Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Distributed Algorithms for Online
Coordination in Wireless Sensor Networks

A Dissertation Presented
by
Dengpan Zhou

to

The Graduate School

in Partial Fulfillment of the
Requirements
for the Degree of

Doctor of Philosophy

in
Computer Science
Stony Brook University

May 2012

Copyright by
Dengpan Zhou
2012

Stony Brook University
The Graduate School

Dengpan Zhou

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend
acceptance of this dissertation.

Jie Gao, Dissertation Advisor
Professor, Computer Science Department

Samir Das, Chairperson of Defense
Professor, Computer Science Department

Xianfeng Gu
Professor, Computer Science Department

Sangjin Hong
Professor, Department of Electrical and Computer Engineering

This dissertation is accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

il

Abstract of the Dissertation

Distributed Algorithms for Online Coordination in Wireless Sensor
Networks

by
Dengpan Zhou

Doctor of Philosophy
in
Computer Science

Stony Brook University
2012

With the rapid development of large-scale wireless sensor networks in the past few
years, we expect the embedded sensors to be integrated smoothly with other mobile
embedded devices. In this dissertation, we consider the following model of a hy-
brid network with both static and mobile nodes. There are pervasive static sensor
nodes embedded in the environment to gather real-time data. The mobile nodes
can be either robots with controlled mobility to aid the network operation and re-
pair dysfunctional network components, or users of the sensor network that demand
real-time knowledge gathered by the sensor nodes, or robots/users that use the sen-
sor network as a communication infrastructure, or a mixture of the above. The
specific scenarios include, but are not limited to, online resource management and
allocation, maintaining group communication and coordination of mobile agents,
and efficient and resilient routing schemes.

To solve these problems, we introduce a framework to manage the efficient and
highly selective information flow between the sensor nodes and the mobile nodes.

This framework involves the following components:

1. We extract a hierarchical well separated tree (HST) to approximate the short-

est path metric of the static sensor network.

2. With the HST, we allow spontaneous, distributed matching between users that

may emerge anywhere and the resources available in the network.

iii

3. We also show that in the same framework, we can coordinate mobile users by
maintaining an approximate minimum Steiner tree with modest communica-
tion cost.

4. By using two or multiple HSTs, we also show how to support low-stretch

routing that is also resilient to in-transit link failures.

In addition to the above HST framework, we develop the compact conformal
map for greedy routing in wireless mobile sensor networks. The map is only depen-
dent on the network domain and is independent of the network connectivity. This
is the first practical solution for using virtual coordinates for greedy routing in a

sensor network and could be easily extended to the case of a mobile network.

v

Contents

List of Tables X
List of Figures Xi
Acknowledgements XV
Publications xvi
1 Introduction 1
1.1 Introduction e 1
1.2 Motivation and Objective 2
1.3 Overview e, 4
1.4 Reference 8

2 Introduction to Hierarchically Well-separated Tree and Its Distributed

Implementation 9
2.1 Introduction 9
2.2 Hierarchically Well-Separated Trees 10
2.2.1 Distributed algorithm to compute 2-HST 12
2.2.2 Communicationcost 13
223 o-HST 15
224 HSTonkresources 17
23 Simulation. L 18
24 Conclusion e 19

3 Distributed Resource Management and Matching in Sensor Networks 20

3.1
3.2
33
34
3.5

3.6

3.7

Introduction 20
Overview L e 22
Previous Worko 25
Sparse aggregation with HST 27
Distributed Matching Algorithms 28
35.1 Offlinesetting., 29
352 Onlinesetting, 30
Simulations and Experiments 32
3.6.1 Approximation and competitive ratios 32
Conclusion 36

4 Maintaining Approximate Minimum Steiner Tree and k-center for Mo-

bile Agents in a Sensor Network 37
4.1 Introduction 37
4.1.1 Challenges 38
412 Ourapproach 39
413 Relatedwork L. 41
42 Network Setup 41
43 HSTreview o 42
4.4 Maintaining approximate minimum Steiner tree 44
4.4.1 Maintenance Algorithm 44
4.42 Analysis and performance 46
4.5 Maintaining approximate k-center 49
4.6 Simulation. 51
4.6.1 Approximate minimal steiner tree construction 52
4.6.2 Cost comparison with MST 52
4.6.3 Comparison with RoamHBA 53
464 Updatecost e 56
465 l-center 57
477 Conclusion 58

vi

5 Resilient and Low Stretch Routing Through Embedding into Tree Met-

rics 59
5.1 Introduction 59
5.1.1 OurResults, 60
5.1.2 PriorWork 62
5.2 Preliminaries 64
5.2.1 Metrics With Geometric Growth 64
5.2.2 Embedding into Tree Metrics 65
5.2.3 Review of The FRT Algorithm 66
5.2.4 Distributed Implementation of the Tree Embedding 68
5.3 Constant Distortion Routing Using TwoHSTs 69
5.3.1 Constant Distortion Embedding in Two HSTs 69
5.3.2 Routingwith TwoHSTs 72
5.4 Resilience to Node Failures Using Two HSTs 73
5.4.1 Robustnessof One HST 73
5.4.2 Robustness of Two Random HSTs 75
5.4.3 Robustness of Two HSTs With Reversed Rank 76
5.5 Simulations e 76
5.5.1 Simulationsetting L. 76
5.5.2 Simulationmethods 77
5.5.3 Summary of simulationresults 78
554 PathStretch oo 78
5.5.5 Robustness to Node or Link Failures 79
56 Conclusion 81
6 Compact Conformal Map for Greedy Routing in Wireless Mobile Sen-
sor Networks 83
6.1 Introduction 83
6.1.1 Prior Work on Routing in Mobile Networks 84
6.1.2 Pre-computed Compact Map for Guaranteed Greedy Routing 86
6.2 Discrete RicciFlow, 87
6.2.1 RicciFlow Theory 87
6.2.2 DiscreteRicciFlow. 88

vii

6.3
6.4

6.5

6.6

6.7

6.2.3 Discrete Algorithm 0L 90

Background of Conformal Mapping 91
Schwarz-Christoffel Transformation Using Laurent Series 93
6.4.1 Simply Connected Domain 93
6.4.2 Multiply Connected Domain 95
Examples 97
6.5.1 Simply Connected Domain 98
6.5.2 Multiply Connected Domain 98
Experimental Results 99
6.6.1 SimulationResults 101
6.6.2 EmulationonOrbit 108
6.6.3 Networks WithHoles 112
Conclusion 114

The Emergence of Sparse Spanners and Well-Separated Pair Decom-

position Under Anarchism 117
7.1 Introduction 117
7.1.1 Ourcontribution 119
7.1.2 Applications 121
7.1.3 Relatedwork L. 121
7.1.4 Organization 123
7.2 Spanner construction under anarchism 123
7.2.1 Spanner construction algorithm 123
7.2.2 Algorithm for well-separated pair decomposition 125
7.3 A greedy algorithm for well-separated pair decomposition 127
7.3.1 Deformable spannerand WSPD 127
7.3.2 Greedy well-separated pair decomposition has linear size . . 129
7.4 Size, degree and weight of the uncoordinated spanner 131
7.5 Spanner construction and routing in P2P networks 133
7.5.1 Distributed construction. 133
7.5.2 Distributedrouting. 135
7.5.3 Nearest neighborsearch. 136
7.6 Conclusion 136

viii

8 Opportunistic Processing and Query of Motion Trajectories in Wireless

Sensor Networks 137

8.1 Introduction 137
8.1.1 Ourapproach 138

8.1.2 Relatedwork, 141

8.2 Trajectory Queries 142
8.2.1 Probabilisticqueries 142

8.2.2 Opportunistic information propagation. 149

8.3 Simulations 155
8.3.1 Query number v.s. ageandlength 156

8.3.2 Required storagesize 157

8.3.3 Communicationcost 158

84 Conclusion 160

9 Conclusion 161
Bibliography 163

X

List of Tables

1 Parameters of Schwarz-Christoffel transformation. 98
Parameters of Laurent series., 100

3 Performance comparison for computer simulation under static set-

NZ. . . o e e e e e 104
4 Performance of the methods under mobile setting of computer sim-
ulation. 107

5 Performance of the methods under static setting of Orbit emulation. 110
6 Performance of the methods under mobile setting of Orbit. 111
7 Performance of the methods under static setting of computer simu-
lation withholes. 113
8 Performance of the methods without boundary nodes participation
under mobile setting of computer simulation with holes. 115
9 Performance of the methods with boundary nodes participation un-

der mobile setting of computer simulation with holes. 116

List of Figures

10

Any ball of radius 2 contains at most 2°Y elements of P; in expec-
tation, for all i. The arrow from w to ¥ means node w nominates u
inroundi. 14
Convert a 2-HST to an a-HST foranyoa>2. 16
A typical HST on n = 400 nodes. Thicker lines represent higher-
leveledges. 18
Communication cost (left) and storage requirement (right) in a per-
turbed grid network of n =400nodes. 19
Per-node communication cost and storage requirement scale sub-

linearly with network size. 19

Sparse aggregation of k resources/events by an HST. 28
In offline setting, length of the optimal matching in the 2-HST and
length of the optimal matching in the underlying metric are within
a factor of 3 over a wide range of network sizes n, with fixed k = 10. 33
In offline setting, the ratio of optimal matching length becomes
worse when the number of resources k increases, and n = 225 is
fixed. This is because the network embeds into 2-HST with distor-
tion that increases with k. L. 34

Communication overhead as a function of network size, with fixed

k=15.. . . 34
Communication overhead as a function of the number of resources,
with fixedn =225. 35

X1

11

12

13

14

15

16

17

18

19
20

21

22

23

24

Communication cost of the online matching algorithm as a function
of the cost of the computed matching in the o-HST metric, with
a fixed number of k = 15 resources and variable network size n.
The slope suggests quadratic dependence (linear regression yields
aslopeofabout2.37).

An example to show how to get minimal spanning tree on HST for
asubsetagents. e
When a agent moving from p to g, we only repair the paths from
p,q to their lowest common ancestor.
A figure to show when do we need update the lowest common an-
cestoratleveli.
An example of the minimal Steiner tree computed from the HST.

The agents are in red. The network size is 400, and the agent size

The minimal spanning tree of the agents.
Cost comparison between HST and MST for different network size
but the agent set size fixedtobe 100.
The cost comparison between the HST and MST solution, with d-
ifferent agent set size but the network size fixed to be 1000.
An example of the Steiner tree computed with RoamHBA.
Cost comparison between HST solution and RoamHBA solution,
with agent size fixedtobe 100. L.
Update cost changes with log(network size) with the agent size
fixedtobe 100.
Cost comparison between HST and OPT for 1-center, with varied

network size but agent size fixedtobe 100.

(a) Average path stretch using 2 HSTs V.S. 1 HST for the randomly
generated network. (b) Path stretch using 2 HSTs v.s. path splicing
on the Sprint topology with link failure.
The fraction of disconnected pairs using 1 HST v.s. 2 HSTs. (a)

average value. (b) maximum value.

Xii

45

25

26

27
28

29

30
31

32
33

34
35

36

37

The fraction of messages that are not delivered to the destination on
the Sprint network. (a) Random node failure. (b) Random link failure. 80
This simulation runs on randomly generated grid networks with 400
nodes. Each node fails with independent probability p. We sample
50 different networks for each value p to get the average fraction of

failure pairs. For large p, path splicing achieves better than 2 HSTs.

But the difference is mostly within5%. 81
The circle packing metric. 89
The Schwarz-Christoffel transformation for a simply connected do-

main. f(z;) =Wi. « o o 93
The Schwarz-Christoffel transformation for a multiply connected

domain. f(z;;) =wij. 95
Circlereflection. 96

Prevertices of a simply connected polygon vertices used for evalu-

ating Schwartz-Christoffel transformation. 97
Ricci flow for conformal mapping a multiply connected polygon. . . 99
Activenodesonorbit. Lo 101
Mobile sensors at one snapshot.o 102

Greedy routing for mobile sensor network using real coordinates.
Red node with larger size is the starting sensor, yellow node is the
destination. The green node on each frame shows the routing sensor
at time 7. Greedy routing will get stuck at time 8 and 32. 102
Greedy routing for mobile sensor network using virtual coordinates.
Ist row: routing paths on real network; 2nd row: routing paths on
virtual domain. Red node with larger size is the starting sensor,
yellow node is the destination. The green node on each frame shows
the routing sensor at time #. Greedy routing on virtual domain won’t
getstuck. 103

A greedy spanner example for 100 points with aspect ratio o0 = 223,
the average degree is 6.5, and the stretchis3.4. 124

Xiii

38

39

40

41

42

43

44

Opportunistic information dissemination: sensors waken up by a
moving target will record this detected event and help to dissemi-
nate information about other trajectories they have learned so far to
the descending sensor nodes. In this case, target 75 enters the sensor
field after target 77. The nodes in the trajectory 75 after the junction
node j will learn the information of both 77 and 7;. A query mes-

sage from g that visits one such node (p) is able to discover T} as

well. . e

(i) When the query point locates in A or B, it has different probabil-

ity to send a query intersecting the given trajectory. (i1) Two chords

have an intersection.

A random line with distance r from the origin and angle 6 between

its normal and the positive x-axis.

The query line C crosses another trajectory B, and B crosses the

trajectory A. L e

Left: The query number for a trajectory with different lengths and
different ages with opportunistic dissemination. Right: The query

number for a trajectory with different lengths and different ages

without opportunistic dissemination.

Left: The query number for a trajectory with different lengths
and different ages with opportunistic when the storage size is 100.
Right: The query number for a trajectory with different lengths and
different ages with opportunistic when the storage size is 50.

Left: The average communication cost by querying each trajectory
100 times under opportunistic dissemination. Middle: The average
communication cost by querying each trajectory(with age less than
200) 100 times under opportunistic dissemination. Right: The av-

erage communication cost by querying each trajectory 100 times

with no opportunistic dissemination.

X1V

. 158

159

Acknowledgements

I would like to recognize a number of people who have made my experience
at Stony Brook so remarkable.

Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Jie
Gao, whose patience and kindness, as well as her academic experience, have been
invaluable to me. She has provided me with wonderful guidance and continuous
support over these years. With her enthusiasm, her inspiration, and her great efforts
to explain things clearly and simply, she helped to make research fun for me. I also
greatly appreciate her assistance in writing reports and presenting works.

Also I want to thank the rest of my thesis committee, Prof. Samir Das, Prof.
Xianfen Gu, Prof. Sangjin Hong, for their encouragement, insightful comments,
and hard questions.

I want to thank all my friends at Stony Brook who helped me in various ways.
Without them my life at Stony Brook would not be so colorful and fun.

Finally, I want to thank my parents, my sister and brother for the support they
provided me through my entire life, and for their understanding, endless patience

and encouragement when it was most required.

XV

Publications

1. Dengpan Zhou, Jie Gao, Opportunistic Processing and Query of Motion Tra-
jectories in Wireless Sensor Networks, Proc. of the 28th Annual IEEE Con-
ference on Computer Communications (INFOCOM’09), 1197-1205, April,
2009.

2. Jie Gao, Leonidas J. Guibas, Nikola Milosavljevic, Dengpan Zhou, Distribut-
ed Resource Management and Matching in Sensor Networks, Proc. of the
8th International Symposium on Information Processing in Sensor Networks
(IPSN’09), 97-108, April, 2009.

3. Dengpan Zhou, Jie Gao, Maintaining Approximate Minimum Steiner Tree
and k-center for Mobile Agents in a Sensor Network, Proc. of the 29th An-
nual [EEE Conference on Computer Communications (INFOCOM’10), 511-
515, mini-conference, March, 2010.

4. Jie Gao, Dengpan Zhou, The Emergence of Sparse Spanners and Greedy Well
Separated Pair Decomposition, Proc. of the the 12th Scandinavian Sympo-
sium and Workshops on Algorithm Theory (SWAT 10), 50-61, June, 2010.
Journal version under the title The Emergence of Sparse Spanners and Well-
separated Pair Decomposition Under Anarchy appeared in Journal of Com-
putational Geometry, Vol 3, No 1 (2012).

5. Jie Gao, Dengpan Zhou, Resilient and Low Stretch Routing Through Em-
bedding into Tree Metrics, Proc. of the 12th Algorithms and Data Structures
Symposium (WADS’11), 438-450, August, 2011.

6. Jie Gao, Xianfeng Gu, Siming Li, Wei Zeng, Dengpan Zhou, Compact Con-
formal Map for Greedy Routing in Wireless Mobile Sensor Networks, sub-
mitted(in alphabetical order).

Xvi

7. Xiaotian Yin, Wei Han, Dengpan Zhou, Xianfeng Gu and Jie Gao, Decen-
tralized Path Homotopy Detection Using Hodge Decomposition in Sensor

Networks, submitted.

Xvii

Chapter 1

Introduction

1.1 Introduction

Integrated low-power sensing devices will greatly help remote object monitor-
ing and tracking in many different scenarios and environments. These sensors are
empowered with the ability to coordinate among themselves for communication,
information collecting , distributing and processing. One promising application is
to deploy sensors in inhospitable physical environments for monitoring purposes,
such as remote fire-prone forest area or security applications.

The development of fundamental algorithms for a hybrid system with intelli-
gent sensors and mobile physical agents has broad impact of social values. Sensor
network research in the past few years has matured to a certain level that large-
scale deployments start to become possible. As the state of the art, networks in the
size of hundreds of nodes are common practice; thousands of nodes start to appear,
hundreds of thousands are expected to be done in a couple of years. As sensor
networks scale and cover the physical domain that people live and work, using the
network simply for passive monitoring and data collection does not fully reach the
network’s full capacity. We expect the embedded sensors to be integrated smooth-
ly with other mobile embedded devices so as to provide real-time data collection,
knowledge extraction, environment understanding and eventually evolve into an in-
telligent component of cyber physical system.

In this dissertation we consider the following model of a hybrid network with

both static and mobile nodes. There are pervasive static sensor nodes embedded
in the environment that gather real-time data. The sensor nodes may communi-
cate with other nodes (either sensor nodes or mobile nodes) within communication
range. The mobile nodes may be either robots with controlled mobility to aid the
network operation and repair dysfunctional network components, or users of the
sensor network that demand real-time knowledge gathered by the sensor nodes, or
robots/users that use the sensor network as a communication infrastructure, or a
mixture of the above.

For a large-scale sensor network that largely relies on battery power, energy
conservation is a must and balanced energy usage is an important performance met-
ric. The algorithms that the sensors execute must be light-weight and decentralized
that intelligently use network resources (computation, communication and energy
mainly). Obviously one can have a centralized server to handle all the coordination
necessary and supply a query interface for users of the network. But this central-
ized solution represents a single point of failure, is not resilient to attacks and is
not efficient. First of all, users might be in a neighborhood in which data is gen-
erated. Indeed users are most interested in data in close proximity. A centralized
architecture would require both the data in the network and queries from the users
to be delivered to a remote server. Secondly, when users/agents move around, the
solution for the new positions of the agents might be very similar to the previous
solution and thus can be adjusted slightly. A centralized solution would require a
new cycle of data gathering, computation of a new solution, and the dissemination
of the solution to the users, which is clearly not power efficient. Thirdly, the help
of an underlying sensor network may provide new insights to problems that are

difficult to solve even in the centralized setting.

1.2 Motivation and Objective

This thesis work is motivated by the recent advance and maturity of static
wireless sensor networks for environment monitoring and prosperity of seamless
integrating physical users and/or autonomous robots into a hybrid intelligent frame-
work. The focus is on the joint information processing, optimization and coordi-

nation of both static and mobile nodes to comprehend and act on the environment.

Let’s list a few examples for application scenarios captured by this hybrid network.

1. Mobile robots as aids to sensor network operation. A set of robots are em-
ployed to manage a remote wireless sensor networks. The robots implement
the management task, including collection and delivery of sensor data, net-
work operational maintenance such as battery replacement, node relocation,
etc. The robots need to coordinate among themselves in order to optimize for
energy usage regarding motion planing and task assignment.

2. Online resource management and allocation. Wireless sensors are deployed
in Downtown Manhattan to monitor street parking spots. A sensor at a spot
can tell whether the spot is taken or freed up. Drives may communicate with
a nearby sensor node to ask for parking recommendation. Multiple vehicles
may arrive at the same time and they will need to be assigned to available
parking spots immediately, without conflict. To coordinate among multiple
emerging vehicles and arrive at a matching of vehicles and available spots
with a minimum total travel distance, a communication efficient method is
needed for the system.

3. Maintaining group communication and coordination of mobile agents. In a
scenario, we have a set of rescue workers collaborating on emergency tasks
in an environment in which wireless sensor nodes are densely deployed. An
existing communication infrastructure might not be available in such a disas-
ter recovery setting , the workers will rely on the underlying wireless sensor
network for coordination and communication. One way to achieve this is to
maintain a group communication structure, e.g., a spanning tree connecting
all workers, in the sensor network for the mobile rescue workers to continu-

ously exchange information and commands.

The above examples cover several different application categories. We are going to
answer most of these questions in latter chapters. One common theme behind these
problems is the tight coupling and frequent information between static monitoring
sensor nodes and mobile actionable agents. The optimal design for data collection
via static sensor networks, and the optimal coordination and planning of mobile
agents have been separated topics of study in the sensor network community and
robotics community respectively. However the considered optimization or coordi-

nation problem of the mobile agents is often known to be theoretically difficulty.

For example, maintaining a minimum Steiner tree for mobile agents or computing
the traveling salesman tour for data mules are well known NP-hard problems. The
biggest challenge is to solve the information brokerage problem, in which sensors
detecting interesting local events and the mobile users seeking such information are
not aware of one another.

Basically we are going to examine the challenges arising from the interaction
of static wireless sensor networks and mobile agents. There are two basic tasks for
such kinds of applications. First of all, we must have an efficient way to organize
the mobile agents and keep them communicate with each other well. Secondly,
depending on the specific application, we should coordinate the mobile agents ef-
ficiently. One of the key requirements for sensor networks is to support for very
large numbers of unattended autonomous nodes and adapt to environment and task
dynamics. To aid the coordination tasks, we ask how sensor data should be stored
and processed in the network, and what type of distributed structures should be
maintained, to best serve mobile interactive users. Some naive or simple greedy
algorithms do not work well here. To aid the application, we introduce a special
tree metric, the hierarchically well-separated tree, which approximates the original
metric with distortion at most O(lgn), where n is the size of the network. Many
problems are easier on trees, and it is easy to aggregate information on trees. Based
on this special tree metric, we are able to solve the above problems in an easy and
elegant way.

Routing is one of the most important and challenging tasks in wireless sensor
networks. Due to the resource constraints of sensor nodes, efficient routing mecha-
nisms are desirable for wireless sensor networks. To cope with the mobility nature
of wireless sensor networks, we are interested in light-weighted routing algorithms
that can quickly and efficiently respond to unpredictable topological changes.

1.3 Overview

In Chapter 2: We briefly discuss the tree metric and introduce a special tree
metric, i.e., Hierarchically Well-separated Trees (HSTs). We review the central-
ized top-down algorithm for computing an HST. Then we present our bottom-up

distributed algorithm for the same HST computation.

In Chapter 3: We consider a scenario in which there are resources at or near
nodes of a network, which are either static (e.g. fire stations, parking spots) or
mobile (e.g. police cars). Over time, events (fires, crime reports, cars looking for
parking) arise one-by-one at arbitrary nodes, and need to be quickly matched to and
served by an appropriate nearby resource, without knowledge of future requests,
and without the ability to alter any decision once it has been made.

We develop distributed algorithms to direct available resources in the network
to these events (or vice versa) in a coordinated fashion, so that no two resources are
assigned to the same event, and the total distance of the events from their matched
resources is minimized. The key idea is to extract, in a preprocessing stage, a
well-separated tree metric that approximates the original network metric by a log-
arithmic distortion, allowing greedy matching algorithms to generate close to op-
timal matchings, and enabling communication-efficient probing-based algorithms
for events to detect nearby available resources. The distributed matching algorithm
requires no global coordination and achieves polylogarithmic performance ratio in
both online and offline settings. Simulation experiments corroborate the theoreti-
cal results on solution quality and further evaluate the communication costs of our
scheme in practice.

In Chapter 4: We study the problem of maintaining group communication
between m mobile agents, tracked and helped by n static networked sensors. We
develop algorithms to maintain a O(lgn)-approximation to the minimum Steiner
tree of the mobile agents such that the maintenance message cost is on average
O(lgn) for each hop an agent moves. The key idea is to extract a ‘hierarchical well-
separated tree (HST)’ on the sensor nodes such that the tree distance approximates
the sensor network hop distance by a factor of O(lgn). We then prove that main-
taining the subtree of the mobile agents on the HST uses logarithmic messages per
hop movement. With the HST we can also maintain O(lgn) approximate k-center
for the mobile agents with the same message cost. Both the minimum Steiner tree
and the k-center problems are NP-hard and our algorithms are the first efficient
algorithms for maintaining approximate solutions in a distributed setting.

In Chapter 5: Given a network, the simplest routing scheme is probably routing
on a spanning tree. This method however does not provide good stretch — the route

between two nodes can be much longer than their shortest distance, nor does it give

good resilience — one node failure may disconnect quadratically many pairs. In
this chapter we use two trees to achieve both constant stretch and good resilience.
Given a metric (e.g., as the shortest path metric of a given communication network),
we build two hierarchical well-separated trees such that for any two nodes u, v, the
shorter path of the two paths in the two respective trees gives a constant stretch of
the metric distance of u, v, and the removal of any node only disconnect the routes
between O(1/n) fraction of all pairs. This result holds true as long as the metric
follows certain geometric growth rate (the number of nodes within distance r is a
polynomial function of r), which holds for many realistic network settings such as
wireless ad hoc networks and Internet backbone graphs. Besides the theoretical
results, we also evaluate the routing performance in wireless sensor networks and
the Internet.

In Chapter 6: Motivated by mobile sensor networks as in participatory sensing
applications, we are interested in developing a practical, lightweight solution for
routing in a mobile network. While greedy routing is robust to mobility, location
errors and link dynamics, it may get stuck in a local minimum, which then requires
non-trivial recovery methods. We follow the approach taken by Sarkar et. al. [IPSN
2009] to find an embedding of the network such that greedy routing using the vir-
tual coordinates guarantees delivery, thus eliminating the necessity of any recovery
methods. Our new contribution is to replace the in-network computation of the em-
bedding by a preprocessing of the domain before network deployment and encode
the map of the network domain to virtual coordinate space by using a small number
of parameters which can be pre-loaded to all sensor nodes. As a result, the map
is only dependent on the network domain and is independent of the network con-
nectivity. Each node can directly compute its virtual coordinates by applying the
locally stored map on its geographical coordinates. This represents the first prac-
tical solution for using virtual coordinates for greedy routing in a sensor network
and could be easily extended to the case of a mobile network. When nodes move
around, by their GPS location or displacement from previous location each node
updates it own virtual coordinates and there is no need of any in-network computa-
tion/communication for maintenance of the embedding. The paper describes algo-
rithmic innovations as well as simulations and implementations on a real testbed to

support our claims.

In Chapter 7: A spanner graph on a set of points in R? provides shortest paths
between any pair of points with lengths at most a constant factor of their Euclidean
distance. A spanner with a sparse set of edges is thus a good candidate for network
backbones, as desired in many practical scenarios such as the transportation net-
work and peer-to-peer network overlays. In this paper we investigate new models
and aim to interpret why good spanners ‘emerge’ in reality, when they are clear-
ly built in pieces by agents with their own interests and the construction is not
coordinated. Our main result is to show that the following algorithm generates a
(1 4 ¢€)-spanner with a linear number of edges, constant average degree, and the
total edge length a small logarithmic factor of the cost of the minimum spanning
tree. In our algorithm, the points may build edges at an arbitrary order. When a
point p checks on whether the edge to a point g should be built, it will build this
edge if and only if there is no existing edge p’q’ with p’ and ¢’ at distances no more
than m -|pq| from p, g respectively. Eventually when all points have finished
checking edges to all other points, the resulted collection of edges forms a sparse
spanner as desired. This new spanner construction algorithm has applications in
the construction of and local routing on nice network topologies for peer-to-peer
systems, when peers join and leave the network and has only limited information
about the rest of the network.

As a side product, we show a simple algorithm for constructing linear-size
well-separated pair decompositions that may be of interest on its own. A well-
separated pair decomposition is a collection of subset pairs such that each pair of
point sets is fairly far away from each other compared with their diameters and that
every pair of points is ‘covered’ by at least one well-separated pair. Our algorithm
selects an arbitrary pair of points that is not yet covered and puts a ‘dumb-bell’
around the pair as the well-separated pair, repeats this until all pairs of points are
covered. At this point, we show only a linear number of pairs is generated, which
is asymptotically optimal.

In Chapter 8: We study the problem of in-network processing and queries of
trajectories of moving targets in a sensor network. The main idea is to exploit the
spatial coherence of target trajectories for opportunistic information dissemination
with no or small extra communication cost, as well as for efficient probabilistic

queries searching for a given target signature in a real-time manner. Sensors near

a moving target are waken up to record information about this target and take the
communication opportunities to exchange their knowledge with preceding and de-
scending sensor nodes along the trajectory. Thus a moving target’s information is
naturally detected, recorded, and disseminated along its trajectory, as well as the
motion trajectories that enter the sensor field afterwards.

We analyzed and through simulations tested the dissemination cost and query
success rate for randomly generated data sets. Trajectories of reasonable length can
be discovered by probabilistic in-network queries with high probability. Compared
with the scheme without opportunistic dissemination, the in-network processing of
trajectories, with modest cost on dissemination, allows substantially reduced query

cost and delay.

1.4 Reference

Parts of the materials included in this dissertation have been or will be pub-
lished in international conferences, and thus are under copyright. We list them in

the publication section.

Chapter 2

Introduction to Hierarchically
Well-separated Tree and Its
Distributed Implementation

2.1 Introduction

Approximation algorithm [154] is suitable and attractive for a lot of practical
applications, especially for important NP-hard problems. Approximation algorithm
efficiently produces a sub-optimal solution. One of the techniques for good approx-
imation algorithm is through approximating metric spaces.

Approximating metric spaces by more simple metric spaces has many algorith-
mic applications. One particular choice of such simple metrics is the tree metric, i.e.
a metric defined by the shortest path distance on a tree containing the given point
set. Many problems would be greatly simplified and easy on special tree metrics.
For problems on general metrics, we could get a simplified version of the problem
through embedding into tree metrics. The original problem is well approximated by
solving the tree version if the tree metric is not far away from the original metric.

Given a metric (P,d) we embed it to a hierarchically well-separated tree (HST),
defined as a rooted weighted tree such that: the weight of all edges between a node
and its children are the same; the edge weights along any path from the root to a
leaf are decreasing by a factor of o. In this paper we simply take oo = 2. The leaf

nodes of the HST are 1-to-1 mapped to nodes in P and internal nodes of the HST are
also mapped to nodes of P although certain nodes may appear multiple times. The
embedding of (P,d) into the tree metric leads to distortions of the metric distances.
As discussed earlier, using a fixed tree one cannot avoid the worst case distortion
of Q(n). But if one build a randomized tree, chosen from a family of tree metrics,
the expected distortion can be bounded by O(logn). Thus using this tree for routing
one immediately obtains O(logn) stretch routing with low routing overhead. Ap-
proximating a metric with probabilistic hierarchical well-separated trees was first
proposed by Bartal [21,22], with the motivation that many problems are easier to
solve on a tree than on a general graph. Later, Fakcharoenphol et al. [56] improved
the distortion to O(logn) for any n node metric and this is tight.

Due to the distributed nature and increasing deployment of wireless sensor
networks, distributed computing algorithms draws a lot of attention and raises a
lot of interesting research topics in wireless sensor networks commnuity. The goal
here is to design efficient distributed algorithm compared to a corresponding global
algorithm. We could easily turn a global centralized algorithm into a distributed
algorithm. We can always achieve this by assuming a central station, which simply
centrally collect the distributed state, compute a global solution, and distribute the
solution. However, the major drawback related with this simple routine is about the
unreasonably high communication overhead and bad load balance. We have power
restriction in sensor networks and sending and receiving messages are expensive
operations in wireless sensor networks. And this simple scheme does not exploit
the distributed nature and property of wireless sensor networks well. We aim at
more reasonable distributed algorithm that minimize communication.

Combining these two well-established research areas leads to a promising and
efficient approach for a lot of difficult problems arising from wireless sensor net-
works. Distributed approximation algorithms trade-off opitimality of the solution

for the amount of resources consumed by the distributed algorithm.

2.2 Hierarchically Well-Separated Trees

In this section, we will give the definition of an a-hierarchically well sepa-

rated tree (0i-HST) and show how to compute the a-HST embedding of a constant

10

doubling dimension graph metric in a distributed way.

Definition 1 («-HST). A rooted weighted tree T is an a-HST if

e the weights of all edges between an internal node and its children are the
same

e all root-to-leaf paths have the same hop-distance

e the edge weights along any such path decrease by a factor of oL as we go

down the tree

Throughout this chapter we ‘count levels from leaves to the root’, i.e., we define the
level of a node u in a-HST as the distance in hops from u to any of its leaves. In
particular, all leaves have level 0. We define the level of a subtree to be the level of
its root.

Fakcharoenphol et al. [56] give a centralized algorithm to compute, giv-
en an n-point metric (P,d), a random 2-HST T whose tree metric dr O(logn)-
probabilistically approximates d. That is, for any u,v € P, dr(u,v) > d(u,v) and
E[dr(u,v)] < O(logn)-d(u,v), where the expectation is taken over random choices
of the algorithm, equivalently over the distribution on the resulting trees. In this pa-
per, we use P to denote the set of nodes in an undirected graph modeling the sensor
network, and d(u,v) denotes the minimum hop count between u,v € P in the sensor
network. When we use a 2-HST to approximate the graph metric d, all the nodes
in P are placed as the leaf nodes of the 2-HST. The distance between two nodes
u,v € P on the tree T, dr(u,v), is defined as the sum of the distances along the
paths from u,v to their lowest common ancestor in the 2-HST. The internal nodes
in the HST are abstract nodes, although they might be labeled by some nodes of P,
as will be explained later. We denote by B(p,r) the ball centered at point p with
radius r.

The algorithm of [56] is centralized and executes in a top-down fashion to par-
tition the nodes in the network hierarchically. The HST naturally corresponds to
this hierarchical partition of P. The nodes of P are the leaf nodes of the HST and
each internal node in the HST corresponds to a cluster of nodes in the hierarchical
partitioning. For completeness, we review this algorithm below. We fix a permu-
tation w: P — {1,2,...,n} of the nodes, chosen uniformly at random from the set

of all permutations. We also fix a value B chosen uniformly at random from [%, 1).

11

To get a 2-HST, we compute for each node u a O(log(n))-dimensional signature
vector S(u), where the i-th element in the vector is

S(u)i = argvelg?;gimn(\/), (1)
for i =0 to m = [logD] + 1 with D the network diameter. That is, each node
keeps the node with the smallest rank among all nodes within distance 2. For all
nodes u, S(u),, is the node with rank 1. These signature vectors define the HST
embedding of d. In particular, the leaves are nodes of P, the level-i ancestor of a
node u is labeled S(u);, and the weights of all edges between level i and level i — 1 is
2!. The fact that this is indeed a 2-HST (in the sense of Definition 1) is not obvious;
its proof appears in [56]. The top-down construction of the 2-HST in [56] is hard

to implement in a distributed network.

2.2.1 Distributed algorithm to compute 2-HST

In this section we propose a bottom-up construction to compute a 2-HST in a
distributed way, with total communication cost O(nlogn). The HST construction is
performed as preprocessing at the network initialization stage. Specifically, we will
show how to compute signature vectors shown in (1) and the necessary information
for each node to find path to its parent in a distributed way.

Our algorithm proceeds in a bottom-up fashion and computes the i-th element
of the signature vector for every node in round i, for i starting at 0. If S(u); = v,
we say that u nominates v at round i. Intuitively, as i increases, only the nodes
with small indices can possibly be nominated and appear in the signature vector.
Observe that if at level i a node u is not nominated by any other node, i.e., every
node v already has some other node with index smaller than u within radius 2B, the
node u cannot possibly be nominated at level i 4 1. Thus we keep track of the subset
of nodes that have been nominated and ‘survive’ round i and only these nodes will
flood the network with maximum hop count (TTL) value of 2+ in round i + 1.
We use P; to denote the nodes that are nominated from the round i and thus are
candidates to be nominated in round i + 1.

At the beginning, every node is a candidate, that is Py = P. A fixed pre-
determined node (‘leader’) chooses a random 3 uniformly from [%71) and dis-

tributes it to all nodes using a single global flood. In round i+ 1, the nodes of

12

P, flood the network up to distance 2°+!B. The flooding packets are cached at the
nodes receiving these packets until the end of the current round. Now every node u
receives some flooding messages from the candidate nodes P; N B(u,2!*1B). During
round i + 1, node u maintains the identity of the node vy, with lowest rank that
it has received. At the end of round i + 1, ¥ nominates vy, as its (i + 1)-th level
element in its signature vector for round i 4 1 (also its level-(i 4 1) ancestor), i.e.,
S(u)i+1 = Vmin-

Each node records the information where it got the flooding message from.
With this information, each node u can trace back to get the path to the ancestor
vmin and report the nomination. By this process, each node knows its parent and
its children in that level of the tree. At the end of each round, all nodes clear all
flooding messages that are not traced back by other nodes. P,y consists of the
nodes in P; that are nominated by some nodes during round i + 1. Continue the
above process until there are no more candidates. After we compute the signature
vector S(u) for each node u, we could easily reconstruct the original HST from
these signature vectors.

We remark that the 2-HST is computed and stored in a completely distributed

manner. This is sufficient for the applications in the distributed matching problem.

2.2.2 Communication cost

In this section we prove that the total communication cost, measured by the to-
tal number of message transmissions, for the computation of the 2-HST described
earlier is bounded by O(nlogn), provided that the doubling dimension of our min-
imum hop metric is bounded by a constant. The constant doubling dimension
metric has been used in prior work as an appropriate model of a sensor network
metric, when the sensor nodes are densely and uniformly deployed in a geometric
region [64].

First we formalize the intuition stated above, that the sets of candidates P; be-
come sparser as level i increases. As the construction algorithm is randomized, the
following bounds are taken in expectation on random permutations and parameters
B. Actually, communication cost analysis in this section holds for any fixed 3 (the

fact that 3 is random is only important for the distortion bound).

13

Lemma 2. If the doubling dimension is at most v, any ball of radius 2' contains at

most 2°Y elements of P; in expectation, for all i.

Proof. For convenience, let 20 —: ¢. The proof is by induction on i. The claim is
true for the first round (i = 0) as every node sends a message to its 1-hop neighbors,
and each node only responds by one message to the neighbor with minimum index.

Consider the ball B(v,2') for arbitrary v. Nodes of P; in this ball may only be
nominated (in the i-th round) by nodes in B(v,2"!). The latter can be covered by
a family 4 of 22Y balls of radius 21, so it suffices to prove that each ball of 4

nominates at most 2~ 2%¢ nodes in P;.

Figure 1. Any ball of radius 2/ contains at most 257 elements of P; in expectation, for all i. The
arrow from w to u means node w nominates u in round i.

Let A be any of the covering balls, A € 4. Denote by |A| the number of nodes
of P inside A. If a node in P; N B(v,2') is nominated from A, it must be chosen from
P,_1NB(v,2%). See Figure 1 for illustration. Since B(v,2") can be covered by at most
27 balls of radius 2°~!, and by inductive hypothesis, there are at most 2Yc choices

P;_1 NB(v,2%)| < 2¥c. We claim that for a fixed choice
€1
Al

note that any w € A contains entire A inside its 2/-ball, that is A C B(w,2). So if

for this nomination. That is,

u, the probability that # is nominated by a node in A is at most To see this,

u is nominated by any node in A, then in particular, 7t(«) is smaller than the ranks

e
Al)
expectation, the number of nominations by A is IZA_T' On the other hand, it is also

deterministically bounded by |A|, as each node in A can nominate only once. Hence

of all nodes in A, which is true for at most —;-fraction of permutations. Hence in

14

the number of nominations by A is bounded by min{|A|, %} < v/2Yc. This is at
most 272Y¢ by our choice of c. O

Now we can prove the main result.

Theorem 3. For a sensor network with n nodes, the total communication cost for
constructing the 2-HST is O(nlogn) in expectation, and each node uses expected
storage for O(logn) node IDs.

Proof. The initial flood (to distribute the value of) takes O(n) messages, be-
cause the maximum degree of the network is bounded. Now it suffices to prove that
each node at each round receives O(1) messages. The communication cost will then
be only O(n) in each round as there are n nodes in total. Since there are O(logn)
rounds, the total number of messages is O(nlogn).

The number of messages transmitted (propagated) by node u in round i is at
most |P;_1 NB(u,2'B)| < |Pi_1 N B(u,2')|. Since B(u,2') can be covered by at most
2Y balls of radius 2/!, each of which contains at most 27 elements of P,_; (by
Lemma 2), we conclude that u transmits at most 2’ = O(1) messages in each round.

Total storage requirement consists of all next-hop pointers that encode the
paths that realize edges of the HST. Notice that each such pointer can be charged
to a unique flooding packet reception event. Hence the storage requirement for a
given node u is at most the number of flooding messages that u received throughout
the computation. Again, Lemma 2 implies that this number is O(1) per round, or
O(logn) in total. O

223 o-HST

The algorithm described above computes a 2-HST for a distributed network.
It is not hard to convert a 2-HST to an o-HST for any value o0 > 2. We remark that
converting a 2-HST to an a-HST can also be done in a distributed setting. Basical-
ly at the end of our distributed algorithm, each node identifies its ancestors in the
2-HST T. Now we condense the tree T to an o-HST 7’ by removing some inter-
mediate levels of T and re-connecting the nodes directly to their lowest ancestors
that are not removed. In particular, the leaf nodes remain the same. For i increasing
from 0, suppose we have constructed the tree T’ up to level i. The nodes on level

i of T’ correspond to the nodes on level j on tree T. Now we proceed to build the

15

tree T/ in level i + 1. To do that, we take the lowest level ;' in the tree T such that
the distance Z{::_jl 2h = 27" —2J is no greater than o and remove all the internal
nodes on level j+1,j+2,---,j — 1 of tree T. The nodes on level j’ are nodes on
level i + 1 in tree T'. The nodes in level i connect to their corresponding ancestors
on level i + 1 by a single edge with weight o’. See Figure 2 for an example. Notice
that the tree metric 7’ again dominates the original metric as we are only relaxing
the edge weights. In particular, the edge connecting a node on level i in 7" to its
parent has weight of, with 2/ — 2/ < of < 2/+1 — 2/ by construction, where j is
level i’s corresponding level in T and j’ is level (i 4 1)’s corresponding level in 7.

The relaxation of the edge weights of 77 will add at most a constant multi-
plicative factor on the distortion as shown below. For any two leaf nodes u,v on
T, suppose their lowest common ancestor is located at level i on 77 and level j” on
T. Clearly j < j” < j'. Now we would like to bound d7(u,v) by dr(u,v). First
dr(u,v) =2- 05120 =220 1), dp(uy) =2 i ol = 2o 1) /(00— 1),
Since a/~! < 2/*1. We have

20 4o —2
1dT(u,v)—|— 1 < Tdr(u,v).

dT/(Lt,V) <

That is, the distortion for d7- is also bounded by O(logn).

This conversion can be executed by each node in the network examining its
signature vectors and selecting subset of the elements in exactly the same way. In
the end we have an a-HST that is again implicitly stored on the nodes in the net-
work, and O(logn)-probabilistically approximates the underlying network metric.

22
a!
*
i
2 o

Figure 2. Convert a 2-HST to an o-HST for any o > 2.

At the end we summarize the properties of the o--HST that will be useful later.

16

Lemma 4. Suppose for level i on the a-HST T’ corresponds to level £(i) on the
2-HSTT. Now we have:

1. 20i+1) _oLG) < of < Ui+ 1)+1 _ ol(i)

2. Each leaf node is within distance (o —1)B/(o.— 1) from its i-level ancestor
onT’.

Proof. The first claim is due to the construction of the a-HST. For the second
claim, we know each leaf node is within distance 2/ B of its j-level ancestor on the

2-HST. Now the distance from a leaf node to its i-level ancestor on 7" is at most
2B < [oi ! +200-DIB < (o — 1)B/ (o —1). O

2.2.4 HST on k resources

In Section 3.5 we will need to construct an HST only on the sub-metric of the
original shortest-path metric which is induced by a given subset K of k nodes, let’s
call them special nodes for now. This can be done with the same communication
and storage cost as before, by simply picking the permutation uniformly at random
from the set in which the special nodes are k lowest-ranked nodes, and in the end
taking the part of the tree containing special nodes (notice that this is still a tree, and
that it has the same root. The parent of a special node is always special, due to the
choice of ranks. Notice that the parent of a node could be itself if it has the lowest
rank among all the nodes inside its proper neighborhood. Hence a breadth-first
search from the root, stopped upon encountering a non-special node, is guaranteed
to discovers special nodes.).

Why does this work? The main observation is that the execution of the al-
gorithm restricted to K does not depend on non-special nodes at all. In fact, this
simulates the execution of the original algorithm of [56] on the metric (K,dk),
where dk is the restriction of the shortest path metric on K. Recall that the same
construction works for any metric, as long as the 2/B-neighborhoods are determined
with respect to the appropriate distance function. Since this is the case here, and the

metric has k points, correctness follows.

17

2.3 Simulation

We implemented the 2-HST construction algorithm (Section 2.2) in MATLAB
and tested in on 100 randomly generated networks. The networks were generated
by perturbing 7 nodes of the /7 x y/n grid in the [0, 1]? unit square, by 2D Gaussian
noise of variance 0.3,/n, and connecting two resulting nodes if they are at most \/iﬁ
apart (in Euclidean distance). We also made sure that all generated networks were

connected.

= \‘\‘— \‘“; NP V
33’5!):\ AN

- %\\\ V25

DR

Figure 3. A typical HST on n = 400 nodes. Thicker lines represent higher-level edges.

Figure 3 illustrates a typical 2-HST layout on our test network, and Figure 4
shows a typical distribution of communication load and storage requirements. Com-
munication is evenly distributed, as predicted by Lemma 2. Storage requirement is
higher for nodes higher up in the hierarchy, but it grows slowly with the network
size (Theorem 3). This result means that the hidden constant in Theorem 3 is in
practice much smaller than predicted by our theoretical analysis.

Figure 5 shows how the communication cost and storage requirement change,
on average, as a function of network size. The value for each size is an average
of 100 independent trials. We conclude that, as predicted by Theorem 3, both per-
node storage and per-node communication cost grow logarithmically with number

of nodes.

18

100

80

60

40

20

Figure 4. Communication cost (left) and storage requirement (right) in a perturbed grid network of
n = 400 nodes.

2 100 o 18
O pe)
pt o
S 80| e
£ el 5
€ 60! 1.6/
2 s g
(@]
§ 40t EFHZ(B % 1.5
£
>
é 29 W E 1.4
= 3
E o : : : = : : :
0 100 200 300 400 ~ 1.3, 100 200 300 400
network size network size

Figure 5. Per-node communication cost and storage requirement scale sublinearly with network
size.

2.4 Conclusion

This chapter shows how to extract the hierarchically separated tree metric from
a network in a distributed and communication efficient way. In the next chapter, we
are going to implement the distributed resource management algorithms in this tree

metric.

19

Chapter 3

Distributed Resource Management
and Matching in Sensor Networks

3.1 Introduction

Recent advances in wireless sensor networks reveal the potential of such em-
bedded network systems for revolutionizing the way we observe, interact with,
and influence the physical world. Applications of sensor networks now extend be-
yond military deployments and the monitoring of animal or other natural habitats
to places where humans work and live: homes, cars, buildings, roads, cities, etc. In
these human spaces a sensor network serves users embedded in the same physical
space as the network, allowing real-time data acquisition, situational understanding,
event response and control, eventually leading to a fully intelligent living environ-
ment.

In this chapter we explore the challenge of using a network of embedded sen-
sors in aiding information discovery and resource management so as to allow coor-
dinated response to distributed emerging events. The embedded sensors serve two
purposes: discovering/detecting the events of interest (e.g., a parking spot is left
empty); and forming a supporting infrastructure for distributed resources/users to
act on the detected events (e.g., help a vehicle to look for an empty parking spot). In
the parking scenario, multiple vehicles can be consulting with the sensor network

for available parking spots at the same time. The sensor network needs to resolve

20

competition and match vehicles with empty parking spots, in a way that avoids di-
recting two cars to the same empty parking spot. In another scenario, emergency
events detected by sensor nodes such as abnormalities, sensor battery outages, or
local data overflows need to be handled immediately. Thus the sensor network faces
the problem of directing surveillance vehicles/network helpers/data mules, one per
event, to support real-time response and maintain network normal functioning.
When multiple events arise with multiple available resources to possibly act on
them, there is an immediate need for coordinated and distributed resource manage-
ment, to assign the resources to these events in a balanced yet efficient way. Here
the event refers to, for example, a new vehicle querying for parking spots, or an
emergency situation waiting for rescue efforts; and the resource refers to available
parking spots or rescue teams. We model the resource management problem as fol-
lows: there are k available resources residing in the network, events may emerge
at any time near any node, and multiple events can appear simultaneously. Both
available resources and these emerging events are detected and tracked by their n-
earby sensor nodes. We would like to design a distributed matching mechanism to
assign each event to a distinct available resource. Naturally, to reduce response de-
lay and energy expense, an event should be matched to a nearby resource, with the
distance measured either in the network metric (the number of hops in the network
from the resource location to the event location) or other underlying metric (e.g.,
the Euclidean distance metric), depending on how the event is to be serviced. The
quality of the solution is naturally represented by the total distance of the matching.
This resource management problem, in the centralized setting, is simply a clas-
sical minimum cost bipartite matching problem. Each resource i is connected to
each event j with an edge of cost equal to the distance between them (in the appro-
priate sense). The optimal matching with the minimum total cost of the edges in the
matching can be found by flow algorithms in 0(k3) running time for k events and k
resources [121]. However, implementation of the centralized min-cost matching so-
lution is not feasible in the sensor network setting for two reasons. First this would
require the collection of all the information on the resources and events at a central
place to execute the flow algorithm, which we would like to avoid. In addition, the
events may emerge anywhere anytime and often require immediate response. Thus

we deal with an online setting in which resource commitments must be made before

21

we know the entire event sequence in the future. How to achieve the coordination
needed in the matching algorithm in a distributed setting, with the events coming
online, not aware of each other and not aware of the locations of available resources,
is the main problem we will tackle in this chapter.

3.2 Overview

For distributed resource management, we need to solve the following two
problems:

e low-cost resource discovery and aggregation: when an event emerges, how
does it discover nearby available resources in a communication efficient way;

and

e close to optimal matching algorithm: which resource should an event select
to be matched with, and how to resolve competition, so that no two events

select the same resource.

The two problems, resource discovery and distributed matching, are closely related.
The solution for one may impact the solution for the other.

Let us first consider a typical setting when a set of events pop up at the same
time. In a distributed setting where no sensor node is taking full control, the chal-
lenge for the resource discovery problem is to decide what information is to be sent,
and to where. The naive solution of flooding the entire network with all the events
allows each event to solve for the centralized min-cost matching solution, but is
obviously too communication expensive. To reduce communication cost, one may
use restricted flooding to discover the closest available resource from each even-
t. In particular, the TTL of the flooding messages from an event doubles until a
resource is found. The communication cost, measured in the number of message
transmissions, is O(¢?), if the closest resource is ¢ hops away. In this way, each
event discovers the closest resource that has not yet been matched with others. The
problem is that such a greedy matching algorithm may give a very poor approxi-
mation ratio of @(klgg) to the min-cost matching of k events [132]. To get a better
approximation ratio, one may adopt the 2-approximation algorithm for min-cost
matching by the primal-dual method [73]. This would require a flooding from each

22

event and global coordination of the growth of each aggregated component, thus
incurring a much higher total communication cost.

From the above discussion, it is clear that we need to find a solution that
achieves a balance between a low communication cost for resource discovery and a
good approximation ratio for distributed matching. Our solution is to define a tree
metric from the underlying network metric (minimum hop count distance metric of
the sensor network) so that

e the simple greedy algorithm in the tree metric gives a polylogarithmic ap-
proximation ratio (or competitive ratio in the online setting when the events
appear one by one [26]);

e the tree structure allows easy probing based detection of nearby resources,
thus significantly saving communication cost (when compared with flooding

the network).

The tree metric we extract is based on a hierarchical well-separated tree. An -
hierarchically well-separated tree (ot-HST) is defined as a rooted weighted tree such
that: the weight of all edges between a node and its children are the same; the edge
weights along any path from the root to a leaf are decreasing by a factor of o.. The
nodes of the HST are the nodes in the original communication network G, but a tree
edge is virtual, i.e., it maps to a path in the original network.

This hierarchical well-separated tree is going to approximate the original graph
metric G by a logarithmic distortion factor, in terms of the shortest path distance
between any two nodes. In particular, what we propose to extract is one o--HST,
chosen by a distribution D from a family .S of a-HSTs such that for each HST T in
the family §, the distance dr (u,v) between any two nodes u, v in the tree T is greater
than the shortest path length dg(u,v) in the original graph G, and that the expected
distance between u,v, Epcsldr(u,v)D(T)], taken over the distribution 9 on the
family § of trees, is no greater than - dg(u,v), where D(T) is the probability of T
in the family . Such a family of HSTs is said to B-probabilistically approximate
the original metric G, with 3 being the (expected) distortion factor.

The hierarchical well-separated tree brings in two benefits to the distributed

resource management problem. First, a HST is a special and simpler metric such

23

that simple greedy algorithm by recursively matching closest pairs on the tree, in-
stead of the original graph, gives good performance for both off-line and online
matching. In the off-line (but distributed) setting when k events appear at the same
time, the greedy algorithm gives optimal min-cost matching on the HST. As the tree
metric approximates the original graph metric by a logarithmic factor, this algorith-
m gives an O(logk) approximation ratio for the min-cost matching on the original
communication graph. In the online setting when the events appear in any order
and we compare the quality of the online matching with the off-line optimal solu-
tion (when the entire sequence of events is known), the simple greedy algorithm
gives an O(log2 k)-competitive ratio compared with the optimal matching on the
HST and consequently an 0(10g3 k)-competitive ratio in the original metric. Sec-
ondly, working on the hierarchical well-separated tree solves information discovery
and aggregation easily. We adopt a similar probing scheme as in our previous sparse
aggregation framework [69]. Each event sends probes from along the HST looking
for the nearest unmatched resource.

In section 2.2 we describe a distributed algorithm for the extraction of the
probabilistic HST from the sensor network metric. The construction of HST is a
preprocessing step that is executed during the network setup phase. Nodes on the
HST correspond to nodes in the network; each network node maps to at least one
tree node, possibly more. Edges of the HST correspond to paths in the network.
Each such path is stored as a (bidirectional) chain of next-hop pointers, one per
node along the path. Each HST node records information required to associate its
outgoing paths to its adjacent HST edges, as well as the weights of those edges in
the HST. In summary, to store the HST in the network, a network node has to store
the amount of information proportional to the number of paths that go through it,
and the number of HST edges adjacent to HST nodes that it represents.

For a particular resource management problem, we can condense the HST to
get a tree with the leaf nodes only on the available m resources with the total size of
the tree being O(m). For load balancing, we can build a few HSTs, with different
random seeds, and rotate between them periodically. The construction of the HST
assumes a random indexing of the nodes and proceeds in O(logn) rounds. At round
i, only a subset of the nodes P; ‘survive’ to be qualified as the nodes on the i-th level

of the tree (counted from the leaf level of the tree). These nodes flood the network

24

with maximum hop count B2/, where B is a number chosen randomly between 1/2
and 1 in the initialization phase by a preconfigured ‘leader’ node, who broadcasts
the value to the rest of the network. Every node selects, among all the messages
it received at this round, the node with minimum index to be its ancestor at level
i+ 1 with an edge weight as 2°. The nodes that are not nominated by any node will
quit after round i. Intuitively as i increases, although the flooding radii increase,
the number of candidates decreases. We show that the total communication cost for
each round, in terms of the number of message transmissions, is bounded by O(n),
and the total communication cost for the construction of a HST is O(nlogn), if the
underlying communication graph has a constant doubling dimension. The doubling
dimension of a metric space (X,d) is the smallest value p such that each ball of
radius R can be covered by at most 2P balls of radius R/2 [81]. If we place at most
a constant number of sensor nodes inside any unit disk and the holes in the sensor
networks are not very fragmenting, the communication graph has constant doubling
dimension.

The construction of the HST in a distributed environment is interesting on its
own and can potentially have more applications besides the distributed matching
algorithm for resource management explained above — working on a tree is much
easier than working on the original graph; thus many optimization problems admit
algorithms of improved performance on a tree. The construction of the HST natu-
rally extends the applicable domain of these algorithms to a sensor network setting
with only a logarithmic factor loss.

3.3 Previous Work

The min-cost matching problem in a bipartite weighted graph can be solved
optimally by the flow algorithm in a centralized setting. The greedy matching algo-
rithm that matches closest pairs achieves a worst-case approximation ratio G)(klg%)
for k vertices on a general graph or under Euclidean metric [132], but is optimal on
a HST metric [20]. For the online min-cost matching problem, the k vertices (blue
vertices) on one side of the bipartite graph are given, the k vertices (red vertices)
on the other side of the graph are revealed one by one. When a red vertex appears,

it needs to be matched with a blue vertex immediately. The solution is compared

25

with the optimal matching when all the red vertices are given altogether and the
performance degradation is captured by the competitive ratio of the online deci-
sion making procedure. Meyerson et al. [110] proposed the first randomized online
algorithm that achieves a logarithmic competitive ratio of O(log3 k), by using the
probabilistic HST approximation of a general graph metric. Essentially each red
node is matched to the closest blue node on the HST and ties are broken random-
ly. An improved algorithm by Bansal et al. [20] achieves a competitive ratio of
O(log*k).

Approximating a metric with probabilistic hierarchical well-separated trees
was first proposed by Bartal [21, 22], with the motivation that many problems are
easier to solve on a tree than on a general graph. Later, Fakcharoenphol et al. [56]
improved the distortion to O(logn) for any n node metric and this is tight.

This chapter borrows from these ideas. This previous works, however, were for
a centralized environment. In this chapter the distributed algorithm design and the
communication cost analysis for both (i) extracting a HST from the network metric
and (i1) applying probing-based mechanisms on the HST for information discovery
and resource management, in a resource constrained sensor network setting, are
new.

The results in this chapter is also related with our previous work on aggregation
of sparsely located events, none of them with knowledge of each other [69]. The
idea is to use light-weight local probes (in the vertical and horizontal directions)
from the simultaneously emerging events to achieve distance sensitive neighbor
discovery with nearby events discovering each other first. Aggregation is performed
when multiple events ‘find’ each other and at the same time an aggregation tree is
formed to suppress the probing of all but one event being aggregated. The probes
that survive in this aggregation will carry the aggregated information and propagate
further to look for other possible events. The fact that aggregation is done naturally
along a tree structure constructed by the individual probes substantially reduces the
total communication cost for the group discovery of these events to only an O(logk)
factor over the cost of the minimum spanning tree connecting all the events. The
novelty in this chapter is the different tree metric (the HST) that we use and the
benefits of the special tree metric for the distributed matching problem. We show

in Section 3.4 that the HST can also be used for sparse aggregation with the same

26

communication cost.

3.4 Sparse aggregation with HST

We also remark that the 2-HST computed in Section 2.2 can be used to get
an aggregation tree when spontaneously emerging resources spread out in the net-
work are detected by their local sensors and no resource is aware of how many and
where the other resources are. That is, it solves the same problem as in the sparse
aggregation framework [69].

Suppose the a set K of k resources are detected simultaneously (i.e., at network
setup), each node with new detection sends a message along the path in the tree
towards the root. With the same assumption as in [69] that the messages travel with
speed lower-bounded by V, these messages can be aggregated and pruned when
they travel towards the root. In particular, an internal node u at level i will wait
for a period of time 2! - V after the network setup — so that all messages from the
resources 1n its subtree will be able to arrive at u for sure. After that u aggregates
the messages it received and sends a message to its parent on the tree.

Eventually the process will result in a sparse aggregation tree T (K) with root
as the lowest common ancestor LCS(K) of all the resources in K. The edges of
T (K) include the paths from the & resources to LCS(K). From LCS(K) one message
travels to the root (as it does not know whether there are resources in other part of
the tree and has to travel to the root to find that out). The total communication cost
of the sparse aggregation is O(|T(K)|+ ¢), where |T(K)| is the size of the sparse
aggregation tree, ¢ is the distance from LCS(K) to the root of the HST and is upper
bounded by the network diameter. See Figure 6 for an example. The blue nodes are
the resources. The thick edges are the edges traveled by aggregation messages.

We claim that the tree T'(K) has total size O(logk) times the smallest aggre-
gation tree possible (i.e., minimum Steiner tree) in the original network (if the re-
sources know each other in advance). In particular, 7(K) is the minimum Stein-
er tree of the resources in K on the HST metric. Suppose the minimum Steiner
tree in the original network is 7'(K), we replace each edge xy on T'(K) by the
path between nodes xy on the HST, with a blowup factor of O(logk), using Sec-

tion 2.2.4. Now the resulting network must have a size no smaller than the size

27

LCS(K)

Figure 6. Sparse aggregation of k resources/events by an HST.

of T(K) — as T(K) is the minimum Steiner tree on the HST. This shows that
|T(K)| < O(logk - |MST|), where MST is the minimum Steiner tree in the original
network.

We remark that the paper [69] requires a double rulings scheme supported in
the underlying network, for the probe messages to meet and discover each other.
Our solution does not require that and can work on any network with bounded
doubling dimension, given that the 2-HST has been computed in the preprocessing

phase.

3.5 Distributed Matching Algorithms

In this section we describe several algorithms for distributed bipartite matching
problem, in online and offline settings. The main goal of the section is to show
that, if preceded by a preprocessing phase in which an HST is computed as in
Section 2.2, the matching algorithms have output-sensitive communication cost, in
addition to providing good approximation/competitive ratio (in offline and online
setting, respectively).

In all models we consider there are k resources whose number and locations
do not change over time. The location of a given resource is initially unknown to
any other node except the nearest sensor nodes that detect it. Also, we assume that

there are exactly k requests, which can either be present in the beginning, or arrive

28

one by one. In any case, a perfect matching always exists. We remark that most of
our results continue to hold if this is not the case.

We assume that packets traverse one hop per time unit, i.e., that appropriate
algorithms are employed to handle low-level issues such as medium access, packet
buffering and transmission scheduling. We also assume for simplicity that all nodes
have enough local storage, and focus on minimizing communication cost. This is
justified by the fact that with today’s technology energy is a much more valuable
resource than storage space.

3.5.1 Offline setting

First we consider the offline case, in which both resources and requests are
present simultaneously (but the resources and the requests do not know each other).
Bansal er al. [20] proved that the natural greedy algorithm — go through the set
of requests in arbitrary order and match each request with the closest unmatched
resource in the o-HST tree metric, breaking ties arbitrarily — gives as O(alogk)-
approximation (in expectation) to the optimal solution in the original metric, for any
o > 1. In the following we use a 2-HST and describe a distributed implementation
of this algorithm that uses a factor of O(logk) more packets than the total length of
the returned matching (the sum of hop-distances of matched pairs).

We may assume without loss of generality that no node has both a resource and
a request; such pairs can be immediately paired and removed from consideration.
We allow multiple resources to occupy the same node, the same with requests.

The distributed algorithm proceeds in a similar way as the sparse aggregation
algorithm described in subsection 3.4. Resources and events send their information
up the tree. Internal nodes match the resources and events in its subtree whenever
possible. Information on unmatched resources or events is propagated further up the
tree until every event is matched. Specifically, leaves that have resources or requests
send this information to their parents (at level 1). Note that empty leaves do nothing.
Parents then locally compute an arbitrary matching between requests and resources
they received and notify matched leaves. We recursively solve the problem with
unmatched requests and resources, where we think of them as residing at level-1
nodes. The resulting matching is represented by a number of paths in the HST,

29

and corresponding paths that are constructed (by establishing ‘next hop’ pointers)
in the underlying graph. Once this is done, level-1 nodes finish the algorithm by
propagating each path to the leaf that initially holds the corresponding matched
resource/request.

Notice that level-1 nodes have to wait at most one time unit for the packets
coming from their children. This follows from out assumption on packet propaga-
tion speed, and 2-HST structure, i.e., the fact any leaf is within 2! < 2 hops, hence
at most one hop, away from its parent. If a packet from some child is not received
within this time, it means that the child has no requests/resources to report. Similar
time bounds hold in recursive calls.

Now we turn to bounding the communication cost. Clearly, no communication
is ever ‘wasted’, i.e., if a node sends a packet to its parent reporting resources or
requests (recall, never both), eventually that HST edge (and the corresponding path

in the graph) will be used in the paths that match those resources/requests.

Theorem 5. The expected communication cost of computing a matching of length

[with our algorithm is O(logk) - I.

Proof. The claim easily follows by observing that each edge computed by the
algorithm may be a factor of O(logk) shorter in the original metric than in the HST
metric, and by summing over all edges in the matching. U

3.5.2 Online setting

Now we turn our attention to the online setting in which requests come in one
by one, and each request must be irrevocably matched to some resource before the
next request arrives. This models fairly common applications of wireless networks
in which decisions are time-critical, cannot be changed once they are made, and
there is no a priori upper bound on the time between consecutive request arrivals.

We propose a distributed algorithm which never pays more than order of /¥
in communication cost for computing a matching of cost (length) /, where v is the
doubling dimension of the metric. Throughout this section we assume that the next
request does not arrive until the current source is matched and all associated mes-
sages have been delivered. This assumption captures the application scenarios when

event inter-arrival times are much greater compared with message propagation time.

30

One solution is based on the following randomized greedy algorithm proposed
in a centralized setting by Meyerson ef al. [110]. When a new request arrives, it is
matched to the closest unmatched resource on an o-HST, breaking ties randomly,
i.e., by choosing each of the tied resources with equal probability. They proved that
this algorithm 1s 0(0clog2 k)-competitive (in expectation) on the original metric,
provided that o« > 14 2Ink.

For a node u, let 7'(u,i) be the unique level-i subtree that contains u. Also, for
i > 1, define N(u,i) = T'(u,i) — T (u,i — 1). Current request r can be matched to its
randomly chosen closest unmatched resource by having the leaf that holds r gradu-
ally explore its neighborhood in the HST. Specifically, the exploration proceeds by
levels: first N(r,0) = {r}, then N(r, 1), then N(r,2) etc. It is essentially a post-order
traversal of the HST, which starts from r and stops on encountering an unmatched
resource. Notice that, with such organization, each N(r,i) can be explored with a
communication cost of at most twice the total length of all paths (in the underlying
graph) that realize all edges of the subtree. This also includes the task of picking a
uniformly random unmatched resource, if the subtree happens to contain any. For
example, each resource, once found by exploration broadcast, can choose a random
number uniformly from [0, 1], and then the minimum of all choices can be com-
puted using sparse aggregation (as in Section 3.4). The ‘trail’ left by the minimum
number’s packet during aggregation leads to a uniformly random resource.

It is easy to see that the algorithm is correct (under the above assumption on
request arrivals). It is also obvious that if r is matched to s after exploring levels up
to i, i.e., entire T(r,i), the communication cost involved is at most twice the total
length of T (r,i).

Lemma 6. Consider an o-HS'T constructed as in Section 2.2 for an underlying met-
ric with doubling dimension y. Let T be a level-i subtree and let h be its height
(root-to-leaf distance) in the HST metric. Total length of T (all its edges) in the

HST metric is at most C(o.,y)hY, where C(a.,7y) = 335;.

Proof. By the a-HST construction in subsection 2.2.3 and Lemma 2.2.3, the
root of the subtree T is at level ¢(i) at the corresponding 2-HST. Thus all leaves
can be covered by a single ball of radius 2()~1B < 200~ centered at the root of

the subtree 7. Now we consider a level j in the subtree 7 with 0 < j <i—1 and

31

we would like to count the number of nodes at level j. By Lemma 2, any ball of
radius 2¢0) has at most 2% level-j nodes. Hence the leaves can be covered by at
most 2YED=1=E()) palls of radius 2¢(/), Thus the number of level- j nodes is at most
2@ —L/)+5) Each level-j node has a single edge of length o/ connecting it to
its parent. Furthermore, the total length of the tree is exactly the sum of all these
edges. So, summing over j, we have

i—1 i—1

ZzY(ﬁ(i)—é(j)JrS) ol = YU)+S) Za—(Y—l)é(j)

J=0 J=0
V@) +5) o

of — o
a2 o —1\7
o —o (o—1 > '
The height of the subtree is 1 + o+ o2 +--- + o~ = %. Thus the total length of
T is bounded by O(C(a.,y)hY). O
This directly implies a bound of O(C(a,y)!¥) on the communication cost of

IN

computing a single matching edge of length / in HST metric.

We can now prove the main result about our online algorithm.

Theorem 7. The expected communication cost for computing a matching of total
length [is O(I).

Proof. In expectation, a matched pair may be a factor of O(logk) closer in the
original metric than in HST, yielding a ratio of O(C(a.,y)log?k) for each edge. The
same ratio holds for the total length, since 3", x! < (3, x;)Y, for y> 1. The claim
follows by substituting oo = O(logk). O

3.6 Simulations and Experiments

3.6.1 Approximation and competitive ratios

We implemented the algorithm described in Section 3.5.1 in this section. Since

we know that it is communication-optimal in the 2-HST (Theorem 5), we only

32

compared optimal matching costs in the 2-HST and in the underlying graph. This
is, of course, directly related to the distortion of the HST embedding.

We generated random perturbed grid networks from the same distribution as
in the previous experiment. Network sizes range from 25 to 400, and the number of
resources was kept fixed at k = 10. We sampled 100 networks for each network size.
For each network, we chose k resources and k requests uniformly at random, and
computed a 2-HST with requests and resources as special nodes (Section 2.2.4).
Then we computed the communication cost of the matching computed by our of-
fline algorithm, the length (in hops) of the same matching in the a-HST metric, and
the length of the optimal matching on the same set of resources/requests (computed
by the Hungarian algorithm [121], as implemented in [1]).

The following two figures show how the ratio of optimal matching costs (in
2-HST and the original metric) changes with the network size n, with the number

of resources k fixed (Figure 7) and vice versa (Figure 8).

3.5
5 N o]
o
S
o
I 2.5

2 L L L
0 100 200 300 400

network size

Figure 7. In offline setting, length of the optimal matching in the 2-HST and length of the optimal
matching in the underlying metric are within a factor of 3 over a wide range of network sizes n, with
fixed k = 10.

Finally, we consider the online algorithm of Section 3.5.2. We tested perturbed
grid networks between 25 and 400 nodes, with 50 samples for each size according
to the same distribution as above. For each sample we computed an o-HST for
o = 14 2Ink and ran the algorithm, recording the resulting communication cost,

cost of the matching returned by the algorithm (in the HST metric), and optimal

33

3.5}

HST/OPT

2'55 10 15 20 25 30
number of resources

Figure 8. In offline setting, the ratio of optimal matching length becomes worse when the number
of resources k increases, and n = 225 is fixed. This is because the network embeds into 2-HST with
distortion that increases with k.

cost in the original metric.

Figures 9 and 10 show the ratio of the communication cost and costs of optimal
matchings, one in the HST and the other in the original metric. In Figure 9 the
number of resources k is fixed and network size changes. Figure 10 shows the

opposite situation.

jel

E 800

o —=-HST f i
£ 600/ | © OPT R
= o0

e

E 400+

il

‘= 2001 ISz 1
=1

E ("‘J]
c M
S 0 w w w

© 0 100 200 300 400

network size

Figure 9. Communication overhead as a function of network size, with fixed k = 15.

Figure 11 shows that, as predicted by Theorem 7, communication cost grows

34

(@)

= 600’ rl\ ‘

< P
8 500’ \x«v/(/b\l -

5 e 5 HST

& 400| = -5 OPT
= 300}

S

8 200t

[

>

£ 10075%&%%%’5/5\&43\9/{3\5
5

© 10 15 20 25 30

number of resources

Figure 10. Communication overhead as a function of the number of resources, with fixed n = 225.
roughly quadratically with the cost of computed matching in the tree metric. This
is expected, since we tested on two-dimensional geometric graphs.

X 104

2.57

1.5¢

communication cost

0% 100 200 300 400 500

optimal HST matching

Figure 11. Communication cost of the online matching algorithm as a function of the cost of the
computed matching in the o-HST metric, with a fixed number of k = 15 resources and variable
network size n. The slope suggests quadratic dependence (linear regression yields a slope of about
2.37).

35

3.7 Conclusion

Resource management in a distributed setting is a challenging problem due
to the lack of global coordination and knowledge of available resources/emerging
events. However, the problem can be simpler when the underlying network metric
is simpler (such as a tree). This chapter shows how to implement the distributed
resource management algorithms in the hierarchical well-separated tree metric, for
both offline and online scenarios. We would like to emphasize that the idea of work-
ing on a simpler metric can possibly be applied to other problems in a distributed
setting to derive communication efficient algorithms with quality guarantees, such
as k-server [23,42], metric labeling [96], and tracking mobile sinks [19]. We will

further explore this direction in the future.

36

Chapter 4

Maintaining Approximate Minimum
Steiner Tree and k-center for Mobile
Agents in a Sensor Network

4.1 Introduction

In this chapter we examine the challenges arising from a system of embedded
static wireless nodes and a set of mobile agents acting in the same physical space.
The agents could be either mobile robots or human users collaborating on a task.
They do not necessarily have out-of-band communication channels among them
and may have to resort to multi-hop routing in the static wireless network for inter-
communication. The embedded sensor nodes provide real-time monitoring of the
environment, possibly in-network processing to aid situation understanding, and
interact with the mobile agents as a supporting infrastructure to help with both
coordination and communication of the agents. This model captures many real-
world scenarios, ranging from robots exploring a space, mules collecting sensor
data, rescue team helping with disaster relief, etc.

We focus on two specific problems in this framework. The first is to maintain
group communication of the mobile agents, in particular, a tree spanning the agents

for continuous information exchange, decision making and order dissemination. We

37

denote by the sensor closest to an agent i a proxy node for i. To reduce communi-
cation delay, the communication tree is preferred to be the minimum Steiner tree of
the agents in the sensor network, i.e., the tree with minimum total hops connecting
the proxy nodes, possibly by using other non-proxy nodes as relay. It is well known
that the minimum Steiner tree is a NP-hard problem [89], therefore we maintain at
best an approximation to it. As agent i moves, its proxy node may hop to a neigh-
boring node. In that case we will need to update the tree. The objective is to achieve
small update cost with a good approximation ratio to the optimal minimum Steiner
tree.

The second problem we study is the mobile k-center problem, that asks for k&
sensors as centers such that the maximum distance from each agent to its closest
center is minimized. These centers naturally lead to spatial clustering or grouping
of the agents, and map to obvious locations for control centers where information
from the agents are aggregated and disseminated. In another scenario, when the
agents need to physically gather together, the 1-center solution is the meeting point
that minimizes the maximum travel distance. Again the k-center problem with k
as a parameter is NP-hard [89]. We ask for the efficient maintenance of a good

approximate solution.

4.1.1 Challenges

There are two fundamental challenges to allow such coordination and commu-
nication between mobile agents.

The first problem is location management, that is, the tracking and dissemina-
tion of the current location of the agents. In our setting we identify the location of
an agent with its proxy sensor node. Obviously the proxy node is aware of the agent
in its proximity. The difficulty is to inform other nodes/agents of the current loca-
tion of an agent. We need to decide how frequently to disseminate the current agent
location. This problem has been studied extensively in the literature. The earliest
work is by Awerbuch and Peleg [19], in which the location information is updated
to a carefully selected subset of nodes such that both location update and location
query can be done in polylogarithmic time. Location services when all the nodes
are mobile have also been developed in the last few years [5, 63, 103]. Although

38

being theoretically intriguing and inspiring, these schemes are still relatively heavy
for real-world systems.

The second challenge is efficient maintenance of approximate minimum Stein-
er tree or approximate k-center of mobile agents, as efficient algorithms even in the
centralized setting are lacking. Nothing is known for maintaining o-approximate
minimum Steiner tree when o0 < 2. The minimum spanning tree (MST) is a 2-
approximation of the minimum Steiner tree. Yet the maintenance of MST is not
perfectly solved even in the centralized kinetic data structure framework [79] (i.e.,
when the moving trajectories of all agents are given). When the nodes follow linear
motion, there exists an algorithm for maintaining a minimum spanning tree when
the distances are measured using the L or L., norms, or a (1 + €)-approximate Eu-
clidean MST if the Euclidean distance is used [24]. But in this algorithm the num-
ber of updates of the data structure can be much higher than what is necessary (the
number of necessary updates of the MST). In a slightly different setting where edge
weights in a given graph change linearly, deterministic and randomized algorithms
were designed [10]. These algorithms are very involved with heavy algorithmic
techniques and are not practical. In the sensor network setting, a scheme called
RoamHBA has been proposed to maintain group communication [58]. RoamHBA
assumes that the current location of all agents are available (thus requiring a lo-
cation management scheme as described above) and uses a heuristic algorithm to
generate a tree. There is no guarantee on either the approximation to the MST nor
the update communication cost when the agents move.

Regarding the k-center problem, the situation is not much better. In the cen-
tralized setting, the only known result is a kinetic algorithm for maintaining a 8-
approximate k-center [68]. Nothing is known in the distributed setting to our knowl-
edge.

4.1.2 Our approach

In short, we first preprocess the sensor network with O(nlgn) total messages.
With the preprocessing no location management is needed for MST and k-center
maintenance; the agents are not aware of the current location of other agents. Thus

we save the communication cost necessary to update and query for the current agent

39

location. In particular, a O(Ign) approximate MST and k-center are maintained with
an expected update cost of O(Ign) messages each time the proxy node of an agent
hops to a neighboring node. Such results have not been achieved in past literature
even when the location of the nodes are available.

In our preprocessing phase, we extract a tree metric on the sensor nodes called
a hierarchical well-separated tree. An o-hierarchically well-separated tree H (0i-
HST) is defined as a rooted weighted tree such that: the weight of all edges between
a node and its children are the same; the edge weights along any path from the root
to a leaf are decreasing by a factor of a. The nodes of the HST are the nodes in the
original sensor network G, but a tree edge is virtual, i.e., it maps to a path in the
original network.

This hierarchical well-separated tree is going to approximate the original graph
metric G by a logarithmic distortion factor, in terms of the shortest path distance
between any two nodes. In particular, what we propose to extract is one o-HST,
chosen by a distribution D from a family § of a-HSTs such that for each HST H
in the family §, the distance dp(u,v) between any two nodes u,v in the tree H is
greater than the shortest path length dg(u,v) in the original graph G, and that the
expected distance between u, v, Ey ¢ 5/[dr (u,v)D(H)], taken over the distribution D
on the family # of trees, is no greater than p - dg(u,v), where D(H) is the proba-
bility of H in the family #. Such a family of HSTs is said to p-probabilistically
approximate the original metric G, with p being the (expected) distortion factor.

The advantage of having the HST is that, the minimum Steiner tree on the HST
metric is trivial — it is simply the connection of edges from all the agents/proxy
nodes to their common ancestor on HST. As the HST is a O(lgn) approximation
of the graph metric G, the minimum Steiner tree H computed on the HST metric
is a O(Ign) approximation of the MST on the graph metric G. The question thus
remains as how to maintain the minimum Steiner tree on the HST metric when the
agents hop from node to node.

Similarly, for the k-center problem, working on a tree is much easier than
working with a general graph metric. For kK = 1, the common ancestor of all the
nodes is the optimal center for the HST, and is a O(lgn) approximation to the 1-
center solution of the original network G. For a general &, the optimal k-center for
the HST will be taking the lowest level of the HST such that the number of nodes

40

with one or more agents in the subtree is no greater than k. Again this can be shown
to be a O(lgn) approximate solution for the k-center in G.

In this chapter we show that with the HST constructed in the preprocessing
phase, we can maintain the MST and the k-center of the mobile agents with expect-
ed communication cost of O(Ign) for each hop the agents move. Suppose one agent
moves from node u to node v, we update the MST by taking the common ancestor w
of u and v on the HST. Then only the edges on the path from u,v to w may possibly
be changed. Clearly, if the node w is high up on the HST, the cost will be higher.
We show that as the HST is built with a randomized algorithm the probability for w
to be high on the HST is small so the expected cost is bounded by O(lgn).

We also demonstrate the experimental results for our scheme and compare

with the only previous scheme RoamHBA [58].

4.1.3 Related work

Approximating a metric with probabilistic hierarchical well-separated trees
was first proposed by Bartal [21,22], with the motivation that many problems are
easier to solve on a tree than on a general graph. Later, Fakcharoenphol et al. [56]
improved the distortion to O(lgn) for any n node metric and this is tight. This
previous works, however, were for a centralized environment. In an earlier work of
ours [70], we developed a distributed algorithm to extract a HST in a sensor network
setting. In [70], we also applied the HST to the problem of resource management
and distributed matching. The application of HST on the minimum Steiner tree and
k-center problem, as well as their maintenance when the agents are mobile, are new

results.

4.2 Network Setup

Our following discussion is based on the assumption of a static sensor network
consisting of n sensor nodes P and m mobile agents S. Agents are tracked by nearby
sensor nodes called proxy nodes. We assume that every node is aware of the number
of mobile agents, m.

A metric (P,d) has growth rate v, if for any v € P there are ¢1 - /¥~ < f(r) <

41

¢ - '~ nodes with distance exactly r from v, for some constant ¢y and ¢, ¢ < ¢3.
The doubling dimension of a metric space (P,d) is the smallest value A such that
every ball with radius r in P can be covered by A balls of radius /2. The doubling
dimension of P is then defined to be dim(P) = IgA. We call a metric to have a
constant doubling dimension if its doubling dimension is bounded by a constant.
It is not hard to see that a metric with bounded growth rate has constant doubling
dimension, by a simple packing argument.

All sensors are uniformly distributed in a planar domain with nearby nodes
directly communicating to each other. The communication network on the sensors
is denoted as G = (P,E). In our case, the network metric (P,d¢) is the minimum
hop count metric in the sensor network. The vertices in the metric is the set of
sensor nodes. The distance between two nodes is the minimum hop count value.
In the following when we mention the “network metric” or the “original metric”,
we mean the minimum hop count metric (P,dg). We assume that the minimum
hop count metric of the communication graph has bounded growth rate of 2, and

therefore constant doubling dimension.

4.3 HST review

In this section, we review the definition of o-hierarchically well separated tree
(0-HST) and a distributed algorithm to compute the o-HST for a doubling dimen-
sion metric. The nodes of the HST are the nodes in the sensor network. The edges
of the HST are virtual edges and the weights are redefined.

Definition 8 (-HST). A rooted weighted tree H is an o.-HST if the weights of all
edges between an internal node and its children are the same, all root-to-leaf paths
have the same hop-distance, and the edge weights along any such path decrease by

a factor of o as we go down the tree.

Fakcharoenphol er al. [56] gives a centralized algorithm to compute a 2-
HST metric dy for an n-point metric (P,dg). When we say the “tree metric”,
we mean the distance on the HST and denote it as dy. dp provides a O(lgn)-
probabilistically approximation on dg, that is, for any u,v € P, dgy(u,v) > dg(u,v),
and E[dg(u,v)] < O(lgn) - dg(u,v), where the expectation is taken over random

42

choices of the algorithm. The algorithm is as follows: We uniformly choose a ran-
dom permutation t: P — {1,2,...,n} of the nodes from the set of all permutations.
We also fix a value B chosen uniformly from [%, 1). For convenience, B(u,r) de-
notes a ball with radius r centered at u, and D represents the network diameter. For
each node u, we compute a O(lgn)-dimensional signature vector S(u), where the

i-th element in the vector is

S(u)i=arg _ ;?;gimw
for i =0to ¢ = [lgD] + 1. In other words, each node keeps the node with the
smallest rank among all nodes within distance 2/B. S(u), is the node with rank 1 for
all nodes u. These signature vectors define the HST embedding of d. In particular,
the leaves are nodes of P, the level i ancestor of a node u is S(u);, and the weights
of all edges between level i and level i — 1 is 2'.

Since this algorithm is centralized, in [70] we provide a distributed implemen-
tation of the HST construction. The algorithm proceeds in a bottom-up fashion and
compute the i-th element of the signature vector for every node in round i. The
simple idea behind this is that, as i increases, only nodes with small ranks can be
nominated and remained in the next round. The value of 3, chosen uniformly at ran-
dom from [%, 1), is distributed to all nodes in the network by a single global flood.
Initiatively, every node is a candidate, that is, Py = P. In round i+ 1, the nodes
remaining in P; flood the network up to distances 2:+!B. The flooding packets are
cached at each node receiving these packets until the end of each round. Then each
node u in the network will choose the node v,,;, with the lowest rank among all the
nodes it receives in this round, and nominate it as its (i + 1)-th level element for its
signature vector, i.e. S(u)i+1 = Viin-

At the end of the algorithm, each node u keeps a signature vector S, (k), where
Su(7) is u’s i-th level ancestor. This information is enough for constructing the HST
and convenient for our application.

As the algorithm proceeds, fewer and fewer nodes remain active though the
flooding range increases. Therefore the total message cost is still near linear. We
have proved in Chapter 2 the following lemma.

Lemma 9. For a sensor network with n nodes, the total communication cost for

43

constructing the 2-HST is O(nlgn) in expection, and each node uses expected stor-

age space for O(lgn) node IDs.
For our applications, we list some of the properties of HST here.

Lemma 10 (o-HST properties). Suppose the HST metric (H,dy) corresponding
to the original metric (P,d¢)
1. For any u,v € P, dy(u,v) > dg(u,v) and E[dy (u,v)] < O(Ign) -dg(u,v).
2. For any u € P, suppose its i-th level ancestor (from leaf to root) in H is u;.
We have dp (uit1,u;) = - dy(ui—1,u;).
3. For Vi, j(1 <i,j </{,/ is the HST height), the distance between all the n-

odes in level i and j are of the same value.

4.4 Maintaining approximate minimum Steiner tree

In this section, we have a static wireless sensor network with node set P. We
want to show how to maintain a minimal Steiner tree for a set of agents S (m = |S| <
n = |P|), which reside on the sensor nodes and may move in the sensor network.
We will show how to construct an approximate minimal Steiner tree from the initial
state, and how to maintain it with small update cost when some agent move from

one sensor node to another.

4.4.1 Maintenance Algorithm

First we compute a 2-HST for the original metric network in a distributed way
as stated in our previous section. Each node keeps a signature vector of the ancestors
in each level. This process is implemented at the beginning of our application, and

it will be used for all the following applications.

4.4.1.1 Compute approximate minimum Steiner tree

e Each agent is assigned to the nearest sensor node, denoted as the proxy node.
A sensor node assigned by some agent sends a counter with the number of

agents residing in that node to its parent.

44

e Each internal node generates a new counter by adding up the counters receiv-
ing from its children, and continues to send the counter to its parent.

e Finally, when the counter value equals m, this node will be the root of the
minimal Steiner tree in the HST metric.

e After we get the minimal Steiner tree H(S) on the HST H, then replace each
edge uv of H(S) with the shortest path between u,v. This gives us a Steiner

tree T'(S) in the original metric.

Note that 7(S) is a logical tree on G. By replacing each edge of H(S) with the
shortest path in G we may end up with duplicate edges and possible cycles. One
can remove duplicate edges or cut open the cycles to obtain a real Steiner tree on S
in the graph G. This operation can only reduce the weight of the tree.

If the sensor nodes are not aware of the number of agents m in the network,
we can solve this by sending notification to upper level until the HST root from the
proxy nodes, then tracing back to the child of the lowest internal node u that gets
only one notification from its children. And this node u is the root of the minimal
Steiner tree.

Figure 12 shows the basic idea of the above algorithm. We will show the
Steiner tree 7(S) is a O(lgn) approximation for the optimal minimal Steiner tree in
the original metric later.

LCS(S)

S

Figure 12. An example to show how to get minimal spanning tree on HST for a subset agents.

45

4.4.1.2 Maintenance under agent motion

As stated in our algorithm, when constructing a minimal Steiner tree on HST
metric, each node will keep two types of information: a pointer to its parent in the
minimal Steiner tree and a counter that counts the total number of agents located in
the subtree rooted at this node.

When an agent moves from a proxy node p to a proxy node ¢, we have to
update the minimal Steiner tree on the HST. The idea is that we only need to update
the paths from p, g to their lowest common ancestor. In our next section, we show

that the expected update cost is small.

e Both p and g send a notification upward until their lowest common ancestor
u in the constructed HST.
e All the nodes along the path from p to u will decrease their counter by 1. And
any node v with counter to be 0 will delete the edge to its parent in the tree.
e For those nodes on the path from ¢ to u will increase their counter by 1. And
add the path to the Steiner tree H(S) if necessary (as well as the Steiner tree
T(S) in the original metric).
It is easy to see that, repairing the tree in this way is exactly the same as constructing
from our previous algorithm. Thus we are able to maintain the minimum Steiner
tree of the HST metric and the approximate ratio for the minimum Steiner tree in

the original metric is kept.

4.4.2 Analysis and performance

We want to show that the minimal Steiner tree 7'(S) extending from H(S) is a
O(lgn) approximation for the minimal Steiner tree in the original metric. And we

show that the expected update cost is bounded.

Theorem 11. For a set of agents S, the minimum Steiner tree T(S) is a O(lgn)

approximation for the optimal minimum Steiner tree MStT (S) in the original graph
G.

Proof. For the tree T(S), we use w(7'(S)) to denote the total weight of all the
edges of T'(S). Recall from the construction algorithm that w(7'(S)) < w(H(S)),

46

Figure 13. When a agent moving from p to g, we only repair the paths from p,q to their lowest
common ancestor.

since the edge on the HST is always greater than the weight of the shortest path in
G. So we just need to show w(H(S)) < O(lgn)w(MStT(S)).

We construct a complete graph G(S) on the agents only. The edge weight for
two agents u, v is the minimum hop count value between u,v in the sensor network
G. Now, the weight of the minimum Steiner tree MStT (S) for the agents S in G is at
least half of the weight of the minimum spanning tree 7'(S) of the agents in G(S).
Thus we only need to show w(H(S)) is no greater than O(Ign) - w(T'(S)), where
w(T'(S)) is the weight of T'(S).

We now ‘lift’ the minimum spanning tree 7’(S) to the HST metric H. For
any edge uv in T'(S), we take the shortest path on H, Py(u,v). The total weight
of the path Py (u,v) is at most O(lgn) - dg(u,v), by the HST property. We will get
a corresponding graph 7" in the HST metric. w(T") < O(lgn) -w(T'(S)). T" is a
Steiner tree on H covering all the agents S. Thus its weight is at least the weight of
the minimum Steiner tree on H, which is H(S). This says w(H(S)) < w(T") <
O(1gn)w(T'(S)) < O(lgn)w(MStT(S)). Then we have w(T(S)) < w(H(S)) <
O(lgn)w(MStT(S)). O

For update cost, we may have to update a long path from leaf to the root. That
is to say the update cost for 1 hop movement can be O(D) in the worst case, where
D is the diameter of G. But intuitively, due to the random rank permutation, the

47

probability for such kind of update will be quite small. In expectation the update

cost is only O(lgn), as in the following theorem.

Theorem 12. For a metric (P,dg) with bounded growth rate and a HST H with
metric (P,dy), the expected update cost of the minimum Steiner tree on H for each

hop an agent moves is bounded by O(lgn).

Proof. Suppose an agent is located at a node p and moves to a neighboring node
qg- Then we want to compute the update cost for maintaining the minimal Steiner
tree on the HST. Suppose the lowest common ancestor of p and g, LCA(p, q), on the
HST is at level i. Then the update cost will be bounded by O(2). Now let’s compute
the probability that p,q’s lowest common ancestor is at level i. Equivalently, p’s
level i — 1 ancestor S(p);_ is different from ¢’s level i — 1 ancestor S(¢);—1 and p,q
have the same level i ancestor S(p); = S(q);.

Let D(p,r)/D(q,r) denote the disk with radius r centered at node p/q, r =
2i=1B, where B is a constant parameter in the HST construction, B < 1. Recall
in the HST construction the ancestor of p at level i — 1 is the node with lowest
rank inside the disk D(p,r). Similarly, the ancestor of ¢ at level i — 1 is the node
with lowest rank inside the disk D(q,r). If p,q have different level i — 1 ancestor,
either S(p);—; is inside D(p,r)\ D(q,r) or S(q)i—1 is inside D(q,r) \ D(p,r). See
Figure 14. As we assume a random permutation as the rank of the sensor nodes,

then the probability that p, g have different level i — 1 ancestors is

[D(p.r)\D(g,r)]| | |D(g.1)\D(p,r)|
1D(p,7)| ID(g,r)|

where |D(p,r)| is the number of nodes inside D(p,r).

For a metric (P,dg) with growth rate v, there are ¢ - ¥~ < f(r) < cp - 7!
nodes of P with distance exactly r from any node v € P, ¢ and ¢, are some con-
stants, ¢; < ¢p. The number of nodes within distance r from v is at least ¢3 - ¥, for

some constant ¢3. Thus we have

|D(q,7‘)\D(p7l")| < |D(q,l’>\D(q,l’—1)| < CZ'FYil
ID(g,r)| ID(g,)] = e
_e 1

N

48

Figure 14. A figure to show when do we need update the lowest common ancestor at level i.

Similarly, we can show that

Thus we have,

Prob{the lowest common ancestor is at level i}

|D(p,r)\D(q,r)| |D(q,r)\D(p,r)|
~ |D(p,r)] ID(q,7)|
201 de 1

“cor af 2

The update cost of H(S) if LCA(p,q) is at ith level is proportional to 2. Thus the

expected update cost for a node set P with bounded growth rate is

L
ZProb{LCA (p,q) is at level i}
i=1
- {the tree update cost if LCA(p,q) is at level i}

: 4C2
2% =0(1
2 B 2, (Ign).

4.5 Maintaining approximate k-center

In this section, we give an algorithm to get an approximate solution for k-center

problem.

49

Definition 13 (k-center). Given a sensor network with metric (P,dg), where dg is
taken on the shortest hop distance for any two node p,q € P in network G, for a
set of agents (actually their proxy nodes) S C P and an integer k, compute a node
set K ={ay,ay,...,ar} C P such that the maximum distance from any agent to its
closest center,

ind
max min (p,a),

is minimized.

We show that with the same data structure for maintaining the minimum Stein-
er tree on the HST, we also maintain a O(lgn) approximate solution for k-center
problem for any k. As stated before, each node will keep two types of information:
a pointer to its parent in the minimal spanning tree of S on H and a counter that
counts the total number of agents located in the subtree rooted at this node.

For a set of agents S, the lowest common ancestor u of S will be a good candi-
date for the 1-center with a O(lgn) approximation. To find a good k-center solution,
we simply take the lowest level on the HST such that the number of nodes with non-
zero counter is no greater than k. These nodes are the k-centers. We show below
that the approximation ratio is O(lgn) compared with the optimal k-center of G.

Theorem 14. The k-center solution in the HST metric gives a O(lgn) approxima-
tion to the optimal k-center in G.

Proof. We first prove the claim for k = 1. Suppose u is lowest common ancestor
of S on the HST, i.e., the 1-center by our algorithm, and u is at level i. Suppose the
height of u in the HST is 4. Then for any agent z € S, dg(z,u) < dy(z,u) = h. That
is, the cost with u as the 1-center, denoted as R(u), is at most A.

Suppose that OPT is the cost of the optimal 1-center problem in G. Suppose
that x and y are the furthest pair in H. Then OPT > %d(;(x, y). By Lemma 10
dg(x,y) <dp(x,y) < O(lgn)dg(x,y). This means, dy(x,y) < O(lgn)OPT. Since u
is the common ancestor of all the nodes in S, and x, y are the furthest pair. We know
the lowest common ancestor for x,y must be u. Thus dy(x,y) = 2h.

Putting everything together, we have R(u) < h = dy(x,y)/2 < O(lgn)OPT.
This shows that the solution with u as the center has a cost at most O(lgn) the

optimal cost in G.

50

Now we can extend the proof for k-center solution. Suppose we take the level
i as the lowest level such that there are < k nodes with at least one agent in their
subtrees. We make these nodes as the k centers. The cost of the solution is at most
the length of a path from the leaf to level i, say . h =21 — 1. In addition, there
are more than k nodes, xj,x, -+ ,xy, at level i — 1, each has at least one agent in
their subtree, f > k. The length of a path from the leaf to level i — 1, i/, is 2/ — 1.
The subtrees of x;’s are disjoint as well. We take one agent y; from each subtree
of x;. Any two nodes y;, y; have their common ancestor at level i or higher. Thus
du(yi,yj) > 2h,forany 1 <i, j < f. By Lemma 10, clgn-dg(yi,y;) > du(yi,y;) for
some constant ¢. Thus dg(y;,yj) > 2h/(clgn). Since there are more than k agents
that are pairwise of distance at least 2i/(clgn) apart. The optimal k-center solution
must have at least two of the y;’s grouped to one cluster. That says, the optimal cost
OPT is at least h/(clgn). This means & < O(lgn)OPT. O

When agents move, we do not explicitly maintain the level in which the cen-
ters stay on. In fact, if we use the structure for data aggregation at k centers, the
HST and the minimum Steiner tree of the agents on H directly imply a solution for
the aggregation. In particular, each agent sends its data upward along the HST tree.
Internal node of the HST will take the data from the subtree and compute the ag-
gregation. When an internal node has the aggregated data from all the agents in its
subtree, it will report the aggregation to its parent on the HST. This way, the infor-
mation is naturally aggregated on the internal nodes. For each level of the HST the
aggregation result is at a subset of aggregation nodes, such that the distance from

all agents to these aggregation nodes is not far away from the minimum possible.

4.6 Simulation

In this section, we implemented the above algorithms in MATLAB. The exper-
iment focused on verifying our previous performance analysis. We also compared
it with some existing algorithm. The cost in our simulation is counted as the hop

distance.

51

4.6.1 Approximate minimal steiner tree construction

We implemented the approximate minimal Steiner tree algorithm here. The

networks were generated by perturbing 7 nodes of the \/n x /n grid in the [0, 1]?

unit square, by 2D Gaussian noise of standard deviation %2, and connecting two

n 2
\/iﬁ apart. Figure 15 is an example of the minimal

Steiner tree from the above algorithm.

resulting nodes if they are at most

Figure 15. An example of the minimal Steiner tree computed from the HST. The agents are in red.
The network size is 400, and the agent size is 20.

4.6.2 Cost comparison with MST

We implemented our algorithm for the approximate minimal Steiner tree with
different network sizes and a fixed agent set size. We generated random perturbed
grid networks in the same way as in the previous section. Network size ranged from
400 to 2500, and the agent set size was kept at 100. We sampled 100 networks for
each network size. For each network, we randomly generated an agent set of size
100. And an approximate minimal Steiner tree was constructed with our algorithm.
We also computed the shortest path between each pair in the agent set. Then we
had a complete graph G(S). The vertices were the agent set, and the weight for each
edge was the shortest hop distance in the original network. Now we computed the
minimal spanning tree in this complete graph. After that, we got a Steiner tree in
the original network, whose total weight is at most twice the cost of the minimum

Steiner tree of S. In our following discussion, we use MST to denote the cost of

52

this tree. Figure 16 is a minimal spanning tree example for the same data with

Figure 15.

Figure 16. The minimal spanning tree of the agents.

Figure 17(a) demonstrates the cost for our solution and the optimal spanning
tree with different network size and a fixed number of agents. Figure 17(b) shows
the ratio of our solution over MST. Figure 17(c) shows the ratio plotted in a log
scale. The cost of our algorithm is not far away from the MST case, and is always
within a factor of 2.2. The ratio increases slowly with the network size. According
to Figure 17(c), the approximation ratio almost linearly depends on Ign, where n is
the network size.

We also implemented our algorithm for a fixed network size and varying agent
set size. Now we fixed the network size to be 1000, and the agent set size ranged
from 50 to 400.

Figure 18(a) shows the cost of our solution and MST with different agent size
when the network size 7 is fixed. According to Figure 18(b), the cost ratio between

the HST and MST solution decreases when the number of agents increases.

4.6.3 Comparison with RoamHBA

In [58], the authors proposed RoamHBA to maintain group connectivity in
sensor networks. In RoamHBA, the algorithm will choose a horizontal or vertical

line across the network as the backbone. The backbone is constructed by choosing

53

6OCOOSt compasion between HST and MST

The ratio(HST/MST) v.s. network size

——HST 2.2
500/ |-=—MST]
B
. 400 2
'_
O
300} @
g
2001 S
100 1.7 : : :
500 1000 1500 2000 2500 500 1000 1500 2000 2500

Network size network size
(a) Cost comparison for different network size (b) Cost ratio for different network size.

The ratio(HST/MST) v.s. log(network size)
2.2 ‘ ‘ ‘

N
=

Ratio(HST/MST)
N

6 6.5 7 75 8
Log(network size)

(c) Cost ratio for log(network size)

Figure 17. Cost comparison between HST and MST for different network size but the agent set size
fixed to be 100.

Cost comparison with different agent size

Ratio(HST/MST) v.s. Agent size

700 26
w0, | MST
[—e—HST —~ 2.41
'_
500} 2
- < 22!
8 400)
O T
S 2
300} S
&
200} 1y
100 Y S — 16 ‘ S — S
50 100 150 200 250 300 350 400 30 100 150 200 250 300 350 400

Agent size Agent size

(a) Cost comparison for different network size (b) Cost ratio for different network size

Figure 18. The cost comparison between the HST and MST solution, with different agent set size
but the network size fixed to be 1000.

54

a median node with greedy forwarding in the desired direction. The rest of the a-
gents connect to the backbone by greedy forwarding to the backbone. The greedy
forwarding for node (x,y) is in the following way (assuming the horizontal direc-
tion): choose the neighbor that is nearest to point (x+R,y) and (x—R,y). Figure 19
shows an approximate minimal Steiner tree from RoamHBA from the same data as
Figure 15 and Figure 16.

In this experiment, we generated random perturbed grid networks from the
same distribution as in our previous experiment. Network size ranged from 400 to
2500, and the agent size was kept fixed at k = 100. We sampled 20 networks for
each network size. For each network, we choose k nodes from the network as the
agent set. Then we computed the approximate minimal Steiner tree from HST and
RoamHBA respectively.

Figure 19. An example of the Steiner tree computed with RoamHBA.

Comparision between RoamHBA and HST
600— ‘ ‘ ‘

——HST
500r |—=—RoamHBA

400

Cost

300

20 500 1000 1500 2000 2500

Network size

Figure 20. Cost comparison between HST solution and RoamHBA solution, with agent size fixed
to be 100.

55

According to our simulation result in Figure 20, our algorithm is better than
RoamHBA with respect to the cost of the tree. But when the agent size is small,

RoamHBA may have some advantage.

4.6.4 Update cost

In this experiment, we generated random perturbed grid networks from the
same distribution as in our previous experiment. Network size ranged from 400 to
2500, and the agent size was kept fixed at k = 100. We sampled 15 networks for
each network size. For each network, we chose k nodes from the network as the
agent set. And we set a random moving direction for each agent. In each time step,
the agent moved to r/2 (r is the communication range.) away along its moving
direction. When an agent hit the network boundary, it bounded back along the
reflected direction. In our simulation, we let all the agent move 1 step one by one.
And repeated this 100 times. The we took the average of each time step and each
node for the update cost for that network size.

From Figure 21, we see that the update cost almost changes linearly with log-
arithm of the network size. In fact, the update cost for each movement step is on
average only 6 ~ 7.

Update cost v.s. Log(network size)

N
o

Update cost
NN
. -

o
os)
i

6.6— : : :
6 6.5 715 8
Log(network size)

Figure 21. Update cost changes with log(network size) with the agent size fixed to be 100.

56

4.6.5 1-center

In this experiment, we implemented our algorithm for approximate 1-center
solution. we generated random perturbed grid networks as our previous experi-
ments. Network size ranged from 500 to 2500, and the agent size was kept fixed
at m =100. We sampled 100 networks for each network size. For each network,
we chose m agents randomly from the network nodes. Then we solved the 1-center
problem with our algorithm. For comparison, we also computed the optimal solu-
tion for 1-center, and compared their cost.

HST v.s. OPT solution for 1-center HST/OPT for 1-center

40 1.56
—=—OPT

30f |~ HST E

Q

@ =

3 %)

8 20 2

K]

104] g

0 ‘ ‘ ‘ 144 ’ ‘ ‘
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Network size Network size

(a) Cost comparison for different network size ~ (b) Cost ratio for different network size

HST/OPT for 1-center v.s. Log(network size)
1.6y : : ‘

Ratio(HST/OPT)
=
ho &

I
IS
[5)

1.4} : : :
6 6.5 7 75 8
Log (network size)

(c) Cost ratio for log(network size)

Figure 22. Cost comparison between HST and OPT for 1-center, with varied network size but agent
size fixed to be 100.

Figure 22(a) gives the cost for our approximate 1-center solution and the opti-
mal 1-center solution. Figure 22(b) is the ratio between them. The ratio increases

57

slowly with the network size. Figure 22(c) shows how the ratio changes with loga-
rithm of the network size. We can see the nearly linear relationship between them.
So our algorithm generates an O(lgn) approximation solution for the 1-center prob-

lem.

4.7 Conclusion

We show in this chapter that the hierarchical well-separated tree, extracted
from the underlying network, can be useful in maintaining O(lgn) approximate so-
lution for the minimum Steiner tree problem or the k-center problem. In particular,
the agents do not need any information about the location of other nodes. The algo-
rithm is also simple and distributed. This leads to applications such as maintaining
group communication and aggregation nodes among a set of mobile agents.

58

Chapter 5

Resilient and Low Stretch Routing
Through Embedding into Tree
Metrics

5.1 Introduction

This chapter considers a fundamental problem of designing routing schemes
that give low stretch and are resilient to node failures. We consider a metric (P,d)
on n nodes (possibly as the shortest path metric of a given network) and examine
routing schemes (together with proper routing tables) to direct a message to the
destination. In particular, the result we present in this chapter is a routing structure,
constructed in a distributed manner such that each node of P keeps routing infor-
mation of size O(logn), the route discovered has constant stretch (e.g., a constant
factor longer than the metric distance), and the routing structure is robust to node
failures, where a single node failure will only disconnect O(1/n) fraction of the
routes between all possible pairs.

The technique we use in this chapter is through embedding into tree metrics.
Given a metric (P,d), the simplest way to route is probably taking a spanning tree
to guide message routing. This has a number of benefits, as a tree metric is a much
simpler metric with many special features. For example, between any two vertices

in a tree, there is a unique simple path connecting them, and the unique path can

59

be found in a local manner by first traversing up the tree towards the root, and
traversing down the tree at the lowest common ancestor. There is a simple labeling
scheme such that one can use routing table of O(logn) bits at each node to support
routing on a tree [12].

However, routing on a spanning tree of the metric has a number of problems,
in particular, the poor stretch and lack of resilience. The path on a tree might be
much longer than the metric distance. Take the shortest path metric of a cycle of
n vertices, any spanning tree will separate some pair of vertices, adjacent on the
cycle, by distance n — 1. To see this, consider one node u on the cycle as the root
of the tree. If u has two or more subtrees, the nodes other than u are placed to the
subtrees. There must be a pair of nodes, adjacent on the cycle, that are placed on
different subtrees. Their distance on the spanning tree must go through the root and
is at least n — 1. Note that we can always choose a root with multiple subtrees. Thus
the claim is true. That is, the distortion introduced by routing on a spanning tree is
factor of Q(n) of their true distance. A more serious problem of routing on a tree
is due to the lack of robustness to node failures. If a node fails or decides not to
cooperate and stops forwarding messages, the tree is broken into pieces and in the
worst case quadratically many pairs have their paths disconnected.

In this chapter we use embedding into tree metrics for efficient, scalable rout-
ing, but address the shortcomings regarding stretch and resilience. Instead of using
one tree, we use simply two trees. The basic idea is that if the route on the first tree
has a poor stretch, the route on the second has a good stretch and one can always use
the shorter path of the two. Regarding node failures, if a node u fails and the path
between two nodes x,y is disconnected as it goes through u, the path connecting x,y
in the second tree hopefully does not contain u and still remains valid. We briefly
elaborate our technical approach and then relate to prior work.

5.1.1 Our Results

The tree embedding we use follows from the embedding of a general metric
into tree metrics with low distortion. Given a metric (P,d) we embed it to a hierar-
chically well-separated tree (HST), defined as a rooted weighted tree such that: the
weight of all edges between a node and its children are the same; the edge weights

60

along any path from the root to a leaf are decreasing by a factor of o. In this chapter
we simply take ot = 2. The leaf nodes of the HST are 1-to-1 mapped to nodes in
P and internal nodes of the HST are also mapped to nodes of P although certain
nodes may appear multiple times. The embedding of (P,d) into the tree metric
leads to distortions of the metric distances. As discussed earlier, using a fixed tree
one cannot avoid the worst case distortion of Q(n). But if one build a randomized
tree, chosen from a family of tree metrics, the expected distortion can be bound-
ed by O(logn). Thus using this tree for routing one immediately obtains O(logn)
stretch routing with low routing overhead. Approximating a metric with probabilis-
tic hierarchical well-separated trees was first proposed by Bartal [21,22], with the
motivation that many problems are easier to solve on a tree than on a general graph.
Later, Fakcharoenphol et al. [56] improved the distortion to O(logn) for any n node
metric and this is tight.

The results we prove in this chapter are mainly in three pieces

e Using two HSTs, randomly constructed with independent seeds, we show
that the stretch can be improved to a constant. That is, for any two nodes x, y,
between the two paths in the two HSTs respectively, one of them is short and

is at most a constant factor of the metric distance between x, y.

e Regarding the resilience of using one HST for routing, we show that for any
node failure, the number of pairs with their routes on the HST disconnected
is at most a fraction of O(logA/n) of all pairs, where A is the aspect ratio
of (P,d), defined as the further pair distance versus the closest pair distance.
When A is polynomial in n the bound is small as O(logn/n) but in the worst
case when the aspect ratio is exponential the bound can be bad.

e Using two HSTs we substantially improve the routing resilience. We build
two HSTs with random, independent seeds. In the case of a node failure, we
show the number of pairs with their routes on both HSTs disconnected is at
most a fraction of O(1/n) of all pairs, thus removing the factor of O(logA)
compared with the case of a single HST.

In this chapter we focus on the robust of using the HSTs as the routing struc-
tures. Thus a node failure means that a node does not participate in the HST-based

routing. It is different from a physical node failure — for example, if the metric

61

(P,d) is the shortest path metric of a given network G, then a node may appear on
a number of shortest paths and the physical breakdown of a node will not only lead
to failures of HST-based routing but more seriously change the metric. This is not
the focus in our thesis.

The results hold for metrics with ‘geometric growth’, that is, the number of
nodes within distance r from any node grows as a polynomial function of r, not
exponential (as in the case of a balanced binary tree). Such a family of metrics
appears in many real settings, either due to physical constraints such as in wireless
networks and VLSI layout networks, or due to geographical constraints such as in
peer-to-peer overlay networks [118,125,126]. In the next section we introduce the
rigorous definitions and elaborate the precise assumptions for each of the results.

Last remark that in the case that (P,d) is the shortest path metric of a given
network G, there is a distributed algorithm that constructs the the HST with a to-
tal number of messages bounded by O(nlogn). In addition, each node is given a
label of size O(logn) such that one can route on an HST using only the node la-
bel information. Thus the entire scheme of using one or multiple HSTs for robust,
low-stretch and efficient routing can be implemented in a completely de-centralized

manner.

5.1.2 Prior Work

The problem of routing is such a fundamental one that it has been studied
extensively with numerous prior work. We only have the space to review some

most relevant ones to our work.

5.1.2.1 Low stretch routing

The traditional routing methods as used for the Internet are essentially shortest
path routing. Essentially each node keeps a routing table of size O(n) to save the
next hop on the shortest path for each destination. This is equivalent to maintaining
n shortest path trees, rooted on every node. From this perspective, our approaches
defines one or two global trees, rather than one tree per node. By doing so we can
substantially reduce the size of the routing table from O(n) to O(logn), while still

keeping the routing stretch by a constant.

62

From a theoretical aspect, compact routing that minimizes the routing table
size while achieving low stretch routing has been studied extensively [122]. There
are two popular models in the literature, the labeled routing model and name-
independent routing. In the labeled routing model [43, 51, 152], one is allowed
to produce for each node a label (typically of polylogarithmic size) such that rout-
ing is done with the labels of the source and destination. In the name-independent
model [8, 98], the nodes are given generic IDs that are independent of the routing
scheme. Thus routing is inherently more difficult as the routing scheme needs to al-
so find out where the node is. Generally speaking, the theoretical results in compact
routing in a graph whose shortest path metric has a constant doubling dimension are
able to obtain, with polylogarithmic routing table size, 1 + € stretch routing in the
labeled routing scheme (see [35] and many others in the reference therein), and con-
stant stretch factor routing in the name-independent routing scheme [6, 98] (getting
a stretch factor of 3 — ¢ will require linear routing table size [6]). The results here are
all centralized constructions and aim to get the best asymptotic bounds. Our focus
of using tree embedding is to obtain practical easy routing solutions with theoreti-
cal guarantee. Further, the compact routing schemes above have no consideration

of robustness to node failures.

5.1.2.2 Resilient Routing

Routing methods that can recover from node or link failures receive a lot of
interests recently. Path splicing [112], proposed for increasing routing reliability on
the Internet, obtains robustness by using multiple metrics. Given a weighted graph,
one perturbs the weights of the edges and produces a different shortest path tree
rooted at each node. These multiple shortest paths trees are used in combination to
generate a routing path in case of in-transit link failures. Traffic in the network can
freely switch between different shortest path trees, which results in a large num-
ber of braided routing paths. The overhead of switching between different trees is
done by just changing a few bits in the packet header. This supports fast recovery
from link or node failure and ensures low end-to-end delay with minimum changes
to the current Internet infrastructure. Our approach of using multiple tree metrics

has certain similarity with path splicing. In fact we can also use multiple HSTs

63

to accommodate in-transit failures. Whenever the route by following one HST en-
counters a problem we can use the second HST to route towards the destination.
The difference of our method is that we do not keep separate shortest path trees (or
under perturbed metrics) rooted at each node. Thus our storage overhead is sub-
stantially better. We actually evaluate the routing performance of using two HSTs
and using perturbed shortest paths in the simulation section. The observation is that
we have roughly the same routing robustness, our stretch is a little higher but we
substantially save on routing table size. Two random trees provide a lot of important
properties in scalability and path diversity [75].

A similar idea to achieve routing resilience is to use the notion of ‘protection
routing’ [101], where one looks for a set of routing trees, one for each destination,
such that all nodes have a standby alternate next-hop available when the prima-
ry next-hop becomes unreachable. In some sense the protection routing makes it
rigorous the use of multiple routing trees that ‘protect’ each other. But the com-
putation of protection routing is NP-hard and the routing method is a centralized
approach. There are heuristic efforts with related ideas for Internet routing such as
fast re-routing [140], Loop-free alternate (LFA) [18], O2 [131], DIV-R [130] and
MARA [119]. These methods have no theoretical guarantee.

We start by introducing the hierarchical separated trees (HSTs) and embedding
into HSTs in Section 5.2. Our results for using two trees to achieve better stretch
and resilience are presented in Section 5.3 and Section 5.4 respectively. We also e-
valuate the performance of using two HSTs for routing in two settings, representing

wireless sensor networks and Internet backbone graphs.

5.2 Preliminaries

5.2.1 Metrics With Geometric Growth

Given a metric (P,7), there is a distance function t(u,v) for any two nodes
u,v € P that satisfies triangular inequality. In the scenario that we are given a net-
work G = (P,E), 7 is typically the length of the shortest path in G. An important
family of metrics is the metrics with ‘geometric growth’. Rigorously there are sev-

eral definitions for capturing metrics with ‘geometric growth’.

64

Let B(p,r) = {v|t(p,v) < r} denote the radius r ball centered at p. In [92], a
metric has bounded expansion rate (also called the KR-dimension, counting mea-
sure) ky if |B(v,2r)| < k1|B(v,r)| for a constant k;; and in [81], a metric has bound-
ed doubling dimension ky if B(v,2r) is contained in the union of at most k, balls
with radius r for a constant k; in [71, 104], a metric has upper bounded growth
B(p,r)| < pr*s, for a con-

rate growth rate k3 if for every p € V and every r > 1,
stant p and k3. A few sensor network papers [136, 158] consider a model when
the growth rate is both upper and lower bounded, i.e., p~ 7% < |B(p,r)| < p*rk
for a constant kg4, where p~ < p* are two constants. We denote the family of
metrics with constant expansion rate, constant doubling dimension, constant up-

per bounded growth rate, and constant upper and lower bounded growth rate as

M. M

+ . .
expansion Mdoublingv arowth’ Mgrowth respectively. It is not hard to see that

+
Mgrowth < Mexpansion < Mdoubling < Mgrowth'

See [71,81] for more discussions. In terms of the results in this chapter the detailed
definitions actually matter. In the following we will make it clear which definition

is needed for each result.

5.2.2 Embedding into Tree Metrics

Given two metric spaces (X,dx) and (Y,dy) an injective mapping f : X — Y
is called an embedding of X into Y. We can scale up Y to make the embedding to
be non-contractive, i.e., for any u # v € X: dy(f(u), f(v)) > dx(u,v). We say Y

dominates X. The distortion of the pair u,v is

dy (/) ()

disty(u,v) = (0.

The distortion of the embedding f is

dist(f) = dist .
ist(f) Lfri%’)‘(ist(u,v)

Given a metric (P,d), we embed it to a tree metric and use the tree metric to
guide message routing. Ideally we want the route length to be close to the metric

distance. That is, we’d like to embed P to a tree metric such that the distortion is

65

small. As shown in the introduction, it is not possible to get any distortion o(n)
using a single tree. However, it is known that for any metric (P,d), one can use
randomization and choose a tree randomly from a family of trees such that the
expected distortion is only O(logn). Such a tree is a type of a hierarchical well-

separated tree H, as defined below.

Definition 15 (a-HST [21]). A rooted weighted tree H is an o.-HST if the weights
of all edges between an internal node to its children are the same, all root-to-leaft
paths have the same hop-distance, and the edge weights along any such path de-

crease by a factor of o as we go down the tree.

In this chapter we focus on 2-HST. The leaves of T are the vertices in P, and the
internal nodes are Steiner nodes. Fakcharoenphol, Rao and Talwar [56] have shown
that for any metric (P,d) one can find a family of trees such that a randomly selected
metric from the family has expected distortion of O(logn). Rigorously, we say that

such a family O(logn)-probabilistically approximate (P,d).

Definition 16 (y-probabilistically approximation [S6]). Let.S be a family of met-
rics over P, and let D be a distribution over S. (S, D) y-probabilistically approxi-
mates a metric (P,d) if every metric in S dominates d, and for every pair of vertices
(u,v) € P, Eycsld' (u,v)] <v-d(u,v). A metric (P,d") dominates (P,d) means that
d'(u,v) > d(u,v) forall u,v € P.

Using a single tree to (probabilistically) approximate a general metric, the best
(expected) distortion is Q(logn). Thus the bound in [56] is essentially tight. In
the next section we show by selecting two trees from the family .§, and taking the
shorter path from the two trees, the expected distortion can be improved to O(1),
if P has constant KR dimension. Here we first describe the FRT algorithm [56]
to build one tree, uniformly randomly selected from the family §. To build two
trees we simply choose two trees uniformly randomly from S, i.e., run the same

algorithm twice with different random seeds.

5.2.3 Review of The FRT Algorithm

Without loss of generality, we assume that the smallest distance between any

two vertices in P is 1 and the diameter of P is A. The aspect ratio is also A. Assume

66

201 < A <28
The FRT algorithm proceeds in a centralized manner by computing a hierar-

chical cut decomposition Dy, Dy, --- ,Ds.

Definition 17 (Cut decomposition). For a parameter r, a r-decomposition of a
metric (P,d) is a partitioning of P into clusters, each centered at a vertex with radius

r.

Definition 18 (Hierarchical cut decomposition). A hierarchical cut decomposi-
tion of (P,d) is a sequence of 8 + 1 nested cut decompositions Do, D1, - ,Dg such
that

e D5 = P, i.e.the trivial partition that puts all vertices in a single cluster.

e D;isa?2-cut decomposition, and a refinement of D;1. That is, each cluster
in D;, is further partitioned into clusters with radius 2'.

To find the hierarchical cut decomposition, one first chooses a random permutation
n:P—{1,2,---,n} of the nodes. We use (i) to denote the node with rank i in the
permutation. We also fix a value B chosen uniformly at random from the interval
[1,2]. For each i, compute D; from D;; as follows. First set B; to be 21718, Let
S be a cluster in D;;1. Each vertex u € S is assigned to the first (according to T)
vertex v within distance ;. We also say that u nominates v. Each child cluster
of § in D; then consists of the set of vertices in S assigned to the same center. We
denote the center of a cluster C by center(C). Note that all clusters in D; have radius
2i-1 < 2i_1B < 2!, Remark that a node can nominate a center outside of its current
cluster in D;; | and one node can be the center for multiple clusters.

An alternative view of the hierarchical cut decomposition is to define for each
node u a d-dimensional signature vector S(u). The i-th element in the vector is the
lowest rank node within distance 2'P.

S(u)i =arg min_ w(v), 2
veB(u,2p)
where B(p,r) is the collection of nodes within distance r from node p. A cluster at
level i contains all the nodes with the same prefix [1,] of their signature vectors.
To turn the hierarchical cut decomposition to a 2-HST, the points of P are the

leaf nodes of the HST and each internal node in the HST corresponds to a cluster

67

of nodes in the hierarchical partitioning. The refined clusters in D;_; of a cluster C
in D; are mapped to children of C. The root corresponds to Dy. We can also use the
center u of a cluster C as the representative node of C in the HST. Thus the root of
the HST has (1) as its representative node. Denote by P; the centers of the clusters
in D;. P; is the set of node that are ‘nominated’ by others at level i.

The HST has 8+ 1 levels, at 0,1,---,0. The level i has a number of internal
nodes in the HST corresponding to P;. The edge weight connecting a cluster C in
D; to its children clusters in D;_; is 2, i.e., greater than the radius of the cluster
C. Clearly the HST metric dominates (V,d), as one only relaxes the distances. For
any two nodes u,v, suppose that they are first separated in different clusters in the
decomposition D, i.e., their lowest common ancestor in the HST is at level i + 1.
In this case we have their distance on the tree to be dy(u,v) = 22;21 2/ =242,
Fakcharoenphol, Rao and Talwar [56] proved that dy(u,v) < O(logn)d(u,v), in

expectation over all random choices of [and 7.

5.2.4 Distributed Implementation of the Tree Embedding

The algorithm for constructing 2-HST in [56] is centralized. In Chapter 2 a
distributed algorithm to implement a 2-HST is proposed, when the metric (P,d) is
the shortest path metric of an underlying network G. The hierarchical decomposi-
tion is replaced by a bottom-up restricted flooding from the centers P; in round i.
Notice that if a node is not nominated by anyone at level i, it will never be nomi-
nated for levels j > i — if a node is not the lowest rank node of anyone else within
distance B2/, it cannot be so for any node within distance 2/ > B2/. Thus the set
of nodes that are eligible to be nominated will be fewer and fewer as level goes up.
Thus only nodes in P; are candidates to be nominated in round i 4+ 1. P11 C P; and
Py = P. Recall that P, is the subset of nodes that have been nominated and ‘survive’
round i and only these nodes will need to flood up to distance 2/*!B in round i + 1.
Each node u will maintain the signature vector and using the received messages
from relevant nodes in P; one can find the value S;; (). Notice that there are more
nodes at lower levels and they flood up to a shorter distance; and there are fewer

nodes at higher nodes that flood up to a longer distance.

68

With the property above, one can show that the total number of messages trans-
mitted during the distributed construction of an HST can be bounded by O(nlogn),
if we consider a network of n vertices such that the shortest path metric has constant
doubling dimension. In addition, each node is given a label of size O(logn) such
that one can route on an HST using only the node label information. We refer to [70]
for the details and simply emphasize here that efficient, distributed algorithms for

constructing HSTs exist.

5.3 Constant Distortion Routing Using Two HST's

Starting from this section we examine the properties of routing using two trees,
instead of one. As shown earlier that using one HST, we can support distributed
routing between any pair of nodes such that the expected path stretch is O(logn).
Here we show that using two trees we can get O(1) stretch for metrics with constant
expansion rate. The reason that we use the family of metric Mexpansion is because
the result does not work for the larger family Mdoubling' We omit the lower bound
construction due to page limitations. Recall that an n-point metric (P,d) has ex-
pansion rate k if |B(p,2r)| < k-|B(p,r)|, where B(p,r) is the set of points within
distance r from the point p € P [92].

5.3.1 Constant Distortion Embedding in Two HSTs

For a given metric (P,d) with expansion rate k, we build two HSTs, H; and
H, with the algorithm in [56]. For any two points u,v in P, we define the distance
between them to be the minimum shortest path in the two trees. That is dy (u,v) =
min{dg, (u,v),dn,(u,v)}.

Theorem 19. For any metric (P,d) with expansion rate k and two HSTs H;,H,,
there is a constant ¢ such that for any two nodes u,v € P,

Eldy(u,v)] = E[min{dy, (u,v),dpy, (u,v)}] < c-k*-d(u,v).

For two nodes u,v € P, denote their lowest common ancestor (LCA) in H; by
LCA;(u,v), for i = 1,2. And denote LCA(u,v) = min{LCA,(u,v),i = 1,2}. Thus

69

dy(u,v) =22 if LCA(u,v) is at i + 1. Now we have
-1 .
Eldy(u,v)] = Prob{LCA(u,v)is at level i 4 1} - 272,
i=0
With the following Lemma that bounds the probability that LCA(u,v) is at i + 1,

we can prove the Theorem.

Lemma 20.

Prob{LCA(u,v) is at level i+ 1}
0, if 272 < d(u,v);
< . .
= | 3k*-d?(u,v) /224, if22 > d(u,v).

With the above lemma, we can prove Theorem 19 easily. Suppose j* is the
smallest i such that 212 > d(u,v),

Eldy(u,v)] =32 Prob{LCA(u,v) is at level i 4 1} - 212
< Z?:j*+4[3k4 dzz(lu V)] 9i+2 +21 3 5i42
<27.3k*-d?(u,v) /2" 4+ 14d(u,v)

< (96k* 4 14) -d(u,v).

To prove Lemma 20, we first evaluate the probability that in one tree, say, H,

the probability that u,v have a lowest common ancestor at level j, 1 < j <.

Lemma 21.
Prob{LCA|(u,v) is at level i + 1}

_ o if 27 < d(u,v);
= | K -d(u,v) /272, if22 > d(u,).

Proof. First, if w=LCA|(u,v)is atlevel i+ 1, thend(w,u) < B;_1 <2!,d(w,v) <
Bi_1 < 2. By triangle inequality d(u,v) < d(u,w)+d(w,v) < 2*!. Thus in the
first case of the lemma, the probability is 0. Suppose j* is the smallest i such that
242 > d(u,v). In the following we focus on the second case, i.e., i > j* +4.

If u,v belong to different clusters at level i, we say that the decomposition D;
separates u,v at level i. Thus LCA;(u,v) is at level i + 1 if and only if D; separates
u,v and D;(j > i) does not. Thus,

Prob{LCA| (u,v)is at level i 4+ 1} < Prob{D; separates (u,v)}.

70

Take this level i such that D; separates u,v. There is a node w such that one of u,v
is first assigned to w and the other is not. We say that w settles the pair u,v at level
i. Such a node w is unique, as once the pair u,v is settled it won’t be settled again.
Thus we will consider the union of the probability for each node w of P to possibly
settle u,v. If w settles u,v and u is assigned to w, we say w cuts u out. Summa-
rizing the above, we have Prob{D; separates (u,v)} =) Prob{w settles u,v} =
>, Prob{w cuts u out} + > Prob{w cuts v out}.

Let K!' be the set of nodes in P within distance 2 to node u, and let k¥ = |K¥|.
We rank the node in K;' with increasing order of distance from u: wi,wa, -+, wiu.
For a node wy to cut u out of the pair u,v at level i, it must satisfy the following

conditions:

1. d(u,wg) <Bi.

2. d(v,ws) > B

3. wy settles u, v.
Thus B; must lie in [d(u,wy),d(v,w;)]. But we have d(v,ws) < d(v,u) +d(u,wy) by
triangle inequality. so the length of interval [d(u,wy),d(v,ws)] is at most d(u,v).
Since we choose PB; uniformly from the range [2/~!,2], the probability for B; to fall
into this interval is at most d(u,v) /2"~ 1.

We also need to bound the probability that it is wy that cut u out of the pair

u,v, not others in K. First we note that the points that are very close to both u,v
cannot possibly settle u,v. In fact, wy must lie outside K} , for i > j* +4. Suppose
otherwise, wy is in K ,, and u is assigned to w;, then v must be assigned to w; too,
by triangle inequality, d(v,w;) < d(v,u) +d(u,wy) <2172 42172 < 2i=1 < B; (note
that i > j*+4). Thus only those in Wit 1, Wit 42, ;W can separate u,v in
level i. Since we have a random permutation on the node rank, the probability for
wy to be the first center assigned to u is at most 1/s. Then the probability that u is
cut out of the pair (u,v) at level i is bounded by

a

1 d(u,v) d(u,v)
Z ¢ 0i-l = 9i—1 '(sz” _ka’iz)’
s=ki! 5+1

where H(m) is the harmonic function.

71

For a metric with expansion ratio k, we have k{ < k-k!' | < k> -k 5. Then

K K

1 1k)
Hy —Hy , = Z 5 S Z A :k'.ll —l=k
s=kY ,+1 s=k 41172 T2
Thus, we have Prob{D; separates (u,v)} = d(u,v) - 2],?—52, as required in the theo-
rem. U

Now we are ready to prove Lemma 20.

First, if LCA(u,v) is at level i + 1, then at least in one tree the lowest common
ancestor is at level i + 1, the probability of which is 0 if d(u,v) < 2/*2, as shown in
Lemma 21. In the following we focus on the second case when 2:=2 > d(u,v).

If LCA(u,v) is at level i + 1, the first time (smallest level) that u,v belong to
different clusters is i in one tree and is j > i in another tree. Denote by Pj (i) and
P, (i) the probability that LCA|(u,v) and LCA,(u,v) are at level i + 1 respectively.

Prob{LCA(u v)isatlevel i+ 1}
= P X0 P2(J) + Pa(i) S0y PL(J) + Pr ()P (i)

By using Lemma 21. Now we have

Prob{LCA(u,v) is at level i + 1}

< WG T RG]+ R G)
3kt d*(u,v) /2%
This finishes the proof.

5.3.2 Routing with Two HSTs

First we show how to route using one HST H. Recall that all nodes of
P are leaf nodes of the HST H and the internal nodes map to the cluster-
s in the hierarchical decomposition. When we route on the HST, we replace
the cluster C by its center center(C). An edge between a cluster C; and it-
s parent cluster C;, C; C C; with Cy € D; and C, € Djyq, is now realized by
their centers center(C)),center(C;). This edge center(C)),center(C,) has length
d(center(Cy),center(C;)) < d(center(Cy),z) +d(center(Cy),z) < 2/ + 21+ <2042,
where z € C; C (,, which is at most twice the edge weight on the HST. To route

72

between two nodes x,y € P, we take the leaf nodes corresponding to x,y in H and
route along the unique path connecting the two nodes in H. The stretch is at most
twice the stretch of the HST.

As shown in the previous subsection, if we build two HSTs, using different
random seeds, one can obtain constant distortion by always using the shorter path
of the two trees. In particular, we use the distributed algorithm as shown in [70] to
find 2 HSTs, and obtain node labels for each of the tree. To route a message from
a source to a destination node, we check each set of labels to see which tree gives
a lower LCA (lowest common ancestor). That tree will provide a path with only
constant stretch. We remark that the storage requirement for each node is very low,
in the order of O(logn). In comparison, standard routing table approach build a
shortest path tree rooted on each node, and the routing table size is thus O(n). Our
method is much more scalable as we benefit from having two global tree structure
used by all the nodes.

5.4 Resilience to Node Failures Using Two HSTs

Using a tree metric to route is easy as there is a unique simple path connecting
any two nodes and one can find the path easily. But such a routing method is
not robust to failures. A link or node failure may disconnect the paths between
quadratically many pairs. In this section we show that using two trees, instead of
one, can improve the routing robustness substantially. For a pair of node u, v, if the
path connecting them is disconnected on the first tree, it is still possible that there is
a path between them on the second tree. Thus one can switch to the second tree for
a backup route. Thus using two trees one can also recover from sudden, unforseen

failures instantaneously, akin to the path splicing idea [112].

5.4.1 Robustness of One HST

We first examine the properties of a single HST in terms of node failure. When
a node u fails, any path on the HST that uses a cluster with u as the center is dis-
connected. We examine how many such pairs there are. the worst case is that u is
a center of a cluster near the root of the HST — this will leave big components and

73

Q(n?) number of pairs disconnected. For example, if the node (1) fails. How-
ever, since the construction of the HST uses random permutations (assuming the
adversary has no control over the choice of this random permutation, as in standard
settings of randomized algorithms), a single node failure is unlikely to be near the
root. We show below that a single node failure only ‘chops off” a set of nodes of
size O(logA), where A is the aspect ratio of the metric, i.e., the longest pairwise
distance versus the shortest pairwise distance. Thus there are only O(nlogA) pairs
whose paths on the HST are partitioned by a single node failure. Note that this is
almost a factor of n off from the worst case. The following theorem works for any

metric (P,d) with constant doubling dimension.

Theorem 22. Given a node u and an HST, the expected number of nodes within
clusters with u as center is O(logA), where A is the aspect ratio of the metric (P,d)

with constant doubling dimension.

Proof. Suppose a node x is within a cluster with u as the center, say this cluster
is at level i. Then we know that d(u,x) < B2’ and u is the highest rank node in
B(x,B2"). Now, take £,(x) as the lowest level j such that d(u,x) < B2'. Clearly,
¢,(x) < i. Thus B(x,p20«%)) C B(x,B2"). That is, u is the lowest rank node at level
¢, (x) as well. The probability for that to happen is 1/|B(x, 2“(*))|. Thus the prob-
ability that x is inside a cluster with u as center is no greater than 1/|B(x, p2(«())].
Now, the expected number of nodes within clusters with u as center, denoted

as W, is,

=
|

> Prob{x is in a cluster with u as the center}
>, 1/1B(x, p21)]

2 2xen(up2i)\Bupri-) /1B, B2/)]

2 j 2 xeB(upr) 1/1B(x: B27)|.

Now, recall that the metric (P,d) has constant doubling dimension . Thus we can
cover the point set B(u, BZj) by balls of radius B2j —1 denoted as sets By, B, - , By,
m < 2Y. Since the points in B; are within a ball with radius B2/~1, all the points with-
in B; are within distance B2/ of each other. That is, for anode y € B;, B; C B(y, p2/).
Thus |B;| < |B(y,B27)|, where y € B;. Now we group the points of B(u, p2/) first by

I IA

IA

74

the balls they belong to, and then take the summation over the balls.

W< 3 enup) I/ |B(x, B)
= 2200 e, 1/|B(x,p27)]
< 3220 > ven /1Bl
= 2,250 [Bil-1/|Bil
= ij <278 = O(logA).

(] Suppose that u is removed, then the route on the HST between
any pair x,y where exactly one of x,y is in a cluster with u as the center, is broken.
The above lemma shows that the total number of such pairs effected is bounded by
O(nlogA), i.e., O(logA/n) fraction of all pairs.

5.4.2 Robustness of Two Random HSTs

We now examine the robustness property of using two random HSTs and
bound the number of pairs ‘disconnected’ in both of the trees, i.e., their routes
by using both HSTs go through u. For this case we assume that (P,d) has both
constant upper and lower bounded growth ratio. By using two trees we reduce the
expected number of disconnected pairs from O(nlogA) to O(n).

Theorem 23. The number of pairs of nodes disconnected in two HSTs, constructed
using independent random permutations, is a fraction of O(1/n) of all pairs, for a

metric (P,d) with both constant upper and lower bounded growth ratio.

Proof. Take a pair of nodes x,y, the paths connecting the two in both trees are
disconnected if and only if in each of the tree, exactly one node is in a cluster with
u as center and another one is not in any cluster with u as center. Denote by P,(x)
the probability that x is in a cluster with u as the center. P,(x) < 1/|B(x,p20«¥))].
Thus the expected number of pairs of nodes disconnected after node u is removed
1s,
W = 30 24P — Pu(y))?

< XA/ |B(x, B2 2

= AnY0 ;3 enwpri) 1) 1/ B, B2

= 4n 3 (1B(u, B27)| - [B(u, B2/ 1)[) /1B (x, B27)[*.

75

If (P, d) has constant bounded growth ratio k, we know that p~B¥2/% < |B(x, B2/)| <
ptB*27% for constants p~ < p*. Thus

Wy <4ny [t B2 /[p B2
=4ny;p"t/(p7)% 1/(B27)
= O(n).

5.4.3 Robustness of Two HSTs With Reversed Rank

An alternative method to use two trees for robust routing is to construct the
second tree to be as different as possible from the first tree. Recall that the HST
is purely determined by the random parameters, the permutati