

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Distributed Algorithms for Online
Coordination in Wireless Sensor Networks

A Dissertation Presented
by

Dengpan Zhou

to
The Graduate School

in Partial Fulfillment of the
Requirements

for the Degree of
Doctor of Philosophy

in
Computer Science

Stony Brook University

May 2012

Copyright by
Dengpan Zhou

2012

Stony Brook University
The Graduate School

Dengpan Zhou

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Jie Gao, Dissertation Advisor
Professor, Computer Science Department

Samir Das, Chairperson of Defense
Professor, Computer Science Department

Xianfeng Gu
Professor, Computer Science Department

Sangjin Hong
Professor, Department of Electrical and Computer Engineering

This dissertation is accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Distributed Algorithms for Online Coordination in Wireless Sensor
Networks

by
Dengpan Zhou

Doctor of Philosophy
in

Computer Science
Stony Brook University

2012

With the rapid development of large-scale wireless sensor networks in the past few
years, we expect the embedded sensors to be integrated smoothly with other mobile
embedded devices. In this dissertation, we consider the following model of a hy-
brid network with both static and mobile nodes. There are pervasive static sensor
nodes embedded in the environment to gather real-time data. The mobile nodes
can be either robots with controlled mobility to aid the network operation and re-
pair dysfunctional network components, or users of the sensor network that demand
real-time knowledge gathered by the sensor nodes, or robots/users that use the sen-
sor network as a communication infrastructure, or a mixture of the above. The
specific scenarios include, but are not limited to, online resource management and
allocation, maintaining group communication and coordination of mobile agents,
and efficient and resilient routing schemes.

To solve these problems, we introduce a framework to manage the efficient and
highly selective information flow between the sensor nodes and the mobile nodes.
This framework involves the following components:

1. We extract a hierarchical well separated tree (HST) to approximate the short-
est path metric of the static sensor network.

2. With the HST, we allow spontaneous, distributed matching between users that
may emerge anywhere and the resources available in the network.

iii

3. We also show that in the same framework, we can coordinate mobile users by
maintaining an approximate minimum Steiner tree with modest communica-
tion cost.

4. By using two or multiple HSTs, we also show how to support low-stretch
routing that is also resilient to in-transit link failures.

In addition to the above HST framework, we develop the compact conformal
map for greedy routing in wireless mobile sensor networks. The map is only depen-
dent on the network domain and is independent of the network connectivity. This
is the first practical solution for using virtual coordinates for greedy routing in a
sensor network and could be easily extended to the case of a mobile network.

iv

Contents

List of Tables x

List of Figures xi

Acknowledgements xv

Publications xvi

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation and Objective . 2
1.3 Overview . 4
1.4 Reference . 8

2 Introduction to Hierarchically Well-separated Tree and Its Distributed
Implementation 9
2.1 Introduction . 9
2.2 Hierarchically Well-Separated Trees 10

2.2.1 Distributed algorithm to compute 2-HST 12
2.2.2 Communication cost . 13
2.2.3 α-HST . 15
2.2.4 HST on k resources . 17

2.3 Simulation . 18
2.4 Conclusion . 19

v

3 Distributed Resource Management and Matching in Sensor Networks 20
3.1 Introduction . 20
3.2 Overview . 22
3.3 Previous Work . 25
3.4 Sparse aggregation with HST . 27
3.5 Distributed Matching Algorithms 28

3.5.1 Offline setting . 29
3.5.2 Online setting . 30

3.6 Simulations and Experiments . 32
3.6.1 Approximation and competitive ratios 32

3.7 Conclusion . 36

4 Maintaining Approximate Minimum Steiner Tree and k-center for Mo-
bile Agents in a Sensor Network 37
4.1 Introduction . 37

4.1.1 Challenges . 38
4.1.2 Our approach . 39
4.1.3 Related work . 41

4.2 Network Setup . 41
4.3 HST review . 42
4.4 Maintaining approximate minimum Steiner tree 44

4.4.1 Maintenance Algorithm 44
4.4.2 Analysis and performance 46

4.5 Maintaining approximate k-center 49
4.6 Simulation . 51

4.6.1 Approximate minimal steiner tree construction 52
4.6.2 Cost comparison with MST 52
4.6.3 Comparison with RoamHBA 53
4.6.4 Update cost . 56
4.6.5 1-center . 57

4.7 Conclusion . 58

vi

5 Resilient and Low Stretch Routing Through Embedding into Tree Met-
rics 59
5.1 Introduction . 59

5.1.1 Our Results . 60
5.1.2 Prior Work . 62

5.2 Preliminaries . 64
5.2.1 Metrics With Geometric Growth 64
5.2.2 Embedding into Tree Metrics 65
5.2.3 Review of The FRT Algorithm 66
5.2.4 Distributed Implementation of the Tree Embedding 68

5.3 Constant Distortion Routing Using Two HSTs 69
5.3.1 Constant Distortion Embedding in Two HSTs 69
5.3.2 Routing with Two HSTs 72

5.4 Resilience to Node Failures Using Two HSTs 73
5.4.1 Robustness of One HST 73
5.4.2 Robustness of Two Random HSTs 75
5.4.3 Robustness of Two HSTs With Reversed Rank 76

5.5 Simulations . 76
5.5.1 Simulation setting . 76
5.5.2 Simulation methods . 77
5.5.3 Summary of simulation results 78
5.5.4 Path Stretch . 78
5.5.5 Robustness to Node or Link Failures 79

5.6 Conclusion . 81

6 Compact Conformal Map for Greedy Routing in Wireless Mobile Sen-
sor Networks 83
6.1 Introduction . 83

6.1.1 Prior Work on Routing in Mobile Networks 84
6.1.2 Pre-computed Compact Map for Guaranteed Greedy Routing 86

6.2 Discrete Ricci Flow . 87
6.2.1 Ricci Flow Theory . 87
6.2.2 Discrete Ricci Flow . 88

vii

6.2.3 Discrete Algorithm . 90
6.3 Background of Conformal Mapping 91
6.4 Schwarz-Christoffel Transformation Using Laurent Series 93

6.4.1 Simply Connected Domain 93
6.4.2 Multiply Connected Domain 95

6.5 Examples . 97
6.5.1 Simply Connected Domain 98
6.5.2 Multiply Connected Domain 98

6.6 Experimental Results . 99
6.6.1 Simulation Results . 101
6.6.2 Emulation on Orbit . 108
6.6.3 Networks With Holes . 112

6.7 Conclusion . 114

7 The Emergence of Sparse Spanners and Well-Separated Pair Decom-
position Under Anarchism 117
7.1 Introduction . 117

7.1.1 Our contribution . 119
7.1.2 Applications . 121
7.1.3 Related work . 121
7.1.4 Organization . 123

7.2 Spanner construction under anarchism 123
7.2.1 Spanner construction algorithm 123
7.2.2 Algorithm for well-separated pair decomposition 125

7.3 A greedy algorithm for well-separated pair decomposition 127
7.3.1 Deformable spanner and WSPD 127
7.3.2 Greedy well-separated pair decomposition has linear size . . 129

7.4 Size, degree and weight of the uncoordinated spanner 131
7.5 Spanner construction and routing in P2P networks 133

7.5.1 Distributed construction. 133
7.5.2 Distributed routing. 135
7.5.3 Nearest neighbor search. 136

7.6 Conclusion . 136

viii

8 Opportunistic Processing and Query of Motion Trajectories in Wireless
Sensor Networks 137
8.1 Introduction . 137

8.1.1 Our approach . 138
8.1.2 Related work . 141

8.2 Trajectory Queries . 142
8.2.1 Probabilistic queries . 142
8.2.2 Opportunistic information propagation 149

8.3 Simulations . 155
8.3.1 Query number v.s. age and length 156
8.3.2 Required storage size . 157
8.3.3 Communication cost . 158

8.4 Conclusion . 160

9 Conclusion 161

Bibliography 163

ix

List of Tables

1 Parameters of Schwarz-Christoffel transformation. 98
2 Parameters of Laurent series. 100
3 Performance comparison for computer simulation under static set-

ting. 104
4 Performance of the methods under mobile setting of computer sim-

ulation. 107
5 Performance of the methods under static setting of Orbit emulation. 110
6 Performance of the methods under mobile setting of Orbit. 111
7 Performance of the methods under static setting of computer simu-

lation with holes. 113
8 Performance of the methods without boundary nodes participation

under mobile setting of computer simulation with holes. 115
9 Performance of the methods with boundary nodes participation un-

der mobile setting of computer simulation with holes. 116

x

List of Figures

1 Any ball of radius 2i contains at most 26γ elements of Pi in expec-
tation, for all i. The arrow from w to u means node w nominates u
in round i. 14

2 Convert a 2-HST to an α-HST for any α ≥ 2. 16
3 A typical HST on n = 400 nodes. Thicker lines represent higher-

level edges. 18
4 Communication cost (left) and storage requirement (right) in a per-

turbed grid network of n = 400 nodes. 19
5 Per-node communication cost and storage requirement scale sub-

linearly with network size. 19

6 Sparse aggregation of k resources/events by an HST. 28
7 In offline setting, length of the optimal matching in the 2-HST and

length of the optimal matching in the underlying metric are within
a factor of 3 over a wide range of network sizes n, with fixed k = 10. 33

8 In offline setting, the ratio of optimal matching length becomes
worse when the number of resources k increases, and n = 225 is
fixed. This is because the network embeds into 2-HST with distor-
tion that increases with k. 34

9 Communication overhead as a function of network size, with fixed
k = 15. 34

10 Communication overhead as a function of the number of resources,
with fixed n = 225. 35

xi

11 Communication cost of the online matching algorithm as a function
of the cost of the computed matching in the α-HST metric, with
a fixed number of k = 15 resources and variable network size n.
The slope suggests quadratic dependence (linear regression yields
a slope of about 2.37). 35

12 An example to show how to get minimal spanning tree on HST for
a subset agents. 45

13 When a agent moving from p to q, we only repair the paths from
p,q to their lowest common ancestor. 47

14 A figure to show when do we need update the lowest common an-
cestor at level i. 49

15 An example of the minimal Steiner tree computed from the HST.
The agents are in red. The network size is 400, and the agent size
is 20. 52

16 The minimal spanning tree of the agents. 53
17 Cost comparison between HST and MST for different network size

but the agent set size fixed to be 100. 54
18 The cost comparison between the HST and MST solution, with d-

ifferent agent set size but the network size fixed to be 1000. 54
19 An example of the Steiner tree computed with RoamHBA. 55
20 Cost comparison between HST solution and RoamHBA solution,

with agent size fixed to be 100. 55
21 Update cost changes with log(network size) with the agent size

fixed to be 100. 56
22 Cost comparison between HST and OPT for 1-center, with varied

network size but agent size fixed to be 100. 57

23 (a) Average path stretch using 2 HSTs V.S. 1 HST for the randomly
generated network. (b) Path stretch using 2 HSTs v.s. path splicing
on the Sprint topology with link failure. 79

24 The fraction of disconnected pairs using 1 HST v.s. 2 HSTs. (a)
average value. (b) maximum value. 80

xii

25 The fraction of messages that are not delivered to the destination on
the Sprint network. (a) Random node failure. (b) Random link failure. 80

26 This simulation runs on randomly generated grid networks with 400
nodes. Each node fails with independent probability p. We sample
50 different networks for each value p to get the average fraction of
failure pairs. For large p, path splicing achieves better than 2 HSTs.
But the difference is mostly within 5%. 81

27 The circle packing metric. 89
28 The Schwarz-Christoffel transformation for a simply connected do-

main. f (zi) = wi. 93
29 The Schwarz-Christoffel transformation for a multiply connected

domain. f (zi, j) = wi, j. 95
30 Circle reflection. 96
31 Prevertices of a simply connected polygon vertices used for evalu-

ating Schwartz-Christoffel transformation. 97
32 Ricci flow for conformal mapping a multiply connected polygon. . . 99
33 Active nodes on orbit. 101
34 Mobile sensors at one snapshot. 102
35 Greedy routing for mobile sensor network using real coordinates.

Red node with larger size is the starting sensor, yellow node is the
destination. The green node on each frame shows the routing sensor
at time t. Greedy routing will get stuck at time 8 and 32. 102

36 Greedy routing for mobile sensor network using virtual coordinates.
1st row: routing paths on real network; 2nd row: routing paths on
virtual domain. Red node with larger size is the starting sensor,
yellow node is the destination. The green node on each frame shows
the routing sensor at time t. Greedy routing on virtual domain won’t
get stuck. 103

37 A greedy spanner example for 100 points with aspect ratio α= 223,
the average degree is 6.5, and the stretch is 3.4. 124

xiii

38 Opportunistic information dissemination: sensors waken up by a
moving target will record this detected event and help to dissemi-
nate information about other trajectories they have learned so far to
the descending sensor nodes. In this case, target T2 enters the sensor
field after target T1. The nodes in the trajectory T2 after the junction
node j will learn the information of both T1 and T2. A query mes-
sage from q that visits one such node (p) is able to discover T1 as
well. 138

39 (i) When the query point locates in A or B, it has different probabil-
ity to send a query intersecting the given trajectory. (ii) Two chords
have an intersection. 144

40 A random line with distance r from the origin and angle θ between
its normal and the positive x-axis. 148

41 The query line C crosses another trajectory B, and B crosses the
trajectory A. 150

42 Left: The query number for a trajectory with different lengths and
different ages with opportunistic dissemination. Right: The query
number for a trajectory with different lengths and different ages
without opportunistic dissemination. 157

43 Left: The query number for a trajectory with different lengths
and different ages with opportunistic when the storage size is 100.
Right: The query number for a trajectory with different lengths and
different ages with opportunistic when the storage size is 50. 158

44 Left: The average communication cost by querying each trajectory
100 times under opportunistic dissemination. Middle: The average
communication cost by querying each trajectory(with age less than
200) 100 times under opportunistic dissemination. Right: The av-
erage communication cost by querying each trajectory 100 times
with no opportunistic dissemination. 159

xiv

Acknowledgements

I would like to recognize a number of people who have made my experience
at Stony Brook so remarkable.

Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Jie
Gao, whose patience and kindness, as well as her academic experience, have been
invaluable to me. She has provided me with wonderful guidance and continuous
support over these years. With her enthusiasm, her inspiration, and her great efforts
to explain things clearly and simply, she helped to make research fun for me. I also
greatly appreciate her assistance in writing reports and presenting works.

Also I want to thank the rest of my thesis committee, Prof. Samir Das, Prof.
Xianfen Gu, Prof. Sangjin Hong, for their encouragement, insightful comments,
and hard questions.

I want to thank all my friends at Stony Brook who helped me in various ways.
Without them my life at Stony Brook would not be so colorful and fun.

Finally, I want to thank my parents, my sister and brother for the support they
provided me through my entire life, and for their understanding, endless patience
and encouragement when it was most required.

xv

Publications

1. Dengpan Zhou, Jie Gao, Opportunistic Processing and Query of Motion Tra-
jectories in Wireless Sensor Networks, Proc. of the 28th Annual IEEE Con-
ference on Computer Communications (INFOCOM’09), 1197-1205, April,
2009.

2. Jie Gao, Leonidas J. Guibas, Nikola Milosavljevic, Dengpan Zhou, Distribut-
ed Resource Management and Matching in Sensor Networks, Proc. of the
8th International Symposium on Information Processing in Sensor Networks
(IPSN’09), 97-108, April, 2009.

3. Dengpan Zhou, Jie Gao, Maintaining Approximate Minimum Steiner Tree
and k-center for Mobile Agents in a Sensor Network, Proc. of the 29th An-
nual IEEE Conference on Computer Communications (INFOCOM’10), 511-
515, mini-conference, March, 2010.

4. Jie Gao, Dengpan Zhou, The Emergence of Sparse Spanners and Greedy Well
Separated Pair Decomposition, Proc. of the the 12th Scandinavian Sympo-
sium and Workshops on Algorithm Theory (SWAT’10), 50-61, June, 2010.
Journal version under the title The Emergence of Sparse Spanners and Well-
separated Pair Decomposition Under Anarchy appeared in Journal of Com-
putational Geometry, Vol 3, No 1 (2012).

5. Jie Gao, Dengpan Zhou, Resilient and Low Stretch Routing Through Em-
bedding into Tree Metrics, Proc. of the 12th Algorithms and Data Structures
Symposium (WADS’11), 438-450, August, 2011.

6. Jie Gao, Xianfeng Gu, Siming Li, Wei Zeng, Dengpan Zhou, Compact Con-
formal Map for Greedy Routing in Wireless Mobile Sensor Networks, sub-
mitted(in alphabetical order).

xvi

7. Xiaotian Yin, Wei Han, Dengpan Zhou, Xianfeng Gu and Jie Gao, Decen-
tralized Path Homotopy Detection Using Hodge Decomposition in Sensor
Networks, submitted.

xvii

Chapter 1

Introduction

1.1 Introduction

Integrated low-power sensing devices will greatly help remote object monitor-
ing and tracking in many different scenarios and environments. These sensors are
empowered with the ability to coordinate among themselves for communication,
information collecting , distributing and processing. One promising application is
to deploy sensors in inhospitable physical environments for monitoring purposes,
such as remote fire-prone forest area or security applications.

The development of fundamental algorithms for a hybrid system with intelli-
gent sensors and mobile physical agents has broad impact of social values. Sensor
network research in the past few years has matured to a certain level that large-
scale deployments start to become possible. As the state of the art, networks in the
size of hundreds of nodes are common practice; thousands of nodes start to appear,
hundreds of thousands are expected to be done in a couple of years. As sensor
networks scale and cover the physical domain that people live and work, using the
network simply for passive monitoring and data collection does not fully reach the
network’s full capacity. We expect the embedded sensors to be integrated smooth-
ly with other mobile embedded devices so as to provide real-time data collection,
knowledge extraction, environment understanding and eventually evolve into an in-
telligent component of cyber physical system.

In this dissertation we consider the following model of a hybrid network with

1

both static and mobile nodes. There are pervasive static sensor nodes embedded
in the environment that gather real-time data. The sensor nodes may communi-
cate with other nodes (either sensor nodes or mobile nodes) within communication
range. The mobile nodes may be either robots with controlled mobility to aid the
network operation and repair dysfunctional network components, or users of the
sensor network that demand real-time knowledge gathered by the sensor nodes, or
robots/users that use the sensor network as a communication infrastructure, or a
mixture of the above.

For a large-scale sensor network that largely relies on battery power, energy
conservation is a must and balanced energy usage is an important performance met-
ric. The algorithms that the sensors execute must be light-weight and decentralized
that intelligently use network resources (computation, communication and energy
mainly). Obviously one can have a centralized server to handle all the coordination
necessary and supply a query interface for users of the network. But this central-
ized solution represents a single point of failure, is not resilient to attacks and is
not efficient. First of all, users might be in a neighborhood in which data is gen-
erated. Indeed users are most interested in data in close proximity. A centralized
architecture would require both the data in the network and queries from the users
to be delivered to a remote server. Secondly, when users/agents move around, the
solution for the new positions of the agents might be very similar to the previous
solution and thus can be adjusted slightly. A centralized solution would require a
new cycle of data gathering, computation of a new solution, and the dissemination
of the solution to the users, which is clearly not power efficient. Thirdly, the help
of an underlying sensor network may provide new insights to problems that are
difficult to solve even in the centralized setting.

1.2 Motivation and Objective

This thesis work is motivated by the recent advance and maturity of static
wireless sensor networks for environment monitoring and prosperity of seamless
integrating physical users and/or autonomous robots into a hybrid intelligent frame-
work. The focus is on the joint information processing, optimization and coordi-
nation of both static and mobile nodes to comprehend and act on the environment.

2

Let’s list a few examples for application scenarios captured by this hybrid network.

1. Mobile robots as aids to sensor network operation. A set of robots are em-
ployed to manage a remote wireless sensor networks. The robots implement
the management task, including collection and delivery of sensor data, net-
work operational maintenance such as battery replacement, node relocation,
etc. The robots need to coordinate among themselves in order to optimize for
energy usage regarding motion planing and task assignment.

2. Online resource management and allocation. Wireless sensors are deployed
in Downtown Manhattan to monitor street parking spots. A sensor at a spot
can tell whether the spot is taken or freed up. Drives may communicate with
a nearby sensor node to ask for parking recommendation. Multiple vehicles
may arrive at the same time and they will need to be assigned to available
parking spots immediately, without conflict. To coordinate among multiple
emerging vehicles and arrive at a matching of vehicles and available spots
with a minimum total travel distance, a communication efficient method is
needed for the system.

3. Maintaining group communication and coordination of mobile agents. In a
scenario, we have a set of rescue workers collaborating on emergency tasks
in an environment in which wireless sensor nodes are densely deployed. An
existing communication infrastructure might not be available in such a disas-
ter recovery setting , the workers will rely on the underlying wireless sensor
network for coordination and communication. One way to achieve this is to
maintain a group communication structure, e.g., a spanning tree connecting
all workers, in the sensor network for the mobile rescue workers to continu-
ously exchange information and commands.

The above examples cover several different application categories. We are going to
answer most of these questions in latter chapters. One common theme behind these
problems is the tight coupling and frequent information between static monitoring
sensor nodes and mobile actionable agents. The optimal design for data collection
via static sensor networks, and the optimal coordination and planning of mobile
agents have been separated topics of study in the sensor network community and
robotics community respectively. However the considered optimization or coordi-
nation problem of the mobile agents is often known to be theoretically difficulty.

3

For example, maintaining a minimum Steiner tree for mobile agents or computing
the traveling salesman tour for data mules are well known NP-hard problems. The
biggest challenge is to solve the information brokerage problem, in which sensors
detecting interesting local events and the mobile users seeking such information are
not aware of one another.

Basically we are going to examine the challenges arising from the interaction
of static wireless sensor networks and mobile agents. There are two basic tasks for
such kinds of applications. First of all, we must have an efficient way to organize
the mobile agents and keep them communicate with each other well. Secondly,
depending on the specific application, we should coordinate the mobile agents ef-
ficiently. One of the key requirements for sensor networks is to support for very
large numbers of unattended autonomous nodes and adapt to environment and task
dynamics. To aid the coordination tasks, we ask how sensor data should be stored
and processed in the network, and what type of distributed structures should be
maintained, to best serve mobile interactive users. Some naive or simple greedy
algorithms do not work well here. To aid the application, we introduce a special
tree metric, the hierarchically well-separated tree, which approximates the original
metric with distortion at most O(lgn), where n is the size of the network. Many
problems are easier on trees, and it is easy to aggregate information on trees. Based
on this special tree metric, we are able to solve the above problems in an easy and
elegant way.

Routing is one of the most important and challenging tasks in wireless sensor
networks. Due to the resource constraints of sensor nodes, efficient routing mecha-
nisms are desirable for wireless sensor networks. To cope with the mobility nature
of wireless sensor networks, we are interested in light-weighted routing algorithms
that can quickly and efficiently respond to unpredictable topological changes.

1.3 Overview

In Chapter 2: We briefly discuss the tree metric and introduce a special tree
metric, i.e., Hierarchically Well-separated Trees (HSTs). We review the central-
ized top-down algorithm for computing an HST. Then we present our bottom-up
distributed algorithm for the same HST computation.

4

In Chapter 3: We consider a scenario in which there are resources at or near
nodes of a network, which are either static (e.g. fire stations, parking spots) or
mobile (e.g. police cars). Over time, events (fires, crime reports, cars looking for
parking) arise one-by-one at arbitrary nodes, and need to be quickly matched to and
served by an appropriate nearby resource, without knowledge of future requests,
and without the ability to alter any decision once it has been made.

We develop distributed algorithms to direct available resources in the network
to these events (or vice versa) in a coordinated fashion, so that no two resources are
assigned to the same event, and the total distance of the events from their matched
resources is minimized. The key idea is to extract, in a preprocessing stage, a
well-separated tree metric that approximates the original network metric by a log-
arithmic distortion, allowing greedy matching algorithms to generate close to op-
timal matchings, and enabling communication-efficient probing-based algorithms
for events to detect nearby available resources. The distributed matching algorithm
requires no global coordination and achieves polylogarithmic performance ratio in
both online and offline settings. Simulation experiments corroborate the theoreti-
cal results on solution quality and further evaluate the communication costs of our
scheme in practice.

In Chapter 4: We study the problem of maintaining group communication
between m mobile agents, tracked and helped by n static networked sensors. We
develop algorithms to maintain a O(lgn)-approximation to the minimum Steiner
tree of the mobile agents such that the maintenance message cost is on average
O(lgn) for each hop an agent moves. The key idea is to extract a ‘hierarchical well-
separated tree (HST)’ on the sensor nodes such that the tree distance approximates
the sensor network hop distance by a factor of O(lgn). We then prove that main-
taining the subtree of the mobile agents on the HST uses logarithmic messages per
hop movement. With the HST we can also maintain O(lgn) approximate k-center
for the mobile agents with the same message cost. Both the minimum Steiner tree
and the k-center problems are NP-hard and our algorithms are the first efficient
algorithms for maintaining approximate solutions in a distributed setting.

In Chapter 5: Given a network, the simplest routing scheme is probably routing
on a spanning tree. This method however does not provide good stretch — the route
between two nodes can be much longer than their shortest distance, nor does it give

5

good resilience — one node failure may disconnect quadratically many pairs. In
this chapter we use two trees to achieve both constant stretch and good resilience.
Given a metric (e.g., as the shortest path metric of a given communication network),
we build two hierarchical well-separated trees such that for any two nodes u, v, the
shorter path of the two paths in the two respective trees gives a constant stretch of
the metric distance of u,v, and the removal of any node only disconnect the routes
between O(1/n) fraction of all pairs. This result holds true as long as the metric
follows certain geometric growth rate (the number of nodes within distance r is a
polynomial function of r), which holds for many realistic network settings such as
wireless ad hoc networks and Internet backbone graphs. Besides the theoretical
results, we also evaluate the routing performance in wireless sensor networks and
the Internet.

In Chapter 6: Motivated by mobile sensor networks as in participatory sensing
applications, we are interested in developing a practical, lightweight solution for
routing in a mobile network. While greedy routing is robust to mobility, location
errors and link dynamics, it may get stuck in a local minimum, which then requires
non-trivial recovery methods. We follow the approach taken by Sarkar et. al. [IPSN
2009] to find an embedding of the network such that greedy routing using the vir-
tual coordinates guarantees delivery, thus eliminating the necessity of any recovery
methods. Our new contribution is to replace the in-network computation of the em-
bedding by a preprocessing of the domain before network deployment and encode
the map of the network domain to virtual coordinate space by using a small number
of parameters which can be pre-loaded to all sensor nodes. As a result, the map
is only dependent on the network domain and is independent of the network con-
nectivity. Each node can directly compute its virtual coordinates by applying the
locally stored map on its geographical coordinates. This represents the first prac-
tical solution for using virtual coordinates for greedy routing in a sensor network
and could be easily extended to the case of a mobile network. When nodes move
around, by their GPS location or displacement from previous location each node
updates it own virtual coordinates and there is no need of any in-network computa-
tion/communication for maintenance of the embedding. The paper describes algo-
rithmic innovations as well as simulations and implementations on a real testbed to
support our claims.

6

In Chapter 7: A spanner graph on a set of points in Rd provides shortest paths
between any pair of points with lengths at most a constant factor of their Euclidean
distance. A spanner with a sparse set of edges is thus a good candidate for network
backbones, as desired in many practical scenarios such as the transportation net-
work and peer-to-peer network overlays. In this paper we investigate new models
and aim to interpret why good spanners ‘emerge’ in reality, when they are clear-
ly built in pieces by agents with their own interests and the construction is not
coordinated. Our main result is to show that the following algorithm generates a
(1+ ε)-spanner with a linear number of edges, constant average degree, and the
total edge length a small logarithmic factor of the cost of the minimum spanning
tree. In our algorithm, the points may build edges at an arbitrary order. When a
point p checks on whether the edge to a point q should be built, it will build this
edge if and only if there is no existing edge p′q′ with p′ and q′ at distances no more
than 1

4(1+1/ε) · |pq| from p,q respectively. Eventually when all points have finished
checking edges to all other points, the resulted collection of edges forms a sparse
spanner as desired. This new spanner construction algorithm has applications in
the construction of and local routing on nice network topologies for peer-to-peer
systems, when peers join and leave the network and has only limited information
about the rest of the network.

As a side product, we show a simple algorithm for constructing linear-size
well-separated pair decompositions that may be of interest on its own. A well-
separated pair decomposition is a collection of subset pairs such that each pair of
point sets is fairly far away from each other compared with their diameters and that
every pair of points is ‘covered’ by at least one well-separated pair. Our algorithm
selects an arbitrary pair of points that is not yet covered and puts a ‘dumb-bell’
around the pair as the well-separated pair, repeats this until all pairs of points are
covered. At this point, we show only a linear number of pairs is generated, which
is asymptotically optimal.

In Chapter 8: We study the problem of in-network processing and queries of
trajectories of moving targets in a sensor network. The main idea is to exploit the
spatial coherence of target trajectories for opportunistic information dissemination
with no or small extra communication cost, as well as for efficient probabilistic
queries searching for a given target signature in a real-time manner. Sensors near

7

a moving target are waken up to record information about this target and take the
communication opportunities to exchange their knowledge with preceding and de-
scending sensor nodes along the trajectory. Thus a moving target’s information is
naturally detected, recorded, and disseminated along its trajectory, as well as the
motion trajectories that enter the sensor field afterwards.

We analyzed and through simulations tested the dissemination cost and query
success rate for randomly generated data sets. Trajectories of reasonable length can
be discovered by probabilistic in-network queries with high probability. Compared
with the scheme without opportunistic dissemination, the in-network processing of
trajectories, with modest cost on dissemination, allows substantially reduced query
cost and delay.

1.4 Reference

Parts of the materials included in this dissertation have been or will be pub-
lished in international conferences, and thus are under copyright. We list them in
the publication section.

8

Chapter 2

Introduction to Hierarchically
Well-separated Tree and Its
Distributed Implementation

2.1 Introduction

Approximation algorithm [154] is suitable and attractive for a lot of practical
applications, especially for important NP-hard problems. Approximation algorithm
efficiently produces a sub-optimal solution. One of the techniques for good approx-
imation algorithm is through approximating metric spaces.

Approximating metric spaces by more simple metric spaces has many algorith-
mic applications. One particular choice of such simple metrics is the tree metric, i.e.
a metric defined by the shortest path distance on a tree containing the given point
set. Many problems would be greatly simplified and easy on special tree metrics.
For problems on general metrics, we could get a simplified version of the problem
through embedding into tree metrics. The original problem is well approximated by
solving the tree version if the tree metric is not far away from the original metric.

Given a metric (P,d) we embed it to a hierarchically well-separated tree (HST),
defined as a rooted weighted tree such that: the weight of all edges between a node
and its children are the same; the edge weights along any path from the root to a
leaf are decreasing by a factor of α. In this paper we simply take α = 2. The leaf

9

nodes of the HST are 1-to-1 mapped to nodes in P and internal nodes of the HST are
also mapped to nodes of P although certain nodes may appear multiple times. The
embedding of (P,d) into the tree metric leads to distortions of the metric distances.
As discussed earlier, using a fixed tree one cannot avoid the worst case distortion
of Ω(n). But if one build a randomized tree, chosen from a family of tree metrics,
the expected distortion can be bounded by O(logn). Thus using this tree for routing
one immediately obtains O(logn) stretch routing with low routing overhead. Ap-
proximating a metric with probabilistic hierarchical well-separated trees was first
proposed by Bartal [21, 22], with the motivation that many problems are easier to
solve on a tree than on a general graph. Later, Fakcharoenphol et al. [56] improved
the distortion to O(logn) for any n node metric and this is tight.

Due to the distributed nature and increasing deployment of wireless sensor
networks, distributed computing algorithms draws a lot of attention and raises a
lot of interesting research topics in wireless sensor networks commnuity. The goal
here is to design efficient distributed algorithm compared to a corresponding global
algorithm. We could easily turn a global centralized algorithm into a distributed
algorithm. We can always achieve this by assuming a central station, which simply
centrally collect the distributed state, compute a global solution, and distribute the
solution. However, the major drawback related with this simple routine is about the
unreasonably high communication overhead and bad load balance. We have power
restriction in sensor networks and sending and receiving messages are expensive
operations in wireless sensor networks. And this simple scheme does not exploit
the distributed nature and property of wireless sensor networks well. We aim at
more reasonable distributed algorithm that minimize communication.

Combining these two well-established research areas leads to a promising and
efficient approach for a lot of difficult problems arising from wireless sensor net-
works. Distributed approximation algorithms trade-off opitimality of the solution
for the amount of resources consumed by the distributed algorithm.

2.2 Hierarchically Well-Separated Trees

In this section, we will give the definition of an α-hierarchically well sepa-
rated tree (α-HST) and show how to compute the α-HST embedding of a constant

10

doubling dimension graph metric in a distributed way.

Definition 1 (α-HST). A rooted weighted tree T is an α-HST if

• the weights of all edges between an internal node and its children are the
same

• all root-to-leaf paths have the same hop-distance

• the edge weights along any such path decrease by a factor of α as we go
down the tree

Throughout this chapter we ‘count levels from leaves to the root’, i.e., we define the
level of a node u in α-HST as the distance in hops from u to any of its leaves. In
particular, all leaves have level 0. We define the level of a subtree to be the level of
its root.

Fakcharoenphol et al. [56] give a centralized algorithm to compute, giv-
en an n-point metric (P,d), a random 2-HST T whose tree metric dT O(logn)-
probabilistically approximates d. That is, for any u,v ∈ P, dT (u,v) ≥ d(u,v) and
E[dT (u,v)]≤ O(logn) ·d(u,v), where the expectation is taken over random choices
of the algorithm, equivalently over the distribution on the resulting trees. In this pa-
per, we use P to denote the set of nodes in an undirected graph modeling the sensor
network, and d(u,v) denotes the minimum hop count between u,v ∈ P in the sensor
network. When we use a 2-HST to approximate the graph metric d, all the nodes
in P are placed as the leaf nodes of the 2-HST. The distance between two nodes
u,v ∈ P on the tree T , dT (u,v), is defined as the sum of the distances along the
paths from u,v to their lowest common ancestor in the 2-HST. The internal nodes
in the HST are abstract nodes, although they might be labeled by some nodes of P,
as will be explained later. We denote by B(p,r) the ball centered at point p with
radius r.

The algorithm of [56] is centralized and executes in a top-down fashion to par-
tition the nodes in the network hierarchically. The HST naturally corresponds to
this hierarchical partition of P. The nodes of P are the leaf nodes of the HST and
each internal node in the HST corresponds to a cluster of nodes in the hierarchical
partitioning. For completeness, we review this algorithm below. We fix a permu-
tation π : P → {1,2, . . . ,n} of the nodes, chosen uniformly at random from the set
of all permutations. We also fix a value β chosen uniformly at random from [1

2 ,1).

11

To get a 2-HST, we compute for each node u a O(log(n))-dimensional signature
vector S(u), where the i-th element in the vector is

S(u)i = arg min
v∈B(u,2iβ)

π(v) , (1)

for i = 0 to m = ⌈logD⌉+ 1 with D the network diameter. That is, each node
keeps the node with the smallest rank among all nodes within distance 2iβ. For all
nodes u, S(u)m is the node with rank 1. These signature vectors define the HST
embedding of d. In particular, the leaves are nodes of P, the level-i ancestor of a
node u is labeled S(u)i, and the weights of all edges between level i and level i−1 is
2i. The fact that this is indeed a 2-HST (in the sense of Definition 1) is not obvious;
its proof appears in [56]. The top-down construction of the 2-HST in [56] is hard
to implement in a distributed network.

2.2.1 Distributed algorithm to compute 2-HST

In this section we propose a bottom-up construction to compute a 2-HST in a
distributed way, with total communication cost O(n logn). The HST construction is
performed as preprocessing at the network initialization stage. Specifically, we will
show how to compute signature vectors shown in (1) and the necessary information
for each node to find path to its parent in a distributed way.

Our algorithm proceeds in a bottom-up fashion and computes the i-th element
of the signature vector for every node in round i, for i starting at 0. If S(u)i = v,
we say that u nominates v at round i. Intuitively, as i increases, only the nodes
with small indices can possibly be nominated and appear in the signature vector.
Observe that if at level i a node u is not nominated by any other node, i.e., every
node v already has some other node with index smaller than u within radius 2iβ, the
node u cannot possibly be nominated at level i+1. Thus we keep track of the subset
of nodes that have been nominated and ‘survive’ round i and only these nodes will
flood the network with maximum hop count (TTL) value of 2i+1β in round i+ 1.
We use Pi to denote the nodes that are nominated from the round i and thus are
candidates to be nominated in round i+1.

At the beginning, every node is a candidate, that is P0 = P. A fixed pre-
determined node (‘leader’) chooses a random β uniformly from [1

2 ,1) and dis-
tributes it to all nodes using a single global flood. In round i+ 1, the nodes of

12

Pi flood the network up to distance 2i+1β. The flooding packets are cached at the
nodes receiving these packets until the end of the current round. Now every node u
receives some flooding messages from the candidate nodes Pi∩B(u,2i+1β). During
round i+ 1, node u maintains the identity of the node vmin with lowest rank that
it has received. At the end of round i+ 1, u nominates vmin as its (i+ 1)-th level
element in its signature vector for round i+ 1 (also its level-(i+ 1) ancestor), i.e.,
S(u)i+1 = vmin.

Each node records the information where it got the flooding message from.
With this information, each node u can trace back to get the path to the ancestor
vmin and report the nomination. By this process, each node knows its parent and
its children in that level of the tree. At the end of each round, all nodes clear all
flooding messages that are not traced back by other nodes. Pi+1 consists of the
nodes in Pi that are nominated by some nodes during round i+ 1. Continue the
above process until there are no more candidates. After we compute the signature
vector S(u) for each node u, we could easily reconstruct the original HST from
these signature vectors.

We remark that the 2-HST is computed and stored in a completely distributed
manner. This is sufficient for the applications in the distributed matching problem.

2.2.2 Communication cost

In this section we prove that the total communication cost, measured by the to-
tal number of message transmissions, for the computation of the 2-HST described
earlier is bounded by O(n logn), provided that the doubling dimension of our min-
imum hop metric is bounded by a constant. The constant doubling dimension
metric has been used in prior work as an appropriate model of a sensor network
metric, when the sensor nodes are densely and uniformly deployed in a geometric
region [64].

First we formalize the intuition stated above, that the sets of candidates Pi be-
come sparser as level i increases. As the construction algorithm is randomized, the
following bounds are taken in expectation on random permutations and parameters
β. Actually, communication cost analysis in this section holds for any fixed β (the
fact that β is random is only important for the distortion bound).

13

Lemma 2. If the doubling dimension is at most γ, any ball of radius 2i contains at
most 26γ elements of Pi in expectation, for all i.

Proof. For convenience, let 26γ =: c. The proof is by induction on i. The claim is
true for the first round (i = 0) as every node sends a message to its 1-hop neighbors,
and each node only responds by one message to the neighbor with minimum index.

Consider the ball B(v,2i) for arbitrary v. Nodes of Pi in this ball may only be
nominated (in the i-th round) by nodes in B(v,2i+1). The latter can be covered by
a family A of 22γ balls of radius 2i−1, so it suffices to prove that each ball of A

nominates at most 2−2γc nodes in Pi.

B(w,2i)

u

A

B(v,2i+1)

B(v,2i)

v

w

Figure 1. Any ball of radius 2i contains at most 26γ elements of Pi in expectation, for all i. The
arrow from w to u means node w nominates u in round i.

Let A be any of the covering balls, A ∈ A . Denote by |A| the number of nodes
of P inside A. If a node in Pi∩B(v,2i) is nominated from A, it must be chosen from
Pi−1∩B(v,2i). See Figure 1 for illustration. Since B(v,2i) can be covered by at most
2γ balls of radius 2i−1, and by inductive hypothesis, there are at most 2γc choices
for this nomination. That is, |Pi−1∩B(v,2i)| ≤ 2γc. We claim that for a fixed choice
u, the probability that u is nominated by a node in A is at most 1

|A| . To see this,
note that any w ∈ A contains entire A inside its 2i-ball, that is A ⊆ B(w,2i). So if
u is nominated by any node in A, then in particular, π(u) is smaller than the ranks
of all nodes in A, which is true for at most 1

|A|-fraction of permutations. Hence in

expectation, the number of nominations by A is 2γc
|A| . On the other hand, it is also

deterministically bounded by |A|, as each node in A can nominate only once. Hence

14

the number of nominations by A is bounded by min{|A|, 2γc
|A| } ≤

√
2γc. This is at

most 2−2γc by our choice of c. �
Now we can prove the main result.

Theorem 3. For a sensor network with n nodes, the total communication cost for
constructing the 2-HST is O(n logn) in expectation, and each node uses expected
storage for O(logn) node IDs.

Proof. The initial flood (to distribute the value of β) takes O(n) messages, be-
cause the maximum degree of the network is bounded. Now it suffices to prove that
each node at each round receives O(1) messages. The communication cost will then
be only O(n) in each round as there are n nodes in total. Since there are O(logn)
rounds, the total number of messages is O(n logn).

The number of messages transmitted (propagated) by node u in round i is at
most |Pi−1 ∩B(u,2iβ)| ≤ |Pi−1 ∩B(u,2i)|. Since B(u,2i) can be covered by at most
2γ balls of radius 2i−1, each of which contains at most 26γ elements of Pi−1 (by
Lemma 2), we conclude that u transmits at most 27γ =O(1) messages in each round.

Total storage requirement consists of all next-hop pointers that encode the
paths that realize edges of the HST. Notice that each such pointer can be charged
to a unique flooding packet reception event. Hence the storage requirement for a
given node u is at most the number of flooding messages that u received throughout
the computation. Again, Lemma 2 implies that this number is O(1) per round, or
O(logn) in total. �

2.2.3 α-HST

The algorithm described above computes a 2-HST for a distributed network.
It is not hard to convert a 2-HST to an α-HST for any value α ≥ 2. We remark that
converting a 2-HST to an α-HST can also be done in a distributed setting. Basical-
ly at the end of our distributed algorithm, each node identifies its ancestors in the
2-HST T . Now we condense the tree T to an α-HST T ′ by removing some inter-
mediate levels of T and re-connecting the nodes directly to their lowest ancestors
that are not removed. In particular, the leaf nodes remain the same. For i increasing
from 0, suppose we have constructed the tree T ′ up to level i. The nodes on level
i of T ′ correspond to the nodes on level j on tree T . Now we proceed to build the

15

tree T ′ in level i+1. To do that, we take the lowest level j′ in the tree T such that
the distance

∑ j′−1
h= j 2h = 2 j′ − 2 j is no greater than αi and remove all the internal

nodes on level j+1, j+2, · · · , j′−1 of tree T . The nodes on level j′ are nodes on
level i+1 in tree T ′. The nodes in level i connect to their corresponding ancestors
on level i+1 by a single edge with weight αi. See Figure 2 for an example. Notice
that the tree metric T ′ again dominates the original metric as we are only relaxing
the edge weights. In particular, the edge connecting a node on level i in T ′ to its
parent has weight αi, with 2 j′ − 2 j ≤ αi < 2 j′+1 − 2 j by construction, where j is
level i’s corresponding level in T and j′ is level (i+1)’s corresponding level in T .

The relaxation of the edge weights of T ′ will add at most a constant multi-
plicative factor on the distortion as shown below. For any two leaf nodes u,v on
T , suppose their lowest common ancestor is located at level i on T ′ and level j′′ on
T . Clearly j ≤ j′′ < j′. Now we would like to bound dT ′(u,v) by dT (u,v). First
dT (u,v) = 2 ·

∑ j′′−1
h=0 2h = 2(2 j′′ −1), dT ′(u,v) = 2 ·

∑i−1
h=0 αh = 2(αi −1)/(α−1).

Since αi−1 < 2 j+1. We have

dT ′(u,v)≤ 2α
α−1

dT (u,v)+
4α−2
α−1

≤ 7dT (u,v).

That is, the distortion for dT ′ is also bounded by O(logn).
This conversion can be executed by each node in the network examining its

signature vectors and selecting subset of the elements in exactly the same way. In
the end we have an α-HST that is again implicitly stored on the nodes in the net-
work, and O(logn)-probabilistically approximates the underlying network metric.

20

21

22

α0

α1

Figure 2. Convert a 2-HST to an α-HST for any α ≥ 2.

At the end we summarize the properties of the α-HST that will be useful later.

16

Lemma 4. Suppose for level i on the α-HST T ′ corresponds to level ℓ(i) on the
2-HST T . Now we have:

1. 2ℓ(i+1)−2ℓ(i) ≤ αi < 2ℓ(i+1)+1 −2ℓ(i).

2. Each leaf node is within distance (αi−1)β/(α−1) from its i-level ancestor
on T ′.

Proof. The first claim is due to the construction of the α-HST. For the second
claim, we know each leaf node is within distance 2 jβ of its j-level ancestor on the
2-HST. Now the distance from a leaf node to its i-level ancestor on T ′ is at most
2ℓ(i)β ≤ [αi−1 +2ℓ(i−1)]β ≤ (αi −1)β/(α−1). �

2.2.4 HST on k resources

In Section 3.5 we will need to construct an HST only on the sub-metric of the
original shortest-path metric which is induced by a given subset K of k nodes, let’s
call them special nodes for now. This can be done with the same communication
and storage cost as before, by simply picking the permutation uniformly at random
from the set in which the special nodes are k lowest-ranked nodes, and in the end
taking the part of the tree containing special nodes (notice that this is still a tree, and
that it has the same root. The parent of a special node is always special, due to the
choice of ranks. Notice that the parent of a node could be itself if it has the lowest
rank among all the nodes inside its proper neighborhood. Hence a breadth-first
search from the root, stopped upon encountering a non-special node, is guaranteed
to discovers special nodes.).

Why does this work? The main observation is that the execution of the al-
gorithm restricted to K does not depend on non-special nodes at all. In fact, this
simulates the execution of the original algorithm of [56] on the metric (K,dK),
where dK is the restriction of the shortest path metric on K. Recall that the same
construction works for any metric, as long as the 2iβ-neighborhoods are determined
with respect to the appropriate distance function. Since this is the case here, and the
metric has k points, correctness follows.

17

2.3 Simulation

We implemented the 2-HST construction algorithm (Section 2.2) in MATLAB
and tested in on 100 randomly generated networks. The networks were generated
by perturbing n nodes of the

√
n×

√
n grid in the [0,1]2 unit square, by 2D Gaussian

noise of variance 0.3
√

n, and connecting two resulting nodes if they are at most 3√
n

apart (in Euclidean distance). We also made sure that all generated networks were
connected.

Figure 3. A typical HST on n = 400 nodes. Thicker lines represent higher-level edges.

Figure 3 illustrates a typical 2-HST layout on our test network, and Figure 4
shows a typical distribution of communication load and storage requirements. Com-
munication is evenly distributed, as predicted by Lemma 2. Storage requirement is
higher for nodes higher up in the hierarchy, but it grows slowly with the network
size (Theorem 3). This result means that the hidden constant in Theorem 3 is in
practice much smaller than predicted by our theoretical analysis.

Figure 5 shows how the communication cost and storage requirement change,
on average, as a function of network size. The value for each size is an average
of 100 independent trials. We conclude that, as predicted by Theorem 3, both per-
node storage and per-node communication cost grow logarithmically with number
of nodes.

18

0

20

40

60

80

100

0

10

20

30

40

50

Figure 4. Communication cost (left) and storage requirement (right) in a perturbed grid network of
n = 400 nodes.

0 100 200 300 400
0

20

40

60

80

100

network size

m
in

/m
ax

 c
om

m
un

ic
at

io
n

co
st

0 100 200 300 400
1.3

1.4

1.5

1.6

1.7

1.8

network size

m
ax

im
um

 s
to

ra
ge

 p
er

 n
od

e

Figure 5. Per-node communication cost and storage requirement scale sublinearly with network
size.

2.4 Conclusion

This chapter shows how to extract the hierarchically separated tree metric from
a network in a distributed and communication efficient way. In the next chapter, we
are going to implement the distributed resource management algorithms in this tree
metric.

19

Chapter 3

Distributed Resource Management
and Matching in Sensor Networks

3.1 Introduction

Recent advances in wireless sensor networks reveal the potential of such em-
bedded network systems for revolutionizing the way we observe, interact with,
and influence the physical world. Applications of sensor networks now extend be-
yond military deployments and the monitoring of animal or other natural habitats
to places where humans work and live: homes, cars, buildings, roads, cities, etc. In
these human spaces a sensor network serves users embedded in the same physical
space as the network, allowing real-time data acquisition, situational understanding,
event response and control, eventually leading to a fully intelligent living environ-
ment.

In this chapter we explore the challenge of using a network of embedded sen-
sors in aiding information discovery and resource management so as to allow coor-
dinated response to distributed emerging events. The embedded sensors serve two
purposes: discovering/detecting the events of interest (e.g., a parking spot is left
empty); and forming a supporting infrastructure for distributed resources/users to
act on the detected events (e.g., help a vehicle to look for an empty parking spot). In
the parking scenario, multiple vehicles can be consulting with the sensor network
for available parking spots at the same time. The sensor network needs to resolve

20

competition and match vehicles with empty parking spots, in a way that avoids di-
recting two cars to the same empty parking spot. In another scenario, emergency
events detected by sensor nodes such as abnormalities, sensor battery outages, or
local data overflows need to be handled immediately. Thus the sensor network faces
the problem of directing surveillance vehicles/network helpers/data mules, one per
event, to support real-time response and maintain network normal functioning.

When multiple events arise with multiple available resources to possibly act on
them, there is an immediate need for coordinated and distributed resource manage-
ment, to assign the resources to these events in a balanced yet efficient way. Here
the event refers to, for example, a new vehicle querying for parking spots, or an
emergency situation waiting for rescue efforts; and the resource refers to available
parking spots or rescue teams. We model the resource management problem as fol-
lows: there are k available resources residing in the network, events may emerge
at any time near any node, and multiple events can appear simultaneously. Both
available resources and these emerging events are detected and tracked by their n-
earby sensor nodes. We would like to design a distributed matching mechanism to
assign each event to a distinct available resource. Naturally, to reduce response de-
lay and energy expense, an event should be matched to a nearby resource, with the
distance measured either in the network metric (the number of hops in the network
from the resource location to the event location) or other underlying metric (e.g.,
the Euclidean distance metric), depending on how the event is to be serviced. The
quality of the solution is naturally represented by the total distance of the matching.

This resource management problem, in the centralized setting, is simply a clas-
sical minimum cost bipartite matching problem. Each resource i is connected to
each event j with an edge of cost equal to the distance between them (in the appro-
priate sense). The optimal matching with the minimum total cost of the edges in the
matching can be found by flow algorithms in O(k3) running time for k events and k
resources [121]. However, implementation of the centralized min-cost matching so-
lution is not feasible in the sensor network setting for two reasons. First this would
require the collection of all the information on the resources and events at a central
place to execute the flow algorithm, which we would like to avoid. In addition, the
events may emerge anywhere anytime and often require immediate response. Thus
we deal with an online setting in which resource commitments must be made before

21

we know the entire event sequence in the future. How to achieve the coordination
needed in the matching algorithm in a distributed setting, with the events coming
online, not aware of each other and not aware of the locations of available resources,
is the main problem we will tackle in this chapter.

3.2 Overview

For distributed resource management, we need to solve the following two
problems:

• low-cost resource discovery and aggregation: when an event emerges, how
does it discover nearby available resources in a communication efficient way;
and

• close to optimal matching algorithm: which resource should an event select
to be matched with, and how to resolve competition, so that no two events
select the same resource.

The two problems, resource discovery and distributed matching, are closely related.
The solution for one may impact the solution for the other.

Let us first consider a typical setting when a set of events pop up at the same
time. In a distributed setting where no sensor node is taking full control, the chal-
lenge for the resource discovery problem is to decide what information is to be sent,
and to where. The naive solution of flooding the entire network with all the events
allows each event to solve for the centralized min-cost matching solution, but is
obviously too communication expensive. To reduce communication cost, one may
use restricted flooding to discover the closest available resource from each even-
t. In particular, the TTL of the flooding messages from an event doubles until a
resource is found. The communication cost, measured in the number of message
transmissions, is O(ℓ2), if the closest resource is ℓ hops away. In this way, each
event discovers the closest resource that has not yet been matched with others. The
problem is that such a greedy matching algorithm may give a very poor approxi-
mation ratio of Θ(klg3

2) to the min-cost matching of k events [132]. To get a better
approximation ratio, one may adopt the 2-approximation algorithm for min-cost
matching by the primal-dual method [73]. This would require a flooding from each

22

event and global coordination of the growth of each aggregated component, thus
incurring a much higher total communication cost.

From the above discussion, it is clear that we need to find a solution that
achieves a balance between a low communication cost for resource discovery and a
good approximation ratio for distributed matching. Our solution is to define a tree
metric from the underlying network metric (minimum hop count distance metric of
the sensor network) so that

• the simple greedy algorithm in the tree metric gives a polylogarithmic ap-
proximation ratio (or competitive ratio in the online setting when the events
appear one by one [26]);

• the tree structure allows easy probing based detection of nearby resources,
thus significantly saving communication cost (when compared with flooding
the network).

The tree metric we extract is based on a hierarchical well-separated tree. An α-
hierarchically well-separated tree (α-HST) is defined as a rooted weighted tree such
that: the weight of all edges between a node and its children are the same; the edge
weights along any path from the root to a leaf are decreasing by a factor of α. The
nodes of the HST are the nodes in the original communication network G, but a tree
edge is virtual, i.e., it maps to a path in the original network.

This hierarchical well-separated tree is going to approximate the original graph
metric G by a logarithmic distortion factor, in terms of the shortest path distance
between any two nodes. In particular, what we propose to extract is one α-HST,
chosen by a distribution D from a family S of α-HSTs such that for each HST T in
the family S , the distance dT (u,v) between any two nodes u,v in the tree T is greater
than the shortest path length dG(u,v) in the original graph G, and that the expected
distance between u,v, ET∈S [dT (u,v)D(T)], taken over the distribution D on the
family S of trees, is no greater than β ·dG(u,v), where D(T) is the probability of T
in the family S . Such a family of HSTs is said to β-probabilistically approximate
the original metric G, with β being the (expected) distortion factor.

The hierarchical well-separated tree brings in two benefits to the distributed
resource management problem. First, a HST is a special and simpler metric such

23

that simple greedy algorithm by recursively matching closest pairs on the tree, in-
stead of the original graph, gives good performance for both off-line and online
matching. In the off-line (but distributed) setting when k events appear at the same
time, the greedy algorithm gives optimal min-cost matching on the HST. As the tree
metric approximates the original graph metric by a logarithmic factor, this algorith-
m gives an O(logk) approximation ratio for the min-cost matching on the original
communication graph. In the online setting when the events appear in any order
and we compare the quality of the online matching with the off-line optimal solu-
tion (when the entire sequence of events is known), the simple greedy algorithm
gives an O(log2 k)-competitive ratio compared with the optimal matching on the
HST and consequently an O(log3 k)-competitive ratio in the original metric. Sec-
ondly, working on the hierarchical well-separated tree solves information discovery
and aggregation easily. We adopt a similar probing scheme as in our previous sparse
aggregation framework [69]. Each event sends probes from along the HST looking
for the nearest unmatched resource.

In section 2.2 we describe a distributed algorithm for the extraction of the
probabilistic HST from the sensor network metric. The construction of HST is a
preprocessing step that is executed during the network setup phase. Nodes on the
HST correspond to nodes in the network; each network node maps to at least one
tree node, possibly more. Edges of the HST correspond to paths in the network.
Each such path is stored as a (bidirectional) chain of next-hop pointers, one per
node along the path. Each HST node records information required to associate its
outgoing paths to its adjacent HST edges, as well as the weights of those edges in
the HST. In summary, to store the HST in the network, a network node has to store
the amount of information proportional to the number of paths that go through it,
and the number of HST edges adjacent to HST nodes that it represents.

For a particular resource management problem, we can condense the HST to
get a tree with the leaf nodes only on the available m resources with the total size of
the tree being O(m). For load balancing, we can build a few HSTs, with different
random seeds, and rotate between them periodically. The construction of the HST
assumes a random indexing of the nodes and proceeds in O(logn) rounds. At round
i, only a subset of the nodes Pi ‘survive’ to be qualified as the nodes on the i-th level
of the tree (counted from the leaf level of the tree). These nodes flood the network

24

with maximum hop count β ·2i, where β is a number chosen randomly between 1/2
and 1 in the initialization phase by a preconfigured ‘leader’ node, who broadcasts
the value to the rest of the network. Every node selects, among all the messages
it received at this round, the node with minimum index to be its ancestor at level
i+1 with an edge weight as 2i. The nodes that are not nominated by any node will
quit after round i. Intuitively as i increases, although the flooding radii increase,
the number of candidates decreases. We show that the total communication cost for
each round, in terms of the number of message transmissions, is bounded by O(n),
and the total communication cost for the construction of a HST is O(n logn), if the
underlying communication graph has a constant doubling dimension. The doubling
dimension of a metric space (X ,d) is the smallest value ρ such that each ball of
radius R can be covered by at most 2ρ balls of radius R/2 [81]. If we place at most
a constant number of sensor nodes inside any unit disk and the holes in the sensor
networks are not very fragmenting, the communication graph has constant doubling
dimension.

The construction of the HST in a distributed environment is interesting on its
own and can potentially have more applications besides the distributed matching
algorithm for resource management explained above — working on a tree is much
easier than working on the original graph; thus many optimization problems admit
algorithms of improved performance on a tree. The construction of the HST natu-
rally extends the applicable domain of these algorithms to a sensor network setting
with only a logarithmic factor loss.

3.3 Previous Work

The min-cost matching problem in a bipartite weighted graph can be solved
optimally by the flow algorithm in a centralized setting. The greedy matching algo-
rithm that matches closest pairs achieves a worst-case approximation ratio Θ(klg3

2)

for k vertices on a general graph or under Euclidean metric [132], but is optimal on
a HST metric [20]. For the online min-cost matching problem, the k vertices (blue
vertices) on one side of the bipartite graph are given, the k vertices (red vertices)
on the other side of the graph are revealed one by one. When a red vertex appears,
it needs to be matched with a blue vertex immediately. The solution is compared

25

with the optimal matching when all the red vertices are given altogether and the
performance degradation is captured by the competitive ratio of the online deci-
sion making procedure. Meyerson et al. [110] proposed the first randomized online
algorithm that achieves a logarithmic competitive ratio of O(log3 k), by using the
probabilistic HST approximation of a general graph metric. Essentially each red
node is matched to the closest blue node on the HST and ties are broken random-
ly. An improved algorithm by Bansal et al. [20] achieves a competitive ratio of
O(log2 k).

Approximating a metric with probabilistic hierarchical well-separated trees
was first proposed by Bartal [21, 22], with the motivation that many problems are
easier to solve on a tree than on a general graph. Later, Fakcharoenphol et al. [56]
improved the distortion to O(logn) for any n node metric and this is tight.

This chapter borrows from these ideas. This previous works, however, were for
a centralized environment. In this chapter the distributed algorithm design and the
communication cost analysis for both (i) extracting a HST from the network metric
and (ii) applying probing-based mechanisms on the HST for information discovery
and resource management, in a resource constrained sensor network setting, are
new.

The results in this chapter is also related with our previous work on aggregation
of sparsely located events, none of them with knowledge of each other [69]. The
idea is to use light-weight local probes (in the vertical and horizontal directions)
from the simultaneously emerging events to achieve distance sensitive neighbor
discovery with nearby events discovering each other first. Aggregation is performed
when multiple events ‘find’ each other and at the same time an aggregation tree is
formed to suppress the probing of all but one event being aggregated. The probes
that survive in this aggregation will carry the aggregated information and propagate
further to look for other possible events. The fact that aggregation is done naturally
along a tree structure constructed by the individual probes substantially reduces the
total communication cost for the group discovery of these events to only an O(logk)
factor over the cost of the minimum spanning tree connecting all the events. The
novelty in this chapter is the different tree metric (the HST) that we use and the
benefits of the special tree metric for the distributed matching problem. We show
in Section 3.4 that the HST can also be used for sparse aggregation with the same

26

communication cost.

3.4 Sparse aggregation with HST

We also remark that the 2-HST computed in Section 2.2 can be used to get
an aggregation tree when spontaneously emerging resources spread out in the net-
work are detected by their local sensors and no resource is aware of how many and
where the other resources are. That is, it solves the same problem as in the sparse
aggregation framework [69].

Suppose the a set K of k resources are detected simultaneously (i.e., at network
setup), each node with new detection sends a message along the path in the tree
towards the root. With the same assumption as in [69] that the messages travel with
speed lower-bounded by V , these messages can be aggregated and pruned when
they travel towards the root. In particular, an internal node u at level i will wait
for a period of time 2i ·V after the network setup — so that all messages from the
resources in its subtree will be able to arrive at u for sure. After that u aggregates
the messages it received and sends a message to its parent on the tree.

Eventually the process will result in a sparse aggregation tree T (K) with root
as the lowest common ancestor LCS(K) of all the resources in K. The edges of
T (K) include the paths from the k resources to LCS(K). From LCS(K) one message
travels to the root (as it does not know whether there are resources in other part of
the tree and has to travel to the root to find that out). The total communication cost
of the sparse aggregation is O(|T (K)|+ ℓ), where |T (K)| is the size of the sparse
aggregation tree, ℓ is the distance from LCS(K) to the root of the HST and is upper
bounded by the network diameter. See Figure 6 for an example. The blue nodes are
the resources. The thick edges are the edges traveled by aggregation messages.

We claim that the tree T (K) has total size O(logk) times the smallest aggre-
gation tree possible (i.e., minimum Steiner tree) in the original network (if the re-
sources know each other in advance). In particular, T (K) is the minimum Stein-
er tree of the resources in K on the HST metric. Suppose the minimum Steiner
tree in the original network is T ′(K), we replace each edge xy on T ′(K) by the
path between nodes xy on the HST, with a blowup factor of O(logk), using Sec-
tion 2.2.4. Now the resulting network must have a size no smaller than the size

27

LCS(K)

Figure 6. Sparse aggregation of k resources/events by an HST.

of T (K) — as T (K) is the minimum Steiner tree on the HST. This shows that
|T (K)| ≤ O(logk · |MST |), where MST is the minimum Steiner tree in the original
network.

We remark that the paper [69] requires a double rulings scheme supported in
the underlying network, for the probe messages to meet and discover each other.
Our solution does not require that and can work on any network with bounded
doubling dimension, given that the 2-HST has been computed in the preprocessing
phase.

3.5 Distributed Matching Algorithms

In this section we describe several algorithms for distributed bipartite matching
problem, in online and offline settings. The main goal of the section is to show
that, if preceded by a preprocessing phase in which an HST is computed as in
Section 2.2, the matching algorithms have output-sensitive communication cost, in
addition to providing good approximation/competitive ratio (in offline and online
setting, respectively).

In all models we consider there are k resources whose number and locations
do not change over time. The location of a given resource is initially unknown to
any other node except the nearest sensor nodes that detect it. Also, we assume that
there are exactly k requests, which can either be present in the beginning, or arrive

28

one by one. In any case, a perfect matching always exists. We remark that most of
our results continue to hold if this is not the case.

We assume that packets traverse one hop per time unit, i.e., that appropriate
algorithms are employed to handle low-level issues such as medium access, packet
buffering and transmission scheduling. We also assume for simplicity that all nodes
have enough local storage, and focus on minimizing communication cost. This is
justified by the fact that with today’s technology energy is a much more valuable
resource than storage space.

3.5.1 Offline setting

First we consider the offline case, in which both resources and requests are
present simultaneously (but the resources and the requests do not know each other).
Bansal et al. [20] proved that the natural greedy algorithm — go through the set
of requests in arbitrary order and match each request with the closest unmatched
resource in the α-HST tree metric, breaking ties arbitrarily — gives as O(α logk)-
approximation (in expectation) to the optimal solution in the original metric, for any
α > 1. In the following we use a 2-HST and describe a distributed implementation
of this algorithm that uses a factor of O(logk) more packets than the total length of
the returned matching (the sum of hop-distances of matched pairs).

We may assume without loss of generality that no node has both a resource and
a request; such pairs can be immediately paired and removed from consideration.
We allow multiple resources to occupy the same node, the same with requests.

The distributed algorithm proceeds in a similar way as the sparse aggregation
algorithm described in subsection 3.4. Resources and events send their information
up the tree. Internal nodes match the resources and events in its subtree whenever
possible. Information on unmatched resources or events is propagated further up the
tree until every event is matched. Specifically, leaves that have resources or requests
send this information to their parents (at level 1). Note that empty leaves do nothing.
Parents then locally compute an arbitrary matching between requests and resources
they received and notify matched leaves. We recursively solve the problem with
unmatched requests and resources, where we think of them as residing at level-1
nodes. The resulting matching is represented by a number of paths in the HST,

29

and corresponding paths that are constructed (by establishing ‘next hop’ pointers)
in the underlying graph. Once this is done, level-1 nodes finish the algorithm by
propagating each path to the leaf that initially holds the corresponding matched
resource/request.

Notice that level-1 nodes have to wait at most one time unit for the packets
coming from their children. This follows from out assumption on packet propaga-
tion speed, and 2-HST structure, i.e., the fact any leaf is within 21β < 2 hops, hence
at most one hop, away from its parent. If a packet from some child is not received
within this time, it means that the child has no requests/resources to report. Similar
time bounds hold in recursive calls.

Now we turn to bounding the communication cost. Clearly, no communication
is ever ‘wasted’, i.e., if a node sends a packet to its parent reporting resources or
requests (recall, never both), eventually that HST edge (and the corresponding path
in the graph) will be used in the paths that match those resources/requests.

Theorem 5. The expected communication cost of computing a matching of length
l with our algorithm is O(logk) · l.

Proof. The claim easily follows by observing that each edge computed by the
algorithm may be a factor of O(logk) shorter in the original metric than in the HST
metric, and by summing over all edges in the matching. �

3.5.2 Online setting

Now we turn our attention to the online setting in which requests come in one
by one, and each request must be irrevocably matched to some resource before the
next request arrives. This models fairly common applications of wireless networks
in which decisions are time-critical, cannot be changed once they are made, and
there is no a priori upper bound on the time between consecutive request arrivals.

We propose a distributed algorithm which never pays more than order of lγ

in communication cost for computing a matching of cost (length) l, where γ is the
doubling dimension of the metric. Throughout this section we assume that the next
request does not arrive until the current source is matched and all associated mes-
sages have been delivered. This assumption captures the application scenarios when
event inter-arrival times are much greater compared with message propagation time.

30

One solution is based on the following randomized greedy algorithm proposed
in a centralized setting by Meyerson et al. [110]. When a new request arrives, it is
matched to the closest unmatched resource on an α-HST, breaking ties randomly,
i.e., by choosing each of the tied resources with equal probability. They proved that
this algorithm is O(α log2 k)-competitive (in expectation) on the original metric,
provided that α ≥ 1+2lnk.

For a node u, let T (u, i) be the unique level-i subtree that contains u. Also, for
i ≥ 1, define N(u, i) = T (u, i)−T (u, i−1). Current request r can be matched to its
randomly chosen closest unmatched resource by having the leaf that holds r gradu-
ally explore its neighborhood in the HST. Specifically, the exploration proceeds by
levels: first N(r,0) = {r}, then N(r,1), then N(r,2) etc. It is essentially a post-order
traversal of the HST, which starts from r and stops on encountering an unmatched
resource. Notice that, with such organization, each N(r, i) can be explored with a
communication cost of at most twice the total length of all paths (in the underlying
graph) that realize all edges of the subtree. This also includes the task of picking a
uniformly random unmatched resource, if the subtree happens to contain any. For
example, each resource, once found by exploration broadcast, can choose a random
number uniformly from [0,1], and then the minimum of all choices can be com-
puted using sparse aggregation (as in Section 3.4). The ‘trail’ left by the minimum
number’s packet during aggregation leads to a uniformly random resource.

It is easy to see that the algorithm is correct (under the above assumption on
request arrivals). It is also obvious that if r is matched to s after exploring levels up
to i, i.e., entire T (r, i), the communication cost involved is at most twice the total
length of T (r, i).

Lemma 6. Consider an α-HST constructed as in Section 2.2 for an underlying met-
ric with doubling dimension γ. Let T be a level-i subtree and let h be its height
(root-to-leaf distance) in the HST metric. Total length of T (all its edges) in the
HST metric is at most C(α,γ)hγ, where C(α,γ) = αγ25γ

αγ−α .

Proof. By the α-HST construction in subsection 2.2.3 and Lemma 2.2.3, the
root of the subtree T is at level ℓ(i) at the corresponding 2-HST. Thus all leaves
can be covered by a single ball of radius 2ℓ(i)−1β < 2ℓ(i)−1 centered at the root of
the subtree T . Now we consider a level j in the subtree T with 0 ≤ j ≤ i− 1 and

31

we would like to count the number of nodes at level j. By Lemma 2, any ball of
radius 2ℓ(j) has at most 26γ level- j nodes. Hence the leaves can be covered by at
most 2γ(ℓ(i)−1−ℓ(j)) balls of radius 2ℓ(j). Thus the number of level- j nodes is at most
2γ(ℓ(i)−ℓ(j)+5). Each level- j node has a single edge of length α j connecting it to
its parent. Furthermore, the total length of the tree is exactly the sum of all these
edges. So, summing over j, we have

i−1∑
j=0

2γ(ℓ(i)−ℓ(j)+5) ·α j = 2γ(ℓ(i)+5)
i−1∑
j=0

α−(γ−1)ℓ(j)

≤ 2γ(ℓ(i)+5)αγ

αγ −α

≤ αγ25γ

αγ −α
·
(

αi −1
α−1

)γ

.

The height of the subtree is 1+α+α2+ · · ·+αi−1 = αi−1
α−1 . Thus the total length of

T is bounded by O(C(α,γ)hγ). �
This directly implies a bound of O(C(α,γ)lγ) on the communication cost of

computing a single matching edge of length l in HST metric.
We can now prove the main result about our online algorithm.

Theorem 7. The expected communication cost for computing a matching of total
length l is O(lγ).

Proof. In expectation, a matched pair may be a factor of O(logk) closer in the
original metric than in HST, yielding a ratio of O(C(α,γ) logγ k) for each edge. The
same ratio holds for the total length, since

∑
i xγ

i ≤ (
∑

i xi)
γ, for γ ≥ 1. The claim

follows by substituting α = Θ(logk). �

3.6 Simulations and Experiments

3.6.1 Approximation and competitive ratios

We implemented the algorithm described in Section 3.5.1 in this section. Since
we know that it is communication-optimal in the 2-HST (Theorem 5), we only

32

compared optimal matching costs in the 2-HST and in the underlying graph. This
is, of course, directly related to the distortion of the HST embedding.

We generated random perturbed grid networks from the same distribution as
in the previous experiment. Network sizes range from 25 to 400, and the number of
resources was kept fixed at k = 10. We sampled 100 networks for each network size.
For each network, we chose k resources and k requests uniformly at random, and
computed a 2-HST with requests and resources as special nodes (Section 2.2.4).
Then we computed the communication cost of the matching computed by our of-
fline algorithm, the length (in hops) of the same matching in the α-HST metric, and
the length of the optimal matching on the same set of resources/requests (computed
by the Hungarian algorithm [121], as implemented in [1]).

The following two figures show how the ratio of optimal matching costs (in
2-HST and the original metric) changes with the network size n, with the number
of resources k fixed (Figure 7) and vice versa (Figure 8).

0 100 200 300 400
2

2.5

3

3.5

network size

H
S

T
/O

P
T

Figure 7. In offline setting, length of the optimal matching in the 2-HST and length of the optimal
matching in the underlying metric are within a factor of 3 over a wide range of network sizes n, with
fixed k = 10.

Finally, we consider the online algorithm of Section 3.5.2. We tested perturbed
grid networks between 25 and 400 nodes, with 50 samples for each size according
to the same distribution as above. For each sample we computed an α-HST for
α = 1+ 2lnk and ran the algorithm, recording the resulting communication cost,
cost of the matching returned by the algorithm (in the HST metric), and optimal

33

5 10 15 20 25 30
2.5

3

3.5

4

number of resources

H
S

T
/O

P
T

Figure 8. In offline setting, the ratio of optimal matching length becomes worse when the number
of resources k increases, and n = 225 is fixed. This is because the network embeds into 2-HST with
distortion that increases with k.

cost in the original metric.
Figures 9 and 10 show the ratio of the communication cost and costs of optimal

matchings, one in the HST and the other in the original metric. In Figure 9 the
number of resources k is fixed and network size changes. Figure 10 shows the
opposite situation.

0 100 200 300 400
0

200

400

600

800

co
m

m
un

ic
at

io
n

/ m
at

ch
in

g
ra

tio

network size

HST

OPT

Figure 9. Communication overhead as a function of network size, with fixed k = 15.

Figure 11 shows that, as predicted by Theorem 7, communication cost grows

34

10 15 20 25 30

100

200

300

400

500

600

number of resources

co
m

m
un

ic
at

io
n

/ m
at

ch
in

g
ra

tio

HST

OPT

Figure 10. Communication overhead as a function of the number of resources, with fixed n = 225.

roughly quadratically with the cost of computed matching in the tree metric. This
is expected, since we tested on two-dimensional geometric graphs.

0 100 200 300 400 500
0.5

1

1.5

2

2.5

3
x 10

4

optimal HST matching

co
m

m
un

ic
at

io
n

co
st

Figure 11. Communication cost of the online matching algorithm as a function of the cost of the
computed matching in the α-HST metric, with a fixed number of k = 15 resources and variable
network size n. The slope suggests quadratic dependence (linear regression yields a slope of about
2.37).

35

3.7 Conclusion

Resource management in a distributed setting is a challenging problem due
to the lack of global coordination and knowledge of available resources/emerging
events. However, the problem can be simpler when the underlying network metric
is simpler (such as a tree). This chapter shows how to implement the distributed
resource management algorithms in the hierarchical well-separated tree metric, for
both offline and online scenarios. We would like to emphasize that the idea of work-
ing on a simpler metric can possibly be applied to other problems in a distributed
setting to derive communication efficient algorithms with quality guarantees, such
as k-server [23, 42], metric labeling [96], and tracking mobile sinks [19]. We will
further explore this direction in the future.

36

Chapter 4

Maintaining Approximate Minimum
Steiner Tree and k-center for Mobile
Agents in a Sensor Network

4.1 Introduction

In this chapter we examine the challenges arising from a system of embedded
static wireless nodes and a set of mobile agents acting in the same physical space.
The agents could be either mobile robots or human users collaborating on a task.
They do not necessarily have out-of-band communication channels among them
and may have to resort to multi-hop routing in the static wireless network for inter-
communication. The embedded sensor nodes provide real-time monitoring of the
environment, possibly in-network processing to aid situation understanding, and
interact with the mobile agents as a supporting infrastructure to help with both
coordination and communication of the agents. This model captures many real-
world scenarios, ranging from robots exploring a space, mules collecting sensor
data, rescue team helping with disaster relief, etc.

We focus on two specific problems in this framework. The first is to maintain
group communication of the mobile agents, in particular, a tree spanning the agents
for continuous information exchange, decision making and order dissemination. We

37

denote by the sensor closest to an agent i a proxy node for i. To reduce communi-
cation delay, the communication tree is preferred to be the minimum Steiner tree of
the agents in the sensor network, i.e., the tree with minimum total hops connecting
the proxy nodes, possibly by using other non-proxy nodes as relay. It is well known
that the minimum Steiner tree is a NP-hard problem [89], therefore we maintain at
best an approximation to it. As agent i moves, its proxy node may hop to a neigh-
boring node. In that case we will need to update the tree. The objective is to achieve
small update cost with a good approximation ratio to the optimal minimum Steiner
tree.

The second problem we study is the mobile k-center problem, that asks for k
sensors as centers such that the maximum distance from each agent to its closest
center is minimized. These centers naturally lead to spatial clustering or grouping
of the agents, and map to obvious locations for control centers where information
from the agents are aggregated and disseminated. In another scenario, when the
agents need to physically gather together, the 1-center solution is the meeting point
that minimizes the maximum travel distance. Again the k-center problem with k
as a parameter is NP-hard [89]. We ask for the efficient maintenance of a good
approximate solution.

4.1.1 Challenges

There are two fundamental challenges to allow such coordination and commu-
nication between mobile agents.

The first problem is location management, that is, the tracking and dissemina-
tion of the current location of the agents. In our setting we identify the location of
an agent with its proxy sensor node. Obviously the proxy node is aware of the agent
in its proximity. The difficulty is to inform other nodes/agents of the current loca-
tion of an agent. We need to decide how frequently to disseminate the current agent
location. This problem has been studied extensively in the literature. The earliest
work is by Awerbuch and Peleg [19], in which the location information is updated
to a carefully selected subset of nodes such that both location update and location
query can be done in polylogarithmic time. Location services when all the nodes
are mobile have also been developed in the last few years [5, 63, 103]. Although

38

being theoretically intriguing and inspiring, these schemes are still relatively heavy
for real-world systems.

The second challenge is efficient maintenance of approximate minimum Stein-
er tree or approximate k-center of mobile agents, as efficient algorithms even in the
centralized setting are lacking. Nothing is known for maintaining α-approximate
minimum Steiner tree when α < 2. The minimum spanning tree (MST) is a 2-
approximation of the minimum Steiner tree. Yet the maintenance of MST is not
perfectly solved even in the centralized kinetic data structure framework [79] (i.e.,
when the moving trajectories of all agents are given). When the nodes follow linear
motion, there exists an algorithm for maintaining a minimum spanning tree when
the distances are measured using the L1 or L∞ norms, or a (1+ ε)-approximate Eu-
clidean MST if the Euclidean distance is used [24]. But in this algorithm the num-
ber of updates of the data structure can be much higher than what is necessary (the
number of necessary updates of the MST). In a slightly different setting where edge
weights in a given graph change linearly, deterministic and randomized algorithms
were designed [10]. These algorithms are very involved with heavy algorithmic
techniques and are not practical. In the sensor network setting, a scheme called
RoamHBA has been proposed to maintain group communication [58]. RoamHBA
assumes that the current location of all agents are available (thus requiring a lo-
cation management scheme as described above) and uses a heuristic algorithm to
generate a tree. There is no guarantee on either the approximation to the MST nor
the update communication cost when the agents move.

Regarding the k-center problem, the situation is not much better. In the cen-
tralized setting, the only known result is a kinetic algorithm for maintaining a 8-
approximate k-center [68]. Nothing is known in the distributed setting to our knowl-
edge.

4.1.2 Our approach

In short, we first preprocess the sensor network with O(n lgn) total messages.
With the preprocessing no location management is needed for MST and k-center
maintenance; the agents are not aware of the current location of other agents. Thus
we save the communication cost necessary to update and query for the current agent

39

location. In particular, a O(lgn) approximate MST and k-center are maintained with
an expected update cost of O(lgn) messages each time the proxy node of an agent
hops to a neighboring node. Such results have not been achieved in past literature
even when the location of the nodes are available.

In our preprocessing phase, we extract a tree metric on the sensor nodes called
a hierarchical well-separated tree. An α-hierarchically well-separated tree H (α-
HST) is defined as a rooted weighted tree such that: the weight of all edges between
a node and its children are the same; the edge weights along any path from the root
to a leaf are decreasing by a factor of α. The nodes of the HST are the nodes in the
original sensor network G, but a tree edge is virtual, i.e., it maps to a path in the
original network.

This hierarchical well-separated tree is going to approximate the original graph
metric G by a logarithmic distortion factor, in terms of the shortest path distance
between any two nodes. In particular, what we propose to extract is one α-HST,
chosen by a distribution D from a family S of α-HSTs such that for each HST H
in the family S , the distance dH(u,v) between any two nodes u,v in the tree H is
greater than the shortest path length dG(u,v) in the original graph G, and that the
expected distance between u,v, EH∈H [dH(u,v)D(H)], taken over the distribution D

on the family H of trees, is no greater than ρ · dG(u,v), where D(H) is the proba-
bility of H in the family H . Such a family of HSTs is said to ρ-probabilistically
approximate the original metric G, with ρ being the (expected) distortion factor.

The advantage of having the HST is that, the minimum Steiner tree on the HST
metric is trivial — it is simply the connection of edges from all the agents/proxy
nodes to their common ancestor on HST. As the HST is a O(lgn) approximation
of the graph metric G, the minimum Steiner tree H computed on the HST metric
is a O(lgn) approximation of the MST on the graph metric G. The question thus
remains as how to maintain the minimum Steiner tree on the HST metric when the
agents hop from node to node.

Similarly, for the k-center problem, working on a tree is much easier than
working with a general graph metric. For k = 1, the common ancestor of all the
nodes is the optimal center for the HST, and is a O(lgn) approximation to the 1-
center solution of the original network G. For a general k, the optimal k-center for
the HST will be taking the lowest level of the HST such that the number of nodes

40

with one or more agents in the subtree is no greater than k. Again this can be shown
to be a O(lgn) approximate solution for the k-center in G.

In this chapter we show that with the HST constructed in the preprocessing
phase, we can maintain the MST and the k-center of the mobile agents with expect-
ed communication cost of O(lgn) for each hop the agents move. Suppose one agent
moves from node u to node v, we update the MST by taking the common ancestor w
of u and v on the HST. Then only the edges on the path from u,v to w may possibly
be changed. Clearly, if the node w is high up on the HST, the cost will be higher.
We show that as the HST is built with a randomized algorithm the probability for w
to be high on the HST is small so the expected cost is bounded by O(lgn).

We also demonstrate the experimental results for our scheme and compare
with the only previous scheme RoamHBA [58].

4.1.3 Related work

Approximating a metric with probabilistic hierarchical well-separated trees
was first proposed by Bartal [21, 22], with the motivation that many problems are
easier to solve on a tree than on a general graph. Later, Fakcharoenphol et al. [56]
improved the distortion to O(lgn) for any n node metric and this is tight. This
previous works, however, were for a centralized environment. In an earlier work of
ours [70], we developed a distributed algorithm to extract a HST in a sensor network
setting. In [70], we also applied the HST to the problem of resource management
and distributed matching. The application of HST on the minimum Steiner tree and
k-center problem, as well as their maintenance when the agents are mobile, are new
results.

4.2 Network Setup

Our following discussion is based on the assumption of a static sensor network
consisting of n sensor nodes P and m mobile agents S. Agents are tracked by nearby
sensor nodes called proxy nodes. We assume that every node is aware of the number
of mobile agents, m.

A metric (P,d) has growth rate γ, if for any v ∈ P there are c1 · rγ−1 ≤ f (r) ≤

41

c2 · rγ−1 nodes with distance exactly r from v, for some constant c1 and c2, c1 ≤ c2.
The doubling dimension of a metric space (P,d) is the smallest value λ such that
every ball with radius r in P can be covered by λ balls of radius r/2. The doubling
dimension of P is then defined to be dim(P) = lgλ. We call a metric to have a
constant doubling dimension if its doubling dimension is bounded by a constant.
It is not hard to see that a metric with bounded growth rate has constant doubling
dimension, by a simple packing argument.

All sensors are uniformly distributed in a planar domain with nearby nodes
directly communicating to each other. The communication network on the sensors
is denoted as G = (P,E). In our case, the network metric (P,dG) is the minimum
hop count metric in the sensor network. The vertices in the metric is the set of
sensor nodes. The distance between two nodes is the minimum hop count value.
In the following when we mention the “network metric” or the “original metric”,
we mean the minimum hop count metric (P,dG). We assume that the minimum
hop count metric of the communication graph has bounded growth rate of 2, and
therefore constant doubling dimension.

4.3 HST review

In this section, we review the definition of α-hierarchically well separated tree
(α-HST) and a distributed algorithm to compute the α-HST for a doubling dimen-
sion metric. The nodes of the HST are the nodes in the sensor network. The edges
of the HST are virtual edges and the weights are redefined.

Definition 8 (α-HST). A rooted weighted tree H is an α-HST if the weights of all
edges between an internal node and its children are the same, all root-to-leaf paths
have the same hop-distance, and the edge weights along any such path decrease by
a factor of α as we go down the tree.

Fakcharoenphol et al. [56] gives a centralized algorithm to compute a 2-
HST metric dH for an n-point metric (P,dG). When we say the “tree metric”,
we mean the distance on the HST and denote it as dH . dH provides a O(lgn)-
probabilistically approximation on dG, that is, for any u,v ∈ P, dH(u,v)≥ dG(u,v),
and E[dH(u,v)] ≤ O(lgn) · dG(u,v), where the expectation is taken over random

42

choices of the algorithm. The algorithm is as follows: We uniformly choose a ran-
dom permutation π : P →{1,2, . . . ,n} of the nodes from the set of all permutations.
We also fix a value β chosen uniformly from [1

2 ,1). For convenience, B(u,r) de-
notes a ball with radius r centered at u, and D represents the network diameter. For
each node u, we compute a O(lgn)-dimensional signature vector S(u), where the
i-th element in the vector is

S(u)i = arg min
v∈B(u,2iβ)

π(v)

for i = 0 to ℓ = ⌈lgD⌉+ 1. In other words, each node keeps the node with the
smallest rank among all nodes within distance 2iβ. S(u)ℓ is the node with rank 1 for
all nodes u. These signature vectors define the HST embedding of d. In particular,
the leaves are nodes of P, the level i ancestor of a node u is S(u)i, and the weights
of all edges between level i and level i−1 is 2i.

Since this algorithm is centralized, in [70] we provide a distributed implemen-
tation of the HST construction. The algorithm proceeds in a bottom-up fashion and
compute the i-th element of the signature vector for every node in round i. The
simple idea behind this is that, as i increases, only nodes with small ranks can be
nominated and remained in the next round. The value of β, chosen uniformly at ran-
dom from [1

2 ,1), is distributed to all nodes in the network by a single global flood.
Initiatively, every node is a candidate, that is, P0 = P. In round i+ 1, the nodes
remaining in Pi flood the network up to distances 2i+1β. The flooding packets are
cached at each node receiving these packets until the end of each round. Then each
node u in the network will choose the node vmin with the lowest rank among all the
nodes it receives in this round, and nominate it as its (i+1)-th level element for its
signature vector, i.e. S(u)i+1 = vmin.

At the end of the algorithm, each node u keeps a signature vector Su(k), where
Su(i) is u’s i-th level ancestor. This information is enough for constructing the HST
and convenient for our application.

As the algorithm proceeds, fewer and fewer nodes remain active though the
flooding range increases. Therefore the total message cost is still near linear. We
have proved in Chapter 2 the following lemma.

Lemma 9. For a sensor network with n nodes, the total communication cost for

43

constructing the 2-HST is O(n lgn) in expection, and each node uses expected stor-
age space for O(lgn) node IDs.

For our applications, we list some of the properties of HST here.

Lemma 10 (α-HST properties). Suppose the HST metric (H,dH) corresponding
to the original metric (P,dG)

1. For any u,v ∈ P, dH(u,v)≥ dG(u,v) and E[dH(u,v)]≤ O(lgn) ·dG(u,v).

2. For any u ∈ P, suppose its i-th level ancestor (from leaf to root) in H is ui.
We have dH(ui+1,ui) = α ·dH(ui−1,ui).

3. For ∀i, j(1 ≤ i, j ≤ ℓ,ℓ is the HST height), the distance between all the n-
odes in level i and j are of the same value.

4.4 Maintaining approximate minimum Steiner tree

In this section, we have a static wireless sensor network with node set P. We
want to show how to maintain a minimal Steiner tree for a set of agents S (m= |S| ≤
n = |P|), which reside on the sensor nodes and may move in the sensor network.
We will show how to construct an approximate minimal Steiner tree from the initial
state, and how to maintain it with small update cost when some agent move from
one sensor node to another.

4.4.1 Maintenance Algorithm

First we compute a 2-HST for the original metric network in a distributed way
as stated in our previous section. Each node keeps a signature vector of the ancestors
in each level. This process is implemented at the beginning of our application, and
it will be used for all the following applications.

4.4.1.1 Compute approximate minimum Steiner tree

• Each agent is assigned to the nearest sensor node, denoted as the proxy node.
A sensor node assigned by some agent sends a counter with the number of
agents residing in that node to its parent.

44

• Each internal node generates a new counter by adding up the counters receiv-
ing from its children, and continues to send the counter to its parent.

• Finally, when the counter value equals m, this node will be the root of the
minimal Steiner tree in the HST metric.

• After we get the minimal Steiner tree H(S) on the HST H, then replace each
edge uv of H(S) with the shortest path between u,v. This gives us a Steiner
tree T (S) in the original metric.

Note that T (S) is a logical tree on G. By replacing each edge of H(S) with the
shortest path in G we may end up with duplicate edges and possible cycles. One
can remove duplicate edges or cut open the cycles to obtain a real Steiner tree on S
in the graph G. This operation can only reduce the weight of the tree.

If the sensor nodes are not aware of the number of agents m in the network,
we can solve this by sending notification to upper level until the HST root from the
proxy nodes, then tracing back to the child of the lowest internal node u that gets
only one notification from its children. And this node u is the root of the minimal
Steiner tree.

Figure 12 shows the basic idea of the above algorithm. We will show the
Steiner tree T (S) is a O(lgn) approximation for the optimal minimal Steiner tree in
the original metric later.

S

LCS(S)

Figure 12. An example to show how to get minimal spanning tree on HST for a subset agents.

45

4.4.1.2 Maintenance under agent motion

As stated in our algorithm, when constructing a minimal Steiner tree on HST
metric, each node will keep two types of information: a pointer to its parent in the
minimal Steiner tree and a counter that counts the total number of agents located in
the subtree rooted at this node.

When an agent moves from a proxy node p to a proxy node q, we have to
update the minimal Steiner tree on the HST. The idea is that we only need to update
the paths from p,q to their lowest common ancestor. In our next section, we show
that the expected update cost is small.

• Both p and q send a notification upward until their lowest common ancestor
u in the constructed HST.

• All the nodes along the path from p to u will decrease their counter by 1. And
any node v with counter to be 0 will delete the edge to its parent in the tree.

• For those nodes on the path from q to u will increase their counter by 1. And
add the path to the Steiner tree H(S) if necessary (as well as the Steiner tree
T (S) in the original metric).

It is easy to see that, repairing the tree in this way is exactly the same as constructing
from our previous algorithm. Thus we are able to maintain the minimum Steiner
tree of the HST metric and the approximate ratio for the minimum Steiner tree in
the original metric is kept.

4.4.2 Analysis and performance

We want to show that the minimal Steiner tree T (S) extending from H(S) is a
O(lgn) approximation for the minimal Steiner tree in the original metric. And we
show that the expected update cost is bounded.

Theorem 11. For a set of agents S, the minimum Steiner tree T (S) is a O(lgn)
approximation for the optimal minimum Steiner tree MStT (S) in the original graph
G.

Proof. For the tree T (S), we use w(T (S)) to denote the total weight of all the
edges of T (S). Recall from the construction algorithm that w(T (S)) ≤ w(H(S)),

46

qp

u

Figure 13. When a agent moving from p to q, we only repair the paths from p,q to their lowest
common ancestor.

since the edge on the HST is always greater than the weight of the shortest path in
G. So we just need to show w(H(S))≤ O(lgn)w(MStT (S)).

We construct a complete graph G(S) on the agents only. The edge weight for
two agents u,v is the minimum hop count value between u,v in the sensor network
G. Now, the weight of the minimum Steiner tree MStT (S) for the agents S in G is at
least half of the weight of the minimum spanning tree T ′(S) of the agents in G(S).
Thus we only need to show w(H(S)) is no greater than O(lgn) ·w(T ′(S)), where
w(T ′(S)) is the weight of T ′(S).

We now ‘lift’ the minimum spanning tree T ′(S) to the HST metric H. For
any edge uv in T ′(S), we take the shortest path on H, PH(u,v). The total weight
of the path PH(u,v) is at most O(lgn) ·dG(u,v), by the HST property. We will get
a corresponding graph T ′′ in the HST metric. w(T ′′) ≤ O(lgn) ·w(T ′(S)). T ′′ is a
Steiner tree on H covering all the agents S. Thus its weight is at least the weight of
the minimum Steiner tree on H, which is H(S). This says w(H(S)) ≤ w(T ′′) ≤
O(lgn)w(T ′(S)) ≤ O(lgn)w(MStT (S)). Then we have w(T (S)) ≤ w(H(S)) ≤
O(lgn)w(MStT (S)). �

For update cost, we may have to update a long path from leaf to the root. That
is to say the update cost for 1 hop movement can be O(D) in the worst case, where
D is the diameter of G. But intuitively, due to the random rank permutation, the

47

probability for such kind of update will be quite small. In expectation the update
cost is only O(lgn), as in the following theorem.

Theorem 12. For a metric (P,dG) with bounded growth rate and a HST H with
metric (P,dH), the expected update cost of the minimum Steiner tree on H for each
hop an agent moves is bounded by O(lgn).

Proof. Suppose an agent is located at a node p and moves to a neighboring node
q. Then we want to compute the update cost for maintaining the minimal Steiner
tree on the HST. Suppose the lowest common ancestor of p and q, LCA(p,q), on the
HST is at level i. Then the update cost will be bounded by O(2i). Now let’s compute
the probability that p,q’s lowest common ancestor is at level i. Equivalently, p’s
level i−1 ancestor S(p)i−1 is different from q’s level i−1 ancestor S(q)i−1 and p,q
have the same level i ancestor S(p)i = S(q)i.

Let D(p,r)/D(q,r) denote the disk with radius r centered at node p/q, r =

2i−1β, where β is a constant parameter in the HST construction, β < 1. Recall
in the HST construction the ancestor of p at level i− 1 is the node with lowest
rank inside the disk D(p,r). Similarly, the ancestor of q at level i− 1 is the node
with lowest rank inside the disk D(q,r). If p,q have different level i− 1 ancestor,
either S(p)i−1 is inside D(p,r) \D(q,r) or S(q)i−1 is inside D(q,r) \D(p,r). See
Figure 14. As we assume a random permutation as the rank of the sensor nodes,
then the probability that p,q have different level i−1 ancestors is

|D(p,r)\D(q,r)|
|D(p,r)|

+
|D(q,r)\D(p,r)|

|D(q,r)|
,

where |D(p,r)| is the number of nodes inside D(p,r).
For a metric (P,dG) with growth rate γ, there are c1 · rγ−1 ≤ f (r) ≤ c2 · rγ−1

nodes of P with distance exactly r from any node v ∈ P, c1 and c2 are some con-
stants, c1 ≤ c2. The number of nodes within distance r from v is at least c3 · rγ, for
some constant c3. Thus we have

|D(q,r)\D(p,r)|
|D(q,r)|

≤ |D(q,r)\D(q,r−1)|
|D(q,r)|

≤ c2 · rγ−1

c3 · rγ

=
c2

c3
· 1

r

48

r r

q
r−1

p

Figure 14. A figure to show when do we need update the lowest common ancestor at level i.

Similarly, we can show that

|D(p,r)\D(q,r)|
|D(p,r)|

≤ c2

c3
· 1

r
.

Thus we have,

Prob{the lowest common ancestor is at level i}

≤|D(p,r)\D(q,r)|
|D(p,r)|

+
|D(q,r)\D(p,r)|

|D(q,r)|

≤2c2

c3
· 1

r
=

4c2

c3β
· 1

2i

The update cost of H(S) if LCA(p,q) is at ith level is proportional to 2i. Thus the
expected update cost for a node set P with bounded growth rate is

ℓ∑
i=1

Prob{LCA(p,q) is at level i}

· {the tree update cost if LCA(p,q) is at level i}

=

ℓ∑
i=1

O(2i) · 4c2

c3β
· 1

2i = O(lgn).

�

4.5 Maintaining approximate k-center

In this section, we give an algorithm to get an approximate solution for k-center
problem.

49

Definition 13 (k-center). Given a sensor network with metric (P,dG), where dG is
taken on the shortest hop distance for any two node p,q ∈ P in network G, for a
set of agents (actually their proxy nodes) S ⊆ P and an integer k, compute a node
set K = {a1,a2, . . . ,ak} ⊆ P such that the maximum distance from any agent to its
closest center,

max
p∈S

min
a∈K

d(p,a),

is minimized.

We show that with the same data structure for maintaining the minimum Stein-
er tree on the HST, we also maintain a O(lgn) approximate solution for k-center
problem for any k. As stated before, each node will keep two types of information:
a pointer to its parent in the minimal spanning tree of S on H and a counter that
counts the total number of agents located in the subtree rooted at this node.

For a set of agents S, the lowest common ancestor u of S will be a good candi-
date for the 1-center with a O(lgn) approximation. To find a good k-center solution,
we simply take the lowest level on the HST such that the number of nodes with non-
zero counter is no greater than k. These nodes are the k-centers. We show below
that the approximation ratio is O(lgn) compared with the optimal k-center of G.

Theorem 14. The k-center solution in the HST metric gives a O(lgn) approxima-
tion to the optimal k-center in G.

Proof. We first prove the claim for k = 1. Suppose u is lowest common ancestor
of S on the HST, i.e., the 1-center by our algorithm, and u is at level i. Suppose the
height of u in the HST is h. Then for any agent z ∈ S, dG(z,u)≤ dH(z,u) = h. That
is, the cost with u as the 1-center, denoted as R(u), is at most h.

Suppose that OPT is the cost of the optimal 1-center problem in G. Suppose
that x and y are the furthest pair in H. Then OPT ≥ 1

2dG(x,y). By Lemma 10
dG(x,y)≤ dH(x,y)≤ O(lgn)dG(x,y). This means, dH(x,y)≤ O(lgn)OPT . Since u
is the common ancestor of all the nodes in S, and x,y are the furthest pair. We know
the lowest common ancestor for x,y must be u. Thus dH(x,y) = 2h.

Putting everything together, we have R(u) ≤ h = dH(x,y)/2 ≤ O(lgn)OPT .
This shows that the solution with u as the center has a cost at most O(lgn) the
optimal cost in G.

50

Now we can extend the proof for k-center solution. Suppose we take the level
i as the lowest level such that there are ≤ k nodes with at least one agent in their
subtrees. We make these nodes as the k centers. The cost of the solution is at most
the length of a path from the leaf to level i, say h. h = 2i+1 −1. In addition, there
are more than k nodes, x1,x2, · · · ,x f , at level i− 1, each has at least one agent in
their subtree, f > k. The length of a path from the leaf to level i− 1, h′, is 2i − 1.
The subtrees of xi’s are disjoint as well. We take one agent yi from each subtree
of xi. Any two nodes yi, y j have their common ancestor at level i or higher. Thus
dH(yi,y j)≥ 2h, for any 1≤ i, j ≤ f . By Lemma 10, c lgn ·dG(yi,y j)≥ dH(yi,y j) for
some constant c. Thus dG(yi,y j) ≥ 2h/(c lgn). Since there are more than k agents
that are pairwise of distance at least 2h/(c lgn) apart. The optimal k-center solution
must have at least two of the yi’s grouped to one cluster. That says, the optimal cost
OPT is at least h/(c lgn). This means h ≤ O(lgn)OPT . �

When agents move, we do not explicitly maintain the level in which the cen-
ters stay on. In fact, if we use the structure for data aggregation at k centers, the
HST and the minimum Steiner tree of the agents on H directly imply a solution for
the aggregation. In particular, each agent sends its data upward along the HST tree.
Internal node of the HST will take the data from the subtree and compute the ag-
gregation. When an internal node has the aggregated data from all the agents in its
subtree, it will report the aggregation to its parent on the HST. This way, the infor-
mation is naturally aggregated on the internal nodes. For each level of the HST the
aggregation result is at a subset of aggregation nodes, such that the distance from
all agents to these aggregation nodes is not far away from the minimum possible.

4.6 Simulation

In this section, we implemented the above algorithms in MATLAB. The exper-
iment focused on verifying our previous performance analysis. We also compared
it with some existing algorithm. The cost in our simulation is counted as the hop
distance.

51

4.6.1 Approximate minimal steiner tree construction

We implemented the approximate minimal Steiner tree algorithm here. The
networks were generated by perturbing n nodes of the

√
n×

√
n grid in the [0,1]2

unit square, by 2D Gaussian noise of standard deviation 0.3√
n , and connecting two

resulting nodes if they are at most 2√
n apart. Figure 15 is an example of the minimal

Steiner tree from the above algorithm.

Figure 15. An example of the minimal Steiner tree computed from the HST. The agents are in red.
The network size is 400, and the agent size is 20.

4.6.2 Cost comparison with MST

We implemented our algorithm for the approximate minimal Steiner tree with
different network sizes and a fixed agent set size. We generated random perturbed
grid networks in the same way as in the previous section. Network size ranged from
400 to 2500, and the agent set size was kept at 100. We sampled 100 networks for
each network size. For each network, we randomly generated an agent set of size
100. And an approximate minimal Steiner tree was constructed with our algorithm.
We also computed the shortest path between each pair in the agent set. Then we
had a complete graph G(S). The vertices were the agent set, and the weight for each
edge was the shortest hop distance in the original network. Now we computed the
minimal spanning tree in this complete graph. After that, we got a Steiner tree in
the original network, whose total weight is at most twice the cost of the minimum
Steiner tree of S. In our following discussion, we use MST to denote the cost of

52

this tree. Figure 16 is a minimal spanning tree example for the same data with
Figure 15.

Figure 16. The minimal spanning tree of the agents.

Figure 17(a) demonstrates the cost for our solution and the optimal spanning
tree with different network size and a fixed number of agents. Figure 17(b) shows
the ratio of our solution over MST . Figure 17(c) shows the ratio plotted in a log
scale. The cost of our algorithm is not far away from the MST case, and is always
within a factor of 2.2. The ratio increases slowly with the network size. According
to Figure 17(c), the approximation ratio almost linearly depends on lgn, where n is
the network size.

We also implemented our algorithm for a fixed network size and varying agent
set size. Now we fixed the network size to be 1000, and the agent set size ranged
from 50 to 400.

Figure 18(a) shows the cost of our solution and MST with different agent size
when the network size n is fixed. According to Figure 18(b), the cost ratio between
the HST and MST solution decreases when the number of agents increases.

4.6.3 Comparison with RoamHBA

In [58], the authors proposed RoamHBA to maintain group connectivity in
sensor networks. In RoamHBA, the algorithm will choose a horizontal or vertical
line across the network as the backbone. The backbone is constructed by choosing

53

500 1000 1500 2000 2500
100

200

300

400

500

600

Network size

C
os

t

Cost compasion between HST and MST

HST
MST

(a) Cost comparison for different network size

500 1000 1500 2000 2500
1.7

1.8

1.9

2

2.1

2.2

network size

ra
tio

(H
S

T
/M

S
T

)

The ratio(HST/MST) v.s. network size

(b) Cost ratio for different network size.

6 6.5 7 7.5 8
1.7

1.8

1.9

2

2.1

2.2
The ratio(HST/MST) v.s. log(network size)

Log(network size)

R
at

io
(H

S
T

/M
S

T
)

(c) Cost ratio for log(network size)

Figure 17. Cost comparison between HST and MST for different network size but the agent set size
fixed to be 100.

50 100 150 200 250 300 350 400
100

200

300

400

500

600

700
Cost comparison with different agent size

Agent size

C
os

t

MST
HST

(a) Cost comparison for different network size

50 100 150 200 250 300 350 400
1.6

1.8

2

2.2

2.4

2.6
Ratio(HST/MST) v.s. Agent size

Agent size

R
at

io
(H

S
T

/M
S

T
)

(b) Cost ratio for different network size

Figure 18. The cost comparison between the HST and MST solution, with different agent set size
but the network size fixed to be 1000.

54

a median node with greedy forwarding in the desired direction. The rest of the a-
gents connect to the backbone by greedy forwarding to the backbone. The greedy
forwarding for node (x,y) is in the following way (assuming the horizontal direc-
tion): choose the neighbor that is nearest to point (x+R,y) and (x−R,y). Figure 19
shows an approximate minimal Steiner tree from RoamHBA from the same data as
Figure 15 and Figure 16.

In this experiment, we generated random perturbed grid networks from the
same distribution as in our previous experiment. Network size ranged from 400 to
2500, and the agent size was kept fixed at k = 100. We sampled 20 networks for
each network size. For each network, we choose k nodes from the network as the
agent set. Then we computed the approximate minimal Steiner tree from HST and
RoamHBA respectively.

Figure 19. An example of the Steiner tree computed with RoamHBA.

500 1000 1500 2000 2500
200

300

400

500

600

Network size

C
os

t

Comparision between RoamHBA and HST

HST
RoamHBA

Figure 20. Cost comparison between HST solution and RoamHBA solution, with agent size fixed
to be 100.

55

According to our simulation result in Figure 20, our algorithm is better than
RoamHBA with respect to the cost of the tree. But when the agent size is small,
RoamHBA may have some advantage.

4.6.4 Update cost

In this experiment, we generated random perturbed grid networks from the
same distribution as in our previous experiment. Network size ranged from 400 to
2500, and the agent size was kept fixed at k = 100. We sampled 15 networks for
each network size. For each network, we chose k nodes from the network as the
agent set. And we set a random moving direction for each agent. In each time step,
the agent moved to r/2 (r is the communication range.) away along its moving
direction. When an agent hit the network boundary, it bounded back along the
reflected direction. In our simulation, we let all the agent move 1 step one by one.
And repeated this 100 times. The we took the average of each time step and each
node for the update cost for that network size.

From Figure 21, we see that the update cost almost changes linearly with log-
arithm of the network size. In fact, the update cost for each movement step is on
average only 6 ∼ 7.

6 6.5 7 7.5 8
6.6

6.8

7

7.2

7.4

7.6
Update cost v.s. Log(network size)

Log(network size)

U
pd

at
e

co
st

Figure 21. Update cost changes with log(network size) with the agent size fixed to be 100.

56

4.6.5 1-center

In this experiment, we implemented our algorithm for approximate 1-center
solution. we generated random perturbed grid networks as our previous experi-
ments. Network size ranged from 500 to 2500, and the agent size was kept fixed
at m =100. We sampled 100 networks for each network size. For each network,
we chose m agents randomly from the network nodes. Then we solved the 1-center
problem with our algorithm. For comparison, we also computed the optimal solu-
tion for 1-center, and compared their cost.

500 1000 1500 2000 2500
0

10

20

30

40

Network size

C
os

t

 HST v.s. OPT solution for 1−center

OPT
HST

(a) Cost comparison for different network size

500 1000 1500 2000 2500
1.44

1.46

1.48

1.5

1.52

1.54

1.56

Network size

R
at

io
(H

S
T

/O
P

T
)

HST/OPT for 1−center

(b) Cost ratio for different network size

6 6.5 7 7.5 8
1.4

1.45

1.5

1.55

1.6
HST/OPT for 1−center v.s. Log(network size)

Log (network size)

R
at

io
(H

S
T

/O
P

T
)

(c) Cost ratio for log(network size)

Figure 22. Cost comparison between HST and OPT for 1-center, with varied network size but agent
size fixed to be 100.

Figure 22(a) gives the cost for our approximate 1-center solution and the opti-
mal 1-center solution. Figure 22(b) is the ratio between them. The ratio increases

57

slowly with the network size. Figure 22(c) shows how the ratio changes with loga-
rithm of the network size. We can see the nearly linear relationship between them.
So our algorithm generates an O(lgn) approximation solution for the 1-center prob-
lem.

4.7 Conclusion

We show in this chapter that the hierarchical well-separated tree, extracted
from the underlying network, can be useful in maintaining O(lgn) approximate so-
lution for the minimum Steiner tree problem or the k-center problem. In particular,
the agents do not need any information about the location of other nodes. The algo-
rithm is also simple and distributed. This leads to applications such as maintaining
group communication and aggregation nodes among a set of mobile agents.

58

Chapter 5

Resilient and Low Stretch Routing
Through Embedding into Tree
Metrics

5.1 Introduction

This chapter considers a fundamental problem of designing routing schemes
that give low stretch and are resilient to node failures. We consider a metric (P,d)
on n nodes (possibly as the shortest path metric of a given network) and examine
routing schemes (together with proper routing tables) to direct a message to the
destination. In particular, the result we present in this chapter is a routing structure,
constructed in a distributed manner such that each node of P keeps routing infor-
mation of size O(logn), the route discovered has constant stretch (e.g., a constant
factor longer than the metric distance), and the routing structure is robust to node
failures, where a single node failure will only disconnect O(1/n) fraction of the
routes between all possible pairs.

The technique we use in this chapter is through embedding into tree metrics.
Given a metric (P,d), the simplest way to route is probably taking a spanning tree
to guide message routing. This has a number of benefits, as a tree metric is a much
simpler metric with many special features. For example, between any two vertices
in a tree, there is a unique simple path connecting them, and the unique path can

59

be found in a local manner by first traversing up the tree towards the root, and
traversing down the tree at the lowest common ancestor. There is a simple labeling
scheme such that one can use routing table of O(logn) bits at each node to support
routing on a tree [12].

However, routing on a spanning tree of the metric has a number of problems,
in particular, the poor stretch and lack of resilience. The path on a tree might be
much longer than the metric distance. Take the shortest path metric of a cycle of
n vertices, any spanning tree will separate some pair of vertices, adjacent on the
cycle, by distance n− 1. To see this, consider one node u on the cycle as the root
of the tree. If u has two or more subtrees, the nodes other than u are placed to the
subtrees. There must be a pair of nodes, adjacent on the cycle, that are placed on
different subtrees. Their distance on the spanning tree must go through the root and
is at least n−1. Note that we can always choose a root with multiple subtrees. Thus
the claim is true. That is, the distortion introduced by routing on a spanning tree is
factor of Ω(n) of their true distance. A more serious problem of routing on a tree
is due to the lack of robustness to node failures. If a node fails or decides not to
cooperate and stops forwarding messages, the tree is broken into pieces and in the
worst case quadratically many pairs have their paths disconnected.

In this chapter we use embedding into tree metrics for efficient, scalable rout-
ing, but address the shortcomings regarding stretch and resilience. Instead of using
one tree, we use simply two trees. The basic idea is that if the route on the first tree
has a poor stretch, the route on the second has a good stretch and one can always use
the shorter path of the two. Regarding node failures, if a node u fails and the path
between two nodes x,y is disconnected as it goes through u, the path connecting x,y
in the second tree hopefully does not contain u and still remains valid. We briefly
elaborate our technical approach and then relate to prior work.

5.1.1 Our Results

The tree embedding we use follows from the embedding of a general metric
into tree metrics with low distortion. Given a metric (P,d) we embed it to a hierar-
chically well-separated tree (HST), defined as a rooted weighted tree such that: the
weight of all edges between a node and its children are the same; the edge weights

60

along any path from the root to a leaf are decreasing by a factor of α. In this chapter
we simply take α = 2. The leaf nodes of the HST are 1-to-1 mapped to nodes in
P and internal nodes of the HST are also mapped to nodes of P although certain
nodes may appear multiple times. The embedding of (P,d) into the tree metric
leads to distortions of the metric distances. As discussed earlier, using a fixed tree
one cannot avoid the worst case distortion of Ω(n). But if one build a randomized
tree, chosen from a family of tree metrics, the expected distortion can be bound-
ed by O(logn). Thus using this tree for routing one immediately obtains O(logn)
stretch routing with low routing overhead. Approximating a metric with probabilis-
tic hierarchical well-separated trees was first proposed by Bartal [21, 22], with the
motivation that many problems are easier to solve on a tree than on a general graph.
Later, Fakcharoenphol et al. [56] improved the distortion to O(logn) for any n node
metric and this is tight.

The results we prove in this chapter are mainly in three pieces

• Using two HSTs, randomly constructed with independent seeds, we show
that the stretch can be improved to a constant. That is, for any two nodes x,y,
between the two paths in the two HSTs respectively, one of them is short and
is at most a constant factor of the metric distance between x,y.

• Regarding the resilience of using one HST for routing, we show that for any
node failure, the number of pairs with their routes on the HST disconnected
is at most a fraction of O(log∆/n) of all pairs, where ∆ is the aspect ratio
of (P,d), defined as the further pair distance versus the closest pair distance.
When ∆ is polynomial in n the bound is small as O(logn/n) but in the worst
case when the aspect ratio is exponential the bound can be bad.

• Using two HSTs we substantially improve the routing resilience. We build
two HSTs with random, independent seeds. In the case of a node failure, we
show the number of pairs with their routes on both HSTs disconnected is at
most a fraction of O(1/n) of all pairs, thus removing the factor of O(log∆)
compared with the case of a single HST.

In this chapter we focus on the robust of using the HSTs as the routing struc-
tures. Thus a node failure means that a node does not participate in the HST-based
routing. It is different from a physical node failure – for example, if the metric

61

(P,d) is the shortest path metric of a given network G, then a node may appear on
a number of shortest paths and the physical breakdown of a node will not only lead
to failures of HST-based routing but more seriously change the metric. This is not
the focus in our thesis.

The results hold for metrics with ‘geometric growth’, that is, the number of
nodes within distance r from any node grows as a polynomial function of r, not
exponential (as in the case of a balanced binary tree). Such a family of metrics
appears in many real settings, either due to physical constraints such as in wireless
networks and VLSI layout networks, or due to geographical constraints such as in
peer-to-peer overlay networks [118, 125, 126]. In the next section we introduce the
rigorous definitions and elaborate the precise assumptions for each of the results.

Last remark that in the case that (P,d) is the shortest path metric of a given
network G, there is a distributed algorithm that constructs the the HST with a to-
tal number of messages bounded by O(n logn). In addition, each node is given a
label of size O(logn) such that one can route on an HST using only the node la-
bel information. Thus the entire scheme of using one or multiple HSTs for robust,
low-stretch and efficient routing can be implemented in a completely de-centralized
manner.

5.1.2 Prior Work

The problem of routing is such a fundamental one that it has been studied
extensively with numerous prior work. We only have the space to review some
most relevant ones to our work.

5.1.2.1 Low stretch routing

The traditional routing methods as used for the Internet are essentially shortest
path routing. Essentially each node keeps a routing table of size O(n) to save the
next hop on the shortest path for each destination. This is equivalent to maintaining
n shortest path trees, rooted on every node. From this perspective, our approaches
defines one or two global trees, rather than one tree per node. By doing so we can
substantially reduce the size of the routing table from O(n) to O(logn), while still
keeping the routing stretch by a constant.

62

From a theoretical aspect, compact routing that minimizes the routing table
size while achieving low stretch routing has been studied extensively [122]. There
are two popular models in the literature, the labeled routing model and name-
independent routing. In the labeled routing model [43, 51, 152], one is allowed
to produce for each node a label (typically of polylogarithmic size) such that rout-
ing is done with the labels of the source and destination. In the name-independent
model [8, 98], the nodes are given generic IDs that are independent of the routing
scheme. Thus routing is inherently more difficult as the routing scheme needs to al-
so find out where the node is. Generally speaking, the theoretical results in compact
routing in a graph whose shortest path metric has a constant doubling dimension are
able to obtain, with polylogarithmic routing table size, 1+ ε stretch routing in the
labeled routing scheme (see [35] and many others in the reference therein), and con-
stant stretch factor routing in the name-independent routing scheme [6,98] (getting
a stretch factor of 3−ε will require linear routing table size [6]). The results here are
all centralized constructions and aim to get the best asymptotic bounds. Our focus
of using tree embedding is to obtain practical easy routing solutions with theoreti-
cal guarantee. Further, the compact routing schemes above have no consideration
of robustness to node failures.

5.1.2.2 Resilient Routing

Routing methods that can recover from node or link failures receive a lot of
interests recently. Path splicing [112], proposed for increasing routing reliability on
the Internet, obtains robustness by using multiple metrics. Given a weighted graph,
one perturbs the weights of the edges and produces a different shortest path tree
rooted at each node. These multiple shortest paths trees are used in combination to
generate a routing path in case of in-transit link failures. Traffic in the network can
freely switch between different shortest path trees, which results in a large num-
ber of braided routing paths. The overhead of switching between different trees is
done by just changing a few bits in the packet header. This supports fast recovery
from link or node failure and ensures low end-to-end delay with minimum changes
to the current Internet infrastructure. Our approach of using multiple tree metrics
has certain similarity with path splicing. In fact we can also use multiple HSTs

63

to accommodate in-transit failures. Whenever the route by following one HST en-
counters a problem we can use the second HST to route towards the destination.
The difference of our method is that we do not keep separate shortest path trees (or
under perturbed metrics) rooted at each node. Thus our storage overhead is sub-
stantially better. We actually evaluate the routing performance of using two HSTs
and using perturbed shortest paths in the simulation section. The observation is that
we have roughly the same routing robustness, our stretch is a little higher but we
substantially save on routing table size. Two random trees provide a lot of important
properties in scalability and path diversity [75].

A similar idea to achieve routing resilience is to use the notion of ‘protection
routing’ [101], where one looks for a set of routing trees, one for each destination,
such that all nodes have a standby alternate next-hop available when the prima-
ry next-hop becomes unreachable. In some sense the protection routing makes it
rigorous the use of multiple routing trees that ‘protect’ each other. But the com-
putation of protection routing is NP-hard and the routing method is a centralized
approach. There are heuristic efforts with related ideas for Internet routing such as
fast re-routing [140], Loop-free alternate (LFA) [18], O2 [131], DIV-R [130] and
MARA [119]. These methods have no theoretical guarantee.

We start by introducing the hierarchical separated trees (HSTs) and embedding
into HSTs in Section 5.2. Our results for using two trees to achieve better stretch
and resilience are presented in Section 5.3 and Section 5.4 respectively. We also e-
valuate the performance of using two HSTs for routing in two settings, representing
wireless sensor networks and Internet backbone graphs.

5.2 Preliminaries

5.2.1 Metrics With Geometric Growth

Given a metric (P,τ), there is a distance function τ(u,v) for any two nodes
u,v ∈ P that satisfies triangular inequality. In the scenario that we are given a net-
work G = (P,E), τ is typically the length of the shortest path in G. An important
family of metrics is the metrics with ‘geometric growth’. Rigorously there are sev-
eral definitions for capturing metrics with ‘geometric growth’.

64

Let B(p,r) = {v |τ(p,v)≤ r} denote the radius r ball centered at p. In [92], a
metric has bounded expansion rate (also called the KR-dimension, counting mea-
sure) k1 if |B(v,2r)| ≤ k1|B(v,r)| for a constant k1; and in [81], a metric has bound-
ed doubling dimension k2 if B(v,2r) is contained in the union of at most k2 balls
with radius r for a constant k; in [71, 104], a metric has upper bounded growth
rate growth rate k3 if for every p ∈ V and every r ≥ 1, |B(p,r)| ≤ ρrk3 , for a con-
stant ρ and k3. A few sensor network papers [136, 158] consider a model when
the growth rate is both upper and lower bounded, i.e., ρ−rk4 ≤ |B(p,r)| ≤ ρ+rk4

for a constant k4, where ρ− ≤ ρ+ are two constants. We denote the family of
metrics with constant expansion rate, constant doubling dimension, constant up-
per bounded growth rate, and constant upper and lower bounded growth rate as
Mexpansion,Mdoubling,M

+
growth,Mgrowth respectively. It is not hard to see that

Mgrowth ⊆ Mexpansion ⊆ Mdoubling ⊆ M +
growth.

See [71,81] for more discussions. In terms of the results in this chapter the detailed
definitions actually matter. In the following we will make it clear which definition
is needed for each result.

5.2.2 Embedding into Tree Metrics

Given two metric spaces (X ,dX) and (Y,dY) an injective mapping f : X → Y
is called an embedding of X into Y . We can scale up Y to make the embedding to
be non-contractive, i.e., for any u ̸= v ∈ X : dY (f (u), f (v)) ≥ dX(u,v). We say Y
dominates X . The distortion of the pair u,v is

dist f (u,v) =
dY (f (u), f (v))

dX(u,v)
.

The distortion of the embedding f is

dist(f) = max
u,v∈X

dist f (u,v).

Given a metric (P,d), we embed it to a tree metric and use the tree metric to
guide message routing. Ideally we want the route length to be close to the metric
distance. That is, we’d like to embed P to a tree metric such that the distortion is

65

small. As shown in the introduction, it is not possible to get any distortion o(n)
using a single tree. However, it is known that for any metric (P,d), one can use
randomization and choose a tree randomly from a family of trees such that the
expected distortion is only O(logn). Such a tree is a type of a hierarchical well-
separated tree H, as defined below.

Definition 15 (α-HST [21]). A rooted weighted tree H is an α-HST if the weights
of all edges between an internal node to its children are the same, all root-to-leaf
paths have the same hop-distance, and the edge weights along any such path de-
crease by a factor of α as we go down the tree.

In this chapter we focus on 2-HST. The leaves of T are the vertices in P, and the
internal nodes are Steiner nodes. Fakcharoenphol, Rao and Talwar [56] have shown
that for any metric (P,d) one can find a family of trees such that a randomly selected
metric from the family has expected distortion of O(logn). Rigorously, we say that
such a family O(logn)-probabilistically approximate (P,d).

Definition 16 (γ-probabilistically approximation [56]). Let S be a family of met-
rics over P, and let D be a distribution over S . (S ,D) γ-probabilistically approxi-
mates a metric (P,d) if every metric in S dominates d, and for every pair of vertices
(u,v) ∈ P, Ed′∈S [d′(u,v)]≤ γ ·d(u,v). A metric (P,d′) dominates (P,d) means that
d′(u,v)≥ d(u,v) for all u,v ∈ P.

Using a single tree to (probabilistically) approximate a general metric, the best
(expected) distortion is Ω(logn). Thus the bound in [56] is essentially tight. In
the next section we show by selecting two trees from the family S , and taking the
shorter path from the two trees, the expected distortion can be improved to O(1),
if P has constant KR dimension. Here we first describe the FRT algorithm [56]
to build one tree, uniformly randomly selected from the family S . To build two
trees we simply choose two trees uniformly randomly from S , i.e., run the same
algorithm twice with different random seeds.

5.2.3 Review of The FRT Algorithm

Without loss of generality, we assume that the smallest distance between any
two vertices in P is 1 and the diameter of P is ∆. The aspect ratio is also ∆. Assume

66

2δ−1 < ∆ ≤ 2δ.
The FRT algorithm proceeds in a centralized manner by computing a hierar-

chical cut decomposition D0,D1, · · · ,Dδ.

Definition 17 (Cut decomposition). For a parameter r, a r-decomposition of a
metric (P,d) is a partitioning of P into clusters, each centered at a vertex with radius
r.

Definition 18 (Hierarchical cut decomposition). A hierarchical cut decomposi-
tion of (P,d) is a sequence of δ+1 nested cut decompositions D0,D1, · · · ,Dδ such
that

• Dδ = P, i.e.the trivial partition that puts all vertices in a single cluster.

• Di is a 2i-cut decomposition, and a refinement of Di+1. That is, each cluster
in Di+1 is further partitioned into clusters with radius 2i.

To find the hierarchical cut decomposition, one first chooses a random permutation
π : P →{1,2, · · · ,n} of the nodes. We use π(i) to denote the node with rank i in the
permutation. We also fix a value β chosen uniformly at random from the interval
[1,2]. For each i, compute Di from Di+1 as follows. First set βi to be 2i−1β. Let
S be a cluster in Di+1. Each vertex u ∈ S is assigned to the first (according to π)
vertex v within distance βi. We also say that u nominates v. Each child cluster
of S in Di then consists of the set of vertices in S assigned to the same center. We
denote the center of a cluster C by center(C). Note that all clusters in Di have radius
2i−1 ≤ 2i−1β ≤ 2i. Remark that a node can nominate a center outside of its current
cluster in Di+1 and one node can be the center for multiple clusters.

An alternative view of the hierarchical cut decomposition is to define for each
node u a δ-dimensional signature vector S(u). The i-th element in the vector is the
lowest rank node within distance 2iβ.

S(u)i = arg min
v∈B(u,2iβ)

π(v) , (2)

where B(p,r) is the collection of nodes within distance r from node p. A cluster at
level i contains all the nodes with the same prefix [1, i] of their signature vectors.

To turn the hierarchical cut decomposition to a 2-HST, the points of P are the
leaf nodes of the HST and each internal node in the HST corresponds to a cluster

67

of nodes in the hierarchical partitioning. The refined clusters in Di−1 of a cluster C
in Di are mapped to children of C. The root corresponds to D0. We can also use the
center u of a cluster C as the representative node of C in the HST. Thus the root of
the HST has π(1) as its representative node. Denote by Pi the centers of the clusters
in Di. Pi is the set of node that are ‘nominated’ by others at level i.

The HST has δ+ 1 levels, at 0,1, · · · ,δ. The level i has a number of internal
nodes in the HST corresponding to Pi. The edge weight connecting a cluster C in
Di to its children clusters in Di−1 is 2i, i.e., greater than the radius of the cluster
C. Clearly the HST metric dominates (V,d), as one only relaxes the distances. For
any two nodes u,v, suppose that they are first separated in different clusters in the
decomposition Di, i.e., their lowest common ancestor in the HST is at level i+ 1.
In this case we have their distance on the tree to be dH(u,v) = 2

∑i
j=1 2 j = 2i+2.

Fakcharoenphol, Rao and Talwar [56] proved that dH(u,v) ≤ O(logn)d(u,v), in
expectation over all random choices of β and π.

5.2.4 Distributed Implementation of the Tree Embedding

The algorithm for constructing 2-HST in [56] is centralized. In Chapter 2 a
distributed algorithm to implement a 2-HST is proposed, when the metric (P,d) is
the shortest path metric of an underlying network G. The hierarchical decomposi-
tion is replaced by a bottom-up restricted flooding from the centers Pi in round i.
Notice that if a node is not nominated by anyone at level i, it will never be nomi-
nated for levels j ≥ i — if a node is not the lowest rank node of anyone else within
distance β2i, it cannot be so for any node within distance β2 j ≥ β2i. Thus the set
of nodes that are eligible to be nominated will be fewer and fewer as level goes up.
Thus only nodes in Pi are candidates to be nominated in round i+1. Pi+1 ⊆ Pi and
P0 = P. Recall that Pi is the subset of nodes that have been nominated and ‘survive’
round i and only these nodes will need to flood up to distance 2i+1β in round i+1.
Each node u will maintain the signature vector and using the received messages
from relevant nodes in Pi one can find the value Si+1(u). Notice that there are more
nodes at lower levels and they flood up to a shorter distance; and there are fewer
nodes at higher nodes that flood up to a longer distance.

68

With the property above, one can show that the total number of messages trans-
mitted during the distributed construction of an HST can be bounded by O(n logn),
if we consider a network of n vertices such that the shortest path metric has constant
doubling dimension. In addition, each node is given a label of size O(logn) such
that one can route on an HST using only the node label information. We refer to [70]
for the details and simply emphasize here that efficient, distributed algorithms for
constructing HSTs exist.

5.3 Constant Distortion Routing Using Two HSTs

Starting from this section we examine the properties of routing using two trees,
instead of one. As shown earlier that using one HST, we can support distributed
routing between any pair of nodes such that the expected path stretch is O(logn).
Here we show that using two trees we can get O(1) stretch for metrics with constant
expansion rate. The reason that we use the family of metric Mexpansion is because
the result does not work for the larger family Mdoubling. We omit the lower bound
construction due to page limitations. Recall that an n-point metric (P,d) has ex-
pansion rate k if |B(p,2r)| ≤ k · |B(p,r)|, where B(p,r) is the set of points within
distance r from the point p ∈ P [92].

5.3.1 Constant Distortion Embedding in Two HSTs

For a given metric (P,d) with expansion rate k, we build two HSTs, H1 and
H2 with the algorithm in [56]. For any two points u,v in P, we define the distance
between them to be the minimum shortest path in the two trees. That is dH(u,v) =
min{dH1(u,v),dH2(u,v)}.

Theorem 19. For any metric (P,d) with expansion rate k and two HSTs H1,H2,
there is a constant c such that for any two nodes u,v ∈ P,

E[dH(u,v)] = E[min{dH1(u,v),dH2(u,v)}]≤ c · k4 ·d(u,v).

For two nodes u,v ∈ P, denote their lowest common ancestor (LCA) in Hi by
LCAi(u,v), for i = 1,2. And denote LCA(u,v) = min{LCAi(u,v), i = 1,2}. Thus

69

dH(u,v) = 2i+2 if LCA(u,v) is at i+1. Now we have

E[dH(u,v)] =
δ−1∑
i=0

Prob{LCA(u,v) is at level i+1} ·2i+2.

With the following Lemma that bounds the probability that LCA(u,v) is at i+ 1,
we can prove the Theorem.

Lemma 20.

Prob{LCA(u,v) is at level i+1}

≤

{
0, if 2i+2 < d(u,v);
3k4 ·d2(u,v)/22i−4, if 2i−2 ≥ d(u,v).

With the above lemma, we can prove Theorem 19 easily. Suppose j∗ is the
smallest i such that 2i+2 ≥ d(u,v),

E[dH(u,v)] =
∑δ

i=0 Prob{LCA(u,v) is at level i+1} ·2i+2

≤
∑δ

i= j∗+4[3k4 · d2(u,v)
22i−4] ·2i+2 +

∑ j∗+3
i= j∗ 2i+2

≤ 27 ·3k4 ·d2(u,v)/2i∗ +14d(u,v)
≤ (96k4 +14) ·d(u,v).

To prove Lemma 20, we first evaluate the probability that in one tree, say, H1,
the probability that u,v have a lowest common ancestor at level j, 1 ≤ j ≤ δ.

Lemma 21.
Prob{LCA1(u,v) is at level i+1}

≤

{
0, if 2i+1 < d(u,v);
k2 ·d(u,v)/2i−2, if 2i−2 ≥ d(u,v).

Proof. First, if w=LCA1(u,v) is at level i+1, then d(w,u)≤ βi−1 ≤ 2i, d(w,v)≤
βi−1 ≤ 2i. By triangle inequality d(u,v) ≤ d(u,w)+ d(w,v) ≤ 2i+1. Thus in the
first case of the lemma, the probability is 0. Suppose j∗ is the smallest i such that
2i+2 ≥ d(u,v). In the following we focus on the second case, i.e., i ≥ j∗+4.

If u,v belong to different clusters at level i, we say that the decomposition Di

separates u,v at level i. Thus LCA1(u,v) is at level i+1 if and only if Di separates
u,v and D j(j > i) does not. Thus,

Prob{LCA1(u,v)is at level i+1} ≤ Prob{Di separates (u,v)}.

70

Take this level i such that Di separates u,v. There is a node w such that one of u,v
is first assigned to w and the other is not. We say that w settles the pair u,v at level
i. Such a node w is unique, as once the pair u,v is settled it won’t be settled again.
Thus we will consider the union of the probability for each node w of P to possibly
settle u,v. If w settles u,v and u is assigned to w, we say w cuts u out. Summa-
rizing the above, we have Prob{Di separates (u,v)} =

∑
w Prob{w settles u,v} =∑

w Prob{w cuts u out}+
∑

w Prob{w cuts v out}.
Let Ku

i be the set of nodes in P within distance 2i to node u, and let ku
i = |Ku

i |.
We rank the node in Ku

i with increasing order of distance from u: w1,w2, · · · ,wku
i
.

For a node ws to cut u out of the pair u,v at level i, it must satisfy the following
conditions:

1. d(u,ws)≤ βi.

2. d(v,ws)> βi.

3. ws settles u,v.

Thus βi must lie in [d(u,ws),d(v,ws)]. But we have d(v,ws)≤ d(v,u)+d(u,ws) by
triangle inequality. so the length of interval [d(u,ws),d(v,ws)] is at most d(u,v).
Since we choose βi uniformly from the range [2i−1,2i], the probability for βi to fall
into this interval is at most d(u,v)/2i−1.

We also need to bound the probability that it is ws that cut u out of the pair
u,v, not others in Ku

i . First we note that the points that are very close to both u,v
cannot possibly settle u,v. In fact, ws must lie outside Ku

i−2 for i ≥ j∗+4. Suppose
otherwise, ws is in Ku

i−2, and u is assigned to ws, then v must be assigned to ws too,
by triangle inequality, d(v,ws)≤ d(v,u)+d(u,ws)≤ 2i−2 +2i−2 ≤ 2i−1 ≤ βi (note
that i ≥ j∗+ 4). Thus only those in wku

i−2+1,wku
i−2+2, · · · ,wku

i
can separate u,v in

level i. Since we have a random permutation on the node rank, the probability for
ws to be the first center assigned to u is at most 1/s. Then the probability that u is
cut out of the pair (u,v) at level i is bounded by

ku
i∑

s=ku
i−2+1

1
s
· d(u,v)

2i−1 =
d(u,v)
2i−1 · (Hku

i
−Hku

i−2
),

where H(m) is the harmonic function.

71

For a metric with expansion ratio k, we have ku
i ≤ k · ku

i−1 ≤ k2 · ku
i−2. Then

Hku
i
−Hku

i−2
=

ku
i∑

s=ku
i−2+1

1
s
<

ku
i∑

s=ku
i−2+1

1
ku

i−2
=

ku
i

ku
i−2

−1 ≤ k2.

Thus, we have Prob{Di separates (u,v)} = d(u,v) · k2

2i−2 , as required in the theo-
rem. �

Now we are ready to prove Lemma 20.
First, if LCA(u,v) is at level i+1, then at least in one tree the lowest common

ancestor is at level i+1, the probability of which is 0 if d(u,v)< 2i+2, as shown in
Lemma 21. In the following we focus on the second case when 2i−2 ≥ d(u,v).

If LCA(u,v) is at level i+ 1, the first time (smallest level) that u,v belong to
different clusters is i in one tree and is j ≥ i in another tree. Denote by P1(i) and
P2(i) the probability that LCA1(u,v) and LCA2(u,v) are at level i+1 respectively.

Prob{LCA(u,v) is at level i+1}
= P1(i)

∑δ
j=i+1 P2(j)+P2(i)

∑δ
j=i+1 P1(j)+P1(i)P2(i)

By using Lemma 21. Now we have

Prob{LCA(u,v) is at level i+1}
≤ 2k2 d(u,v)

2i−2

∑δ
j=i+1[k

2 d(u,v)
2 j−2]+ [k2 d(u,v)

2i−2][k2 d(u,v)
2i−2]

= 3k4 ·d2(u,v)/22i−4.

This finishes the proof.

5.3.2 Routing with Two HSTs

First we show how to route using one HST H. Recall that all nodes of
P are leaf nodes of the HST H and the internal nodes map to the cluster-
s in the hierarchical decomposition. When we route on the HST, we replace
the cluster C by its center center(C). An edge between a cluster C1 and it-
s parent cluster C2, C1 ⊆ C2 with C1 ∈ Di and C2 ∈ Di+1, is now realized by
their centers center(C1),center(C2). This edge center(C1),center(C2) has length
d(center(C1),center(C2))≤ d(center(C1),z)+d(center(C2),z)≤ 2i +2i+1 ≤ 2i+2,
where z ∈ C1 ⊆ C2, which is at most twice the edge weight on the HST. To route

72

between two nodes x,y ∈ P, we take the leaf nodes corresponding to x,y in H and
route along the unique path connecting the two nodes in H. The stretch is at most
twice the stretch of the HST.

As shown in the previous subsection, if we build two HSTs, using different
random seeds, one can obtain constant distortion by always using the shorter path
of the two trees. In particular, we use the distributed algorithm as shown in [70] to
find 2 HSTs, and obtain node labels for each of the tree. To route a message from
a source to a destination node, we check each set of labels to see which tree gives
a lower LCA (lowest common ancestor). That tree will provide a path with only
constant stretch. We remark that the storage requirement for each node is very low,
in the order of O(logn). In comparison, standard routing table approach build a
shortest path tree rooted on each node, and the routing table size is thus O(n). Our
method is much more scalable as we benefit from having two global tree structure
used by all the nodes.

5.4 Resilience to Node Failures Using Two HSTs

Using a tree metric to route is easy as there is a unique simple path connecting
any two nodes and one can find the path easily. But such a routing method is
not robust to failures. A link or node failure may disconnect the paths between
quadratically many pairs. In this section we show that using two trees, instead of
one, can improve the routing robustness substantially. For a pair of node u,v, if the
path connecting them is disconnected on the first tree, it is still possible that there is
a path between them on the second tree. Thus one can switch to the second tree for
a backup route. Thus using two trees one can also recover from sudden, unforseen
failures instantaneously, akin to the path splicing idea [112].

5.4.1 Robustness of One HST

We first examine the properties of a single HST in terms of node failure. When
a node u fails, any path on the HST that uses a cluster with u as the center is dis-
connected. We examine how many such pairs there are. the worst case is that u is
a center of a cluster near the root of the HST – this will leave big components and

73

Ω(n2) number of pairs disconnected. For example, if the node π(1) fails. How-
ever, since the construction of the HST uses random permutations (assuming the
adversary has no control over the choice of this random permutation, as in standard
settings of randomized algorithms), a single node failure is unlikely to be near the
root. We show below that a single node failure only ‘chops off’ a set of nodes of
size O(log∆), where ∆ is the aspect ratio of the metric, i.e., the longest pairwise
distance versus the shortest pairwise distance. Thus there are only O(n log∆) pairs
whose paths on the HST are partitioned by a single node failure. Note that this is
almost a factor of n off from the worst case. The following theorem works for any
metric (P,d) with constant doubling dimension.

Theorem 22. Given a node u and an HST, the expected number of nodes within
clusters with u as center is O(log∆), where ∆ is the aspect ratio of the metric (P,d)
with constant doubling dimension.

Proof. Suppose a node x is within a cluster with u as the center, say this cluster
is at level i. Then we know that d(u,x) ≤ β2i and u is the highest rank node in
B(x,β2i). Now, take ℓu(x) as the lowest level j such that d(u,x) ≤ β2i. Clearly,
ℓu(x)≤ i. Thus B(x,β2ℓu(x))⊆ B(x,β2i). That is, u is the lowest rank node at level
ℓu(x) as well. The probability for that to happen is 1/|B(x,β2ℓu(x))|. Thus the prob-
ability that x is inside a cluster with u as center is no greater than 1/|B(x,β2ℓu(x))|.

Now, the expected number of nodes within clusters with u as center, denoted
as W , is,

W =
∑

x Prob{x is in a cluster with u as the center}
≤

∑
x 1/|B(x,β2ℓu(x))|

=
∑

j
∑

x∈B(u,β2 j)\B(u,β2 j−1) 1/|B(x,β2 j)|
≤

∑
j
∑

x∈B(u,β2 j) 1/|B(x,β2 j)|.

Now, recall that the metric (P,d) has constant doubling dimension γ. Thus we can
cover the point set B(u,β2 j) by balls of radius β2 j−1, denoted as sets B1,B2, · · · ,Bm,
m≤ 2γ. Since the points in B j are within a ball with radius β2 j−1, all the points with-
in B j are within distance β2 j of each other. That is, for a node y∈Bi, Bi ⊆B(y,β2 j).
Thus |Bi| ≤ |B(y,β2 j)|, where y ∈ Bi. Now we group the points of B(u,β2 j) first by

74

the balls they belong to, and then take the summation over the balls.

W ≤
∑

j
∑

x∈B(u,β2 j) 1/|B(x,β2 j)|
=

∑
j
∑m

i
∑

x∈Bi
1/|B(x,β2 j)|

≤
∑

j
∑m

i
∑

x∈Bi
1/|Bi|

=
∑

j
∑m

i |Bi| ·1/|Bi|
=

∑
j m ≤ 2γδ = O(log∆).

� Suppose that u is removed, then the route on the HST between
any pair x,y where exactly one of x,y is in a cluster with u as the center, is broken.
The above lemma shows that the total number of such pairs effected is bounded by
O(n log∆), i.e., O(log∆/n) fraction of all pairs.

5.4.2 Robustness of Two Random HSTs

We now examine the robustness property of using two random HSTs and
bound the number of pairs ‘disconnected’ in both of the trees, i.e., their routes
by using both HSTs go through u. For this case we assume that (P,d) has both
constant upper and lower bounded growth ratio. By using two trees we reduce the
expected number of disconnected pairs from O(n log∆) to O(n).

Theorem 23. The number of pairs of nodes disconnected in two HSTs, constructed
using independent random permutations, is a fraction of O(1/n) of all pairs, for a
metric (P,d) with both constant upper and lower bounded growth ratio.

Proof. Take a pair of nodes x,y, the paths connecting the two in both trees are
disconnected if and only if in each of the tree, exactly one node is in a cluster with
u as center and another one is not in any cluster with u as center. Denote by Pu(x)
the probability that x is in a cluster with u as the center. Pu(x) ≤ 1/|B(x,β2ℓu(x))|.
Thus the expected number of pairs of nodes disconnected after node u is removed
is,

W2 =
∑

y
∑

x 4[Pu(x)]2[1−Pu(y)]2

≤
∑

y
∑

x 4[1/|B(x,β2ℓu(x))|]2

= 4n
∑

j
∑

x∈B(u,β2 j)\B(u,β2 j−1) 1/|B(x,β2 j)|2

= 4n
∑

j(|B(u,β2 j)|− |B(u,β2 j−1)|)/|B(x,β2 j)|2.

75

If (P,d) has constant bounded growth ratio k, we know that ρ−βk2 jk ≤ |B(x,β2 j)| ≤
ρ+βk2 jk for constants ρ− ≤ ρ+. Thus

W2 ≤ 4n
∑

j[ρ+βk2 jk]/[ρ−βk2 jk]2

= 4n
∑

j ρ+/(ρ−)2 ·1/(βk2 jk)

= O(n).

�

5.4.3 Robustness of Two HSTs With Reversed Rank

An alternative method to use two trees for robust routing is to construct the
second tree to be as different as possible from the first tree. Recall that the HST
is purely determined by the random parameters, the permutation π and the random
parameter β. Here we first construct an HST H1 using random permutation π1, and
then choose the second HST H2 by using π2, as the reverse of the permutation π1.
As an immediate consequence of that, suppose x is in a cluster with u as the center
in H1, then x can not be inside any cluster with u as center in H2. This is because the
rank of x is greater than u in π1, and the rank of x must be smaller than the rank of u
in π2. Thus x can never nominate u in H2. This says that the set of nodes ‘chopped
off’ by the failure of u in H1 will not be chopped off in H2, ensuring robustness of
routing. The theoretical analysis of this case is fairly complicated but we evaluate
the method by simulations and it performs no worse than the two random HSTs.

5.5 Simulations

This section evaluates our two HSTs mechanism in terms of path stretch and
reliability against node or link failures. We find that two HSTs provides low stretch
path, and achieves high reliability.

5.5.1 Simulation setting

We run our simulation on two data sets. The first data set is a unit disk graph on
a network of nodes deployed using perturbed grid model, a widely used model for
wireless sensor networks. To be specific, the networks are generated by perturbing

76

n nodes of the
√

n×
√

n grid in the [0,1]2 unit square, by 2D Gaussian noise of stan-
dard deviation 0.3√

n , and connecting two resulting nodes if they are at most 2√
n apart.

The average degree of the network generated in this way is about 5. The second
data set is the Sprint backbone network topology inferred from Rocketfuel [147],
which has 314 nodes and 972 edges.

5.5.2 Simulation methods

We first study the routing stretch by using 1 HST and 2 HSTs respectively as-
suming no node or link failures. We also examine the number of pairs disconnected
when using one HST and two HSTs respectively. For the two HSTs, we carry out
simulations for both random HSTs and a pair of reversed rank HSTs.

We then compare the path stretch with the path splicing approach when
there are random link or node failures. For path splicing [112], we first cre-
ate a graph based on random link weight perturbations by setting L′(i, j) =

L(i, j)+ fab(degree(i)+ degree(j)) ·Random(0,L(i, j)), where L(i, j) is the orig-
inal link weight from node i to j, fab(degree(i) + degree(j)) is a linear func-
tion in degree(i) + degree(j) ranging from a to b (in our simulation we choose
a = 0,b = 10.). Then we get one splicing by build the shortest path tree for the
perturbed graph for each node in the network. There are n spanning trees in to-
tal, rooted at each node. Repeat the above process to build another splicing. For
routing with two HSTs, we conducted two sets of experiments using two randomly
constructed HSTs, and a pair of HSTs with reversed rank. In both path splicing
and routing with two HSTs, we route a message using one HST or one splicing,
and switch to another HST or splicing instance when we encounter a link or node
failure on the next hop. For both methods, the link or node has a random probabil-
ity p to fail at any instance. We vary the parameter p to evaluate the robustness of
the methods. In this probabilistic setting a message may, in the worst case, wan-
der forever in the network. If both trees fail at some point or the total forwarding
hops exceed some limit(We choose 5 ·n here, where n is the network size.)to avoid
infinite loop, then the routing fails and the packet is discarded. The path stretch is
computed only on the messages that are not discarded.

77

5.5.3 Summary of simulation results

Our observations from these experiments are:

• Small path stretch. In case of no failures, the path stretch by using two H-
STs improves significantly over a single HST. In case of failures, using two
HSTs gives worse stretch compared with path splicing, but with the benefit
of significantly reducing the routing table size.

• Extremely good resilience. We evaluate the resilience of using two HSTs.
In the case of one node failure, the average number of disconnected pairs
is very small for both one HST and two HSTs, below 5%. The maximum
number of disconnected pairs using one HST can be bad, roughly 85% but
using two HSTs the number drops to below 10%, thus keeping a lot of pairs
still connected. Using a pairs of reversed rank HSTs gives the best resilience
as the two trees are nearly ‘complementary’ to one another. When nodes or
links fail and we use 2 HSTs with path splicing, our routing performance, in
terms of delivery rate, is nearly the same as that of using 2n spanning trees in
the original path splicing paper.

5.5.4 Path Stretch

We randomly generate networks with size from 100 to 2025 and compare the
path stretch by using a single HST and two HSTs. For the case of two HSTs, we
always take the shorter path on the two trees. We draw the stretch as the average
path stretch for all pairs in the network. For each network size, we sample 20
different networks and take the average value. Figure 23(a) shows the result. Using
both random HTSs and a pair of reversed rank HSTs consistently decreases the path
stretch by roughly a factor of 1.3 (from 3.3 to 2.5) on the unit disk graph data set.
The path stretch for either a single HST or two HSTs has a very slow or nearly no
increase when the network scales.

Then we study the average stretch for Sprint backbone topology from 2 HSTs
and the original path splicing when each underlying link fails with probability p,
where p changes from 0.01 to 0.1. Figure 23(b) displays the result. Since we are
using only two trees for routing and the path splicing uses 2n trees altogether, it is

78

not surprising to see that path splicing gives better stretch than our method. But our
method gives a stretch not much worse, roughly within a small constant factor of
that, with the benefit of reducing the routing table size significantly by O(n).

500 1000 1500 2000
2

2.5

3

3.5

Network size

A
ve

ra
ge

 p
at

h
st

re
tc

h

1 HST
2 reverse HSTs
2 random HSTs

0.02 0.04 0.06 0.08 0.1
1

1.5

2

2.5

3

3.5

Probability of link failure

A
ve

ra
ge

 p
at

h
st

re
tc

h

2 HSTs
Original path splicing

(a) (b)
Figure 23. (a) Average path stretch using 2 HSTs V.S. 1 HST for the randomly generated network.
(b) Path stretch using 2 HSTs v.s. path splicing on the Sprint topology with link failure.

5.5.5 Robustness to Node or Link Failures

To evaluate the reliability of our two HSTs scheme, we implement our algo-
rithm in terms of node failure and link failure and compare with the path splicing
method, described earlier.

5.5.5.1 Perturbed grid network

The random generated network size, n, varies from 100 to 2250. We run n
instances, by letting each node fail and removing all its adjacent edges from the
network. We then compute the fraction of disconnected pairs. Then we compute
the average and the maximum disconnected fraction for the network. We repeat this
process 20 times for each network size and take the average value. Figure 24 (a)
and (b) shows the result for the average and maximum disconnected pair fraction,
respectively. The average fraction of disconnected pairs for either one HST and two
HSTs is much smaller than the maximum fraction and is never above 5%. This is
easy to understand as in the worst case, removing the lowest rank node in the HST
will result in large pairs of nodes disconnected. For the average case, using two

79

HSTs consistently reduces the disconnected pairs by half. For the maximum case,
using two HSTs helps dramatically (from over 85% to below 10%) — when the
lowest rank node is removed, it is unlikely to be the lowest rank node in the second
tree, thus keeping a lot of pairs still connected. Using a pairs of reversed rank HSTs
gives even better performance, reducing the worse case to be nearly below 2%. In
fact, except the pairs that involve the failed node, all other pairs are still connected
using at least one of the HSTs for single node failure in the perturbed grid network.

500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

Network size

Fr
ac

tio
n

of
 d

is
co

nn
ec

te
d

pa
ir

s

1 HST
2 random HSTs
2 reverse HSTs

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Network size

M
ax

. f
ra

ct
io

n
of

 d
is

co
nn

ec
te

d
pa

ir
s

1 HST
2 random HSTs
2 reverse HSTs

(a) (b)
Figure 24. The fraction of disconnected pairs using 1 HST v.s. 2 HSTs. (a) average value. (b)
maximum value.

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

Probability of node failure

Fr
ac

tio
n

of
 d

is
co

nn
ec

te
d

pa
ir

s

2 HSTs
Original path splicing
1 HST

0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Porbability of link failure

Fr
ac

tio
n

of
 d

is
co

nn
ec

te
d

pa
ir

s

2 HSTs
Original path splicing

(a) (b)
Figure 25. The fraction of messages that are not delivered to the destination on the Sprint network.
(a) Random node failure. (b) Random link failure.

80

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.05

0.1

0.15

0.2

0.25

Probability of node failure

Fr
ac

tio
n

of
 d

is
co

nn
ec

te
d

pa
ir

s

2 HST
Original path splicing

Figure 26. This simulation runs on
randomly generated grid networks with
400 nodes. Each node fails with inde-
pendent probability p. We sample 50
different networks for each value p to
get the average fraction of failure pairs.
For large p, path splicing achieves bet-
ter than 2 HSTs. But the difference is
mostly within 5%.

5.5.5.2 Sprint topology

In our second simulation, we use the Sprint backbone network topology and let
each node in the network fail independently with probability p. We then compare
with path splicing and evaluate the fraction of messages that eventually arrive at the
destination. Figure 25 (a) shows the result. There is only slight difference between
our 2 HSTs mechanism and the original path splicing algorithm, although we use
much fewer spanning trees. There is even some advantage from our algorithm when
the failure probability p is small. Of course we can see the great improvement from
2 HSTs over 1 single HST.

We conducted the simulations for link failure. To model the link failure, we
remove each edge from from the network graph independently with probability p.
For every node pair (i, j), we are trying to deliver a packet from i to j by switching
between the 2 HSTs or 2 splicing instances. We compute the fraction of failed pairs.
The above process is repeated 20 times to get the average fraction of disconnected
pairs for each probability p.

Figure 25 (b) shows result for the Sprint backbone network topology. The
result is similar to the case of node failure. Our 2 HSTs scheme only has slightly
higher failure rate when p ≥ 0.03 compared with path splicing mechanism.

5.6 Conclusion

This chapter presents a scheme of using two carefully constructed tree metrics
for scalable, resilient, and low stretch routing in metrics with geometric growth.
Both theoretical analysis and simulation validation demonstrate the clear advantage

81

of using such special tree metrics. We could exploit more applications of using
multiple HSTs.

82

Chapter 6

Compact Conformal Map for Greedy
Routing in Wireless Mobile Sensor
Networks

6.1 Introduction

This chapter is motivated by applications of participatory sensing, in which
participants such as human beings or vehicles carry sensors and may move around
inside a domain of interest. We are particular interested in the case of participants
densely populated in a fixed physical space. Examples include tourists in an a-
musement park, vehicles or pedestrians in a busy downtown area, college students
on campuses, visitors at busy beaches or recreational parks/playgrounds. In these
examples, the high density of participants ensures a minimum level of coverage of
the domain, as well as a minimum level of quality guarantee for sensing data. The
sensor data can go beyond traditional automatic measurements and may exploit vol-
untary user intervention and inputs. Many interesting applications can be formed
in such a setting. Of particular interest to us is the spontaneous sensing opportu-
nities due to incidental spatial proximity. For example, a Disneyland tourist may
ask: “how long is the line at the Mickey’s House?” Those tourists who are in line
at Mickey’s House happen to have such data, say by sensing the density of people
around. A college student may wonder whether the pizza of his favorite flavor is

83

still available at the university cafe. At this particular moment, the students who are
getting pizza at the cafe may conveniently help out by taking a photo. Exploiting
the spatial proximity is one of the main ideas in participatory sensing. Such a sys-
tem is able to provide data that is very selective and personalized, location specific
and time-sensitive, the type of data that would be otherwise difficult to get, and not
cost efficient to gather or archive on the web.

While it still remains a major open issue as how to give incentives to partic-
ipants and how to bootstrap the system, our focus in this chapter is one critical
component of how to support efficient routing for queries and answers. It remain-
s an arguable issue whether existing communication infrastructures such as WiFi
and 3G/4G connections can support the potentially large number of exchanges of
these location-specific, fleeting information. The limited coverage of WiFi signals,
the high cost and limited bandwidth of 3G links are nevertheless major hurdles to
cross. Here we would like to explore the possibilities of relying on unlicensed spec-
trum with short-ranged wireless communications for delivering queries and data in
such a highly mobile but dense network. Bandwidth aside, we would like to see
whether it is possible to manage a mobile ad hoc network for reliable, efficient and
low-cost routing for this particular scenario.

6.1.1 Prior Work on Routing in Mobile Networks

Routing in a wireless mobile network has been a long standing, active research
problem for quite a number of years. While the traditional proposals of dynamic
distance vector routing and on-demand routing suffer from high overhead of either
maintaining the routing tables or discovering a route to the destination by flooding,
geographical routing that relies on local operations based on the geographical po-
sitions appears to be an appealing solution. Unfortunately, although geographical
routing works nicely in theory [27, 93] for a dynamic, mobile network, it fails in
practice, as shown by experiments in real testbeds [95, 139]. Geographical rout-
ing has two components, the greedy routing in which a message is delivered to the
neighbor closer to the destination, and the recovery method of face routing, which
is executed when greedy routing gets stuck and delivers a message along the faces
of a planarized graph. In a real world setting, there are a number of complications

84

that make geographical routing challenging. The node location is not always accu-
rate. Wireless communication model does not follow the idealistic unit disk graph
model and has various spatial and temporal radio irregularities [66, 159]. Although
greedy routing is very robust to such real world issues [127], face routing fails. In
practice, the planar subgraph extracted may become disconnected or still contain
crossing edges. Face routing on such a graph may either get into a loop or fail to
deliver the message although a path exists.

In the last few years, a number of alternative recovery methods have been pro-
posed. In particular, quite a number of them suggest using virtual coordinates such
that greedy routing always works. This completely eliminates the necessity of face
routing and of course all the practical issues that come with it. This family of work
includes both heuristic algorithms [127], centralized and theoretical constructions
for 3-connected planar graphs [4, 13, 49, 53, 87, 120], embedding in high dimen-
sional spaces [62], embeddings in hyperbolic spaces [53, 97, 109], embedding into
circular domains (all the holes are circular) [133]. Most of existing work are mainly
of theoretical interest. All of these are only for static networks. When nodes move
and the network changes its topology, the virtual coordinates need to be recomputed
or updated, which is highly non-trivial.

At last we note that since nodes are mobile so theoretically speaking delivery
is not an issue — the source can simply hold the message and wait until it gets
sufficiently close to the destination. Although being used in a number of theoret-
ical models to study capacity issues in mobile networks [77], this routing scheme
is completely impractical. Similarly, by using greedy routing on geographical lo-
cations or any virtual coordinates, in the case of a message getting stuck, the node
holding the message could simply wait until mobility brings a new neighbor closer
to the destination. Indeed message delivery could be ensured at the cost of high
delay. In this chapter we investigate compact, lightweight schemes for obtaining
virtual coordinates that will substantially help to reduce the delay, or, improve de-
livery rate when the maximum delay is fixed.

85

6.1.2 Pre-computed Compact Map for Guaranteed Greedy
Routing

In this chapter we consider a domain R in which a dense collection of mobile
nodes reside. Each node has a GPS unit or other localization schemes to find out its
geographical position. A routing request is formed by specifying the destination’s
geographical location, rather than the destination’s ID – this is because we are in-
terested in finding the nodes near the specified location that have an opportunity to
acquire the desirable data, instead of any particular node that may move elsewhere.
The nodes may move freely within the domain but as often happens in these ap-
plication settings the domain R is always nicely covered (with minimum density
everywhere).

Our approach is to use essentially greedy routing for its simplicity and robust-
ness to network dynamics, but avoid face routing completely. For that we would
have to use virtual coordinates that will guarantee delivery by greedy routing. But
different from all the previous designs for routing in a virtual space, we pre-compute
the virtual coordinates for all points of the domain R, represent them a compact way
by a mapping f , and encode the mapping f with each sensor node. With the help of
the hard-coded mapping f , each node p can easily compute its virtual coordinate,
by simply taking the value of f on its current GPS coordinates. We also get the
virtual coordinates of the destination location as well as that of the neighbors. The
next hop is chosen by the greedy rule in the virtual coordinate space.

We are motivated by the work by Sarkar et al. [133]. It uses Ricci flow to
compute a map, that takes any triangulated domain with holes to a circular domain
where all the holes are disks. Greedy routing inside a circular domain guarantees
delivery. The computation of the mapping in [133] is carried in a distributed man-
ner on the sensor network such that each node computes its own virtual coordinates
when the algorithm converges. However, if the nodes move around, a node would
need to get a new set of virtual coordinates. This means we need to run Ricci flow
again to re-converge to the new coordinates. Besides, the destination’s virtual coor-
dinates can also change and we would need to use a location management scheme
to update and maintain the current location information.

What is different in this chapter is that we directly compute the map of the

86

geometric domain R to a circular domain D. The shape of the domain R can be
obtained through external sources such as a map and can be represented by a poly-
gon. We will compute the mapping offline (on a centralized machine) and then use
a small number of parameters to compactly represent the map. The number of pa-
rameters is the same as the complexity of describing the geometric domain R (e.g.,
the number of vertices of the polygon describing R), and is typically a small number
in practice. There are numerous work on the simplification and approximation of a
polygon [47]. By allowing reasonable approximation one can substantially reduce
the complexity of a polygon. Thus the parameters for the conformal map can be
preloaded and programmed on the sensor nodes before deployment and each node
can by itself calculate the virtual coordinates with its current geographical location.
This representation is compact and stable. It does not depend on the network topol-
ogy and does not change when the nodes move around. Besides the application in
the mobile setting, the new method is also the first practical solution for applying
virtual coordinates in a static sensor network.

In the following we first review the basic background knowledge on discrete
Ricci flow. Then we report the theory and algorithms for computing and encod-
ing the compact conformal map. Finally we report results in our simulation and
experiments. We implemented and tested the new method on a real testbed (the
Orbit testbed [3]), a wireless network emulator with 400 nodes on a 20 by 20 grid.
We compared routing using geographical locations and virtual coordinates, in both
static and mobile network settings. Experimental results confirms that using the
compact conformal map one can substantially improve the delivery rate and largely
reduce the packet delay.

6.2 Discrete Ricci Flow

6.2.1 Ricci Flow Theory

Let S be a smooth surface with a Riemannian metric g, u : S → R be a smooth
function defined on S, then

g̃ := e2ug,

87

is also a Riemannian metric on S. We call g̃ is conformal to g due to the fact that
the angles among tangent vectors measured by g̃ are equal to those measured by g.
Suppose g and g̃ induce Gaussian curvature functions K and K̃ respectively, then
the curvatures satisfy the following Yamabe equation

K̃ = e−2u(K −∆gu),

where ∆g is the Laplace-Beltrami operator induced by the original metric g. For
geodesic curvature along the boundary,

k̃g = e−u(kg −∂nu),

where kg represents the geodesic curvature. Yamabe equations can be solved by
Hamilton’s Ricci flow

dgi j

dt
= 2(K̃ −K)gi j,

or equivalently
du
dt

= 2(K̃ −K). (3)

On a continuous surface Ricci flow will converge to the solution exponentially fast,
see [84] for the proof for high genus surfaces and [37] for genus zero surfaces.

6.2.2 Discrete Ricci Flow

In the discrete setting, one can define Ricci flow for a triangulated discrete
surface. Suppose such a triangle mesh Σ has with vertex set V , edge set E and face
set F .

We can define a Riemannian metric in the discrete setting by using the edge
lengths on a mesh Σ: l : E → R+, such that for a triangle face fi jk with vertices
vi,v j,vk, the lengths of the three edges satisfy the triangle inequality: li j + l jk > lki.

The Riemannian metric determines the corner angles of the triangles. Suppose
we have a triangle fi jk with edge lengths {li j, l jk, lki}, and the angles against the
corresponding edges are {θk,θi,θ j} (see Figure 27). By the cosine law,

l2
i j = l2

jk + l2
ki −2l jklki cosθk, (4)

88

v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3
θ1

θ2 θ3

o

Figure 27. The circle packing metric.

The discrete Gaussian curvature at a vertex vi is defined as the angle deficit on a
mesh,

Ki =

{
2π−

∑
fi jk∈F θ jk

i , vi is an interior vertex

π−
∑

fi jk∈F θ jk
i , vi is at boundary

(5)

where θ jk
i represents the corner angle attached to vertex vi in the face fi jk.

Recall that Ricci flow defines a conformal map, i.e., angle preserving. We now
need to introduce the circle packing metric, proposed by [148,153], to approximate
the conformal deformation of metrics. Let us denote by Γ a function which as-
signs a radius γi to each vertex vi, Γ : V → R+. We also define a weight function
Φ : E → [0, π

2], by assigning a positive number Φ(ei j) to each edge ei j. The pair
of vertex radii and edge weight functions on a mesh Σ, (Γ,Φ), is called a circle
packing metric of Σ. Figure 27 illustrates the circle packing metric. Each vertex
vi has a circle whose radius is γi. On each edge ei j, an intersection angle ϕi j is de-
fined by two circles of vi and v j, which intersect with or are tangent to each other.
Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on the same mesh are conformal
equivalent, if Φ1 ≡ Φ2 (i.e., the intersection angle of the neighboring circles is the
same). Therefore, a conformal deformation of a circle packing metric only modifies
the vertex radii γi’s.

For a given mesh, its circle packing metric and the edge lengths on the mesh
can be converted to each other by using cosine law.

l2
i j = γ2

i + γ2
j +2γiγ j cosϕi j (6)

89

Let ui to be logγi for each vertex. Let K′
i be the target curvature at vertex i.

Then, the discrete Ricci flow is defined as follows.

dui(t)
dt

= (K′
i −Ki) (7)

Computing desired metric with prescribed curvature K′ is equivalent to min-
imizing the discrete Ricci energy. The discrete Ricci energy is strictly convex
(namely, its Hessian is positive definite). The global minimum uniquely exists,
corresponding to the metric that induces K′. The discrete Ricci flow converges to
this global minimum [38].

The convergence rate of the discrete Ricci flow using Equation 7 is governed
by the following theorem

Theorem 24 (Chow & Luo). The Ricci flow (as in Equation 7) converges expo-
nentially fast,

|K′
i −Ki(t)|< c1e−c2t , (8)

where c1,c2 are two positive constants.

6.2.3 Discrete Algorithm

In our application we will first triangulate the interior of the domain R to be a
triangular mesh Σ (irrelevant to the network topology). We will deform the shape to
a circular domain Ω using an offline, centralized algorithm. We first define the edge
length of the mesh Σ to be initially 1 everywhere. Then we define the circle packing
metric by placing a disk of radius 1/2 on all vertices. Thus disks at adjacent vertices
are tangent to each other, i.e., intersection angle is zero.

To specify the target domain Ω, all the interior vertices have target curvature
0. For vertices on an inner boundary γi, suppose there are k vertices on γi, then each
vertex has a target curvature as −2π/k. For vertices on an outer boundary, each
vertex has target curvature 2π/m, if there are m nodes on the outer boundary.

To run the discrete Ricci flow, each node vi is associated with a disk, with
radius eui , where ui is a scalar value. For simplicity, the length of each edge con-
necting vi and v j equals to eui + eu j . That is, the two disks at vi, v j are tangent to
each other. The corner angles of each triangle can be estimated using cosine law by

90

each node locally. The curvature can be computed by each node directly. Then ui is
modified proportionally to the difference between the target curvature and the cur-
rent curvature. Once the curvature error is less than a given threshold, the process
stops. The final edge length for edge i j is eui + eu j .

Once the lengths for all edges in the triangular mesh are computed, we can
flatten the triangular mesh in the plane to obtain the embedding. We can start from
placing an arbitrary triangle with the specified edge length in the plane, and gradu-
ally attach the adjacent triangles. Since all interior vertices have curvature zero the
triangles will not have any overlaps.

6.3 Background of Conformal Mapping

Given a domain R with an irregular shape and possibly holes, we would like to
map it to a circular domain Ω, in which all boundaries are circular. Now we briefly
go through the mathematical theory that describes this mapping.

To deform the domain, we are changing two measures, the metric that defines
distances and the length of a curve, and the curvature, which describes how much a
geometric object deviates from being flat in the case of a surface, or straight in the
case of a curve. A point in the interior of a flat surface has curvature zero; a point
on a surface with positive curvature locally has the shape of a hill/valley; a point on
a surface with negative curvature locally has the shape of a saddle. Regarding the
curvature of a point on the boundary of a surface, the curvature is zero if and only
if the boundary locally at the point is straight. Points on a circular boundary of a
planar domain have uniform curvature.

In our particular case we need to deform an irregular shaped planar domain
R to a circular planar domain Ω. Since both R and Ω are flat, all points in the
interior have zero curvature in both cases. But we need to change the curvature on
all boundary points in R to be uniform (and thus being circular in Ω). Consider the
simple case of deforming a simple polygon to a disk, as shown in Figure 28. For the
boundary of a polygon, the points in the interior of boundary edges have curvature
zero; and the vertices have non-zero curvature, defined as the turning angles at this
vertex between the two adjacent edges. In particular, the curvature at vertex w1 is
β1π. To make the curvatures at all these vertices the same (thus the polygon being

91

regular) we need to change the metric as well, i.e., stretching the polygon in certain
ways.

The tool to compute the deformation is Ricci flow. In particular, Ricci flow
deforms the Riemannian metric proportional to the local curvature, such that the
curvature evolves according to the heat diffusion process. Eventually, curvature
at all points converge and the surface has uniform curvature. In order to deform a
surface to be a particular shape, we can specify the target curvature and define Ricci
flow by deforming the metric according to the difference of the local curvature
and the target curvature. When Ricci flow converges we get the shape with the
target curvature. In our case we will specify Ω such that all points in the interior
have zero curvature and points on the same (interior/outer) boundary have uniform
(negative/positive) curvature. Ricci flow has been applied in the proof of Poincaré
conjecture by Perelman in [124]. In the current work, we apply surface Ricci flow
theory developed by Hamilton [84] and Chow [37]. The earlier work by Sarkar
et al. [133] developed the distributed algorithm for implementing Ricci flow in a
static sensor network.

The process of Ricci flow defines a map from the original surface R to the de-
formed surface Ω. This map is conformal. A conformal map between two surfaces
preserves angles. For any two arbitrary curves γ1,γ2 on the surface S, a conformal
map ϕ maps them to ϕ(γ1), ϕ(γ2) with the same intersection angle as that of γ1,γ2

on S.
In our application we assume that a set of wireless sensor nodes densely cover

the domain R, which is represented by a polygon with possibly inner holes. We
assume that the conformal mapping from the polygon R to a circular domain has
been computed offline, say, by using Ricci flow methods. The details of the offline
computation are presented in Section 6.2 and are essentially the same as in previous
work [133]. In this chapter we show that the the conformal mapping can be encoded
by a small number of parameters — the number of these parameters is the same
as the complexity of describing R and in practice is small. These parameters are
preloaded to all the sensors in the network such that each sensor can compute the
virtual coordinates, i.e., coordinates under the mapping. The two sections below
describe the encoding and the algorithm to compute the virtual coordinates with the
encoded map respectively.

92

6.4 Schwarz-Christoffel Transformation Using Lau-
rent Series

To encode a conformal map, we introduce the Schwarz-Christoffel formula
and the Laurent series [48,50]. In the following we describe two methods for repre-
senting the conformal mapping for simply connected domains (i.e., domains with-
out holes) and multiply connected domains (i.e., domains with holes) respectively.

6.4.1 Simply Connected Domain

f

w1 w2

w3

w4

w5

w6

z1

z2

z3

z4z6

z7

z − plane w − plane

�1�

�2�

�3�

�4�

w7

w8

�6��8�

z5

z8

�7�

Figure 28. The Schwarz-Christoffel transformation for a simply connected domain. f (zi) = wi.

In the case of sensors in a simply connected domain R, as shown in Figure
28, we would like to find a mapping to a unit disk D. A holomorphic function
is a complex-valued function of one or more complex variables that is complex
differentiable in a neighborhood of every point in its domain. We first look at the
conformal mapping from the unit disk to a polygon R, a holomorphic function,
f : D→ R. The mapping we would like to encode is the inverse of f , f−1 : R → D.

Suppose the vertices of the polygon are {w1,w2, · · · ,wn}. The Schwarz-
Christoffel formula [50] describes the mapping of a disk onto the interior of a simple
polygon.

f (z) = A
∫ z n∏

k=1

(ζ− zk)
−βkdζ+B, (9)

93

where the pre-image of wk on the circle is zk, i.e., wk = f (zk); the polygon tangent
turning angle at wk is βkπ; A and B are two constants.

In our case, we need to compute the inverse f−1 : R → D. For convenience,
we denote g(w) = f−1(w). Suppose w0 = f (0). For each w ∈ P, we choose a path
connecting w0 and w, then

g(w) = f−1(w) =
∫ w

w0

dg(w)
dw

dw+0.

where the derivative is given by

dg(w)
dw

=

(
d f (z)

dz

)−1

=
n∏

k=1

(z− zk)
βk =

n∏
k=1

(g(w)− zk)
βk .

Therefore we can calculate g(w) as:

g(w) =
∫ w

w0

n∏
k=1

(g(τ)− zk)
βkdτ+0. (10)

This is a typical ODE (ordinary differential equation) problem, and can be easily
solved by Runge-Kutta method [30]. Therefore, each sensor only requires the pa-
rameters {zk,βk}n

k=1 and the constants A,B. With such information every sensor can
solve the ODE and obtains its own location. The number of parameters stored on
each sensors is the size of the complexity of the description of the sensor domain R.
If we approximate R with simpler polygon we can reduce the storage requirement
accordingly.

The evaluation of the conformal map is equivalent to do a path integration, the
shorter the path is, the faster the evaluation is. Therefore in the mobile network
setting we can update the virtual coordinates of a mobile node based on its current
location, the past location and the past virtual coordinates. This will be faster.
Suppose at the k-th step, a node’s position is wk, its virtual coordinates is zk. Then
at the k+1-th step, if the position is wk+1, the virtual coordinate zk+1 can be updated
as

zk+1 =

∫
γ

f ′(ζ)dζ,

where γ is the path connecting wk to wk+1. Since wk+1 is often close to wk, therefore,
we can update the node location much faster than the direct computation.

94

6.4.2 Multiply Connected Domain

Ω

f

C1

C2

C3

z1,1

z2,1

c1
r1

z1,2

z2,2

z3,2
Γ1

w1,1

w2,1
w3,1

w4,1

P
Γ2

w1,2

Γ3

Figure 29. The Schwarz-Christoffel transformation for a multiply connected domain. f (zi, j) = wi, j.

The formulation for conformal mappings for multiply connected domains is
very similar. Recall that by using Ricci flow on the polygon R (with m− 1 holes)
describing the domain of interest, we map it to a circular domain Ω with m− 1
circular interior holes. Now we apply a reflection on Ω to make it an unbounded
domain with m circular holes. A reflection through a circle maps the interior of
the circle to the exterior. Suppose p is a point inside the circle C j(c j,r j), then it is
reflected to q, where

q =
p− c j

|p− c j|2
r2

j + c j

In particular, we can reflect the circular domain Ω with respect to the outer boundary
and project it to an unbounded domain with m circular holes. This extra reflection
is also conformal. For the ease of description, we will assume from now on that Ω
is an unbounded domain Ω with m circular holes.

Similar to the simply connected case, there is a description of a conformal
mapping f from an unbounded domain Ω with m circular holes to an unbounded
domain R with m polygonal holes. Again what we want to use is the inverse of f ,
say g = f−1.

As shown in Figure 29, let C j be the j-th circular hole, with center c j and
radius r j, which is mapped to a polygonal hole Γ j, f (C j) = Γ j. The vertices of Γ j

are {w1, j,w2, j, · · · ,wk j, j} ⊂ Γ j. Their pre-images are {z1, j,z2, j, · · · ,zk j, j} ⊂C j.
On the circular domain Ω we will apply reflections with respect to the circles.

See Figure 30. A circle C j is reflected through circle Ci to get a circle Ci j. A circle

95

C1

C2

C3

C31

C32

C21

C23

C12

C13

C121

C123

C132

C131

Figure 30. Circle reflection.

Ck is reflected through the circle Ci j to get a circle Ci jk. More general, a circle Cin

is reflected through the circle Ci1i2,···in−1 to get Ci1i2,··· ,in . The multi-index i1i2, · · · , in
tracks the sequence of reflections. The set of all multi-indices with length n is
denoted as σn.

By the Schwarz-Christoffel formula [48], the conformal mapping f : Ω → R
has the formula, called the Laurent series:

f (z) = A
∫ z m∏

j=1

K j∏
k=1

∞∏

n = 0
ν ∈ σn

(
ζ− zk,ν j

ζ− sν j

)

βk, j

dζ+B. (11)

where zk,ν j are reflections through circles of prevertices zk, j; sν j are reflections of
circle centers s j = c j; ν is a multi-index tracking reflections; A and B are two con-
stants.

Similar to the simply connected domain case, the inverse of f can be evaluated
by solving an ODE. In practice, instead of using infinitely many reflections, one
can reflect only N times, for a reasonable N. Therefore, the Laurent series could be

96

approximated by:

f (z) = A
∫ z m∏

j=1

K j∏
k=1

N∏

n = 0
ν ∈ σn

(
ζ− zk,ν j

ζ− sν j

)

βk, j

dζ+B. (12)

The prevertices {zk, j}, the circle domain C j(c j,r j) are computed using Ricci
flow method offline (explained in the appendix). Then these values are preloaded
to all the sensors with the tangent turning angle {βk, j} and the constants A,B. Each
sensor can be computed through the conformal mapping f−1 : P → Ω by solving
an ODE. f (z) can be approximated by Equation 12, where in practice N is less than
5.

6.5 Examples

In this section, we elaborate the computation of the virtual coordinates using
specific examples. These two examples are what we used in the following experi-
ments.

(a) vertices on w− plane (b) prevertices on z− plane

Figure 31. Prevertices of a simply connected polygon vertices used for evaluating Schwartz-
Christoffel transformation.

97

w β z
1 + 1i 0.5 -0.98993 + 0.14155i
20 + 1i 0.5 -0.99478 + 0.10202i
20 + 8i 0.5 -0.99480 + 0.10184i
5 + 8i -0.5 -0.99978 - 0.02078i
5 + 13i -0.5 0.97883 - 0.20466i
20 + 13i 0.5 0.99872 - 0.05063i
20 + 20i 0.5 0.99873 - 0.05041i
1 + 20i 0.5 1.00000 + 0.00000i

A -0.16623648 + 2.5343952i
B 3.15 + 10.65i

Note: w - polygon domain, z - disk domain, βπ - tangential turning angle, A - constant scalar in
transformation, B - conformal center on w.

Table 1. Parameters of Schwarz-Christoffel transformation.

6.5.1 Simply Connected Domain

Suppose the sensors move within a simply connected domain, i.e., with one
exterior polygonal boundary, as shown in Figure 31(a). The images of the polygon
vertices (prevertices) under the conformal mapping onto the unit circle has been
computed already using Ricci flow method, as shown in Figure 31(c). Alternatively,
the prevertices can be computed using the method based on complex analysis [50].

Table 1 illustrates the coefficients for the Schwarz-Christoffel transformation,
where w are the coordinates of the polygon vertices, z are the prevertices on the
unit disk domain, A is a constant scalar, B is the conformal center which is mapped
to the origin of the unit disk, β is the tangential turning angle of the input polygon
boundary. The prevertex for the interior sensors can be computed by Equation 10
using the obtained coefficients above.

6.5.2 Multiply Connected Domain

Suppose the mobile sensors move within a multiply connected domain, e.g.,
with inner holes, as shown in Figure 32(a). We first use Ricci flow to conformally
map the domain to a circle domain, where exterior boundary is mapped to a unit
disk, the inner holes are mapped to circular hoes, as shown in Figure 32(b). Through

98

this initial mapping, we obtain the coefficients in Equation 12, as shown in Table
2. The prevertex for the interior sensors can be evaluated by solving an ODE to
compute the inverse function of Equation 12 with the obtained coefficients.

B

A

(a) input domain (b) checker-board (c) conformal mapping
on w-plane texture mapping on z-plane

Figure 32. Ricci flow for conformal mapping a multiply connected polygon.

6.6 Experimental Results

In this section, we compare the proposed virtual-coordinate based greedy rout-
ing with the traditional greedy routing based on the original geographical locations
in both static and mobile network settings. We did not implement any recovery
scheme (e.g., face routing [93]) when greedy routing (based on whatever coordin-
ates) fails at a local minimum. The reasons for such consideration are the following:
first, such recovery schemes are more complicated and are usually developed for an
idealistic setting; second, for mobile networks it makes less sense to try to recover
from local minimum as nodes move around and a packet may only get stuck tem-
porarily; third, in our applications for participatory sensing and opportunistic query,
it is not so critical that every message must be delivered – a scheme with sufficient-
ly high success ratio that emphasizes on efficiency and low overhead will be more
desirable.

The experiments are performed by both computer simulations and real testbed
emulations. The computer simulation is based on a computer generated network

99

w β z
0 0.5 -0.0769204 -0.997173i

30 + 1i 0.5 0.994966 + 0.100535i
30 + 30i 0.5 0.0887658 + 0.995941i

30i 0.5 -0.966776 + 0.256636i
4 + 15i -0.5 -0.592622 - 0.175069i
4 + 26i -0.5 -0.832789 + 0.236657i
14 + 26i -0.5 -0.482482 + 0.47661i
14 + 22i -0.5 -0.270788 + 0.371865i
7 + 22i 0.5 -0.246845 + 0.342856i
7 + 19i 0.5 -0.246771 + 0.342755i
14 + 19i -0.5 -0.226475 + 0.311561i
14 + 15i -0.5 -0.184719 + 0.109243i
13 + 4i -0.5 0.479915 - 0.319252i
13 + 8i -0.5 0.182277 - 0.133036i
22 + 8i 0.5 0.138806 + 0.104056i
22 + 16i -0.5 0.218467 + 0.283291i
26 + 16i -0.5 0.494831 + 0.417102i
26 + 4i -0.5 0.867876 + 0.0811398i

(c1,r1) (-0.507853 + 0.159686 i, 0.327225)
(c2,r2) (0.513089 + 0.054973 i, 0.358639)

A -0.21564355 + 2.27355436i
B 16.45 + 11.65i

Note: w - polygon domain, z - circle domain, βπ - tangential turning angle, (ck,rk) - center and
radius of hole k on circle domain, A - constant scalar in transformation, B - conformal center on w.

Table 2. Parameters of Laurent series.

100

with 1000 nodes. The emulation is deployed on Orbit, an open accessed testbed
available at WINLAB, Rutgers University [3]. The performance comparisons are
based on evaluating the delivery rate, the number of hops and the end-to-end delay.
To make it clear, hops, delay and the delivery rate in this experiment are defined as
follows.

• Delay: Specify how long it takes to deliver a packet from source to destina-
tion.

• Hops: Represent the number of nodes the packets visited from source to
destination.

• Delivery rate: Measure the fraction of successfully delivered source and
destination packets.

6.6.1 Simulation Results

In this experiment, we implement the computer based simulations for both
static and mobile networks.

B

A

(a) active nodes on orbit (b) virtual coordinates

Figure 33. Active nodes on orbit.

101

B

A

(a) mobile sensors (b) virtual coordinates

Figure 34. Mobile sensors at one snapshot.

t =0 t =2 t =3 t =4 t =5

t =6 t =7 t =8 t =32 t =65

Figure 35. Greedy routing for mobile sensor network using real coordinates. Red node with larger
size is the starting sensor, yellow node is the destination. The green node on each frame shows the
routing sensor at time t. Greedy routing will get stuck at time 8 and 32.

6.6.1.1 The Experimental Setup

The computer simulation is based on the computer generated network of 1000
nodes uniformly distributed inside a polygon with the boundary of [1,1], [20,1],

102

t =0 t =3 t =5 t =8 t =11

Figure 36. Greedy routing for mobile sensor network using virtual coordinates. 1st row: routing
paths on real network; 2nd row: routing paths on virtual domain. Red node with larger size is the
starting sensor, yellow node is the destination. The green node on each frame shows the routing
sensor at time t. Greedy routing on virtual domain won’t get stuck.

[20,8], [5,8], [5,13], [20,13], [20,20], [1,20], as showed in Figure 34 (a). The com-
munication range of nodes follows the Unit Disk Graph (UDG) model, that is, if two
nodes are within distance of one unit, then they can communicate with each; other-
wise, they can not communicate with each other. In our experiments, we set the unit
distance as 2. Under this setting, the average degree of each node in the resulted
communication graph is 7 (or 7 neighbors for each node on average). The corre-
sponding conformal mapping result of the network under our algorithm is shown in
Figure 34 (b).

In our simulations, the MAC layer is assumed to be ideal – there is no trans-
mission failure. Experiments that consider such failures are presented in our testbed
implementation later.

All the results here are based on 400 pairs of delivery attempts. The 400 pairs
of source and destination are chosen in two different ways. 1) Uniformly and ran-
domly selected from the entire network. 2) Randomly chosen from the special areas
A and B in Figure 34 (a) respectively, under which greedy routing based on geo-
graphical locations would have difficulty in delivering the packets, particularly in
static setting. The 400 randomly chosen pairs are the same for the two algorithms

103

Uniformly and randomly selected pairs
Methods delivery rate hops
Geographical locations 275/400 5.6
Virtual coordinates 400/400 8.52

Specially chosen pairs
Methods delivery rate hops
Geographical locations 0/400 0
Virtual coordinates 398/400 17.23

Table 3. Performance comparison for computer simulation under static setting.

for fairness.

6.6.1.2 Static setting

In this setting nodes are stationary. We assume that the TTL of packets is
high enough such that packets can be delivered as long as there are valid routes.
Thus, the only reason a packet could not be delivered is due to the problem of local
minimum. For our algorithm, virtual coordinates from the mapping are used to
select the neighbor closest to the destination. Note that the network topology is the
same for both algorithms. With the above network setting, we show the simulation
results in Table 3.

We can see from the results that the delivery rate of our method is much bet-
ter than greedy routing with geographical location, especially for the pairs in the
specially chosen areas, for which greedy routing using geographical locations al-
ways gets stuck. For our method, among the 400 pairs, only two of them cannot be
delivered. To understand this, recall that our conformal map is done on deforming
the continuous geometric domain while greedy routing is performed in the discrete
network. This is different from the previous work [133] in which the conformal
map is computed directly on the network topology and thus delivery is guaranteed.
Instead, we may encounter in rare cases a delivery failure due to local minimum.
But the strength of our method is due to the extremely light weight implementation
that would make the family of Ricci flow based methods possible for real world
applications.

The number of hops listed in the table is the average value of hops for success-
fully delivered message. The hops for our methods is higher than that of greedy

104

routing with geographical locations, simply because our method can successfully
deliver more messages, including the far apart pairs in the special area where greedy
routing could not.

6.6.1.3 Mobile setting

To evaluate our algorithm for mobile setting, we adopt the Random Waypont
(RWP) mobility model [29]. RWP is a commonly used synthetic model for mobil-
ity. In this model, each node i moves from its current waypoint pi to the next one
p′i. The destination, speed and direction are all chosen randomly and independently
of other nodes. The next waypoint for each node i is uniformly distributed over
the disk with radius r centered at its current waypoint. And we randomly set the
velocity moving from pi to p′i to be random number vi drawn from the uniform dis-
tribution [a,b]. Whenever node i arriving its next waypoint p′i, it will stay there for a
random time duration ti, which is drawn from the uniform distribution [0,T]. After
time ti, node i continues its random waypoint walk following previous scheme. Ba-
sically this is a simple model that describes the movement pattern of mobile users,
and how their location and velocity change over time. During the movement, we
sample one snapshot with location information for all the nodes after time Tj. Tj

follows the uniform distribution [c,d]. That means sample the time axis per Tj to
generate different snapshots. But we generate new value for Tj after every snapshot.
We can think this Tj as the retrying time for a packet to be delivered when it was
got stuck in the last configuration.

Specifically, in the experiment, we set the moving disk radius r for all nodes
to be 2. The moving speed vi for each node i is drawn from [0.5,2.5] uniformly
and independently. When node i comes to stay stage, stay duration ti is uniformly
drawn from [0,2]. Finally, the sample time duration is uniformly distributed in the
range [1,3].

At each time slot/snapshot, the node holding a packet examines its neighbors
to see if anyone is closer to the destination. If so, the message is delivered to the
corresponding neighbor. If not, the packet remains at the current node for another
try in the next time slot. Notice that in the next snapshot, the node with the packet
moves to a different location and may have a new set of neighbors. Here is an
example of the scenario: at time Ti, node np sends the packet to node nq. For the

105

next time slot Ti+1, nq moves to a new location and will calculate the next node
to deliver based on this new location and all the neighbors’ locations at time Ti+1.
Since we assume that user motion can be arbitrary/unpredictable, a neighbor that
is currently closer to the destination may actually move away. Thus even greedy
routing based on a perfect set of virtual coordinates may not always deliver all
packets successfully.

We use TTL to control how long the packets could wander in the network. So
TTL equals the maximum number of snapshots that a packet can remain alive. After
that a packet is dumped from the network and the packet is considered undeliver-
able. When a packet is delivered, we measure the delay as the number of snapshots
experienced when the packet arrives at the destination. We measure the number of
hops of a successfully delivered packet as the number of relay nodes on the path
from its source to the destination. The initial locations of the mobile nodes, that is,
the locations at snapshot 0, are the same as the static setting above. Also, the 400
pairs of source and destination are chosen as the same as the static setting so that we
can examine the benefit brought by node mobility. When the node with the packet
is within transmission range of the destination location, the packet is considered de-
livered successfully. Figure 35 shows greedy routing with original coordinates and
the message gets stuck in some middle snapshots. Figure 36 demonstrates the mes-
sage arrives in 12 snapshots without any stuck with our virtual coordinates greedy
routing.

We record the delay, delivery rate and hop count for routing tests under differ-
ent TTL setup. The results are concluded in Table 4.

We can observe from the results that the delivery rate of greedy routing using
geographical locations when TTL equals to 50 is already higher than that of the
static setting, for uniformly and randomly chosen source and destinations. Indeed
this is due to node mobility and verifies that mobility can improve delivery. As
mobility may bring a new neighbor closer to the destination for a packet stuck at
a local minimum, the delivery rate also increases with maximum TTL. However,
we can see that such improvement of delivery rate is at the expense of prolonged
delay. For source and destination pairs in the regions that were difficult to reach one
another, the delivery rate is substantially improved when mobility is allowed.

106

Greedy routing using geographical locations
on uniformly randomly chosen pairs

TTL delivery rate hops delay
10 238/400 5.15 5.15
20 286/400 6.28 6.29
30 295/400 6.69 6.76
50 302/400 7.37 7.51
100 317/400 9.87 10.32
150 326/400 12.51 13.47
200 338/400 17.39 19.36
Greedy routing using geographical locations

on specially chosen pairs
Methods delivery rate hops delay
10 0/400 0 0
20 2/400 15.5 16.5
30 15/400 21.73 23.13
50 35/400 28.74 30.51
100 98/400 51.72 57.88
150 129/400 64.50 73.43
200 178/400 87.04 100.61

Greedy routing using virtual coordinates
on uniformly randomly chosen pairs

TTL delivery rate hops delay
10 231/400 5.28 5.28
20 379/400 8.43 8.43
30 400/400 9.12 9.12

Greedy routing using virtual coordinates
on specially chosen pairs

Methods delivery rate hops delay
10 0 0 0
20 254/400 16.50 16.50
30 400/400 18.40 18.40

Table 4. Performance of the methods under mobile setting of computer simulation.

The same observation is true for our method as well. Nevertheless with vir-
tual coordinates our delivery rate is already pretty high. So we could deliver the
messages with much smaller delay and hops. In particular, notice that in our ex-
periments the values for hops and delay are always the same for our method. This
means our method never gets stuck — in every time slot we are able to find a neigh-
bor that is closer to the destination; the message is never held at a node for more
than one time unit. This explains the reduced delay and the high delivery rate. For

107

the messages that are indeed delivered in greedy routing method using geographical
locations, the delay and hop counts experienced are similar to that in our methods.
This basically says that for messages that start at positions whose straight line paths
to the destination are not ‘blocked’, and they can be delivered fairly quickly and
easily, using both methods. But for messages that get stuck, using geographical
locations they will need to wait for a long time for the node holding them to move
out of that region; using our methods they have no problem to find good neighbors.

In conclusion, comparing greedy routing with geographical locations and with
our virtual coordinates, we have a higher delivery rate with much lower delay. This
is because the virtual coordinates do a better job at directing packets to the correct
directions.

6.6.2 Emulation on Orbit

In this section, we demonstrate results from emulation experiments on a real
testbed to validate our algorithm and compare to greedy routing with geographical
locations. The emulation is deployed on the publicly accessible Orbit testbed [3].
This testbed consists of 400 nodes (standard Linux PCs), and it supports both wired
and wireless experiments. The nodes are placed in a two-dimensional rectangular
grid with 1 meter spacing and wireless antennas mounted on the sides.

6.6.2.1 Experimental Setup

The network we created on Orbit has the same boundary as what we used in
the simulations. There are 340 nodes in this C-shape area. Among them 233 nodes
(shown in Figure 33 (a)) of the grid are active nodes on Orbit. The rest nodes
are artificially removed from our experiments. In our experiments, not all nodes
selected are available to use and nodes may go down for no reason. So we do not
have uniformly distributed nodes per our observation. The corresponding map of
the network and virtual coordinates are shown in Figure 33 (b).

The network topology is created with a unit disk graph model with commu-
nication range of 2.5. For two nodes within communication range, we used the
wired communication channel on Orbit for packet transmission in the experiments,
since the wireless radios on Orbit were set up with very large communication range,

108

essentially covering the entire network. UDP is chosen as the communication pro-
tocol between the nodes. Although the communication graph is selected from a unit
disk graph model, the packet is not always delivered even if the sender and receiver
are within transmission range. This is observed from our experiments and could be
observed from the results reported later.

Each of the node is equipped with two functions. 1) Initialize a packet as the
sender and send it to the next node. 2) Listen and forward the message to the next
node. The two functions are designed as threads, so the nodes can have the two
functions at the same time. This simulates the scenario of a node in full duplex
mode. We utilized a link table to filter packets at the application layer so that each
node only receives the messages from its neighbors within communication range.

Since the local clocks at the Orbit nodes are not consistent, we cannot directly
take the difference of the packet departure and arrival time. Instead, we work around
this issue by sending a confirmation from the destination back to the source. There-
fore the delay reported in our result actually includes this extra ‘acknowledgement’
step. Notice that since this extra step is added to both methods the comparison is
still fair. The value for delay reported later is the median value.

6.6.2.2 Static setting

40 pairs of source and destination are chosen among the above 233 nodes for
routing. The nodes’ geographical coordinates are their grid coordinates. Same as in
computer simulation, the pairs are chosen in two different ways. 1) uniformly and
randomly selected source and destination pairs. 2) Special areas selected pairs. In
case (2), sources are chosen from area A in Figure 33, and destinations are chosen
from area B, where the packet is difficult to deliver under greedy routing algorithm
using geographical locations.

Each node can obtain the locations of other nodes from the global node lo-
cation table. And nodes can get their neighbor information from the global link
table. To run our experiments, we issue 40 pairs of packets through the central con-
troller. The sender initializes a packet with destination information and sends it to
one of the neighbors according to the greedy algorithm. Since all the nodes listen
in the network. If a packet is sent to a node, the node catches it. The node will
then forward the packet to the next node until the packet arrives at the destination.

109

Uniformly randomly chosen pairs
Methods delivery rate hops delay (ms)
Geographical locations 27/40 5.8 25.669
Virtual coordinates 40/40 8.23 29.631

Specially chosen pairs
Methods delivery rate hops delay (ms)
Geographical locations 0/40 0 0
Virtual coordinates 38/40 16 33.270

Table 5. Performance of the methods under static setting of Orbit emulation.

The choice of which neighbor to send packet to depends on the node’s location
and connection specified in the global node locations table and global link table.
The experiment setups for both greedy routing with geographical coordinates and
virtual coordinates are the same except the different set of coordinates.

We compare delay, hops and delivery rate under the two methods, with ran-
domly chosen pairs and specially chosen pairs. The results are listed in Table 5.

We simulate the experiment with all the same setting on the computer, and
the delivery rate for virtual coordinates routing under special chosen area is 40/40.
Notice that some of the delivery rate under our simulations (the ideal setting) is
higher than the results we get from Orbit experiments. The reasons are 1) the Orbit
network may experience unknown stability issues and packets may get lost for no
reason (since UDP is used); 2) two packets may arrive at a node at the same time.
Thus due to competition (similar to wireless interference) one of them may be lost;
3) the nodes may be go up and down during the experiments Nevertheless this
represents a practical setting in which transmission failures may as well occur.

Under the same network condition, our method consistently works better than
greedy routing with geographical locations, especially for pairs in the special cho-
sen areas. The results are similar to the results obtained in our computer simula-
tions.

6.6.2.3 Mobile setting

The nodes on Orbit are static. In order to mimic a mobile network on Orbit,
we generate a mobile network scenario using simulations and then map the mobile
nodes in our simulations onto the Orbit nodes. A mobile node is mapped to the

110

Greedy routing using geographical locations
on uniformly randomly chosen pairs

TTL delivery rate hops delay (ms)
10 21/40 5.20 31.215
20 24/40 6.12 32.275
30 25/40 6.71 33.130
200 29/40 10.56 43.873
Greedy routing using geographical locations

on specially chosen pairs
TTL delivery rate hops delay (ms)
10 0/40 0 0
20 0/40 0 0
30 1/40 12 93.978
200 10/40 50.72 629.985

Greedy routing using virtual coordinates
on uniformly randomly chosen pairs

TTL delivery rate hops delay (ms)
10 21/40 5.22 31.582
20 33/40 8.27 32.232
30 37/40 9.01 32.775

Greedy routing using virtual coordinates
on specially chosen pairs

TTL delivery rate hops delay (ms)
10 0/40 0 0
20 21/40 14.28 52.536
30 32/40 16.21 71.700

Table 6. Performance of the methods under mobile setting of Orbit.

closest Orbit node. In this case, we can use the movement of nodes from computer
simulation to emulate the mobility of nodes on Orbit. Thus, the nodes move in the
same way as reported earlier and the actual transmission are done on Orbit.

40 pairs of packet are chosen randomly uniformly and from the special area
same as the above experiments respectively. Different from computer simulation,
the delay on real testbed of Orbit is the real time difference between the message
sent and received. The results are reported in Table 6.

The observation that mobility helps to improve delivery rate still holds for the
testbed experiments, for both geographical greedy routing and our method. Again
our method gives much smaller delay and fewer number of hops. We may notice

111

that there could be a large deviation from the hop counts and packet delay, in partic-
ular for geographical greedy routing for specially selected pairs. As in geographical
greedy routing, many packets go through some small number of critical nodes. In
our simulations we assume that all these packets go through with ease – an unreal-
istically ideal case. But on Orbit, when an Orbit node is called by several packets
(invoked frequently), a queue is formed and this could substantially increase the
delay.

6.6.3 Networks With Holes

We also run simulations in a domain with holes for both static and mobile
network setting.

6.6.3.1 The Experimental Setup

In the simulations, we throw 1000 nodes uniformly and randomly inside a
domain with holes as showed in Figure 32 (a). 1000 nodes are uniformly distributed
inside the domain. The communication range of the nodes also follows the Unit
Disk Graph (UDG) model. The average degree of each node is 7 when we set the
unit distance as 2.8 when. The corresponding conformal mapping results of the
network under our algorithm is shown in Figure 32 (a).

We run routing tests for 400 pairs of source and destinations. The 400 pairs
of source and destination are also chosen in two different ways mentioned above,
they are randomly and uniformly selected from the special areas A as source and B
as destination in Figure 32 (a) respectively. The 400 randomly chosen pairs are the
same for the two algorithms for fairness.

In the experiments, we also include additional 222 static sensor nodes on the
hole boundaries to the network, in addition to the 1000 nodes in the interior. This
improves the performance of our algorithm, as shown later. To understand this, re-
call that our conformal map is applied for the continuous geometric domain, while
the sensor network is a discrete network that may not always cover the entire do-
main nicely. In particular, there may not be sensors on the circular hole boundaries
and thus the real ‘hole’ in the sensor network may have tiny sawtooth-type varia-
tions. This may create cases when a packet can locally get stuck on such a varied

112

Uniformly randomly chosen pairs
without additional boundary nodes

Methods delivery rate hops
Geographical locations 315/400 6.63
Virtual coordinates 374/400 7.40

Specially chosen pairs
without additional boundary nodes

Methods delivery rate hops
Geographical locations 73/400 15.6
Virtual coordinates 136/400 15.54

Uniformly randomly chosen pairs
with additional boundary nodes

Methods delivery rate hops
Geographical locations 326/400 6.64
Virtual coordinates 400/400 7.62

Specially chosen pairs
with additional boundary nodes

Methods delivery rate hops
Geographical locations 0/400 0
Virtual coordinates 400/400 15.58

Table 7. Performance of the methods under static setting of computer simulation with holes.

hole boundary. Placing additional fixed sensor nodes on the hole boundaries greatly
help to reduce the number of such scenarios.

6.6.3.2 Static Setting

We present the simulation results in Table 7. We can see from the results that
our observations still hold – the delivery rate of our method is much better than
greedy routing with geographical location. Placing additional nodes on the domain
boundary also helps to further improve the delivery rate of our algorithm. What is
interesting (and a bit surprising) is that placing these additional boundary nodes may
make geographical greedy routing worse, especially for the specially chosen pairs!
Because additional boundary nodes make sure that geographical greedy routing
definitely direct the messages to the ‘pockets’ in the domain and get stuck there.

113

6.6.3.3 Mobile setting

In the mobile setting, the movement of nodes follows random waypoint mobil-
ity model [29], the same as the previous simulations but with different parameters.
Specifically, we set the moving disk radius r for all nodes to be 3. The moving
speed vi for each node i is drawn from [1,4] uniformly and independently. When
node i comes to stay stage, stay duration ti is uniformly drawn from [0,3]. Finally,
the sample time duration for the next snapshot is uniformly distributed in the range
[1,4].

The results are concluded in Table 8 and Table 9. For the mobile network
setting including the static boundary nodes always helps our proposed methods.

6.7 Conclusion

This chapter describes a compact way to represent a conformal map and ap-
plies it to routing in both static and mobile networks. As the first practical solution
to using virtual coordinates with greedy routing, we expect to see implementations
of our method in real world applications.

114

Greedy routing using geographical locations
on uniformly randomly chosen pairs, without boundary nodes
TTL delivery rate hops delay
10 230/400 5.15 5.15
20 341/400 7.60 7.66
30 356/400 8.19 8.35
50 369/400 9.16 9.50
100 378/400 10.42 11.15
150 385/400 11.91 13.29
200 387/400 12.57 14.23

Greedy routing using geographical locations
on specially chosen pairs, without boundary nodes

Methods delivery rate hops delay
10 0/400 0 0
20 82/400 14.96 15.21
30 106/400 16.39 16.75
50 142/400 22.03 23.99
100 200/400 32.32 38.02
150 279/400 48.14 61.80
200 316/400 57.63 74.94

Greedy routing using virtual coordinates
on uniformly randomly chosen pairs, without boundary nodes
TTL delivery rate hops delay
10 247/400 5.35 5.36
20 394/400 8.14 8.16
30 398/400 8.29 8.32
50 399/400 8.34 8.37

Greedy routing using virtual coordinates
on specially chosen pairs, without boundary nodes

Methods delivery rate hops delay
10 5/400 9 9
20 266/400 15.03 15.10
30 389/400 17.25 17.40
50 398/400 17.59 17.78

Table 8. Performance of the methods without boundary nodes participation under mobile setting of
computer simulation with holes.

115

Greedy routing using geographical locations
on uniformly randomly chosen pairs, with boundary nodes
TTL delivery rate hops delay
10 242/400 5.21 5.21
20 352/400 7.41 7.52
30 358/400 7.60 7.80
50 367/400 8.04 8.57
100 376/400 8.71 10.26
150 382/400 9.17 12.09
200 385/400 9.50 13.40

Greedy routing using geographical locations
on specially chosen pairs, with boundary nodes

Methods delivery rate hops delay
10 0/400 0 0
20 65/400 14.58 15.05
30 72/400 15.10 15.82
50 119/400 20.78 26.13
100 187/400 25.00 43.17
150 273/400 29.27 67.44
200 311/400 31.58 80.85

Greedy routing using virtual coordinates
on uniformly randomly chosen pairs, with boundary nodes
TTL delivery rate hops delay
10 258/400 5.44 5.44
20 397/400 7.91 7.91
30 400/400 8.02 8.02

Greedy routing using virtual coordinates
on specially chosen pairs, with boundary nodes

Methods delivery rate hops delay
10 3/400 9 9
20 340/400 15.28 15.28
30 400/400 16.24 16.24

Table 9. Performance of the methods with boundary nodes participation under mobile setting of
computer simulation with holes.

116

Chapter 7

The Emergence of Sparse Spanners
and Well-Separated Pair
Decomposition Under Anarchism

7.1 Introduction

A geometric graph G defined on a set of points P ⊆ Rd with all edges as
straight line segments of weight equal to their length is called a Euclidean spanner,
if for any two points p,q ∈ P the shortest path in G has length at most t · |pq| where
|pq| is the Euclidean distance. The factor t is called the stretch factor of G and the
graph G is called an t-spanner. Spanners with a sparse set of edges provide good
approximations to the pairwise Euclidean distances and are good candidates for
network backbones. Thus, there has been a lot of work on the construction of sparse
Euclidean spanners in both centralized [52, 115] and distributed settings [123].

In this chapter we are interested in the emergence of good Euclidean spanners
formed by uncoordinated agents. Many real-world networks, such as the trans-
portation network and the Internet backbone network, are good spanners — one
can typically drive from any city to any other city in the U.S. with the total travel
distance at most a small constant times their straight line distance. The same thing
happens with the Internet backbone graph. However, these large networks are not
owned or built by any single authority. They are often assembled with pieces built

117

by different governments or different ISPs, at different points in time. Nevertheless
altogether they provide a convenient sparse spanner. The work in this chapter is
motivated by this observation of the lack of coordination in reality and we would
like to interpret why a good Euclidean spanner is able to ‘emerge’ from these agents
incrementally.

Prior work that attempt to remove centralized coordination has been done, as
in the network creation game [11, 41, 55, 91, 111], first introduced by Fabrikant
et al. [55] to understand the evolution of network topologies maintained by self-
ish agents. A cost function is assigned to each agent, capturing the cost paid to
build connections to others minus the benefit received due to the resulting network
topology. The agents play a game by minimizing their individual costs and one
is interested in the existence and the price of anarchy of Nash equilibria. Though
being theoretically intriguing, there are two major open questions along this direc-
tion. First, the choice of cost functions is heuristic. Almost all past literatures use
a unit cost for each edge and they deviate in how the benefit of ‘being connected
to others’ is modeled. There is little understanding on what cost function best cap-
tures reality yet small variation in the cost function may result in big changes in the
network topologies at Nash equilibria. There is also not much understanding of the
topologies at Nash equilibria, some of them are simplistic topologies such as trees
or complete graphs, that do not show up often in the real world. It remains open
whether there is a natural cost model with which the Nash equilibrium is a sparse
spanner.

The game theoretic model also has limitations capturing the reality: selfish
agents may face deadlines and have to decide on building an edge or not imme-
diately; once an edge is built, it probably does not make sense to remove it (as in
the case of road networks); an agent may not have the strategies of all other agents
making the evaluation of the cost function difficult. In this chapter, we take a differ-
ent approach and ask whether there is any simple rule, with which each agent can
determine on its own, and collectively build and maintain a sparse spanner topology
without any necessity of coordination or negotiation. The simple rule serves as a
‘certificate’ of the sparse spanner property that warrants easy spanner maintenance
under edge dynamics and node insertion. We believe such models and good algo-
rithms under these models are worth further exploration and this chapter makes a

118

first step along this line.

7.1.1 Our contribution

We consider in this chapter the following model that abstracts the scenarios
explained earlier. There are n points in the plane. Each point represents a separate
agent and may consider to build edges from itself to other points. These decisions
can happen at different points in time. When an agent p plans on an edge pq, p
will only build it if there does not exist a ‘nearby’ edge p′q′ in the network, where
|pp′| and |qq′| are within 1

4(1+1/ε) · |p
′q′| from p and q respectively. This strategy

is very intuitive — if there is already a cross-country highway from Washington
D.C. to San Francisco, it does not make economical sense to build a highway from
New York to Los Angeles. We assume that each agent will eventually check on each
possible edge from itself to all other points, but the order on who checks which edge
can be completely arbitrary. With this strategy, the agents only make decisions with
limited information and no agent has full control over how and what graph will be
constructed. It is not obvious that this strategy will lead to a sparse spanner. It is
not clear that the graph is even connected.

The main result in this chapter is to prove that with the above strategy executed
in any arbitrary order, the graph built at the end of the process is a sparse spanner:

• The stretch factor of the spanner is 1+ ε.

• The number of edges is O(n).

• The total edge length of the spanner is O(|MST| · logα), where α is the aspect
ratio, i.e., the ratio of the distance between the furthest pair and the closest
pair, and |MST| is the total edge length of the minimum spanning tree of the
point set. The logα factor could be improved to O(logn) by using a different
technique.

• The degree of each point is O(logα) in the worst case and O(1) on average.

To explain how this result is proved, we first obtain as a side product the fol-
lowing greedy algorithm for computing a well-separated pair decomposition. A pair
of two sets of points, (A,B), is called s-well-separated if the smallest distance be-
tween any two points in A,B is at least s times greater than the diameters of A and B.

119

An s-well-separated pair decomposition (s-WSPD for short) for P is a collection of
s-well-separated pairs W = {(Ai,Bi)} such that for any pair of points p,q ∈ P there
is a pair (A,B) ∈ W with p ∈ A and q ∈ B. The size of an s-WSPD is the number
of point set pairs in W . Well-separated pair decomposition (WSPD) was first intro-
duced by Callahan and Kosaraju [34] and they developed algorithms for computing
an s-WSPD with linear size for points in Rd . Since then WSPD has found many
applications in computing k-nearest neighbors, n-body potential fields, geometric
spanners and approximate minimum spanning trees [14,15,31–34,54,78,102,114].

So far there are three algorithms for computing optimal size WSPD, in [34],
[85] and in [68]. All three of them use a hierarchical organization of the points
(e.g., the fair split tree in [34], the compressed quadtree in [85] and the discrete
center hierarchy in [68]) and output the well-separated pairs in a recursive way.
In this chapter we show the following simple algorithm also outputs an s-WSPD
with linear size. We take an arbitrary pair of points p,q that is not yet covered
in any existing well-separated pair, and consider the pair of subsets (Br(p),Br(q))
with r = |pq|/(2s+ 2) and Br(p) (Br(q)) as the set of points of P within distance
r from p (q). Clearly (Br(p),Br(q)) is an s-well-separated pair and all the pairs of
points (p′,q′) with p′ ∈ Br(p) and q′ ∈ Br(q) are covered. The algorithm continues
until all pairs of points are covered. We show that, no matter in which order the
pairs are selected, the greedy algorithm will always output a linear number of well-
separated pairs. Similarly, this algorithm can be executed in an environment when
coordination is not present, while the previous algorithms (in [34, 68]) cannot.

WSPD is deeply connected to geometric spanners. Any WSPD will generate
a spanner if one puts an edge between an arbitrary pair of points p,q from each
well-separated pair (A,B) ∈ W [14, 15, 102, 114]. The number of edges in the
spanner equals the size of W . In the other direction, the deformable spanner pro-
posed in [68] implies a WSPD of linear size. The connection is further witnessed
in this chapter: our spanner emergence algorithm implies a WSPD generated un-
der anarchism. Thus the well-separated pairs and spanner edges are in one-to-one
correspondence.

Last, this chapter focuses on the Euclidean case when the points are distribut-
ed in the plane. The basic idea extends naturally to points in higher dimensions
as well as metrics with constant doubling dimensions [81] (thus making the results

120

introduced in previous section applicable in non-Euclidean settings), as the main
technique involves essentially various forms of geometric packing arguments. S-
parse spanners and WSPD exist for metrics with constant doubling dimension as
shown in [85] and [68] in a centralized setting. Ours uses distributed construction.

7.1.2 Applications

The results can be applied in maintaining network overlay topologies with
good properties for P2P file sharing applications [106]. Such P2P overlay networks
are often constructed in a distributed manner without centralized control, to achieve
robustness, reliability and scalability. One important issue is reducing routing delay
by making the overlay topology aware of the underlying network topology [39,
100, 128, 155, 156]. But all these existing algorithms are heuristics without any
guarantee. A spanner graph would be a good solution for the overlay construction,
yet there is no centralized authority in the P2P network that supervises the spanner
construction and the peers may join or leave the network frequently. The work
in this chapter initiates the study of the emergence of good spanners in the setting
when there is little coordination between the peers and the users only need a modest
amount of incomplete information of the current overlay topology.

It has been shown that the delay on the Internet has geometric growth prop-
erties [118, 125]. Thus we can apply our spanner construction for a P2P network
under the model that the delay function has constant doubling dimension. We show
that the spanner can be constructed under a proper model of the P2P network such
that only O(n logα) messages need to be delivered. The spanner topology is implic-
itly stored on the nodes with each node’s storage cost bounded by O(logα). With
such partial information stored at each node, there is a local distributed algorithm
that finds a (1+ ε)-stretch path between any two nodes.

7.1.3 Related work

In the vast amount of prior literature on geometric spanners, there are three
main ideas: Θ-graphs, the greedy spanners, and the WSPD-induced spanners [115].
Please refer to the book Geometric Spanner Networks for a nice survey [115]. We
will review two spanner construction ideas that are most related to our approach.

121

The first idea is the path-greedy spanner construction [36, 44–46]. All pairwise
edges are ordered with non-decreasing lengths and checked in that order. An edge
is included in the spanner if the shortest path in the current graph is longer than t
times the Euclidean distance, and is discarded otherwise. Variants of this idea gen-
erate spanners with constant degree and total weight O(|MST|). This idea cannot be
applied in our setting as edges constructed in practice may not be in non-decreasing
order of their lengths. The second idea is to use the gap property [36] — the sources
and sinks of any two edges in an edge set are separated by a distance at least pro-
portional to the length of the shorter of the two edges and their directions differ no
more than a given angle. The gap-greedy algorithm [16] considers pairs of points,
again in order of non-decreasing distances, and includes an edge in the spanner if
and only if it does not violate the gap property. The spanner generated this way
has constant degree and total weight O(|MST|). Compared with our algorithm, our
strategy is a relaxation of the gap property in the way that the edges in our spanner
may have one of their endpoints arbitrarily close (or at the same points) and we
have no restriction on the direction of the edges and the ordering of the edges to be
considered. The proof for the gap greedy algorithm requires heavy plane geometry
tools and our proof technique only uses packing argument and can be extended to
the general metric setting as long as a similar packing argument holds. To get these
benefits our algorithm has a slightly worse upper bounds on the spanner weight by
a logarithmic factor.

Prior work on compact routing [6, 7, 74, 98, 144] usually implies a (1+ ε)-
spanner explicitly or implicitly. Again, these spanners are constructed in a coordi-
nated setting.

An extended abstract of this chapter was presented in 2008 and also published
in [72]. During the review of this thesis version, we became aware of the inde-
pendent work at around the same time by Smid [145], which introduced the ‘weak
gap property’ for spanner construction. The spanner constructed from our algorith-
m satisfies the weak gap property. Therefore, the properties resulting from weak
gap property can be applied here directly. Specifically, it says any directed graph
satisfying the weak gap property has O(n) edges and total weight O(lgn · |MST|).
This corresponds to our conclusion on the linear size of the spanner edges and im-
proves our result on the weight of the constructed spanner from O(lgα · |MST|)

122

to O(lgn · |MST|). The proof techniques and methodologies in the two proofs are
different however.

7.1.4 Organization

In the rest of the chapter we first elaborate the spanner construction in an un-
coordinated manner and then show the connection of the spanner with the greedy
WSPD. We then show the good properties of both the greedy WSPD and our span-
ner. At the end, we describe how to apply the spanner in the P2P setting to support
low-storage spanner representation and efficient local low-stretch routing.

7.2 Spanner construction under anarchism

Given n points in Rd , each point represents an agent. As explained in the
introduction, we consider the following algorithm for constructing a sparse spanner
with stretch factor s in an uncoordinated way. For any point p, denote by Br(p) the
collection of points that are within distance r from point p, i.e., inside the ball with
radius r centered at p.

7.2.1 Spanner construction algorithm

Each point/agent p checks to see whether an edge from itself to another point
q should be constructed or not. At this point there might be some edges already
constructed by other agents. The order of which agent checks on which edge is
completely arbitrary. Specifically, p performs the following operations:

Check where there is already an edge p′q′ such that p and q are within distance
|p′q′|

2(s+1) from p′,q′ respectively. If so, p does not build the edge to q. Otherwise, p
will build an edge to q.

This incremental construction of edges is executed by different agents in a
completely uncoordinated manner. We assume that no two agents perform the
above strategy at exactly the same time. Thus when any agent conducts the above
process, the decision is based on the current network already constructed. The al-
gorithm terminates when all agents finish checking the edges from themselves to all

123

Figure 37. A greedy spanner example for 100 points with aspect ratio α = 223, the average degree
is 6.5, and the stretch is 3.4.

other points. In this chapter we first study the properties of the constructed graph
G by these uncoordinated behaviors. We will discuss later in Section 7.5 a proper
complexity model for the uncoordinated construction in a distributed environment
and also bound the computing cost of this spanner. An spanner example generated
from the above algorithm is shown in Figure 37. Throughout the construction the
following invariant is maintained by the graph G.

Lemma 25. 1. For any edge pq that is not in G, there is another edge p′q′ in
G such that |pp′| ≤ |p′q′|/(2s+2), |qq′| ≤ |p′q′|/(2s+2).

2. For any two edges pq, p′q′ in the constructed graph G, suppose that pq is
built before p′q′, then one of the following is true: |pp′| > |pq|/(2s+ 2) or
|qq′|> |pq|/(2s+2).

To show that the algorithm eventually outputs a good spanner, we first show
the connection of G with the notion well-separated pair decomposition.

Definition 26 (Well-separated pair). Let s > 0 be a constant, and a pair of sets
of points A, B are well-separate with respect to s (or s-separated), if d(A,B) ≥
s ·max(diam(A),diam(B)), where diam(A) is the diameter of the point set A, and
d(A,B) = min

p∈A,q∈B
|pq|.

124

Definition 27 (Well-separated pair decomposition). Let t > 0 be a constant,and
P be a point set. A well-separated pair decomposition (WSPD) with respect to t of
P is a set of pairs W = {{A1,B1}, . . . ,{Am,Bm}}, such that

1. Ai,Bi ⊆ P, and the pair sets Ai and Bi are s-separated for every i.

2. For any pair of points p,q ∈ P, there is at least one pair (Ai,Bi) such that
p ∈ Ai and q ∈ Bi.

Here m is called the size of the WSPD.

In our construction of G, it is not so hard to see that a well-separated pair
decomposition is actually implied.

Theorem 28. From the uncoordinated construction of the graph G, we can build
the following s-WSPD W : for each edge pq in G, include in the well-separated
pair decomposition the pair (Br(p),Br(q)), with r = |pq|/(2s+2). The size of the
WSPD is the number of edges in G.

Proof. First each pair (Br(p),Br(q)) is an s-well-separated pair. Obviously,
d(Br(p),Br(q)) ≥ |pq| − 2r, and diam(Br(p)),diam(Br(q)) ≤ 2r. One can then
verify that d(Br(p),Br(q))≥ s ·max(diam(Br(p)),diam(Br(q))).

We now show that any point p,q is included in one well-separated pair. If the
edge pq is in the graph the claim is true obviously. Otherwise, there is an edge p′q′

in G such that |pp′| ≤ |p′q′|/(2s+2), |qq′| ≤ |p′q′|/(2s+ 2), by Lemma 25. This
means that p ∈ Br′(p′) and q ∈ Br′(q′) with r′ = |p′q′|/(2s+ 2). This finishes the
proof. �

7.2.2 Algorithm for well-separated pair decomposition

The above theorem shows the connection of the uncoordinated graph G with
a WSPD W . In fact, the way to compute the WSPD W via the construction of G
is equivalent to the following algorithm that computes an s-WSPD, where s is the
separation parameter of the well-separated pairs, s > 1.

1. Choose an arbitrary pair (p,q), not yet covered by existing well-separated
pairs in W .

125

2. Include the pair of point sets Br(p) and Br(q) in the WSPD W , with r =

|pq|/(2+2s).

3. Label the point pair (pi,qi) with pi ∈ Br(p) and Br(q) as being covered.

4. Repeat the above steps until every pair of points is covered.

With the s-WSPD W , the uncoordinated construction of the graph G is in fact
by taking an edge from each and every well-separated pair in W — the simple rule
in Lemma 25 prevents two edges from the same well-separated pair in W to be
constructed. It is already known that for any well-separated pair decomposition,
if one edge is taken from each well-separated pair, then the edges will become
a spanner on the original point set [14, 15, 102, 114]. For our specific greedy s-
WSPD, we are able to get a slightly better stretch, since our well separated pairs
are centered on two points and we are picking the edge between these two points
as the spanner edge. The previous schemes choose an arbitrary edge in each well
separated pair.

Theorem 29. Graph G constructed from the greedy s-WSPD is a spanner with
stretch factor (s+1)/(s−1).

Proof. Denote by π(p,q) the shortest path length between p,q in the graph G.
We show that π(p,q)≤ β · |pq| for any p,q ∈ P, with β = (s+1)/(s−1). We prove
this claim by induction on the distance between two points p,q. Take p,q as the
closest pair of P. Then any s-WSPD will have to use a singleton pair (p,q) to cover
the pair (p,q) if s ≥ 1. Otherwise, say (P,Q) is an s-well-separated pair that covers
(p,q), and |P|> 1. Then diam(P)> |pq|, and d(P,Q) = |pq|. This contradicts the
fact that d(P,Q)≥ s ·diam(P). Therefore the edge pq is included in G for sure and
π(p,q) = |pq|.

Now suppose that for all pairs of nodes x,y with Euclidean distance |xy| ≤ ℓ,
we have π(x,y)≤ β · |xy|. Now we consider the pair of nodes p,q with the smallest
distance (among all remaining pairs) that is still greater than ℓ. (p,q) is covered
by an s-well-separated pair (P,Q) ∈ W , where P = Br(p′) and Q = Br(q′) with
r = |p′q′|/(2s+ 2) and p′q′ an edge in G. Now we argue that |pp′| ≤ ℓ. Oth-
erwise, |pq| ≥ d(P,Q) ≥ s · diam(P) ≥ s · |pp′| > |pp′|. So we should have se-
lected the pair (p, p′) instead of (p,q). Similarly, |qq′| ≤ ℓ. Thus by induction
hypothesis π(p, p′) ≤ β · |pp′|, π(q,q′) ≤ β · |qq′|. By triangle inequality, we have

126

π(p,q)≤ π(p, p′)+ |p′q′|+π(q,q′)≤ β ·(|pp′|+ |qq′|)+ |p′q′| ≤ 2β ·r+ |p′q′|. On
the other hand, we know by triangle inequality that |pq| ≥ |p′q′|−2r = s

s+1 · |p
′q′|.

Combining everything we get that π(p,q) ≤ (β
s+1 + 1) · s+1

s · |pq| = β|pq|, with
β = (s+1)/(s−1). This finishes the proof. �

The above theorem shows that the uncoordinated construction is indeed a s-
panner. To make the stretch factor as 1+ ε, we just take s = 1+2/ε in our spanner
construction. We also want to show that the spanner is sparse and has some oth-
er nice properties useful for our applications. For that we will first show that the
greedy WSPD algorithm will output a linear number of well-separated pairs, in the
next section.

7.3 A greedy algorithm for well-separated pair de-
composition

To show that the WSPD by the greedy algorithm has a linear number of pairs,
we actually show the connection of this WSPD with a specific WSPD constructed
by the deformable spanner [68], in the way that at most a constant number of pairs
in W is mapped to each well-separated pair constructed by the deformable spanner.
To be consistent, in the following description, the greedy WSPD is denoted by W

and the WSPD constructed by the deformable spanner is denoted by Ŵ .

7.3.1 Deformable spanner and WSPD

In this section, we review the basic definition of the deformable spanner and
some related properties, which will be used in our own algorithm analysis in the
next subsection.

Given a set of points P in the plane, a set of discrete centers with radii r is
defined to be the maximal set S ⊆ P that satisfies the covering property and the
separation property: any point p ∈ P is within distance r to some point p′ ∈ S; and
every two points in S are of distance at least r away from each other. In other words,
all the points in P can be covered by balls with radii r, whose centers are exactly
those points in the discrete center set S. And these balls do not cover other discrete
centers.

127

We now define a hierarchy of discrete centers in an recursive way. S0 is the
original point set P. Si is the discrete center set of Si−1 with radii 2i. Without loss of
generality we assume that the closest pair has distance 1 (as we can scale the point
set and do not change the combinatorial structure of the discrete center hierarchy).
Thus the number of levels of the discrete center hierarchy is logα, where α is the
aspect ratio of the point set P, defined as the ratio of the maximum pairwise distance
to the minimum pairwise distance, that is, α = max

u,v∈P
|uv|/ min

u,v∈P
|uv|. Since a point

p may stay in multiple consecutive levels and correspond to multiple nodes in the
discrete center hierarchy, we denote by p(i) the existence of p at level i. For each
point p(i−1) ∈ Si−1 on level i, it is within distance 2i from at least one other point
on level i+1. Thus we assign to p(i−1) a parent q(i) in Si such that |p(i−1)q(i)| ≤ 2i.
When there are multiple points in Si that cover p(i−1), we choose one as its parent
arbitrarily. We denote by P(p(i−1)) the parent of p(i−1) on level i. We denote by
P(i)(p) = P(P(i−1)(p)) the ancestor of p at level i.

The deformable spanner is based on the hierarchy, with all edges between two
points u and v in Si if |uv| ≤ c ·2i, where c is a constant equal to 4+16/ε.

Now we will restate some important properties of the deformable spanner that
will be useful in our algorithm analysis.

Lemma 30 (Packing Lemma [68]). In a point set S ⊆ Rd , if every two points are
at least distance r away from each other, then there can be at most (2R/r + 1)d

points in S within any ball with radii R.

Lemma 31 (Deformable spanner properties [68]). For a set of n points in Rd

with aspect ratio α,

1. For any point p ∈ S0, its ancestor P(i)(p) ∈ Si is of distance at most 2i+1

away from p.

2. Any point p ∈ Si has at most (1+2c)d −1 edges with other points of Si.

3. The deformable spanner Ĝ is a (1+ ε)-spanner G with O(n/εd) edges.

4. Ĝ has total weight O(|MST| · lgα/εd+1), where |MST| is the weight of the
minimal spanning tree of the point set S.

As shown in [68], the deformable spanner implies a well-separated pair de-
composition Ŵ by taking all the ‘cousin pairs’. Specifically, for a node p(i) on

128

level i, we denote by Pi the collection of points that are descent of p(i) (including
p(i) itself), called the descendants. Now we take the pair (Pi,Qi), the sets of de-
scendants of a cousin pair p(i) and q(i), i.e., p(i) and q(i) are not neighbors in level
i but their parents are neighbors in level i+1. This collection of pairs constitutes a
4
ε -well-separated pair decomposition. The size of Ŵ is bounded by the number of
cousin pairs and is shown to be O(n/εd).

7.3.2 Greedy well-separated pair decomposition has linear size

With the WSPD Ŵ constructed by the deformable spanner, we now prove that
the greedy WSPD W has linear size as well. The basic idea is to map the pairs in
W to the pairs in Ŵ and show that at most a constant number of pairs in W map
to the same pair in Ŵ .

Theorem 32. The greedy s-WSPD W has size O(nsd).

Proof. Suppose that we have constructed a deformable spanner DS with c =

4(s+ 1) and obtained an s-well-separated pair decomposition (WSPD) of it, call
it Ŵ , where s = c/4− 1. The size of Ŵ is O(nsd). The deformable spanner has
stretch 1+4/s. Now we will construct a map that takes each pair in W and map it
to a pair in Ŵ .

Each pair {P,Q} in W is created by considering the points inside the balls
Br(p),Br(q) with radii r = |pq|/(2+2s) around p,q. Now we consider the ances-
tors of p,q in the spanner DS respectively. There is a unique level i such that the
ancestor ui = P(i)(p) and vi = P(i)(q) do not have a spanner edge in between but the
ancestor ui+1 = P(i+1)(p) and vi+1 = P(i+1)(q) have an edge in between. The pair
ui, vi is a cousin pair by definition and thus the decedents of them correspond to an
s-well-separated pair in Ŵ . We say that the pair (Br(p),Br(q)) ∈ W maps to the
descendant pair (Pi,Qi) ∈ Ŵ .

By the discrete center hierarchy (Lemma 31), we show that,

|pq| ≥ |uivi|− |pui|− |qvi| ≥ |uivi|−2 ·2i+1 ≥ (c−4) ·2i.

The last inequality follows from that fact that ui,vi do not have an edge in the
spanner and |uivi|> c ·2i. On the other hand,

|pq| ≤ |pui+1|+ |ui+1vi+1|+ |qvi+1| ≤ 2 ·2i+2 + c ·2i+1 = 2(c+4) ·2i.

129

The last inequality follows from the fact that ui+1,vi+1 have an edge in the spanner
and |ui+1vi+1| ≤ c ·2i+1. Similarly, we have

c ·2i < |uivi| ≤ |uiui+1|+ |ui+1vi+1|+ |vivi+1| ≤ 2 ·2i+1 + c ·2i+1 = 2(c+2) ·2i.

Therefore the distance between p and q is c′ · |uivi|, where (c−4)/(2c+4)≤ c′ ≤
(2c+8)/c.

Now suppose two pair (Br1(p1),Br1(q1)), (Br2(p2),Br2(q2)) in W map to the
same pair ui and vi by the above process. Without loss of generality suppose that
p1,q1 are selected before p2,q2 in our greedy algorithm. Here is the observation:

1. |p1q1| = c′1 · |uivi|, |p2q2| = c′2 · |uivi|, r1 = |p1q1|/(2+ 2s) = c′1 · |uivi|/(2+
2s), r2 = c′2 · |uivi|/(2+ 2s), where (c− 4)/(2c+ 4) ≤ c′1,c

′
2 ≤ (2c+ 8)/c,

and r1, r2 are the radii of the balls for the two pairs respectively.

2. The reason that (p2,q2) can be selected in our greedy algorithm is that at least
one of p2 or q2 is outside the balls B(p1),B(q1), by Lemma 25. This says that
at least one of p2 or q2 is of distance r1 away from p1,q1.

Now we look at all the pairs (pℓ,qℓ) that are mapped to the same ancestor pair
(ui,vi). The pairs are ordered in the same order as they are constructed, i.e., p1,q1 is
the first pair selected in the greedy WSPD algorithm. Suppose rmin is the minimum
among all radius ri. rmin ≥ c/(2c+8) · |uivi|/(2+2s) = |uivi|/(4s+8). We group
these pairs in the following way. The first group H1 contains (p1,q1) and all the
pairs (pℓ,qℓ) that have pℓ within distance rmin/2 from p1. We say that (p1,q1) is
the representative pair in H1 and the other pairs in H1 are close to the pair (p1,q1).
The second group H2 contains, among all remaining pairs, the pair that was selected
in the greedy algorithm the earliest, and all the pairs that are close to it. We repeat
this process to group all the pairs into k groups, H1,H2, · · · ,Hk. For all the pairs in
each group H j, we have one representative pair, denoted by (p j,q j) and the rest of
the pairs in this group are close to it.

We first bound the number of pairs belonging to each group by a constant
with a packing argument. With our group criteria and the above observations, all
pℓ in the group H j are at most rmin away from each other. This means that the
qℓ’s must be far away — the qℓ’s must be at least distance rmin away from each
other, by Lemma 25. On the other hand, all the qℓ’s are descendant of the node
vi, so |viqℓ| ≤ 2i+1 by Theorem 31. That is, all the qℓ’s are within a ball of radius

130

2i+1 centered at vi. By the packing Lemma 30, the number of such qℓ’s is at most
(2 ·2i+1/rmin +1)d ≤ (2 ·2i+1(4s+8)/|uivi|+1)d ≤ (4(s+2)/(s+1)+1)d . This
is also the bound on the number of pairs inside each group.

Now we bound the number of different groups, i.e., the value k. For the rep-
resentative pairs of the k groups, (p1,q1),(p2,q2), · · · ,(pk,qk), all the pi’s must be
at least distance rmin/2 away from each other. Again these pi’s are all descendant
of ui and thus are within distance 2i+1 from ui. By a similar packing argument, the
number of such pi’s is bounded by (4 · 2i+1/rmin + 1)d ≤ (8(s+ 2)/(s+ 1)+ 1)d .
So the total number of pairs mapped to the same ancestor pair in Ŵ will be at most
(4(s+ 2)/(s+ 1)+ 1)d · (8(s+ 2)/(s+ 1)+ 1)d = (O(1+ 1/s))d . Thus the total
number of pairs in W is at most O(nsd). This finishes the proof. �

7.4 Size, degree and weight of the uncoordinated s-
panner

With the result that the greedy WSPD has linear size in the previous section
and the connection of the greedy WSPD with the uncoordinated spanner construc-
tion in Section 7.2, we immediately get the following theorem.

Theorem 33. The uncoordinated spanner with parameter s is a spanner with stretch
factor (s+1)/(s−1) and has O(nsd) number of edges.

Proof. The number of edges in the spanner is the same as the size of the greedy
WSPD W with the same parameter s constructed by selecting the same set of edges
in the same order. �

Theorem 34. The uncoordinated spanner has a maximal degree of O(lgα · sd) and
average degree O(sd).

Proof. With the same argument as in Theorem 32, each pair (p,q) built in the
uncoordinated spanner construction maps to a pair of ancestors (P(i)(p),P(i)(q))
in the deformable spanner that is a cousin pair. Consider all the edges of p in G,
(p,qℓ), that map to the same ancestor pair (P(i)(p),P(i)(q)). By a similar argument,
all the qℓ’s must be at least distance rmin away from each other (since all these pairs

131

have p as the first element in the pair). Thus we have the number of such edges
is bounded by (4(s+ 2)/(s+ 1) + 1)d . The cousin pairs associated with P(i)(p)
is at most 5d times the number of adjacent edges of P(i+1)(p), and is bounded by
5d · [(8s+9)d −1] (by Theorem 31). Since there are ⌊lgα⌋ levels, the total number
of edges associated with the node p is at most ⌊lgα⌋ · 5d · [(8s+ 9)d − 1] · (4(s+
2)/(s+1)+1)d . Then the maximal degree of the spanner is O(lgα · sd).

Since the spanner has total O(nsd) edges, the average degree is O(sd). �

Theorem 35. The uncoordinated spanner has total weight O(lgα · |MST| · sd+1).

Proof. Again we use the mapping of the uncoordinated spanner edges to the
cousin pairs in the deformable spanner DS, as in Theorem 32. We also use the same
notation here. Consider all the edges (pℓ,qℓ) that map to the same ancestor cousin
pair (ui,vi). We now map them to the edge between the parents of this cousin
pairs, i.e., edge ui+1vi+1 in DS. The pair (ui+1,vi+1) has at most 52d number of
cousin pairs. Thus at most (4(s+ 2)/(s+ 1)+ 1)d · (8(s+ 2)/(s+ 1)+ 1)d · 52d =

(O(1+1/s))d edges in G are mapped to one edge in DS.
Now we will bound the length of an edge pq in G and the edge ui+1vi+1 in

DS it maps to. From the proof of Theorem 32, we know that (c− 4) · 2i ≤ |pq| ≤
2(c+ 4) · 2i, where c = 4(s+ 1). In addition, |ui+1vi+1| ≤ 2c · 2i as ui+1vi+1 is an
edge in DS, and |ui+1vi+1| ≥ |uivi|−|ui+1ui|−|vi+1vi| ≥ c ·2i−2 ·2i+1 = (c−4) ·2i.
Thus, (c−4)/(2c)≤ |pq|/|ui+1vi+1| ≤ 2(c+4)/(c−4).

We now bound the total weight of the spanner G. We group all the edges
by the spanner edge in DS that they map to. Thus we have the total weight of G
is at most 2(c+ 4)/(c− 4) · (O(1+ 1/s))d the weight of DS. By Lemma 31, the
weight of DS is at most O(lgα · |MST| · sd+1). Thus the weight of G is at most
O(lgα · |MST| · sd+1). �

We remark here that independently Smid shows that the weight of the spanner
is bounded by O(logn · |MST| · sd+1) by using the weak gap property in [145].

132

7.5 Spanner construction and routing in P2P net-
works

The uncoordinated spanner construction can be applied for peer-to-peer sys-
tem design, to allow users to maintain a spanner in a distributed manner. For that,
we will first extend our spanner results to a metric with constant doubling dimen-
sion. The doubling dimension of a metric space (X ,d) is the smallest value γ such
that each ball of radius R can be covered by at most 2γ balls of radius R/2 [81].

Theorem 36. For n points and a metric space defined on them with constant dou-
bling dimension γ, the uncoordinated spanner construction outputs a spanner G with
stretch factor (s+ 1)/(s− 1), has total weight O(γ2 · lgα · |MST | · sO(γ)) and has
O(γ2 ·n · sO(γ)) number of edges. Also it has a maximal degree of O(γ · lgα · sO(γ))

and average degree O(γ · sO(γ)).

Proof. The proof follows almost the same as those in the previous section.
The deformable spanner can be applied for metrics with constant doubling dimen-
sion [68]. Whenever we use a geometric packing argument, we replace by the
property of metrics of constant doubling dimension. �

7.5.1 Distributed construction.

Now we would like to discuss the model of computing for P2P overlay de-
sign as well as the construction cost of the uncoordinated spanner. We assume that
there is already a mechanism maintained in the system such that any node x can
obtain the distance to any node y in O(1) time. For example, this can be done by
a TRACEROUTE command executed by x to the node y. We also assume that there
is a service answering near neighbor queries: given a node p and a distance r, re-
turn the neighbours within distance r from p. Such an oracle is often maintained in
distributed file sharing systems. Various structured P2P system support such func-
tion with low cost [106]. Even in unstructured system such as BitTorrent, the Ono
plugin is effective at locating nearby peers, with vanishingly small overheads [2].

The spanner edges are recorded in a distributed fashion so that no node has
the entire picture of the spanner topology. After each edge pq is constructed, the

133

peers p,q will inform their neighboring nodes (those in Br(p) and Br(q) with r =
|pq|/(2s+2)) that such an edge pq exists so that they will not try to connect to one
another. We assume that these messages are delivered immediately so that when
any newly built edge is informed to nodes of relevance. The number of messages
for this operation is bounded by |Br(p)|+ |Br(q)|. The amount of storage at each
node x is proportional to the number of well-separated pairs that include x. The
following theorem bounds the total number of such messages during the execution
of the algorithm and the amount of storage at each node.

Theorem 37. For the uncoordinated spanner G and the corresponding greedy
WSPD W = {(Pi,Qi)} with size m, each node x is included in at most O(sd lgα)
well-separated pairs in W . Thus,

∑m
i=1(|Pi|+ |Qi|) = O(nsd · lgα).

Proof. For each point x, each pair set it belongs to will be mapped to some
ancestor pair in some level in the corresponding deformable spanner. Let’s con-
sider the set pair (Pk,Qk) that are mapped to level i by selecting the point pair
(p,q), where x ∈ Pk. Suppose the ancestor pair is (p(i)(p), p(i)(q)). If x is the de-
scendent of p(i)(p), there are only a constant number of such pair sets mapped to
(p(i)(p), p(i)(q)) according to our previous argument, which means x will be cov-
ered only in a constant number of pair sets corresponding to this level. If x is
not the descendent of p(i)(p), then x may be mapped to different ancestor pairs
(p(i)(p), p(i)(q)). The corresponding radius with (p,q) is r = |pq|/(2 + 2s) ≤
(1+ 4/c)2i+2. In this case, 2i+1 < |p(i)(p)x| ≤ 2i+1 + r ≤ 2i+1 +(1+ 4/c)2i+2 =

(1 + 2/c)2i+2. According to Lemma 31, different p(i)(p) in level i must be at
least 2i away from each other. With packing argument, there can be at most
(((1+2/c)2i+1)d−(2i+1)d)/(2i−1)d =(4+8/c)d =(2/(s+1)+4)d−22d =O(sd)

different such p(i)(p). So x can only be covered in a constant number of different
pairs in level i which are not mapped to x’s ancestor. Combining the above argu-
ment, there are only O(sd) pair sets that cover x in each level i. And there are only
lgα different levels. So each node x is included in at most O(sd lgα) well-separated
pairs in W .

As there are only linear number of pairs, the last statement follows immediate-
ly. �

134

7.5.2 Distributed routing.

Although the spanner topology is implicitly stored on the nodes with each
node only knows some piece of it, we are actually able to do a distributed and local
routing on the spanner with only information available at the nodes such that the
path discovered has maximum stretch (s+1)/(s−1). This can be useful when we
would like to operate on the overlay topology only in a P2P application for security
concerns.

In particular, for any node p who has a message to send to node q, it is guaran-
teed that (p,q) is covered by a well-separated pair (Br(p′),Br(q′)) with p ∈ Br(p′)
and q ∈ Br(q′). By the construction algorithm, the edge p′q′, after constructed, is
informed to all nodes in Br(p′)∪Br(q′), including p. Thus p includes in the pack-
et a partial route with {p p′, p′q′,q′ q}. The notation p p′ means that p
will need to first find out the low-stretch path from p to the node p′ (inductively),
from where the edge p′q′ can be taken, such that with another low-stretch path to be
found out from q′ to q, the message can be delivered to q. This way of routing with
partial routing information stored with the packet is similar to the idea of source
routing [151] except that we do not include the full routing path at the source node.
By the same induction as used in the proof of spanner stretch (Theorem 29), the
final path is going to have stretch at most (s+ 1)/(s− 1). The number of hops is
bounded by d1/(1+lgs).

Theorem 38. For any two points p and q, d = |pq|, the distributed routing scheme
gives a path with at most h(d) = d1/(1+lgs) hops between p and q.

Proof. For any pair (p,q), it will be covered by a pair set (P,Q), which is
created by a pair (p′,q′). Then there is an edge between p′ and q′. The path
p ; q between p and q can be found in this way: p ; p′, p′q′,q′ ; q. Obviously
|pp′| ≤ r ≤ |pq|/(2s). We can get the recurrence h(|pq|) = h(|pp′|)+1+h(|qq′|)≤
h(|pq|/(2s))+ 1+ h(|pq|/(2s)), that is, h(d) = 2h(d/(2s))+ 1. Solve this recur-
rence we get h(d) = 2lg2s d+1 = 2lgd/ lg(2s)+1 = 2d1/(1+lgs). �

135

7.5.3 Nearest neighbor search.

By maintaining the spanner each node actually keeps its nearest neighbor auto-
matically. Recall that each point x keeps all the pairs (p,q) that create a ‘dumb-bell’
pair set covering x. Then we claim, among all these p, one of them must be the n-
earest neighbor of x. Otherwise, suppose y is the nearest neighbor of x, and y is
not one of p. But in the WSPD, (x,y) will belong to one of the pair set (Pi,Qi),
which correspond to a pair (p′,q′). Then there is a contradiction, as |xp′| < |xy|
implies that y is not the nearest neighbour of x. Thus one’s nearest neighbor is lo-
cally stored at this node already. According to Theorem 37, x will belong to at most
O(sd lgα) different pair sets. So the nearest neighbor is already locally stored and
by searching in worst case O(sd lgα) time one can find the nearest neighbor without
any communication.

7.6 Conclusion

This chapter aims to explain the emergence of good spanners from the behav-
iors of agents with their own interests. The results can be immediately applied to
the construction of good network overlays by distributed peers with incomplete in-
formation. For our future work we would like to explore incentive-based overlay
construction [59]. One problem faced in the current P2P system design is to reward
peers that contribute to the network maintenance or service quality and punish the
peers that try to take free rides [60,61,82,83,137,138]. We would like to extend the
results in this chapter and come up with a spanner construction with different qual-
ity of service for different peers to achieve fairness — those who build more edges
should have a smaller stretch to all other nodes and those who do not build many
edges are punished accordingly by making the distances to others slightly longer.

136

Chapter 8

Opportunistic Processing and Query
of Motion Trajectories in Wireless
Sensor Networks

8.1 Introduction

The development of wireless sensor networks has enabled the possibility of
large-scale and long-term environmental monitoring. One driving application for
such technologies is the tracking of targets with embedded sensor nodes in an un-
obtrusive manner, with the targets being rare animals (e.g., Petrel birds on great
duck island [108,150]) in habitat monitoring, or vehicles/humans in security appli-
cations. There has been a lot of prior work on tracking moving targets by distributed
sensors (see [80,94,143,157] and references therein). A few tracking systems have
also been deployed and evaluated in real testbeds [17, 86, 142].

A closely related problem for target tracking is the design of the interface
with which the target trajectories are accessed by the users. In habitat monitoring,
the most adopted approach has the sensors that detect a target record the detection
event in the data logger or report it to a base station, where the target trajectories
are assembled from the individual detections for post-experiment analysis. The
deployment of such a monitoring network is often one-time experiment with the
goal of collecting a sufficient amount of scientific data.

137

q

p

T1

T2

j

Figure 38. Opportunistic information dissemination: sensors waken up by a moving target will
record this detected event and help to disseminate information about other trajectories they have
learned so far to the descending sensor nodes. In this case, target T2 enters the sensor field after
target T1. The nodes in the trajectory T2 after the junction node j will learn the information of both
T1 and T2. A query message from q that visits one such node (p) is able to discover T1 as well.

In this chapter we are mainly motivated by the deployment of sensor nodes for
long-term monitoring in a civil environment with the goal of creating an intelligent
environment to support real-time sensing, situation understanding and knowledge
extraction. The detected data needs to be processed in a timely manner, and ac-
cessed by users residing in the same physical space, sometimes with stringent delay
requirements. The approach of reporting detection events to a base station in this
case has not fully explored the potential of collaborative information processing
enabled by a large number of networked sensor nodes. Further, storing all the data
at a central server has the problem that the central server represents a single point
of failure, and the communication cost for trajectory reporting for each individual
detection can be high when the number of moving targets is large.

8.1.1 Our approach

In this chapter we explore the potential of an orthogonal approach and employ
a low-cost processing and storage scheme for target trajectories in the network,
as well as an in-network query algorithm to retrieve the detected trajectories. As a
target moves, nearby sensors are triggered to record the signal signature (e.g., visual
or acoustic signatures) and the time stamp when the target was detected. Users live
in the same physical space and may inject queries to the network searching for the
existence of a particular target and its recent moving trails:

138

• Existence query: was there a red-color truck moving in the field in the past
half an hour?

• Trajectory report query: Report the trajectory of the red-color truck if it ever
appeared in the past half an hour.

The problem we study in this chapter involves how to store and process the moving
trajectories and how to answer queries efficiently with low delay for these moving
targets.

We exploit two naturally available opportunities to help with efficient in-
network trajectory query: (i) the continuity of the motion trajectory suggests that
the detection of one sensor on the trajectory allows us to locally follow the trajec-
tory and discover the entire path; (ii) the hand-over of nearby sensors that detect
the same target provides communication opportunities to exchange their respective
knowledge of previously detected targets. Thus, as a motion trajectory for a given
target ‘ages’, i.e., as more motion trajectories are detected afterwards, this target
trajectory becomes easier to find as its information is possibly widely disseminated
along the trajectories that newly develop. See the example in Figure 38. The tra-
jectory T2 arrives later than trajectory T1. As a sensor near T2 is waken up anyway
to record the signal signature of T2, it also communicates with the nearby precedent
and descent sensors for trajectory hand-over, and exchanges the signal signatures
of target trajectories each has learned so far. In particular, after the junction node
j located near both trajectories is triggered by T2, the information j knows (in this
case both T1 and T2) will be carried along the nodes near trajectory T2 afterwards.
When the trajectory T2 exits the region of interest, we may also disseminate along
the trajectory T2 backward the information accumulated all time along to aid trajec-
tory query with only a multiplicative factor 2 on the total communication cost. We
call this opportunistic information dissemination.

From a sensor node’s point of view, its task on information storage and pro-
cessing is extremely simple. When it is waken up by a target in its neighborhood
it will be activated to record the information of this particular target, as well as
the information carried over by the precedent sensor node along this trajectory. As
time goes by the information a target knows will accumulate. As trajectories that
are too old are becoming increasingly not interesting in many applications, we can
also associate an expiration time for each target trajectory. Trajectories that are too

139

old will be removed from the storage space of a node and a node only keep the K
newest trajectories sorted by their time stamps.

To query for a target with a given acoustic signature, we again exploit the s-
patial and temporal coherence of the motion trajectories. The query algorithm is
probabilistic and initiates query messages, each traveling along a random direction
from the query node (similar to rumor routing [28] and implemented by greedy ge-
ographical routing, e.g., in [99, 116]), until one of them has discovered a node with
information about the given target trajectory, or when the number of query trials
exceeds a threshold, the trajectory in question is either not existing, too short or
too new. In general, the number of query messages issued depends on the length
of the trajectory to be searched (a trajectory that cuts corners is unlikely to be dis-
covered by a random query path), and its age (defined as the number of trajectories
that enter the sensor field afterwards; as more trajectories develop, the chance to be
discovered increases).

To summarize, both the target detection and target query are locally processed
in the network and do not assume a central server. Unlike the approach of gathering
trajectory knowledge at a central server in which the communication cost increases
with the number of targets, here more target trajectories will provide more oppor-
tunities and reduce the cost for trajectory queries. This makes the in-network pro-
cessing and query scheme attractive in the scenarios with ‘heavy traffic’ and those
when real-time access of the trajectories are desirable.

In this chapter we analyzed the probability that a random query discovers a
given trajectory, with respect to its length and age (under opportunistic informa-
tion dissemination). We also evaluated the performance of the system, in terms
of the query success rate and communication cost, as well as storage requirement.
The results show the effectiveness of opportunistic information dissemination. A
trajectory with a reasonable length/appearance can be discovered on average with
only a couple of queries as long as there have been a few trajectories that helped to
disseminate it.

140

8.1.2 Related work

Data storage and retrieval in a distributed sensor network is a major architec-
tural component and has attracted a lot of interest in recent years. Existing da-
ta discovery approaches can be classified as data-centric routing [9, 88, 90, 107]
and data-centric storage [129]. In data-centric routing, limited preprocessing is un-
dertaken and the query actively searches in the network for relevant data. Data
is aggregated along the routing paths back to the user to reduce communication
cost [40, 117, 141]. In data-centric storage, the discovered data is preprocessed and
stored in the distributed sensors. Partial aggregates can also be evaluated to facili-
tate complex multi-dimensional queries [65, 67, 76, 135].

Our scheme belongs to the data-centric storage category. The major difference
in this chapter is to exploit the spatial structure in the data itself – for both efficiently
querying the trajectory and for helping to disseminate knowledge around without
incurring additional communication costs.

The query algorithm is in spirit similar with rumor routing [28], and double
rulings schemes [57,105,134,149]. In double rulings scheme, a data source (i.e., the
sensor node with detected information) will take some specially designed routing
paths to disseminate the data availability information. A query from a node will
take another special routing path searching for the available data indices. In our
setting information about the data source is naturally carried by the target itself and
thus the dissemination stage is simple and implicit. The rigorous analysis of how
information is disseminated in the network will also apply to rumor routing and
supplement the experimental study in [28].

Remotely related to the work here, the idea of exploiting existing communi-
cation opportunities also appears in other settings such as opportunistic routing to
improve network throughput [25].

In the remaining of the chapter we first present the analytical results in calcu-
lating the query success probability under opportunistic information dissemination.
The analysis is complemented by simulations in section 8.3.

141

8.2 Trajectory Queries

We have a sensor field in which the sensors are used to track moving target-
s. Each target possibly enters and exits anywhere in the field. A sensor near the
motion trajectory is waken up, say, by a high acoustic signal in its vicinity. These
sensors then record a signal signature specifying the characteristics of the target
detected. Naturally all the sensors near or on the trajectories detect the target and
store the target signature. By movement continuity, the sensors are laid out along a
curve connecting the entrance and exit of the target in the sensor field. We explore
schemes on how these trajectories are stored and pre-processed and how a query
node can efficiently extract a target trajectory given its signature.

8.2.1 Probabilistic queries

We first analyze in-network query without opportunistic information dissem-
ination. When there is no preprocessing, only the sensor nodes on the trajectory
have knowledge about the target. Thus the problem is to figure out one of these
sensor nodes (for existence query), and possibly follow the trajectory (for trajecto-
ry report query). We explore a probabilistic query scheme in which the query node
sends a query message along a random line, hoping that this message will hit one
node on the trajectory of interest. In particular, for a line ℓ through the query point
q, two query messages are sent out traveling in opposite directions, one along each
ray from q. A query message will return when it hits a node on the trajectory or
when it hits the sensor network boundary, in which case the query returns and does
not discover the trajectory.

The query node can send out multiple such random queries to increase the
chance that one of them discovers the data. The probability that a random query
finds out the given trajectory, as well as the average number of query messages
needed to eventually discover it with a sufficiently high probability, depend greatly
on the specific shape of the trajectory. If a trajectory cuts the corner of the sen-
sor field, i.e., the exit node is very close to the entrance node on the sensor field
boundary, it is more difficult to discover it.

In the following analysis we start with a simple case when the target moves
along a straight line and always enters and exits the sensor field at some boundary

142

nodes, i.e., we assume no target appears or disappears inside the sensor field. Then
we move on to the case of an arbitrary trajectory.

8.2.1.1 Query on straight-line trajectories

We analyze the cost of a query initiated at a node distributed uniformly ran-
domly in the sensor field. This scenario captures the average-case query cost for
all possible positions.

A query message travels along a random direction. Since the analysis is al-
l probabilistic, we will need to define rigorously what we mean by a ‘random
line’ [146]. Here we will analyze three possible ways to generate a random query.
In the first definition, a query travels along a line connecting the query node q with
a random point w on the sensor field boundary, with w uniformly distributed along
the boundary. We call this model the random boundary point model. In the sec-
ond definition, a query travels along a line with angle θ counter-clockwise from
the positive x-axis, where θ is taken uniformly randomly from 0 to 2π. This model
is called the random angle model. In the third definition, a query travels along a
random chord, defined as the chord connecting two random boundary nodes. This
is called the random chord model.

Of course, different ways to define a random line will lead to different prob-
ability measures but we will show below that they differ by only a constant factor.
In our algorithm we implemented the random angle model as it only uses local
knowledge. When the sensor nodes know their locations, or have a local compass,
the query can be routed with only local knowledge, in the same way as compass
routing [99]. In the analytical result for the opportunistic information dissemina-
tion (subsection 8.2.2) we use the random chord model as that makes the analysis
easier.

In what follows we assume the sensors are deployed uniformly randomly in
a disk. We define the effective length of a trajectory by the distance between the
entrance and exit nodes along the sensor field boundary. Without loss of generality
we can assume the total length of the sensor field boundary is 1. We assume the
length of the trajectory between 0 and 1

2 , due to symmetry. These assumptions will
be relaxed later for a generic probabilistic analysis in section 8.2.1.2.

143

Now we will analyze the probability that a random line intersects with the tra-
jectory and the total query cost in order to guarantee that the trajectory is discovered
with probability at least 1− ε, by using the above two different ways of generating
a random query.

Random boundary point model. Given a motion trajectory of length ℓ, suppose
that the query starts from a given query node q. A random query is selected to
follow the line through q and a random point on the sensor network boundary. We
now bound the probability that this query finds the desired trajectory.

Lemma 39. The probability of a random query (in the random boundary point
model) intersecting the given motion trajectory with effective length ℓ is p1(ℓ) =

2ℓ−2ℓ2 +(ℓ−1/2) sin2πℓ
π .

Proof. As Figure 39 (i) shows, if the query point locates in area A, then the
probability that it generates a query that hits the given trajectory is 1− ℓ, otherwise
the probability is ℓ. The probability that the query point locates in area A is (πr2 ·
2πℓ
2π − 1

2 · 2r sinπℓ·r cosπℓ)/(πr2) = ℓ− sin2πℓ
2π . So the probability that a random

query point hits the given trajectory is (1− ℓ)(ℓ− sin2πℓ
2π)+ ℓ(1− (ℓ− sin2πℓ

2π)) =

2ℓ−2ℓ2 + ℓsin2πℓ
π − sin2πℓ

2π . �

B

A
O

2θ2

2θ2

A

B

2θ1

A′

B′

(i) (ii)

Figure 39. (i) When the query point locates in A or B, it has different probability to send a query
intersecting the given trajectory. (ii) Two chords have an intersection.

144

Theorem 40. Given a trajectory with length ℓ and a number ε ∈ (0,1), with
K1(ℓ,ε)≥ 1

ℓ ln1/ε query lines under the random boundary point model, the proba-
bility to hit the given trajectory is greater than 1− ε.

Proof. The probability that all the k random query lines do not hit the given
trajectory is (1− p1(ℓ))

k, where p1(ℓ) is as defined in Lemma 39. So the probability
that at least one random query lines hit that trajectory is 1− (1− p1(ℓ))

k. We need
1− (1− p1(ℓ))

k ≥ 1− ε, that is (1− p1(ℓ))
k ≤ ε, i.e., (1− (2ℓ− 2ℓ2 + ℓsin2πℓ

π −
sin2πℓ

2π))k ≤ ε. As ℓ≤ 1
2 , ℓsin2πℓ

π − sin2πℓ
2π = sin2πℓ

π (ℓ− 1
2)≤ 2ℓ(ℓ− 1

2).
We want ε ≥ (1− 2ℓ+ 2ℓ2 − 2ℓ(ℓ− 1/2))k = (1− ℓ)k. So k ≥ ln1/ε

ln1/(1−ℓ) , as

ln 1
1−ℓ > ℓ, then ln1/ε

ln1/(1−ℓ) ≤
1
ℓ ln 1

ε . Then K1(ℓ,ε) ≥ 1
ℓ ln 1

ε is enough to meet the
probability requirement. �

Random angle model. In the second model, the query line is chosen as the line
through a given query point with a random angle relative to the positive x-axis.
Again, we consider the expected cost with respect to a random query point. We
start with a technical lemma.

Recall that the central angle of a chord AB with two endpoints A,B on the
circle boundary is the angle∠AOB where O is the center of the circle. The inscribed
angle is exactly half of the central angle and is in between 0 and π/2. The following
lemma is independent of the definition of a random line.

Lemma 41. The probability that two random chords with inscribed angles θ1 (0 ≤
θ1 ≤ π

2) and θ2 (0≤ θ2 ≤ π
2) intersect within the circle is Prob{intersection|θ1,θ2}=

2
π min(θ1,θ2). Specifically, when one chord (say the one with half angle θ1)
is given, then the probability is Prob{intersection|θ1} = 2

π
∫ θ1

0 θ2 f (θ2)dθ2 +
2
π
∫ π/2

θ1
θ1 f (θ2)dθ2, where f (θ) is the probability density function of the random

variable θ.

Proof. Without loss of generality, suppose θ1 > θ2. Once chord 1, say AB,
has been placed, chord 2 will intersect chord 1 if and only if one endpoint
falls inside the arc AB and another endpoint falls inside AA′ or BB′ (see Fig-
ure 39 (ii)). The probability for this to happen is 2θ2

π . Thus we have obtained

145

Prob{intersection|θ1,θ2} = 2
π min(θ1,θ2). When chord 1 is given, the probabil-

ity that a second random chord intersects chord 1 is Prob{intersection|θ1} =
2
π
∫ π/2

0 min(θ1,θ2) f (θ2)dθ2 =
2
π
∫ θ1

0 θ2 f (θ2)dθ2 +
2
π
∫ π/2

θ1
θ1 f (θ2)dθ2, where f (θ)

depends on the probabilistic model we use to define a ‘random chord’. �
Now we will consider the case that a random chord is generated by dropping a

point at random in the circle and drawing a chord through that point in a randomly
chosen direction.

Lemma 42. Assume that the random point falls at a distance r from the center of
the circle, and the random chord is selected by taking a randomly chosen direction
through that point. Now the chord intercepts an arc of inscribed angle θ. Under
this model, the density function f (θ|r) = 2r sinθ

π
√

r2−cos2 θ
, and f (θ) = 4

π sin2 θ, where
0 ≤ θ ≤ π

2 .

Proof. Refer to [146][Page 139]. �
From Lemma 41 and Lemma 42, we can get the following theorem. The

proofs are omitted.

Lemma 43. For a given trajectory with length ℓ, and a query point randomly placed
inside the disk, generate a random query by choosing a direction randomly, then the
probability that the query will hit the trajectory is p2(ℓ) = 2(πθ1−θ2

1+sin2 θ1)/π2,
where θ1 = πℓ.

Proof. The trajectory of length ℓ has an inscribed angle θ1 = πℓ. By Lemma 41,
the probability that this trajectory is intersected by a random query is p2(ℓ) and
substitute f (θ) by 4

π sin2 θ. Then p2(ℓ) =
2
π
∫ θ1

0 θ2 f (θ2)dθ2 +
2
π
∫ π/2

θ1
θ1 f (θ2)dθ2

= 2
π
∫ θ1

0 θ2
4
π sin2 θ2dθ2 +

2
π
∫ π/2

θ1
θ1

4
π sin2 θ2dθ2

= 2(πθ1 −θ2
1 + sin2 θ1)/π2. �

Theorem 44. Given a trajectory with length ℓ and ε (0 < ε < 1), with K2(ℓ,ε) ≥
1
ℓ ln1/ε query lines under the random angle model, the probability to hit the given
trajectory is greater than 1− ε.

Proof. Suppose θ1 = πℓ. Similar to Theorem 40, for k queries to find the trajec-
tory T , we need

146

k ≥ ln(1/ε)
ln(1/(1−2(πθ1−θ2

1+sinθ2
1)/π2))

.

The right hand side is at most ln1/ε
2(πθ1−θ2

1+sin2 θ1)/π2 ≤
ln1/ε

(πθ1)/π2 =
1
ℓ ln1/ε. So K2(ℓ,ε)≥

1
ℓ ln1/ε is enough to meet the probability requirement. �

Random chord model. In the random chord model, the query is taken as a ran-
dom chord with its two endpoints chosen uniformly random on the network bound-
ary.

Lemma 45. Given a trajectory with effective length ℓ, a random query under the
random chord model will discover it with probability p3(ℓ) = 2ℓ−2ℓ2.

Proof. p3(ℓ) = 1− (ℓ2 +(1− ℓ)2) = 2ℓ−2ℓ2. �

Theorem 46. Given a trajectory with length ℓ and a number ε ∈ (0,1), with
K3(ℓ,ε) ≥ 1

ℓ ln1/ε query lines under the random chord model, the probability to
hit the given trajectory is great than 1− ε.

The proof is similar to Theorem 44 and omitted.

8.2.1.2 Query on trajectories of arbitrary shape

In general, a motion trajectory can have any shape. And a target may start
(appear) or stop (disappear) anywhere in the sensor field. We can use the same
random query to search for such trajectories. The probability that a random query
message discovers a target trajectory also depends on its shape and length.

To analyze the cost of such random queries, we will make use of standard
geometric probability. A query starts from the query node and follows a random
line with angle θ counter-clockwise from the positive x axis (i.e., the random angle
model). We define the length of a trajectory as the perimeter of the convex hull of
the trajectory. In a degenerate case when the trajectory is a straight line segment,
the length is defined as twice its Euclidean length.

Specifically, the trajectory T has length ℓ. A random line G is represented by
two parameters r and θ, where r is the distance from the origin to the line, and

147

O

A

B

r

θ

Figure 40. A random line with distance r from the origin and angle θ between its normal and the
positive x-axis.

θ is the angle formed by the normal to the line and the x-axis. Both r and θ are
uniformly randomly chosen among their respective ranges. As we will see later,
that this definition of a random query line also gives a similar bound on the query
success probability. See Figure 40.

By geometric probability the collection of lines that intersect a curve is repre-
sented precisely by the length of the curve [146].

Lemma 47 ([146]). The measure of the set of straight lines that intersect a curve
C is its length ℓ. That is

∫
G
∩

T ̸= /0 dG =
∫

G
∩

T ̸= /0 dr∧dθ =
∫ 2π

0 rdθ = ℓ.

Now suppose T1 is a chord of Euclidean length ℓ1 inside a region R . Then the
chord is a degenerate rectangle with perimeter 2ℓ1. When R is a disk with radius
R, then ℓ1 = 2Rsinπℓ, where ℓ is the effective length of the chord.

Lemma 48 ([146]). The probability that a random line intersecting R with effec-

tive length ℓ intersects with a trajectory T1 of length ℓ1, is given by
∫

G
∩

T1
dG∫

G
∩

R dG = 2ℓ1
ℓ .

Especially, when R is a disk, the probability is 2sinπℓ
π .

Now we can extend the theorem to the general case.

Theorem 49. Given a convex boundary field with perimeter L, a trajectory with
effective length ℓ and a constant ε (0 < ε < 1), the number of random query lines to
hit the given trajectory with probability great than 1− ε is L

2ℓ ln 1
ε .

148

The proof is similar to Theorem 44.
Despite various models of random queries, the analysis arrives at very similar

results. This will be useful in the next section as we analyze the scheme of using
motion trajectories themselves to disseminate information.

8.2.2 Opportunistic information propagation

In many tracking applications the targets being tracked come in the monitored
field at different points in time. We can make use of the temporal diversity and per-
form opportunistic information propagation. To simplify the analysis, we assume
that the targets come in the field one by one. When a new target moves in the field,
some of the sensors nodes on its trajectory may have already had stored signatures
of other targets that have passed by. Thus a sensor node waken up by a new tar-
get should take the opportunity to propagate the information it has recorded so far.
Naturally as a target enters the field, the node along the trajectory will hand over
the knowledge it has learned to the next node on the trajectory. After a target exits
the monitored field, a backward propagation may also be conducted such that all
the nodes on the trajectory share the union of the signal signatures of them. In the
analysis for simplicity we assume the backward propagation. In our simulations we
do not conduct backward propagation. By using opportunistic information propa-
gation, a target signature is known not only to nodes along its trajectory but also
possibly carried to other nodes by the targets that come in afterwards. The longer a
signature exists in the system, the wider it gets propagated in the sensor field. We
thus give each motion trajectory an age which is the number of targets that come in
after itself, but before the query is initiated.

Suppose there are two trajectories A and B that show up in the monitored field
sequentially. They have effective lengths ℓA and ℓB respectively. Say a node sends
a random query along the line C. Then there are two possibilities for the query
to discover the trajectory A, either because C intersects with A directly or because
C intersects with B which intersected with A and helped to propagate information
about A.

Here is an interesting tradeoff — the older a trajectory is, the easier to query

149

c

b

a

Figure 41. The query line C crosses another trajectory B, and B crosses the trajectory A.

for it; yet a detection long time ago was not going to be interesting from many real-
time applications’ point of view. The number of trajectories kept at each node is
also bounded by the storage requirement. In the following analysis we will evaluate
the minimum ‘lifetime’ of a trajectory, that is, how old a trajectory needs to be, in
order to keep the query success rate high. Thus a sensor node would only record
the newest k trajectories it has learned, where k is taken as the lifetime above or as
application requires.

We remark that as our queries are also probabilistic, we can also take the
communication opportunities provided by queries issued in the network to further
spread information around. In this case a query is simply regarded as a ‘fake’ target
trajectory and can be treated the same as the other real ones.

8.2.2.1 Technical lemmas

We start by some technical lemmas to be used later. We assume that each
trajectory has a random entrance point and a random exit of the sensor field. It can
be modeled as the chord connecting two endpoints selected uniformly randomly on
the sensor field boundary. Recall that the effective length of a trajectory is defined
with respect to its entrance and exit points on the sensor network boundary, which
partition the sensor network boundary into two segments, one is longer than the
other. The effective length is taken as the normalized length of the shorter segment
and is always smaller than 1/2.

150

Corollary 50. Two random trajectories intersect with each other with probability
2/3.

Proof. We will integrate over p3(ℓ) for 0 ≤ ℓ≤ 1/2 and obtain 2
∫ 1/2
ℓ=0 p3(ℓ)dℓ=

2/3. �

Lemma 51. Given n random chords, the probability that they form a connected
network is at least 1−O(1/n).

Proof. Each random chord connects two random points on the network boundary.
Denote by the random endpoints as xi,yi. And the collection of these endpoints
form a cyclic permutation of 2n points on the network boundary. If the trajectories
do not form a connected network, one can partition the set of endpoints into 2
groups with 2k and 2n − 2k endpoints each, consecutively distributed along the
sensor network boundary, 1 ≤ k ≤ n− 1, such that no chord chooses its endpoints
in different groups. Now we calculate the probability for this to happen:

Prob{n random trajectories are not connected}
≤ f (n) =

∑n−1
k=1

(n
k

)
/
(2n

2k

)
= 1

2n−1 · [
∑n−2

k=1
(n−1

k

)
/
(2n−2

2k

)
· (2n−2k−1)+1]

≤ 1
2n−1 · [f (n−1) ·n+1].

The last inequality uses the symmetry of the series
(n

k

)
/
(2n

2k

)
in terms of k and

sums up the first element with the last element, the 2nd element with the second last
element and so on. We can check that if f (n−1)≤ c

2n−3 , for c ≥ 5 and n ≥ 4,

f (n) ≤ 1
2n−1 · [f (n−1) ·n+1]

≤ 1
2n−1 · [

cn
2n−3 +1]≤ c

2n−1 .

Thus with probability at least 1−O(1/n) the random trajectories are connected. �

Corollary 52. Given n random chords, the probability that at least n− h of them
form a connected network is at least 1−O(1/nh).

Proof. We calculate the probability q(n,h) as the probability that the largest con-
nected component has size at most n−h. With a similar argument as the previous
lemma, if the largest connected component has size ≤ n− h, we can partition the

151

endpoints into 2 groups with 2k and 2n−2k with h ≤ k ≤ n−h such that each chord
chooses its endpoints within one group only. We have

q(n,h) = Prob{# largest connected component ≤ n−h}
≤ f (n,h) =

∑n−h
k=h

(n
k

)
/
(2n

2k

)
= f (n−1,h) · n

2n−1 +
(n

h

)
/
(2n

2h

)
.

For large n and a small constant h, we have
(n

h

)
≈ nh

h! ,
(2n

2h

)
≈ n2h

(2h)! . One can then
verify that f (n,h) = O(1/nh). Thus the probability that at least there is a connected
network of n−h chords is 1−O(1/nh).

�
Given a set of n connected random trajectories, define the separation length

of this set as the maximum distance between the adjacent endpoints on the network
boundary, normalized by the total length of the perimeter of the sensor network.

Lemma 53. Given n connected random trajectories, the separation length is in ex-
pectation 1

2n and c lnn
n with probability at least 1−O(1/n), for a constant c.

Proof. The analysis follows from the standard random sampling tech-
niques [113]. A short remark is that the endpoints are randomly selected on the
network boundary. We can ignore the fact that the trajectories are connected be-
cause this only determines the combinatorics of how the endpoints are paired up to
n chords. �

Lemma 54. For n random chords that form a connected trajectory network E, any
random chord intersects the union of these chords with probability at least 1 −
O(ln2 n/n).

Proof. Given that the random chords form a connected network, the endpoints
of these chords partition the network boundary into 2n segments ℓi, 1 ≤ i ≤ 2n.∑2n

i=1 ℓi = 1. Therefore, the probability that a random chord does not intersect this
trajectory network is 1−

∑2n
i=1 ℓ

2
i . With probability 1−O(1/n), ℓi ≤ c lnn

n for all i
(denoted by event A). Therefore the probability that a random chord will intersect

152

the trajectory network is

p4(n) = Prob{a random chord intersects E}
≥ Prob{a random chord intersects E|A}(1−O(1/n))
= (1−

∑2n
i=1 ℓ

2
i) · (1−O(1/n))

≥ 1−O(ln2 n/n).

�

8.2.2.2 Opportunistic information dissemination

We will now analyze how the trajectories that come after a particular trajectory
T can help to disseminate information about T . Notice that now the sequence of the
trajectories showing up matters in how information gets propagated in the network.
In particular, we define a dissemination network of n trajectories such that the i-
th trajectory comes after the (i − 1)-th trajectory and intersects with one of the
previous trajectories. We now analyze the probability that a dissemination network
of n trajectories is formed and how it helps to disseminate the information about
a random trajectory T such that a random query will be able to retrieve T with
probability 1− ε, for 0 < ε < 1. In this subsection we use the random chord model
for a random query.

Consider f trajectories entering the field one by one after a trajectory T . We
examine how large f should be in order to form a dissemination network with n
trajectories to help disseminate information about T . We will divide the process
into epoches such that after epoch 1 we have another trajectory T1 that intersects T .
The union of the trajectories T1 and T is the dissemination network N1 after epoch
1. Similarly, after epoch i we have a trajectory Ti that intersects with the current
trajectory network Ni−1 and the trajectory network Ni is updated to include Ti as
well. Denote by fi the number of trajectories in epoch i and take f =

∑n
i=1 fi as the

total number of trajectories. Now we calculate the expected number of fi. Recall
that a trajectory will intersect a trajectory network of size i− 1 with probability at
least 1− c ln2 i/i, for a constant c, by Lemma 54. Thus the expected number of
trajectories in epoch i would be at most 1/(1− c ln2 i/i). Therefore the expected

153

total number of trajectories to obtain a network of size n is

E(f) =
n∑

i=1

E(fi)≤
n∑

i=1

1/(1− c ln2 i/i) = n+o(n).

We also calculate the variance of f . As fi’s are independent of each other
and each fi has a geometric distribution of probability at least 1− c ln2 i/i, then
V (fi)≤ c ln2 i/i

(1−c ln2 i/i)2 .

V (f) =
∑n

i=1V (fi)≤
∑n

i=1(c ln2 i/i)/(1−2c ln2 i/i)
= c ln3 n+o(ln3 n).

Now we can calculate the probability that f is greater than (1+δ)n, by Chebyshev
inequality:

Prob{ f ≥ n+δn} ≤ 1/(δn/V (f))2 = c2 ln6 n/(δ2n2).

Now we can summarize the main result for opportunistic information dissemina-
tion, by combining the analysis above and Lemma 54.

Theorem 55. Assuming the trajectories are random, a trajectory T with age a can
be discovered by a random query with probability 1−O(ln2 a/a).

Proof. By the analysis above, the trajectories after T will form a dissemina-
tion network of a/(1 + δ) trajectories with probability at least 1 − c2 ln6 a(1 +

δ)2/(δ2a2), for a constant δ < 1. Further, the probability that a query will find
out information about T from the dissemination network is at least 1−O(ln2 a/a),
from Lemma 54. Therefore the probability that a random trajectory with age a will
be discovered with probability 1−O(ln2 a/a). �

Corollary 56. Assuming the trajectories are random, the number of queries to dis-
cover a random trajectory with age a with probability 1− ε is Ω(ln(1/ε)

lna).

Proof. The probability that k random queries do not discover the trajectory T
with age a is (O(ln2 a/a))k ≤ ε. Thus k ≥ Ω(ln(1/ε)/ lna). �

During the opportunistic dissemination process, each node has to store all the
trajectory information that the trajectory carries. So the storage space will increase

154

with time. Here we will give an analysis on how long should the information of
a trajectory be kept for the purpose of opportunistic dissemination. That is the
expiration time for a given trajectory.

For a trajectory with length ℓ, the probability that another random trajectory
will intersect with it is p = 2ℓ(1− ℓ). Suppose its age is a. We want to calculate
the proper value of age a, so that the trajectory with length ℓ can be discovered in
constant times of queries after age a. The expected number of queries to discover a
trajectory with length ℓ after age a is

N(ℓ,a) = Prob{∃ one trajectory that hits T} · c1+

Prob{@ trajectory that hits T} ·1/p
= [1− (1− p)a] · c1 +(1− p)a ·1/p,

for a constant c1. We want N(ℓ,a), that is, (1− p)a · 1/p to be a constant. That
means (1− p)a = c · p, for a constant c. Now we have a = ln1/(cp)

ln1/(1−p) ≤
ln1/ℓ

2ℓ(1−ℓ) . So

for small ℓ, we need a ≈ c′ ln1/ℓ
ℓ , where c′ is a constant.

From the above analysis, a trajectory does not need to be kept forever for the
purpose of opportunistic dissemination. Each trajectory with (normalized) length ℓ

only needs to be kept for an age of c′ ln1/ℓ
ℓ . In this way, the storage requirement at

each node will be reduced significantly, yet still have the trajectories to be discov-
ered with a small number of queries.

8.3 Simulations

Our previous analysis focuses on the asymptotic bound of the number of
queries for a given target. The simulation results below give an idea of the number
of queries needed in a practical setting, as well as the tradeoff of storage require-
ment versus the query cost. We evaluate the opportunistic dissemination and in-
network query scheme by simulations on random trajectories, and compare it with
the scheme without opportunistic dissemination (i.e., only the nodes near the tar-
get trajectory record information about it). In particular, we evaluate the following
three important measures:

• The number of queries issued to search for a given trajectory with respect to
its length and age.

155

• The total communication cost comparison between the opportunistic dissem-
ination scheme and the scheme without opportunistic dissemination. Note
that the cost includes both the preprocessing cost and the query cost.

• The storage requirement at each node.

In the simulation, we generate a network with sensor nodes uniformly ran-
domly distributed in a circular field with radius 25. We use a unit disk graph model
with a communication range of 1. The average degree of the sensor network is
about 7. The trajectories are randomly generated within the sensor field with the
entrance and exit points taken randomly on the sensor field boundary. The nodes
within distance 1 from the trajectory are waken up to record and disseminate in-
formation about the trajectory. In all our following simulations, we generate 500
random trajectories before starting the query.

Queries are initiated at nodes randomly chosen inside the sensor field. For
a particular query, the query messages follows a randomly chosen direction until
either it visits some sensor node that contains information about the desired trajec-
tory, in which case the information is returned back to the query node; or it hits the
sensor field boundary, in which case the query is not successful and another query
is generated. Routing of a query is done by greedy geographical routing.

In the simulation we focus on trajectory existence query that answers whether
or not a trajectory with a given ID was present or not. With trajectory report queries,
we need to record not simply an ID but also the detailed trajectory information.

8.3.1 Query number v.s. age and length

We examine the relationship of the number of queries to find a trajectory with
its age and length. We randomly choose a query point for each trajectory and repeat
this process for 100 times. We divide the age and length into small ranges and take
the average query number for all the trajectories with the (age, length) combination
falling into the same bucket. Here the trajectory length is measured by its Euclidean
length, normalized by the network size. The age of a trajectory is the number of
trajectories detected after it but before the query is issued. In this experiment we
assume each node keeps every trajectory it detects or exchanges from its neighbors
during opportunistic dissemination.

156

Figure 42. Left: The query number for a trajectory with different lengths and different ages with
opportunistic dissemination. Right: The query number for a trajectory with different lengths and
different ages without opportunistic dissemination.

From Figure 42, in opportunistic dissemination scheme, the query number will
be reduced greatly with the increasing of age or length. When either the age or
length is large enough, the query number is close to 1. Without opportunistic dis-
semination, the query number just relates to the length, and can be much larger than
that of the trajectory with similar length in opportunistic dissemination scheme.

8.3.2 Required storage size

In this simulation, we will evaluate the affect of the storage size on the query
number. Here, storage size means how many trajectory each node will keep. There
is a tradeoff between the preprocess cost and the query cost, which is greatly affect-
ed by the storage size.

We have different ways to choose which trajectories will be kept depending
on different requirement. For example, if we choose to keep the most frequent-
ly queried trajectory, it will help to distribute the popular trajectories, which may
dominate the total communication cost and will help to reduce the total communi-
cation cost.

In our simulation, we simply choose the most recent k trajectories, where k is
the storage size. But each node will always keep the trajectories that it detects.

From Figure 43, and the left Figure 42, we can see the affect of the storage
size on the query number. With an increasing storage size, the query number for

157

Figure 43. Left: The query number for a trajectory with different lengths and different ages with
opportunistic when the storage size is 100. Right: The query number for a trajectory with different
lengths and different ages with opportunistic when the storage size is 50.

most trajectories will be reduced. When the storage size decreases, old trajectories
will be removed from some nodes, so cost for the old enough trajectories will be
increased greatly.

The best storage size chosen in the scheme will depend on users’ requirement.
In our simulation, 100 (or around 100) seems to be a reasonable storage size for
queries of the past 500 trajectories. As we are typically interested in querying
recent trajectories, so a small storage size will work out fine. If we hope to query
old trajectories, then we need larger storage size. The best storage size will vary
significantly as the topologies and density of sensor nodes change. In practice one
can use an adaptive algorithm to gradually reduce the storage size while still meet
the delay requirement. This remains as future work.

8.3.3 Communication cost

We compare the communication cost in the situations with and without oppor-
tunistic dissemination. If we just consider the query cost, obviously it is better to
adopt the opportunistic dissemination scheme. However, we have to pay additional
cost for opportunistic dissemination, which is called the preprocessing cost. There
is no preprocessing cost without the opportunistic dissemination, but the query cost
is higher. So we will evaluate the the overall communication cost including both
the preprocessing cost and the query cost for a certain query frequency.

158

Figure 44. Left: The average communication cost by querying each trajectory 100 times under
opportunistic dissemination. Middle: The average communication cost by querying each trajecto-
ry(with age less than 200) 100 times under opportunistic dissemination. Right: The average com-
munication cost by querying each trajectory 100 times with no opportunistic dissemination.

We use the summed packet size to evaluate the communication cost. We adopt
36 bytes as the overhead for packet header from TinyOS. We assume 1 byte cost
for each trajectory ID stored at the sensor node during the information exchange.
For convenience, we consider the communication cost as the packet size divided
by 36. Under this assumption, each packet adds 1 to the communication cost with-
out opportunistic dissemination. With opportunistic dissemination, the packet may
contain k prior trajectories and we divide the cost equally among the k trajectories.
This is the additional cost that each trajectory has to pay to have its information
disseminated. In the query stage, each packet contributes 1 to the cost for the given
query trajectory. So the total communication cost is the sum of the preprocess cost
and the total query cost (query frequency times the cost per query). From previous
section, we know that storage size of 100 works well for our simulation. So in our
following simulation, we set the storage size to be 100.

Figure 44 shows the results. The oldest trajectories have high communication
cost because they were disseminated with a lot of preprocessing cost but were not
queried on time before such information is flushed out by new trajectories. For the
trajectories with middle-ranged ages, the communication cost is much smaller in
opportunistic scheme than that without opportunistic dissemination. Intuitively, the
benefit of dissemination (i.e., lower communication cost) shows up with increasing
query frequency. When the query frequency is higher than 200, the total communi-
cation cost is always smaller for opportunistic scheme. If we just consider the most
recent 200 trajectories as in the middle Figure 44, after 100 queries, the average

159

communication cost has already been less than that without opportunistic dissem-
ination. While without opportunistic dissemination, the average cost will keep the
same no matter how many queries are issued for a given trajectory.

8.4 Conclusion

We have presented in this chapter the exploitation of the spatial and temporal
coherence of motion trajectories in the domain of in-network storage and query.
As sensors have scarce resources, the use of existing opportunities in the detection
itself in managing and query for the detection data, is expected to be useful in a
more general domain of data management in wireless sensor networks.

In this chapter, we mainly address the discovery of existence of a certain tar-
get. In real life some queries are aggregate queries. For example, how many trucks
have passed in the past hour. The same framework can be used to answer aggregate
queries in a relatively naive way – use a random query to return all the trajectories
detected and compute the aggregate. Advanced mechanism for answering aggre-
gate queries of the motion data remains as future work. Our current algorithm and
analysis is based on the assumption that the trajectories start and end randomly. We
leave it as future work to extend the analysis to the setting when the entry and exit
points are clustered in a small region.

160

Chapter 9

Conclusion

In this thesis, we have presented light-weighted and decentralized algorithms
for all kinds of information processing, optimization, coordination of both static
and mobile nodes to comprehend and act on the environment. The major moti-
vation behind this is the significant battery and computational limitations of the
current generation of wireless nodes and large scale of wireless sensor networks.
With the recent advance and maturity of static wireless sensor networks for envi-
ronment monitoring and prosperity of seamless integrating physical users and/or
autonomous robots into a hybrid intelligent, we look for more intelligent and ele-
gant way to solve these complicated problems.

Due to the limited resource restriction, it is not a smart way for each node
to keep the entire topology and connection information in order to communicate
with remote nodes. We proposed a decentralized hierarchically well-separated trees
(HST) framework for wireless sensor networks, which makes a lot of problems
easier to solve. This structure sparsely represents the entire network and provide
overview on the networks with different granularity. It could serve as a backbone for
information brokage purpose when we need to find some remote partners. We also
provide a way to make almost guaranteed greedy routing efficiently under dynamic
wireless sensor networks, which is based only on local and destination information.

Wireless network deployments continue to increase in commercial and mili-
tary setting environment. How to intelligently coordinate mobile and static nodes,
handle mobile users and dynamic topologies continues to be a challenge task. There

161

are a lot of new and exciting algorithmic problems and application motivations be-
hind this. Our algorithms and solutions provide an initial exploration towards this
direction. We look forward to applying and extending the light-weighted and de-
centralized mechanisms presented here to more mobility related problems.

162

Bibliography

[1] http://www.mathworks.com/matlabcentral/fileexchange/6543/.

[2] http://www.aqualab.cs.northwestern.edu/projects/Ono.html.

[3] Orbit testbed. http://www.orbit-lab.org/.

[4] Some results on greedy embeddings in metric spaces. In Proc. of the 49th
Annual Symposium on Foundations of Computer Science, pages 337–346,
October 2008.

[5] I. Abraham, D. Dolev, and D. Malkhi. LLS: a locality aware location service
for mobile ad hoc networks. In DIALM-POMC ’04: Proceedings of the 2004
joint workshop on Foundations of mobile computing, pages 75–84, 2004.

[6] I. Abraham, C. Gavoille, A. V. Goldberg, and D. Malkhi. Routing in network-
s with low doubling dimension. In Proc. of the 26th International Conference
on Distributed Computing Systems (ICDCS), July 2006.

[7] I. Abraham and D. Malkhi. Compact routing on euclidian metrics. In PODC
’04: Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 141–149, New York, NY, USA, 2004. ACM.

[8] I. Abraham and D. Malkhi. Name independent routing for growth bounded
networks. In SPAA ’05: Proceedings of the seventeenth annual ACM sympo-
sium on Parallelism in algorithms and architectures, pages 49–55, 2005.

[9] W. Adjie-Winoto, E. Schwartz, and H. Balakrishnan. The design and im-
plementation of an intentional naming system. In SOSP ’01: Proceedings

163

of the eighteenth ACM symposium on Operating systems principles, pages
186–201, December 1999.

[10] P. K. Agarwal, D. Eppstein, L. J. Guibas, and M. R. Henzinger. Parametric
and kinetic minimum spanning trees. In FOCS ’98: Proceedings of the 39th
Annual Symposium on Foundations of Computer Science, page 596, Wash-
ington, DC, USA, 1998. IEEE Computer Society.

[11] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On nash equi-
libria for a network creation game. In SODA ’06: Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm, pages 89–98,
New York, NY, USA, 2006. ACM.

[12] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ances-
tors: a survey and a new distributed algorithm. In SPAA ’02: Proceedings of
the fourteenth annual ACM symposium on Parallel algorithms and architec-
tures, pages 258–264, 2002.

[13] P. Angelini, F. Frati, and L. Grilli. An algorithm to construct greedy drawings
of triangulations. In Proc. of the 16th International Symposium on Graph
Drawing, pages 26–37, 2008.

[14] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean s-
panners: short, thin, and lanky. In Proc. 27th ACM Symposium on Theory
Computing, pages 489–498, 1995.

[15] S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algo-
rithms for geometric spanners of small diameter. In Proc. 35th IEEE Sympo-
sium on Foundations of Computer Science, pages 703–712, 1994.

[16] S. Arya and M. Smid. Efficient construction of a bounded-degree spanner
with low weight. Algorithmica, 17:33–54, 1997.

[17] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus. Track-
ing a moving object with a binary sensor network. In SenSys ’03: Proceed-
ings of the 1st international conference on Embedded networked sensor sys-
tems, pages 150–161, 2003.

164

[18] A. Atlas and A. Zinin. Basic specification for ip fast reroute: Loop-free
alternates. September 2008.

[19] B. Awerbuch and D. Peleg. Concurrent online tracking of mobile users. In
SIGCOMM ’91: Proceedings of the conference on Communications archi-
tecture & protocols, pages 221–233, New York, NY, USA, 1991. ACM.

[20] N. Bansal, N. Buchbinder, A. Gupta, and J. S. Naor. An O(log2 k)-
competitive algorithm for metric bipartite matching. In Proceedings of the
15th Annual European Symposium (ESA’07), pages 522–533, 2007.

[21] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic
applications. In FOCS ’96: Proceedings of the 37th Annual Symposium on
Foundations of Computer Science, page 184, Washington, DC, USA, 1996.
IEEE Computer Society.

[22] Y. Bartal. On approximating arbitrary metrices by tree metrics. In STOC ’98:
Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 161–168, New York, NY, USA, 1998. ACM.

[23] Y. Bartal and A. Rosen. The distributed k-server problem – a competitive dis-
tributed translator for k-server problems. In Proceeding of IEEE Symposium
on Foundations of Computer Science, pages 344–353, 1992.

[24] J. Basch, L. J. Guibas, and L. Zhang. Proximity problems on moving points.
In SCG ’97: Proceedings of the thirteenth annual symposium on Computa-
tional geometry, pages 344–351, New York, NY, USA, 1997. ACM.

[25] S. Biswas and R. Morris. Opportunistic routing in multi-hop wireless net-
works. SIGCOMM Comput. Commun. Rev., 34(1):69–74, 2004.

[26] A. Borodin and R. El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 2005.

[27] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaran-
teed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616,
2001.

165

[28] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks.
In Proc. of the 1st ACM Int’l Workshop on Wireless Sensor Networks and
Applications (WSNA), pages 22–31, September 2002.

[29] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A perfor-
mance comparison of multi-hop wireless ad hoc network routing protocols.
In Proc. of the ACM/IEEE International Conference on Mobile Computing
and Networking, pages 85–97, 1998.

[30] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. New
York: John Wiley & Sons, 2002.

[31] Callahan and Kosaraju. Faster algorithms for some geometric graph prob-
lems in higher dimensions. In Proc. 4th ACM-SIAM Symposium on Discrete
Algorithms, pages 291–300, 1993.

[32] P. B. Callahan. Optimal parallel all-nearest-neighbors using the well-
separated pair decomposition. In Proc. 34th IEEE Symposium on Founda-
tions of Computer Science, pages 332–340, 1993.

[33] P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic closest-pair and
n-body potential fields. In Proc. 6th ACM-SIAM Symposium on Discrete
Algorithms, pages 263–272, 1995.

[34] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimension-
al point sets with applications to k-nearest-neighbors and n-body potential
fields. J. ACM, 42:67–90, 1995.

[35] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing
in doubling metrics. In SODA ’05: Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 762–771, 2005.

[36] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results
on graph spanners. Internat. J. Comput. Geom. Appl., 5:125–144, 1995.

[37] B. Chow. The ricci flow on the 2-sphere. J. Differential Geom., 33(2):325–
334, 1991.

166

[38] B. Chow and F. Luo. Combinatorial ricci flows on surfaces. Journal Differ-
ential Geometry, 63(1):97–129, 2003.

[39] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications
on the internet using an overlay muilticast architecture. SIGCOMM Comput.
Commun. Rev., 31(4):55–67, 2001.

[40] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation tech-
niques for sensor databases. In ICDE ’04: Proceedings of the 20th Interna-
tional Conference on Data Engineering, pages 449–460, 2004.

[41] J. Corbo and D. Parkes. The price of selfish behavior in bilateral network
formation. In PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, pages 99–107, New York,
NY, USA, 2005. ACM.

[42] A. Coté, A. Meyerson, and L. Poplawski. Randomized k-server on hier-
archical binary trees. In STOC ’08: Proceedings of the 40th annual ACM
symposium on Theory of computing, pages 227–234, New York, NY, USA,
2008. ACM.

[43] L. J. Cowen. Compact routing with minimum stretch. In SODA ’99: Pro-
ceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms,
pages 255–260, 1999.

[44] G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-
dimensional Euclidean space. In Proc. 9th Annu. ACM Sympos. Comput.
Geom., pages 53–62, 1993.

[45] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Eu-
clidean spanners. Internat. J. Comput. Geom. Appl., 7:297–315, 1997.

[46] G. Das, G. Narasimhan, and J. Salowe. A new way to weigh malnourished
Euclidean graphs. In Proc. 6th ACM-SIAM Sympos. Discrete Algorithms,
pages 215–222, 1995.

167

[47] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
1997.

[48] T. DeLillo and E. Kropf. Numerical computation of the schwarz-christoffel
transformation for multiply connected domains. SIAM J. on Scientific Com-
puting, 33:1369–1394, 2011.

[49] R. Dhandapani. Greedy drawings of triangulations. In SODA ’08: Proceed-
ings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 102–111, 2008.

[50] T. A. Driscoll and L. N. Trefethen. Schwarz-Christoffel Mapping, volume 8.
Cambridge University Press, 2002.

[51] T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low
stretch factor. J. Algorithms, 46(2):97–114, 2003.

[52] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, ed-
itors, Handbook of Computational Geometry, pages 425–461. Elsevier Sci-
ence Publishers B.V. North-Holland, Amsterdam, 2000.

[53] D. Eppstein and M. T. Goodrich. Succinct greedy graph drawing in the
hyperbolic plane. In Proc. of the 16th International Symposium on Graph
Drawing, pages 14–25, 2008.

[54] J. Erickson. Dense point sets have sparse Delaunay triangulations. In Proc.
13th ACM-SIAM Symposium on Discrete Algorithms, pages 125–134, 2002.

[55] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On
a network creation game. In PODC ’03: Proceedings of the twenty-second
annual symposium on Principles of distributed computing, pages 347–351,
2003.

[56] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In STOC ’03: Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing, pages 448–455, New
York, NY, USA, 2003. ACM.

168

[57] Q. Fang, J. Gao, and L. J. Guibas. Landmark-based information storage and
retrieval in sensor networks. In The 25th Conference of the IEEE Communi-
cation Society (INFOCOM’06), pages 1–12, April 2006.

[58] Q. Fang, J. Li, L. Guiba, and F. Zhao. Roamhba: maintaining group connec-
tivity in sensor networks. In IPSN ’04: Proceedings of the 3rd international
symposium on Information processing in sensor networks, pages 151–160,
New York, NY, USA, 2004. ACM.

[59] J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism design:
recent results and future directions. In DIALM ’02: Proceedings of the 6th
international workshop on Discrete algorithms and methods for mobile com-
puting and communications, pages 1–13, New York, NY, USA, 2002. ACM.

[60] M. Feldman and J. Chuang. Overcoming free-riding behavior in peer-to-peer
systems. SIGecom Exch., 5(4):41–50, 2005.

[61] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for
peer-to-peer networks. In EC ’04: Proceedings of the 5th ACM conference
on Electronic commerce, pages 102–111, New York, NY, USA, 2004. ACM.

[62] R. Flury, S. Pemmaraju, and R. Wattenhofer. Greedy routing with bounded
stretch. In Proc. of the 28th Annual IEEE Conference on Computer Commu-
nications (INFOCOM), April 2009.

[63] R. Flury and R. Wattenhofer. MLS: an efficient location service for mobile
ad hoc networks. In MobiHoc ’06: Proceedings of the seventh ACM in-
ternational symposium on Mobile ad hoc networking and computing, pages
226–237, 2006.

[64] S. Funke, L. J. Guibas, A. Nguyen, and Y. Wang. Distance-sensitive infor-
mation brokerage in sensor networks. In Proceedings of the second IEEE
International Conference on Distributed Computing in Sensor Systems (D-
COSS), pages 234–251, 2006.

169

[65] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need
a new data handling architecture for sensor networks. In Proc. ACM SIG-
COMM Workshop on Hot Topics in Networks, pages 143–148, 2002.

[66] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Complex behavior at scale: An experimental study of low-power wireless
sensor networks. Technical Report UCLA/CSD-TR 02-0013, UCLA, 2002.

[67] J. Gao, L. Guibas, J. Hershberger, and L. Zhang. Fractionally cascaded in-
formation in a sensor network. In Proc. of the 3rd International Symposium
on Information Processing in Sensor Networks (IPSN’04), pages 311–319,
April 2004.

[68] J. Gao, L. Guibas, and A. Nguyen. Deformable spanners and their appli-
cations. Computational Geometry: Theory and Applications, 35(1-2):2–19,
2006.

[69] J. Gao, L. J. Guibas, J. Hershberger, and N. Milosavljević. Sparse data ag-
gregation in sensor networks. In Proc. of the International Conference on In-
formation Processing in Sensor Networks (IPSN’07), pages 430–439, April
2007.

[70] J. Gao, L. J. Guibas, N. Milosavljevic, and D. Zhou. Distributed resource
management and matching in sensor networks. In Proc. of the 8th Interna-
tional Symposium on Information Processing in Sensor Networks (IPSN’09),
April 2009.

[71] J. Gao and L. Zhang. Tradeoffs between stretch factor and load balancing
ratio in routing on growth restricted graphs. IEEE Transactions on Parallel
and Distributed Computing, 20(2):171–179, February 2009.

[72] J. Gao and D. Zhou. The emergence of sparse spanners and greedy well-
separated pair decomposition. In Proc. of the the 12th Scandinavian Sym-
posium and Workshops on Algorithm Theory (SWAT’10), pages 50–61, June
2010.

170

[73] M. X. Goemans and D. P. Williamson. A general approximation technique
for constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

[74] L.-A. Gottlieb and L. Roditty. Improved algorithms for fully dynamic ge-
ometric spanners and geometric routing. In SODA ’08: Proceedings of
the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages
591–600, Philadelphia, PA, USA, 2008. Society for Industrial and Applied
Mathematics.

[75] N. Goyal, L. Rademacher, and S. Vempala. Expanders via random spanning
trees. In SODA ’09: Proceedings of the Nineteenth Annual ACM -SIAM
Symposium on Discrete Algorithms, pages 576–585, Philadelphia, PA, USA,
2009. Society for Industrial and Applied Mathematics.

[76] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. D-
IFS: A distributed index for features in sensor networks. In Proceedings of
First IEEE International Workshop on Sensor Network Protocols and Appli-
cations, pages 163–173, Anchorage, Alaska, May 2003.

[77] M. Grossglauser and D. Tse. Mobility increases the capacity of adhoc wire-
less networks. IEEE/ACM Transactions on Networking, 10(4):477–486, Au-
gust 2002.

[78] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approxi-
mate distance oracles for geometric graphs. In Proc. 13th ACM-SIAM Sym-
posium on Discrete Algorithms, pages 828–837, 2002.

[79] L. Guibas. Kinetic data structures. In D. Mehta and S. Sahni, editors, Hand-
book of Data Structures and Applications, pages 23–1–23–18. Chapman and
Hall, CRC, 2004.

[80] L. J. Guibas. Sensing, tracking and reasoning with relations. IEEE Signal
Processing Magazine, 19(2):73–85, March 2002.

171

[81] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and
low-distortion embeddings. In FOCS ’03: Proceedings of the 44th Annu-
al IEEE Symposium on Foundations of Computer Science, pages 534–543,
2003.

[82] A. Habib and J. Chuang. Incentive mechanism for peer-to-peer media
streaming. In Proc. of the 12th IEEE International Workshop on Quality
of Service (IWQoS’04), June 2004.

[83] A. Habib and J. Chuang. Service differentiated peer selection: An incentive
mechanism for peer-to-peer media streaming. IEEE Transactions on Multi-
media, 8(3):610–621, June 2006.

[84] R. S. Hamilton. Three manifolds with positive ricci curvature. Journal of
Differential Geometry., 17:255–306, 1982.

[85] S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional
metrics, and their applications. SIAM J. Comput., 35(5):1148–1184, 2006.

[86] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,
P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. Vigilnet:
An integrated sensor network system for energy-efficient surveillance. ACM
Trans. Sen. Netw., 2(1):1–38, 2006.

[87] X. He and H. Zhang. On succinct convex greedy drawing of 3-connected
plane graphs. In Proceedings of the ACM-SIAM symposium on Discrete al-
gorithms, pages 1477–1486, January 2011.

[88] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan. Building efficient wireless sensor networks with low-level nam-
ing. In Proceedings of the Symposium on Operating Systems Principles,
pages 146–159, October 2001.

[89] D. S. Hochbaum, editor. PWS Publishing Company, Boston, MA, 1997.

[90] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scal-
able and robust communication paradigm for sensor networks. In ACM Conf.
on Mobile Computing and Networking (MobiCom), pages 56–67, 2000.

172

[91] T. Jansen and M. Theile. Stability in the self-organized evolution of network-
s. In GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 931–938, New York, NY, USA, 2007.
ACM.

[92] D. Karger and M. Ruhl. Find nearest neighbors in growth-restricted metrics.
In Proc. ACM Symposium on Theory of Computing, pages 741–750, 2002.

[93] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proc. of the ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), pages 243–254, 2000.

[94] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham. On target tracking with bi-
nary proximity sensors. In IPSN ’05: Proceedings of the 4th international
symposium on Information processing in sensor networks, page 40, 2005.

[95] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geo-
graphic face routing. In DIALM-POMC ’05: Proceedings of the 2005 joint
workshop on Foundations of mobile computing, pages 34–43, 2005.

[96] J. Kleinberg and Éva Tardos. Approximation algorithms for classification
problems with pairwise relationships: metric labeling and markov random
fields. J. ACM, 49(5):616–639, 2002.

[97] R. Kleinberg. Geographic routing using hyperbolic space. In Proceedings of
the 26th Conference of the IEEE Communications Society (INFOCOM’07),
pages 1902–1909, 2007.

[98] G. Konjevod, A. W. Richa, and D. Xia. Optimal-stretch name-independent
compact routing in doubling metrics. In PODC ’06: Proceedings of the
twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 198–207, 2006.

[99] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric net-
works. In Proc. 11 th Canadian Conference on Computational Geometry,
pages 51–54, Vancouver, August 1999.

173

[100] M. Kwon and S. Fahmy. Topology-aware overlay networks for group com-
munication. In NOSSDAV ’02: Proceedings of the 12th international work-
shop on Network and operating systems support for digital audio and video,
pages 127–136, New York, NY, USA, 2002. ACM.

[101] K.-W. Kwong, L. Gao, R. Guerin, and Z.-L. Zhang. On the feasibility and ef-
ficacy of protection routing in ip networks. In Proc. of IEEE INFOCOM’10,
March 2010.

[102] C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Improved algorithms
for constructing fault-tolerant spanners. Algorithmica, 32(1):144–156, 2002.

[103] J. Li, J. Jannotti, D. Decouto, D. Karger, and R. Morris. A scalable location
service for geographic ad-hoc routing. In Proceedings of 6th ACM/IEEE
International Conference on Mobile Computing and Networking, pages 120–
130, 2000.

[104] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15:215–245, 1995.

[105] X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: balancing
push and pull for discovery in large-scale sensor networks. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 122–133, 2004.

[106] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and com-
parison of peer-to-peer overlay network schemes. Communications Surveys
& Tutorials, IEEE, pages 72–93, 2005.

[107] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a tiny
aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[108] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wire-
less sensor networks for habitat monitoring. In WSNA ’02: Proceedings of
the 1st ACM international workshop on Wireless sensor networks and appli-
cations, pages 88–97, New York, NY, USA, 2002. ACM Press.

174

[109] P. Maymounkov. Greedy embeddings, trees, and euclidean vs. lobachevsky
geometry. manuscript, 2006.

[110] A. Meyerson, A. Nanavati, and L. Poplawski. Randomized online algorithm-
s for minimum metric bipartite matching. In SODA ’06: Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
954–959, New York, NY, USA, 2006. ACM.

[111] T. Moscibroda, S. Schmid, and R. Wattenhofer. On the topologies formed
by selfish peers. In PODC ’06: Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing, pages 133–142, New Y-
ork, NY, USA, 2006. ACM.

[112] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing. SIG-
COMM Comput. Commun. Rev., 38(4):27–38, 2008.

[113] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, 1995.

[114] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean
graphs. SIAM J. Comput., 30:978–989, 2000.

[115] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge
University Press, 2007.

[116] B. Nath and D. Niculescu. Routing on a curve. SIGCOMM Comput. Com-
mun. Rev., 33(1):155–160, 2003.

[117] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion
for robust aggregation in sensor networks. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems, pages
250–262, 2004.

[118] E. Ng and H. Zhang. Predicting Internet network distance with coordinates-
based approaches. In Proc. IEEE INFOCOM, pages 170–179, 2002.

[119] Y. Ohara, S. Imahori, and R. V. Meter. Mara: Maximum alternative routing
algorithm. In Proc. IEEE INFOCOM, 2009.

175

[120] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theor. Comput. Sci., 344(1):3–14, 2005.

[121] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[122] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications, 2000.

[123] D. Peleg. Distributed Computing: A Locality Sensitive Approach. Mono-
graphs on Discrete Mathematics and Applications. SIAM, 2000.

[124] G. Perelman. The entropy formula for the ricci flow and its geometric appli-
cations. Technical Report arXiv.org, November 11 2002.

[125] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In Proc. ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, 1997.

[126] P. Raghavan and C. D. Thompson. Provably good routing in graphs: regular
arrays. In Proceedings of the 17th annual ACM Symposium on Theory of
Computing, pages 79–87, 1985.

[127] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing
without location information. In Proceedings of the 9th annual international
conference on Mobile computing and networking, pages 96–108, 2003.

[128] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware
overlay construction and server selection. In Proceedings of the 21th Annu-
al Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’05), volume 3, pages 1190–1199, 2002.

[129] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT: A geographic hash table for data-centric storage in sensornets. In Proc.
1st ACM Workshop on Wireless Sensor Networks ands Applications, pages
78–87, 2002.

176

[130] S. Ray, R. Guérin, K.-W. Kwong, and R. Sofia. Always acyclic distributed
path computation. volume 18, pages 307–319, February 2010.

[131] C. Reichert, Y. Glickmann, and T. Magedanz. Two routing algorithms for
failure protection in ip networks. In Proc. ISCC, 2005.

[132] E. M. Reingold and R. E. Tarjan. On a greedy heuristic for complete match-
ing. SIAM J. Computing, 10(4):676–681, November 1981.

[133] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with guaran-
teed delivery using ricci flows. In Proc. of the 8th International Symposium
on Information Processing in Sensor Networks (IPSN’09), April 2009.

[134] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage
in sensor networks. In Proc. of the ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pages 286–297, September
2006.

[135] R. Sarkar, X. Zhu, and J. Gao. Hierarchical spatial gossip for multi-resolution
representations in sensor networks. In Proc. of the International Conference
on Information Processing in Sensor Networks (IPSN’07), pages 420–429,
April 2007.

[136] R. Sarkar, X. Zhu, and J. Gao. Spatial distribution in routing table design for
sensor networks. In Proc. of the 28th Annual IEEE Conference on Computer
Communications (INFOCOM’09), mini-conference, April 2009.

[137] S. Schosser, K. Böhm, R. Schmidt, and B. Vogt. Incentives engineering for
structured p2p systems - a feasibility demonstration using economic exper-
iments. In EC ’06: Proceedings of the 7th ACM conference on Electronic
commerce, pages 280–289, New York, NY, USA, 2006. ACM.

[138] S. Schosser, K. Böhm, and B. Vogt. Indirect partner interaction in peer-
to-peer networks: stimulating cooperation by means of structure. In EC ’07:
Proceedings of the 8th ACM conference on Electronic commerce, pages 124–
133, New York, NY, USA, 2007. ACM.

177

[139] K. Seada, A. Helmy, and R. Govindan. On the effect of localization errors
on geographic face routing in sensor networks. In IPSN ’04: Proceedings
of the third international symposium on Information processing in sensor
networks, pages 71–80, 2004.

[140] M. Shand and S. Bryant. Ip fast reroute framework. June 2009.

[141] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and be-
yond: New aggregation techniques for sensor networks. In SenSys ’04: Pro-
ceedings of the 2nd international conference on Embedded networked sensor
systems, pages 239–249, 2004.

[142] N. Shrivastava, R. M. U. Madhow, and S. Suri. Target tracking with bina-
ry proximity sensors: fundamental limits, minimal descriptions, and algo-
rithms. In SenSys ’06: Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 251–264, 2006.

[143] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking multiple
targets using binary proximity sensors. In IPSN ’07: Proceedings of the
6th international conference on Information processing in sensor networks,
pages 529–538, New York, NY, USA, 2007. ACM Press.

[144] A. Slivkins. Distance estimation and object location via rings of neighbors.
In PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing, pages 41–50, 2005.

[145] M. Smid. The Weak Gap Property in Metric Spaces of Bounded Doubling
Dimension, pages 275–289. Efficient Algorithms, Springer-Verlag, Berlin,
Heidelberg, 2009.

[146] H. Solomon. Geometric Probability. CBMS-NSF Regional Conference Se-
ries in Applied Mathematics. Society for Industrial Mathematics, 1987.

[147] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring isp
topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

[148] K. Stephenson. Introduction To Circle Packing. Cambridge University Press,
2005.

178

[149] I. Stojmenovic. A routing strategy and quorum based location update scheme
for ad hoc wireless networks. Technical Report TR-99-09, SITE, University
of Ottawa, September, 1999.

[150] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a
sensor network expedition. In Proceedings of the First European Workshop
on Sensor Networks (EWSN), January 2004.

[151] A. S. Tanenbaum. Computer networks (3rd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1996.

[152] M. Thorup and U. Zwick. Compact routing schemes. In SPAA ’01: Proceed-
ings of the thirteenth annual ACM symposium on Parallel algorithms and
architectures, pages 1–10, 2001.

[153] W. P. Thurston. Geometry and Topology of Three-Manifolds. Princeton lec-
ture notes, 1976.

[154] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, Ger-
many, 2001.

[155] W. Wang, C. Jin, and S. Jamin. Network overlay construction under limited
end-to-end reachability. In Proceedings of the 24th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFOCOM’05),
volume 3, pages 2124–2134, March 2005.

[156] X. Zhang, Z. Li, and Y. Wang. A distributed topology-aware overlays con-
struction algorithm. In MG ’08: Proceedings of the 15th ACM Mardi Gras
conference, pages 1–6, New York, NY, USA, 2008. ACM.

[157] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collabo-
ration. IEEE Signal Processing Magazine, 19(2):61–72, 2002.

[158] D. Zhou and J. Gao. Maintaining approximate minimum steiner tree and
k-center for mobile agents in a sensor network. In Proc. of the 29th Annu-
al IEEE Conference on Computer Communications (INFOCOM’10), March
2010.

179

[159] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio
irregularity on wireless sensor networks. In MobiSys ’04: Proceedings of the
2nd international conference on Mobile systems, applications, and services,
pages 125–138, 2004.

180

