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Abstract of the Dissertation

Accurate, Semi-Implicit Methods with Mesh Adaptivity for Mean Curvature
Flow and Surface Diffusion Using Triangulated Surfaces

by
Bryan L. Clark

Doctor of Philosophy
in

Applied Mathematics and Statistics
(Computational Applied Mathematics)

Stony Brook University
2012

Geometric partial differential equations (PDEs), such as mean-curvature flow and surface

diffusion flow, are challenging to solve numerically due to their strong non-linearity and stiff-

ness, when solved explicitly. Solving these high-order PDEs using explicit methods require

very small time-steps to achieve stability, whereas using implicit methods result in complex

nonlinear systems of equations that are expensive to solve. In addition, accurate spatial

discretizations of these equations pose challenges in their own rights, especially on trian-

gulated surfaces. We propose new methods for mean curvature flow and surface diffusion

flow using triangulated surfaces. Our methods use a weighted least-squares approxima-

tion for improved accuracy and stability, and semi-implicit schemes for time integration for

larger time-steps and higher efficiency. If mesh element quality is initially poor, or becomes

poor through evolution under mean curvature flow or surface diffusion flow, we utilize mesh

adaptivity to improve mesh quality and proceed further in evolution. Numerical experiments

and comparisons demonstrate that our methods can achieve second-order convergence in

errors for both mean-curvature flow and surface diffusion flow, with better accuracy and

stability than both explicit schemes and alternative methods.
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1 Introduction

Geometric partial differential equations (PDEs) on moving surfaces occur in various appli-

cations [15]. They are used in materials science, where strength and properties of materials

require the mathematical modeling of the morphology of microstructure. Also, in evolving

surfaces, such as grain boundaries, which separate differing orientations of the same crys-

talline phase. Another example is in image processing, to identify a dark shape in a light

background in a 2D image, where a contour is evolved that wraps around the shape. As

well as for surface smoothing in computer-aided design [70] and the modeling of moving

surfaces of materials [10].

These geometric PDEs are challenging to solve, as they are often very nonlinear due to the

presence of high-order geometric differential operators of a moving surface, and they are

stiff in terms of the time-step constraints. The moving surface may be represented either

implicitly (i.e. as the zero set of a field, such as in the level-set method), or be represented

explicitly as a triangulated surface. For the latter case, the accurate discretization of the

geometric differential operators pose a challenge in their own rights.

In this paper, we investigate the accurate and stable discretizations of two representative

geometric PDEs, namely the mean-curvature flow and the surface diffusion flow, over

triangulated surfaces. Please note that surface diffusion flow should not be confused with
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the general process involving the motion of molecules, and atomic clusters at solid material

surfaces, also known as surface diffusion. Rather, surface diffusion flow is a nonlinear PDE

modeling the motion of a surface driven by the surface Laplacian of the mean curvature [10,

2, 3, 5, 4, 16, 50]. With this understanding, we will move forward with the understanding

that, in this paper, when referring to surface diffusion flow or surface diffusion, we are

always talking about the nonlinear PDE for modeling the motion of a surface.

The continuum formulations of these problems are as follows. Given a moving surface Γ, the

coordinates x of points on Γ are functions of time t as well as some surface parametrization

u = (u, v), which can be local instead of global parametrization. Assume the surface is

differentiable. The mean-curvature flow is a second-order nonlinear PDE modeling the

motion of the surface driven by the mean curvature, given by

∂x

∂t
= Mn̂, (1.1)

where M denotes the mean curvature and n̂ denotes the unit normal vector. The vector

n̂ involves first-order partial derivatives of x with respect to the parameters u, whereas

M involves second-order partial derivatives of x with respect to u. This equation is

analogous to the parabolic equations (such as the heat equation) in terms of its stiff time-

step constraints for explicit schemes. If solved explicitly, the time-step must be second

order to the minimum edge length of a triangulated surface.

The surface diffusion flow is a fourth-order nonlinear PDE modeling the motion driven by

the surface Laplacian of the mean curvature, given by

∂x

∂t
= (4ΓM)n̂, (1.2)

where4Γ denotes the surface Laplacian operator (i.e., the surface divergence of the surface

2



gradient). Because the term 4ΓM involves fourth-order partial derivatives of x with

respect to u, the surface diffusion is much more difficult to solve than the mean-curvature

flow. If solved explicitly, the time-step must be fourth order to the minimum edge length of

a triangulated surface, making it extremely inefficient to solve. On the other hand, a fully

implicit scheme would be very difficult to derive and to solve due to its strong non-linearity.
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2 Literature Review

The numerical solutions of geometric PDEs have attracted substantial attention in recent

years. Several methods have been proposed, including methods using triangulated surfaces,

as well as methods using implicit surfaces.

2.1 Geometric PDEs with Explicit Surfaces

Bänsch et al. [3] investigated the numerical solutions of surface diffusion on graphs. Later,

Bänsch et al. [4] proposed a mixed finite element method (FEM) for solving the surface

diffusion equation governed by the surface Laplacian of the mean curvature. Their method

uses a semi-implicit time discretization to split the fourth order, highly nonlinear geometric

PDE into four linear (up to second order) elliptic equations involving both scalar and vector

forms of the curvature and velocity of the discrete surface. The discretization merely

requires piecewise-linear elements which can be used to enforce a weak formulation of the

system of PDEs which simplifies implementation. The resulting linear algebraic system of

equations can be solved using a Schur complement approach. This allows the main system

of equations to be reduced significantly. Effectively, only the velocities require solving,

where the curvatures can be calculated separately if needed.
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Xu and Zhang [70] provided a systematic framework to solve a class of geometric partial

differential equations. The first-order derivatives, second-order partial derivatives, surface

gradient, divergence and Laplacian are expressed as a linear combination of the vertex coor-

dinates, thus a linear system is formed when the overall differential operator is approximated

as a linear combination of the next step vertex coordinate. The quadratic polynomial is

used to fit the local surface.

Deckelnick et al. [16] analyzes a fully discrete numerical scheme for approximating the

evolution of graphs for surfaces evolving by anisotropic surface diffusion. The scheme

uses second order operator splitting for the nonlinear geometric fourth order equation,

which produces two coupled spatially second order problems, which are then approximated

using linear finite elements. With the time discretization being semi-implicit, they are able

to prove error bounds and numerically test calculations that confirm at least first-order

convergence in errors.

2.2 Geometric PDEs with Implicit Surfaces

Osher and Sethian [53] devised an algorithm for front propagation with curvature-dependent

speed, the equation is treated as a Hamilton-Jacobi equation with a viscosity term and is

numerically solved using techniques from hyperbolic conservation laws. While Chopp and

Sethian [12] solved the surface diffusion equation, with the fourth order operator calculated

through a hybrid narrow band approach near the interface. Methods based on level set

can easily handle singularities during propagation and a non-smooth initial front, but no

accuracy analysis is given. Additionally, the time-step for these explicit methods has to be

very small to ensure stability.

Smereka [59] introduced a semi-implicit scheme for mean curvature flow based on the

5



level set framework. The idea is to separate the linear term from the mean curvature

expression and apply the implicit scheme, while the nonlinear term is evaluated at the

current time-step. The finite difference formula is used on a higher dimensional regular

grid to approximate the nonlinear differential operator.

Glimm et al. [31, 32, 34, 28, 29, 30, 33] developed a front tracking method, for the

propagation of a moving interface. Front tracking works by moving marker particles which

represent the interface. These particles are located only on the interface and are connected

to each other to form piecewise linear segments (2D) or a triangulated mesh (3D). It is

significantly faster than other particle methods, since fewer particles are used per cell than

in typical particle method simulations.

Deckelnick et al. [15] describes the mathematical formulations for mean curvature flow

and surface diffusion flow using a parametric approach, a level set method and a phase

field method, as well as each methods advantages and disadvantages. For each approach,

first-order error convergence results are numerically calculated.

2.3 Mesh Adaptivity

An ideal mesh has elements with similar size and shape. For a triangulated mesh, this

means that all elements are close to equilateral triangles and are consistent in size. When

not presented with such a mesh, mesh adaptivity can be used to reform the mesh into a

more ideal form. Mesh adaptivity is the process of taking a mesh of “poor” quality elements

and adjusting the vertex positions and element assignments as to optimize the mesh for

calculation purposes. In mean curvature flow and surface diffusion flow, this helps greatly

in maintaining stability and accuracy as the surface evolves.

Jiao et al. [43] devised parameters and techniques to improve mesh quality through:

6



Vertex redistribution - The relocation of vertices along the surface to improve overall mesh

quality.

Edge flipping - The reassignment of edges to more optimal pairings for element quality.

Edge contraction - The deletion of edges to remove poor-quality or “small” elements.

Edge splitting - The insertion of edges to improve mesh element quality and split “large”

elements.

Bänsch et al. [4] outlines several adaptivity schemes to improve mesh quality and avoid

defects associated with clustered vertices and singularities. These include:

Mesh regularization - Redistributing vertices in a volume-preserving manner to ensure that

supports of basis functions are of nearly equal size.

Time adaptivity - Translation of nodes of lengths larger than the local mesh-size can create

unwanted mesh distortion or node-crossings. Time adaptivity allows for appropriate step

size such that mesh distortions are prevented.

Spatial adaptivity - Spatial adaptivity allows for ease of computation by decreasing the

number of nodes in smooth regions while providing higher resolution of sharp edges or

corners.

Angle-width control - Surfaces of disparate aspect ratios often develop singularities or

“pinch-offs” when evolved under surface diffusion. Near singularities, elements become

extremely degenerate by developing extremely large angles. Angle width control simply

bisects elements with these large angles to provide better accuracy near singularities.
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3 Preliminaries

In this section, we give the continuous formulae for normal and mean curvature for a

parametric surface, both under global and local coordinate system. For a comprehensive

list of differential quantities formulae and their derivations, see [65]. Assume the surface

is parametrized as x(u, v) = [x1(u, v), x2(u, v), x3(u, v)], here a local parametrization uv

around each vertex suffices since normal and curvature are local property of the surface.

In section 3.9, we describe how to locally parametrize a discrete surface and calculate

differential quantities at each vertex.

3.1 Formulae Under Global Coordinate System

Let x be the global coordinate values of the surface vertices, the Jacobian matrix of the

surface is,

J = ∇ux = [xu |xv] =


∂x1
∂u

∂x1
∂v

∂x2
∂u

∂x2
∂v

∂x3
∂u

∂x3
∂v

 (3.1)

Let ` = ‖xu × xv‖2, the first fundamental form G = JTJ and the second fundamental
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form B =

 n̂
Txuu n̂Txuv

n̂Txuv n̂Txvv

, the surface normal and mean curvature are,

n = 1
`

(J :,1 × J :,2) (3.2)

M = 1
2tr(G

−1B) (3.3)

3.2 Formulae Under Local Coordinate System

Under local coordinate system for each vertex, the formulae can be simplified, the Jacobian

matrix now is,

J = ∇ux =


1 0

0 1
∂f
∂u

∂f
∂v

 (3.4)

Let ` = ‖xu×xv‖2 =
√

1 + f 2
u + f 2

v and the Hessian matrixH =

 fuu fuv

fvu fvv

, the local
normal and curvature are simplified to,

n = 1
`


−fu

−fv

1

 (3.5)

M = tr(H)
2` − (∇f)TH(∇f)

2`3 (3.6)

Compared to the formula under global coordinate system, the mean curvature here has
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no normal n in it, this separation of normal and curvature is useful when we derive the

semi-implicit scheme in section 5.1.

3.3 Reduction to Curves

For curve, there is only one parameter u, the normal and curvature under local coordinate

system are,

n = 1
`

 −fu
1

 (3.7)

κ = fuu
2`3 (3.8)

where ` =
√

1 + f 2
u

3.4 Derivatives of Area Element

The derivatives of the area element ` occur frequently in the spatial discretization. Since

` =
√

1 + f 2
u + f 2

v , its first partial derivatives are given by

`u = fufuu + fvfuv
`

and `v = fufuv + fvfvv
`

.
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The second-partial derivations are given by

`uu = fufuuu + fvfuuv + f 2
uu + f 2

uv

`
− (fufuu + fvfuv)2

`3 ,

`vv = fvfvvv + fufuvv + f 2
vv + f 2

uv

`
− (fvfvv + fufuv)2

`3 ,

`uv = fuvfuu + fvvfuv + fufuuv + fvfuvv
`

− (fufuu + fvfuv) (fufuv + fvfvv)
`3 .

Omitting the second-order terms in ∇f , we then obtain

`uu ≈
fufuuu + fvfuuv + f 2

uu + f 2
uv

`
,

`vv ≈
fvfvvv + fufuvv + f 2

vv + f 2
uv

`
,

`uv ≈
fufuuv + fvfuvv + fuv(fuu + fvv)

`
.

3.5 Surface Gradient

Given a scalar function φ, the surface gradient, denoted by∇Γφ or ∇xφ, has a direction

in the tangent space of Γ along which φ increases the most rapidly, and its magnitude is

the maximum rate of change of φ. By the chain rule,∇u = JT∇xφ, the surface gradient

is then

∇xφ = J+T∇u, (3.9)

where

J+ =
(
JTJ

)−1
JT
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is the pseudoinverse of J .

Note that in the tensor notation for curvilinear coordinate systems, the matrix G = JTJ

is known as the covariant metric tensor, whereas G−1 =
(
JTJ

)−1
is the contra variant

metric tensor, and their components, denoted by gij and gij respectively, are the covariant

and contravariant components, respectively. Instead of using gij and gij, we choose to use

J and J+ in our analysis, because the latter are transformation matrices and can lead to

more concise formulae and clearer derivations.

3.6 Surface Divergence

Given a small surface patch S on Γ, let ∂S denote the boundary curve of S, and da ≡ nds

is orthogonal to ∂S and tangent to Γ. The surface divergence is equal to

∇Γ · f = lim
A→0

1
A

˛
∂S

f · da, where A = area of S. (3.10)

Using the matrix notation, the surface divergence can be expressed as follows.

For a vector-valued function f(u) : R2 → R3 on S, the surface divergence is

∇Γ · f = tr
(
J+∇u

(
JJ+f

))
. (3.11)

Let n denote unit outward normal to Γ. Consider the decomposition of f into tangential

and normal components

f = JJ+f + nnTf .

12



In (Equation 3.10), note that

lim
A→0

1
A

˛
∂S

(
nnTf

)
· da = 0,

which can be easily shown from the Taylor series expansions of n. Then

∇Γ · f = ∇Γ ·
(
JJ+f

)
.

At any point x0 on Γ, let J0 denote the Jacobian matrix at the point, and consider the

local uv coordinate system of the tangent space at x0 with the columns of J0 as the

base vectors. Since the two columns of J0 are in general not orthogonal, consider its QR

factorization Q0R0, and the local ξη coordinate system with the columns of Q0 as base

vectors. Then J+
0 = R−1

0 Q
T
0 . Let

ϕ = QT
0 JJ

+f = R0J
+
0 JJ

+f .

From the divergence theorem, we have

∇Γ · f = ∂ϕ1

∂ξ
+ ∂ϕ2

∂η
= tr

(
∇ξϕ

)
,

where

∇ξϕ = (∇uϕ)J+
0Q0 = (∇uϕ)R−1

0 = R0J
+
0

(
∇u

(
JJ+f

))
R−1

0 .

Therefore,

∇Γ · f = tr
(
R0J

+
0

(
∇u

(
JJ+f

))
R−1

0

)
= tr

(
J+

(
∇u

(
JJ+f

)))

13



at point x0.

Note that if f is tangent to Γ, then f = JJ+f , and we can further simplify (Equation 3.11)

to

∇Γ · f = tr
(
J+ (∇uf)

)
= J+

1,:fu + J+
2,:f v, (3.12)

where J+
j,: (j = 1, 2) denotes the jth row of J+.

In the literature, the surface divergence is sometimes defined as [37, page 21]

∇Γ · f =
(
∇x − nnT∇x

)
·
(
f − nnTf

)
, (3.13)

where ∇x is the gradient operator with respect to x, or as [55, 70]

∇Γ · f = 1
√
g
∇u ·

(√
gJ+f

)
, (3.14)

where g = det(JTJ). It can be shown that these definitions are equivalent. However,

(Equation 3.12) has the simplest form and will allow dramatically simpler derivations in

later sections.

3.7 Surface Laplacian

The surface Laplacian of a scalar function ϕ, denoted by ∆Γϕ, is given by the surface

divergence of the surface gradient, i.e.,

∆Γϕ = ∇Γ · ∇Γϕ.
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Because∇Γϕ is in the tangent space by definition, from (Equation 3.9) and (Equation 3.12),

we then have

∆Γφ = tr
(
J+∇u

(
J+T∇uϕ

))
= tr

(
J+∇u

(
J+T∇uϕ

)
J
)
.

Using the product rule,

∇u
(
J+T∇uϕ

)
=

(
∇2
uϕ

)
︸ ︷︷ ︸

Hessian of ϕ

J+ +

 (∇ϕ)TJ+
u

(∇ϕ)TJ+
v



Therefore,

∆Γϕ = tr

G−1

(∇(∇ϕ))J+J −

 (∇Γϕ)TJu

(∇Γϕ)TJv



 = tr(G−1M ),

where

M = ∇(∇ϕ)−

 (∇Γϕ)TJu

(∇Γϕ)TJv

 .

In the local coordinate system using a local height function, it can be further simplified to

∆Γϕ = tr
(
G−1

(
∇2ϕ− (∇ϕ)T ∇f

`2 H

))
(3.15)
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3.8 Calculation of Surface Laplacian of Mean

Curvature

In chapter 4 we will make use of the surface Laplacian of mean curvature, 4ΓM . To

maintain simplicity in chapter 4, we will discuss our calculation of the surface Laplacian of

mean curvature here. We consider the computation of 4ΓM in the local uv coordinate

system, as given in (Equation 4.5). The mean-curvature M is given by

M = tr(H)
2` − (∇f)TH∇f

2`3 ,

and hence its gradient is

∇M = ` (∇tr(H))− tr(H)∇`
2`2 −

`∇
(
(∇f)TH∇f

)
− (∇f)TH∇f∇`

2`4 .

Therefore,

∇2M =`∇ (` (∇tr(H))− tr(H)∇`)− 2∇` (` (∇tr(H))− tr(H)∇`)T

2`3 −

∇
(
`∇

(
(∇f)TH∇f

)
− (∇f)TH∇f∇`

)
2`4 +

4∇`
(
`∇

(
(∇f)TH∇f

)
− (∇f)TH∇f∇`

)T
2`5 .

For simplicity, we consider only up to second-order accuracy in ∇f . In (Equation 4.5),

∇M is multiplied with ∇f , and ∇` is also in the order of ∇f . Therefore, we can omit the

first-order terms in ∇f and approximate ∇M as

∇M ≈ 1
2`∇tr(H), (3.16)
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and therefore in (Equation 4.5)

(∇M)T ∇f
`2 ≈ (∇tr(H))T ∇f

2`3

is up to second-order accurate in ∇f .

For ∇2M , omitting the second-order terms in ∇f , we obtain an approximation

∇2M ≈∇ (` (∇tr(H))− tr(H)∇`)
2`2 − ∇` (∇tr(H))T

`2 −
∇2

(
(∇f)TH∇f

)
2`3

(3.17)

=1
`
∇2 (tr (H))− 1

2`2∇
2 (`tr(H))− 1

2`3∇
2
(
(∇f)T H∇f

)
, (3.18)

where the second equality above is because the first two-terms of (Equation 3.17) can be

regrouped as

∇ (` (∇tr(H))− tr(H)∇`)
2`2 − ∇` (∇tr(H))T

`2

= 1
2`2

(
∇ (` (∇tr(H))− tr(H)∇`)− 2∇` (∇tr(H))T

)
= 1

2`2

(
`∇2tr(H)− tr(H)∇2`−∇tr(H) (∇`)T −∇` (∇tr(H))T

)
= 1

2`2

(
2`∇2tr(H)−∇2(`tr(H))

)
.

(Equation 3.18) is compact and conceptually simple. For computational purpose, we can
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expand (Equation 3.18) and further omit additional second order terms to obtain

Muu ≈
`tr(Huu)− 2`utr(Hu)− `uutr(H)

2`2 −

(∇fuu)TH∇f + 2(∇fu)THu∇f + (∇fu)TH∇fu
`3 ,

Muv ≈
`tr(Huv)− `utr(Hv)− `vtr(Hu)− `uutr(H)

2`2 −

(∇fuv)TH∇f + (∇fu)THv∇f + (∇fv)THu∇f + (∇fu)TH∇fv
`3

Mvv ≈
`tr(Hvv)− 2`vtr(Hv)− `vvtr(H)

2`2 −

(∇fvv)TH∇f + 2(∇fv)THv∇f + (∇fv)TH∇fv
`3 .

In the above, Hξη are the only terms that involve fourth-order derivatives, and the terms

`ξη, Hξ, and ∇fξη involve third-order derivatives, where ξ is u or v and so is η. All the

other terms involve first- or second-order derivatives.

Finally, for completeness, we also give the exact formulae for the components of ∇M and

∇2M as

Mu =tr(Hu)
2` − (∇f)THu∇f

2`3 − `u
(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
− (∇fu)TH∇f

`3

Mv =tr(Hv)
2` − (∇f)THv∇f

2`3 − `v
(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
− (∇fv)TH∇f

`3 ,

Muu =tr(Huu)
2` − (∇f)THuu∇f

2`3 − `u
(
tr(Hu)
`2 − 3(∇f)THu∇f

`4

)
−

`uu

(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
− (∇fuu)TH∇f + 2(∇fu)THu∇f

`3 −

(∇fu)TH∇fu
`3 + `2

u

(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
+ 6`u

(∇fu)TH∇f
`4 ,
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Mvv =tr(Hvv)
2` − (∇f)THvv∇f

2`3 − `v
(
tr(Hv)
`2 − 3(∇f)THv∇f

`4

)
−

`vv

(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
− (∇fvv)TH∇f + 2(∇fv)THv∇f

`3 −

(∇fv)TH∇fv
`3 + `2

v

(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
+ 6`v

(∇fu)TH∇f
`4 ,

Muv =tr(Huv)
2` − (∇f)THuv∇f

2`3 − `u
(
tr(Hv)

2`2 − 3(∇f)THv∇f
2`4

)
−

`v

(
tr(Hu)

2`2 − 3(∇f)THu∇f
2`4

)
− `uv

(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
−

(∇fuv)TH∇f + (∇fu)THv∇f + (∇fv)THu∇f + (∇fu)TH∇fv
`3 +

`u`v

(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
+ 3`u

(∇fv)TH∇f
`4 + 3`v

(∇fu)TH∇f
`4 .

We do not use these formulae directly in our computations for efficiency purpose. Nev-

ertheless, these formulae are useful for numerical verification of the accuracy of the our

approximate formulae above.

3.9 Vertex-Based Polynomial Fittings

We approximate various differential operators based on local polynomial fittings. We have

successfully used these techniques previously to compute differential quantities of discrete

surfaces (such as normals and curvatures) to high-order accuracy [46, 65]. For more details

on the theoretical background, readers are referred to [46] and references therein.
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3.9.1 Local Polynomial Fitting

Local polynomial fittings, also known as Taylor polynomials in numerical analysis [40],

are based on the well-known Taylor series expansions about a point. We are primarily

concerned with surfaces, so the local fitting is basically an interpolation or approximation to

a neighborhood of a point P under a local parametrization (with parameters u and v), where

P corresponds to u = 0 and v = 0. The polynomial fitting may be defined over the global

xyz coordinate system or a local uvw coordinate system. In the former, the neighborhood

of the surface is defined by the coordinate function f(u, v) = [x(u, v), y(u, v), z(u, v)]. In

the latter, assuming the uv-plane is approximately parallel with the tangent plane of the

surface at P , each point in the neighborhood of the point can be transformed into a point

[u, v, f(u, v)] (by a simple translation and rotation), where f is known as the local height

function.

Let u denote [u, v]T . Let ϕ(u) denote a smooth bivariate function, which may be the local

height function or the x, y, or z component of the coordinate function for a parametric

surface. Let cjk be a shorthand for ∂j+k

∂uj∂vkϕ(0). Let d be the desired degree of the

polynomial fitting, typically ≤ 6. If ϕ(u) has d + 1 continuous derivatives, it can be

approximated to (d+ 1)st order accuracy about the origin u0 = [0, 0]T by

ϕ(u) =
d∑
p=0

j+k=p∑
j,k≥0

cjk
ujvk

j!k!︸ ︷︷ ︸
Taylor polynomial

+
j+k=d+1∑
j,k≥0

∂j+k

∂uj∂vk
ϕ(ũ, ṽ) ũ

j ṽk

j!k!︸ ︷︷ ︸
remainder

, (3.19)

where 0 ≤ ũ ≤ u and 0 ≤ ṽ ≤ v.

Suppose we have a set of data points, say [ui, vi, ϕi]T for i = 1, . . . ,m− 1, sampled from

a neighborhood near P on the surface. Substituting each given point into (Equation 3.19),
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we obtain an approximate equation

d∑
p=0

j+k=p∑
j,k≥0

(
ujiv

k
i

j!k!

)
cjk ≈ ϕi, (3.20)

which has n = (d+ 1)(d+ 2)/2 unknowns (i.e., cjk for 0 ≤ j + k ≤ d, j ≥ 0 and k ≥ 0),

resulting in anm×n rectangular linear system. Note that one could force the polynomial to

pass through point P by setting c00 = 0 and removing its corresponding equation, reducing

to an (m− 1)× (n− 1) rectangular linear system. This may be beneficial if the points are

known to interpolate a smooth surface.

Let us denote the rectangular linear system obtained from (Equation 3.20) as

Ac ≈ f , (3.21)

where c is an n-vector composed of cjk, A is m×n, known as a generalized Vandermonde

matrix and f is an m-vector composed of fi.

The above formulations can be easily adapted to curves in 2-D or 3-D, by using the

univariable instead of the bivariable version of Taylor series expansions. For a curve in

3-D, the parametrization has only one parameter, u, and the local height function has two

components. When applied to a surface mesh, the point P is typically a vertex with some

k-ring neighborhood. Following Jiao and Zha [46], we allow k to have half-ring increments:

• The 1-ring neighbor faces of a vertex v are the faces incident on v, and the 1-ring

neighbor vertices are the vertices of these faces.

• The 1.5-ring neighbor faces are the faces that share an edge with a 1-ring neighbor

face, and the 1.5-ring neighbor vertices are the vertices of these faces.
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• For an integer k ≥ 1, the (k + 1)-ring neighborhood of a vertex is the union of the

1-ring neighbors of its k-ring neighbor vertices, and the (k+ 1.5)-ring neighborhood

is the union of the 1.5-ring neighbors of the k-ring neighbor vertices.

We typically choose k to be (d+1)/2 (for non-noisy surface) or d/2+1 (for noisy surface),

but may also enlarge k if there are fewer than 1.5 times the required number of points in

the k-ring.

3.9.2 Weighted Least Squares Approximation

Numerically, (Equation 3.21) can be solved using the framework of weighted linear least

squares [36, p. 265], i.e., to minimize a weighted norm (or semi-norm),

min
c
‖Ac− f‖Ω = min

c
‖Ω(Ac− f)‖2, (3.22)

where Ω is a weighting matrix. Typically, Ω is an m × m diagonal matrix, whose ith

diagonal entry ωi assigns a priority to the ith point [ui, vi]T by scaling the ith row of A.

It is desirable to assign lower priorities to points that are farther away from the origin or

whose normals differ substantially from the w direction of the local coordinate frame.

The formulation (Equation 3.22) is equivalent to the linear least squares problem

Ãc ≈ f̃ , where Ã = ΩA and f̃ = Ωf . (3.23)

In general, Ã is m× n and m ≥ n. A technical difficulty is that this linear system may be

very ill-conditioned (i.e., the singular values of Ã may differ by orders of magnitude) due
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to a variety of reasons, such as poor scaling, insufficient number of points, or degenerate

arrangements of points [47]. The conditioning number of Ã can be improved by using a

scaling matrix S, changing the problem:

min
y
‖By − f‖2, where B = ÃS and y = S−1c. (3.24)

We chose S to be a diagonal matrix. Let ṽi denote the ith column of Ã. The ith diagonal

entry of S is chosen to be ‖ṽi‖2, which approximately minimizes the condition number of

ÃS [36, p. 265].

3.9.3 Accuracy and Stability of Least Squares Polynomial Fittings

The local least squares polynomial fitting provides us accurate approximation to the exact

surface, established by the following proposition by Jiao and Zha [46]:

Given a set of points [ui, vi, f̃i] that interpolate a smooth height function f or approximate

f with an error of O(hd+1). Assume the point distribution and the weighting matrix

are independent of the mesh resolution, and the condition number of the scaled matrix

B = ÃS in (Equation 3.24) is bounded. The degree-d weighted least squares fitting

approximates cjk to O(hd−j−k+1).

3.10 Mesh Regularization

Mesh regularization redistributes surface nodes tangentially along the surface to ensure

that the supports of basis functions are nearly uniform locally. During mesh regulation, the

line beginning from the average of the barycenters of the triangular elements neighboring
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vertex zi and pointing in the direction of a weighted-average of the unit normals of the

neighboring elements. Then the vertex zi is moved onto this line in a manner such that

the volume of the (closed) surface is unchanged. This process is explained in more detail

in section 6.4.
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4 Explicit Methods and Spatial

Discretization

In this section, we consider explicit methods of mean-curvature flow as well as surface

diffusion. We first describe an explicit method, which is relatively simple and will be used

as a reference of our comparison. Because the temporal discretization of explicit methods

are straightforward, the primary focus of this section is on spatial discretization of the

geometric differential operators.

4.1 Mean-Curvature Flow

Since the surface is a triangulated, we use the method of lines to discretize the PDE to

obtain a system of ODEs. In particular, at each vertex of the triangulation, we have an

ODE

dxi
dt

= Min̂i, (4.1)

where xi, n̂i and Mi denote the position vector, the unit normal vector and the mean

curvature at the ith vertex of the mesh, respectively. In section 3.2, the mean curvature is
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computed as

M = tr(H)
2` − (∇f)TH∇f

2`3 ≈ tr(H)
2` ,

where H is the Hessian of the local height function with respect to the local parametriza-

tion, and contains the second-order terms. We approximate n̂i and Mi numerically using a

local polynomial fitting at the ith vertex, as described in the previous section. In particular,

we use cubic fittings over a 2-ring. The system of ODEs (Equation 4.1) are then discretized

using the forward Euler scheme, and we obtain the equation

x
(n+1)
i = x

(n)
i +4tM (n)

i n̂
(n)
i , (4.2)

where the superscripts denote the indices of the time-step of the corresponding variables.

4.2 Surface Diffusion

Similar to mean-curvature flow, we discretize the surface diffusion into a system of ODEs,

and obtain an ODE at each vertex of the triangulation as

dxi
dt

= (4ΓM)i n̂i, (4.3)

where 4Γ denotes the surface Laplacian operator. Using the forward Euler scheme, we

obtain the equation

x
(n+1)
i = x

(n)
i +4t (4ΓM)(n)

i n̂
(n)
i . (4.4)
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To solve (Equation 4.4), the key step is to discretize the surface Laplacian of the mean

curvature. As described in section 3.7, the surface Laplacian of a function ϕ is given by

(Equation 3.15). Substituting the mean curvature as ϕ into (Equation 3.15), we obtain

the continuum formula for 4ΓM in the local coordinate system as

4ΓM = tr
(
G−1

(
HM −

(∇M)T ∇f
`2 H

))
, (4.5)

where HM and H denote the Hessian matrices of M and f , respectively, i.e.,

HM =

 Muu Muv

Muv Mvv

 and H =

 fuu fuv

fuv fvv

 ,

and

G−1 = 1
`2

 1 + f 2
v −fufv

−fufv 1 + f 2
u

 .

In the local coordinate system, the mean curvature is given by

M = tr(H)
2` − (∇f)TH∇f

2`3 .

Since M is a second-order differential quantity, ∇M and HM are third-order and fourth-

order differential quantities, respectively. Let `u and `v denote the partial derivatives of `

with respect to u and v, respectively, i.e.,

`u = fufuu + fvfuv
`

and `v = fufuv + fvfvv
`

.
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It is easy to show that

Mu = `tr(Hu)− `utr(H)
2`2 −

`
(
2(∇fu)TH∇f + (∇f)THu∇f

)
− 3`u(∇f)TH∇f

2`4

= tr(Hu)
2` − (∇f)THu∇f

2`3︸ ︷︷ ︸
A

−`u
(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
︸ ︷︷ ︸

B

− (∇fu)TH∇f
`3︸ ︷︷ ︸
C

,

where Hu involves third-order derivatives with respect to u and v. Similarly,

Mv = `tr(Hv)− `vtr(H)
2`2 −

`
(
2(∇fv)TH∇f + (∇f)THv∇f

)
− 3`v(∇f)TH∇f

2`4

= tr(Hv)
2` − (∇f)THv∇f

2`3 − `v
(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
− (∇fv)TH∇f

`3 ,

where Hv involves third-order derivatives with respect to u and v. In summary, we can

denote the gradient as

∇M = ∇tr(H)
2` − (∇f)T (∇H)∇f

2`3 −
(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
∇`− H

2

`3 ∇f,

where ∇H denotes a third-order tensor.

Let 〈∇f,∇f〉H = 〈∇f,∇f〉H

To obtain the second partial derivatives, note that

Muu = Au − `uBu − `uuB − Cu, (4.6)
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where

Au = tr(Huu)
2` − (∇f)THuu∇f

2`3 − `u
(
tr(Hu)

2`2 − 3(∇f)THu∇f
2`4

)
− (∇fu)THu∇f

`3

≈ tr(Huu)
2` − `u

tr(Hu)
2`2 − (∇fu)THu∇f

`3

Bu = tr(Hu)
2`2 − 3(∇f)THu∇f

2`4 − `u
(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
− 3(∇fu)TH∇f

`4

≈ tr(Hu)
2`2 − `u

tr(H)
`3 − 3(∇fu)TH∇f

`4

Cu = (∇fuu)TH∇f + (∇fu)THu∇f + (∇fu)TH∇fu
`3 − 3`u

(∇fu)TH∇f
`4

`uu = fufuuu + fvfuuv
`

+ f 2
uu + f 2

uv + (fufuv − fvfuu)2

`3 ,

Substituting them into (Equation 4.6) and regrouping, we then obtain

Muu =tr(Huu)
2` − (∇f)THuu∇f

2`3 − `u
(
tr(Hu)
`2 − 3(∇f)THu∇f

`4

)
−

`uu

(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
− (∇fuu)TH∇f + 2(∇fu)THu∇f

`3 +

`2
u

(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
+ 6`u

(∇fu)TH∇f
`4 − (∇fu)TH∇fu

`3

≈tr(`Huu − 2`uHu − `uuH)
2`2 − (∇fuu)TH∇f + 2(∇fu)THu∇f + (∇fu)TH∇fu

`3 .

Symmstricically, we obtain

Mvv =tr(Hvv)
2` − (∇f)THvv∇f

2`3 − `v
(
tr(Hv)
`2 − 3(∇f)THv∇f

`4

)
−

`vv

(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
− (∇fvv)TH∇f + 2(∇fv)THv∇f

`3 +

`2
v

(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
+ 6`v

(∇fu)TH∇f
`4 − (∇fv)TH∇fv

`3 .
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To obtain Muv, note that

Av = tr(Huv)
2` − (∇f)THuv∇f

2`3 − `v
(
tr(Hu)

2`2 − 3(∇f)THu∇f
2`4

)
− (∇fv)THu∇f

`3

Bv = tr(Hv)
2`2 − 3(∇f)THv∇f

2`4 − `v
(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
− 3(∇fv)TH∇f

`4

Cv = (∇fuv)TH∇f + (∇fu)THv∇f + (∇fu)TH∇fv
`3 − 3`v

(∇fu)TH∇f
`4

`uv = fufuuv + fvfuvv
`

+ fuvfuu + fvvfuv + (fufvv − fvfuv) (fufuv − fvfuu)
`3 .

Therefore,

Muv =Av − `uBv − `uvB − Cv

=tr(Huv)
2` − (∇f)THuv∇f

2`3 − `u
(
tr(Hv)

2`2 − 3(∇f)THv∇f
2`4

)
−

`v

(
tr(Hu)

2`2 − 3(∇f)THu∇f
2`4

)
− `uv

(
tr(H)

2`2 − 3(∇f)TH∇f
2`4

)
−

(∇fuv)TH∇f + (∇fu)THv∇f + (∇fv)THu∇f
`3 +

`u`v

(
tr(H)
`3 − 6(∇f)TH∇f

`5

)
+

3`u
(∇fv)TH∇f

`4 + 3`v
(∇fu)TH∇f

`4 − (∇fu)TH∇fv
`3 .

To obtain a second-order approximation, we approximate 4ΓM as follows.

4ΓM ≈ tr

G−1

H̃M −

(
∇̃M

)T
∇f

`2 H


 , (4.7)
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Omitting the terms that are second order in fu and fv, we obtain

(
∇̃M

)T
∇f

`2 ≈(∇tr(H))∇f
2`3 ,

M̃st ≈
2`tr (Hst)− (`H)st

2`2 − 1
2`3

(
(∇f)T H∇f

)
st
,

where s is u or v, and similarly for t. The terms involving ` are:

` =
√

1 + f 2
u + f 2

v

`u = fufuu + fvfuv
`

`v = fufuv + fvfvv
`

`uu ≈
fufuuu + fvfuuv + f 2

uu + f 2
uv

`

`vv ≈
fvfvvv + fufuvv + f 2

vv + f 2
uv

`

`uv ≈
fufuuv + fvfuvv + fuv(fuu + fvv)

`
.

The terms involving

(
(∇f)T H∇f

)
st
≈ 2((∇fst)TH∇f+(∇fs)TH t∇f+(∇fs)TH t∇f+(∇fs)TH∇ft).

In summary,

∇2M ≈ 1
`
∇2 (tr (H))− 1

2`2∇
2 (`H)− 1

2`3∇
2
(
(∇f)T H∇f

)
.

Note that in the above, the first two rows involve fourth-order and third-order derivatives

with respect to u and v, while the last row involves only second-order derivatives.
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4.3 Limitations of Explicit Methods

The mean-curvature flow is analogous to a heat equation, and therefore the stability con-

straint requires the time-step ∆t to be proportional to the square of the local mesh res-

olution for this explicit scheme. However, because the PDE is given on an unstructured

moving mesh, the CFL condition cannot be defined as clearly as for a heat equation on

an Eulerian mesh. We will investigate the stability conditions experimentally in chapter 7.

For these reasons, we consider deriving semi-implicit methods of the two equations, as

described in chapter 5.
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5 Semi-Implicit Methods

5.1 Semi-Implicit Method for Mean-Curvature Flow

In this section, we consider the numerical solution of the mean-curvature flow. The con-

tinuum form of the flow is given by (Equation 1.1). We will consider both explicit as

well as semi-implicit schemes. The explicit scheme is simple and direct given the formulae

in chapter 3 and the fitting method in section 3.9. Mean curvature is a nonlinear term,

so a fully implicit scheme would be complicated. We devise our semi-implicit scheme by

evaluating all the first order derivatives in the current time-step and all the second order

derivatives in the future time-step to avoid the nonlinear issue.

To overcome the time-step restriction imposed by the CFL condition, we consider the

implicit scheme. A fully implicit scheme for mean curvature flow would be,

x(n+1)
i − x(n)

i = 4t ·M (n+1)
i n(n+1)

i (5.1)

Where both normal and mean curvature are in the next time-step, this is possible if the

mean curvature and normal can be expressed as linear combinations of vertices coordinates.
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Recall the least square fitting equation at a vertex,

Ac ≈ f , (5.2)

we observe that the matrix A plays a fundamental role. Since Ac ≈ f , the polynomial

coefficients of function f are given by c = A+f . We refer to C = A+ as the coefficient

matrix. Each coefficient of the polynomial can be expressed as a linear combination of f ,

with the rows of C as the weights. In addition, we can express the derivatives of f at the

vertex as linear combinations of the values of f at its neighboring vertices. This procedure

can be viewed as a generalization of classic finite difference schemes. For example, the

coefficient matrix for a classical 9-point central difference scheme on a regular rectangular

grid is simply

C =



0 0 0 0 1 0 0 0 0

0 0 0 1
2∆x 0 − 1

2∆x 0 0 0

0 1
2∆y 0 0 0 0 0 − 1

2∆y 0

0 0 0 1
∆x2 − 2

∆x2 0 1
∆x2 0 0

1
4∆x∆y 0 − 1

4∆x∆y 0 0 0 − 1
4∆x∆y 0 1

4∆x∆y

0 1
∆y2 0 0 − 2

∆y2 0 0 1
∆y2 0


.

The matrix C is independent of the right hand side vector f . It only depends on the

local parametrization, and it requires the local geometric information around the vertex.

Let N(i) denote the set of vertices in the neighborhood of vertex i (including itself). The

gradient of the displacement vector φ and its derivatives are

fu =
∑

j∈N(i)
C2,jfj fv =

∑
j∈N(i)

C3,jfj

fuu = 2
∑

j∈N(i)
C4,jfj fuv = ∑

j∈N(i)
C5,jfj fuu = 2

∑
j∈N(i)

C6,jfj
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Now we can express the differentials as linear combinations of vertices coordinates. The

fully implicit scheme imposes a challenge since the term of M (n+1)
i n(n+1)

i is nonlinear, so

we use the explicit normal with implicit mean curvature,

x(n+1)
i − x(n)

i = 4t ·M (n+1)
i n(n)

i (5.3)

Now we look at the formula for mean curvature Mi,

global :M = 1
2tr(G

−1B) (5.4)

local :M = tr(H)
2` − (∇f)TH(∇f)

2`3 (5.5)

For the global formula, the normal n is embedded in the second fundamental form B, the

implicit term M
(n+1)
i requires n(n+1)

i , the term we try to avoid. So we use the formula

under local coordinate system. The local mean curvature is still composed of the product

of first and second order terms, we can make it linear with respect to the the second order

derivatives only, and the first order derivatives ` and∇f remain explicit. The corresponding

mean curvature term is,

M̃
(n+1)
i = tr(H̃)

2` − (∇f)T H̃(∇f)
2`3 = fuu + fvv

2` − f 2
u f̃uu + 2fufvf̃uv + f 2

v f̃vv
2`3 (5.6)

where ˜ indicates an implicit term. Using the coefficient matrix C we have,

M̃
(n+1)
i = 1

2`3

∑
j∈N(i)

(
(1 + f 2

v )C4,j − 2fufvC5,j + (1 + f 2
u)C6,j

)
· (x(n+1)

j −x(n+1)
i ) ·n(n)

i

Thus the semi-implicit scheme,

x(n+1)
i − x(n)

i = 4t · M̃ (n+1)
i n(n)

i (5.7)
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This is a linear relation with respect to the future vertices coordinates, we can aggregate

these equations over all vertices to form a global linear system,

B(n)φ(n+1) = φ(n)

where B(n) is a 3n × 3n matrix, and φ(n+1) and φ(n) are column vectors of length 3n,

composed of the coordinate values at time-step n+ 1 and n.

5.2 Semi-Implicit Method for Surface Diffusion

The semi-implicit scheme is as follows:

x(n+1)
i − x(n)

i = 4t
(
4ΓM̃

(n+1)
)(n)

i
n(n)
i

The semi-implicit scheme uses explicit first and second order differentials, with implicit 3rd

and 4th order differentials:

x(n+1)
i − x(n)

i = 4t

tr
G−1

H̃M −

(
∇M̃

)T
∇f

`2 H





(n)

i

n(n)
i

The CFL condition for surface diffusion is much more strict than the mean curvature flow,

which is why we devised a semi-implicit scheme. It can be seen that Mu and Mv are

linear with respect to the third order differentials (fuuu, fuuv, fuvv and fvvv); Muu, Muv

and Mvv are linear with respect to both third and fourth order differentials (fuuuu, fuuuv,

fuuvv, fuvvv and fvvvv), because the sum of orders (of differential) for M is 4, taking twice

derivative, the sum of order is 6, so a 3rd and a 4th order differential can not appear in
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the same term. Similar to the semi-implicit scheme for mean curvature flow, we construct

the semi-implicit scheme for surface diffusion using explicit 1st and 2nd order differentials,

implicit 3rd and 4th order differentials. The explicit and implicit terms are,

fuuu = 6c30 fuuu = 6
∑

j∈N(i)
C7,jfj

fuuv = 2c21 fuuv = 2
∑

j∈N(i)
C8,jfj

fuvv = 2c12 fuvv = 2
∑

j∈N(i)
C9,jfj

fvvv = 6c03 fvvv = 6
∑

j∈N(i)
C10,jfj

fuuuu = 24c40 fuuuu = 24
∑

j∈N(i)
C11,jfj

fuuuv = 6c31 fuuuv = 6
∑

j∈N(i)
C12,jfj

fuuvv = 4c22 fuuvv = 4
∑

j∈N(i)
C13,jfj

fuvvv = 6c13 fuvvv = 6
∑

j∈N(i)
C14,jfj

fvvvv = 24c04 fvvvv = 24
∑

j∈N(i)
C15,jfj

5.3 Description of Algorithm

1. First, if not given, compute normals at each vertex.

2. For each vertex, construct the stencil and calculate all the differentials using weighted

least square polynomial fittings.
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For explicit scheme:

• Calculate normal, and mean curvature or surface diffusion from the local polynomial

differentials.

• Propagate the surface using the explicit scheme.

For semi-implicit scheme:

• Aggregate over all the vertices to form the global linear system through the coefficient

matrix, C.

– Note: The global linear system’s coefficient matrix A will be sparse, consisting

of submatrices, Ai.

• Solve the linear system to get the updated surface mesh.

– Note: For memory conservation when solving, matrix A should be stored using

a sparse matrix format Asparse = [v | i | j]. Where each row of matrix Asparse

contains a non-zero value, vi, along with its row (ii) and column (ji) in matrix

A.
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6 Mesh Adaptivity

As will be seen from our experimental results, our semi-implicit mean curvature flow and

surface diffusion methods have many strengths, such as accuracy, stability and allowance

for large time-steps. However, our testing for these methods rely on a decent mesh element

quality. In a triangulated surface, while the most desirable element would be a triangle that

is equilateral, a less desirable element would be a triangle with relatively acute or obtuse

angles, or relatively long or short edges. Additionally, less desirable elements might be too

small or too large relative to the overall mesh. We use mesh adaptivity to correct these

issues.

There are primarily two cases in which the mesh quality becomes an issue during mean

curvature flow or surface diffusion. The first is the initial mesh. Many times our initial

mesh might have low quality elements due to how it is obtained. In such a case, our goal is

to improve the mesh element quality using mesh adaptivity before evolving the mesh under

mean curvature flow or surface diffusion using our semi-implicit methods as can be seen in

Figure 6.1.

The second case for use of mesh adaptivity is after evolving a mesh under mean curvature
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Figure 6.1: The evolution of a closed torus (major radius = 1, minor radius = 0.25) under
mesh adaptivity utilizing edge splitting, edge contraction, edge flipping, and high-order
surface reconstruction.

 

 

 

 

 

 

Figure 6.2: The evolution of a closed ellipsoid mesh (axes = 1.5, 2, 8) under mean cur-
vature flow using our semi-implicit method. (left) surface before evolution. (center) the
top of the surface after 0.14 seconds of evolution. (right) the top of the surface after
0.14 seconds of evolution with adaptivity.

flow or surface diffusion using our semi-implicit method for a duration of time. This can

potentially lead to very large or very small elements which pose stability issues. Utilizing

adaptivity during evolution can help maintain mesh quality and ultimately increase the

stability when trying to further evolve the mesh, as can be seen in Figure 6.2.
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6.1 Edge Splitting

The first tool at our disposal is edge splitting. Provided two adjacent triangular elements,

edge splitting inserts a new vertex on their shared edge, as can be seen in Figure 6.3. There

are two criterion which we use to determine if an edge requires splitting:

Absolute Longness: The edge is the longest among its incident triangles and is longer than

a provided threshold, L.

Relative Longness: The edge is longer than a desired edge length l < L, one of its opposite

angles is close to π (greater than provided θl), and the shortest edge among its incident

triangles is no shorter than a provided threshold s < l.

These parameters and criteria abide by Jiao et al. [43] and must be chosen consistently

with edge contraction.

Figure 6.3: An example of edge splitting.

The process of edge splitting abides by this criterion to help optimize element quality and

consistency in size. The process of edge splitting occurs in decreasing order of edge lengths

throughout the mesh. Different from Jiao et al. [43], the new vertex is an average of the

weighted polynomial fittings [65, 46] based on the vertices incident of the existing edge,

and its opposite vertices, which allows us to maintain second-order convergence in our

calculations. This process helps to preserve smoothness.
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6.2 Edge Contraction

Edge contraction is another very useful technique for improving mesh quality. Provided an

undesirably short edge, small angle or small element, edge contraction removes a desired

edge and reassigns its incident vertices to a new location. This is done using the criterion

set by Jiao et al. [43]:

Absolute small angle: the opposite angle in an incident triangle of the edge in question is

smaller than a threshold θs, and the triangle’s longest edge is shorter than a desired edge

length l.

Relative shortness: The edge in question is shorter than a fraction r of the longest edge of

its incident triangles.

Absolute small triangle: The edge in question is the shortest in its incident triangles and

the longest edge of its incident triangles is shorter than a given threshold S.

Relative small triangle: The longest edge in its incident triangles is shorter than a fraction

R of the longest edge in the mesh and also shorter than the desired edge length l.

These parameters and criteria abide by Jiao et al. [43] and must be chosen consistently

with edge splitting.

Figure 6.4: An example of edge contraction.
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The process of edge contraction abides by this criterion to help optimize element quality

and consistency in size. The process of edge contraction occurs in increasing order of edge

lengths throughout the mesh. While the first two criteria help to remove poor shaped

triangles, the latter two criteria help to remove triangles that are too small, preserving the

overall mesh quality as it evolves. When contracting an edge, its two incident vertices

merge at a new location. Slightly different from Jiao et al. [43], the new vertex is a

weighted polynomial fitting [65, 46] based on the vertices incident to the contracted edge,

which allows us to maintain second-order convergence in our calculations. This process

helps to preserve smoothness. To prevent mesh folding, we reject any contractions that

would lead to topological changes or an inversion of normals on any triangle. Contracting

the shortest edges first helps to avoid the need for such rejections.

6.3 Edge Flipping

Edge flipping is the process of reassigning the connectivity of existing points such that an

edge incident of two triangular faces is reassigned to instead connect that edge’s opposite

vertices, as can be seen in Figure 6.5. Provided an edge uv with opposite vertices p and q,

the edge is flipped when satisfying the Delaunay flipping criterion (i.e. ∠upv+∠uqv > π)

as outlined by Jiao et al. [43].

Flipping edges helps improve element quality without any change in vertex positioning.

The process of edge flipping occurs in decreasing order of maximum opposite angles, which

avoids an infinite flipping of edges. Provided a mesh with sharp features, we reject any
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Figure 6.5: An example of edge flipping.

flips on such ridges.

6.4 Mesh Regularization

Mesh regularization is important because it redistributes vertices on a surface tangentially

so that their neighboring elements are of similar size. This has the effect of “spreading out”

vertices which can become clustered around one another and provides for better accuracy

when evolving a mesh. Each vertex is moved to a position along the ray emanating from the

average of the barycenter of the neighboring elements such that the total volume enclosed

in the mesh is conserved. This will naturally allow you to introduce the parameter t whose

purpose is to find the new vertex position on the ray which conserves volume. This is done

using the method for mesh regularization outlined in Bänsch et al. [3]. Given a closed,

triangulated surface Γ(t), at each node:

1. Calculate the weighted average unit-normal for the node z. The weights are chosen to

be the area of each element neighboring z,

νz =
1∑ |T |∑νT‖T‖

2. Calculate the average of the barycenter, denoted as z̃, of each of the neighboring

elements of z.
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3. Determine the new position, ẑ, which has the form ẑ = z̃ + tνz. By enforcing volume

conservation between the original mesh and the mesh generated by replacing node z with

ẑ, the parameter t can be calculated to be

t =
∑(z − z̃)× (z2 − z̃) · (z3 − z̃)∑

νz × (z2 − z̃) · (z3 − z̃) (6.1)
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7 Numerical Experiments and

Comparisons

In this section, we perform numerical experiments to verify our preceding analysis. The

experimental results can be affected by a number of factors, such as input errors, surface

topology, mesh connectivity, and methods used.

Our convergence tests will focus on our semi-implicit methods and their rate of convergence

with and without adaptivity. These tests will measure the error in the total surface area

and the error in the encapsulated volume on a variety of meshes. These values will then

produce a rate of convergence for each measure of error. Overall, we want to see our semi-

implicit methods achieve second-order convergence in surface area errors and encapsulated

volume errors. We also hope to maintain second-order convergence in surface area errors

and encapsulated volume errors when working with less ideal meshes, by use of mesh

adaptivity.

Our comparisons will also be performed on a variety of meshes. First we will compare

our semi-implicit methods with their explicit counterparts. Our second comparison will

evaluate results using our semi-implicit methods with and without adaptivity. Our final

comparison will directly examine the differences in results between our semi-implicit method
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with adaptivity for surface diffusion and the finite element method for surface diffusion

presented by Bänsch et al. [4].

For our surface area calculation, we simply sum the surface area of all triangular elements.

For our volume calculation, we connect all mesh vertices to the origin, forming tetrahedrons.

We then sum the volume of all tetrahedrons to obtain the total volume encapsulated by

our surface mesh.

For a sphere, the exact calculation for the radius using mean curvature flow is the following:

Rexact =
√
R2
initial − 2t4t

Rexact is the exact radius of the sphere we expect to obtain after t time-steps of size 4t,

from an initial sphere with radius of Rinitial. For non-sphere mean curvature flow tests and

surface diffusion tests, there is not an exact value for comparison, so we evolve a super-

refined mesh to get an approximation of our errors. To measure convergence, we use the

following equation:

Oconv = Log2( errori
errori+1

)

7.1 Comparison of Explicit and Semi-Implicit Methods

In this section, we will conduct three comparisons between our semi-implicit methods and

their explicit counterparts. The first will be a comparison for mean curvature flow. This

comparison will measure the L∞ error in the placement of the vertices, the surface area

error and the encapsulated volume error of a spherical mesh with radius = 1. The second

comparison will be for surface diffusion. This comparison will measure the surface area error

and the encapsulated volume error of an ellipsoid mesh with axes 4.0, 6.0 and 8.0. The
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third will be a runtime comparison, which will test the difference between the explicit and

semi-implicit methods’ runtimes when producing converging results correlating to real-time.

7.1.1 Mean Curvature Comparison

Here we compare our semi-implicit mean curvature flow method with its explicit counterpart

on a spherical surface with a radius of 1. We will use three levels of refinement for our initial

mesh, with 368, 1,450, and 5,804 vertices. In these tests, we will measure L∞ error, surface

area error and encapsulated volume error. Overall, we want to see our semi-implicit method

produce the same accuracy, and maintain higher stability than its explicit counterpart, while

achieving second-order convergence in surface area errors and encapsulated volume errors.

We obtain the results seen in Figure 7.1.

Because of their differences in stability, the explicit method cannot be compared effectively

with our semi-implicit method using the same size time-step, 4t. As can be seen in

Figure 7.1, the explicit method after 5 time-steps at 4t = 10−3 diverges in both L∞

errors and surface area errors, opposed to our semi-implicit method which converges in

both cases. The results for the encapsulated volume errors were excluded because of their

similarity to the surface area errors. Since the explicit method is less stable than our semi-

implicit method, it requires a much smaller time-step of 4t = 10−7 in order to produce

convergent results in the surface area error and volume error. To create an equivalent

real-time measure of 0.005 seconds, we must use 50000 time-steps with 4t = 10−7. By

shrinking the time-step, the explicit method’s surface area error converges with a rate of

2.04, with similar results in its volume error, equal to the convergence rate of our semi-

implicit method. Though, even with comparable results in accuracy, the major issue of
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Figure 7.1: A comparison of our semi-implicit mean curvature flow method and its explicit
counterpart on a spherical mesh of radius = 1 after 0.005 seconds. Compared are the
explicit method after 5 time-steps at 4t = 10−3 and 50000 time-steps at 4t = 10−7,
and our semi-implicit method for 5 time-steps at 4t = 10−3, with refinement levels of
368, 1450, and 5804 vertices. (left) Displays the L∞error of both methods, with the
explicit method (4t = 10−3) diverging, and both the explicit method (4t = 10−7)
and our semi-implicit method converging. (right) Displays the surface area error of
both methods with the explicit method (4t = 10−3) diverging, the explicit method
(4t = 10−7) and our semi-implicit method (4t = 10−3) converging with a rate of 2.04.

requiring such small time-steps for explicit method ultimately results in very long runtimes,

as will be explored in subsection 7.3.2. Overall, we see our semi-implicit method produce

the same accuracy, while maintaining much higher stability than its explicit counterpart,

while achieving second-order convergence in surface area errors and encapsulated volume

errors.

7.1.2 Surface Diffusion Comparison

Our next comparison will be for surface diffusion on an ellipsoid mesh with an axes 4.0,

6.0, and 8.0. We will use three levels of refinement for our initial mesh, with our number

of vertices being 368, 1450, and 5804. For all meshes, we will perform 22 time-steps at

4t = 5 × 10−6. Ideally, surface diffusion produces no change in volume, so we will not
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display a comparison in volume errors. However, we would like to state that in our testing

we saw that our method produced changes in volume always less than 1.0%. However, we

still want to see our semi-implicit method produce the same accuracy, and maintain higher

stability than its explicit counterpart, while achieving second-order convergence in surface

area errors. Our results can be seen in Figure 7.2
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Figure 7.2: A comparison of explicit and semi-implicit surface diffusion methods on an
ellipsoid mesh with axes 4.0, 6.0, and 8.0, with refinement levels of 368, 1450, and 5804
vertices after 1.1× 10−4 seconds. Above, we display the surface area error of both the
explicit method (4t = 10−8) and our semi-implicit method (4t = 5×10−6) converging
with a rate of 2.34.

Once again, we see the explicit method unable to achieve the same stability as our semi-

implicit method. In Figure 7.2 we can see that our semi-implicit method produces second-

order convergence rates for surface area errors, but is able to take much larger time-steps.

If we increase the time-step slightly for the explicit method, we would see the explicit

method’s failure to converge in surface area error. What we are yet to examine is just

how much this affects the runtime of the explicit method; this is explored in the following,

subsection 7.3.2.
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7.1.3 Runtime Comparison

Here we perform two separate runtime tests. Both tests will be performed with compiled C

code on a 2.27 GHz dual core processor with 4 GB of RAM. The first test will compare the

explicit and our semi-implicit mean curvature flow methods on a spherical mesh of radius

= 1, after 5 time-steps at 4t = 10−3 which totals to 0.005 seconds in real-time. The

results can be seen in Table 7.1 .

Table 7.1: A runtime comparison of explicit and semi-implicit mean curvature flow meth-
ods on a spherical mesh of radius = 1, after 0.005 seconds. Both methods perform 5
time-steps at ∆t = 10−3.

ref npts secexp steps×∆t secsemi−imp steps×∆t
1 368 1.88 5×10−3 2.26 5×10−3

2 1450 7.22 5×10−3 10.90 5×10−3

3 5804 29.20 5×10−3 52.40 5×10−3

While Table 7.1 clearly shows the explicit method produces faster runtimes than our semi-

implicit method, what is does not show is the explicit method’s failure to converge in

surface area error and encapsulated volume error (refer to subsection 7.2.1) with a time-

step (4t) of 10−3. To compare runtimes effectively, we must compare runtimes in which

both methods produce convergent results for the surface area errors and encapsulated

volume errors. To obtain convergent results with the explicit method, we had to shrink

the time-step (4t) to 10−7. Ultimately, we still want to evolve the mesh under mean

curvature flow for 0.005 seconds in real-time, which means the explicit method will now

require 50000 time-steps (t). This is a big advantage of our semi-implicit method. More

than just an increase in accuracy and second-order convergence in errors, our semi-implicit

method’s stability allows for significantly larger time-steps, resulting in extremely shorter
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runtimes.

Table 7.2: A runtime comparison of explicit and semi-implicit mean curvature flow meth-
ods on a spherical mesh of radius = 1, after 0.005 seconds. To produce convergent
results the explicit method performs 50000 time-steps at ∆t = 10−7 where our semi
implicit method performs only 5 time-steps at ∆t = 10−3.

ref npts secexp steps×∆t secsemi−imp steps×∆t
1 368 1.84×104 50000×10−7 2.26 5×10−3

2 1450 7.86×104 50000×10−7 10.90 5×10−3

3 5804 3.28×105 50000×10−7 52.40 5×10−3

Table 7.2 exhibits the importance of the stability of our semi-implicit method. To obtain

convergent results in errors after 0.005 seconds of evolution under mean curvature flow in

real-time for all three refinement levels, the runtime totaled to over 3 days for the explicit

method, where our semi-implicit method took slightly more than 1 minute.

7.2 Convergence Results for Semi-Implicit Methods

In this section we will examine the accuracy of our semi-implicit mean curvature flow

and surface diffusion methods. Varying by test, we will measure the L∞ errors, surface

area errors, and encapsulated volume errors. By these errors we will then determine the

convergence rates.
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Figure 7.3: The evolution of a closed ellipsoid mesh (axes = 4.0, 6.0, 8.0) under mean
curvature flow using our semi-implicit method. The colormap reflects the mean curva-
ture. (left) surface before evolution. (center) surface after 3.00 seconds of evolution.
(right) surface after 3.75 seconds of evolution.

7.2.1 Mean Curvature Flow Convergence Results

This test will examine the accuracy and stability of our semi-implicit method. We will work

with a spherical mesh of radius = 1.0, an ellipsoid mesh with axes of length 4.0, 6.0, and

8.0, and a torus mesh with major radius = 1.0, and minor radius = 0.25. For each test, we

will measure the surface area error and the encapsulated volume error. For our spherical

mesh test, we will also measure L∞ error.

Overall, we want to achieve second-order convergence in surface area errors and encap-

sulated volume errors. For our sphere test, we use 50 time-steps at 4t = 10−3 over

refinement levels of 368, 1450, and 5804 vertices to obtain the results shown in Table 7.3

As can be seen in Table 7.3 both surface area errors and volume errors exhibit greater than

second-order convergence in all cases.

For our ellipsoid test, we will use three levels of refinement for our initial mesh, with

368, 1,450, and 5,804 vertices. For each refinement level, we will use 50 time-steps at
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Table 7.3: L∞errors of vertex placement, surface area errors, encapsulated volume errors
and convergence rates for our semi-implicit mean curvature flow method on a spherical
mesh of radius = 1, after 50 time-steps at 4t = 10−3.

ref npts areaerr O volumeerr O L∞err
1 368 9.17×10−2 n/a 5.26×10−2 n/a 1.68× 10−4

2 1450 2.19×10−2 2.07 1.27×10−2 2.05 8.76× 10−5

3 5804 3.98×10−3 2.46 2.47×10−3 2.36 8.33× 10−6

4t = 10−3. For our ellipsoid test, we obtain the results shown in Table 7.4

Table 7.4: Surface area errors, encapsulated volume errors and convergence rates for our
semi-implicit mean curvature flow method on an ellipsoid mesh with axes 4.0, 6.0 and
8.0, after 50 time-steps at 4t = 10−3.

ref npts areaerr O volumeerr O
1 368 4.78×10−1 n/a 4.84×10−1 n/a
2 1450 1.18×10−1 2.02 1.16×10−1 2.07
3 5804 2.52×10−2 2.22 2.32×10−2 2.32

While results in Table 7.4 are based on approximations, they are very close to the true

errors and convergence rates. As can be seen, our obtained errors lead to a greater than

second-order convergence in all cases.

Table 7.5: Surface area errors, encapsulated volume errors and convergence rates for our
semi-implicit mean curvature flow method on a torus mesh with major radius = 1.0, and
minor radius = 0.25 after 20 time-steps at 4t = 10−3.

ref npts areaerr O volumeerr O
1 328 8.14×10−2 n/a 6.11×10−2 n/a
2 1348 2.65×10−2 1.62 1.60×10−2 1.93
3 5269 6.82×10−3 1.96 3.70×10−3 2.11

With such success evolving both a sphere and ellipsoid under mean curvature flow using

our semi-implicit mean curvature flow method, we wanted to see how our method would
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handle a more complicated topology. Table 7.5 shows the convergence results for our semi-

implicit mean curvature flow method on a torus mesh with major radius = 1.0, and minor

radius = 0.25 after 20 time-steps at 4t = 10−3. As can be seen, our surface area errors

still maintain a rate of convergence near 2.00 as the mesh refines.
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Figure 7.4: The evolution of a closed torus mesh (major radius = 1.0, minor radius =
0.25) under mean curvature flow using our semi-implicit method. The colormap reflects
the mean curvature. (left) surface before evolution. (right) surface after 0.09 seconds
of evolution.

7.2.2 Surface Diffusion Convergence Results

This test will examine the accuracy and stability of our semi-implicit method for surface

diffusion. We will work with the same ellipsoid from before, with axes of length 4.0, 6.0,

and 8.0. We will use three levels of refinement for our initial mesh, with our number of

vertices being 368, 1,450, and 5,804. For all refinement levels, we will use 50 time-steps

at 4t = 10−6. As with our semi-implicit mean curvature flow method, here we want to
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achieve second-order convergence in surface area errors. We do not measure volume, as

it is ideally unchanged in surface diffusion. We make note that volume changes were less

than 1.0% in our experimentation. With our ellipsoid test, we obtain the results seen in

Table 7.6

Table 7.6: Surface area errors and convergence rates for our semi-implicit surface diffusion
method on an ellipsoid mesh with axes 4.0, 6.0 and 8.0 after 50 time-steps at4t = 10−6.

ref npts areaerr O
1 368 8.97× 10−1 n/a
2 1450 2.20× 10−1 2.03
3 5804 4.41× 10−2 2.32

As can be seen in Table 7.6, our obtained errors produce higher than second-order conver-

gence.

7.3 Comparison of Semi-Implicit Methods with and

without Adaptivity

We will conduct two comparisons in this section. First, we will compare the surface area

errors and the encapsulated volume errors of our method with and without adaptivity on

a spherical mesh with radius = 1.0. This will confirm that we do not sacrifice accuracy

when using mesh adaptivity. The second test will be a runtime comparison on an ellipsoid

mesh (axes = 1.5, 2.0, and 8.0). Here, we will show the worth of stability in its ability to

use larger time-steps when evolving a poor quality mesh.
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7.3.1 Convergence Comparison

Here we compare accuracy of our semi-implicit mean curvature flow method with and

without adaptivity on a spherical surface with radius = 1.0. We will use three levels of

refinement for our initial mesh, with 368, 1,450, and 5,804 vertices. In these tests, we

compare surface area error and encapsulated volume error. Overall, we want to see if the

accuracy of our semi-implicit method is preserved when using mesh adaptivity. We obtain

the results seen in Figure 7.5.
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Figure 7.5: A comparison of our semi-implicit mean curvature flow method with and
without adaptivity on a spherical mesh with radius = 1, after 10 time-steps at4t = 10−3

with refinement levels of 368, 1450, and 5804 vertices. (left) displays the surface area
errors. Our semi-implicit method converges with a rate of 1.91 without adaptivity, and
a rate of 1.92 with adaptivity. (right) displays the encapsulated volume errors. Our
semi-implicit method converges with a rate of 1.94 without adaptivity, and a rate of
1.94 with adaptivity.

As can be seen in Figure 7.5, with or without adaptivity, our method produces nearly

identical results. Knowing this, we can further examine our semi-implicit method with

mesh adaptivity on meshes of poor quality with varying curvature.
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7.3.2 Runtime Comparison

Here we perform a runtime test with compiled C code on a 2.27 GHz dual core processor

with 4 GB of RAM. This test will compare the runtimes of our semi-implicit mean curvature

flow method with and without adaptivity on an ellipsoid mesh with axes = 1.5, 2.0, and

4.0 with refinement levels of 480, 1,896, and 7,680 vertices. Because of the meshes

poor element quality, without mesh adaptivity, we will have to use very small time-steps

to maintain stability and produce convergence results (4t = 10−7). Whereas, with mesh

adaptivity we are able to use much larger time-steps and still maintain stability and produce

convergence results (4t = 10−2). We will run both methods to 0.22 seconds in real-time.

Because our method without adaptivity will require so many time-steps, we will run the

test for 10 steps at 4t = 10−7, then multiply our results by 220,000. The results can be

seen in Table 7.7 .

Table 7.7: A runtime comparison of our semi-implicit mean curvature flow methods with
and without mesh adaptivity on an ellipsoid mesh with axes = 1.5, 2.0, and 4.0 after
0.22 seconds. Step size is adjusted to maintain stability.

ref npts secw/adapt steps×∆t secw/o adapt steps×∆t
1 480 1.19×101 22×10−2 4.21×105 2,200,000×10−7

2 1896 7.61×101 22×10−2 1.84×106 2,200,000×10−7

3 7680 1.02×103 22×10−2 3.30×107 2,200,000×10−7

Table 7.7 exhibits the importance of the stability of our semi-implicit method through use

of mesh adaptivity. Though our runtimes for our semi-implicit method without adaptivity

are approximations, they clearly exhibit the importance of using mesh adaptivity to increase

stability: To obtain convergent results in errors after 0.22 seconds of evolution under mean

curvature flow in real-time for all three refinement levels, the runtime totaled to over a year
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when not using mesh adaptivity, where our semi-implicit method with adaptivity took less

than 19 minutes.

7.4 Convergence Results of Semi-Implicit Methods

with Adaptivity

In this section, we will conduct four tests examining our semi-implicit methods with adap-

tivity. The first and second tests will measure the accuracy of our semi-implicit method

for mean curvature flow, using mesh adaptivity. We will measure the surface area errors

and the encapsulated volume errors on ellipsoid meshes with both high- and poor-quality

elements. The third and fourth tests will measure the accuracy of our semi-implicit method

for surface diffusion, using mesh adaptivity. We will measure the surface area errors and the

encapsulated volume errors on ellipsoid meshes with both high- and poor-quality elements.

7.4.1 Mean Curvature Flow with Adaptivity Convergence Results

Here we will examine our semi-implicit mean curvature flow method with mesh adaptivity

on meshes that otherwise would cause instability in our standard method. We will use two

different meshes in this comparison to exhibit the different ways mesh adaptivity can be

utilized with our semi-implicit mean curvature flow method.

7.4.1.1 High-Quality Mesh Convergence - Mean Curvature Flow

For this test, we will use an ellipsoid mesh (axes = 1.5, 2.0, 8.0) with high quality ele-
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ments. For a triangular mesh, this means that the elements are all close to equilateral

triangles. Normally, this means that our semi-implicit mean curvature flow method would

be very stable. However, the shape of the mesh causes an issue. Because of its elongated

shaped, as the mesh evolves, vertices become crowded and the element quality diminishes.

Consequently, the mesh is entirely unable to evolve past a certain point. Even lessening

the time-step cannot correct the issue, as elements will continue to decrease in size and

quality, disallowing our semi-implicit mean curvature flow method to work properly. This

can be corrected if we utilize mesh adaptivity. By doing so, this allows the mesh to evolve

without the elements becoming crowded, as can be seen in Figure 6.2. The accuracy and

convergence over three refinement levels of 368, 1,450, and 5,804 vertices can be seen in

Table 7.8.

Table 7.8: Surface area errors, encapsulated volume errors and convergence rates for our
semi-implicit mean curvature flow method on an ellipsoid mesh with axes 1.5, 2.0 and
8.0, after 22 time-steps at 4t = 10−2.

ref npts areaerr O volumeerr O
1 368 9.18×10−1 n/a 4.20×10−1 n/a
2 1450 2.18×10−1 2.08 1.03×10−1 2.02
3 5804 4.21×10−2 2.37 2.13×10−2 2.28

7.4.1.2 Poor-Quality Mesh Convergence - Mean Curvature Flow

Mesh adaptivity can also be used if we have a poor quality mesh to start with. Figure 7.6

clearly shows how mesh adaptivity drastically improves element quality, which then al-

lows for bigger time-steps when evolving the mesh under mean curvature flow using our
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semi-implicit method. For this test we use an ellipsoid (axes 1.5, 2.0, and 4.0) with re-

finement levels of 480, 1,896, and 7,680 vertices. To evolve 0.22 seconds in real-time, our

semi-implicit mean curvature flow method must decrease its time-steps to 4t = 10−7 to

maintain stability, requiring 2200000 steps. Whereas, if we utilized mesh adaptivity, we

only need to take 22 steps at 4t = 10−2. In doing so, we significantly lessen our runtime

(subsection 7.3.2) while maintaining stability and producing very accurate results, as can

be seen in Table 7.9 .
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Figure 7.6: The evolution of a closed ellipsoid mesh (axes = 1.5, 2, 4) using mesh adap-
tivity. (left) surface before evolution. (right) surface after evolution.

Table 7.9: Surface area errors, encapsulated volume errors and convergence rates for our
semi-implicit mean curvature flow method on an ellipsoid mesh with axes 1.5, 2.0 and
4.0, after 22 time-steps at 4t = 10−2.

ref npts areaerr O volumeerr O
1 480 8.76×10−1 n/a 3.75×10−1 n/a
2 1896 2.00×10−1 2.13 9.22×10−2 2.02
3 7680 1.78×10−2 2.41 1.78×10−2 2.38
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7.4.2 Surface Diffusion with Adaptivity Convergence Results

Here we will examine our semi-implicit surface diffusion method with mesh adaptivity on

two meshes. These meshes are of an ellipsoid with axes 2.0, 2.0 and 3.0.

7.4.2.1 High-Quality Mesh Convergence - Surface Diffusion

The first mesh we will use for this test has elements of high quality. For a triangular

mesh, this means that the elements are all close to equilateral triangles. The accuracy and

convergence rates over three refinement levels of 368, 1,450, and 5,804 vertices after 0.05

seconds of evolution can be seen in Table 7.10.

Table 7.10: Surface area errors and convergence rates for our semi-implicit surface diffu-
sion method on an ellipsoid mesh with axes 2.0, 2.0 and 3.0, after 100 time-steps at
4t = 10−4.

ref npts areaerr O
1 368 1.26×10−1 n/a
2 1450 3.12×10−2 2.01
3 5804 6.08×10−3 2.36

7.4.2.2 Poor-Quality Mesh Convergence - Surface Diffusion

As can be seen in Table 7.10, with the inclusion of mesh adaptivity, our semi-implicit

surface diffusion method maintains second-order convergence in surface area errors on a

surface with high quality elements. Additionally, we will examine our semi-implicit surface

diffusion method with mesh adaptivity on a mesh with poor quality elements. We will use
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another ellipsoid mesh with axes 2.0, 2.0 and 3.0. Again, we are able to maintain second-

order convergence over three refinement levels of 480, 1,896, and 7,680 vertices after 0.05

seconds of evolution, as can be seen in Table 7.11 .

Table 7.11: Surface area errors and convergence rates for our semi-implicit surface diffu-
sion method on an ellipsoid mesh with axes 2.0, 2.0 and 3.0, after 100 time-steps at
4t = 10−4.

ref npts areaerr O
1 480 1.48×10−1 n/a
2 1896 3.15×10−2 2.23
3 7680 5.12×10−3 2.62

7.5 Comparison of FEM and Semi-Implicit Method

with Adaptivity

In addition to exhibiting the accuracy and rate of convergence of our semi-implicit method

with use of mesh adaptivity, we also want to show how our method compares to other

existing methods. Bänsch et al. [4] proposed a mixed finite element method (FEM) for

solving the surface diffusion equation governed by the surface Laplacian of the mean curva-

ture. Their method uses a semi-implicit time discretization to split the fourth order, highly

nonlinear geometric PDE into four linear (up to second order) elliptic equations involving

both scalar and vector forms of the curvature and velocity of the discrete surface. The dis-

cretization merely requires piecewise-linear elements which can be used to enforce a weak

formulation of the system of PDEs which simplifies implementation. The resulting linear
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algebraic system of equations can be solved semi-implicitly utilizing a Schur complement

approach. For mesh adaptivity, Bänsch et al. [4] outlines several schemes to improve mesh

quality and avoid defects associated with clustered vertices and singularities, which include

mesh regularization, time adaptivity, spatial adaptivity, and angle-width control. In this

comparison, only mesh regularization and time adaptivity are implemented as they improve

mesh quality but do not affect mesh connectivity, allowing analysis of convergence rates to

be done in a consistent manner.

7.5.1 High-Quality Mesh Comparison

The mesh we will use for this test has elements of good quality. For a triangular mesh, this

means that the elements are all close to equilateral triangles. Since ideal surface diffusion

flow maintains its volume, we will measure accuracy and rate of convergence using only

surface area. Please note that through evolution via surface diffusion flow, both methods

result in volume changes less than 1.0%. We evolve an ellipsoid mesh (axes = 2.0, 2.0

and 3.0) over 0.05 seconds using 100 time-steps at 4t = 5 × 10−4. The accuracy and

convergence over three refinement levels of 368, 1,450, and 5,804 vertices can be seen in

Figure 7.7.

Figure 7.7 clearly shows the strength of our method. While Bänsch et al. [4] mixed finite

element method (FEM) converges with a rate of 1.03, our method achieves a convergence

rate of 2.36.

7.5.2 Poor-Quality Mesh Comparison

Our second mesh will be one of “poor” quality, meaning that its elements will not be
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Figure 7.7: A comparison of our semi-implicit mean curvature flow method with adaptivity
and Bänsch et al. [4] mixed finite element method (FEM) on a “good” quality ellipsoid
mesh with axes 2.0, 2.0, and 3.0, after 0.05 seconds. Displayed are the surface area
errors, with Bänsch et al. [4] method converging with a rate of 1.03, and our semi-
implicit method with adaptivity converging with a rate of 2.36.

consistent and will vary significantly in angle values and size. This will exhibit a different

way mesh adaptivity can be utilized. Again, we evolve an ellipsoid mesh (axes = 2.0, 2.0

and 3.0) over 0.05 seconds using 100 time-steps at 4t = 5 × 10−4. The accuracy and

convergence over three refinement levels of 480, 1896, and 7680 vertices can be seen in

Figure 7.7.

As stated in Bänsch et al. [4], poor quality meshes are handled well with their mesh

adaptivity techniques. As a result, we see stability and accuracy maintained in their results.

However, with our mesh adaptivity techniques, our method successfully maintains stability

and accuracy as well, while producing much stronger convergence rates. As can be seen

in Figure 7.8, Bänsch et al. [4] method’s surface area errors converge with a rate of 1.09,

where our semi-implicit method with mesh adaptivity produces a convergence rate of 2.62.

While we would like to report a runtime comparison, we are unable to do so justifiably,
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Figure 7.8: A comparison of our semi-implicit surface diffusion method with adaptivity and
Bänsch et al. [4] mixed finite element method (FEM) on a “poor” quality ellipsoid mesh
with axes 2.0, 2.0, and 3.0, after 0.05 seconds. Displayed are the surface area errors,
with Bänsch et al. [4] method converging with a rate of 1.09, and our semi-implicit
method with adaptivity converging with a rate of 2.62.

since this is our own implementation of Bänsch et al. [4] finite element method. We cannot

guarantee runtimes to effectively represent their code. However, we would like to mention

that in our experimentation, Bänsch et al. [4] method’s runtime was not significantly

different from ours.
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8 Conclusions and Future Work

Many methods have tackled mean curvature flow and surface diffusion. To solve these

equations, some have used level set methods [12, 53]. Osher and Sethian [53] devised

an algorithm for front propagation with curvature-dependent speed, where the equation

is treated as a Hamilton-Jacobi equation with a viscosity term and is numerically solved

using techniques from hyperbolic conservation laws. While Chopp and Sethian [12] solved

the surface diffusion equation, with the fourth order operator calculated through a hybrid

narrow band approach near the interface. Such methods based on level set can easily

handle singularities during propagation and a non-smooth initial front, but fail to provide

accuracy analysis. Additionally, the time-step for these explicit methods has to be very

small to ensure stability.

Other methods use semi-implicit methods to address the limitation of small time-steps in

the explicit approach [59, 4]. Smereka [59] introduced a semi-implicit scheme for mean

curvature flow based on the level set framework, while Bänsch et al. [4] proposed a semi-

implicit finite element method for solving the diffusion equation governed by the surface

Laplacian of the mean curvature. While both methods allow for larger time-steps, both

fail to provide substantial accuracy analysis or proof of second-order convergence. The

shortcoming that can be seen clearly in all existing methods is that they fail to meet all
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three basic goals: substantial accuracy analysis, allowance for relatively large time-steps,

and proof of second-order convergence. This has motivated the creation of our semi-implicit

method which achieves all of these things.

For substantial accuracy analysis we use a continuous fitting method where once we have

the local polynomial, we can use the continuous algebraic formulae to calculate various

differential operators of both the surface itself and functions defined on the surface. Such

a method provides robust and provable convergent results compared to discrete schemes.

Additionally, our method also allows for relatively large time-steps through its semi-implicit

form. While explicit methods are restricting by their need for very small time-steps, and

implicit methods are costly due to their non-linear nature, we find a compromise between the

two which allows for larger time-steps, which ultimately reduces runtime. Our experimental

results show clearly that our semi-implicit methods also achieve second-order convergence.

This is very significant.

With the addition of mesh adaptivity, we are able to maintain second-order convergence for

meshes of varying quality and through the issue of crowding vertices due to the evolution

process. This allows us to compete with other methods, such as Bänsch et al. [4] which

also include the use of mesh adaptivity. Because of this, we are able to make a direct

comparison between both methods. Our results exhibit the superiority of our method, as

it was able to achieve second-order convergence, where Bänsch et al. [4] method only

produced first-order convergence.

With all of our goals met, we look forward to improving our methods in our future work. For

both our semi-implicit mean curvature flow method and our semi-implicit surface diffusion

method we are exploring the idea of combining our generalized finite difference method

framework with that of a finite element method structure. By doing so, we would hope to

achieve a method which maintains second-order convergence, while also preserving matrix
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symmetry in calculations. The result would be a method comparable to our current method

in terms of accuracy, but would allow for even larger time-steps.
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