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Abstract of the Dissertation

Algorithms in Computational
Conformal geometry

by
Yinghua Li

Doctor of Philosophy
in

Applied Mathematics and Statistics

Stony Brook University
2012

Computational conformal geometry is an intersectional field combining mod-
ern geometry theories from pure mathematics with computational algorithms
from computer science.

In the first part of this dissertation, we firstly review a powerful tool in
computational conformal geometry, the discrete surface Ricci flow, which is
used to conformally deform the given Riemannian metric of a surface to a
Riemannian metric according to a user defined Gaussian curvature on interior
points and geodesic curvature along the boundaries. Using the discrete Ricci
flow to embed the high genus surface into the hyperbolic plane, we propose
an efficient algorithm to compute the shortest words for loops given on trian-
gulated surface meshes. The design of this algorithm is inspired and guided
by the work of Dehn and Birman-Series. In support of the shortest word
algorithm, we also propose efficient algorithms to compute shortest paths
and shortest loops under hyperbolic metrics using a novel technique, called
transient embedding, to work with the universal covering space. In addition,
we employ several techniques to relieve the numerical errors. Experimental
results are given to demonstrate the performance in practice.

In the second part, we introduce two Delaunay refinement algorithms
which give quality meshes on two-dimensional hyperbolic Poincaré disk in
computing. These two Delaunay refinement algorithms are generalizations
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of Chew’s second algorithm and Ruppert’s refinement algorithm, both of
them are based on the Planar Straight Line Graph (PSLG) in Euclidean
geometry. By modifying some definitions and adding new constraints, these
two algorithms can be applied to surface meshes embedded in the hyper-
bolic Poincaré disk. The generalizations will work on global meshes, and
termination of these two algorithms will be given under constraints.
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Chapter 1

Introduction

Conformal geometry studies the conformal structure of general surfaces. The

conformal structure is a structure to measure the intersection angles between

two curves on the surface, it’s more rigid than topological structure which

gives the neighborhood information, and it’s more flexible than Rieman-

nian metric which is a structure to measure the lengths of curves on the

surface, the areas of domains on the surface and the intersection angle be-

tween curves. Computational conformal geometry is an intersectional field

combining modern geometry theories from pure mathematics with computa-

tional algorithms from computer science. Computational conformal geomet-

ric methods can handle most of the geometric processing tasks for 3D shapes,

which include shape representation, geometric compression, surface repair-

ing, shape de-noising and smoothing, surface stitching and merging, meshing

and re-meshing, surface classification, shape comparison, surface matching
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and recognition, shape manipulation, and many others. The power comes

from Poincaré’s uniformization theorem, which states that all closed metric

surfaces can be conformally mapped to one of the three canonical spaces,

the sphere S
2, the plane R

2 or the hyperbolic disk H
2. Gu and Yau [14]

wrote a book which introduce the theories and algorithms of computational

conformal geometry.

One of the powerful tools to compute the uniformization metric of sur-

faces is the surface Ricci flow, which was introduce by Hamilton [15]. A

circle packing algorithm was introduced by Thurston in [29]. Chow and Luo

discovered their intrinsic relations and laid down the theoretic foundation for

discrete Ricci flow in [6], where the existence and convergence of the discrete

Ricci flow were established. The algorithm is a gradient descend algorithm,

which is not efficient in practice. Jin, Kim, Luo and Gu [18] improved the

algorithm in later work by Newtons method. There are also some kind of

uniformizations for open metric surfaces, such as circle domain[17], where

the boundary components are mapped to circles in the sense of the under-

lying metric. Combing surface Ricci flow and Koebe’s iteration, Zhang, Li,

Zeng and Gu [33] computed the uniformization metric for circle domain of

open metric surfaces. There are vast applications of the discrete Ricci flow

in computational conformal geometry. In this dissertation, we will give an

application in computing shortest words on hyperbolic surface, it’s a typical

example which solves a topological problem using geometric approaches.

With the development of three dimensional scanning technologies, 3D
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shapes in real life can be easily acquired. One important task in computa-

tional conformal geometry is to find an algorithm to discretize smooth sur-

faces, such that the Gaussian curvature and mean curvature function con-

verge. J.M. Morvan [24] gave a theorem which states that the Gaussian

curvature and mean curvature function will converge on a sequence of trian-

gulations of a surface if the minimal angle in each triangulation is bounded

below and the maximum circumradius in each triangulation converges to 0.

Also a lot of shape analysis applications, such as surface matching, regis-

tration, tracking, and object recognition, use the techniques from classical

differential geometry. Most differential operators are approximated by dis-

crete operators, partial differential equations are converted to large sparse

linear systems using Finite Element Methods. When using finite element

methods, it is important to produce qualify meshes with minimal angle θ.

Mesh refinement have been studied since 1990s, it is a technique for gen-

erating quality meshes by adding Steiner vertices into the input meshes. Two

important works are those of Chew [5] and Ruppert [27]. As Delauany tri-

angulation maximizes the minimum angle in the plane, Ruppert [27] gave a

refinement algorithm of constraint Delaunay triangulation of Planar Straight

Line Graph (PSLG) with output minimal angle α ≤ 20.7◦, and gave the proof

of termination and size-optimal for his refinement algorithm assuming that

all the input angles are no less than π/2. In practice, Ruppert’s algorithm

performs well when the threshold α is set to be as big as around π/6. After

Ruppert’s work, some papers have addressed the small input angle condition
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as well as other improvements[25][28][20]. Miller, Pav, and Walkington [23]

gave an improved analysis of Ruppert’s Delaunay refinement algorithm, they

showed that the algorithm terminates for a minimum angle threshold as high

as 26.5◦ under mild assumptions on the input.

Chew [5] originally gave his second refinement algorithm about constraint

Delaunay triangulation of a PSLG with output minimal angle α = 30◦, and

a similar proof of termination was given, also Chew generalized the algo-

rithm to curve surfaces(surface meshes embedded in R3) with new definition

of the circumcenter. Chew’s second refinement algorithm does not have any

guarantees on grading or number of triangles. Shewchuk [28] showed that

Chew’s algorithm produces meshes that are nicely graded and size-optimal

if the angle bound is relaxed to less than 26.5◦, and the resulting meshes

have fewer vertices than Ruppert’s algorithm in practice. Recently, Alexan-

der Rand [1] extended the analysis by Miller, Pav and Walkington, gave a

proof of the termination of Chew’s second Delaunay refinement algorithm for

any minimum angle threshold less than 28.60◦, and this holds not only for

circumcenters but also for off-center Steiner vertices.

Using the discrete Ricci flow, one can conformally deform a given surface

to a surface embedded in one of the three canonical spaces. If we can get a

quality mesh with minimal angle bounded below on the canonical spaces, it

will induce a quality mesh on the original mesh. Thus we want to generalize

Chew’s second Delaunay refinement algorithm and Ruppert’s Delaunay re-

finement algorithm to the surface meshes embedded in their covering spaces
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with constant curvatures S2,R2 and H2(with curvature +1, 0,−1). A similar

work has been done by Zeng, Shi and Gu [32], they used Ruppert’s method

in the uniformization spaces. We want to give a theoretic analysis about

the termination of the generalized algorithms on surfaces embedded in uni-

formization spaces.

For R2 case, which are periodic surface meshes embedded in the plane,

the above two refinement algorithms can be generalized directly without

any difficulty. While in S
2 and H

2 cases, it is not so easy to define ’good’

triangulations on them using angles of the geodesic triangles. We need to

modify the algorithms and give new definition of qualify triangulations and

add constraints to ensure the termination of refinement algorithms. In the

second part of this dissertation, we will focus on the case that surfaces S

are embedded in the hyperbolic Poincaré disk D: S ∼= D/G, where G is a

Fuchsian group.

The organization of material is as follows. Chapter 2 will include discrete

surface Ricci flow and its applications, in which we also give a brief intro-

duction about some basic concepts in Geometry and topology, surface Ricci

flow, hyperbolic embedding and solving the shortest words vis shortest loops

on the hyperbolic plane. In Chapter 3, we will give two generalized Delaunay

refinement algorithms on surfaces embedding in the hyperbolic Poincaré Disk

Model. A brief introduction about the hyperbolic space and the hyperbolic

Poincaré disk model will be given, the hyperbolic triangles and Delauany

triangulation on the Poincaré disk will be discussed. The generalized Chew’s
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second algorithm and Ruppert’s refinement algorithm will be described in

the sections in this chapter.
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Chapter 2

Discrete Ricci Flow and Its

Applications

2.1 Brief Introduction of Geometry and Topol-

ogy

2.1.1 Riemannian Geometry

Let M be a second countable Hausdorff differentiable manifold of dimension

n. A Riemannian metric on M is a family of positive definite inner products

on the tangent bundle

gp : TpM × TpM → R p ∈M (2.1)
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such that, for all differentiable vector field X, Y on M

p→ gp(X(p), Y (p))

defines a differential function M → R. The assignment of an inner product

gp to each point p of the manifold is called a metric tensor. If we use the

local coordinates { ∂
∂x1

, . . . , ∂
∂xn
}, then the above metric tensor can be written

as

gij(p) := gp((
∂

∂xi

)p, (
∂

∂xj

)p).

Equivalently, the metric tensor can be weitten in terms of the dual basis

{dx1, . . . , dxn} of the cotangent bundle as

g =
∑

i,j

gijdxi ⊗ dxj. (2.2)

Endowed with this metric, the differential manifold (M, g) is a Riemannian

manifold.

If γ : [a, b]→M is a continuously differentiable curve in the Riemannian

manifold, then the length of γ is given by

L(γ) =

∫ b

a

‖γ ′

(t)‖dt =
∫ b

a

√

gγ(t)(γ̇(t), γ̇(t))dt.

Then the distance between any two points x and y on M is defined as

d(x, y) = inf{L(γ) : γ is a continuously differential curve joining x and y}.
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With this definition, every connected Riemannian manifold M becomes a

metric space. Geodesics in a Riemannian manifold are then the locally

distance-minimizing paths.

2.1.2 Algebraic Topology

Given a topological surface S, the fundamental group π1(S, p) is formed by

the sets of equivalence classes of all loops {f : [0, 1]→ S|f is continuous and

f(0) = f(1) = p} with the base point p. Two loops are equivalent iff one of

the loop can be continuously deformed to the other loop without leaving the

surface S. The formal definition is given as follows.

Definition 2.1 (Homotopy equivalence). Two loops f and g are homotopy

equivalent, if there is a continuous map h : [0, 1]×[0, 1]→ S with the property

that, for all 0 ≤ t ≤ 1

h(t, 0) = f(t), h(t, 1) = g(t), and h(0, t) = p = h(1, t).

The multiplication of two loops f and g is defined as

f · g =















f(2t), 0 ≤ t ≤ 1/2;

g(1− 2t), 1/2 ≤ t ≤ 1.

The product of two homotopy classes of loops [f ] and [g] is then defined as

[f · g]. The homotopy classes with this operation form a group, which is

9



called the fundamental group at p. If S is path connected, then we have

π(S, p) ∼= π(S, q) for all p, q ∈ S, so we can simply denote it as π1(S).The

identity element is the constant map at the base point, and the inverse of a

loop f is the loop g defined by g(t) = f(1−t). That is, g follows f backwards.

S is called simply connected if and only if S is path connected and π1s is

trivial, i.e., π1s consists only of the identity element.

Suppose S is a genus g closed surface. A canonical set of generators

of π1(S) consists of {a1, b1, a2, b2, . . . , ag, bg}, such that the pair ai and bi

has one intersection point, the pairs {ai, aj}, {bi, bj} and {ai, bj}, have no

intersections, where i 6= j. In this dissertation, we consider the fundamental

group at a base point p, then we can move all the intersection points to the

point p to get a canonical set of generators of π1(S, p).

A covering space of S is a space S̃ together with a continuous surjective

map h : S̃ → S, such that for every p ∈ S there exists an open neighborhood

U of p such that h−1(U) is a disjoint union of open sets in S̃, each of which

is mapped homeomorphically onto U by h. The map h is called the covering

map. A connected covering space S̃ is a universal cover if it is simply con-

nected. Suppose γ ⊂ S is a loop through the base point p on S. Let p̃0 ∈ S̃

be a preimage of the base point p̃0 ∈ h−1(p), then there exists a unique path

γ̃ ⊂ S̃ lying over γ (i.e. h(γ̃) = γ) and γ̃(0) = p̃0. γ̃ is a lift of γ.

A deck transformation of a cover h : S̃ → S is a homeomorphism

h : S̃ → S̃,
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such that h ◦ f = h.

All deck transformations form a group, the so-called deck transformation

group. A fundamental domain of S is a simply connected domain, which

intersects each orbit of the deck transformation group only once. A funda-

mental domain can be obtained by slicing a surface S along canonical funda-

mental group generators. Deck transformations map fundamental domains

to fundamental domains. The deck transformation group Deck(S) is isomor-

phic to the fundamental group π1(S, p). Let p̃0 ∈ h−1(p), φ ∈ Deck(S), γ is

a path in the universal cover connecting p̃0 and φ(p̃0), then the projection of

γ̃ is a loop on S, φ corresponds to the homotopy class of the loop,

φ→ [h(γ̃)].

This gives the isomorphism between Deck(S) and π1(S, p).

The universal covering space for a high genus surface is the hyperbolic

space H2. The Möbius transformation group PSL(2, R) is regarded as a

group of isometries of the hyperbolic plane, or conformal transformations

of the unit disc, or conformal transformations of the upper half plane. A

discrete subgroup of PSL(2, R) is called a Fuchsian group.
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2.2 Surface Ricci Flow

2.2.1 Riemann surface

Definition 2.2. A function f : C → C, z = x + yi → ω = u + vi is

holomorphic, if it satisfies the following Cauchy-Riemann equation:

∂u

∂x
=

∂v

∂y
(2.3)

∂u

∂y
= −∂v

∂x
. (2.4)

If a holomorphic function f is bijective and f−1 is holomorphic, then f

is said to be biholomorphic or a conformal mapping.

Definition 2.3. A Riemann Surface represents a two-dimensional manifold

M with an atlas {(Uα, zα}), such that {Uα} is an open covering, M ⊂ ∪Uα;

zα : Uα → C is a homeomorphism from Uα → zα(Uα). If Uα ∩ Uβ 6= ∅, then

zβ ◦ z−1
α : zα(Uα ∩ Uβ)→ zβ(Uα ∩ Uβ)

is biholomorphic.

The atlas {(Uα, zα)} is called the complex atlas or conformal atlas of the

Riemann surface. Given two conformal atlases {(Uα, zα)} and {(Uβ , zβ)},

if their union is still a conformal atlas, then we say they are equivalent.

Each equivalence class of conformal atlases is called a conformal structure or

complex structure.
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Suppose M has a Riemannian metric g, then we require the conformal

structure to be compatible with the Riemannian metric, namely, on each

local chart of {(Uα, zα)},

g = e2λ(zα)dzαdz̄α,

which means that the local parameters are isothermal coordinates.

Given a metric surface with a differential atlas {(Uα, zα)}, if all local co-

ordinates are isothermal coordinates, the {(Uα, zα)} is a conformal structure.

According to the existence theorem of the isothermal coordinates for arbi-

trary metric surface, any metric surface has a conformal structure compatible

with its Riemannian metric, therefor any metric surface is Riemann surface.

Suppose M and M̃ are two Riemann surfaces. A mapping f : M → M̃

is called a conformal mapping, if the mapping φ̃ ◦ f ◦ φ−1 between any local

parameter charts (U, φ) and (Ũ , φ̃). Furthermore, if f is one to one and onto,

and f−1 is also holomorphic, then M and M̃ are conformally equivalent.

Suppose S is a surface embedded in R3, then it has an induced Euclidean

metric g. A conformal metric deformation refers to changing the Rieman-

nian metric to e2λg, where λ : S → R is a function defined on the surface.

A conformal deformation preserves angles. Klein−Poincaré uniformization

theorem ([13] page 206) states that there exits a conformal deformation, such

that the Gaussian curvature under the new metric is one of the three con-

stants {+1, 0,−1}, depending on the topology of the surface. Such kind of

13



Riemannian metric is called the canonical metric or uniformization metric of

the surface. The topology of a surface is represented by a tuple (g, b), where

g is the genus of the surface, and b is the number of boundary components.

Suppose S is a closed surface (topology type (g, 0)) with canonical metric.

• g = 0: S is the unit sphere.

• g = 1: S can be represented as R2/G, where G is a translation group,

generated by z → z+1, and z → z+τ , where |τ | > 1, and |Re(τ)| 6 1
2
.

The projection of the Euclidean metric to S is the canonical metric on

S.

• g = 2: There is an essentially unique hyperbolic rigid motion group G,

acting on the hyperbolic space H2, so that S equals to H2/g. Here H2

is the Poincaré model of hyperbolic space, which is the unit disk with

canonical metric ds2 = 4dzdz̄
(1−zz̄)2

. All the hyperbolic rigid motions on H2

are Möbius transformations, which has the form eiθ z−z0
1−z̄0z

, |z0| ≤ 1.

A surface S with boundary components (topology type (g > 1, b > 0)) can

be topologically embedded in a closed surface S̄, where S̄−S has finitely many

components, each component is a topological disk. Then S is topologically

finite.

Suppose S̄ is a closed Riemann surface of genus g > 0, and suppose S is

a subsurface of S̄ where S̄ − S has finitely many components, each of which

is either a point of a closed circular disc in the canonical metric on S̄; then

14



we say S is a circle domain onS̄. The uniformization theorem for surfaces

with boundaries is as follows,

Theorem 2.1. Let S be a topologically finite Riemann surface of genus g >

0. Then there is a closed Riemann surface S̄ of genus g, and there is a

conformal embedding f : S → S̄, so that f(S) is a circle domain on S̄. This

representation is unique.

The proof can be found in [22]. In fact, He and Schramm[17] gave a more

general result: a Riemann surface with finite genus and at most countably

many boundaries can be conformally mapped to a circle domain. It is still

an open problem to show that a Riemann surface with finite genus and

uncountably many boundaries can be conformally mapped to a circle domain.

2.2.2 Surface Ricci Flow

The surface Ricci flow is a powerful tool to computer the uniformization

metric for surfaces. Given a point in a surface with a Riemannian metric g.

Choose an isothermal coordinates (u, v) at the point so that,

g = e2λ(u,v)(du2 + dv2), (2.5)

then the Gaussian curvature is given by

K(u, v) = − 1

e2λ(u,v)
(
∂2

∂u2
+

∂2

∂v2
)λ. (2.6)
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Use the notation 4g = 1
e2λ

( ∂2

∂u2 + ∂2

∂v2
)-the Laplace-Beltrami operator in the

metric g, then

K = −4gλ. (2.7)

If ḡ = e2λ̄(u,v)(du2 + dv2), then K̄ = −4ḡλ. By direct computation, we can

get

K̄ =
1

e2τ
(K −4gτ),

where τ = λ̄− λ.

Similarly, if the surface has boundary, then the geodesic curvature k̄ of ḡ

along the boundary can be calculated by

k̄ =
1

eτ
(k − ∂nτ),

where n is the outwards normal on the tangent planes along the boundary.

The prescribing Gaussian curvature problem asks given a function K̄ de-

fined on a surface (M, g) with a Riemannian metric g, if there is a metric ḡ

conformal to g so that the Gaussian curvature of ḡ is the given function K̄.

An efficient algorithm to compute the conformal metric ḡ with prescribed

curvature K̄ is the surface Ricci flow method.

Definition 2.4 (Ricci flow). Suppose S is a smooth surface with Riemannian

metric g. The Ricci flow is the process to deform the metric g(t) according

16



to its Gaussian curvature K(t), where t is the time parameter:

dgij(t)

dt
= −K(t)gij(t). (2.8)

The Ricci flow was introduced by Richard Hamilton [15] in 1981 in order

to gain insight into the geometrization conjecture of William Thurston, which

concerns the topological classification of three-dimensional smooth manifolds.

Hamilton’s idea was to define a kind of nonlinear diffusion equation which

would tend to smooth out irregularities in the metric. Informally, the Ricci

flow tends to expand negatively curved regions of the manifold, and con-

tract positively curved regions. It plays an important role in the proof of the

Poincare conjecture by Perelman.

Let g(t) = e2u(t)g(0), then the Ricci flow is

du(t)

dt
= −2K(t). (2.9)

To study the convergence of the Ricci flow (2.9), Hamilton introduced the

following normalized Ricci flow

du(t)

dt
= −2(K(t)− 2π

χ(S)

A(t)
), (2.10)

which preserve the area of the surface during the flow, here A(t) is the area

of the Riemannian metric g(t).
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Theorem 2.2 (Hamilton 1988[15]). For a closed surface of non-positive Eu-

ler characteristic, the normalized Ricci flow will converge to a metric such

that the Gaussian curvature is constant everywhere.

Theorem 2.3 (Chow 1991[7]). For a closed surface of positive Euler char-

acteristic, the normalized Ricci flow will converge to metric such that the

Gaussian curvature is constant everywhere.

The above two theorems postulate that the Ricci flow defined in 2.9 is

convergent and lead to a conformal uniformization metric g(∞).

The Ricci flow can be easily modified to compute a metric with a pre-

scribed curvature K̄:

du(t)

dt
= 2(K̄ −K(t)). (2.11)

2.2.3 Discrete Ricci Flow

In this subsection, we introduce the practical algorithms for simulating smooth

surface Ricci flow. The goal is to construct a discrete Riemannian metric-the

general form of circle packing metric with a prescribed Gaussian curvature

on the triangular meshes.

The general form of circle packing involves circles intersecting in angles

is firstly studied in details by Thurston[29].

Suppose the vertex set of a triangular mesh M is V = {v1, v2, . . . , vn}, then

the circle radii is defined to be a funtion
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Figure 2.1: General Circle Packing

Γ : V −→ R
+, Γ(vi) = γi.

Then the general surface circle packing is given in the following way:

1. Take triangulation of a surface of arbitrary topology;

2. The intersection angle Φ is an arbitrary acute angle;

3. Each circle is generalized to a cone centered at the vertex;
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4. The edge length is determined by the following cosine laws:

lij =
√

γ2
i + γ2

j + 2cosφijγiγj E
2,

cosh(lij) = cosh γi cosh γj + sinh γi sinh γj cos φij H
2,

cos(lij) = cos γi cos γj + sin γi sin γj cosφij S
2.

Definition 2.5 (Discrete metric). SupposeM is a triangular mesh, a discrete

metric is a function defined on non-oriented edges of M ,

l : E −→ R
+,

such that for each triangle [vi, vj , vk], the triangle inequality holds

l([vi, vj]) + l([vj , vk]) > l([vk, vi]).

Definition 2.6 (Circle packing metric). Suppose M is a triangular mesh,

with a circle packing (M,Γ,Φ). Then the circle packing metric is defined as

l([vi, vj]) =
√

γ2
i + γ2

j + 2 cosφijγiγj E
2;

l([vi, vj]) = cosh−1(cosh γi cosh γj + sinh γi sinh γj cosφij) H
2;

l([vi, vj]) = cos−1(cos γi cos γj + sin γi sin γj cos φij) S
2.

Thurston proved that if all the intersection angles are acute, then the edge

length induced by a circle packing triangle satisfy the triangle inequality.
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Definition 2.7 (Conformal equivalence). Two different circle packing metric

(M,Γ1,Φ1) and (M,Γ2,Φ2) are called conformal equivalent if

Φ1 = Φ2. (2.12)

Given the circle packing metric, we can compute the edge length of each

triangle in the triangular mesh, and the inner angles of the triangles. Using

the inner angles of the triangles in the triangular mesh, we can define the

discrete Gaussian curvature.

Definition 2.8 (Discrete Gaussian Curvature). Suppose all the corner angles

surrounding a vertex v on a closed mesh M without boundary is α1, . . . , αn,

then the curvature at the vertex v is

K(v) = 2π −
n

∑

i=0

αi. (2.13)

The Gauss-Bonnet theorem also holds for discrete meshes.

Theorem 2.4 (Discrete Gauss-Bonnet Theorem). Suppose M is closed tri-

angular mesh with a discrete metric. Then

∑

v∈M
K(v) = 2πχ(M),
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where χ(M) = V + F −E is the Euler number of the mesh.

The above results can be generalized to meshes with boundaries. If v is

a boundary vertex of a mesh M , and the summation of all the corner angles

surrounding v is α, then the discrete Gaussian Curvature at v is

K(v) = π − α. (2.14)

Now, we can define the discrete Ricci flow, which was introduced by Chow

and Luo in 2003[6].

Suppose we are given a mesh M with a circle packing metric (M,Γ,Φ).

The circle centered at the vertex vi has radius γi. If the current Gaussian

curvature of vi is Ki and the prescribed Gaussian curvature is K̄i, then the

discrete Ricci flow is defined as

dui(t)

dt
= (K̄i −Ki(t)) (2.15)

where

ui =































ln γi, E2,

ln tanh γi, H2,

ln tan γi, S2.

If we add one normalization step to ensure
∑

vi∈M ui = 0, then it is equivalent

to the area preserving constraint in the smooth surface Ricci flow. Chow and

Luo proved that the discrete Ricci flow is exponentially convergent in [6] for
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Euclidean case.

Theorem 2.5. Suppose (M,φ) is a closed weighted mesh, whose Φ ∈ [0, π].

Given any initial circle packing metric based on the weighted mesh, the solu-

tion to the discrete Ricci flow in the Euclidean geometry with the given initial

values exists for all time and converges exponentially fast.

To improve the algorithm for implementation of the discrete surface Ricci

flow, we use Newton’s method. It can be proved that the discrete Ricci flow

is exactly the negative gradient flow of the following energy function–Riccci

energy,

E(u) =

∫ u

u=u0

∑

Kidui.

where we choose a special initial metric u0 = (0, . . . , 0) ∈ {u ∈ R
n|∑n

i=1 ui =

0}. The Hessian matrix of E with respect to u is positive define. So it has

at most one global minimum. The Hessian matrix H of E with respect to u

is given as follows:

Hij =
∂2E(u)

∂ui∂uj

=
∂Ki

∂uj

= −wij, if [vi, vj] ∈M,

Hii =
∂2E(u)

∂u2
i

=
∂Ki

∂ui

=
∑

[vi,vj ]∈M
wij, vi ∈M (2.16)

Hij =
∂2E(u)

∂ui∂uj

= 0, otherwise

where wij =
hk
ij+hl

ij

lij
if [vi, vj ] is an edge shared by two faces [vi, vj , vk] and

[vi, vj , vl], and wij =
hk
ij

lij
for a boundary edge [vi, vj] which attaches to one
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face [vi, vj, vk].

In order to compute a metric with the prescribed curvature K̄, the energy

can be reformulated as

E(u) =

∫ u

u=u0

n
∑

i=1

(K̄i −Ki)dui

Algorithm 1. Newton’s method of discrete Ricci flow

• Input: A mesh M imbedded in R3, target curvature K̄, curvature error

threshold ε.

• output: a circle packing metric (M,Γ,Φ) which induces K̄.

Compute the initial circle packing metric (M,Γ0,Φ);

Compute the initial curvature.

u = 0

while max|K̄i −Ki| > ε do

for all edge e = [vi, vj] ∈M do

Compute the edge weight wij(u) to form the Hessian matrix H.

end

du←− H−1(K̄ −K)

u←− u+ du

K ←− K(u)
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end

ū←− u.

2.3 Applications of the Discrete Ricci Flow

Using the discrete Ricci flow, one can do many applications, such as isomet-

ric planar embedding, optimal discrete conformal parameterization, surface

matching, hyperbolic embedding[21]. Also Combining with discrete surface

Ricci flow and the Koebe’s iteration method, the uniformization metric of

the circle domain of surfaces with boundaries are firstly be computed [33]. In

this section, we introduce an interesting algebraic problem, the shortest word

problem, which can be solved by the discrete Ricci flow. We will give a brief

introduction for hyperbolic embedding of the universal covering space, which

will give us a way to compute the shortest word for the Fuchsian groups in

the next section, and it is a preprocess step for the generalized Delaunay

refinement algorithms on the hyperbolic plan in the next chapter.

2.3.1 Hyperbolic Embedding

Suppose M is a mesh with a circle packing metric in hyperbolic background

geometry. Let (M̄, π) be the universal covering space of M , where π is

the projection. Suppose (Γ,Φ) is a circle packing metric on M , then the

pull back metric on M̄ is also a hyperbolic circle packing metric, denoted
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as (M̄, π∗Γ, π∗Φ). If all the discrete vertex curvatures of (M,Γ,Φ) are ze-

ros, then all the vertex curvature (M̄, π∗Γ, π∗Φ) are also zeros, therefore

(M̄, π∗Γ, π∗Φ) can be isometrically embedded onto the hyperbolic space H2.

So we need to compute the hyperbolic metric on the triangular mesh using

the discrete hyperbolic Ricci flow.

After we have the uniformizaion metric, we can slice the mesh along the

canonical generators of the fundamental group to get a fundamental domain

and embed it isometrically into the hyperbolic disk. Here we use one of the

hyperbolic space model-Poincaré disk to be the universal covering space,

which is the unit disk |z| < 1 on the complex plane with the metric

ds2 =
4dzdz̄

(1− |z|2)2 . (2.17)

We will give a brief introduction about the Poncaré disk model for the hy-

perbolic plane in the beginning of next chapter.

The detailed algorithms for hyperbolic embedding of the universal cover-

ing space is described in [19] and [21]. The algorithm pipeline is as follows:

1) Embed a canonical fundamental domain using the hyperbolic cosine law.

2) Compute the deck transformation group generators.

3) Tile the whole canonical domain H
2.

Once the universal covering space is embedded onto the Poincaré disk,

we can use hyperbolic lines to separate the fundamental domains. Each fun-

damental domain becomes a hyperbolic polygon, which is called the funda-
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Figure 2.2: (1): a 2-torus. (2)embedding of 2-torus in th universal covering
space.(3) Fundamental domain bounded by geodesic arcs.

mental polygon. This is a key setting in the shortest word problem described

in the next section. The follow pictures show an USC of a discrete 2-torus

mesh.

2.3.2 Shortest Word Problem for High Genus Surfaces

Shortest Words vis Shortest Loops

The shortest words problem has been studied in several different settings by

different approaches. It was essentially solved by Dehn [9][8] using geometric

and topological methods. Later Birman and Series [4] revisited Dehns algo-

rithm and used it to solve the recognition of simple loops. Regarding the

computational complexity, Parry proved in [26] that for an arbitrary group,

checking whether a word is equivalent to the identity is polynomial, but find-

ing the shortest words is NP-hard by a reduction to the Traveling Salesman

Problem (TSP). In [11] Epstein et al. proved that it takes polynomial time
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to find the length of the shortest word for free groups and hyperbolic groups

(even though both grow exponentially); However, they did not provide any

result on finding the exact shortest words.

Two loops on a surface are homotopic, if one can be deformed to the other

continuously on the surface. Homotopic classes of loops form a group, the so-

called fundamental group of the surface, which is one of the most important

topological invariants of the surface. Given a loop, finding the representation

of its homotopy class in the fundamental group has profound importance in

computational topology.

Unfortunately, the word representation for a given loop is not unique,

since the generators of the fundamental group are in general with non-trivial

relations. Such an ambiguity gives rise to a very challenging problem, that

is to find the shortest word representation for a homotopy class in the fun-

damental group with given generators.

By the arguments in [4], finding the shortest words is relatively easy

for open surfaces, genus zero closed surfaces (where the fundamental group

is trivial) or genus one closed surfaces (where the fundamental group is

Abelian). In this section, our attention is focused on a more challenging

case, which is for closed surfaces with genus greater than one. The problem

we are solving can be specified as:

Problem (The Shortest Word Problem). Suppose S is a genus g > 1 closed

surface equipped with a hyperbolic metric g and a base point p. A set of base

loops (i.e. the generators of the fundamental group π1(S, p)) through point p
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is given. For an arbitrary loop γ ⊂ S, find its shortest word representation in

π1(S, p) using the alphabet consisting of those base loops and their inverses.

There is a very simple intuition behind our approach: reducing the (com-

binatorially) shortest words problem to finding the (geometrically) shortest

homotopic loops through the base point.

Definition 2.9 (Shortest Loop through a Base Point). Suppose S is a surface

with a Riemannian metric G and a base point p. γ ⊂ S is a loop on S passing

through p. We say γ is a shortest loop through base point p if its geodesic

curvature is zero everywhere except for at the base point p.

The reduction is justified by the following claim, which is a direct corollary

of the lemmas and theorems provided in [4]:

Theorem 2.6 (Shortest Words vis Shortest Loops). Let S be a high genus

closed surface with a base point p equipped with a hyperbolic metric g. Suppose

a special set of fundamental group generators are given, which are all shortest

loops through p and disjoint to one another anywhere else. Then for a loop

γ, its word representation with respect to the given generators is the shortest

word in π1(S, p) if γ is a shortest loop through p.

By the reduction from the above theorem, we need two major geometric

processes to solve the problem. The first one is to deform the initial Rieman-

nian metric to a hyperbolic metric; that is to compute the uniformization

metric. This is achieved by using discrete hyperbolic Ricci flow described in
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the previous section. It is used here to achieve the hyperbolic background

geometry required by the above theorem.

The second geometric process is to deform a loop (either a generator or

the target loop) to be the shortest one through the same base point and

homotopic to the original one. This process requires the construction of

the Universal Covering Space. The basic idea here is to lift the cycle on

the original surface to an open path in the UCS, so that the shortest loop

problem is transformed to the shortest path problem.

Given a triangular mesh M with a base vertex p, a set of fundamen-

tal group generators a1, b1, a2, b2, . . . , ag, bg intersecting only at p, a loop γ

through p. Then the majored steps to compute the shortest word of γ are as

follows:

(1): Compute the hyperbolic metric using Ricci flow;

(2): Compute the shortest loop for each base generator;

(3): Compute the shortest loop for the loop γ;

(4): Compose the shortest word.

Remark 2.1. Regarding computing shortest loops on surfaces for step 2 and

3, there have been several remarkable works in the literature. To name a few

of them, Erickson and Whittlesey [12] gave a very fast greedy algorithm to

compute the shortest system of loops relaxing the homotopy condition. Dey et

al. [10] proposed an algorithm to compute tunnel and handle base loops that

are both topologically correct but also geometrically relevant. Yin et al. [30]
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developed an algorithm to compute the shortest loop within a given homotopy

class utilizing UCS; they also provided a space efficient data structure to

handle the otherwise exponentially growing UCS.

For the last step, suppose γ is a shortest loop though the base point , so

are all the fundamental group generators

{a1, . . . , ag, b1, . . . , bg}. Then we can trace γ on the surface as the following.

If γ crosses ai(a
−1
i ), then we add a letter bi(b

−1
i ) to the word, if γ crosses

bi(b
−1
i ), we add ai(a

−1
i ) to the word. Some special cases can be handled:(1)

the geodesic passes through a vertex which is the intersection of several gen-

erators.(2)the geodesic contains a boundary edge of the fundamental domain.

After computing the hyperbolic metric, we divide the problem into three

sub-problems

• The Shortest Path Problem: Given a path on a triangulated surface S

equipped with a hyperbolic metric, how to compute the shortest path

that can be homotopically deformed to the original one with both end

points fixed? As a special case, what if the end points of the path

coincide and form a loop based at a fixed point?

• The Shortest Loop Problem: Given a loop on a triangulated surface S

equipped with a hyperbolic metric, how to compute the shortest loop

(under hyperbolic metric) that is homotopic to the original one?

• The Shortest Word Problem: On a triangulated surface S equipped
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with a hyperbolic metric and a canonical basis of the fundamental

group, how to compute the shortest word representation for an arbi-

trary loop on S?

Algorithms

Here we give the algorithms to solve the three sub-problems, more detail

analysis can be founded in [31].

Computing the shortest path is a basic procedure that is used extensively

in later computations. Here we present a simple yet efficient algorithm to

shrink a path homotopically. The input to the algorithm is a path γ =

p1p2 · · · pn on S, where pi is either a vertex vj ∈ V or on an edge ek ∈ E. The

output is a new path γs = q1q2 · · · qm that is homotopic to γ and is shortest

between p1 and pn (q1 = p1 and qm = pn).

The algorithm works on both the surface S and its universal covering

space S̄. It follows a common philosophy in topology: lift the given path

γ ⊂ S to γ̄ ⊂ S̄ (step 1 to step 3) and shrink it in S̄ (step 4 to step 7). But

the novelty of this algorithm is that it uses a transient embedding scheme for

both the lifting and shrinking process. As a consequence only the one-ring

neighbors of γ and γ̄ need to be embedded in S̄. The fundamental domain

and its copies are conceptually used but not actually embedded in this work.

Algorithm 2. The Shortest Path Algorithm
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1. Embed one-ring neighbor N(p1) into S̄;

2. Repeat the following for each remaining point pi on the path:

(a) Address its one-ring neighbor N(pi) = fi,1, , fi,di.

(b) For each f̄j ∈ N(p̄i), ignore it if it is embedded in the previous

iteration or embed it otherwise.

3. Record the coordinates of p̄1 and p̄n.

4. Apply a rigid motion to S̄ to align p̄1 with the origin and p̄n into the

X-axis; rename them as q̄1 and q̄n.

5. Re-embed N(q̄1).

6. Trace out a ray q̄1 · · · q̄m along the X-axis from q̄1 (i.e. the origin)

towards q̄n; do the following for each q̄j :

(a) Embed the un-embedded part of the one-ring neighbor N(q̄j)

around q̄j ;

(b) Advance the ray from q̄j along X-axis until it hits a point q̄j+1 on

the boundary of N(q̄j);

7. Denote the trace ray as γ̄s = q̄1 · · · q̄m. Project it back onto S as

γs = q1q2 · · · qm.

33



There is a fundamental difference between our algorithm and other exist-

ing ones. In a previously published algorithm, the ”embedded” marker is kept

permanently and globally in a fundamental domain; once a face is marked,

it will remain marked until the whole fundamental domain is embedded. On

the other hand, our algorithm only keeps this marker transiently and locally.

It means that an ”embedded” marker is only kept for two consecutive itera-

tions and only within a neighborhood of up to two points. Once the iteration

for pi is done, the markers for faces in N(pi−1)−N(pi) (i.e. those exclusively

embedded in the iteration for pi−1) will be cleared, and these faces will be

treated as ”un-embedded” and therefore become immediately available to be

re-embedded.

We name such a scheme transient embedding. When a path is lifted

from S into S̄, only its one-ring neighbor needs to be embedded in S̄. There-

fore the algorithm is linear in both time and space complexity with respect

to the length of the given path. It avoids embedding one or more copies of

the fundamental domain that are traversed by the path being lifted.

The above shortest path algorithm can be used to shrink a loop, but has

to fix one point in the loop. In many cases, such as the shortest word com-

putation, we need a shortest loop without any point fixed. Here we propose

a shortest loop algorithm that uses the shortest path algorithm iteratively.

The input to this algorithm is a general loop γ = p1p2 · · ·pnp1 on the original

surface. The output is a loop γS = q1q2 · · · qnq1 that is homotopic to γ and

is shortest under the hyperbolic metric associated with S.
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Algorithm 3. The Shortest Loop Algorithm

1. Let p = p1 be the initial fixed point.

2. Repeat the following on γ until its length becomes stable:

(a) Shrink γ keeping p fixed using the shortest path algorithm;

(b) Check the length of γ (under hyperbolic metric), and stop the

iteration if its difference to the previous iteration falls below a

threshold;

(c) Set p to a new fixed point on γ and go to the next iteration;

3. Set γS = γ and exit.

In this algorithm, we construct a sequence of shortest loops with fixed

points to approach the shortest loop without fixed points. In each iteration,

we shrink γ with fixed point p; pick a new point p′ 6= p to serve as the fixed

point and let p be free to deform. This process is actually a variation of the

midpoint shortening process in [3], which has been proved in [16] to converge

to the unique shortest loop under hyperbolic metrics and will not get stuck

in any local minimum.

Now we can use the following algorithm to find the shortest word rep-

resentation for the given loop under this basis. The input to the algorithm
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is a a set of shortest loops B = {a1, b1, · · · , ag, bg} that only intersect at a

base point p, and another shortest loop γS = p1p2 · · ·pnp1. The output is a

shortest word representation of γ. Note that all the loops are directed ones

on S, and the algorithm works completely on S and does not need S̄ any

more.

Algorithm 4. The Shortest Word Algorithm

1. Let W be the word representation of γS, initialized as empty.

2. Go through γS to find all its intersections with loops in B; save these

intersection points in order as S = {s1, s2, · · · , sk}.

3. For each intersection si ∈ S do the following:

(a) If si 6= p, append a corresponding letter to W (explained in the

remark 2.1).

(b) Otherwise, perturb γS to go around p from the side with less (or

equal) base loops, and append corresponding letters W in the

order of intersections.

4. Output word W.

The following is one example of the shortest word[31]. Our algorithms
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Figure 2.3: Shortest word (red) for a general loop (blue) on a genus-8 hyper-
bolic surface with a canonical basis of 16 shortest loops (pink).

work with edge lengths of triangulated surfaces and are therefore subject to

numerical errors, which is unavoidable for any numerical method of the same

nature. For example, the given hyperbolic metric may not be a hundred

percent accurate, the floating point representations with limited bits will

cause accumulated truncation errors, etc. However, it can be shown that

our shortest word computation is robust under numerical inaccuracy. This

is partly due to the fact that although we use geometric information in the

algorithm, the problem itself is a topological one. On the other hand, in the

computation of shortest paths and shortest words, we employ a couple of

techniques to relieve the numerical errors.

Although only high genus closed surfaces are considered in this work, the
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algorithms proposed here can be potentially extended to cover other surfaces

(e.g. with boundaries) that also admit hyperbolic metrics, which will be an

interesting topic to explore in the future.
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Chapter 3

Delaunay Refinement

Algorithms on the Hyperbolic

Plane

Delaunay refinement algorithms take a planar straight-line graph and returns

a conforming Delaunay triangulation of only quality triangles by inserting

Stiener points. In this chapter, we will introduce two generalized Delaunay

refinement algorithms on surfaces embedded in the hyperbolic Poincaré disk

model.
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3.1 Hyperbolic Space

In this section, we will given a brief introduction of the hyperbolic Poincaré

disk model for the hyperbolic plane. One can refer to the book written by

Luo, Gu and Dai [21] for more details about hyperbolic space models and

hyperbolic triangles.

Hyperbolic n-space Hn is the maximally symmetric, simply connected,

n-dimensional Riemannian manifold with constant sectional curvature -1.

There are several models which realize Hn: the hyperboloid model, the Klein

model, the Poincaré disk model and the Poincaré half-plane model. Here we

introduce the Poincaré disk model in two dimension, which is the unit disk

D = {z = x+ yi|x2 + y2 < 1} with the metric

ds2 =
4dz ∧ dz̄

(1− |z|2)2 .

The geodesics in the Poincaré disk are the diameters or the arcs of circles

which are perpendicular to the unit circle S1 = ∂D.

Lemma 3.1. The geodesic distance between any two points z and w in the

Poincaré disk is given by

d(z, w) = 2arctanh
|z − w|
|z∗w − 1| . (3.1)

Lemma 3.2. The rigid motions of the Poincaré disk model are Möbius trans-
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formations

φ(z) = eiθ
z − a

1− a∗z
, |a| < 1,

and all the Möbius transformations are smooth angle preserving mappings.

Each Möbius transformation is composed of rotation(z → eiθz), transla-

tion (z → z+a) and inversion (z → 1/z). Using Möbius transformations, we

can always map two crossing geodesics to two diameters of the unit circle,

and the intersection angle does not change.

Definition 3.1. A hyperbolic circle C(z0, r) with center z0 and radius r is

defined to be

C(z0, r) , {z|d(z, z0) = r}.

A hyperbolic circle in the Poincaré disk is also a Euclidean circle with

different center and radius.

Lemma 3.3. (1)A hyperbolic circle C(z0, r) is also a Euclidean circle C̃(z̃0, r̃)

with

z̃0 =
1− µ2

1− µ2z̄0z0
z0, r̃2 = |z̃0|2 −

z0z̄0 − µ2

1− µ2z̄0z0
, (3.2)

where µ = tanh r
2
.

(2)Conversely, for a Euclidean circle C̃(z̃0, r̃) contained in the unit circle,

it is also a hyperbolic circle C(z0, r) with

r =
1

2
ln

(1 + |z̃0|+ r)(1− |z̃0|+ r)

(1− |z̃0| − r)(1 + |z̃0| − r)
, z0 =

1−
√
K

1 +
√
K

z̃0
|z̃0|

, (3.3)
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where

K = ln
(1 + |z̃0|+ r)(1 + |z̃0| − r)

(1− |z̃0| − r)(1− |z̃0|+ r)
.

Proof. (1)Using Möbius transformation ω = z−z0
1−z̄0z

, one can map the hyper-

bolic circle C(z0, r) to hyperbolic circle C(0, r) isometrically. C(0, r) is also

a Euclidean circle C̃(0, tanh r
2
), then we have the following equation.

z − z0
1− z̄0z

z̄ − z̄0
1− z0z̄

= ωω̄ = tanh2(r/2) = µ2

⇔ |z − 1− µ2

1− µ2z̄0z0
z0|2 = |

1− µ2

1− µ2z̄0z0
z0|2 −

z0z̄0 − µ2

1− µ2z̄0z0
,

which is an equation of a Euclidean circle.

(2)consider the reflection about the diameter L of the unit circle, which

passes through the origin and z̃0, it is a hyperbolic isometry and preserves

the circle C(z0, r), so the center z0 should be located on L. The intersections

of L and C̃(z̃0, r̃) are (|z̃0| ± r̃) z̃0
|z̃0| , so we have

r =
1

2
d((|z̃0|+ r̃)

z̃0
|z̃0|

, (|z̃0| − r̃)
z̃0
|z̃0|

),

which gives the formula for r in (3.3). Now assume z0 = α z̃0
|z̃0| , slove the

equation

d(z0, (|z̃0|+ r̃)
z̃0
|z̃0|

) = d(z0, (|z̃0| − r̃)
z̃0
|z̃0|

),

we have α = 1−
√
K

1−
√
K
.
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3.2 Delaunay Triangulation on the Poincaré

Disk

3.2.1 Hyperbolic Triangle

In the following, we will introduce some facts and lemmas about hyperbolic

triangles which are useful in the following sections.

A Hyperbolic triangle is a triangle with geodesic arcs between any two

points in the Poincaré disk model D = {z = x + yi|x2 + y2 < 1} of 2-

dimensional hyperbolic space.

For Euclidean triangles, the cosine law and sine law give relations be-

tween the edge lengths and the angles. There are also similar relations for

hyperbolic triangles.

Lemma 3.4. For a hyperbolic triangle with the edge length a, b, c, and α ,β,

γ are the angles which are opposite to the corresponding edges, we have:

(1)Hyperbolic cosine law

cosh c = cosh a cosh b− sinh a sinh b cos γ, (3.4)

and its dual

cos γ = cosα cos β − sinα sin β cosh c. (3.5)
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(2)Hyperbolic sine law

Sinh(a)

Sin(α)
=

Sinh(b)

Sin(β)
=

Sinh(c)

Sin(γ)
. (3.6)

(3)Formula of area

Area(T ) = α + β + γ. (3.7)

The area of a hyperbolic triangle is no great than π, and δ = π−(α+β+γ) > 0

is called the defect of a hyperbolic triangle.

Using above hyperbolic cosine law, we can easily verify the following facts.

Fact 3.1. For any hyperbolic triangle 4ABC, if D a is point located on the

geodesic edge BC, then either d(A,B) or d(A,C) is greater than d(A,D).

(Figure 3.2.1)

Fact 3.2. As shown in Figure 3.2, the central angle α∗ is always no less

than 2α, where α is the inscribed angle. Fix the angle α∗, the minimal of α

is obtained when ∆ABC is an isosceles triangle, and 2α will go to α∗ when

the point A approaches point B or point C.

Through above lemmas and facts, the minimal angle of a bad shape hy-

perbolic triangle ∆ABC is not easy to be defined as in Chew’s paper. The

minimal angle is correlated with the user inputs, and the position of A with

edge length a fixed. In a hyperbolic circle with diameter d and with a geodesic
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Figure 3.1: Hyperbolic Triangle

x2 + y2 = 1

x2 + y2 = tanh2(d/2)

α
α∗ a

b

cA
B

C

Figure 3.2: Central angle and inscribed angle in a hyperbolic circle.
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chord whose edge length a is fixed, although the inscribed angle varies when

the position of A changes, but the central angle α∗ is always fixed. Then we

can define what is a well shape hyperbolic triangle.

Definition 3.2 (Well shape triangle). A triangle T with circumradius h in

a triangulation is said to be well shape if

(1)the central angle corresponding to the minimal edge is more than θ > 0;

(2) and circumradius h of T is less than ε > 0 which is defined by the

user.

We have two approaches to define the well shape hyperbolic triangle, one

is to give fixed minimal central angle for all triangles, the other is to let the

minimal central angle correlated to the triangle’s circumradius. We use the

first one for generalized Ruppert’s algorithm, and the later one in generalized

Chew’s algorithm by defining the minimal central angle to be θ∗(h), which

is the angle such that the opposite chord have the edge length h in a h-circle

in the Poincaré disk. The formula for θ∗(h) is given by

θ∗(h) , arccos
cosh2(h)− cosh(h)

sinh2(h)
. (3.8)

Remark 3.1. (1) When h goes to 0, the angle θ∗(h) will go to π/3, one will

discover the minimal angle of the planar case of Chew’s algorithm. When h

increases to ∞, the angle θ∗(h) will decrease to 0(see Figure 3.3).
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Figure 3.3: Left: An equilateral hyperbolic triangle. Right: The relation
between edge length of the equilateral triangle and its angles.

From the cosine law, we have

cos θ∗ =
cosh2 h− cosh h

sinh2 h
.

By direct computation, the derivative of θ∗ with respect to h is

dθ∗

dh
=
−(cosh h− 1)2

sinh3 h sin θ∗
,

which is strictly less than 0 for any h > 0.

(2) On a hyperbolic circle with circumradius h and central angle θ∗(h), if

AB is the geodesic chord opposite to central angle 2θ∗(h), we define the ratio

ρ(h) as follows,

ρ(h) =
d(A,B)

h
.

ρ(h) decreases from
√
3 to 1 as h increases from 0 to ∞. When h ≈ 2.3101,
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Figure 3.4: Left: An isosceles hyperbolic triangle with top angle 2θ∗. Right:
the graph of the function ρ(h).

the ratio is about 1.5 (see Figure 3.4).

By the hyperbolic sine law, we can get the formula of d(A,B):

d(A,B) = 2 ∗ sinh−1(sin θ∗(h) sinh(h)) (3.9)

(3)For a hyperbolic triangle T which can be enclosed by a h-disk in the

Poincaré disk, the maximal area of T is attained when T is an equilateral tri-

angle. When h goes to 0, the area of the equilateral triangle can be estimated

as:

A ≈ 3
√
3

4
h2 +O(h4). (3.10)

Similar to the definition in Euclidean plane, a hyperbolic Delaunay tri-

angulation for a set P of points on hyperbolic plane is a triangulation DT

such that no point in P is inside the hyperbolic circumcicle of any geodesic

triangle in DT . A constrained Delaunay triangulation is a generalization
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Figure 3.5: An example in which some of the Delaunay circles have infinite
radii.

of the Delaunay triangulation that force certain required segments into the

triangulation.

In the Poincaré disk model, a hyperbolic circle is also a Euclidean circle

but has different circumcenter and radius. So we can use a Euclidean circle

to check the Delaunay edges of a point set in the Poincaré disk. Generally,

for a point set on the Poincaré disk, some of the Delaunay circles maybe

touch the boundary of the Poincaré disk, which means that the circumcircles

have infinite radii under the hyperbolic metric.(see Figure 3.5)

While for any point set on a surface mesh embedded in the Poincaré disk,

the above case can not happen, because there are infinite many copies of

the surface mesh on the disk, if there exists a Delaunay circle which touch
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the boundary of the unit disk, then the Delaunay circle should contain some

copies of the surface mesh, which contradicts the property of a Delaunay

circle. But for a surface mesh embedded in the Poincaré disk, two vertices

in the same equivalence class [p] may be on a Delaunay circle, which means

there will be a closed Delaunay edge on the surface mesh at p. To prevent

a closed Delaunay edge at a vertex, we assume that all the Delaunay circles

can not contain more than one point in the same equivalent class. This can

be attained by careful selection of sample points on the surface.

3.2.2 Preliminary

In the following two sections, we will give two generalized Delaunay refine-

ment algorithms on surfaces embedded in the hyperbolic Poincaré disk. For

those two generalized algorithms on Poincaré disk, the input will be G(V,E),

which is a geodesic graph on a surface embedded in the hyperbolic Poincaré

disk, and the geodesic edges in E only intersect at the vertices in V . If the

surface has been embedded in the Poincaré disk, G(V,E) is a kind of ’Pla-

nar’ geodesic graph. For close surfaces, G(V,E) may be a point cloud on the

surface. While for the surfaces with boundaries, the boundary components

may be divided into piece-wise geodesic edges in E. There will be infinitely

many copies of the surface in the Poincaré, any two copies only differ by a

Möbius transformation.

We are also assuming that the inputs have all the initial angles no less

than π
2
. For a angle less than π

2
, we can use the same lopping-off technic to
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β1

β2

C

O

Figure 3.6: Corner Lopping around a vertex with small input angle

enclosed the small input angles. Because when we use geodesic edges, the

angles and the geodesic distance are preserving under Möbius transformation,

once we can do the corner lopping at origin, the other points are the same.

In the Figure 3.6, the radius of the circle C is equal to one third of the local

feature size of origin O, and all the new corner angles like β1, β2 are larger

than π/2. One can do special surgery inside the circle C[27]. We will give

the definition of local feature size function in section 3.4.

Since we are working on a surface embedded in the Poincaré disk with

infinite copies, when do deletion, splitting and insertion, we actually do the

operations in the whole equivalent class. Before giving the algorithms, we

firstly give the following lemma.

Lemma 3.5. Suppose T = 4ABC is a hyperbolic triangle in a Delaunay
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Figure 3.7: An example about encroachment

Triangulation on the Poincaré disk, and T is on one side of an edge e, while

its circumcenter O is on the other side of e, then T is totally enclosed in the

hyperbolic circle with diameter e and we call the circumcenter O encroaches

the geodesic edge e.

Proof. Suppose the circumcircle of T is S1(O, h) with center at the origin O.

By the property of the Delaunay triangulation, the endpoints of e should be

outside or on the circle S1. Suppose e intersects S1 at R and Q, and S2(P, r)

is the hyperbolic circle with diameter QR and center at point P , we want to

show that S2 encloses the triangle T , in other words, the hyperbolic distance

between P and any point X ∈
_

RAQ is less than d(P,R).

Using hyperbolic cosine law, we can compute the hyperbolic distance:

r = d(P,R) = arccosh(cosh(h)cosh(r)− sinh(h)sinh(r)cos(α)),
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d(P,X) = arccosh(cosh(h)cosh(r)− sinh(h)sinh(r)cos(α1)),

where cos(α1) > cos(α). Because the function y = arccosh(x) is an increas-

ing function when x > 0, then d(P,X) < r. So, the triangle T is enclosed

in the hyperbolic diametric circle of RQ, and hence it is enclosed in the

hyperbolic diametric circle of e.

Remark 3.2. In the above proof, we see that d(P,X) obtains minimum when

α1 = 0, which means X is located on the geodesic passing through OP , and

d(P,X) obtains maximum when X = R or X = Q.

3.3 Generalized Chew’s Second Algorithm

Chew’s second algorithm starts with a constrained Delaunay triangulation

of the input vertices on the plane. A poor-quality triangle is defined to be

a triangle which has angle less than 30◦ or has circumradius bigger than

user-defined size. At each step, the circumcenter of a poor-quality triangle

is inserted into the triangulation except that the circumcenter lies on the

opposite side of an input segment as the poor-quality triangle, in which case

the midpoint of the segment will be inserted and any previously inserted cir-

cumcenters inside the diametral circle of the segment will be removed. Chew

prove his algorithm terminates and can be generalized to curve surfaces.

We will give the generalized Chew’s second algorithm on the surfaces

embedded in the Poincaré disk and give a proof about termination in this

section. Before giving the detail algorithm, we define a quantity h∗ by the
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minimal of the following[Chew]:(1)the smallest line-of-sight distance between

two nonintersecting sources(vertices or edges) in the initial set of sources,

(2)one half the length of the smallest source edge that appears in the initial

set of sources, and (3)the value ε > 0 associated with the user-defined size

grading function.

Algorithm 5. Algorithm: Generalized of Chew’s second Delaunay refine-

ment algorithm on surfaces embedded in the Poincaré disk:

• Input: 1. A geodesic graph G(V,E) on a surface embedded in the

Poincaré disk; 2. User-defined size grading ε > 0.

• Output: A well shape constrained Delaunay triangulation of G with

minimal central angle θ∗(ε).

1. Compute constrained Delaunay triangulation DT of G.

2. While DT contains poor triangle, select the one T with the largest cir-

cumradius do

3. if the circumcenter of T encroaches an input edge S

• if the edge length is between 2ρ(h∗) ∗ h∗ and 4h∗,

split S by one-third split by adding their endpoints into G

remove circumcenters within the distance one-third of the edge

length of S from a new vertex
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• else split S by adding its midpoint to G

remove circumcenters within the diametric circle of S

update the CDT of G

4. else

Insert the circumcenter of T into G and update the CDT of G

5. end if

6. end while

Remark 3.3. In Chew’s original algorithm, the criteria of the minimal an-

gle are fixed to be π/3 for Euclidean Triangles, while in the above generalized

algorithm for hyperbolic triangles, the criteria of the minimal angle are not

fixed, it depends on the circumradius h of the hyperbolic triangle which con-

tains the angle.

We will give the proof of termination of the algorithm in the following, the

idea is to use induction which is similar to the original proof given by Chew.

The proof is more complicated on the Poincaré disk than the Euclidean case.

Before giving the main theorem, we need the following lemma.

Lemma 3.6. Suppose C1 is a hyperbolic circle centered at origin and with

radius ρ(h)h/2, and C2 and C3 are two hyperbolic circles centered at the

points (±ρ(h)h/2, 0) with radius h, then we have the following:
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Figure 3.8: Hyperbolic circles described in Lemma 3.6

1. The diameter of the connected components of D1 \ {D2 ∪ D3} is no

greater than h, where Di is the hyperbolic disk enclosed by circle Ci(i =

1, 2, 3).

2. If T is a hyperbolic triangle with two vertices to be the endpoints of

e, and the other vertex located in the region D1 \ {D2 ∪D3}, then the

circumradius of T must be no greater than h.

Proof. 1. At first we want to show that the geodesic distance between A

and B is less than h when h > 0. It is equivalent to show that the

angles ∠BOO2 = ∠BOO3 are great than π/3 alternatively.
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By hyperbolic Cosine law, we have

cos∠AOO3 =
cosh2(ρ(h)h/2)− cosh(h)

sinh2(ρ(h)h/2)

=
1 + sinh2(ρ(h)h/2)− cosh(h)

sinh2(ρ(h)h/2)
,

then

cos∠AOO3 <
1

2

⇐⇒ 1 + sinh2(ρ(h)h/2)− cosh(h) <
1

2
sinh2(ρ(h)h/2)

⇐⇒ 2(cosh(h)− 1) > sin2 θ∗ sinh2(h) (by 3.9)

⇐⇒ 2(cosh(h)− 1) > (1− (
cosh(h)(cosh(h)− 1)

sinh2(h)
)2) sinh2(h)

⇐⇒ 2 > cosh(h) + 1− cosh2(h)

sinh2(h)
(cosh(h)− 1)

⇐⇒ sinh2(h) > cosh(h) sinh2(h)− cosh2(h)(cosh(h)− 1)

⇐⇒ cosh2(h)− 1 > cosh(h)(cosh2(h)− 1)− cosh2(h)(cosh(h)− 1)

⇐⇒ cosh(h) > 1.

So the angle ∠AOO3 is greater than π/3, which means d(A,B) ≤ h.

It’s obviously that the following inequalities holds:

d(A,B)/2 < d(A,C) = d(B,C) < ρ(h)h/2 < h;
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d(C,D) < d(A,C) = d(B,C).

Then for any two points S, T , where S is on the circular arc
_

AB and

T is on the circular arc
_

BC, extend the geodesic edge ST to SR, R is

the point located on the geodesic passing through B and C. By fact 1,

either d(S, T ) < d(S,R) < d(S, C) < d(A,C) or d(S, T ) < d(S,R) <

d(S,B) < d(A,B). Then the diameter of the region bounded by the

circular arcs
_

AB,
_

BC and
_

CA is less than h > 0.

2. Now we need to show that the circumradius of T is no greater than h.

Observe that, the circumcenter c of T must be on the geodesic passing

through O and C, also c is below the geodesic O2O3. As a circle passing

through O2 and O3 shifts up from C4 to C1 along the geodesic OD, the

whole upper component of D1 \ {D2 ∪D3} will be swept by the circle.

Then the circumcenter c is located on the geodesic edge OE, where E

is the circumcenter of the circle C4 which had circumradius h, then we

have ρ(h) ∗ h/2 < d(c, O2) < h.

Now we give the main theorem about the termination of the algorithm.

Theorem 3.1. The algorithm terminates when h∗ < 2.3101.

Proof. we want to use induction to show that the algorithm produce a hyper-

bolic CDT such that any two vertices in the mesh have hyperbolic distance

no less than h∗.
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Initially, the above statement holds. We assume the statement holds at

cycle i, then at cycle i+ 1, new vertices are added if the following happens:

• the circumcenter of a failing triangle T1 is added into the CDT. Then

the nearest neighbor of the circumcenter must be the vertices of T1. T1

failed for the following reasons:

1. T1 have an edge with the central angle less than θ∗(r), where r is

the circumradius of T1. By assumption of induction, all the edge

lengths of T1 are no less than h∗, then r must be no less than h∗ .

2. T1 is not well-sized. To produce an edge of length less than h∗,

the circumradius r must be less than h∗, thus T1 will be well-sized

triangle.

• new vertices are added during the splitting of a source edge into either

2 or 3 pieces. Suppose that the edge to be split is e and have edge

length d, and we denote T2 as the triangle which causes the splitting

and has circumcenter on the other side of geodesic edge e. To produce

an edge with length less than h∗, d should be between h∗ and 2h∗.

1. h∗ ≤ d < ρ(h∗)h∗

In this case, no splitting can occur.

To see this, by lemma 3.5, the triangle T2 should be enclosed by

the hyperbolic diametric circle of edge e; and also by induction

assumption, the vertices of T2 other than the endpoints of e must
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be outside the hyperbolic circles center at the endpoints of e and

with radius h∗. But from lemma 3.6, the region is to small to

fit two vertices. Then T2 should be a triangle with e to be one

of its edges, and the remaining vertex located in the region, but

this kind of triangle T2 is a well-shape triangle with circumradius

less than h∗ by the lemma, such a triangle will not cause edge

splitting.

2. ρ(h∗)h∗ ≤ d ≤ 2h∗

Similar to Chew’s argument, this kind of bad source-edges can

never occur. Initially, all the edges have edge length at least 2h∗

by the definition of h∗. Then a bad edge appears only after an

edge splitting, there are two kind of edge splitting:

– half splitting

then the edge length of the edge to be split should be between

2ρ(h∗)h∗ and 4h∗, but edges with edge length in this range

only has one-third splitting, and will produce edges with edge

lengths between h∗ and 4
3
h∗ when h > 2.3101 from the remark

in last section.

– one-third splitting

for this case, the edge length should be between 3ρ(h∗)h∗ and

6h∗, but this kind of edges are never split into thirds.

so the bad edges never occur.
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From above, we know that new source-edges can never have edge length

less than h∗, and for all the new vertex produced in splitting, the step 3 of

removing the too close vertices ensure that all the other vertices distantiate

the new vertex at least h∗.

For the above generalized Chew’s second algorithm on surfaces embedded

in the Poincaré disk, the termination is guaranteed when h∗ < 2.3101 for

input mesh. When h = 2.3101, the central angle θ∗ is about 33.3◦. If h goes

to 0, θ∗ will go to 60◦.

If originally h∗ ≥ 2.3101, the algorithm may not terminate. While the

algorithm does not terminate, the insertion of the cirumcenters or midpoints

will occur infinitely times, one may re-define the quantity h∗ in the algorithm

in some suitable step to let the algorithm terminate.

3.4 Generalized Ruppert’s Refinement Algo-

rithm

In this section, we give the generalized Ruppert’s Delaunay refinement al-

gorithm on surface S which is embedded in the Poincaré disk. Ruppert’s

algorithm is an algorithms takes a planar straight-line graph and returns a

conforming Delaunay triangulation of only quality triangles. The algorithm

begins with a Delaunay triangulation of the input vertices. Then insert the

circumcenter of a poor-quality triangle into the triangulation, unless this
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circumcenter encroaches some input segment, in this case, the encroached

segment is split into half. A triangle is defined to be poor-quality if it has

an angle less than some prescribed threshold.

On the surface which is embedded in the hyperbolic Poincaré disk, we

are actually dealing with ’Planar’ geodesic graph (PGG) in Poincaré disk.

Unlike the definition of a skinny triangle in generalized Chew’s algorithm,

we need another kind of definition of a skinny triangle.

Definition 3.3 (Skinny Triangle). A Triangle T is said to be skinny if the

central angle opposite to the shortest edge of T is less than α in the circum-

circle of T

Also, we maybe still have a user input h, which is the upper bound of

circumradius of triangles.

Algorithm 6. Algorithm: Generalization of Ruppert’s Delaunay refinement

algorithm on the Poincaré Disk:

• Input: 1. A planar geodesic graph G = (V,E) on the surface embedded

in the uniformization space(H2), Minimum central angle bound α which

is related.

• Output: A Delaunay triangulation with minimum central angle α.

1. Compute constrained Delaunay triangulation DT of G.

2. While DT contains any geodesic edge e which is encroached upon by a

vertex, split e into half by adding the midpoint into the vertex set
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3. while DT has a skinny triangle T

• split the geodesic edges which are encroached upon by the circum-

center of T into half;

• otherwise add the circumcenter of T into the vertices list of G

4. repeat 1 until no edges are encroached upon, and no skinny triangle.

Before showing that the above algorithm terminates under some con-

straints, we introduce some notations.

Definition 3.4.

ρ(r, θ) ,
cosh−1(cosh2 r − sinh2 r cos θ)

r
(r > 0, θ ∈ [0, π/2]) (3.11)

Fixed r or θ, the function ρ(r, θ) is an increasing function of the other

variable, this can be verified directly by computing the partial derivatives.

When θ = π/2, the range of ρ(r, θ) is (
√
2, 2).

We define the local feature size in PGG.

Definition 3.5. Given a PGG S, the local feature size at a point, lfsS(p)(or

just lfs(p)), is the radius of the smallest geodesic disk centered at p that

intersects two non-incident vertices or segments of S.

Remark 3.4. Notice that, the surface mesh is embedded on the Poincaré

disk, the definition of local feature size could be not well defined. For example,

S is a 2-torus, the inputs are v which is a point on S and 8 geodesic edges

63



Figure 3.9: The graph of the function ρ(r, θ)

which form a canonical basis of π1(S, v), then there are no disjoint features

in this kind of input. So we must require that the input must be complicated

enough such that the local feature size is well defined. So we give the following

assumptions.

Assumption

• Any features can not connect to itself by another feature;

• Any features can not appear more than once on the boundary of a face.

When the local feature size is well defined, it has the following property.

Lemma 3.7. Given any PGG S, and any two points p and q in the Poincaré

disk,

lfsS(q) ≤ lfsS(p) + d(p, q).
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In the following, we denote the distance between p and its nearest vertex

by n(p).

Lemma 3.8. There exists two constants C1 and C2 which are both no less

than 1, such that the following statements hold:

(1) If a point p is the circumcenter of a skinny triangle, then n(p) ≥ lfs(p)/C1;

(2) If a vertex p is added as the midpoint of a split segment, then n(p) ≥

lfs(p)/C2.

Proof. The proof is to use induction. For any initial input vertex p, by the

definition of local feature size function, n(p) ≥ lfs(p). Assuming the lemma

is true for all previous vertices, we consider the vertices added later.

1. p is the circumcenter of skinny triangle 4ABC, with circumradius r

and the smallest central angle opposite to the geodesic edge AB. and

WLOG, we assume A was added after B.

• A was a vertex of the input, then so was B; we have lfs(a) ≤

d(A,B).

• A was added as circumcenter of some triangle with circumradius

r′, then r′ ≤ d(A,B). By assumption, we have lfs(A) ≤ r′C1 ≤

d(A,B)C1.

• A was a midpoint of a segment that was split. Also by assumption,

lfs(A) ≤ d(A,B)C2
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Then we have lfs(A) ≤ d(A,B)C2 for all subcases above, now we

assume the following condition holds:

C2 ≥ C1 ≥ 1. (3.12)

By the hyperbolic cosine law and previous lemma, we have

lfs(p) ≤ lfs(A) + d(p, A) ≤ d(A,B)C2 + r = (ρ(r, θ)C2 + 1)r.

For ρ(r, θ) is an increasing function fixed either r or θ, then we have

r ≥ lfs(p)

1 + ρ(r̄, α)C2
,

where r̄ is the maximum circumradius in the surface mesh. Then we

get the desired bound on r if the following condition holds:

C1 ≥ 1 + ρ(r̄, α)C2. (3.13)

2. p is added to split a segment s with length 2 ∗ r. Segment s is split

because some vertex or circumcenter A is inside s’s diametral circle,

which had radius r. There are two cases for A:

• A lies on some segment t, which can not be incident to s, since

we are assuming that all the input angles are at least π/2. Then

by the definition of local feature size, lfs(p) ≤ r. Assumed the
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condition C2 ≥ 1, this case is done.

• A is a circumcenter to be added into DT , but rejected because it

lay inside the diametral circle of s. Suppose it was the center of

circumcenter C with radius r′. By applying this lemma to A, we

have r′ ≥ lfs(A)/C1. Also the endpoints of s must be outside the

Delaunay circle C ′, thus r′ ≤ ρ(r, π/2)r. So we have

lfs(p) ≤ lfs(A) + r ≤ r′C1 + r

≤ (1 + ρ(r, π/2)C1)r

≤ (1 + ρ(r̄, π/2)C1)r.

Then we get the desired bound on r if the following condition

holds:

C2 ≥ 1 + ρ(r̄, π/2)C1. (3.14)

Giving above three inequalities, the feasible region is

1− ρ(r, θ) ∗ ρ(r, π/2) > 0. (3.15)

When θ ≥ 2 ∗ 20.7◦, the above inequality never holds. For any angle in

(0, 2 ∗ 20.7◦], there exits an upper bound for r such that the above inequality

holds, which means when one require bigger minimum angle, the constraint
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Figure 3.10: Left: the graph of the function 1−ρ(r, θ)∗ρ(r, π/2). Right: the
feasible region for constraint 3.15.

for maximum circumradius of the triangles in the Delaunay triangulation will

be smaller.

Theorem 3.2. Given a vertex p of the output mesh, n(p) ≥ lfs(p)/(C2+1).

Proof. Suppose the nearest neighbor of p is q, follow the proof of above

lemma, we only need to show the case when q was added after p, then ap-

plying the lemma to q, we have

d(p, q) ≥ lfs(q)

C2
≥ lfs(p)− d(p, q)

C2

=⇒ n(p) = d(p, q) ≥ lfs(p)/(C2 + 1).

This theorem shows that if the constraint 3.15 is satisfied, then the dis-

tance between a inserted vertex and any other vertex will be least lfs(p)/(C2+
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1), which means the generalized Ruppert’s refinement algorithm on surfaces

embedded in Poincaré disk will terminate.

For Ruppert’s refinement algorithm, it has quadratic worst-case running

time [2]. Suppose we select a portion of the universal covering space which

covers the central fundamental domain, and all its direct neighbors, then

there are 4g(4g−2) fundamental domain. If we choose n samples on the sur-

face, then the complexity of the generalized Ruppert’s refinement algorithm

still has quadratic worst-case running time.
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Chapter 4

conclusion

In this dissertation, we firstly review the discrete surface Ricci flow, which is

a powerful tool in computational conformal geometry. As one of the appli-

cations of the discrete Ricci flow, we propose a numerical solution to finding

the shortest words in the fundamental group of triangulated hyperbolic sur-

faces that are closed and oriented. The basic philosophy is to use geometric

approaches to solve a topological problem. In particular, we develop a tran-

sient embedding scheme to compute shortest paths on surfaces, which only

requires embedding the one-ring neighbor of the given path in the universal

covering space and is therefore linear (with a small coefficient) in the length

of the path. Then a variation of the Birkhoff midpoint shortening process is

proposed to deform a piecewise geodesic loop (with only one piece actually)

iteratively, which is guaranteed to converge to a shortest loop that is the

unique global minimum. Finally a shortest word representation of a given
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loop is induced from its shortest loop image using a simplified version of the

revised Dehn’s algorithm. Numerical accuracy is taken into the consideration

throughout the whole process. Several techniques are used to relieve numer-

ical errors and increase the robustness. Although only high genus closed

surfaces are considered in this work, the algorithms proposed in the shortest

words problem can be potentially extended to cover other surfaces (e.g. with

boundaries) that also admit hyperbolic metrics, which will be an interesting

topic to explore in the future.

In the second part, we give two Delaunay refinement algorithms on sur-

faces embedded in the hyperbolic Poincaré disk. The proofs of termination of

these two algorithms are given under some constraints. The input is on the

surface embedded in the Poincaré disk in this dissertation, the proofs also

works for general ’Planar’ geodesic graphs in the Poincaré disk if the Delau-

nay circles have finite radii. Since the Poincaré disk model and the upper half

plane model for hyperbolic plane are conformal and have similar properties,

these two generalized Delaunay refinement algorithms in the Poincaré can be

generalized to the upper half plane model, and the proofs are the same. Also

there are several interesting directions which may improve the generalized

refinement algorithms.

• Comparing to Chew’s second algorithm, Ruppert’s refinement algo-

rithm is much more easy to implemented, but Chew’s second algorithm

usually give fewer vertices than Ruppert’s method in Euclidean case,

this should also be true for generalization algorithms on Poincaré disk.
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• In the generalized Chew’s second algorithm, the minimal central angle

of a ’bad’ triangle depends on the circumradius of the triangle itself,

we can define in a simpler way: the minimal central angle of a ’bad’

triangle is less than π/3. If we change to this setting, the lemma 3.6

will be trivial, but the proof of the termination will be failed. Although

the idea in the proof will failed, when the mesh size are small, it is also

a kind of generalization of Chew’s second algorithm. There should be

similar ways to show the termination of this generalized algorithm on

Poincaré disk like [28].

• Also, we use corner lopping for small input angle, there are some other

analysis ideas which allow small input angles and have bigger minimal

output angle for Chew’s second algorithm [1] and Ruppert’s refinement

algorithm [23]. Chew’s second algorithm produces meshes (of domains

without small input angles) that are nicely graded and size-optimal if

the angle bound is relaxed from 300 to less than 26.50 [28], the similar

approaches should be achieved in the hyperbolic case similarly.

All the above questions may be explored in the future.
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