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Abstract of the Dissertation 

A Model of the Mechanical Behavior of Vertically 

Aligned Carbon Nanotubes under Compression 

by 

Jian Yao 

Doctor of Philosophy 

in 

Mechanical Engineering 

 

Stony Brook University 

2012 

 

A carbon nanotube (CNT) turf is composed of an array of nominally parallel aligned 

nanotubes that are weakly bonded together by van der Waals (vdW) forces. The structure is very 

compliant in compression and tends to deform by a unique buckling mechanism whereby small-

wavelength buckles form and collapse in sequence. Subsequent buckles form adjacent to the 

previous buckle such that the deformation propagates across the loading axis of the specimen. 

The deformation appears as a propagating front that separates a distinct unbuckled region from a 

region consisting of a regular array of small-wavelength buckles. This behavior is quite different 

from that of a single CNT which would exhibit beam-like buckling. An axial supported beam 

undergoes large-wavelength buckling, which implies that the buckle wavelength is determined 

by the size of the structure (length of the beam).  Undoubtedly, the added constraint associated 

with interactions between nanotubes affects the characteristics of the deformation in CNT turfs. 



 

 iv

The purpose of this work is to propose a possible mechanism for the buckling behavior and test it 

with a mechanical model and computer simulations. 

From stress versus strain measurements during compression, a CNT turf exhibits clearly 

different loading and unloading paths that indicate energy dissipation.  The dissipation may be 

the result of a microstructural transformation such as debonding/rebonding of tubes or due to 

internal friction that occurs as tubes slide relative to each other within the potential field of van 

der Waals interactions. This work will assess the role of internal friction in the deformation 

process and determine if it might lead to the observed deformation mechanism of buckle 

formation and propagation. For this analysis, internal friction is treated as viscous force on a 

CNT as it deforms through an effective medium which accounts for the interaction of a nanotube 

with surrounding tubes. Finite element analysis is used to calculate results of the model. 

It is found that the model exhibits progressive buckle formation from one end to the other 

end of the structure. The buckles form at a uniform size and propagate at a steady rate, which 

depend on the rate of compression. It is also found that buckling propagation occurs at a constant 

load such that the stress versus strain curve exhibits a distinct plateau. Buckle wavelength, 

plateau load and buckle forming rate are obtained as functions of the rate of compression, the 

bending stiffness of a nanotube and the viscosity of the effective medium. The bending stiffness 

characterizes elastic behavior of individual tubes in the turf and effective viscosity characterizes 

both the Vdw force between tubes and the density of tubes in the turf. The influences of 

nanotube geometry and material parameters on the deformation results are investigated. 
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Chapter 1 Introduction 

1.1 Background 

Carbon nanotube turfs possess numerous advantageous properties including low density, 

high strength, super elasticity at large deformations, good flexible resistance, good fatigue and 

fracture resistance. Consequently, they have been proposed for many applications, such as (1) for 

good fatigue resistant devices, accommodating high strain at over half a million cycles without 

fatigue failure [1], (2) as the inter layer fillings for energy-absorbing composites [2], (3) as a 

component to improve the fastening of connections between the adjacent plies in the 3D 

composite [3], (4) as the tunable membrane filter to allow the passing of certain sized particles 

depending on the compression pressure [4], (5) as nonlinear springs for energy absorption [5], 

and (6) as nanofoams with tunable and damping properties [6, 7]. The functions and 

performances are closely related to the porous structure. These functions are undoubtedly related 

with the nanoturf’s structure. 

Nanotube turf is an extremely complex porous and bundle-like structure composed of a 

large quantity of nearly vertically aligned, free standing nanotube arrays bonded by van der 

Waals interactions. The nanotube growing process is affected by van der Waals forces that cause 

cross links to form and provide structural integrity to the material. With increasing length, the 

nanotubes start to aggregate into bundles due to the unbalanced attractions from the neighbor 

tubes. The microstructure of nanoturf is characterized by active "pores" (disconnections between 

tubes) which can form and close depending upon adjacent nanotube positions and the 

entanglement of cross links. These geometrical and mechanical attributes make each nanotube in 
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the nanoturf deform much differently than an isolated nanotube. The mechanical properties of 

vertically aligned nanotube turf, such as deformation mechanism and macroscopic constitutive 

properties, are determined by the microscale behavior and understanding the microscale behavior 

is a key for the effective design and utilization of this material. 

As many nanoturf applications involve cyclic compression loading and unloading, uniaxial 

compression measurements provide valuable engineering data. During compression of nanotube 

turfs, Cao et al. [7] found that small buckles form and collapse in a localized region near one end 

of the specimen. With increased deformation, the front of the buckled region propagates across 

the specimen in the axial direction of loading. 

In summary experimental observations of turf deformation under compression have 

revealed many details of the mechanical behavior which have not yet to be fully explained. 

1. Nanotubes deform by localized buckling wherein buckles propagate axially in sequence 

from one end to the other end of the specimen. This results in two distinct regions, a region 

with multiple small-wavelength buckles that accommodates most of the deformation and a 

region that is largely undeformed where the tubes remain nominal straight. 

2. Buckle sizes are small compared to the specimen length and hence deformation does not 

follow simple Euler mode of buckling. 

3. The buckles are of similar size. 

4. During buckle formation the compression load exhibits a nearly constant plateau. 

5. During each loading and unloading cycle a hysteresis loading curve is followed.  After a 

certain priming period through which the hysteresis curve changes with each cycle, it 

saturates such that the same curve is traced for all subsequent cycles. This implies that all 

inelastic deformation (if any occurs) is completely recovered. 
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1.2 Motivation 

Deformation occurs with small-wavelength buckles. It is known that buckle wavelength 

can be controlled through lateral confinement of a beam. For example the buckling of a beam 

glued to an elastic foundation will deform under compression as periodic waves or wrinkles 

rather than as a single large buckle. Stiffer confinement results in smaller buckle sizes [8]. If the 

confining force vanishes, the whole beam would buckle to form a single wave of maximum size.  

This understanding suggests lateral confinement from adjacent tubes may be responsible for 

finite sized buckling in a turf, but that alone does not explain the propagation of buckles. 

Propagation would also require that the degree of confinement is initially nonuniform and 

confinement changes ahead of the buckled region. It has been suggested that the density of tubes 

and hence degree of confinement might vary across a turf [9]. While tube density (and 

confinement) clearly increases within the buckled region, it is difficult to argue that it would 

increase significantly ahead of the buckles.  Nevertheless, the constraint associated with 

interactions between nanotubes likely has an important role on the deformation mechanism [10]. 

It is noted that nanotubes in a turf contain very small wavelength intrinsic undulations.  These 

are much smaller than the size of the buckles that arise from deformation.  While these small 

undulation will likely have a role in activating buckle formation, it is unlikely that they directly 

determine the size of the buckles.   

The hysteresis of the load-displacement curve implies there is energy dissipation during 

deformation.  Furthermore it has been observed that higher compression rates result in a 

generally higher load [9]. Accordingly, it is reasonable to conclude that the interaction between 

nanotubes is largely viscous, or at least that a viscous interaction plays an important role in the 

deformation process.  The viscous interaction will also confine tubes against buckling, albeit the 
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confinement will be time dependent.  While it is quite likely that viscous effects alone do not 

completely explain the turf behavior, it is a valuable exercise to limit attention to viscous effect 

to determine what it might contribute to the behavior.  Hence, a model is developed whereby the 

interaction between the nanotubes is treated as the viscous force, that is, the confined force 

against transverse motions of a tube is proportional to the transverse velocity of the tube.  

According to this model, the response of turf is determined by a viscous coefficient, the bending 

stiffness of a tube and the rate of compression.  Outputs of the model that are of interest include 

that of plateau load, buckle propagation rate, and buckle size.  

In the present work, a nanotube is treated as Euler beam under large deformations and 

calculations are made using finite element analysis.  Dimensional analysis of the model is used to 

test the calculation and to limit the parameter space of the problem. It is noted that molecular 

dynamics method (MD) are often used to model nanotube deformations [11]. Although MD is 

suitable for some problems, it does require expensive computing resources and can be very time 

consuming for moderately large amounts of atoms. As tubes lengths of millimeters are required 

for this current problem, MD would be limiting.  Furthermore, macroscopic deformations of a 

nanotube does not require full resolution of nanometer scale displacements and long tubes are 

well approximated as Euler beams [12].  

There have been numerous recent experiments and qualitative analyses on the compressive 

behavior of nanotube turfs.  Strain rate effect on the nanotube foam was explored [13]. 

Compression and indentation experiments were done on nanotube brushes to explore the 

buckling behavior [14]. Viscoelastic creep behavior was observed during indentation of 

vertically aligned nanotubes [15]. In situ testing revealed periodic buckle nucleation and 

propagation in nanotube bundles [9]. Height independency on compressive modulus of vertically 
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aligned carbon nanotube arrays was found and a simplified formula was used to discuss the 

buckle wave length [16]. The critical load was found depending on the total length [17]. A 

phenomenological mathematical formula was created for the nanofoam mechanical response 

[18]. The above analytical works are only based on the experimental observations and do not 

explain the mechanism that give rise to the deformation behavior; they assume the behavior 

occurs and analyze the consequences. The goal of this work is to provide insight on what causes 

the fundamental behavior. 

1.3 Objective 

The investigation develops on the proposed understanding of nanotube buckle evolving 

mechanism using the static model of nonlinear beam bending under lateral viscous surface load 

in two dimensional plane. In accordance with the experimental observation it is expected equal 

sized self folding will be found progressing from one end to the other end at constant plateau 

load on the displacement controlled loading condition. Quantitatively the buckle forming rate, 

buckle length and buckle plateau load are to be verified to conform to the formulas in terms of 

the bending stiffness, viscosity and compression rate from dimensional analysis. The parameters 

of beam total height, perturbed geometry variations and cross area stiffness are to be checked for 

their influences on the deformation results. 

1.4 Dissertation Structure 

This dissertation is organized as follows. Chapter 2 provides an introduction to carbon 

nanotube turfs structure and deformation mechanism and presents the mechanics model used to 

further simulate the deformation behavior. The growth process and the resulting microstructure 
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are discussed first, followed by a discussion of the buckling deformation mechanism and related 

experimental work and measurements. The model is then presented and the governing equation 

for the deformation of a nanotube is derived. In Chapter 3, the governing equation is cast into a 

weak form suitable for finite element analysis. This form determines the proper application of 

nodal forces and moments to represent the distributed time-dependent viscous load. Additionally 

it determines the corresponding stiffness of these nodal loads as is required for time-stepping. In 

Chapter 4, simulations of the single beam progressive buckling are conducted. The formulas for 

plateau load, buckle forming rate, and buckle wave length are derived from the dimensional 

analysis. In addition investigations on the perturbation effects and effects of beam area stiffness 

and total height on the buckle results are conducted. Chapter 5 gives the conclusions based on 

the present work. 
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Chapter 2 Structure, Mechanics and Modeling of Carbon 

Nanotube Turfs 

Motivated by compression test observations [7], the current study is done to provide 

insight to the deformation behavior of nanotube turfs using a model for the nanotube buckling 

under a viscous lateral confinement. Specifically, the goal is to determine how the viscous 

confinement affects nanotube buckling under large deformations. This section provides some 

background on the structure and deformation of nanotube turfs in order to motivate the model 

and some explanation on the simplification of structure internal interaction into the viscous 

friction. The model, developed in context of continuum Euler beam theory, is then presented and 

the governing differential equation of nanotube deformation is derived.  

2.1 Nanoturf Structure 

Nanotubes in a turf tend to form the bundles as shown in Figure 1a. This bundling is 

driven by attractive van der Waals interaction between tubes, which is a fairly short ranged 

interaction. In order for bundling to occur, tubes in a turf must bend towards each other and, 

hence, bending energy provides a penalty against bundling. Bending energy is long ranged; tubes 

that are constrained at one more sites, must deform to enter the bundles and the deformation (and 

hence the bending energy) grows as the distance from constrained sites becomes further from the 

bundle. The competition between adhesive energy (van der Waals) and bending energy 

establishes a length scale for the degree of bundling that can occur in a turf. Instead of all the 

tubes forming into one big bundle, the structure is rather porous as shown in Figure 1a. 
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Compared with the shorter tubes (~100nm) of Figure 1a, the longer tubes become wavy along 

the axial direction (Figure 1b).  

Nanotubes in a turf have a range of diameters due to local variations in catalytic gas 

feeding rate. The growth rate of CNTs of larger diameters is slower than that of smaller 

diameters because more carbon atoms are required to form a thicker tube of the same height [19]. 

Van der Waals forces between the neighboring nanotubes help to maintain the top surface at 

uniform turf height, as the smaller diameter softer CNTs become bent to match the height of 

larger diameter stiffer CNTs [19]. The competition of nanotubes stiffness that supports adjacent 

vdW attractions and internal bending moments results in the presence of periodic wave for each 

nanotube [19]. Thus ripples form spontaneously during growth. This hypothesis is consistent 

with Figure 1b and c, where CNTs of different bending degrees can be clearly observed. Because 

of high stiffness the height of large diameters nanotubes determines the forest height [19]. The 

random arrangement of CNTs ensures a continuous distribution of the porosity, maintaining a 

homogenized structure. The wavelength of these small grown-in wavy patterns is fairly uniform 

throughout the structure. Uniform van der Waals force occurring in the homogenized structure 

leads to the fairly equal sized wavelength. It is noted that wavelength of these ripples is over an 

order of magnitude smaller than that of the deformation induced buckles discussed next. The 

tubes are in the cohesive state. 
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Figure 1 Nanoturf microstructure. (a) Nanotubes of ~100nm length are attracted each other by 
vdW force, and gaps between bundles are existing [20]. (b) Compressive strain regulates 
nanotubes as periodic waves [19]. (c) Magnified image of (b) indicating changing curvatures of 
CNTs in the nanoturf. Longer nanotubes of ~1m length presenting the serpentine shape and 
displaying larger lateral bending displacements resulted from the vdW force [19]. 

(a) 

(b) 

(c) 
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2.2 Mechanics of Nanotube Surface Load 

Uniaxial compression loading and unloading of vertically aligned nanotubes arrays were 

studied by Cao et al. [7]. They subjected the specimens to repeated loading cycles and found that 

after thousand cycles the cycle curve becomes saturated indicating no residual (macroscopic) 

deformation upon unloading. Repeated loadings after unloading follow the same route, that is, 

every time after unloading nanoturf regains the same stiffness. It means the fracture doesn’t 

occur along each nanotube axis. While the loading/unloading curve exhibits a hysteresis. Energy 

is lost during the loading/unloading cycle while the deformation is fully recovered. As this 

behavior is repeatable, it is most likely the result of internal viscous dissipation. Generally the 

viscous force is resulted from the relative movement between the adjacent materials. Specifically 

this viscous energy dissipation is resulted from the different nanotubes impacting rater than the 

single nanotube fracturing. 

As to investigate the mechanism which leads to localized buckles, exploration starts by 

considering the relative movement of neighboring nanotubes in deforming structure. Figure 3 (a) 

shows the structure consisting of vertically aligned and homogeneously positioned nanotubes 

with equal height. Figure 3 (b) shows the random nanotube deformations under uniform axial 

compression. Boundary conditions specify that at top ends transverse displacements are fixed 

and vertical velocity remains same at top end for every nanotube. Under longitudinal 

compression nanotubes resist each other to form the friction by opposite bending in the 

transverse direction. Because of equal friction on both sides resulted from a same transverse 

distance in the initial homogeneous structure and of equal bending stiffness for each nanotube 

lateral bending of each nanotube to either side occurs to the same extent. Further bending 

develops on the basis of previously deformed homogeneous structure and nanotubes 
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deformations do not vary with locations. Figure 3 (c) shows one pair of nanotubes deforming 

against each other. S1, S2, 1, 2, V1, V2, F1, F2, 1, 2 are natural coordinates along longitudinal 

directions, beam orientation angles at top ends, velocity vectors, friction forces, and velocity 

directions respectively for nanotubes  of #1 and #2. From above discussion due to the same level 

bending deformation these two nanotubes always form the symmetrical shape such that 1=2, 

1=2, V1x=V2x, V1y=V2y. Thus for any pair of contacting nanotubes the relative movement only 

occurs transversely. Hence generated friction force F1 and F2 are along transverse direction. 
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Figure 2 Nanoturf containing free standing vertically aligned nanotubes of same height is 
compressed in thickness direction and shows special behavior. (a) Photo of uncompressed as 
grown CNTs indicates all nanotubes are not purely straight (5 m scale bar) [21]; (b) After 
application of uniform compression on top surface, the transition interface between deformed 
portion and undeformed portion is shown in the middle part (10 m scale bar) [21]; (c) As 
uniform compression applies on the top surface, the horizontally uniform buckles of similar size 
evolve from the bottom end progressively and coordinately [7]. 
 

(a) 

(b) 

(c) 
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To illustrate the friction force magnitude, the discussion focuses on the effective amount of 

nanotubes swept by unit length nanotube. In the 2D plane every nanotube is surrounded by the 

neighboring large quantities of nanotubes such that at any deformation position this nanotube 

does not stay out of the grey region as shown in Figure 3 (d). When moving transversely at 

distance S, nanotube must sweep through neighboring nanotubes which lie in the parallelogram 

blank region ( Figure 3 (d)). Within unit time increment larger blank area results in sweeping of 

more nanotubes which requires increased force to balance the increased resistance ascribed to 

more contacts with neighboring nanotubes. The compression force might be constant or non-

constant relying on the compression rate. Hutchens et al. [9] found the compression stress has a 

strong dependence on the strain rate. Hence, it is natural to expect an increase in the resistance 

magnitude with an increasing deflection velocity. In Figure 3 (d) initial surrounding area is 

homogenized, and after nanotube transverse movement the area homogeneous density is 

destroyed. The vicinity nanotubes require long time to relax and yield enough space for the 

insertion of new nanotube to the limited space. As going through same transverse distance with 

less time, it leads to the higher local density gradient which cannot relax in a short time and form 

a larger resistant force. From previous discussion the neighboring nanotubes do not have relative 

vertical motion thus only global transverse velocity is considered effective for sweeping area. 

The lateral resistance is such that the complete vector for resistance force is defined as 

sin xx vKF                                                  ( 2-1) 
 

Fx is proportional to quantity of affected neighboring nanotubes by the moving nanotube of 

transverse distance on unit time. The resistant force magnitude is defined by the instant velocity 

and orientation at the current location. It can be observed that the horizontal oriented penetrating 

nanotube experiences the zero resistance for zero affected area, while the vertical oriented 
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punching motion experiences the maximum resistance for maximum affected area. The viscous 

force is applied on the beam surface referred as surface load. Since the nanoturf is growing 

homogeneously, any location’s density is similar to the other locations. Thus the viscosity K is 

set as constant throughout the whole structure. Note the Fx unit is F/L which means the Fx is the 

force density along the surface. This vx (unit: L/T) is the global velocity projection on the fixed x 

direction that may change with the time.  is the instant orientation of the unit surface measured 

along counterclockwise from the positive x axis. If  less than zero, take absolute value of Sin. 

Since this viscous force is functioning as resistance to the movement, the resistant force direction 

is always towards the opposite direction of the horizontal velocity. It is noted that the velocity 

projection on vertical direction does not have any influences on the viscous force magnitude, and 

the surface’s orientation does have significant effect on the viscous force magnitude. 
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Figure 3 Schematic of the viscous force; Lines represent single nanotube; (a) structure of the 
undeformed nanoturf; (b) structure of the deformed nanoturf; (c) illustration of the friction force 
resulted from a pair of contacting nanotubes; (d) Gray colored area represent neighboring 

(a) 

(b) 

(c) 

(d) 
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nanotubes without affected, and blank area represents those affected. 
 
 

2.3 Model of Nanotube’s Large Deformation 

The nanotube turf consists of numerous vertically aligned nanotubes. Each nanotube is 

modeled as two-dimensional large deformation Euler beam of isotropic linear elastic material 

with cross-section being same through whole length, neutral axis of which is perpendicular to the 

cross section at any deformation state implying that the cross section plane’s normal is along the 

tangential direction of the beam neutral curve so that any cross section’s deformation occurs by 

bending alone without any shear deformation. Beam bending stiffness is EI. Axially the beam is 

rigid and modeled as inextensible. s is the natural coordinate along the beam length direction. 

Here the s is defined as the natural coordinate along the beam starting from 1 and ending at 2 in 

Figure 5. On the beam surface exists distributed viscous force which is only in the global 

horizontal direction (Figure 5). Beam presents the bent shape under the applied concentrated 

forces P, V and the moment M at both ends and distributed viscous force (Figure 5).  

Beam bending extent is defined by curvature which is largely dependent on normal and 

tangential vector. Tangential and normal vectors can be defined in terms of coordinates 

respectively as (Figure 4)    

  
T

ds

dy

ds

dx
t







         


     

T

ds

dx

ds

dy
n







        


                                            ( 2-2) 

The above formulas are expressed in the parameter function with s as the independent variable. 

n


 and t


 are unit vectors orthogonal to each other. Note that on the 2D plane the normal vector 

n


 is always on the right hand side of the tangential vector t


 in the sense that they observe the 

right hand rule such that one can start from the n


 and stop at t


 within an right angle in the two 
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dimensional plane. Magnitude of Curvature describes bending extent, while sign of that 

describes bending direction. Curvature is defined as rate of change for tangential angle along 

beam length, that is, 
ds

d
. Mathematically curvature k is given as the normal vector n


’s change 

along the natural coordinate s in the direction of t


.         

       t
ds

nd 
                                                       ( 2-3) 

 

 

 

Figure 4 Illustration of curvature definition 
 

 

t


 is along increasing direction of natural coordinate s, and it is a unit vector denoted as 

       jit

 sincos                                                          ( 2-4) 

n


 is normal vector orthogonal to tangential vector, therefore direction angle is 90  as 

                                    jin
  90sin90cos                                            ( 2-5) 

In fact ( 2-3) can be proved by following ( 2-4) and ( 2-5) normal vector change projection on t


’s 

direction is 
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   













         

         

sincossincos

ds

d

jiji
ds

d
t

ds

nd 

                               ( 2-6) 

In terms of Cartesian coordinate using ( 2-2) and ( 2-3)  can be shown as 

                                               
ds

dy

ds

xd

ds

dx

ds

yd
t

ds

nd
2

2

2

2




                                                   ( 2-7) 

In Figure 5 x is the accumulation along the abscissa. 

              
s

dsx
0

cos                                                                   ( 2-8) 

                                                        cos
ds

dx
                                                                        ( 2-9) 

In Figure 5 y is the accumulation along the ordinate. 

                                                          
s

dsy
0

sin                                                                 ( 2-10) 

                                                        sin
ds

dy
                                                                       ( 2-11) 

Accordingly, 

                                             


 sincoscos
2

2


ds

d

d

d

ds

d

ds

xd
                                ( 2-12) 

                                             


 cossinsin
2

2


ds

d

d

d

ds

d

ds

yd
                                   ( 2-13) 

Above are the complete geometric conditions in order to define the two dimensional Euler beam 

deformations.  
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Figure 5 Schematic illustration for the deformed beam geometry 
 

In bending process beam is accommodating vertical force P, lateral force V, moment M 

and lateral surface force f (Figure 5). Because in the y direction there is not any other external 

applied force along the beam except on both ends, along the whole beam P does not change 

which implies 

                                                                           0PsP                                                          ( 2-14) 
 

P0 is constant so that vertical force P is equal at any location in beam. V is reaction force of 

surface distributed force f, and is denoted as shear force along the abscissa following the same 

direction as distributed force. V’s change is equal to accumulation of surface forces along the 

beam. Therefore change of V is only dependent on the distributed load f such as 

                                                                   
s

dssfVsV
00                                                ( 2-15) 

Euler beam is a pure bending beam which does not allow shear deformation, so geometrically M 

is the reaction moment only resulted from beam curvature change as 
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                                                                 sEIsM                                                          ( 2-16) 
From mechanics, the moment is affected by all variables which have moment contributions along 

the beam length. Moment equilibrium at point 1 implies (Figure 5) 

                                                     dssfsySySVSxSPSMM
S


00                        ( 2-17) 

In order to get equilibrium in differential form and remove the integral expression, combining 

( 2-17) and using ( 2-16) M=EI, one may differentiate twice the above equation at both sides to 

get 

                                       
           

0
2

2

2

2

02

2


dS

Sdy
Sf

dS

Syd
SV

dS

Sxd
P

dS

Sd
EI


                     ( 2-18) 

This is a second order ordinary differential equation. P0, V, f and  are all dependent on 

coordinates x and y, and one needs to use nonlinear geometric iterative Newton-Rahpson scheme 

to solve this equation. The time rate effect is considered in the simulations. However because the 

nanotube mass is too small compared with the bending stiffness thus mass is not considered in 

the equilibrium equation which only includes the beam bending terms and the environmental 

viscous resistance so as to not involve the kinetic energy and to obtain more essential nanotube’s 

buckling behavior under viscous effect, since buckling would be otherwise very sensitive to the 

mass incurred inertia and momentum. The fracture in nanotube is not considered in the 

simulation because the nanotube is extremely flexible and tough from experimental observations 

[7]. The nanotube is purely elastic continuum, and all the large deformation is resulted from the 

nonlinear geometry bending deformation since the beam is of linear elastic continuum solid. 

 



 

21 
 

Chapter 3 Numerical Implementations for Distributed 

Viscous Surface Load 

In order to investigate effect of surface viscous load on nanotube buckle process by finite 

element method, the distributed viscous load must be formulated into the FEM form as the nodal 

force and nodal moment. The following section strictly observes the standard FEM procedure to 

give the explicit formulas of nodal forces and nodal forces’ stiffness in terms of the nodal 

degrees of freedom and time change so that combined with beam stiffness and boundary 

conditions the global equilibrium equations can be readily formed. 

3.1 Beam Element’s Nodal Force 

Energy conservation requires external work equal to beam’s internal deformation energy. 

One can obtain beam element stiffness matrix from internal work, and external nodal force from 

the external work. In order to obtain the equivalent nodal forces resulted from distributed load 

only external work WE done by surface distributed viscous load is considered in this work.  

                                                                     
L

E XdsqW
0

                                                      ( 3-1) 

This integral implies that explicit expressions in terms of beam arc length s are needed for 

deformed shape X of a beam and surface load q on a beam. A method of evaluating X and q is 

obtained from constructing a continuous shape by interpreting function values and their 

derivatives at both ends. 

Consider a general nonlinear large deformation two-dimensional Euler beam element. The 

displacement and coordinate (before and after deformation) of every point on the beam neutral 
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axis can be interpolated by the nodal degrees of freedom i.e. displacements and rotations. Here 

and elsewhere the displacements and coordinates are used only for point on the beam’s neutral 

axis. In ( 2-7) the curvature is expressed in terms of coordinate derivatives at the first and second 

order. For the requirement of displacement, rotation and curvature to be continuous and smooth 

so that the minimum shape interpolation  

 

Figure 6 Illustration of Euler beam element. (a) Parameter element (b) Undeformed stress-free 
element (c) Deformed element 
 

should be Hermitian polynomial functions. In order that the element is basically isoparametric, 

Hermitian polynomials are used to interpolate the components of both total global displacement 

u  of any point along the beam neutral axis and initial position vector X0 as [22] 
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                                    11  ,  1g4132211 


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u
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u
gNugNugNgu g                 ( 3-2) 

          11  ,  1
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41
0

30220110   g
dg

dX
gN

dg

dX
gNXgNXgNgX gg     ( 3-3) 

where natural parameter 1g  at node 1, 1g  at node 2 and g = 0 at middle point as shown in 

Figure 6(a). N1~N4 are Hermitian polynomial shape functions shown by 

)23(
4

1 3
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                        )1(
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1 23
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u and 
g

u




, which are unknown variables resulted by deformation, are respectively nodal 

displacement and its derivative about parameter g. X0 and 
dg

dX 0  are respectively undeformed 

initial coordinate and its change about the parameter g. Since both coordinate (before 

deformation) and displacement can be separately interpolated as Hermitian polynomials, then 

global position (after deformation) of any point on the beam element can be interpolated by the 

nodal values through Hermitian functions as 
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  ( 3-5) 

 

 where X1 and X2 are simply initial positions plus unknown translational displacements which 

are easy to acquire, but calculation of 
g

X




 involves tangential vector in terms of rotation . Let t 

represent the tangential vector at any point on the beam neutral axis thus expression for t is 

obtained by considering the differential 
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ds

dh

dh

dg

g

X

s

X
t








                                              ( 3-6) 

g is the parameter in the shape function (Figure 6a). h and s denote length coordinate along the 

undeformed straight beam and the deformed bent beam respectively (Figure 6b, c). In addition t 

can also be acquired from the initial direction cosine vector T applied by rotation matrix C [22], 

                                                                             TCt                                                          ( 3-7) 
where  
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T                                   ( 3-8)

where 0 and  are respectively the element’s initial direction angle and the direction angle’s 

change by the end of deformation. 
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From ( 3-6) by chain rule one can find 

                             t
dg

dh

dh

ds

g

X

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                                                    ( 3-10) 

For a special example initial straight beam element implies direction remains constant along the 

beam neutral axis such that   02010  g , 01 and 02  are initial direction angles at beam 

ends. Using ( 3-10) one can get 
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where L is initial (before deformed) length of the straight beam defined as 

2
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2
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Figure 7 Viscous force applied on beam element. (a) Initial geometry and position of the beam (b) 
Deformed beam with external distributed load (c) Equivalent nodal force and moment on the 
deformed beam 
 

According to ( 2-1) and using interpolation function ( 3-5), ( 3-6) and ( 3-10), k is negative and q is 

found to be 
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u and 
g

u




, which are unknown variables resulted by deformation, are respectively nodal values. 

Consider in energy formula ( 3-1) variations of y direction movements and rotations ( yX 1 , 
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X y2 ) are not contributing to the external work ( 3-1) because there is not 

external force in this direction so they are not included in the integral given as 
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The virtual displacement in x is  
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qds  is the force applied on the area ds by viscous interaction. 

Above is the virtual work done by surface viscous force. xX1  and xX 2  are individually 

the arbitrary variations of displacements at node 1 and node 2. 
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respectively the arbitrary variations of displacement derivatives at node 1 and node 2. 
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where final results of both the above equations can be acquired with chain rule. 
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If beam is axially inextensible and incompressible, then 1
dh

ds
 is used in all equations. From 

( 3-18)~( 3-22) the global nodal force and nodal moment can be derived as follows: 
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q can be obtained from ( 3-14). In ( 3-23)~( 3-26) N1~N4 are third order functions of g, and q is 

fifth order function of g, and totally the integral function is eighth order of g. One ought to use at 

least 5 Gauss interpolation points to get the accurate integral results. 
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Vector F is the external load vector including horizontal nodal forces and nodal moments. The 

explicit expressions of F1x, F2x, M1, M2 can be directly obtained by integrals of ( 3-23)~( 3-26). 

3.2 Stiffness Matrix of Nodal Force 

Viscous surface force q is a velocity dependent variable, and velocities are defined as the 

average value in the small time increment shown as 
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                         ( 3-28) 

Therefore sensitivities of displacement velocity and the rotation velocity about independent 

variables are expressed in terms of time increment as 
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Viscous surface force q’s sensitivities about every independent variable are: 
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The load stiffness about the each freedom degree is expressed as follows, 
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Where the component ijK  of the stiffness matrix K is the force required at No. i freedom degree 

in order that a unit displacement is applied at No. j freedom degree. Therefore, ijK  can be 

expressed in the form of derivative, 

j

i
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F
K


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                                                               ( 3-37) 

Note that because F1y and F2y are permanently zeros then: 

0262524232221  KKKKKK                                        ( 3-38) 

0565554535251  KKKKKK                                        ( 3-39) 
 

The complete expressions of every component in matrix K are derived from ( 3-23) ~ ( 3-26) as 

follows: 
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The above equations are the nodal forces and moments and their stiffness. They are used to solve 

the system of equations by Newton-Raphson method. The load behaviors of the loading element 

are thus fully determined by the stiffness matrix K and the right-hand side nodal force vector F in 

the finite element formulations. Implementation of these formulations in the finite element 

schemes to solve the problem of beam buckle propagation in a viscous medium will be discussed 

in  Chapter 4. 
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Chapter 4 Evolution of Progressive Buckles 

The goal is to numerically simulate the beam deformation under axial compression with 

the lateral viscous force. It is found that the beam presents the regular progressive buckles from 

bottom end to the top end; that is, each similar sized buckle is forming at a constant rate in 

sequence and the indenting force is found at a constant level during the sequenced buckle 

forming process. Dimensional analysis is used to derive the formulas for plateau load, buckle 

forming rate, buckle wave length from beam bending stiffness, viscosity and indenting rate. The 

three formulas’ three independent coefficients are determined from the FEM simulations. The 

geometric and material parameters used in simulations but not included in the dimensional 

analysis are tested and proved to have notable influences on the beam deformation results. 

4.1 Dimension Analysis 

Undoubtedly the nanotube mechanical response is relying on the indenting rate, nanotube 

bending stiffness and nanoturf’s viscosity. Different compression buckle behaviors can be 

achieved by the combinations of the above three parameters. The purpose is to quantify the 

compression rate, tube bending stiffness and viscous property influences on the buckle length, 

self contact rate and buckle plateau force so as to give an explicit quantitative formula for the 

specific nanotube turf. 

However, for the complex buckle behavior with distributed viscous force the beam 

response formula would be less easily derived in terms of the continuum mechanics concepts. 

Beam surface viscous force is the function of instant beam’s orientation and beam position 

change in the time increment, and reversely the viscous force will affect the beam geometry or 
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curvature result. This is a highly complex process which requires nonlinear iterations to get each 

increment solution. A procedure based on dimensional analysis is introduced to derive the 

essential relations of interest from the input parameters. Dimensional analysis is a tool to find the 

relation between the output variables and properties of physical quantities. When the explicit 

formulas from arbitrary input records to output phenomenon variables are not obvious, 

dimensional analysis techniques provide an efficient approach to acquire estimates which require 

the formula’s unit to match on both sides. Next the dimensional analysis procedure is formulated 

to derive the expressions from inputs to outputs, and FEM simulations will be used to determine 

the unknown constants. 

 

Table 1 Units of the input and output parameters in terms of standard units F, T, L. Force unit: F, 
time unit: T, length unit L. 
 

Variable EI K R P   

Unit FL2 FT
L2   

L
T  F L T 

 

Table 1 lists the units of three input variables EI, K, R and three output variables P, , . in 

terms of standard units denoted by force F, time T, length L. Consider a group of 4 variables EI, 

K, R and P. Among them 3 out of 4 variables are independent and can be arbitrarily set with the 

remaining one variable being determined by others. Since EI, K, R are material properties and 

loading condition which can be easily controlled, one can readily derive P shown by ( 4-1) as 

long as to make P* unitless. Following the same procedure other two output variables  and  

can be obtained as ( 4-2) and ( 4-3) individually. 
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In this work, unknown deformation constants are defined as the constants P*, *, *. The 

buckle deformations obtained from the axial compression tests are used to quantify plateau load, 

buckle length and self contact interval rate under various compression rates, nanoturf viscosities 

and beam bending stiffness. The compression rate should not be too slow or too fast compared 

with bending stiffness and viscosity. Extremely slow rate will make the buckle wave length 

exceed the total beam length thus only the first mode buckle would appear and there would not 

have differences for the different rates. Extremely fast rate would make the buckle wave length 

too short. Due to the limited amount of elements too small buckles would not be observed and 

cause numerical difficulties. 
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Figure 8 Schematic of the geometry model 
 

4.2 Nanotube Compression Analysis 

The system consists of vertically placed nanotubes free standing on the rigid substrate 

while under uniform compression at top surface by rigid indenting plane. Each vertically placed 

nanotube is modeled as two-dimensional isotropic linear elastic Euler beam element. The 

constant beam properties are characterized as area stiffness EA, bending stiffness EI. Viscosity 

generated by proximate nanotubes impacting interaction is denoted as K. According to the 

observation that each nanotube in the bundles presents the natural periodic waviness rather than 

pure straight [19], thus beam geometry is assumed presenting the shape at periodic sinusoidal 

function of wave length w and wave magnitude h. To avoid the geometry eccentricity effect, the 

whole beam of total height H comprises complete sinusoidal periods and the beam symmetric 

axis is aligned vertically and orthogonal to both the substrate and compression plane. 

Compression test is done as compression plane moving downward distance of D and duration of 
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d at a constant displacement increment rate R=D/d, and at any instant time compression plane 

remains fixed in horizontal and without any rotation. The substrate is fixed in all degrees of 

freedom. Cao et al. [7] found bottom end is different from top end in terms of density and 

stiffness. As to agree with this observation, the bottom end is set free rotation and free 

displacement in the two dimensional plane while the top end cannot move along the horizontal 

direction. The top end being more constrained than the bottom can be explained as the top end is 

of higher density than the bottom end. The nanotube can not penetrate the substrate and the 

compression plane whereas contacts between the nanotube and substrate and self contacts of 

each nanotube are frictionless. These configurations are shown in Figure 8. 

In the following example beam material parameter is axial stiffness H =
H

(EI)1/3(KR)-1/3 

=100, h =
h

(EI)1/3(KR)-1/3 =0.01, w =
w

(EI)1/3(KR)-1/3 =1, EA =
EA

(KR)2/3(EI)1/3 =6666.666667. It 

should be mentioned that none of values are real physical parameters and dimensions of the 

nanotube, and they are selected such that firstly the natural sine shape function wave magnitude 

and length should be chosen smaller enough compared with the buckles resulted from the 

viscosity K, bending stiffness EI and compression rate R in order to avoid any artificial shape 

that would regulate the bulked shape after deformation, and secondly the buckles should be 

enough smaller than the beam total length in order to generate sufficient quantity of buckles to 

compare their properties. It is noted that these constants are selected somewhat arbitrarily which 

do not represent the real experimental conditions whereas this example’s purpose is only to 

numerically test and validate the proposed deformation mechanism’s accuracy. 

Figure 9 shows localized buckle starts to develop around the bottom end, stabilizes as the 

fixed folding size, evolves to the adjacent part along the length, and successive buckle overlaps 
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on the previous fold repeating the same process time after time. Deformation front indicative of 

boundary by distinguishing portion deformed from that undeformed occurs in a region 

immediately ahead of the buckles. This process continues to develop until the whole length 

becomes folded. Indication that natural waves are small enough relative to the buckle size 

implies their negligible influence on the buckle shape. 

The evolving localized deformation is the result of effects from the transverse load, beam 

bending stiffness and boundary conditions. Analysis suggests that elastic beam subjected to axial 

compression and lateral viscous confinement deforms by the balance of internal bending moment 

and transverse confinement. Upon high bending stiffness and low transverse confinement, large 

buckle or small curvature will form because low confinement is not able to stabilize smaller 

buckles. Upon low bending stiffness and high transverse confinement small buckle or large 

curvature would form because limited bending stiffness is not capable to generate the required 

moment to resist that induced by confinement. Only moderate level buckle size can be formed to 

balance the lateral confinement force. This is the case that beam deflection influences the 

transverse force which inversely limits the deflection magnitude, thus only suitable deflection 

can balance the internal force with the external confinement. The progressive buckle growth is 

related with the nonuniform boundaries at both ends. Compression of a beam results in the 

deflection of bottom free end thus forming a bending shape at a moderate size there. This 

bending shape will form an arc of instable state. At the transition location where beam path 

changes from the bending to straight is the most weakening point and the deformation prefers 

occur there than other locations. The vertical force will further bend this arc until it is fully 

collapsed. And then next period follows up the previous one at the same behavior. Buckles will 

collapse one by one in sequence. 
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Figure 9 Deformation shape of beam at each completion of the buckle folding. 
 

The Vdw force is strong enough to fix self folding [23]. The attractive vdw force exists 

between the tubes and it is a short range force as long as the distance small enough it can obtain 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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the maximum value to make the contacted tubes difficult to separate. During the compression the 

bounce back force is very small relative to the vdw attraction thus they can not separate away 

and always bonded by vdw force. It is noted vertical contact is different from the horizontal 

contact. vdw force is much smaller than the force needed to lock the contact between 

neighboring different tubes. It is assumed the vdw force is not large enough to limit the lateral 

relative movement outside folding region. On the other hand, from Figure 9 one can find contact 

surfaces are mostly along the horizontal direction, therefore the contact force is vertical force. 

The tube space density of folded regions becomes significantly large as can be treated that the 

occupancy of tubes is saturated for the space, thus no additional tube is allowed to push into the 

folded region. After self contact occurrence, the contacted parts can neither go away and separate 

from the folded tube for vdw adhesion nor go into the folded region thus in modeling non-

separation condition after contact is enforced. 

Every locked fold is favored in the lying horizontal position rather than on a vertical 

standing position can be explained as the lying position possesses the smallest vertical area 

projection by which the projection on the vertical plane is a minimum, and the viscous work is 

the lowest because the viscous force is a minimum for a unit horizontal translation. The closed 

fold is stably trapped on the lying position instead of standing position. Because the viscosity is 

constant then the deviation resulted to one side is equal to the deviation resulted to the other side. 

Therefore the whole symmetrical line remains unchanged in rotation and translation. Thus one 

can find the buckle folds pile up layer by layer vertically without deviation. 

Regular buckles are found to form layer by layer. Since the contact can not separate after 

occurrence of contact, as long as one fold is formed and fixed it becomes the solid support and 

almost does not deform albeit at most there is a very small deformation of shape change. Next 
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buckle bends on the basis of the previous one. Then its pure effect is similar to lift the substrate 

one buckle layer up. Next step deformation should be same to the previous one, thus time used 

for each contact interval is same to the previous one. In Table 2 each buckle length and self 

contact rate are listed as nearly constant values. Each buckle length is defined as distance from 

one contact point going along the beam axis to the next upward contact point (Figure 9), and self 

contact interval rate is the time difference from one contact point to the next. At the buckle 

forming period the compression load is acting to bend each fold and each fold is same therefore 

the compression force should be nearly constant across the buckle period as shown in Figure 10.  

In fact after the buckle deformation there are more tubes concentrated in the bottom 

region, so the viscosity is increased there. But since the condition of no separation after contact is 

applied then the closed loop of tube can not have further influence on the undeformed beam part. 

The only function of the finished buckle folds is supporting the upper part as a rigid body (Even 

the closed buckle part can obtain slight deformation but that deformation space is very limited.) 

lying on the substrate. Therefore using the constant viscosity K across the height for the whole 

process is not so severe. 

 

Table 2 Buckle forming rate and buckle length directly measured from beam deformation shape. 
Buckle forming rate is defined as the duration between adjacent contact points. Buckle length is 
defined as the distance along the beam between adjacent contact points. Contact points are 
defined in Figure 9. 
 

Contact 
Interval 

1~2 2~3 3~4 4~5 5~6 6~7 

 3
1

3

4

3

1

EI

RK   10.089 11.160 10.890 11.010 10.980 9.990 

 
 3

1

3

1

EI

KR   11.900 12.900 12.400 12.700 12.700 12.100 
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Figure 10 Indenting force vs. indenting displacement. Force in the dash line box is oscillating 
around a constant average value which is defined as plateau load. 
 

In order to determine P*, *, * in ( 4-1) ~ ( 4-3) multiple simulations are done with the 

same geometry and boundary conditions. Boundary conditions, contact conditions, loading 

methods are consistent with the previous example. In agreement with Figure 8, the beam 

geometry, beam material properties, friction resistance, loading conditions are characterized by 

total height, natural wave length and wave magnitude, bending stiffness, area stiffness, viscosity 

and compression rate. In the simulations H, h, w, EA are kept constant and EI, K, R are varying 

at constant interval. In the first group to change EI, H = 
H

(EI)1/3(KR)-1/3 [100, 144.224957], h = 

U(EI)-1/3(KR)1/3
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h
(EI)1/3(KR)-1/3 [0.01, 0.0144225], w = 

w
(EI)1/3(KR)-1/3 [1, 1.442250], EA = 

EA
(KR)2/3(EI)1/3 

[6666.666667, 9614.997135]; In the second group to change viscosity K, H = 
H

(EI)1/3(KR)-1/3 

[100, 144.224957], h = 
h

(EI)1/3(KR)-1/3 [0.01, 0.0144225], w = 
w

(EI)1/3(KR)-1/3 [1, 

1.442250], EA = 
EA

(KR)2/3(EI)1/3 [3204.999045, 6666.666667]; In the third group to change 

velocity R, H = 
H

(EI)1/3(KR)-1/3 [100, 144.224957], h = 
h

(EI)1/3(KR)-1/3 [0.01, 0.0144225], 

w = 
w

(EI)1/3(KR)-1/3 [1, 1.442250], EA = 
EA

(KR)2/3(EI)1/3 [3204.999045, 6666.666667]. 

Refer to Figure 10, in the dash line box the compression force is oscillating around the 

constant. Buckle plateau load is defined as 
 

12

2

1

xx

dxxf
F

x

x





, where x1 and x2 are lower and upper 

bounding displacements of the dash box. With the increasing difference x2 – x1 and f(x) as a 

periodic function of x, F would converge to the constant value. As long as the difference of x2 

and x1 is large enough, F would be accurate enough. After the initial peak force at buckling, 

many subsequent peak forces exist, each of which is associated with a fold on the deformed 

beam. Buckle wave length is defined as the along axial distance between adjacent contact points 

in Figure 9, and averaged wave length obtained from 5 continuous folds starting from contact 

point 1 is used in the formula. In similar way the contact interval rate (buckle forming rate) is 

defined as the adjacent contact interval in Figure 9 and averaged value of 5 continuous contacts 

starting from contact point 1 is used in the formula. The constants of P*, *, * are obtained 

from the linear regression least square analysis of Figure 11, Figure 12, Figure 13 as 
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6349.10

RK

EI
                                                                           ( 4-6) 

 

 

 

Figure 11 Normalized plateau load formula. P, EI, K and R are plateau load, beam bending 
stiffness, nanoturf viscosity and indenting rate respectively. Solid dots are FEM results, and solid 
line is fitted from FEM results. 
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Figure 12 Normalized buckle wave length formula. , EI, K and R are buckle length, beam 
bending stiffness, nanoturf viscosity and indenting rate respectively. Solid dots are FEM results, 
and solid line is fitted from FEM results. 

 

Figure 13 Normalized buckle forming rate. , EI, K and R are buckle forming rate, beam bending 
stiffness, nanoturf viscosity and indenting rate respectively. Solid dots are FEM results, and solid 
line is fitted from FEM results. 
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To elucidate bending stiffness EI influence on beam buckling behavior we focus on the 

change of EI with K and R remaining constant. The interplay of bending stiffness EI, viscosity K 

and compression rate R leads to the formation of buckles at a moderate size. Upon increasing of 

bending stiffness EI with viscosity K and compression R remaining unchanged, current lateral 

force and compression force can not stabilize current buckle shape for the unbalanced internal 

bending moment resulted from increased bending stiffness. In order to relax the over increased 

internal bending moment, bending curvature decreases a little leading to formation of a larger 

buckle (Figure 12) arc length but the effective internal moment is still increased at limited value 

to balance the external moment induced by compression and lateral force. As to make energy, 

including elastic and viscous energy, increase at the minimum amount homogenized 

simultaneous increase will occur for both the compression (Figure 11) and lateral force until the 

new equilibrium is reached. The total beam length remains unchanged but increasing size of each 

buckle leads to reduction of number of buckles. As compression rate and compression duration 

remain unchanged and each self contact rate is same as defined in section  4.2, then self contact 

rate will be increased (Figure 13).  

To elucidate viscosity K influence on beam buckling behavior we focus on the change of K 

with EI and R remaining constant. The interplay of bending stiffness EI, viscosity K and 

compression rate R leads to the formation of buckles at a moderate size. Upon increasing of 

viscosity K with bending stiffness EI and compression R remaining unchanged, bending stiffness 

induced internal moment can not balance the external moment caused by lateral and compression 

force for the current bending shape attributed to the increased viscosity. In order to stiffen the 

current soft structure and slow down the increasing lateral force, the lateral deflection decreases 

and bending curvature increases a little leading to formation of a smaller buckle arc length 
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(Figure 12) resulting the increasing of internal moment at limited value to balance the external 

moment induced by compression and lateral force. As to make energy, including elastic and 

viscous energy, increase at the minimum amount homogenized simultaneous increase will occur 

for both compression (Figure 11) and lateral force until the new equilibrium is reached. The total 

beam length remains unchanged but decreasing size of each buckle leads to increase of number 

of buckles. As compression rate and compression duration remain unchanged and each self 

contact rate is defined as same in section  4.2, then self contact rate will be decreased (Figure 13).  

To elucidate compression velocity R influence on beam buckling behavior we focus on the 

change of R with EI and K remaining constant. The interplay of bending stiffness EI, viscosity K 

and compression rate R leads to the formation of buckles at a moderate size. Upon increasing of 

compression rate R with bending stiffness EI and viscosity K remaining unchanged, bending 

stiffness induced internal moment can not balance additional external moment caused by 

increased lateral force due to fast lateral expansion. The increased lateral force acts as the 

inhibition of current buckles. In order to stiffen the current soft structure and slow down the 

increasing lateral force, the bending curvature increases a little leading to formation of a smaller 

buckle arc length (Figure 12) resulting the increasing of internal moment at limited value to 

balance the external moment induced by compression and lateral force. As to make energy, 

including elastic and viscous energy, increase at the minimum amount homogenized 

simultaneous increase will occur for both the compression (Figure 11) and lateral force until the 

new equilibrium is reached. The total beam length remains unchanged but decreasing size of 

each buckle leads to increase of number of buckles. As compression rate increased (i.e. 

compression duration decreased) and each self contact rate is defined same as in section  4.2, then 

self contact rate will be decreased (Figure 13). 
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It is noted that the random selected values total height, area stiffness, perturbed wave 

length and wave magnitude are required in the simulations. Their influences on the results are to 

be investigated. 

4.3 Influences of Nanotube Parameters on Buckle Deformations 

In order to match beam model with real nanotube geometry in nanoturf, the beam is 

regulated to be in the sinusoidal shape defined by parameters of natural wave length w and wave 

magnitude h. Additionally, in order to use the Euler beam element the beam axial stiffness EA is 

a necessary input parameter to run the model. Thirdly, the nanotube’s total height H is chosen 

arbitrarily as the model information. Although these 4 parameters do not appear in the relations 

( 4-4) ~ ( 4-6), it is necessary to investigate if the influences of them fall within the negligible 

scope for the outputs. All three outputs of buckle plateau force, buckle forming rate and buckle 

folding length directly measured from each variation of nanotube parameters are compared by 

those values obtained theoretically with same contact conditions, material properties, geometry 

configurations, and boundary conditions as defined in section  4.2. According to ( 4-4) ~ ( 4-6) 

buckle plateau force P, buckle forming rate  and buckle folding length  can be acquired. 

At moderate range each of these four parameters has negligible influence on nanotube 

deformation process, but beyond that they can result in irregular deformations that do not follow 

progressive buckles ascribed to physical or numerical issues. 

Total length H effect is investigated in the following. In Figure 14 parameters are set as 

H = 
H

(EI)1/3(KR)-1/3 =172.354775, 193.899122, 215.443469, 236.987816, 258.532163, 

280.076510, 301.620857; h = 
h

(EI)1/3(KR)-1/3 =0.021544; w = 
w

(EI)1/3(KR)-1/3 =2.154435; EA = 



 

49 
 

EA
(KR)2/3(EI)1/3 =1436.289793. It can be found until the occurrence of 7th contact the Eq. ( 4-4) ~ 

( 4-6) are strictly followed but afterwards the deformation becomes diverged from expectations. 

This can be explained as with number of overlapped foldings increasing the whole structure 

becomes soft in vertical direction. In this direction every layer of folding has limited stiffness 

and the total stiffness decreases as more folds are connected in series because application of 

vertical force consumes larger displacement for more foldings than for fewer foldings as each 

layer folding consumes equal displacement for same load. Thus, the structure becomes softer 

along vertical direction. It acts as the substrate instead of a hard solid but as a soft foundation. 

Formation of overlapped foldings makes the lower part of structure function as a spring with 

limited stiffness which is decreased as more foldings formed. Upon the influence of vertical 

impact on the spring, spring is forced to vibrate at a frequency. As the downward impact meets 

with contact at the bounce back of the spring, large curvature forms to generate a larger moment. 

Whereas, when the downward impact meets with contact at the contraction of spring, the small 

curvature forms to generate a smaller moment. Therefore small and large irregular foldings can 

be found along the beam (Figure 15). Larger sized buckle takes longer time to self contact and 

results in lower force, on the contrary smaller sized one takes shorter time to self contact and 

results in higher force thus the output curves show divergences rather than straight plateau lines 

(Figure 14). 
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(c) 

Figure 14 Simulation results with different beam total lengths. Line1 ~ Line7 represent the H = 
H

(EI)1/3(KR)-1/3 =172.354775, 193.899122, 215.443469, 236.987816, 258.532163, 280.076510, 

301.620857. P*=
P'
P , *=

'
  , *=

'
  . P, ,  are directly measured from individual simulations. P, 

,  are calculated from ( 4-4) ~ ( 4-6). (a) Normalized plateau load vs. contact sequence; (b) 
Normalized buckle wave length vs. contact sequence; (c) Normalized buckle forming rate vs. 
contact sequence. 
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Figure 15 Deformation of beam at different stages. (a) deformation with occurrence of fewer 
buckles; (b) deformation with occurrence of more buckles. 
 

Cross section area elastic stiffness EA effect is discussed in the following. In Figure 16 

parameters are used as: EA = 
EA

(KR)2/3(EI)1/3 = 1679.894733, 2519.842100, 3359.789466, and 

4199.736833; H = 
H

(EI)1/3(KR)-1/3 = 125.992105; h = 
h

(EI)1/3(KR)-1/3 =0.012599; w = 

w
(EI)1/3(KR)-1/3 =1.259921. Cross section area elastic stiffness can affect the buckle shape. Area 

stiffness EA defines the capability of resisting the axial deformation. At relatively lower value of 

area stiffness EA deformation occurs both in bending direction and along axial direction. Thus 

the lower value EA results that the beam does not strictly follow Euler pure bending theory, and 

simultaneous significant axial deformation can occur. Usually the large portion of deformation is 

(a) (b) 
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consumed by the bottom heavily bent part, but low EA value results in the higher amount of 

axial deformation on the upper part beam. Bending and axial deformation co-evolves. As long as 

the global beam shape matches the wave length regulated by viscous force the uniform buckle 

will form (Figure 17). 
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(b) 

 

(c) 

Figure 16 Simulation results with different beam axial stiffness. Line1 ~ Line4 represent the 

EA = 
EA

(KR)2/3(EI)1/3 = 1679.894733, 2519.842100, 3359.789466, 4199.736833. P*=
P'
P , *=

'
  , 

*=
'
  . P, ,  are directly measured from individual simulations. P, ,  are calculated from 

( 4-4) ~ ( 4-6). (a) Normalized plateau load vs. contact sequence; (b) Normalized buckle wave 
length vs. contact sequence; (c) Normalized buckle forming rate vs. contact sequence. 
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Figure 17 Deformation of beam at different steps of compression EA = 
EA

(KR)2/3(EI)1/3 

=1679.894733. (a) earlier steps of compression with fewer buckles; (b) later steps of 
compression with more buckles. 
 

Natural wave length w effect is discussed in the following. In Figure 18 w = 

w
(EI)1/3(KR)-1/3 =2.519842, 5.039684, 6.299605, 10.079368, 12.599210, 25.198421, 31.498026; 

H = 
H

(EI)1/3(KR)-1/3 = 125.992105; h = 
h

(EI)1/3(KR)-1/3 = 0.012599; EA = 
EA

(KR)2/3(EI)1/3 = 

4199.736833. Natural wave length can regulate the buckle shape to some extent depending on 

how close is between natural wave length and viscous force resulted bending wave length. As 

natural wave length equals to the buckle wave length the bean will form the uniform buckles 

throughout the whole length as shown in Figure 19. w and  are natural wave length and buckle 

wave length. 
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(c) 

 

Figure 18 Simulation results with different beam natural wave lengths. Line 1 ~ Line 7 represent 

w = 
w

(EI)1/3(KR)-1/3 =2.519842, 5.039684, 6.299605, 10.079368, 12.599210, 25.198421, 

31.498026; Line 1 ~ Line 7 represent w =
w
  =0.203803, 0.407606, 0.509508, 0.815212, 1.019016, 

2.038031, 2.547539. P*=
P'
P , *=

'
  , *=

'
  . P, ,  are directly measured from individual 

simulations. P, ,  are calculated from ( 4-4) ~ ( 4-6). (a) Normalized plateau load vs. contact 
sequence; (b) Normalized buckle wave length vs. contact sequence; (c) Normalized buckle 
forming rate vs. contact sequence. 
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Figure 19 Deformation of beams with different natural wave lengths. (a) w = 
w

(EI)1/3(KR)-1/3 

=2.519842, 
w
  =0.20380312; (b) w = 

w
(EI)1/3(KR)-1/3 =12.599210, 

w
  =1.01901558; (c) w = 

w
(EI)1/3(KR)-1/3 =31.498026, 

w
  =2.54753894. 

 

Natural wave magnitude h effect is discussed in the following. In Figure 20 h = 

h
(EI)1/3(KR)-1/3 = 0.251984, 0.377976, 0.503968; H = 

H
(EI)1/3(KR)-1/3 = 125.992105; w = 

w
(EI)1/3(KR)-1/3 = 1.259921; EA = 

EA
(KR)2/3(EI)1/3 = 4199.736833. The natural wave magnitude h 

can regulate the deformation transition from global buckle to local buckle. As deformation 

follows global buckle the formulas ( 4-4) ~ ( 4-6) are accurately observed, by contrast as local 

buckle is followed most deformation is consumed by initial natural wave shape and formulas 

(a) (b) (c) 
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( 4-4) ~ ( 4-6) are not observed. Occurrence of deformation along natural wave shape with smaller 

magnitude h is unlikely because the limited lateral viscous force cannot generate enough moment 

to resist the beam internal moment. Thus buckle folding of size greater than natural h should be 

followed (Figure 21 a). When magnitude h/w is large enough the whole structure is very soft 

along the height direction and becomes easy to collapse along the predefined natural wave shape. 

In fact it functions as a coil spring, and the global buckle shape regulated by lateral force should 

not be followed (Figure 21 b). 
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(b) 

 

(c) 

Figure 20 Simulation results with different beam natural wave magnitudes. Line1 ~ Line3 

represent h = 
h

(EI)1/3(KR)-1/3 = 0.251984, 0.377976, 0.503968; P*=
P'
P , *=

'
  , *=

'
  . P, ,  

are directly measured from individual simulations. P, ,  are calculated from ( 4-4) ~ ( 4-6). (a) 
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Normalized plateau load vs. contact sequence; (b) Normalized buckle wave length vs. contact 
sequence; (c) Normalized buckle forming rate vs. contact sequence. 
 
 
 

 

Figure 21 Deformation of beams with different natural wave magnitudes. (a) h = 
h

(EI)1/3(KR)-1/3 

= 0.377976; (b) h = 
h

(EI)1/3(KR)-1/3 = 1.259921. 
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Chapter 5 Conclusions 

This work investigates the deformation mechanism of nanoturf subject to uniform 

compression and characterizes the nanoturf deformation by explicit formulas. The transverse 

relative movement induced friction with magnitude defined as proportional to the product of 

transverse velocity and the nanotube length projection on the rise direction acts as the 

confinement leading to the localized buckles. This is demonstrated by finite element simulation 

with single nanotube modeled as elastic Euler beam and friction modeled as the surface 

distributed viscous force. It is found that due to the unsymmetrical boundaries similar sized 

buckles evolve from bottom to the top end at stable buckle forming rate and compression buckle 

force. By taking advantage of dimensional analysis the size of buckle, buckle forming rate and 

compression buckle force can be expressed explicitly in terms of compression rate, bending 

stiffness and viscosity by matching the units of both sides in each formula. The structure 

geometric parameters and material properties at large ranges are expected to have notable effects 

on beam buckling. Their effects are discussed individually. 

Several issues should be emphasized. First, the Eq. ( 4-4) ~ ( 4-6) are obtained from the 

displacement controlled loading condition. They are not applied to the force controlled or any 

arbitrary loading conditions, however, for which the individual finite element simulations can be 

established with the same structure properties as bending stiffness and viscosity. Second, 

apparently the material density of folded region is higher than that of regions filled with straight 

nanotubes thus the viscosity should be higher for the former region. But the lock of self folding 

resulted by vdW force leads to every buckle fold acting as solid support which does not have 

further significant deformation and influence on the successive buckle deformations. Third, by 
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using dimensional analysis to derive the Eq. ( 4-4) ~ ( 4-6) the nominal unit of length, time and 

force instead of the real units as meter, second and newton are used. The three coefficients are 

general values which are applied to all cases as long as each variable represents clear physical 

meaning.  
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