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Abstract of Dissertation 

Calculation of Virial Coefficients and Their Uses 

by 

Nicholas Jerome Getter 

Doctor of Philosophy 

In 

Chemistry 

Stony Brook University 

2010 

This work is centers on the classical statistical derivation of 

thermodynamic properties of a system from its pair potential through the 

calculation of virial coefficients and also develops a useful method for modeling 

systems with the square-well potential. It is organized into 5 chapters.  

Chapter 1 lays the statistical mechanics background for the use of virial 

coefficients and the square-well model. It is intended for the reader unfamiliar 

with these concepts and with the exception of a derivation of C(T) for the square-

well potential using overlapping spheres, does not contain any novel discoveries. 

Chapter 2 introduces a Monte Carlo hit-and-miss technique for calculating 

virial coefficients for the square-well named ratio integration. Unlike traditional 

Monte Carlo hit-and-miss integration, only the percentage of hits are measured 
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and not the volume of the integration. The integration is then scaled by the 

literature values for virial coefficients of the hard sphere model. This has a 

significant increase in computation speed. 

In chapter 3 the virial coefficients calculated in chapter 2 are used to 

produce phase diagrams using the Maxwell construction. A technique is 

developed to fit the square-well parameters to second virial coefficient data. The 

method is examined for argon and then generalized for mixtures. 

Mayer sampling is a technique for calculating virial coefficients at specific 

temperatures for any pair potential. In chapter 4 it is used to examine two models 

for the C60 fullerene, the widespread Girifalco potential and its suggested 

replacement, the Smith-Thakkar potential. These are both also modeled by the 

square-well potential using the techniques developed in chapters 2 and 3. 

Chapter 5 presents possible future extensions and improvements of this 

work. 
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Chapter 1 
Statistical-Mechanical Basis 

 

1.1 INTRODUCTION 

The study of thermodynamics has a deep and long history. Scientists in the 

17th century began to explore the relationships energy and heat had with 

pressure, temperature, and volume.  During the 18th century the concept of 

entropy was developed. Even before the concept of the atom was accepted or 

well understood scientists had a rich understanding of the macroscopic effects 

work and heat had on a system. Amazingly, early thermodynamic scientists only 

developed these relationships through experimental observations, even though 

they could never explain the phenomena they observed. 

Naturally, with the development of an atomic theory came the desire to 

describe observable, macroscopic properties through the behavior of atoms. A 

statistical treatment of these behaviors in order to explain the thermodynamic 

phenomena is the goal of statistical thermodynamics.  

Boltzmann is often credited as the father of statistical mechanics because of 

his work in the late 19th century. The Boltzmann distribution law describes the 

probability of a state occurring as a function of the energy of that state. This 

allowed Gibbs to develop the statistical ensemble. 
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Because of the relatively recent development of statistical mechanics, major 

advances continued well into the 20th century in a way that could not have been 

possible in areas of thermodynamics and classical macroscopic mechanics. 

 

1.2 ENSEMBLES 
The Boltzmann distribution law describes the probability of finding a system 

in a state as proportional to a function of absolute temperature (T) and the 

energy of the state (ε): 

      (1.2.1) 

where k is the Boltzmann constant. 

The normalized probability of finding the system in some state is given by the 

value of expression (1.2.1) for that state divided by the sum of the values of 

expression (1.2.1) for all possible states the system can be in. With the 

probabilities of each state known, the thermodynamics are calculable, as we 

discuss in subsequent sections. 

The challenge then is to find the sum of (1.2.1) for all states. This is the 

concept behind the statistical ensemble. The ensemble can be visualized as an 

average over either an infinite number of systems or one system over an infinite 

length of time. 

One can imagine a system with a definite volume, and then imagines that the 

system is in contact with a thermal reservoir capable of exchanging heat to 

ensure a constant temperature. The system is also connected to a reservoir 

containing particles at the same chemical potential as those in the system, which 

can be exchanged freely with the system. Now one mentally allows the system to 

grow to infinite volume. Then the system is partitioned into individual 

microsystems, all with the same volume. Each microsystem has the same 

volume and temperature, and is composed of particles with the same chemical 

potential. Each microsystem also has some pressure and number density that 

describe the microstate of the microsystem. 

This imaginary system is a grand canonical ensemble. The probability of 

finding another system with the same volume, temperature and chemical 
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potential as our microsystems in one of the microstates is equal to the number of 

microsystems with that microstate divided by the total number of microsystems. 

An equally valid method for calculating the probability of finding a system in a 

state is to again imagine a system of definite volume free to exchange particles 

and heat with the surroundings in order to ensure a constant temperature and 

chemical potential. If the system is allowed to exist on an infinite timescale, it will 

sample all possible states and the probability of finding the system in any state is 

the length of time is spends in that state divided by the total time the system 

exists. This time average is assumed to be equal to the ensemble average, 

although rigorous proof of this is still lacking. 

Just as the grand canonical ensemble is described by its volume, 

temperature and chemical potential, a canonical ensemble is described by its 

volume, number of particles and temperature and the isothermal-isobaric 

ensemble is described by its pressure, number of particles and temperature, 

while the microcanonical ensemble is described by its volume, number of 

particles and internal energy. A given thermodynamic system is typically 

characterized most conveniently by one or another of these ensembles. 

 

1.3 THE PARTITION FUNCTION 
The probability of finding the system in any state is proportional to (1.2.1). In 

order to calculate that probability, we need to normalize (1.2.1) by dividing by the 

sum of the values of (1.2.1) for all possible states. The sum of expression (1.2.1) 

for all the microstates available to the system is known as the partition function:  

                  (1.3.1) 

The evaluation of equation (1.3.1) begins with the Hamiltonian of the system: 

         (1.3.2) 

The Hamiltonian (H) describes the total energy of the system and is a sum of the 

kinetic (K), interparticle (V) and external (φ) energies. The energy of the system 

depends on the number of particles (N), their positions (r), and their momentums 

(p), where bold variables represent vectors. The value for energy (ε) in (1.2.1) 
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and (1.3.1) is the Hamiltonian (1.3.2) with the contribution from the chemical 

potential subtracted. This term must be subtracted because as particles are 

added to the system they are taken from the surroundings, not created. If the 

chemical potential term were left in a state with an infinite number of particles, it 

would be found with a probability of 1.  

With this expression for energy the probability of finding the system in 

each state becomes: 

       (1.3.3) 

Where f0 is the ensemble probability density, β = 1/kT, and Ξ is now: 

        (1.3.4) 

The h3N ensures that the partition function is dimensionless (where h is 

Planck’s constant), and the N! corrects for overcounting. The contribution from 

the chemical potential does not depend on the momentums or positions, and can 

be pulled out of the integrals: 

   (1.3.5) 

The kinetic portion of the Hamiltonian can be expressed as a function of 

temperature (rather than particles’ momenta). Introducing the activity: 

            (1.3.6) 

where: 

     (1.3.7) 

is the thermal de Broglie wavelength, and m is the mass of a particle; the 

partition function can then be simplified to: 

      (1.3.8) 
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where VN is the potential energy of the system due to interparticle interactions 

from (1.3.2) and no external forces are assumed ( φ(rN) = 0 ).  

Knowing the probability of each of the states allows us to calculate 

expected values of observable quantities. If we are interested in a quantity, B, 

then the expected value would be an average over the ensemble, weighted by 

each states probability: 

       (1.3.9) 

where the angled brackets indicate an ensemble average. 

 
1.4 THE VIRIAL EXPANSION 

The virial expansion is a direct outgrowth of the partition function. Here we 

shall make the simplifying assumption that the energy due to interparticle 

interactions is simply the sum of each pair of particles interactions with each 

other (this is an almost, but not quite, exact characteristic of many liquids and 

gases of interest): 

             (1.4.1) 

Where ui,j(r) is the pair potential between particles i and j, and r is the vector 

between them. Then (1.3.8) becomes: 

            (1.4.2) 

For simplification we introduce the e-bond: 

       (1.4.3) 

and (1.4.2) becomes: 

 
(1.4.4) 
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Because the grand canonical partition function is the sum of many 

multidimensional integrals, many other quantities that are derived from the 

partition function also contain these integrals. As a result, it becomes convenient 

to express these integrals through diagrammatic representations. For example, 

the last term on the right hand side of (1.4.4) can be represented as: 

           (1.4.5) 

 

In this representation each black circle represents a particle’s position to 

be integrated over and the value of z for that particle. Each line represents an e-

bond between the particles it connects. Implicit within the definition of the 

diagram is the factor (1/3!). The value of the diagram is the value of the integral, 

over all possible positions of the black circles, of the product of each of the lines 

and circles, divided by the number of ways to label the molecules (without 

changing the connectivity). Equation (1.4.4) can then be represented as: 

           (1.4.6) 

A typical pair potential tends to zero as distance is increased, and as a 

result the e-bond tends to 1: 

 
Figure 1.1 – The pair potential (u) and the corresponding e-bond of the Lennard-Jones potential 
graphed against interparticle distance (r). 
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 This implies that the contribution from the Nth integral would be on the 

order of VN, but it would be convenient if the integrands tended to zero as the 

distance was increased. We therefore introduce the f-bond: 

          (1.4.7) 

The f-bond tends to zero as distance is increased. Now we need to 

express (1.4.4) with f-bonds. This can be done by replacing each integral of N 

fully connected e-bonds with each unique diagram of N f-bonds. For example: 

  (1.4.8) 

Note that the term on the left hand side (LHS) and the first and last terms on the 

right hand side (RHS) can each be labeled 3! ways, but the other 2 terms on the 

RHS can only be labeled 2 ways (without changing the connectivity). So the RHS 

is: 

 
(1.4.9) 

or: 

 
(1.4.10) 

Looking at only the integrands: 

    
(1.4.11) 

 
(1.4.12) 

 

 

 
(1.4.13) 
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 Because the labels are arbitrary, so that all points are treated as identical, 

the integral over e1,2 = e2,3 = e1,3 and likewise e1,2e1,3 = e1,2e2,3 = e2,3e1,3. So 

(1.4.13) simplifies to: 

            (1.4.14) 

matching the integrand of LHS in (1.18). 

 With the e-bonds replaced by f-bonds the expression for the grand 

canonical partition function is now: 

 
(1.4.15) 

with the value of each black circle z, and the value of each black line the f-bond 

between the particles it connects. From this expression for the grand canonical 

partition function it is possible to derive expressions for many important 

thermodynamic quantities in the form of similar integrals; such as the excess 

chemical potential. The excess chemical potential (µex) is the value the chemical 

potential (µ) is in excess over the chemical potential of an ideal gas (µid): 

(1.4.16) 

here the lines are still f-bonds, but the circles represent the density (ρ). The 

inverse volume term at the beginning of the RHS can be excluded by holding the 

position of the first particle fixed and integrating over all possible positions of the 

other particles. 

(1.4.17) 

The white circles represent a particle with fixed position and still have the value 

of the number density (ρ). Note that there are 2 choices for the particle to be 

fixed in the fourth integral in (1.4.16) (a particle with 2 bonds or a particle with 3 

bonds), so the integral must be performed twice, but the fourth and fifth integral 
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in (1.4.17) will have the same value so the integral can be performed once and 

doubled. Expressed in the conventional format: 

          (1.4.18) 

The coefficients βi represent the sum of all integrals in (1.4.17) with i+1 particles. 

The virial expansion can be derived from (1.4.18). First we need expressions for 

the chemical potential and pressure of the ideal gas: 

     (1.4.19) 

           (1.4.20) 

The path from chemical potential to pressure follows from: 

          (1.4.21) 

From (1.4.19) and (1.4.18): 

           (1.4.22) 

making β times the RHS of (1.4.21) : 

(1.4.23) 

Integrating with respect to density, we obtain an expression for βP: 

    (1.4.24) 

or: 

    (1.4.25) 

 Perhaps the most important aspect of (1.4.25) is that the only assumption 

made in its derivation is that the pair potential is pairwise additive (1.4.1), which, 

as noted earlier, is typically a very good approximation, thus it is nearly 

ubiquitous in integral-equation theory. 
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Even the most successful predictions of real systems usually have many 

assumptions or approximations in their derivation. For this reason, equation 

(1.4.25) has been a mainstay of statistical thermodynamics. It is always possible 

to increase the accuracy of a theory by calculating more coefficients (although 

this comes with increasing difficulty). It has been extensively studied, and it can 

be used as a measuring stick for other approximations. For example, other other 

approximations often give quantitatively correct phase diagram information, but 

fail to accurately calculate virial coefficients. 

 

1.5 PAIR POTENTIAL 
 The primary difference between real systems and ideal gases is the 

interactions between the molecules. The interaction between two individual 

molecules can be described as a function of the distance between them and their 

orientation by a pair potential. Real particles have a strong repulsive interaction 

at short distances, a weaker attractive interaction at intermediate distances, and 

virtually no interaction at great distances. True pair potentials can be described 

by complex formulas, which may not be appropriate when performing statistical 

calculations for systems with a large number of particles. 

 

1.6 HARD SPHERE AND SQUARE-WELL MODELS 
It is often useful to make an approximation to the pair potential when 

studying the thermodynamics of a large system. Arguably the simplest and most 

studied model for a pair potential is the hard sphere (HS) model. In a HS model 

u(r) is independent of orientation (u(r)=u(r)). Inside the hard sphere diameter (σ) 

u(r) is infinitely repulsive and outside it is zero. 
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Figure 1.2 – The hard sphere pair potential graphed against interparticle distance. 

The simple form of the hard sphere model makes it the most studied and 

well-understood pair potential in statistical thermodynamics. However, the most 

notable feature missing from this model is the attractive portion of the pair 

potential of a real molecule. The hard sphere model is a fair approximation to the 

gas phase and has been found to undergo an entropy-driven fluid-solid transition. 

The hard sphere model does not, however, predict a liquid phase. The gaseous 

phase is dominated by intraparticle potentials. The solid phase is dominated by 

repulsive interactions, and liquid phase is dominated by attractive interactions. 

The liquid phase has been the hardest for scientist to completely understand.  In 

order to study the liquid phase a more complicated model is needed. 

The simplest pair potential model with an attractive portion is the square-

well potential. The square-well model incorporates the repulsive and attractive 

parts of the pair potential while maintaining mathematical simplicity. It is a step-

wise function with a hard-core, and an attractive well. Figure 1.3 shows a 

generalized square-well potential. 
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Figure 1.3 – The square-well potential graphed against interparticle distance. 

The parameters that describe the square-well potential are the well depth 

(ε), the hard-core diameter (σ), and the well width (described relative to the hard-

core diameter by λ). Because the thermodynamics of this model depend on the 

dimensions of the square-well only in a relative way, σ may be taken to be unity 

(or more precisely, we can use units of σ to describe length).  

 

 

1.7 SECOND VIRIAL COEFFICIENT 
 The virial expansion (1.4.25) can also be expressed in terms of virial 

coefficients: 

           (1.7.1) 

where B(T) is the second virial coefficient, C(T) is the third, and so on. And from 

(1.4.24) and (1.4.25):  

       (1.7.2) 

       (1.7.3) 

From (1.4.17) and (1.7.2): 
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 (1.7.4) 

In the case of a spherically symmetric potential (1.7.4) becomes: 

   (1.7.5) 

where r is the distance between particles 1 and 2.  

 For the hard sphere model: 

           (1.7.6) 

making the f-bond from (1.4.7): 

            (1.7.7) 

From (1.7.7) and (1.7.5): 

    (1.7.8) 

The value of (1.7.8) is used frequently as a reference to describe other virial 

coefficients, and is represented as b0. 

For the square-well, recall that the potential is defined as: 

       (1.7.9) 

making the f-bond for a square-well: 

               (1.7.10) 

where: 
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     (1.7.11) 

With (1.7.10) substituted into (1.7.5): 

    (1.7.12) 

which is: 

      (1.7.13) 

or: 

  (1.7.14) 

In terms of (1.7.8), (1.7.14) becomes: 

   (1.7.15) 

 

1.8 THIRD VIRIAL COEFFICIENT FROM FOURIER TRANSFORM 

The third virial coefficient for a hard sphere potential was solved by 

Boltzmann in 1909[1]: 

    (1.8.1) 

Hauge[2] solved the third virial coefficient for a square-well utilizing a 

Fourier transform. If we recall from (1.4.18): 

       (1.8.2) 

 With a Fourier transform  is defined as: 

             (1.8.3) 
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The tilde (~) over the f(k) here shows that f(k) is not the same function as f(r) but 

is related through the Fourier transform. The reverse Fourier transform is 

       (1.8.4) 

So: 

        (1.8.5) 

         (1.8.6) 

          (1.8.7) 

Substituting (1.8.5)-(1.8.7) into (1.8.2): 

 
(1.8.8) 

The primes ( ‘,’’ ) following the k ’s show that as one type is varied in its integral, 

the others are not. Understanding that: 

  (1.8.9) 

(1.8.8) may be changed to: 

 
          (1.8.10) 

Taking the last part of (1.8.10) and defining it as X, we have: 

        (1.8.11) 

or: 

     (1.8.12) 

The Dirac delta function is defined as: 
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         (1.8.13) 

or in three dimensions: 

          (1.8.14) 

A comparison of (1.8.12) and (1.8.14) reveals: 

       (1.8.15) 

Substituting back into (1.8.10) we have: 

 
(1.8.16) 

The terms not involving k’’ can be pulled out of the integral, and  

becomes  because of the nature of the delta function. An integral over a 

Dirac delta function, δ(x), that starts at x<0 and goes to x>0 will return a value of 

1. So (1.8.16) becomes: 

 
(1.8.17) 

And because of the definition of the delta function: 

         (1.8.18) 

making (1.8.17): 

     (1.8.19) 

but: 

      (1.8.20) 

so (1.8.19) is: 
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           (1.8.21) 

Recall that: 

           (1.8.22) 

 

So the complex conjugate would be: 

  (1.8.23) 

making (1.8.21): 

 
(1.8.24) 

And from the Jacobian: 

 

             (1.8.25) 

Letting t be defined as: 

     (1.8.26) 

(1.8.25) becomes 

 

 
(1.8.27) 

The last step is a result of Euler’s formula. Because k is real in the final f form of 

(1.8.27) it is shown that 

    (1.8.28) 

Simplifying (1.8.24) to: 
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            (1.8.29) 

 

Substituting (1.7.10) into (1.8.27) one finds for a square-well: 

   (1.8.30) 

Using the mathematics program Maple®, we evaluated (1.80) and substituted it 

into (1.8.29). The result was then substituted into (1.7.3): 

 

                (1.8.31) 

In (1.8.31) the function “sign(x)” returns a value of unity with the same sign 

as x. The operand (λσ-2σ) will be positive for a well width greater than the 

hardcore diameter (λ>2) and negative for a well width less than the hardcore 

diameter (λ<2). For (λ=2) (1.8.31) gives the same answer for sign(x) = 1 as it 

does for sign(x) = -1. This is the result presented by Hauge. With the sign() 

function evaluated (1.8.31) becomes: 
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             (1.8.32) 

  

1.9 THIRD VIRIAL COEFFICIENT FROM VOLUME OF 
OVERLAPPING SPHERES 

The third virial coefficient for the hard sphere can also be thought of as the 

volume of all possible positions of the third sphere for all configurations of 3 

overlapping spheres in which the first sphere is fixed at the origin, and sphere 2 

and 3 are allowed to take any position as long as the center of any sphere is 

within the volume enclosed by the other two. 

 Since the first sphere has its position fixed at the origin we must begin with 

the second sphere. Let us start by assuming the second sphere is centered on 

the x-axis (or from another perspective, choose the x-axis such that it passes 

through the center of spheres 1 and 2). 

 
Figure 1.4 – Two overlapping circles. 

 If we call the distance between the two spheres ‘a’ and the radius of the 

spheres ‘r’, then the equations that describe the surfaces in the x-y plane are: 
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     (1.9.1) 

         (1.9.2) 

The center of the third sphere can be any point within the volume of 

overlap between the first two spheres. This can be understood by examining the 

cluster integral (1.8.2). The integrand is (-1)3 when the distances r1,2, r1,3, and r2,3 

are less than or equal to the hard sphere diameter (σ) and is zero everywhere 

else. Since the integral is constant, we only need the volume in which the 

integrand is non-negative, or the volume available to a third sphere when two 

spheres are placed around one centered at the origin such that all centers fall 

within each other’s bounds. 

Since the center of sphere 2 is at (a,0,0), the volume available to the third 

sphere is bisected with a plane at x=a/2. If we can calculate the volume on one 

half of the plane, we can double it to find the volume available to the third sphere 

with the second at (a,0,0). The height of the curve that bounds the volume on the 

right half is a function of x: 

          (1.9.3) 

 We now need the volume bounded by x=a/2 to the left, f(x) to the top, -f(x) 

to the bottom, and x=r to the right. This can be calculated by rotating f(x) around 

the x-axis on the interval a/2 to r. The general form of the volume produced when 

a radius, R(x), is rotated around the x-axis (disk integration) is: 

          (1.9.4) 

Remembering that this will be half the volume we are interested in (because we 

ignored the volume to the left of x=a/2): 

 

      (1.9.5) 

or, for the total volume (V): 
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    (1.9.6) 

This is only the value of the volume for one position of sphere 2, but sphere 2 

can be anywhere within sphere 1. We must now integrate (1.9.6) over all 

positions of sphere 2. For the case of the hard sphere, r = σ and a can have any 

value less than or equal to σ. From (1.7.3) and (1.8.2): 

         (1.9.7) 

Since the integrand can only be (-1)3 or zero, we know C(T) will be positive. If we 

now use the variable r to describe the distance between the centers of sphere 1 

and sphere 2, not to be confused with the radius of spheres above, then using 

(1.9.6) to solve (1.9.7): 

 

 

 

   (1.9.8) 

which reproduces Boltzmann’s[1] result from (1.8.1). The next step is applying this 

to method to the square-well potential. 

 As in the case of the hard sphere potential, the cluster integrals that 

describe the virial coefficients for the square-well potential are constant over 

different regions of the integral. The integrals can therefore be reduced to a sum 

of the product of the value of the integrand, the volume of space it takes that 

value, and any constants in front of the integral for each integrand value.  

For the third virial coefficient, the integrand (f1,2f1,3f2,3) can take the values 

(-1*-1*-1), (-1*-1*h), (-1*h*h), and (h*h*h), where h is defined in (1.7.10). We 

ignore the permutations for now, but account for them later. For the square-well 

potential we imagine the overlap of three spheres with an inner and outer radius. 



 

22 
 

The inner radius is the hard-core and has the value σ1 and the outer radius is the 

well width (λσ1) or σ2. 

We must calculate the volume for each value of the integrand separately. 

Starting with (-1*-1*-1): 

 
Figure 1.5 – Cross section of two overlapping square-well potentials within the hard-core radius. 

From the figure, we can see that the problem reduces to that of a hard sphere. 

We also note, that the total of all the volumes of interest is the volume from the 

hard sphere case, with a hard-core diameter equal to σ2. Or, if we define I1 as the 

contribution of the (-1*-1*-1) case to CSW(T): 

     (1.9.9) 

 Next, we consider the case when the integrand is (-1*-1*h), with its 

contribution being I2. We chose the f1,2-bond to be the bond that equals h. Since 

we will still integrate over all possible positions, and the labels are for 

convenience, this does not affect the value of the integral, although we still need 

to account for permutations later. 

 
Figure 1.6 - Cross section of two overlapping square-well potentials outside the hard-core radius. 
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 The center of the third sphere has the available volume bounded by the 

overlap of the two inner spheres (radii σ1) because f1,3 and f2,3 must be –1. This 

volume may still be described by (1.9.6). The lower bound for the distance 

between 1 and 2 (r) is σ1, but the upper bound depends on the value of σ2 as 

shown in figure 1.7. 

 

  
Figure 1.7 - Cross section of two overlapping square-well potentials outside the hard-core radius 
for λ>2 and λ<2. 

For 2σ1 < σ2, the upper bound of r is 2σ1 and for 2σ1 > σ2, the upper bound 

is σ2, or more generally σ1 ≤ r ≤ min(2σ1, σ2). 

Now we must account for the permutations. Since the integrand’s value 

can come from (-1*-1*h) or (-1*h*-1) or (h*-1*-1), we must multiply our result by 3. 

So from (1.9.7) we have: 

          (1.9.10) 

 Substituting (1.9.6) into (1.9.10): 

 

        (1.9.11) 

Recalling that λσ1 = σ2, and solving (1.9.11) for λ>2 (min(2σ1, σ2) = 2σ1): 

 

 λ>2   (1.9.12) 
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And for λ<2 (min(2σ1, σ2) = σ2 = λσ1): 

 

 
λ<2   (1.9.13) 

 Next we examine the integrand value of (-1*h*h) and define its contribution 

to C(T) as I3. Again, we must consider the cases λ>2 and λ<2 separately. As 

always, they should converge for the case λ=2. We choose the f1,2-bond to have 

the value -1. The distance between spheres 1 and 2 must be less than the hard-

core radius, 0 ≤ r ≤ σ1.  

First we look at λ>2: 

 
Figure 1.8 - Cross section of two overlapping square-well potentials within the hard-core radius 
for λ>2. 

The center of sphere 3 must be placed within the two outer shells of sphere 1 

and 2. We can see that this volume is the volume of overlap of sphere with radius 

σ2 minus the volume of the two smaller spheres. The volume displaced by the 

two smaller spheres is 2 times the volume of the spheres minus their overlap 

volume. Then, introducing the notation for the volume of overlap of two spheres 

with radii σi and σj ≡ Vi,j and the notation for the volume of a sphere with radius σi  

≡ Vi: 

     (1.9.14) 

V2,2 and V1,1 are calculated using (1.9.6) and V1 is simply the volume of a sphere 

(4/3πr3): 
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      (1.9.15) 

As in (1.9.10) we must account for the permutations. Since the integrand’s value 

can come from (-1*h*h) or (h*h*-1) or (h*-1*h), we must multiply the integral by 3. 

We also include the value of the integrand (-h2) and the coefficient in front of the 

integral (1.9.7) (-1/3). Integrating (1.9.15) for all possible positions of sphere 2 

and including the coefficients: 

         (1.9.16) 

For a description of the solution to (1.9.16), see appendix 1. The result of the 

integral in (1.9.16) is: 

 λ>2       (1.9.17) 

Now we examine (-1*h*h) for λ<2. 

 
Figure 1.9 - Cross section of two overlapping square-well potentials within the hard-core radius 
for λ<2. 

From figure 1.9 we can see that the solution for λ>2 will not work for λ<2 

because the volume of the inner spheres is not completely contained within the 

overlap of the outer shells when the distance increases beyond the σ2 - σ1. 

 Instead, we choose the f1,2-bond to have the value h. 
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Figure 1.10 - Cross section of two overlapping square-well potentials outside the hard-core radius 
for λ<2. 

The center of the third sphere must be placed in the inner sphere of one 

sphere and inside the outer shell of the other. The volume available to sphere 3 

is the volume of overlap of spheres with radii σ2 and σ1 minus the overlap of two 

spheres of radius σ1. 

      (1.9.18) 

We now need an expression for the volume of two overlapping sphere 

with different radii. First we find an expression for the volume of a sphere cap as 

a function of its height. 

 
Figure 1.11 - Cross section of a sphere cap. 

From (1.9.4): 

 

  
(1.9.19) 
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Figure 1.12 - Cross section of two overlapping spheres with different radii. 

We can see that the volume of overlap is the sum of the two sphere caps. We 

need the value of x at the plane that divides the two caps. 

    (1.9.20) 

        (1.9.21) 

          (1.9.22) 

       (1.9.23) 

The height of the right cap (hR) and the left cap (hr) are: 

     (1.9.24) 

   (1.9.25) 

And substituting (1.9.24) and (1.9.25) into (1.9.19): 

     (1.9.26) 

Using (1.9.26) and (1.9.6) in (1.9.18) we can calculate the volume 

available for the center of sphere 3 (here, again r is the distance that separates 

sphere 1 and sphere 2): 

(1.9.27) 
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 Again we need to multiply by 3 since we assumed the f2,3-bond was –1. 

We also need to multiply by the value of the integrand (-h2) and the coefficient of 

the integral in (1.9.7) (-1/3), giving us I3 in the same form as (1.9.16), but now 

using (1.9.27) as the volume. Solving (1.9.16) with (1.9.27) we have (for a 

detailed solution see appendix 1): 

   λ<2     (1.9.28) 

Finally, we evaluate the portion of the C(T) integral where the integrand 

takes the value (h*h*h) and label its contribution I4. The center of sphere 2 must 

lie within the outer shell of sphere 1, and the center of sphere 3 lies within the 

outer shells of both 1 and 2. There is no permutation factor to include in this 

integration. Again it is necessary to calculate λ<2 and λ>2 separately. 

For λ>2 we have to break the integral into three parts. First is the region 

where the two smaller spheres of 1 and 2 are completely inside the overlapping 

volume of the outer shells. The second region is where some of the inner sphere 

of 1 lies outside the outer shell of 2 and vice versa, and the inner spheres still 

overlap. In third region the inner spheres do not overlap. 

 
Figure 1.13 - Cross section of two overlapping square-well potentials outside the hard-core radius 
for λ>2 at increasing distances. 

The first case, where the smaller spheres are completely surrounded, is in 

the range σ1 ≤ r ≤ σ2 - σ1. The volume in this region can be calculated by 

(1.9.14). 

The second region is in the range σ2 - σ1 ≤ r ≤ 2σ1. The volume in the 

second region can be calculated from the volume of overlap of the two outside 
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spheres (V2,2) subtracting out the contribution of each of the outer sphere/inner 

sphere overlap (2V1,2) and adding back in the volume that was subtracted twice 

(V1,1): 

   (1.9.29) 

 The third region is in the range 2σ1 ≤ r ≤ σ2. In this region there is no 

overlap between the inner spheres, and hence no volume subtracted twice, so 

we can set V1,1 equal to zero and use the volume given by (1.9.29). 

       (1.9.30) 

 Since there are no permutations, we only need to multiply the integral by 

the value of the integrand (h3) and the coefficient of the integral from (1.9.7): 

 (1.9.31) 

where Va is the volume in (1.9.14), Vb is the volume in (1.9.29) and Vc is the 

volume in (1.9.30). The solution to (1.9.31) is (for the detailed solution see 

appendix 1): 

         λ>2    (1.9.32) 

 It should be noted that for the case λ>3: 2σ1 < σ2 - σ1, which means that 

the inner spheres stop overlapping before they have some of their volume 

outside the bounds of the outer sphere. This changes the ranges of regions 1, 2 

and 3 to σ1 < ra < 2σ1 < rb < σ2 - σ1 < rc < σ2. Va and Vc are unchanged, but Vb 

becomes: 

       (1.9.33) 

 Despite the change to Vb and the ranges integrated over, the solution to 

λ>3 simplifies to (1.9.32) (see appendix 1 for more detail). 

 Lastly, we must evaluate I4 for λ<2.  
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Figure 1.14 - Cross section of two overlapping square-well potentials outside the hard-core radius 
for λ<2. 

For all σ1 < r < σ2, the inner spheres overlap and are never completely 

inside of the overlap of the outer spheres. The volume available to the center of 

the third sphere is, therefore, always described by (1.9.29). As with λ>2, there 

are no other permutations so the only coefficients for I4 are from the value of the 

integrand (h3) and (1.9.4) (-1/3), making I4: 

           (1.9.34) 

 Integrating (1.9.34) (for more detail see appendix 1): 

 λ<2      (1.9.35) 

Having solved (1.9.7) for all non-zero values of the integrand, we can now 

calculate CSW(T): 

      (1.9.36) 

For λ<2 CSW(T) is the sum of (1.9.9), (1.9.13), (1.9.28) and (1.9.35): 

 
 

 

 
    (1.9.37) 

 

For λ>2 CSW(T) is the sum of (1.9.9), (1.9.12), (1.9.17) and (1.9.32): 
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  (1.9.38) 

 Note that (1.9.37) and (1.9.38) match Hauge’s[2] result from Fourier 

transform (1.8.32). The calculation of virial coefficients through the analysis of 

overlapping spheres is more intuitive and direct than the Fourier transform, 

despite the condensed derivation of the later. It also has implications for higher 

order virial coefficients that the Fourier transform cannot describe. 

 

1.10 FOURTH VIRIAL COEFFICIENT 
 

The fourth virial coefficient is the sum of three cluster diagrams. 

          (1.10.1) 

Remembering that each cluster diagram has implicit in it a coefficient 

equal to the number of ways it may be relabeled without changing the 

connectivity. For the first cluster in (1.10.1) this coefficient is (1/8): 

 
Figure 1.15 – Labeling possibilities for D1. 

For the second cluster in (1.10.1) the coefficient is (1/4) 
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Figure 1.16 - Labeling possibilities for D2. 

For the third cluster in (1.10.1) the coefficient is (1/24): 

 
Figure 1.17 - Labeling possibilities for D3. 

As with (1.4.16) the term V-1 can be omitted by fixing the position of the 

first particle to the origin, giving β3 as:  

           (1.10.2) 

For the first and last cluster in (1.10.1) all particles are identical, but in the 

second integral there are particles with 3 bonds and particles with 2 bonds. We 

therefore need to perform the integral with both choices for the fixed particle, 
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however in the absence of an external potential the integrals will be equal, and 

we may simply double the result. 

Then from (1.4.25):  

       (1.10.3) 

By labeling the integrals in (1.10.1) in order as D1, D2 and D3; D(T) can be 

expressed as: 

   (1.10.4) 

The coefficients implicit in (1.10.2) have been reduced by from those in 

(1.10.1) by fixing the first particle. The coefficient in the first integral (D1) is now 

(1/2): 

 
Figure 1.18 - Labeling possibilities for D1 with particle 1 fixed. 

and when combined with (1.10.3) makes D1:  

     (1.10.5) 

 The coefficient in the second diagram from (1.10.2) is (1/2): 

 
Figure 1.19 - Labeling possibilities for D2 with particle 1 fixed. 

When the coefficient in front of the second diagram in (1.10.2) (2) the 

factor of 1/2 implicit in the diagram, and the coefficient of (-3/4) from (1.10.3) are 

combined D2 is: 

        (1.10.6) 

 The coefficient in the final diagram in (1.10.2) is (1/6): 
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Figure 1.20 - Labeling possibilities for D3 with particle 1 fixed. 

and when combined with (1.10.3) gives: 

           (1.10.7) 

 The fourth virial coefficient was solved for the hard-sphere potential by 

Boltzmann[3]: 

         (1.10.8) 

 The fourth virial coefficient has not been completely solved for the square-

well potential. 

 
1.11 FOURTH VIRIAL COEFFICIENT D1 

 The first integral in the fourth virial coefficient is D1 (1.10.5).  D1 was 

solved for the square-potential by Barker and Monaghan[4]: 

 
(1.11.1) 

With ζ1, ζ2, and ζ3 defined as: 

   (1.11.2) 

    (1.11.3) 
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(1.11.4) 

Or, with D1 in the same form as (1.9.37) and (1.9.38): 

 

 

 

 
(1.11.5) 

Barker and Monaghan present this as a solution for 2 ≤ λ ≤ 3, but Hauge[5] 

has shown that it applies to all possible well widths (λ ≥ 1). 

There are three important features that must exist in all solutions to the 

cluster integrals for the square-well potential. First, if h is set to –1 then the 

solution should give the value for a hard sphere with the core radius equal to λσ. 

The f-bond inside of a hard sphere’s radius is –1, so by setting h to –1 we are 

simply extending the hard-core radius to the well width. 

For example, the solution to D1 for a hard sphere is: 

  (1.11.6) 

and for h=-1 (1.11.5) gives: 

 

 

 

 
(1.11.7) 

All of the terms in (1.11.7) cancel except those with a factor of λ9, leaving: 

      (1.11.8) 

Clearly (1.11.8) is the value for (1.11.6) when σ → λσ. 
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 The second feature of the solutions of cluster diagrams for the square-well 

potential is that they give the solution for a hard sphere potential when λ is set to 

1. This is equivalent to having an infinitely thin well, or no well at all. For λ = 1, 

(1.11.5) becomes: 

 

 

 

 
(1.11.9) 

 All the terms in each hn grouping cancel, leaving only: 

     (1.11.10) 

again leaving the value for a hard sphere.  

 The third common feature to all square-well cluster integrals is that for h=0 

the integral again gives the value for the hard sphere. Here we are setting the 

interaction potential inside the well equal to the interaction at large distances 

(zero). It is obvious that when h=0 (1.11.5) gives  (1.11.6). 

 These three features are present in all solutions to square-well virial 

cluster diagrams presented so far (1.7.15), (1.8.32), (1.9.37) and (1.9.38). These 

features are valuable methods for testing the accuracy of a solution to one of the 

cluster diagrams.  

For example in the same paper Barker and Monaghan[4] presented their 

solution to D1 they also presented solutions to D2 and D3. The solution for D3, 

fails all three testes, although it should be noted that the authors only claim 

accuracy within 1% of the real solution for D3.  

 

1.12 FOURTH VIRIAL COEFFICIENT D2 
 Barker and Monaghan[4] also presented results for D2 when λ ≥ 2. 
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(1.12.1) 

where: 

 
(1.12.2) 

  (1.12.3) 

 (1.12.4) 

note that in [4] the first fraction in (1.12.1) is incorrectly given as (6437/3360).  

Or, with D2 in the same form as (1.9.37),  (1.9.38) and (1.11.5): 

 

 

 

 

 
(1.12.5) 

The second cluster integral contributing to the fourth virial coefficient for a 

square-well potential, defined in (1.10.6), was solved for all well widths by 

Hauge[5] using a Fourier transform in a similar manner to his solution for the third 

virial coefficient. His result confirmed the D2 presented by Barker and Monaghan 

for λ ≥ 2. Hauge’s D2 for λ ≤ 2: 
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(1.12.6) 

Equations (1.12.5) and (1.12.6) passes the three tests for a square-well 

virial coefficient. If h is –1, both give the solution for a hard sphere with a hard-

core radius of λσ; if λ is 1, both give the solution for a hard sphere; and if h is 0, 

both equations give the solution for a hard sphere. All coefficients in each h 

grouping cancel each other when λ is 1, and each set of coefficients grouped by 

powers of λ cancel when h is –1 with the exception of λ9 which gives –6347λ9. 

There are a few other features common to all square-well virial solutions. 

They are always be expressible in 3*(i+1)-order polynomials times powers of h 

up to the number of f-bonds in the integral, where i is the same i in(1.4.18) (λ3 for 

B(T), λ6 for C(T), λ9 for D(T) etc.) . Each polynomial can be factored and contains 

the term (λ -1)n, where n is the power of h the polynomial corresponds to. For 

example, h4 in D1 from Barker and Monaghan (1.11.5): 

 

 
(1.12.7) 

Or from h5 for D2 (1.12.6): 

 

 

 (1.12.8) 

Just like equations (1.9.37) and (1.9.38) in the case of the third virial 

coefficient, equations (1.12.5) and (1.12.6) give the same result for λ = 2. 

 



 

39 
 

(1.12.9) 

 This result is in agreement with the result of Katsura’s[6] evaluation of 

square-wells with equal well widths. 

 

1.13 FOURTH VIRIAL COEFFICIENT D3 
 There has not been an analytical solution to the third cluster integral in the 

fourth virial coefficient for the square-well potential. This can be attributed to the 

high connectivity of the diagram (known as the complete star): 

 
 There have been several attempts to calculate D3 using various methods, 

most relying on computer simulation or calculation. These methods and their 

results will be discussed in detail later in this work. 

 For the hard sphere potential D3 has been solved by Boltzmann[3]: 

        (1.12.4) 
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Chapter 2 
Ratio Integration 

 

2.1 HIGHER ORDER VIRIAL APPROXIMATIONS 
 Although there have been no analytical solutions to cluster integrals above 

D2 for the square-well potential, various techniques have been employed to 

approximate their values. 

 Katsura[1] used the Fourier transform on the cluster integrals of the fourth 

virial coefficient for the square-well potential and broke the problem down with 

use of the addition theorem of Bessel functions. Then he integrated numerically 

(by computer) for λ = 2. Katsura’s result became the standard more generalized 

approximations were measured against. 

 As mentioned in 1.11, Barker and Monaghan[2] derived the solution for D1. 

Their solution hinged on the simplification of the integrals for well widths greater 

than the hard-core radius (λ ≥ 2). For any triangle, the sum of the length of any 

two sides must be greater than the remaining side. So for λ ≥ 2, if two f-bonds 

are within the hard-core, the third must be non-zero. Their solution was found by 

rearranging the cluster integrals and substituting in step functions of the form: 

    (2.1.1) 
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Although their solution to D1 was appropriate for all well widths, their solution for 

D2 could not be generalized for λ < 2, and D3 was integrated using a Monte Carlo 

technique. 

 Ree and Hoover[3] were able to simplify the general cluster integrals, and 

reduce the number of integrals for each virial coefficient regardless of pair 

potential. The method involved the integration over e-bonds and f-bonds. For 

example, if we look at an integral for 4 particles with 4 f-bonds and 2 e-bonds: 

      (2.1.2) 

Represented graphically, with f-bonds represented by a solid line and e-bonds by 

a dashed line: 

 
Figure 2.1 – Ree-Hoover diagram for D(T). 

This representation is known as a Ree-Hoover diagram. A Ree-Hoover 

diagram does not contain the black circles that were in the graphical 

representation of the cluster diagrams. It also does not have any implicit 

coefficients in it arising from symmetry. It also represents the integrand and not 

the actual integral (this is a minor detail since integrals and integrands are both 

commutative and will not be mentioned again). 

Substituting ei,j = fi,j + 1 into (2.1.2): 

 

 
 

 

(2.1.3) 
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or in graphical form: 

 
Figure 2.2 – Equivalent cluster diagrams for a Ree-Hoover diagram. 

In figure 2.2 the second and third diagrams on the right hand side have 

the same value and can be represented by the second with a coefficient of 2. 

The fourth virial coefficient represented in a Ree-Hoover diagram is: 

 
Figure 2.3 – D(T) as cluster diagrams. 

which is equivalent to: 

 
Figure 2.4 – D(T) as Ree-Hoover diagrams. 

 For the fourth virial coefficient Ree and Hoover reduced the number of 

integrals that need to be solved from three to two. Although not remarkably 

helpful for the fourth virial coefficient, this technique reduces the number of 

integrals significantly for higher ordered virial coefficients (from 10 to 5 for the 

fifth virial coefficient and from 56 to 23). The fifth virial goes from: 
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Figure 2.5 – E(T) as cluster diagrams. 

(with the coefficients inside the diagrams) to: 

 
Figure 2.6 – D(T) as Ree-Hoover diagrams. 

 Masters[4] used the simplified Ree-Hoover diagram equations to evaluate 

the fourth and fifth virial coefficients for the square-well potential. Particles 

positions are randomly chosen (in a computer simulation) through a Monte Carlo 

process. Notice that each diagram in figure 2.6 has the same 5 f-bonds. We can 

label the particles 1 through 5 in such a way that 1 is always connected to 2 

through an f-bond, 2 to 3 and so on, no matter which diagram: 

 
Figure 2.7 – The bonds common to all Ree-Hoover diagrams representing E(T). 

Particles are randomly placed in this order, and are rejected if the 

corresponding f-bond it forms is zero (r > λσ). After all particles are placed, the 
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configuration is tested to see if it corresponds to any non-zero value of the 5 

diagrams in Figure 2.6. 

Unlike hard spheres, square-well particles can be separated at a distance 

where both an f-bond and an e-bond are non-zero, complicating this analysis. 

Each configuration can therefore correspond to more than one diagram. The 

assignment of diagrams is facilitated by the use of a look-up table. Look-up 

tables are also used for the weight and the unlabelling index of each diagram. 

The result of the simulation is a matrix of coefficients that correspond to 

powers of e-bonds and f-bonds for distances within the square-well potential. For 

example, the result for the fifth virial coefficient is a 77 component matrix 

consisting of terms Cαβ, where: 

         (2.1.4) 

In (2.1.4) h is still the value of an f-bond inside the well width, and h1 is the value 

of an e-bond inside the well width. 

 Sevick and Monson[5] used Katsura’s method of Fourier transform followed 

by numeric integration to calculate the fourth virial coefficient for square-wells 

with λ = 1.1, 1.5 and 2.0. Hussein and Ahmed[6] also used Katsura’s method to 

calculate the third and fourth virial coefficients for λ = 2.0 in an arbitrary 

dimension. Both studies had results that agreed with Katsura’s for λ = 2.0 in 3 

dimensions. 

 Singh and Naresh[7] used Mayer Sampling, a technique developed by 

Singh and Kofke,, to study the fourth, fifth and sixth virial coefficients for the 

square-well potential. Mayer sampling, which will be discussed in detail in 

chapter 4, is an importance sampling based on a free energy perturbation 

technique.  

Particles, equal to the number of particles in the cluster integral to be 

calculated, are moved randomly, with the probability of each move determined by 

the value of the integrand before and after the move. After each attempted move, 

the value of the integrand for the square-well potential is stored as is the 
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integrand for a reference potential (in this case the hard sphere potential). The 

solution to the reference cluster integral is then perturbed by the ratio of 

ensemble average of the integrand for square-well over the ensemble average of 

the integrand for the reference potential (normalized by the probability 

distribution): 

            (2.1.5) 

In (2.1.5) Γ(T) is the cluster integral, γ is the integrand and π is the probability 

distribution (usually the absolute value of γ), and the subscript 0 indicates a 

reference quantity. 

 All of these techniques have been valuable in extending our 

understanding of both the square-well potential and virial equation of state. 

However, each suffers from its own drawbacks and has inherent approximations. 

 

2.2 RATIO INTEGRATION 
 From section 1.9 we know that the virial coefficients of hard spheres can 

be expressed as the volume available to overlapping spheres and that the virial 

coefficients of square-wells can be expressed as a sum of different powers of h 

from 0 to the number of bonds in the integrals, whose coefficients are functions 

of the well width.  

 The total volume of the integration for the square-well potential will be the 

same as for a hard sphere with a radius of λσ. The virial coefficient for a square-

well potential can be expressed as a function of the percentage of the volume for 

each of the possible values of the integrand, scaled by the volume of overlap in 

spheres of radius λσ, as opposed to functions of the volume itself. For example 

from (1.9.38) the third virial coefficient for a square-well with λ = 2 is: 

       (2.2.1) 

 If we add the absolute value of all the coefficients inside of the brackets in 

(2.2.1) we have 320, which is the product of 5 (the value corresponding to the 

volume of overlap in a hard sphere potential) and 26 which is the factor the 
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volume is expanded by for a square-well with a well width of 2. From (1.9.8) we 

know that for a hard sphere C(T) = (5/8)b0
2. If we factor out the (-5) and (26) from 

(2.2.1) we are left with: 

    (2.2.2) 

 In (2.2.2) the coefficients represent the percentage of the volume of 

overlap taken up by each integrand value. For example, with a well width of 2, 

42.5% of the volume available for three spheres, with a radius of 2σ, to overlap is 

when two of the spheres are within a distance of σ and the third is at a distance 

from the first two greater than σ and inside of the 2σ radius imposed on it. This 

corresponds to an integrand value of –h2 or (-1*h*h). The alternating signs in 

(2.2.2) are a result of the fact that when a non-zero f-bond doesn’t equal h, it is –

1. 

Equation (2.2.2) demonstrates how a virial coefficient for the square-well 

potential can be expressed as a sum of volume percentages multiplied by the 

integrands they correspond to, times the value of the virial coefficient for a hard 

sphere potential with a radius of λσ.  

The hard sphere potential is arguable the simplest pair potential and, as 

such, has been extensively studied. The available literature data on the virial 

coefficients of the hard sphere potential are exhaustive. The calculation of virial 

coefficients for the square-well potential can be simplified by taking advantage of 

the data already available for virial coefficients of the hard sphere. If the volume 

of overlap for the hard sphere is known, one only needs the percentage of 

volume the overlap spends in each value of the integrand, or alternatively put, 

what percentage of time it spends with each number of spheres at a distance 

from each other outside the hard-core. The problem is reduced from calculating 

the volume of the overlap for each integrand value to calculating the percent of 

the total volume. Many of the values of the hard sphere integrals are known 

exactly. 

 This can be accomplished with a simple Monte Carlo hit and miss 

algorithm. N Particles are randomly placed inside a box (where N is the number 
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of particles in the cluster integral) and then the number of bonds with length σ to 

λσ are counted. This is how we determine the percentage of the volume with 

each value of h. 

We shall first look at the simple case for the third virial coefficient (1.9.7). 

The first particle is fixed at the origin. The second particle is placed randomly in a 

cube surrounding the first with x, y and z each randomly chosen between -λσ to 

λσ.  

Two spherical particles require only one variable (distance) to describe 

their interaction, so we can choose the second particle to be on the positive x-

axis (or from another point of view we can choose the x-axis to pass through the 

second particle). Care must be taken that the probability of finding the second 

particle at any point on the x-axis is equal to the probability of finding it at the 

same distance inside the cube. For example if we cannot simply take the position 

to be: 

             (2.2.3) 

where bx is the value of the x coordinate of the second (b) particle, and 

rand() is a function that produces a uniformly distributed random number 

between 0 and 1. If (2.2.3) were used bx would be uniformly distributed on the x-

axis between 0 and λσ. However, in three dimensions there are more points 

available to bx as distance increases (the probability of finding bx at any distance 

should be proportional to the surface area of a sphere with that radius).  

Instead we use: 

       (2.2.4) 

where, for each occurrence of rand() a different random number is generated. 

We are essentially placing b in a cube with dimensions x, y and z from 0 to λσ 

and then determining the distance from particle a (at the origin) and assigning 

that as the x value for b (y and z are zero). Although we do not allow b to have 

negative value, there is no error introduced because each octant is symmetrical. 

 By placing b on the x-axis rather than in a three dimensional box we can 

save computation time when determining its distance from other particles. 
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 The distance between b and a is the value of bx. If this distance is greater 

than λσ the integrand will be zero and we need to replace b. If the distance 

between a and b is less than λσ we can place the third particle (c). 

 The third particle must be placed randomly such that it is within a distance 

of λσ from both b and a. The simplest way to do this is to randomly assign a 

value for x, y and z between -λσ and λσ. We cannot ignore negative coordinates 

(as we did with b) because the octants are no longer symmetrical: 

 
Figure 2.8 – Cross section of two overlapping square-well potentials within the hard-core radius. 

 The main detraction from this approach is that most of the attempted 

placements of c will lie at a distance beyond λσ with either a or b, only around 

12.85% of attempted placements of b and c result in a usable result. 

 Instead we restrict the placement of c so that is within a box with height 

and depth equal to 2λσ (-λσ ≤ y ≤ λσ and -λσ ≤ z ≤ λσ), but with width only from 

bx - λσ to λσ. 

 

 
Figure 2.9 - Cross section of two overlapping square-well potentials within the hard-core radius 
with a box to place a third particle. 
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 As seen in figure 2.9 (in which only solid lines representing a distance of 

λσ around each particle are shown for aesthetics) the probability of a particle 

randomly inserted in the blue box being in the volume of overlap of the two 

spheres is much higher for the second box. It should be noted that the particle 

could be inserted into only positive values for y and z since all quadrants around 

the x-axis are symmetric, however this does not have any advantage in run 

speed. 

 There is a problem with this optimization that must be addressed. For a 

well width of 2, if we compare bx = 1 and bx = 1.5: 

 
Figure 2.10 - Cross section of two overlapping square-well potentials within the hard-core radius 
with a box to place a third particle at different separations. 

The volume of the bx = 1 box is 48 (3x4x4), and the volume of the bx = 1.5 box is 

40 (2.5x4x4). The volume of overlap from (1.9.6) for bx = 1 is 27π/4 and for bx = 

1.5, 475π/96. The probability of a particle randomly put in the box being inside 

the overlap is the overlap volume divided by the volume of the box. For bx = 1 

this is .4418 and for bx = 1.5 it is .3886. 

 The probability of finding a particle inside the overlap needs to be 

proportional to the volume of overlap alone. From the volumes above bx = 1 

should be 1.364 times more likely to have a particle inserted in the overlap. 

Instead, it is 1.137 times more likely. The result is that contributions from bx = 1.5 

are counted more than they should be (or bx = 1 less). 

 This is overcome by assigning an importance to each bx as it is chosen, 

where the importance is equal to the probability of placing a particle inside the 
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box (- λσ ≤ x ≤ λσ) and having it end up inside a the smaller box (bx - λσ ≤ x ≤ 

λσ). Or, if I is importance: 

    (2.2.5) 

 In (2.2.5) 2λσ - bx is the width of the smaller box, and 2λσ is the max 

width. After each placement of b that is within the distance λσ, the importance is 

calculated. Then c is placed inside the smaller box a number of times 

proportional to the importance. 

 This increases the acceptance rate for placement from 12.85% to 39.14%. 

As we will see this becomes more significant for higher order virial coefficients 

because the chances of obtaining a non-zero configuration are much lower.  

 The technique of integrating relative volumes will be referred to in this 

work as “ratio integration”. 

 

2.3 RESULTS FOR C(T) 
 The first we integral studied with ratio integration is the third virial 

coefficient. The third virial coefficient for the square-well provides the perfect test 

for this integration because the solution is known analytically for all well widths. 

 All computations in this work were performed on a 1.67 GHz processor. A 

run consisting of 107 successful samples takes about ten seconds and produces 

results for the four possible values of the integrand { (-1)3-ihi for i = 0, 1, 2 and 3} 

that range in accuracy from .096% to .91%. Increasing the number of samples to 

109 increases the runtime to 17 minutes and the accuracy to a range from .006% 

to .13%. 

 The output is the number of times each integrand value is sampled. A 

typical output for 109 samples would be: 

λ -1 h -h2 h3 
2 15630522 53053895 425035410 506280385 

1.5 87768649 232867305 473573669 205790979 
Table 2.1 – Ratio integration results in terms of hits for C(T). 

 or in terms of percentage: 
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λ -1 h -h2 h3 
2 .01563052 .05305388 .42503532 .50628028 

1.5 .0877686 .23286716 .47357388 .20579086 
Table 2.2 – Ratio integration results in terms of volume percent for C(T). 

The simplest test of accuracy, which is also useful for higher order virial 

coefficients whose integrals cannot been checked analytically, is to compare the 

percentage of the first integrand to the value λ-3(n-1) (where n is the virial 

coefficient we are examining, in this case 3). For λ = 2 this is 2-6 or .015625 and 

for λ =1.5, .0877915. 

 To calculate the coefficient for each integrand value, one takes the value 

of the third virial coefficient for hard spheres and multiplies it by the number of 

times the integrand value was sampled (from table 2.1) and normalizes it by 

dividing by the number of times the first integrand was sampled (-1 column in 

table 2.1). The results for table 2.1 are: 

        λ =2 

   λ =1.5 

(2.3.1) 

 The results for λ = 2 can be compared to the actual value in (2.2.1). For λ 

=1.5 the analytical answer is (rounded to the hundredths digit): 

   (2.3.2) 

 Comparison at all well widths (λ) to the analytically calculated coefficients 

shows good accuracy. 
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Figure 2.11 – Integrand coefficients for C(T) calculated at different well widths with ratio 
integration (black squares) and the exact values from equation 1.8.32 (blue lines). 
 

2.4 RESULTS FOR D1(T) 
 To further test the ability of the ratio integration technique results for D1(T) 

were also calculated and compared to the analytical solution. Again the first 

particle (a) is taken to be at the origin. The second particle (b) is placed on the x-

axis between zero and λσ using (2.2.4). The third particle (c) does not have to 

over lap the first, so it must be allowed to be placed outside the box we have 

been placing the other particles in. This is accomplished by placing it relative to 

particle b. So cx is: 

   (2.4.1) 

with y and z coordinates both assigned by: 

            (2.4.2) 

 The last particle (d) must overlap c and a. It can be placed in the cube with 

sides of length λσ with a as its center, and reject any placement that leaves it at 

a distance greater than λσ to a or c. 

 Any random placement that would result in a zero-valued integrand (any 

placement with a distance greater than λσ between particles with an f-bond in the 

integral of interest) resets the hit-and-miss algorithm. That is to say, if particles b 

and c are placed successfully, and particle d is placed outside the range of c; b 

and c must be placed again. If b and c’s positions were kept, sampling of less 

favorable configurations (with only a small volume available to d for a successful 

placement) would be over-counted (and therefore samplings of favorable 

configurations would be undercounted). 
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A plot of 109 samples vs. the Barker and Monaghan solution (1.11.5) 

reveals the high accuracy of the ratio integration technique. 

 

 
Figure 2.12 - Integrand coefficients for D1(T) calculated at different well widths with ratio 
integration (black squares) and exact values (blue lines). 

Note that for h3 and h4 in figure 2.12 the coefficient axis is in logarithmic scale for 

ascetics. Each run (109 samples) contributed data for each coefficient at the well 

width sampled (each run contributes one data point to each graph in figure 2.12).  

λ -1 h -h2 h3 -h4 
1.1 544 501.37 199.42 35.095 2.7945 

1.25 544 1272.08 1417.98 671.21 148.01 
1.5 544 2479.84 6773.78 7329.62 3785.44 

1.75 544 3438.62 17566.56 32669.13 29524.11 
2 544 4079.97 34987.11 99675.38 139245 

2.25 544 4397.87 59913.77 245101.68 494015.01 
2.5 544 4560.94 93064.80 523760.11 1453274 

2.75 544 4543.95 135086.90 1013136.6 3739920 
Table 2.3 – Integrand coefficients for D1(T) predicted by ratio integration. 
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Compared to the exact value (1.11.5):  
λ -1 h -h2 h3 -h4 

1.1 544 501.30 199.63 34.99 2.80 
1.25 544 1271.83 1418 671.37 147.916 
1.5 544 2480.87 6777.38 7328.71 3782.22 

1.75 544 3442.64 17576.59 32678.49 29499.90 
2 544 4075 35007 99687 139215 

2.25 544 4402.06 59941.31 245191.10 493894.71 
2.5 544 4520.55 93034.35 523950.24 1453146 

2.75 544 4543.09 134893.22 1013182.9 3740039 
Table 2.4 – Exact integrand coefficients for D1(T). 

 The average error in the ratio integration of D1 is .086%. 

 

2.5 RESULTS FOR D2(T) 
The integral for D2 is performed in an analogous way. The only difference 

is the third particle must lie within λσ of the first. We could choose to have the 

fourth particle lie within λσ of the second instead, but it is fastest to put required 

conditions as early in the Monte Carlo process so zero-valued integrands are 

rejected as soon as possible. 

The D2 virial integrate is the highest order integral known analytically for a 

square-well potential, and represents the last chance to test the ratio integration 

method. 

As always, we can calculate the percentage of the volume in the integral 

where all f-bonds have the value –1. Comparing the results of the ratio 

integration to the analytical percentage [100*(λσ)-9] the average error is .94%. 

The majority of the error occurs at larger well depths, where the expected volume 

percent for all bonds inside the hard sphere radius is very small. The average 

error for λσ ≤ 2 is .29%. 
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Figure 2.13 - Integrand coefficients for D2(T) calculated at different well widths with ratio 
integration (black squares) and exact values (blue lines). 

The remaining coefficients can be compared to Barker’s D2 for λ > 2 

(1.12.5) and Hauge’s value for λ < 2 (1.12.6). 
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Figure 2.14 – Ratio integration results for D2 compared to results from Hauge (red) and Barker 
(blue). 

The accuracy for each coefficient is very high with nearly all error arising 

for near zero values of the coefficients. For example below λ = 2, h0 was 

accurate to within .25% but at λ = 2.75 the error was 2.9% where h0 only 

represents .01% of the integrated volume. Although this is a larger percent error, 

it is a very small deviation in a small portion of the integral. 
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Coefficient Error 
h0 .94% 
h1 .18% 
h2 .06% 
h3 .05% 
h4 .09% 
h5 .39% 

Table 2.5 – Average absolute error between predicted and exact coefficients for the well-widths 
studied. 

 

 

2.6 RESULTS FOR D3(T) 
The ratio integration method can be used to solve D3 for the square-well 

potential as it was used to solve D1 and D2. For D3 each particle placed must be 

within λσ of all particles placed before it.  

As with C(T), faster integration can be accomplished by restricting the 

volume available to the third and fourth particles. We again restrict only the x 

component (since b is on the x-axis) to within (bx - σ) and σ. For C(T) we 

calculated the importance of each placement of b, and sampled c proportionally, 

with equation (2.2.5). Because we are placing 2 particles in the restricted volume, 

the importance must be the probability of placing two particles in the smaller 

volume, which is simply the probability of placing an individual particle squared. 

          (2.6.1) 

 Because the importance only needs to be proportional to the probability, 

we could ignore the denominator in (2.6.1), however we would not know the 

maximum samples to be taken before setting the well width. For example, we 

may sample 500*I for each placement of b (rounded to the nearest integer), 

leaving a maximum of 500 samples for each placement of b (corresponding to b 

being placed at the origin) no matter what the well width.  

To justify this quick integration technique D3 was solved in the slower 

method for several well widths. There was no loss of accuracy despite the large 

gain in runtime between the two methods. 
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From rule 1 in section 1.11, we know that the percentage of D3 volume 

integral due to all distance being less than σ, should be the (λσ)-9. We therefore 

have one last test of accuracy for the ratio integration technique. The average 

error in the percentage of h0 is .079%. 

 

Figure 2.13 – Volume percent of D3 predicted by ratio integration for the integrand h0 with a best-
fit line. 

For each coefficient, the results can be graphed and fitted to a curve. This 

allows us to determine the solution for an arbitrary well width through 

interpolation, rather than performing a unique simulation for each well width of 

interest. 

 
Figure 2.14 – Volume percent of D3 predicted by ratio integration for the integrand h1 with a best-
fit line. 
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Figure 2.15 – Volume percent of D3 predicted by ratio integration for the integrand h2 with a best-
fit line. 

 
Figure 2.16 – Volume percent of D3 predicted by ratio integration for the integrand h3 with a best-
fit line. 

 
Figure 2.17 – Volume percent of D3 predicted by ratio integration for the integrand h4 with a best-
fit line. 
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Figure 2.18 – Volume percent of D3 predicted by ratio integration for the integrand h5 with a best-
fit line. 

 
Figure 2.19 – Volume percent of D3 predicted by ratio integration for the integrand h6 with a best-
fit line. 

 

 

2.7 RESULTS FOR E(T) 
 The fifth virial coefficient is described by 10 cluster integrals as shown in 

Figure 2.5. Ratio integration has been performed on all cluster integrals in the 

same manner as the D(T) integrals. Each particle is placed inside a set volume 

and all f-bonds pertaining to that particle and particles already in place are 

checked to ensure distances are less than λσ.  
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As noted in 2.5, particles are ordered to promote early rejection of zero-

valued configurations. For example E8(T) from Figure 2.5 could be labeled either 

of the following ways: 

 
Figure 2.20 – Labeling possibilities for E8(T). 

In the first diagram of figure 2.20 particle D must be placed inside the 

spheres of A and C, while in the second diagram D must be placed inside the 

spheres of A, B and C. E must be placed in spheres A, C and D in the first 

labeling and only inside A and D in the second. Both diagrams should encounter 

the same percentage of rejections, however fewer restrictions on E for the 

second diagram and more on D translates into more rejections before E is 

placed. This means fewer calls to the random number generator and fewer 

distance calculations (which is the slowest part of the application). The optimal 

labeling in figure 2.20 decreases the computation time by 15%. 

Coefficients are generated in the same manner as section 2.3 using hard sphere 

literature values[9]. Again, we can graph the coefficients as a function of well 

depth and determine the values for well depths not run through interpolation. 
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Figure 2.21 – Ratio integration results for E10(T) with diagram and coefficient (squares are 
simulations, lines are best fit). 
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Figure 2.22 – Ratio integration results for E9(T) with diagram and coefficient (symbols as in 2.21). 
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Figure 2.23 – Ratio integration results for E8(T) with diagram and coefficient (symbols as in 2.21). 
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Figure 2.24 – Ratio integration results for E7(T) with diagram and coefficient (symbols as in 2.21). 

h6

0

4000

8000

12000

16000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Well Width

C
o

e
ff

ic
ie

n
t

h7

0.00001

0.001

0.1

10

1000

100000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Well Width

C
o

e
ff

ic
ie

n
t

1.00E-06 

1.00E-04 

1.00E-02 

1.00E+00 

1.00E+02 

1.00E+04 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

C
o

e
ff

ic
ie

n
t 

Well Width 

h8 



 71 

E6      

  

  

  

  
Figure 2.25 – Ratio integration results for E6(T) with diagram and coefficient (symbols as in 2.21). 
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Figure 2.26 – Ratio integration results for E5(T) with diagram and coefficient (symbols as in 2.21). 
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Figure 2.27 – Ratio integration results for E4(T) with diagram and coefficient (symbols as in 2.21). 
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Figure 2.28 – Ratio integration results for E3(T) with diagram and coefficient (symbols as in 2.21). 
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Figure 2.29 – Ratio integration results for E2(T) with diagram and coefficient (symbols as in 2.21). 
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Figure 2.30 – Ratio integration results for E1(T) with diagram and coefficient (symbols as in 2.21). 
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2.8 COMPARISON TO OTHER TECHNIQUES 
 Both the virial equation of state and the square-well potential model have 

been of particular interest within the study of statistical mechanics. The virial 

equation of state represents a known solution, through cluster integrals, to 

thermodynamics without simplification or assumption, the challenge being the 

evaluation of those integrals. The square-well potential has been of interest as 

arguably the simplest pair potential to include an attractive component. Not 

surprisingly, there have been many attempts to calculate the virial coefficients for 

the square-well model, which have been summarized at the beginning of this 

chapter. 

 All solutions to cluster integrals above D2 for the square-well potential 

have been some form of numerical integration. Most recently Singh used Mayer 

sampling (introduced in 2.1 and discussed in detail in chapter 4) to study the 

fourth, fifth and sixth virial coefficients of the square-well potential. 

 There are two major advantages to ratio integration over Mayer sampling 

for the case of the square-well potential. First, Mayer sampling only produces 

data at a specific values of h for each run. All temperatures in between those 

sampled must be interpolated. Each run is also specific to the well depth of the 

potential. 

 In the case of Mayer sampling for each temperature in the evaluation of 

the fourth virial coefficient runs of 109 samples took approximately 2 hours on a 

2.66 GHz processor. For the fifth virial coefficient runs of 109 samples took 60 to 

65 hours for each temperature. 

 Ratio integration, by contrast, took 25 minutes for 109 samples for the 

fourth virial coefficient and 20 hours for the fifth on a 1.67 GHz processor. In 

each run the coefficients of h for each integral are found, so virial coefficients for 

any well depth or any temperature can be calculated from the results of one run.  

 The second advantage of ratio integration over Mayer sampling is seen as 

the number of samples approaches infinity. Every Monte Carlo type sampling has 

some expected value that is being determined through high volume sampling. An 
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increase of 100 fold typical results in an increase in accuracy of the expected 

value by one decimal place. 

In ratio integration the expected values to be determined are the 

percentages of volume each possible integrand value takes up in the case of 

overlapping spheres. Because the sampling process is placing particles 

randomly in a box and tabulating how often each integrand value comes up, the 

accuracy can be increased indefinitely by taking more samples. 

In Mayer sampling however, the value to be calculated is the complete 

virial coefficient for a specific temperature but this is done through free-energy 

perturbation techniques (equation 2.1.5). Even with an infinite number of 

samples, the integration will converge to some approximation of actual virial 

coefficient. 

This gives ratio integration an advantage over one of the strongest 

thermodynamic predictors, Monte Carlo simulations. These simulations make 

random changes to a system, and then reject or accept them according to the 

probability of finding the system in that state. This essentially provides an 

ensemble-average by weighting each state’s contribution according to the 

number of times the simulation finds the system in that state. However, these 

simulations cannot handle the large number of particles in a macroscopic 

system. Instead the simulations converge to an approximation. 

Comparison with Singh’s results shows good agreement with the features 

of all plots. Unfortunately numerical results for D(T) and E(T) are not presented, 

however further comparison between thermodynamic quantities derived from 

results will compared in the following chapter.  

 At infinite sampling Monte Carlo simulations also converge to approximate 

solutions. This is because of limits on the number of particles sampled. In Monte 

Carlo simulations 103 - 104 particles are sampled, with some approximation made 

to boundary conditions. An increase in particles sampled to more realistic 

magnitude is not possible despite advancements in processor speeds. 

The most similar technique to ratio integration is the hit-and-miss Monte 

Carlo sampling used by Masters to evaluate Ree-Hoover diagrams (discussed in 
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2.1). The primary difference is that in Masters’ approach the volume of the 

integral is also calculated for each sample and no data from the extensive work 

on hard spheres is utilized. Every “miss” in the simulation must therefore be 

accounted for, slowing the simulation. Also, no time saving integration techniques 

(such as the one explained for figure 2.10) may be taken advantage of. 

 Ratio integration could be applied to Ree-Hoover diagrams in the same 

fashion as used to evaluate the tradition cluster integrals. The drawback to this is 

that the e-bond is non-zero for distances greater than λσ. So in the diagram: 

 
Figure 2.31 – A Ree-Hoover diagram contributing to E(T) (solid lines are f-bonds, dashed lines 
are e-bonds). 

the distance AE can be as large as 2λσ. The volume available to particle D is 

then 4/3π(2λσ)3. These diagrams are much slower than the ones in which A has 

an f-bond with all other particles. There are 3 out of 5 of these diagrams in the 

Ree-Hoover formalization and 4 out of 10 in the traditional representation. 

Evaluating the diagrams individually allows us to evaluate the accuracy of each 

diagram by comparing its value for h0 to the expected one of (λσ)-2. 

 The advantage to Ree-Hoover diagrams is minimal for evaluation of the 

fifth virial coefficient using ratio integration, however they maybe useful in 

evaluation of the sixth in which the number of diagrams reduce from 56 to 23. 

 Comparison of Masters results for D(T) and E (T) with the ones presented 

in 2.4 - 2.7 show general agreement (Masters results for D(T) match those 

presented by Baxter and Monaghan): 
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Figure 2.32 – Comparison of D(T) (solid lines) and E(T) (dashed lines) for ratio integration (blue), 
Masters (red), and Hussein (black). 

In figure 2.32 the data from ratio integration is in blue and the data from 

Masters is in red. The coefficients are for λ = 2. D(T) is represented with a 

dashed line and E(T) with a solid line. Masters’ values for D(T) match the results 

predicted by Baxter, however the more accurate results of Hussein are plotted as 

black dots and fit closer to the data presented here. The coefficients are plotted 

against the reduced temperature (T* = kT/ε), where k is Boltzmann’s constant 

and -ε is the square-well depth. 

 As T* goes to infinity h goes to 0 and the virial coefficients for the square-

well potential should go to the value for a hard sphere. For E(T) (in units reduced 

by b0
4) this value is .11025217, the ratio integration goes exactly to this value by 

construction, however the results from Masters approach .11016211 which may 

explain the discrepancy in higher values of T*. As T* increases beyond values 

shown in the graph this discrepancy narrows. 
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2.9 WELL WIDTH EFFECTS ON VIRIAL COEFFICIENTS 
 If the temperature scale is given in reduced units (T* = kT/ε), and the 

distance scale is in reduced units (r* = r/σ) (including distance derived quantities, 

i.e. V* = V/σ3, ρ* = ρ/σ3), then the only parameter of interest is well width. Not 

surprisingly the well width has a dramatic effect on the virial coefficients and, 

through them, the thermodynamics of the system. 

 
Figure 2.33 – B(T) values for the square well from ratio integration. 

 
Figure 2.34 – C(T) values for the square well from ratio integration. 
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Figure 2.35 – D(T) values for the square well from ratio integration. 

 
Figure 2.36 – E(T) values for the square well from ratio integration. 
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Chapter 3 
Applications 

 

3.1 MAXWELL CONSTRUCTION 
 The virial expansion represents a complete solution to the 

thermodynamics of the system it describes. The question becomes how does 

one calculate quantities of interest from the virial expansion. 

A phase diagram displays the equilibrium coexistence lines of different 

phases as a function of thermodynamic properties (pressure, temperature, etc.). 

The coexistence curves can be calculated using the Maxwell construction 

method.  

In a Maxwell construction isotherms are plotted in the pressure/volume 

plane. For the van der Waals equation of state: 

 
Figure 3.1 – Isotherms for the van der Waal fluid at subcritical (blue), critical (red), and 
supercritical (green) temperatures. 
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In figure 3.1 P* = P/Pc, V* = V/Vc and ρ* = ρ/ρc (where P is the pressure, V 

is the molar volume and ρ is the molar number density; and the subscript c 

denotes the value at the critical point). In the figure the blue line is a subcritical 

isotherm, the red is the isotherm at the critical temperature, and the green is a 

supercritical isotherm. 

Subcritical isotherms have a portion of their graph that has a positive 

slope when plotted against volume (∂P/∂V > 0) or negative when plotted against 

density (∂P/∂ρ < 0). From the definition of isothermal compressibility: 

          (3.1.1) 

and since volume must be positive, (∂P/∂V > 0) results in a negative 

compressibility, which is unstable.  

 James Clerk Maxwell[1] corrected for this by replacing a portion of the 

isotherm with a flat line. The endpoints of which correspond to points on the 

coexistence curve. The area above the isotherm and below the line must be 

equal to the area below the isotherm and above the line in the pressure/volume 

plane. 

 
Figure 3.2 – An isotherm for the van der Waal fluid with coexistence points A and B predicted by 
Maxwell construction. 
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endpoints of the line ‘a’ and ‘b’; and will refer to the area under the line as area 1 

and the area above as area 2. 

We can see from figure 3.3 that the area of the rectangle ‘a’ and ‘b’ form 

with the volume axis must be the same as the area under the curve plus area 1 

minus area 2. Since area 1 = area 2 we then have: 

    (3.1.2) 

And by definition: 

         (3.1.3) 

where A is the molar Helmholtz free energy. Since we are evaluating an isotherm 

(3.1.3) gives us: 

       (3.1.4) 

Combining (3.1.4) with (3.1.2) and noting that P(Va) = P(Vb), which will now be 

referred to simply as P : 

    (3.1.5) 

And from the definition of molar Gibbs free energy: 

     (3.1.6) 

Since the molar Gibbs free energy is the molar chemical potential for a 

pure substance: 

 and          (3.1.7) 

3.1.7 is the requirement for phase coexistence. 

 
Figure 3.3 – An isotherm for the van der Waal fluid with coexistence points a and b predicted by 
Maxwell construction with the equal area loops shown. 
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  The isotherms are constructed from the virial equation with the indicated 

number of coefficients. For the virial equation up to E(T) this is: 

     (3.1.8) 

First the lowest density with a pressure common to some higher density 

(ρ0) is found. 

 
Figure 3.4 – The lowest density whose pressure is found at a higher density. 

 Densities above ρ0 are tested for Maxwell’s equal area law. The density is 

increased incrementally a small density step. From the lower density (ρ1) a 

density with the same pressure and a positive slope is found (ρ2). 

 
Figure 3.5 - A higher density is chosen by matching pressure of ρ1. 
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will be shown later in this section. The coexistence curves are also plotted 

against the density, making density the better choice. 

 The area of the rectangle is given by: 

   (3.1.9) 

Where P is the pressure given by ρ1 and ρ2, and remembering that ρ1 

corresponds to the larger volume.  

 The area under the curve is given by: 

 

 (3.1.10) 

 At low temperatures the volume curve flattens out making the 

determination of volume given a pressure difficult. 

 
Figure 3.6 – Low temperature isotherm in the pressure-volume plane. 

 This problem is avoided by choosing the density scale to increment along. 

The isotherms in figures 3.6 and 3.7 are both from the virial equation of state up 
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Figure 3.7 – Low temperature isotherm in the pressure-density plane.  

 Another solution can be calculated from the chemical potential. The 

chemical potential is given from (1.4.22) or in terms of the virial coefficients: 

  (3.1.11) 

 The factor Λ3 is constant at all densities for each isotherm and because: 

           (3.1.12) 

the term ln(Λ3) can be considered an arbitrary constant. 

From (3.1.8) we can calculate the pressure and from (3.1.11) the chemical 

potential. Recall from (3.1.7) that the conditions for coexistence are equal 

chemical potentials and pressures in the two states, so graphing chemical 

potential against pressure: 

 
Figure 3.8 – Low temperature isotherm plotted as chemical potential vs. pressure. 
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 In figure 3.8 the intersection at (.046, -3.37) corresponds to the pressure 

and chemical potential at equilibrium, this point is calculated from (3.1.8) and 

(3.1.11) for two densities (the liquid and the vapor). 

 Calculating the coexistence curve from figure 3.8 rather than figure 3.6 

can be numerically more convenient at some temperatures, but is not strictly 

necessary, nor does it guarantee greater accuracy. Solving the equation of state 

allows one to determine coexistence curves, from it, with arbitrary precision. 

 

3.2 PHASE DIAGRAMS  

A reference system is chosen from the literature with values λ = 1.85 and 

ε/k = 69.4 K. At each well width the square-well depth is chosen to keep B(T) 

constant at the critical temperature of the reference system (151 K). From 1.7.15, 

the depth of a potential with a well width of λ, is given by: 

  (3.2.1) 

For each temperature, the pressure is calculated at some small density. 

The density is then increased until a density is reached with a pressure that. The 

area in the rectangle in section 3.1 is then given by: 

Applying the Maxwell construction to the results from section 3.2 produces 

coexistence curves for the virial equation of state. First we construct a diagram 

with increasing virial order from literature values for λσ = 2. Using (1.7.15) for 

B(T), (2.2.1) for C(T), Katsura’s result for D(T) and Masters result for E(T). 

 
Figure 3.9 – Liquid-vapor coexistence for truncated virial expansion using a Maxwell construction. 
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 The accuracy of the virial equation of state used to calculate the 

coexistence curves can be increased by including terms from the Carnahan 

Starling equation of state for hard spheres (defined below). Introducing the 

packing fraction: 

             (3.2.2) 

In (3.2.2) d is the hard sphere diameter, which is chosen to be unity by 

convention. From calculated values in the literature, the virial equation for a hard 

sphere potential is: 

   (3.2.3) 

Carnahan and Starling approximated the virial equation for hard spheres with: 

    (3.2.4) 

which gives: 

   (3.2.5) 

 Equation (3.2.4) can be expressed as: 

    (3.2.6) 

 The Carnahan Starling equation of state fits computer simulation data very 

well. The accuracy and simplicity of (3.2.6) makes it a very popular 

approximation. The Carnahan Starling equation can be used to supplement our 

virial equation of state, and provide an approximation for the repulsive part of the 

potential at higher order coefficients. 

 For a virial equation up to the fourth coefficient (D) the assumption is the 

equation of state is: 

 (3.2.7) 
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 where the summation is unknown. If the summation is assumed to be 

coefficients described by the Carnahan Starling equation of state then (3.2.7) 

becomes: 

(3.2.8) 

 In (3.2.8) the Δ in front of a coefficient indicates it is the difference 

between the calculated value and the value corresponding to the hard sphere. 

This is to compensate for over counting the coefficients calculated for the square-

well. For example: 

    (3.2.9) 

 When the equation of state is described by (3.2.8) there is significant 

improvement in the phase diagrams for lower ordered equations of state and 

smaller adjustments in higher ordered equation of states. 

 
Figure 3.10 – Coexistence curves with truncated virial expansions extended by the Carnahan 
Starling equation of state. 
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    (3.2.10) 
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 Masters’ results for D(T) agrees with Katsura’s for a well width of 2.0; 

however when the more accurate results of Hussein are combined with Masters’ 

results for E(T) the resulting phase diagram shows good agreement with the 

results from ratio integration. 

 
Figure 3.11 – Comparison of coexistence curves between truncated virial expansions with 
different methods for virial coefficient calculation. 

The results for the four difference choices of equations of state at 5 

different well widths are graphed in figures 3.12 – 15. 

 
Figure 3.12 – Coexistence curves predicted by a virial expansion truncated at D(T) for different 
square well widths. 
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Figure 3.13 - Coexistence curves predicted by a virial expansion truncated at E(T) for different 
square well widths. 

 
Figure 3.14 - Coexistence curves predicted by a virial expansion truncated at D(T) with the 
Carnahan Starling equation of state values for higher order coefficients for different square well 
widths. 
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Figure 3.15 - Coexistence curves predicted by a virial expansion truncated at E(T) with the 
Carnahan Starling equation of state values for higher order coefficients for different square well 
widths. 

 In figures 3.16 – 20 the results are graphed grouped by well width. 

 
Figure 3.16 – Comparison of coexistence curves predicted by different virial expansions for the 
square well model with a well width of 1.25. 
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Figure 3.17 - Comparison of coexistence curves predicted by different virial expansions for the 
square well model with a well width of 1.50. 

 
Figure 3.18 - Comparison of coexistence curves predicted by different virial expansions for the 
square well model with a well width of 1.75. 

 
Figure 3.19 - Comparison of coexistence curves predicted by different virial expansions for the 
square well model with a well width of 2.00. 
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Figure 3.20 - Comparison of coexistence curves predicted by different virial expansions for the 
square well model with a well width of 2.50. 
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virial equations of state (VEOS) up to E(T) with or without the Carnahan Starling 

adjustment. These VEOS predict a negative pressure at low densities that is 

never positive (see Figure 3.21), and hence has no first loop. Higher ordered 

virial coefficients may be necessary to calculate coexistence data. 

 
Figure 3.21 – No coexistence data can be determined if there is no loop. 
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coexistence data can be off even if the pressure predictions for low density are 

near exact. 

 Despite the virial expansions failure to accurately predict coexistence 

curves this work would be incomplete without them because of their prevalence 

as a comparison and test for analytical and numeric approximations. Although 

this failure may seem alarming, it is important to ask why the coexistence curve 

is chosen as the comparison of choice for different theories.  

A complete solution to the thermodynamics of a system should be able to 

predict free energy, chemical potential and one of pressure, density or 

temperature given the other two as well as other thermodynamic quantities. In 

fact the power of the solution is overwhelming, and an infinite number of 

isotherms, isobars or isochores could be generated to compare with simulations 

or experimental data. Generating a coexistence curve is a good way to test 

multiple densities, pressures and temperatures while predicting a physically 

significant quantity. For this reason phase diagrams are included in nearly all 

thermodynamic approximations. 

It should be noted, however, that the accuracy can be equally important in 

regions of the phase diagram where “nothing is happening”, as in regions where 

changes of phase do not occur since many practical experimental and 

engineering applications involve purely gaseous states. 

A simple yet perfect illustration of this is the square well model for argon. 

Hirschfelder[2] has presented a method for approximating potentials with a square 

well model by fitting the second virial coefficient to experimental data. For argon 

the square well parameters are ε/k = 69.4 K, λ = 1.85, and σ = 3.162 Å.  

The first two virial coefficients are calculated using (1.7.15) and (1.8.32) 

respectively. Using ratio integration the fourth and fifth virial coefficients are 

calculated for a well width of 1.85 as functions of temperature: 

 
(3.3.1) 
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(3.3.2) 

 Isotherms are then produced using the truncated virial expansion up to 

E(T) and compared to experimental data for argon[3]. In figure 3.22 the 

temperature is sub-critical and the virial expansions do a poor job above the 

coexistence density. As the temperature rises above the critical temperature the 

virial expansion quickly improves to match experimental data. At room 

temperature (295 K) the virial expansion up to D(T) and E(T) each produce 

values that deviate from experiments by less than .1% over the entire region.  

 
Figure 3.22 – Experimental pressures for argon and pressures predicted by truncated virial 
expansions at 143 K. 

 
Figure 3.23 – Experimental pressures for argon and pressures predicted by truncated virial 
expansions at 160 K. 
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Figure 3.24 – Experimental pressures for argon and pressures predicted by truncated virial 
expansions at 250 K. 

 
Figure 3.25 – Absolute percent error between experimental data for argon and that predicted by 
the ideal gas law and the truncated virial expansions at 250 K. 
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Figure 3.26 – Experimental pressures for argon and pressures predicted by truncated virial 
expansions at 295 K. 

 
Figure 3.27 – Absolute percent error between experimental data for argon and that predicted by 
the ideal gas law and the truncated virial expansions at 295 K. 
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        (3.3.3) 
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performance, but fault this approach with having two adjustable parameters. 

They fail to acknowledge that only λ needs to be changed and ε can be 

determined with the method they chose to test the square well potential. They 

also use λ = 1.5 in their figure instead of the well used value from Hirschfelder of 

1.85. 

 
3.28 – Predicted values of bo from ε/k and experimental argon data for a well width of 1.5. 

 Using λ = 1.85 the plot is much closer to converging and seems to confirm 

the value of ε/k = 69.4 K and σ = 3.162 Å as shown in figure 3.29. Remarkably 

when λ = 1.66 is plotted the predicted bo converge for ε/k = 101.5 (figure 3.30). 

This is even more impressive when all the data from [6] are plotted (figure 3.31). 

 
3.29 – Predicted values of bo from ε/k and experimental argon data for a well width of 1.85. A red 
square marks the value of ε/k = 69.4 K and σ = 3.162 Å. 
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3.30 - Predicted values of bo from ε/k and experimental argon data for a well width of 1.66. 

 
3.31 - Predicted values of bo from ε/k and experimental argon data for a well width of 1.85 at all 
available temperatures. 
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Figure 3.32 – Pressure vs. Density for the truncated virial equation up to E(T) using the values of 
Hirschfelder (well = 1.85) and the ones derived above (well = 1.66). 

 
Figure 3.33 – Pressure vs. Density for the truncated virial equation up to E(T) using the values of 
Hirschfelder (well = 1.85) and the ones derived above (well = 1.66). 
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Figure 3.34 – Pressure vs. Density for the truncated virial equation up to D(T) using the values of 
Hirschfelder (well = 1.85) and the ones derived above (well = 1.66). 

 It can be difficult to choose parameters to fit the square well potential to 

second virial data because there are three adjustable parameters. This means 

vastly different numbers for each can fit the data well. Hirschfelder overcomes 

this by making an assumption about the size of hard-care diameter. But this can 

be overcome, as shown above, by graphing bo against ε/k. Both, by design, show 

good agreement with experimental values of B(T) (figure 3.35). Hirschfelder’s 

choice shows better agreement with experimentally[7] determined values for C(T) 

( figure 3.36). However the values obtained by plotting bo against ε/k describe the 

thermodynamics of the system better (figures 3.32-3.34). 

 
Figure 3.35 – B(T) predicted by the truncated virial expansion for various well widths, and B(T) 
from experimental data[7]. 
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Figure 3.36 – C(T) predicted by the truncated virial expansion for various well widths, and C(T) 
from experimental data[7]. 

 It can be concluded that virial coefficients can be used to calculate 

thermodynamic quantities and that the square well model can be used to 

accurately approximate more general spherically symmetric molecular models for 

the purpose of calculating virial coefficients. The square well model has the 

benefit of being able to take advantage of the ratio integration technique 

discussed in chapter 2. Again, this is useful because only one simulation is 

needed to calculate virial coefficients at any temperature. This will be used to 

model new systems in later chapters.   

  

 

3.4 PADÉ APPROXIMANTS 
The virial equation is a power series, which lends itself nicely to the Padé 

approximation. In a Padé approximation a rational function, R(x), is substituted 

for a power series, f(x), by ensuring that all derivatives to the highest possible 

order agree for x=0. 
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with f(x) and R(x) being: 

   (3.4.2) 

    (3.4.3) 

where q0 is 1 by convention. The approximation comes directly from setting the 

difference between f(x) and R(x) to zero. 

 

 

 
(3.4.4) 

 As each derivative is taken and evaluated for x=0, a series of equations is 

formed. 

           (3.4.5) 

      (3.4.6) 

 The approximation is used when the power series is only known to some 

order, N. The order of P(x) and Q(x), L and M respectively, must satisfy: 

        (3.4.7) 

The Padé approximant is symbolized [L/M], with N choices for L and M. 

For example, the virial equation truncated after D(T), N = 4: 
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         (3.4.8) 

has approximants [0/3], [1/2], [2/1], and [3/0], where [3/0] is just the truncated 

power series. 

 The Padé approximant often is a better approximation of the complete 

power series than the truncated virial series using the same number of terms, but 

the most appropriate one must be chosen. For example the exponential function, 

ex, can be defined as a power series: 

         (3.4.9) 

 In figure 3.37 the approximations for the truncated power series at N=5 

are displayed along with the exact value ex, note that [4/0] represents the 

truncated power series. The Padé approximant [3/1] does a better job over the 

region of estimating ex than the truncated power series. 

 In figure 3.38 the approximations are shown for N=6. Adding coefficients 

to the power series increases the accuracy of the approximants and the 

truncated power series. The range of interest must be taken into consideration 

when choosing an approximation, in figure 3.38 the truncated power series [5/0] 

is the most accurate, but the same functions over a different range in figure 3.39 

reveal [1/4] to be the most accurate (where figure 3.40 shows the percent error 

over the range). 
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Figure 3.37 – The exponential function, ex, is plotted along with the series truncated at N=5 ([4/0]) 
and four other Padé approximants ([0/4], [1/3], [2/2], and [3/1]). 

 
Figure 3.38 - The exponential function, ex, is plotted along with the series truncated at N=6 ([5/0]) 
and five other Padé approximants ([0/5], [1/4], [2/3], [3/2], and [4/1]). 

 
Figure 3.39 – The exponential function, ex, is plotted along with the series truncated at N=6 ([5/0]) 
and five other Padé approximants ([0/5], [1/4], [2/3], [3/2], and [4/1]). 
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Figure 3.40 – Percent error between the exponential function and the power series truncated at 
N=6 ([5/0]) and five other Padé approximants ([0/5], [1/4], [2/3], [3/2], and [4/1]). 
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truncated at E(T). Using the Padé approximant [3/1] this is now possible as 

shown in figure 3.41. 

 
Figure 3.41 – Pressure v Volume for the square potential with λ = 2 at T* = 5 using the equations 
of state indicated. 

An interesting method[9] for choosing which approximant to use has been 

developed. For the virial equation of order N, all approximants for order N-1 are 

calculated. The predicted value of the virial coefficient of order N, using (3.3.5), is 

then compared to the known value for each of the approximants. The value for 

N+1 is then calculated using the approximant that best matched N. Finally all 

approximants are calculated at order N, and the one which bests matches the 

predicted value for N+1 is chosen. 

Rather than performing this calculation directly for each virial equation, it 

has been found to work best when the approximants chosen as most accurate in 

[9] are used. They are: 

N Best Approximant 
2 [0/1] 
3 [0/2] 
4 [0/3] or [2/1] 
5 [2/2] 
6 [3/2] 
7 [3/3] or [4/2] 
8 [2/5] 
9 [6/2] 

Table 3.1 – The best Padé approximants, by order, for the hard sphere potential from [9], these 
have been found to be the best approximants for the square-well model as well. 
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 Padé approximants present a simple method for increasing the accuracy 

of the virial expansion. This increase is even more effective as higher order virial 

coefficients are added. 

 

3.5 MIXTURES 
 In an n-component mixture the virial expansion is given as: 

       (3.5.1) 

In 3.5.1 ρm is the density of the mixture, given by the sum of densities for each 

component (ρi): 

     (3.5.2) 

The virial coefficients of the mixtures are given by: 

    (3.5.3) 

In 3.5.3 xi is the mole fraction of component i and Bij is the value of the second 

virial coefficient calculated for molecules of type i and j. Over counting is allowed 

so the first two coefficients of a two component mixture is given by: 

   (3.5.4) 

 As noted by Monago[10] the virial equation is the only method 

capable of predicting volumetric and caloric properties of mixtures in the gas 

phase at experimental uncertainties, and as such has value in applications that 

demand accurate values. One example being high-throughput gas density 

transducers used in custody transfers in the natural gas industry[11]. The 

truncated virial equation of state fails to accurately predict properties at densities 

above about a third the critical density (depending on the number of coefficients 
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used), and as a result fails to accurately predict phase equilibrium as 

temperature approaches the critical point. However, densities are lower than this 

region during custody transfers. 

Virial coefficients are used in the natural gas industry to calculate 

compressibility factors (Z) at given temperatures, pressures and compositions. A 

well-known and very successful method developed by the Group Européen de 

Recherches Gazières (GERG) in 1988[12] relies on high-accuracy measurements 

of Z to determine virial parameters. 

In the GERG method the equation of state for a mixture is taken as 3.5.1 

truncated after Cm(T). The virial coefficients are approximated by: 

       (3.5.5) 

First high-accuracy values of Z for pure substances are used to determine 

Bii and Ciii. Then binary mixture data is used in conjunction with the Bii and Ciii 

values to determine Bij Ciij and Cijj. These values are then used with ternary 

mixture Z’s to determine Cijk. Finally this data (across many temperatures) is 

used to determine b(0), b(1), b(2), c(0), c(1) and c(2) for pure substances as well as 

binary and ternary mixtures. The advantage being that because the virial 

equation is truncated at C(T) only ternary interactions are needed to calculate 

compressibility factors for mixtures with more than three components. 

The authors of [11] have improved on this method by replacing the 

approximation in 3.5.5 with: 

 

         (3.5.6) 

 In both cases the authors note that the virial expansion is rigorously based 

in statistical mechanics as a justification to choose it as a model. However, the 

approximations 3.5.5 and 3.5.6 are not. The two approximations rely heavily on 

fitting many coefficients to high-accuracy values of Z. For a two-component 
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mixture, for example, there are 21 independent variables. It is therefore not 

surprising that for binary and ternary mixtures this method is highly accurate. 

 The square-well potential can be used to model the interaction of gases as 

discussed in section 3.3, virial coefficients can then be calculated as previously 

described. B(T) data was again taken from [13] to parameterize the square-well 

model for the pair potentials of methane and diatomic nitrogen. B12 values are 

also used to approximate the methane-nitrogen interaction as shown in figures 

3.42 – 3.44. The results are listed in table 3.2 and graphically in figure 3.45. 

 σ (Å) λ ε/k (K) 
CH4 – CH4 3.387 1.63 132.5 

N2 – N2 3.320 1.63 85 
CH4 – N2 3.215 1.5 140.8 

Table 3.2 – The square-well parameters for the interactions indicated. 

 

 
Figure 3.42 – Predicted values of bo from ε/k and experimental methane data for a well width of 
1.63. 
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Figure 3.43 – Predicted values of bo from ε/k and experimental nitrogen data for a well width of 
1.63. 

 
Figure 3.44 – Predicted values of bo from ε/k and experimental methane-nitrogen mixture data for 
a well width of 1.5. 
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Figure 3.45 – Pair potential for methane, nitrogen, and a mixture modeled by the square-well 
potential. 

 For pure substances the virial coefficients are calculated using the exact 

expressions for B(T) up to D2(T) as described in chapter 1. Higher order 

coefficients are calculated through ratio integration as described in chapter 2. 

Compressibility factors predicted by the truncated virial expansion at D(T) are 

compared to experimental results in[12] in table 3.3. All predicted values are within 

.1% of experimental compressibility factors. 

T (K) P (MPa) Z D(T) Z exp Abs % Dev 
273.16 2.0006 0.9529 0.9532 0.03 
273.17 3.0006 0.9290 0.9297 0.07 
273.18 4.0005 0.9051 0.9065 0.15 
273.15 4.9998 0.8812 0.8836 0.27 
273.16 6.0005 0.8576 0.8612 0.42 
273.15 7.0004 0.8344 0.8398 0.64 
273.16 8.0005 0.8121 0.8197 0.92 
283.17 2.0002 0.9587 0.9587 0.001 
283.17 3.0002 0.9380 0.9385 0.06 
283.17 4.0002 0.9173 0.9184 0.12 
283.16 5.0003 0.8968 0.8989 0.23 
283.16 6.0002 0.8767 0.8799 0.37 
283.16 7.0002 0.8570 0.8619 0.57 
293.15 2.0000 0.9637 0.9640 0.03 
293.15 3.0000 0.9456 0.9461 0.05 
293.16 4.0000 0.9277 0.9287 0.10 
293.15 5.9999 0.8928 0.8957 0.33 
293.15 6.9999 0.8760 0.8803 0.49 

Table 3.3 – Compressibility factors (Z) for pure methane from experiment (Z exp) and predicted 
by virial coefficients for the square-well model truncated at D(T). 
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 For mixtures B(T) can be computed with equation 3.5.4 using the square-

well parameters from table 3.2. C(T) is more difficult, because it involves 

integrals with different pair potentials. In equation 3.5.4 Ciii and Cjjj  can be 

calculated as usual using the exact equation for C(T) for square-wells (1.9.37 

and 1.9.38). For Ciij and Cijj Kihara[14, 15] has generalized the exact solution for 

C(T) for a mixture of square-wells. 

 For D(T) there are no exact solutions to a mixture of square-well potentials 

for any of the three integrals despite analytical solutions to D1 and D2 for pure 

square-wells. A solution can be reached by approximating the CH4 – N2 

interaction with a square-well potential that has the same well width (1.63). 

Kihara[14, 15] has also provided a method for approximating binary square-well 

interactions given the unary ones. The hard-core diameter is the arithmetic mean 

and the depth is the geometric mean: 

          (3.5.7) 

         (3.5.8) 

Using values from table 3.2 the CH4 – N2 interaction can be approximated by: 

 σ (Å) λ ε/k (K) 
CH4 – N2 3.215 1.63 106.1 

 

 For a binary mixture each integral in D(T), D1 D2 and D3, are given by: 

 
(3.5.9) 

DAAAA and DBBBB Can be calculated in the normal way. The other integrals can be 

solved by first setting σAA and σBB to σAB. Since now λAA = λBB = λAB and σAA = 

σBB = σAB the volume of the integrals are known; only the value of h (h = e-
βε -1) 

within each volume is unknown. The integrals are solved then by breaking them 

down into volumes by powers of h. The values used for hn are the average value 

of hn weighted by examining every possible labeling and selection of h bonds. 
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 For D1AAAB the integral is given by only 1 unique labeling (where ‘A’ and 

‘B’ represent molecules of that type, and bonds are represented by A-A = a, B-

B=b, and A-B=c). 

 
 Since each h-bond is equally likely to be chosen the value of hn values 

used to compute D1AAAB are: 

     (3.5.10) 

           (3.5.11) 

        (3.5.12) 

           (3.5.13) 

D1ABBB has the same symmetry as D1AAAB so the values of hn can be retrieved 

from 3.5.10 – 3.5.13 by substituting ‘b’ for ‘a’.  

D1AABB can be represented by two uniquely labeled graphs: 

 
 

However, these should not be weighted equal, because they do not occur with 

equal probability. This can be seen by labeling all unique possibilities for particles 

1 to 4: 
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If 1 and 2 are replaced by ‘A’, and 3 and 4 are replaced by ‘B’, it becomes 

obvious that the weights should be: 

 
making the hn values for D1AABB: 

        (3.5.14) 

       (3.5.15) 

        (3.5.16) 

         (3.5.17) 

Following the same procedure for D2: 
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For D2AAAB we replace any three numbers (ex. 1,2,3) with ‘A’ and the other 

(ex. 4) with ‘B’. The weights are equal between: 

 
making the hn values: 

     (3.5.18) 

            (3.5.19) 

         (3.5.20) 

     (3.5.21) 

          (3.5.22) 

Again D2ABBB has the same symmetry and can be recovered by replacing ‘a’ with 

‘b’ in 3.5.18 – 3.5.22. 

 For D2AABB the weights are obtained by replacing two numbers in the 

numeric diagram with ‘A’ and the other two with ‘B’: 
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For D2AABB the hn values are (grouped by the diagram they come from for 

pedagogical purposes): 

         (3.5.23) 

 
(3.5.24) 

 
(3.5.25) 

 (3.5.26) 

    (3.5.27) 

 The particles in D3 are fully connected, and therefore all are identical 

making D3AAAB, D3AABB and D3ABBB simply: 

 
So the hn values for D3AAAB are (where, again, D3ABBB is obtained by substituting 

‘b’ for ‘a’): 

    (3.5.28) 

           (3.5.29) 

        (3.5.30) 

     (3.5.31) 

          (3.5.32) 
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           (3.5.33) 

And the values for D3AABB: 

        (3.5.34) 

        (3.5.35) 

           (3.5.36) 

           (3.5.37) 

     (3.5.38) 

           (3.5.39) 

 The values of hn can now be combined with the volume of the integrals in 

the same manner as discussed with ratio integration in chapter 2. The integrals 

are scaled by a factor of (2πσ3/3)3, with  σΑΒ is used. Equation 3.5.9 is used to 

determine D(T) for the mixture.  

 The compressibility factor for mixtures were calculated using 4 different 

virial expansions (where the subscript indicates the well width used for the CH4 – 

N2 interaction): 

           (3.5.40) 
             (3.5.41) 

           (3.5.42) 
  (3.5.43) 

Table 3.4 compares the 4 compressibility factors calculated with the 

truncated virial expansion with the one from experimental data for a mixture of 

48.4% CH4 and 51.6% N2 from [12]. The absolute percent deviations between 

experimental values are listed in table 3.5. Not surprisingly, the addition of D(T) 

increases the accuracy at higher pressures/densities and has little effect at low 

pressures/densities. The most accurate approximation is Z3 which uses the more 

accurate cross-species interaction potential for B(T) and C(T); and switches to a 

potential with like width for D(T). All are accurate to less than .5% for all but the 

highest pressures/densities. 
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P/MPa 0.27122 0.49451 0.90055 1.63635 2.9632 5.34369 9.64011 
ZEXP 0.99752 0.99551 0.99191 0.9856 0.975 0.9586 0.9395 
Z1 0.99754 0.99553 0.9919 0.9854 0.9741 0.9553 0.9268 
Z2 0.99742 0.99532 0.99153 0.9848 0.9732 0.9541 0.9268 
Z3 0.99754 0.99553 0.9919 0.9854 0.9742 0.9557 0.9295 
Z4 0.99742 0.99532 0.99154 0.9848 0.9733 0.9545 0.9295 

Table 3.4 – Experimental compressibility factors from [12] compared to the 4th virial expansion 
(3.5.40) – (3.5.43). 

 

P/MPa 0.27122 0.49451 0.90055 1.63635 2.9632 5.34369 9.64011 
Z1 0.0019 0.0017 0.0013 0.017 0.088 0.347 1.36 
Z2 0.0097 0.0191 0.0379 0.08 0.186 0.467 1.35 
Z3 0.0019 0.0017 0.0011 0.016 0.081 0.303 1.07 
Z4 0.0097 0.0191 0.0378 0.079 0.179 0.423 1.06 

Table 3.5 – Absolute percent deviation between experimental compressibility factors from [19] 
and those calculated from the 4 virial expansion (3.5.40) – (3.5.43). 

 For both the pure component and binary mixture compressibility factors 

calculated in [12] provide much better accuracy, but this is not surprising since 

this is the data the coefficients in [12] were derived from. When expanding the 

approximations to mixtures with more than two components, parameters for the 

methods described in [12] and [11] (using equations 3.5.5 and 3.5.6, 

respectively) rely on unary, binary and ternary mixture data for every possible 

combination of components. The method of approximation by a square-well pair 

potential, however, needs only B(T) data for the pure components and binary 

mixtures. The number of parameters needed for an n-component mixture using 

the methods from either [12] or [11] are given by: 

      (3.5.44) 

The number of parameters using the square-well method is significantly smaller, 

given by: 

            (3.5.45) 

 This method could be improved by using more recent (and likely more 

accurate) data for B(T) values than [13]. Higher order virial coefficients could be 

added in with the same method as D(T) with increasing difficulty (although E(T) 
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can be added fairly trivially). This would also allow for the use of Padé 

approximants. The approximation was aided by CH4 and N2 both being 

approximated with a well width of 1.63, so it remains to be seen whether species 

with different well widths perform worse. It also remains to be seen how well this 

approximation will handle mixtures with more components and on a larger 

temperature range. 
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Chapter 4 
Modeling Other Potentials 

 

4.1 MAYER SAMPLING 
 As introduced in section 2.1 Mayer Sampling is a technique to solve 

cluster integrals using importance sampling and free-energy perturbation 

techniques[1]. Mayer Sampling has been used to calculate virial coefficients for a 

variety of potentials[1-7] as well as other cluster integrals[8-9]. 

A typical Monte Carlo simulation samples states of an ensemble, using a 

collection of molecules on the order 103 to 104. In Mayer sampling, however, only 

the molecules involved in the cluster integral are included in the simulation. The 

molecules are allowed to move over all space, but are sampled according to a 

probability distribution (π), and compared to a reference system (denoted with a 

‘o’ subscript) whose cluster integral is known.  

            (4.1.1) 

Instead of directly calculating the integral, the expectation value (weighted 

by π) of the integrand (γ) is found for the system of interest and the reference 

system. The solution to the integral is the product of the known value of the 

cluster integral for the reference system, Γo(T), and the ratio of <γ/π> and  <γo/π> 

(where the angled brackets denote an ensemble average or expectation value).  
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 For virial coefficients, the calculation begins with the number of particle in 

the cluster integral being evaluated (n). Each particle is assigned three Cartesian 

coordinates (x, y, z) to define its position. The distances between all particles are 

calculated and used to calculate all possible f-bonds. The f-bonds are then used 

to calculate the integrand value at this configuration. 

 All cluster integrals contributing to a virial coefficient are calculated in one 

simulation. The integrand (γ) to be calculated is the weighted sum of the 

integrands of the contributing cluster integrals. For example D(T) is the sum of 

three integrals (D1, D2, and D3) with coefficients -3/8, -3/4, and –1/8 

respectively. So: 

 

  (4.1.2) 

The particles are considered unlabeled, so all possible labeling 

permutations are considered. Since the weight given to each integral is the 

number of ways it can be labeled, by summing all possible permutations the 

inclusion of the correct coefficient is ensured. 

Therefore, the contributions are calculated by: 

 

 

 
(4.1.3) 
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because the factor –1/8 is common to both γ and γo it cancels out and can be 

ignored. 

This method is significantly faster than manually changing the labels and 

recalculating D1, D2, and D3 for each, and then weighting them accordingly. In 

that case each calculation of D3 after the first would produce the same result. 

The benefit increases significantly for higher ordered virial coefficients. 

After calculating γ for the initial configuration, γo is calculated in the same 

manner for the ring cluster (D1 here) for the reference system (usually hard 

spheres). Then a pseudo random number generator is used to choose a random 

number of particles (1-n) to move (with equal likelihood of any number being 

chosen). Each trial consist of the chosen particles being moved by a specific 

length, the step size. With each point on the sphere with radius equal to the step 

size around the particle being equally likely to be moved to. The value of γ is then 

calculated at the trial separations. The trial is then either accepted or rejected 

according to the probability distribution. 

The probability distribution (π) is taken to simply be the absolute value of 

the integrand sum for the system of interest, π = |γ|. Each trial is automatically 

accepted if the new probability is larger than the old. If it is smaller, than the ratio 

of πnew to πold is compared to a randomly chosen number uniformly distributed 

between 0 and 1, and accepted if the ratio is larger. The criteria for acceptance 

is: 

       (4.1.4) 

Making the probability of the move being accepted: 

      (4.1.5) 

After each trial the values of γ/π and γo/π are added to a sum from all 

previous trials in order to calculate their ensemble average. Since π = |γ|, γ/π only 

contributes ±1 to its sum, so only the sign of γ need to be checked for the top 

average. The number of trials need not be counted since this too will cancel in 

the final ratio, instead just the sums for γ/π and γo/π are stored (Σγ/π and Σγo/π). 
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After the simulation has run the pre-selected number of trials, M, the value 

of the ratio in (4.1.1) can be calculated. Using the known value for the ring cluster 

integral with a hard sphere potential, Γo(T), Γ(T) is then calculated from (4.1.1). 

Before the averaging begins there is a short equilibration period where the 

step size is changed to achieve 50% acceptance of all trial moves. Increasing the 

step size lowers the acceptance rate, while decreasing the step size increases 

the acceptance. 

By storing the values for Σγ/π and Σγo/π, future simulations for the same 

potential and temperature can be treated as extending the simulation rather than 

average multiple simulations. Rather than calculate the virial coefficient from 

multiple runs as the mean of their solutions, the sums for γ/π and γo/π can be 

added together and treated as data from a longer simulation. This has the added 

benefit of weighting the simulations by their sample size. 

For example, two simulations were run for the Girifalco potential[10] to 

calculate C(T) at T=1930.944K with different sampling sizes (M). 

 

Run M Σγ/π Σγo/π C(T) 
1 2x108 -6089372 -9422756.178 1.7717 
2 1x109 -30389780 -47192200 1.7654 

  

 C(T) is calculated from (4.1.1) with values: 

      (4.1.6) 

 To express the combined result as C(T) we could simply take the mean 

and calculate C(T) = 1.7686. A more accurate value would be the mean weighted 

by the sampling size, C(T) = 1.7665. However, the most accurate result is 

obtained by: 

        (4.1.7) 
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giving, again, C(T) = 1.7665. The benefit of (4.1.7) is most pronounced when the 

virial is closed to zero. For the Girifalco potential at T = 1737.85K, two E(T) 

simulations were run: 

Run M Σγ/π Σγo/π E(T) 
1 5x108 -429972 -46331060 0.27203 
2 5x108 -143712 -45462900 0.09266 

 

Averaging E(T) = 0.18234, but when the virial is recalculated by adding the sums 

from each run together using the E(T) equivalent of (4.1.7), E(T) = 0.18319. 

 Each simulation must have a different number seeded to the random 

number generator to prevent identical configurations from being sampled multiple 

times. 

 

4.2 MAYER SAMPLING USES 
 Calculating virial coefficients is not an end in itself. They can be used to 

test models, predict isothermal compressibilities and other bulk properties, 

construct phase diagrams (as discussed in chapter 3), and investigate the 

closure of the virial series. 

 Statistical mechanical models of real systems often begin with an 

analytical approximation to the pair potential of the real system and attempt to 

derive the bulk properties through analytical or numerical methods. Some 

experimental data from the real system must be used to fit the parameters of the 

model to the real system. A successful model will be able to predict other 

experimentally determined properties. Mayer sampling provides a method to 

determine an equation of state from any pair potential model. 

 The second virial coefficient has long been experimentally measurable 

and has provided data for models to be both fitted with and tested with. Third[11,12] 

(and less directly fourth[13]) virial coefficients have also been determined 

experimentally and successfully compared to their theoretical determined 

coefficients.  

Mayer sampling is particularly useful for complicated potentials, where 

analytical solutions are not possible. The most accurate analytical solutions to 
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thermodynamic properties or virial coefficients are often applicable to simplified 

pair potentials. Mayer sampling can calculate virial coefficients for any model 

whose pair potential can be calculated, including anisotropic potentials. In his 

review on virial coefficients[14], Masters has suggested Mayer sampling may be 

useful in studying ab initio potentials or potentials that do not assume an additive 

pair potential but instead take into account three body interactions. Mayer 

sampling has also been used to calculate virial data for an embedded charge 

protein model as a route to predicting the osmotic pressure[15]. This allows more 

complex models to be developed and tested. 

Recently two works by Schultz and Kofke have further increased the 

usefulness of Mayer sampling. In the first[16] the authors have provided a method 

for interpolating between virial coefficients at different temperatures. Their 

method reduces the error of up to 300% for simple linear interpolation at low 

temperatures to only a few percent (at most) and from 20% to an unperceivable 

level at high temperatures. Since each Mayer sampling simulation is specific for 

a given temperature, this ensures that unique simulations need not be run for 

each temperature of interest, and so greatly expands the use of Mayer sampling. 

In their second work[17] the authors map the regions of the phase diagram 

by the minimum number of virial coefficients needed to describe the system. Or, 

alternatively put, where each truncation is successful. This allows engineers to 

choose the appropriate order for the truncated virial equation of state, but it also 

describes regions where the calculation of higher order virial coefficients is not 

necessary. 

 

4.3 C60 POTENTIALS - GIRIFALCO 

In 1985 Kroto et al.[18] discovered the remarkably stable C60 ball-shaped 

molecule buckminsterfullerene. Since, both experimental and theoretical 

scientists have been interested in this unique molecule. It is of particular interest 

to statistical mechanical scientists because of its large size and near spherical 

symmetry. 
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Indeed the near spherical symmetry of the molecule led Girifalco[19, 20] to 

approximate the intermolecular potential with an isotropic one (hereby referred to 

as the Girifalco potential). In it the carbon atoms are “smeared-out” evenly on the 

spherical surface of the molecules to produce isotropy. The intermolecular 

carbon-carbon potential is assumed to have be a 6-12 potential with attractive (A) 

and repulsive (B) variables: 

            (4.3.1) 

The C60-C60 potential is a function of the distance between their centers 

obtained by integrating (4.3.1) over the surfaces of the two spheres and scaling 

by the square (because there are two molecules) of the density of carbon atoms: 

            (4.3.2) 

where Σ1 and Σ2 are the surfaces of the two molecules and σ is the carbon atom 

density equal to 60/4πd2 for C60 with a radius of d. The resulting Girifalco 

potential is: 

 
(4.3.3) 

In (4.3.3) s = r/d, α1 = N2A/12d6, α2 = N2B/90d12, where N is the number of 

carbons in the generalized fullerene (here 60). The values for the constants are 

calculated by fitting lattice sums to solid-state data. For C60 they are A = 32X10-60 

erg cm6, B = 55.77X10-105 erg cm12 and d = .71 nm.  

 The C60-C60 Girifalco potential is compared to the C-C unscaled and 

scaled in figures 4.1 and 4.2, respectively. 
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Figure 4.1 – Unscaled comparison of the Girifalco potential for C60 – C60 interactions with the 
approximation of C-C interaction. 

 
Figure 4.2 – Comparison of the Girifalco potential for C60 – C60 interactions with the approximation 
of C-C interaction scaled by the radii and minimum potential. 

 The Girifalco potential has been used extensively in the study of 

fullerenes. The complicated form of the potential prevents it from being used with 

some integral equation theory methods, but it is an ideal candidate for Mayer 

Sampling. 

 The second virial coefficient was calculated by Girifalco[20], however, the 

values listed are incorrect. They have been recalculated here using both Mayer 

Sampling and numerical integration in the mathematics program Maple. The 

results are listed in table 4.1. 
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T (K) Girifalco[20] Maple 
Mayer 

Sampling 
490 57,530 168023 166475 
500 51,990 149526 150362 
510 47,210 133716 133315 
520 43,030 120128 120652 
530 39,380 108386 108425 
540 36,160 98190 98157 
550 33,320 89294 88901 
560 30,800 81496 82165 
570 28,560 74633 75162 
580 26,550 68567 68341 
590 24,750 63186 63311 
600 23,130 58394 58254 
620 20,350 50273 50337 
640 18050 43706 43730 
660 16,140 38331 38295 
680 14530 33886 33827 
700 13,160 30171 30275 
725 11,730 26333 26429 
750 10530 23192 23188 
775 9,529 20591 20562 
800 8,674 18415 18389 
850 7,309 15006 14980 
900 6,276 12490 12481 
950 5,473 10577 10578 

1000 4,835 9088 9078 
1050 4319 7904 7903 
1100 3,894 6944 6937 
1150 3,539 6155 6152 
1200 3,239 5496 5498 
1300 2,760 4464 4463 
1400 2,400 3698 3697 

Table 4.1 – B(T) calculation results for the Girifalco potential using Maple and Mayer sampling 
compared to those from reference [20] where the values listed are –B(T) cm3/mol. 

 The results from Maple and Mayer sampling in Table 4.1 show good 

agreement and reproduce the graph of B(T) for the Girifalco potential presented 

by Osman and Khedr[21], although the authors don’t mention the discrepancy with 

the original Girifalco result. Simulations were also done for the third, fourth and 

fifth virial coefficients (figures 4.3 - 4.6). 
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Figure 4.3 – The second virial coefficient for the Girifalco potential in units reduced by the hard 
sphere second virial coefficient, b0 = 2πσ3/3, with σ = 1 nm. 

 
Figure 4.4 – The third virial coefficient for the Girifalco potential in nm6 calculated by Mayer 
sampling. 
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Figure 4.5 – The fourth virial coefficient for the Girifalco potential in nm9 calculated by Mayer 
sampling. 

 
Figure 4.6 – The fifth virial coefficient for the Girifalco potential in nm12 calculated by Mayer 
sampling. 

 All calculations were done over multiple simulations with a sampling size 
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coefficients were used to produce coexistence data from the Maxwell 

construction described in chapter 3. Figures 4.7 and 4.8 show the isotherms 

used for the Maxwell construction plotted as pressure vs. density and pressure 

vs. volume respectively. Figure 4.9 shows the liquid vapor coexistence predicted 

by the virial expansion truncated at D(T), E(T) and using the [2/2] Padé 

approximant from E(T) data. 
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Figure 4.7 – Isotherms for the Girifalco potential predicted by Mayer sampling up to E(T) graphed 
as pressure vs. density. Red squares are the coexistence points calculated by Maxwell 
construction. 

 
Figure 4.8 – Isotherms for the Girifalco potential predicted by Mayer sampling up to E(T) graphed 
as pressure vs. volume. Red squares are the coexistence points calculated by Maxwell 
construction. 
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Figure 4.9 – Liquid-vapor coexistence points obtained through Maxwell construction for the 
Girifalco potential using the virial expansion truncated at D(T), E(T) and a [2/2] Padé 
approximant. 

 The virial expansion over estimates the critical point when compared to 

literature values[22-29] from 1798 – 1976. The critical point is lowered closer by 

adding E(T) and lowered further by using a Padé approximant as can be seen in 

the isotherm at T = 1930 K in figures 4.10 and 4.11. The isotherm is closest to 

the critical point for the Padé [2/2] fluid because the loops are tighter, followed by 

the virial expansion truncated at E(T) and then at D(T). 

 
Figure 4.10 – Pressure vs. density isotherm at 1930 K for three approximations. 
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Figure 4.11 – Volume vs. density isotherm at 1930 K for three approximations. 

The values calculated for the second virial coefficient were also used to 
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Figure 4.12 – Values for b0 of the square well model that match B(T) values of the Girifalco 
potential given ε/k at λ = 1.333 at T = 1738, 1850, 1867, 1899, 2000, 4000, and 8000 K. 

 
Figure 4.13 – Pair potential for the Girifalco potential and as modeled by the square-well 
potential. 

 
Figure 4.14 – Mayer f-bond for Girifalco potential and the square well model at T = 1950 K. 
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 Coexistence data was also calculated for the square-well model using a 

Maxwell construction. Because the solution for the square-well potential is 

independent of temperature, a full coexistence curve can be calculated as 

opposed to coexistence data only being calculated only at isotherms that 

simulations were run at, as is the case in figure 4.9. Coexistence data from 

several virial expansions are displayed in figure 4.15. The critical point here is 

predicted below the ones found in literature.  

 
Figure 4.15 – Coexistence curves for several virial expansions, including Padé approximation, for 
the square-well model of the Girifalco potential. 
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Figure 4.16 – Isotherms for different virial expansions of the square-well modeling the Girifalco 
potential. 

 As stated in section 3.3, the accuracy of the coexistence curves are 

severely limited because they rely on both low- and high-density data and high-

density is susceptible to error when using a truncated virial expansion. 

Comparing the low density pressures calculated from truncated virial expansions 

to the coexistence pressures from [21] (where we use their values for density, but 

predict the pressure) both truncated virial expansions at E(T) for the Girifalco 

potential and the square-well model show good agreement figure 4.17. Higher 

temperatures correspond to higher densities, and so there is some disagreement 

at T – Tc. 

 The virial coefficients for the Girifalco potential have been calculated up to 
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coefficients used could be increased with more sampling, and the accuracy of the 
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Figure 4.17 – Coexistence pressure vs. temperature from Barker-Henderson perturbation theory 
(BH), Gibbs-Bogoliubov variational method (GB), Monte Carlo simulation (N = 600 black circles, 
N = 1500 white triangles), virial expansion truncated at E(T) for the Girifalco potential (blue 
squares), and virial expansion truncated at E(T) for the square-well potential (red squares). 

 

4.4 C60 POTENTIALS – SMITH-THAKKAR 
 Another pair potential to model[30] the C60 fullerene has been proposed to 

replace the Girifalco model discussed in section 4.3. As stated in [30] a 

significant problem with the Girifalco potential is that it behaves unrealistically in 

the repulsive region when r < 7.1nm, even becoming negative. Because this 

represents the overlap of two fullerenes it should be greatly repulsive (positive). 

This may not interfere with molecular dynamic or Monte Carlo simulations 

because this interparticle distance is sterically hindered by an asymptotic 

increase as r → .71+. This is not the case for virial coefficients calculated from 

integration or Mayer sampling. In section 4.3 the Girifalco potential was assumed 

to be the piecewise function (where u(r)G is the original Girifalco potential): 

   (4.4.1) 



 144 

 To solve this problem the authors of [30] have used enthalpy of 

sublimation, lattice constant and compressibility of the face-centered cubic 

crystal for the C60 molecule to construct a pair potential of Smith-Thakkar type. 

The general Smith-Thakkar[31] potential is: 

   (4.4.2) 

From the experimental data it was determined that A = 352.48, B = 6262.60, d = 

.7258, and u(r) is in J mol-1 and r is in nm. This will be referred to as the Smith-

Thakkar potential from here. The Smith-Thakkar potential has a slightly lower 

minimum potential and shorter node compared to the Girifalco potential. The two 

potentials are compared in figure 4.18. 

 
Figure 4.18 – Pair potential for Girifalco and Smith-Thakkar potentials. 
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but again it disagrees with numerical integration done in Maple and Mayer 
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B(T)/cm3 mol-1). 
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Liu, Wang[30] Maple Mayer Sampling 
T B(T) T B(T) T B(T) 

490 226,931 490 227406 490 226794.6345 
500 200,772 500 201249 500 201975.9454 
510 178,535 510 179012 510 180456.5847 
520 159,520 520 159998 520 159265.3983 
540 129,044 540 129523 540 129361 
560 106,067 560 106547 560 106375 
580 88,427 580 88907 580 89270.3 
600 74,659 600 75140 600 75227.6 
650 51,258 650 51740 650 51644.2 
700 37,171 700 37653 700 37922.5 
750 28,129 750 28611 750 28662.1 
800 22,017 800 22499 800 22518.5 
850 17,706 850 18188 850 18163.3 
900 14,554 900 15037 900 15019.3 
950 12,182 950 12664 950 12631.8 

1000 10,349 1000 10831 1000 10817.4 
1050 8902 1050 9384 1050 9376.41 
1100 7737 1100 8219 1100 8230.51 
1150 6785 1150 7267 1150 7273.97 
1200 5994 1200 6477 1200 6480.7 
1250 5330 1250 5812 1250 5812.84 
1300 4766 1300 5248 1300 5256.2 
1400 3861 1400 4343 1400 4339.97 
1500 3172 1500 3654 1500 3650.57 
2000 1300 2000 1782 2000 1781.461753 
2500 480 2500 962 2500 960.9043986 
3000 26.7 3000 508 3000 507.988179 
3038 0.5 3038 482 3038 482.08822 
3039 -0.2 3039 481 3039 481.248799 
4000 -454 4000 25.1 4000 25.195478 

  4077 0.2 4077 -0.043033 
  4078 -0.08 4078 -0.235416 
  4500 -118 4500 -117.726775 

Table 4.2 – B(T) calculation results for the Smith-Thakkar potential using Maple and Mayer 
sampling compared to those from reference [30] where the values listed are –B(T) cm3/mol. 

 Mayer sampling was also performed for C(T), D(T) and E(T) for 

temperatures from 1750 K to 2000 K. All calculations were done over multiple 

simulations with a sampling size from 108 to 109, and had data averaged as 

described in section 4.1. The results are shown in figures 4.19 – 4.22. 
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Figure 4.19 – Second virial coefficient for the Smith – Thakkar potential calculated by Mayer 
Sampling. 

 
Figure 4.20 - Third virial coefficient for the Smith – Thakkar potential calculated by Mayer 
Sampling. 
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Figure 4.21 - Fourth virial coefficient for the Smith – Thakkar potential calculated by Mayer 
Sampling. 

 
Figure 4.22 - Fifth virial coefficient for the Smith – Thakkar potential calculated by Mayer 
Sampling. 

As with the Girifalco potential, the coefficients were used to produce 
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4.23 and 4.24 show the isotherms used for the Maxwell construction plotted as 
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coexistence points. Figure 4.25 shows the liquid vapor coexistence predicted by 

the virial expansion truncated at D(T), E(T) and using the [2/2] Padé approximant 

from E(T) data. 
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Figure 4.23 – Isotherms for the Smith - Thakkar potential predicted by Mayer sampling up to E(T) 
graphed as pressure vs. density. Red squares are the coexistence points calculated by Maxwell 
construction. 

 
Figure 4.24 – Isotherms for the Smith - Thakkar potential predicted by Mayer sampling up to E(T) 
graphed as pressure vs. volume. Red squares are the coexistence points calculated by Maxwell 
construction. 
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Figure 4.25 – Liquid-vapor coexistence data predicted from several equations of state derived 
from Mayer sampling. 

 The critical temperatures predicted from the virial expansions of the Smith  

- Thakkar potential are higher than those predicted from the Girifalco potential. 

Again the critical temperatures predicted from low to high are in the order Padé 

[2/2], E(T), and D(T). Unfortunately unlike the Girifalco potential there has been 

no simulations done to compare results with. This also leaves us with no way to 
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consistent, although a depressed u(r)min for the Smith – Thakkar potential could 
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are compared to the Smith – Thakkar, Girifalco, and Girifalco square-well 

potentials in figures 4.27 and 4.28, respectively. 

 
Figure 4.26 – Values for b0 for a square-well potential with a well-width of 1.333 that match B(T) 
data for the Smith – Thakkar potential plotted against the well depth. 

 
Figure 4.27 – Pair potential models for the C60 fullerene. 
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Figure 4.28 – Mayer F-bonds for the C60 fullerene models at T = 1950 K. 

 The same ratio integration results for the Girifalco square-well model can 

be reused here because they have the same well widths. Coexistence curves 

were calculated for the square-well model derived from the Smith - Thakkar 

potential using a Maxwell construction with results in figure 4.29. Again this was 

done at all temperatures with no addition simulations. Because the well widths 

are the same for the Girifalco and Smith-Thakkar potentials the predicted phase 

diagrams are the same on a reduced units scale (T* = kT/ε, ρ = ρσ3). The square-

well coexistence curves are again below the ones predicted by performing a 

Maxwell construction on the Mayer sampling results. 

 
Figure 4.29 – Liquid-vapor coexistence curves predicted by the square-well potential modeling 
the Smith-Thakkar potential of the C60 fullerene calculated from the Maxwell construction method.  
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Chapter 5 
Future Research 
 

 

5.1 STICKY SPHERES 
 Large macromolecules such as colloids or proteins have similar attractive 

forces as smaller molecules but with much larger repulsive diameters. When 

modeling these forces with the square-well potential, the well-width is 

dramatically reduced since the length of attraction (λσ - σ) remains the same 

while the hard-core diameter is increased (5.1.1 – 5.1.3). 

              (5.1.1) 

     (5.1.2) 

            (5.1.3) 

 A common method for approximating macromolecules with the square-

well potential is to use a very deep, very narrow well[1]. The limit of this potential 

is the Baxter sticky sphere[2]. Introduced by Baxter in 1968 and extensively 

studied since, the Baxter stick sphere model has a hard-core with an infinitely 

deep and infinitely narrow square-well. A remaining question has been if and how 

the thermodynamics of the Baxter sticky-sphere system is approached as the 

square-well potential is narrowed and deepened; an interesting feature of which 

is the disappearance of the liquid – vapor coexistence curve[3]. 

 To explore this, ratio integration was performed on decreasing well-widths. 

Coexistence curves were constructed using Maxwell’s equal area law using the 
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virial expansion truncated at E(T) and augmented with the Carnahan Starling 

equation of state. As in section 3.2, the depth at each well-width is set by 

matching B(T) to a reference system at its critical point, with reference values λ = 

1.85, ε/k = 69.4, and Tc = 151K. Results are plotted in figures 5.1 and 5.2.  

As the well-width decreases, the coexistence curves flatten out and the 

critical point is pushed to a lower T* (although T remains in the same region 

because of the well’s deepening). The next step would be to solve the solid state 

with a perturbation method and determine the solid-fluid coexistence curve. If the 

liquid-vapor coexistence curve is low enough, the solid-vapor curve will be above 

it; effectively eliminating the liquid phase. This has been discussed for the C60 

model in Nature[4]. These results also need to be compared to the 

thermodynamics of the Baxter sticky sphere model. 

 
Figure 5.1 – Coexistence curves for the square-well model. 
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Figure 5.2 – Coexistence curves for the square-well model. 

 

5.2 FUTURE SQUARE-WELL RESEARCH 
 Ratio integration has been performed for D3(T) and E(T) in this work. More 

simulations would increase the values obtained. Higher order virial coefficients 

could be calculated and increase the accuracy of the truncated virial expansion, 

especially when using Padé approximants. Generating higher order virial 

coefficients is necessary to determine if the series converges. 

 A technique for using the square-well potential to model real systems and 

other potentials was developed in section 3.3. This needs to be tested and 

compared to more systems to determine its accuracy. Its usefulness lies with its 

economy of parameters and simulations; however more optimization is needed 

for it to find practical usefulness. 

 In section 3.5 the square-well was used to model binary mixtures. No 

further generalization is needed to study mixtures with more components, but the 

accuracy of the square-well model for such systems needs to be tested. 

The square-well model along with Mayer sampling can be used to test the 

accuracy of other potential models and generate new thermodynamic data in the 

same way as was done in chapter 4 for the Girifalco and Smith-Thakkar 

potentials. One model of particular interest is the Derjaguin/Landau-

Verwey/Overbeek (DLVO) model of colloidal systems, for which Mayer sampling 

has already been used on to generate B(T) data[5]. 
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Virial coefficients in dimensions greater than d = 3 have been calculated 

for the hard sphere potential. Using these results and ratio integration it is 

possible to calculate virial data for the square-well potential in the same manner 

as discussed in chapter 2 for the three-dimension case. 

Perhaps the greatest potential for further research is finding an application 

that can benefit from the simplicity, accuracy, speed, and flexibility of this 

modeling technique.
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