined the binding energy for each of the new systems
and compared it to the (albeit small) collection of known wide UCD multiples.
The new multiples were among the lowest binding energy systems investigated
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to date. The frequency of tight resolved binaries was found to be higher among
widely separated systems (a result confirming previous studies). The ratio of
triples to binaries and quadruples to binaries was higher for the collection of
known wide UCD companions than compared to the field population. This
hinted at the need for a third or fourth component in such loosely bound sys-
tems to maintain gravitational stability or to facilitate the exchange of angular
momentum.

The largest previous contribution of parallax measurements for the brown
dwarf population came over a 2 year period from 2002-2004 when three studies
reported measurements for 58 L and T dwarfs. Until this thesis those mea-
surements defined our understanding of the luminosity of brown dwarfs and
sculpted the HR diagram that has been used by atmospheric and evolutionary
models for just under a decade. With an increasingly large number of brown
dwarfs reported including subsolar metallicity objects, low-surface gravity ob-
jects, low-temperature T dwarfs, red and blue photometric outliers, and flux
reversal binaries it seemed appropriate to begin another large parallax study
of the population. We conducted an observationally intensive campaign to
measure parallaxes for 84 ultra cool dwarfs. Combining all objects with mea-
sured parallaxes resulted in a full sample of 146 UCDs. The J-band bump was
quantified to be as much as 1 magnitude between T1 and T4 dwarfs but also
significant at H (0.8 mag). Comparisons were made with evolutionary models
and the observational color-magnitude diagram. Potentially "ultra-cloudy” L
dwarfs were identified as were a collection of late-type T dwarfs which might
have condensate clouds in their photospheres. No single cloud or metallicity
parameter model could account for all of the L/T transition objects. A hybrid
model allowing clouds to quickly dissipate in 10% increments reproduced the
majority of the L/T transition portion of the NIR color-magnitude diagram.
Low surface gravity objects were not fit by any model and the majority were
redward and underluminous of predictions. Investigations of the kinematics of
the normal (no low-gravity or subdwarf ) L and T dwarf vy,,, dispersion shows
significant differences between the two populations. Contrary to previous stud-
ies there do appear to be slow moving (v, < 20 km s~ ) T dwarfs, but their
larger dispersion compared to L dwarfs indicates that there is a kinematics
age difference between the two.

5.2 Thesis Follow-Ups

The large body of observational astrometric work conducted in this thesis
is primarily complete. Below I detail the tasks that remain with the data in
hand and with follow-up that will be conducted over the next few years.
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5.2.1 Completion of Brown Dwarf Parallaxes

A number of objects had parallax observations started over the course of
this thesis but due to inclement weather or too few astrometric frames, I was
not able to converge upon a parallax solution. The original target list that I
started with contained 36 L/T transition (L6 through T5) objects and 48 low
surface gravity objects visible in the South. Twenty of the low-surface gravity
dwarfs were in fields too sparse to target with ANDICAM and they were too
bright to become a high priority target with ISPI. Fifteen of the L /T transition
objects had parallax frames started but at the time of this publication there
are not enough epochs to converge upon a solution or to report an uncertainty
< 10%.

To refine parallax uncertainties, obtain enough frames for parallax con-
vergence, and/or to target low surface gravity objects in sparse fields, I plan
on applying for more NOAO ISPI time. ISPI was recently decommissioned
from the 4.0m Blanco telescope to make room for the wide field NIR imager
NEWFIRM. However, if one can justify why ISPI is the only instrument that
can be used for a project then it can be requested.

Looking into the future there are a number of parallax programs I foresee
or am already pursing. The parallax targets pursued in my thesis are in the
South but I would like to get a Northern sample completed as well. I have
already begun a project with collaborators Kelle Cruz and Sebastien Lepine
targeting low surface gravity L dwarfs using the MDM telescope and optical
imager at Kitt Peak. Parallax observations were begun at various times over
the past 12 months and I will pursue them over the next few years.

ANDICAM has proven to be a stable optical astrometric instrument and
the queue mode is optimal for long term multi-epoch imaging. I have been
collaborating with graduate student Dagny Looper at the University of Hawaii
whose thesis involved identifying new low-mass members of the TW Hydrae
association. We would like to use ANDICAM in the future to measure paral-
laxes for the brighter targets in her thesis to confirm membership.

5.2.2 Pursuing New Binaries

In section 8 of chapter 4, I reported that SDSS J111040116 and 2MASS
J15114+0607 appear overluminous by more than 1 magnitude in M ;g when
compared to similar spectral type dwarfs. 2MASS J1511+0607 is a candidate
tight binary in Burgasser et al,| (2010al) and follow-up observations with Adap-
tive Optics (AO) at Keck by collaborators has verified a second closely sepa-
rated component in this system. Three other sources with parallaxes reported

in this thesis, 2MASS J0949-1545, SDSS 2052-1609, and SDSS 1207+0244,
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are suspected binaries based on composite template fitting (Burgasser et al.
2010al). [Stumpf et al| (2010) recently published AO observations resolving
SDSS 2052-1609 into two near-equal components. Further high resolution
imaging using either AO or Hubble Space Telescope (HST) observations are
necessary for investigating the binary nature of the remaining systems. If
true binaries like 2MASS J15114+0607 and SDSS 2052-1609, all of these low-
mass systems would have two L/T transition components. Combined with a
well constrained distance would make these systems important tests for at-
mospheric and evolutionary models. A current campaign is underway by a
number of collaborators using the Keck LGO system to follow-up on all of the
binary candidates listed within this thesis.

5.2.3 Radial Velocities

Radial velocities are the third kinematic parameter which is missing from
our population analysis. Combining the new proper motion and distance mea-
surements reported in this work with radial velocities, we would be able to
search for spatial and kinematic association with moving groups as well as
examine kinematic correlations with physical properties. While we did a great
deal of kinematic analysis without radial velocity measurements, they are re-
quired to derive U,V,W values, the true measure of an object’s Galactic space
motion. Precise U,V,W velocities are also required to confirm membership in
moving groups. As reported in|[Cruz et all (2009)), a number of the low surface
gravity dwarfs with parallaxes reported in this thesis are candidate members
of AB Doradus, 8 Pictoris, Tucana Horlogium, and other young associations.

Current collaborative efforts are underway or observationally complete for
this portion of the project. Radial velocity data has been obtained in the
Northern hemisphere with Phoenix on Gemini, NIRSPEC on Keck, TripleSpec
on ARC and in the Southern hemisphere with Magk and FIRE on Magellan.

5.3 Future of Brown Dwarf Discovery and As-
trometry Surveys

The Two Micron All Sky Survey (2MASS), the DEep Near Infrared Sur-
vey of the Southern Sky (DENIS), the Sloan Digital Sky Survey (SDSS), the
Canada France Hawaii Telescope Legacy Survey (CFHTLS), and the UKIRT
Infrared Deep Sky Survey (UKIDSS) were instrumental over the past 15 years
in identifying brown dwarfs. While candidates are still being collected from
each of these catalogs, astronomers are looking ahead to the next major mis-
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sions that will identify the lowest temperature brown dwarfs and/or measure
large numbers of parallaxes.

e Wide-field Infrared Survey Explorer (WISE): December of 2009
saw the launch of WISE which will provide an all-sky survey from 3.4
to 22 pm. It will image the sky in the [3.4], [4.6], [12], and [22] pm
bands; optimal for searches for the coldest brown dwarfs. 2MASS and
SDSS were extremely successful at detecting large numbers of L and
T dwarfs hotter than 750K. The UKIDDS survey produced a handful
of colder candidates but WISE, operating at longer wavelengths where
the coldest objects emit the majority of their light, is projected to find
hundreds of low-temperature objects (see Figure [E.I). Depending on
the space density, WISE should detect brown dwarfs with temperatures
of ~ 450K out to a distance of 23 pc; 300K objects out to 6 pc; and
150K objects out to 3 pdl. As analysis continues over the next few years,
WISE should generate a new large and diverse catalog of substellar mass
objects (see first results published in [Mainzer et al.l2010).

Moreover, since WISE is an all-sky survey, it will provide mid-IR mag-
nitudes for the known collection of L and T dwarfs allowing population
studies at longer wavelengths. It will also lead to the first all-sky near-
IR to mid-IR proper motion catalog. By imaging the entire sky ~ 9-12
years after 2MASS, WISE will provide a significant baseline for measur-
ing proper motions down to ~50 mas yr~—!. Using reduced near-IR or
mid-IR proper motion diagrams we will be able to select brown dwarf
candidates without the color biases that have been used throughout the

past decade.

e Panoramic Survey Telescope & Rapid Response System (Pan-
STARRS): Pan-STARRS is a wide field imaging facility being devel-
oped at the University of Hawaii that will observe the entire available
sky several times each month. It will be composed of four individual
optical systems (one of which obtained first light in 2006), each with a
1.8m mirror observing the same region of the sky simultaneously. The
field of view of each detector will be three degrees with a 0.3 ”/pixel
platescale. Exposure times will vary between 30 and 60 seconds in the
grizy bands and the expected limiting magnitude is 24.

The main goal of Pan-STARRS is to catalog and monitor near-Earth
or potentially hazardous asteroids. However there is also a great deal
of brown dwarf science that will be possible. Over the course of a few

see the WISE science objects as listed on http://wise.ssl.berkeley.edu/sciencebrowndwarfs.html
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Figure 5.1: This figurd? shows the 5 sigma point source sensitivities of WISE and
previous or planned all-sky surveys. The planned wavelength range for the JWST is
indicated. The dot size shows the planned sky coverage. GALEX is a small Explorer
(SMEX) which was launched by NASA in 2003, SDSS is the ground-based Sloan
Digital Sky Survey, DPOSS is the groundbased Digital Palomar Observatory Sky
Survey, ASTRO-F is the Japanese satellite, renamed Akari after launch on 22 Feb
2006, and Planck is the European CMB mission to be launched in 2009 which also
includes a good sub-mm survey capability.
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years, the continuous monitoring of the sky by Pan-STARRS will allow
parallax measurements for an estimated ~4 x 10° stars within 100 pc
(Dupuy & Liu 2009). Using astrometry combined with the iz and y
filters, numerous brown dwarf discoveries are expected. Pan-STARRS
should produce a volume-limited sample of T dwarfs out to 50 pc, and
an even larger catalog of T dwarfs based on izy-band color selection
(Liu_et all2007). The results will be an order of magnitude gain over
2MASS and SDSS surveys and will include a substantial number of cold
brown dwarfs (see Figure [.2). The depth of Pan-STARRS will allow
parallax measurements for all known brown dwarfs in the ~ 75% of the
sky covered by this survey as well as a measurement for any new objects
discovered.

e Large Synoptic Survey Telescope (LSST): LSST is a wide field
imaging facility planned on being built in central Chile that is likely to
get first light in this decaddd. It will be composed of an 8.4m telescope
with a 1.6x3.0 meter camera that covers a 3.5 degree field of view with
a 0.2 ”/pixel platescale. The filter bandpasses currently slated include
grizy and exposure times of 15 seconds should reach depths of r~24.5-
26.5. The design of LSST will allow it to scan the available Southern
sky once every 1-2 nights.

There are numerous science objectives for LSST. Among the main topics
will be studying the nature of dark energy, monitoring and discovering
new solar system bodies (e.g. Kuiper belt objects-KBO’s, near-earth
objects—NEQ’s), exploring the transient optical sky, and studying Galac-
tic structure. LSST is an optimal survey for studying stellar populations.
Accurate parallaxes will be reported for all stellar types within 10pc and
most stellar types within 100pc. As with Pan-STARRS, brown dwarfs
will be discovered using ¢zy-band color selection. Parallaxes can be mea-
sured for all new sources discovered and known objects in the ~75% of
the sky LSST will monitor. Between these two surveys, the Northern and
Southern hemisphere will be covered offering an unprecedented sample
of new brown dwarf candidates and astrometric information for all of
them.

5.4 Summary

This dissertation is a body of work aimed at measuring the most basic
observational features of the brown dwarf population. At the very core, my

3The 2010 decadel survey ranked LSST the highest priority ground-based project
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Figure 5.2: A comparison of the brown dwarf discovery capabilities of Pan-
STARRS, 2MASS, and SDSS based on a Monte Carlo simulation of the solar neigh-
borhood from [Liu et al. (2007). The simulation assumes a constant star formation
rate and an initial mass function of dN/dM ~ M~!, normalized to the local density
of 0.1 - 1.0 Mg stars. The Pan-STARRS advantage is substantial. (Note that the
gain of Pan-STARRS relative to previous surveys is independent of the assumed
IMF slope.) Furthermore, while 2MASS and SDSS provide only color information,
Pan-STARRS will also measure parallaxes for many of the brown dwarfs that it
identies.
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thesis was about conducting simple measurements and using them to probe
complex characteristics of a class of objects. Astrometric measurements can be
linked to some of the most important and historical breakthroughs in the field
and the need for precise measurements persists. The number of objects studied
in this thesis is a large addition to the astrometric sample that was available
in the past decade and will inform evolutionary and astrometric models over
the coming years. The future astrometric missions will build upon this sample
but the expected numbers will far exceed anything possible from a single user
observing thesis. I look forward to the future of brown dwarf science which will
be greatly advanced by the new astrometric surveys discussed in this chapter.
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