
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Coupling Techniques for Dense Surface Registration:
A Continuous-Discrete Approach

A Dissertation Presented

by

YUN ZENG

to
The Graduate School

in Partial Fulfilment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

August 2012



Stony Brook University
The Graduate School

Yun Zeng

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Dimitris Samaras - Dissertation Advisor
Associate Professor of Computer Science

Joseph S.B. Mitchell - Chairperson of Defense
Professor of Applied Mathematics

Xianfeng David Gu - Dissertation Co-Advisor
Associate Professor of Computer Science

Nikos Paragios - External Member
Professor of Applied Mathematics and Computer Science

Ecole Centrale de Paris, Ecole des Ponts - ParisTech

This dissertation is accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

ii



Abstract of the Dissertation
Coupling Techniques for Dense Surface Registration:

A Continuous-Discrete Approach
by

YUN ZENG

Doctor of Philosophy
in

Computer Science

Stony Brook University

2012

In this dissertation, we propose new approaches to the surface registration problem by cou-
pling continuous geometry-based methods and combinatorial graph-based methods. On the
one hand, geometry-based methods explore the intrinsic properties of the surfaces to simplify
the search of correspondences among surfaces undergoing very large deformations. However,
these methods are usually based on certain ideal assumptions on the qualities of the input,
such as noise-free or no occlusions. Hence they are usually sensitive to uncertainties from the
input that are common in real-world data. On the other hand, graph-based methods are better
at dealing with uncertainties due to their statistics nature. Nevertheless, without exploring
the geometric properties of the surface, discrete graph-based methods usually suffer from dis-
cretization error and high computational complexity. Thus, by exploring the relation between
the two approaches, we show that our new approaches deal with surface registration problems
under very challenging situations. To this purpose, three distinct approaches are explored in
this thesis that achieves dense surface registration in different scenarios.

In the first approach, we cast the surface registration into a high-order graph matching
problem, through the minimization of an energy function based on multiple measurements
of geometric/appearance similarities and deformation priors. Our method takes advantage
of conformal mapping based method which derives a closed-form solution to dense surface
matching. To this end, we design an efficient way to select a finite number of matching
candidates for each point of the source surface based on the a sparse set of correspondences,
which naturally induces an efficient two-stage optimization approach for the dense surface
registration problem. In the sparse matching stage, the high-order interactions among a sparse
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set of feature points on the surfaces are used to encode the isometric deformation error using
conformal mapping. In the dense registration stage, the high-order interactions of a dense
set of sampling points are considered to encode the isometric deformation error as well as
orientation consistency. Meanwhile, we also propose the first solution to the high-order graph
matching problem that solves partial matching. Our method is validated through a series of
experiments demonstrating its accuracy and efficiency, notably in challenging cases of large
and/or non-isometric deformations, or meshes that are partially occluded.

In the second approach, we propose a graph-based formulation for tracking surfaces in a
sequence. In order to deal with noises in the input, we propose a robust metric for the cost of
matching arbitrary correspondences, which is defined as the lowest feature differences across
this set of matchings that cause the particular correspondence to match. We show that for
surface tracking applications, the matching cost can be efficiently computed in the conformal
mapping domain. Such a matching cost is then integrated into a complete probabilistic track-
ing framework that enforces spatial and temporal motion consistencies, as well as error drifts
and occlusions. Compared to previous 3D surface tracking approaches that either assume
isometric deformations or consistent features, our method achieves dense, accurate tracking
results, which we demonstrate through a series of dense, anisometric 3D surface tracking ex-
periments.

In the third approach, we accurately characterize arbitrary deformations between two sur-
faces and propose a high-order graphical model for the surface registration problem. From
Riemannian geometry, the local deformation at each point of a surface can be characterized
by the eigenvalues of a special transformation matrix between two canonically parameterized
domains. This local transformation is able to characterize all the deformations (i.e., diffeo-
morphisms) between surfaces while being independent of both intrinsic (parametrization) and
extrinsic (embedding) representations. In particular, we show that existing deformation rep-
resentations (e.g., isometry or conformality) can be viewed as special cases of the proposed
local deformation model. Furthermore, a computationally efficient, closed-form solution is
derived in the discrete setting via finite element discretization. Based on the proposed defor-
mation model, the shape registration problem is formulated as a high-order Markov Random
Field (MRF) defined on the simplicial complex (e.g., planar or tetrahedral mesh). An efficient
high-order MRF optimization algorithm is designed for such a special structured MAP-MRF
problem, which can be implemented in a distributed fashion and requires minimal memory.
Finally, we demonstrate the speed and accuracy of the proposed approach in the applications
of shape registration and tracking.

Keywords: Computer Vision, Shape Registration, Surface Tracking, Shape Deformation
Model, Conformal Geometry, Graphical Models, High-order Markov Random Fields, High-
order Graph Matching
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Chapter 1

Introduction

“ A good description of the problem is half the solution.

–Anonymous”

Understanding 3D data has become increasingly important in computer vision due to the rapid
developments in 3D scanning techniques [3, 18, 34, 99, 152, 202, 271, 297]. As a prerequi-
site step for most 3D shape understanding tasks (e.g., expression recognition, pose estimation,
shape retrieval) and knowledge-based shape manipulation tasks (e.g., deformation transfer,
shape compression), accurately finding the correspondences between two shapes (shape reg-
istration) usually determines the performance of the subsequent applications. Although the
problem of 3D shape registration has been studied since the beginning of computer vision, it
remains challenging to find accurate correspondences among surfaces undergoing large non-
rigid deformations, partial occlusions and/or being corrupted by noise. In this dissertation,
we develop a series of new techniques for solving the 3D shape registration problem to tackle
these difficulties.

A motivation behind our new approaches to the surface registration problem is to explore
the connections / discrepancies between continuous approaches and discrete approaches, C
which is an active interdisciplinary field that involves geometry, probability / statistics, graph
theory, optimization and computational complexity. In physics, it has been shown that many
continuous geometric concepts have their discrete counterparts [100] and seeing the world un-
der a discrete point of view often provides us with new insights of the reality [172]. However,
not all aspects of the continuous world can be seen through a discrete lens. In complexity
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Figure 1.1: Intrinsic space based method illustrated in 1D case.

theory, evidences show that elusive discrepancies exist between the continuous world and the
discrete world [50, 122, 168]. Such discrepancies are also closely related to the boundaries
of computations [10]. Understanding such connections / discrepancies can not only allow
us to realize “what we can do?”, but also help us decide “how we can do?”. For exam-
ple, in computer vision, the discrete counterparts of numerous continuous models (e.g. level
sets functions [49, 176, 186, 207]) have been discovered, resulting in significant speedups
and improved solutions (e.g., graph-based solutions to level sets energies [32, 90, 290, 291]).
On the other hand, despite their promising performances in terms of speed and optimality,
these discrete approaches often suffer from loss of accuracy in their solutions (known as the
metrication error [127]). Subsequently, solutions that combine the benefits of both contin-
uous and discrete methods are proposed which achieve speedup, optimality and accuracy
(e.g., [148, 198, 200, 253, 286]), though with the sacrifice of expressive power. Motivated
by such a trend in computer vision, in this dissertation, we explore the connections between
the continuous approaches and the discrete approaches, and we develop algorithms that over-
come the limitations of many of the previous approaches for the surface registration problem.

Specifically, for the problem of surface registration, the continuous geometry-based meth-
ods explore the intrinsic properties of the problem, which often yield simple yet elegant solu-
tions. For example, a fundamental idea in Riemannian geometry is that certain properties of
the shape can be calculated based on the relations among points (via differentiation) without
knowing the exact coordinate of each point. By applying such an idea to surface registration, it
then becomes feasible to find correspondences between two surfaces undergoing large defor-
mations due to its obliviousness to the extrinsic representations of the surfaces. Moreover, if
the deformations among surfaces preserve certain local features (e.g., the Riemannian metric),
the degree of freedom of the mapping between the intrinsic representations of two surfaces
can be very small, allowing us to only search for a few correspondences in order to determine
the mapping for every point on the whole surfaces. Informally, such Intrinsic space-based
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methods can be represented as

Intrinsic Space-based Methods = Intrinsic Space Representation +

Transformations among Different Representations (1.1)

Nevertheless, there are often strict limitations in applying these ideas. For example, most
intrinsic methods are usually based on certain ideal assumptions on the input, such as noise-
free, no occlusions, etc. This is expected since these geometric methods are derived from
differentiations which assumes the objects they deal with are sufficiently smooth1. Without
mechanisms that control the robustness of these geometry-based methods, their performance
can degrade significantly when presented with real-world data.

On the other hand, graph-based methods are better at dealing with uncertainties due to
their statistics nature. Intuitively, graph-based methods perceive the world as discrete, indi-
vidual entities with connections among them. By sending information among these individual
entities through their connections, it is then possible to conduct inference on some true states
of the world, i.e.,

Graph-based Methods = Entities (Nodes) + Connections (Edges)+

Information Exchanges (Reasoning over true states of the world). (1.2)

An important property of graph-based methods is that they are not restricted to any specific
application domain, rather it is a skeleton that allows us to effectively encode our own world
model, by giving meanings to what the entities represent and how they are related. The infor-
mation that can be processed inside a graph include the observed data or the prior knowledge
about what should be a plausible state; the plausibility of any possible state can be conve-
niently represented by an energy function. Hence graph-based methods are suited for dealing
with real-world data that are rich in noise and occlusions. Take the surface registration prob-
lem for example, since most of the real-world data (e.g., 3D scanning data) are represented
by discrete samples, it is more straightforward to represent the surface as a graph instead of
a continuous function. The nodes of the graph can be the sampling points and the edges rep-
resent their neighborhood information. The state of each node can be defined as the location
of its matching point on the target surface. Hence, finding the correspondences between two
surfaces becomes finding the matching points for each discrete point on the surface. The level
of noise can be inferred based on the smoothness of the deformations of each neighboring
nodes. While occlusions can be inferred based on the consistencies of the features between
each possible correspondence.

1“As far as the laws of mathematics refer to reality, they are not certain, as far as they are certain, they do not
refer to reality”– Albert Einstein, 1956
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Though intuitive, it is not straightforward to directly apply the graph-based methods for
the surface registration problem due to the following reasons: (i) If the number of nodes or
the state space for each point on the surface is too large, it is not possible to do efficient infer-
ence for these points. Hence choosing a proper graph structure (number of nodes, matching
candidates) for the surface registration problem determines the efficiency of the method. (ii)
In order to take advantage of the geometry-based methods to handle large deformations, there
usually involves high-order (> 2) interactions among points on the surfaces. Efficient in-
ference for graphs with high-order interactions remains very challenging in computer vision.
Thus, designing efficient inference algorithms for the special surface registration problem is
necessary. (iii) In order to handle noisy input, a robust measure of the likelihood of each possi-
ble correspondence is needed for defining the energy function on the graph. However, in order
to increase the robustness of a measure, an increase of the use of information from local to
global is needed [43]. Hence, one must balance between the effectiveness and the complexity
in choosing a measure.

In summary, in this dissertation, we develop a series of techniques to overcome the dif-
ficulties in applying the graph-based methods to surface registration. Note that although a
graph-based formulation for the surface registration has been proposed before (e.g., [8]), these
methods did not systematically address the issues mentioned above. As a result, most of
the previous works are only able to establish sparse correspondences (∼ 100) between two
surfaces. In contrast, all the techniques developed in this thesis aim at efficiently and accu-
rately solving the dense surface registration problem through the insights in both geometry C
methods and graphical models, which is not possible through any of the previous graph-based
techniques for surface registration.

1.1 Basic ideas

In solving a real-world problem, its success often heavily relies on if we have a sufficient
model describing the underlying mechanisms. Although there are countless problems in com-
puter science, most of them actually share only a few basic ideas. Identifying these basic
ideas behind those problems can not only help us present and re-examine our solutions in a
high-level point of view, but also allow us to connect our methods to other solutions. More
importantly, since the techniques developed in this dissertation involve the ideas from several
fields, it is therefore essential for us to clarify some of the basic ideas that act as the pillars of
these fields. Meanwhile, we shall also clarify how these ideas can be applied to the surface
registration problem.
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1.1.1 Bayesian methods

A central problem in computer vision is to deal with uncertainties, which often arise from the
noise through the acquisitions of the data. Hence, a ubiquitous pattern of problem in computer
vision is to infer the underlying states given the observations. If we define a measure of
likelihood for each possible true state, i.e., f(state; observation), then many tasks in computer
vision fall into computing the most probable configuration:

arg max
state

f(state; observation). (1.3)

As a result, many approaches in computer vision boil down either to finding the optimal solu-
tion (optimization), or to defining a meaningful function for a specific problem (modeling and
learning), or both.

Surprisingly, an overwhelming common pattern among the solutions of numerous vision
problems falls into the paradigm of Bayesian method, which is derived from the basic probabil-
ity rules2. In Bayes’ theorem, it states that the measurement function based on the observation
can be decomposed into two parts, one involving the likelihood of the observation with respect
to the current state, another involving the prior knowledge of the state without considering the
observations. Schematically, the Bayesian paradigm can be represented as

posterior = likelihood (data fidelity) + prior knowledge (regularization). (1.4)

As a result, most of the vision problems that solve Eq. 1.3 can be regarded as Maximum a
Posterior (MAP) problems [27].

The above Bayesian paradigm also manifests itself in its relation to physics. In mechanics,
the forces that an object bears can be divided into either internal or external. Internal forces
come from the inside of the object, including spring force, magnetic force, etc. The external
forces can be any forces coming from outside the object, such as friction, resistance, tension,
etc. In early computer vision, such an idea has been successfully applied to physics-based
models [171, 190]. For example, in the image denoising problem [88], the internal forces
(prior knowledge) are usually defined using the gradients of the true image signal f (e.g., the
TV model

∫
|∇f |), while the external forces are defined to be the distance between the true

signal and the input, (e.g.,
∫
|f − I|). Optimizations of these physics-based models often lead

to solving a partial differential equation (PDE) problem ([185, 190]).

One important issue concerning applying the Bayesian method is the choice of the weight
between the likelihood and the prior. Finding the optimal weight for a certain problem is in
the domain of parameter learning [124]. In Sec. 1.1.3, we show that the interplay between the
weight and the optimal solution can be understood in the idea of duality.

2“Probability theory is nothing but common sense reduced to calculation” – Pierre Simon Laplace, 1812
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Application in shape registration

In shape registration, the true state to be inferred is the matching of each
point on the target surface. The internal force (prior knowledge) can be
defined as the the plausible deformation of the surface from the source
to the target. The external force corresponds the fitness of the deformed
surface to the observed target surface, which can be defined using the
similarity in textures and other features. Hence solving the surface reg-
istration problem becomes optimizing an energy function defined in the
form of Eq. 1.3. It is important to take both forces into account. For
example, solely considering external similarities would easily fail if the
input data is noisy or ambiguous. Determining the proper weight be-
tween internal forces and external forces remains an open problem in
the surface registration literature.

1.1.2 Classifications of geometry

The expression “the geometry of ...” is frequently used to signify the deep understanding
of a subject [61, 146, 147, 282]. Although intuitively geometry allows us to “see through”
things, many insightful properties of a geometric object are usually achieved by complicated
algebraic calculations, which are often counter-intuitive. For instance, modern physics relies
heavily on the development of geometry in mathematics since many of the subjects (e.g.,
spinors, monopoles, etc) can only be speculated through calculations [78, 194].

In mathematics, there are several branches of geometry. For example, there are Euclidean
geometry, Riemannian geometry, Conformal geometry, Projective geometry, Algebraic geome-
try and Hyperbolic geometry, Symplectic geometry, etc. The classification of these geometries
are based on the invariant group under which the properties of the geometry does not change3.
In the language of quotient group, each geometry studies the properties of the geometric object
under the quotient:

Geometric Objects
Equivalent Transformations

. (1.5)

For example, properties of Euclidean geometry (e.g., Pythagoras’ theorem, Thales’ theorem)
are invariant under rigid transformations. In Riemannian geometry, its equivalent transfor-
mation is called isometric transformation, meaning the preservation of Riemannian metrics.

3According to Felix Klein’s Erlangen Program: geometries study those properties of spaces invariant under
various transformation groups.
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In Conformal geometry, it studies properties of objects that are equivalent under conformal
transformation, which is a subclass of isometric transformation. In Projective geometry, as its
name implies, the invariant transformation is the projective transformations, which is in fact
independent of any metric structure. Projective geometry is very fundamental in computer
vision since every two dimensional image is generated by the projective transformation.

Although the study of geometry seems to be in the domain of continuous mathematics,
the investigation into more abstract geometry directly lead to the study of discrete mathe-
matics. For example, in Algebraic geometry, the concept of fundamental group studies the
classification of the surfaces based on the shrinkage of different loops on the surface. Such a
classification of the surface can be elegantly represented as the operations (composition) on
strings, which can be considered as the preliminary form of the Turing machines (the relation
between the Algebraic geometry and Turing machine needs to be verified) [298].

Application in shape registration

For the problem of surface registration, applying the appropriate geom-
etry can help significantly simplify the solution. The two major players
in the literature are Riemannian geometry and Conformal geometry. In
Riemannian geometry, the invariant transformation group is the isomet-
ric transformation. Hence by using features derived using Riemannian
geometry, such as curvature and geodesics, it is then possible to regis-
ter surfaces undergoing very large deformations (e.g., [37]). Another
geometry that has been successfully applied to the surface registration
problem is the Conformal geometry. An important property of confor-
mal geometry is that when two surfaces undergo only isometric defor-
mation, a dense mapping between two surfaces can be established by
recovering a closed-form solution with very few degrees of freedom.
Throughout this dissertation, we shall show how such a property is ex-
plored in different applications and it significantly improves the perfor-
mance.

1.1.3 Duality

Duality reflects the two (often complementary) sides of the same thing, which is prevailing
in many areas (e.g., geometry, physics, optimization, etc). Since the primal and the dual are
always equivalent, one might wonder why bother with the dual side since it seems to give us

7



no more information than the primal side. Nevertheless, in many cases, since there may exist
difficulties in obtaining the complete picture of the object from the primal side, looking at the
dual side often provides us a complementary view, which is often beneficial.

Intuitively, duality arises from the interactions between two objects, as can be schemati-
cally represented as:

〈signifier, signal〉 → outcome. (1.6)

The outcome of such an interaction can be anything that is meaningful, depending on the
specific domain of interest.

For example, a computer program can be regarded as the interaction between the data and
the program, namely

〈program, data〉 → problem solution. (1.7)

Within a duality interpretation, a program can be equivalently viewed as a piece of data, which
leads to the issue of self-references [224]. The study of self-references then leads to many im-
portant results in computability for computer programs (e.g., the halting problem, [82, 298]).
Another benefit from such a primal-dual view of a computer program is the interpretation of
the computational complexity of a computer program. Traditionally, the complexity class NP
is defined as the class of problems that have efficient verifiable solutions (programs) 4, and the
class P is defined as the set of programs that halts in polynomial time for any input. The cele-
brated Millennium Prize Problem [4] asks the simple question that if P = NP? By examining
such a question in a primal-dual interpretation, it is not difficult to find out that the original
question only concerns about the distribution of the program. In fact, a distribution of the
input can also affect the running time of the program. Such an insight directly leads to more
general classes of complexity, for example, the classes of PCP [10].

In field of computational learning theory [117, 166], the program/data duality underlies
some of its core ideas. In a machine learning task, the goal is to output an optimal hypothesis
h ∈ H based on the input data X , where H is a set of predefined hypotheses. Hence, the
interaction involved in here is

〈learning algorithm, training data〉 → hypothesis h. (1.8)

In contrast to computational complexity, the concern of a learning task is learnability, which
is intrinsically stochastic. Under the primal-dual point of view, the accuracy of a learning

4A decision problem / language is in NP if given an input x, we can easily verify that x is a YES instance of
the problem (or equivalently, x is in the language) if we are given the polynomial-size solution for x, that certifies
this fact [10].
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algorithm does not only rely on the distribution of the data, but also the learning algorithm
and the available hypothesis. The probably approximately correct (PAC) [256] is a widely
used learning model that describes such combined effect of both sides.

Another form of duality, which is more familiar to the computer vision community, is the
duality between a function and its input, as can be expressed as

〈function, input〉 → some number. (1.9)

Such form of duality is ubiquitous in mathematics. For example, if the input space is the vector
space of Rn, then all the linear functions defined in that space is another linear (functional)
space, which is known as covector. The duality between a vector space and its covector space
often helps us understand the same physical object from different aspects.

Application in shape registration

Duality is very helpful in solving optimization problems. Since almost all infer-
ence problems in Bayesian methods boil down to solving an optimization problem,
duality often play a key role in efficiently finding an (near-)optimal solution. For ex-
ample, when a Bayesian formulation involves discrete variables, a ubiquitous way
to find the optimal solution of such formulation is to relax its variables to be contin-
uous and the energy to be convex. However, directly solving those relaxed problem
is often inefficient since there often involve thousands of millions of variables (es-
pecially in the case of dense surface registration). Even the energy is convex, a
gradient descent based approach often involve a large number of iterations due to
the large search space. To overcome such a difficulty, exploring the solution in the
dual space of the optimization problem often involves solving a problem with a
much smaller size and it can also help achieve globally optimal solutions.

1.2 Thesis overview

This thesis is mostly devoted to the developments of practical algorithms that solve the dense
surface registration problem in different scenarios. This said, less focus is put on the theo-
retical aspects of the methods developed 5. Nevertheless, the author does make an effort to

5“Analysis is inherently the domain of a mathematician while optimization belongs to the engineer” – Jon
Dattorro
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(a) Sparse registration (b) Dense registration

Figure 1.2: Dense non-rigid surface registration using two-stage high-order graph matching.

reveal the possible deep connections behind these methods developed, though these work do
not belong to the main part of this thesis.

For every problem solved in this thesis, the following two major points have been ad-
dressed:

• Problem formulation: define a meaningful metric/quantitative measure for the prob-
lem, i.e., what is a good solution?

• Optimization: search for the (near-)optimal solution based on the metric.

As a result, we have made contributions in both parts, i.e., we proposed both novel formula-
tions and novel optimization techniques for the problems we solve. More detailed overview
of the contributions of this dissertation is listed as follows.

1.2.1 A high-order graph based formulation for surface registration

Our first work solves the problem of finding the dense correspondences between two surfaces
undergoing large deformations (Fig. 1.2). To this end, we cast the surface registration problem
into finding the optimal correspondences on a target surface for a discrete set of points on a
source surface, through the minimization of an energy function based on a measurement that
involves geometric/appearance similarities and deformation error. Here the deformation error
involves the high-order interactions among the discrete points. Hence the surface registration
is then naturally formulated as a high-order graph matching problem.

In order to solve the proposed high-order graph matching problem, we first formulate its
energy function into a pseudo-boolean optimization [30], which allows us to employ an effi-
cient order-reduction technique [106] which reduces the high-order terms into pairwise ones.
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Furthermore, since the reduced pairwise pseudo-boolean optimization involves non-convex
terms, we further re-formulate the original problem as the union of several sub-problems that
are easier to solve. Then a meta-algorithm (known as the dual-decomposition) is applied, com-
bining the solutions of these sub-problems to obtain an robust, often optimal solution. This is
the first high-order graph matching algorithm that handles partial matching. We show that its
application to the problem of sparse surface registration leads to accurate and efficient results.

However, there are obstacles in applying the above graph-matching formulation to the
dense surface registration, due to its inability of being discriminative in the metric defined for
sparse matching, as well as the high computational complexity and inaccuracy in the defor-
mation prior. To overcome this, we observe that since a unique conformal mapping can be
determined by fixing any three correspondences, a unique matching point for any point on the
original surface can therefore be determined by any three correspondences too. If the surface
is isometrically deformed, then any three correct correspondences would result in the same
matching point on the target surface for any point on the source surface. Otherwise, due to
noisy input and anisometric deformation of the surface, we can expect the clustering points
of these matching points for any point give us the candidate matching positions. Hence, with
such a candidate selection scheme, we have efficiently converted the dense surface matching
problem into a combinatorial problem: selecting the optimal matching among those candidate
matching points. Another advantage of our candidate selection approach is that it also allows
us to detect occlusions as well.

Therefore, towards solving the dense surface registration problem, we propose an efficient
two-stage optimization technique. In the first sparse registration stage, a small number of fea-
ture points are selected on the surfaces and the high-order graph matching algorithm is applied
to find an initial correspondence between them. In the second dense registration stage, the re-
sults from the sparse registration stage are used to get candidate matching points for a dense
set of points on the surface. Then a local high-order graph matching optimization is applied
which finds the optimal registration among these selected matching points, by constraining
the validity in triangulation and consistency in geometry and texture.

1.2.2 A robust metric for surface tracking and its use in a probabilistic
framework

Our second work solves the problem of finding the accurate correspondences in a sequence
of 3D frames (Fig. 1.3). In this problem, the deformations between two frames are small and
even subtle. Contrary to our first work, whose purpose is to find the correspondence between
two surfaces undergoing large deformation, the challenge in the surface tracking problem is to
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Figure 1.3: Dense surface tracking

accurately follow the subtle change of every point on the surface.

Hence, the first contribution of this work is to define a robust metric for correspondence
match. The new metric is derived from the idea of max-marginal in statistics [262], which
is defined as the maximal probability of multiple variables by fixing the value of a particu-
lar variable. The max-marginal essentially eliminates the dependence among the variables.
This said, if we know the max-marginal of a probability function for every variable, then the
Maximal a Posterior (MAP) solution can be easily obtained by optimizing n single variable
functions where n is the total number of variables. However, in practice, the max-marginal
is often difficult to compute. In this paper, again by utilizing the property of conformal map-
ping that every three sparse correspondences give us a closed-form solution for the matching
between the whole surface, we derive an efficient way to approximate the max-marginal (in
a minimization problem, it is named min-marginal more properly) for every point on the sur-
face. Specifically, the matching cost of any particular correspondence is defined to be the
lowest feature differences across the set of matchings that cause the points to correspond. Fur-
thermore, the computation of this matching cost is implemented in a parallel hardware. In our
experiments, we show that our new metric is most discriminating among the state-of-the-art
local shape features.

In order to apply the idea of max-marginal to surface tracking, we construct a dense tem-
plate for the 3D data in the first frame. Using our candidate selection scheme from our first
work, for each vertex on the template, a number of matching points are selected in the second
frame. Then we can evaluate which is the best matching among these matching candidates
using our metric for any correspondence match. However, since our metric is approximately
computed, finding the matching point for each vertex on the template individually can not
guarantee the accuracy of every point. To remedy this, a number of priors are explored that
enforces the spatio-temporal consistency of the final matching result.

Hence, the second contribution of this work is a complete probabilistic framework for
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Figure 1.4: A generic surface deformation model

the surface tracking problem that considers the spatio-temporal consistency, as well as occlu-
sions and error drifts. The metric we have defined for the correspondence match integrated
in the definition of probability of any possible configuration of the dense template. First, we
factorize the original multiple variable probability into the data fidelity term and the spatio-
temporal consistency term. For the data fidelity term, we further factorize it into a term that
regularizes the data similarity between frames and a term that constrains the consistency be-
tween current frame and all the previous frames, which essentially avoids error drifts. For the
spatio-temporal consistency term, we factorize it into a spatial deformation prior term and a
temporal motion consistency term, which regulate the consistency of the deformations of the
template. Finally, since we only select a discrete number of matching candidates, the infer-
ence on the probabilistic framework then becomes solving a pairwise Markov Random Field
(MRF) problem. The resulting energy can be efficiently solved by employing the existing
MRF optimization algorithm.

1.2.3 A generic surface deformation model with a high-order MRF for-
mulation for surface registration

In our third work, we deal with the question of accurately modeling surface deformations.
Almost all the existing intrinsic space-based surface matching methods assume the deforma-
tions of the surfaces to be isometric. Nevertheless, this assumption only applies to a coarse
scale in most cases. Hence, to achieve accurate surface registration, especially for the dense
registration problem, an accurate surface deformation model is needed.

Our new deformation model is derived using the ideas in Riemannian geometry, where
a surface is equipped with a metric tensor at each point. The deformation of a surface also
causes the changes of the metric tensor at each point (e.g., if the change is identity, then the
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deformation is isometric). Accounting the changes of metric tensor allows us to quotient
out large deformation as the intrinsic space space based method promises. To represent such
changes, an intrinsic representation (parametrization) of the surfaces is needed. However,
there are numerous ways to parameterize a surface, which are equivalent as long as the tran-
sition functions among them satisfy certain rules. Here we choose a special parametrization
(the canonical parametrization) whose metric tensor at a particular point is the identity ma-
trix. Under the canonical parametrization, the change of metric tensor can be represented by
a symmetric matrix that is related to the Jacobian of the deformation in the parametrization
domain. Then our new deformation can be accounted by the eigenvalues of such a matrix (the
canonical distortion coefficient), which we prove to subsume the isometric and conformal de-
formations. Intuitively, the two eigenvalues characterize the change of an infinitesimal circle
to an infinitesimal eclipse at each point.

When the input surfaces are represented by the simplicial complexes (triangular meshes),
we establish the discrete counterpart of the above continuous concepts using methods in finite
element analysis. To this end, we assume that the deformation of the shape in the parametriza-
tion domain be piecewise linear. Hence, the problem of computing the canonical distortion
coefficient at a point becomes computing it on a facet. The canonical parametrization at a point
is simply equivalent to mapping each face to the 2D domain. Within this setting, the computa-
tion of the canonical distortion coefficient for each face becomes solving linear equations with
a closed-form solution.

Furthermore, we apply this deformation model to the problem of surface registration,
which is formulated as a high-order MRF problem. In this formulation, the singleton terms
correspond to the measure of correspondence matching defined in our second work and the
high-order terms encode the generic deformation prior defined above. In order to solve such
a special high-order MRF optimization defined on the simplicial complex, we employ the
dual optimization technique [214]. By implementing the optimization algorithm in a parallel
hardware, a maximal speedup of around 100 times is achieved. In our experiments, we show
that our new surface registration method can significantly improve the matching accuracies of
both our first work (matching surfaces with large deformations) and second work (matching
surfaces with subtle change).
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Chapter 2

Groundwork – Geometry-based Methods

“ Everything is connected to everything else, ...(to be continued)

– Anonymous”

In this chapter, we explain the rationale for applying geometry-based methods for surface
matching problems as well as its connection with the graph-based methods. As the es-
sential background, some basic concepts in Geometry and Topology are briefly introduced
in Section 2.1. Specifically, geometric concepts based on differentiations are introduced in
Sec. 2.1.1, 2.1.2, and 2.1.3. By grouping the continuous geometric objects into finite groups
(topology), the connection between continuous geometry and combinatorial structures are es-
tablished in Sec. 2.1.4 using the language of simplicial complexes.

Given the basic concepts in geometry and topology, we introduce one of its important
branches – Conformal Geometry – and its applications in shape registration in Sec. 2.2. We
emphasize here that due to the flexibility of conformal geometry, the mapping between two C
surfaces can be derived in a closed-form (under certain ideal assumptions on the deformation
of the surface), which is very useful for establishing dense correspondences between two sur-
faces. Furthermore, to overcome the limitation of conformal geometry that it can only deal
with conformal/isometric deformations, we discuss a general class of mapping between two
surfaces, namely the quasi-conformal mapping, in Sec. 2.2.3.
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Фα β

Uα Uβ
M
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Ф

Figure 2.1: A manifold can be represented by its local charts. The transition map fαβ can
not be arbitrary, it determines the geometric invariance that should be agreed upon among
different local coordinates.

2.1 Geometry and topology

A topological n-manifold is a spaceM locally homeomorphic to Rn, i.e., there is a cover of
open sets U = {Uα} ofM and maps φα : Uα → Rn that are continuous bijections onto their
images in Rn with continuous inverses. Here the pairs (Uα, φα) are called charts. Then an
atlas of on a manifoldM is a collection of charts onM whose domains coverM (Fig. 2.1).
Examples of manifolds include the n-sphere Sn, the real projective n space RP n, etc.

Given the representation of a manifold using the atlas, we can study the properties of the
surface without leaving the surface. Furthermore, if (Uα, φα) and (Uβ, φβ) are two charts on
M such that Uα ∩ Uβ is non-empty, then the two charts are related by the transition map:

fαβ := φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ). (2.1)

A manifold is orientable if all the transition maps fαβ preserves orientation (have determinants
with positive derivative). Examples of non-orientable manifold include the projective plane
RP n and the Klein bottle K2. In physics, the transition maps between two coordinate charts
should belong to certain classes. For instance, in order for two observers to agree on the
length/area/volume of the same object in 3D, the transition map between the two orthogonal
coordinate systems that the two observers use must be a rigid transformation. As a more
complicated example, in the theory of relativity, in order for two observers to agree on the
same ”length” in space-time, the transition map must be a Lorentz transformation [78, 194].

The atlas definition of a manifold also allows us to define the differential between two
different surfaces. Specifically, we can define a map between two manifolds f :Mm → N n
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Figure 2.2: The differential between two manifolds is defined on their local charts. The map-
ping φβ ◦ f ◦ φ−1

α determines the type of deformations that is invariant between the local
representations of the two surfaces.

using their local charts, i.e., whenever f takes p ∈ Uα to f(p) ∈ Vβ ⊂ N , the mapping
φβ ◦ f ◦ φ−1

α defines a smooth map from Rm to Rn (Fig. 2.2). Hence we can define the
differential of f at p as the differential of φβ ◦ f ◦ φ−1

α from Rm to Rn, which is a linear
transformation mapping a vector in Rm to a vector in Rn. Note that the choice of chart should
be independent of the result of the differential, meaning that certain transformation rules must
be satisfied among overlapping charts. The class of the differentials between two surfaces
determines the type of deformations that are invariant to the local observers (Figure 2.2).
Examples of such invariant deformations include isometric/conformal/affine maps (rigorous
definitions of these deformations will be given later in this chapter).

One might wonder what happens if the maps are constrained to be the most general type:
the diffeomorphisms. Does that mean any two surfaces can be continuously deformed from
one to the other since a diffeomorphism exists between any two charts? The answer to this
question is that although locally any two surfaces look the same, globally two shapes are dis-
tinguished by their topology. Topology is a bridge that connect continuous math with discrete
math (any others?). For instance, the Euler characteristic is an important topological feature,
which is originally defined on the planar graph by Euler and then has been shown to exist in
the continuous setting in various forms, e.g., the celebrated Gauss-Bonnet theorem, the fixed-
point theorem or the index theory. There are also other topological features that describe more
detailed structure of the surface, e.g., Homotopy or Homology groups. It is important to re-
alize the topological obstruction that is inherent in many real-world problems. For example,
ignorance of the the existence of singular points would prevent us from constructing a every-
where smooth function on the surface [91]. Also in constructing a global conformal mapping,
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it is impossible to map the whole surface conformally into 2D with positive curvature every-
where for high genus surfaces (in this case one should consider the hyperbolic space). In
the following, we introduce the essential concepts for characterizing the map between two
surfaces in the continuous setting.

2.1.1 Tangent space and vector field

In above, we have mentioned that the differential between two surfaces should be independent
of their local chart representations. By “independent”, we mean that if there is a transition
map between two charts Uα and Uβ for a quantity defined on Uα ∩ Uβ , certain transition rules
must be satisfied such that the two representations of the quantity are equivalent in certain
sense. One of such quantities is the concept of tangent vector defined below.

Definition 1 A tangent vector at p ∈M, call it X, assigns to each coordinate patch (Uα, φα)

holding p, and n-tuple of real numbers

(Xp
α) = (X1

α, . . . , X
n
α). (2.2)

If p ∈ Uα ∩ Uβ , and xα = (x1
α, . . . , x

n
α) and xβ = (x1

β, . . . , x
n
β) are the local coordinates for

Uα and Uβ , respectively, then we have

X i
β =

n∑
j=1

[
∂xiβ

∂xjα
(p)]Xj

α,∀i ∈ {1, . . . , n} (2.3)

Here the matrix cαβ ≡ [
∂xiβ

∂xjα
] is the Jacobian matrix between the two charts Uα and Uβ , as

defined in Eq. 2.3.

Hence a tangent vector can be represented by different coordinates under different parametriza-
tions as long as Eq. 2.3 is satisfied. Also at each point, all the tangent vectors form a linear
space, which can be represented by a coordinate basis under any parametrization Uα.

Definition 2 The tangent space toM at the point p ∈ M is the real vector space consisting
of all tangent vectors toM at p. If xα = (x1, . . . , xn) is a coordinate system holding p, then
the n vectors

∂

∂x1
, . . . ,

∂

∂xn
(2.4)

form a basis of this n-dimensional vector space and the basis is called a coordinate basis. We
denote by TpM as the tangent space at a point p ∈M.
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TqM

Figure 2.3: At each point, there is a linear tangent space associated to it. Each tangent vector
lies in the tangent space.

Here ∂
∂xi

means the change of the surface along the direction of the ith axis in the local coor-
dinate system. We denote it as an operator since we are working in the intrinsic space without
knowing the specific representation of the surface. If we consider the tangent vectors at every
point, we can define a vector field on an open set U to be the differentiable assignment of a
vector X to each point of U ; in terms of local coordinates xα = (x1, . . . , xn), we have

X =
n∑
j=1

Xj(x)
∂

∂xj
. (2.5)

As in the case the surface is mapped to R by the function f :M→ R and a vector at a point
p on the surface, we can define a differential operator as (in local coordinates)

Xp(f) :=
∑
j

[
∂f

∂xj
](p)Xj. (2.6)

One can verify that such definition is independent of the coordinate chosen if the Jacobian rule
of Eq. 2.3 is satisfied.

Both the tangent vector and the tangent space are defined at a single point on the surface
(Fig. 2.3). The union of all tangent spaces TpM for all p ∈ M is itself a self-contained
space (denoted by T∗M), which is called the tangent bundle of M. Tangent bundle itself
is a manifold. A point on the tangent bundle can be described by its local coordinate system
Uα × Rn and similar transition rules as Eq. 2.3 must be satisfied. Tangent bundle is useful
when a system is characterized both by its location and speed at each point (e.g. Hamilton’s
mechanics [78, 193]).
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2.1.2 Tensors, differential forms and metric tensor

So far our discussion is solely focused on the quantities of the surface without interactions
among them. However, it is more intuitive to deal with physics or mathematics if we are
able to compare one quantity against another. For example, one can define the length, area
and volume of a geometric object. Generally speaking, a measure/interaction between two
quantities can be represented in the form

〈·, ·〉 → R. (2.7)

Not surprisingly, in geometry, the slots are usually filled with vectors. Such a measure can be
either linear or nonlinear. The linearity assumption is made on the form of the interaction that
satisfies

〈·, v + w〉 = 〈·, v〉+ 〈·, w〉. (2.8)

〈v + w, ·〉 = 〈v, ·〉+ 〈w, ·〉. (2.9)

Although limited, such a linearity assumption has been proven to be powerful in accurately
modeling the complicated physical world 1. Furthermore, by extending the number of objects
involved in the interaction, we define the notion of multilinear interactions among n vectors
as follows.

Definition 3 Let E denote a linear nD space, a covariant tensor of rank r is a multilinear
real-valued function

Q : E × E × · · · × E → R (2.10)

of r-tuples of vectors and the values of this function is independent of the basis in which the
component of the vectors are expressed.

Again, if a tensor is defined with a geometric meaning, its value must be independent of the
basis in which the components of the vectors are expressed. On the other hand, given a basis
of the linear nD space E, the tensor Q can be uniquely identified by a n × . . . n matrix. The
entry for the matrix is defined as

Qi1...in := Q(∂i1 , . . . , ∂in), (2.11)

where ∂i is the ith basis. Note that there are nr such entries.
1The field of Finsler Geometry [16] studies the nonlinear structure of the geometry.
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If we consider the space of all the linear functions that map Er to R, it is actually itself
a linear space. Such a linear functional space of a multilinear product linear space Er is the
dual space, denoted by ⊗rE∗. In convention, the dual space is often given a prefix “co”. For
example, the dual space T ∗pM to the tangent space TpM is called the cotangent space; the
dual space of a vector space is called a covector (or covariant). Given two covectors α and β
of rank p and q, respectively, we can define their tensor product α⊗ β as follows

α⊗ β(v1, . . . , vp+q) := α(v1, . . . , vp)β(vp+1, . . . , vp+q) (2.12)

It can be seen that the functional space obtained by the tensor product is another tensor space.
However, it is only a sub-space of all the rank (p + q) tensor space (one has dimension np+q,
the tensor product has dimension np + nq 2).

Using the tensor space, one can define different quantities on the surface as long as these
quantities satisfy linearity condition. In physics, one is interested in a sub-space of the co-
variant r-tensor space ⊗rE∗ that computes the area of the parallelogram spanned by any r
input vectors {v1, . . . , vr|vi ∈ E} (obviously, such a subspace is a multilinear subspace of
⊗rE∗ and if α ∈ ⊗rE∗, α(. . . , v, . . . , v, . . .) = 0 in each pair of entries.). By expanding the
equation α(. . . , vr + vs, . . . , vr + vs, . . .) = 0, we obtain the antisymmetry property of such
special r-tensor space, i.e.,

α(. . . , vr, . . . , vs, . . .) = −α(. . . , vs, . . . , vr, . . .) (2.13)

In fact, the space of r-tensors that satisfies the antisymmetry property is itself a linear sub-
space. Such subspace is of special interest to mathematics and physics. Formally, we define

Definition 4 An (exterior) p-form is a covariant p-tensor α ∈ ⊗rE∗ that is antisymmetric in
each pair of entries. A p-form is often denoted by ∧pE∗.

As some special cases, a 0-form is the function f :M→ R defined on the surface, a 1-form
is simply the covector space of TpM, namely T ∗pM. In contrast to the dimension np for a
p-tensor, a p-form has dimension

(
n
p

)
, which is a significant smaller subspace of the original

linear tensor space. Even so, many properties can be derived for the form space (known as
exterior algebra).

For example, the concept of derivation can be extended for differential forms (called exte-
rior differentiation), which maps a p-form to a (p+ 1)-form. We have the following theorem

2Note that this tensor product is in essence very similar to the factorization of graphical models as we shall
introduce in the next chapter. The differences, however, are that in graphical models the variables are allowed to
overlap among different lower cliques and the clique functions are not necessarily linear.
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Theorem 1 There is a unique operator, exterior differentiation,

d : ∧pE∗ → ∧p+1E∗ (2.14)

satisfying

1. d is additive, d(α + β) = dα + dβ.

2. if p = 0, df is the usual differential of the function f

3. d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq.

4. d2α := d(dα) = 0, for all forms α.

The space of tensors derived by exterior differentiation constitutes a subspace of the form
space. Two special such subspaces are considered, namely the closed and exact forms. A
differential form α is said to be closed if dα = 0; it is said to be an exact form if there is
another form β such that α = dβ. From the property of differentiation, it can be seen that any
exact form must be a closed form. In physics, the concept of a closed form corresponds to the
conservation of forces, and the concept of exact form corresponds to the concept of having
a potential function. Hence, these two special forms are very fundamental (Q: are there any
other such fundamental forms?). The study of the quotient: closed forms / exact forms, leads
to the concept of cohomology as we shall discuss later in this section.

While the exterior differentiation lifts a p-form into a (p+ 1)-form, the interior product,
denoted as iv, degrades a p-form into a (p− 1)-form, which is defined by

ivα
0 = 0 if α is a 0-form (2.15)

ivα
1 = α(v) if α is a 1-form (2.16)

ivα
p(w2, . . . , wp) = α(v, w2, . . . , wp) if α is a p-form (2.17)

One might wonder what happens if we apply to a p-form αp the operator iv ◦ d or d ◦ iv.
The result should still be a p-form, and one should employ the concept of Lie derivative Lv.
Here we skip more detailed discussion in this direction.

Another important example of the tensor space is the metric tensor G that defines the
inner product between two tangent vectors. A manifold quipped with a metric tensor is
called Riemannian manifold, and Riemannian Geometry studies the property of a Rieman-
nian manifold. Given a tangent space defined on a point p ∈ M, we can define a basis
{e1(p), . . . , en(p)|ei(p) ∈ Rn}. Hence we can define a inner product 〈·, ·〉 that measures the
linear interactions between two tangent vectors at each point, which is the metric tensor that
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map TpM×TpM to R. A metric tensor can be uniquely determined by the values of the inner
product among its basis, since

〈v,w〉p = 〈
∑
i

eiv
i,
∑
j

ejw
j〉p =

∑
i

∑
j

vi〈ei, ej〉pwj, ∀v, w ∈ TpM. (2.18)

If we define the matrix G = (gij)p with entries

gij := 〈ei, ej〉p, (2.19)

then 〈v,w〉 = vTGw. Hence the metric tensor at a point p ∈ M can be denoted by the
bilinear transformation ds2 : TpM × TpM → R. In the covector space, a metric tensor
(known as the covariant tensor) can also be denoted by the mapping T ∗pM× T ∗pM → R,
namely

ds2 ≡ 〈dr, dr〉g =
∑

gαβdx
αdxβ (2.20)

Note that here the basis ei, i = 1, . . . , n in Eq. 2.19 do not necessarily correspond to a
coordinate basis. In the case that the basis is coordinate basis, i.e., ei = ∂i := ∂/∂xi, we then
have the metric tensor:

gij(x) = 〈 ∂
∂xi

,
∂

∂xj
〉 (2.21)

According to the change of variable rule, the transformation rule for the components of the
metric between two charts should satisfy:

gαij =
∑
rs

(
∂xrβ
∂xiα

)(
∂xsβ
∂xiα

)gβrs. (2.22)

The metric tensor allows us to measure the linear interactions between two tangent vectors.
On a regular 2-manifold surface, the metric tensor is also named the First Fundamental
Form3, which can be defined as

ds2 = 〈dr, dr〉 =
(
du dv

)(g11 g12

g21 g22

)(
du

dv

)
, (2.23)

Given the first fundamental form, we can compute quantities on the surface like angles be-
tween two vectors ( 〈A,B〉|A||B| ), lengths (|A| =

√
〈A,A〉) and areas (dS =

√
g11 ∗ g22 − g2

12du ∧
dv), etc.

3Note that the first fundamental form is not a differential form, but just a tensor product.
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The tensorial functions defined above are measures for a single surface. When there is a
mapping between two surfacesM F−→ N , these tensorial functions are changed accordingly.
In the 0-form case, a function f : N → R is changed to a function f ◦ F : M → R. In
the general n-form case, the change of tensorial function can be represented by the pull-back
operation. The pull-back of a covariant tensor αn is defined as follows:

F ∗αn(v1, . . . ,vn) := αn(F∗v1, . . . , F∗vn). (2.24)

Here F ∗ is the pull-back operator on the differential form α:

F ∗ : ∧nN → ∧nM. (2.25)

As an example, we consider the metric tensor of Eq. 2.23. If a function maps F : (U, V ) →
(u, v), we have

F ∗(ds2) =
∂u

∂U

∂v

∂U
dU2 + (

∂u

∂U

∂v

∂V
+
∂u

∂V

∂v

∂U
)dUdV +

∂u

∂V

∂v

∂V
dV 2 (2.26)

In elasticity, the difference F ∗(ds2) − (dS2) is defined as the Lagrange deformation tensor,
where dS2 = dU2 + dV 2.

2.1.3 Curvatures and geodesics

As we have shown, the first fundamental form (metric tensor) allows us to measure angles,
lengths or areas on the surface that involve first derivatives. These measurements only require
the knowledge of the metric tensor at each point without knowing the exact location of the
surface in its extrinsic space, namely they are intrinsic measures. There are also other quan-
tities that we can measure intrinsically. Before discussing these intrinsic quantities, we first
introduce the concept of intrinsic derivative.

First of all, let us define the intrinsic derivative or the covariant differential of a vector
field X, with respect to another vector field v, to be the tangent part of the change of X by
moving it along v, namely

∇Xv :=
dX(γ(t))

dt
− 〈dX(γ(t))

dt
,N〉N|t=0. (2.27)

Here γ(t) is the curve whose tangent is v at t = 0. It is not difficult to show that the following
relations holds for a covariant differentiation

∇X(av + bw) = a∇Xv + b∇Xw (2.28)

∇aX+bYv = a∇Xv + b∇Yv (2.29)

∇X(fv) = X(f)v + f∇Xv (2.30)
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If we let e = (e1, . . . , en) be a frame of n linearly independent smooth vector fields on the
surface such that X =

∑
i eiX

i, then we have

∇X(ekv
k) =

∑
j

{
∑
i

Xjeiω
i
jkv

k +Xjej(v
k))ek}. (2.31)

Here ωijk is defined by

∇ejek = eiω
i
jk, (2.32)

corresponding to the Christoffel symbols when e is a coordinate frame. Note that the operator
∇Xv sends two vectors to R, and it is linear with respect to X (but not v). Therefore we can
think of it as a 1-form acted on X and such 1-form can be defined by

∇v(X) := ∇Xv =
∑
i

ei{dvi +
∑
jk

ωijkσ
jvk}(X), (2.33)

where σj is the dual basis of e defined by σi(ej) = δij . Also in here we use the notion of
vector-valued p-form that sends vectors to vectors, i.e.

α(v1, . . . , vp) :=
∑
i

eiα
i(v1, . . . , vp). (2.34)

Furthermore, if we define the connection 1-form by

ωkj :=
∑
r

ωkrjσ
r, (2.35)

then we have

∇ej =
∑
k

ek ⊗ ωkj (2.36)

In vector forms, one has

∇e = e⊗ ω, (2.37)

where ω is the n × n matrix of connection 1-forms (ωij). Under this notation, if v = ev is a
vector, we have

∇v = e⊗ (dv + ωv), (2.38)

which is vector-valued 1-form. Intuitively,∇v(X) describes the change of a tangent vector X
when moved an infinitesimal distance along a given direction v. Simply using the information
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provided by∇v does not give us much information about the shape of the surface. In order to
measure how much the surfaceM deviates from being Euclidean, the following Riemannian
curvature tensor is defined:

R(X,Y) := ∇Y∇X −∇X∇Y +∇[X,Y], (2.39)

where [X,Y] is the Lie bracket. Intuitively, it measures the amount of deviation of a vector by
“walking” (rigorously, one should parallel displace a vector) along the directions X → Y →
−X→ −Y. If the surface is flat, such number should always be zero. Alternatively, one can
characterize the curvature of a surface by the curvature 2-forms, which is defined by

θ := dω + ω ∧ ω. (2.40)

It is derived by the 2nd-order covariant differentition∇∇e = ∇(eω) = e(dω + ω ∧ ω) = eθ,
where θij = dωij +

∑
k ω

i
k ∧ ωkj . One can verify that θ = 0 if and only if R(X,Y) = 0 for

all X and Y.

Given the covariant differentiation, a parametrized curve γ : [0, t] → M is a geodesic
curve if∇TT = 0 at every point, where T is the tangent of the curve γ.

2.1.4 Complexes and homology

Complexes, reflects the mathematical abstraction that a complex system is composed of ba-
sic building blocks. For example, the cell complex is an abstraction of the smooth manifold
surfaces. Algebraic properties (e.g., topology) of the surface can be studied under the dis-
crete setting using complexes. There are various types of complexes introduced for different
purposes, such as chain complexes, cell complexes, Vietoris-Rips complexes [259], Čech
complexes. In this dissertation, we only introduce the chain complexes that is closely related
to the discrete representations of surfaces. The language of complexes allows us to directly
link many continuous geometric theories to their discrete counterparts.

Simplicial complex

Let S be a discrete set and 2S be its power set, an abstract simplicial complex is a collection
of finite subsets of S, X ⊂ 2S satisfying the closeness property: for each σ ∈ X , all subsets
of σ are also in X . Each element σ ∈ X is called a simplex, or rather a k-simplex if |σ| =

k + 1. Given a k-simplex σ, its faces are the simplices corresponding to all subsets of σ ⊂ S.
For example, in a graph, the edges are 1-simplices of the graph. The simplicial complexes
can be considered as generalizations of the concept of graphs, namely graphs are simplicial
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complexes without simplices of dimension higher than one. However, if we allow a graph to
have edges with more than 2 nodes (hyper-edges), a simplicial complex become another term
for a (hyper-)graph.

The definition of simplicial complex above is rather abstract. We can associate with an
abstract k-simplex a geometric meaning by assigning a coordinate to each of its elements.
The standard Euclidean k-simplex (Fig. 2.4) can be defined to be the space:

∆k = {x ∈ [0,∞)k+1 :
k∑
i=0

xi = 1}. (2.41)

Here ∆k can be regarded as being composed of copies of ∆j for j < k via restricting them
to subspaces of Rk+1. More generally, a k-simplex σk can be realized as the non-degenerate
convex hull of k + 1 vertices in an n-dimensional space, if we associate each element in σk
with a coordinate in Rn, namely (v0, . . . vk) ∈ Rn with n ≥ k, which is represented as

σk = {x ∈ Rn|x =
k∑
i=0

αivi with αi ≥ 0 and
k∑
i=0

αi = 1}. (2.42)

A k-simplex can also be realized into a k-manifold: σk : ∆k →Mk. Although the definition
of Eq. 2.42 is independent of the order of the elements vi, i = 0, . . . , k, in many situations
such order does matter. One example is the directed graph where the edge is a 1-simplex;
another example is the orientation of the face of a surface, which is determined by the even or
odd permutations of (v0, v1 . . . , vk) from a canonical order.

In order to see the relation between a simplicial simplex X and its realizations as standard
k-simplices, we define the k-skeleton of X , k ∈ N, to be the quotient space:

X(k) = (X(k−1)
⋃ ∐

σ:dim σ=k

∆k)/ ∼, (2.43)

where ∼ is the equivalence relation that identifies faces of ∆k to the corresponding faces of
σ in X(j) for j < k. By this construction, we can see that X(0) = S is a discrete set; the
1-skeleton X(1) is a space homeomorphic to a collection of vertices and edges. It is easy to
see that X(k) ⊃ X(k−1) and X = ∪∞k=0X

(k).

Chain complex

Given a k-simplex σk = (v0, v1 . . . , vk), we can define its boundary operator ∂σk as follows:

∂σk :=
k∑
i=0

(−1)i(v0, . . . v̂i . . . , vk) =
k∑
i=0

(−1)iσ
(i)
k−1, (2.44)
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Figure 2.4: A standard Euclidean k-simplex.

where σ(i)
k−1 denotes the ith face of σk and ∂σ0 = 0. From the definition of the boundary

operator, we can derive the following important lemma.

Lemma 1 The boundary of a boundary is null: ∂k−1 ◦ ∂k = 0 for all k.

Note that ∂σk, as a sum of (k − 1)-simplices with coefficients ±1, is no longer a simplex.
Here the coefficients {+1,−1} denote the orientation of each of the (k − 1)-simplices, and
itself forms a group. Extending this idea, given a coefficients in the abelian group G, we can
define a k-chain to be the sum of a finite number of k-simplices

ck = g1σ
1
k + g2σ

2
k + . . .+ grσ

r
k, gi ∈ G. (2.45)

The collection of all the k-chains with coefficients in G form a k-chain group, denoted as
Ck(Mn;G) if a k-chain is realized by a n-manifoldMn and Ck(G, G) if a k-chain is realized
by a graph G.

The boundary operator for a k-chain can be defined by

∂
∑
r

grσ
r
k =

∑
r

gr∂σ
r
k. (2.46)

Thus if the coefficient group G is a field, the boundary operator should be a linear trans-
formation. If the number of all k-simplices that form a k-chain is nk and the number of all
(k − 1)-simplices that form a (k − 1)-chain is nk−1, then the boundary operator for a k-chain
can be denoted by a nk−1 × nk matrix. The collection of chains and boundary maps is assem-
bled into a chain complex:

. . .→ Ck
∂k−→ Ck−1

∂k−1−−→ . . . C0
∂0−→ 0 (2.47)

For example, for a single n-simplex Cn = ∆n, it is not difficult to verify that its chain complex
Ck has dimension

(
n+1
k+1

)
.
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Homology

Now we consider the classification of k-chain groups. To this purpose, we should first define
certain equivalent relations. First of all, a homomorphism of an abelian group G into an
abelian group H is a map f : G → H such that f(g + g′) = f(g) + f(g′) for all g, g′ ∈ G.
It can be seen that for any mapping between two manifolds F : M → N , a homomorphism
F∗ : Ck(M;G)→ Cl(N ;G) can be defined by

F∗(g1σ
1
k + . . .+ grσ

r
p) := g1(F ◦ σ1

k) + . . .+ gr(F ◦ σrp). (2.48)

Using this construction, we can define the boundary homomorphism F∗ = ∂ : Ck(M;G)→
Cp−1(M;G), for the boundary operator as follows

∂
∑
r

grσ
r
k :=

∑
r

gr∂σ
r
k (2.49)

In order to classify a k-chain groups Ck(M;G), we consider the kernel and image with
respect to the boundary homomorphism (one possible intuition is from the property that ∂2 =

0). To this end, we define a k-cycle to be a k-chain whose boundary is 0, namely

Zk(M;G) := {zk ∈ Ck|∂zk = 0} = ker ∂ : Ck → Ck−1. (2.50)

When G is a field, Zk is a vector subspace of Ck, resembling the kernel space of a linear
transformation with respect to ∂ (i.e., if a linear mapping is denoted by f : x→ Ax, its kernel
space is the set {x|Ax = 0}).

Similarly, we define the k-boundary of a k-chain to be those k-chains that are the bound-
aries of some (k + 1)-chains, i.e.,

Bk(M;G) := {βk ∈ Ck|βk = ∂ck+1, for some ck+1 ∈ Ck+1} = Im ∂ : Ck+1 → Ck. (2.51)

Obviously, since ∂2β = 0, Bk ⊂ Zk. And Bk is a subspace of Zk. Hence their quotient group
Zk/Bk itself forms a subspace. The kth homology group of a chain complex, can therefore
be defined as

Hk(M;G) :=
Zk(M;G)

Bk(M;G)
=

ker ∂k
im ∂k+1

=
cycles

boundaries
. (2.52)

The class of homology groups {Hi(M;G)} is called homology classes.

Here we give two important examples of homology classes. The homology class H0(G;F)

of a graph G is the number of connected components, and H1(G;F) is the number of indepen-
dent cyclic chains of edges (cycles). For a 2-manifoldM (connected compact orientable with
genus g), we can derive H0(M;F) = 1, H1(M;F) = 2g, H2(M;F) = 2.
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2.1.5 Harmonic forms and Hodge decomposition

Recall that in Sec. 2.1.2 we introduced the concept of dual space to a vector space V as the
linear functionals V → R. Since a k-chain Ck(M;R) can be considered as a vector space,
we can therefore define its dual space, namely the k-cochain Ck(M;R) := C∗k(M;R). A
k-cochain is a linear functional f : Ck → R.

Also given a linear transformation A : V → W , we can associate to it a adjoint map
AT : W ∗ → V ∗, defined by

(AT (f))(v) = f(A(v)),∀v ∈ V. (2.53)

Note that the adjoint map is in analogy to the pull-back function defined in Sec. 2.1.2 for the
differential forms. The diagram below illustrates the relations among dual spaces and adjoint
maps.

V W

V ∗ W ∗

A

AT

dual dual

As a chain is associated with a boundary operator ∂, a cochain can be associated with a
coboundary δ, which is defined as the adjoint of ∂, such that δα(c) = α(∂c),∀α ∈ Ck and
c ∈ Ck. Thus, if a boundary operator ∂k sends Ck to Ck−1, its corresponding coboundary
operator δk−1 sends Ck−1 to Ck. Also from ∂ ◦ ∂ = 0, we obtain δ ◦ δ = 0.

Similar to the chain complex, we can define the cochain complex as the collection of
cochains and coboundary maps, i.e.,

C0 δ0

−→ C1 δ1

−→ . . .
δk−1

−−→ Ck (2.54)

An important consequence of considering the cochain complex is we can define the analogy
of the homology class, namely the cohomology class:

Hk =
ker δk

im δk−1
=

cocircles
coboundaries

. (2.55)

In the case of H1(M2,R), the cocircles are the functional α1 defined on the edges of the sur-
face such that for any face F ⊂M2, α1(∂F ) = 0. And the coboundaries are the functional on
M whose integration along any close curve on the surface are zero. Although the dimension
of H1 is the same as H1, it is calculated based on a different aspect from the homology.

For the relationship between homology and cohomology, we have the following theorem.
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Theorem 2 (Universal Coefficient). For F a field, we have Hn(M;F) ∼= H∗n(M;F).

Although cohomology can be determined by homology and certain algebraic properties of the
coefficient, considering the dual space often simplifies the algebraic difficulty as in the case of
differential forms.

Theorem 3 (Poincaré duality). ForM a manifold, there is a natural isomorphismHk(M;F2)→
Hn−k(M;F2). In addition, ifM is compact, Hk(M;F2) ∼= Hn−k(M;F2).

Harmonic forms

As we have shown, the coboundary δk maps Ck to Ck+1. If Ck is defined in a vector space
and there exists a metric (inner product) for such vector space, the adjoint of this mapping, is
another linear map that sends Ck to Ck−1. With an abuse of terms, such adjoint mapping is
referred to as the boundary operator.

We can define the laplacian ∆ : Ck → Ck by

∆k = δ∗δ + δδ∗ = (δ + δ∗)2 (2.56)

A cochain α is called harmonic iff ∆α = 0, i.e., δ∗α = δα = 0.

Hodge decomposition

One can think of the harmonic form α as the smoothest differential forms defined on the
surface. In fact, the Hodge decomposition states that any k-form can be split into three
components:

βp = δαp−1 + δ∗γp+1 + hp, (2.57)

where hp is harmonic. Since d2α = 0 and δδγ = 1, the Hodge decomposition actually states
that any k-form can be decomposed into a closed form, a co-closed form and a harmonic form.

To summarize, in this section we have introduced the concepts in Riemannian geome-
try and Algebraic topology. Riemannian geometry has provided us with a number of useful
metrics (e.g., curvature, geodesics) to define meaningful measures for the plausibility of any
mapping between two surfaces, while Algebraic topology allows us to connect continuous
structures with discrete (combinatorial) structures. In the following, we shall explain how
these concepts can be applied to the surface registration problem.
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2.2 Conformal geometry and surface matching

As discussed in Sec. 1.1.2, geometry allows us to study the properties of the shape that are
invariant under different equivalent transformations. With the concepts introduced in the pre-
vious section, now we can rigorously define these transformations. In Riemannian geometry,
the equivalent transformation is the isometric mapping which is defined below.

Definition 5 (Isometric mapping) A diffeomorphism f : M → N between two surfaces
equipped with Riemannian metrics g and g̃ is an isometry if for all p ∈ M and all v1, v2 ∈
TpM we have

〈dfp(v1), dfp(v2)〉g̃ = 〈v1, v2〉g (2.58)

The surfacesM and N are then said to be isometric.

Many real-world deformations has proven to be isometric or near isometric, such as the de-
formations of clothes or faces [37, 211]. Since the isometric mapping simply requires that the
Riemannian metric between two surfaces be preserved, any features that are defined using the
Riemannian metric can be used for defining the measure of the mapping between two surfaces.
For example, one can define the similarity in Gaussian curvature (i.e., |R(p) − R(f(p))|) to
compare the plausibility of any pair of matchings p→ f(p), or the similarity in geodesic dis-
tances (i.e., |d(p, q) − d(f(p), f(q))|) to define the plausibility of any two pairs of matchings
(p, q) → (f(p), f(q)). However, these measures are only local measures and it is difficult to
find an efficient way to recover the mapping f for the entire surface using these measures.
Hence, when the number of matching points goes large (e.g., > 100), computational complex-
ity becomes an issue.

In contrast, Conformal geometry (also known as Riemann Surface) provides us an ele-
gant way of recovering the transformation f by only knowing a few correspondences, if the
surface is topologically equivalent to a sphere. Mathematically, the equivalent transformation
in Conformal geometry is the conformal mapping which can be defined as follows.

Definition 6 (Conformal mapping) A diffeomorphism f : M → N between two surfaces
equipped with Riemannian metrics g and g̃ is called conformal map if for all p ∈ M and all
v1, v2 ∈ TpM we have

〈dfp(v1), dfp(v2)〉g̃ = λ2(p)〈v1, v2〉g (2.59)

where λ2(·) is a nowhere-zero differentiable function onM. Conventionally, conformal map-
ping can also be represented as

g̃ = e2µg, (2.60)
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where µ(p) = log(λ(p)).

Geometrically, conformal mapping is a map that preserves the angle between any two tan-
gent vectors whereas isometric mapping preserves not only the angles but also the lengths of
any tangent vector. Hence conformal mapping is less “rigid” than isometric mapping, and C
therefore more flexible. Two surfaces are conformally equivalent if there exists a conformal
mapping between them. Such an equivalence class has been developed into a new geometry,
namely the Riemann surface [73], which is rich in many useful properties.

In the next section, we introduce the important properties in Riemann surface, justifying
its usefulness in surface matching. Specifically, the following arguments are established:

1. Conformal mapping allow us to map any two-manifold into one of three canonical do-
mains: the unit disk, the sphere or the hyperbolic plane (The Uniformization theorem).

2. If there exists an isometric mapping between two surfacesM1 andM2, then if we map
them to their canonical domain C, the set of bijective mappings that map C to itself can
be represented in a closed form solution.

3. Such closed-form solution has very low degrees of freedom, hence, the mapping be-
tween the two surfacesM1 andM2 can be represented in a closed form . C

2.2.1 Riemann surfaces

In Riemannian geometry, a manifold M is equipped with a Riemannian metric g, such that
the quantities (lengths, curvatures) are preserved by the transition map (Eq. 2.1). Such set
of mappings can be characterized by the isometric mapping (Def. 5). Similarly, in Riemann
surface theory, a manifold is equipped with atlases whose transition maps are characterized by
the conformal mapping (Def. 6) between two R2 domains. Such mappings can also be conve-
niently represented in the complex domain C, where each point (x, y) ∈ R2 is represented by
a point z = x + iy ∈ C. The set of conformal mappings among such complex domains are
characterized by the holomorphic function which is defined as follows

Definition 7 (Holomorphic or Analytical Function) A complex function f : C→ C is holo-
morphic function if the Cauchy-Riemann equation is satisfied:

∂f

∂z
= 0 (2.61)

where
∂

∂z
:=

1

2
(
∂

∂x
− i ∂

∂y
),

∂

∂z
:=

1

2
(
∂

∂x
+ i

∂

∂y
). (2.62)
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Given the definition of holomorphic functions for the complex plane, we can now define
conformal structure for surfaces. Let us define the complex chart for a topological space [78]
M to be a homeomorphism φ : U → V , where U ⊂M is an open set and V ⊂ C is an open
set in the complex plane. We say that two complex charts are compatible if either U1∩U2 = ∅
or the transition map

fαβ = φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) (2.63)

is holomorphic4. Hence, a complex atlas onM is a collection of pairwise compatible complex
charts whose domain cover M. A complex (or conformal) structure on M is a maximal
complex atlas onM or, equivalently, an equivalence class of complex atlases onM. Formally,
we can define the Riemann surface as follows:

Definition 8 (Riemann surface) A Riemann surface is a topological spaceM with a complex
structure.

A Riemann surface can be also studied algebraically. For example, if we define a polynomial
function

P (z, w) = wn + pn−1(z)wn−1 + · · ·+ p1(z)w + p0(z), (2.64)

its graph

S = {(z, w) ∈ C2|P (z, w) = 0} (2.65)

can be considered as a surface rather than as a multi-valued function of z [243] and a Riemann
surface can be regarded as the graph of a multi-valued complex-analytic function locally.
An interesting question in Riemann surface is: Can any surface be given the structure of a
Riemann surface (equip it with conformal structure)?Not surprisingly, the answer is that any C
orientable surface can be equipped with a conformal structure. Hence, any real-world surfaces
can be studied using Riemann surface theory.

An important example in Riemann surface is the Riemann sphere, whose bijective corre-
spondence to the domain C∪{∞} = P1 is illustrated in Fig. 2.5. In this case, P1 is understood
as a Riemann surface by regarding the graph z−1 = w as a local coordinate near∞. In general,
to study holomorphic maps with target space P1, the meromorphic function can be defined as
follows:

4Following the property of holomorphic functions, it can be derived that if fαβ is a transition function between
two compatible charts, then its derivative ∂f

∂z is never zero.
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Figure 2.5: An illustration of the Riemann sphere

Definition 9 (Meromorphic function) A function f : U → C ∪ {∞} (U ⊂ C is open) is
called meromorphic if it is holomorphic at every point where it has a finite value, whereas,
near every point z0 with f(z0) = ∞, f(z) = φ(z)/(z − z0)n for some holomorphic function
φ(·), defined and non-zero around z0.

Here the positive number n is the order of the pole at z0. It can be proven that every meromor-
phic function on P1 can be represented as a rational function R(z) = p(z)/q(z) where p(·)
and p(·) are polynomial functions. The degree of R(z) is defined as max(deg p(z), deg q(z)).
Here deg(·) denotes the degree of a function as we shall define in the following (Equ. 2.66).

In order to characterize the mapping between two Riemann surfaces, the first step is to C
characterize the local holomorphic functions between them. Let f : M → N be a non-
constant holomorphic map between two compact, connected Riemann surfaces, with f(r) = s

and f not constant near r. Then, given any mapping ψ : Vs → D of a sufficiently small neigh-
borhood of s ∈ M with the unit disc D, sending s to 0, there exists an analytic identification
φ : Ur → D of a suitable neighborhood Ur of r such that the following diagram commutes:

UM VN

D D

z zn

f

φ ψ
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That is, locally, f looks like the map z 7→ zn. It can be proven that this number n does not
depend on the choice of neighborhoods and is called the valency of f at r, denoted as vf (r).

Valency is useful in characterizing the mapping f . It can also be proven that the number

deg(f) :=
∑

r∈f−1(s)

vf (r) (2.66)

is independent of the choice of point s ∈ M, and is called the degree of the map f . The
order of zeros and poles of a meromorphic function between two surfaces are related by the
topology of the surface, specifically, we have the following

Theorem 4 (Riemann-Hurwitz formula) Let f : M → N be a non-constant holomorphic
map between compact connected Riemann surfaces, then the total branching index b of f is

b :=
∑
s∈M

∑
r∈f−1(s)

(vf (r)− 1) =
∑
s∈N

(deg(f)− |f−1(s)|). (2.67)

The following Riemann-Hurwitz formula holds

χ(M) = deg(f)χ(N )− b, (2.68)

where χ(M) = 2− 2g(M) is the Euler characteristic.

In another word, the zeros and poles of a meromorphic function determines the topology of
its graph, which can be calculated analytically. Furthermore, a more interesting question is
that if one can find a holomorphic function that map arbitraryM to arbitrary N whose Euler
characteristics satisfy Eq. 2.68. In his dissertation, Riemann partially addressed such problem,
known as the Riemann mapping theorem:

Theorem 5 (Riemann mapping theorem) If U is a non-empty simply connected open subset
of the complex number plane C, then there exists a biholomorphic (bijective and holomorphic)
mapping f from U onto the open unit disk

D = {z ∈ C||z| < 1} (2.69)

Later on, the Riemann mapping theorem has been generalized to the context of Riemann
surfaces, leading to the more general Uniformization theorem as stated below:

Theorem 6 (Uniformization theorem) Any simply connected Riemann surface is conformally
equivalent to one of the three domains: the open unit disk D, the complex plane C, or the
Riemann sphere P1. In particular it admits a Riemannian metric of constant curvature.
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The uniformization theorem guarantees that any two-manifold can be conformally mapped to
one of the three canonical domains: D, C or P1. One consequence the uniformization theorem
tells us is that any surface can be equipped with isothermal coordinates, whose metric is C
represented as g = e2λ(dx2 + dy2). This would allow us to endow an Euclidean coordinate to
a surface with whose metric is conformal to the original surface.

Another consequence of the uniformization theorem is its application in registering two
surfaces that are isometrically deformed. To this end, we have the following result C

Theorem 7 (Isometry and conformal mapping) If two surfaces are isometrically deformed
from one to the other, then their canonical domain must only differ by a conformal mapping5.

To see this, let us assume that f : M → N is an isometric deformation and by conformally
mappingM and N to their canonical domains, each of the two surfaces is equipped with an
isothermal coordinate: gM = e2λ1(dx2

1 +dy2
1) and gN = e2λ2(dx2

2 +dy2
2). Since f is isometric,

we have gM = f ∗gN is identity, i.e., (dx2
1 + dy2

1) = e2(λ2−λ1)(dx2
2 + dy2

2). Thus, the mapping
between (x1, y1) and (x2, y2) is conformal.

Hence, in order to study the mapping between two surfaces undergoing isometric deforma-
tions, we only have to study the mapping between their canonical domains. The mapping that
maps one canonical domain to itself is represented by the automorphism as defined below:

Definition 10 (Automorphism) An automorphism of a region S of the complex plane is a
one-to-one, conformal mapping of S to itself.

Aut(S) = {analytic bijections : f : S → S}. (2.70)

Certainly all the automorphisms from S to S form an automorphism group.

As we have shown above, any conformal mapping (holomorphic function) can be repre-
sented as a polynomial function p(z). Since automorphism requires the mapping to be one-
to-one, i.e., vr(f) = 1,∀r ∈ M, if f is defined in an open set of C, locally the mapping must
be a linear function p(z) = az + b. Furthermore, if we consider the domain C ∪ {∞}, the
automorphism is then in the form of a meromorphic function (az + b)/(cz + d). In fact, this
class of automorphism is characterized by the celebrated Möbius transformation which is
defined as

M(z) :=
az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1. (2.71)

5Rigorously speaking, the use of conformal mapping for surface registration handles the broader class of
conformal deformation between two surfaces and isometric deformation is only a subclass of the conformal
deformation.
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Furthermore, when the domain S is the unit disk D, it can be shown that the automorphism
that maps D to D has the following form ([179]):

M(z) = eiφ(
z − a
āz − 1

), (2.72)

where φ ∈ R and a ∈ C. Loosely speaking, Möbius transformation in Conformal geometry
can be regarded as the analog of rigid transformation in Euclidean geometry. C

2.2.2 Discrete structure of conformal mapping

Thus far, we have discussed the continuous theories of conformal mapping. In order to com-
pute the conformal mapping of any discretely represented surfaces (e.g. triangular meshes),
we need to clarify the discrete meanings of the continuous concepts introduced above. Dis-
crete differential geometry (DDG) is an active area in computer vision and graphics [29].
The purpose of DDG is to search for the appropriate discretizations (discrete counterparts)
of the geometry theories which preserve the the fundamental properties such as invariance to
certain transformation groups. Examples include discrete Gaussian curvature [205], discrete
Morse theory [54], discrete connections [58], discrete Harmonicity [196] and discrete vector
fields [76]. In order to find the discrete counterparts of many of those continuous concepts,
certain equivalence assumptions are usually made. Hence, the same geometric concept might
have multiple discrete counterparts proposed. Here, we introduce and compare several ap-
proaches to establish the discrete equivalence of conformal mapping. Note that an important
measure of the soundness of different discretizations is to see if the proposed approach in- C
duces approximation error, namely if the proposed discretization leads to any difficulty in the
computation.

In the discrete setting, the most common representation of a surface is the triangular mesh
(chain complex). As we have shown in Def. 6, the conformal mapping between two surfaces
is related by their metrics. Intuitively, for a chain complex, its discrete correspondence of the
continuous metric can be defined as the lengths of the edges for each face, coinciding with the
fact the metric tensor measures 1D distances (Equ. 2.23). Given this discrete counterpart of
the metric, we can define the discrete conformal equivalence between two surfacesM andN
as follows [161]:

Definition 11 (Discrete conformal equivalence) Two discrete metrics l and l̃ onM andNare
discretely conformally equivalent if, for some assignment of numbers ui to the vertices vi , the
metrics are related by

l̃ij = e(ui+uj)/2lij (2.73)

39



p

r

s

q

[p, q, r, s] =
|| p - r ||×|| q - s ||
|| p - q ||×|| r - s ||

Figure 2.6: Invariant of a conformal transformation of Rn ∪∞: the cross-ratio of Euclidean
distances.

One can verify that if we apply the Möbius transformation to the vertices of the mesh, the new
transformed mesh is also discretely conformally equivalent to the original mesh.

Another way to characterize conformal mapping, which turns out to be equivalent to the
definition 11, is by considering the length cross ratios: The cross ratio between two triangles
4pqr and4qsr is defined as (Fig. 2.6)

[p, q, r, s] =
|p− r| · |q − s|
|p− q| · |r − s|

. (2.74)

The relation between the cross ratio and the discrete conformal equivalence defined above can
be established as follows:

Proposition 1 Two meshes are discretely conformally equivalent if and only if their length
cross ratios are the same.

Given the definition of cross ratio, we can define the Möbius transformation for n-D as

Definition 12 (Möbius group) A Möbius group Mb(n) is defined to be the group of all trans-
formations of Rn ∪∞ that preserve the distance cross-ratio [p, q, r, s].

It can be easily seen that a map is a Möbius transformation if and only if it preserves cross-
ratios. Above we have established the discrete meaning of conformality. In the following, we
introduce different approaches to computing the conformal mapping (flattening) for a surface.
All of these approaches involve minimization of an energy function defined on the discrete
representation of the surface. In the curvature flow based approach, the energy function is
the curvature of the surface. In the finite-element based approach, the energy function is the
discrete Dirichlet energy. Similarly, in the differential 1-form based approach, the energy
function is the discrete Harmonic energy.
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Curvature flow based discretization

Given the definition of discrete meaning of conformal mapping, one can conformally map a
surface onto the 2D domain (conformal parametrization), where the curvature at every point
is zero. To achieve this, the first step is to relate the curvature at each point to the discrete
metrics of the surface. And the change of the metric can be represented by the change of
the values of ui at each point i of Equ. 2.73. In the work of [230], such flattening process
is formulated as a convex minimization problem. Another approach for solving conformal
parametrization is to use circle patterns [233]. Instead of representing the discrete metric by
the lengths of edges, circle patterns consider that a circle is associated to each vertex. Under
such a formulation, solving for the conformal flattening problem becomes solving for the
radius of the circle at each point. However, the energy functions for the flattening process are
often non-linear [107, 118], undermining the use of circle patterns for conformal flattening.

Once an energy function is defined on the surface, either using discrete metric or circle
patterns, the next step is to solve for the conformal flattening problem. A popular approach is
to consider curvature flow on the surface [107]. The idea of curvature flow is to solve the heat
equation on the curvature of the surfaces, due to the fact that for a flat surface the curvature
at each point on the surface is constant and the stable solution of the heat equation is also
constant everywhere.

Specifically, if we denote K̃(p) as the target curvature for each point p on the surface, the
heat equation of curvature flow can be formulated as

∂K(p, t)

∂t
= ∆p(K(p, t)− K̃(p)), (2.75)

where ∆ is the cot-Laplace operator. At the steady state, the target curvature at each point p
would equal to the target curvature K̃(p). Hence by setting the target curvature at each point
to be a constant and proper boundary conditions, the curvature flow can map the surface onto
the 2D domain. Note that if the genus of the input shape is different from zero, one needs to set
the target curvature such that the Gauss-Bonnet theorem is satisfied [63]. When the genus of
the surface is high (> 1), in order to map the surface onto the 2D plane, one needs to consider
the hyperbolic metric [288].

The idea of curvature flow has also been used by changing the metrics on the surfaces.
For example, the Metric Scaling approach ([19]) evolves the edge lengths of the surface by
solving the following equation:

e2uK̃ = K + ∆u. (2.76)

Here ∆ is the Laplace-Beltrami operator and e2u is the conformal factor as defined in Equ. 2.60.
When the target curvature is zero, the problem of conformal parametrization becomes solving
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Figure 2.7: The discrete minimal surface [196] assumes the mapping between two triangula-
tions to be linear.

the poisson equation:

∆u = −K. (2.77)

Although this approach only requires solving a linear equation, the resulting mapping is not
necessarily a flat metric. In contrast, [230] minimizes an energy that guarantees the solution
is a flat metric.

One issue with the curvature flow based approaches, either using circle patterns or discrete
metrics for the representation of the mesh, is the boundary boundary conditions. By setting the
boundary of the surfaces to different shapes, the resulting conformal mapping could be very
different. In the problem of surface registration, if the two surfaces to be matched have con-
sistent boundary conditions, one can use those curvature flow based approaches for conformal
flattening. However, in many situations, the boundary conditions are hard to be consistent or
defined. In the following, we introduce two alternative numerical approaches for conformal
flattening that are less sensitive to the boundary conditions.

Harmonic energy based discretization

The discrete Harmonicity based conformal flattening methods assume the surface be piece-
wise linear [35]. Given such an assumption, one can hence compute continuous properties of
the surface such as the Laplace-Beltrimi operator. The problem of conformal flattening then
becomes minimizing a certain kind of energy [196]. Specifically, given a mapping between
two surfaces f : M → N , the determinant of the Jacobian matrix of the mapping charac-
terizes the change of area. More specifically, in the case of 2-manifold surfaces, if (M, φα)

and (N , φβ) are parameterized by local coordinates (u, v) and (x, y) respectively6, then their
6The mapping between the two parametrization domains can be represented as (x(u, v), y(u, v)) := φβ ◦ f ◦

φ−1
α
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Figure 2.8: In the finite element approach for conformal parametrization, a face is considered
as the basic element to represent the continuous concepts such as the Laplace-Beltrami opera-
tor. In contrast, the curvature flow based approaches consider all the triangles projected on to
one particular vertex.

Jacobian matrix is defined by

Jαβ :=

(
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)
(2.78)

It can be proven that Jαβ is independent of parameterization7. The minimal surface problem
then asks what is the mapping f that minimizes the area change, i.e.,

min
f
A(f) :=

∫
M
|Jαβ| (2.79)

Since the Jacobian at each point (
√
xu ∗ yv − xv ∗ yu) is nonlinear, directly solving this

problem is not straightforward. Alternatively, [196] proposed to solve the following Dirichlet
energy:

ED(f) :=
1

2

∫
M
|∇f |2g, (2.80)

where |∇f |2g = traceg(∂f, ∂f). It can be shown that ∀f , A(f) ≤ ED(f), and we have

EC(f) := ED(f)− A(f) =
1

2

∫
M
|∂f
∂z̄
|2. (2.81)

Here the energy EC(f) is called the conformal energy of the map f . In the least square
conformal maps (LSCMs) discretization [149], a similar conformal energy is considered.

In the discrete setting, by assuming that the surface is piecewise linear [35] (e.g., triangular
meshes), it can be shown that the Dirichlet energy can be represented for each triangle as
follows.

7See Chap 6 for more details.
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Lemma 2 Assuming the mapping between two triangles 41 and 42 is linear, the Dirichlet
energy of the mapping is given by

ED(41 7→ 42) =
1

4

3∑
i=1

cotαi1 · ai2, (2.82)

where αi1 is and angles of41 and bi2 is the corresponding side lengths in42 (Fig. 2.8).

Hence, the minimizer of the Dirichlet energy (Eq. 2.80) can be obtained by solving a linear
equation in the following form

ED(f) =
1

2
utLDu. (2.83)

Similarly, the area of the mapping can be represented in the discrete setting as

A(f) =
1

2
utAu. (2.84)

Hence the conformal energy can be expressed in a quadratic form

EC(f) =
1

2
utLCu, (2.85)

where LC = LD − A is a 2V × 2V matrix.

In solving such a conformal energy (Eq. 2.85), certain constraints must be imposed to ob-
tain a unique solution. For example, both [196] and [149] require fixing at least two points
in the parametrization domain in order to obtain a unique conformal flattening. In [175], by
constraining the parametrization u to be normalized, i.e., utu = 1, a spectral method for
computing conformal maps can be derived. Nevertheless, these approaches only solve a linear
system, hence they search for the conformal mapping in a linear subspace. Hence the resulting
conformal mappings often cannot avoid approximation errors. However, by properly discretiz-
ing the surface to define the continuous concepts, it can be shown that certain discretization
leads to zero approximation errors (e.g., [161, 196]).

Holomorphic 1-form based discretization

Both the above two approaches for conformal flattening requires deforming the original sur-
face to the 2D plane in order to obtain a conformal parametrization of the surface. As an
alternative approach – the Holomorphic 1-form based methods [93, 94] – computes a field
and its dual on the surface such that it is conformal. It makes use of the differential forms
(Sec. 2.1.2) and the celebrated Riemann Roch theorem. Formally, let ω denote the 1-form
defined on the surface. According to Riemann surface theory [73], conformal gradient fields
ω +

√
(−1) ∗ ω have the following properties:
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• closedness ω and ∗ω are closed, meaning the curlix of ω and ∗ω are both zero.

• harmonity ω and ∗ω are harmonic, meaning that the Laplacian of both ω and ∗ω are
zero.

• duality The cohomology class of ω and ∗ω can be determined by the values of their
integration along the homology basis ei.

• conjugacy ∗ω is orthogonal to ω everywhere.

According to Hodge theory, given 2g real numbers c1, c2, . . . , c2g, there is a unique real
gradient field ω with the first three properties, because each cohomology class has a unique
harmonic gradient field ω. These properties for ω can be formulated as the following equa-
tions: 

dω = 0 closedness

∆ω = 0 harmonity∫
ei
ω = ci, i = 1, 2, ...2g duality

(2.86)

The equations
∫
ei
ω = ci, i = 1, 2, . . . , 2g restricts the cohomology class of ω. The conjugacy

property can be formulated as

?ω = −→n × ω (2.87)

where −→n is the normal field on the surface, × is the cross product in R3. This equation holds
everywhere on the surface.

Now we consider the meaning of the above concepts in the discrete setting. The closedness
property dω = 0 means the integration of ω along any simple closed curve (which bounds a
topological disk) is zero. Then for each face [u, v, w], the equation for closedness can be
approximated by the following linear equation:

ω(∂[u, v, w]) = ω[u, v] + ω[v, w] + ω[w, u] = 0 (2.88)

The harmonity property ∆w = 0 can be formulated using the well known cotangent
weighting coefficients (Lemma 2). For any vertex u, the Laplacian of ω on u is zero, hence
the equation for harmonity can be formulated as:

∆ω(u) =
∑

[u,v]∈M

ku,vω[u, v] = 0 (2.89)

ku,v = −1

2
(cotα + cot β) (2.90)
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where α, β are the angles against the edge [u, v] (Fig. 2.8).

The duality property
∫
ei
ω = ci can be implemented simply by summing up all the forms

on the edge ei =
∑n

j=1[uj−1, uj] where u0 = un,∫
ei

ω =
n∑
j=1

ω[uj−1, uj] = cj. (2.91)

Once we have computed ω, we can compute ?ω by using the discrete Hodge star operator,
which is defined as follows. Suppose {d0, d1, d2} are the oriented edges of a triangle T , their
lengths are {l0, l1, l2}, and the area of T is s, then the discrete wedge product ∧ is defined as

∫
T

ω ∧ τ =
1

6

ω(d0) ω(d1) ω(d2)

τ(d0) τ(d1) τ(d2)

1 1 1

 (2.92)

The star wedge product ?∧ of ∧ and τ on smooth surfaces is defined as follows:∫
M

ω∗ ∧ τ =

∫
M

ω ∧∗ τ =

∫
M

ω ×∗ τ · −→n , (2.93)

where ∗τ is obtained by rotating τ about the normal −→n on the tangent plane at each point of
M . The discrete star wedge product on meshes is defined as∫

T

ω∗ ∧ τ = UMV T , (2.94)

where

M =
1

24s

 −4l20 l20 + l21 − l22 l20 + l22 − l21
l21 + l20 − l22 −4l21 l21 + l22 − l20
l22 + l20 − l21 l22 + l21 − l20 −4l22

 (2.95)

and

U = (ω(d0), ω(d1), ω(d2)) (2.96)

V = (τ(d0), τ(d1), τ(d2)). (2.97)

Therefore, once we know a set of basis of Harmonic forms {ω1, ω2, ω3, . . . , ω2g}, suppose
?ω =

∑2g
i=1 λiωi, we can found out λi’s by solving the following linear system∫

M

ωi ∧ ?ω =

∫
ωi ? ∧ω, i = 1, 2, . . . , 2g, (2.98)

46



which reduces to solving a linear equation in the discrete setting,

WΛ = B. (2.99)

Here W has entries wij =
∑

T∈M
∫
T
ωi ∧ ωj , Λ has entries λi, and B has entries bi =∑

T∈M
∫
T
ωi ? ∧ω. See [93, 94] for more details on the Holomorphic 1-form based approach

for conformal flattening. In graphics, Holomorphic 1-form has been applied for image editing
[142] and geometry processing [285].

2.2.3 Quasi-conformal mapping

Conformal Geometry assumes the surfaces be endowed with conformal structures. Although
in many cases this is approximately true (e.g. surfaces undergoing isometric deformation), in
general this is not necessarily the case. One reason that conformal Geometry has been widely
applied in many applications is its good approximation to many real world problems [2, 41]
8. Despite of this, in situations that accuracies are important, such as registering the details of
the surface, it is necessary to explore beyond the scope of conformal mapping.

In mathematics, the prefix “quasi” is used for studying a concept that is out of its orig-
inal meaning. Intuitively, the field of quasi-conformal mapping provides the quantitative
measure for the deviation of the geometry from the conformal structure [5]. Historically,
quasi-conformal mapping arises from the question if one can find a mapping from a square to
a rectangle that is “closest” to conformal mapping. In the context of surface registration, since
the deformations between surfaces are usually not perfectly conformal, the language of quasi-
conformal mapping allows us to describe the geometry with more accuracy. In this section,
we briefly introduce the ideas of quasi-conformal mapping.

Intuitively, quasi-conformal mapping is less rigid than conformal mapping (conformal
mapping is less rigid than isometric mapping). Let w = f(z), w, z ∈ C be a homeomor-
phism from one region to another in the complex domain C. At any point z0, it induces a
linear mapping:

dw =
∂f

∂z
dz +

∂f

∂z̄
dz̄. (2.100)

As we have shown, if the mapping is conformal (holomorphic), we have ∂f
∂z̄

= 0. Otherwise,
the following ratio

Df =
|∂f
∂z
|+ |∂f

∂z̄
|

|∂f
∂z
| − |∂f

∂z̄
|

(2.101)

8According to a personal eyewitness, conformal mapping has be applied during world war II for the design
of airplanes by the mathematician Hermann Kober [2].
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can be used for measuring the extent to which the mapping is deviated from conformal (here
we assume the mapping is orientation preserving so that |∂f

∂z
| − |∂f

∂z̄
| > 0). Furthermore, if we

define

df =
|∂f
∂z̄
|

|∂f
∂z
|
< 1, (2.102)

then Df = (1 + df )/(1− df ). Here df is called the Beltrami coefficient.

Hence, we can define quasi-conformal mapping according to the value of the Beltrami
coefficients.

Definition 13 (Quasi-conformal mapping) A mapping f : C→ C is said to be quasiconfor-
mal if Df is bounded. It is K-quasiconformal if Df ≤ K

In practice, if we know the mapping f between two surfaces, the Beltrami coefficient can be
calculated by the Jacobian of the mapping at each point. That is, the relation between the
Jacobian and the function f is as follows:

|fz|2 − |fz̄|2 = J. (2.103)

If we do not constrain the mapping between two surfaces except its continuity, there can
be infinitely many mappings and any mapping is a quasi-conformal mapping. Hence, one
important issue with the application of quasi-conformal mapping theory is that it is somehow
overly flexible – the Beltrami coefficient is defined for every point on the surface. Given two
surfaces, one can define the distance between them as the closest quasi-conformal mapping
that maps one to the other. One can define different quantitative measures for the meaning of
closeness. For example, one can define

dist(M1,M2) := inf
f :M1→M2

sup
p∈M1

Df (p), (2.104)

as the quasi-conformality between the two shapes. However, finding the proper optimiza-
tion method to compute the closest quasi-conformal mapping between two surfaces remains a
challenging problem.

2.3 Conclusion

In this chapter, we introduced the foundation of geometric methods for surface registration.
The idea of manifold is to study the geometry in its local charts, regardless of the extrinsic rep-
resentation of the surface. By properly defining the transition maps between different charts,
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one can study the geometry under different invariance groups. On the local charts, one can
also define geometric features such as vector fields, tensors and differential forms, etc. Under
the umbrella of Riemannian Geometry, where a metric tensor is defined for each point on the
surface, one can define useful features of the surface such as curvatures and geodesics. Curva-
tures and geodesics are the fundamental tools in modern physics. In the application of surface
registration, Riemannian Geometry has been successfully applied under isometry assumption,
achieving meaningful metrics between two surfaces.

In contrast, Conformal Geometry disregards part of the information in Riemannian metric
(i.e. the scale information) and is thus less “rigid” than Riemannian Geometry. This flexibility
of Conformal Geometry sees its advantage in many applications. For example, it is found
([248]) that the transformation among many species in the world are actually very close to
conformal mapping (e.g., the profiles of fishes, the skulls of human). In the problem of surface
registration, a very useful consequence of applying Conformal Geometry is that it allows us
to establish the dense correspondences between two shapes in a closed-form. We shall see in
this dissertation that such a theoretical guarantee can be implemented in different scenarios of
the surface registration problem.

If we completely disregard the metrics endowed to each surface, then the geometry can
be classified by their topology. In topology, a good abstraction of surfaces is the complexes,
which represents the surface by discrete points and their combinations. The introduction of
complexes allows us to connect continuous geometry to the discrete graphs. Especially, the
chain complex is a good abstraction of the continuous surface. However, a graph can be much
more complicated than the chain complex, indicating that not all the discrete structures have
their continuous counterpart (however the reverse might be true). Another way that indicates
the complexity of graph is by comparing the tensor functions versus the potential functions
defined for graphs. Almost every quantity studied in geometry is studied using linear tensor,
whereas the potential function in a graphical model is not necessarily linear. Hence, in the
next chapter, we shall systematically study the various discrete structures.
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Chapter 3

Groundwork – Graph-based Methods

“ ..., (continued) hence everything can be explained by a unified view.

– Anonymous”

In the discrete setting, we first introduce some basic concepts of graphical models in Sec-
tion 3.1. Then in Section 3.2 we discuss the techniques for Maximum a Posterior (MAP)
inferences on Markov Random Fields (MRFs).

We show that convextiy plays an important role in identifying tractable structures. In
Sec. 3.1.1, we introduce the concept of submodularity, which is the discrete counterpart of tra-
ditional concept of convexity. The study of optimization on submodular functions are drawing
increasing attention [66, 74]. In Sec. 3.2.1, we introduce the theoretical background of convex
geometry. Finally, we derive a new unified framework for graphical models with convex priors
in Sec. 3.2.2.

The indicator function is a very useful tool in studying combinatorial structures.In Sec. 3.1.1
we show that the conversion from a probability set function to a probability density function
can be done by defining proper indicator functions. In Sec. 3.2.1 we show that indicator func-
tion can be used for establishing the equivalence between submodular functions and convex
functions. In Sec. 3.2.2, the indicator function (more specifically, the upper level sets function)
plays a key role in deriving a unified representation of the convex Markov Random Fields.
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3.1 Graphical models

Among the geometry theories discussed in the previous chapter, what are of interest are the
structures/representations of the geometry (e.g., vector fields, geodesics, complexes) and the
functions/measures defined on them (e.g., metrics, curvatures, forms) – the interactions be-
tween the structures and the their measures give us tons of results that reveal the interesting
properties of the geometric object. In contrast, probability defines a measure on the multiple
possible configurations of the same structure. At the first glance, there seems to be no obvious
connection between the two fields. However, careful examinations would reveal some com-
mon characteristics that they share, e.g., both fields involve the interactions between structure
and functions. In the following, we shall give the clue that the structures studied by proba- C
bility is somehow much more complicated than the structures of geometry. This is established
by showing that the simplest structure in probability – the independent system – can fully
characterize the simplicial complex structure of geometry. Another way to see this is that
in geometry, almost all the quantitative measures (metric tensor, curvature, Lagrangian, etc)
only involve linear functions, whereas in the discrete setting there are far more non-linear
functions. Furthermore, the complexity of the structures in probability is characterized by the
notion of conditional independence. The field of graphical models [124] focuses on studying
the conditional independence by the connective structures among the variables of the proba-
bility function.

3.1.1 Probability, independence system and submodularity

Mathematically, the configurations of a random experiment are defined as a nonempty collec-
tion A of subsets of Ω such that A is closed under countable union, intersection as well as
under complementation. A measurable space is a pair (Ω,A), where Ω is a space and A is a
σ-field. A probability set function is defined on a measurable space as follows

Definition 14 (Probability set function) If Pr(X) is defined for a measurable space (Ω,A),
and if

(i) Pr(X) ≥ 0,

(ii) Pr(X1 ∪X2 . . .) = Pr(X1) + Pr(X2) + . . ., where Xi ∩Xj = ∅, i 6= j,

(iii) Pr(Ω) = 1

then Pr(·) is called the probability set function of the outcome of the random experiment.
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Given this definition, we can further define the conditional probability that event X occurs
given that event Y occurs to be

Pr(X|Y ) :=
Pr(X ∩ Y )

Pr(Y )
. (3.1)

Another important property of the probability function is the law of total probability, which
states that if X1, X2, . . . , Xn are mutually disjoint and

⋃n
i=1 Xi = Ω, then

Pr(Y ) =
n∑
i=1

Pr(Y ∩Xi) =
n∑
i=1

Pr(Y |Xi) Pr(Xi) (3.2)

The sum rule (Eq. 3.2) and the product rule (Eq. 3.1) are the two basic operations on proba-
bility set functions, in contrast to the differentiation operator for continuous functions.

The notion of independence plays an important role in characterizing the probability set
function. If X = X1 ∩ . . . ∩ Xn, then the event {X1, . . . , Xn} are independent if Pr(X) =∏n

i=1 Pr(Xi). Hence, independence allows us to factorize the probability function into simpler
ones. Obviously, if X is independent, any of its subsets are also independent. This closeness
property allows us to define an independence system as a collection of unordered subsets of
I that is independent, given a finite collection of objects I = {xα}. Any such system must be C
closed with respect to restriction (any subset of an independent set is also independent) and
thus defines a simplicial complex: the independent complex is the abstract simplicial com-
plex (recall Sec. 2.1.4) on vertex set I whose k-simplices are collections of k + 1 independent
objects1.

A number of interesting questions arise concerning characterizing an independence sys-
tem, for example,

(i) Given the probability function defined for a measurable space (Ω,A), can we efficiently
find the maximal independence system inside A?

(ii) Is there an efficient algorithm to decide if a probability function is independent?

(iii) Is there an efficient way to approximate a probability function with an independent
system.

A generalization of the independence system is the matroid, which was first introduced
by H. Whitney in 1935 [281] as an abstraction of the linear dependence structure of a set of
vectors. A matroid is formally defined as below:

1See [110] for the study of simplicial complex and graphs with independence structure, whose primary focus
is their topological properties.
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Definition 15 A measurable space (E, I) is called matroid, if the following holds

(i) ∅ ∈ I

(ii) (Closeness/hereditary property) I1 ⊂ I2⇒ I1 ∈ I

(iii) (Exchange/augmentation property) I1, I2 ∈ I, |I1| < |I2| ⇒ ∃e ∈ I2− I1, I1∪{e} ∈ I.

Each I ∈ I is called an independent set of matroid (E, I).

Note that the first two properties guarantee that the matroid is also an independent system.
An immediate example of a matroid is the trees in a graph G. The structure of matroid is
often seen in algorithms or theoretical computer science [189] and it is closely related to a
class of efficiently solvable combinatorial optimization problems. An independent set which
is maximal in I with respect to set inclusion is called a base of the matroid, denoted as B.

Another way to characterize a matroid is by defining a function on the set system (E, I),
known as the rank function which is defined as:

Definition 16 A rank function r : A→ R satisfies the following

(i) for each subset A of S, 0 ≤ r(A) ≤ |A|;

(ii) if A ⊂ B, then r(A) ≤ r(B)

(iii) for any A and B, r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

It is easy to see that if we define r(A) = |A|, the first property guarantees non-negativeness and
monotone nondecreasing properties of the rank function and r(∅) = 0. The second property
guarantees that taking a superset does not decrease the rank of a set. The third property of the
rank function is also called the submodularity property:

Definition 17 Consider a set E and a real function f : 2E → R. f is submodular2 if for any
two subsets X, Y ⊂ E,

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (3.3)

Equivalently, submodularity can be characterized by the marginal value defined as

∆Y f(X) = f(X ∪ Y )− f(X). (3.4)

And f is submodular if and only if for any X ⊂ E and a, b ∈ E \X , ∆af(X) ≥ ∆af(X ∪
{b}). In the following, we shall show that the submodular function can be regarded as the
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discrete analogy to the convex functions . Also submodularity is important in combinatorial C
optimization, the following lemma shows one of its properties:

Lemma 3 Let f : 2E → R be an arbitrary submodular function on a subset I ⊂ 2E . The set
of all minimizers of f given by

I0 := {X|X ∈ I, f(X) = min{f(Y )|Y ∈ I}} (3.5)

satisfies ∀X, Y ∈ I0, we have X ∪ Y,X ∩ Y ∈ I0.

In many real-world problems, an event is often endowed with some quantitative values
(e.g., temperature, grade, pixel color). In such situations, probability can also be defined using
Random Variables. If an event consists of n random variable {X1, X2, . . . , Xn|Xi ∈ Ii},
then the probability of such an event can be denoted as P (X1, . . . , Xn). In order for the
properties of the probability set function to hold, the following constraints must be satisfied:

Sum Rule:
∑
x∈Ix

P (X = x) = 1 (3.6)

Marginal Rule: P (x) =
∑
y∈Iy

P (x, y),∀x ∈ Ix. (3.7)

Using the conditional probability rules, a probability with multiple random variables can be
factorized as

P (X1, . . . , Xn) = P (X1)P (X2|X1) . . . P (Xn|X1, . . . , Xn−1). (3.8)

Here we can see that the probability function can describe the interaction/dependence among
multiple variables, which introduces a rich structure to be explored.

To summarize, in this subsection, we established the connection among independence sys-
tem, matroid and submodularity. We have shown that an independence system is the simplest
structure for studying the probability function, and submodularity exhibits a more general but
tractable structure. The elements involved in an independent system present no interaction
among them. In the following, we check a generalized form of the independence, namely the
conditional independence.

3.1.2 Conditional independence, Markov random fields and Gibbs dis-
tribution

If we relax the independence assumption, by simply requiring the most succinct factoriza-
tion of a probability function, then such factorization can be studied under the umbrella of

2The notion of convexity or submodularity is different from the linear system in the sense that it is used in
characterizing minimizers.
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Figure 3.1: The independence among a graph increases.

graphical models. In this subsection, we introduce the theoretical background of graphical
models.

Definition 18 (Conditional independence) X is conditionally independent of Y given Z,
written X ⊥⊥ Y |Z, if

P (x, y|z) = P (x|z)P (y|z). (3.9)

Conditional independence allows us to represent the coupling among different random vari-
ables. Furthermore, if we denote each variable as a node in a graph, the dependency among
nodes can be succinctly represented by the (hyper-)edges among them (Fig. 3.1. Formally, a
graphical model is a probabilistic model for which a graph denotes the conditional indepen-
dence structure between random variables [1]. There are two types of graphical models: one
is defined on directed acyclic graph, known as Bayesian network, and another is undirected,
known as Markov Random Field (MRF). In the following, we will focus on the theories of the
undirectly graphical model due to its close relevance to our surface registration approach3.

Markov random fields

Before defining the MRF, we first introduce the concept of Markov property. Intuitively, it
states that the value of a variable is only related to the values of its neighboring variables.

Definition 19 (Markov property). For any variable i, the distribution Xi is conditionally
independent of the rest of the graph given just the variables that lie in the neighborhood of the

3A directed graphical model can be equivalently converted to an undirected one using the moralization
method [124].
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vertex, i.e.,

Pr(Xi|XV \i) = Pr(Xi|XNi). (3.10)

More generally, for any disjoint subsets X , Y , Z of V such that Z separates X from Y in the
graph, it holds that

X ⊥⊥ Y |Z (3.11)

It can be seen that this independence can be computed from the graph. Formally, we define
MRF as follows:

Definition 20 (Markov random field) The collection of random variables X1, . . . , Xn is a
Markov random field with respect to a neighborhood system on G if and only if the following
two conditions are satisfied.

(i) Pr(x) > 0, for all x ∈ X1 ×X2 . . . ,×Xn

(ii) The Markov property as defined in Def. 19 is satisfied for every node.

Note that condition (i) actually rules out those MRF-like energies with hard constraints (e.g.,
[267, 292]). Although it is possible to use soft constraints to penalize unlikely configurations,
since the energy constructed is usually non-submodular, optimal configurations are often NP-
hard to infer.

Next, we relate the probabilistic density function for an MRF to the more general energy
functions. In solving real-world problems, it is more natural to define an energy without
considering its probability meaning, although many energies can be interpreted as defining
a distribution (e.g, the least square energy can often be equivalently regarded as defining a
Gaussian distribution [27]). A nice property of MRF is that it actually covers a wide variety
of energy functions.

Definition 21 (Gibbs distribution) Given a graph G and a neighborhood system N defined
on it, a probability function defined on the set of configurations Ω is called Gibbs distribution
if it has the form

Pr(x1, . . . , xn) =
1

Z
exp(−E(x)

T
), (3.12)

where
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(i) The partition function Z is defined as

Z =
∑
x∈Ω

exp(−U(x)

T
). (3.13)

(ii) T is a constant which is known as the “temperature” in statistical mechanics.

(iii) E(x) is the “energy” function of the form

U(x) =
∑
c∈C

Vc(x), (3.14)

where C is the set of cliques in G.

The following theorem establishes the connection between the Gibbs distribution and the MRF
functions [65, 98].

Theorem 8 (Hammersley-Clifford). X is Markov random field with respect to a neighbor-
hood system NG on the graph G if and only if it is a Gibbs random field with respect to the
same neighborhood system.

The H-C theorem is powerful in that it tells us that we can define a wide variety of energy
functions of form 3.14 and they can all be equivalently interpreted as solving the undirectly
graphical model (MRF) problem.

Conditional independence and graph structure

Finally, to complete the introduction of MRF, we address the problem of graph structure and
probabilistic density functions. It turns out that not all distribution functions can be repre-
sented as a graph and vice versa. The following definitions characterize two different classes
of graphs.

Definition 22 (D-map) A graph (directed or undirected) is said to be aD-map (‘dependencies
map’) for a distribution if every conditional independence statement of the formX ⊥⊥ Y |Z for
sets of variablesX , Y , andZ that is satisfied by the distribution is reflected in the graph. Thus,
a completely disconnected graph having no edges is trivially a D-map for any distribution.

Definition 23 (I-map) A graph (directed or undirected) is said to be a I-map (‘indepen-
dencies map’) for a distribution if every conditional independence statement of the form
X ⊥⊥ Y |Z for sets of variablesX , Y , and Z that is expressed by the graph is also satisfied by
the distribution. Thus, a completely connected graph is trivially a I-map for any distribution.

A graph that is bothD-map and I-map for a distribution is called a P-map (‘perfect map’).
Not all the distributions have P-maps.
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3.1.3 Information theory and exponential families

In the seminal work of Shannon [216], the entropy is defined as as a lower bound on the
number of bits needed to transmit the state of a random variable. Quantitatively, this can be
defined by [57]

H[p] := −
∑
x∈Ix

p(x) log p(x) = Ep(log
1

p(X)
) (3.15)

for a random variables X with a probability mass function p(·). Entropy allows us to mea-
sure not only the uncertainty of a random variable, but also the dependency among different
variables. To this end, the mutual information between two random variables X and Y is
defined by

I(X;Y ) :=
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(3.16)

Furthermore, we have the following properties for mutual information:

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ) (3.17)

I(X;X) = H(X) (3.18)

Hence, if two variables x and y are independent, I(X;Y ) = 0.

Mutual information is also useful in measuring the loss of information among different
representations. If a family of probability function {fθ(x)} is indexed by parameters θ, then
a function T (X) is said to be a sufficient statistic relative to the family {fθ(x)} if X is
independent of θ given T (X), or equivalently

I(θ;X) = I(θ;T (X)) (3.19)

Furthermore, if T (X) is sufficient statistic of X , the exponential family of distributions
is defined as

p(X) = h(X)eθ
TT (X)−A(θ). (3.20)

Here A(θ) is the log partition function or cumulant function. Most familiar statistical families
turn out to belong to the exponential family [101]. The log partition function plays an impor-
tant role in characterizing the statistics of X . For example, the mean and variance of X can
be computed from A(θ) by

µ := Eθ(T (X)) = {∂A(θ)

∂θ
} (3.21)

σ := Varθ(T (X)) = {∂
2A(θ)

∂θ2
}. (3.22)
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Figure 3.2: The duality between the parameter space θ and the mean parameter space µ.

In fact, Equ. 3.21 gives us a mapping between the parameter space θ and the mean value space
µ. Moreover,A(θ) is always a convex function. Hence by defining the conjugate dual function
(more detailed discussions on conjugate dual are given in the following section)

A∗(µ) := sup
θ
{〈µ, θ〉 − A(θ)} (3.23)

a duality between the parameter space θ and the mean value space µ can be established
(Fig. 3.2). Intuitively, such duality allows us to study the exponential family in its mean
parameter space, which often significantly simply the problem.

Finally, we discuss on the connection between the entropy and the exponential families.
In fact, the exponential family can be regarded as a family of distributions that achieve the
maximal entropy given a predefined mean values:

max
p

H(p) (3.24)

s.t. Ep(T (X)) = µ (3.25)

It can be proven that the class of distributions that achieve the above maxima have the form [162]:

p(x) ∝ exp{θTT (X)} = exp{〈θ, T (X)〉}, (3.26)

On the other side, for each mean parameter µ, if we denote by θ(µ) the parameter that satisfies

Epθ(µ)
(T (X)) = µ, (3.27)

then we have the following relationship between entropy and the dual function A∗(µ) defined
in Equ. 3.23:

A∗(µ) = −H(pθ(µ)). (3.28)

Such elegant relationships among the entropy, parameter space, mean parameter space, estab-
lished by conjugate duality, lay the foundation of graphical models.
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Truth

Tractable Model  T

Exact Solution of  T

Global Optimimum of I

Local Optimimum of I

Intractable Model  I

Figure 3.3: An illustration of the tractable v.s. intractable models. Although tractable mod-
els gives us the optimal solution, their model powers are usually less than those intractable
models. Hence one can hope that even the suboptimal solutions of the intractable models can
allow us better approach the truth than those tractable models. However, there is also a risk
that the suboptimal solutions are not as good as the optimal solutions of the tractable models.

3.2 Inference on Markov Random Fields

So far, we have introduced the basic concepts of graphical models. In applying graphical
models to real-world problems, two types of inference are most commonly met: computation
of marginal and maximum a posterior (MAP)4. The computation of marginal distribution re-
quires the computation of the log partition function (Eq. 3.20), which is often intractable in
the general case (#P -complete). The computation of MAP is also an NP-hard problem, and
even the approximation becomes very difficult when the size of the cliques becomes large. In
fact, exact inference algorithms for arbitrary graphs have already been well studied, such as
the junction-tree algorithm [144, 145]. Its complexity is exponential to the size of the maxi-
mum clique. In the case that the graph is a tree, both MAP and marginal can be computed in
polynomial time.

Although exact inference is intractable, since graphical models is able to model a wide
variety of real-world problems, it is often highly desired to do inference on graphs with loops.
Also, intractability corresponds to the worst-case input, many problems from real-world appli-
cations can be tackled very effectively[124]. Thus, approximation algorithms are also widely
studied in inference. An illustration for the necessity of investigating approximate algorithm

4There are also other tasks such as M-best solutions [79]
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is shown in Fig. 3.3.

There are many approximate inference algorithms, such as belief propagations [191, 192],
or graph cuts based methods [33, 135]. It has been shown that both approaches can be con-
nected to each other [125, 242]. In particular, linear programming plays an important role in
designing efficient algorithms [125, 262, 279]. Currently, almost all the efficient algorithms
are based on the idea of relaxation. With different relaxations, the original problems are often
solved in the dual space, which can effectively avoid local optimum in the original space (but
not the dual space). It has also been shown that when the gap between the relaxed solution
and the original problem can be decreased to be arbitrary small if we increase the number of
relaxations [132, 226–228, 263, 278]. However, the relaxations would become exponentially
large as the gap approaches to zero.

In this section, we first discuss the theoretical background for MRF optimization tech-
niques, namely the convex geometry [23, 31, 59, 231], and in the end we provide a novel
unified formulation for MRF problems with convex energy.

3.2.1 Convex geometry and optimization

Convex function plays an important role in optimization since any locally optimal solution
implies globally optimal solution. A set C is said to be convex if for all x, y ∈ C and 0 ≤ µ ≤ 1,
µx+ (1− µ)y ∈ C. From its original definition, convexity is a continuous concept due to the
continuous variable µ involved in the definition. Similarly, a function f : Rn → R ∪ {+∞}
is said to be convex if

µf(x) + (1− µ)f(y) ≥ f(µx+ (1− µ)y) (3.29)

for all x, y ∈ Rn and 0 ≤ µ ≤ 1.

A convex function can be converted to a convex set by using the epigraph. The epigraph
of a function f : X → [−∞,+∞], where X ⊂ Rn is a subset of Rn+1:

epi(f) := {(x,w)|x ∈ X,w ∈ R, f(x) ≤ w}. (3.30)

It can be shown that if the epigraph of a function f is convex, then f is convex.

There are many ways to recognize a convex function such as the use of the first and second
derivatives of the function. The following proposition is useful in our later derivation of a
unified convex MRF formulation.

Proposition 2 Let fi : Rn → (−∞,+∞] , be given convex functions for i ∈ I , where I is an
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Figure 3.4: The min common/max crossing duality represents the most basic idea of duality in
convex geometry. The above shows three different situations for the relationship between min
common and max crossing points for a set M . When the min common and the max crossing
points meet (middle), the two problems become equivalent to each other. Otherwise there is a
gap between them and q∗ < w∗.

index set, then the following function is also convex

g(x) = sup
i∈I

fi(x), (3.31)

where g(·) is defined on Rn → (−∞,+∞].

Dualities in convex geometry

One of the primary goals of optimization is to locate the minimum of a function f(·) in some
domain C:

min
x∈C

f(x) (3.32)

This problem can be intractable if either the domain C or the function f is intractable, or both.
Hence in practice, most work on the optimization problem are constrained in the tractable
cases. One of the most general tractable cases is convexity. In particular, the idea of duality
plays an important role and can be represented in multiple ways. In the following, we briefly
list the various dualities studied in convex geometry.

(i) Min common/max crossing duality

Similar to the duality in classic geometry, the duality in convex optimization also involves
interactions between two counterparts. Such interactions are often represented by the act of
hyperplanes on the boundary of the convex set. By using hyperplanes, one can define one-to-
one correspondences between the primal and the dual problems. One reason for exploring the
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Figure 3.5: Saddle point.

duality is that the dual problem is usually easier to solve than the primal one. However, for
non-convex problem, the dual problem is not necessarily equivalent to the primal. Hence one
is interested in situations when the primal and dual solutions meet, or how far the dual problem
is from the primal one (approximation solution). One of the most basic forms of duality is the
idea of min common/max crossing, which can be illustrated in Fig. 3.4. Given a set M , the
min common problem is

min w (3.33)

s.t. (0, w) ∈M (3.34)

and the max crossing problem is

max
µ

{ inf
(u,w)∈M

{w + µ′u}} (3.35)

s.t. µ ∈ Rn (3.36)

Let w∗ and q∗ denote the optimal solution of the min-common and the max crossing problems,
respectively, the following theorem establishes their relationship.

Proposition 3 (Weak Duality Theorem) For the min common and max crossing problems we
have

q∗ ≤ w∗ (3.37)

When q∗ = w∗, solving the max crossing is equivalent to solving the min common problem.

(ii) Saddle point and minimax theory

A direct application of the min-common/max-crossing duality is in the proof of minimax
theory. Given a function φ : X × Z 7→ R, where X and Z are nonempty subsets of Rn and
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Rm respectively, we consider the following two problems:

sup
z∈Z

inf
x∈X

φ(x, z) (3.38)

and

inf
x∈X

sup
z∈Z

φ(x, z). (3.39)

It is easy to see that

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z) (3.40)

The minimax problem asks under what conditions the following equality holds:

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z) (3.41)

A pair of vectors (x∗, z∗) ∈ X × Z is called a saddle point of φ if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗),∀x ∈ X, ∀z ∈ Z (3.42)

If saddle point exists, the minimax equality holds. Some sufficient conditions can be proven
using the min common/max crossing duality [23]. The minimax theory is useful in applica-
tions such as Lagrangian duality, game theory [261], etc.

(iii) Polar cones and polyhedron

In discrete optimization, the discrete solution can often be represented as a set of finite
number of points in Rn, namely {a1, . . . , ar}. In order to search for the optimal solution
among such a set, it is often convenient to convert the discrete set to be continuous. One way
to represent a discrete set by a continuous set is through the concept of convex hull. In another
way, we can define the cone of a set {a1, . . . , ar} to be

cone({a1, . . . , ar}) = {x|x =
r∑
j=1

µjaj, µj ≥ 0, j = 1, . . . , r} (3.43)

To study the duality of a cone, we define the polar cone for a nonempty set C as

C∗ := {y|y′x ≤ 0,∀x ∈ C} (3.44)

Theorem 9 (Polar cone theorem) For any nonempty cone C, (C∗)∗ = cl(conv(C)). Here cl(·)
denotes the closure of a set.
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Using the polar cone, one can establish the duality between a set of points and a set of half
planes. A subset P of Rn is a polyhedral set (or polyhedron) if it is nonempty and has the
form

P = {x|a′ix ≤ bi, i = 1, . . . , r} (3.45)

where ai are vectors in Rn and bi ∈ R. To see the benefits of exploring cone geometry and its
duality, the following proposition reveals an interesting relationship

Proposition 4 (Minkowski-Weyl Representation) A set P is polyhedral if and only if there is a
nonempty finite set {v1, . . . , vm} and a finitely generated coneC such that P = conv({v1, . . . , vm})+
C, i.e.,

P = {x|x =
m∑
i=1

µivi + y,
m∑
i=1

µi = 1, µi ≥ 0, i = 1, . . . ,m, y ∈ C}. (3.46)

Also one is interested in the conditions for continuous solution to coincide with integer solu-
tions:

Theorem 10 (Unimodularity and integer solution) Let P be a polyhedral set of the form

P = {x|Ax = b, c ≤ x ≤ d}, (3.47)

where A is an m× n matrix, b is a vector in Rm, and c and d are vectors in Rn. Assume that
all the components of the matrix A and the vectors b, c, and d are integer, and that the matrix
A is totally unimodular. Then all the extreme points of P have integer components.

Finally, we give a condition for a function f to be a polyhedral set.

Proposition 5 Let f : Rn → (−∞,+∞] be a convex function. Then f is polyhedral if and
only if dom(f) is a polyhedral set and

f(x) = max
i=1,...,m

{a′ix+ bi},∀x ∈ dom(f). (3.48)

Here dom(·) is defined as

dom(f) := {x|f(x) <∞}. (3.49)

(iv) Lagrange duality

The concept of polar cones can be applied to the optimization of a function f over a convex
subset X of Rn.
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Proposition 6 Let f : Rn → R be a convex function. A vector x∗ minimizes f over a convex
set X ⊂ Rn if and only if there exists a subgradient d ∈ ∂f(x∗) such that

d′(x− x∗) ≥ 0,∀x ∈ X. (3.50)

Equivalently, x∗ minimizes f over a convex subset X of Rn if and only if

0 ∈ ∂f(x∗) + TX(x∗)∗. (3.51)

min f(x) (3.52)

s.t. h(x) = 0, g(x) ≤ 0, (3.53)

where h(x) = (h1(x), . . . , hm(x)) and g(x) = (g1(x), . . . , gr(x)).

We define the active constraints

A(x∗) = {j|gj(x∗) = 0} (3.54)

The set of Lagrange multipliers

M := {(λ, µ)|∇f(x∗) +
m∑
i=1

λi∇hi(x∗) +
r∑
i=1

µi∇gi(x∗) = 0, µ ≥ 0, µi = 0, i ∈ A(x∗)}

(3.55)

Proposition 7 (Optimality Conditions) Let x∗ be a local minimum of problem 3.52. Then
there exist scalars µ∗0, λ

∗
1, . . . , λ

∗
m, µ

∗
1, . . . , µ

∗
r , satisfying the following conditions:

(i) −(µ∗0∇f(x∗) +
∑m

i=1 λ
∗
i∇hi(x∗) +

∑r
i=1 µ

∗
i∇gi(x∗)) ∈ TX(x∗)∗

(ii) µ∗i ≥ 0 for all i = 0, 1, . . . , r

(iii) µ∗0, λ
∗
1, . . . , λ

∗
m, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

The lagrangian function

L(x, λ, µ) = f(x) + λ′h(x) + µ′g(x) (3.56)

The dual function is defined by

q(λ, µ) = inf
x∈X

L(x, λ, µ) (3.57)
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Figure 3.6: The Conjugate duality.

The dual problem is

max q(λ, µ) (3.58)

s.t. λ ∈ Rm, µ ∈ Rr, µ ≥ 0 (3.59)

The relation between the dual problem and the max crossing problem can be established
by the following set

M ={(v, u, w)|x ∈ X, h(x) = v, g(x) ≤ u, f(x) ≤ w}
={(v, u, w)|for some(v̄, ū, w̄) ∈ S, v̄ = v, ū ≤ u, w̄ ≤ w)} (3.60)

(v) Conjugate duality and Fenchel duality

The convex conjugate f ∗ : Rn → R ∪ {+∞} of a function f is defined by

f ∗(p) := sup{〈p, x〉 − f(x)|x ∈ Rn} (3.61)

The conjugate function is useful in another duality, namely the Fenchel duality, which is
useful in many optimization problems. The Fenchel duality considers the following problem:

min
x
f1(x)− f2(x) (3.62)

s.t. x ∈ X1 ∩X2. (3.63)

Here f1(·) and f2(·) are functions on X1 and X2, respectively. If we apply the Lagrangian
duality to the equivalent problem:

min
y,z

f1(y)− f2(z) (3.64)

s.t. z = y, y ∈ X1, z ∈ X2 (3.65)
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we have the dual problem as

min
p

f ∗1 (p) + f ∗2 (p) (3.66)

s.t. p ∈ Λ1 ∩ Λ2. (3.67)

Here Λ1 and Λ2 are the finite range of the conjugate function f ∗1 and f ∗2 . Note that this is
the original form of the dual-decomposition framework ([24, 25, 134, 225]) that is popular in
MRF optimization.

Optimization

The above dualities allow us to convert the original optimization problems into their (often ap-
proximate) tractable / convex forms. Once we have the tractable problem to solve, algorithms
for optimization can be applied. Although there are numerous techniques for solving an op-
timization problem, the basic idea is always to decrease the energy step by step [214], e.g.,
the gradient descent algorithm. In particular, when the original problem is combinatorial, one
should consider how to achieve integral solution from the continuous solution. For example,
the min cut/max flow algorithm [6] is to solve the dual problem of min cut by maximizing
the flow in each step. Once the maximal flow is achieved, the integral solution is obtained
by seeing if there exists unsaturated flow to the source or the sink. In general, special design
of algorithms can achieve guaranteed solution within certain range of the global optimality
[258].

Submodularity and convex functions

In combinatorial optimization, one often considers the optimization of a set function f : 2E →
R ∪ {±∞}. The tractability of such a combinatorial problem can be characterized by the
concept of submodularity as discussed in Sec. 3.1.1. The relationship between submodularity
and convexity can be formulated in terms of the Lovász extension. The conversion from a set
function f : 2E → R ∪ {±∞} to a continuous convex function f̂ : RE → R ∪ {±∞} can be
done as follows

(i) For each v ∈ RE , we index the components of v in non-increasing order as {v1, v2, . . . , vn},
where v1 ≥ v2 . . . vn and n = |E|.

(ii) Also, we define Vj := {v1, . . . , vj} for j = 1, . . . , n and the characteristic vector of a
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subset S ⊂ E defined by

XS(v) =

{
1 if v ∈ S
0 otherwise .

(3.68)

Then we have

v =
n−1∑
i=1

(vi − vi+1)XVi + vnXVn (3.69)

(iii) Given the linear combination for any vector p ∈ Rn, we can define a linear interpolation
of the discrete set function f : 2E → R ∪ {±∞} as

f̂(p) :=
n−1∑
i=1

(vi − vi+1)f(Vi) + vnf(Vn), (3.70)

which is known as the Lovász extension f̂ of f .

The relationship between a submodular function and its Lovász extension is established as
follows [80]:

Theorem 11 A set function f is sub-modular if and only if its Lovász extension f̂ is convex.

Hence, we conclude that submodular functions are discrete analogues of convex functions. C

Besides linear programming, there are also other relaxation methods, such as quadric pro-
gramming for the pairwise MRFs [13, 139, 140].

3.2.2 Discrete MRFs with high-order convex priors – unifying continu-
ous and discrete approaches

In above, we discussed the relaxation approach for general MRF energy functions. In this
section, we will discuss the case when each potential function φa in Equ. 7.2 is convex, or
submodular. We will make use of the property that a convex function can be represented by
the upper envelop of half planes (Prop. 2 and 5).

Our new formulation of high-order MRF with convex priors (Sec. 3.2.2) is largely moti-
vated by the development of globally optimal solutions for continuous PDEs. For example,
the total variation (TV) functional [207] is defined as

ETV (u) = α

∫
|u− u0|2 + µ

∫
|∇u|. (3.71)
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Figure 3.7: The idea of lifting and duality illustrated in the 1D case. The function u(x) is
represented implicitly via the characteristic function φ which is 1 under the curve and 0 above
(Equ. 3.72). The convex relaxation is obtain by relaxing the range of the characteristic function
to be within [0, 1] and considering the vector fields in the lifted space. In the discrete setting,
solving the original variational problem amounts to finding the optimal value xv ∈ [0, 1] on
the discrete grid, which can also be constructed via graph-based models.

There are both continuous and combinatorial (graph-based) models that are formulated for
solving the TV functional. It is shown that the TV functional is closely related to certain types
of MRF problem, e.g., the convex multilabel problem [200] or the continuous maxflow/mincut
problem [9, 235]. Also the TV functional has been employed to solve certain variants of
the Mumford-Shah (MS) functional (e.g., [181, 234]) to achieve globally optimal solutions.
When the energy is convex (e.g., the TV functional or the continuous cut problem [235]), both
continuous and combinatorial approaches are able to find the globally optimal solution via the
dual optimization technique.

Continuous approach

The techniques involved in achieving the global optimal solutions of both MS and TV func-
tionals rely heavily on the upper level set function 1u : Σ = Ω×Γ→ {0, 1}, which is defined
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by

φu(x, y, t) ≡ 1u(x, y, t) =

{
1, if t < u(x, y),

0, otherwise.
(3.72)

Here Γ ⊂ R. u can be recovered from its upper level set φu by the layer cake formula:

u(x, y) = tmin +

∫
Γ

φu(x, y, t)dt. (3.73)

If we relax the range of φu to be within [0, 1], the relaxed feasible set of φu becomes

C = {φ : Σ→ [0, 1]|φ(x, tmin) = 1, φ(x, tmax) = 0}.

This relaxation allows us to treat the optimization problem in a continuous manner.

In order to relate the upper level set function φ to the TV model or the MS model, the
following minimization problem is considered [187, 286]:

min
φu∈C
{E(u) =

∫
Ω

ψ(∇φu)}, (3.74)

where ψ is a function defined over the gradient of φ.

Primal-dual principle: The duality used in here is closely related to the cone theories
introduced above. Recall that the polar cone of a nonempty setC is given byC∗ = {y|〈y, x〉 ≤
0,∀x ∈ C}. Consider the setCψ = {(x,w)|x ∈ Σ, w ∈ R, ψ(x) ≤ w}. The dual variable of ψ
is defined by the vector fields (vectors associated to each x ∈ Σ) Wψ = {p|p ∈ Σ, (p,−1) ∈
C∗ψ}, which is also known as the Wulff shape in [187].

The idea of dual optimization is to consider the vector fields p ∈ Wψ. When the function
ψ(·) is convex (which is the case for the TV functional and the continuous max-flow), it can
be shown that Cψ is also convex so we have ψ(x) = maxp∈Wψ

〈x,p〉.
So the optimal solution of the original problem is achieved via the minimax (primal-dual)

problem

min
u
E(u) = min

φ∈C
max
p∈Wψ

{
∫

Σ

〈∇φ,p〉dv} (3.75)

When there exists discontinuities on u (e.g., the piecewise-smooth MS model), we can
still apply the above primal-dual framework to obtain a globally optimal solution of φ by
adding more complicated constraints over the vector fields ([7, 199]). However, in this case
the discontinuities have been treated implicitly. So it is not clear how to obtain a segmentation
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simply out of the numerical solution of the upper level set function 3.72 which only encodes
the information about u.

To solve the variational problem 3.74 numerically, the space Σ is usually discretized into
regular Cartesian grid with vertices VΩ ×KΓ and edges E (Fig 3.7). The goal now is to solve
for the 0-1 variables on the nodes of the grid x = {xCp,k|p ∈ VΩ, k ∈ KΓ} with the discrete
version of the constraints C, i.e., Cd = {xCp,k|xp,kmax = 0, xCp,kmin = 1, xCp,k ∈ {0, 1},∀p ∈
VΩ, k ∈ KΓ}. The gradient becomes a linear operator Aev that maps vertices to edges as
defined in [90]. The dual domain Wψ becomes constraints W for each edge. Solving the
primal-dual problem of 3.75 amounts to solving the following problem,

min
x∈Cd

max
y∈Wp

E(x|y) = 〈Aevx,y〉 =
∑
p∈VΩ

∑
k∈KΓ

〈Aievx, yp,k〉.

The reason that continuous method is parallelizable is that the energy can be decomposed into
similar local kernels. So it is amenable to GPU implementation. In the Appendix B, we derive
a similar formulation for the primal-dual principle of pairwise MRF optimization.

Combinatorial approach

Now we employ the ideas in the continuous approaches introduced above to solve the combi-
natorial MRF problem. Given a hyper-graph G = {V , E}, we consider the high-order MRF
problem with convex priors:

E(x) =
∑
v∈V

θv(xv) +
∑
e∈E

θe(x
e
1, x

e
2, . . . , x

e
|e|), (3.76)

where xei ∈ L = {1, 2, . . . , L} and θe(xe1, x
e
2, . . . , x

e
|e|), e ∈ E are discrete convex functions

of {xe1, xe2, . . . , xe|e|}. Since the function θe(x1, x2, . . . , x|e|) is convex, according to Prop. 5. it
can be represented as follows [123]:

θe(x
e
1, x

e
2, . . . , x

e
|e|) = max

k∈Ie
{
∑
i∈e

θkeix
e
i + θke0}, (3.77)

where Ie is the index set for the upper envelop functions. Fig. 3.8 shows an example of
using upper envelop for representing convex functions. Note that with this representation, the
complexity of the function is no longer determined by the order of its energy function. Instead,
its complexity is determined by the number of linear envelop functions.

In order to apply the duality principle discussed in Sec. 3.2.1, the first step is to convert the
problem of 3.76 to LP. To this end, we define the indicator variables using the idea of upper
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level set function ([200, 286]) as follows (Fig. 3.7):

τu;i =

{
1 if i ≤ xu

0 otherwise
, u ∈ V and i ∈ L. (3.78)

Note that this definition is different from the definition of Equ. 7.3. It follows that θv(·) can be
represented as

θv(x) =
∑
i∈L

θv;i(τv;i − τv;i+1) (3.79)

where we define τv;1 = 1, τv;L+1 = 0 and θv;i = θv(i). This corresponds to the continuous case
of representing the zero-derivative terms (e.g., the first term of Equ. 3.71) using upper level
sets function. One advantage of using such indicator variables is that the complexity of an
MRF problem is no longer determined by its order, as we shall see in the following. Another C
advantage, compared to the standard indicator variable (see Appendix A), is that the variable
xv can be conveniently represented by the equation xv =

∑
i∈L τv;i.

Therefore, the original convex MRF optimization problem (Equ. 3.76) becomes

min
τ,x

∑
v∈V

∑
i∈L

θv;i(τv;i − τv;i+1) +
∑
e∈E

max
k∈Ie
{
∑
v∈e

θkevxv + θke0} (3.80)

s.t. xv =
∑
i∈L

τv;i ∀v ∈ V (3.81)

τv;i − τv;i+1 ≤ 1 ∀v ∈ V , i ∈ L (3.82)

τv;i+1 − τv;i ≤ 0 ∀v ∈ V , i ∈ L (3.83)

τv;i ∈ {0, 1} (3.84)

By introducing auxiliary variables {te} for each e ∈ E , the above optimization can be con-
verted into a LP problem:

min
τ,x

∑
v∈V

∑
i∈L

θv;i(τv;i − τv;i+1) +
∑
e∈E

te (3.85)

s.t. xv =
∑
i∈L

τv;i ∀v ∈ V (3.86)

τv;i − τv;i+1 ≤ 1 ∀v ∈ V , i ∈ L (3.87)

τv;i+1 − τv;i ≤ 0 ∀v ∈ V , i ∈ L (3.88)∑
v∈e

θkevxv + θke0 ≤ te ∀e ∈ E , k ∈ Ie (3.89)

τv;i ∈ {0, 1} (3.90)
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Figure 3.8: A convex function V (X1, X2) can be represented as the upper bound of a set of
linear functions maxi{fi(X1, X2) = aiX1 + biX2 + ci}. For a convex function, the number
of linear functions is O(|X1||X2|). This convexification does not reduce the number of the
primal variables. The problem can be simplified when the convex function is in a simple form,
namely with a small number of linear envelops.

Duality

Now we consider the duality of the LP-relaxation of Eq. 3.85, by introducing the dual variables

xv =
∑
i∈L

τv;i → merge to 3.89 (3.91)

τv;i − τv;i+1 ≤ 1 → µ1
v;i (3.92)

τv;i+1 − τv;i ≤ 0 → µ2
v;i (3.93)∑

v∈e

θkevxv + θke0 ≤ te → me;k (3.94)

Note that in this formulation, the number of dual variable depends on the number of upper
linear envelop functions, namely O(|V||L|+

∑
e∈E |Ie|), which is independent of the order of
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the energy functions. Then the dual problem for the primal energy function Eq. 3.85 becomes:

max
∑
v∈V

∑
i∈L

µ1
v;i (3.95)

s.t.(µ1
v;i − µ1

v;i−1)− (µ2
v;i − µ2

v;i−1) +
∑
{e|i∈e}

∑
k∈Ie

θkevme;k ≤ θv;i − θv;i−1, ∀v, i (3.96)

∑
v∈V

∑
k∈Ie

θke0me;k ≤ 0 (3.97)

−
∑
k∈Ie

me;k ≤ 1 (3.98)

me;k ≤ 0, µ1
v;i ≤ 0, µ2

v;i ≤ 0 ∀e, k (3.99)

Note that the number of dual constraints is in the order of O(|V||L|+
∑

e∈E |Ie|).

Optimality conditions and integral primal solutions

For the integer programming of problem (3.85), the complementary slackness condition holds
for the optimal solution of the primal and dual problems:

µ1
v;i < 0⇒ τv;i − τv;i+1 = 1 (3.100)

µ2
v;i < 0⇒ τv;i = τv;i+1 (3.101)

It follows that given the dual solution {µ1
v;i, µ

2
v;i} the integral primal solution can be obtained

by checking if µ1
v;i < 0. Note that when the convex relaxation is not tight, other techniques

can be applied for obtaining the integral solutions (e.g., [280]).

Relation to previous algorithms

In above, we presented a new LP relaxation for the high-order MRF problem with convex
priors, which is motivated by the upper level set function used in the continuous cases.

(i) Relation to the min-cut/max-flow algorithm for Graph Cuts

As a special case of Equ. 3.76, the energy function of the binary graph cuts can be formu-
lated as

min
xv∈{0,1},v∈V

{E(x) =
∑
v∈V

θv(xv) +
∑

(u,v)∈E

θuv(xu, xv)}. (3.102)

Here the pairwise energy function θ(·, ·) can always be represented by two upper envelop
functions (Fig. 3.9). Using the upper level set based indicator variables, we have τv;0 = 1 and
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Figure 3.9: Linear upper envelop functions for the pairwise terms θ(·, ·) in the binary graph
cuts problem. Here the upper envelop functions are the planes that span ABC and BCD,
respectively.

xv = 1 + τv;1. It follows that the energy function can be represented as

E(τ, t) =
∑
v

(θv;0(τv;0 − τv;1) + θv;1τv;1) +
∑
(u,v)

tuv (3.103)

=
∑
v

τv;1(θv;1 − θv;0) +
∑
(u,v)

tuv + constant, (3.104)

Assuming the two linear upper envelop function for each pairwise term θuv(xu, xv) are a1
uvxu+

b1
uvxv + c1

uv and a2
uvxu + b2

uvxv + c2
uv respectively, the constraints for the graph cuts energy

become

τv;1 ≤ 1, ∀v ∈ V (3.105)

a1
uv(1 + τu;1) + b1

uv(1 + τv;1) + c1
uv ≤ tuv, ∀(u, v) ∈ E (3.106)

a2
uv(1 + τu;1) + b2

uv(1 + τv;1) + c2
uv ≤ tuv, ∀(u, v) ∈ E (3.107)

τv;1 ≥ 0 (3.108)

By introducing the dual variable w1
uv and w2

uv, it can be shown that our new LP relaxation
lead to an alternative formulation of the min-cut/max-flow problem.

76



Graph theory Linear algebra Vector calculus Topology
Functions on vertices Vector in Rn Potential function 0-cochain
Edge flow Skew-symmetric matrix in

Rn×n
Vector field 1-cochain

Triangular flow Skew-symmetric hyper-
matrix in Rn×n×n

Tensor field 2-cochain

Table 3.1: A comparison between graph structure and geometric structure.

(ii) Relation to Convex MRFs

The energy function considered in the convex MRF literature (e.g., [105, 129]) takes the
following form

min
x

∑
v∈V

Dv(xv) +
∑

(u,v)∈E

Vuv(xv − xu), (3.109)

where Vuv(·) is a convex function (e.g., the discrete gradient (xv − xv)
2). In such cases, it

is easy to see the the number of upper linear envelop functions for each Vuv(·) is at most
2|L|) (Fig. 3.8 (a)). Hence, the number of dual variables required for solving the convex MRF
problem is O(|L||V|).

3.3 Conclusion

In this section, we have reviewed the combinatorial structures on graphs. We have shown that
the dependency in probability functions can be sufficiently characterized by the connectivity
structure on a graph, each node of which represents the random variables. To conduct infer-
ence on graphs, convexity plays an important role in the search of global optimal solutions.
In the continuous setting, convex optimization has been well studied as a tractable structure
[23, 31, 214]. In the discrete setting, convexity also represents a class of tractable structures
and is represented by the concept of submodularity [80, 177]. Furthermore, we have shown in
Sec. 3.2.2 that all the exponential families with convex potential functions can be succinctly
relaxed using linear programming, therefore can be efficiently solved / approximated. The
complexity of marginal polytope can be characterized by the number of facets, which can be
exponentially large. However, in the case of tree-structured graphs, this number turns out to
be polynomial. This can be understood also from the message passing point of view [11].

The Markov property allows us to represent the level of dependency in a probabilistic
system, though many of its problems are intractable (NP-hard). The junction tree can be
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used to characterize such a complexity, namely the existence of loops can sometimes lead the
problem to be exponentially large.

Linear programming (LP) relaxation has been proven to be a very useful tool in solving
the MRF optimization problem. Besides LP, the quadric / semidefinite programming relax-
ation [12, 13] is also a popular approach for solving combinatorial problems. Although its
applications have already been explored in MRF optimization (e.g., [139, 140]), its full po-
tential is yet to be investigated. A comparison between the combinatorial structure and graph
structure can be summarized in Table 3.1.

The Physical law can be mostly described by linear / convex interactions. A nonlinear /
nonconvex problem can be converted into a linear / convex one, but often with the price of
being exponentially complex. It is yet to be investigated the relationship between information
theory and complexity. One possible explanation for the fact that the computational power is
bounded by the polynomials is that the computer is only a physical machine, so it must abide
by the physical law, which is linear as we have shown in Chapter 2.
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Chapter 4

Dense Surface Registration using
High-order Graph Matching

4.1 Introduction

Accurately finding the correspondences between two or more surfaces (surface registration)
is the prerequisite for many applications, such as 3D shape recognition, deformation transfer,
and object recognition [46, 257]. Despite the increasing popularity of 3D acquisition tech-
niques, it remains challenging to accurately register 3D shapes that undergo large, non-rigid
deformations or are subject to a high level of noise. In this chapter, we propose a high-order
graph based approach for the problem of surface registration that integrates multiple assump-
tions on the quality of any match, which handles surfaces with large, non-rigid deformations,
partial mapping and/or noisy input.

In order to find the correspondences between two surfaces undergoing large deformations,
directly searching in their embedding space is often inefficient or even intractable due to the
large degrees of freedom in the their non-rigid deformations. A popular approach that over-
comes such difficulty is to resort to intrinsic representations of the surfaces that are invariant
to certain types of deformations (e.g., [38]). Most prior arts that fall into such intrinsic space
based methods assume that two surfaces undergo only isometric (i.e., distance or metric pre-
serving) deformations, which is often a rough approximation for the deformations of most
real-world objects. Successful approaches for such intrinsic space based methods include
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geodesic/exponential maps ([37]), conformal maps ([269, 270, 289, 295]) and diffusion maps
([188, 218]). Among these approaches, only conformal maps provide a closed-form solution
for the dense surface matching problem, which is characterized by the Möbius transformation
in the uniformization domain that only requires the determination of up to three correspon-
dences between two surfaces. Moreover, it has been shown in [5] that a direct generalization
of the conformal mapping, i.e., the quasi-conformal mapping, is able to handle arbitrary dif-
feomorphisms between two surfaces.

Although conformal maps are well-suited for establishing dense correspondences between
surfaces undergoing large deformations, relying on a single mapping is often sensitive to noisy
input, or boundary conditions. It is therefore necessary to consider the correspondences ob-
tained from multiple mappings and define robust metrics to handle uncertainties in the input.
To this purpose, graph-based approaches ([124]) have proven to be very successful in handling
noisy input and occlusions (e.g., [267]) due to their statistical nature. Hence, in this paper, we
cast the surface registration problem into the search of the correspondences for a discrete set
of points on the surface. We show that the deformation constraints between two surfaces can
be represented by the third-order interactions among these point sets. Thus finding the opti-
mal registration becomes finding the optimal matching for a high-order graph by minimizing
an energy which constrains the quality of any possible matching. To fully utilize the pow-
ers of intrinsic space-based methods and graph-based approach, we propose two formulations
to solve the sparse and dense surface registration problems respectively, the combination of
which allows us to achieve both efficient and accurate dense surface registration results.

In our first stage, inspired by the metric defined in [156], we formulate the surface registra-
tion problem as a high-order graph matching problem that integrates both extrinsic matching
costs (texture and normal consistencies) and intrinsic deformation errors (curvature and de-
viation from isometry [156]). Due to the challenge imposed by solving a high-order graph
matching problem, we propose the first solution to the high-order graph matching problem
that handles partial matching by using the dual-decomposition technique [134]. However, the
metric defined in [156] is only robust to points on the surface that are far apart. When the
points to be registered go dense, any possible triplet matching would result in a small dis-
tance, which leads the metric to be no longer discriminating. Hence this formulation can only
handle sparse surface registration problems.

Towards dense surface registration, from the results obtained by the sparse registration, we
design an efficient matching candidate selection scheme for any point on the surface based on
the fact that any three correspondences determine a unique closed-form solution to establish
the mapping between two surfaces. Thanks to such candidate selection, the problem of dense
surface registration becomes combinatorial and local. Finally, a local high-order graph match-
ing algorithm is proposed to achieve accurate dense surface registration results. Note that
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the idea of using multiple Möbius transformations induced by any three correspondences to
achieve dense registration was first appeared in our paper [292]. Such an idea is later extended
recently in computer graphics by Kim et.al. [120].

This chapter is organized as follows. In Sec. 4.2, we review related work on surface reg-
istration and graph matching. Sec. 4.3 overviews our two-stage hierarchical surface matching
framework. Our high-order graph matching problem for surface registration is formulated in
Sec. 4.5. In Sec. 4.6 we present our novel candidate selection scheme for dense surface reg-
istration. Given the candidate selection scheme, the algorithm for dense surface registration
is discussed in Sec. 4.7. The implementation details and experimental results are presented in
Sec. 4.8. Finally, we conclude our work in Sec. 4.9.

4.2 Literature review

4.2.1 Surface registration

Surface matching (also known as surface registration or surface alignment), whose objective
is to determine meaningful correspondences between two or more surfaces, is a fundamental
problem in computer vision, computer graphics and medical imaging. Using the Bayesian
paradigm, one can formulate the surface registration problem as follows:

arg max
T :M1→M2

P (T |M1,M2) ∝ P (M1,M2|T )P (T ), (4.1)

where T is the mapping between two input surfaces M1 and M2, represented either as an-
alytical functions, point clouds or triangular meshes. Almost all the existing approaches for
surface registration make certain assumptions on the possible transformations T , or P (T ).
Despite a large amount of literature on surface matching, it remains a very challenging prob-
lem, particularly when the surfaces undergo large, non-rigid deformations and are subject to
a high level of noise. In order to handle surface matching problems under such difficult sit-
uations, it is often necessary to take into account both local feature similarities and global
deformation constrains [257]. While local structures are somewhat straightforward to handle,
the consideration of global structures imposes a major challenge for surface matching.

In order to impose global deformation constraints for the surface matching problem, many
existing works are based on certain rigidity assumption on the deformations of the surface and
impose rigidity as a global regularization in searching for correspondences. Assuming two
representations of a shape only differ by a global rigid deformation (i.e., rotation and transla-
tion, or T (p) = Rotp + Trans), the iterative closest points (ICP) [26] method and its variants
[167, 209] has been successfully applied for shape registration with various extensions (e.g.,
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[40, 96, 109]). ICP alternates between determining correspondences between two surfaces
and computing a rigid transformation using the obtained correspondences. Obviously, such
a scheme can easily get trapped in local minima and thus requires that the difference be-
tween the two surfaces are close enough to get a satisfactory matching result. Furthermore,
global rigidity does not take into account bendable shapes (e.g., garments or rubber bands).
Hence the notion of local rigidity has been proposed which assumes that the deformation
between two local neighborhoods of each correspondence be rigid [104] (or mathematically,
T (p) = Rotpp + Transp). Similar to ICP, an alternating optimization is usually required to
optimize the objective function. Also such methods can easily stuck in local optimality. How-
ever, since the rigidity assumption is imposed onto every point, when registering two surfaces
with large deformations, the degree of freedom of the deformation is also increased, leading
to high complexity in computation.

As an alternative representation of the local rigidity, approaches based on geodesic dis-
tances among pairs of points on the surface have proven to be robust to large deformations
[36, 37]. In Riemannian geometry, the notion of local rigidity can be characterized by the
concept of isometry (Chap 2.2), meaning the preservation of the lengths of any infinitesimal
vector between any correspondence (or dT (·) is orthogonal). Furthermore, a surface is iso-
metrically deformed if and only if for any pair of points on the surface, the geodesic distance
between their correspondences on the deformed surface is the same as the geodesic distance
between the two points on the original surface. This property allows us to define a distance
between any pair of correspondences to impose the local rigidity constrain. For example, [8]
formulated the surface matching problem as a pairwise MRF optimization problem. They con-
sider pairwise potentials between neighbor points based on the deviation of geodesic distance,
and they employ the Loopy Belief Propagation algorithm for the MRF optimization.

Although pairwise distance can be robustly evaluated for surfaces with large deforma-
tions [51, 121, 173, 184, 283], it is difficult to apply such methods to handle shape matching
with isometric ambiguities such as symmetry or when the data is corrupted by noise. Another
successful approach for matching shapes with large deformations is the conformal mapping
based method (e.g., [120, 269, 270, 289, 295]). A conformal mapping is characterized by
requiring that the eigenvalues of the transformation matrix dT (·) be equal. An important
property of conformal mapping is that if two surfaces are isometrically deformed from one
to the other, their correspondences only differ by a Möbius transformation in their conformal
parametrization (also known as Uniformization) domains. Hence, once such a transforma-
tion is recovered, a one-to-one correspondences between the two surfaces can be established,
giving us a global transformation between two surfaces. Based on such global property of
conformal mapping, [269, 270, 289, 295] established dense correspondences between two
surfaces by specifying a few initial feature correspondences. These approaches relied heav-
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P1 P2 P1 P2

(a) An example of valid matching (b) An example of invalid mathcing

Figure 4.1: The graph matching problem can be stated as finding the one-to-one correspondence
between two sets of points P1 and P2. (a) shows an example of valid matching. (b) is an example of
invalid matching.

ily on the accuracy of the selection of the initial correspondence points. Given noisy 3D
scan data with varying scale, boundaries and resolutions, the performance of the above meth-
ods might degrade as it is difficult to find reliable feature point correspondences. To remedy
this, [156] proposed to find sparse correspondences between two surfaces based on a voting
scheme. Since every three correspondences determine a unique Möbius transform between
the uniformization domain of the two surfaces, it also determines a correspondence match be-
tween two surfaces. Hence, for each possible triplet matching, one can define a measure of the
plausibility of such matching by matching among all the other points on the whole surface.
This global property of the conformal mapping based method guarantees the robustness of the
method with respect to local noise as well as large deformation. Besides, [156] also showed its
method’s ability to handle two surfaces with largely inconsistent boundaries, which is usually
difficult for conformal mapping based methods.

Furthermore, since most surface deformations are not perfectly isometric, solely consid-
ering intrinsic embedding information may introduce approximation errors to the matching
result. Due to the above mentioned uncertainty, [246, 247] proposed to search for the corre-
spondences using probabilistic formulations and randomized algorithms. However, due to the
need for computing geodesics on the surface, they are only able to establish a few hundred
correspondences.

4.2.2 Graph matching

The graph matching problem, also known as assignment problem or simply matching problem
[44], deals with the problem of how to assign n items (jobs, students, men) to m other items
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(machines, tasks, women). Mathematically, the bipartite graph matching problem is defined
on a bipartite graph G = (U, V ;E) where U and V are two vertex sets and E ⊂ U × V is an
edge set. A matching M is a subset of the edges such that every vertex of G meets at most one
edge of the matching. Equivalently, a matching is a map ϕ : U → V , such that the mapping is
one-to-one, i.e.,

ϕ(i) 6= ϕ(j) whenever i 6= j. (4.2)

One could also extend this formulation to dealing with partial matching, where a valid match-
ing is defined by the mapping ϕ′ : U → V ∪ {∅}, such that

ϕ′(i) 6= ϕ′(j) whenever i 6= j and ϕ′(i) 6= ∅ and ϕ′(j) 6= ∅. (4.3)

When |U | = |V | and every vertex of G coincides with an edge of the matching M , such
matching is called a perfect matching, which has been widely studied since the 1930s’. In
1935 Philip Hall [97] proved the marriage theorem which gives a necessary and sufficient
condition for the existence of a perfect matching. However, such proof is non-constructive. It
had been shown by Hopcroft and Karp [102] that a perfect matching can be found inO(m

√
n)

time where m is the number of edges. The idea of their algorithm is based on iteratively
searching for an augmenting path that alternates between matched and unmatched edges. Due
to the matroid structure of the matching problem, it can be shown that upon termination,
this algorithm is able to find the matching with maximal size. Thus it can also be applied
to finding the match M with maximal number of matching pairs, known as the maximum
bipartite matching problem.

The above matching problems concern the (cardinality) number of matching pairs, without
distinguishing the differences among different pairs. If we assign a weight to each match
and ask for the optimal matching whose sum of weights are maximal, then such problems
are called weighted assignment problem. The weight can be defined on each matching pair,
or multiple matching pairs to constrain the configurations of matching. With respect to the
maximal number of matching pairs that are assigned the weight, there are linear assignment
problems, quadratic assignment problems and multi-index assignment problems.

Linear assignment problem

In the simplest case, we can define the linear assignment problem as follows. Let C = (cij)

be an n ×m matrix where each entry cij denotes the cost of assigning node i to node j, then
the objective function of an assignment ϕ : U → V is

n∑
i=1

ciϕ(i). (4.4)
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Hence the linear assignment problem becomes finding the optimal assignment ϕ that mini-
mizes Eq. 4.4.

In 1946 Easterfield proposed the first algorithm for solving the linear assignment prob-
lem which runs in O(2nn2) time [70]. In 1955 the Hungarian algorithm was proposed by
Harold Kuhn [138], which is the genesis of the network flow based algorithm that later gained
widespread popularity in the combinatorial optimization community. The time complexity of
the original algorithm proposed by Kuhn isO(n4) and was later improved to achieve anO(n3)

running time by Dinic and Kronrod [62].

Beyond those deterministic algorithms for the linear assignment problem, there are also
randomized approaches. For example, Bersekas [22] proposed a randomized dual algorithm
and achieved significant speedup in the average case.

Quadratic assignment problem

Not surprisingly, the cost function of quadratic assignment problem involves a four-index cost
matrix D = (dijkl) where dij;kl denotes the cost of assigning i to k and j to l.

n∑
i=1

n∑
j=1

dij;ϕ(i)ϕ(j). (4.5)

Note that the linear cost can be encoded into quadric cost as well, by defining

dii,jj = cij,∀i ∈ {1, . . . , n},∈ {1, . . . ,m}. (4.6)

The quadratic assignment problem was first introduced as a mathematical model for the lo-
cation of indivisible economical activities by Koopmans and Beckmann [136] in 1957. In their
paper, they considered a less general cost matrix where dij;kl = aikbjl. It turns out that there
are numerous real-world applications that can be modeled as quadratic assignment problems.
For example, the wiring problem [232], the hospital layout problem [137], etc. However, solv-
ing a quadratic assignment problem is much more difficult than solving the linear assignment
problem since it is an NP-Hard problem [210]. Nugent, Vollmann and Ruml [48] proposed
a set of test instances for such problem that are widely considered to be difficult to solve.
Approaches for solving the quadratic assignment problem includes decomposition, branch-
and-bound, and branch-and-cut, which are all based on traditional optimization techniques.
Also there are parallel algorithms and randomized algorithms such as simulated annealing or
genetic algorithms developed.
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Figure 4.2: Overview of our algorithmic framework for surface registration as described in Sec. 4.3.

Multi-index assignment problem

The multi-index assignment problem, as a natural extension of linear assignment problems,
were introduced by Pierskalla [195] in 1968. The dimension of the cost matrix for a k-index
problem is (nm)k. For example, the cost function of a 3-index problem can be represented as

n∑
i=1

n∑
j=1

n∑
k=1

dijk;ϕ(i)ϕ(j)ϕ(k). (4.7)

One can encode the linear assignment problem by defining

diii,jjj = cij, (4.8)

and the quadratic assignment problem by defining

diji,klk = djii,lkk = diij,kkl = dij,kl. (4.9)

Similar to the quadratic assignment problem,the multi-index assignment problem can be
solved by using its linear programming formulation and employing optimization techniques
based on integer programming. For example, Balas and Saltzman [15] solved the 3-index
assignment problem using the branch and bound technique, which involves subgradient opti-
mization for the relaxed dual problem.

4.3 System overview

As shown in Fig. 4.2, our surface registration system consists of two stages: sparse surface
registration and dense surface registration.
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4.3.1 Sparse surface registration

In the sparse feature matching stage, an initial set of sparse feature points are selected among
the local maxima of Gaussian curvature [156] from the input surfaces S1 and S2. Using our
high-order graph matching algorithm (Sec. 4.4 and 4.5), we find ns correspondences between
the two feature sets {p1

1, p
1
2 . . . , p

1
ns} → {p

2
1, p

2
2, . . . p

2
ns}. Since the matching cost involves

computing the matching cost for every possible triplet matching, the complexity of encoding
the graph energy grows in the order of o(n6

s). Because the accuracy of the sparse match-
ing stage determines that of the dense matching, here we only select a small set of feature
points (typically 8− 15 in our experiments) and compute all the possible triplet matching cost
among them. Hence the computational cost is low in finding the sparse correspondences and
computing the associated conformal maps.

4.3.2 Dense surface registration

In the dense feature matching stage, we first use the results from the sparse matching stage
to obtain a set of candidates for each point on the surface (Sec. 4.6). Since every three cor-
respondences determine a unique conformal map between two surfaces, ns sparse matching
points would give us

(
ns
3

)
candidate matching points on S2 for any point p ∈ S1. These points

are then clustered to obtain meaningful matching candidates for each point. Such candidate
selection also allows us to formulate the dense surface registration problem as a combinato-
rial problem. To impose constrains on the deformations between two surfaces, we propose
a generic local surface deformation model defined on the triangulated graph of these points
on S1 with meaningful candidate matching points. Finally, a high-order MRF optimization is
then formulated and solved to obtain the optimal dense registration result (Sec. 4.7).

4.4 A pseudo-boolean formulation of the high-order graph
matching problem

Let us denote by P1 and P2 the set of points from two surfaces S1 and S2 respectively (Fig. 4.1).
P ≡ P1 × P2 denotes the set of possible correspondences. We define the boolean indicator
variable

xa =

{
1 if a = (i, j) ∈ P is a correspondence,

0 otherwise.
(4.10)
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A basic constraint is that each point in P1 is mapped to at most one point in P2, while for
each point in P2 there is at most one point in P1 mapping to it. Therefore, we have the set of
feasible solutions defined as,

C = {x ∈ {0, 1}P1×P2 |
∑
i∈P1

xi,j ≤ 1,
∑
j∈P2

xi,j ≤ 1,

∀i ∈ P1 and ∀j ∈ P2}. (4.11)

Moreover as shown in [67], in order for matching to be scale invariant a high-order (degree
3) graph matching is required as follows

min
x∈C
{E(x|θ) =

∑
a∈P

θaxa +
∑

(a,b)∈P×P

θabxaxb+∑
(a,b,c)∈P×P×P

θabcxaxbxc}, (4.12)

where θa is the matching cost for each correspondence a ∈ P , θab for a pair of correspondences
(a, b) ∈ P × P , and θabc for a triplet of correspondences (a, b, c) ∈ P × P × P .

Because the matching constraint (Eq. 4.11) makes the optimization problem of Eq. 4.12
difficult to solve, most existing works attempted to relax it (e.g., [67]). In fact, the matching
constraint can be reduced to pairwise terms in the energy function. We observe the following
equivalence:

∀i ∈ P1,
∑
j∈P2

xi,j ≤ 1

iff min
xi,j

∑
j′,j′′∈P2,j′ 6=j′′

θ∞xi,j′xi,j′′ = 0 (4.13)

where θ∞ is a sufficiently large number. We use P C to denote the set of pairs that encodes
the matching constraints for all the correspondences. Thus, the general high-order matching
problem can be formulated as the following pseudo-boolean optimization problem [30]

min
x∈{0,1}P1×P2

{E(x|θ) =
∑
a∈P

θaxa +
∑

(a,b)∈P×P

θabxaxb+∑
(a,b)∈PC

θ∞xaxb +
∑

(a,b,c)∈P×P×P

θabcxaxbxc}. (4.14)

The above formulation is general and therefore is able to capture almost all matching scenarios
(e.g., partial matching) by properly defining the potentials.

Because of the positive weight θ∞ that encodes the matching constraint, the energy func-
tion 4.14 is nonconvex [31], and in general this is an NP-hard problem [30]. The advantage of
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the pseudo-boolean formulation is that theoretically any high-order terms can be reduced into
a quadratic term [30] which can be done efficiently [106]. In this paper we employ the flexible
dual-decomposition technique [134] which often obtains a near optimal solution. The details
of the optimization algorithm is given in Sec. 4.4.1.

4.4.1 Optimization and computational complexity

The idea of dual-decomposition is to re-formulate the original problem as the union of several
sub-problems that are easier to solve [133, 134]. For the graph matching problem in Eq. 4.12,
let θ denote the vector of the weights of the singleton, pairwise and triplet terms, and I denote
the set of subproblems. The decomposition is represented by E(x|θ) =

∑
σ∈I ρσE

σ(x|θσ),
where ρσ is the weight for each subproblem. Then the original problem is solved by updat-
ing the parameter θσ of each subproblem σ that increases the energy of the dual problem.
Moreover, we have the following decomposition constraint:∑

σ∈I

ρσθ
σ = θ. (4.15)

If we can find a lower bound Φσ(θσ) for each subproblem, i.e., Φσ(θσ) ≤ minxE
σ(x|θσ), then

we can obtain a lower bound for the original problem, i.e.,

Φ(θ) =
∑
σ∈I

ρσΦσ(θσ) ≤
∑
σ∈I

ρσE
σ(x|θσ) = E(x|θ). (4.16)

In particular, we decompose the original problem into the following three subproblems:

(i) a linear subproblem which considers only the singleton term
∑

a∈P θaxa. This linear
subproblem is also known as the linear assignment problem [6].

(ii) a higher-order pseudo-boolean subproblem by reducing the high-order terms in 4.12
to quadratic terms [30] which can be solved by the QPBO algorithm [128]. Here we
employ [106] for the reduction.

(iii) a local subproblem which divides the original surface into small regions and uses an
exhaustive search to find the optimal solution in each small surface region.

Opposite to [252] that only considers pairwise subproblems, a high-order pseudo-boolean
subproblem is introduced because of the high-order terms in Eq. 4.12. After solving the sub-
problems, the dual variables {θσ} are updated by projecting to the space that satisfies Eq. 4.15
as in [133].
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For the dual-decomposition algorithm above, the most expensive step in each iteration is
the max-flow computation. In our paper, we use the popular implementation in [135], whose
worst case complexity is O(mn2|C|), where m is the number of edges, n is the number of
vertices, and |C| is the cost of minimum cut. Assuming we select |P1| and |P2| feature points
from two surfaces, there are O(|P1|3|P2|3) possible triplets, each represented by a high-order
term in Eq. 4.12. After the reduction from the high-order terms to quadratic terms, we can sig-
nificantly reduce the complexity without searching for all possible matching correspondences.

4.5 High-order graph matching for sparse surface matching

To consider multiple sources of similarity measurements, in our graph matching formulation
of Eq. 4.12, the singleton terms define both appearance and geometric similarities, the pairwise
terms constrain the mapping to be one-to-one and the high-order terms constrain the intrinsic
deformation errors. Furthermore, the potential functions can also be learned from a training
set [45].

The singleton potential

For each correspondence (i, j) we consider both the geometric and texture (if available) in-
formation to define its potential as in [249]. For simplicity, we use the Gaussian curvature
curv(i) at point i, which is invariant under an isometric transformation [63], and the texture
value tex(i) at point i. The singleton potential for a correspondence (i, j) is defined as

θi,j = (curv(i)− curv(j))2 + λ0(tex(i)− tex(j))2 (4.17)

where λ0 balances the weight between the curvature and the texture information. Similarly,
other features can also be considered such as spin-image [108].

The pairwise potential

The pairwise potential encodes the one-to-one mapping constrain for the graph matching of
Eq. 4.13, i.e., for any possible matching pairs (p1

i , p
1
j) ∈ S1 and (p2

i , p
2
j) ∈ S2, we define the

pairwise matching cost:

θij =

{
θ∞ if p1

i = p2
j or p2

i = p2
j

0 otherwise .
(4.18)

Here θ∞ is set to be 105 in our experiments.
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The high-order potential

According to the uniformization theorem [73], any 3D surface can be flattened conformally
to a canonical 2D domain. Within such a mapping each feature point p has a parametric coor-
dinate in the complex plane zp ∈ Ĉ. The flexibility of this conformal mapping is represented
by a Möbius transform, which can be uniquely determined by fixing any three points on the
surface. Inspired by Lipman et.al. [156], we compute the matching score between two triplets
as the deformation error based on the Möbius transform.

Given two surfaces, S1 and S2, for any two triplets, (p1
i , p

1
j , p

1
k) ∈ S1 and (p2

i , p
2
j , p

2
k) ∈ S2,

we first recover the associated Möbius transformation m1(z) and m2(z) that map each triplet
to a constant configuration (ei

2π
3 , ei

4π
3 , ei2π). This transformation essentially equips each point

in the sets P1 and P2 with a new coordinate in Ĉ. Let us denote the new coordinate for each
point p as z(p) ∈ Ĉ. Similar to [156], we establish correspondences between the two sets P1

and P2 by searching the mutually closest point correspondences set under the new coordinates,
denoted as

Mijk ={(p1, p2)|p1 ∈ S1, p2 ∈ S2,

∀ p′2 ∈ S2 \ {p2}, |z(p1)− z(p2)| < |z(p1)− z(p′2)|,
∀ p′1 ∈ S1 \ {p1}, |z(p1)− z(p2)| < |z(p′1)− z(p2)|}

and define the deformation error as

Eijk =
∑

p∈P1,Mijk(p) 6=∅

|z(p)− z(Mijk(p))|2. (4.19)

Then we define the Möbius matching potential as follows,

θMöbius
ijk =

{
Eijk
|Mijk|2

− 1. if Eijk
|Mijk|

< δ

1/|Mijk| otherwise
(4.20)

Here δ is lower bound value to single out unlikely correspondences (in our experiment δ =

0.1). Without it the minimization problem of Eq. 4.12 would encourage as many as possible
correspondences even when some of them do not match. Intuitively, if there were more match-
ing pairs and the distances between those matching pairs were smaller, the potential would be
lower.

However, considering the Möbius energy alone can introduce certain ambiguity since it
encodes only isometric information. To resolve such ambiguity, we consider the Gaussian
map of the surface. The Gaussian map is defined as the mapping of the normal at each point
on the surface to the unit sphere [63]. The Gaussian map captures the extrinsic geometric
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information of the surface. In order to avoid ambiguities in orientation, the orientation of the
Gaussian maps is considered for each of the triplets. Two triplets have the same orientation if
and only if the determinant of their normals have the same sign. Therefore, we have

θGaussian
ijk =

{
0 if det(n1

i ,n
1
j ,n

1
k) det(n2

i ,n
2
j ,n

2
k) ≥ 0

1/|Mijk| otherwise
(4.21)

Here ni ∈ R3 denotes the normal at point i, and det(ni,nj,nk) denotes the determinant of
the 3× 3 matrix [ni,nj,nk]. This is introduced as a soft constraint in our framework, because
in the extreme case, the normal can reverse its orientations when the surface undergoes very
large deformations. Finally, the triple potential for each possible triple matching (p1

i , p
1
j , p

1
k)→

(p2
i , p

2
j , p

2
k) can be defined as

θijk = λ1θ
Möbius
ijk + λ2θ

Gaussian
ijk (4.22)

4.6 Candidate selection for dense surface registration

The number of vertices n considered in this high-order formulation is the main computational
bottleneck of our approach. In particular, when n becomes large, as in the case of dense
surface registration, it is computationally expensive to solve the high-order graph matching
problem. Furthermore, the optimality properties of the obtained solution degrade since the
assumption of isometry is only an approximation and applies only when the features are far
apart. The graph structure of the above matching problem would also be very complex if
we consider all possible triplets. Several heuristic ways were considered to prune off some
triplets, such as restricting the number of triangles per vertex [67]. However, because of the
complexity of the problem, such pruning schemes often lead to erroneous matching results
when the number of feature points is large. To reduce the computational complexity, we
propose a two-stage optimization pipeline including sparse feature matching and dense point
matching, as illustrated in Fig. 4.2.

Since the initial feature points are selected among the vertices and the middle points of
the edges of the meshes, the matching results could be unreliable if the mesh resolution is
low. To address the above issue, we consider all conformal maps induced by different Möbius
transformations, which are determined by every three correspondences between two surfaces,
for the dense point matching.
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4.6.1 Candidate selection

From the sparse feature matching stage, we have a set of sparse correspondences {p1
1, p

1
2 . . . , p

1
ns} →

{p2
1, p

2
2, . . . p

2
ns} between S1 and S2. Because the deformation of the surface might not be

isometric, we propose a candidate selection scheme based on Möbius transforms to com-
pensate for the approximation error. Given any three correspondence pairs, {p1

i , p
1
j , p

1
k} →

{p2
i , p

2
j , p

2
k}, the Möbius transformation can be computed efficiently in a closed form [156].

Under such a Möbius transformation, any point p1 ∈ S1 will be mapped to a different can-
didate location c(p1) ∈ S2. Thus, for each point in the source surface, we can compute the
candidate locations in the target surface by considering all possible Möbius transformations
from the feature correspondences.

One advantage of our candidate approach is robustness. If any part of the sparse matching
result from Sec. 4.5 is accurate, the matching candidates given by the Möbius groups will dis-
tribute closely around the true location. Another advantage is that this voting scheme provides
a fast and effective way of constraining the search space for any point on the surface.

4.6.2 Candidate clustering

Based on the above candidate locations, we want to use the underlying distribution to re-
duce our search space for the dense matching. It is also important that the dense matching
should optimize the same objective as in the sparse matching stage. For any voting point
c(p1) ∈ S2 of a source point p1 ∈ S1 that is obtained by aligning three correspondences
{p1

i , p
1
j , p

1
k} → {p2

i , p
2
j , p

2
k}(i, j, k = 1 . . . n), there is a cost θMöbius

ijk in the matching energy of
Eq. 4.12. Intuitively, the lower the value of θMöbius

ijk and the closer the curvature and texture
is, the more likely p1 and c(p1) match. Therefore, we define the likelihood of each candidate
matching p1 → c(p1) under the alignment of {p1

i , p
1
j , p

1
k} → {p2

i , p
2
j , p

2
k} as follows

fijk(p
1, c(p1)) = e−θ

Möbius
ijk (4.23)

where θMöbius
ijk is the Möbius matching potential in Eq. 4.20. To obtain the candidate distribution

for each point p1 ∈ S1, we use a kernel density estimate (KDE) with the density function
defined as

ρ(p1, c(p1)) =
∑
c

fijk(p
1, c(p1))K(

‖c(p1)− c(p1
c)‖

h
) (4.24)

where c(p1
c) is the center location of each kernel K in S2 and h is the kernel bandwidth.

The mean shift clustering [55] is employed to find the modes of this density. Compared
to parametric representations, KDE has does not require nonlinear optimization to learn the
distribution parameters.
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Since we search for the modes in Eq. 4.24 on the 2D manifold instead of the 3D Euclidean
embedding space, the distance function should be defined as the geodesic distance on the
surface. However, as illustrated in Fig. 4.5 most of the candidate locations are close to the
center, so the Euclidean distance is used in our method to simplify the mode search. To handle
partial surface matching, we only select the modes with density higher than 0.1 and the closest
point on the surface as the candidate matching point. If no such mode exists, we report that
there is no reliable matching point. The average number of resulting candidate points in our
experiments is 1−6. So our candidate selection and clustering method can significantly reduce
the search space.

Fig. 4.5, 4.6 and 4.7 show some examples of candidate matching.

4.7 Dense surface registration

Based on the matching candidates obtained for each vertex, our goal now is to find a good
matching position locally for each dense point. This problem can be formulated similarly to
the high-order graph matching problem defined in Sec. 4.4. Since the candidate voting scheme
in Sec. 4.5 has removed the ambiguities caused by the Möbius transforms, we only need to
consider the matching cost based on texture and geometric similarities defined in Eq. 4.17, as
well as the orientation consistency defined in Eq. 4.21. Furthermore, the orientation consis-
tency term can be defined locally, i.e., each triangle 4p1p2p3 and its matched triangle 4p′1p

′
2p
′
3

should have the same orientation in the uniformization domain, which is known as having no
flip in [219]. More specifically, for the three vertices of each triangle 4123, we define the
potential of matching (p1, p

′
1), (p2, p

′
2) and (p3, p

′
3) as follows

θ123,1′2′3′ =

{
θ∞ sign(4123) 6= sign(41′2′3′)

0 otherwise.
(4.25)

Here θ∞ is a sufficiently large number and sign(4123) and sign(41′2′3′) denote the orientation
of the triangle p1p2p3 and p′1p

′
2p
′
3, respectively, in the uniformization domain. From the candi-

date voting it is not guaranteed that every point has at least one matching candidate. Therefore,
we remove the points without any matching candidate and obtain a triangulation for the re-
maining points on S1 through the Delaunay triangulation algorithm [60] in the uniformization
domain.

Suppose for each point p ∈ S1, its matching candidates are given by Cp = {pi|pi ∈ S2, i =

1, 2, . . . , np}. We define the boolean indicator variable:

xip =

{
1 if p, pi ∈ Cp are correspondences

0 otherwise.
(4.26)
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Assuming that each p ∈ S1 is matched to at most one of its candidates, we have the matching
constraint: ∑

pi∈Cp

xip ≤ 1 (4.27)

Therefore, the same optimization technique as described in Sec. 4.4.1 can be applied to solve
the above problem.

Compared to the graph matching problem in Sec. 4.4.1, one major advantage of our local
graph matching algorithm is that the number of matching candidates of each point is typically
less than 6 and, therefore, the number of variables is very small. In particular, to match n
points locally, there are only O(n) variables and O(n) triplet terms since the dense points are
triangulated in the planar parametric domain.

4.8 Experimental results

In this section we evaluate our new algorithmic framework for dense surface matching. In our
experiments, we match surfaces with large deformations and inconsistent boundaries (partial
overlapping). The number of vertices for each mesh is in the range of 1, 500 − 4, 000. With
our high-order graph matching algorithm, we can find the dense matching for 60− 90 percent
of all vertices, which is illustrated as matched/total (no. of matched vertices/no. of total
vertices of the source surface) for each example. The lion data of Fig. 4.8 comes from [237]
and the face and hand data are captured with texture by the 3D scanner introduced in [270].
To measure the quality of dense registration, from the Delaunay triangulation of the points
on the source surface, we consider the ratio of the area of each local triangle to the area of
its matched triangle. For the natural deformations (e.g., expression change, stretched arms
or bending figures) we experimented with, the local area is not expected to undergo abrupt
change. Therefore the area ratio is expected to be close to one for every local triangle.

Matching with largely inconsistent boundaries and partial overlapping: The mid-edge
uniformization algorithm allows to map the boundaries of the surface to slits and preserve the
conformal structure of the surface in an exact sense. Hence it is suitable for matching partially
overlapping surfaces. This property can be combined with our candidate voting scheme to
determine the outliers near the boundary where the mean shift clustering returns a low score.
Examples are shown in Fig. 4.11, 4.14, and 4.12. An example of significant non-overlap
between the two meshes is shown in Fig. 4.2.

Matching with large deformations: Fig. 4.12 and 4.13 show results that match two sur-
faces undergoing a large deformation. Even when the sparse features can not all be selected
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consistently (as shown in Fig. 4.13), our high-order graph matching algorithm in Sec. 4.4.1 is
able to find reliable sparse correspondences (Fig. 4.13(a)) and obtain a dense surface matching
result through the two-stage optimization scheme (Fig. 4.13(b)).

Comparison experiments: Fig. 4.14 shows a comparison between our algorithm and the
least square conformal mapping (LSCM) approach [269]. Although LSCM can handle free
boundaries, there is no theoretical guarantee that the conformal structure is preserved near the
boundary and it might include self-intersections in the mapping [219]. In our comparison,
we use the feature correspondences computed from the sparse matching stage to initialize the
LSCM experiments. The inaccuracy of the LSCM approach can be observed in Fig. 4.14(c).
In this example, although all vertices on the left mesh are matched to the right mesh, there are
approximately 42 percent flipped triangles. Note that here we cannot compare directly with
the results in [269] where the initial feature points were manually selected.

4.9 Conclusion

We proposed an algorithmic framework for non-rigid surface matching. In particular, a high-
order graph matching formulation is used to combine the appearance and geometry similarity
as well as the implicit embedding energy between deformed surfaces. Therefore, our pro-
posed method can establish robust sparse registration between non-rigid surfaces with large
deformations, partial matching and inconsistent boundaries and scales. Furthermore, a two-
stage algorithm is proposed to constrain the search space through candidate selection and local
graph matching, which allows to achieve dense surface registration with a sub-vertex accuracy.
The method is modular both with respect to the density of points as well as the potentials used
to determine optimal partial correspondences.
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Figure 4.3: Numerical stability problem using conformal mapping.
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Figure 4.4: Illustration of candidate selection scheme in 2D.
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Sparse Matching:

Figure 4.5: Visualization of selected candidates. (Best viewed in color)
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Figure 4.6: Visualization of selected candidates. (Best viewed in color)
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Figure 4.7: Visualization of selected candidates. (Best viewed in color)
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Figure 4.8: Matching result of animal example.
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Figure 4.9: Matching result of body example.
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Figure 4.10: Matching result of face example.
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Figure 4.11: Matching result of face example.
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Figure 4.12: Matching result of face with holes.

−3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y
Log Area Ratio

(a) Sparse registration (b) Dense registration (b) Matching area ratio

Figure 4.13: Matching result of hand example.
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Figure 4.14: Comparison with LSCM approach [269] for dense surface matching. (matched/total =
1455/1635) (best viewed in color). Notice the high number of flipped triangles in (c)
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Chapter 5

Intrinsic Dense 3D Surface Tracking

“ Time is not important; only life is important.

– “The Fifth Element””

5.1 Introduction

Dynamic 3D data has become increasingly popular with the advances in 3D reconstruction
techniques [3, 99, 152, 215, 271, 297]. An important prerequisite for most applications is to
register the 3D data among frames. For applications such as facial expression analysis/transfer
[260], dense and accurate registration is highly desired for capturing subtle details. However,
achieving dense, accurate registration remains challenging when there is noise, large defor-
mations and lack of reliable features. In this paper, we address the challenging problem of
tracking a deformable template from dynamic, markerless 3D data.

According to the well-known Riemann uniformization theorem [73], any simply-connected
surface with a Riemannian metric can be conformally deformed onto one of three canonical
spaces: the sphere, the plane and the hyperbolic disk. By using uniformization, 3D geometric
problems are naturally converted to 2D ones, which in general simplifies computation. Most
importantly, when the deformations between surfaces are isometric, matching between two
surfaces can be greatly simplified in the uniformization domain by only searching for a few
correspondences [155].

Previously, in order to match two surfaces in the uniformization domain, the work of
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[269, 270, 287, 289] relied on consistent feature boundaries or points to determine prescribed
sparse correspondences. Once the sparse correspondences are established, a single confor-
mal energy is minimized to match between the whole surfaces. To get rid of the reliance
on consistent feature points, Lipman et. al. [156] observed that when two surfaces are iso-
metrically deformed, only three correspondences are needed to determine a unique conformal
mapping which is described by a Möbius transformation. Sparse correspondences are opti-
mized by voting from different Möbius transformations induced by different combinations of
correspondences. Recently, based on the fact that every three correspondences determine a
unique conformal mapping, i.e., a candidate matching point for every point on the surface,
Zeng et al. [292] formulated high-order graph matching problem to search for the optimal
dense matching result based on textural and geometric similarities. Despite its success in
combining multiple matching criteria to handle more than isometric deformations, the textural
and geometric similarity measures for each matching candidate are only point-wise and hence
sensitive to noise. Most recently, Lipman et. al.. [155] proposed a new distance function
that compares two neighborhoods (i.e., disks) between two points in the disk uniformization
domain, which improves the robustness of matching cost for each candidate correspondence.
Nevertheless, this distance cannot handle general surface matching when the surfaces have
inconsistent boundaries or are anisometrically deformed. Comparing two neighborhoods di-
rectly in the uniformization domain is not straightforward since a disk is no longer mapped to
a disk under Möbius transformations [179].

In this chapter, we define a new distance that compares the neighborhoods between any
candidate matching pair when the two surfaces have inconsistent boundaries and are not iso-
metrically deformed. Since every three correspondences determine a unique conformal map-
ping between the two surfaces, we can define a matching cost based on feature differences for
every such possible match. However, globally searching for the best three correspondences
that match the two surfaces is limited because the two surfaces can be matched only when they
are isometrically deformed and have consistent boundaries. Hence, we define a cost function
for a particular correspondence by the lowest feature differences across the set of transfor-
mations that cause the two points to match, which only involves searching for the correspon-
dences of another two points on the surface. By restricting the comparison of feature differ-
ences only between the neighborhoods of the correspondence, we can handle surfaces with
inconsistent boundaries or anisometric deformations. A matching cost between two neighbor-
hoods can be therefore efficiently computed since only one conformal mapping is needed for
one surface and the other conformal mappings induced from different correspondence matches
are computed in a closed form.

With the above mentioned matching cost for any candidate correspondence, it is not enough
to simply output such locally best match for each point due to multiple optima and numerical
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errors. Therefore, regularization is necessary for a plausible result. In this paper, we formulate
the surface tracking problem in a unified probabilistic inference framework that takes into ac-
count spatio-temporal consistency as well as the possibility for drift error. We show that such
an inference problem can be approximated by standard MRF optimization in a discrete set-
ting and occlusion can be appropriately handled. Combinatorial methods based on graphical
models have become popular due to their capabilities of solving for more complicated de-
formations [85, 87, 220] and avoiding local optimal solutions [126, 135]. Besides, occlusion
handling can be conveniently modeled in the same framework [236].

In summary, the primary contributions of this chapter are a robust intrinsic distance func-
tion for measuring the cost of matching two points and a unified framework for intrinsic 3D
surface tracking. To achieve a robust 3D tracking system, our framework includes an intrinsic
spatial deformation prior that constrains consistency in local deformations among neighbor-
ing points as well as drift and occlusion handling. Our tracking method is performed in the
uniformization domain, so it is robust to large deformations and scale changes. Compared to
existing tracking algorithms such as [34, 270], we do not require prescribed feature detectors
and do not rely on consistent boundaries. Therefore our method is able to handle surface
tracking under challenging situations as shown in our experiments with a deforming sponge.
Unlike the system of Weise et al. [275], we do not require a pre-defined training set for PCA
learning, which is important for accurately tracking both large previously unseen variations in
object deformation as well as subtle but significant differences in the case of facial expression
changes. Quantitative results show that our algorithm achieves a high level of accuracy.

The remainder of this paper is organized as follows. In Sec. 5.2 related work on image
registration and shape tracking methods are reviewed. The new measure of matching corre-
spondences is defined in Sec. 5.3. In Sec. 5.4 we introduce a probabilistic 3D surface tracking
framework. The implementation details are given in Sec. 5.5. Experimental results and vali-
dations are part of Sec. 5.6. Finally we conclude our work in Sec. 5.7.

5.2 Related Work

In this section, we review related work on image/surface tracking.

5.2.1 Image registration

The problem of 3D shape registration shares many similarities with the 2D image registration
(image alignment) problem. For example, almost all real-world 3D shapes are two-manifolds;
hence those 3D shape registration problems are inherently 2D. It is therefore important to
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understand the problem of 2D registration before stepping further into the 3D case.

Mathematically, an image can be formulated as the mappings I : Ω ⊂ R2 7→ Rd that maps
each position of the image to a d dimensional feature space (intensity or color). The problem of
image registration can be formulated as finding a map T : R2 7→ R2 such that certain distance
measure (or object function) between the two images, denoted by d({I1, I2, T}) is minimized.
In the Bayesian paradigm, the distance measure can be interpreted as the probability function
P (I1, I2|T ) ∝ d({I1, I2, T}).

Following this formulation, the optical flow method ( [103, 160]) minimizes the following
energy

d({I1, I2, T}) =

∫
Ω

|I1(T (p))− I2(p)|qdp (5.1)

By assuming the displacement between the two images (i.e., ∆p = T (p)−p) to be sufficiently
small, one can approximate the above energy using the Taylor expansion: Ip(p + ∆p) ≈
I1(p) + ∆pI ′1(p). There are also other definitions of the matching distance d({I1, I2, T}).
For example, when we want to take into account partial alignment problem, we can add a
weight to each pixel. Or when we want to take into account intensity variation, we may
need to add additional parameters into the distance (e.g., bias and gain) 1. Using the Bayesian
methods, since P (T |I1, I2) ∝ P (I1, I2|T )P (T ), by adding various constraints on the plausible
deformation T (i.e., P (T )), various solutions can be derived.

In the energy function d({I1, I2, T}), the search space of T (·) is often simplified in order
to facilitate efficient optimization. A common assumption on the deformation T is its smooth-
ness, which is often added into the total energy function for minimization. An alternative way
to simplify the deformation space is to model the deformation using the parameter of a few
discrete points, e.g.,

T (p, C) = p+B(p)C, (5.2)

where C = {c1, . . . , cn} is a set of control points or simply certain parameters and B(p)

is a set of basis functions ([14, 95, 213]). One advantage of such spline-based approaches
over the optical-flow methods (based on Taylor series) is that it can take into account non-
linear deformations of T (e.g., affine transform [222], lens distortion, water distortion [250]
). Moreover, the basis function can be also learnt from data, leading to the celebrated active
appearance models (AAM) [169]. Approaches based on estimating parameters learnt from
data are also categorized as generative methods, while approaches that directly estimate the

1Note that there are also other global statistics based image distance, such as mutual information based [197],
or Fourier-based approaches [238]
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deformation T (·) belong to the discriminative methods. Intuitively, discriminative methods
can be regarded as the duality of those generative methods, or as the spectral approach. The
advantage of generative methods is its robustness to local noises or information missing (oc-
clusions), while in contrast the discriminative methods are better at handling varieties among
different data. Hence one promising direction is to combine both approaches to improve the
robustness of generative methods (e.g., [251]).

The above methods, either discriminative or generative, all formulated the image regis-
tration problem in the continuous setting. An advantage of the continuous approaches is its
accuracy. However, its optimization usually relies on good initialization. There are also ap-
proaches that solves the image registration problem in the discrete or combinatorial setting,
e.g., [85–87, 159, 220]. The idea the combinatorial approaches is based on the assumption
that the deformation of each point can be discretely sampled. Despite the possible loss of
accuracy, combinatorial methods often have the advantage of flexibility. For example, it can
encode matching energy from statistically learned distribution [206] or impose deformation
priors without a closed-form [119]. Besides, high-order interactions of combinatorial based
approaches allows us to eliminate the variances in scale [84, 141], or projections [268].

All of those above-mentioned combinatorial approaches are discriminative methods that
do not impose learned data to constrain stability. As a result, they often require sufficient sam-
pling space and/or high computationally complexity. As an alternative approach, recently, the
work of [112, 148, 254] proposed to fusion the results by different continuous methods, either
by discrete optimization or by continuous optimization, to achieve better registration results.
However, there are still little work on the application of generative methods for combinatorial
image registration [17]. Examples of applications of generative methods include the image
synthesis/completion and matching [130], etc.

5.2.2 Shape tracking

Using the Bayesian paradigm, shape tracking can be formulated as finding the plausible trans-
formations between consecutive frames: P (T1,2, . . . , Tn−1,n|M1, . . . ,Mn). However, since
P (T1,2, . . . |M1, . . .) ∝ P (M1, . . . |T1,2, . . .)P (T1,2, . . .), the data likelihood and the prior are
not just defined on the deformation between frames, so the consistencies across frames should
be considered. Hence one distinction between shape tracking and registration is that tracking
requires the consideration of spatio-temporal consistencies. Another distinction is the repre-
sentation of the surface, since the current 3D/depth data often contain a lot of noise/holes and
topological noise.

Similar to the image registration case, the 3D shape tracking methods can be classified
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as either generative or discriminative. The discriminative methods find correspondences be-
tween frames, which are often useful in shape reconstruction [34, 150, 151, 153, 265, 266].
In contrast, the generative methods are often used in real-time performance or shape anima-
tions where a pre-learned deformations can help accelerate the computational time ([154, 274,
276]).

Generally speaking, discriminative methods rely less on a generic model for the tracking
target while generative methods rely more on an accurate model2. The simplest way to treat
the surface tracking is to consider each point on the surface individually (point cloud), and the
matching point in the next frame can be found by using the nearest neighbor (NN) search. The
nearest neighbor search can be efficiently conducted using the KD-tree data structure [60]. To
improve robustness, the average multiple nearest neighbors (kNN) can be considered to be the
matching candidate [264]. However, such a simple scheme can only be applied to very limited
simple cases.

In order to improve the tracking accuracy, one can either impose local or global motion
constraints. By assuming the deformation between two frames to be rigid, the ICP method
[26] can be applied for shape tracking and it can also handle occlusions well. Another popular
global deformation constrain is isometry [270]. However, in such case, a two manifold surface
must be constructed.

Whereas global deformation models can achieve closed-form solution for the deforma-
tion of each point, they are unable to model the subtle changes at each point. In contrast,
local models are better at dealing with varieties among individual points. The motion con-
sistency is often imposed among neighboring points. For example, the finite element based
approaches [170] represent the surfaces as a set of connected triangular elements. Under such
a representation, one can model the physics-based properties, e.g., stiffness, dampness, kinetic
energy, into the deformations of the surface. Another popular representation of the surface is
to use free-form surfaces [75, 208], splines [239], or level sets [217].

5.3 A robust correspondence matching distance

We assume a shape is represented in a metric feature space (M, dM, fM), where M is a
compact connected and complete Riemannnian surface, dM : M×M → R is a measure of
distances between pairs of points onM and fM :M→ Rn is the mapping of each point on
M into the feature space (such as curvatures, texture, etc). Previously a number of metrics
have been proposed for measuring the similarities between any two shapes based on geometric

2This makes sense since generative models should have the ability to reconstruct the original input thus it
should have a much more accurate model for the target than the discriminative methods.
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information only, e.g., the geodesics distance [37], the diffusion distance [39] and the distances
based on the conformal factor [155]. To compare two shapes (M, dM, fM) and (N , dN , fN ),
we denote the set of possible mappings (e.g., diffeomorphism) between them as TM→N . A
distance between any two shapes (M, dM, fM) and (N , dN , fN ) can be defined as follows:

dT (M,N ) = inf
t∈TM→N

∫
M
|fM(x)− fN (t(x))|dx. (5.3)

Such a definition resembles the sum of absolute differences (SAD) metric used in motion
estimation for video coding. Nevertheless, in the context of surface registration, it provides a
flexible way of handling a wide range of deformations between surfaces. For example, when
the feature is the conformal factor [289] and the mappings TM→N are restricted to Möbius
transformations in the uniformization domain, it handles isometric or near-isometric surface
matching. For surfaces with more general deformations, we may use other features such as
texture and curvature [292].

In the problem of dense surface matching, a global distance function such as Eq. 5.3 does
not guarantee the quality of the matchings of individual points. In this paper, we consider the
following distance function for mapping any point p ∈M to any point q ∈ N :

dTM,N (p, q) = inf
t∈TM→N
t(p)=q

∫
M
|fM(x)− fN (t(x))|dx, (5.4)

which is defined by the cost of matching the two surfaces by fixing the particular correspon-
dence. When there is no mapping in the group TM→N that maps p to q, we define the distance
to be infinite.

First of all, it is easy to see that dTM,N (p, q) ≥ dT (M,N ) for any p ∈ M, q ∈ N and
the lower bound is achieved when q is the mapping of p that minimizes the energy of Eq. 5.3.
In the problem of dense surface registration where we want to find the correspondences of a
point set P = {pi|pi ∈M, i = 1, . . . , n}, since we have

dT (M,N ) ≤
∑

p∈P d
T
M,N (p, t(p))

|P |
,∀t ∈ TM→N , (5.5)

the problem of shape registration can be formulated as

inf
t∈TM→N

∑
p∈P

dTM,N (p, t(p)). (5.6)

Hence, if we can sufficiently sample a small set of matching candidates in t(p) for each
p ∈ P and evaluate the distance function dTM,N (·, ·) efficiently, the problem of finding the

110



correspondences of the set P can be consequently solved. In the following, we show how the
distance function can be efficiently approximated in the uniformization domain. Furthermore,
since the distance function of Eq. 5.4 is defined on the whole surface, when the transformation
group TM→N is confined to mappings with bounded area distortions, a small deviation from
the true matching that minimizes Eq. 5.3 would cause the energy measure deviate significantly
from the optimum, which guarantees the robustness of this distance measure.

5.3.1 Approximation in the uniformization domain

Although the distance defined in Eq. 5.4 gives us a robust way of evaluating the matching cost
between points, it is in general computationally intractable to evaluate such distance function
directly in the 3D embedding space since it involves searching among all possible matchings
between two surfaces given a correspondence. For example, in [296] the matching cost given
a few sparse correspondences is measured by deforming the whole surface to the target based
on certain deformation energy which is only able to establish up to 10 correspondences. In
this paper, we propose an efficient way for approximating the distance function of Eq. 5.4 by
considering a mapping set TM→N defined in the uniformization domain.

In order to take into account general mappings between two surfaces with inconsistent
boundaries, we consider a neighborhood N(p) of p and the points on its boundary ∂N(p) =

{p1, . . . , pr}. For each possible mapping of the neighboring points p1, . . . , pr ∈ ∂N(p) , the
distance function of Eq. 5.4 can be approximated by warping the neighborhood to that of
the target. Directly computing such warping and comparing the feature difference for each
warping is very costly. However, if we note that a mapping between the two surfaces can be
computed by specifying a few feature correspondences and solving an interpolation confor-
mal energy [269, 270, 289], we then introduce an efficient way to approximate the distance
function of Eq. 5.4. This motivates us to consider the mappings of the neighborhood N(p) in
the uniformization domain.

Formally, we denote the uniformization (conformal mapping) of any surfaceM as φM :

M → U ⊂ C. Also we consider the set of mappings T UNI that is induced by specifying
three correspondences between two surfaces in the uniformization domain [156]. For any
point p ∈ M, we define the image of a point p as Img(p) = {t(p)|t ∈ TM→N}, where
TM→N can be arbitrary diffeomorphisms and we only require that T UNI ⊂ TM→N . For any
two points p1, p2 ∈ ∂N(p), q ∈ Img(p), q1 ∈ Img(p1) and q2 ∈ Img(p2), let us denote by
Mo : pp1p2 → qq1q2 as the Möbius transformation that maps (p, p1, p2) to (q, q1, q2) on U . We

111



(a) First frame (b) Second frame

Figure 5.1: Two frames used for the evaluation of cost function dUNIM,N (p, ·).

then approximate the distance of Eq. 5.4 in the uniformization domain as follows:

dUNI
M,N (p, q) = inf

p1,p2∈∂N(p),q1∈Img(p1),q2∈Img(p2),
Mo:pp1p2→qq1q2∫

φM(N(p))⊂U |fM(φ−1
M(z))− fN (φ−1

N (Mo(z)))|dz
Area(N(p))

. (5.7)

Here φM(N(p)) denotes the mapping of the neighborhood N(p) to the uniformization do-
main and Area(N(p)) denotes the area of the neighborhood. When the feature is only based
on geometry, (e.g., the conformal factor [155] or the gaussian curvature), the distance mea-
sures the deviation from isometric deformation. However, when the feature is based on other
measures such as texture, the distance measures the deviation from other deformations which
are not necessarily isometric. Therefore, our definition is general and subsumes the isometric
deformation as a special case.

Fig. 5.2, 5.3, 5.5 and 5.4 are examples for the evaluation of the distance function defined
above. Here we select two frames with large deformations (Fig. 5.1). Since the input depth
data is on the regular m× n image domain, for each point p on the first mesh, we first choose
its closest point q on the second mesh and then the matching candidate is selected in a 7 × 7

neighborhood of a point q. The distance function is evaluated for each of the 49 matching
candidates. We also compare our distance functions with other features.
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Cost function d(p,  ·)

Per-point texture differences Spin-image differences

Per-point  curvature differences
pp

Figure 5.2: Evaluation of cost function dUNIM,N (p, ·) for the nose part.

Cost function d(p,  ·)

Per-point texture differences Spin-image differences

Per-point  curvature differences

pp

Figure 5.3: Evaluation of cost function dUNIM,N (p, ·) for the cheek part.

5.4 A probabilistic framework for surface tracking

The intrinsic distance dUNI
M,N (·, ·) measures the likelihood of matching between individual

points. However, the set of points q ∈ t(p), t ∈ T that achieves the minimal of dUNI
M,N (p, q) is

not necessarily unique. Also in the approximation of dUNI
M,N (·, ·) numerical error is unavoid-

able. Therefore, regularization is necessary for a plausible result. Hence, we formulate the
surface registration problem as

inf
t∈TM→N

∑
p∈P

dTM,N (p, t(p)) +R(t(P )), (5.8)

where R(t(P )) is the regularization on the registration results. In this section, we investi-
gate the 3D surface tracking problem in a probabilistic framework which takes into account
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Cost function d(p,  ·)

Per-point texture differences Spin-image differences

Per-point  curvature differences
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Figure 5.4: Evaluation of cost function dUNIM,N (p, ·) for the forehead part.

Cost function d(p,  ·)

Per-point texture differences Spin-image differences

Per-point  curvature differences

pp

Figure 5.5: Evaluation of cost function dUNIM,N (p, ·) for the left cheek part.

geometric and textural similarities, spatio-temporal consistencies and handles error drift.

Let us denote byM1:t ≡ {M1, . . . ,Mt} the dynamic 3D data up to time t, and x1:t ≡
{xi ∈ Mi|i = 1, . . . , t} as the trajectory of the initial given dense points x0 = {x0

i ∈
R3|i = 1, . . . , n} where xt = {xti ∈ R3|i = 1, . . . , n}. In order to simplify the problem and
utilize the intrinsic measure defined in the previous section, we assume the initial points x0

are represented as a triangular mesh, i.e., a planar graph G = (V , E).

The task of tracking the trajectory of x0 at time t given the dynamic dataM1:t and previous
trajectory x1:t−1 therefore becomes the MAP problem

arg max
xt

p(xt|M1:t,x1:t−1) (5.9)
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Here we assume M1:t′ is independent of xt given x1:t′ whenever t′ < t. From the Bayes’
theorem, we have

p(xt|M1:t,x1:t−1)

=
p(M1:t|x1:t)p(xt|x1:t−1)

p(M1:t|x1:t−1)

∝ p(M1:t|x1:t)p(xt|x1:t−1)

= p(Mt|x1:t,M1:t−1)p(M1:t−1|x1:t)p(xt|x1:t−1)

∝ p(Mt|x1:t,M1:t−1)︸ ︷︷ ︸
Data fidelity

p(xt|x1:t−1)︸ ︷︷ ︸
Spatio-temporal prior

. (5.10)

Here p(Mt|x1:t,M1:t−1) denotes the data likelihood defined by intrinsic similarities. p(xt|x1:t−1)

denotes the spatio-temporal priors that takes into account the smoothness of the result. In the
following we discuss each of the two terms in detail.

5.4.1 Data fidelity terms

The data fidelity terms considers the fidelity of the 3D dataM1:t given the tracking results x1:t.
For dense tracking, we assume the tracking points x0 are dense enough to capture the detailed
geometry of the surfaces. Hence the trajectory x1:t′ and the dataM1:t′ are independent of the
trajectory xt given xt−1 andMt−1 when t′ < t− 1. We have

p(Mt|x1:t,M1:t−1)

=
p(Mt,x1:t−2,M1:t−2|xt,xt−1,Mt−1)

p(x1:t−2,M1:t−2|xt,xt−1,Mt−1)

∝ p(Mt,x1:t−2,M1:t−2|xt,xt−1,Mt−1)

= p(Mt|xt,xt−1,Mt−1)×
p(x1:t−2,M1:t−2|xt,xt−1,Mt−1,Mt).

Here p(M t|xt,xt−1,Mt−1) denotes the registration between successive frames and

p(x1:t−2,M1:t−2|xt,xt−1,Mt−1,Mt)

denotes the consistency between current frame and the history, which avoids loss of tracking
caused by accumulation of local registration errors.
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Geometry and texture similarities

Intrinsic comparison takes into account both geometry and texture (if available) consistencies
between frames. We define the inter-frame data similarity term as follows:

p(Mt|xt,xt−1,Mt−1)

∝
n∏
i=1

N (dUNI
Mt,Mt−1(xti, x

t−1
i )|0, σdata). (5.11)

Error drift term

The intrinsic distance dUNI
Mt,Mt′ (x

t
i, x

t′
i ), allows us to compare the similarity of a point in frames

t and t′. We assume that xt is consistent with the history if it “agrees" with the majority of
the history. This is in a similar spirit with the median filter for video stabilization, and can be
formulated as

p(x1:t−2,M1:t−2|xt,xt−1,Mt−1,M t) (5.12)

∝
n∏
i=1

mediant′∈{1,...,t−2}N (dUNI
Mt,Mt′ (x

t
i, x

t′

i )|0, σdrift)

However, computing the consistency between current frame to all the previous frames is very
costly. An approximate sampling scheme is to consider a subset of {1, . . . , t− 2}, namely, I.
We can approximate Eq. 5.12 as follows:

n∏
i=1

mediant′∈IN (dUNI
Mt,Mt′ (x

t
i, x

t′

i )|0, σd). (5.13)

5.4.2 Spatio-temporal priors

The probability p(xt|x1:t−1) represents the prior knowledge of the trajectory x1:t, which also
regularizes the tracking result. First of all, we decompose the probability into two terms:

p(xt|x1:t−1) =
p(xt|xt−1)p(x1:t−2|xt,xt−1)

p(x1:t−2|xt−1)

∝ p(xt|xt−1)p(x1:t−2|xt,xt−1). (5.14)

Here p(xt|xt−1) denotes the spatial deformation consistency between consecutive frames and
p(x1:t−2|xt,xt−1) denotes the dynamic inter-frame consistency.
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Intrinsic spatial deformation prior

The spatial prior p(xt|xt−1) takes into account the plausible deformation of the surface be-
tween frames. For example, when the deformation of the surface is near-isometric, we can
constrain that for every edge (i, j) ∈ E , the length |xti − xtj| is close to |xt−1

i − xt−1
j |.

In the definition of the distance in Eq. 5.4, only matching cost between each correspon-
dence xt−1

i 7→ xti is considered. There is no account for consistency between two neighboring
correspondences xt−1

i 7→ xti and xt−1
j 7→ xtj where (i, j) ∈ E . Since each of the distance

function Eq. 5.7 takes in to account the locally best Möbius transformation mapping a neigh-
borhood of xt−1

i to a neighborhood of xti, it is reasonable to assume that such locally optimal
transformation also map its neighbor xt−1

j to a position nearby xtj . Let Mooptp,q denote the op-
timal Möbius transformation that achieves the distance defined in Eq. 5.7. To constrain the
deformation consistency between neighboring points (i, j) ∈ E , we define the following dis-
tance in the uniformization domain:

dti→j = |Moopt
xt−1
i ,xti

(φt−1(xt−1
j ))− φt(xtj)|. (5.15)

Here φt denotes the uniformization of the data Mt. This distance measures how close the
optimal transformation that map φt−1(xt−1

i ) to φt(xti) also transform φt−1(xt−1
j ) to a nearby

point of φt(xtj). When this distance is small, it means such optimal transformation also agrees
with the neighbors. Formally, we define,

p(xt|xt−1) ∝
∏

(i,j)∈E

N ((dti→j + dtj→i)/2|0, σspa).

Dynamic motion prior

Dynamic prior imposes temporal consistency of each vertex i by assuming the curve traced by
each vertex i to be smooth, i.e., we assume the acceleration to be small. If we define the angle
between the vectors xti − xt−1

i and xt−1
i − xt−2

i as Angti, the dynamic prior can be defined as

p(x1:t−2|xt,xt−1) ∝
n∏
i=1

N (Angt−1
i |Angti, σdyn). (5.16)

In practice, the smoothness assumption is only applicable when the motion between two
frames is not too large.
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Algorithm 1: Intrinsic 3D surface tracking algorithm.
Input : Scanned 3D data.
Output : Registered template mesh for each frame t.

Initialization: Construct a template mesh from the 3D data in the first frame (Sec. 5.5.1).
Foreach new frame t+ 1

(i) Perform candidate selection (Sec. 5.5.2).

(ii) Compute cost functions for every point (Sec. 5.5.3).

(iii) Solve the composite MRFs (Sec. 5.5.5).

(iv) Repeat 2. until convergence or within a number of iterations.

5.5 Implementation details

The optimization of the above mentioned objective function (Eq. 5.10) is too complicated to
be solved in the continuous space. In this paper, we employ the discrete MRF framework [83]
to take into account the objectives discussed in the previous section. For each frame at time
t, we select L matching candidates for each point xti, i = 1, . . . , n. As a result, our tracking
problem becomes solving the best configurations xt ∈ Ln:

arg min
xt

∑
i∈V

θi(x
t
i) +

∑
(i,j)∈E

θij(x
t
i, x

t
j), (5.17)

where the energy functions θi(xti), θij(xti, x
t
j) are defined according to probabilistic framework

discussed in Sec. 5.4. In this section, we describe the definition of the MRF energy in details
as described in Alg. 1.

5.5.1 Initialization

In the first frameM0, an initial mesh template x0 = {x0
1, . . . , x

0
n} is constructed. The template

can be constructed either automatically [277] or manually [34]. In this paper, we construct the
template using the re-topology tool provided in MeshLab 3, which allows us to specify only a
few base vertices and their connections then the dense mesh is automatically constructed. In
our experiment, we normally specify less than 100 base vertices and obtain a dense mesh with
around 1000 vertices (Fig. 5.6).

3http://meshlab.sourceforge.net/
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(a) Base mesh (b) Dense mesh

Figure 5.6: Mesh template construction. A dense mesh (b) can be conveniently constructed
from a base mesh (a) using the re-topology tool in MeshLab.

5.5.2 Candidate selection

To decide the matching candidates for each node xti in the next frame t + 1, we consider em-
bedding space neighborhood, view space neighborhood and intrinsic space neighborhood. (1)
For embedding space neighborhood, we uniformly sample L1 points onMt+1 in the neigh-
borhood of each xti within radius R. (2) For view space neighborhood, we project the point
xti to an image plane where xti is visible. Then we back-project L2 neighboring points of the
the projection of xti on the image plane back to the surfaceMt+1. For 3D data obtained from
the depth map of 2D images, the selection of the neighbors on the image plane is done in a
hierarchical manner in order to take into account large deformations as in [86]. (3) For in-
trinsic space neighborhood, we randomly select L3 triplets of initial correspondences (from
closest point registration or results from previous iteration) among the vertices of base mesh
and obtain a correspondence for each point from every triplets of correspondences [292]. Such
intrinsic space sampling can achieve sub-sample accuracy [292]. In our experiments, we con-
sider L = 64 candidates for each points, L1 = 24 from embedding space sampling, L2 = 25

from view space sampling and L3 = 15 from intrinsic space sampling. R is set to be 1
10

of the
diameter of the meshM0.

5.5.3 Computation of intrinsic distance

The computation of the intrinsic distance dUNI
M,N (p, q) for any correspondence p 7→ q involves

selection of the neighborhoodN(p), sampling of points p1, . . . , pr ∈ ∂N(p) and the numerical
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approximation of the integration in Eq. 5.7 from the N(p) to all its possible mappings on the
target surface in the uniformization domain. We select the boundary points p1, . . . , pr among
the vertices of the base mesh (Fig. 5.6(a)). If p is not on the boundary of the template and
papbpc is the face of the base mesh that covers p, we choose N(p) to be the largest triangle
among the three triangles 4ppapb, 4ppbpc and 4ppcpa and we evaluate the integration of
Eq. 5.7 only in the region covered by the selected triangle. If p is on the boundary, we choose
N(p) to be the two largest triangles among its neighboring triangles mentioned above. In our
implementation, we select 81 sampling points in each neighborhood. The distance function
can be efficiently computed by the CUDA architecture [116] because each of the functions
dUNI
M,N (p, ·) is independent of each other.

Hardware acceleration: The CUDA architecture [116] allows us to efficiently compute
the intrinsic distance dUNI

M,N (p, q) in a highly parallel level. Because the computation of the
integration in Eq. 5.7 for each mapping pp1p2 → qq1q2 only involves the uniformization
coordinates of the six points and the feature mapping from the surface to the uniformization
domain, we store the mapping from the uniformization space to the feature space: fM ◦ φ−1

M :

U → f , using a texture texM of size 1024× 1024 for each input mesh.

The computation of the L distance functions dUNI
M,N (p, ·) is distributed into an L × L × L

grid where the each dimension denotes the L possible mappings of p, p1 and p2. In the CUDA
program, the input to each kernel function includes the uniformization coordinates of the
points p, p1, p2, q, q1, q2 and the feature texture mappings TM and TN of each surface. It
evaluates the integration in Eq. 5.7 and keep track of the current minima in an array of size
L as the output. To estimate the integration in Eq. 5.7 in each kernel, we first compute the
Möbius transformation Mo : pp1p2 → qq1q2 and sample 81 points inside4pp1p2 on TM. For
each of the sampled point, we compute its texture coordinate on texN from Mo and compute
the texture differences. The improvement using CUDA computation is significant, a CPU
implementation with only L = 25 labels takes 300ms to compute all the cost functions for
one point while it takes only 3ms for GPU implementation with L = 64 labels. This makes
our whole tracking algorithm practical.
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5.5.4 Occlusion handling

Occlusion can be handled by introducing an extra label {Occ} for each vertex xti. We define
the following cost function:

docc(xti, x
t′

i ) =


0 if dUNIMt,Mt′ (x

t
i, x

t′
i ) < δ, xti 6= Occ

E1 if dUNIMt,Mt′ (x
t
i, x

t′
i ) > δ, xti = Occ

E2 otherwise

.

Here t′ is the last frame before time t that the point i is visible and we set E1 = 1, E2 = 10

and δ = 0.05. Intuitively, when the cost of matching a correspondence xt′i 7→ xti is higher
than a threshold δ, it is likely that i is occluded at frame t. In such case, we give it a a
penalty E1 to discourage too many occluded points. When occlusion occurs at point i, we
set its default position as the position computed by the ICP algorithm [26] registering the
un-occluded points.

5.5.5 Composite MRFs and optimization

With all the energy functions defined above, we solve for the MAP problem of Eq. 5.9 un-
der the discrete MRF optimization framework. The singleton terms include the data-fidelity,
dynamic motion consistency, error drift and occlusion handling i.e., for all i ∈ V , we define

θi(x
t
i) =

dUNI
Mt,Mt−1(xti, x

t−1
i )2

σdata
+

(Angt−1
i − Angti)

2

σdyn

+
(mediant′∈T dUNI

Mt,Mt′ (x
t
i, x

t′
i ))2

σdrift
+ docc(xti, x

t′

i ). (5.18)

The pairwise terms include the spatial deformation prior defined in Sec. 5.4.2 and the smooth-
ness of the occluded part, i.e.

θij(x
t
i, x

t
j) =


(dti→j+d

t
j→i)

2

4σspa
if xti, x

t
j 6= Occ

0 if xti = xtj = Occ

E3 otherwise

(5.19)

In our experiment, E3 is set to be 1. Intuitively, such energy encourage the smoothness of
the occluded part. We employ the TRW-S algorithm [126] for the optimization. The energy
is solved iteratively until convergence or exceed an allowed number of iterations. For the
drift handling term of Eq. 5.13, we randomly select 5 frames from previous tracking results
{1, . . . , t − 1}. The weights of the energy is selected as σdata = 1, σdyn = 500, σdrift = 2,
σspa = 20.

121



5.6 Experimental results

Data: We test our tracking system on a dynamic face data set captured by the 3D scanning
system described in [271]. The data set consists of four actors with 24 different facial expres-
sions, including coy flirtation, devious smirk, soft affection and fake smile, etc. Each of the
expression is captured with a frame rate of 24fps for around 10 − 20 seconds. The number
of vertices for each frame is 79, 000 on average with only gray-scale textural information (the
gray level is normalized in [0, 1]). Some of the captured raw 3D data suffer from sudden scale
change. In such case, we remove the dynamic prior defined in Sec. 5.4.2. In our experiments,
we use texture as the feature for computing the intrinsic distance (Eq. 5.7); Fig. 5.7 shows four
different sequences from four different actors. Fig. 5.10 shows a tracking result in a very chal-
lenging situation (largely inconsistent boundaries, occlusions and anisometric deformations
between frames). For this example, the average texture difference between every frame and
the first frame is 0.0235. The maximal average area ratio change (to the first frame) is 1.26

and the maximal percentage of occlusion occurred in one frame is around 30%.

Analysis of intrinsic distance function: A key factor to achieve high accuracy of surface
tracking is the distance function dUNIM,N (·, ·) defined in Sec. 5.3. To see the capability of the
distance to distinguish subtle differences in correspondences for a given point p, we sample
7 × 7 closest neighboring points in the next frame as matching candidates in the embedding
space (Sec. 5.5.2). Fig. 5.13(a) shows the evaluation of the 49 values of the function dUNIM,N (p, ·)
for different points on the surface and we compare the distance with simple per-point texture
difference.

Furthermore, we compare our cost function with the result obtained by the optical flow al-
gorithm in [158] based on [42]. We project the left part of the face to a 640× 480 perspective
view selected to maximize visibility and apply the optical flow algorithm to establish corre-
spondences between two frames. For the template points that belong to the projected part, we
compute the cost function and choose the correspondence with lowest cost as the matching
result. We linearly interpolate the correspondence of other points within the template that are
visible. We compare the average texture per-point differences based on the correspondences
obtained by optical flow and by our method (Fig. 5.13 (b) shows the comparison for one se-
quence). It can be seen that when the deformation between two frames is large, the optical
flow degrades much more significantly than our method.

Error and performance analysis: Fig. 5.14(a) shows the error evaluation based on the
complete 24 tracking results. The error measures the average per-point texture difference be-
tween every frame and the first frame. Fig. 5.14(b) shows the amount of area ratio change
(anisometry) between the first frame the the current frame for 23, 000 randomly selected tri-
angles among the tracking results.
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We compare the influence of the regularization terms in the optimization of Eq. 5.17. The
error is evaluated based on the average texture difference between every frame and the first
frame. Fig. 5.15 (a) shows the comparisons for sequence A_coyfirtion. Even by considering
the data term of Eq. 5.18 only, our method is more accurate for most frames than a previous in-
trinsic surface tracking method based on Harmonic maps [270]. Fig 5.15 (b) is the comparison
for 5 more sequences on the average per-point texture difference.

Computational time: Our algorithm is implemented on an Intelr Core(TM)2 Duo 3.16G
PC with 4G RAM and an NVIDIAr Geforce 9800GTX+ graphics card with 128 CUDA
cores. The preprocessing (mesh loading, nearest neighbor search data structure construction,
candidate selection) takes 2–3s. The computation of the mid-edge uniformization [196] for
each mesh takes less than 1s using GPU implementation. With the hardware acceleration
described in Sec. 5.5.3, the computation of the L = 64 cost functions from Eq. 5.7 for one
tracking point takes only 3ms on average. The MRF optimization using the TRW-S algorithm
[126] takes around 1–3s for the 1000 template points described in Sec. 5.5.1 with 65 (64 for
matching candidate and 1 for occlusion) labels per point. Therefore tracking one frame with 5

look-back frames takes only 18 – 25s for each iteration. In our experiments, we observe that
the algorithm often converges within 5 iterations.

5.7 Conclusion

In this chapter, we proposed a new cost function that compares two neighborhoods of a cor-
respondences by searching among all the possible mappings in the uniformization domain.
This local cost function is combined with regularization terms that takes into account spatio-
temporal consistency, drift and occlusion problems, into a unified 3D tracking framework.
By employing existing MRF optimization technique and hardware acceleration, our algorithm
becomes practical for applications where high accuracy is essential, e.g., subtle expression
analysis. In the near future, we would like to apply our algorithm to track more dynamic 3D
database and explore applications such as facial expression analysis/transfer, etc.
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Figure 5.7: Tracking results selected from our data set.
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Figure 5.8: Challenging tracking results with occlusions.
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Figure 5.9: Challenging tracking results with occlusions.

Figure 5.10: A challenging result with both anisometric deformation and inconsistent bound-
aries.
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Figure 5.11: Sponge results with texture.
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Figure 5.12: Sponge results with texture.
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Figure 5.13: (a) Our cost function of Eq. 5.7 v.s. per-point texture distance in distinguish-
ing subtle differences in correspondences and comparison with optical flow method for inter-
frame registration (b) (details of comparison are described in the text).
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Figure 5.14: (a) shows the evaluation of the average per-point texture difference between every
frame and the first frame on the whole 24 data set. (b) is the frequency of the area ratio of
randomly selected triangles between current frame and the first frame, which shows that a
significant number of them deforms anisometrically.
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Eq. 5.17 and comparison with previous intrinsic tracking method used in Harmonic maps
[270].
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Chapter 6

A Generic Local Deformation Model for
Surface Registration

“ To a man with a hammer, everything looks like a nail.

– “Mark Twain””

In our previous two approaches to the surface registration problem, we made an extensive
use of the fact that a dense mapping between two surfaces can be achieved in a closed-form
by knowing only a few correspondences. A limitation of relying on conformal mapping for
finding correspondences is the assumption of isometric deformation of the underlying surface.
Such assumption would certainly fail in situations where deformation details are required (e.g.,
deformation transfer). In this chapter, we address the mathematical model of generic surface
deformations.

6.1 Introduction

The problem of shape registration has become increasingly important in computer vision due
to the wide availability of acquisition devices [3, 297]. Understanding the transformation
between two shapes (i.e., shape matching) is a fundamental task in shape analysis (e.g., clas-
sification and recognition) and inference (e.g., registration and tracking). Existing methods of
matching shapes are often limited by the assumptions of the underlying deformations. In this
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chapter, we present a generic shape deformation model that can represent arbitrary deforma-
tions between two shapes.

Our new deformation model is inspired by the basic ideas in Riemannian geometry [64] in
which a shape is equipped with a metric tensor at each point in the parametrization domain.
The problem of matching two shapes is hence equivalent to finding correspondences between
their parameterized domains (Fig. 6.1). Different parametrizations represent the same surface
(modulo the isometric deformation) if and only if for each correspondence, their metric tensors
satisfy certain transformation rules. Hence, for surfaces undergoing isometric deformations,
the task of matching becomes finding consistent parametrization such that the transformation
rules are satisfied. To characterize more general deformations, at a given point, we consider a
special canonical parametrization of the shape whose metric tensor at that point is Euclidean.
Arbitrary deformations can be described by the local distortion of a circle between each pair
of correspondence in the canonical parametrization domain [5, 233]. Such distortion can be
consequently characterized by the eigenvalues of a canonical transformation relating to the
Jacobian matrix between the two canonical parametrization domains (the canonical distortion
coefficient). In the discrete setting, we consider the common case that a shape is represented
as simplicial complex (e.g., a planar or tetrahedral mesh). By assuming the deformation of
the shape in the parametrization domain to be piecewise linear, the problem of computing
the canonical distortion coefficient at a point becomes computing it at a face. The canonical
parametrization at a point is simply equivalent to mapping each face to the 2D domain. Within
this setting, the computation of the canonical distortion coefficient for each face becomes
solving linear equations with a closed-form solution.

Given the above shape deformation model, the problem of finding the optimal shape reg-
istration result that best fits the deformation prior and the observed data can be formulated
using the Markov Random Field (MRF) framework [83]. Recent combinatorial methods (e.g.,
[252, 292]) have demonstrated the superiority of discrete optimization with respect to both
solution quality and computational speed. Moreover, in our problem, an MRF formulation
allows us to take multiple matching criteria into the same optimization framework. Because
the deformation model is defined on each facet (e.g., triangle for planar mesh), the MRF op-
timization involves high-order cliques. Compared to existing approaches, our method has the
following advantages:

• The proposed deformation model is generic and flexible to handle arbitrary deforma-
tions. Most of the previous geometry-based deformation models (e.g., isometry and
conformality) fall into certain special classes of our model. As a result, our model
can accurately describe the deviation from those existing models, which is important in
characterizing real-world deformations.
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• In the discrete setting, the computation of the canonical distortion coefficient for each
basic element (e.g., a triangle for a planar mesh) can be computed efficiently by solving
linear equations with a closed-form solution.

• An efficient high-order MRF optimization algorithm is designed and implemented based
on the dual-optimization technique ([279]) which requires minimal memory and achieves
a good approximate solution.

In summary, we propose a generic deformation descriptor: the canonical distortion coefficient
(CDC), and its use in a high-order MRF framework that allows us to impose the deformation
of a template as a prior in a Bayesian setting. The novel formulation of the surface registration
problem as an MRF problem with a cell complex structure seamlessly brings together Rieman-
nian geometry and modern graphical model. Furthermore, our algorithm can be implemented
in distributed hardware that achieves significant speedup. In our experiment, we demonstrate
that the MRF optimization technique combined with the generalized deformation model leads
to significant improvement for the problem of surface registration and tracking.

This chapter is organized as follows: In Sec. 6.2 we review related work on shape deforma-
tion models and techniques in high-order MRF optimization. The mathematical formulation of
our general shape deformation model is presented in Sec. 6.3, where both continuous concepts
and discrete counterparts are discussed. A high-order MRF formulation for shape registration
is given in Sec. 6.4, with the design of an efficient optimization algorithm. In Sec. 6.5 we show
the applications of our new deformation model and optimization technique to the problems of
shape registration and tracking. Finally, we conclude our work in Sec. 6.6.

6.2 Related work

6.2.1 Surface deformation models

Quantitatively measuring the deformation of a surface is crucial in dynamic shape understand-
ing. In the problem of surface registration, finding a surface representation that is invariant to
a large set of deformations can help significantly simplify the registration process. In contrast,
once two surfaces are registered, an effective surface deformation model would allow us to
obtain meaningful information of the surface (e.g., expression changes).

In the 90’s, researchers usually studied surface deformation models based on physics-
based models [114]. Among these models, where the surface are often represented as meshes
or point set [240], different internal and external forces are considered.
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There are many ongoing researches on the representations of the surface that allows us
to manipulate the deformations of the surface. Examples include the mean-value coordi-
nate [77], the Harmonic coordinates [21, 111], the Green-coordinates [157] and the Cauchy-
coordinates [272, 273]. These deformation models are based on minimizing certain geomet-
ric features (e.g., surface smoothness, gradient, conformality) given the deformations of a
few key points on the surface. There are also heuristic methods such as region-based linear
model [244].

Besides the above mentioned general surface deformation models, the deformations of a
surface can be also represented according to specialized applications. In the case of facial
expression analysis, the Facial Action Coding System (FACS) is a popular method for rep-
resenting face expressions [71]. The idea of physics-based deformation has also been used
for modeling facial expression changes [245], where a mechanics-based facial tissue model is
studied. There are also facial expression models that are based on the muscles change [113],
which can be also learnt from real data [223]. Another effective way of learning based fa-
cial deformation models is to use the idea of AAM [169] in 3D [28]. Such knowledge based
models can help significantly simplify the search of deformations in new data.

Recently, data-based shape representation has become particularly popular in the appli-
cation of shape animation or deformation transfer (e.g. [52, 183]). Many of these works are
based on the idea of PCA. For example, the multilinear model [260], the bendshape model [20]
and its various applications [154, 274, 276].

6.2.2 High-order MRF optimization

Although the idea of high-order MRF is not new [124, 263], its exact inference is often pro-
hibited by the high complexity of the algorithm and/or the memory requirement. For example,
the complexity of the belief propagation approach on a high-order graph [143] grows expo-
nentially with the size of the maximal clique of the graph. Reducing a high-order graph to a
pairwise one [106, 204] only sees its application in graphs with small clique size or label size
due to memory limitations. An alternative approach to overcome such a limitation is to explore
the tractable sub-structure of the problem [203], which often result in poor approximation to
the original intractable problem. A better approximate of the original problem can be achieved
by decomposing the problem into overlapping tractable sub-problems [133]. However, when
the number of sub-problems become large, the memory that is required to coordinate the mes-
sage becomes an obstacle for extending the algorithm to solve problems with large scale. A
promising approach that requires the minimal memory (only the encoding of the energy is
needed) is the message passing approach [279]. Nevertheless, the inference often takes long
time to due to the slow convergence rate.
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f

Φ1 Φ2

Figure 6.1: The problem of finding correspondences between two surfaces can be reduced to
finding correspondences between their parametrization domain. The problem we solve in this
paper is: given a predefined points on the first surface, find the correspondences of only those
points on the second one. Efficient candidate selection schemes for surface registration and
tracking are described in [292, 294].

6.3 Canonical distortion coefficient

In this section, we present the mathematical formulation of our deformation model in both
continuous and discrete settings.

6.3.1 Continuous setting

Riemannian metric and parametrization

Let (M, gM) denote a surface M equipped with a Riemannian metric gM. In Riemannian
geometry ([64]), a surface is described by its local charts {(Uα}, i.e., M = Uα ∪ Uβ . . .
and each open subset Uα is in 1 − 1 correspondences φα : Uα → R2. Here φα is the local
parametrization. For any p ∈ Uα ⊂ M, a metric tensor is associated to p as a symmetric
positive definite matrix:

gα(p) =

(
gα11(p) gα12(p)

gα21(p) gα22(p)

)
. (6.1)
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Within such setting, a point onMmay be covered by multiple charts. In order for different lo-
cal representations to describe the same surface, certain transformation rules must be satisfied,
i.e., if a point p ∈ Uα ∩ Uβ , we must have

gα(p) = Jαβ(p)Tgβ(q)Jαβ(p). (6.2)

Here Jαβ is the Jacobian matrix of the transformation xα(xβ) (xα(xβ) is the local coordinate
system of patch Uα(Uβ)) between charts Uα and Uβ , i.e.,

Jαβ =

∂x1
α

∂x1
β

∂x1
α

∂x2
β

∂x2
α

∂x1
β

∂x2
α

∂x2
β

 . (6.3)

Any local representation satisfying this transformation rule is a valid parametrization of the
surface. Therefore, since the metric tensor at any point p ∈M is positive definite, it is always
possible to apply a proper linear transformation to its parametrization φα such that gα(p) is the
identity matrix. We call such a parametrization the canonical parametrization for point p:

Definition 24 (Canonical parametrization at a point) For any p ∈ M, a parametrization
φα : Uα → R2 is called canonical parametrization for p if the metric tensor at p is the identity
matrix.

Please note that although there exists infinite number of such a canonical parametrization for
a surface, the parametrization at the particular point is unique. In the following we shall show
that focusing on the parametrization only at one point at a time allows us to characterize ar-
bitrary deformations between two surfaces while regardless of both the intrinsic and extrinsic
representations of the surface, which is the main advantage of our new deformation model.

Diffeomorphisms between two shapes

Now we consider arbitrary diffeomorphisms between the parametrization domains of two sur-
faces (Fig. 6.1). For any correspondence p ∈ Uα ⊂ M → q ∈ Uβ ⊂ N , the change of
metric gα(p) → Jαβ(p)Tgβ(q)Jαβ(p) reflects how locally a circle is deformed into an eclipse
(Fig. 6.2(a))1. In particular, under canonical parametrization for points p and q, the matrix
JTpqJpq accurately characterizes such local deformation, where Jpq is the Jacobian at point p. If
we only consider the change of shape, i.e., how a circle is deformed into an eclipse regardless
its orientation, the eigenvalues λ1, λ2 of JTpqJpq can best describe such change. Therefore,
the local deformation between two surfaces can be characterized by the eigenvalues λ1, λ2 for
each correspondence. Formally, we define:

1A rigorous formulation can be found in Appendix C.
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Definition 25 (Canonical distortion coefficient) The eigenvalues of the Jacobian transfor-
mation matrix JTpqJpq between any canonical parametrization at p and q are the canonical
distortion coefficients between the two points.

We call the Jacobian matrix Jpq between the two points p and q under the canonical
parametrization the canonical Jacobian. The significance of using canonical Jacobian is that
it allows us to characterize arbitrary deformation by considering the parametrization of the
surface at a single point. Some special cases of deformations can be characterized by the
canonical distortion coefficient as follows:

(i) In the case of the isometric deformation, a unit circle is mapped to a unit circle, i.e.,
λ1 = λ2 = 1.

(ii) In the case of the conformal deformation, a unit circle can be mapped to a circle with
arbitrary radius [233]. Thus, λ1 = λ2.

To further connect the canonical distortion coefficient to a general class of diffeomorphisms
defined in the complex plane f : Uα → Uβ , between any canonical parametrization xα and xβ
for p and q respectively, we define
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The notion of quasi-conformality [5] can be characterized by the following Beltrami-coefficient:

µ(z) ≡ ∂f

∂z
/
∂f

∂z
,

which gives us all the information about the conformality of f . Suppose λ1 ≥ λ2, it can be
shown that |µ(z)| = (

√
λ1 −

√
λ2)/(

√
λ1 +

√
λ2). In particular, f is called holomorphic if

µ(z) = 0 ([78]), i.e., λ1 = λ2, coinciding with the fact that holomorphic function is another
description of conformal mapping2. Hence the Beltrami-coefficient generalizes conformal
mapping and can be partially determined using the canonical distortion coefficient. However,
the Beltrami-coefficient is for surface parametrization, where the scaling factor is lost. The
proposed canonical distortion coefficient preserves the scale information which is important
for shape matching. Besides, the canonical distortion coefficient is directly extendable to nD.
In this paper, we propose an efficient approach to compute the local deformation based on the
canonical distortion coefficient in the context of shape registration.

2Strictly speaking, conformal mapping is a holomorphic function whose derivative is everywhere non-zero.
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Figure 6.2: The finite element method assumes the transformation between facets to be piece-
wise linear and f(~ab) = ~a′b′, f(~ac) = ~a′c′. Under the linearity assumption, the Jacobian can
be computed in a closed form for each triangle pair4abc 7→ 4a′b′c′.

6.3.2 Finite element discretization

The basic assumption in finite element analysis [35] is that the continuous space can be ap-
proximated using a set of basic elements (e.g., polynomial functions defined on each face).
Meanwhile, consistencies must be preserved at the boundaries among the basic elements. In
this paper, we consider the most common representation of a continuous surface – a triangular
mesh, whose basic finite element is a triangular face. In this discrete setting, the canonical dis-
tortion coefficient (CDC) is assumed to be constant for each basic element (i.e., 4abc shown
in Fig. 6.2).

Thus, the concept of canonical parametrization (Sec. 6.3.1) can be expressed in the follow-
ing manner: a parametrization of a point p is locally Euclidean at p if the images of any two
tangent vectors have the same angle and length. In the discrete setting, this means a triangle
4abc keeps all its angles and lengths in its parametrization, which can be achieved by simply
mapping the face4abc onto a 2D domain by keeping all its edge lengths.

Finally, we consider the computation of the canonical Jacobian (Sec. 6.3.1). In the con-
tinuous setting, the Jacobian matrix at a point p is a linear operation that transforms tangent
vectors at p to tangent vectors at q. Given a basic element4abc in the discrete setting, the tan-
gent space at p is equivalent to the linear space spanned by 4abc. Hence the linear mapping
J(·) between two canonical domains should satisfy J(~ab) = ~a′b′ and J(~ac) = ~a′c′. The Jaco-
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bian of a linear transformation between two triangles is a 2 × 2 matrix and can be computed
in closed-form. Since J(·) is linear, J(~bc) = ~b′c′ must be satisfied as well, i.e.,

Jacobian for mapping p→ q⇔ Linear transformation matrix for mapping ~ab→ ~a′b′,
~ac→ ~a′c′

For clarity, Alg. 2 summarizes the algorithm for computing the canonical distortion coeffi-
cient. Note that the computation is in analogy with previous work for surface parametrization
(e.g., [196, 201, 212]) since both are based on the same piecewise linear assumption. How-
ever, here we derive it from a different continuous setting in the context of shape deformation
estimation. Also note that when the shape is n-manifold, the computation of CDC becomes
solving n linear equations and eigenvalues.

Algorithm 2: Algorithm for computing the canonical distortion coefficient (CDC) for each
triangular facet.

Input :4abc and its mapping4a′b′c′

Output : CDC for mapping from4abc to4a′b′c′.

Step One: Map the triangles4abc and4a′b′c′ to 2D and keep their orientation.
Step Two: Compute the 2× 2 linear transformation J mapping ~ab to ~a′b′ and ~ac to ~a′c′.
Step Three: Compute the eigenvalues, λ1 and λ2 of JTJ .
Step Four: Output λ1 and λ2

6.4 High-order MRF-based shape registration

6.4.1 MRF formulation for shape registration

Given the canonical distortion coefficient (CDC) defined for each basic element, i.e., the trian-
gular face, one can either deform the original shape (e.g., [229]), or find the correspondences
between two shapes combined with other matching cues (e.g., [292]). Here we consider the
problem of finding the mapping f between two shapesM and N . Similar to [292], we as-
sume a set of n points V = {pu|pu ∈ M, u = 1, . . . , n} are sampled on the surfaceM and
a triangulation of these points are constructed (Fig. 6.1). Hence the task of shape registration
becomes finding the correspondences for the set V ⊂M on shape N .

To formulate the shape matching problem using graphical models, we construct a graph
G = (V ,F) where V is a set of vertices and F ⊂ V ×V ×V is a set of faces. For each u ∈ V ,
let the random variable xu ∈ L = {1, . . . , L} denote the discrete labeling of all the possible
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matching candidates of vertex u ∈ M on shape N . In the rest of this paper, we use xu to
denote the labeling of vertex u or the point on shape N when it is clear from the context.

Firstly, let fea(·) be the feature vector (e.g., texture or shape context) at each point on the
shape. We define the cost function θu(xu) of matching u to xu:

θu(xu) = |feaM(u)− feaN (xu)|2.

Next, we denote by λM(u, v, w) =

(
λ1(u, v, w)

λ2(u, v, w)

)
as the prior knowledge of CDC that char-

acterizes the deformation for the face (u, v, w) and λN (xu, xv, xw) =

(
λ1(xu, xv, xw)

λ2(xu, xv, xw)

)
as the

CDC computed from deforming4uvw to4xuxvxw (Alg. 2). Hence we define:

θuvw(xu, xv, xw) = d(λM(u, v, w), λN (xu, xv, xw))

as the deformation energy. Here d(·, ·) is the distance function that is defined according to the
application.

Finally, given the feature function fea(·) and the deformation prior λM(·, ·, ·) for each
vertex and face, the problem of shape registration becomes solving the optimal configuration
x that minimizes the following energy:

min
x
E(x) =

∑
u∈V

θu(xu) +
∑

(u,v,w)∈F

θuvw(xu, xv, xw). (6.4)

To reduce the search space L and avoid local minima, we adopt a hierarchical optimization
scheme in solving the energy function (6.4). Inspired by [292], sparse feature points are first
selected to compute the initial matching with the global constraint λ1 = λ2 = 1 for each
triangle (u, v, w) ∈ F . Then, a small set of candidates L are selected to find the optimal local
match by minimizing the energy function (6.4).

6.4.2 An efficient high-order MRF optimization

The high-order potential of Eq. 6.4 presents the difficulty for solving our surface registration
problem. Existing algorithms either transform high-order cliques into pairwise ones (e.g.,
[106]) or decompose the original problem into a union of sub-problems (e.g., [133]). However,
these algorithm are designed for general problems and requires extra memory to store the
transformed problem or the dual variables that relates the sub-problems. For the problem of
high-order MRF inference, memory efficiency is an important issue since a poorly designed
optimization algorithm can easily reach the limit of current hardware. In this paper, we follow
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Muvw;u

Muvw;v
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Figure 6.3: An example of the messages defined for the dual problem of Eq. 6.5. For each
face4uvw, the messages are defined from the high-order clique (u, v, w) to each of the nodes
u, v and w.

the framework by Thomas [279] to design a fast and memory efficient MRF optimization
algorithm using the linear programming (LP) relaxation technique.

The first step in the LP relaxation of Eq. 6.4 is to introduce the indicator variables. For any
u ∈ V and i ∈ L, we define

τu;i =

{
1 if xu = i

0 otherwise
.

Also for any (u, v, w) ∈ F and (i, j, k) ∈ L × L× L, we define

τuvw;ijk =

{
1 if xu = i, xv = j, xw = k

0 otherwise
.

Similarly, we define θu;i = θu(i) and θuvw;ijk = θuvw(i, j, k). Hence we have the integer LP
formulation of the problem of Eq. 6.4:
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min
τ

∑
u∈V

∑
i∈L

θu;iτu;i +
∑

(u,v,w)∈F

∑
(i,j,k)∈L3

θuvw;ijkτuvw;ijk

s.t.
∑
i

τu;i = 1, ∀u ∈ V∑
i,j,k

τuvw;ijk = 1, ∀(u, v, w) ∈ F∑
j,k

τuvw;ijk = τu;i, ∀(u, v, w) ∈ F and i ∈ L

τu;i, τuvw;ijk ∈ {0, 1}.

By relaxing the variables to the domain [0, 1], we obtain the dual form of the above LP problem
as

max
M

∑
u

min
i
θu;i +

∑
(u,v,w)∈F

min
i,j,k

θuvw;ijk (6.5)

s.t. θu;i = θu;i +
∑

(u,v,w)∈F

Muvw;u:i,∀u ∈ V and i ∈ L

θuvw;ijk = θuvw;ijk −Muvw;u:i −Muvw;v:j −Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L.

Here Muvw;u:i is the dual variable (message) corresponding to the constraint
∑

j,k τuvw;ijk =

τu;i. (Fig. 6.3).

The dual problem of Eq. 6.5 can be solved by the simple min-sum diffusion algorithm
[279] as shown in Alg. 3 (Note that in [279] their optimization problem is a maximization so
the algorithm is called max-sum). It has been shown that at convergence, the solution satis-

Algorithm 3: Min-sum diffusion algorithm.
repeat

for each Muvw;u:i do
Muvw;u:i− = 1

2
[θu;i −minj,k θuvw;ijk] and reparameterize θu;i and θuvw;ijk according to

the constraints in Eq. 6.5.
end for

until convergence

fies J-consistency condition as introduced in [279]. Since after each update of the message,
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reparameterization is performed, no extra memory is needed for storing all the dual variables
Muvw;u:i. Hence the memory requirement for the Alg. 4 is the storage for the primal variables,
i.e., O(|V ||L|+ |F||L|3), which can not be avoided by any algorithm.

Each update of the message in Alg. 3 only involves the parameters in a triangle. Also
within each face 4uvw, the update of each label Muvw;u:i, i = {1, . . . , L} is independent.
Hence the algorithm can be significantly accelerated using distributed hardware.

In order to explore the parallelism of the min-sum Algorithm 3, we define the concept of
independent face set:

Definition 26 (Independent face set) Given a graph G = (V ,F), a subset Fk ⊂ F is called
independent face set if for any fi, fj ∈ Fk, fi ∩ fj = ∅.

The decomposition of a setF into subsets of independent face setsF = ∪iFi can be efficiently
computed in polynomial time by a simple greedy algorithm. Hence we can implement Alg. 3
in parallel as shown in Alg. 4. The maximal speedup achieved in Alg. 4 is maxi(|Fi||L|).

Algorithm 4: Parallel min-sum diffusion algorithm.
Decompose F into independent face sets ∪iFi
repeat

for each Independent face set Fi, in parallel for all (u, v, w) ∈ Fi and k ∈ L do
Update the message Muvw;u:k, Muvw;v:k and Muvw;w:k and do reparameterization
(Alg. 3).

end for
until convergence

6.4.3 Performance evaluation

We implement Alg. 4 using the NVIDIAr CUDA architecture [116]3. In approximation algo-
rithms [258], the approximation error (AE) is defined as the gap between the optimal integral
solution and the solution obtained by the algorithm. The gap between the result by the LP
relaxation and the optimal integral solution is often used to upper bound the approximation
error. Here we aim to test the true approximation error, as well as the speedup, by designing
the test inputs as follows: Given any input mesh, we randomly assign a default labeling lu for
each node u ∈ V . We define the singleton potentials of Eq. 6.4 as

3The source code for CUDA implementation of the MRF optimization algorithm and the executables used in
our comparison between CPU and GPU implmentations can be downloaded from http://www.cs.sunysb.

edu/~yzeng/software_HighorderMRF.html.
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Figure 6.4: Performance analysis of our MRF optimization algorithm. (a) shows the opti-
mality using the test cases described in Sec. 6.4.3. (b) shows the speedup using the parallel
implementation of Alg. 4. We show the runtime per iteration since different inputs would
result in different iteration counts.

θu(xu) =

{
0 if xu = lu

rnd(1) otherwise
,

where rnd(1) is a random number between [0, 1]. Also we define the high-order potentials as

θuvw(xu, xv, xw) =

{
0 if (xu, xv, xw) = (lu, lv, lw)

rnd(1) otherwise
.

In such case, the optimal solution of Eq. 6.4 should be {lu|u ∈ V}. Fig. 6.4 (a) shows the
result of our algorithm using the above designed test cases for different mesh and label size.
Note that although the total energy increases with mesh size, the average energy per term
(vertex and face) remains significantly low (< 0.01 for all cases). Fig. 6.4 (b) shows the
comparison on average time taken per iteration, between the implementations with and without
GPU accelerations. The total number of iterations depends on the energy. In our experiment
the algorithm converges within 3000 iterations. Hence our algorithm is both memory and
computational efficient, which is important for shape tracking.

6.5 Experimental results

In this section, we apply our deformation model and optimization technique to the problems
of shape registration and tracking. The input to our algorithm is two 3D shapesM andN , and
a triangulated sampling point set G = (V ,F) onM (Fig. 6.6 (a)). The output is the registered
result on N for each point in V (Fig. 6.6 (c)). We implement our algorithm on an Intelr
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Core(TM)2 Duo 3.16G PC with 4G RAM and an NVIDIAr Geforce 9800GTX+ graphics
card with 128 CUDA cores. The number of labels L (matching candidates) is set to be 2n for
best hardware performance. In most of our experiments, we set L = 64. The computation
of all the L3 possible CDCs for one face takes only 2.0ms on average on GPU. Hence the
computation of the energy term θuvw;ijk for a mesh with 165 vertices and 272 faces takes only
0.5s.

Estimation of deformation prior: In our experiment, we assume that the deformation
priors are similar across different shapes of the same type (e.g., human faces [260]). The
ground truth deformation prior can be obtained by 3D scanning systems with reliable texture
information (e.g., markers). As shown in Fig. 6.5, the two 3D data in (a) and (c) are captured
with markers using the system introduced in [270]. Here we select two frames with the largest
expression difference to measure the maximal possible change of CDC. Fig. 6.5 (b), (d), (f)
and (g) show the visualization of the distribution of CDC. From the above data set we obtain
the allowed bound for human face expression changing from neutral to large deformation
as I1 = [0.7, 5.66], I2 = [0.1, 4] for λ1 and λ2, respectively. For the problem of surface
registration, we define a Potts-like energy for the high-order terms in Eq. 6.4 as follows:

θuvw(xu, xv, xw) =

{
0 if λ1 ∈ I1 and λ2 ∈ I2

10 otherwise
, (6.6)

where λ1 and λ2 are the CDCs obtained by matching4uvw to4xuxvxw.

6.5.1 Shape registration

Fig. 6.6 shows one of our shape registration results and its comparison with the results of Zeng
et.al [292]. The singleton terms are defined similarly as in [292]. To obtain enough matching
candidates, re-sampling is made near its original candidates. The high-order graph match-
ing formulation in [292] assumes the two surfaces are isometrically deformed so they have
consistent conformal mapping if three correspondences are found. Hence when the deforma-
tion is not isometric, the registered points can be significantly distorted (Fig. 6.6 (b) and (c)).
Besides, the optimization technique in [292] requires reducing high-order terms into pairwise
ones so the memory required is huge and it only handle label size< 5. In contrast, our method
poses deformation constraint onto each triangle and guarantees the consistency condition for
the final solution. As a result, unlikely matching is avoided and the results are visually plau-
sible (Fig. 6.6 (e) and (f)). More quantitative comparisons are given in Table 6.1. It can been
seen that the unnatural deformations presented in [292] are significantly reduced.

To test the accuracy achieved by using a anisometric deformation prior, defined as the
canonical distortion coefficient (CDC) in our paper, we design the following experiment. The
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Figure 6.5: Expression deformation prior is obtained by 3D scanned data with markers. (a) and
(b) show the 3D scan of the onset and peak of a facial expression with large shape deformations
respectively. (c) and (d) are the corresponding triangular meshes constructed from the 3D
scan data. The color coding in (d) shows the deformation intensity as illustrated in (e). The
histogram of the canonical distortion coefficient values are shown in (f) and (g).

3D scan of a highly deformable toy is captured by the system introduced in [270] before and
after a large deformation, as shown in Fig. 6.7 (a) and (b), respectively. Outliers are pruned off
using the selection tool provided by the MeshLab software 4. An original set of points and their
candidates are selected using the method described in [292]. To establish the ground truth and
estimate the deformation prior, we manually select 20 facets and their matches based on the
texture information. The two shapes are then matched without using the texture information,
i.e., in Eq. 6.4 of in the paper, we use curvature as the singleton term (data likelihood) and
the learnt deformation prior as the high-order term (the deformation prior). Fig. 6.8(b) shows
the result using isometric assumption (λ1, λ2) = (1, 1) and Fig. 6.8(c) shows the result using
the learnt CDC prior (λ1, λ2) = (1.028, 0.993). To compare the accuracy achieved by the two
assumptions, we compare the average texture difference between the original area covered by
the matching points (the blue mesh in Fig. 6.8) and the matched area.

4http://meshlab.sourceforge.net/
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(a) Input (b) Result by [292] (c) Closeup of (b)
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Figure 6.6: Shape registration result. (a) shows the input mesh with triangulated discrete
samples obtained by the method described in [292]. The matching result and its closeup is
shown in (b) and (c).

6.5.2 Shape tracking

To apply our method to tracking dynamic 3D scanned data, we consider both inter-frame
consistency and the consistency between the current frame and the first frame. For the sin-
gleton term in Eq. 6.4, we use the robust metric defined in the paper of [294]. To impose
inter-frame consistency, we use the same data set (here we select two consecutive frames with
largest deformation change) and obtain the allowed change of CDC between frames to be
I1 = [0.874, 1.143] and I2 = [0.846, 1.182] for λ1 and λ2 respectively. Also we handle drift
error by imposing the consistency between the first frame and the current frame, using the
same face deformation prior learnt in Fig. 6.5.

Fig. 6.9 shows tracking results on the BU-4DFE database [284]. A template is constructed
in the first frame and tracked in the subsequent frames (same as in [294]. Because of the
temporal continuity in consecutive frames, sufficient matching candidates can be obtained by
only looking at the neighborhood of each point. In this data set, the texture information is
noisy so relying on texture information only can lead to erroneous results. By imposing a
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Data Zeng et.al. [292] Our method
Face_Smile (2.26, 0.19, 67.83) (1.24, 0.86, 4.2)

Face_Laugh (1.75, 0.12, 111.11) (1.36, 0.82, 11.0)

Face_Sad (1.87, 0.19, 78.62) (1.48, 0.87, 7.52)

Table 6.1: Comparison with [292]. Here (·, ·, ·) denote the average, minimal and maximal area
ratios between the original facets and the matched facets.

(a) Original shape (b) Deformed shape

Figure 6.7: The 3D scan of a highly deformable toy.

simple prior on the bound of the deformation, we have achieved plausible tracking results as
shown in Fig. 6.9.

6.6 Conclusion

We have presented a generic, geometry-inspired deformation model for characterizing arbi-
trary diffeomorphisms between shapes. An efficient and accurate algorithm to compute the
canonical distortion coefficients (CDCs) is proposed based on finite element analysis in the
discrete setting. Searching for the optimal shape registration result given such model is made
possible with a high-order MRF framework. An efficient optimization algorithm is designed
for such problem. We demonstrated the speed and accuracy performance on 2-manifold shape
registration. However, both the deformation model and the optimization algorithm can be
easily extended to high-dimensional space.
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(a) Original shape with discrete samples (b) Result with isometric assumption (c) Result with learnt CDC prior

Figure 6.8: The comparison between the results of shape registration with isometric assump-
tion (b) and with learnt CDC prior (c). Only curvature and high-order deformation prior are
used in the registration.

With isometry assumption With learnt CDC
0.073 ((λ1, λ2) = (1, 1)) 0.005 ((λ1, λ2) = (1.028, 0.993))

Table 6.2: Comparison between results with and without isometric assumption. The matching
is done without using the texture information. The comparison is based on the average texture
difference (the gray level is normalized in [0, 1]), by warping the source mesh to the matched
target mesh.
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Frame 0 Frame 20 Frame 49 Frame 87

Frame 0 Frame 50 Frame 78 Frame 100

Frame 0 Frame 5 Frame 69 Frame 86

Figure 6.9: Shape tracking results.
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Chapter 7

Conclusion and Future Work

“ End is only the beginning.

– Anonymous”

7.1 Conclusion

In this dissertation, we approached the dense surface registration problem by exploring the
connections / discrepancies between geometric based methods and graph-based approaches.
Our work is largely motivated by recent trends in computer vision and computer theory –
the rapid development of 3D scanning techniques, the popularity of graphical models and the
search of boundaries in computation.

In Chap. 2 and 3, we reviewed and investigated the connections between the continuous
geometry and the combinatorial structure. Specifically, the following important theoretical
aspects are explored:

• Geometry studies the properties of the surface under different invariant groups. In Rie-
mannian geometry, a metric tensor is defined for each point on the surface. Properties
such as curvature, geodesics can all be defined using the metric tensor. The deformation
of the surface can be also denoted by the change of the metric tensor. In contrast, con-
formal geometry disregards the scale information, which introduces certain flexibilities.
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• When we disregards both the scale and angle information, we are then left with topology
information of the surface. Topology is the gate that connects continuous geometry to
discrete (algebraic) graph structure. Nevertheless, we have shown that in fact the graph
structure contains much richer information than the topology of surfaces.

• Graphical models are based on the concept of probability functions. It has been partially
shown that the discrete structure (graphical models) has its physical meaning, and is
closely related to the complexity of computation.

• In optimization, we show that convexity (or submodularity for set functions) plays an
important role in characterizing tractable problems. It is also important to explore the
duality in these problems to achieve efficient solutions.

• We show that a wide class of graphical models can be represented by the complexity
of its description. It eliminates the gap between the order of the graph representation
but focuses on the description complexity. However, the boundary between a concise
description (polynomial) and a complex description is still yet to be explored for an-
swering the P=NP problem.

Practically, we explored the applications of the ideas in three distinct scenarios:

• In Chap. 4, we made the first attempt to encode the geometric information into the
energy of a graph and formulated the surface registration as a high-order graph match-
ing problem. An important innovation is the candidate selection scheme based on the
closed-form solution of conformal geometry, which allows us to convert a continuous
problem into a combinatorial problem. We also extended the existing graph matching
algorithm, namely the dual-decomposition framework, to solve high-order cases.

• In Chap. 5, we addressed the challenging problem of measuring the quality of match for
each possible correspondence between two surfaces. Again we take advantage of the
property of conformal mapping that a closed form solution for surface matching can be
efficiently computed. Our new distance function is derived under a general framework
for surface / image matching, which involves the idea of min-marginal in statistics and
considers global / local tradeoffs. Finally, a complete probabilistic framework for sur-
face tracking is used that encodes the new distance in its terms, allowing us to do robust
inference.

• In Chap. 6, we proposed a new surface deformation model that is able to character-
ize arbitrary deformations between two surfaces. Based on Riemannian geometry and
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finite element analysis, we connect the linear transformation at each point to the lin-
ear transformation on each facet. As a result, the proposed deformation model is both
independent of parametrization and 3D embedding. To apply the proposed model for
surface registration, we formulated the surface registration problem into a high-order
MRF optimization. By employing the LP relaxation and min-sum diffusion optimiza-
tion technique, an efficient parallel algorithm is derived for solving the surface registra-
tion problem.

Despite the effort made in this dissertation for fully understanding the connections in
things, many problems remain to be solved or clarified. In the following, we highlight the
possible future works.

7.2 Future work

The ideas explored in this dissertation open many possibilities for future investigation.

Theories

• In Chap. 2, we discussed two ways of comparing the continuous structure and the dis-
crete structure, namely structure-based and function-based. This beautiful duality in-
dicates a possible unified theory for studying the continuous and discrete structure. A
unified theory can be beneficial in multiple ways. At this point, it is still not clear to us
whether such a unified theory exists.

• The optimization of non-submodular energy functions remains a challenging task. It is
also important since many applications of graphical models turn out to require solving
non-submodular energies. Since submodularity is the discrete counterpart of convexity,
it would be helpful to investigate into the literature in non-convex optimization [81].

• In the MRF energy functions proposed in this dissertation, we set the parameters of the
energy to be fixed values. To achieve better performance, learning the parameters from
ground truth data can surely help improve the matching accuracy. Learning the param-
eters for the energy function remains a challenging problem [89, 124, 131, 241] since
it usually involves optimization with both continuous and discrete variables. Hence it
would be interesting to investigate algorithms that solve the mixed optimization problem
that can outperform the EM style algorithms.
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• The unified framework proposed in Chap. 3 leaves us several open problems to explore.
It first allows us to design general algorithms for MRF optimization. Its connection to
other approaches such as cutting plane method ([228]) is yet to be investigated.

Applications

• The surface tracking algorithm developed in Chap. 5 still suffers from sensitivity to
noises. To achieve more robust surface tracking results that is applicable to low end
3D scanning data such as Microsoft Kinect, it is important to incorporate global shape
prior into the existing framework. To this end, learning based approaches, such as AAM
[169] based methods, can be incorporated into the existing framework. It is a challenge
to balance global and local metrics to achieve the optimal tracking results.

• The analysis of dynamic expression change remains an open field due to the lack of
accurate registered database. In the near future, we plan to establish a registered facial
expression database, probably based on existing 3D expression data. With such regis-
tered data, we would like to explore possible dynamic features for expression analysis /
recognition.

• The generic surface deformation model and the high-order MRF optimization frame-
work proposed in Chap. 6 allows us to not only do surface registration, but also anima-
tion. One immediate application is to use the surface deformation model, namely the
CDC, to do expression cloning and recognition.

• The high-order MRF optimization framework in Chap. 6 only explored the parallelism
of the min-sum diffusion algorithm. It does not guarantee good convergence. Hence it
would be very useful if we can find an algorithm that achieves better convergence. A
possible idea is to explore non-local range in each optimization step. Another possible
solution is to explore recent advances in optimization methods (e.g., [24, 68]) to achieve
possibly better convergence rate and optimality.

Things that are not covered in this thesis

A system is not complete if it does not includes the complements (¬). Therefore, in the very
end, we throw a light on what is not covered in this dissertation that might be investigated in
the future.

In the theoretical part, there remain many more theories to be connected into the bigger
picture, e.g., ideas in statistical physics [164], quantum physics / mechanics [165], dynamic
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system [115] or economics. One very interesting direction is the study of the accumulated
behaviors of multiple agent systems [221]. In computer vision, it is a de facto approach to
define an energy function first to solve a problem, as mostly motivated by the MAP framework.
However, as we have shown in Chap. 3, due to the boundary in computation, the energy
functions are often intractable to solve, preventing us from getting better results. One way
to deal with this is to employ other frameworks beyond the MAP, e.g., compressive/sparse
sensing [47], wavelets [163], or spectral methods [53]. Another way to possibly avoid defining
a unique energy is the fields that study the behaviors of multiple agents. For example, in game
theory [178, 182] and social networks [69, 180], what is of interest is how the behaviors of
individuals influence each other and achieve global effects. Thus, if one considers the search
for correspondences as the cumulative behavior of individual optimizers, one can certainly
apply these principle to the surface registration problem (e.g., application of game theory).
Finally, we are also interested in designing randomized algorithms [174, 255] for optimizing
high-order MRF problems.
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Appendix

A. Standard convex relaxations for discrete MRFs

In this section, we review the standard LP convex relaxation for solving the MRF problems.
First of all, let us consider the exponential family

p(x; θ) ∝ exp{−〈θ, φ(xa)〉} = exp{−
∑
a

θaφa(xa)}, (7.1)

where xa is the subset of variables that belong to the clique a. In the MAP-MRF problem,
finding optimal configuration of the above density function is equivalent to minimizing the
following energy

E(x) =
∑
a

θaφa(xa). (7.2)

Here we only consider the situation when the variables x = {x1, x2, . . . , xn} are discrete,
namely x ∈ L × . . . ,L × L,L = {1, . . . , L}.

x1, x2, x3, x4, x5 x3, x4, x5, x6, x7, x8, x9x3, x4, x5

Clique A Clique B

common factor

Figure 7.1: The dependency between overlapping cliques.
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The first step in relaxing the energy 7.2 is to introduce the indicator variable for each clique
a and its each value ãa:

τa;x̃a =

{
1 if xa = x̃a

0 otherwise.
(7.3)

Hence the energy of Equ. 7.2 can be denoted by

E(x) =
∑
a

∑
x̃a∈dom(xa)

θaφa(x̃a)τa;x̃a . (7.4)

Meanwhile, additional constraints must be satisfied. For example, one can verify that the
following local constraints must be satisfied:∑

x̃a

τa;x̃a = 1, ∀a (7.5)∑
x̃a\b

τa;x̃a = τb;x̃b , ∀a, b, a ∩ b 6= ∅, x̃a \ x̃a\b = x̃b \ x̃b\a. (7.6)

Hence, it can be seen that the complexity of the constraints depends both on the level of
dependency among cliques and the size of each clique (Fig. 7.1).

The linear programming relaxation of the above integer programming problem can be
formulated as

minE(x) =
∑
a

∑
x̃a

θaφa(x̃a)τa;x̃a . (7.7)

s.t.
∑
x̃a

τa;x̃a = 1, ∀a ∈ C∀a ∈ C

(7.8)∑
x̃a\b

τa;x̃a = τb;x̃b , ∀a, b ∈ C and a ∩ b 6= ∅ and x̃a \ x̃a\b = x̃b \ x̃b\a

(7.9)

τa;x̃a ≥ 0, ∀a ∈ C and x̃a
(7.10)

Note that when the hyper-graph have loops, i.e., ∃a1 → a2, . . . , an → a1, ai ∩ ai+1 6= ∅, the
solution to the relaxed problem is not equivalent to the optimal solution of the original integral
programming problem. In such cases, additional constraints must be included to tighten the
relaxation [132, 226, 227].
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B. Primal-dual principle for pairwise MRF optimization

Now let us connect the graph based formulation to the continuous models discussed above. We
shall derive a formulation for the pairwise MRF-MAP problem that is similar to the continuous
formulation (Equ. 3.75). An MRF is defined on a undirected graph G = (V , E). And for
each node p ∈ V we assign a discrete variable xp whose value is defined in a discrete set
{1, 2, . . . , L}. The pairwise MRF is given by

E(x|θ) =
∑
p∈V

θp(xp) +
∑

(p,q)∈E

θpq(xp, xq). (7.11)

To relate the MRF energy 7.11 to the continuous energy 3.74, similar to the continuous
case, we discretize Ω into VΩ. Each variable xp now stands for the discretized gray level Γ at
p ∈ VΩ. We introduce the binary variables xGp,a = [xp = a], a ∈ KΓ 1, which lifts the original
multi-label MRF problem into a high-dimensional binary variable in the discretized space Σ.
The constraint for the new variable is

Dq = {x|
∑
a∈KΓ

xGp,a = 1, xGp,a ∈ {0, 1},∀p ∈ V},

which is consistent with the continuous constraint C. Now the MRF energy 7.11 becomes an
integer quadratic programming problem:

min
xG∈Dq

Eq(xG) =
∑
p∈V⊗

θp,ax
G
p,a +

∑
(p,q)∈EΩ

θpq,abx
G
p,ax

G
q,b. (7.12)

We can establish a one-to-one correspondence between the discretized upper level set func-
tion xC and the MRF formulation. If we discretize the grayscale into L levels, let xCp,L+1 = 0

for ∀p ∈ VΩ. We have the following relation

xGv,j = xCv,j − xCv,j+1,∀v ∈ VΩ, j = 1, 2, . . . , L

which corresponds to the discrete version of ∂φ/∂t. The discrete version of the layer cake
formula 3.73 now becomes

xCi,j =

jmax∑
j

xGi,j.

For the spatial derivative ∂φ/∂x or ∂φ/∂y, consider the edges (p, q) in the grid Ω, we have
the relation

|xp − xq| =
∑
a∈K

|(xCp,a − xCq,a)| =
∑
a,b∈KG

|a− b|xGp,axGq,b

1[·] is the iverson symbol
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However, the quadratic energy 7.12 is not always convex. Therefore, a popular approach
is to linearize the MRF energy by introducing the binary variable xGpq,ab = xGp,ax

G
q,b. The MRF

energy now becomes a integer linear programming with linear constraint:

El(x|θ) = 〈x, θ〉 s.t. Ax = b,x ≥ 0. (7.13)

Similar to the continuous case, we obtain the feasible domain for the dual variableW (x) =

{θ′|〈θ′,x〉 ≤ El(x|θ)}, which defines a vector field on the high dimensional space. It is
immediate that the following equation holds E(x|θ) = maxθ′∈W (x)〈θ′,x〉. The MRF problem
is now converted into a minmax problem

min
x∈D

E(x|θ) = min
x∈D

max
θ′∈W (x)

〈θ′,x〉 (7.14)

If we denote the null space N(AT ) = {ν0|ATν0 = 0}, it is easily verified that θ + νT0 A ∈
W (x),∀x. So the following minmax problem solves a lower bound for the original MRF,

min
x∈D

max
ν0∈N(AT )

〈θ + νT0 A,x〉 ≤min
x∈D

max
θ′∈W (x)

〈θ′,x〉

= min
x∈D

E(x|θ) (7.15)

Here N(AT ) is independent of the value of x so in practice it is easy to handle.

C. Theoretical analysis of the canonical distortion coefficient

In this section, we give the rigorous definitions for characterizing arbitrary diffeomorphisms
between two surfaces using Riemannian geometry. Specifically, we give the precise meaning
of “deformation of a unit circle into an eclipse" mentioned above and explain why it is able to
represent arbitrary deformations. We also connect our canonical distortion coefficient to the
Beltrami-coefficient defined in quasi-conformal mapping theory. Most of our notations and
definitions are adapted from the classic textbooks [63], [78] and [5].

Diffeomorphisms, isometries and conformal maps

Given a diffeomorphism f : M → N , the mapping between two tangent spaces df :

Tp(M) → Tq(N ), where q = f(p), is a linear mapping [63]. The mapping f can be fully
characterized by its differential df at each point on the surface given an initial correspondence
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[72]. The advantage of studying the mapping f from its first-order derivative is its simplicity
since df is defined on a linear space. Within this setting, the change of the tensor metric, i.e.,

〈v,w〉 → 〈df(v), df(w)〉q (7.16)

is determined by the linear transformation df . Hence, under this the linear transformation, a
unit circle in Tp(M) is mapped into an eclipse in Tq(N ). Under canonical parametrization
(Def. 1), such change of metric tensor can be represented as I → JTpqJpq. Since JTpqJpq =

OTdiag(λ1, λ2)O, this deformation represents both scale change information and angle change
information. Here λ1 and λ2 represents the scale change along the two axes and the (rotational)
orthogonal matrix O represents the angle change. Equivalently, such changes can be fully
characterized by the distortion of a unit circle in the tangent space at p into an eclipse in the
tangent space at q. In the following, we show that the canonical distortion coefficient can fully
characterize two deformation models that is prevalent in computer vision, i.e., isometry and
conformality.

Definition 27 A diffeomorphism f :M→N is an isometry if for all p ∈M and all pairs of
tangent vectors v,w ∈ Tp(M), we have

〈v,w〉p = 〈df(v), df(w)〉q (7.17)

Hence, under canonical parametrization, the mapping must satisfy

JTpqJpq = I, (7.18)

i.e., λ1 = λ2 = 1.

Definition 28 A diffeomorphism f : M → N is called a conformal map if for all p ∈ M
and all pairs of tangent vectors v,w ∈ TP (M), we have

〈df(v), df(w)〉q = λ2(p)〈v,w〉p, (7.19)

where λ2 is a nonwhere-zero differentiable function onM.

Again, under canonical parametrization, we have JTpqJpq = λ2(p), implying λ1 = λ2.

Canonical distortion coefficient and quasi-conformal mapping

The above discussion established the link between the popular deformation models (i.e., isom-
etry and conformality) and the canonical distortion coefficient. In fact, the canonical distortion
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coefficient is also closely related to the more general quasi-conformal mapping [5]. The quasi-
conformal mapping studies the deformation between two planes w = f(z), where z = x+ iy

and w = u+ iv. At a given point z0, f induces a linear mapping of the differentials

du = uxdx+ uydy (7.20)

dv = vxdx+ vydy (7.21)

which we can also write in the complex form:

fz =
1

2
(fx − ify) and fz =

1

2
(fx + ify) (7.22)

Note that this transformation is defined on two charts Uα and Uβ which is assumed to have
Euclidean metric. Hence one can write in classical notation

du2 + dv2 = Edx2 + 2Fdxdy +Gdy2 (7.23)

with

E = u2
x + v2

x, F = uxuy + vxvy, G = u2
y + v2

y (7.24)

Under canonical parametrizations at q (f(z0)), since it is Euclidean at q, the metric tensor can
be represented as du2 + dv2. Hence we can establish

JTpqJpq =

(
E F

F G

)
. (7.25)

In the theory of quasi-conformal mapping, the beltrami-coefficient µ(z) = fz
fz

can be partially

determined by the eigenvalues of the matrix
(
E F

F G

)
, which is equivalent to the canonical

distortion coefficient. To see this, we first define

Df =
|fz|+ |fz|
|fz| − |fz|

. (7.26)

From

dw = fzdz + fzdz, (7.27)

we have

(|fz| − |fz|)|dz| ≤ |dw| ≤ (|fz|+ |fz|)|dz|. (7.28)

Hence Df denotes the ratio of the major to the minor axis of the mapping f at z0, i.e.,

Df = (
λ1

λ2

)
1
2 (7.29)

Therefore we can easily obtain

|µ(z)| =
√
λ1 −

√
λ2√

λ1 +
√
λ2

. (7.30)
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D. Details of high-order MRF optimization algorithm

Derivation of dual optimization

In linear programming (LP), a general form of primal-dual relation is the following

min cTx max bTy (7.31)

s.t. Ax = b ⇔ s.t. ATy ≤ c

x ≥ 0

Here c and b are two vectors and A is a matrix.

Now let us consider the LP relaxation of the problem of Eq. 6.4 as derived in Sec. 6.4:

min
τ

∑
u∈V

∑
i∈L

θu;iτu;i +
∑

(u,v,w)∈F

∑
(i,j,k)∈L3

θuvw;ijkτuvw;ijk (7.32)

s.t.
∑
i

τu;i = 1, ∀u ∈ V∑
i,j,k

τuvw;ijk = 1, ∀(u, v, w) ∈ F∑
j,k

τuvw;ijk = τu;i, ∀(u, v, w) ∈ F and i ∈ L

τu;i ≥ 0, τuvw;ijk ≥ 0,

Introducing the dual variables∑
i

τu;i = 1 → yu (7.33)∑
i,j,k

τuvw;ijk = 1 → yuvw (7.34)∑
j,k

τuvw;ijk = τu;i →Muvw;u:i, (7.35)

by following the primal-dual formulate of Eq. 7.31, we have the dual problem of the LP
problem (Eq. 7.32):

max
∑
u∈V

yu +
∑

(u,v,w)∈F

yuvw (7.36)

yu −
∑

(v,w),(u,v,w)∈F

Muvw;u:i ≤ θu;i, ∀u ∈ V and i ∈ L

yuvw +Muvw;u:i +Muvw;v:j +Muvw;w:k ≤ θθuvw;ijk
,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L
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If we define the reparametrization

θu;i := θu;i +
∑

(u,v,w)∈F

Muvw;u:i, ∀u ∈ V and i ∈ L

θuvw;ijk := θuvw;ijk −Muvw;u:i −Muvw;v:j −Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L,

we have for any u ∈ V

yu ≤ θu;i ∀i ∈ L (7.37)

and for all (u, v, w) ∈ F

yuvw ≤ θuvw;iijk ∀(i, j, k) ∈ L × L× L (7.38)

Hence the dual optimization problem of Eq. 7.36 can be equivalently formulated as

max
M

∑
u

min
i
θu;i +

∑
(u,v,w)∈F

min
i,j,k

θuvw;ijk (7.39)

s.t. θu;i = θu;i +
∑

(u,v,w)∈F

Muvw;u:i, ∀u ∈ V and i ∈ L

θuvw;ijk = θuvw;ijk −Muvw;u:i −Muvw;v:j −Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L.

An efficient algorithm for finding independent face sets

Alg. 5 shows the algorithm that decomposes a third-order graph G = (V ,F) into subsets of
independent face sets defined in Sec. 4.2 in the paper. To see to complexity of this algorithm,
for each iteration of step two, it take O(|max(V ,F)|) to traverse all the faces to construct
a new independent face set. The total number of iterations depends on the total number of
decomposed sets (< O(|F|)). Hence the worst case complexity of this algorithm isO(|V||F|).
However in practice the number of iterations is expected to be very small.
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Algorithm 5: Greedy algorithm for independent face sets.
Input : A third-order graph G = (V,F).
Output : Decomposition of F into independent face sets ∪iFi.

Step One: Initialization.
for each f ∈ F do

visited[f ]← false
end for

Step Two: Find maximal independent face set among the un-visited faces.

count = 0

i = 0

while count 6= |F| do
Fi← ∅
for each v ∈ V do
visited[v]← false

end for
for each f = (v1, v2, v3) ∈ F do

if visited[f ], visited[v1], visited[v2] and visited[v3] are all false then
Fi = Fi ∪ f
visited[v1]← true, visited[v2]← true, visited[v3]← true
visited[f ]← true
count = count+ 1

end if
end for
i = i+ 1

end while
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