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 We use signal detection and estimation and simulation methods to optimize the collimator 

in SPECT (Single Photon Emission Computed Tomography) medical imaging systems. A 

SPECT system images a radiopharmaceutical in the body to produce raw data called the 

sinogram that is then reconstructed to form a viewable image. The important imaging component 

is the collimator which controls a noise/resolution tradeoff in the sinogram. A signal like a tumor 

can be lost in the blur and noise of the sinogram. We apply an ideal observer to the sinogram to 

find the best collimator. We address two tasks (1) detect and localize a single signal; (2) detect 

and localize multiple signals. Task performance of the ideal observer is measured as area under 

the LROC (Location Receiver Operating Characteristic) curve for task (1), and area under the 

AFROC (Alternative free response ROC) curve for task (2). In general, we show that low 

efficiency collimators that yield blurry images with low relative noise outperform conventional 

clinical collimators that yield higher resolution but noisier images. 
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Chapter 1 

Introduction 

 

1.1 Nuclear medicine  

 

Nuclear Medicine is a branch or specialty of medicine and medical imaging that applies 

radioactive material to patients for the purpose of diagnosis and therapeutics. A doctor injects a 

radiopharmaceutical containing a both pharmaceutical and radionuclide into a patient’s body. 

The radionuclide is an atom in the pharmaceutical that is radioactive and emits  -rays in the 80-

300 keV range. The pharmaceutical goes to an area of interest in the body by biological action. 

For example, the pharmaceutical may be designed to seek out tumors of a certain kind. It then 

emits  -rays which are detected by detectors, and an estimate of  -ray source density is made 

by a tomographic reconstruction. The reconstruction is a 3-D map of the spatial density of 

radionuclide. The physician views 2-D slices of the 3-D reconstruction. This form of nuclear 

medicine is known as emission tomography.  

In recent decades, two emission tomographic techniques become widely used: single photon 

emission computer tomography (SPECT) and positron emission tomography (PET). In SPECT, 

radionuclide emits a single  -ray in any direction and in one or more energies in the 80 – 300 

keV range. In PET, a positron emitter replaces the  -emitter of SPECT. The positron is emitted, 

drifts a few mm, annihilates with an electron to emit two 511 keV  -rays travelling 180  apart. 

This action of PET is exploited in the instrumentation to derive reconstructions. In this thesis we 

focus on SPECT.  

 

 

 

Figure 1.1 Transaxial brain image 

from PET 
Figure 1.2 Transaxial brain image 

from SPECT 
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1.2 SPECT clinical applications 

 

Applications in SPECT include cardiac imaging, where often the physician looks for a 

perfusion defect in the heart wall muscle. This shows up as a cold spot (a dip in radionuclide 

density). (Wernick & Aarsvold, 2004)Another application is in bone imaging(Parker & Anthony, 

2011), where tomography shows up as bright spot of high radionuclide concentration. For a more 

comprehensive survey of applications, see (Wernick & Aarsvold, 2004). 

 

 

 

 

 

 

 

 

 

Figure 1.3 Bone image from SPECT(Parker & Anthony, 2011). The 

images show a tumor as a hot (dark) spot along the spine. The 

display is shown for slices at 3 orientations. 

Figure 1.4 Heart image from SPECT. The anatomical drawings are 

along the top row and the corresponding SPECT image in the bottom 

row (Yale University School of Medicine, 2004) 
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Often the radionuclide used in studies above emits  -rays at a single energy. For example, 

Tc99m which emits at 140 keV is used with an appropriate radiopharmaceutical for cardiac(Yale 

University School of Medicine, 2004) and bone imaging. In other applications, such as 

neuroendocrine tomography imaging (Lamberts, Chayvialle, & Krenning, 1992), the 

radionuclide, in this case In-111, emits at two energies 172keV and 247 keV. 

 

1.3 Emission tomography vs. computed tomography 

 

Computed Tomography (CT) is a well-known imaging modality that is similar to SPECT in 

that the image is reconstructed from projection data (we will discuss reconstruction in more 

detail below). CT uses an external X-ray beam to irradiate the patient from many angles and 

SPECT uses the radiopharmaceutical to emit radiation from within the body. The SPECT 

radiation is collected from many angles. A reconstruction in CT is a map of the X-ray attenuation 

coefficient, whereas in SPECT it is a measure of radionuclide spatial density. A  SPECT image 

looks considerably blurrier than the CT image and is of lower resolution. However, actually they 

tell different knowledge. For example, in the brain image Figure 1.5 and Figure 1.6, CT shows us 

more anatomical detail and SPECT gives us information about the metabolic activity in the brain. 

CT can provide high resolution anatomical information and SPECT can not only provide low-

resolution anatomical structure, but also follow the absorption, distribution and metabolism of 

the radiopharmaceuticals and achieve the functional image of the organ of interest. (Khurd & 

Gindi, 2005) 

 

                                    

 

 

 

 

 

 

 

Figure 1.5 Transaxial brain 

image from CT 

Figure 1.6 Transaxial brain 

image from SPECT 
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1.4 Planar emission imaging 

 

Planar imaging is the foundation of 3D tomographic techniques. Thus, it’s necessary to 

describe in it more detail. In planar imaging, the patient is positioned under a gamma camera. 

When the radioactive sources (injected by doctor) decay, they emit gamma rays and the detectors 

of the camera count the gamma photons which reflect the spatial distribution information of 

radiopharmaceuticals within the patient.   

Assume that the only gamma rays counted are those with directions approximately 

perpendicular to the detector plane, as illustrated in Figure 1.7. This can be implemented by a 

collimator that allows photons in a certain angular range to pass. A collimator, which we'll 

discuss in much more detail, is essentially a metal plate with many parallel holes drilled in it. 

The plate blocks  -rays, but the holes allow passage to the detector. The detection is a 2-D 

position sensitive detector. A description of detector technology can be found in(Wernick & 

Aarsvold, 2004).  

 

Figure 1.7 A 2D projection from a 3D object. See text for a detailed explanation 

In Figure 1.7, we can see how planar imaging works. Any photon traveling along direction 

AB will hit the same spot “o” on the detector. As a consequence, all gamma rays emitted along 

strip AB in the patient contribute to the same detector location “o”, and depth (distance to 

detector along y-axis) information is lost. Thus the measurement at “o” is approximately a line 

integral of the activity along the strip AB. Following this principle, the detected photons from a 

“slice” cross-section perpendicular to the detector plane (the figure shows one slice of the brain) 
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will form an image along one line, the one-dimensional projection. This is indicated by the dark 

line in Figure 1.7. A 2D projection is obtained from a 3D object by considering a stack of slices, 

as displayed in Figure 1.7 (Khurd, 2005). Note that the projection is formed at a particular angle 

about the Z-axis.  

 

1.5 Emission imaging tomography aspects 

 

For tomography, it needs projection views at many angles all around the object. By using a 

mathematical method to combine them, we can obtain the 3D structure. In SPECT, a gamma 

camera is designed to rotate up to 360° around the patient. The camera stops at each equidistant 

sampling angle to collect gamma photons (projection data). As the projection data are acquired 

and stored, the computer will assimilate and process the data and do the reconstruction of the 

original radioactivity distribution of the human body.  

 

 Figure 1.8  The basic principle of 

SPECT. (See text for explanation) 
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Figure 1.8 shows the basic principle of operation of a 2D SPECT system. The object can be 

treated as one slice of a 3D object, and the camera is a 1D camera. By rotating the camera, it 

obtains projection data at each angular position k , k=1, 2, ...All of these projection data are then 

sequentially stacked to a 2D image with the abscissa being digitized detector coordinate “bin” 

and the ordinate being index of sample angles. This 2D digital image is referred as the 

“sinogram”(Khurd, 2005). It is called a sinogram because a single point in the object space 

causes a sine wave in the sinogram. 

A typical “sinogram” is shown in Figure 1.8. We can easily see that the sinogram itself is 

not interpretable. Thus, in order to serve a diagnostic purpose, another important step needs to be 

done, which is called reconstruction. A reconstruction algorithm attempts to transform a 

sinogram to a meaningful image of the original coordinate frame. Typically, after feeding the 

sinogram to a computer system, the reconstruction algorithm will be executed there. The 

reconstruction images are usually for diagnostic or therapeutic purposes. The lower right image 

in Figure 1.8 shows a reconstruction of the object. In this thesis, we will not talk about 

reconstruction in detail since we are focusing on the image acquisition process, which ends up 

with a sinogram.  

 

1.6 Image quality in SPECT 

 

Engineers seek to improve imaging systems. One way to measure improvement is by task 

performance. For example, if tumor detection is deemed a significant task and an appropriate 

measure of performance can be defined, and then system A is considered better than system B if 

A has better task performance.  

What aspects of a SPECT system can we change to get better performance? We might alter 

the reconstruction algorithm. Or, we could alter the imaging system itself. In our work, we 

consider the problem of optimizing the collimator, which is the key component of a SPECT 

imaging and controls a noise-resolution tradeoff in the sinogram. We describe collimators in 

detail later. 
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1.7 Outline of thesis 

 

Our basic goal is to study collimator optimization in the context of task performance. 

In Chapter 2, we mathematically describe the formation of the sinogram and the character of 

the noise in the sinogram. In Chapter 3, we review the tasks we will consider. One task, called 

the LROC task, is the clinically important task of jointly detecting and localizing a single signal. 

(Here a “signal” could be a tumor.) Another task is the even more clinically realistic detection 

and localization of multiple signals. This is termed the AFROC task. These tasks are performed 

by ideal observers, which maximize performance. 

In Chapter 4, we consider a planar SPECT system and assess the performance of the LROC 

task as the collimator properties are varied, thus yielding an optimal collimator. We compare this 

performance to a sub-optimal observer and show the differences in performance behavior. In 

Chapter 5, we analyze LROC performance as a function of collimator properties. In Chapter 6, 

we analyze AFROC performance of collimators for a case of detecting and localizing two signals 

(instead of one). 

Chapter 7 is a summary and suggestions for future work. Chapter 7 also summarizes the 

contributions of the thesis.  
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Chapter 2 

Imaging Model 

 

As mentioned in chapter 1, a SPECT medical imaging system has several steps involved 

before obtaining the final reconstruction images. However, in this thesis, we only focus on 

sinogram which is the projection data. In this chapter, we will describe mathematically the 

formation of the sinogram. This is the “forward model” needed for later work. 

2.1 Notational conventions  

 

For expressive convenience, much of the notation used in this thesis will be explained here. 

We use plain italic lower-case letters to denote scalar variables and scalar-valued functions. 

Upper-case letters are used to denote scalar constants. Lower-case bold letters represent vectors 

or vector-valued functions. Their elements are specified by corresponding low-case (italic, not 

bold) quantities with an appropriate subscript. For instance, mx , m=1, 2, …, N are all elements of 

N-dimensional vector x .  Bold upper-case letters denote matrices, such as the matrix B . We use 

the subscripts of appropriate indices to indicate the elements of a matrix, such as mnB , which is 

the element of B  located at row m and column n. A matrix-vector product would be Bx and we 

use the notation  
m

Bx to indicate its thm component. XY  means the conventional matrix-matrix 

product. And [ ]mnXY is element of the product result located at row m and column n. Another 

operation is  , which represents discrete convolution. The transpose notation of matrix B is
T

B . 

As the need of statistical feature description for random quantities, we use the concepts of 

means and variances frequently in this project. Following the statistical conventions, we denote 

means by the decoration of a bar, such as a is the mean of a random variable a . The probability 

density function (pdf) is ( )p a . Similarly x and ( )p x are the mean and pdf of random vector x . 

Another decoration used is the carat (^). The estimate of an unknown f  is denoted f̂ . 

 

2.2 Definition of the object 
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Although in the real world the object should be described by continuous functions, we here 

only talk about our object, f as a discretized one. The continuous object is discretized into N 

pixels. These pixels are row-by-row lexicographically ordered by index n=1,2,…,N. If the object 

is 3D, we need x, y and z, three coordinates to localize one voxel
nf . In this case, our 

lexicographic order should be row-by-row first (one slice described by x and y), then slice 

number (z). Figure 2.1 and Figure 2.2 illustrate.  

Actually, nf  is a measure of radionuclide density. We measure nf  by the mean number of 

photons emitted into all space per unit time. This number is Poisson distributed (Barrett & Myers, 

2003). Then nf is the mean number counts emitted from voxel n into all space per unit time.  

 

 

 

 

 

 

 

 

2.3 Definition of sinogram 

 

Figure 2.3 2D Sinogram 

Figure 2.1 2D object pixel index Figure 2.2  3D object voxel index 
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For the projection data, we use a discretized sinogram g to describe it. We also use 

lexicographic ordering to index mg , m=1, 2, …, M. The quantity mg  is the number of counts 

received into the m
th

 pixel of the camera. We call such a pixel a “detector bin”, or simply a “bin”. 

Vector g will be integer valued ( 0mg  ) and is random. As shown in Figure 2.3, for each 

camera angle, we collect photons in 65 bins. Our lexicographic ordering is a bin-by-bin scheme, 

where each row is the bins at one angle and there is one row per angle.  

 

2.4 System matrix H  

 

The imaging system is linear and summarized by a system matrix H . Matrix element mnH is 

proportional to the probability that a photon emitted from n is detected at bin m. We know that 

the number of photons emitted from n is Poisson with mean nf . Each photon is then selected by a 

Bernoulli process of probability  mnH  to be detected at bin m. It can be shown(Wang, 1997), that 

mg is also Poisson and that its mean mg is
m mn n

n

g fH  , or in more compact notation 

 g Hf  (2.1) 

Furthermore, it can be shown that the counts in g are independent(Wang, 1997). Putting 

these facts together we can immediately write  

 
[ ]

1

( | ) ([ ] )
!

m

m

M
g

m

m m

e
p

g






Hf

g f Hf  (2.2)    

This is interpreted as a likelihood for f since g is observed.  

In SPECT, this Poisson model is important since bin counts are typically fairly low, with a 

good percentage of the bins containing < 10 counts. The reason for such low counts is that very 

few photons pass through the collimator holes, about 1 in 410 . 

The system matrix models several different physical effects that control the propagation of a 

photon from nm. Importantly it summarizes the collimator. The collimator serves to accept 

only those photons that arrive approximately perpendicularly to the camera face. 
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2.5 Collimator 

  

For simplicity, assume the collimator is made of a material like lead that completely blocks 

photons (Most collimators are in fact lead). Let’s say the collimator was formed by drilling very 

small diameter very long holes in the lead, and assume these holes were closely spaced. In that 

case, only those source points along a line perpendicular to the collimator can be detected, so the 

collimator measures line integrals of f , as shown in Figure 2.4.  

 

   

 

 

 

 

 

 

In practice, the collimator is a lattice of finite sized holes of finite length. In this case, the 

collimator accepts rays from a finite cone angle as seen in Figure 2.5. 

Figure 2.4  An infinitely fine collimator 

measures line integrals of f. 

The plot shows the 1-D 

projection of the 2-D object 

seen by the detector. The 

object is integrated along the 

red line. 

Figure 2.5  A more realistic collimator 

has finite width and finite 

length holes, and integrates 

the object along a conical 

region as shown. 
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Figure 2.6  Prints at different depth yield different point-spread functions on the 

detector space. The solid angle between septa as seen by the point is 

proportional to the number of counts received between those septa. 

The integration along the conical region is not equally weighted. Points closer to the 

collimator see a larger solid angle and mnH is larger for these points. To describe this more 

quantitatively define depth d as the distance from an object point to the detector plane (The 

detector plane is right behind the collimator). Consider 2 points at different depths, 1d and 2d , as 

seen in Figure 2.6. The farther point yields a blob, a point spread function that is wide and of low 

intensity, and the nearby point a thinner blob of higher intensity. For the parallel-hole collimators 

of interest to us, the blobs are approximately Gaussian (Wernick & Aarsvold, 2004) when 

averaged laterally across position. Figure 2.7 shows a piece of a real parallel hexagonal 

collimator. Figure 2.8 displays the Gaussians as a function of depth. 

 

 

 

 

  

 

 

  

  

Figure 2.8 Depth-dependent collimator 

blur kernels. 

 

Figure 2.7 Partial real parallel 

collimator (Clinical collimator size is 

around 40 by 30 cm). 
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One can characterize for a given collimator the depth-dependent width by (Zhou & Gindi, 

2009) 

   

2

2

0( ) (2.35 ) ,
D

FWHM d d
l


 

  
 

    (2.3) 

where FWHM is the Full Width at Half Max of the psf, and d is the distance from source to the 

crystal face. D is the bore diameter (definition of D will be shown later), l is the bore length and 

0 is intrinsic camera resolution. The intrinsic camera resolution 0  is the standard deviation of 

the psf due to camera blur alone, i.e. that part of the blur that is collimator independent. Equation 

(2.3) tells you the width of the point spread function (PSF) but not its “height”. Its height can be 

measured by average efficiency, which is defined as the fraction of emitted photons that pass 

through the collimator and reach the camera plane (Wernick & Aarsvold, 2004). Here, our 

efficiency is averaged over source position. It depends on the fine structure of the collimator. 

 

Figure 2.9 Hexagonal collimator, see text for details 

As an example, consider a collimator made of hexagonal holes placed on a hexagonal array 

as shown in Figure 2.9. (A real version is shown in Figure 2.7) The collimator efficiency is 

determined by bore diameter D, bore length l and septal thickness (SPT). The septal thickness is 

the thickness of the lead separating the holes. From(Wernick & Aarsvold, 2004), the bore 

diameter D is defined by the relation (area of the hole) =
2

4
D


. Here we use a hexagonal bore 

shape, and thus D=1.819S, where S is the length of one of the hexagonal sides, as shown in 

Figure 2.9. HOLSEP is defined as the distance between the centers of adjacent bores in the 



 

14 

 

lattice. Here, we have (Wernick & Aarsvold, 2004)
4

SPT HOLSEP
12

D


  . With all these 

definitions, the average (over point source position) collimator efficiency for a hexagonal lattice 

is given by:  

4

2

2

4

2
.

3
64

12

D
Average efficiency

l D SPT






 
 

 

     (2.4)                               

Interestingly, the efficiency of a point source is approximately independent of its position 

(lateral position and depth). So the average (over point position) efficiency is approximately the 

same as the efficiency of a single point. A typical value of average efficiency is about 42 10 . 

With (2.3) and (2.4) together, we can characterize the collimator. Thus (2.3) is a measure of 

resolution and (2.4) a measure of noise behavior.  (A more efficient collimator collects more 

photons and so has less relative noise) 

The depth-dependent behavior and efficiency are easily encoded into the system matrix H. 

The matrix H is large but can be stored in RAM and used to compute projections Hf . 

So far, we have considered an object as if it were in air. But the radiopharmaceutical sits in 

the body. When a photon is emitted, it can interact with the atoms in the body in two ways: (1) it 

can be absorbed(Barrett & Swindell, 1981). (2). It can scatter into a new direction and perhaps 

still be detected. Both these attenuation and scatter effects are important areas of study. These 

effects can also be modeled in H (Xing, 2003). However, this topic is beyond the scope of this 

thesis and we will consider H to model only collimator effects.  

The main goal of the thesis is to optimize the imaging system, and the collimator is the 

crucial element. Note that an efficient collimator has poor resolution and a high resolution 

collimator has poor efficiency. This resolution-noise tradeoff is at the heart of this thesis since it 

controls image quality.  

So far we have talked about image formation, which we can rewrite here as  

     g = Hf +n                    (2.5)                                                               

where the Poisson noise n is written as if it were additive, but this does not lose generality. In 
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SPECT, the data g are reconstructed into a viewable image f̂ via some reconstruction algorithm,  

for example, the well known Filtered Backprojection algorithm(Wernick & Aarsvold, 2004). 

As we will see later, we are interested in obtaining the best possible task-dependent image 

quality in the raw data g , not in f̂ . To do this we will make use of novel tasks and ideal observers 

(we will define ideal observer in the next chapter). In(Barrett & Myers, 2003), the case is made 

that tomographic imaging systems (in our case, the imaging system is the collimator and its 

placement relative to the object) should be designed so that an ideal observer inspecting the 

sinogram yields maximal task performance. The subsequent reconstruction algorithm should 

then be designed so that a human observer yields maximal task performance. In this thesis, we 

focus only on the first half of the problem – the design of the imaging system. One reason for 

this strategy is that often, the imaging hardware is designed without reference to a particular 

reconstruction algorithm, or the reconstruction algorithm might be changed many times during 

the lifetime of the imaging system. In this case, the collimator designed with an ideal observer 

yields the sinogram with the maximum information. 
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Chapter 3 

Tasks and Observers 

 

3.1 Introduction 

 

We will optimize collimators by measuring the performance of a mathematical observer that 

observers the sinogram g . There is evidence (Zhou, Kulkarni, Liu, & Gindi, 2009) that a 

collimator optimized this way will lead to a sinogram that gives good image quality in the 

reconstruction. Here we stick to the collimator optimization, and do not address the problem of 

optimizing the reconstruction. 

 We will summarize the receiver operating characteristic (ROC), localization ROC 

(LROC) and alternative free-response ROC (AFROC) curves and associated ideal observers and 

tasks. In our lab, we pioneered the formulation of ideal observers for the LROC (Khurd & Gindi, 

2005) and AFROC (Khurd, Liu, & Gindi, 2010) tasks. These were abstract formulations. The 

goal here is to apply these to SPECT.  

 

3.2 ROC 

 

We first describe the ROC curve to establish concepts and definitions though we do not use 

it in our experiments. The ROC curve is used in analyzing 2-class detection tasks. In medical 

imaging, this task is "Is a signal (tumor) present or absent?" Here, the signal is added to a known 

background and the location of the signal is considered known and the form of the signal known 

exactly. Let the signal-present object be +f = s +b , where b and s are the known background and 

signal. Then the signal-absent object is  f b . Let 1H denote the hypothesis "signal present" and 

0H "signal absent". We use f to stand for either f or f .  

 The image is g , which will be + +g = H(f ) +n = H(b +s) +n or - -g = H(f ) +n = Hb +n

with n the Poisson noise. An observer T examines g and reports a scalar observer response ( )T g . 
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In the standard method of 2-class decision strategy, we compare ( )T g to a scalar decision 

threshold 0T : 

 
1 0

0 0

( )

( )

Decide H if T T

H if T T





g

g
 (3.1) 

The threshold depends on many things. For example, a doctor may want to decide "tumor-

present", even if ( )T g is low, just to be safe. Because it is difficult to specify a unique 0T , the 

scalar figure of merit for performance should not depend on a specific 0T . 

One can make a true positive (TP ) decision by choosing 1H for g , a false positive ( FP ) by 

choosing 1H  for g , a false negative ( FN ) by choosing 0H for g  and a true negative (TN ) by 

choosing 0H for g . It is customary to use TP FP FN TN to stand for the probability of making 

such decisions. So sometimes the terms "TP  rate" or " FP  rate" are used. Since 1.0FP FN 

and 1.0TP FP  , one can summarize performance by using TP  and FP only. 

As 0T varies, theTP and FP rates vary. A plot of TP vs FP as 0T varies as seen in Figure 3.1 

is the ROC curve. Clearly curve A is better than curve B because at any FP rate, curve A delivers 

a better TP rate. 

 

Figure 3.1 ROC Curves. The curve "IO" from the 

ideal observer lies above all possible ROC curves 

from other observers. 
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The ROC curve depends on the form of the observer ( )T g . An ideal observer (IO) is one 

which gives the best ROC curve. In this case, the best curve is the one that lies above all other 

ROC curves from other observers. This is shown in Figure 3.1. 

It is easy to see that a good figure of merit for an ROC curve is the area under the ROC 

curve, denoted AROC. The IO maximizes AROC (or AUC). Indeed, one strategy to compute the 

IO is to use this maximal area strategy (Barrett & Myers, 2003) via the Neyman Pearson lemma. 

The resulting IO curve has max AROC for any sub range of FP . The well known form of the IO 

for the ROC task is  

  
 

1

0

( | )
( ) ( )

|

p H
T LR

p H
 

g
g g

g
 (3.2) 

where 1( | )p Hg , 0( | )p Hg are the likelihoods of g under hypotheses 1H and 0H , respectively. 

We denote this ratio as ( )LR g . i.e. the "likelihood ratio" for given sinogram g . 

We can use (2.2) to compute ( )LR g for the ROC case. For 1H we take +f = f and for 0H  take

-
f = f , then g = H(b +s) for the 1H hypothesis. Substituting into (2.2) we get  

  
( )

1

[ ( )]
( | )

!

mg

m m

e
p H

g




H b+s

H b + s
g  (3.3) 

It's fairly easy to get the equation for 0( | )p Hg too. We use g = Hb for the 0H .Then the 

resulting ( )LR g given by 

 [ ]1

0

[ ]( | )
( ) (1 ) .

( | ) [ ]
m mgm

m m

p H
LR e

p H


  

Hs Hsg
g

g Hb
 (3.4) 

As is described in standard texts and articles (Metz, 1978), one can compute the ROC curve 

by forming a histogram of the ( )T g responses, a histogram of the ( )T g responses, and 

integrating each from 0T to . As 0T  , we sweep out the ROC curve. Digitally, we can 

obtain the ( )T g histogram by generating 1,..., sampk N values of k

g and evaluating ( )kT g and 

histograming it. Since each k

g has a different Poisson noise realization, we are sampling the 

likelihood. We can do the same for ( )kT g , and then digitally integrate the two histograms to 
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sweep out the ROC curve. The resulting ROC curve is integrated numerically to get AROC. We 

need 
sampN large enough to avoid sample error. We can use (Zoubir & Boashash, 1998) to ensure 

the sample error is acceptable. For the 
sampN we use in experiments the error in AROC and areas 

under related curves such as LROC and AFROC is well under 1% (Zhou & Gindi, 2009). 

How is all this to be used to find an optimal collimator? If we change the collimator, we 

change H , and AROC changes. Thus the best collimator is the one that maximizes AROC ( H ). 

We can illustrate this with a plot of AROC vs as seem in Figure 3.2. The collimator family is 

characterized by a depth-dependent FWHM via(2.3). We can choose a reference depth, say 10cm, 

and compute as the standard deviation of the Gaussian at 10cm. (Here we use

/ 2.355FWHM   ) Then  is a convenient index for collimators, and we can evaluate 

AROC( ) instead of AROC( H ). 

 

Figure 3.2 AROC vs. collimator as indexed by  . 

Here ̂ is the best collimator 

Once again ( )T g is looking for the signal, but is doing this by examining g , not a 

reconstruction f̂ . In the g -space, the signal appears as a blurry sinusoidal stripe, and that is what 

is being searched for by the IO, or any other observer, that examines the raw data. 

 

 

 

 

 

 

 

  Figure 3.3 Image of 

Object f  

Figure 3.4 Projection Image g of f from 

Figure 3.3 
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The observer ( )T g tries to detect the presence of signal in the object space by its sinusoidal 

signature in the sinogram. The signal (bright spot) in Figure 3.3 causes the sinusoidal stipe in the 

noisy sinogram in Figure 3.4. The observer infers the presence of the signal
js in the object space 

by looking for the sinusoidal pattern in the sinogram. In Figure 3.3, the signal has artificially 

high contrast for display purposes. In reality, the sinusoidal pattern due to
js is buried in the noise. 

 The detection task we described is not realistic medically since it assumes that one knows 

where to look for the signal. Next we consider a more realistic LROC task. 

 

3.3 LROC 

 

The LROC task involves simultaneous detection and localization of a signal (Swensson, 

1996). Localization means we estimate the signal location and correct localization means the 

estimate is within an error radius of the true signal. This circular region about the true signal is 

called the tolerance region and its radius is user specified. The LROC task assumes only one or 

zero signals per image. The localization part of the task is similar to the search procedure of a 

doctor scanning the image to look for something suspicious. Hence the LROC is more realistic 

that the ROC task, which involves detection only.  

The LROC curve has as its abscissa the FP  rate, the same as the ROC curve. The ordinate 

isCL , the correct localization rate, which is defined as the probability of simultaneously 

detecting a signal (if present) and localizing it within the tolerance region. The LROC curve is 

swept out as a tolerance 0T is varied as we describe below. A typical LROC curve is shown in 

Figure 3.5. Note that the curve does not need to intersect the point (1,1). 

The decision strategy for the LROC-IO maximizes ALROC, the area under the LROC curve. 

We summarize this decision strategy below. See (Khurd & Gindi, 2005) for the detailed 

derivation, which uses a modified Neyman-Pearson method. 
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Figure 3.5 LROC 

 

Let j be the location of the signal in f , so that a signal present object is 
j+

f = b + s withb

known as before and
js a signal which varies only in location j . Clearly f = b is for signal-absent 

objects. A signal present sinogram is then
jg = H(b +s ) +n and signal absent sinogram is

g = Hb +n . Let ( )C l be the tolerance region about pixel l . There are L such regions, so 1,...,l L . 

The expression ( )j C l means that
js lies within the tolerance radius about location l .We may 

define the likelihood 0( | )p Hg as we did for the ROC case. Define lH to be the hypothesis that a 

signal is located in a tolerance region ( )C l centered at 1,...,l L . The signal absent hypothesis 0H

is as before for the ROC case. Thus we have 1L  hypotheses. For a hypothesis that a signal is 

present at j , the likelihood is ( | )jp Hg . The likelihood ratio, analogous to ( )LR g for the ROC 

case, is ( , )jLR g s . In analogy to (3.4) ( , )jLR g s is given by 

  
[ ]

0

( | ) [ ]
( , ) (1 )

( | ) [ ]

j m mj j m g

j

m m

p H
LR e

p H


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Hsg Hs
g s

g Hb
 (3.5) 

Now we can write the LROC ideal decision strategy: 

 

{1,..., }
( )

{1,..., } ( ))

( ) 0 0

( ) max ( ) ( | )

( ) arg max ( ) ( | )

( ) .

j j
l L

j C l

j j
l L j C l

l

T p LR

l p LR

Decide H if T T else decide H




 











g

g s g s

g s g s

g

 (3.6) 
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In (3.6), ( )jp s is the prior on signal location. As before ( )T g is the scalar observer response 

and is the maximum of an objective function. The objective function at each location l is a 

summation of the likelihood ratio (weighted by prior ( )jp s ) within the circular tolerance region. 

The decision strategy reports not only an observer response ( )T g , but an estimated location of 

the signal ( )l g , with ( )l g simply the location where ( )T g is maximized. Finally, we report signal 

present at ( )l g if 0( )T Tg and report signal-absent otherwise. The presence of the max operator, 

the summation, and the reporting of a response and location make this IO very different than the 

two-class decision strategy of (3.1). 

Eq.(3.6) has a mechanical interpretation. Take ( )jp s to be uniform without loss of generality. 

Then one takes g (which may or may not have a signal at j ) and converts it to a "pre-

summation" image ( )jLR g,s . The pre-summation image is indexed by j , one then convolves

( , )jLR g s with ( )C j to get a "post-summation" image
( )

( ) ( , )j j

j C l

p LR


 s g s which is a function of 

spatial coordinate l . The max of the post-summation image and its argmax are ( )T g and ( )l g . 

To compute ALROC we take 
sampN

 g images (with
js distributed as per ( )jp s ) and 

sampN
 

g images. For the g images we form histogram ( )T g . For the g images, we compare ( )l g with 

the true signal location j and see if ( )j C l . If it is, we keep it, otherwise discard it since it is 

mislocalized. We form a histogram ( )T g for the correctly localized responses. The area of ( )T g

is normalized to unity and the area of ( )T g is normalized to a number equal to the proportion of 

correct localizations. As before, we sweep threshold 0T from and integrate ( )T g from 

0T to to get 0( )FP T and integrate ( )T g from 0T to to get 0( )CL T . This sweeps the LROC 

curve as seen in Figure 3.5. We can then use numerical integration to generate ALROC. Note 

there are three numerical integrations: one for ( )T g , one for ( )T g and one for the LROC curve. 

As in the ROC case, we can select a best collimator by seeing where the LROC vs. curve 

peaks. Previous work in our lab on LROC evaluation of simple pinhole systems was reported 

in(Zhou, Khurd, Kulkarni, Rangarajan, & G, 2008). Initial application of LROC, work also from 

our lab, to SPECT collimator optimization was reported in (Zhou & Gindi, 2009) 
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3.4 AFROC 

 

 The Free-response ROC (FROC) and the related Alternative FROC (AFROC) tasks deal 

with the detection and localization of multiple signals. In a 2-D image, a doctor sometimes 

notices more than one lesion, so the AFROC task is medically more realistic than the LROC task. 

We describe only the AFROC since the FROC is closely related. The abscissa of the AFROC 

curve is the probability that one or more false positive "reports" are made per image. The 

ordinate is the correct localization rate. To more precisely define these consider the images in 

Figure 3.6. 

 

Figure 3.6  Images help define AFROC. A dot is a true signal with 

the circle, the tolerance region. The "X" is a "report", i.e. a place 

where the observer estimates a signal is present. See text for 

further explanation. 

In the signal-present Figure 3.6 (a) there are two correct reports (an "X" inside the tolerance 

circle) and two missed signals (false negatives). In the signal-present Figure 3.6(b), there are two 

false positives (X's marks) and one false negative (unmarked true signal). In the signal-absent 

Figure 3.6(c), there are two false positives. In the images in Figure 3.6, we see that the 

percentage of images with false positive reports is 2/3. This percentage, or probability of at least 

one false positive per image, is the abscissa of the AFROC curve. We also note that of the five 

true signals in the 3 images, two are correctly detected and localized, so theCL rate for the 3 

images is 2/5. The CL rate is the ordinate of the AFROC curve. As a threshold is swept theCL

and FP rates vary and the AFROC curve is swept out. A typical AFROC curve is shown in 

Figure 3.7. The area under this curve we will call the AAFROC. 
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Figure 3.7 AFROC Curve 

The IO for the AFROC task, the one that maximizes AAFROC, is non-intuitive. The 

derivation is given in (Khurd et al., 2010)and we summarize it here. We will use somewhat 

different notation than we did for the LROC case. In particular we will assume that the object is 

continuous not digital. (A continuous object is realistic). Then signal locations are denoted by a 

2-D vector r  and summations become integrals. 

Let 1 2( , , , , )nnθ r r r be a vector summarizing the number ( )n and locations of true signals, 

and ˆ1 2
ˆ ˆ ˆ ˆˆ( , , , , )nnθ r r r summarize the estimated number ( n̂ ) and locations of signals. The 

likelihood ratio we need is (Liu, Khurd, & Gindi, 2010) 

 1 1 2
1 2

0

( | , , ,..., )
( , ) ( ; , ,..., )

( | )

n
n

p H
LR LR

p H
 

g r r r
g θ g r r r

g
 (3.7) 

Note that the numerator contains the hypothesis that n signals are present and are located at 

the listed positions. There is no order to the ir 's. If you permute them, the likelihood stays the 

same.   

The optimal decision strategy is then formulated as the max of an objective function (Khurd 

et al., 2010) 
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 (3.8) 

where ( )pθ θ is the prior on true signals, ( )T g and 0T are the detection observer report and threshold, 

respectively, and R the radius of the tolerance region. The "utility" function ( ; )u θ θ counts the 

percentage of correctly localized signals. 

Mechanically, the decision strategy takes each g of a large sample set, and computes a 

candidate response by exploring all "constellations"θ of candidate responses
1
. So let's say 3n 

and n̂ is fixed at 3 and the image is100 100 . Then we need explore 3(100 100) θ 's for each g , or 

710 hypotheses per g ! One takes the max to get ( )T g and the argmax to get θ̂ for each g . The

( )T g are formed into appropriate histograms for g and g and the AFROC curve swept by 

integrating from 0T to . (We shall give more detail in a later chapter). 

The IO in (3.8) makes a reasonable approximation that the FP rate is computed from signal-

absent images only. We note that in (Clarkson, 2007) the AFROC detection-localization ideal 

decision strategy was generalized to an ideal decision strategy for detecting and estimating 

anything!! For example, one could detect multiple signals and jointly estimate their radii. All that 

is needed is a redefinition of the utility function. The resulting curve is termed the EROC 

(Estimation ROC) curve and it is easy to show an IO that maximizes the EROC area. 

Above it was shown that the search involved in maximizing is intractable. However, 

under certain approximations (Liu et al., 2010), the decision strategy in (3.8) can be computed 

much more quickly. The main requirements are that 1( ,..., )npθ r r and 1 1 2( | , , ,..., )nLR Hg r r r be 

separable in ir and that the signals be further apart than 2R .  

                                                 
1
 Eachθ is like a stellar constellation of points. 
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We now have defined the IO for the LROC and FROC tasks. In the next three chapters, we 

apply them to SPECT collimator optimization.  
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Chapter 4 

LROC Experiments with Planar Imaging 

 

4.1 Introduction 

 

In the next 3 chapters we apply LROC, AFROC to medical imaging. Note there is a long 

history of pure detection AROC studies(Barrett & Myers, 2003) which we do not consider here. 

But we note LROC optimization is compared to ROC optimization in (Zhou et al., 2008) 

We first explored planar imaging instead of SPECT since this is easier computationally. We 

have already introduced planar imaging in Chapter 1, section 4, which is basically one angle 

object-image parallel projection. In our experiment, we use 2-D planar object with a fixed 

distance ( d ) to the image plane. Note that the object f is itself planar (2-D) here. This is not 

realistic, but is convenient for the initial experiments we describe in this chapter. The planar 

projection geometry is shown in Figure 4.1. Note that the image g appears right behind the 

collimator, but in Figure 4.1 it is shown at a distance from the collimator just for display 

purposes. In the middle of Figure 4.1 is the collimator, labeled appropriately as H . 

 

Figure 4.1 Planar Imaging Projection Model 

Mathematically, the image can be described as  

  g Hf n  (4.1) 

where f represents the source to be determined and n represents the radiation noise which is 

Poisson distributed. H is the system matrix which summarizes many physical effects of the 
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transfer of photons to the detector. But here H will be needed only to model the collimator. The g

is the projection data.  

Since d is fixed, the depth-dependent point-spread function (psf) described in Chapter 3 

becomes a space invariant psf, so Hf becomes a convolution instead of a matrix-vector operation. 

Thus, we can rewrite (4.1) as 

   g f h n  (4.2) 

where stands for 2-D convolution and h is the psf. 

Our goal is to optimize the collimator. The collimator here is modeled much more simply 

than in Chapter 2, which was more realistic in physics. We model the collimator here simply as a 

2-D Gaussian kernel of unit height and standard deviation . Note that efficiency here is area 

under Gaussian psf curve and resolution is . Thus efficiency goes as 2 and resolution as  . 

In our experiment, h is sampled on a 21 21 pixel grid and varies from 0.1to 3.0 in units of 

pixels. The sample values are calculated by integrating the Gaussian psf over a pixel.  

Our goal is to apply, for the LROC task, the ideal observer (IO) and also apply a suboptimal 

observer on the ensemble of g images to find ALROC vs. curves for each case. Then we can 

determine if suboptimal observers give a significantly different ALROC curve. Intuitively, one 

might think that scanning a simple empirical observer and taking a max directly will yield an 

ALROC vs  curve with same argmax as that of the IO. If that is true, then using the suboptimal 

observer might be much computationally easier than using the IO. However, experimental results 

will show that the IO acts differently than an empirical observer. 

4.2 Imaging details 

 

Figure 4.2 The Planar Object 
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As seen in Figure 4.2, our planar object background is circular with radius equal to 20 pixels 

from center pixel (32, 32). The entire object plane is the 64 64 black region as shown in Figure 

4.2. The gray square in Figure 4.2 is the search regionΩ ( 21 21 centered at (32,32)), which 

covers the area in which we search for a signal. In other words,Ω is the region over which we 

take a max of the post-summation image. The one-pixel white spots are our signal grid ξ , which 

include all the true signal locations we may put a signal on (from (25,25), step equally by 3 

pixels , totally 25 spots). Note thatξ andΩneed not be the same. The locationsξ are where true 

signals might appear in f and the search regionΩ contains hypothesized locations. One could 

makeξ a single pixel,Ω an extended region, and still have a valid LROC simulation. 

The mean count level in g is simply determined by  g f h , so in the background where

100b , if area of h is 2.5, then the background region in g is 250. This simply says that the 

integral of g is the integral of f times the integral of h . If the collimator is efficient, then the 

integral of h >1. The dimensions of g are 84 84 since regular non-circular convolution is used. 

One particular h is shown in Figure 4.3 and its central profile in Figure 4.4. One g is shown in 

Figure 4.5. In Figure 4.5, signal is blurred byh and masked by noise. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 h kernel 

image( 2.5  ) 

Figure 4.4 h kernel 

( 2.5  ) central profile 

Figure 4.5 g image with signal 

present at (25,25) in object 

space(f-space) 

Figure 4.6 TOL templates 
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4.3 LROC experiment 

 

The IO is given by (3.6) with ( , )jLR g s given by (3.5) with Hx interpreted as h x for vector

x . The prior ( )jp s is a uniform distribution overξ . The tolerance region ( )C l of radiusTOL is 

defined digitally by including those pixels distanceTOL (in pixel units) away from a central 

pixel.TOL templates shown in Figure 4.6. 

To generate g (signal present) images, we first generate f according to the ξ ( i  f b s , i  

indexes signal location fromξ ), then convolve f withh and then add Poisson noise to obtain one 

sample k

g , where k indexes sample number. We accumulate 
sampN g by using f  according to 

different signal locations fromξ . For each location inξ , we generate an equal number of signals. 

Note that signal locations are not generated by sampling a uniform distribution ( )jp s . Uniform 

sampling would be a more correct way of simulating g , but using an equal number of samples at 

each iξ is a good approximation. For g generation, the only difference is we use  f b directly 

as the object. 

After accumulating 
sampN g and g , we apply observerT on g as introduced in Chapter 3 to 

get ( )T g and ( )T g . We then accumulate histograms for ( )T g and ( )T g and follow the 

"scoring" procedure (i.e. integrating the normalized histograms to get LROC curve then 

integrating the LROC curve to get ALROC scalar value). This yields the ALROC vs.  curve 

shown in Figure 4.7. 

 

 Figure 4.7 ALROC vs. for IO 
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Comments on Figure 4.7: 

a) ALROC rises withTOL as expected. 

b) At very small , ALROC is low due to high noise. 

c) At very high , ALROC is low because blur inhibits localization. However, withTOL

large, ALROC remains large. 

d) Optimal is around 0.3   for small tolerance and shifts rightward with higher tolerance. 

 

Note: if TOL , we get a pure detection problem with signal location unknown, and the 

best  . So if we are doing detection only, the best collimator has infinitely large holes! This 

paradox for detection problems was observed in (Myers, 1990) though in that case the signal 

location was known. 

 

4.4 Suboptimal observer experiment 

 

IO is a scanning observer that takes a max, but the IO can be difficult to compute if 

likelihoods are hard to evaluate. Can we simply scan an empirical simple observer, then take the 

max and get a ALROC vs.  curve similar to IO, or at least one that yields same *

( * arg max ( )ALROC


  ). 

We tried this. We took the empirical observer to be a scanning matched filter (SMF). A 

matched filter is defined in (Kay, 1998) and turns out to be, for our case, a j -dependent (hence 

scanning) observer:  

 ,( , ) ( ) ( )T T

j j jT     g s g g g h s g  (4.3) 

where the observer itself is
jh s and the observer response an inner product of the observer at j

with g . Rationale: for flat f , Poisson distribution looks like iid Gaussian distribution except at 

the signal. For iid Gaussian, the IO for a detection-only problem is a matched filter which is a 

likelihood ratio, but as most people do, we take log likelihood log( )LR (but we can't do this log 

step in our IO). Under Gaussian approximation of Poisson and log( )LR , and scan feature where 

the MF evaluated at each j , we get (4.3).  
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 Basically, the LROC-IO becomes a SMF by 3 steps: 

 Cancel the summation over tolerance region step 

 take log, which LROC-IO does not. That is, we cannot take a log right before the exp in 

(3.5). 

 Use Gaussian noise for LR instead Poisson. 

 

As the same way in section 4.3, we obtain
sampN g and g . For one particular g  for example, 

we apply SMF over it by(4.3), as j indexes each location amongΩ  and store ( )T g and take the 

max value of it and record the location j as the guessed signal-present location. We do it for 

each g and then score ALROC as we did for IO. 

Then, we get 

 

 Figure 4.8 ALROC vs. for SMF 

Comments on Figure 4.8: ALROC curves here are very different than Figure 4.7 for IO. 

Here, curves show "crossover" which means at some , small TOL's ALROC is larger than big 

TOL. So we see that substitution of a reasonable empirical observer yields very different results 

than the true ideal observer. At larger , the SMF curves do match the IO curves pretty well 

however. Further investigation is needed.  
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Chapter 5 

LROC Experiments with SPECT  

 

5.1 Introduction 

 

In chapter 4, we have explained LROC experiments with planar imaging of a planar object. 

Here, we consider a medically more realistic task, the joint detection and localization of one 

signal in one 2-D slice in SPECT. We use an ideal observer (Eq.(3.5)& Eq.(3.6)) to optimize 

collimator design. The ideal observer operates on the sinogram data. We consider a family of 

parallel-hole hexagonal collimators of varying resolution and efficiency and optimize over this 

set. This experiment is similar to previous work in our lab (Zhou & Gindi, 2009). In the previous 

work, Zhou obtained artifactual results due to an overly large search region (Ω ). Zhou'sΩ and 

her object was the whole object space ( 64 64 pixels), which is unrealistic for a real clinical case. 

In a clinical image, the interested organ is always relatively small compared to the whole image. 

Since SPECT is highly space variant due to depth-dependent blur and attenuation, signals 

approaching the edge of the object are more easily seen. Zhou demonstrated that ALROC was 

much greater if the search was constrained to a region near the outer border ofΩ . Thus, in our 

experiment, we decide to use a smaller search region which makes the region quasi-space 

invariant. It is more realistic than Zhou's work. Zhou also obtained results showing that extreme 

collimators of wide bore and very high efficiency were best. This seemed unintuitive given the 

localization task. 

In this experiment, we focus on 2-D SPECT imaging, which is basically one 2D slice object 

viewed from the "side" by the collimator. Since in clinical case, doctors tend to view one slice of 

a 3-D reconstruction at any one moment, our experiment is clinically valid. Our 2-D SPECT 

object is shown in Figure 1.8. Thus the object was viewed "edge-on" and projections Hf were 

calculated at many angles. The code for projection is quite complex and we used MIPL-Sim. 

MIPL-Sim is a large C package written over many years in our lab. It simulates SPECT 

projection and reconstruction. 
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 Our goal once again is to optimize the collimator via finding argmax of ALROC ( ) curve. 

As discussed in Chapter 3 (Figure 3.3, Figure 3.4), the observer detects the signature of the 

signal in the sinogram space.  

 

5.2 Imaging details 

  

As stated in Chapter 2, the imaging equation for SPECT is 

  g Hf n  (5.1) 

Here, the H matrix modeled depth dependent blur as discussed in Chapter 2 (Figure 2.6), but 

we did not model attenuation effects.  

 

Figure 5.1 The SPECT Object. The tolerance 

footprints are superimposed on the object 

As seen in Figure 5.1, our SPECT object background is circular with radius equal to 20 

pixels from the center pixel (32, 32). The entire object plane is the 64 64 black region as shown 

in Figure 5.1. The gray square is the search regionΩ ( 21 21 centered at (32,32)), which covers 

the area in which we search for a signal. In other words,Ω is the region over which we take a 

max of the post-summation image. The one-pixel white spots are our signal grid ξ , which include 

all the true signal locations we may put a signal on (from (28,28), step equally by 2 pixels , 

totally 25 spots). The signal intensity is 6 times that of the background. Note thatξ andΩ need 

not be the same. The locationsξ are where true signals might appear in f and the search regionΩ
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contains hypothesized locations. One could make ξ a single pixel,Ω an extended region, and still 

have a valid LROC simulation. The tolerance footprints are also shown in Figure 5.1, from top to 

bottom, the radiuses are 3, 2 and 1. 

In our simulation, our physical pixel size is 0.625cm, and our bin size is also 0.625cm 

( shown in Figure 3.4). The distance from the object center (32,32, in pixel) to imaging plane is 

35cm, We apply 65 equispaced angles over 2  around the object. The bin-number, that is the 

number of detectors in the gantry at any one angle, is 96, which is designed wide enough to 

capture all possible photons emitting from the object. In our experiment, we set count level equal 

to 30,000. That is, the mean number of counts in a sinogram was 30,000. We used this clinically 

realistic number for one reference collimator, the GAP (General All Purpose) collimator which 

corresponds to an actual collimator. For other collimators the mean count level was scaled by 

efficiency relative to the GAP. 

We have introduced the collimator models in Chapter 2, including definitions of average 

efficiency, FWHM, etc. Again,

2

2

0( ) (2.35 )
D

FWHM d d
l


 

  
 

 (2.3), where FWHM is the 

Full Width at Half Max of the psf, and d is the distance from source to the crystal face, 0 is the 

intrinsic resolution, which is equal to 0.15cm. In our SPECT simulation experiments, we use a 

hexagonal bore shape, and thus D=1.819S, where S is the length of one of the hexagonal sides, 

as shown in Figure 2.9. Here, we have (Wernick & Aarsvold, 2004)
4

SPT HOLSEP
12

D


  . 

With all these definitions, the average (over point source position) collimator efficiency for 

a hexagonal lattice is given by Eq.(2.4). A typical value of average efficiency is about 42 10 . 

With (2.3) and (2.4) together, we can characterize the collimator. Eq.(2.3) is a measure of 

resolution and (2.4) a measure of noise behavior.  (A more efficient collimator collects more 

photons and so has less relative noise). We selected a family of 10 collimators to span a 

resolution-efficiency tradeoff. We looked for the collimator that yields the best performance 

among the 10 collimators. These collimators are presumed to be made of lead and we assume a 

photon energy, 140 keV, which is completely blocked by the lead. 

We show the tradeoff in Figure 5.2, and Table 5.1 summarizes the collimator parameters. 

The UHR (ultra high resolution). HR (high resolution), GAP (general all purpose) and UHSens 



 

36 

 

(ultra high sensitivity) collimators are real collimators used for clinical purposes. The C1,..., C6 

collimators are simulated ones which designed to span the resolution-efficiency curve. The last 

column of the table lists efficiency relative to that of the GAP collimator. We note that in our 

simulations, we assume a monoenergetic 140 keV Tc-99 m source. This radionuclide is 

commonly used in the clinic. 

 

Figure 5.2 Efficiency versus FWHM for our collimator 

family. This is a noise-resolution curve 

 

Table 5.1 Parameters for the proposed collimator family. 

      Collimator 

 type 

Bore 

diameter 

(mm) 

Bore  

length 

(mm) 

Septal 

thickness 

(mm) 

FWHM 

(mm)  

at 10 cm 

Relative  

efficiency 

UHR 1.40 34.9 0.15 5.3 0.46 

HR 1.40 27.0 0.18 6.3 0.74 

GAP 1.57 25.4 0.24 7.1 1.00 

C1 1.90 25.4 0.28 8.3 1.50 

C2 2.22 25.4 0.28 9.4 2.10 

C3 2.55 25.4 0.28 10.7 2.80 

UHsens 2.84 25.4 0.28 11.3 3.70 

C4 3.20 25.4 0.28 13.2 4.60 

C5 3.53 25.4 0.28 14.3 5.80 

C6 3.86 25.4 0.28 15.7 7.00 
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5.3 LROC experiment  

 

To generate 
g (signal present) images, we first generate

f (our signal intensity is 6 times of 

the background) according to the ξ ( i  f b s , i  indexes signal location from ξ ), then use MIPL-

Sim to simulate the SPECT imaging (with Poisson noise) acquisition to obtain one sample k

g , 

where k indexes sample number. We accumulate sampN 

g by using f  according to different 

signal locations fromξ . For each location inξ , we generate an equal number of signals. Note that 

signal locations are not generated by sampling a uniform distribution ( )ip s . Uniform sampling 

would be a more correct way of simulating g , but using an equal number of samples at each 

iξ is a good approximation. For g generation, the only difference is we use  f b directly as 

the object. In our experiment, our sampN  for g is 2,000 and sampN  for g is 1,000. We used more 

signal present samples because mislocalized observer location estimates are excluded from the 

histogram. Thus of the 2,000 signal-present responses, only a fraction make it to the ( )T g

histogram. 

After accumulating sampN 

g and sampN 

g , we apply the ideal observerT on g as introduced in 

Chapter 3 to get ( )T g and ( )T g . The observer responses are accumulated in histograms for 

which we also use the notation ( )T g and ( )T g . Meantime, we also get the correct-localized 

samples ( )CL g . That is, for each 
k

g , we examine the estimated location ( )kl g  to see if it is 

within a tolerance radius of the true signal location. If is, we mark the sample number as valid 

and include those samples in the histogram ( )T g . Invalid localizations are marked and the 

corresponding observer responses are excluded from ( )T g . We then accumulate histograms for

( )T g and ( )T g and follow the "scoring" procedure (i.e. integrating the normalized histograms to 

get LROC curve then integrating the LROC curve to get ALROC scalar value) mentioned in 

Chapter 3. 

Mathematically, our observer can be described in (3.5) and (3.6). From coding point of view, 

some programming tricks are applied below: 
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a) For (3.5), [ ]j mHs , [ ]mHb and
[ ]j me
 Hs

can be pre-computed, avoiding repeating 

computation for each sample. 

b) In scoring work, since the ( )T g and ( )T g are in a huge range, we take log( ( ))T g and 

log( ( ))T g and then histogram them. Log transformation is monotonic, thus we won't lose any 

information but get nice histograms shown in Figure 5.3. That is, if one integrates ( )T g and

( )T g from 0T to , the resulting integration is unchanged if we monotonically transform ( )T g

and ( )T g before integration. Taking the log here is very different than taking the log of the 

likelihood ratio. 

 

 

Figure 5.3 Collimator UHsens, TOL=3's histograms 

 

5.4 Results  

 

Figure 5.5 plots performance, in terms of ALROC, versus collimator resolution, FWHM. 

The abscissa indexes the collimator choice by its resolution FWHM for a source at depth 10 cm. 

Reference to Figure 5.2 relates this FWHM to efficiency. The curves in Figure 5.5 are indexed 

by tolerance. The lowest curve, labeled TOL=0, corresponds to perfect localization, which is sort 

of unrealistic for a SPECT blurred image. The TOL=3 case is also unrealistic at the other 

extreme of large tolerance. The TOL=2 case is the most realistic. For any tolerance, we can see 
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the peak shows up at collimator UHsens. As expected, ALROC performance goes north as 

localization becomes freer. Figure 5.5 shows that adding a localization restriction results, for the 

optimal collimator, in a finite collimator resolution. If there were no localization requirement, the 

ALROC curves would keep rising as FWHM increases, approaching unity. This was observed by 

(Zhou & Gindi, 2009) and is consistent with (Myers, 1990). We observe the optimal collimator 

to be UHsens. The conventional collimator for this study is the GAP. The vertical lines in Figure 

5.5 highlight the GAP vs. the UHsens performance. Thus, a more efficient lower resolution 

collimator the UHsens, would be selected vs. the GAP according to this result. Our result is quite 

different from (Zhou & Gindi, 2009), which gave only rising curve with bigger collimator and no 

peaks showed up. We believe Zhou's paradoxical 'gaping aperture' is due to the unrealistic giant

Ω . She obtained this result even though she had a localization requirement. In our experiment, 

TOL=2,3 are more realistic than too stringent TOL. So our final conclusion for the doctors is this: 

For certain clinical studies, replace your GAP collimator with another collimator, the UHsens, 

that yields blurrier sinograms with less relative noise. 

 

 

Figure 5.4 Representative LROC curves from the study 



 

40 

 

 

 

Figure 5.5 See text for explanation 
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Chapter 6 

AFROC Experiments with SPECT 
 

6.1 Computationally tractable version of AFROC ideal observer 

 

In Chapter 3 we presented the ideal decision strategy (Eq.(3.8)) for the AFROC ideal 

observer, and also showed that the computation of the observer response was computationally 

difficult. In (Liu et al., 2010), our lab showed that under certain assumptions, the computation, in 

Eq.(3.8) could be done more rapidly. We summarize the work in (Liu et al., 2010), using the 

notation from Section 3.4. 

First, we assume that there will be a finite number n̂ of reports. In practice, a physician may 

typically mark 2 or 3 suspicious locations in a SPECT slice. It turns out that if the IO is restricted 

to making up to n̂  reports, it will end up reporting exactly n̂ reports (if the threshold 0T is 

exceeded). While the true number of signals n can be variable, we'll reasonably assume that if 

signals are present, then exactly 2n  signals will be present. In this case, it makes sense to set

ˆ 2n  . We call this the "2-2" case: Either zero or two signals are present (0 in g , 2 in g ) and 

exactly two reports are made if a threshold is exceeded. 

The next assumption is that the location prior is independent so that for the 2-2 case

1 2 1 2( , ) ( ) ( )p p pr r r r . This independence in subject to restriction that the two signals be more 

than 2R apart, with R the tolerance radius. The next assumption is that the likelihood ratio is 

separable. For the 2-2 case, this means: 

 1 2 1 2( ; , ) ( ) ( ; ) ( ; )LR Constant LR LRg r r g r g r  (6.1) 

If these assumptions hold then we can rapidly compute the IO. Now we show the fast 

algorithm. Define 

 1( ) ( ) ( ; )J p LR d g r g r r  (6.2) 
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where we can drop the subscript on r since we are integrating. Eq.(6.2) is equivalent to taking the 

LROC "pre-summation image" (described in Chapter 3) and integrating it. Next define 

 
2

| |
( , ) ( ) ( , )J p LR circ d

R


 

r r
g r r g r r  (6.3) 

Eq.(6.3) is equivalent to computing the LROC "post-summation image" (here written in 

continuous notation) of Chapter 3. For the 2-2 case, the objective function ˆ( , ) g θ of Eq.(3.8) 

then becomes 

 1 2 2 1 2 2 1( ; , ) [ ( , ) ( , )]( ( ))J J J  g r r g r g r g  (6.4) 

The 1( )J g term can be pre-computed for a given g . The term in brackets 2 1 2 2[ ( , ) ( , )]J Jg r g r  

apparently tells us that we must search the 1 2( , )r r space to find a particular 1 2
ˆ ˆ( , )r r that maximizes 

the sum in the brackets. This combinational search seems hard until one realizes that no search is 

needed. All one needs is the first two order statistics of 2 ( , )J g r , that is the 1̂r  that yields the max 

value of 2 ( , )J g r  and the 2r̂ value that yields the 2nd-highest value of 2 ( , )J g r . This choice of

1 2
ˆ ˆ( , )r r is guaranteed to maximize the term in brackets in (6.4) and hence maximize 1 2( ; , ) g r r

over 1 2,r r . One last restriction is that 1̂r and 2r̂ must be separated by 2R . Once we have 1 2
ˆ ˆ( , )r r , then 

 
2 1 2 2 1

1 2

ˆ ˆ( ) ( ( , ) ( , ))( ( ))

ˆ ˆ ˆ,

T J J J and 



g g r g r g

θ r r
 (6.5) 

as our IO observer report on g . 

The 1 2,J J formulation has an easy mechanical interpretation. For a given g , first take the 

pre-summation image and integrate it to get the 1( )J g term. Then scan the LROC post summation 

image and locate the 1st max 1̂r and 2nd max 2r̂ , while ensuring 1 2
ˆ ˆ|| || 2R r r . Then plug these

1 2
ˆ ˆ,r r into (6.5) and multiply by 1( )J g to get the observer report. In sum, combinational search 

becomes sequential search + order statistics. 

 

6.2 Scoring the AFROC observer reports 
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We need to come up with scoring procedure consistent with the definitions of AFROC. Let's 

say we have scanned 1,2..., sampk N signal present images to yield ( 1 2
ˆ ˆ( ), ,k k kT g r r ). If both 1̂

k
r and

2
ˆ k
r are further than the tolerance radius R from either of the true signals at 1r and 2r , as depicted in 

Figure 6.1(b), then we have incorrect localization and the report is discarded (as we did for the 

LROC case). If both 1̂r and 2r̂ are within R , as in Figure 6.1(a), then that ( )T g is included in the 

histogram. If one of the two reports 1 2
ˆ ˆ,r r is within R of a true signal as in Figure 6.1(c), then it 

turns out that the correct scoring is to include the ( )T g in the histogram, but to weight that 

histogram by1/ 2 . In summary, let's say that  

 2 1 0samp samp samp sampN N N N    

where 2sampN cases have 2 correct localizations, 1sampN has 1 correct localization and 0sampN has 0 

correct localizations. Then the ( )T g histogram is made from the 2sampN  ( )T g , plus (1/ 2) the 

1sampN  ( )T g , plus 0 the 0sampN  ( )T g . The composite histogram is normalized by

0 1 2

1

samp samp sampN N N 
. 

 

Figure 6.1 See text for explanation 

What about the ( )T g histogram? Let's say we had sampM samples. Then all ( )T g reports are 

included in the histogram and the histogram is normalized by sampM . 
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Finally, the threshold 0T is swept from to and the histograms integrated from 0T to

to generate the AFROC curve as
0T is swept. As before, numerical (trapezoidal) integration of the 

AFROC curve is used to get AAFROC. 

6.3 Imaging details 

 

In this Chapter, our imaging model for SPECT is still Eq.(5.1). And H 's characteristics still 

hold. We conduct 2-D SPECT imaging trials as we did in Chapter 5. 

 

 

Figure 6.2 The SPECT Object (Higher Resolution) 

We use a higher resolution object (128 128  vs. 64 64  for LROC) for AFROC experiments 

as shown in Figure 6.2. The object background is circular with radius equal to 40 pixels from the 

center pixel (64, 64). The entire object plane is the128 128 black region as shown in Figure 6.2. 

The gray square is the search regionΩ (39 39 centered at (64,64)), which covers the area in 

which we search for signals. In other words,Ω is the region over which we take a max and 

second max of the post-summation image. The one-pixel white spots are our signal gridξ , which 

include all the true signal locations we may put signals on (from (52, 52), step equally by 3 

pixels, totally 81 spots). We will try cases where the signal intensity is 16, 20, 25, 28 times that 

of the background. The numerical value of signal intensity in object space itself doesn't mean a 

lot, and only counts in sinogram has meaning to us. Note thatξ andΩ need not be the same. The 

locationsξ are where true signals might appear in f and the search regionΩ contains 
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hypothesized locations. The tolerance footprints are also shown in Figure 6.2, from top to bottom, 

the radiuses are 3, 2 and 1. 

Note that the ideal observer was for this AFROC case mathematically defined using 

continuous notation, where r is a 2-D location vector. But simulations are carried out on a 

discrete grid. It will be understood that for simulations, locations will take on discrete values. For 

example we will use
1r

S to indicate a signal S in f located at 1r . Here 1r is assumed to be discrete 

and 1r ξ . 

In our simulation, our physical pixel size is 0.3125cm, and our bin size is also 0.3125cm. 

The distance from the object center (64,64, in pixel) to imaging plane is 35cm, We apply 129 

equispaced angles over 2  around the object. The bin-number, that is the number of detectors in 

the gantry at any one angle, is 192, which is designed wide enough to capture all possible 

photons emitting from the object. In our experiment, we set the count level equal to 30,000, 

which is same as explained in detail in SPECT LROC experiment in Chapter 5. Note that the 

count level does not change as we go from a 64 64 object to a128 128 object. In reality f is 

continuous and discretizing f is just needed for computer implementation. So even if f were 

continuous, we'd still have 30,000 counts on average. 

As we stated in Chapter 3, AFROC tasks deal with the detection and localization of multiple 

signals, we have two signal in our object, f . In our experiment, we lock the number of signals 

equaling to 2. In ξ , and the signals are separated by 2R . InΩ , we search for 2 signals also 

separated by 2R . 

Our collimator model for AFROC experiment is the same as in Chapter 2. And we use the 

same collimator family as for LROC in Chapter 5. Figure 5.2 and Table 5.1 summarize the 

collimator family we will use here. Note that here we use higher resolution object for the than 

LROC experiment, but we meantime use smaller bins and pixels size which keep the object 

physical size the same and which will not affect the collimator values in Table 5.1. 

 

6.4 AFROC experiment 
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To generate g images, we first generate f samples by adding two signals
1r

S
2r

S on ξ by 

probabilistic sampling with "Rejection Scheme". The rejection scheme basically randomly takes

1r
S withinξ with uniform probability, then independently randomly takes

2r
S with uniform 

probability. Calculate the distance between 
1r

S and
2r

S , and if it is 2R , we discard current
2r

S

and sample a new location for
2r

S until the distance between 
1r

S and
2r

S bigger than 2R . We 

record
1r

S and
2r

S 's locations as the vector ( )k

true l f , where k indexes sample number. With
k

f , we 

project it via (2.5) using MIPL-Sim to get
k

g . To generate
k

g , we simply use (2.5) and MIPL-Sim 

where f contains no signals. In our experiment, our sampN  for g is 2,000 and sampN  for g is 

1,000.We used more signal present samples because mislocalized observer location estimates are 

excluded or half excluded from the histogram due to the scoring method in section 6.3. Thus of 

the 2,000 signal-present responses, only a fraction make it to the ( )T g histogram. 

After accumulating sampN   g and sampN 

g , we do the following: we apply the observerT in 

(6.5) on a given
k

g as introduced in Chapter 3 to get ( )kT g and ( )kT g to obtain 2 observer 

responses, and 2 estimated locations for each image, indexed as ( )k

guess l f . For signal absent 

objects
k

f with their associated
k

g , we do not need accumulate estimated locations ( )k

guess l f . 

While these estimated locations are indeed calculated as part of calculating ( )kT g , we don't need 

to store them for scoring purposes. Compare ( )k

true l f and ( )k

guess l f  and follow the same scoring 

method described in Sec 6.2 to see if the ˆ k
r are within R of the ˆ k

r . We then accumulate histograms 

for ( )T g and ( )T g .  

Mathematically, our observer can be described in (3.7) and (3.8), and since the likelihood is 

separable, each factor in the likelihood is same as in (3.5). In (3.5), we used the notation 

( ; )jLR g s . Now we'll use ( ; )
j

LR rg s where the lower case " s " means a hypothesized signal and 

jrs means it is located at ,j jr Ω . In this case 

 
[ ] [ ]

( ; ) (1 )
[ ]

m jj m

j

m g

m m

LR e


 
rHs r

r

Hs
g s

Hb
 (6.6) 
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which is the same as (3.5) with a slight change in notation. Also in (6.1) we used expressions

1 2( ; , )LR g r r and 1( ; )LR g r and it will be convenient to use interchangeably 
1 2

( ; , )LR
r r

g s s and

1
( ; )LR

r
g s instead.  

 

Pseudo-code of our software: 

Precomputation for 
jrHs , jΩvia MIPL-Sim for each collimator. 

The software pipeline for a given collimator is then 

  

For 1k  , sampN   

 Generate next 
1 2
,

r r
S S pair for k

f and store in ( )k

true l f  

 Generate k

g via (2.5) to project k

f  

End k  

For 1k  , sampN   

 Generate k

g via (2.5) to project k

f  

End k  

For 1k  , sampN   

 Generate ( )kT g via (6.5) 

 Store the ( )kT g in histogram ( )T g . 

End k  

For 1k  , sampN   

 Generate ( )kT g , ( )k

guess l f via (6.5) 

 Compare ( )k

guess l f to ( )k

true l f to see if we have 0,1 or 2 correct localizations. 

 Split the histogram into 0sampN ( )T g for the 0-correct, 1sampN ( )T g for the 1-correct 

and 2sampN ( )T g for the 2-correct localizations.  

 Weight the histograms and normalize them to get ( )T g final histogram 

End k  
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Store the histograms as described earlier and follow the integration procedures to 

get AAFROC for that collimator. 

Repeat for next collimator. 

From coding point of view, some programming tricks inherited from Chapter 5 are applied 

below: 

a) For (3.5), [ ]
j mrHs , [ ]mHb and

[ ]mje
 rHs

can be pre-computed, avoiding repeating 

computation for each sample. 

b) In scoring work, since the ( )T g and ( )T g are in a huge range, we take log( ( ))T g and 

log( ( ))T g and then histogram them. Log transformation is monotonic, thus we won't lose any 

information but get nice histograms shown in Figure 5.3. That is, if one integrates ( )T g and

( )T g from 0T to , the resulting integration is unchanged if we monotonically transform ( )T g

and ( )T g before integration. Taking the log here is very different than taking the log of the 

likelihood ratio. 

 

6.5 Results 

 

We calculated AAFROC vs. for 4 different signal intensities as shown in Figure 6.3. As 

signal intensity rises, we expect AAFROC to rise and we observe that. The UHsens collimator is 

the best collimator (significantly better than the GAP) for signal intensities 16Background and

20Background so that the curves resemble the LROC results. However, at very high signal 

intensities, AAFROC is maximized at the GAP. That is, the system performs best with a low 

efficiency high resolution collimator if very high signal intensity is used. 

It is not clear why this shift to high resolution/low efficiency occurs at high signal. 

Apparently, the IO can deal with the noise in a low-efficiency image if the signal is strong 

enough to differ from the noise background. For observer testing, one would prefer low intensity 

signals since if one could do well with these, they'll be able to see the higher intensity signals 

anyway. 

 

6.6 Validity of the separability assumption 
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In Sec. 6.1, we mentioned two separability assumptions upon which the computationally 

efficient ideal observer in (6.5) holds. Here we discuss these assumptions.  

The first assumption, that 1 2 1 2( , ) ( ) ( )p p pr r r r is reasonable medically unless we have some 

extra information on the disease process. For example, for looking for liver metastases, there is 

no reason affects the location of the 2nd tumor. An exception is that the 2nd tumor be located 

some distance away from the first, a reasonable assumption given the finite size of real tumor, 

and given that separate tumors are reasonably separated by the 2R tolerance. This separation 

constraint makes the independence assumption technically invalid, but independence is still a 

good assumption.  

 

Figure 6.3 AAFROC vs. results for 4 different signal levels 

What about the independence of the likelihood ratio 1 2( ; , )LR g r r ? This is more difficult to 

verify. We did the following. For computational ease, we replaced the Poisson likelihood of (3.3) 

with a Gaussian likelihood, so that the signal-present likelihood becomes 
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2

( ) ( )

2
1 2( | , ) ( .)

T

p const e 

 




g g g g

g r r  (6.7) 

where 
1 2

( )   
r r

g r Hb Hs Hs . The signal-absent likelihood becomes 

 
2

( ) ( )

2
0( | )

T

p H e with

 


 

g g g g

g g Hb  (6.8) 

By setting 2  Hb , we obtain an independent but not identically distributed Gaussian whose 

variance = mean at all bins except where
rHs is non-zero. We take this as a reasonable 

approximation to the independent Poisson model. From (6.7) and (6.8), the likelihood ratio 

becomes 

 

1 2 1 2

1 2 1 2 1 2

1 1 1

1 2
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where the "extra" term 1 2

1 2

2( ) ( )
( , ) exp

2

T

E
 

  
  

r r
Hs Hs

r r
Hb

should act as a constant (vary slowly 

with 1 2( , )r r with respect to 1 2( ; ) ( ; )LR LRg r g r ) in order to maintain that 1 2( ; , )LR g r r is separable. 

We conducted exhaustive numerical trials, given the object,Ω andξ described earlier, to see 

if this assumption held. For signal-present objects yielding g with signals at
1r

S and
2r

S , the extra 

term varies very slowly and  
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 1 2 1 2( ; , ) ( ; ) ( ; )LR K LR LR   g r r g r g r  

where K is approximately a constant, so separability holds. 

For signal-absent images g , the relative constancy of 1 2( , )E r r was not as good. For 

relatively high tolerance (high R ) and low efficiency collimators, the
1 2( , )E r r term behaved well 

(was relatively constant) but as R shrank and the collimator became more efficient (longer tails 

on the depth psf) the 1 2( , )E r r could vary by a factor of 2 or so across the range of 1r and 2r

locations. For these cases, the observer in (6.5) was less than ideal. Clearly, this requires further 

work. 
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Chapter 7 

Summary, Contributions and Future Work 
 

In this chapter I summarize the results and also list the specific contributions I made. I 

comment on the directions someone might take to extend the work. 

 

7.1 Summary 

 

Detection and estimation performance is used to optimize medical imaging systems. The 

medical imaging system we studied was SPECT. In other words, an imaging system that lets 

someone search for and find lesions with better performance is better than that yields worse 

performance. Here performance was measured by the scalar ALROC and AAFROC produced by 

an ideal observer examining the sinogram. As discussed in (Barrett & Myers, 2003), good 

performance by an ideal observer on the sinogram should translate to good performance by a 

human observer examining a reconstructed image. 

Specifically, the thing that was altered to change performance was the collimator. The 

depth-dependent nature of collimators and their efficiency was summarized and a collimator 

family of 10 collimators used. The best collimator for the LROC task was the ultra-high-

sensitivity collimator, which yields blurry and smooth sinograms as compared to higher 

resolution collimators used in the clinic that yield noisier but higher resolution sinograms. For 

the AFROC task, the ultra-high-sensitivity collimator again yielded the best performance, but 

curiously, as signal contrast was upped to very high levels, lower efficiency higher resolution 

collimators were best. 

 

7.2 Contributions 

 

My work made use of the theoretical expressions for new ideal observers developed earlier 

in our group (Khurd & Gindi, 2005; Khurd et al., 2010; Liu et al., 2010) and used the MIPL-Sim 

software SPECT simulator also developed over many years in our group by students S.J. Lee, I.T. 



 

53 

 

Hsiao, W. Wang, Y. Huang, S. Kulkarni, Y. Xing and P. Khurd. I applied this theory and 

software tools to a problem in SPECT optimization. 

For Chapter 6 I applied the ideal observer to SPECT for the 2-2 AFROC task. I wrote an 

extensive software package and addressed theory questions in formulating the AFROC results. 

This was the first application of the AFROC ideal observer to SPECT. The MATLAB code I 

wrote to carry this out was quite complex and contained many practical speedups to aid the long 

calculations, and interface with MIPL-Sim. In addition I formulated and carried out the 

separability tests described in Sec. 6.6. A remaining technical problem for the AFROC observer 

is to examine the separability issue of Sec. 6.6 more closely. 

In Chapter 5, I applied the ideal observer to SPECT for the LROC task. This very goal was 

addressed earlier in our group in (Zhou & Gindi, 2009). But in (Zhou & Gindi, 2009), non-

intuitive results were obtained. Later it was realized that this had to do with an unrealistically 

large search region. I redid the previous project, writing my own code, and carefully designed the 

object, search grid and signal grid to be more realistic. My results should that an optimal 

collimator (a peak in the ALROC vs.  curve) could indeed be found, whereas for the earlier 

work, the ALROC curve rose monotonically with . 

In Chapter 4 I conducted LROC studies using planar imaging. This was new and not done 

previously, but the main purpose of this work was to develop the infrastructure for my code that 

could be applied to the more complicated SPECT problems in Chapter 5 and 6. The planar 

results are not that useful in themselves. 

In summary, my main contribution was Chapter 6, a secondary contribution in Chapter 5 

and a minor contribution in Chapter 4. Naturally, my advisor suggested the problems and 

provided continuous advice, but the project was done by me alone. I contributed some 

mathematical insights in converting the ideal observer math to practical code as well as doing the 

coding. 

 

7.3 Future directions 

 

The collimators were modeled as if a photon hitting a septa is completely stopped by the 

collimator material. Under this assumption we get Eq.(2.3) and Eq.(2.4). However, in many 

clinical studies, the radionuclide will radiate photons at several energies. The higher energy 
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photons can penetrate the septal walls. The "septal penetration" effects are important in that the 

depth-dependent psf as seen in Figure 2.8 can change to include long low amplitude tails. Thus 

the H matrix is changed. This could change our results. Such problems have been studied 

elsewhere (Moore, Vries, Penney, Mueller, & Kijewski, 1998), but the studies did not use the 

same performance criteria as we did. 

We did not model the important physical effect of scatter. Here, a photon can scatter from 

an atom in the body (Ogawa, Harata, Ichihara, Kubo, & Hashimoto, 1991) and enter the 

collimator as if it originated in the scatter site. This again changes the H matrix and hence the psf 

model we used could affect our results. 

There are several clinical applications in SPECT to which our work could be applied. These 

applications are in oncology where the physician surveys the body looking for localized hot spots 

in radionuclide uptake indicating tumors or metastases.  

Finally, I note that the main results of the work, the ALROC and AAFROC vs. plots of 

Figure 5.5 and Figure 6.3 did not include error bars. However, I am confident that with the 

sample sizes used ( 310sampN ) the errors are well below 1%. This conclusion is based on work 

by (Zhou & Gindi, 2009) and (Kulkarni, Khurd, Hsiao, Zhou, & Gindi, 2007) who used 

bootstrap techniques (Zoubir & Boashash, 1998) in situations similar enough to mine that it 

seems that the sample error will be negligible. Nevertheless, this would have to be confirmed. 
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