

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Online AMS Frontend Reconfiguration for
Sensor Network Applications and Other
Continuously Changing Environments

A Dissertation Presented

by

Pengbo Sun

to

The Graduate School
in Partial Fulfillment of the

Requirements
for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2009

Stony Brook University

The Graduate School

Pengbo Sun

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Dr. Alex Doboli - Dissertation Advisor
Associate Professor

Department of Electrical and Computer Engineering

Dr. Sangjin Hong - Chairperson of Defense
Associate Professor

Department of Electrical and Computer Engineering

Dr. Monica Fernandez-Bugallo
Assistant Professor

Department of Electrical and Computer Engineering

Dr. Edward H. Currie
Chief Information Officer
Tritium Technologies, Inc

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Online AMS Frontend Reconfiguration for Sensor Network Applications

and Other Continuously Changing Environments

by

Pengbo Sun

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

This thesis proposes a novel online analog and mixed-signal (AMS) frontend recon-

figuration approach for sensor network applications and other continuously changing

environments. The approach is based on a design point (DP) selection algorithm. The

algorithm has two steps: DP sampling and DP pruning. This thesis also proposes a

systematic methodology for reconfigurable ∆Σ modulator topology designs.

The system software of traditional embedded system optimizes the allocation of a fixed

set of resources under static conditions. However, the functionality and performance con-

straints of data processing systems are far less predictable since the characteristics of the

monitored environment are continuously changing. In this thesis, the concept of developing

AMS frontend design strategies for anticipative management of metadata acquisition, pro-

cessing, and communication in dynamic environments is proposed. The idea is to develop

mathematical models and small-overhead algorithms for online monitoring of performance

iii

requirements and comprehensive adaptation of embedded architecture for metadata pro-

cessing.

While reconfigurable digital systems are very popular and well understood in terms of

their capabilities and limitations, reconfigurable analog and mixed-signal (AMS) systems

are, in contrast, much less studied or employed in practical applications. This prevents the

more comprehensive harvesting of the possible benefits of reconfigurable systems, as a ma-

jority of embedded applications (e.g., embedded control and telecommunications) include

significant amounts of analog signal processing. To address this major limitation, research

must not only address new reconfigurable AMS architectural concepts, but also study the

related design methodologies and EDA tools. More specifically, it is essential to develop

efficient techniques for designing reconfigurable analog to digital converters (ADC) due to

the importance of ADCs in embedded systems.

Reconfigurable systems simultaneously offer the advantages of (i) high performance

processing, provided by hardware, and (ii) flexibility in tackling different applications,

provided by software. Reconfigurable systems are attractive implementation platforms for

many embedded applications due to their capability of offering low development costs and

short design times, while being accessible to less experienced designers.

With the development of wireless communication technology, many wireless communi-

cation standards emerged, such as AMPS, GSM, CDMA, WCDMA, UMTS etc. A wireless

communication system which can efficiently support multiple communication standards led

to the interest in developing a reconfigurable multi-mode receiver that can meet the band-

width and resolution requirements of multiple standards. The most difficult part in imple-

menting a reconfigurable multi-mode receiver is the design of a high performance, compact

reconfigurable analog to digital convertor that will reconfigure the convertor topology when

iv

communication standard changes.

In this thesis, a methodology for designing reconfigurable discrete-time ∆Σ modulator

topologies is proposed. Optimized topologies are selected from the set of all possible

topologies expressed by a generic topology, such that they (i) minimize the complexity of

the topologies, (ii) maximize the topology robustness with respect to circuit nonidealities,

and (iii) minimize the total power consumption. A case study of the design of topologies

for a three-mode reconfigurable ∆Σ modulator is presented. A reconfigurable topology

implementation on a Programmable System-on-Chip (PSoC) device is also included.

This thesis presents a systematic methodology for producing reconfigurable ∆Σ modu-

lator topologies with optimized flexibility in meeting variable performance specifications.

To increase their flexibility, topologies are optimized for performance attributes pertain-

ing to ranges of values rather than being single values. Topologies are implemented on

switched-capacitor reconfigurable mixed-signal architectures. Since the number of config-

urable blocks is very small, it is extremely important that the topologies use as few blocks

as possible.

A case study illustrates the methodology for specifications from telecommunications

area and a dynamic reconfiguration methodology of mixed-domain embedded systems for

applications with variable performance requirements is introduced. A methodology for

designing cost effective, dynamically reconfigurable, mixed-domain systems for metadata

processing is proposed. During operation, the system switches between different design

points for analog and digital blocks, depending on the actual performance needs. A case

study for sound based tracking is discussed.

Sensor networks are increasingly important for many applications in environmental

v

monitoring, manufacturing, defense and infrastructure monitoring. Many applications in-

troduce variable performance requirements which demand online architecture reconfigura-

tion, including the analog-digital frontends to sensors. In the last part, this thesis presents

design automation methods for deciding the design points used for dynamic reconfiguration

of analog-to-digital converters and DSP circuits.

vi

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation for this thesis and method overview 1

1.2 Goals and contributions . 10

1.3 Thesis outline . 11

2 Systematic Methodology for Reconfigurable Switched-Capacitor ∆Σ Modula-

tor Topology Design 13

2.1 Introduction . 13

2.2 Related work . 14

2.3 Overview of the methodology for reconfigurable ∆Σ modulator topology

design . 16

2.4 Case studies . 21

2.4.1 Triple-mode reconfigurable ∆Σ modulator topology design 21

2.4.2 Implementation of a reconfigurable ∆Σ modulator using PSoCT M

mixed-signal SoC . 26

vii

2.5 Conclusions . 31

3 Flexibility-oriented Design Methodology for Reconfigurable ∆Σ Modulators 32

3.1 Introduction . 32

3.2 Related work . 34

3.3 Reconfigurable Mixed-Signal Architecture 35

3.4 Reconfigurable ∆ ADC Design Method 43

3.4.1 Description of flexible performance requirements 43

3.4.2 Optimal ∆Σ ADC topology design 46

3.4.3 Overall design flow . 49

3.5 Case Study . 51

3.6 Conclusions . 55

4 Dynamic Reconfiguration of Mixed-Domain Embedded Systems for Applica-

tions with Variable Performance Requirements 56

4.1 Introduction . 56

4.2 Problem Formulation . 59

4.3 Modeling for Dynamic Reconfiguration 62

4.4 Case Study . 71

4.5 Conclusions . 73

5 Online AMS Frontend Reconfiguration for Sensor Network Applications 74

5.1 Introduction . 74

5.2 Reconfigurable Mixed Analog-Digital Architecture 76

5.3 Synthesis of Reconfigurable AMS . 82

5.4 Experiments . 89

viii

5.5 Conclusions . 92

6 Conclusions 94

6.1 Conclusions . 94

Bibliography 97

ix

List of Tables

2.1 Design complexity . 25

2.2 Values for the capacitor arrays. 28

5.1 DP selection for ∆Σ modulators: Case 1 90

5.2 DP selection for ∆Σ modulators: Case 2 91

x

List of Figures

1.1 Sound Localization and Tracking System 3

1.2 Camera-based target recognition and tracking [28, 30, 32] 4

2.1 Third order generic reconfigurable ∆Σ modulator topology 17

2.2 Nonideal blocks in Simulink . 21

2.3 Reconfigurable modulator topology opt2 23

2.4 SNR degradation by circuit nonidealities for topology opt2 (mode 2) 24

2.5 Analog subsystem of PSoCT M [40] . 26

2.6 Dual-mode second-order modulator (a) topology and (b) PSoCT M imple-

mentation . 27

2.7 SNR comparison of the dual-mode second-order modulator 28

2.8 Measurement result for PSoCT M based implementation. 29

3.1 Type C reconfigurable SC block in the PSoCT M architecture [40] 36

3.2 Type D reconfigurable SC block in the PSoCT M architecture [40] 37

3.3 Reconfigurable SC block based on the PSoCT M architecture [40] 39

3.4 Third order ∆Σ modulator topology . 40

3.5 Implementation of Figure 3.4 topology on current PSoCT M SC architecture 41

xi

3.6 Implementation of Figure 3.4 on proposed SC architecture 42

3.7 Performance requirement region (PRR) 43

3.8 Generic 3rd order ∆Σ topology . 46

3.9 Overall design methodology . 51

3.10 Influence of discretization on DR . 52

3.11 Pareto curves for different orders . 54

4.1 Mixed-domain architecture . 60

4.2 Dynamic reconfiguration of mixed-domain systems 62

4.3 (a) RBlock and (b) RBlock execution semantics 64

4.4 Parameterized SFG for DFT . 65

4.5 DP selection for ranges . 66

4.6 Design point compatibility graph . 69

4.7 DPs for DFT . 72

5.1 Coarse-grained/fine-grained reconfigurable AMS architecture 77

5.2 Coarse grained reconfigurable digital block 80

5.3 Synthesis model for overall reconfiguration of AMS system 81

5.4 Synthesis model for overall reconfiguration of AMS system 83

5.5 Dynamic reconfiguration . 84

5.6 Parameterized Signal Flow Graphs . 85

5.7 Design point selection . 87

5.8 Design points for classifier circuit . 93

xii

Acknowledgements

It would not have been possible for me to finish this doctoral thesis without the help

and support of the kind people around me, to only some of whom it is my great honor to

give particular mention here.

First, and above all, I would like to acknowledge my Ph.D. supervisor, Dr. Alex Doboli,

for his help, advice and patience all the time throughout my PhD years. It is difficult to

overstate my gratitude to him. With his enthusiasm, his inspiration, and his great efforts

to explain things clearly and simply, he helped to make research fun for me. He provided

encouragement, sound advice, good teaching, good company, and lots of good ideas. I

would have been lost without him.

I also want to thank Dr. Edward H. Currie, Dave Van Ess, and Cypress Semiconductor

Corporation for providing invaluable help, support and resources, especially for initiating

the topic on reconfigurable mixed-signal embedded system architectures and dynamic re-

configuration.

Thanks to my committee members, Dr. Sangjin Hong, Dr. Alex Doboli, Dr. Monica

Fernandez-Bugallo, and Dr. Edward H. Currie, who offered guidance, support and gave

suggestions on my preliminary proposal.

I am indebted to my colleagues in VLSI Systems Design Laboratory for providing

a stimulating and fun environment to learn and grow. I am especially grateful to Meng

Wang, Cristian Ferent, Varun Subramanian, Michael Gilberti, Anurag Umbarkar, Yang

Zhao, Sankalp Kallakuri, Ying Wei, Junling Zhou, Jing Gao, Hui Zhang and Hua Tang.

I would also like to express my gratitude to all the faculty members, staffs and the many

individuals in the department who have made my stay at Stony Brook University a pleasant,

unique and memorable one. Specially thanks to all my friends at Stony Brook University

for giving me encouragement throughout.

And big thanks to all the people in my life who have kept me happy and positive with

their companions. You all are important to me. I particularly thank those certain few,

Bo qiu, Dan Yin, Bo Chen, Hao Huang, Bo Ning, Feng Gao, Hongying Yu, Jia Zuo, Lei

Sun, Haibin Gong, Lulu Sun, Dongni Wang, Jiaohua Wang, Haojun Wang, Yang Song,

Jing Gao, Yijun Hang, Shiyuan Zhang, Meng Wang, Xiaoyao Liang, Junling Zhou and

Keyi Chen, who were supportive of me in difficult times. Your love and support, voice

of reason, understanding ear and general good laughs, has certainly made for some great

memories!

I wish to thank my extended family for their love, support and understanding all these

years. My uncle Weiguo Liang, Weigang Liang and Weige Liang were particularly sup-

portive. My dear grandparents, Yongchang Sun and Guiwen Yang gave me courage to

began this journey, but sadly are not here to see me finish. I know you must be proud of me

and I miss you two terribly.

Last, and most importantly, I wish to thank my parents, Yuancheng Sun and Yan Liang.

They bore me, raised me, supported me, taught me, and loved me. Also thanks to my

parents-in-law Songbai Liu and Ruiyuan Liu for their love and support. Specially thanks

to my husband Feng Liu. He will always be my greatest love, my truest friend, and my

closest companion. Thanks to my son, Vincent Hanjie Liu. His coming lights up my life. I

could not have completed this thesis without them. To all of them I dedicate this thesis.

For any errors or inadequacies that may remain in this work, of course, the responsibil-

ity is entirely my own.

Chapter 1

Introduction

This chapter explains the motivation, goals, and contributions of this thesis. It also

gives an overview of the methodology, which introduces the essence of the methodology

and illustrates how the methodology can be used for online AMS frontend reconfiguration.

More precisely, this chapter (i) explains the advantages of reconfigurability and the design

challenges; (ii) discusses the advantages of flexibility-oriented design methodology for re-

configurable ∆Σ modulators; (iii) gives an overview of the proposed algorithm for dynamic

reconfiguration of mixed-domain embedded systems for applications with variable per-

formance requirements; (iv) gives a brief introduction of the online AMS reconfiguration

method for sensor network applications and other continuously changing environments.

1.1 Motivation for this thesis and method overview

Many applications have variable performance requirement that demand online architec-

ture reconfiguration, from AMS frontends to sensors. For example, metadata processing

and monitoring systems usually have continuously changing environments. Metadata (such

1

as video, image, sound, olfactory and hyperspectral images) is the basis of supervisory and

process control (SPC) systems. However, metadata handling is computationally cumber-

some with current computing concepts because it has (i) expensive hardware, (ii) long com-

putation time, (iii) large power consumption, (iv) low reliability, and (v) ineffective worst

case design. The system software of traditional embedded systems optimizes the alloca-

tion of a fixed set of resources (including processing hardware, communication bandwidth

and supply energy) under static conditions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. However, the

functionality and performance constraints of SPC systems are far less predictable since the

characteristics of the monitored environment are continuously changing (including hard-

to-predict situations). Hence, the urgent need for the development of middleware design

strategies for anticipative management of metadata acquisition, processing, and communi-

cation in dynamic environments.

The system manages hardware usage and configuration through on-line learning and

adaptation, when the environments change. There is currently some research in this area [12,

13, 14, 15].

SPC Systems in real environments should have the following features based on their

characteristics:

1. System functionality. Applications including image sampling in intrusion detection,

target recognition and tracking, temperature sampling and monitoring, hyperspectral

imaging, etc., are all classes of applications addressed by the conceptual motivation

of this thesis. In this section, sound localization and tracking are discussed as an

illustrative example. In the sound localization and tracking system shown in Figure

1.1, sounds are periodically sampled using a microphone array. Subsequently, they

are locally processed to localize the position and identify the moving speed (if the

2

Search

Microphone

Likelihood

High−level
Events

Filter ADC FFTGain Phase
Calculation

Filter ADC FFT CalculationGain Phase

Maximam

Figure 1.1: Sound Localization and Tracking System

target is moving). Then, compressed information about the objects is sent via a

wireless network to other nodes or to the server.

2. Dynamics of performance requirements. SPC systems operate in dynamic environ-

ments. For example, the sound localization and tracking system might operate under

a noisy or noiseless environment, the target sound could be either moving or still,

and the quality of sound may require different processing precision, such as music

versus a human voice. An efficient metadata processing system should be able to re-

act to different environmental configurations and adapt accordingly to save hardware

resources and energy.

3. Customizable embedded architectures. Embedded architectures offer multiple pos-

sibilities for customizing the hardware architecture to adapt to specific applications

and environments, while offering the opportunity for effective metadata processing.

Architecture customization [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] is achiev-

able through dynamic allocation of registers, dynamic voltage scaling or architecture

modifications and so on.

The novelty of the proposed methodology includes the following.

3

Algorithm
Tracking

Camera

High−level
Events

USB Face
Detection

USB Face
Detection

Figure 1.2: Camera-based target recognition and tracking [28, 30, 32]

• The changing semantics of data becomes important in optimized embedded process-

ing. Current approaches only optimize the algorithm, or assume static requirements.

• The methodology requires an address system design of complete multi-domain pro-

cessing (analog-digital-software). Existing methods cannot handle the complete chain.

• For the anticipative processing part, new design methods must be proposed because

existing embedded processing is either reactive or data driven.

The proposed methodology can be used in various applications. One category is cus-

tomization based on semantics, such as image sampling in intrusion detection systems,

as shown in Figure 1.2, where the sampling scheme should be different, before and after

event detection. Another category is customization in redundant systems. For example,

in the sound localization application discussed earlier, the number of microphones used in

tracking might be determined by the characteristics of the moving object. Among these,

flexibility-oriented reconfigurable ∆Σ modulators design has proven to be a good applica-

tion for this research topic.

With the rapid development in wireless communication technologies, a demand for re-

configurable receivers-on-a-chip that support multiple communication standards has emerged.

4

A major difficulty for multi-standard receiver implementation is the design of high perfor-

mance, compact multi-mode analog to digital converters (ADC) [37].

The extant literature on reconfigurable multimode ADCs [37, 36, 35] is some what

limited. So far, the design of reconfigurable, multimode, ∆Σ modulator relies mostly on

manual techniques and relatively unsystematic. There is little understanding of how to de-

velop optimal reconfigurable topologies for a new set of specifications. Also, to improve

design closure and reduce cost, topology design must contemplate a fair amount of circuit

nonidealities. Efficient methodologies are needed for systematically designing reconfig-

urable ADCs, while considering nonidealities at early stage in the design flow.

Current systematic design methodologies are for single-mode ∆Σ modulators only.

Most of the work has been focused on on topology parameter optimization with limited

modification of the modulator topology. Medico et al. [43] propose a design flow based

on extensive analysis and modeling of the nonidealities that degrade the ∆Σ modulator per-

formance. However, their methodology is limited to the four single-mode, discrete-time

topologies supported by CAD tools – ADOPT and FRIDGE. Frances et al. [42] describe

an approach for high-level simulation and synthesis of discrete-time ∆Σ modulators. Be-

havioral models for integrators, quantizer, and feedback digital-to-analog converter (DAC),

are integrated in a synthesis tool (DAISY) that selects the modulator topology with the

lowest power consumption for a given specification and constraints for the building blocks.

An analytical integration method for the simulation of continuous-time ∆Σ modulators is

suggested in [51]. Tang and Doboli [50] present a synthesis algorithm that finds the opti-

mal topology for a given specification by solving a mixed-integer, nonlinear programming

(MINLP) problem [53] with a cost function expressing the signal path complexity, sensi-

tivity, and power consumption of the topology. This method considers only single-mode

5

∆Σ modulators built out of ideal blocks.

This thesis proposes a systematic methodology for designing reconfigurable discrete-

time ∆Σ modulator topologies optimized for minimum topology complexity, maximum

robustness to circuit nonidealities, and minimum power consumption.

Reconfigurable systems attempt to simultaneously offer the two main advantages of

hardware and software: (i) high performance processing, provided by hardware and (ii) flex-

ibility in addressing different applications, provided by software. Reconfigurable systems

are attractive implementation platforms for many embedded applications due to ability to

provide ow development costs and short design times, while being accessible to less expe-

rienced designers.

While reconfigurable digital systems are very popular and well understood in terms

of their capabilities and limitations, reconfigurable analog and mixed-signal (AMS) sys-

tems are, in contrast, much less studied and/or employed in practical applications. This

prevents the more comprehensive harvesting of the possible benefits of reconfigurable sys-

tems, since the majority of embedded applications (e.g., embedded control and telecommu-

nications) include significant amounts of analog signal processing. To address this major

limitation, research must not only develop new, reconfigurable AMS architectural con-

cepts, but also study the related design methodologies and EDA tools. More specifically,

it is essential to develop efficient techniques for designing reconfigurable analog to digital

converters (ADC) due to their importance in embedded systems.

Several general-purpose reconfigurable AMS architectures are mentioned in the litera-

ture [33, 34]. Continuous-time and switched-capacitor, reconfigurable ADCs have been

presented in [35, 36, 37], but no design methodology, or EDA tools were considered.

More recently the PSoC reconfigurable mixed-signal array has been offered by Cypress

6

Inc. [38, 40] as a cost-effective solution to embedded system implementation. While sev-

eral ADCs have been incorporated into PSoC [41], there are no design methodologies or

EDA tools that would allow effortless and rapid design of new ADCs. Filter synthesis

methods for reconfigurable analog systems are presented in [33, 34]. Various techniques

for single-mode (non-reconfigurable) ∆Σ ADC design have been described in [42, 43, 44].

A systematic design flow for continuous-time reconfigurable ∆Σ ADCs has been recently

proposed in [45]. However, the produced modulator topologies are restricted to a set of pre-

defined performance specifications (e.g., GSM, CDMA, and UMTS communication stan-

dards). The topologies have no flexibility in addressing new performance specifications. If

another specification needs to be also addressed, then the entire process has to be repeated.

This is an important limitation because flexibility ought to be one of the main strengths of

reconfigurable AMS architectures.

This thesis proposes a systematic design methodology for creating flexible reconfig-

urable ∆Σ modulator topologies implemented on switched-capacitor (SC) reconfigurable

AMS architectures. This work is based on an AMS architecture similar to that of PSoC’s

reconfigurable architecture. Since the number of programmable analog blocks is very lim-

ited in PSoC, it is extremely important that the modulator topologies use as few blocks as

possible. In contrast to the existing work, the proposed methodology generates a set of

topologies that are optimized to meet performance attributes pertaining to ranges of values,

rather than being singular values.

Modern applications in environmental monitoring, security, robotics, military, and in-

dustrial control are based on (i) acquisition of high-level data (metadata) (video images,

sound, olfactory and hyperspectral images), (ii) processing, storing, and communication

7

of metadata, and (iii) intelligent control using higher-order semantics extracted from meta-

data [28, 29, 31, 39]. Systems continuously collect metadata to discover, and plan, new

activities of interest, or to observe patterns of monitored situations. Then, this information

is used to provide self-optimizing responses, including faster and more intelligent anticipa-

tion and reaction to critical events, superior utilization of hardware, and improved survival

in harsh situations.

The performance constraints of these embedded systems are being dynamically modi-

fied, since operating conditions change continuously. Also, the amount of available hard-

ware resources for a task depends on the computational demands of the other tasks, since

all tasks share the same resources. The dynamics of processing and performance needs

does not follow any particular mathematical rule for a mixture of different types of behav-

ior, e.g., quasi-static, probabilistic, and performance constrained operation [28]. Hence,

the system must continuously “comprehend” new processing demands, and accordingly

customize its architecture and the dispatching of hardware resources to tasks. A naive ap-

proach would aggressively utilize high performance resources that are optimized for the

worst-possible situation. However, this results in very expensive systems, that are likely to

be unattractive in real life. Moreover, high performance processing is very energy hungry,

hence unsuitable for mobile, autonomous systems.

Reconfigurable systems are attractive implementation platforms for many embedded

applications due to their ability to provide low development costs and short design times,

while being accessible to less experienced designers. To address this limitation, research

must not only focus on new reconfigurable mixed-domain architectures, but also study the

related design methodologies and EDA tools. More specifically, it is essential to develop

efficient techniques for designing dynamically reconfigurable systems, which include both

8

analog and digital functional blocks.

Techniques for dynamic reconfiguration of software or digital hardware are discussed

in [54, 57, 58, 56]. Several reconfigurable mixed-domain architectures are mentioned in

the literature [33, 38, 34]. More recently the PSoC reconfigurable mixed-signal array has

become available from Cypress Inc. [40] as a cost-effective solution for embedded system

implementation. Filter synthesis for reconfigurable analog systems is presented in [33, 34].

A systematic design flow for continuous-time reconfigurable ∆Σ ADCs has been recently

proposed in [45]. However, the topologies produced have no flexibility in addressing new

performance specifications. Also, there is no methodology available that takes into account

the synergy between analog and digital blocks for producing more cost effective, dynami-

cally reconfigurable designs.

This thesis proposes a methodology for designing cost-effective, dynamically reconfig-

urable mixed-domain implementations for metadata processing applications. To provide

flexibility, performance requirements are specified as continuous ranges, or as discrete sets

of values. During operation, the system switches between different design points (DPs) for

its (reconfigurable) analog and digital blocks, depending on the actual performance con-

straints, so that a minimum amount of hardware is required. The proposed methodology

includes two parts: (i) DP selection and (ii) system adaptation. This thesis presents two DP

selection algorithms, one for performance requirements, expressed as continuous ranges

(e.g., bandwidth, latency, range), and one for performance, defined as discrete sets (such as

precisions, dynamic range). System adaptation is achieved by employing a centralized pro-

cedure that selects the most effective set of DPs for new requirements, so that all DPs for

coupled blocks can operate together (they are compatible). A case study for sound based

tracking is discussed.

9

1.2 Goals and contributions

The goals and contributions of this thesis are to develop:

• A methodology with continuous adaptation of the system capabilities depending on

the changing semantics of the interaction with the environment especially in under-

standing the nature of the change (sometime in advance) while guaranteeing efficient

operation in the new conditions.

• A systematic methodology for generating optimal topologies for discrete-time ∆Σ

modulator. The generated topology is optimized for minimum topology complexity,

maximum robustness to circuit nonidealities, and minimum power consumption.

• A flexibility-oriented design methodology for reconfigurable ∆Σ modulators. This

work considered an AMS architecture based closely on the PSoC reconfigurable ar-

chitecture. Since the number of PSoC programmable analog blocks is very limited ,

it is extremely important that the modulator topologies use as few blocks as possible.

In contrast to the existing work, the proposed methodology generates a set of topolo-

gies that are optimized to meet performance attributes pertaining to ranges of values

rather than being singular values.

• A methodology for designing cost-effective, dynamically reconfigurable mixed-domain

implementations for metadata processing applications. System adaptation is realized

as a centralized procedure that selects the most effective set of DPs for new require-

ments, so that all DPs for coupled blocks can operate together (they are compatible).

A case study for sound-based tracking is discussed.

10

1.3 Thesis outline

This thesis is organized as follows:

• Chapter 2 presents a systematic methodology for designing reconfigurable discrete-

time ∆Σ modulator topologies [61]. Optimized topologies are selected from the set

of all possible topologies expressed by a generic topology, such that they minimize

the complexity of the topologies, maximize the topology robustness with respect to

circuit nonidealities, and minimize the total power consumption. A case study for

designing topologies for a three-mode reconfigurable ∆Σ modulator is presented in

Chapter 2. This chapter also offers a reconfigurable topology implementation for a

Programmable System-on-Chip (PSoC) device.

• Chapter 3 presents a systematic methodology for producing reconfigurable ∆Σ mod-

ulator topologies with optimized flexibility in meeting variable performance specifi-

cations [62]. To increase their flexibility, topologies are optimized for performance

attributes pertaining to ranges of values rather than being single values. Topologies

are implemented on switched-capacitor reconfigurable mixed-signal architectures.

Since configurable blocks are very valuable resources, it is extremely important that

the topologies use as few blocks as possible, according to design specifications, rather

than just worst case design. A case study illustrates the methodology for specifica-

tions from a telecommunications area.

• Chapter 4 proposes a methodology for designing cost-effective, dynamically recon-

figurable, mixed-domain implementations for metadata processing applications [63].

11

The proposed methodology includes two parts: (i) DP selection and (ii) system adap-

tation. The chapter presents two DP selection algorithms, one for performance re-

quirements expressed as continuous ranges (e.g., bandwidth, latency, range), and one

for performance defined as discrete sets (such as precisions, dynamic range). A case

study for sound-based tracking is discussed.

• Chapter 5 finalizes the DP selection and system adaptation idea proposed in chap-

ter 4 into a complete algorithm [64]. This algorithm has two steps for finding the

design points used in dynamic reconfiguration: (i) DP sampling and (ii) DP pruning.

Experimental results are offered and discussed.

• The final chapter presents the conclusions.

12

Chapter 2

Systematic Methodology for

Reconfigurable Switched-Capacitor ∆Σ

Modulator Topology Design

2.1 Introduction

In this chapter, a methodology for designing reconfigurable, discrete-time, ∆Σ modula-

tor topologies is proposed. Optimized topologies are selected from the set of all possible

topologies expressed by a generic topology, such that they minimize the complexity of

the topologies, maximize the topology robustness with respect to circuit nonidealities, and

minimize the total power consumption.

This chapter is organized as follows. Section 2.2 summarizes related work. Section

2.3 presents an overview of the proposed ADC topology design methodology. Section 2.4

13

offers the case studies. Section 2.4.1 gives an design example on a triple-mode reconfig-

urable ∆Σ modulator topology showing the overall design flow when using it in a specific

application. Section 2.4.2 is the implementation of a reconfigurable ∆Σ modulator using a

PSoCT M mixed-signal SoC. Finally, conclusions are given in section 2.5.

2.2 Related work

There has not been much work on reconfigurable multimode ADCs [37, 36, 35]. So

far, the design of reconfigurable multimode ∆Σ modulators is manual and relatively unsys-

tematic. There is little understanding of how to develop optimal reconfigurable topologies

for a new set of specifications. Also, to improve design closure and reduce costs, topology

designs must take into account a fair number of circuit nonidealities. Efficient method-

ologies are needed for systematically designing reconfigurable ADCs while considering

nonidealities early in the design flow.

Current systematic design methodologies are for single-mode, ∆Σ modulators only.

Most of the work is on topology parameter optimization with limited modification of the

modulator topology. Medico et al. [43] propose a design flow based on extensive analysis

and modeling of the nonidealities that degrade the ∆Σ modulator performance. However,

their methodology is limited to the four single-mode, discrete-time topologies supported by

CAD tools – ADOPT and FRIDGE. Frances et al. [42] describe an approach for high-level

simulation and synthesis of discrete-time ∆Σ modulators. Behavioral models for integra-

tors, quantizer, and a feedback digital-to-analog converter (DAC), are integrated in a syn-

thesis tool (DAISY) that selects the modulator topology with the lowest power consumption

for a given specification and set of constraints for the building blocks. An analytical inte-

gration method for the simulation of continuous-time ∆Σ modulators is suggested in [51].

14

Tang and Doboli [50] present a synthesis algorithm that finds the optimal topology for

a given specification by solving a mixed-integer, nonlinear programming (MINLP) prob-

lem [53] with a cost function expressing the signal path complexity, sensitivity, and power

consumption of the topology. This method considers only single-mode ∆Σ modulators

utilizing ideal blocks.

This chapter proposes a systematic methodology for designing reconfigurable discrete-

time ∆Σ modulator topologies optimized for minimum topology complexity, maximum

robustness to circuit nonidealities, and minimum power consumption. The methodology is

based on the concept of generic topology that expresses all possible signal paths in a re-

configurable topology. The modeling of generic topologies is presented, including follow-

ing nonidealities: integrator leakage and gain error, circuit noise, and circuit nonlinearity.

Models are used in the methodology to provide a set of mixed integer-nonlinear (MINLP)

equation set. Equations are solved for finding optimized reconfigurable ∆Σ topologies. The

resulting topologies are then refined using a Simulink simulation of the models with more

detailed nonidealities. The design methodology is presented in Section 2.3. This chapter

discusses, in Section 2.4, a case study of a three-mode. reconfigurable, ∆Σ modulator de-

sign, and the implementation of a second-order reconfigurable topology using a PSoCT M

mixed-signal SoC [40].

15

2.3 Overview of the methodology for reconfigurable ∆Σ

modulator topology design

The proposed design methodology consists of two steps: (1) topology synthesis by

mixed-integer nonlinear equation (MINLP) solving, and (2) topology refinement (post-

optimization) by topology parameter optimization, while considering a more detailed mod-

eling of circuit nonidealities.

In this section, a dual-mode, third-order, reconfigurable ∆Σ modulator is used as an

example to present the design methodology. However, the methodology is applicable for

single-loop reconfigurable ∆Σ modulators of any order.

The input to the topology design methodology is the specifications for the dual-mode

reconfigurable ∆Σ modulator. For each target specifications, such as DR, a set of solutions

that can achieve the target DR are found by using analytical expressions, such as the expres-

sions embedded in the ∆Σ toolbox [52]. Each solution has four parameters: (i) the order of

the loop filter, (ii) the oversampling ratio (OSR), (iii) the internal quantizer bits, and (iv) the

noise transfer function (NTF) type, either Butterworth or Inverse Chebyshev. Any solution

for a single mode can be combined with the solution for another mode to build a dual-mode

ADC. Hence, the set of possible candidates for the dual-mode reconfigurable ADC is gen-

erated. Each candidate can be implemented using different modulator topologies. Optimal

modulator topologies are generated by the methodology proposed next.

Optimal, reconfigurable, ∆Σ modulator topologies are designed for a set of specifica-

tions starting from a generic modulator topology. The generic topology contains all pos-

sible signal paths in a reconfigurable modulator. The generic topology for a third order

modulator is shown in Figure 2.1. Similar topologies can be devised for modulators of

16

Σ Σ Σ
Y3

ΣI2 I3

Y2

2S

1S

I1
V

U

−−−−
−

DAC

t1,1

Y1

t2,1

t3,1

t1,2

t1,3

−
t3,3t2,2

t3,2

t2,3

t2,4

t1,4

t3,4

b2 b3 b4b1

a3a2a1 a4

−
− − −

Figure 2.1: Third order generic reconfigurable ∆Σ modulator topology

higher order too.

The state-space description of the topology is expressed as follows:



Y1

Y2

Y3


=





−t1,1−t2,1−t3,1

t1,2 −t2,2−t3,2

t1,3 t2,3 −t3,3





Y1

Y2

Y3


+



b1−a1

b2−a2

b3−a3



U

V




·



I1

I2

I3


+



Nth1

Nth2

Nth3



V =

[
t1,4 t2,4 t3,4

]
Y1

Y2

Y3

+
[

b4 −a4

]U

V

+Eq (2.1)

I1, I2, and I3 are nonideal integrator transfer functions, which are of two possible types:

delayed or delayless. Eq denotes the quantization noise. Nth1, Nth2, and Nth3 denote the

circuit noise in each integrating stage.

By solving the state-space equations, the transfer function of the modulator is written

as the equation V = L0U +L1V +Eq [47]. Variables L0 and L1 are loop filters, which can

17

be analytically derived from the state-space equations.

MINLP formulation. For a cost function f (expressing the desired design goals), the

problem of designing an optimized reconfigurable topology is formulated as:

minimize cost f = f (xm,i,wxm,i);

subject to: g(xm,i) = 0;

subject to: xm,i ≥ 0, wxm,i ∈ {0,1};

Variable xm,i denotes any of the unknown coefficients ai, bi, and ti, j for the mth mode.

Unknown wxm,i represents whether the signal path with coefficient xm,i is present in the

optimal topology, or not. g are the 24 equality constrains obtained from equating symbolic

expressions for L0 and L1 to the desired loop filter functions for all the modes [50].

The cost function for optimal reconfigurable modulator topology design is:

f = α1 ∑
m

∑
i

wxm,i +α2 ∑
m1

∑
m2 ̸=m1

∑
i, j

|wxm1,i −wxm2, j|

+∑
m

βm(∑
k

γm,k ·hm,k(xm,i))+ γ∑
m

∑
i

pm,i (2.2)

The first two terms in the cost function represent the complexity of the modulator topol-

ogy. The first term is the absolute complexity, considering the total number of signal paths

in the topology. The second term is the relative complexity that accounts for the changes

of the signal paths when the modulator is reconfigured. The third cost function term mini-

mizes the sensitivity of the modulator with respect to circuit nonidealities. The term is the

weighted sum of the impact of nonidealities on the modulator NTF. hm,k, a function of xm,i,

minimizes the impact of the kth nonideality on NTF for the mth mode, which captures the

following nonidealities.

18

Integrator leakage and gain error: for a switched-capacitor integrator, the integrator

leakage and gain error are modeled by including the finite gain (Ai) of the OpAmp and

capacitor mismatch factor (εi) in the integrator transfer function Ii, respectively, as shown

below.

Ii = gi(1− εi)
(1,z)

z− (1−gi/Ai)
, i = 1,2,3 (2.3)

Where, gi is the integrator gain, (1,z) denotes the two types of integrators: delayed or

delayless. Notice that the NTF depends only on the loop filter L1. Therefore, minimizing

the variation of the NTF is equivalent to minimizing L1. If the integrator transfer function

is replaced by equation (2.3), then L1 becomes like equation (2.4).

L̃1 =
L1,num +∑3

i=1 µi
(
∑2

j=0 cµi, jz
j
)
+∑3

i=1 εi
(
∑2

j=0 cεi, jz
j
)

L1,den +∑3
i=1 µi

(
∑2

j=0 dµi, jz j
)
+∑3

i=1 εi
(
∑2

j=0 dεi, jz j
) (2.4)

Variable L1,den and L1,num denotes the denominator and numerator of the ideal loop filter

function L1, respectively. cµi, j, dµi, j, cεi, j, dεi, j are the symbolic coefficients as functions

of signal path coefficients. To minimize the difference between L̃1 and L1, the following

function hm,k was added to the overall cost function (2.2) used in topology design:

hm,k =
3

∑
i=1

2

∑
j=0

(∣∣cµi, j
∣∣+ ∣∣dµi, j

∣∣+ ∣∣cεi, j
∣∣+ ∣∣cεi, j

∣∣) (2.5)

Circuit noise and nonlinearity: Considering the noise of all integrating stages, the

transfer function of the modulator was expressed as equation (2.6). And, equation (2.7)

captures the circuit noise in the cost function.

19

Ṽ = L0U +L1Ṽ +
3

∑
i=1

(
∑3

j=0 cthi, jz
j

L1,den
×Nth,i

)
+Eq (2.6)

hm,k =
N

∑
i=1

N

∑
j=0

|cthi, j| (2.7)

In the frequency domain, nonlinearity can be modeled by calculating the frequency re-

sponses at different harmonics. For example, assuming that only the second order nonlinear

component (k2) of the first stage is considered, the frequency response of the modulator can

be expressed as:

L̃1,o2 =
L1,o2,num + k2

(
∑3

j=0 chd, jz
j
0

)
L1,o2,den + k2

(
∑3

j=0 dhd, jz
j
0

) (2.8)

The corresponding term in the cost function (2.2) is:

hm,k =
3

∑
j=0

(
|chd, j|+ |dhd, j|

)
(2.9)

The forth cost function term minimizes the power consumption and takes into account

the static and dynamic power consumption of the switched-capacitor loop filter, which has

the same form as that in [50].

By formulating the reconfigurable modulator topology synthesis problem as a MINLP

problem, and including the above four nonidealities into the cost function, a set of opti-

mized reconfigurable ∆Σ modulator topologies is generated.

Reconfigurable topology refinement. In this step, the reconfigurable modulator topol-

ogy is tuned (post-optimized), based on a more detailed circuit model simulation. Only

local optimizations are conducted in this step. The topology parameters are adjusted, but

signal paths are left unchanged. The Simulink models are used in this step for a more accu-

rate capturing of nonidealities as shown in Figure 2.2. The coefficients of the signal paths

are tuned, such that the SNR degradation because of circuit nonidealities is minimized. A

simulated annealing algorithm was used for fine tuning the modulator coefficients. A 5%

20

circuit noise
jitter noise

f(u)=k1*u+k2*u^2
 +k3*u^3

nonlinearity

g(1−)ε (1,z)

z−(1−)µ

offsetrate limiterswing limiter hysteresis

leakage and
gain error

Figure 2.2: Nonideal blocks in Simulink

variation of the coefficient was allowed during tuning. By fine tuning, the solutions gener-

ated through MINLP solving are locally optimized according to the more detailed models.

Hence, the two steps – topology synthesis by MINLP solving and topology refinement,

optimize the reconfigurable topologies, both globally and locally. The resulting topologies

are optimized in terms of the topology complexity and robustness with respect to circuit

nonidealities, as discussed before. Design requirements for each building block are also

derived, such that the performance degradation of the modulator is less than 3dB.

2.4 Case studies

2.4.1 Triple-mode reconfigurable ∆Σ modulator topology design

The proposed design methodology were used to generate optimized reconfigurable ∆Σ

modulator topologies that satisfy multiple specifications, and have reduced system com-

plexity. The modulator operates in three modes that correspond to UMTS, CDMA2000,

and GSM communication standards. The DR requirement for UMTS, CDMA2000, and

21

GSM are 11.5-bit, 13-bit, and 15-bit with the bandwidth of 1.92mHz, 615kHz, and 190kHz,

respectively [37].

One of the optimized topologies is shown in Figure 2.3. Table 2.1 presents the com-

parison of the two optimized topologies obtained using the proposed methodology, and a

non-reconfigurable topology that includes three single-mode modulators. The comparison

is in terms of the topology complexity, reduction in design effort (ηd) and power consump-

tion (ηp). Topology opt1 has orders < 4,4,4 > for the three modes. Topologies opt2 has

orders < 4,3,3 > for the three modes. The complexity of the system is analyzed with re-

spect to the number of signal paths (Np), the number of non-reconfigurable cells (Np,r), and

the number of reconfigurable cells (Nc,r).

Table 2.1 shows that reconfigurable ADCs are much more compact than the modula-

tor with three single-mode architectures. For example, there are 33 signal paths in the

non-reconfigurable topology, while there are only 25 and 20 signal paths in the generated

topologies opt1 and opt2, respectively. Fewer signal paths not only decreases the complex-

ity of the circuit implementation, but also decreases the overall power consumption and

chip area. Design effort is estimated from the number of signal paths, and reconfigurable

cells.

The power consumption reduction (ηp) is estimated from the sum of the power con-

sumption of the active building blocks for each mode. The total number of active paths

(Np,a) for all three modes is shown in Table 2.1. The generated optimized topologies present

up to a 24.2% improvement in power consumption compared to the non-reconfigurable

topology.

22

m
1−

0.0633

m
2−

0.4571

m
3−

1.0000

m
1−

0.2219

m
2−

0.9724

m
3−

1.0000

m
1−

0.3325

m
2−

0.1333

m
3−

0.0394

m1−0.9161

m2−1.0000

m3−0.2482

m3−0.5558

m2−1.0000

m
2−

0.5590

m
1−

0.9971

m
3−

1.0000

m
1−

0.9189

m
2,m

3

m
1−

0.2219

m
2−

0.9724

m
3−

1.0000
m

1−
0.6084

V

m
1−

0.1265

m
3−

0.0010

m
2−

0.0022

U

D
A

C

Figure 2.3: Reconfigurable modulator topology opt2

23

−90 −80 −70 −60 −50 −40 −30 −20 −10 0
−40

−20

0

20

40

60

80

100

Input amplitude [dB]

S
N

R
 [d

B
]

(a) order = 3, SNR = 64, CDMA2000−mode

ideal, opt2
ideal, toolbox
noise=−60dB, opt2
noise=−60dB, toolbox
noise=−70dB, opt2
noise=−70dB, toolbox

−90 −80 −70 −60 −50 −40 −30 −20 −10 0
−40

−20

0

20

40

60

80

100

Input amplitude [dB]

S
N

R
 [d

B
]

(b) order = 3, OSR = 64, CDMA2000−mode

ideal, opt2
ideal, toolbox
A

0
=50dB, opt2

A
0
=50dB, toolbox

A
0
=60dB, opt2

A
0
=60dB, toolbox

Figure 2.4: SNR degradation by circuit nonidealities for topology opt2 (mode 2)

24

Topology Np Np,r Nc,r Np,a ηd ηp

non-reconfigurable 33 – – 33 – –

opt1 < 4,4,4 > 25 18 7 30 24.2% 9.1%

opt2 < 4,3,3 > 20 15 5 25 39.4% 24.2%

Table 2.1: Design complexity

In order to analyze the robustness of the produced modulator topologies, the second

mode of topology textitopt2 was simulated. Figure 2.4 presents the performance compari-

son for mode 2 of topology opt2 and the corresponding ∆Σ toolbox topology in the presence

of circuit noise and integrator leakage. The generated topology performs better. If circuit

noise is considered (Figure 2.4(a)), the improvements of peak SNR for mode 2 of topology

opt2 is 3dB and 10dB as compared to the toolbox topology for noise levels of −70dB and

−60dB, respectively. The higher the noise level, the more the improvement. Figure 2.4(b)

shows the SNR comparison for integrator leakage. For example, if the OpAmp of the first

integrator has finite gain of 50dB or 60dB, the degradation of SNR because of integrator

leakage for mode 2 of topology opt2 is 3dB less than that of the toolbox topology, as shown

by the dashed line and the dashed-dotted line with plus markers, respectively. Therefore,

although in the ideal case the generated topologies behave the same as the topologies from

the ∆Σ toolbox, the optimized topologies are more robust in the presence of circuit noise.

The performance improvement shows that the third cost function term is crucial to the per-

formance of the final reconfigurable topologies, as it captures the possible performance

tradeoffs for the topologies with respect to circuit nonidealities.

25

CT

SC

SC

CT

SC

SC

CT

SC

SC

CT

SC

SC

Ref.s
Analog

Analog

Muxing
Input

Digital
Clocks
from
Core

To
Digital
System

Analog
Drivers

Port 0Port 2

Column 1Column 0 Column 2 Column 3

Analog PSoC Block Array
ANALOG SYSTEM

PSoC CORE

System Bus

Global Analog Interconnect

Figure 2.5: Analog subsystem of PSoCT M [40]

2.4.2 Implementation of a reconfigurable ∆Σ modulator using PSoCT M

mixed-signal SoC

The PSoCT M SoC family [40] consists of mixed-signal programmable arrays, and an

on-chip microcontroller and memory devices. The top level analog architecture is shown

in Figure 2.5. The analog PSoCT M block array consists of four analog columns, each of

which contains three programmable analog blocks: one continuous-time (CT) block and

two switched-capacitor (SC) blocks. The analog SC blocks support ∆Σ, successive approx-

imation, and incremental ADC conversion, capacitor DACs, and SC filters. They have three

input arrays (ACAP, BCAP, and CCAP) and one feedback array (FCAP) of binary-weighted

switched-capacitors, allowing user programmability of the capacitor weights. This pro-

vides a summing capability consisting of two scaled inputs and a non-switched capacitor

input. Allowable ranges for ACAP, BCAP, and CCAP are from 1C to 32C, and for FCAP

either 16C or 32C, where C is the unit capacitance of the capacitor array [40].

26

Φ
1

Φ
2

Φ
1*

Φ
1 Φ
2 Φ
2

Φ
1

Φ
1

Φ
2

,
G

en
er

at
or

Φ
2

Φ
1

11
−

bi
t

T
im

er

D
at

a

D
ec

im
at

or
D

at
a

La
tc

h

D
A

C

Φ
1

Φ
2

Φ
1*

Φ
1 Φ
2

R
ef

+

R
ef

−

R
es

et
F

C
A

P

S
C

 P
S

oC
 B

lo
ck

 2
S

C
 P

S
oC

 B
lo

ck
 1

V
in S

ou
rc

e
C

lo
ck

In
te

rr
up

t
C

P
U

D
at

a
B

us

A
na

lo
g

C
ol

um
n

C
om

pa
ra

to
rB

us

(b
)

(a
)

U

V

m
1−

0.
21

64
m

2−
0.

21
47

m
1−

0.
21

64
m

2−
0.

21
47

m
1,

m
2−

1.
00

00
m

1,
m

2−
1.

00
00

b1

t1
,2

t2
,3

R
ef

+

R
ef

−

R
es

et
F

C
A

P

A
C

A
P

A
C

A
P B

C
A

P

m
2−

0.
00

20

t2
,1

m
2−

0.
55

90
m

1−
0.

55
85

a1
a2

Figure 2.6: Dual-mode second-order modulator (a) topology and (b) PSoCT M implemen-
tation

27

SC block 1 SC block 2
Mode ACAP BCAP FCAP ACAP BCAP FCAP

1 4C – 16C 8C – 16C
2 8C 1C 32C 16C – 32C

Table 2.2: Values for the capacitor arrays.

−70 −60 −50 −40 −30 −20 −10 0
−20

−10

0

10

20

30

40

50

60

70

80
SNR comparison of two modes

Input frequency [dB]

S
N

R
 [d

B
]

mode 1, ideal
mode 2, ideal
mode 1, nonideal
mode 2, nonideal

Figure 2.7: SNR comparison of the dual-mode second-order modulator

28

Figure 2.8: Measurement result for PSoCT M based implementation.

29

A second-order ∆Σ modulator can be implemented by using two SC blocks as integra-

tors. A dual-mode second-order topology was designed with a target peak SNR for the two

modes are 10 bits (60dB) and 8 bits (48dB), respectively. The two modes have five and six

signal paths with OSR of 64 and 40, respectively. NTF types for the two modes are But-

terworth, and Inverse Chebyshev, respectively. When the modulator is switched from one

mode to another mode, four signal paths need to be reconfigured: signal path coefficients

a1,a2,b1 have to be modified, and one more signal path t2,1 needs to be switched on for the

second mode, as shown in Figure 2.6(a).

The implementation of the reconfigurable topology using a PSoCT M chip is shown in

Figure 2.6(b). The coefficients (a1,a2,b1) of the signal path can be modified by changing

the capacitor arrays (ACAP and FCAP). The additional signal path t2,1, when the modulator

is reconfigured, is implemented by using one more input array (BCAP) for the first SC

block. The values of the capacitor arrays are shown in Table 2.2.

Figure 2.7 shows the simulation results achieved from Matlab. It illustrates that the

peak SNR of the two reconfigurable modes equals 71dB and 60dB for the ideal modulator,

respectively. If circuit nonidealities are considered, the peak SNR drops to 60dB and 54dB,

respectively, which can still meet the design specifications. Figure 2.8 shows the output

spectrum from the measurement of the PSoCT M based implementation. The input is 2.1V

peak-to-peak sinusoid wave with frequency of 45kHz. For mode 1, the noise floor level

is about −55dB, and the SNR is about 60dB. For mode 2, the noise floor level is about

−47dB, and the SNR is about 53dB. Although the 2 curves for mode 1 have same values

at −30dB, it has no special meaning than a coincidence that the nonideality doesn’t affect

the circuit’s performance at this point. Also, the notch of the Inverse Chebyshev type

noise shaping for the second mode is clearly shown in Figure 2.8(b). This experimental

30

result shows that the implementation of the reconfigurable ∆Σ modulator meets the design

specification.

2.5 Conclusions

This chapter has presented a systematic methodology for design of optimized topolo-

gies for reconfigurable single-loop switched-capacitor ∆Σ modulators. This methodology

optimizes the topologies for minimum complexity, maximum robustness to performance

degradation due to circuit nonidealities, and minimum power consumption. A case study

on designing a three-mode reconfigurable ∆Σ modulator shows that the complexity and

power saving of the generated reconfigurable modulators is about 40% and 24.2% of that

of three single-mode modulators obtained with ∆Σ toolbox. Most importantly, the produced

reconfigurable topologies are more robust to integrator leakage and gain error, circuit noise,

and nonlinearity than the topologies from ∆Σ toolbox. The correctness of the methodol-

ogy was also demonstrated by implementing a dual-mode reconfigurable topology using a

PSoCT M reconfigurable mixed-signal SoC.

31

Chapter 3

Flexibility-oriented Design Methodology

for Reconfigurable ∆Σ Modulators

3.1 Introduction

This chapter presents a systematic methodology for producing reconfigurable ∆Σ mod-

ulator topologies with optimized flexibility in meeting variable performance specifications.

To increase their flexibility, topologies are optimized for performance attributes pertain-

ing to ranges of values rather than being single values. Topologies are implemented on

switched-capacitor, reconfigurable, mixed-signal architectures. Since configurable blocks

are very valuable resources, it is extremely important that the topologies use as few blocks

as possible to comply with the design specifications, rather than just worst case design. A

case study illustrates the methodology for specifications from telecommunications area.

The design methodology first considers ∆Σ modulator topologies of lower order, e.g.,

order one or two, and identifies the maximum performance ranges that can be met with

32

these topologies. Then, it analyzes topologies of increasingly higher order, while maximiz-

ing the performance ranges that are not already covered by the architectures of lower order.

This strategy avoids unnecessarily utilizing more hardware resources for specifications that

can be also met by simpler modulators. A two step process finds the maximum specification

ranges that are covered by the topologies of a certain order. First, for decreasing oversam-

pling ratios (OSRs), e.g., OSR = 128, 64, 32, 16), the signal and noise transfer functions of

the modulators are computed using the Delta Sigma toolbox [46]. Then, the signal flow of

the modulator topologies is computed by solving a set of mixed-integer nonlinear (MINLP)

equations that are based on the computed transfer functions. The cost function minimizes

the number of used programmable analog blocks and the power consumption of the topol-

ogy. The MINLP procedure is a refinement of the method in [44]. As the MINLP equations

assume ideal modulators, a post-optimization step fine-tunes the topology parameters while

taking into account circuit nonidealities, such as jitter noise, kT/C noise, and the OpAmp

white noise, finite DC gain, finite bandwidth, slew rate, and saturation [49]. This chapter

demonstrates that the methodology is optimal, in the sense that it offers maximum covering

of the performance ranges while minimizing the number of used programmable blocks.

The chapter is organized as follows. Section 3.2 summarizes related work. Section 3.3

introduces the reconfigurable mixed-signal architecture. Section 3.4 presents an overview

of the reconfigurable AMS architecture. Section 3.5 discusses the proposed design method-

ology, and Section 3.6 describes a case study. Finally, conclusions are offered in Sec-

tion 3.7.

33

3.2 Related work

Several general-purpose, reconfigurable, AMS architectures are mentioned in the litera-

ture [33, 34]. Continuous-time and switched-capacitor reconfigurable ADCs have been pre-

sented in [35, 36, 37], but no design methodology, or EDA tool, was considered. More re-

cently the PSoCT M reconfigurable mixed-signal array has been offered by Cypress Inc. [38,

40] as a cost-effective solution to embedded system implementation. While several ADCs

have been implemented using PSoCT M [41], there is no design methodology and there are

no EDA tools that would allow effortless and rapid design of new ADCs. Filter synthesis

methods for reconfigurable analog systems are presented in [33, 34]. Various techniques

for single-mode (non-reconfigurable) ∆Σ ADC design have been described in [42, 43, 44].

A systematic design flow for continuous-time, reconfigurable, ∆Σ ADCs has been recently

proposed [45]. However, the produced modulator topologies are restricted to a set of pre-

defined performance specifications (e.g., GSM, CDMA, and UMTS communication stan-

dards). The topologies have no flexibility in addressing new performance specifications. If

another specification is required then the entire process has to be repeated. This is an im-

portant limitation because flexibility ought to be one of the main strengths of reconfigurable

AMS architectures.

This chapter proposes a systematic design methodology for creating flexible reconfig-

urable ∆Σ modulator topologies implemented on switched-capacitor (SC), reconfigurable

AMS architectures. The work considered an AMS architecture based closely on the PSoCT M

reconfigurable architecture. Since the number of programmable analog blocks is very lim-

ited in PSoCT M, it is extremely important that the modulator topologies use as few blocks

as possible. In contrast to the existing work, the proposed methodology generates a set

of topologies that are optimized to meet performance attributes pertaining to ranges of

34

values rather than being singular values. For example, the topologies are optimized for

dynamic range (DR) requirements in the range [DRmin,DRmax], and bandwidth (BW) con-

straints in the range [BWmin,BWmax]. The topologies produced can efficiently meet specifi-

cations SP ∈ [DRmin,DRmax]× [BWmin,BWmax] while using minimum amount of hardware.

In contrast, other design methodologies would produce a single topology corresponding

to the most constrained specification < DRmax,BWmax >. This topology is likely to be of

higher order and with complex feedback and feed-forward structures [44]. The solution

would obviously “waste” valuable programmable analog blocks for applications with less

demanding requirements.

3.3 Reconfigurable Mixed-Signal Architecture

The reconfigurable AMS architecture under consideration is based on the PSoCT M

mixed-signal architecture of Cypress Inc. [38, 40]. Compared to the PSoCT M architec-

ture, a simplified the structure of the reconfigurable analog cells, and an increased number

of configurable input connections of a cell, was employed so that ∆Σ topologies with com-

plex structures could also be implemented using the architecture. This section offers an

overview of the AMS architecture.

The main part of the architecture is a bidimensional array of reconfigurable switched-

capacitor blocks. The array is connected to the I/O ports of the chip. The blocks are

organized into m rows and n columns. Even though there is no theoretical limit for the

number of rows and columns of an architecture, the number of rows and columns are actu-

ally not very high due to the lower integration densities achievable for reconfigurable AMS

circuits, when compared to reconfigurable digital ICs. For example, the PSoCT M archi-

tecture includes, at most, three rows and four columns of configurable analog blocks [40].

35

0,
1,

...
,3

0,
31

 C

B
 I

np
ut

s

B
M

ux
SC

B
Q

T
A

P

C
 I

np
ut

s

A
C

M
ux

A
 I

np
ut

s

R
ef

H
i

Po
w

er

O
U

T

A
B

U
S

R
ef

L
o

A
G

N
D

C
B

U
S

(C
om

pa
ra

to
r)

C
B

U
S

D
ri

ve
r

A
R

ef
M

ux

0,
1,

...
,3

0,
31

 C

0,
1,

...
,3

0,
31

 C

C
C

ap

A
C

ap

B
C

ap

FC
ap

16
,3

2
C

M
od

ul
at

io
n

In
pu

ts
M

od
 B

it
C

on
tr

ol

A
Si

gn

φ
2φφ

1
+

A
ut

oZ
er

o
φ

2

2

φ
1

φ
1*

!A
ut

oZ
er

o

φ
1*

FS
W

0

φ
2

*
+

!A
ut

oZ
er

o
FS

W
1

*φ
2B

 A

na
lo

gB
us

φ
1*A

ut
oZ

er
o

2
φ

1
φ

Figure 3.1: Type C reconfigurable SC block in the PSoCT M architecture [40]

36

+
A

ut
oZ

er
o

B
 I

np
ut

s

A
 I

np
ut

s

R
ef

H
i

Po
w

er

O
U

T

A
B

U
S

A
G

N
D

C
B

U
S

(C
om

pa
ra

to
r)

C
B

U
S

D
ri

ve
r

0,
1,

...
,3

0,
31

 C
A

C
ap

B
C

ap

FC
ap

16
,3

2
C

φφ
1

+
A

ut
oZ

er
o

φ
2

2

φ
1

φ
1*

FS
W

0

φ
2

*
+

!A
ut

oZ
er

o
FS

W
1

*φ
2B

 A

na
lo

gB
us

φ
1*A

ut
oZ

er
o

2
φ

1
φ

0,
1,

...
,3

0,
31

 C

A

M
ux

 R
ef

L
o

A
Si

gn

A
R

ef
M

ux

B
M

ux
SC

D

*B
SW

!A
ut

oZ
er

o

φ
1*

0,
1,

...
,3

0,
31

 C
C

C
ap

B
Q

T
A

P

φ
2+

!B
SW

φ
1*B

SW
*!

A
ut

oZ
er

o

φ
2+

!B
SW

Figure 3.2: Type D reconfigurable SC block in the PSoCT M architecture [40]

37

This makes the programmable analog blocks a very valuable resource that should be used

conservatively in a design. Hence, minimizing the number of reconfigurable analog cells

used for an implementation ought to be the main design requirement. The internal structure

of type C and type D switch capacitor programmable analog blocks in PSoCT M is shown

in Figure 3.1 and Figure 3.2.

The reconfigurable analog blocks can be connected into various ∆Σ topologies (netlists)

through the programmable interconnect. The interconnect structure was designed, so that

it offers versatile implementation of the feedback and feed-forward connections in a ∆Σ

ADC [47, 44]. The output of each block can be connected either to the longer row and col-

umn interconnects, to implement the global feed-forward or feedback structures, or to the

shorter local interconnect between neighboring cells. In contrast, the PSoCT M architecture

includes only column and local interconnects [40], which might be somewhat restrictive

for implementing topologies with complex feed-forward, and feedback, structures. Such

architectures might offer superior DR and lower sensitivity to circuit nonidealities than

architectures with few feedback structures [44].

All configurable analog blocks are identical, and their internal structure is shown in

Figure 3.3. The structure is similar to that of the type C configurable PSoCT M blocks [40],

except for the following two differences: (i) the number of programmable inputs connected

to the summing node of the OpAmp was increased, and (ii) the elimination of the less

used circuits, e.g., the comparator (available in each PSoCT M block), and the circuitry for

producing interrupts. The first modification is needed for the implementation of complex

high-order ∆Σ modulators. The second change is justified by the restriction of the AMS

architecture to implementation of ∆Σ ADCs only, rather than a larger variety of circuits.

The following are the main parts of a reconfigurable block.

38

+ !AutoZero)

Ref k

Ref 2
Ref 1

. . .

Cap 2

Sign select

Input select

. . .

Cap 3

Cap tot

Input select

Input select

. . .

. . .

Reference select

Input 1,p

Input 1,2
Input 1,1

Input 2,1
Input 2,2

Input 2,p

Input tot,1
Input tot,2

Input tot,p

x AutoZero

+ !AutoZero

(
Cap 1

x AutoZero

2Φ

Φ 1

2Φ

Φ 1

2Φ

Φ 1
Φ 1

2Φ

2Φ

Φ 1

Φ 1

−

+

Figure 3.3: Reconfigurable SC block based on the PSoCT M architecture [40]

The functionality of the SC blocks is programmed by configuring the topology of the

network surrounding the OpAmp. Similar to the PSoCT M blocks, the programmable cell

can be configured to operate as a comparator, a gain stage, or an integrator. If the capacitor

array Cap1 is not connected then the circuit functions as a comparator, otherwise, the circuit

is either a gain stage or an integrator. If the capacitor array Cap1 is connected, then there

is also the option of selecting whether the capacitor array should be discharged during the

clock phase ϕ1 for a gain stage, or if the capacitor is not discharged for an integrator.

In addition to the capacitor array Cap1, each reconfigurable block has several other

programmable capacitor arrays called Cap2, Cap3, ... and Captot . Array Cap2 is used for

the input to the programmable cell. The rest of the capacitor arrays implement the ADC’s

feedback and feed-forward paths. The gain of the signal paths is set by programming the

39

t32

1
Z−1

1
Z−1

1
Z−1

U

D/A

Y V

a1 a2 a3

b2

b3

b1

Figure 3.4: Third order ∆Σ modulator topology

ADC’s feedback and feed-forward paths. The gain of the signal paths is set by programing

the corresponding capacitor arrays. The value of tot is set by the maximum number of

paths that can converge in a summing node. This value depends obviously on the order of

∆Σ for the ADCs that are implemented. For ADCs of order up to five, the value of tot is

six. The values of the capacitor arrays can be selected from the set {0,1
r,

2
r,...,1}. The

value of r depends on the application characteristics.

Figure 3.4 shows a third order ∆Σ modulator topology. To implement this topology

with the existing PSoCT M switch capacitor architecture, signal path b3 and t32 cannot

be mapped properly due to current architecture limitations, as shown in Figure 3.5. In

contrast, a complete mapping of the third order topology is implemented on the proposed

architecture as shown in Figure 3.6.

Section 4 shows that r = 16 is sufficient for realizing ∆Σ ADCs of orders two and

three, but r = 128 is needed for fourth order ADCs. PSoCT M uses r = 32 [40].

Similar to the PSoCT M blocks, for a positive gain, the input signal can be sampled by

the clock ϕ1, or if the reference signal is selected, then it is sampled by the clock ϕ2. Also,

there is the possibility of forcing or disabling the autozero capability of the SC circuits.

40

Fr
om

 D
A

C
B

 I
np

ut
s

B
M

ux
SC

B
Q

T
A

P

C
 I

np
ut

s

A
C

M
ux

A
 I

np
ut

s

R
ef

H
i

Po
w

er

O
U

T

A
B

U
S

R
ef

L
o

A
G

N
D

C
B

U
S

(C
om

pa
ra

to
r)

C
B

U
S

D
ri

ve
r

A
R

ef
M

ux

0,
1,

...
,3

0,
31

 C

0,
1,

...
,3

0,
31

 C

C
C

ap

A
C

ap

B
C

ap

FC
ap

16
,3

2
C

M
od

ul
at

io
n

In
pu

ts
M

od
 B

it
C

on
tr

ol

A
Si

gn

φ
2φφ

1
+

A
ut

oZ
er

o
φ

2

2

φ
1

φ
1*

!A
ut

oZ
er

o

φ
1*

FS
W

0

φ
2

*
+

!A
ut

oZ
er

o
FS

W
1

*φ
2B

 A

na
lo

gB
us

φ
1*A

ut
oZ

er
o

2
φ

1
φ

0,
1,

...
,3

0,
31

 C

B
 I

np
ut

s

B
M

ux
SC

B
Q

T
A

P

C
 I

np
ut

s

A
C

M
ux

A
 I

np
ut

s

R
ef

H
i

Po
w

er

O
U

T

A
B

U
S

R
ef

L
o

A
G

N
D

C
B

U
S

(C
om

pa
ra

to
r)

C
B

U
S

D
ri

ve
r

A
R

ef
M

ux

0,
1,

...
,3

0,
31

 C

0,
1,

...
,3

0,
31

 C

C
C

ap

A
C

ap

B
C

ap

FC
ap

16
,3

2
C

M
od

ul
at

io
n

In
pu

ts
M

od
 B

it
C

on
tr

ol

A
Si

gn

φ
2φφ

1
+

A
ut

oZ
er

o
φ

2

2

φ
1

φ
1*

!A
ut

oZ
er

o

φ
1*

FS
W

0

φ
2

*
+

!A
ut

oZ
er

o
FS

W
1

*φ
2B

 A

na
lo

gB
us

φ
1*A

ut
oZ

er
o

2
φ

1
φ

0,
1,

...
,3

0,
31

 C

U
(G

lo
ba

l I
np

ut
)

B
 I

np
ut

s

A
 I

np
ut

s

R
ef

H
i

Po
w

er

O
U

T

A
B

U
S

A
G

N
D

C
B

U
S

(C
om

pa
ra

to
r)

C
B

U
S

D
ri

ve
r

0,
1,

...
,3

0,
31

 C
A

C
ap

B
C

ap

FC
ap

16
,3

2
C

φφ
1

+
A

ut
oZ

er
o

φ
2

2

φ
1

φ
1*

FS
W

0

φ
2

*
+

!A
ut

oZ
er

o
FS

W
1

*φ
2B

 A

na
lo

gB
us

φ
1*A

ut
oZ

er
o

2
φ

1
φ

0,
1,

...
,3

0,
31

 C

A

M
ux

 R
ef

L
o

A
Si

gn

A
R

ef
M

ux

B
M

ux
SC

D

*B
SW

!A
ut

oZ
er

o

φ
1*

0,
1,

...
,3

0,
31

 C
C

C
ap

B
Q

T
A

P

φ
2+

!B
SW

φ
1*B

SW
*!

A
ut

oZ
er

o

φ
2+

!B
SW

+
A

ut
oZ

er
o

Figure 3.5: Implementation of Figure 3.4 topology on current PSoCT M SC architecture

41

2
Φ

Φ
1

Φ
1

Φ
1

Φ
1

Φ
1

2
Φ

2
Φ(

+
!A

u
to

Z
er

o
)

2
ΦΦ

1

2
Φ

Φ
1

2
Φ

Φ
1

Φ
12

Φ

2
Φ

Φ
1

Φ
1

2
ΦΦ

1

2
Φ

Φ
1

2
Φ

Φ
1

Φ
12

Φ

2
Φ

Φ
1

Φ
1

2
Φ

2
ΦΦ

1

Φ
1

Φ
1

Φ
1

Φ
1

Φ
1

2
Φ

2
Φ

R
ef

 k

R
ef

 2
R

ef
 1

. .
 .

C
ap

 2

S
ig

n
 s

el
ec

t

In
p

u
t

se
le

ct

. .
 .

C
ap

 3

C
ap

 t
o

t

In
p

u
t

se
le

ct

In
p

u
t

se
le

ct

. .
 .

. .
 .

R
ef

er
en

ce
 s

el
ec

t

In
p

u
t

1,
p

In
p

u
t

1,
2

In
p

u
t

1,
1

In
p

u
t

2,
1

In
p

u
t

2,
2

In
p

u
t

2,
p

In
p

u
t

to
t,

1
In

p
u

t
to

t,
2

In
p

u
t

to
t,

p

x
A

u
to

Z
er

o

+
!A

u
to

Z
er

o

(
C

ap
 1x

A
u

to
Z

er
o

+
!A

u
to

Z
er

o
)

R
ef

 k

R
ef

 2
R

ef
 1

C
ap

 2

S
ig

n
 s

el
ec

t

In
p

u
t

se
le

ct

C
ap

 3

C
ap

 t
o

t

In
p

u
t

se
le

ct

In
p

u
t

se
le

ct

R
ef

er
en

ce
 s

el
ec

t

In
p

u
t

1,
p

In
p

u
t

1,
2

In
p

u
t

1,
1

In
p

u
t

2,
1

In
p

u
t

2,
2

In
p

u
t

2,
p

In
p

u
t

to
t,

1
In

p
u

t
to

t,
2

In
p

u
t

to
t,

p

x
A

u
to

Z
er

o

. .
 .

. .
 . . .

 .

. .
 .

x
A

u
to

Z
er

o

C
ap

 1

+
!A

u
to

Z
er

o

R
ef

 k

R
ef

 2
R

ef
 1

. .
 .

C
ap

 2

S
ig

n
 s

el
ec

t

In
p

u
t

se
le

ct

. .
 .

C
ap

 3

C
ap

 t
o

t

In
p

u
t

se
le

ct

In
p

u
t

se
le

ct

. .
 .

. .
 .

R
ef

er
en

ce
 s

el
ec

t

In
p

u
t

1,
p

In
p

u
t

1,
2

In
p

u
t

1,
1

In
p

u
t

2,
1

In
p

u
t

2,
2

In
p

u
t

2,
p

In
p

u
t

to
t,

1
In

p
u

t
to

t,
2

In
p

u
t

to
t,

p

x
A

u
to

Z
er

o

+
!A

u
to

Z
er

o

(
C

ap
 1x

A
u

to
Z

er
o

+
!A

u
to

Z
er

o
)

R
ef

 k

R
ef

 2
R

ef
 1

. .
 .

C
ap

 2

S
ig

n
 s

el
ec

t

In
p

u
t

se
le

ct

. .
 .

C
ap

 3

C
ap

 t
o

t

In
p

u
t

se
le

ct

In
p

u
t

se
le

ct

. .
 .

. .
 .

R
ef

er
en

ce
 s

el
ec

t

In
p

u
t

1,
p

In
p

u
t

1,
2

In
p

u
t

1,
1

In
p

u
t

2,
1

In
p

u
t

2,
2

In
p

u
t

2,
p

In
p

u
t

to
t,

1
In

p
u

t
to

t,
2

In
p

u
t

to
t,

p

x
A

u
to

Z
er

o

+
!A

u
to

Z
er

o

(
C

ap
 1x

A
u

to
Z

er
o

+
!A

u
to

Z
er

o
)

R
ef

 k

R
ef

 2
R

ef
 1

C
ap

 2

S
ig

n
 s

el
ec

t

In
p

u
t

se
le

ct

C
ap

 3

C
ap

 t
o

t

In
p

u
t

se
le

ct

In
p

u
t

se
le

ct

R
ef

er
en

ce
 s

el
ec

t

In
p

u
t

1,
p

In
p

u
t

1,
2

In
p

u
t

1,
1

In
p

u
t

2,
1

In
p

u
t

2,
2

In
p

u
t

2,
p

In
p

u
t

to
t,

1
In

p
u

t
to

t,
2

In
p

u
t

to
t,

p

x
A

u
to

Z
er

o

. .
 .

x
A

u
to

Z
er

o

C
ap

 1

+
!A

u
to

Z
er

o

(
+

!A
u

to
Z

er
o

)

. .
 . . .

 .

. .
 .

2
Φ

In
p

u
t

3,
3

2
ΦΦ

1

2
Φ

Φ
1

2
Φ

Φ
1

Φ
12

Φ

2
Φ

Φ
1

Φ
1

R
ef

 k

R
ef

 2
R

ef
 1

. .
 .

C
ap

 2

S
ig

n
 s

el
ec

t

In
p

u
t

se
le

ct

. .
 .

C
ap

 3

C
ap

 t
o

t

In
p

u
t

se
le

ct

In
p

u
t

se
le

ct

. .
 .

. .
 .

R
ef

er
en

ce
 s

el
ec

t

In
p

u
t

1,
p

In
p

u
t

1,
2

In
p

u
t

1,
1

In
p

u
t

2,
1

In
p

u
t

2,
2

In
p

u
t

2,
p

In
p

u
t

to
t,

1
In

p
u

t
to

t,
2

In
p

u
t

to
t,

p

x
A

u
to

Z
er

o

+
!A

u
to

Z
er

o

(
C

ap
 1x

A
u

to
Z

er
o

+
!A

u
to

Z
er

o
)

2
Φ

2
ΦΦ

1

2
Φ

Φ
1

Φ
1

Φ
1

R
ef

 k

R
ef

 2
R

ef
 1

C
ap

 2

S
ig

n
 s

el
ec

t

In
p

u
t

se
le

ct

C
ap

 3

C
ap

 t
o

t

In
p

u
t

se
le

ct

In
p

u
t

se
le

ct

R
ef

er
en

ce
 s

el
ec

t

In
p

u
t

1,
p

In
p

u
t

1,
2

In
p

u
t

1,
1

In
p

u
t

2,
1

In
p

u
t

2,
2

In
p

u
t

2,
p

In
p

u
t

to
t,

1
In

p
u

t
to

t,
2

In
p

u
t

to
t,

p

x
A

u
to

Z
er

o

Φ
1

Φ
1

2
Φ

2
Φ(

+
!A

u
to

Z
er

o
)

+
!A

u
to

Z
er

o

C
ap

 1x
A

u
to

Z
er

o
. .

 .

. .
 . . .

 .

. .
 .

2
ΦΦ

1

2
Φ

Φ
1

2
Φ

Φ
1

Φ
12

Φ

2
Φ

Φ
1

Φ
1

2
Φ

2
ΦΦ

1

+− +
+−

−

+− +
+−

−
− +

Figure 3.6: Implementation of Figure 3.4 on proposed SC architecture

42

4

DR DR 2

BW1

BW2

DP1

DP1

BW

DR

PRR
BW

DR

covered by

(a)

DP1

DP3

DP2

BW

DR

(b)

Pareto
curve

DP

1

Figure 3.7: Performance requirement region (PRR)

The configurable functionality and interconnect of a SC block is defined by program-

ming dedicated control registers. The register bits are set or open the reconfiguration

switches, or select the inputs to the multiplexing circuits.

3.4 Reconfigurable ∆ ADC Design Method

This section presents the main parts of the proposed methodology for reconfigurable ∆Σ

modulator design: (1) the notation for expressing flexible performance requirements, (2)

the technique for finding optimized modulator topologies, and (3) the overall methodology.

3.4.1 Description of flexible performance requirements

Before presenting the proposed design methodology and the related design steps, the

notation used for specifying the flexible performance requirements of reconfigurable ∆Σ

ADCs will be discussed. This is important to identify the set of actual (punctual) perfor-

mance requirements used in the design process. For example, typical embedded control

applications might require ADCs with a variable conversion accuracy (e.g., going from 6

bits to 12 bits), an adjustable peak SNR (SNRmax) (such as in the range 45dB to 90dB), and

43

capable of converting signals in a bandwidth ranging from 50 kHz to 1 mHz. For these per-

formance ranges, one has to identify the set of basic performance requirement values that

maximally cover the ranges. Some of the requirements are hard to meet (such as precise

conversion of fast signals).

Note that implementing only one ∆Σ modulator corresponding to the most constrained

scenario is not a very efficient solution. The topology is likely to be of high order, with

complex feedback and feed-forward structures, and requiring many reconfigurable ana-

log blocks for its implementation. As explained in Section 5.2, the reconfigurable analog

blocks are very valuable resources, and should be utilized with care. Utilizing less re-

sources for simpler ADCs allows implementing more functionality on the reconfigurable

AMS architecture. Also, the power consumption of complex modulators is higher, which

leads to unnecessary waste of energy for more demanding applications. Third, high-order

∆Σ ADCs tend to be unstable [47], which limits the range of the input signals that are con-

verted. This is justification for the observation that it is more effective to design a set of ∆Σ

topologies (which are reconfigured for different specifications) than design the worst case

topology, only.

The variable (flexible) performance requirements are expressed as closed ranges [Pmin,Pmax].

For example, the variable DR is defined as the range [50 db, 90 dB], the adjustable peak

SNRmax as the range [50 db, 90 dB], and the bandwidth as the range [50 kHz, 2 mHz].

Figure 3.7(a) shows the resulting performance requirements region (PRR) - if only two

requirements are considered, bandwidth and DR. The concept can be easily extended for

more metrics, such as SNRmax, linearity, and power consumption.

The two performance ranges define a rectangular PRR. In general, the PRR becomes

an n-dimensional parallelepiped, in case all n performance requirements are ranges, or a

44

k-dimensional parallelepiped in an (n-k) discrete space, if k of the performance are ranges,

while the rest of (n-k) are discrete sets. For simplicity, the present discussion refers from

this point on only to rectangular PRRs introduced by two performance requirement ranges.

Definition: Assume that the design point DPk is characterized by the bandwidth BWk

and the dynamic range DRk. Then the point DPk covers the rectangular PRR formed by the

points < bw,DR >, where bw < BWk and DR < DRk, as all possible requirements bw - DR

are satisfied by the design point DPk. The hardware cost of a point DPk is equal to the

number of reconfigurable SC blocks used to implement the point.

Figure 3.7(a) shows the PRR covered by the point DP1. In the present case, the hard-

ware cost of a design point is equal to the number of reconfigurable SC blocks in the

implementation.

Definition: A design point DPk is called a basic design point, if its covered PRR is not

contained in the PRR of another design point or the union of the PRRs of a set of points

with lower or equal hardware cost as the point DPk.

The set of basic design points with the same hardware cost define the Pareto curve for

that hardware cost. For example, Figure 3.7(b) shows the Pareto curve defined by the set

{DP1,DP2,DP3} of basic points. Point DP4 is not basic, unless its hardware cost is lower

than that of point DP2. Also, point DP5 is not basic, if the individual hardware costs of

points DP1, DP2, and DP3 are less or the same as the cost of point DP5.

Problem statement: The reconfigurable ∆Σ modulator design problem can be formu-

lated as that of finding for successively increasing hardware costs, (i) the sets SBDPi of

basic design points , and (ii) the corresponding ∆Σ modulator topologies, such that each set

SBDPi covers a maximal PRR that is not also covered by the SBDP sets of smaller hardware

cost.

45

t

E

V

 D/A

Y

U

t
t

t

t
t

14

t 21

t

t

Y

t
tt 34

Y

b1 b b b

 a a a

2 3 4

3 4 a2

2Y

24

31

11 33

1

Z−1
12

22
32

23

 1, Z 1, Z 1, Z
Z−1Z−1

31

13

Figure 3.8: Generic 3rd order ∆Σ topology

Note that the problem statement does not require finding the sets SBDPi of minimum

cardinality, thus it is not necessary to find the minimum number of basic design points that

cover a PRR. The reason is that the configuration data required for implementing a modu-

lator is minimal. It is equal to the number of control registers that have to be programmed,

and is several bytes per topology.

3.4.2 Optimal ∆Σ ADC topology design

This subsection summarizes the method for synthesizing the optimal modulator topol-

ogy for a given specification. The method is a refinement of the technique presented in [44].

The main parts of the method are (a) the generic topology, (b) the synthesis procedure based

on MINLP, and (c) the cost function for topology synthesis.

A. Generic ∆Σ modulator topology. The crux of the ADC topology synthesis method

is a generic representation that describes all the possible topologies for single-bit single-

loop ∆Σ modulators. Figure 3.8 shows the representation for 3rd order ∆Σ modulators, but

similar representations exist for higher order modulators also. The generic representation

46

includes all possible feedback and feed-forward signal paths. Yi represents the output of

the ith integrator, and Y is the input to the quantizer. Ai stand for the feedback coefficients

from the output to the ith adder, bi are the feed-forward coefficients from the input to the

ith adder, and t ji are the coefficients from Yj to the ith adder in the modulator. There are

negative signs for all t ji and ai coefficients.

Let N be the modulator order. Then, following expressions hold, as a general rule:

t ji ≥ 0, i f j ≥ i, j = 1, ...N, i = 1, ...N +1 (3.1)

t ji ≤ 0, i f j < i, j = 1, ...N, i = 1, ...N +1 (3.2)

ai ≥ 0,bi ≥ 0, i = 1, ...N +1 (3.3)

There are (N+1)×(N+2) coefficients in the generic topology. It can be seen that many of

the “classic” topologies [47] can be derived from the generic topology by removing some

of the signal paths. Note also that the integrators could be either delayed, or delayless.

For the generic topology of order N, its noise transfer function (NTF) and signal transfer

function (STF) in terms of the coefficients of all signal paths are derived. It is assumed that

the quantization noise E is additive white-noise[47]. For example, for a 2nd order generic

∆Σ modulator with delayed integrators:

NT Fn = z2 − z(2− t11 − t22)− (−1+ t11 + t12t21 + t22 − t11t22)

NT Fd = z2(1+a3)−z(2+2a3− t11−a3t11+a1t13− t22−a3t22+a2t23)−(−1−a3+ t11+

a3t11−a1t13+ t12t21+a3t12t21−a2t13t21+ t22+a3t22− t11t22−a3t11t22+a1t13t22−a2t23+

a2t11t23 −a1t12t23).

B. Optimal topology generation using MINLP. By equating the symbolic TFs to the

47

desired TFs (desired STF is assumed to be 1), 3× (N + 1) equations are obtained. Obvi-

ously, there are an infinite number of solutions, considering that the number of unknowns

- (N +1)× (N +2), is always larger than the number of equations - 3× (N +1). Also, in

order to select any signal path in the generic topology, a corresponding binary 0/1 variable

was defined to denote whether the signal path is present, or not.

For a given a cost function f , the topology synthesis problem can be formulated as:

minimize cost f (xi,wxi);

sub ject to : g(xi) = 0;

sub ject to : h(xi,wxi)≤ 0;

sub ject to : xi satis f y (1),wxi ∈ {0,1};

where xi denotes any of the unknown coefficients ai, bi and t ji defined in (1), g are

the 3× (N + 1) equality constraints obtained from equating the symbolic NTF and STF

to the desired NTF and STF, and h are the inequality constraints relating the coefficient

variables to the binary variables, so that wxi correctly identifies whether the signal path

with coefficient xi is present, or not.

The resulting problem can be optimally solved using mixed-integeru nonlinear, pro-

gramming (MINLP) [48]. Thus, MINLP solutions offer the best topology with respect

to the cost function f . MINLP formulation is scalable, and it is easy to add additional

constraints.

C. Cost function formulation. The cost function used in topology synthesis includes

the following two terms: (1) one for minimizing the hardware cost of a ∆Σ modulator, and

(2) one for minimizing its power consumption.

Since binary variables denote whether the corresponding signal paths are present or not,

48

the hardware cost minimization was formulated as:

Minimize
(N+1)(N+2)

∑
i=1

wxi

Power consumption estimation was similar to [43]. The static power consumption of

the OpAmp, and the dynamic power consumption of the capacitors were considered.

3.4.3 Overall design flow

The overall design flow is presented in Figure 3.9. The first step finds the minimum-order

∆Σ modulator topology with the least number of feedback and feed-forward paths. The

topology is synthesized for the least demanding performance requirements of the PRR, the

minimum bandwidth BWmin and the minimum dynamic range DRmin. The oversampling

ratio is fixed to the maximum value OSRmax. Using the generic topology for that order, the

optimal modulator topology is found for the requirements < bwmin,DRmin > by solving the

MINLP equations.

The resulting topology is post-optimized using a simulated annealing (SA) algorithm

that attempts to improve the DR of the modulator by performing localized changes of the

topology coefficients. The signal flow of the topology remains unchanged during post-

optimization. The performance of each solution analyzed by SA is estimated by a MAT-

LAB simulation of the behavioral models for SC ∆Σ modulators, similar to the technique

by Malcovati et al. [49]. The models include the main circuit nonidealities, such as sam-

pling jitter, kT/C noise, and OpAmp white noise, finite DC gain, finite bandwidth, slew

rate, and saturation [49].

49

Assuming that the resulting design point DP1 is characterized by the performance at-

tributes bw1 and DR1, the point DP1 is the first basic point DP found by the method.

The next step finds more basic design points with the same hardware cost as the point

DP1. Therefore, the order of the modulator is kept the same as that of the point DP1, but

the OSR is modified. Lower OSRs were then considered. For example, if the modulator

for DP1 uses OSR = 128, then the methodology will consider OSR = 64, then OSR = 32,

and so on. Repeating the steps that produced the topology for DP1, the topologies for the

successively decreasing OSR values are synthesized. These design points are denoted as

DP2, DP3, ..., where the point DPi corresponds to a larger OSR value than the point DPi+1.

This means that the topology for the point DPi offers a higher DR, but converts signals of

lower bandwidth. Figure 3.9(b) illustrates the design points for different OSR values. Note

that the sequence of points defines a stair-case Pareto curve in the PRR space.

It is obvious that each of the design points DP1, DP2, DP3, ... are basic design points

since they correspond to different bandwidth - DR trade-offs. It is not possible for the PRR

covered by point DPi to be entirely included in the PRR of another point, because all points

have the same order, and are optimal for the specification for which they were synthesized.

Also, the set of design points produces a maximal covering of the PRR since each of the

points was synthesized for a maximum DR. For the given set of OSR values, it is impossible

to generate topologies with higher DR than those produced through MINLP [44]. This is

because the MINLP algorithm produces mathematically optimal topologies.

The methodology continues by considering ∆Σ modulators of order higher by one. This

corresponds to increasing the hardware cost of the design points by one SC block. Then,

as in the previous step, the OSR is set to the maximum value, and the optimal modulator

topology is synthesized. More design points are produced for successively decreasing OSR

50

mark the PRR covered by the modulators

(3) find the optimal modulator topology by

solving the related MINLP equations

(4) post−optimize the topology using SA

guided by MATLAB simulation of the

modulator behavioral models;

(1) for modulator orders N = 1, 2, 3, ... do

for the given order N and OSR;

(5) identify the stair−case Pareto curve and

of order N;

(2) for decreasing OSR values do

Figure 3.9: Overall design methodology

values, similar to the previous case. This generates a new Pareto curve.

The methodology ends either when the entire PRR is covered, when the order of the

analyzed modulators becomes infeasibly large, or when the required hardware cost for the

design points exceed the capability of the reconfigurable AMS architecture.

3.5 Case Study

The goal was to design reconfigurable ∆Σ modulators that would cover the PRR defined

by the bandwidth range BW = [150kHz, 1.2mHz] and the DR range DR = [50dB, 90dB].

The PRR corresponds to typical communication standards, e.g., UMTS standard has BW

= 1.2 mHz and DR = 70 dB requirements, CDMA2000 standard has BW = 615 kHz and

DR = 80 dB requirements, etc. [37]. Note that the considered PRR = [150kHz,3mHz]×

[50dB,90dB] includes not only the four standards, but also all other standards with close

requirements. In addition, the topologies should cover the targeted PRR using the minimum

number of reconfigurable switch-capacitor blocks. The structure of the blocks was shown

51

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−30

−20

−10

0

10

20

30

40

50

60

70

Input amplitude [dB]

S
N

R
 [d

B
]

DR for 4th order with Feedback and Colored Noise, Jitter=1e−5, nonideal=1e−3

a1=0.0061,a2=0.0647,a3=0.3072,a4=0.8065,g1=0.0003,g2=0.0018
disc

6

disc
7

disc
8

disc
9

disc
1
0

Figure 3.10: Influence of discretization on DR

52

in Figure 3.3.

A. Finding the discretization value for the switch-capacitor block capacitor arrays.

Before synthesizing the reconfigurable topologies, a set of experiments was set-up for find-

ing the discretization value r for the capacitor arrays. A capacitor array can implement the

values {0, 1
r , 2

r , ..., 1}. This experiment is important because the value r determines the

precision of implementing the topology coefficients on the reconfigurable switch-capacitor

blocks. The larger the value of r the more precise the coefficient values can be imple-

mented, but this increases the hardware overhead needed for programming the capacitor

arrays.

A large number of topologies from the literature [47, 44] were analyzed, and simulated

for different nonidealities [49]. For the fourth order modulator topology in [44], Figure 3.10

shows the resulting DR values for different discretizations r = 2i, i = 6−10. For the value

r = 64 (and all lesser values), the topology did not operate as a ∆Σ modulator. However,

for values r larger than 7, the resulting DR was close enough to the ideal case. In gen-

eral, for fourth order topologies, a discretization value of r = 7 is needed for achieving

good DR performance. For second and third order modulators a value r = 16 provides a

sufficiently good accuracy for implementing the modulator coefficients.

B. Synthesizing flexible topologies. This methodology was used to find the topologies

that cover the defined PRR using a minimum number of configurable SC blocks. SA-based,

post-optimization was conducted to adjust the coefficients in the presence of leakage, finite

DC gain, slew rate, saturation, jitter, and colored noise. First, a set of second order mod-

ulators was produced using the MINLP-based topology synthesis procedure. Topologies

were generated for the OSR values 128, 64, 32, and 16. Figure 3.11 presents the stair-

case, Pareto curve that resulted for the second order topologies, and the PRR covered by

53

covered by 4th order
����

��������

covered by 2nd order

����
����
����
����

���
���
���

���
���
���������

������
������
������

uncovered

���
���
���
���

��
��
��
��

covered by 3rd order

50

0.15

1.2

0.3

0.6
(32)

(64)

(32)

(128)

(64)

stair−case Pareto
curve for order 3

DR (dB)

(32)

stair−case Pareto
curve for order 4

(16)(16)

stair−case Pareto
curve for order 2

BW (log MHz)

9070

Figure 3.11: Pareto curves for different orders

these. The bullets correspond to basic design points. The corresponding OSR is shown in

brackets. The architecture, for OSR = 16, did not cover any portion of the PRR, since its

DR = 47 is below the lower limit of the PRR. This topology was eliminated from the set.

All second order topologies used two configurable SC blocks for implementation. Then,

the modulator order was increased to three, and then to four. Two new stair-case Pareto

curves were produced, as shown in Figure 3.11. All third order modulators require three

SC blocks, and all fourth order modulators used four blocks. One third order, and two

fourth orderu topologies were also eliminated from the set, because their covered PRRs

were already covered by lower cost topologies.

The remaining 8 topologies offer a large covering of the PRR. The uncovered region

corresponds to very demanding specifications that cannot be met by modulators of order

lesser than 5 and with OSR up to 128. Note that only a small fraction (14.5%) of the PRR

54

requires modulators of fourth order. Assuming a uniform probability for having all speci-

fications in the PRR, the proposed methodology saves, in 17% of the cases, one SC block,

and in about 40% of the cases, two SC blocks as compared to the straightforward solution

(that implements one fourth order modulator for the worst case). Considering that all blocks

have similar power consumption, this also results in a reduction in power consumption by

approximately 50%, in 40% of the cases, and by 25%, in 17% of the situations.

3.6 Conclusions

This chapter has presented a systematic methodology for producing reconfigurable, ∆Σ

modulator topologies with optimized flexibility. To increase their flexibility, topologies

were optimized to meet performance attributes pertaining to ranges of values rather than

singular values. Since the number of configurable SC blocks available in AMS architec-

tures is very limited, the methodology minimizes the number of SC blocks required by a

topology.

The methodology is optimal, in the sense that it offers maximum covering of the per-

formance ranges while minimizing the number of used programmable blocks. A case study

addressing specifications for telecommunications showed that compared to traditional de-

signs, the topologies produced required fewer configurable SC blocks, and resulted in lower

power consumption by 25%-50%.

55

Chapter 4

Dynamic Reconfiguration of

Mixed-Domain Embedded Systems for

Applications with Variable Performance

Requirements

4.1 Introduction

Modern applications in environmental monitoring, security, robotics, military, and in-

dustrial control are based on (i) acquisition of high-level data (metadata) (video images,

sound, olfactory and hyperspectral images), (ii) processing, storing, and communication

of metadata, and (iii) intelligent control using higher-order semantics extracted from meta-

data [28, 29, 31, 39]. Systems continuously collect metadata to discover and plan new

activities of interest, or to observe patterns about monitored situations. Then, the acquired

56

knowledge is used to provide self-optimizing responses, including faster and more intelli-

gent anticipation and reaction to critical events, superior utilization of hardware, and better

surviving in harsh situations.

The performance constraints of these embedded systems are being dynamically modi-

fied, since operating conditions change continuously. Also, the hardware resources avail-

able for a task depends on the computational demands of the other tasks, since all tasks

share the same resources. The dynamics of processing and performance needs does not

follow any particular mathematical rule, being rather a mixture of different types of behav-

ior, e.g., quasi-static, probabilistic, and performance constrained operation [28]. Hence,

the system must continuously “comprehend” new processing demands, and accordingly

customize its architecture and the dispatching of hardware resources to tasks. A naive ap-

proach would aggressively utilize high performance resources that are optimized for the

worst-possible situation. However, this results in very expensive systems, likely to be

unattractive in real life. Moreover, high performance processing is very energy hungry,

hence unsuitable for mobile, autonomous systems.

Reconfigurable systems are attractive implementation platforms for many embedded

applications due to their ability to provide low development costs and short design times,

while being accessible to less experienced designers. While reconfigurable digital systems

are very popular due to their capability of offering low development costs and short design

time [54, 55, 56], reconfigurable mixed-domain systems (analog and digital) - in contrast,

are much less studied, or employed in practical applications. This prevents a more compre-

hensive harvesting of the possible benefits of reconfigurable systems, since the majority of

applications (e.g., embedded control and telecommunications) include significant amounts

of analog signal processing. To address this limitation, research must not only focus on

57

new reconfigurable mixed-domain architectures, but also study the related design method-

ologies and EDA tools. More specifically, it is essential to develop efficient techniques

for designing dynamically reconfigurable systems, which include both analog and digital

functional blocks.

Techniques for dynamic reconfiguration of software or digital hardware are discussed

in [54, 57, 58, 56]. Several reconfigurable mixed-domain architectures are mentioned in

the literature [33, 38, 34]. More recently the PSoC reconfigurable mixed-signal array has

been offered by Cypress Inc. [40] as a cost-effective solution to embedded system im-

plementation. Filter synthesis for reconfigurable analog systems is presented in [33, 34].

A systematic design flow for continuous-time, reconfigurable, ∆Σ ADCs has been recently

proposed [45]. However, the topologies produced have no flexibility in addressing new per-

formance specifications. Also, there is no methodology that considers the synergy between

analog and digital blocks for producing more cost effective, dynamically reconfigurable

designs.

This chapter proposes a methodology for designing cost-effective, dynamically recon-

figurable mixed-domain implementations for metadata processing applications. To provide

flexibility, performance requirements are specified as continuous ranges, or as discrete sets

of values. During operation, the system switches between different design points (DPs)

for its (reconfigurable) analog and digital blocks depending on the actual performance con-

straints, so that minimum amount of hardware is used. The proposed methodology includes

two parts: (i) DP selection and (ii) system adaptation. This chapter presents two DP se-

lection algorithms, one for performance requirements expressed as continuous ranges (e.g.,

bandwidth, latency, range), and one for performance defined as discrete sets (such as preci-

sions, dynamic range). System adaptation is realized as a centralized procedure that selects

58

for new requirements the most effective set of DPs, so that all DPs for coupled blocks can

operate together (they are compatible). A case study for sound-based tracking is discussed.

The chapter has six sections. Section 2 formulates the problem, Section 3 introduces

formal modeling of mixed-domain systems, and Section 4 presents the proposed algo-

rithms. A case study is shown in Section 5, and finally, conclusions are offered.

4.2 Problem Formulation

This section discusses (a) an illustrating example for mixed-domain applications, (b) the

specifics of programmable mixed-domain architectures, and (c) the dynamic reconfigura-

tion problem in mixed-domain systems.

A. Programmable mixed-domain embedded applications. Figure 1.1 shows the

structure of a sound-based tracking algorithm [29]. The system computes the position

of a sound source by finding the phase difference between the audio signals received by

two fixed microphones. Tracking is the main problem in applications such as environmen-

tal monitoring, unmanned autonomous vehicles (UAVs), robotics, sensor networks, and

other [29, 31, 39].

For each application, the specification defines (i) the characteristics of inputs and out-

puts, (ii) the requirements for computing the corresponding output for each input, and

(iii) the constraints of the implementation. For example, the tracking system specification

defines input and output characteristics, such as bandwidth, range, the input noise level,

and needed precision (number of bits) of the output. Processing requirements include the

timing (speed) constraint for producing correct outputs for given inputs. Finally, implemen-

tation constraints include hardware cost, total power consumption, required supply voltage

and clock frequencies, and number of necessary I/O pins.

59

Reconfigurable

Reconfigurable

SRAM

SROM

Digital ports

Analog−digital
interface

Analog ports

Register
space

Analog bus

analog−digital
interface

from

System bus array
digital
from

ports
digital
from

controls
for

Digital array

Analog array
analog array, digital array,
analog−digital interface,
buses, I/O ports,
interrupt controller, and
clock subsystem

CPU

Interrupt
controller

Figure 4.1: Mixed-domain architecture

Note that three categories are correlated. For example, the timing (speed) constraint of

processing is related to the input bandwidth and needed output precision. The higher the

bandwidth and precision, the tighter the timing constrains should be. Also, the ranges of

input signals impact the gain of the gain blocks, the gain influences the transfer function of

the filters, filters influence the ADC characteristics, the speed of ADCs is correlated to the

FFT throughput, and so on.

Performance attributes can pertain to continuous ranges, or sets of discrete values. For

example, the input signal bandwidth is in range [BWMIN ,BWMAX]. Depending on the appli-

cation, the actual input signal frequency has a value in this range. Similarly, the required

precision (number of data bits) is in the discrete set {PR1,PR2, ...,PRMAX}. The system

precision is set to PRMAX bits for highest precision applications, and to PR1 bits for lowest

precision.

B. Programmable mixed-domain embedded architecture. Figure 4.1 presents the

defining aspects of the programmable mixed-domain architecture considered in this work.

60

Programmability is achieved in the following ways: (1) by programming the microcon-

troller (software), (2) by programming hardware (reconfigurable analog and digital cir-

cuits), (3) through programming the SoC interconnect, and (4) by programming the I/O

ports. This architecture is largely based on Cypress’ PSoC architecture [40], except that

the programmable hardware is based on LUT’s, similar to FPGAs.

C. Problem description (dynamic reconfiguration). Assuming that different system

performance can be continuously selected from ranges or discrete sets, the design method-

ology must identify design points (DP) for the system blocks, so that dynamic reconfig-

uration offers efficient coverage of the variable performance. In addition, an adaptation

algorithm must be devised to control the on-line switching between DPs. The first step is

called design point selection, and the second step is system adaptation design.

The system adaptation algorithm in Figure 4.2 was considered for switching DPs when-

ever required by the variable performance constraint. The control strategy uses a central-

ized reconfiguration procedure, which receives reconfiguration requests from all blocks.

For example, the application might require a higher data precision, which imposes a higher

dynamic range (DR) for the ADC, higher bit width for the digital blocks, and so on. These

requests are issued to the reconfiguration procedure by the blocks involved. Also, the appli-

cation might request less memory usage by buffers. This can be achieved by increasing the

processing speed of the digital blocks. The reconfiguration procedure inspects the DP set

for each block, and then selects compatible DPs (for each block), so that the new perfor-

mance requirement is met.

The total resource cost of the selected DPs must be minimal. Implementing only one

DP for each block, corresponding to the most constrained scenario, is not a very efficient

solution. The design is likely to be more complex than required in most situations, e.g.,

61

DP
signals

from
sensors

I/O, ADC I/O, Proc1, M1 Proc2, M2

evets &

I/O, Proc3, M3
data

set set set set

buffer buffer

reconfiguration
ADC

reconfiguration reconfiguration reconfiguration

reconfiguration
Centralized system

Proc 1 Proc 2 Proc 3

DP DP DP

Figure 4.2: Dynamic reconfiguration of mixed-domain systems

using analog and digital filters, and ADC DPs of high order, with complex feedback and

feed-forward structures, and requiring many reconfigurable analog and digital blocks for

their implementation. Reconfigurable analog and digital blocks are very valuable resources,

and should be utilized with care [40]. Utilizing less resources allows the implementation

of more functionality of the reconfigurable architecture. Also, the power consumption of

complex circuits is higher, which leads to unnecessary energy dissipation for more demand-

ing applications. Third, complex circuits are harder to test, verify, and debug, and can be

more sensitive to nonidealities, e.g., high-order ∆Σ ADCs tend to be more unstable, which

limits the range of the input signals that can be converted. Tyherefore it is more effective

to design a set of reconfigurable DPs (which are programmed for different performance

specifications) than design for the worst case DPs, only.

4.3 Modeling for Dynamic Reconfiguration

This section describes the system description used for dynamic reconfiguration.

Mixed-domain reconfigurable systems (MDRS) are characterized by:

MDRS = PI ×PO×Modes×Func (4.1)

62

where the PI are the primary inputs of the system, PO are the primary outputs, Modes are

the control signals used in selecting new DPs, and Func is the description of the behavior

for all operation conditions.

Specification Func represents a chaining of reconfigurable blocks (called RBlock), as

shown in Figure 4.2. Each RBlock is the following quadruple:

RBlock = AIS×AOS×RModes×PSFG (4.2)

AIS and AOS are the inputs and outputs of a block, RModes are the control signals for

configuring the block, and PSFG is a parameterized Signal Flow Graph expressing the

multi-mode behavior of the block. RBlock is shown in Figure 4.3(a). Without restricting

the generality of the methodology, it can be assumed that AISi ⊂ PI ∪AOSk (blocks k have

their outputs connects to the inputs of block i), and RModes ⊂ Modes.

The operation semantics of RBlock are shown in Figure 4.3(b). Blocks have multi-

mode operation, each mode corresponds to a different DP. The figure presents three modes

(SFGi). Transitions between modes are controlled by conditions defined over controls in

set Modes.

Each AIS (AOS) is an attributed input (attributed output), and is defined as the Cartesian

product of its attributes:

AIS(AOS) = A1 ×A2 × ...×Ak (4.3)

Ai is an attribute with values in a range or set of discrete values. For example, attributes

might correspond to signal range (e.g., Ai ∈ [−1V,+1V]), signal bandwidth (e.g., A j ∈

[20Hhz,8kHz]), precision (e.g., Ap ∈ {8 bits,9 bits,10 bits}), and so on.

63

RModes

C

C2

C3
4C

(a) (b)

SFG 1
SFG2

SFG 3

AOSAIS
PSFG

1

Figure 4.3: (a) RBlock and (b) RBlock execution semantics

The RBlock description in Figure 4.3(b) is suitable for expressing the block behavior

for simulation and verification, but it less useful for DP selection since it represents blocks

as a set of disjoint SFGs, while in reality DP implementations share resources (software,

hardware, or memory). For example, the algorithm in Figure 4.4 includes two SFGs. One

SFG uses the entire graph, and the other one employs only the left half (which is thus

shared between the two SFGs).

For reconfiguration design, the functionality of RBlock is expressed using Parameter-

ized SFGs (PSFG). A PSFG is composed of processing blocks (e.g., adders, multipliers,

integrators, comparators, etc.) and switches that are interconnected with each other by sig-

nals. Switches are controlled by signals in the set RModes. A closed switch propagates a

signal, while an open switch propagates a neutral value (e.g., zero for digital hardware or

high impedance for analog circuits). Figures 4.4 and 2.1 show PSFGs for a digital DFT

filter and a mixed-signal ADC.

PSFG of DFT algorithm (Figure 4.4) consists of nodes for data processing (addition

and multiplication), and arcs for indicating the data flow between nodes. This is similar

to the data flow graphs used in high-level synthesis. The AIS set includes all block inputs

with bit width, as one of their attributes Ai. The AOS set is formed from the block output

64

++

*

+

++

*

+

++

*

+

++

*

++

*

+

++

*

+

++

*

+

++

*

++

*

+

++

*

+

++

*

+

++

*

+

C 1

C 2
C 3

Figure 4.4: Parameterized SFG for DFT

with bit width as an attribute. Parameterization is achieved by switch C1, which includes, or

removes, the right half of the algorithm, if more processing precision or shorter throughput

is needed. Additional parameterization is specified by switches C2 and C3 and dotted arcs.

If the right half is present (switch C1 is closed) and if switch C2 is closed, then the related

multiplication must be performed after the addition operation. Otherwise, no particular

execution order is enforced. Switches C2 and C3 control the parallelism of the PSFG,

which is useful for DP selection for different amounts of hardware resources.

PSFG of ∆Σ ADC (Figure 2.1) incorporates integrators (blocks Ii), gain stages (blocks

ak and ti j), summing blocks, a quantizer (comparator), and a block for digital-to-analog

conversion (DAC). Arcs define the signal flow between blocks. The AIS set includes in-

put U with attributes such as the value range and bandwidth. The AOS set includes the

output V with attributes such as the rate (frequency) and bit width. Parameterization is

achieved by switches S1 and S2, that add or remove feedback links in the PSFG. Typi-

cal embedded control applications may require ADCs with a variable conversion accuracy

(e.g., going from 6 bits to 12 bits), an adjustable peak signal to noise ratio - SNR (SNRmax)

(such as in the range 45dB to 90dB), and are capable of converting signals in a bandwidth

ranging from 50 kHz to 1 mHz.

This section explains (1) DP selection for performance in continuous ranges, (2) DP

65

(b)

MIN

P2 MIN

P2 MAX

P1 MAX

DP1

DP2

�
�
�
�

��
��
��

��
��
��

P2

P1

HW set 1

HW set 2

P1 MIN

P2 MIN

P2 MAX

P1 MAX

P2

P1

HW set 1

HW set 2

(a)

P1

Figure 4.5: DP selection for ranges

selection for performance in discrete sets, and (3) the algorithm for system adaptation.

Variable performance is expressed as closed ranges [Pmin,Pmax], or as discrete sets

{Pmin,P2, ...Pmax}. Figure 3.7(a) shows the resulting performance requirements region (PRR),

if only two range-valued requirements are considered, e.g., bandwidth and dynamic range

(DR). This concept can be easily extended for more metrics, like SNRmax, bit width, and

power consumption.

Definition: Assuming that the design point DPk is characterized by the bandwidth BWk

and the dynamic range DRk. The point DPk covers the rectangular PRR formed by the

points < bw,DR >, where bw < BWk and DR < DRk, since all possible requirements bw -

DR are satisfied by the design point DPk. The hardware cost of a point DPk is equal to the

number of reconfigurable blocks used to implement the point.

Figure 3.7(a) shows the PRR covered by the point DP1.

Definition: A design point DPk is called a basic design point, if its covered PRR is not

contained in the PRR of another design point, or the union of the PRRs of a set of points

with lower, or equal, hardware cost as the point DPk.

The set of basic design points with the same hardware cost define the Pareto curve for

66

that hardware cost. For example, Figure 3.7(b) shows the Pareto curve defined by the set

{DP1,DP2,DP3} of basic points. Point DP4 is not basic, unless its hardware cost is lower

than that of point DP2.

DP selection requires sampling the Pareto surfaces of design points so that the required

performance regions are covered using minimal hardware resources. Each Pareto surface

in the performance space P1 ×P2 × ...×Pk consists of DPs synthesized for a fixed set of

hardware resources. For example, in Figure 5.7(a), the lower curve is for the resource set HW

set 1, and the upper curve for a different resource set HW set 2.

DP selection for continuous ranged performance. The execution trace of the DP se-

lection algorithm is shown in Figure 5.7(b). It analyses the Pareto surfaces in increasing

order of their hardware resource sets. Initially, N DPs are selected, so that the horizontal

axis (performance P1) is sampled as equally as possible (e.g., the distance between con-

secutive points is as close as possible to P1MAX−P1MIN
N). N is the total number of sampling

points divided by the number of hardware resource sets. The initially selected DPs are

marked in the figure with ‘X’. Then, for each pair of consecutive DPs, DPi and DPi+1, the

following value is computed:

ODi+1 =
P2(DPi+1)−P2(DPi)

P1(DPi+1)−P1(DPi)
+

P2(DPi+1)−P2(DPi+2)

P1(DPi+1)−P1(DPi+2)
(4.4)

A large OD value indicates that DP sampling is not closely tracking the DP. With the

largest OD is removed, and a new DP is sampled at a position that gives the largest OD

value. Figure 5.7(b) shows the “moving” of two DPs to positions with larger OD value.

DP re-shuffling ends, if no more improvement is achieved through the algorithm. Then, the

DP selection step is repeated for the other Pareto surfaces too, i.e. the surface for resource

set HW set 2. After finding the DPs separately sampling each Pareto surface, the algorithm

67

continues by re-shuffling DPs across surfaces using a cost metric that reflects the unique

PRR coverage offered by a DP per its unit hardware cost.

Only non-basic DPs are considered. For each DPi, value HC is computed, where HC is

the ratio of the area covered by DPi but not covered by DPs of the same or lower hardware

cost, and the hardware cost of DPi. Value HC reflects the unique PRR coverage obtained

per unit hardware cost. DPs with low HC offer little unique covering at the expense of using

additional hardware (as compared to DPs on lower surfaces). The DP with the lowest HC

is removed, and instead a DP is inserted in the place that would give the highest HC. The

algorithm stops, if the cost does not decrease further. Figure 5.7(b) illustrates the moving

of a DP from the lower curve to the higher curve.

DP selection for discrete valued performance. This situation is simpler than the

previous case of DP selection, since performance ranges do not have to be sampled. DP

selection of ∆Σ ADCs used as an illustrative example for the algorithm. The method is

presented in Figure 3.9.

The first step finds the minimum-order ∆Σ modulator topology with the least number

of feedback and feed-forward paths. The topology is synthesized for the least demanding

performance requirements of the PRR, the minimum bandwidth BWmin and the minimum

dynamic range DRmin. The oversampling ratio is fixed to the maximum value OSRmax. The

optimal modulator topology is found for the requirements < bwmin,DRmin > by solving

the MINLP equations [44]. The resulting topology is post-optimized using a simulated

annealing (SA) algorithm that attempts to improve the DR of the modulator by performing

localized changes of the topology coefficients.

Assuming that the resulting design point DP1 is characterized by the performance at-

tributes bw1 and DR1, the point DP1 is the first basic point DP found by the method. The

68

modulator

DPMLS,1

DPMLS,2

DPF,1

DPF,2

DPF,3

DPADC,1

DPADC,2

DP
DC,1

DC,2
DP

DPPC,1

DP
PC,3

DPPC,2

solution 1

Reconfiguration
solution 2

Reconfiguration
DP

DP

DP

DP

DFT,1

DFT,2

DFT,3

DFT,4

MaximumPhase
calc. likelihood search

DFTDigital filtering &
downconversion for ADC

∆Σ

Figure 4.6: Design point compatibility graph

next step finds more basic design points with the same hardware cost as the point DP1.

Therefore, the order of the modulator is kept the same as that of the point DP1, but the

OSR is modified. Lower OSRs are considered next. For example, if the modulator for DP1

uses OSR = 128, then the methodology is based on OSR = 64, then OSR = 32, and so on.

Repeating the steps that produced the topology for DP1, the topologies for the successively

decreasing OSR values are synthesized. Denoting these design points as DP2, DP3, ...,

where the point DPi corresponds to a larger OSR value than the point DPi+1, means that

the topology for the point DPi offers a higher DR, but converts signals of lower bandwidth.

The methodology continues by considering ∆Σ modulators of order higher by one. This

corresponds to increasing the hardware cost of the design points by one SC block. Then,

as in the previous step, the OSR is set to the maximum value, and the optimal modulator

topology is synthesized. More design points are produced for successively decreasing OSR

values, as in the previous case. This generates a new Pareto curve.

System adaptation. As explained in Section 4.2, system adaptation uses the central-

ized control scheme in Figure 4.2. The adaptation algorithm identifies one DP for each

block, such that all DPs can operate together to provide the requested performance varia-

tion. Hence, a DP selected for a block must be compatible with the DPs found for all blocks

69

connected to it. Otherwise, the system malfunctions, e.g., loses data, exceeds timing con-

straints, violates precision requirements, etc. For example, for an ADC, consider a DP with

a high dynamic rate (DR), that is obtained by using a very high sampling frequency for the

ADC quantizer. If the throughput of the connected digital blocks (e.g., digital filters) is too

large, this DP results in data loss at the interface between the ADC and the digital blocks.

DP compatibility is checked using following two rules. (i) If output i of RBlock1 is

connected to input j of RBlock2, the two blocks are compatible, if for all attributes Ak

of signal i, the corresponding attributes Am of signal j are superior (e.g., for frequency

bandwidth, Ak ⊂ Am). (ii) All DPs selected simultaneously for system reconfiguration

must not produce infeasible solutions, such as exceeding the total number of available

reconfigurable blocks and I/O pins and ports, using clock frequencies/supply voltages that

are hard to generate simultaneously.

After selecting DPs for each system block, the reconfiguration methodology sets up the

system’s Design Point Compatibility Graph (DPCG). There is a node for each DP. Two

DPs are connected by an arc, if their corresponding blocks are linked in the system, and the

DPs are compatible. Figure 4.6 shows the DPCG for sound-based tracking.

The adaptation algorithm uses the DPCG to compute new reconfiguration solutions

for the system “on-the-fly”. For a given optimization constraint (such as number of used

reconfigurable blocks), finding a new reconfiguration solution means finding the minimum

cost path in the DPCG, where cost is defined by the optimization goal. This is computed

using Dijkstra’s algorithm.

70

4.4 Case Study

This case study refers to a reconfigurable implementation of sound-based tracking in

Figure 1.1. The goal was to select DPs and to set-up the corresponding DPCG that would

mcover the PRR defined by the bandwidth range BW = [150kHz, 1.2mHz] and the DR

range DR = [50dB, 90dB] (8 bits to 16 bits precision). In addition, the topologies should

cover the targeted PRR using the minimum number of reconfigurable analog and digital

blocks.

A. DP selection for ∆Σ ADCs. This methodology was used to find the topologies that

cover the defined PRR using a minimum amount of configurable analog blocks. SA-based,

post-optimization was conducted to adjust the coefficients in the presence of leakage, finite

DC gain, slew rate, saturation, jitter, and colored noise. First, a set of second-order modula-

tors was produced using the MINLP-based topology synthesis procedure [45]. Topologies

were generated for the OSR values: 128, 64, 32, and 16. Figure 3.11 presents the stair-

case Pareto curve that resulted for the second order topologies, and the PRR covered by

these. The bullets correspond to basic design points. The corresponding OSR is shown

in brackets. The architecture for OSR = 16 did not cover any portion of the PRR, since

its DR = 47 is below the lower limit of the PRR, the topology was eliminated from the

set. All second order topologies used two configurable blocks for implementation. Then,

the modulator order was increased to three, and then to four. Two new stair-case Pareto

curves were produced as shown in Figure 3.11. All third-order modulators require three

configurable blocks, and all fourth-order modulators use four blocks. One third-order and

two-fourth order topologies were eliminated from the set because their covered PRRs were

already covered by lower cost topologies.

The remaining 8 topologies offer a large covering of the PRR. The uncovered region

71

(Msamples/sec)

8

6

2

10

4

Precision
(log # bits)8 16 32 64

Throughput

Set 4

Set 1

Set 2 Set 5

Set 3

Figure 4.7: DPs for DFT

corresponds to very demanding specifications that cannot be met by modulators of order

lesser than 5 and with OSR up to 128. Note that only a small fraction (14.5%) of the

PRR requires modulators of fourth-order. Assuming a uniform probability for having all

specifications in the PRR, the proposed methodology saves, in 17% of the cases, one con-

figurable block, and in about 40% of the cases two configurable blocks, as compared to the

straightforward solution (that implements one fourth-order modulator for the worst case).

Considering that all blocks have similar power consumption, this also results in a reduction

in power consumption going by approximately 50%, in 40% of the cases, and by 25%, in

17% of the situations.

B. DP selection for DFT. Figure 4.7 shows the DPs selected for the DFT in Figure 4.4.

Five hardware resource sets were considered, each set being twice the size of the pre-

vious one. Set 1 is the smallest (1200 LUTs and flip-flops). For input rates less than

3msamples/sec DPs between Set 4 and Set 5 should not be used. This reduces the hard-

ware cost by a factor of approximately 4x, as compared to the worst case design (Set 5).

72

A simplified DPCG is shown in Figure 4.6.

4.5 Conclusions

This chapter presented a methodology for designing cost-effective, dynamically recon-

figurable mixed-domain systems for metadata processing. During operation, the system

switches between different designs for the analog and digital blocks depending on the ac-

tual performance needs. The chapter also proposed algorithms for DP selection and system

adaptation. A case study for sound-based tracking showed that compared to worst-case

design, reconfigurable topologies use fewer analog and digital blocks, and can lower power

consumption in ADCs by 25%-50%.

73

Chapter 5

Online AMS Frontend Reconfiguration

for Sensor Network Applications

5.1 Introduction

Cyber-physical systems (CPS) are envisioned to offer continuous signal sensing over

broad physical areas, intelligent data processing, and comprehensive, broad-range actu-

ation [59]. This is essential for important domains, such as infrastructure management,

healthcare, environmental monitoring, and manufacturing control. After being deployed,

CPS must operate reliably under a large variety of environmental conditions (e.g., tempera-

ture, noise) and performance requirements (such as bandwidth, precision, signal range, and

energy/power consumption).

Networks of reconfigurable processors incorporating analog and mixed-signal (AMS)

frontends appear to be a very attractive implementation platform for CPS. Reconfigurable

processors can be customized online and in real time for changing requirements, and

74

thus continuously provide performance-effective operation [54, 45]. The alternative, cus-

tomized integrated circuit (IC) implementations, must be designed for the worst-case re-

quirements. This leads to wasted resources and hence higher costs because most of the

time the actual requirements are significantly milder than the worst-case conditions. Re-

configurable processors can easily support new functions, which can also help in reducing

the implementation costs and reliability of the designs. Besides, complex circuits, such as

high-order ∆Σ ADCs, are more unstable than simple structures [47]. This limits the range

of the input signals that can be processed. It is more effective to dynamically switch dur-

ing execution among implementations optimized for different performance needs instead

of using complex, worst-case IC designs. On the negative side, reconfigurable analog and

digital blocks are valuable resources that should be utilized with care [38, 40].

Design automation methods for reconfigurable digital architectures have been exten-

sively studied, including automated placement and routing, logic and high-level synthesis,

and hardware/software co-design [60]. More recently, techniques for systematic design of

reconfigurable analog-to-digital converters (ADCs) have been proposed [45]. The method

generates reconfigurable ∆Σ ADC topologies for a pre-defined set of specifications by iden-

tifying the minimal changes that can adapt the architecture to new requirements. Tech-

niques for automated synthesis of AMS architectures have been proposed for filters and

ADCs [42, 43, 44]. Various reconfigurable ADC ICs are discussed in [35, 37]. In contrast

to existing work, CPS emphasize the need for flexible design, including online AMS archi-

tecture reconfiguration, as the specific requirements might be known only during operation.

This chapter presents a synthesis methods for automatically selecting the design points

used for online reconfiguration of AMS architectures. The work considers that the per-

formance requirements are unknown at design time. Instead, performance attributes can

75

have with equal probability all values in a range. This chapter proposes criteria and al-

gorithms for selecting design point sets that keep the obtained performance close to the

requirements. The cardinality of the sets is limited so that all designs can be stored in the

local memory of an AMS architecture. This chapter also defines the main characteristics

of the envisioned architecture for implementing reconfigurable AMS frontends. The ar-

chitecture includes both fine and coarse-grained reconfiguration in an attempt to offer both

flexibility and low reconfiguration overhead. The proposed synthesis method performs two

steps: (i) it synthesizes the Pareto points for different performance trade-offs, and then

(ii) selects a pre-defined number of points that can cover the equally probable performance

requirements in a range. The proposed synthesis procedure is performed offline because

the temporal overhead required to synthesize the design points is too excessive. However,

the best candidate in a set of given requirements is selected online.

This chapter proposes a new synthesis framework and metrics for selecting the de-

signs used in dynamic reconfiguration. The concepts can be extended for other scenarios

too, e.g., different performance requirements distributions (other than uniform). Also, the

method is general and can be used for selecting design points for both analog and digital

reconfigurable modules.

This chapter has five sections. Section 2 discusses the reconfigurable architecture. Sec-

tion 3 presents the steps for finding the design points used in dynamic reconfiguration.

Section 4 focuses on experiments. Finally, conclusions are offered.

5.2 Reconfigurable Mixed Analog-Digital Architecture

The suggested reconfigurable architecture comprises of a coarse-grained, reconfigurable

76

Fine grained

Program
memory memory

DataGeneral purpose
processor

AB11

Serial
interface

Serial
interface

interconnect
logic and

Programmable

System bus

AB

AB AB

12

21 22

. . .

. . .

reconfigurable
AMS blocks

Array of

12

21 22

11DB DB

DB DB

reconfigurable
digital blocks

Array of

. . .

. . .

.

Coarse grained reconfigurable AMS array

reconfigurable array

Figure 5.1: Coarse-grained/fine-grained reconfigurable AMS architecture

analog and mixed-signal (AMS) array interconnected by a serial interface to a fine-grained,

reconfigurable digital array. Figure 5.1 illustrates the structure. Coarse-grained reconfig-

uration is at the module level. Fine-grained reconfiguration is at the gate level. Coarse-

grained reconfiguration is more performance efficient than fine-grained reconfiguration as

it utilizes less hardware overhead for reconfiguration. This is important mainly for AMS

circuits, for which the extra switches and multiplexers used for reconfiguration can signif-

icantly reduce the speed and bandwidth of the circuits. However, coarse-grained reconfig-

uration is less flexible in implementing new functionality. The structure can be realized

by interfacing a reconfigurable AMS array, like PSoC [40], with an FPGA through a serial

interface, i.e. SPI or UART.

The AMS architecture operates as follows: (a) the architecture continuously monitors

the real performance of the composing modules, such as data acquisition, processing, net-

working, and actuation, and compares it to the required performance, (b) the required per-

formance is specified by the application, and can change dynamically as a result of events.

For example, detecting a certain condition of interest might change the speed constraint

77

of the implementation, or modify the precision requirement of data acquisition and pro-

cessing. If there is significant difference between the required and real performance, then

the resource management module detects which modules have to be reconfigured in order

to minimize the imbalance between the two requirements. Reconfiguration can involve

multiple blocks of the coarse-grained and fine-grained reconfigurable arrays.

The coarse-grained AMS array is significantly based on the PSoC mixed-signal archi-

tecture manufactured by Cypress [38, 40]. However, it was appropriate to simplify the

structure of the reconfigurable analog cells, and increase the number of reconfigurable in-

put connections of a cell, so that system topologies with more complex structures can be

also synthesized, e.g., higher order ∆Σ ADC. The analog subsystem consists mainly of a

bi-dimensional array of reconfigurable switched-capacitor blocks. The blocks are orga-

nized into m rows and n columns. Even though there is no theoretical limit for the number

of rows and columns, the numbers of rows and columns are actually not very high due

to the lower integration densities that are achievable for reconfigurable AMS circuits as

opposed to the reconfigurable digital ICs. For example, the PSoC architecture includes,

at most, three rows and four columns of reconfigurable analog blocks [40]. This makes

the programmable analog cells a very valuable resource that should be used carefully in

a design. Minimizing the number of reconfigurable analog cells used for implementation

should be a primary design requirement. The internal structure of the reconfigurable analog

cells is shown in Figure 3.3. The structure is similar to that of type C reconfigurable PSoC

blocks [40], with the exception of the following two differences: (i) the number of pro-

grammable inputs connected to the summing node of the OpAmp is higher, and (ii) the less

used circuits were eliminated, e.g., the comparator (available in each PSoC block) and the

circuitry for producing interrupts. The first modification is needed for the implementation

78

of complex high-order ∆Σ modulators. The second change is justified by the reconfigurable

analog blocks being used mainly to implementation filters and ∆Σ ADCs rather than other

analog circuits. More details on the architecture are presented in [62].

The functionality of the SC blocks is programmed by reconfiguring the topology of the

network surrounding the OpAmp. Similar to the PSoC blocks, the programmable cell can

be configured to operate as a comparator, a gain stage, or an integrator. If the capacitor

array Cap1 is not connected then the circuit functions as a comparator, otherwise, the cir-

cuit is either a gain stage or an integrator. In addition to the capacitor array Cap1, each

reconfigurable block has several other programmable capacitor arrays called Cap2, Cap3,

... and Captot in the figure. Array Cap2 is used for the input to the programmable cell. The

rest of the capacitor arrays implement various feedback and feed-forward paths. The gain

of the signal paths is set by programming the corresponding capacitor arrays. The value

of constant tot is set by the maximum number of paths that can converge in a summing

node. This value depends on the order of ∆Σ for the ADCs that are implemented. For

systems of order up to five, inclusive, the value of constant tot is six. The values of the

capacitor arrays can be selected from the set {0,1
r,

2
r,...,1}. The value of r depends on

the application characteristics. Section V shows that r = 16 is sufficient for realizing ∆Σ

ADCs of orders two and three, but r = 128 is needed for fourth order ADCs. PSoC uses

r = 32 [40].

The reconfigurable analog blocks can be connected into various topologies (netlists)

through the programmable interconnect. The interconnect structure implements different

feedback and feed-forward connections, such as those in ∆Σ ADCs [47, 44]. The output

of each block can be connected either to the longer row and column interconnects, to im-

plement the global feed-forward or feedback structures, or to the shorter local interconnect

79

iterations

+

*

register B

register A

>>

Data
memory

Adress
calculation

logic

Iteration
control

logic

MUX

MUX

MUX

register C

Output

Func

Func

MUX

adress

start
addresses

for registers

Input 1

A, B and C

Input 2

iter

iter

Nr of

Figure 5.2: Coarse grained reconfigurable digital block

between neighboring cells. In contrast, the PSoC architecture includes only column and

local interconnects [40], which might be somewhat restrictive for implementing higher-

order topologies with complex feed-forward and feedback structures. Such architectures

offer superior DR and lower sensitivity to circuit nonidealities than architectures with few

feedback structures [44].

Figure 5.2 presents the structure of the proposed coarse-grained reconfigurable digital

blocks. The data path can perform repetitive arithmetic operations (e.g., additions, sub-

tractions, and multiplications), as well as, shift operations. Input operands are stored in

registers A and B. Register C stores partial results, such as partial sums. The reconfig-

urable blocks are utilized using the following set of steps: (i) the data path is configured by

programming the control registers of the block. This defines the logic for computing the

80

sensors buffer

evets &
data...

evets &
data...

buffer
Function 1

set
DP

set
DP

set
DP

set
DP

reconfiguration
Centralized system

reconfiguration
SCP

reconfiguration
ADC

reconfiguration
Function 2Function 1

reconfiguration

...

set
DP

set
DP DP

set set
DP

Signal conditioning ADC
buffer

Function x Function y

Signal conditioning ADC
buffer

Function 2

...

AMS reconfigurable architecture

signals
from

sensors

signals
from

Figure 5.3: Synthesis model for overall reconfiguration of AMS system

signals Func that control the multiplexer circuits for reconfiguration, and the signals iter

that control repetitive execution. This step also defines the logic for calculating the memory

addresses needed to load the operands into registers A, B, and C. (ii) Each block reads data

directly from the RAM memory by indicating the start addresses of the operands for regis-

ters A and B , as well as, the starting address for storing the results in register C. (iii) For

iterative algorithms, each iteration starts by loading the operands from RAM, performs

the computations of the data path, and updates the addresses for accessing the next set of

operands from RAM.

Figure 5.4 presents the overall synthesis model for AMS reconfiguration of frontends.

An AMS system includes a number of converging, and diverging, signal paths originating

at the primary inputs of the system, and producing actuation signals. The analog domain

includes signal conditioning paths (CPTs) and analog-to-digital conversion (ADCs). The

digital domain is composed of DSP functions interconnected through data buffers, as shown

in the figure. Each analog and digital module uses a specific implementation called design

point (DP). DPs can be changed dynamically at execution by reconfiguring the modules.

81

All DPs implement the same functionality, but DPs differ by their performance and resource

requirements. The reconfiguration of analog and digital modules to new DPs is controlled

by the central resource management routine. The set of possible DPs is fixed for each

module.

System adaptation is based on the centralized resource management scheme in Fig-

ure 5.4. Requests for system adaptation are formulated globally, if the system performance

needs to be changed (e.g., system throughput, input rate, overall hardware cost, power con-

sumption, etc.), or locally, if the performance of a block needs to be modified. The adapta-

tion scheme selects one DP for each block in the data acquisition-processing-actuation flow,

such that all DPs can operate together to provide the requested performance. A DP selected

for a block must be compatible with the DPs of all blocks connected to it. Otherwise, the

system malfunctions, e.g., loses data, exceeds timing constraints, violates precision re-

quirements, and so on. For example, an ADC’s DP might offer a high dynamic rate (DR)

by using a very high sampling frequency. If the throughput of the connected digital blocks

(e.g., digital filters) is too low, this DP results in data loss at the interface between the ADC

and the digital blocks. This affects the precision of the overall processing.

5.3 Synthesis of Reconfigurable AMS

For synthesis, the frontend functionality is expressed using Parameterized Signal Flow

Graphs (PSFG). PSFG is composed of processing blocks (e.g., adders, multipliers, inte-

grators, comparators, etc.) and switches, that are connected with each other by signals. A

closed switch propagates a signal, while an open switch propagates a neutral value (e.g.,

zero for digital hardware or high impedance for analog circuits). Figure 5.6 illustrates two

PSFGs, RBlock 1 is the PSFG for a ∆Σ ADC function, and RBlock 2 is the PSFG for the

82

sensors buffer

evets &
data...

evets &
data...

buffer
Function 1

set
DP

set
DP

set
DP

set
DP

reconfiguration
Centralized system

reconfiguration
SCP

reconfiguration
ADC

reconfiguration
Function 2Function 1

reconfiguration

...

set
DP

set
DP DP

set set
DP

Signal conditioning ADC
buffer

Function x Function y

Signal conditioning ADC
buffer

Function 2

...

AMS reconfigurable architecture

signals
from

sensors

signals
from

Figure 5.4: Synthesis model for overall reconfiguration of AMS system

DFT (Discrete Fourier Transform) algorithm. The PSFG of the ∆Σ ADC incorporates inte-

grators (blocks Ii), gain stages (blocks ak and ti j), summing blocks, quantizer (comparator),

and a block for digital-to-analog conversion (DAC). The arcs define the signal flow between

blocks. Parameterization is accomplished by the use of switches S1, S2, ..., SN that change

the transfer function of ADC by adding, or removing, feedback paths. The parameteri-

zation of the DFT PSFG is based on switches, of the type controlled by signal C1. The

switches control the amount of SFG parallelism depending on the throughput requirement.

For example, if the switch C1 is open, then the two clusters (marked by a dotted line) must

be executed in parallel. Otherwise, if the switch is closed, then the clusters are executed in

sequence, but without enforcing any particular execution order on the clusters. Additional

parameterization can be inserted by using more switches.

Figure 5.5 illustrates The online reconfiguration procedure is as follows. Assuming that

the performance requirement P1 changes over time as shown with bold line in the figure,

this change represents a long-term, identifiable trend. In addition, short-term performance

“fluctuations” are indicated by the dashed lines. The long-term change is addressed by

83

1

DP2

DP3

t1 t2

P1

3t time
P2

Hw1

Hw3
Hw 2

P1

DP1

DP2

DP3

DP

Figure 5.5: Dynamic reconfiguration

reconfiguring the architecture using implementations DP1, DP2, and DP3, such as in DP1

is used between the time moments t1 and t2, and so on. The three design points are design

solutions that use different hardware resource sets, and implement different performance

trade-offs. Short-term performance changes are addressed by changing the parameters of

the design points, but without reconfiguring the hardware, such as modifying the sampling

frequency of ADCs, while keeping the same topology.

Design point synthesis, for reconfiguration, samples the Pareto surfaces of the frontend

modules to select DPs that cover as much as possible of the possible performance regions

of an application. The analyzed Pareto surfaces include DPs that are possible using the

resources of the reconfigurable AMS architecture. The number of selected DPs is less than

a predefined limit that depends on the on-chip memory available for storing the DPs. Each

Pareto surface for a system block in the performance space P1 ×P2 × ...×Pk consists of

DPs synthesized for a fixed set of hardware resources. For example, in Figure 5.7(a), the

lower curve is for the resource set HW set 1, and the upper curve for a different resource

set HW set 2. The DP selection problem can be formulated as follows:

min
∫

∆T [α∑iHardware costDP[Blocki](t)+β∑k(Performancek(t)-Requirementk(t))
2]dt

subject to: ∑iHardware costDP[Blocki](t j)≤Available resources, ∀t j∈ ∆T

84

RBlock 2

...

Σ Σ

...

...

Σ

...

.

Σ

...

.

. . .

...

+

+
+

+
+

+
+

+
+

+

*

+

*
*

+

*

C 1 AOSI1 IN

−−− −
−−

−−

t1,2

b1

t1,1

a1

t1,N+1

bN bN+1

aN+1

tN,N+1

b2

t2,2 SN

DAC
tN,1 tN,2

aNa2

Y Y1 2

YN
S3

Y1

Y N

(AIS)
U

V
(AOS)

RBlock 1

*
*

*
*

+
+

+
+

+
+

+
+

Figure 5.6: Parameterized Signal Flow Graphs

subject to: Cardinality(DP[Blocki])<Ni, ∀i

subject to: Compatible(DP[Blocki],DP[Block j]), ∀i,j

The unknowns are variables DP[Blocki] representing the DPs of the AMS frontend blocks.

The optimization goal is to minimize a weighted sum in which the first term is the recon-

figurable hardware used over time (thus, the hardware cost of the DPs selected to cover

the variable performance requirements of each Blocki), and the second term enforces the

requirement that the performance of the selected DPs match the requirements of the appli-

cation as close as possible over time ∆T .

The first constraint indicates that the DPs selected at each time instance t j require less

hardware than the available resources. The next requirement states that the number of DPs

selected for Blocki should be less than a predefined limit Ni due to the limited on-chip mem-

ory of the AMS architecture. Finally, the DPs of the blocks in the overall implementation

must be compatible with each other.

The above minimization problem is solved off-line due to its high computational re-

quirements. The equation set is hard to solve as the functions are discontinuous and dis-

crete. For example, functions Hardware costDP[Blocki](t) and Compatible are discrete, and

85

functions Per f ormancek(t) is discontinuous. The function Requirementk(t) has different

expressions depending on the nature of the application.

For CPS, we can identify three situations: (i) the most general case is in which no as-

sumptions are made about a performance requirement Pk besides the fact that it is bounded

to the range [P(k,min),P(k,max)]. (ii) A more specific case is the one in which the values of

the performance requirement Pk are uniformly distributed in the range [P(k,min),P(k,max)].

(iii) Finally, the performance requirement values for Pk are in the range [P(k,min),P(k,max)],

and follow a known distribution pk. This chapter focuses on the second case. The first case

is discussed in [62]. Ongoing work studies the third case.

The proposed optimization heuristics selects the set of DPs for reconfiguration by ap-

plying the following steps: First, for each block in the AMS frontend, the Pareto curves are

built for increasing amounts of hardware resources. The Pareto curves correspond to the

performance trade-offs involved in the application description. At this point, the complete

design space of the reconfigurable system is captured. The design space is too large to be

stored entirely in the on-chip memory of the AMS system, so it must be pruned to satisfy

the cardinality constraint of the optimization problem. Hence, the two main steps of the

synthesis procedure are: (1) DP sampling, and (2) DP pruning. The steps are discussed

next.

1. DP sampling. Assuming that the values for performance requirement Pk are uni-

formly distributed in range [P(k,min),P(k,max)] the goal, for a given hardware cost, is to sam-

ple N DPs (N > Ni), such that the performance requirements are met as close as possible.

Furthermore, assuming that the two DPs in Figure 5.7(a), DPs and DPs+1, two reconfigu-

ration policies can be used : Use DPs until the performance requirement for P1 becomes

86

HW set 1

i

P2 i+2

P2 i+1

P1 i+2

P2 i+1 P2 i+2
−

P1 i P1 i+1

P1 i+1 P1 i
−

DPi

P1 MIN

P2 MIN

P2 MAX

P1 MAX

DP1

DP2

s+1DP

DPs

P2 s+1

P2 s

P1 s P1 s+1

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

(a)

x

(b)

P2

P1

DP

DP

i+1

i+2

DPH+
...

P2

P1

HW set 2
P2

Figure 5.7: Design point selection

P1DPs+1 , then switch to DPs+1. This policy covers performance P2 but does not cover per-

formance P1. The second policy uses DPs+1 after the requirement for P1 exceeds P1DPs .

This policy meets the constraint for performance P1, but it does not cover performance P2.

Thus, both policies result in performance loss (either P1 or P2) that can be estimated using

the same reasoning. Consider the second policy. Assuming a uniform probability of having

a performance request in the range [P2s+1,P2s], the total performance loss is equal to

LossP2(P2s,P2s+1) =
∫
|P2s−P2s+1| t dt = (P2s−P2s+1)

2

2

The total loss for the N sampled points is

Total LossP2 = ∑s∈N sampled points
(P2s−P2s+1)

2

2

The total performance loss for performance P2 is minimized, if the N points sam-

ple equally the range [P2MIN ,P2MAX], thus the distance between two consecutive DPs is

DP2MAX−DP2MIN
N−1 . A similar reasoning identifies the optimal DP sampling for the first adap-

tation policy.

The DP sampling method is as follows: (a) for increasing amounts of hardware re-

sources, the algorithm builds the Pareto curves for each system block by synthesizing the

87

blocks for different performance trade-offs and (b) N-equally spaced design points are then

sampled using the value ∑wiPi as a distance metric where wi is the weight assigned to

performance Pi.

2. DP pruning. The pruning step eliminates DPs to reduce the cardinality of the sam-

pled DP set to the predefined limit Ni, so that the performance loss is minimal. The pruning

step first analyzes only DPs that use the same amount of hardware resources.

Figure 5.7(b) shows the removing of DPi+1 from the set of sampled DPs. As a re-

sult, only DPi and DPi+2 are left to cover the performance ranges [DP1i,DP1i+2] and

[DP2i+2,DP2i]. If DPi+1 is removed then the following strategy is the best policy for dy-

namic reconfiguration: (i) utilize DPi+2 for the entire range, if w2(P2i−P2i+2)<w1(P1i+1−

P1i). Otherwise, use DPi for the entire range. For this policy, the performance loss is

PLoss = min(P1i+1 −P1i,P2i+1 −P2i+2). w1 and w2 are the weights for the two perfor-

mance attributes. This reconfiguration policy is justified as follows: Assume that both

DPi and DPi+2 cover the ranges of performance P1 and P2. Also, assume that DPi is

used for the range [P1i,P1i + x], and DPi+2 for the rest. Finding the optimal adaptation

policy requires identifying the value of x, so that the performance loss due to removing

DPi+1 is minimal. Lets assume that point x is positioned as shown in Figure 5.7(b). The

performance loss is w1x(P1i+1 −P1i)+w2(1− x)(P2i+1 −P2i+2) = w2(P2i+1 −P2i+2)+

x[w1(P1i+1−P1i)−w2(P2i+1−P2i+2)]. If w1(P1i+1−P1i)>w2(P2i+1−P2i+2), then the

loss increases with the value of x, hence x = 0 minimizes the performance loss. In this case,

DPi+2 is used for the entire range. If w1(P1i+1 −P1i)< w2(P2i+1 −P2i+2), then x should

be maximum, hence DPi is used for the entire range. For this policy, the performance loss

is PLoss = min(P1i+1 −P1i,P2i+1 −P2i+2).

The performance loss through removing DPi+1 can be improved by analyzing DPs of

88

higher hardware cost, such as DPH+ in Figure 5.7(b). In this case, the performance loss is

PLoss =min(P1i+1−P1i,P2i+1−P2i+2,P1i+1−P1H+), however, more hardware resources

are utilized.

Pruning a design point DPi from the set of sampled DPs might result in pruning more

DPs. For example, if DPi is the only compatible point to DPs, then the second DP should

be also eliminated. Hence, the performance loss due to pruning DPi is computed as PLoss =

∑ j min(P1 j+1 −P1 j,P2 j+1 −P2 j+2), where DPj are all DPs eliminated, including DPi.

The pruning step eliminates N −Ni DPs in increasing order of the resulting performance

loss PLoss.

5.4 Experiments

The ongoing work focuses on the design of a highly reconfigurable sensing node for

CPS applications. Sound-based localization and classification are among the main func-

tionalities assigned to a node. The signal processing method for sound-based localization

is based on the algorithms presented in [29]. The classification algorithm is based on neural

networks.

ADCs are the main building blocks of the sound-based localization frontend. The pro-

posed DP selection methodology was utilized to identify a number of reconfigurable de-

sign points that would cover possible performance requirements, if vehicles are tracked.

AMS frontend reconfiguration is useful in improving the cost-quality tradeoff of signal

processing by customizing the ADC parameters to the characteristics of the application

requirements and audio signature of the vehicle. For example, the bandwidth and preci-

sion requirements of the ADC can change dynamically depending on the importance of the

tracked vehicle.

89

Table 5.1: DP selection for ∆Σ modulators: Case 1

Initial # Final # Step I Step II Step III Rel.cov.(%)

10 3 62712 32395 32998 52

10 5 62712 50875 51961 82

10 7 62712 58303 59411 94

20 4 68729 42856 44858 65

20 6 68729 54903 55712 81

20 8 68729 60453 61261 89

20 10 68729 64220 64519 93

30 3 69478 30165 32998 47

30 6 69478 55013 55938 80

30 9 69478 62631 63134 90

30 12 69478 65512 66057 95

30 15 69478 67561 67915 97

Table 5.1 presents the performance of one DPs selecting case for the reconfigurable ∆Σ

ADCs used for the frontend. This example uses 1 block, 3 hardware sets and 2 performance

attribute. Initially, the Pareto sets for ∆Σ ADCs were produced for different bandwidth

- dynamic range tradeoffs. Different first, second, and third order modulator topologies

were synthesized using the method presented in [44]. Then, a number of equally-spaced

DPs was selected as indicated by the DP sampling criterion in Section 5.3. Experiments

were run for different number of initial points, as shown in Column one in Table 5.1.

Column three shows the resulting performance coverage (in Hz × dB) of the selected DPs.

Using more initial DPs obviously improves the obtained performance coverage. The final

number of DPs is shown in Column two of the table. The number was varied from 10%

90

Table 5.2: DP selection for ∆Σ modulators: Case 2

Initial # Final # Step I Step II Step III Rel.cov.(%)

10 3 32920 17495 17812 54

10 5 32920 26914 27594 84

10 7 32920 30713 31443 96

20 4 36026 23068 23511 65

20 6 36026 29513 29703 82

20 8 36026 32070 32338 90

20 10 36026 33834 34086 95

30 3 36423 16550 17812 49

30 6 36423 29591 29703 81

30 9 36423 33135 33413 92

30 12 36423 34585 34776 95

30 15 36423 35459 35658 98

- 50 % of the initial points. Column four indicates the performance coverage after the

DP pruning step. The coverage can be improved by slightly re-positioning the remaining

DPs. Column five presents the resulting coverage after this step. Finally, Column six

shows the relative coverage after DP re-positioning as compared to the coverage offered

by the much larger set of initial DPs. The column indicates that a coverage above 90%

of the initial coverage can be obtained, if the reconfigurable node has sufficient on-chip

memory to store the configuration information for ten DPs. Beyond that limit, the extra

coverage provided by using more DPs is minimal. Table 5.2 shows the performance of

DPs selecting case for a similar reconfigurable ∆Σ ADC example uses 1 block, 3 hardware

sets and 1 performance attributes. The execution time of the algorithm was less than 0.016

91

seconds, for all examples. The experiments proved that by using the proposed algorithm

significantly fewer points can still cover almost all of the design.

Figure 5.8 shows the DPs selected for a classifier circuit implemented using FPGAs.

Device reconfiguration is performed through the selection of Pareto-optimal DPs from a

design point curve. The curve contains DPs from both the single and variable bit width

designs. The points correspond to different classification precision - cost tradeoffs. Note

that the DP that contains 11,700 slices is not a Pareto point and can be eliminated.

5.5 Conclusions

This chapter presents a synthesis method for automatically selecting the design points

used for online reconfiguration of AMS architectures. This is important for implement-

ing the sensing frontends necessary for CPS. This work assumes that the performance re-

quirements are unknown at the design time but have equal occurrence probability within

a range. The proposed algorithm selects design points so that their overall performance

remains close to any possible requirement in the range. The number of selected design

points is constrained by the size of the on-chip memory for storing the points. The novel

contributions of the work include the proposed synthesis framework and metrics for select-

ing the designs used in dynamic reconfiguration. The method is general and can be applied

to both analog and digital reconfigurable modules. Experiments showed that selecting only

ten DPs offers a good coverage of the possible bandwidth - precision requirements for the

frontend ADCs in sound based tracking applications.

92

Figure 5.8: Design points for classifier circuit

93

Chapter 6

Conclusions

6.1 Conclusions

This thesis presents a systematic methodology for designing reconfigurable, discrete-

time, ∆Σ modulator topologies. Topologies are optimized to minimize the complexity of

the topologies, maximize the topology robustness with respect to circuit nonidealities, and

minimize the total power consumption from the set of all possible topologies expressed by

a generic topology.

The methodology is based on the concept of generic topology that expresses all possible

feed-forward and feedback signal paths in a reconfigurable topology. The modeling of

generic topologies including following nonidealities: integrator leakage and gain error,

circuit noise, and circuit nonlinearity was presented. Models were used in the methodology

to establish a mixed integer-nonlinear (MINLP) equation set. Equations were solved for

finding optimized reconfigurable ∆Σ topologies. Found topologies were then refined using

a Simulink simulation of the models with more detailed nonidealities.

A case study for designing topologies for a three-mode reconfigurable ∆Σ modulator

94

showed that the proposed methodology requires less design effort, reduces power dissipa-

tion and complexity while providing more robustness than traditional methods. A reconfig-

urable topology implementation on a Programmable System-on-Chip (PSoC) device was

also presented. By implementing a dual-mode reconfigurable DS modulator topology us-

ing PSoC reconfigurable mixed-signal SoC, the correctness of the proposed methodology

has been demonstrated. Measurement results show that the modulator can meet the design

specifications.

This thesis also presents a systematic methodology for producing reconfigurable ∆Σ

modulator topologies with optimized flexibility in meeting variable performance specifi-

cations. To increase their flexibility, topologies are optimized for performance attributes

pertaining to ranges of values, rather than being single values. Topologies are implemented

on switched-capacitor, reconfigurable, mixed-signal architectures. As configurable blocks

are very valuable resources, it is extremely important that the topologies use as few blocks

as possible according to design specifications rather than just worst case design. A case

study illustrates the methodology for specifications from telecommunications area. One

switch capacitor block and 25% power consumption are saved in 17% of the cases, and

two switch capacitor blocks and 50% power consumption are saved in 40% of the cases.

This thesis presents a synthesis method for automatically selecting the design points

used for online reconfiguration of AMS architectures. This is important for implement-

ing the sensing frontends necessary for CPS. The work assumes that the performance re-

quirements are unknown at the design time but have equal occurrence probability within

a range. The proposed algorithm selects design points so that their overall performance

remains close to any possible requirement in the range. The number of selected design

points is constrained by the size of the on-chip memory for storing the points. The novel

95

contributions of the work include the proposed synthesis framework and metrics for select-

ing the designs used in dynamic reconfiguration. The method is general and can be applied

to both analog and digital reconfigurable modules. Experiments showed that selecting only

ten DPs offers a good coverage of the possible bandwidth - precision requirements for the

frontend ADCs in sound based tracking applications.

96

Bibliography

[1] A. Doboli, and P. Eles. ”Scheduling under control dependencies for heterogeneous

architectures”, Proc. of the International Conference on Computer Design, 1998, pp.

602-608.

[2] P. Eles, K. Kuchcinski, Z. Peng, and A. Doboli, ”System Level Hardware/Software

Partitioning based on simulated annealing and tabu search”, Design Automation for

Embedded Systems, 2, Kluwer Academic Publishers, 1997, pp. 5-22.

[3] P. Eles, A. Doboli, P. Pop, and Z. Peng, ”Scheduling with bus access optimization

for distributed embedded systems”, IEEE Transaction on VLSI, Vol. 8, No. 5, pp.

472-491, October 2000.

[4] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al Hashimi, ”Quasi-static voltage

scaling for energy minimization with time constraints”, Proc. of the Design, Automa-

tion and Test in Europe Conference, 2005.

[5] J. Henkel, ”A low power hardware/software partitioning approach for core-based em-

bedded systems”, Proc. of the Design Automation Conference, 1999, pp. 122-127.

97

[6] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R. Lauwareins,

”Energy-aware runtime scheduling for embedded multiprocessor socs”, IEEE Design

& Test of Computers, 2001.

[7] T. Blickle, J. Teich, and L. Thiele, ”System-level synthesis using evolutionary algo-

rithms”, Journal of Design Automation for Embedded Systems, 1998.

[8] R. Dick, and N. Jha, ”Mogac: A multiobjective genetic algorithm for the co-synthesis

of hardware-software embedded systems”, Proc. of the International Conference on

Computer-Aided Design, 1997.

[9] B. Dave, G. Lakshminarayana, and N. Jha, ”Cosyn: Hardware-software co-synthesis

of heterogeneous distributed embedded systems”, IEEE Transactions on Computer-

Aided Design, 1999.

[10] R. Ernst, ”Codesign of embedded systems: Status and trends”, IEEE Design & Test,

1998.

[11] S. Ishiwata and et al, ”A single-chip mpeg-2 codec based on customizable media

embedded processor”, IEEE Journal of Solid State Circuits, 2003.

[12] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase, ” Correlating instrumen-

tation to system states: A building block for automated diagnosis and control”, 6th

Symposium on Operating systems Design and Implementation (OSDI), 2004.

[13] Y. Diao, J. Hellerstein, S. Parekh, and J. Bigus, ”Managing web server performance

with autonomous agents”, IBM System Journal, 2003.

98

[14] F. Gomez, D. Burger, and R. Miikkulainen, ”A neuroevolution method for dynamic

resource allocation on a chip multiprocessor”, Proc. of International Joint Conference

on Neural Networks, 2001.

[15] J. Wildstrom, P. Stone, E. Witchel, R. Mooney, and M. Dahlin, ”Towards self-

configuring hardware for distributed computer systems”, Proc. of the International

Conference on Automatic Computing, 2005.

[16] C. Hughes, J. Srinivasan, and S. Adve, ”Saving energy with architectural and fre-

quency adaptations”, Proc. of the Annual International Symposium on Microar-

chitecutre, 2001.

[17] S. Kallakuri and A. Doboli, ”Energy conscious on-line archiecture adaptation for

varying constraints in sensor network applications”, Proc. of International Sympo-

sium on System Synthesis and CODES, 2005.

[18] N. Thepayasuwan, S. Kallakuri, A. Doboli, and S. Doboli, ”Communication subsys-

tem synthesis and analysis tool using bus architecture generation and stochastic arbi-

tration policies”, Proc. of IEEE Symposium on Circuits and Systems (ISCAS), 2005.

[19] S. Kallakuri, N. Thepayasuwan, A. Doboli, and E. Feinberg, ”A continuous time

narkov decision process based system on chip buffer allocation methodology”, Proc.

of IEEE GLSVLSI Conference, 2005.

[20] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets, ”Design and evalua-

tion of a cross-layer adaptation framework for a mobile multimedia system”, Proc.

of SPIE/ACM Multimedia Computing and Networking Conference, 2003.

99

[21] D. Sachs, S. Adve, and D. Jones, ”Cross-layer adaptive video coding to reduce energy

on general-purpose processors”, Proc. of IEEE International Conference on Image

Processing, 2003.

[22] C. Poellabauer, H. Abbasi, and K. Schwan, ”Cooperative run-time management of

adaptive applications and distributed resources”, Proc. of ACM Multimedia, 2002.

[23] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat, ”Ecosystem: Managing energy as a first

class operating system resource”, Proc. of ASPLOS, 2002.

[24] B. Noble, M. Satyanarayanan, D. Narayunan, J. Tilton, J. Flinn, and K. Walker, ”Agile

application-aware adaptation for mobility”, Proc. of the 16th ACM Symposium on

Operating System Principles, 1997.

[25] W. Yuan and K. Nahrstedt, ”Process group management in cross-layer adaptation”,

Proc. of the SPIE/ACM Multimedia Computing and Networking Conference, 2004.

[26] R. Sasanka, C. Hughes, and S. Adve, ”Joint local and global hardware adaptations for

energy”, Proc. of ASPLOS Conference, 2002.

[27] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, ”Combined voltage scaling and

adaptive body biasing for low power microprocessor under dynamic workloads”,

Proc. of the International Conference on Computer-Aided Design, pages 721-725,

2002.

[28] T. Chen, H. Haussecker, A. Bovyrin, R. Belenov, K. Rodyushkin, A. Kuranov, and

V. Eruhimov, ”Computer vision workload analysis: Case study of video surveillance

systems”, Intel Technology Journal, 9(2):109-118, 2005.

100

[29] D. Halupka, N. J. Mathai, P. Aarabi, A. Sheikholeslami, “Robust Sound Localization

in 0.18µm CMOS”, IEEE Trans. Signal Processing, Vol. 53, No. 6, pp. 2243-2250,

2005.

[30] Y. Weng and A. Doboli, ”Smart sensor architecture customized for image process-

ing applications”, Proc. of the 10th IEEE Real-Time and Embedded Technology and

Applications Symposium, 2004.

[31] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, “Wireless Sensor

Networks for Habitat Monitoring”, Proc. ACM International Worshop on Wireless

Sensor Network Applications, 2002.

[32] Y. Weng, S. Kallakuri, A. Doboli, S. Hong, and T. Robertazzi, ”Dynamic architecture

adaptation to improve scalability of sensor networks: A case study for a smart sensor

for face recognition”, Proc. of Real Time System Symposium, 2004.

[33] S. Ganesan, R. Vemuri, “Technology Mapping and Retargeting for Field-

Programmable Analog Arrays”, Proc. DATE, pp. 58-65, 2000.

[34] H. Wang, S. Vrudhula, “Behavioral Synthesis of Field Programmable Analog Array

Circuits”, ACM TODAES, Vol. 7, Issue 4, pp. 563-604, 2002.

[35] K. Gulati, H.-S. Lee, “A Low-Power Reconfigurable Analog-to-Digital Converter”,

Journal Solid-State Circuits, Vol. 36, No. 12, pp. 1900–1911, Dec. 2001.

[36] M. Miller, C. Petrie , “A Multibit Sigma-Delta ADC for multimode Receivers”, Jour-

nal Solid-State Circuits, Vol. 38, No. 3, pp. 475–482, March 2003.

101

[37] R. Van Veldhoven, “A Triple-Mode Continuous-Time Σ∆ Modulator With Switched-

Capacitor Feedback DAC for a GSM-EDGE/CDMA2000/UMTS Receiver”, JSSC,

Vol. 38, No. 12, pp. 2069–2076, Dec. 2003.

[38] M. Mar, E. Blom, “An Architecture for a Configurable Mixed-Signal Device”, Journal

Solid-State Circuits, Vol. 38, No. 3, pp. 565-567, 2003.

[39] R. S. Woodd-Walker, J. L. Watkinsa, A. S. Brierleyb, “Identification of Southern

Ocean acoustic targets using aggregation backscatter and shape characteristics”, ICES

Journal of Marine Science, Vol. 60, No. 3, pp. 641-649, 2003.

[40] “PSoC Mixed Signal Array”, Document No. PSoC TRM 1.21, Cypress Semiconductor

Corporation, 2005.

[41] “DelSig8 v3.2, 8 Bit Delta Sigma ADC”, Application Note, Cypress Semiconductor

Corporation, Oct. 3 2005.

[42] K. Francken, G. Gielen, “A High-Level Simulation and Synthesis Environment for

∆Σ Modulator”, IEEE Trans. CADICS, Vol. 22, No. 8, pp. 1049–1061, 2003.

[43] F. Medeiro, A. Perez-Verdu, A. Rodriguez-Vazquez, “Top-Down Design of High-

Performance Sigma-Delta Modulators”, Kluwer, 1999.

[44] H. Tang, A. Doboli, “High-Level Synthesis of ∆Σ Modulator Topologies Optimized

for Complexity, Sensitivity and Power Consumption”, IEEE Trans. CADICS, Vol. 25,

No. 3, pp. 597-607, 2006.

[45] Y. Wei, A. Doboli, “Systematic Methodology for Designing Reconfigurable ∆Σ Mod-

ulator Topologies for Multimode Communication Systems”, Proc. DATE, 2006.

102

[46] R. Schreier, “The Delta-Sigma Toolbox 6.0”,

http://www.mathworks.com/matlabcentral/fileexchange, Dec. 2004.

[47] S. Norsworthy, R. Schreier, G. Temes, “Delta-Sigma Data Converters. Theory, De-

sign, and Simulation”, IEEE Press, 1997.

[48] R. Fletcher, “www-neos.mcs.anl.gov/neos / solver / MINCO:MINLP - AMPL”.

[49] P. Malcovati, et. al., “Behavioral Modeling of Switched-Capacitor Sigma-Delta Mod-

ulators”, IEEE Trans. C. & S. - I, Vol. 50, No. 3, pp. 352-364, 2003.

[50] H. Tang, Y. Wei, and A. Doboli, “MINLP Based Topology Synthesis for Delta-Sigma

Modulators Optimized for Signal Path Complexity, Sensitivity and Power Consump-

tion”, Proc. DATE, pp. 264–269, 2005.

[51] G. Gielen, K. Francken, E. Martens, and M. Vogels, “An Analytical Integration

Method for the Simulation of Continuous-Time ∆Σ Modulators”, IEEE Trans. on

CAD of Integrated Circuits and Systems, Vol. 23, No. 3, pp. 389–399, March 2004.

[52] R. Schreier, “The Delta-Sigma Toolbox 5.2”,

www.mathworks.com/support/ftp/controlssv5.shtml, Nov. 1999.

[53] http://www-neos.mcs.anl.gov/neos/solvers/minco:MINLP /AMPL.html

[54] S. Hauck, T.W. Fry, J. Kao, “The Chimaera Reconfigurable Functional Unit”, Proc.

IEEE Symposium on FCCM, pp. 87-96, 1997.

[55] B. Miramond, J. Delsome, “Design Space Exploration of Dynamically Reconfig-

urable Architectures”, Proc. DATE, pp. 366-371, 2005.

103

[56] M. Writhlin, “Disc: The Dynamic Instruction Set Computer. FPGAs for Fast Board

Developement and Reconfigurable Computing”, Proc. SPIE, pages 92-103, 1995.

[57] G. Stitt, F. Vahid, “Hardware/Software Partitioning of Software Binaries”, Proc. IC-

CAD, 2002, pp. 164-170.

[58] G. Stitt, R. Lysecky, F. Vahid, “Dynamic Hardware/Software Partitioning: A First

Approach”, Proc. DAC, 2003, pp. 250-255.

[59] E. Lee, “Cyber physical systems: Design challenges”, Technical Report, No.

UCB/EECS-2008-8, University of California at Berkeley, 2008.

[60] S. Hauck, A. Dehon, “Reconfigurable Computing”, Morgan Kaufmann, 2008.

[61] Y. Wei, P. Sun, A. Doboli, ”Systematic Methodology for Reconfigurable Switched-

Capacitor Delta Sigma Modulator Design”, IEEE International SOC Conference

(SOCC’06), 2006.

[62] P. Sun, Y. Wei, A. Doboli, “Flexibility-oriented Design Methodology for Reconfig-

urable Delta Sigma Modulators”, Proc. DATE Conference, 2007.

[63] P. Sun, Y. Zhao, M. Gilberti, A. Doboli, D. Curiac, D. Pescaru, ”Dynamic Reconfig-

uration of Mixed-Domain Embedded Systems for Applications with Variable Perfor-

mance Requirements”, Adaptive Hardware and Systems (AHS), 2008.

[64] P. Sun, C. Ferent, M. Gilberti, A. Doboli, ”Online AMS Frontend Reconfiguration for

Sensor Network Applications”, European Conference on Circuit Theory and Design

(ECCTD’09), 2009.

104

