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Abstract of the Dissertation

Algorithms for Optimizing Multiple Routes Through Constrained
Geometric Domains

by
Joondong Kim

Doctor of Philosophy
in

Applied Mathematics and Statistics
(Operations Research)

Stony Brook University
2010

We study optimization problems associated with routing multiple moving
objects through a two- or three-dimensional geometric domain. We focus
primarily on trajectories for moving disks, which can be used to model motion
of objects (e.g., aircraft) that are required to remain separated by certain
distances. Our primary motivation comes from air traffic management. We
examine three main types of problems; for each type, we consider variations,
given hardness results, and present algorithms for approximation or special
cases.

The first type of problem is that of finding multiple routes for moving
objects through a given geometric domain. The moving objects must avoid
obstacles (holes) within the domain. The objective is to maximize the number
of possible routes through the domain, for moving objects that enter through
a source (portion of the boundary) and exit through a sink (portion of the
boundary). We study two variations of the problem: that in which trajectories
of moving objects are required to be straight and that in which trajectories
form a bounded degree tree, such as arises in arriving aircraft that must merge
as they approach an airport.

A second type of problem is to estimate the “capacity” of a domain, defined
to be the maximum number of possible routes through the domain from
source to sink. We are not required to compute the actual routes, but only to
determine the maximum number possible. The exact solution can be found
using a geometric version of the theory of maximum flows and minimum
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cuts in a network. We demonstrate that one can compute an approximate
solution using the notion of geometric spanner graphs, such as the Delaunay
diagram. Further, we perform a sensitivity analysis of capacity estimation,
under probabilistic models of uncertainty in the description of the domain.
This problem arises in applications to air traffic management in the face of
uncertainty in weather forecasts.

The third type of problem involves scheduling the dispatch of the moving
objects, each of which is required to follow a pre-established route. In this
situation, we consider the domain to be decomposed into a number of sub-
regions (e.g., sectors, in the air traffic control scenario), and the goal is to
determine dispatch times for each object such that we minimize the maximum
number of objects ever simultaneously in a single sub-region. Typically, the
dispatch times are constrained to be within some time interval. The problem
is motivated by flight scheduling in order to optimize capacity in the air traffic
control system. We examine the algorithmic complexity, propose algorithms,
and conduct performance experiments for instances using actual and synthetic
air traffic and weather data.
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Chapter 1

Introduction

This thesis addresses some algorithmic problems in computational geometry
related to routing and scheduling. Most of the problems we discuss here are
motivated by challenges arising in the Air Traffic Management (ATM) domain.
In the ATM system, a large number of aircraft move through an airspace.
The aircraft must be properly monitored by one or more air traffic controllers
in order to avoid traffic congestion, delays in departures/arrivals, and, most
importantly for safety, “conflicts” between aircraft, when two aircraft come
too close to each other. In recent years, demands on the ATM system have
increased, as the demand for more flights between more pairs of cities has
risen. As air traffic demands increase, it becomes more important to devise
effective automation techniques for capacity enhancement in the ATM system.
There is limited space that must be effectively managed in order to optimize
its utilization. The problem becomes especially challenging when disruptions,
such as hazardous weather, impact part of the airspace, effectively rendering
it useless, or at least decreasing its capacity. Safety is paramount; thus, all
decisions must err on the side of caution.

In this thesis, we investigate some of the challenges facing the near-term and
far-term future of ATM. In particular, we apply mathematical and algorithmic
methodologies to specific problems that arise in our model of certain ATM
challenges. We utilize some techniques from computational geometry, graph
theory, scheduling and optimization. Also, through our modeling efforts, we
introduce new theoretical problems, which reflect certain aspects of real ATM
problems.

We use mathematical terminology in describing our ATM models. We use
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Euclidean space for the airspace. General airspace is modeled as 3-dimensional
space, with coordinates (x, y, z). However, in many situations the scope of
problem is on ground operations or on flights at a specific altitude; in such
cases, we often find that 2-dimensional Euclidean space, (x, y), suffices for our
model for the problem. While actual 2-dimensional space should be on the
surface of a (near) sphere, representing constant altitude above the earth, for
most of our problems we simplify the model to consider the 2-dimensional
Euclidean plane, ignoring the curvature of the earth. Our 2-D methods can
usually be generalized to apply to a manifold, such as a sphere,

In the case that 2-dimensional obstacles (e.g., hazardous weather “con-
straints”, where aircraft should avoid flying) are in motion in 2-dimensional
space, we consider an additional time dimension and speak of 3-dimensional
space-time, (x, y, t). In the case that our airspace is modeled in full 3-D, moving
aircraft and obstacles are represented in 4-dimensional space-time, (x, y, z, t).
Obstacles within the airspace are typically modeled as polygons in 2-D or
polyhedral regions (e.g., polygonal-based cylinders) in 3-D.

Within the airspace, an aircraft is generally represented by a point at the
center of a moving (2-D) disk or a (3-D) cylinder (“hockey puck”) representing
the protected airspace zone (PAZ) around the aircraft, into which no other
aircraft should venture (an encroachment represents a “conflict”). The PAZ
of an aircraft moving along a trajectory sweeps out a region of space-time
that we often refer to as a “tube” or a “thick path”. The trajectories of real
aircraft are constrained by dynamic considerations (minimum and maximum
speed and acceleration). Further, actual routes often obey certain geometric
properties, such as monotonicity with respect to some direction (e.g., the vector
from origin to destination), straightness, or near straightness (having a few
number of non-sharp turns). These model simplifications for routes may help
to make the problems we study tractable (e.g., in our study of the “pencil
packing problem”).

One fundamental class of problems in the ATM domain is that of computing
routes for aircraft. The problem is, in general, quite hard from an algorithmic
complexity point of view. In particular, even finding a single shortest route
for a point moving among 3-dimensional polyhedral obstacles is known to
be NP-Hard [7]); thus, we do not expect to find efficient (polynomial-time)
algorithms for such routing problems. In order to address the multi-aircraft
routing problems in ATM, we consider simpler cases, such as straight routes
within a restricted airspace, or piecewise-linear routes that lie on a discrete
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network embedded in space.

Of course, straight routes are generally preferred over highly contorted
routes, for efficiency’s sake. (More realistically, we are interested in wind-
optimized routes; we can think of the metric space as being distorted so that
such wind-optimized routes are “straight”.) Thus, we study a specific multi-
aircraft routing problem in the form of an optimal packing problem for cylinders
(“pencils”) in space-time. Chapter 2 addresses this problem by first showing
that even in its simplest form the routing of multiple aircraft (corresponding to
the packing of multiple cylinders) is NP-hard. We complement these negative
results with positive results, including approximation algorithms for maximizing
the number of routes that can be packed, and experimental results on the
performance of our proposed heuristics. Chapter 2 is based on joint work
with Esther M. Arkin, Sándor P. Fekete, Joseph S. B. Mitchell, Girishkumar
Sabhnani and Jingyu Zou; a preliminary version was presented at the Fall
Workshop on Computational Geometry 2009 [1].

In Chapter 3, we address the complexity of the problem of computing
multiple thick paths (air lanes) at a common flight level (or on a manifold)
that are pairwise-disjoint (parallel flows) or that form a “merge tree” for traffic
arriving to an airport or an air portal (cluster of nearby airports). A merge tree
is an embedded directed tree whose edges are thick paths (avoiding weather
hazards and other constraints). At internal nodes of the tree, two (or more)
thick paths come together; this represents flows of air traffic that merge together
to form a single flow out of the node. In typical current practice, the in-degree of
each node is two, representing the fact that controllers typically merge only two
arriving flows together at a time; merging three or more active flows represents
a situation of high “complexity”, which is generally avoided. The merge tree
has a sink node (out-degree zero) at an “arrival fix” at an airport. There are
source nodes (in-degree zero) at locations on the outer boundary of the region
of interest (e.g., the “transition airspace”) where flows of arriving aircraft enter
the region on their way to the sink node at the airport. In Chapter 3, we prove
that it is NP-hard to determine if there exists a merge tree on k sources among
a set of obstacles (polygons having a total of n vertices) in the plane, where k
and n are part of the input. This chapter is based on joint work with Joseph
S. B. Mitchell and Jingyu Zou; a preliminary paper describing these results
was presented at the Fall Workshop on Computational Geometry 2009 [26].
Related work on computing merge trees in practical settings (e.g., when k is
considered to be constant) is investigated in our joint work with Joseph Prete
and Jingyu Zou. [45, 61].
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In ATM, one often wants to be able to estimate the “capacity” of a specified
airspace to accommodate air lanes of traffic flow. The air lanes (thick paths)
must avoid intersection with each other and with the obstacles (e.g., hazardous
weather constraints). In fact, we may require that there be at least a certain
separation between air lanes and between an air lane and an obstacle; such
constraints can be handled by adjusting the widths of the thick paths and by
“growing” the obstacles, using a Minkowski sum with a disk of radius equal to
the required offset. The problem of computing how many thick paths can be
routed through a polygonal domain, entering the domain along a “source” edge
and departing along a “sink” edge, is an instance of the geometric maximum
flow problem, as studied by Mitchell and Strang [36, 56]. The classic theory of
max-flow/min-cut in networks has been extended to geometric domains (the
“continuum”), and efficient (roughly quadratic time) algorithms are known for
computing minimum length cuts, paths that separate source from sink, where
the cost of the path is zero for portions of the path that lie within a hole
(obstacle) of the domain. The further development of this theory for exact
capacity computation and the application of these techniques to the ATM
domain has been investigated in prior related work [43, 38, 29].

In Chapter 4, we study the computation of approximate minimum cuts, in
nearly linear time, using the notion of geometric spanner graphs. A subgraph
G′ of a graph G is a t-spanner for G if for any pair of nodes of G, there exists a
path within G′ joining the two nodes such that the length of the path is at most
t times the length of a shortest path between them in G. We utilize the theory
of geometric spanner graphs to prove results about computing approximate
lane capacity of an airspace, taking into account the integrality of the number
of air lanes that can be routed. In addition to theoretical bounds on the
approximation, we give experimental results that show that the methods are
practical, yielding a very fast method of computing approximate capacity of
an airspace.

Many of the obstacles that arise in our model of routing problems in ATM
are given by weather forecast data, representing regions that are predicted
to contain hazardous weather. Since there can be significant uncertainty
associated with these obstacles, it is important to investigate how sensitive our
capacity estimates (for the number of air lanes that can be accommodated)
are to changes in the weather forecast. In Chapter 5, we conduct a sensitivity
study. Specifically, we model three sources of uncertainty in hazardous weather
constraints that arise from weather forecast data: (1) uncertainty in the
severity of the weather, which may cause the predicted intensity values of a
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convective weather forecast to be shifted up or down, resulting in the associated
obstacles being larger or smaller than nominally predicted; (2) uncertainty in
the translational position of the predicted storms; and, (3) uncertainty in the
timing of the forecast, including the speed with which the storm moves through
the region. We present simple models of each type of uncertainty and provide
experimental analysis of the sensitivity of capacity estimates that are based on
minimum cut computations (considering the capacity to be the number of air
lanes that can be routed through the impacted airspace).

The management of airspace is typically done by considering a partition
of airspace into management units. In North America, this means that the
National Airspace System (the “NAS”) is partitioned into about twenty centers,
each of which is partitioned into about 20-30 sectors, each of which is monitored
by one or more air traffic controllers. The partitions are of three-dimensional
airspace, but they are often organized by altitude for simplicity, particularly
for the regions of airspace that are “en route”, between major airports. Thus,
we often consider the two-dimensional case and examine at a fixed altitude
the set of polygonal regions into which space is partitioned. Within a sector
there can be multiple aircraft at any given time; however, for safety, there
is an upper bound (a “peak aircraft count” or “capacity”) on the number of
aircraft permitted within a single sector at any moment, since the controller(s)
monitoring the sector must be able to communicate with each pilot and be able
to reroute flights as needed, to avoid conflicts between pairs of aircraft. The
capacity of a sector is related to the estimated “workload” that a controller
can handle at any given moment. An estimate of workload is based solely on
the count of how many aircraft are in a sector; more sophisticated notions of
workload are based on the actual traffic patterns, weather events, climbing and
descending aircraft, etc.

In Chapter 6 we study a scheduling problem that arises in the context of
ATM and capacitated sectors, treating the capacity simply as a maximum
aircraft count. By shifting, within limits, the departure times of scheduled
flights, we are able to decrease the maximum number of aircraft scheduled to
be in certain sectors. The problem is to compute a set of shifts in departures
(e.g., delays) in order to minimize the maximum workload (aircraft count) in
any given sector of the NAS. (Here, we consider the partition into sectors to
be fixed.) We study the complexity of the problem and propose algorithmic
solutions that we test experimentally on real data.

This thesis touches on a few of the many fascinating algorithmic problems
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that arise in the study of the air traffic system. Many of the problems generalize
to other areas of transportation research, e.g., for ground-based travel on roads
and rails. Our goal has been to make progress on a few important specific
problems and to suggest future challenges where the techniques of computational
geometry and algorithmic methods can be applied effectively.
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Chapter 2

The Pencil Packing Problem

Abstract

We consider the following three-dimensional packing problem that arises in
multi-body motion planning in an environment with obstacles: Given an
n× n× n regular grid of voxels (cubes), with each voxel labeled as “empty” or
“occupied”, determine the maximum number of “pencils” that can be packed
within the empty voxels, where a pencil is a union of n voxels that form an
axis-parallel strip (i.e., a 1 × 1× n box). No pencil is allowed to contain an
occupied voxel, and no two pencils can have a shared voxel (since they form a
packing). We consider also the dual (covering) problem in which we want to
find the minimum number of empty “covering” voxels such that every pencil is
intersected by at least one covering voxel. We show that both problems are
NP-Hard and we give some approximation algorithms. We have evaluated our
approximation algorithms experimentally and found that they perform very
well in practice.

Keywords: Set Packing Problem, Set Cover Problem, Voxel Cube

This chapter is based on joint-work with Esther M. Arkin of Stony Brook Univer-
sity, Sándor P. Fekete of Braunschweig University of Technology, Joseph S. B. Mitchell,
Girishkumar Sabhnani and Jingyu Zou of Stony Brook University. A preliminary version
was presented at the Fall Workshop on Computational Geometry, 2009 [1]

7



2.1 Introduction

We study a problem, which is motivated by Air Traffic Management (ATM)
domain. For a given piece of airspace, the goal is to determine safe trajectories
for aircraft, with no two trajectories overlapping in space-time, and each
trajectory staying a safe distance from constraints (i.e., regions that are to be
avoided, such as “no-fly zones”and regions that are impacted by hazardous
weather).

Our focus in this chapter is on algorithms to compute straight (or essentially
straight) trajectories in space-time. This is an important first step in any
analysis of the fully general problem. In most cases, too, we desire essentially
straight routes for flights through an airspace, for their efficiency and ease of
control. (More generally, we may desire great circular routes or wind-optimized
routes, which are most fuel efficient.) Further, we expect that our techniques
can be extended to cases in which routes are polygonal and allowed to have a
small number of bends at specified “waypoints”.

While it may seem that determining the existence of straight routes through
a constrained airspace is relatively straightforward, we demonstrate that it is
not trivial, as it is necessary to coordinate the timing and placement of multiple
crossing flows of aircraft on straight trajectories. In fact, even if the aircraft are
flying in just two orthogonal directions (e.g., x-parallel and y-parallel) through
an airspace cluttered with (time-dependent) constraints, we demonstrate that
it is NP-hard to decide if k aircraft can be routed through an airspace in a
given window of time. We complement this negative result with positive results
on the approximation of the optimization problem that seeks to maximize the
number of straight trajectories, and we give experimental evidence that our
proposed heuristics work well in practice. The model we study here is that
of placing “pencils” (cylinders) through a cluttered three-dimensional space,
where the third dimension represents time.

2.1.1 Motivation

If the given airspace is depicted as 2 dimensional Euclidean space, then it could
be approached by Max-Flow/Min-Cut technique[43]; but, finding multiple
paths is generally hard problem. For example, It is known to NP-hard to find
a shortest and obstacle avoiding path in 3D. Therefore, we give additional
restriction to wanted paths, which is straightness.
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Instead of arbitrary multiple of thick path in 2D or tube in 3D, we look for
straight trajectories for moving objects, which are aircraft in airspace. Usually
Airspace is partitioned as manageable size of sub regions, called sectors. Even
non-straight path could be considered as chain of smaller straight paths, so
segments of a path in smaller sectors look like straight.

We create a theoretic problem, which depict following situation in ATM
domain. An ATM controller is required to place multiple aircraft in its respon-
sible sector, so it looks for number of obstacle avoiding and non-overlapping
paths from one side to another side. Following is formal statement of the
problem.

2.1.2 Problem Statement

We are given an n× n× n regular grid, C, of voxels (cubes), with each voxel
labeled as “empty” or “occupied”. An axis-parallel strip of n face-adjacent
empty voxels is called a pencil; it is a 1× 1× n block of n empty voxels that
passes all the way through C, from one facet of the cube to the opposite facet.
Fig 2.1 shows an example with 8× 8× 8 cube.

(a) A Cube consists of occu-
pied and empty voxels

(b) Red voxels are occupied (c) 8 Pencils are packed in
the cube

Figure 2.1: Example of Pencils Packing Problem

Our goal is to pack within C as many pairwise-disjoint pencils as possible.
The problem arises in a multi-agent motion planning problem for moving as
many disks as possible along discrete-orientation straight trajectories among a
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set of possibly moving obstacles in the plane; by lifting to space-time (3D) and
transforming the coordinates, we arrive at the pencil packing problem.

For convenience, we place C aligned to the x, y and z axes. We let cijk be
a binary variable indicating if voxel indexed (i, j, k) is occupied (cijk = 1) or
not (cijk = 0). We let xjk be a binary variable indicating the presence of the
x-parallel pencil at position (j, k) in (y, z)-space. We similarly define variables
yik and zij. Then, the Pencil Packing Problem is defined as follows: For given
cijk ∈ {0, 1}, where i, j, k ∈ N = {1, . . . , n},

maximize
∑

j∈N,k∈N

xjk +
∑

i∈N,k∈N

yik +
∑

i∈N,j∈N

zij

s.t. xjk + yik + zjk + cijk ≤ 1 i, j, k ∈ N

Related to the pencil packing problem is a covering problem, defined as
follows. Let vijk be a binary variable associated with voxel (i, j, k), indicating
if this voxel is part of the cover. The Voxel Cover Problem is, for given
cijk ∈ {0, 1}, where i, j, k ∈ N ,

minimize
∑

i∈N,j∈N,k∈N

vijk

s.t.
∑
i∈N

(vijk + cijk) ≥ 1 j, k ∈ N∑
j∈N

(vijk + cijk) ≥ 1 i, k ∈ N∑
k∈N

(vijk + cijk) ≥ 1 i, j ∈ N

The Voxel Cover Problem is the dual problem of Pencil Packing Problem.

2.1.3 Related Work

Our problems are geometric variants of Set Packing and Minimum Set Cover,
which are known to be APX-hard even if the cardinality of each set is bounded
([18], [20], [39]). One previous work [10] shows that the maximum independent
set in 3-partite graphs is NP-hard and not approximable within 26/25 unless
P=NP. The pencil packing problem can be viewed as a special case of the
independent set problem in 3-partite graphs.
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Figure 2.2: 3 variable gadgets are placed. Straight lines represent possible
pencils and balls represent intersections and end points of pencils

2.2 Hardness

Using reductions from a variation of 3SAT Problem where each clause has
exactly 3 variables [19], we prove the following hardness results:

Theorem 2.2.1. NP-Hardness of Pencil Packing: Let C be a given voxel cube
and k be an integer; then it is NP-complete to determine whether k pencils can
be packed in C.

Proof. Let P be a 3SAT problem instance with a variables and b clauses and
each clause exactly 3 variables in it. We construct a voxel cube C, size of
which is polynomial to a and b, and then show that finding 3a+ 4b pencils (it
is maximum possible number) in C is equivalent to solve P .

For each variable in P , we have a cycle of possible pencils (empty voxel
strip size n) length 6. Fig. 2.2 shows gadgets for 3 variables. Colored straight
lines represent possible pencils. It is possible to pack at most 3 pencils among
6 possible ones in each cycle. There are 2 different ways of packing 3 pencils
for a variable gadget, so we adopt that aspect as variable assignment. One
alternating 3 among 6 possible pencils cycle is true pencils and the rest is false
pencils.

A clause gadget consist with 9 possible pencils like Fig. 2.3. 3 possible
pencils (red in the figure) have a intersection voxel and each is relayed to variable
gadgets with two additional possible pencils (green and purple). Fig. 2.4 shows
a connected structure of a clause gadget and three variable gadgets.
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Figure 2.3: A clause gadget consists of 9 possible pencils.

Figure 2.4: A clause gadget is connected to 3 variables gadgets.

One is able to pack 4 pencils in a single clause gadget and this is the
maximum possible. When there are 4 pencils in a clause gadget, then at least
one of them intersects the variable gadget. Otherwise (without using pink
possible pencils), only 3 pencils could be packed. Therefore, if a clause has
true literal of a variable, then the pink possible pencil should be connected to
the false pencils of the variable.

A variable gadget has 2 voxel layers and a clause gadget has 3 voxel layers
in each dimension. Since one of 3 clause possible pencils is place on the
layer defined by variable possible pencils, one clause gadget introduces 2 new
layers. In order to isolate possible pencils of gadgets, we also place additional
layers as barriers. Hence, 4(a+ b)− 1 layers are required to build C, which is
corresponding to given P .
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If we are able to pack 3a + 4b pencils in C, each variable gadget has 3
pencils in it and each clause gadget has 4 pencils in it. It implies that we are
able to valid variable assignment and satisfy all the clause.

Theorem 2.2.2. NP-Hardness of Voxel Cover: Let C be a given voxel cube
and l be an integer; then it is NP-complete to determine whether l empty voxels
of C exist that cover all pencils of C.

Proof. We use a reduction from 3SAT problem to prove. Let P be an instance
of 3SAT problem with a variables and b clauses. There are exactly 3 variables
in each clause. We construct a voxel cube C corresponding to given P , and
show finding minimum voxel cover of C is equivalent to solve P .

For a variable of P , we construct a cycle of possible pencils in C, whose
length is multiple of 8. The smallest one is illustrated in Fig. 2.5(a). It has two
intersections denoted as T and F, which are exclusively used to express how the
variable participate in clauses. The length of a variable gadget cycle is 8l, there
are l pairs of T and F intersections. In such case, the gadget requires 3l, 3l
and 2l layers in dimensions and the variable is used l times in P totally. Since
a variable gadget is even number cycle, one can cover it with the minimum
number of voxel (which is the half of the cycle length) in exactly 2 different
ways. If that minimum voxel cover contains T intersections, then we regard it
as true assignment for corresponding variable. Otherwise, it is false.

A clause gadget consists of 7 possible pencils shown as blue in Fig. 2.5(d) and
Fig. 2.6. It intersects variable gadgets 3 different possible pencils. Intersecting
point should be T or F intersections and it shows how the variable participate
in the particular clause. If none of intersecting points of variable and clause
gadget are covered by voxels, which cover variable gadget cycles, then there
are 7 possible pencils in clause gadget should be covered by additional 4 voxels.
Otherwise (if any possible pencil of clause gadget is covered by a voxel, which
is originally for variable gadget cycle), then we need 3 additional voxels for
the clause gadget. Each clause gadget requires 0, 1 and 1 voxel layers in each
dimension.

The number of required voxel layer is proportional to the number of variable
participation in all clauses. Since all clause has exactly 3 variables, variable
gadgets require 9b, 9b and 6b voxel layers. And 0, 1b and 1b layers are required
for clauses. If we consider the separation layers, then 20b− 1 is the dimension
of C. If we get voxel cover for all possible pencils in C where the cardinality of
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Figure 2.5: Gadgets for voxel cover problem. All graphics are top-viewed.
Circles represent possible pencils perpendicular to the planes, where different
oriented pencils are placed. (a) a variable gadget form a cycle of 8 possible
pencils (shown as green). Number along the pencils identify the depth of voxel
layers, which have green pencils (b) a variable gadget forms a 16 cycle (c)
generalized variable gadget forms 8l cycle, where l is an integer (d) 3 variable
gadgets (shown as green) interacting with a clause gadget (blue)
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Figure 2.6: variable and clause gadgets in perspective view point
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the cover is 4 · 3 · b+ 3 · b = 15b (which is the minimum possible number), then
we are able to get the solution for P .

2.3 Bound

If we have any solution for the voxel cover problem of a given C, then we
know that at least one pencil is required to cover each voxel in the covering;
thus, any voxel cover solution gives an upper bound for pencil packing. Also.
LP relaxations of the above IP problems give upper and lower bounds on the
optimal solutions. For a given cube C, let OPTp(C), OPTv(C) be the optimal
solution of the Pencil Packing, Voxel Cover Problems, and let LPp(C), LPv(C)
be the LP relaxations. We have the following relationship.

|OPTp(C)| ≤ |LPp(C)| = |LPv(C)| ≤ |OPTv(C)|

For a given cube C, the duality gap is the difference between |OPTp(C)|
and |OPTv(C)|.

2.4 Approximation

A very simple approximation is immediate: Restrict attention to pencils with the
same orientation and pack as many as possible. This gives a 1/3-approximation,
since one of the three orientations has at least (1/3)|OPT (C)| pencils packed
where OPT (C) is optimal solution for given cube C. Fig 2.7(a) shows the idea.

2.4.1 Layered Approach

A better approximation comes from a layered approach. Consider each pair of
orientations of pencils (e.g., x- and y-), and pack each layer (corresponding to
different z-coordinates) optimally, with purely x-parallel or purely y-parallel
pencils, whichever gives more pencils for that layer (which is easy to determine
for each layer, by projecting onto a single axis). This gives a 2/3-approximation,
since, in one choice of orientation pairs, we will be able to obtain at least as
many pencils as OPT has in those two orientations. In fact, unless the number
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(a) Naive Approximation (b) Layered Approach

Figure 2.7: Approximation for Pencil Packing Problem

of pencils of OPT is about the same in all three orientations, this method gives
better than a 2/3-approximation. Fig 2.7(b) gives an illustration example.

We have another 2/3-approximation with using matching, which is essen-
tially same with layered approach. Let consider the tri-partite graph G of
possible pencils. Each partite consists of pencils with same orientation. We
get a bi-partite subgraph Gx of G after removing possible pencils of x-parallel.
Then we are able to get maximum non-crossing pencils from Gx by matching.
They are either y- or z-parallel pencils. Like the layered approach, there are
two other ways of getting subgraph Gy and Gz, so one will take one of them,
which provides the most number of pencils.

The worst performance of layered approach is exactly 2
3
k pencils when the

optimum packing gives 3k pencils. This situation happens when 3k pencils
of optimum solution consists of three k pencils in each x-, y- and z-parallels.
If one of three orientations gives strictly more than k in optimum solution,
let’s assume it is x-parallel without loss of generosity, it implies that one of
orientation gives strictly less than k pencils (let’s assume in z-parallel) in
optimum solution. Then, layered approach in x- and y-parallels gives you
strictly more than 2k pencils at least. It means that worst situation for layered
approach gives exactly same number of pencils exist in optimum solution. The
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Figure 2.8: 2× 2× 2 cube with 2 occupied red voxels. Optimum solution is
shown as 3 light blue pencils, however Layered Approach only gives 2 pencils

smallest example, where layered approach gives 2k of |OPT | is shown in Fig 2.8.

2.4.2 Random Packing

Let’s consider the case, where Layered approach gives exactly 2k pencils when
|OPT (C)| = 3k. We know the number of x-parallel possible pencils is at least
k, otherwise we are not able to get 3k pencils in optimum solution, And also,
the number of x-parallel possible pencils can not exceed 2k, otherwise we may
have more than 2k pencils. Therefore, the number of x-parallel possible pencils
is between k and 2k. Same argument holds for y- and z-parallel pencils.

Following strategy gives strictly more than 2k pencils for any cube C, where
|OPT (C)| = 3k; randomly packing a pencils among x-parallel possible pencils,
then do Layered approach in y- and z-parallels. If the optimum solution has
different number of pencils in each orientation, then Layered approach gives
more than 2k. Otherwise, (if OPT (C) has k pencils in each orientation), then
one can have additional pencil in x- with probability more than half. Because
k among less than 2k pencils are included in OPT (C). This additional pencil
is certainly obtained if one try O(k) times in x-parallel pencils. If one tries
O(
(

2k
r

)
) times of r ≤ k pencils random packing, then additional 2k + r pencils

could be packed.
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Without random pencil packing, we guarantee 2/3|OPT (C)| pencils in worst
case, however we look for better approximation algorithm, which guarantee
strictly better ratio. Since we only use the combinatorial property and no use
geometric property of the problem, one may get other algorithms exploit those
aspect.

2.5 Back to the Applications

The original motivation of this problem comes from ATM system. In a certain
period of time and geometric region, there are demands for routing aircraft
from one side to another side of airspace. Therefore controller needs to assign
airways to aircraft while preventing potential conflicts among them. We discuss
how we apply approximation schemes of the theory to practice.

2.5.1 Different oriented straight route in airspace

Suppose we are looking for routes of aircraft traveling airspace with 3 different
orientations (for example, from East to West, South West or South) with
constant speed. Objective is to maximize the number of routes. It could be
affine transformed into pencil packing problem like Fig 2.9.

In Fig 2.9, for a coordinate p in axis parallel pencil could be transformed
into speed 1 slant pencil with three orientations. x 7→ Ax+ b, where

A =

 1 0 1
0 1 1

1/
√

2 1/
√

2 1

 , b = 0

Since A is non-singular matrix, this affine transformation is invertible.

2.6 Experiments

We have implemented several methods for experimental comparison. In par-
ticular, we implemented a simple 1/3-APX, the layered 2/3-APX, a greedy
algorithm to pack pencils, and a greedy algorithm to cover pencils (for use in
an upper bound). We also used CPLEX to solve an IP formulation, as well
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(a) Axis Parallel Pencils
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(b) Slant Pencils with Different Orientation

Figure 2.9: Translation between two kinds of Pencil Routing. One could be
computed by an affine transformation of the other and vice versa.

|LayeredALG|/|OPT | < 70% < 80% < 90% < 100%
#Cases 1 13 80 261

Table 2.1: Number of pencils from Layered Approach and Optimum Solution

as the corresponding LP relaxation, for both the pencil packing and the pixel
covering problems.

We ran the experiments on 1800 instances. We used grid sizes having
n = 5, 10, 15, 20, 25, 30. We selected voxels to be occupied independently with
probabilities p = 0.2, 0.1, 0.05, 0.01, 0.005, 0.001. We also considered random
clusters of occupied voxels, generated as L1 balls of radius 0, 1, 2, 3, 4 centered
on a randomly selected voxel. For each choice of parameters, we ran 10
randomly generated instances. We found that the 2/3-APX works remarkably
well in practice, most often yielding the optimal solution. We also found that
the duality gap is usually 0. A detailed comparison is given in the full paper.
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Chapter 3

Routing Parallel and Merging
Lanes

Keywords: Tree Routing, Graph Drawing, Air Traffic Management

3.1 Introduction

We study a graph embedding problem that arises in air traffic management
(ATM): Given a planar polygonal domain Ω (with holes), a set of source
terminals {si}ki=1 and a sink terminal t in Ω, and two constants r, ε > 0, find a
(r, ε)-“fat graph embedding” of a tree T in Ω such that the number of source
terminals si that are connected to t by directed paths in T is maximized. Such
a tree T can serve as the “fan-in” tree for merging air traffic flows within the
transition airspace, when multiple flows of arriving aircraft must merge into a
single flow crossing an arrival “metering fix” at the boundary of the terminal
airspace.

We first consider a related problem of routing through Ω a maximum
number of non-crossing paths in a particular drawing of a layered DAG in Ω,
from a set of source terminals {si}ki=1 on the boundary of Ω (the first layer) to
a set of sink terminals {ti}ki=1 on the boundary of Ω (the final layer). We show
that this “parallel lane routing” problem is NP-hard for polygonal domains Ω.

This chapter is based on joint-work with Joseph S. B. Mitchell and Jingyu Zou of Stony
Brook University. A preliminary version was presented at Computational Geometry Fall
Workshop 2009 [26]
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We show that the tree routing problem in a given drawing of a layered
DAG is NP-hard. We then consider the special case (typical in practice) in
which there are a constant number of arcs in each path from si to t. For this
case, we give a polynomial-time dynamic programming algorithm for the tree
routing problem. We have implemented the dynamic programming algorithm
and have performed experiments applying it to terminal airspace instances
in which the obstacles are given by hazardous weather regions or special use
airspace regions.

3.1.1 Motivation

As flows of arriving aircraft enter the “transition airspace”, from en route to
the terminal airspace in the vicinity of an airport, they are merged according to
a fan-in tree, with each merge point having in-degree at most a small constant
(typically 2). The routes must avoid certain “constraints”, which include
restricted airspace and hazardous weather cells. In order for a controller to
have sufficient time to monitor the safe separation of aircraft between merges,
there should be a minimum separation between one merge point and the next
along a route.

Given a transition airspace cluttered with “constraints” (obstacles), and
given a “demand” of desired arrival flows that need to merge to the arrival
metering fix, our objective is to accommodate as many arriving flows as possible,
given the constraints on the fan-in tree. This problem arising in air traffic
management (ATM) motivates a tree embedding problem that we formalize
next.

3.1.2 Problem Statement

The input to our problem is a planar polygonal domain Ω with a set of
polygonal holes, H = {Hi}hi=1, and a total of n vertices. There is a set of k
points {si ∈ Ω}ki=1 designated as the source terminals, and one point t ∈ Ω
designated as the sink terminal. For any r, ε > 0 given, our objective is to
find a (r, ε)-“fat graph embedding” of a tree, T = (V,E), in Ω connecting
all of the source terminals (or as many terminals as possible) to the sink
terminal. For each vertex v ∈ V , its “fat embedding” is an open disk of
radius r, Dr(v) ⊂ Ω. If we let Dε be the open disk of radius ε centered at
the origin, and for any path π in R2, let (π)ε be the Minkowski sum of π and
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Dε, then for every edge e = (u, v) ∈ E its fat embedding is an ε-thickened
path (πe)

ε ⊂ Ω for some reference path πe from Dr(u) to Dr(v). (The path
πe is π(u,v) \ (Dr(u) ∪ Dr(v)), for a path π(u,v) that embeds the edge linking
point u to point v.) We require that the disks {Dr(v)|v ∈ V } be pairwise
disjoint, that the fat paths, {(πe)ε|e ∈ E}, be pairwise disjoint, and that (πe)

ε

intersects only those disks, Dr(u) and Dr(v), that correspond to the endpoints
of edge e = (u, v). It should be noted that the maximum degree of T has to be
bounded by some constant that is O(r/ε) because the thickened paths have to
stay disjoint, even around some disk Dr(v) where they are merging into.

3.1.3 Related Work

Our model of the fat graph embedding is similar to the model of “bold graph
drawing” in [58], except that we allow non-straight edges and require stronger
separation condition than the list of conditions given in [58] for good drawings.
Our problem is also related to the thick edges drawing problem in [15]. For
related work on the routing of thick paths and their application to ATM,
see [2, 43].

3.2 Routing Parallel Lanes

We begin by considering a related problem involving routing of a set of non-
crossing lanes. We are given a particular drawing of a layered DAG, G = (V,E),
in Ω, with {si}ki=1 ⊂ V on ∂Ω the source terminals and {ti}ki=1 ⊂ V on ∂Ω the
sink terminals. Given any integer l ≤ k, we want to decide if there exists in G
at least l paths connecting pairs of source terminals and sink terminals such
that the drawings of the paths are pairwise disjoint. We prove this problem
to be NP-hard using a reduction from INDEPENDENT SET. For any given
graph G and given integer l, we construct an instance of our problem, shown
in Figure 3.1, such that there exists an independent set of size l in G if and
only if there exist at least l non-crossing paths in our instance.
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Figure 3.1: (a) An instance of INDEPENDENT SET, and (b) the corresponding
layered DAG.

3.3 Routing Merging Lanes

In our motivating application, the portion of transition airspace under consid-
eration is typically modeled as a portion of an annulus, corresponding to flights
approaching an arrival metering fix. (Typically, there are four arrival metering
fixes for a major airport.) Specifically, we work with a quadrant-shaped region
Ω = {(r cos θ, r sin θ) ∈ R2|θmin < θ < θmax, rmin < r < rmax}. Our application
also requires that along each flight trajectory the distances between consecu-
tive merge points be at least L and the in-degree of each merge point be at
most a small constant (typically 2). We establish within Ω a set of concentric
circular arcs (“layers”) with radial distance increments of L and place along
each such arc a set of candidate merge points (e.g., uniformly distributed).
These candidate merge points are the locations where internal nodes of the
merge tree (i.e., merge points) may be placed. We connect two merge points
on consecutive layers with an edge if there is a feasible (obstacle-avoiding)
thick route between them. (For simplicity, we consider only straight routes
in the current implementation.) The resulting graph is a layered DAG (with
a particular drawing), with layers corresponding to the nodes on the circular
arcs (layers).

By a variant of the hardness construction for parallel lane routing (Fig-
ure 3.1), it is NP-hard to decide if there exists a non-crossing tree that routes
at least l of the source terminals {si} to the sink terminal t in the drawing of
the layered DAG (assuming no transitions between embedded edges can occur
except at their endpoints).

In practice, it may be that the number of layers in the DAG is bounded;
such is the case for our ATM application, since there is a small upper bound
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(approximately 5) on the number of merges points along any one arrival route,
and, further, (rmax − rmin)/L is expected to be bounded. In this case, we give
an exact algorithm for computing an arrival merge tree, based on dynamic
programming. The algorithm’s running time is polynomial in the input size, n
(the number of candidate merge points and the number of vertices describing
the domain Ω), for fixed number of layers (which appears in the exponent of n
in the running time). Figure 3.2 shows an example of a merge tree computed
with our software tool, the “Tree-Based Route Planner” (TBRP). The TBRP
allows for various objectives in the optimization, including maximizing the
number of source terminals linked to t and minimizing the lengths of the routes
from sources to sink.

Figure 3.2: An example output of the implemented algorithm.
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Chapter 4

Approximating Maximum Flow
in Polygonal Domains using
Spanners

Abstract

We study a maximum flow problem in a polygonal domain P : Determine the
maximum number of disjoint “thick” paths (of specified width w) through P
from a source edge to a sink edge of P .

We show that Euclidean spanners offer a means of computing approximately
optimal solutions. For a polygonal domain with n vertices and h point holes, we
give a 1/2-approximation algorithm that runs in time O(n+ h log(nh)); this is
to be contrasted with the known exact methods that take time O(nh+n log n).
Further, we show experimentally that using a spanner (e.g., Delaunay graph)
yields approximation ratios very close to one.

Keywords: Approximation; Delaunay diagram; Spanner; Critical graph; Air
traffic management

This chapter is based on joint-work with Joseph S. B. Mitchell and Jingyu Zou of
Stony Brook University. It was appeared in Proceedings of the 21st Canadian Conference on
Computational Geometry(CCCG2009) [25]
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4.1 Introduction

We consider the problem of routing multiple disjoint “thick” paths through
a polygonal domain in the plane. The problem arises in various application
domains, including VLSI wiring, robotics, sensor networks, and air traffic
management (ATM). Our motivation comes from an ATM application in which
the goal is to compute the “capacity” of an airspace: find the maximum number
of disjoint “air lanes” avoiding hazardous weather and other “constraints”
(obstacles) within an airspace of interest (e.g., a “flow-constrained area”) [28, 31].
The goal is to provide computer-automated decision support tools to perform
“capacity estimation” on an airspace to determine its maximum throughput,
which measures how constrained the airspace is.

4.1.1 Problem Formulation

The input to our problem is a polygonal domain P , consisting of an outer
polygon and a set H of h holes. Let n denote the total number of vertices of P .
In this paper we focus on the special case in which H consists of a set of point
holes; thus, the outer boundary of P is a simple polygon with n− h vertices.
This is the special case that arises in our ATM application, since the weather
data is typically given as a set of points (pixels) at which there is hazardous
weather predicted,

Two edges, Γs and Γt of ∂P are designated as the source and the sink. A
w-thick path, or lane of width w, is the Minkowski sum of a usual (“thin”)
source-to-sink path and a disk of radius w/2 centered at the origin. (Refer to
[37] for more definitions and background.) We consider the parameter w to be
fixed and refer to a w-thick path simply as a thick path. Our goal is to compute
(approximately) the maximum number of pairwise-disjoint thick paths within
P from Γs to Γt.

4.1.2 Related Work

Algorithms for computing maximum flows and minimum cuts in the continuum
(2D geometric domains) were first studied in [36]. Recent results have examined
the problems of minimizing path lengths for multiple thick paths (minimum-
cost flow) [37] and routing thick paths in dynamic environments (e.g., moving
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weather systems) [2]. See also [42]. The application of max-flow techniques in
ATM is addressed, e.g., in [28, 31].

Related to our experiment where we study the stretch factor of Delaunay
graph under the “rounded” Euclidean metric, [16, Section 6] studied the average
and maximum stretch factor, among other spanner properties, of several well-
known geometric spanners for random point sets.

4.1.3 Summary of Results

Using the propagation algorithm of [36], appropriately modified to handle
discrete thick paths (versus continuous flow fields), our optimization problem
can be solved exactly in time O(nh+n log n) (see [2, Thm. 2.1]), for a polygonal
domain with h polygonal holes, having a total of n vertices. In this paper
we propose a simple 1/2-approximation algorithm for the case that P is a
polygonal domain with point holes. Our algorithm searches a Euclidean spanner
graph for an approximate min-cut, in time O(n + h log(nh)). We show that
this results in an approximation for the problem of maximizing the number of
disjoint thick paths. We also conduct experiments, using the Delaunay graph
as spanner, to validate the effectiveness of the approximation in practice on
both randomly generated data and actual weather data.

4.2 An Approximation Bound

Let B (resp., T ) be that portion of ∂P counterclockwise between Γs and Γt
(resp., between Γt and Γs). We define G = (V,E) where V = H ∪ {T} ∪ {B},
E = {(i, j)|i, j ∈ V, i 6= j}. The weight of edge (i, j) is c(i, j) = bd(i, j)/wc,
where d(i, j) is the (minimum) Euclidean distance between i and j, and w
is the path width (thickness). This graph G is called the thresholded critical
graph. Let GH be the subgraph of G induced by nodes H. Finally, we let Gε

H

denote the subgraph of GH whose edge set consists of the union of the set of
Delaunay edges of H and the edges of a Euclidean (1 + ε)-spanner of H. (Edge
weights remain as in G.)

Proposition 4.2.1. The function f(x) = b(1+ε)xc
bxc , x > 0 is bounded above by

2 when ε ≤ 0.5.
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Proof. Note that 1 + ε ≤ 3/2 and that f(x) is a step function whose value
changes only when x = n or x = n

1+ε
, for n ∈ Z+.

When x = n, n ∈ Z+, f(x) ≤ (1+ε)n
n

= 1 + ε ≤ 3/2.

When x = n
1+ε

, n ∈ Z+, f(x) = bnc
bn/(1+ε)c ≤

bnc
b2n/3c . Let g(n) = bnc

b2n/3c . If

n = 3k, g(n) = 3
2
. If n = 3k− 1, g(n) = 3k−1

2k−1
and it achieves its maximum of 2

at k = 1. If n = 3k + 1, g(n) = 3k+1
2k

which also achieves its maximum of 2 at
k = 1. Thus f(x) ≤ 2 in this case.

Lemma 4.2.2. For ε ≤ 0.5, Gε
H is a 2-spanner for GH .

Proof. It suffices to show that for any edge (u, v) in GH , there is a path from
u to v in Gε

H of length at most 2 · c(u, v). There are two cases to consider,

Case 1: c(u, v) = bd(u, v)/wc = 0. Since Gε
H includes Delaunay edges,

we know from [6] and [14] that there exists a path π1 in Gε
H with vertices

u = v1, v2, . . . , vk = v such that ∀i, d(vi, vi+1) ≤ d(u, v). Since c(u, v) = 0
implies that d(u, v) < w, we have that ∀i, c(vi, vi+1) = 0, so the path π1 has
zero length in Gε

H and the claimed stretch factor automatically holds.

Case 2: c(u, v) > 0. Since Gε
H contains an Euclidean (1 + ε)-spanner, there

exists a path π2 in Gε
H such that

∑k−1
i=1 d(vi, vi+1) ≤ (1 + ε)d(u, v). Thus, the

stretch factor of Gε
H is at most

∑k−1
i=1 c(vi, vi+1)

c(u, v)
=

∑k−1
i=1 bd(vi, vi+1)/wc
bd(u, v)/wc

≤ b
∑k−1

i=1 d(vi, vi+1)/wc
bd(u, v)/wc

≤ b(1 + ε)d(u, v)/wc
bd(u, v)/wc .

In Proposition 4.2.1, we show that if f(x) = b(1+ε)xc
bxc and ε ≤ 0.5, then

f(x) ≤ 2, for x > 0.

Theorem 4.2.3. The maximum number of disjoint w-thick paths in a polygonal
domain with n vertices and h point holes can be 1

2
-approximated in time O(n+

h log(nh))
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Proof. Gε
H is constructed in time O(h log h), the time needed to build the

Delaunay graph or a (1 + ε)-spanner (with ε = 0.5 and O(h) edges) for h
points. We then construct a graph Gε from Gε

H by adding nodes for B and
T , and linking these nodes to each point of H. We compute the distance
from each point of H to the polygonal chains B and T in time O(log n) per
point of H (after spending time O(n) to construct the Voronoi diagrams, and
a corresponding point location data structure, of the simple chains B, T [9]).
This augmented graph Gε has O(h) edges and is a 2-spanner for the critical
graph G.

By the continuous max-flow min-cut theorem in [2, 36, 56], we know that
the maximum number, OPT , of thick paths from source to sink is equal to the
length, |πG|, of a shortest path from B to T in G. Since Gε is a 2-spanner for
G, we know that the length, |πGε|, of a shortest B-to-T path in Gε is at most
2|πG|: OPT ≤ |πGε| ≤ 2 ·OPT , i.e., (1/2) ·OPT ≤ (1/2)|πGε| ≤ OPT . Thus,
(1/2)|πGε| is a 1

2
-approximation to the maximum number of source-to-sink thick

paths.

Our algorithm takes time O(h log h) to build Gε
H , O(n+h log n) to build Gε

from Gε
H , and another O(h log h) to search for a shortest path in Gε. Altogether,

the time bound is O(n+ h log(nh)).

4.3 Experiments

We did experiments based on computing a specific spanner – the Delaunay
graph of the points H. The Delaunay graph is a Euclidean spanner, with
stretch factor known to be between 1.581 (> π/2 [5]) and 4π

3
√

3
≤ 2.42 [22].

Theorem 4.2.3 tells us that if we use a spanner with stretch factor at most 1.5
(ε = 0.5), then our approach gives a 1

2
-approximation. Since the Delaunay graph

does not have the required property, we do not have a theoretical guarantee
that the Delaunay-based results give a 1

2
-approximation; however, we will see

that, in practice, the Delaunay performs very well. In the experiments here,
we report only our experience with the Delaunay spanner; further experiments
are underway with other spanners.

We use a unit square box as the outer boundary of the polygonal domain P ,
and use two types of input data for the point holes H: (1) uniformly generated
points, and (2) real weather data, scaled to the unit square. For both sets
of input data, we examine the relationship between the stretch factor (ratio
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|πGε|/|πG|) as a function of the “average density” of the point set H. We define
the average density of the points H to be the average edge length in the nearest
neighbor graph of H; the smaller this average edge length is, the denser the
point set is.

In the experiments with random point sets, we vary the number, h, of
points and the lane width, w.

Figure 4.1: Average and maximum stretch factor (SF) and length of min-cut
(MC) as a function of lane width w for random points.

Figure 4.2: S
tretchAverage and maximum stretch factor (SF) and length of min-cut (MC)

as a function of the number of random points.

For the experiments with varying lane width w, we fix the number, h = 500,
of random points and vary w from 0 to 0.4. For each w, we generated 100
random instances and compiled simple statistics – the average and the maximum
stretch factor. Figure 4.1 shows that the stretch factor is usually very close to
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1. Even the maximum stretch factor (over all 100 instances) is low when the
min-cut length is large. For example, if the min-cut length is greater than 20,
then the maximum stretch factor is always less than 1.1. This means that the
difference between exact min-cut length and our approximation is less than 2
even in the worst instance.

For the experiments with varying number h of points, we fix the width,
w = 0.01, and vary h from 0 to 1000 in increments of 10. For each h, we
generated 100 random instances and recorded the average and maximum stretch
factor. Figure 4.2 shows that stretch factor is close to 1 in most cases. The
stretch factor is close to 1 even when w is relatively small (i.e., the min-cut is
large).

h min-cut avg dist stretch factor
Set1 576 179 0.0039 1.0056
Set2 502 182 0.0039 1.0110
Set3 430 184 0.0048 1.0163
Set4 752 177 0.0038 1.0113
Set5 820 180 0.0028 1.0000

Table 4.1: Results for real weather data with w = 0.005. Here h is the number
of point obstacles and “avg dist” is the average nearest neighbor edge length.

Table 4.1 shows the stretch factor data for real weather data. Since real
weather tends to have clusters of weather points (pixels), the average nearest
neighbor distance is much smaller than for random point sets; accordingly, we
set the lane width to be very small, w = 0.005. (For w = 0.05, we found that
the stretch factor is always 1.) The results show that the stretch factor is very
close to 1, even if the average nearest neighbor distance is comparable to w.

4.4 Conclusion

Our goal has been to explore the use of spanners in computing approximations
for maximizing the number of pairwise disjoint thick paths that can be routed
through a polygonal domain in the plane. The advantage of using a spanner
(e.g., Delaunay graph) for computing minimum cut values approximately is that
it gives a linear space and near-linear time simple algorithm in place of the far
more complex exact O(nh+ n log n)) algorithm, or the naive O(n2) algorithm
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that is easiest to implement. We have seen experimentally that the Delaunay
graph does very well in most cases; thus, the Delaunay-based approximation is
likely an effective and practical means of doing capacity estimation for ATM.

The exact min-cut problem is a shortest path problem in the plane that
may be solvable in O(n log n) exactly, e.g., by a variant of the continuous
Dijkstra paradigm that solves obstacle-avoiding shortest paths in O(n log n)
time. Also, we are examining possible improved approximations possible using
spanner techniques, and we are now developing algorithms to produce a set of
disjoint thick paths that achieve the capacity determined by our approximation
algorithms. Finally, we are doing further experimentation with other Euclidean
spanner graphs, with stretch factors approaching 1.
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Chapter 5

Sensitivity of Capacity
Estimation Results subject to
Convective Weather Forecast
Errors

Nomenclature

ATM Air Traffic Management
CWAM Convective Weather Avoidance Model
DST Decision Support Tool
NAS National Airspace System
NextGen Next Generation Air Transportation System
nmi nautical miles
NWS National Weather System
pdf probability distribution function
RNP Required Navigation Performance
TFM Traffic Flow Management
VIL Vertically Integrated Liquid

This chapter is based on joint-work with Joseph S. B. Mitchell and Jingyu Zou of Stony
Brook University and Jimmy Krozel of Metron Aviation Inc. It was appeared in AIAA
Guidance, Navigation, and Control Conference 2009 (GNC2009). [23]
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5.1 Introduction

In the design of key components of the Next Generation Air Transportation
System (NextGen) [57, 55, 40, 41], there is an emphasis on weather assimilated
into the Decision Support Tools (DSTs). These NextGen DSTs will automate
many aspects of the control of the National Airspace System (NAS). Since Air
Traffic Management (ATM) decisions must be made ahead of time, the integra-
tion of weather into DSTs must take on the form of reasoning about weather
forecasts and their inherent uncertainties; furthermore, one must transform
the weather forecast into resulting ATM impacts in order to understand the
relationship between weather forecasts, their uncertainties, and the robustness
of ATM decisions to such uncertainties. A critical component of ATM impact
assessment is to estimate the capacity of an airspace subject to hazardous
weather constraints ahead of time, in order to set up Traffic Flow Management
(TFM) plans for scheduling and routing traffic demand up to but not exceeding
that capacity estimate.

In this paper, we investigate the estimation of capacity for en route airspace
and transition airspace. For en route airspace, we consider level flight. For
the transition airspace, we consider a quadrant of airspace within the annulus
from roughly 200 nmi away from the airport, where most aircraft are en route
and beginning their top of descent, to approximately 40 nmi from the airport,
where traffic transitions into the terminal airspace. Our goal is to understand
how sensitive the capacity estimate is to weather forecast uncertainties. This
has a significant impact on requirements for weather forecast update rates
(in order to monitor the uncertainties and their impacts), and how DSTs
should transition between strategic plans (where uncertainties may require
probabilistic reasoning) and tactical plans (where uncertainties are smaller and
a more deterministic view of the ATM situation can be established).

5.2 Related Work

In previous work [29, 31], we have described many aspects of the literature
related to capacity estimation. We refer the reader to those papers for a more
detailed review of related work. We mention here briefly a few references that
describe recent trends in this research area. Song et al. [52, 53, 51] study the
problem of predicting sector capacity for sectors in today’s NAS through a
pattern recognition technique recognizing the traffic flow pattern is included
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in their technique. Song et al. [54, 51] have also performed a comparison of
three techniques for capacity estimation that compares and contrasts their
performance, including the performance of the min-cut technique that we use
in this paper. We note that [59] studies a related problem of characterizing
the uncertainty in demand estimates for TFM applications.

Our previous papers [38, 29] establish a theoretical analysis of the airspace
capacity as a function of hazardous weather constraints, independent of work-
load considerations and independent of today’s jet routes. The analysis is based
on maximum flow concepts in geometric domains, based on the min-cut theory
given by [36, 43, 56]. Our work is in support of the design of new roles for
controllers and pilots in the NextGen, and addresses the maximum throughput
of an airspace, assuming that workload is not a constraint.

In order to set up the capacity estimation problem, researchers must define
aviation weather hazards for the airspace being analyzed. For the transition
airspace, this typically includes convection, turbulence, and icing hazards (see
for instance, the surveys [30, 27]). For convective weather constraints (the
hazard with greatest aviation impact), researchers have been studying pilot
behavior during convective weather events to build pilot deviation models
[48, 47, 34]. Some researchers threshold the weather severity at National
Weather Service (NWS) Level 3 or above to define the weather hazard [48, 47];
however, they note that pilots are more likely to penetrate NWS Level 3 or
above as they get closer to the metering fixes of an airport and there is pressure
to land the aircraft. Others invoke the Convective Weather Avoidance Model
(CWAM) [8], which considers both the reflectivity (i.e. intensity) of the weather
and the aircraft clearance above the echo tops of a severe weather cell. Other
papers focus on “route availability” given weather hazards that may interfere
with traffic on selected jet routes [13, 34].

5.3 Approach to the Sensitivity Analysis

Next, we discuss capacity estimation algorithms that allow us to estimate the
capacity of an airspace. Then we introduce our method of generating a set of
weather forecast errors relative to a nominal “truth” weather forecast. Given
these erroneous weather forecasts, we use our capacity estimation technique
to transform each erroneous weather forecast in the sensitivity study into an
ATM impact. Finally, we characterize the ATM impacts in terms of probability
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distribution functions (pdfs).

5.3.1 Capacity Estimation Technique

Our solutions are based on the assumption that permeability of an airspace
that is, the number of well-separated routes that can be safely flown through
that airspace is a reasonable estimator of (e.g., proportional to) capacity. This
is not strictly true for current operations since the limiting factor is often
based on controller workload the ability of an air traffic controller to monitor
and control multiple flights. However, in NextGen, we envision this factor
becoming less important as computer-assisted ATM DSTs become prevalent.
Therefore, it is important to investigate capacity values for an airspace in terms
of their permeability, which can become the limiting factor in hazardous-weather
situations.

The theory of capacity estimation for static deterministic constraints is
well established [36, 38, 29]. By applying the continuous max-flow/min-cut
theory to a two-dimensional (2D) domain, we can determine an upper bound
on the airspace permeability for a given flight level or on a two-dimensional
manifold (e.g., a surface determined by a descent profile for flights arriving at
an air portal). While capacity is a function of more than simply permeability,
the permeability of an airspace is a strong determining component of capacity,
since the permeability is a direct measure of the number of air lanes that
can be flown as well as an indirect measure of the likelihood of any given
air lane being impacted by hazardous weather. While real weather is neither
static nor deterministic, the static-deterministic case for weather constraints
represents an important basis in the development of solutions to more general
capacity estimation problems. By integrating capacity estimates across the set
of 2D manifolds that could reasonably be used for arrivals and departures to
a metroplex, we can develop an estimate for capacity of that metroplex as a
function of weather independent of runway capacity.

A max-flow/min-cut theory for capacity estimation gives a provable metric
for throughput analysis, giving upper bounds on the capacity for an airspace, as
a function of time. For long-term planning, we are able to provide probability
distributions of the capacity for some portion (e.g., a quadrant) of a metroplex,
or the capacity of any specified en route airspace (e.g., a rectangular flow-
constrained area).

We briefly review the max-flow/min-cut theory for polygonal domains, as
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(a) Continuous polygon domain (b) Continuous annu-
lus domain

Figure 5.1: Theoretical capacity of a continuous flow field is determined by the
min-cut

originally studied in [56, 36]. We consider a simple polygon P (Figure 5.1).
Two boundary edges, s and t, of the polygon are designated as the source
and the sink. A flow f in P is a vector field. The constraints H1, . . . , Hk are
pairwise-disjoint simple hazard polygons that lie fully inside P ; the flow is not
allowed to pass through any of the constraints, i.e., for any point x within a
constraint, f(x) = 0. The polygon P is assumed to be uniformly capacitated,
i.e., the length of the flow vector must nowhere exceed 1. The value of the flow
is defined as an integral of the normal component, f − n, over t. There are no
sources or sinks inside P; i.e., for any x in P , div f(x) = 0.

The max-flow problem is to find an s-t flow of maximum value. A cut in
P is a partitioning of the polygon into two parts (shaded blue and green in
Figure 5.1) so that s is in one of the parts, and t is in the other. The capacity
of a cut is the length of the boundary (a magenta line in Figure 5.1) between
the parts, where only the part of the boundary that is interior to P (and not
on the boundary of P or within a constraint) is included in the length. We use
the term min-cut to refer to the path(s) within P that comprise the boundary
of the cut (magenta in Figure 5.1 and Figure 5.2), as well as to refer to the
capacity (length) of the min-cut.

In capacity estimation, we are concerned with computing a min-cut in a
polygonal domain, since it represents the maximum theoretical capacity of an
airspace with respect to a given set of constraints [29, 31]. The source and
sink edges, s and t, split the boundary of P into two polygonal chains, which
we denote by B and T (Figure 5.1). If s and t represent the west and east
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boundaries, then B and T are the bottom and top. The min-cut is computed
using the critical graph, which we describe in detail in previous publications
[29, 31].

As shown in Figure 5.2, the min-cut determines the bottleneck for TFM: the
length of the min-cut determines the number of air lanes of constant Required
Navigation Performance (RNP) that can be routed from source to sink across an
en route airspace (Figure 5.2(a)) or a transition airspace (Figure 5.2(b)). The
max-flow/min-cut theory applies to general shapes of airspace and choices of B
and T on the boundary of a region of interest. For en route airspace, we consid-
ered a 100nmi-by-100nmi square-shaped region, at two different orientations,
each with two different choices of source/sink, resulting in flows at headings 0 ◦

(S to N), 45 ◦ (SE to NW), 90 ◦ (E to W), 135 ◦ (NE to SW); see Figure 5.3(a).
For transition airspace, our study considered a 90-degree quadrant-shaped tran-
sition airspace, within an annulus between 40 and 200 nmi from the center of a
metroplex, with source arc at 200 nmi and sink arc at 40 nmi, and orientations
of flows at 0 ◦, 45 ◦, 90 ◦, 135 ◦, 180 ◦, 225 ◦, 270 ◦, 315 ◦, corresponding to arrival
flows from the NE, N, NW, W, SW, S, SE, E, respectively.

(a) En route Airspace (b) Transition Airspace

Figure 5.2: The relationship between the Min-Cut and the number of air lanes
that can permeate an airspace

5.3.2 Dynamic Weather

Weather forecasts give a sequence of weather constraints over a time horizon.
For each time slice of the forecast, we could apply our capacity estimation
algorithm for static weather, thereby obtaining capacity estimates for each
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(a) En route Airspace: 100× 100 nmi square, with four flow direc-
tions.

(b) Transition Airspace, at various orientations, within an annulus
(from 40 to 200 nmi from center), with eight flow directions for
arriving traffic.

Figure 5.3: Airspace regions at various orientations for different directions of
flow
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static time slice. However, the capacity estimation problem in the presence of
dynamic constraints is a harder problem, which cannot be solved simply by
applying the static analysis on a slice by slice basis. This is discussed in further
detail in our previous capacity estimation work [31]. See also [44, 46] for related
algorithms for finding routes through dynamic weather environments; these
algorithms comprise the Flow-Based Route Planner, which can also be used for
capacity estimation of a weather-impacted airspace with time-varying weather.
Results of a more theoretical nature appear in the recent work of Arkin et. al
[2].

5.3.3 Generation of Weather Errors

The errors inherent in convective-weather forecasts can be measured and
quantified on several dimensions, including the error in time at which the
weather arrives, coverage (intensity), and the error in its position. Shown in
Figure 5.4 is an example of a 400 x 400 nmi region, with the convective weather
map shown for variations in time (a), shifts in intensity (b), and variations in
position/translation (c). In our experiments, we generate synthetic ensembles
of forecasts by varying the time, intensity threshold, and position of a given
nowcast (actual observed weather). (Similarly, our same method applies to
generate ensembles of forecasts from a single deterministic forecast.)

In particular, we generated “∆ time” ensemble forecasts for time t by using
the (single) nowcast at time t+ ∆t, for a random variable ∆t, modeled with
a (truncated) Gaussian distribution. We generated “∆ threshold” ensemble
forecasts for time t by using the (single) nowcast at time t but setting the
intensity threshold for hazardous weather at level W, a random variable,
modeled with a (truncated) Gaussian distribution. Different values of W yield
different levels of coverage of the hazardous weather constraints. Finally, we
generated “∆ translation” ensemble forecasts for time t by using the (single)
nowcast at time t but shifting (translating) the nowcast map by longitude and
latitude shifts modeled as a (truncated) Gaussian distribution. See Table 5.1
for parameters used in our experiments.

degree differences of latitude (resp., longitude) around Chicago area correspond to about
60 (resp., 32) nautical miles.
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(a) Time errors of -30 minutes, 0 minute, and +30 minutes

(b) Threshold errors, with VIL thresholds set as 2, 3 and 4

(c) Translation errors of -1.0 deg in both latitude and longitude, no error, and
+1.0 deg in both latitude and longitude

Figure 5.4: Weather forecast errors characterized in terms of timing, thresh-
old/intensity, and translational errors. The nominal weather (shown in the
middle column) is at 04/30/2009 14:30:00 Z.
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Error parameter: ∆ time ∆ threshold ∆ translation
Granularity 5 minutes 0.2 0.2 degrees
Maximum 120 minutes 3.0 2.0 degrees
Std dev 60 minutes 1.5 1.0 degrees

Table 5.1: Error parameters used in experiments

5.3.4 Experiment Setup

We select several days of weather data to represent different weather organi-
zations, each having active convective weather around the Chicago area. For
each day, we select a specific time moment to be examined; the days and the
particular times were selected based on there being highly active and significant
convective weather at the moment. Figure 5.5 are the snapshots of weather
data at each time. We use 41.98 degree latitude and -87.91 degree longitude as
the center (Chicago O’Hare Airport (ORD)) and VIL value 3 (for comparison,
NWS level 3 is VIL value 3.47) as the threshold criterion for our experiments:
regions have VIL value above 3 are considered to be constraints.

For each sample point, we perform experiments on two types of regions
for capacity estimation. The first is a 100nmi x 100nmi square-shaped region
centered on ORD for evaluating the capacity of en route airspace, and the
second is a quadrant-shaped region for evaluating the capacity for one quadrant
of transition airspace for arrivals leading to the Chicago metroplex area. The
quadrant of airspace has 40 miles inner annulus and 200 miles outer annulus and
is 90 degrees in angular extent. See Figure 5.2 for these general shapes. Since
the capacity depends on the direction of the flow, we use several orientation
angles for each choice of airspace. Angles 0, 45, 90, and 135 degrees are used for
the square en route airspace (note: symmetric angles have the same values), and
angles 0, 45, 90, 135, 180, 225, 270, and 315 degrees are used for the quadrant
transition airspace. Refer to Figure 5.3. Table 5.2 shows the capacity values
based on actual weather. Capacity values we get from our max-flow/min-cut
method are integral, since they are the maximum possible number of lanes.
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Data/Time (Z)
Snapshot

at -30 minutes at Time at +30 minutes

4/24/2009 03:00

4/27/2009 21:30

4/30/2009 14:30

4/30/2009 14:00

6/1/2009 10:30

6/2/2009 21:00

6/1/2009 20:35

Figure 5.5: Weather Snapshots of Sample Data
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Date/Time(Z) Tag on plots
Average capacity and capacities

at the 4 or 8 different orientations
En route Transition

4/24/2009 03:00 4/24 7.00 [7, 4, 7, 10] 6.375 [8, 8, 8, 4, 1, 6, 8, 8]
4/27/2009 21:30 4/27 6.75 [7, 8, 7, 5] 6.375 [8, 8, 8, 8, 8, 5, 1, 5]
4/30/2009 14:30 4/30 1 4.50 [4, 5, 5, 4] 4.500 [0, 3, 7, 8, 7, 4, 5, 2]
4/30/2009 14:00 4/30 2 4.75 [5, 4, 5, 5] 5.250 [1, 5, 7, 5, 6, 7, 7, 4]
6/1/2009 10:30 6/1 1 0.50 [0, 2, 0, 0] 4.375 [2, 6, 6, 5, 5, 7, 4, 0]
6/2/2009 21:00 6/2 12.5 [13, 12, 13, 12] 7.875 [8, 8, 8, 8, 7, 8, 8, 8]
6/1/2009 20:35 6/1 2 1.75 [1, 0, 1, 5] 6.375 [8, 6, 6, 8, 8, 7, 4, 4]

Table 5.2: Capacity of Sample Weather Data

5.3.5 Sensitivity of Capacity Estimates to Weather Fore-
cast Errors

We begin our study of sensitivity to weather forecast errors with a set of results
depicted in Figure 5.6, showing how capacity varies with changes in the time,
the VIL intensity threshold, and the translation. In each plot of Figure 5.6, we
show seven curves, one corresponding to each of the date/time samples used in
our study. The vertical axis shows computed capacity (in number of air lanes).

In (a) and (b), we plot the capacity as a function of time shift, for en route
(a) and transition (b) airspace, using capacities computed from the actual
(observed) weather, going forward and backward in time by 120 minutes, in
5-minute increments. Time “0” refers to the exact time stamp for the sample
(e.g., 14:00 on the 4/30 2 sample). As we see, in most cases, the capacity is
somewhat diminished at or around the 0 time stamp; however, there is a fair
amount of fluctuation on both sides of time 0. For the 6/1 1 data set, we see
that the capacity is at or near zero for much of the 90 minutes prior to time 0
(10:30 on 6/1/2009), in both the en route case and the transition airspace case;
this is a result of the impact of the severe convective weather. For the 6/2 data
set, we see that en route capacity is slightly diminished right around time 0,
but is then very high (maximum possible) shortly before time 0, and again
from 30 minutes after time 0 onwards. For the same data set, the transition
airspace capacity is at a constant maximum possible (8 air lanes) for the entire
4 hour time window.

In Figure 5.6 (c) and (d), we plot the capacity as a function of VIL intensity
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threshold, varied over the range (0,6), centered on the nominal value of VIL 3.0
(which corresponds to threshold error of 0). As expected, these plots all show
non-decreasing functions: the higher the threshold, the smaller the coverage
region, and the more the capacity. Some data sets (e.g., 4/30 2) show high
sensitivity (slope) around error 0, while others (e.g., 6/2) show little sensitivity
to threshold changes/errors. (Of course, with threshold error -3, meaning a
VIL threshold of 0, there is no capacity, since all points are considered to be
weather-impacted constraints.)

In Figure 5.6 (e) and (f), we plot the capacity as a function of translational
error (in degrees), for shifts in latitude of the airspace (i.e., an error of -1.0
degree corresponds to translating the airspace to the south, with respect to
the weather, or, equivalently, to shifting the weather to the north with respect
to a fixed airspace around ORD). For this experiment, we shifted the actual
observed weather by latitude, from -2.0 to +2.0 degrees, in increments of 0.2
degrees. Naturally, as the weather map is shifted, there are changes in the
computed capacity. There is considerable variation, though, over the different
data sets, as the weather systems have different size and structure, and interact
differently with the boundaries of the airspace of interest. For example, note
that with the 6/2 data set, a translation of -2.0 degrees causes the capacity to
drop substantially from its maximum in the en route case. This is because the
significant weather for 6/2 occurred to the south of the en route airspace; refer
to Figure 5.5, where the active weather cells fall enough south of ORD that
they mostly miss the en route airspace (a 100nmi-by-100nmi squared centered
on ORD). If there is significant error in the position of the weather with respect
to the airspace, this translates to a significant error in the capacity estimation.

In Figure 5.7, we examine variation also over the orientation of the airspace.
Here, we examine one sample, 4/30 1 (04/30/2009 14:30:00 Z), and we plot the
capacity as a function of time, VIL threshold, and translation, for each choice
of orientation, varying the en route and transition airspace as in Figure 5.3.
Note that there can be significant differences in the plots depending on the
orientation of the flow with respect to the weather. For example, Figure 5.7
(b) shows a distinctively different (lower) plot of the capacity as a function of
time for the orientation at 0 degrees, compared with, e.g., 90 degrees. Also,
Figure 5.7(d) shows a very different plot of capacity as a function of VIL
threshold for orientation 0 degrees compared with, e.g., 180 degrees. These
results are understandable in light of the fact that the weather impacted region
for 4/30 1 lies mostly in the region just east of ORD and is mostly clear just
west of ORD; refer to Figure 5.5.
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(a) En route with Time Error (b) Transition with Time Error

(c) En route with Threshold Error (d) Transition with Threshold Error

(e) En route with Translation Error (f) Transition with Translation Error

Figure 5.6: Capacity with Time, Threshold and Translation Errors. Fixed
orientation (angle 0) is used for all sample points
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(a) En route with Time Error (b) Transition with Time Error

(c) En route with Threshold Error (d) Transition with Threshold Error

(e) En route with Translation Error (f) Transition with Translation Error

Figure 5.7: Capacity as a function of orientation. Here, the VIL threshold is
3.0, the location is ORD and the date/time is 04/30/2009 14:30:00 Z
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5.3.6 Probabilistic Model of Capacity

We use a simple model, based on randomizing the time, threshold, or translation,
to synthesize an ensemble forecast from a given weather sample, which can
either be a nowcast or a (deterministic) forecast. An ensemble forecast serves
as a probabilistic model of uncertain weather: associated with each member
of the ensemble is a probability that the member is “selected” as the “true”
weather. In the most basic model, each element of the ensemble of k forecasts
is equally likely, having probability 1/k. For each member, i, of the ensemble,
we run our capacity estimation algorithm, obtaining a capacity estimate, Ci.
for forecast i. Then, we compute the probability that the capacity equals some
value j by summing the probabilities associated with those ensemble members
for which Ci=j. (In the basic model, we simple count the number of members i
for which Ci=j, and divide by k.)

We use a truncated Gaussian (normal) to model the probability distribution
of the error in time (∆ time), the error in coverage/intensity (∆ threshold),
and location (∆ translation). This distribution is bell-shaped, centered on
0 (no error), with a bounded support set (interval of possible values). Since
our parameters are chosen among a discrete set of possibilities, we use the
continuous model to compute the discrete probabilities of the parameters lying
in corresponding discrete intervals. Refer to Figure 5.8. In particular, establish
the support set to be between (max error) and +(max error), with the choice of
standard deviation, σ, to be such that this interval has probability 0.95 (a user-
specified parameter of our model) in the (untruncated) Gaussian model. (Recall
that standard (unit) Gaussian distribution has probability approximately 0.95
for the interval between -1.96 and 1.96.) We partition the support set into
the required number of equal-sized intervals, and assign probabilities to the
corresponding discrete values associated with the intervals, as in Figure 5.8(b).
The probabilities are re-normalized so that they sum to 1, as illustrated in
Figure 5.8(c).

For example, consider time errors, and assume that the max error is chosen
to be 10 minutes. Since we have data in 5-minute increments, we compute the
capacity using the weather data of five different data sets: those corresponding
to time errors of -10, -5, 0, 5, and 10 minutes. We consider a Gaussian
distribution with probability mass of 0.95 inside the range (-10, 10); this
implies a standard deviation of 5.10 (=10/1.96). Then, we divide the range
(-10,10) into five equal-sized intervals (-10, -6), (-6, -2), (-2, 2), (2, 6) and (6,
10). Probabilities of each interval are shown in Figure 5.8(b), and the rescaled
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(a) Gaussian distribution of er-
ror with µ = 0 and σ =(max
error)/1.96

(b) Divide error interval by the
number of discrete error values
and their probabilities

(c) Re-normalize the probabili-
ties of each interval and assign
them to discrete error values

Figure 5.8: Truncated Gaussian distribution used to model error for a given
maximum error value, “max error”. Here, there are five discrete error val-
ues(including zero error) in the illustration.

probabilities are shown in Figure 5.8(c). These are the probabilities we assign
to each time-stamp. We compute the capacity associated with each time-stamp
and weight it by the corresponding probability; this allows us to compute
the probability distribution of capacity, assuming that the time error has a
discrete, truncated Gaussian distribution. We similarly analyze error models
of threshold error and translation error, for different choices of max error.

In Figure 5.9 we plot the probability distributions of capacity based on our
simple ensemble model, for one particular sample data set, 4/30 1 (04/30/2009
14:30:00 Z). In Figure 5.9(a), (b), and (c), we show the probability distributions
for different choices of the max error in time (5 min, 30 min, and 60 min,
corresponding to standard deviations of 2.5 min, 15 min, and 30 min). We
show three plots, distinguished by color, corresponding to different choices
of RNP (lane width). For example, we see that the probability is just over
0.2 that there will be 2 air lanes available at RNP-3 when the time error has
standard deviation 15 minutes (max error of ∆ time = 30 minutes). Note
too, that, as expected, the distribution of capacity “spreads out” (has higher
variance) for larger choices of max error. For example, the RNP-1 capacity
is concentrated mostly at 4 air lanes for max time error of 5 minutes, but
becomes more spread out, ranging from 1 to 6 air lanes, for max time error of
60 minutes. Figure 5.9(d), (e), and (f) shows the probability distribution of
capacity for different choices of max error in ∆ threshold (0.2, 1.0 and 2.0 VIL),
and Figure 5.9(g), (h), and (i) shows the probability distribution for different
choices of max error in ∆ translation (0.2, 0.6, and 1.0 degrees). We note that,
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for this particular weather data, the capacity distribution appears to be more
dependent on errors in time and threshold than in errors in translation.

In Figure 5.10 we look more closely at the dependence of capacity error,
quantified by the standard deviation in the capacity random variable, on the
magnitude of error in ∆ time, ∆ threshold, and ∆ translation, quantified by the
max error (twice the standard deviation), according to the values in Table 5.1.
Translation errors in Figure 5.10 are about latitude and longitude both.

Our min-cut based capacity analysis provides an upper bound on the
number of air lanes that are expected to be sent through an en route or
transition airspace. The archetypical situation is highly weather-impacted
transition airspace around a major metroplex, for example in the Chicago
or New York areas. Quadrant-based terminal airspace capacity estimation
algorithms can provide a framework for decisions on the best utilization of the
airspace, particularly if a probabilistic model is available for reasoning about
uncertainty. For example, using probability distributions based on an ensemble
model of stochastic weather, such as those shown in Figure 5.9, can assist
in ATM decisions about the amount and type (RNP) of traffic that should
be permitted to enter the transition airspace for each quadrant, over a given
time horizon. For example, this data may be useful in a decision support tool
that may suggest, e.g., that all but one fix be restricted to high-performance
aircraft (RNP-1), with low-performance aircraft being redirected to alternate
fixes, until the weather event is predicted to dissipate.

5.3.7 Comparison of Capacities Based on Forecasts to
Capacities Based on Actual Weather

We also compared the capacities computed based on forecast data, of different
look-ahead times, with the capacities computed for the actual observed weather
(the nowcast, look-ahead 0). In Figure 5.11, we plot, as a function of the
look-ahead time of the forecast, the capacity difference: capacity based on
forecast, minus capacity based on nowcast. We used forecast data with look-
ahead times of 5, 10, 15,. . . ,120 minutes. We see that, as expected, the errors
generally grow as the look-ahead time increases. In Figure 5.11(a), we see
that, among the seven samples analyzed, the greatest errors in capacity were
those corresponding to data set 6/1 2, for which the capacity in the en route
airspace based on forecast data is substantially greater than the capacity based
on observed weather. In Figure 5.11(b), we see that for the samples analyzed,
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(a) ∆time = 5 mins (b) ∆time = 30 mins (c) ∆time = 60 mins

(d) ∆threshold = 0.2 VIL (e) ∆threshold = 1.0 VIL (f) ∆threshold = 2.0 VIL

(g) ∆translation = 0.2 deg. (h) ∆translation = 0.6 deg. (i) ∆translation = 1.0 deg.

Figure 5.9: Probability distributions of capacity for different choices of max
error in ∆time, ∆threshold and ∆translation, for the en route airspace for
04/30/2009 14:30:00 Z (angle 0, threshold 3.0 VIL). For comparison, the
(exact) computed capacity is 4, 1, and 1 air lanes for RNP-1, RNP-2 and
RNP-3, respectively.
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(a) En route with Time Error (b) Transition with Time Error

(c) En route with Threshold Error (d) Transition Threshold Error

(e) En route with Translation Error (f) Transition with Translation Error

Figure 5.10: Capacity error with different type of errors. Fixed orientation
(angle 0) is used for all sample points.
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there was some bias: the capacity based on forecast data was generally higher
than the capacity based on the nowcast. Figure 5.11(c) and 11(d) show, for
one sample (04/30/2009 14:30:00 Z), how the capacity difference varies with
the look-ahead time, for each of the considered orientations of the airspace.

(a) En route Airspace Capacity Difference (b) Transition Airspace Capacity Difference

(c) En route Airspace Capacity Difference (d) Transition Airspace Capacity Difference

Figure 5.11: Difference between capacity based on forecast and capacity based
on observed weather. (a) and (b) show differences in computed capacity for the
seven samples with fixed orientation (0 degrees). (c) and (d) show differences
in computed capacity for the 4 or 8 different orientations of the airspace, for
one particular sample, 04/30/2009 14:30:00 Z

5.4 Conclusion

This paper studies the sensitivity of capacity estimates subject to weather
forecast uncertainties. En route and transition airspace capacity estimation
problems were explored. Capacity was computed using the max-flow/min-cut
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theory to determine the maximum possible number of air lanes, of fixed width
(RNP) that can permeate a constrained airspace. By examining errors in time,
in coverage (by means of varying the intensity threshold, in VIL units), and
translation, one can compute probability distributions of capacity, under a
simple probabilistic error model, as in Figure 5.9. This allows one to relate
uncertainty in weather prediction to uncertainty in capacity estimation, leading
to new decision support tools to assist TFM. Since weather prediction involves
complex models of inherently complex phenomena, these results are only a
first step in a quest to develop tools to help managers deal with the difficult
task of quantifying the impact of weather forecast uncertainty on air traffic
management.

Acknowledgment

This work is being performed under NASA’s NGATS Airspace Super Dense Op-
erations (ASDO) research focus area under contract NNA07BA84C, supervised
by Doug Isaacson from NASA Ames Research Center Finally, we appreciate the
financial support of the sponsor of the research, NASA Ames Research Center
and the NextGen Project Manager, Mr. Paramal Kopardekar. J. Mitchell
is partially supported by the National Science Foundation (CCF-0528209,
CCF-0729019).

56



Chapter 6

Scheduling Aircraft to Reduce
Controller Workload

Abstract

We address a problem in air traffic management: scheduling flights in order to
minimize the maximum number of aircraft that simultaneously lie within a single
air traffic control sector at any time t. Since the problem is a generalization of
the NP-hard no-wait job-shop scheduling, we resort to heuristics. We report
experimental results for real-world flight data.

Keywords: Air Traffic Management, trajectory scheduling, flight plan schedul-
ing, no-wait job shop.

6.1 Introduction

In the air traffic control system, the volume of airspace in the altitude range
that aircraft utilize is partitioned into a set of sectors. We consider the set
of all trajectories flown between city pairs. Any one trajectory is modeled

This chapter is based on joint-work with with Alexander Kröller of Braunschweig
University of Technology, Joseph Mitchell and Girishkumar Sabhnani of Stony Brook Uni-
versity. It was appeared in Proceedings of the 9th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS2009). [24]
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as a polygonal path, with each vertex (way point) being specified by a point,
(x, y, z, t), in space-time. For a given set of sectors and a given set of trajectories,
we can compute the occupancy count, nσ(t), of a sector σ at any time t. For
purposes of air traffic control, it is important that nσ(t) not be “too large”;
often the occupancy count is compared with the Monitor Alert Parameter
(MAP) value of the sector σ, which is related to the “capacity” of the sector.
Depending on the timing and routing of the flights, though, the MAP values of
certain congested sectors are often predicted to be exceeded (if current flights
remain on filed flight plans), resulting in the rerouting of aircraft to avoid those
sectors that are anticipated to be at or near full capacity during some period
of time.

We consider the following scheduling problem: For a given set of trajectories
and a given sectorization of airspace, determine alternate departure times “close”
to the originally scheduled times so that the modified trajectories result in
minimizing maxσ,t nσ(t), the maximum occupancy count of a sector over a time
window of interest.

6.2 Problem Statement

Formally, the Min-Max Sector Workload Problem (MMSWP) is defined as
follows. We are given a set Σ of sectors and a set Θ of periodic flight plans. The
common period of all plans is T , e.g., T = 24 hours. Corresponding to each
flight plan θ is a sequence Σθ = (σθ,1, σθ,2, . . .) of the sectors it visits, where
σθ,k ∈ Σ, ∀k. Flight plan θ also has an associated departure time dθ ∈ [0, T ),
and for each sector σθ,k it has an associated dwell time, tθ,k (length of time in
sector).

Assuming a flight θ departs daily with a delay of ∆θ, it will therefore be in
sector σθ,k during the intervals

Iθ(σθ,k,∆θ) :=

[∑
`<k

tθ,`,
∑
`≤k

tθ,`

)
+ dθ + ∆θ + TZ. (6.1)

Therefore, at time t ∈ [0, T ) (and also t+ zT for any z ∈ Z), a total of

nσ(t) := |{θ ∈ Θ : t ∈ Iθ(σ,∆θ)}| (6.2)

flights will be in sector σ ∈ Σ.
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Our goal is to find delays (∆θ)θ∈Θ to minimize the overall maximum occu-
pancy count, maxσ,t nσ(t). The delays are constrained to be within the range
[0, D] for parameter D. Note that additionally allowing flights to leave early,
i.e., ∆θ < 0, does not change the problem due to the periodicity of flight plans:
A delay range [−a, b] is equivalent to [0, a+ b], for a, b > 0. Therefore, we just
consider the problem where ∆θ ≥ 0.

6.3 Job-Shop Scheduling and Related Work

No-wait job-shop scheduling is defined as follows (see [17]): We are given a
set of m machines and a set of n jobs that have to be processed on these
machines. For each job i, we are given a sequence rik indicating that job i has
to be processed on the kth machine. Additionally, we are given the matrix
pij (1 ≤ i ≤ n, 1 ≤ j ≤ m), stating the processing time of job i on machine j.
Furthermore, the following constraints hold:

• Sequence: Each job must be processed in order of its operations and no
interruption (preemption) of an operation is allowed.

• Synchronicity : No job can be processed by two machines at the same
time and no machine can process two jobs at the same time.

• No-wait : There must be no waiting time between two consecutive opera-
tions of the same job.

When there is no constraint on the maximum delay, i.e., D ≥ T , our problem
is equivalent to “no-wait job-shop scheduling”. We represent each flight plan
as a job and each sector as a machine. We seek to minimize makespan, i.e., the
smallest time in which all jobs can be processed, where no two jobs can be on
the same machine at the same time. The no-wait constraint ensures that, once
started, a job can neither be delayed between machines nor suspended while
being processed on one. An optimal solution to the job-shop problem with
makespan M can be converted trivially to a flight plan solution with maximum
occupancy dM/T e. Vice versa, an algorithm for flight plan scheduling also
solves job-shop by finding the largest λ for which a flight plan with all processing
times scaled by λ can be scheduled with maximum occupancy 1. This can be
achieved using binary search.
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Lemma 6.3.1. Minimizing makespan in the no-wait job-shop scheduling prob-
lem is polynomially equivalent to the Min-Max Sector Workload Problem (MM-
SWP).

No-wait job-shop scheduling has been studied in several papers; see, e.g., [35,
50, 60, 49, 33]. Bansal et al. [3] give a PTAS for a special case of the problem
and show hardness of approximation for another case. Karger et al. [21] provide
a survey of scheduling algorithms, defining the various terms and known results
for some of the basic problems. Since the job-shop problem is NP-hard, so is
the MMSWP, by Lemma 6.3.1.

Ariano et al. [11] formulate train scheduling as a job shop problem with
no-store constraints. Bertsimas et. al [4] solve an optimal combination of flow
management actions, including ground holding, rerouting, speed control and
airborne holding on a flight-by-flight basis.

6.4 Simplified Cases

In this section, we examine some special cases of the problem. In all the cases
here, we consider D = T , so that there are no maximum delay constraints.

6.4.1 One-Sector Problem

In the simplest of cases, there is only sector σ0 and hence all the flight plans
just define the time interval the flight remains in this sector. For all θ ∈ Θ,
σθ,1 = σ0.

If we remove periodicity of flight plans, i.e. put a constraint dθ+∆θ+tθ,1 ≤ T
hours for each flight θ, the optimal re-scheduling problem of minimizing the
max-workload exactly maps to the bin-packing problem, which is known to
be hard (by a reduction from set partition) and and to have an asymptotic
PTAS [12].

If we consider periodic flight, then the one-sector problem has a trivial
solution given by assigning delay to make flights back to back. This gives a
max-workload of d∑θ∈Θ tθ,1/T e.

An asymptotic PTAS is an algorithm that, given ε > 0, produces a (1 + ε)- approximate
solution provided OPT > C(ε) for some function C, and runs in time polynomial in n for
every fixed ε.
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6.4.2 Two-Sector Problem

The extension of the problem to two sectors, with a periodic schedule of flights,
seems like an interesting special case to understand the complications associated
with the no-wait constraint and also the periodicity of the schedules. It is
much easier to understand the two-sector problem by considering its exact
equivalent below.

makespan

2

A1

B1

A2

B3

B4

A4

A1 A4 A2

B1 B3B4

Figure 6.1: Left: 4 kinds of blocks. Right: The tight-fitting in the groove of
size 2.

Consider Figure 6.1. Let A, B be the sectors. The yellow rectangles indicate
the time interval of flights in A and the green rectangles indicate intervals in
B. Yellow to the left of green indicates that flight starts in A and single yellow
rectangle indicates the flight is only in A. Thus, the MMSWP corresponds to
packing these blocks of rectangles as tightly as possible in the groove of width
2, constraining that yellow rectangles strictly remain in the upper row, green
rectangles strictly remain in the lower row and none of the rectangles overlap.

It turns out that periodicity does not really help for this case, as this
version of the problem also turns out to be NP-complete by reduction from
3-PARTITION PROBLEM.

Theorem 6.4.1. The MMSWP within 2 sectors is NP-Complete.

Proof. 3m numbers a1, a2, . . . , a3m are given for a 3-PARTITION PROBLEM
instance P . All of these number are between B/4 and B/2, where mB is the
total sum of a1, . . . , a3m. We show the optimal solution of minimizing workload
overall sectors gives us the solution of this problem.

Let’s construct the MMSWP problem instance corresponding given input m,
B, and ai’s. There are two sectors σ1 and σ2. Let time horizon T be (mB+m).
For given numbers ai where i ∈ {1, . . . , 3m}, we generate flights θi which visits
only σ1 with staying time ai, i.e., Σθi = (σ1) and tθi,1 = ai for i ∈ {1, 2, . . . , 3m}.
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And we prepare additional m flights θ3m+1, . . . , θ3m+m which visit σ2 for time
(B + 1) and then σ1 for 1. i.e, Σθj = (σ2, σ1) and tθj ,1 = (B + 1), tθj ,2 = 1 for
j ∈ {3m+ 1, . . . , 3m+m}.

Then, we claim that if we minimize maximum workload over all sectors for
this problem as 1, then we are able to solve given P .

In order to make workload as 1 for σ2, we have to arrange θ3m+1, . . . , θ3m+3

back-to-back like dark-gray blocks in Figure 6.2. Then there are m intervals
with length B in σ1. Now finding a placement of θ1, . . . , θ3m (light gray blocks
in Figure 6.2) to make workload of σ1 as 1 is finding a partition of {a1, . . . , a3m}
such that each sum is exactly B.

0 T

mB +m

B

1

θ3m+1 θ3m+2 θ3m+m

θ1 θ2 θ3m

σ1

σ2
B + 1

Figure 6.2: 2 sectors workload problem construction for given 3-Partition
problem instance

6.5 Algorithms

In this section, we present heuristics to solve the MMSWP.
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6.5.1 Shifting

Starting with the original flight schedule, we pick the sector with worst max-
workload (in case of tie check each one of them), and look at the time interval
where the max-workload is worse. All the flights present in the sector in that
time interval are considered for re-scheduling (shifting) and the one which gives
the “best” improvement is selected greedily. The goodness of a shift is judged
by its effect on the workload vector which stores the workloads of all sectors in
the sorted order. The flight whose re-scheduling gives the best improvement in
lexicographic ordering of the workload vector is selected (in case of ties, we
pick the flight which has the least difference in the re-schedule time and the
original schedule). The process is repeated till all shifts at a given iteration
worsen the workload vector. (Note that shifts keep taking place even when the
workload vector remains same).
We constrain the greedy shifting to be of the following three kinds:

• Right Shift - The flights are only allowed to be postponed.

• Left Shift - The flight are only allowed to be preponed.

• Short Shift - The decision of postpone/prepone is decided by the amount
of shift, and the shorter one is picked.

It is possible to get into loop if we allow shifts in both directions. In our
experiments, we only use right shifts to finish algorithm certainly. Since we
allow shifts without strict workload vector improvement, all shifts after the
last workload vector change are restored when the algorithm is finished.

We also devise an incremental heuristic, in which flights are added one
by one (in a random order). With each new flight addition, we run complete
experiment of a shift heuristic considering all the flights previously added along
with this one.

6.5.2 Randomized Rounding

The randomized rounding algorithm solves a linear problem formulation whose
variables describe a probability distribution for each flight plan. Then, a
solution is generated by drawing delays from these distributions.
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We evenly divide the interval [0, D] into a discrete set of delays {0 =
d0, d1, . . . , dm = D}. Also we slice the 24h-period T into n pieces {0 =
t0, t1, . . . , tn = T}.

For each flight θ, the linear formulation has a variable xθ(di) for each
di, 0 ≤ i ≤ m. The interpretation (in terms of the finally assigned delay ∆θ) is

xθ(di) = Pr[∆θ ≥ di] .

So the xθ(·) define a probability function on [0, D] for every flight (the density
is constant within each interval [di, di+1), that is, the distribution is uniform
within each interval). To make sure the xθ(di) define a proper probability
distribution, we use the constraints

1 = xθ(d0) ≥ xθ(d1) ≥ · · · ≥ xθ(dm) = 0.

This means the probability that a flight delay is in the range [di, dj ] is xθ(di)−
xθ(dj), so the probabilities are nicely encoded in the formulation. Note that

Pr[flight θ is in sector σ at time t]

is a linear term in the xθ(·) variables. To see this, translate t into a range
[∆θ,∆θ] of delays where a flight would start to be in σ at t. The probabilities
are then:

• Some of the first interval with di ≤ ∆θ ≤ di+1, that is,

Pr[θ is in σ at t , ∆θ ∈ [di, di+1)] =
di+1 −∆θ

di+1 − di
(xθ(di)− xθ(di+1)) .

• All of the intervals ∆θ ≤ di ≤ . . . di+1 ≤ ∆θ, in a similar fashion.

• Some interval part around ∆θ, again analogous to the first case.

By adding the cases, one can see how Pr[θ is in σ at t] is a linear term with
up to four coefficients. Obviously there are a number of special cases when
[∆θ,∆θ] 6⊆ [0, D]; these are easy to resolve and left out in this presentation. So
we can now describe the expected load of sector σ at time t by the linear term

E[number of flights in σ at time t] =
∑
θ∈Θ

Pr[θ is in σ at t].
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Hence, we solve the following LP:

min C

s.t. E[number of flights in σ at time t] ≤ C ∀σ ∈ Σ, t ∈ {To, . . . , Tn}
1 = xθ(d0) ≥ xθ(d1) ≥ · · · ≥ xθ(dm) = 0 ∀θ ∈ Θ ,

which gives us a probability distribution for each ∆θ, so we now generate actual
∆θ values following these distributions.

An interesting variant arises when we add integrality constraints to the LP,
as this forbids smearing flights over many delay intervals. As the resulting IPs
are typically impossible to solve within reasonable time, we employ a different
strategy: First, the LP-based heuristic is run. We identify the most crowded
sectors, and add integrality constraints for tracks passing these sectors. At
the same time, we vary n and m for different sectors and tracks, such that the
crowded sectors get a more detailed formulation than the others.

6.6 Lower Bounds

6.6.1 A Simple Bound

The optimal one sector solution for a sector σ (refer to Section 6.4.1), for D =
T , independent of any other sector, is a naive lower bound to its max-workload
attained by any scheduling, for any D. Thus, we can optimize each sector
individually, and pick the maximum value over all sectors, to obtain a lower
bound on the workload attained by an optimal scheduling.

6.6.2 Linear Programming

The second lower bound algorithm is based on the randomized rounding
algorithm. Assume that all the xθ(·) are binary, i.e., 0 or 1 (see 6.5.2 for
details). If now xθ(di)− xθ(dj) = 1, then flight θ will have a delay ∆θ ∈ [di, dj ].

For a track θ ∈ Θ, a sector σ ∈ Σ and a time t, we again compute the interval
[∆θ,∆θ] of delays for θ under which θ will be in σ at t. Then we determine
the smallest di ≥ ∆θ and the largest dj ≤ ∆θ. Then, when xθ(di)− xθ(dj) = 1,
the flight will be in σ at t. So define gθ(σ, t) := xθ(di)− xθ(dj).
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No. of Sectors Alt-Range Flights Time Window
Set1 5 ≥ 24k feet 1904 0− 24 hrs
Set2 18 ≥ 24k feet 3063 0− 24 hrs
Set3 57 ≥ 0 feet 12123 0− 24 hrs
Set4 1281 Different 11986 14− 18 hrs
Set5 16 ≥ 24k feet 4994 0− 24 hrs

Table 6.1: Summary of data sets used for experimentation.

The following IP charges 1 towards the maximum capacity C when a track
is guaranteed to be in σ at t:

min C

s.t.
∑
θ∈Θ

gθ(σ, t) ≤ C ∀σ ∈ Σ, t ∈ {To, . . . , Tn}

1 = xθ(d0) ≥ xθ(d1) ≥ · · · ≥ xθ(dm) = 0 ∀θ ∈ Θ

xθ(di) ∈ {0, 1} ∀θ ∈ Θ, i = 0, . . . ,m

The optimal solution to this IP is a lower bound to the original problem. For
efficiency reasons, we do not solve this IP directly, but rather its LP relaxation,
which is obtained by dropping the integrality constraint.

6.7 Results

We use real-world flight track data and sector data from the National Airspace
System (NAS). The data, as shown in Table 6.1, is divided into 5 sets depending
on the number of sectors. The alt-range defines the range of altitude for the
air-traffic in the sectors. The high-altitude sectors typically have alt-range
24, 000 feet and above. Set1, Set2 and Set3 consider flight tracks for the
entire 24 hour time period while Set4 considers only the flights that overlap a
4 hour time window. Note that the flight times may start or end outside the 4
hour time window. Also, Set4 includes all the sectors spanned by these flights,
thus having high-altitude sectors, low-altitude sectors and some sectors from
Canada as well.

Set5 (random data) consists of a 300× 300 nautical miles square region
divided into 16 sectors in the form of a square grid. Then, 64 (uniform) random
cities were generated such that 10% of cities had weight 10, 15% had weight 5,
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Set1 Set2 Set3
m n Time m n Time m n Time

LP Lower 30 720 1:20 30 720 1:50 30 720 9:10
MIP Lower 30 720 3:04 – – – 12 288 10:18
Rand. Rounding 30 720 22:24 12 288 1:05 12 288 30:07
MIP Rounding 12 288 0:28 12 288 0:33 12 288 56:17

Set4 Set5
m n Time m n Time

LP Lower 60 1440 17:19 30 720 10:26
MIP Lower 12 288 14:44 – – –
Rand. Rounding 30 720 57:11 12 288 10:18
MIP Rounding 12 288 17:30 12 288 5:13

Table 6.2: Details for LP-based heuristics, showing the discretization granularity
and total algorithm run-times in minutes.

and the remaining had weight 1. In total, 4994 random flights were generated
between (weighted uniform) randomly chosen city pairs, with each city having
probability of selection proportional to its weight. The departure-time of a
flight was (uniform) randomly generated between 0− 24 hours. The (constant)
speed of an aircraft was modeled as a (uniform) random variable between 200
and 600 nautical miles per hour. The arrival-time of a flight was calculated
from the departure time, the speed of the aircraft, and the distance between
the cities in the pair. An additional constraint was added that no two aircraft
depart from (or arrive) at a city within 1 minute of each other. A visualization
of data sets Set1, Set2 and Set5 can be seen in Figure 6.3.

We implemented our algorithms and ran them on the five data sets. For
the LP-based algorithms, we used CPLEX 10.0 on a 3.0 GHz Linux machine.
We solved each instance using a few parameter sets, varying the number of
discretizations in delay (i.e., m) and daytime slices (i.e., n). The most often
used values of m = 30 and n = 720 correspond to having one variable per two
minutes of delay and one constraint for every other minute of the day. We
imposed a run-time limit of 60 minutes on the algorithm. Table 6.2 describes
these runs and lists the according algorithm run-times. Run-times for the other
heuristics are not listed, as they always finish within a few seconds.

Table 6.3 shows the comparison of max-workload statistics of the given
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(a) Set1 sectors and the underlying
square grid (and shifted square grid)
cover (grid resolution: 0.1x0.1)

(b) Set5 Randomly generated flight tracks with
the underlying sectors

(c) Set2 sectors and grid cover (1x1)

Figure 6.3: Visualization of data sets. (The Numbers in the sectors indicate
the max-workload counts for the used flight schedules)
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Set1 Set2 Set3
Max Mean Var Max Mean Var Max Mean Var

Original plan 22 18.00 6.80 18 12.83 12.25 38 21.56 36.70
Right Shift 18 16.40 1.04 14 11.11 3.99 31 20.77 26.27
Incr. Right Shift 15 13.80 0.96 12 10.17 2.25 26 18.75 16.40
Rand. Rounding 14 13.40 0.24 14 11.67 4.00 28 22.94 19.50
MIP 15 14.40 0.24 14 11.22 4.73 28 23.47 16.18

Lower Bound
Naive LP IP Naive LP IP Naive LP IP

6 9 9 5 8 – 16 20 14

Set4 Set5
Max Mean Var Max Mean Var

Original plan 58 7.67 37.88 24 13.00 46.13
Right Shift 47 7.61 36.35 19 11.75 29.01
Incr. Right Shift 39 7.51 34.50 17 10.81 20.66
Rand. Rounding 42 8.04 40.50 19 12.50 25.00
MIP 43 8.22 44.90 19 12.50 30.13

Lower Bound
Naive LP IP Naive LP IP

12 31 22 13 11 –

Table 6.3: Workload statistics of algorithms. Max: Maximum Workload, Mean:
Mean of workload, Var: Variance of workload

Set1 (1904 flt) Set2 (3063 flt) Set3 (12123 flt)
Max Total Avg Max Total Avg Max Total Avg

Right Shift 6 46 1 9 5:25 1 17 5:18 1
Incr. Right Shift 49 2:00:46 4 52 3:16:21 6 60 18:21:7 6
Rand. Rounding 60 13:22:24 10 60 13:06:48 6 60 35:18:15 4
MIP 60 14:21:48 12 60 15:21:42 7 60 37:10:59 4

Set4 (11986 flt) Set5 (4994 flt)
Max Total Avg Max Total Avg

Right Shift 53 12:53 4 7 3:8 1
Incr. Right Shift 60 14:22:54 17 54 4:18:5 4
Rand. Rounding 58 50:10:59 6 55 59:16:33 17
MIP 55 90:00:38 11 55 60:05:50 17

Table 6.4: Time shift statistics of various methods. Max: Max shift, Total:
Sum of absolute value of shift, Avg: Average of absolute value of non-zero
shifts. (format 14:21:48 means 14 days 21 hours 48 minutes)
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flight plans, the heuristic solutions and the LP based methods. The maximum
allowable shift to any flight schedule was constrained to be 1 hour in all
methods. The discretization of time for LP/IP methods is 1 minute. The
results show a considerable improvement over the workloads of each sector
arising due to the original flight schedules. Even the variance values have
gone down significantly, indicating more balance of workload across sectors. In
particular, the incremental shift heuristic seems to out-perform all the other
methods. Note that the shifting heuristics do not discretize the time like
LP/MIP methods. The ‘-’ values in Table 6.3 refer to experiments for which
no solution was found during more than a week of running time.

Table 6.3 also shows the lower bound calculations for the 5 sets. The best
solutions are still not close to the computed lower bounds, but we believe they
are very close to optimal solutions. Future work will specifically aim to improve
the lower bounds.

Table 6.4 shows the statistics of the amount of time shifts from the original
schedule. Max indicates the maximum shift in any flight schedule, Total
indicates the sum of absolute values of shifts, and the Avg gives the average
time shift of all flights with non-zero shifts. The value of Total in the case
of the right shift heuristic is noticeably small compared to other methods,
possibly because of early termination due to reaching a local minimum. Also,
the average time shift is seen to be low for all the methods, suggesting that we
can get considerable improvements in workloads with reasonable modification
to the schedules.

6.8 Other Workload Considerations

Apart from the max-workload of a sector, there are other workload issues which
are significant from the controller perspective. One of them, usually referred to
as coordination workload, deals with the hand-offs between controllers when an
aircraft moves from one sector to the other. Another critical issue is the conflict
resolution workload, which is related to monitoring the aircraft when they
are expected to be simultaneously present at (or near) the same geographic
point (a “conflict point”). Note that even if two aircraft are flying at different
altitudes, at the conflict point, they demand special attention of the controller.

While re-scheduling flights has no effect on the coordination workload, it
can favorably affect the conflict resolution workload, by reducing the number
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of conflict points. It is easy to incorporate conflict resolution workload in the
model, as we now discuss.

We sub-divide the region (spanned by the sectors) into (reasonably) small
size cells and compute the max-workload in each cell separately. If the size of
the cell is small, a high max-workload cell corresponds to a conflict point, where
multiple aircraft are in close proximity simultaneously. We add these cells
as new (artificial) sectors to the data set and try to minimize their workload
vector separately, thereby (possibly) decreasing the number of conflict points.

The shifting heuristic is now modified to be a two-step procedure. The
first step considers the overall maximum value of the max-workload across all
cells to be a constraint: The aircraft are re-scheduled to improve the workload
vector of the sectors, as before, while keeping the workloads in all cells below
a specified Wc. In the second step, the roles of sectors and cells are reversed:
The optimized maximum value of the workload of the sectors is treated as a
constraint, and the aircraft are re-scheduled with the objective of improving
the workload vector of the cells.

For experimentation, these cells come from a uniform (square) grid and a
shifted uniform grid as shown in Figure 6.3 covering the region spanned by the
sectors. Two different side lengths of square grid cells are used, 0.1× 0.1 and
0.2× 0.2 (unit latitude/longitude degrees). In Set1, Set2 and Set5, 1 degree
corresponds to somewhere in the range of 35 − 60 nautical miles. Table 6.5
shows the results of the workload improvements with the cell constraints. We
observe that the max-workloads of the sectors still improve, compared with the
original (18 v/s 22 for Set1), while the number of conflict points are considerably
decreased (see Figure 6.4). For Set1, after scheduling there are no grid cells
with workload 4, while the number of cells with workload 3 has also decreased
by more than 90%.

6.9 Scheduling on Square Cells

We consider a special case of the problem, whose sectors are same sized square
cells. On the 2 dimensional lattice of cells, we are given a set of rectilinear
directional paths, each of which is placed on the chain of square cells. Moving
objects follow those paths and they proceed from one cell to neighboring cell
in an unit time. Paths are required to convey moving objects periodically with
given interval. For instance, if a path is assigned interval 3, then there should
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Set1 (Given SMax: 22)
Grid Size Given Shifted

GMax GMean SMax GMax GMean
0.1×0.1 4 1.670 18 3 1.604
0.2×0.2 5 2.446 18 4 2.356

Set2 (Given SMax: 18)
Grid Size Given Shifted

GMax GMean SMax GMax GMean
0.1×0.1 4 1.467 14 4 1.478
0.2×0.2 5 2.105 14 4 2.083

Set5 (Given SMax: 24)
Grid Size Given Shifted

GMax GMean SMax GMax GMean
0.1×0.1 11 1.609 19 8 1.598
0.2×0.2 14 2.271 19 10 2.243

Table 6.5: Results of Right-Shift heuristic with additional grid constraints.
SMax: Sector Max, SMean: Sector Mean, GMax: Grid Max, GMean: Grid
Mean.

(a) Set1 (b) Set2

Figure 6.4: Grid cell max-workload before and after scheduling (Grid size
0.1× 0.1)
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be new moving object appear on the entry of the path every 3 time unit. The
universal capacity threshold is 1. It means that no two objects are placed in
same cell simultaneously.

The objective of this variation is finding appropriate phases for all paths.
Available phases for a path with interval n are phase 1, phase 2, . . . , phase n.
If the path takes phase i, then new moving object is scheduled on time i, i+ n,
i+ 2n, . . . , and so on. Figure 6.5 is an example. There are 5 thick rectilinear
paths in the lattice of grid cells. Paths are crossing others, where the cells are
shown as gray. Let’s assume that interval period of P1, P2 and P4 are all 2. It
means that every second cells along those paths should have moving objects.
If C1 has moving object along P4, then C2 also has one along P4. It forces
P1 and P2 to have same phase and they are incompatible at C3. Therefore, a
scheduling satisfying the given interval conditions is not available.

P1 P2

P3

P4

P5

C1 C2

C3

Figure 6.5: Rectilinear Directional Paths on Square Cells

If the interval period of all paths are 2, we refer this case as every second
scheduling, then we determine whether valid scheduling exists by following
observation. For any two paths sharing a common cell, if the phase of one path is
determined, then the phase of the other is also determined. Therefore, algorithm
for every second scheduling is following; picking a path and assigning a phase,
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then picking another path, which is intersecting with the phase determined path.
Repeating assignment compatible phase to new one. Whenever appropriate
assignment is failed, satisfying scheduling is not available.

But, if the interval period of all paths are 3, i.e every third scheduling, then
it becomes hard to solve.

Theorem 6.9.1. Every third scheduling is NP-Complete.

6.9.1 Proof Idea

We use the reduction from Planar Monotone 1-in-3 SAT [32]. We design
variable and clause gadget, then create every third scheduling problem instance
Q with the gadgets for an instance P of planar monotone 1-in-3 SAT. If we
are able to find appropriate phases for all paths in Q, then we also can find
variable assignment for P .

An example of variable gadget is shown in Fig 6.6. Corresponding variable
used in 3 clauses. Let’s consider the time instance, when moving objects from
s1 toward t1 reach cells denoted as 3. Since two consecutive cells are occupied
in perspective of other two paths from s2 to t2 and s3 to t3, there is only one
phase is available for them. Therefore all paths should have same phase in
order to schedule every one in third time unit.

Fig 6.7 shows an example of clause gadget. There are three paths and
every path intersects with other two paths, so three intersections exist in total.
Let’s assume a path has moving obstacles at cells denoted {0, 3, 6, 9, . . .}. In
order to avoiding overlap, other two paths should have either {1, 4, 7, 10, . . .}
or {2, 5, 8, 11, . . .} exclusively. Therefore, every path should has different phase
with others. In other words, at least one path among three has phase 1.

In P , a variable has two states - true or false, however in Q, variable gadget
has three states - phase 1, phase 2 or phase 3. We will refer to phase 1 as true
and other phases as false. Since every feasible scheduling has phase 1 path in
all clause gadget, solution of Q leads the solution of P . Rest part about placing
gadget and connecting them in order to build the instance of Q is abridged.
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Figure 6.6: Variable gadget for Grid Scheduling Problem
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Figure 6.7: Clause gadget for Grid Scheduling Problem
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6.10 Conclusion

We presented a periodic flight plan scheduling problem, proved it to be NP-
hard, and proposed heuristics for which we reported experimental results on
real-world data. The results show a considerable workload improvement over
the originally scheduled flight times and come at low computational cost. The
reduction in the number of conflict points was also impressive. Future work will
specifically aim to improve the lower bound, as we believe that the heuristically
produced solutions are already almost optimal. Also, we are interested in
combining re-routing with re-scheduling to improve further the workloads.
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