
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



VLSI Design Methodology Based On A

Parameterized Buffer Controller

A Dissertation Presented

by

Woohyung Chun

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2009



Stony Brook University

The Graduate School

Woohyung Chun

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Sangjin Hong, Dissertation Advisor
Professor, Department of Electrical & Computer Engineering

Ridha Kamoua, Chairperson of Defense
Professor, Department of Electrical & Computer Engineering

Alex Doboli,
Professor, Department of Electrical and Computer Engineering

Hongshik Ahn,
Professor, Department of Applied Mathematics and Statistics

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

VLSI Design Methodology Based On A Parameterized

Buffer Controller

by

Woohyung Chun

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

This thesis presents a VLSI design methodology utilizing a buffer-based data flow

to reduce interconnect resources and to synchronize the data transfer between dif-

ferent processing elements (i.e. between processors / between a processor and a

hardware logic). The buffer-based dataflow is a novel design representation suitable

for implementing data-centric applications. Since the buffer-based dataflow isolates

the functional execution and data transfer of each node by using parameterized buffer

controllers, it is helpful for reducing overall design time and for increasing reconfig-

urability.

We first propose a sharing methodology which reduces the buffer memory and the

number of buses used in the realization of a buffer-based dataflow. Buffer controllers in

iii



a buffer-based dataflow represent the interconnects for data transfers between nodes.

In order to achieve interconnect resource reduction, we control data transfers by

using buffer lifetimes and activity times parameterized in a buffer-based dataflow.

In addition, the proposed methodology finds the sharing case that consumes the

minimum energy within the search range determined by the costs of buffers and

buses.

We also propose a mapping methodology for the case where nodes of a buffer-

based dataflow are realized as programs running on processors. From the buffer-based

dataflow and estimated execution times of functional blocks and data transfers, the

proposed methodology creates a mapped partition and generates the template code

which runs on the processors of a target platform. We also use a processor initiation

scheme to prevent wrong operations from happening when actual execution takes

longer than estimated.

Finally, we evaluate the proposed sharing methodology with dataflow graphs rep-

resenting data-centric applications. Also, our proposed mapping methodology and

the generated template code are evaluated with the SystemC model and Xilinx ISE.

The proposed methodologies are applicable to the high-throughput implementation

of VLSI systems, for which the simplification of control structure is critical, and to

the design of reconfigurable system-on-chip (SoC).

iv



To Lyna and Jiseon



Contents

List of Figures ix

1 Introduction 1

2 Background 5

2.1 Buffer-Based Dataflow Representation . . . . . . . . . . . . . . . . . 5

2.2 Buffer Controller Parameter Characteristics . . . . . . . . . . . . . . 8

3 Energy-Aware Interconnect Resource Reduction Through Buffer Ac-

cess Manipulation 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Approach and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Buffer Lifetime and Buffer Sharing . . . . . . . . . . . . . . . 21

3.3.2 Activity time and Bus Sharing . . . . . . . . . . . . . . . . . . 27

3.3.3 Relation between Activity time and Lifetime . . . . . . . . . . 38

3.3.4 Split Activity Times . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.5 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Evaluation of The Proposed Methodology . . . . . . . . . . . . . . . 48

3.4.1 Evaluation of Buffer Sharing and Bus Sharing . . . . . . . . . 49

3.4.2 Evaluation of Split Activity Times . . . . . . . . . . . . . . . 53

vi



3.4.3 Decomposing A Buffer-Based Data Flow to Reduce the Com-

plexity of Evaluation . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.4 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . 57

4 Buffer Controller Based Multiple Processing Element Utilization for

Dataflow Synthesis 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Our Approach and Objectives . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Mapping Characterization . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Entities for Data Transfers of Processing Blocks Mapped to

Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Design Parameters For Primitive Template Generation . . . . 70

4.3.3 Mapping Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Resource Utilization and Synchronization . . . . . . . . . . . . . . . . 73

4.4.1 Processor Utilization of Mapping . . . . . . . . . . . . . . . . 74

4.4.2 Bus Utilization of Mapping . . . . . . . . . . . . . . . . . . . 81

4.4.3 Processor Initiation Scheme and Global Controller . . . . . . . 83

4.4.4 Processor - Hardware Coexistence of Mapping . . . . . . . . . 86

4.4.5 Mapping Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.6 Template Code Generation . . . . . . . . . . . . . . . . . . . . 91

4.5 Evaluation of Proposed Methodology . . . . . . . . . . . . . . . . . . 93

4.5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.2 Processors Only . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.3 Processor-Hardware Coexistence . . . . . . . . . . . . . . . . . 97

vii



4.5.4 Template Code Generation . . . . . . . . . . . . . . . . . . . . 100

5 Conclusion and Future Research 103

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



List of Figures

2-1 A buffer−based dataflow derived from a dataflow by buffer insertion. 6

2-2 Illustration of read/write timing associated with BCi,j. . . . . . . . . 8

2-3 Generating the buffer-controller parameter table. . . . . . . . . . . . 9

2-4 An example dataflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2-5 The buffer-based dataflow derived from Fig. 2-4. . . . . . . . . . . . . 12

2-6 Buffer controllers are synchronized by a global controller. . . . . . . . 13

3-1 Realization of a dataflow in a reconfigurable platform. . . . . . . . . . 17

3-2 Control of data transfers for buffer sharing in Fig. 3-1. . . . . . . . . 18

3-3 Finer-grained view of the data transfers shown in Fig. 3-2 . . . . . . 19

3-4 Splitting the writing of BCin,1 in Fig. 3-3 . . . . . . . . . . . . . . . . 20

3-5 The parameterized buffer-based dataflow derived from Fig. 2-1(a). . . 22

3-6 Proposed buffer sharing procedure. . . . . . . . . . . . . . . . . . . . 23

3-7 Maximal separation of the lifetimes shown in Fig. 3-5. . . . . . . . . 25

3-8 Lifetime translation when the separation in Fig. 3-7 is completed. . . 28

3-9 Writing and reading activity times in T (BCi,j) . . . . . . . . . . . . . 30

3-10 Proposed bus sharing procedure. . . . . . . . . . . . . . . . . . . . . . 31

ix



3-11 Two separation approaches applied to the buffer controllers in Fig. 3-5

when buses are separated for writing and reading activities. . . . . . . 33

3-12 Two separation approaches when buses are not distinguished for writ-

ing and reading activity. (a) Separating activity times among buffer

controllers is prior to the separation of activity times within a buffer

controller. (b) Separating activity times within a buffer controller pre-

cedes the separation of activity times among buffer controllers. . . . . 37

3-13 Unbalanced data transfers. . . . . . . . . . . . . . . . . . . . . . . . . 38

3-14 Buffer and bus sharing when buses are not separated for writing and

reading activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3-15 Splitting T (R8,9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-16 Split activities in the inputs/outputs of a node. . . . . . . . . . . . . 44

3-17 All possible sharing cases for the buffer-based dataflow that has five

buffers and ten buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-18 Results of buffer and bus sharing. . . . . . . . . . . . . . . . . . . . . 50

3-19 Evaluation of split activity times. . . . . . . . . . . . . . . . . . . . . 53

3-20 Decomposition of the buffer-based dataflow in Fig. 3-5. . . . . . . . . 54

3-21 Evaluation results with the decomposed dataflow. . . . . . . . . . . . 56

3-22 Search ranges for the minimum energy consumption. . . . . . . . . . 58

3-23 Simulation results of finding the sharing case consuming the minimum

energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-1 Overall flow of proposed mapping methodology. . . . . . . . . . . . . 64

x



4-2 Synchronization of data transfers through a global controller and a

buffer controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4-3 Mapping a buffer-based dataflow to a target platform. . . . . . . . . . 65

4-4 Pseudo codes of SNDi,j and RCVi,j. . . . . . . . . . . . . . . . . . . 67

4-5 Pseudo template codes of a given buffer-based dataflow. . . . . . . . . 68

4-6 Pseudo code of JOINTi,j. . . . . . . . . . . . . . . . . . . . . . . . . 69

4-7 A buffer-based dataflow . . . . . . . . . . . . . . . . . . . . . . . . . 71

4-8 Execution timing when f(1) and f(2) of Fig. 4-7 are mapped to pro-

cessor 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4-9 Execution timing representation to map processing blocks to processors. 74

4-10 Processor 1 receives start writei,j during the execution of p[f(i)]. . . 77

4-11 Mapping results of Fig. 4-9(a) when Ti(max) and Ti(actual) in Table

4.1 is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4-12 When the execution time of SND1,5 takes longer than M1,5 in Fig.

4-9(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4-13 When the estimated Tmax(SND1,5) is applied to Fig. 4-12. . . . . . . 80

4-14 Estimated execution times when processing blocks of Fig. 4-7 are

mapped to 4 processors. . . . . . . . . . . . . . . . . . . . . . . . . . 81

4-15 Deadlock problem when start read of multiple fan-ins is determined

by stop write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-16 Illustration of the signalling for processor initiation scheme. . . . . . . 86

4-17 Timing mismatch problem in the processor-hardware coexistence of

mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



4-18 Proposed mapping algorithm. . . . . . . . . . . . . . . . . . . . . . . 89

4-19 Procedure of template codes generation. . . . . . . . . . . . . . . . . 92

4-20 Mapping cases according to the estimation of SND1,2. . . . . . . . . 94

4-21 Mapping results of processor-hardware coexistence. . . . . . . . . . . 95

4-22 Simulation results of processor initiation scheme. . . . . . . . . . . . . 98

4-23 Simulation results of processor-hardware coexistence. . . . . . . . . . 99

4-24 Generated template codes for Xilinx Virtex-5 FXT. . . . . . . . . . . 101

xii



Chapter 1

Introduction

For complex designs, the greatest impact on performance, costs and functionality can

be made at the architectural level [1]. Top-down design methodologies proceeding

from the architectural to lower levels, are thus becoming popular. This design trend

relaxes redesign efforts at higher levels of system assembly [2], and most designers

endeavor to simplify the complex system under design from an early stage.

One of the most popular simplifying methods is to represent a target application

as a dataflow graph. Especially, modeling digital signal processing (DSP) applications

through coarse-grained dataflow graphs is widespread and is adopted in many high-

level design frameworks [3]. When a dataflow graph is synthesized in a fine-grained

reconfigurable platform such as field-programmable gate arrays (FPGAs), the inter-

connects of the dataflow consume more resources than the functional units do [4].

In addition, the implementation of multiplexors for data routing is very expensive in

typical FPGA design [5]. In [6], Cong et al. presented a method that can bind a

dataflow graph to a parameterizable register-file microarchitecture in order to reduce

1



the interconnect and multiplexor complexity. However, this approach is limited in

terms of reducing the number of multiplexors because the microarchitecture still uses

multiplexors for data routing.

In this dissertation, we use the techniques developed for buffer-based dataflow

representations [7], in which buffers are inserted between the nodes of a dataflow

graph. Due to these buffers, data transfers between nodes can be separated from

the functional executions of nodes [8]. Thus, a buffer-based dataflow can increase

the reusability and reconfigurability of the interconnects between nodes. Moreover,

the data transfers between nodes can be timely multiplexed with the buffer controller

parameters at the level of a dataflow. Therefore, there is no need for additional mul-

tiplexors to route data transfers. In a data-centric application, interconnects account

for a dominant source of energy consumption because data transfers through the in-

terconnects frequently occur. We also discuss the relation between the interconnect

resource and energy consumption in a buffer-based dataflow.

Most common DSP applications such as coding, filtering and image processing

require floating-point operations. In order to realize floating-point operations, pro-

cessors are used to expedite the design cycle. In addition, processors are useful for

realizing multiple applications in a time-shared manner. Thus, recent reconfigurable

platforms such as Xilinx FPGAs include processors [15]. In the case where a complex

system is represented as a dataflow graph having a large number of nodes (processing

blocks), the processing blocks should be efficiently mapped to a multi-core processor

architecture to minimize hardware resources.

When a dataflow is synthesized in a target platform having multi-core proces-

2



sors and hardware logics, it becomes difficult to synchronize data transfers between

processing blocks mapped to different processors (or, one is mapped to a processor

and the other is implemented as a hardware) because the execution time of proces-

sors varies due to the dynamic behavior of software such as interrupt handling and

context switching. Thus, the execution times of processing blocks are estimated for

mapping [11,16,17,19]. However, in the case where actual execution times is greater

than the estimated times, the mapping based on the estimated times may produce

wrong results. To prevent this problem, Jung et al. [20] proposed a handshaking

scheme between a centralized controller and sequential logics having variable exe-

cution time. However, the handshaking scheme has a limited capability to support

the data transfers between processors (or between a processor and a hardware) be-

cause the data transfers on processors are also the programs having variable execution

times [21].

In a buffer-based dataflow, the timing mismatch of data transfers is solved with the

buffer controller parameters in the level of a dataflow. By utilizing the data transfer

characteristics of the buffer-based dataflow, we propose a mapping methodology for a

target system having multi-core processors and programmable logics (or hardwares).

The proposed methodology translates the data transfer activities of processing blocks

into the primitive templates running on processors.

The remainder of this dissertation is organized as follows: Chapter 2 reviews

the method to construct a buffer-based dataflow with buffer controller parameters.

Chapter 3 describes interconnect resource reduction through parameterized buffer

controllers. It provides a controlling method of data transfer, and an energy con-

3



sumption model for a buffer-based dataflow. In Chapter 4, we propose a mapping

methodology which maps processing blocks to processor(s). The proposed methodol-

ogy achieves the synchronized data transfer between processors (or, a processor and a

hardware) by utilizing a buffer-based dataflow. It also provides a processor initiation

scheme to prevent wrong operation when actual execution times take longer than

estimated execution times. Chapter 5 finally concludes the research works in this

dissertation, and mention the future works.

4



Chapter 2

Background

2.1 Buffer-Based Dataflow Representation

Most real-time signal processing algorithms consider sets of data as frames. Such

systems possess two unique characteristics of execution. First, they can be repre-

sented as dataflow graphs which represent data dependency between processing blocks

(nodes) [13]. Second, each node in the dataflow executes a set of data elements per

frame (iteration). Fig. 2-1 shows a buffer-based dataflow that is constructed by

inserting buffers between nodes.

In Fig. 2-1(a), a node can be regarded as the source and destination of data. For

example, node 1 generates data as the source of the data fed to nodes 2 and 6. As

shown in Fig. 2-1(b), this source-destination relationship can be isolated by inserting

buffers between nodes. By separating the relationships between nodes, nodes only

represent their functionality. The isolation also facilitates to reconfigure the overall

system.

5



1

3 4 52

Input

Output 1

7 8 96 Output 210

Output 3

(a) A dataflow graph

1

3 4 52

BufferInput

Output 1

7 8 96 Output 210

Output 3

Buffer Buffer

Buffer

Buffer Buffer Buffer

Buffer Buffer

Buffer

Buffer Buffer Buffer Buffer

Buffer

(b) Buffer insertion

Figure 2-1: A buffer−based dataflow derived from a dataflow by buffer insertion.

In a buffer-based dataflow graph, inserting a buffer to an edge represents delivering

a data frame from its source to destination. Thus, the size of data frames appearing

at the input port of a buffer is identical to the size of data frames at the output

port of the buffer. Furthermore, while a source node is writing data to a buffer,

the corresponding destination node is able to read data from the buffer. Therefore,

buffers in a buffer-based dataflow can be realized as the dual-port memory which

allows simultaneous writing and reading access.

6



Let BCi,j denote the buffer between the producer node i and the consumer node j.

The primary parameters which determine the buffer controller structure and overall

physical realization are the following [7]: logic latency (Li), write offset (nwi,j), read

offset (nri,j), block size (Mi,j) and delay factor (Di,j). The logic latency Li is the

latency of node i. The write offset nwi,j represents the difference between reading data

from the previous buffer and writing data to the current buffer without considering

Li. The read offset nri,j is the offset from the start of writing data to BCi,j to the

start of reading data from BCi,j when the writing speed of node i and the reading

speed of node j are matched. However, if the writing speed of node i is slower than

the reading speed of node j, node j does not read valid data from BCi,j. The delay

factor Di,j is to represent this rate mismatch between nodes i and j. The block size

Mi,j characterizes the data size generated by node i. It also determines the maximum

storage requirement of BCi,j. The unit of all the parameters described above is the

unit cycle of the target platform used.

Fig. 2-2 informally shows the write and read timing of BCi,j. When the logic

latency of node i (i.e., Li) and the write offset (i.e., nwi,j) related to BCi,j elapse,

node i starts to write data to BCi,j. If the writing speed of node i is slower than the

reading speed of node j, the reading of BCi,j may finish before the writing of BCi,j

ends. In this case, node j does not read the whole data generated from node i. In

order to prevent wrong data transfers due to the mismatch of writing and reading

speed, node j starts to read data from BCi,j when max{nri,j, Di,j} passes from the

start of writing.

7



start of writing

i BCi,j j

Writing of BCi,j 

Write data to BCi,jLi + nwi,jnode i

Read data from BCi,jmax(nri,j , Di,j )node j

start of reading

Reading of BCi,j 

Figure 2-2: Illustration of read/write timing associated with BCi,j.

2.2 Buffer Controller Parameter Characteristics

In order to construct a buffer-based dataflow, a table called the buffer controller

parameter table should be extracted from the operational dependency of a dataflow

and the offsets of fan-ins and fan-outs of processing elements, as shown in Fig. 2-3.

Here, the fan-ins and fan-outs offsets represent the input and output characteristics

of a node. When a node has multiple fan-ins, the timing differences between reading

data from the multiple fan-ins determine the fan-ins offset. For example, suppose

that node i has two fan-ins and that the start time of reading data from one fan-in

port is 10 cycles earlier than the start time of reading data from the other fan-

out port. The fan-ins offset of node i is then represented as [0, 10]. If a node has

multiple fan-outs, the timing differences between writing data to the multiple fan-outs

determine the fan-outs offset. The fan-ins and fan-outs offsets and the operational

8



Operational 

Dependency

Operational 

Synchronization 

Constraints

Data flow Fan-ins/Fan-outs         

Offsets

Buffer Controller

Parameter Table

Figure 2-3: Generating the buffer-controller parameter table.

1 3 4 52Input Output

Figure 2-4: An example dataflow.

dependency determine the functional characteristics of a dataflow. Therefore, when

a dataflow is converted to a buffer-based dataflow by inserting buffer controllers, the

fan-ins and fan-outs offsets and the operational dependency must be preserved. Edge

activity times represent the timing relation of data transfers through edges, and node

execution times represent the time to process data from fan-in to fan-out edges.

For the dataflow shown in Fig. 2-4, Table 2.1 represents the edge activity times

and node execution times. In Table 2.1, ei,j represents the edge from source node

i to destination node j. start writei,j and start readi,j represent the start times of

writing data and reading data through ei,j, respectively. The operational depen-

dency of each edge is described from einput,1 to e5,output. This dependency simply

9



Table 2.1: Operational Dependency Derived from Fig. 2-4

Operational dependency

einput,1 start writeinput,1 < start readinput,1

e1,2 start write1,2 < start read1,2

e2,3 start write2,3 < start read2,3

e2,4 start write2,4 < start read2,4

e3,1 start write3,1 < start read3,1

e3,4 start write3,4 < start read3,4

e4,5 start write4,5 < start read4,5

e5,output start write5,output < start read5,output

node 1 max{start readinput,1,start read3,1} + L1

< start write1,2

node 2 start read1,2 + L2

< min{start write2,3, start write2,4}

node 3 start read2,3 + L3 < start write3,4

node 4 max{start read3,4, start read2,4} +L4

< start write4,5

node 5 start read4,5 + L5 < start write5,output

represents start writei,j < start readi,j because writing data through an edge always

precedes reading data through the edge. In addition, since the edge is connected to

the fan-in/fan-out port of a node, the functional execution of the node determines

the operational dependency between fan-in and fan-out edges. The operational de-

pendency between fan-in and fan-out edges are listed from node 1 to node 5. For

example, node 1 has two fan-in edges, einput,1 and e3,1, and one fan-out edge, e1,2.

Before node 1 begins to write data through e1,2, it reads data from einput,1 and e3,1.

However, e3,1 is the feedback loop. Therefore, the data read from node 3 have no de-

pendency on the data transferred through e2,3 in the current iteration period. If node

3 generates data by referring to the data read from node 2 in the current iteration

period, the dataflow falls into the deadlock condition. That is, node 1 keeps waiting

for the data from node 3 while node 2 waits for the data from node 1, and node 3

10



Table 2.2: Fan-ins and Fan-outs Offsets of Figure 2-4

Fan-ins Offset Fan-outs Offset
node 1 [Iinput,1 I3,1] N/A
node 2 N/A [O2,3 O2,4]
node 3 N/A [O3,1 O3,4]
node 4 [I2,4 I3,4] N/A
node 5 N/A N/A

also keeps waiting for the data from node 2. Thus, start write3,1 is removed from

the operational dependency of node 3 in Table 2.1. In order to construct the buffer

based data flow preserving the intrinsic characterisitcs of a given data flow, we also

need the information of fan-ins/fan-outs offsets as shown in Table 2.2.

In Table 2.2, [Ii,j Ik,j] represents the fan-ins offset of node j having two fan-in

edges, ei,j and ek,j. [Oi,j Oi,k] denotes the fan-outs offset of node i having two fan-out

edges, ei,j and ei,k. For example, [Iinput,1 I3,1] is the fan-ins offset of node 1 having

einput,1 and e3,1 as fan-in edges. [O2,3 O2,4] is the fan-outs offset of node 2 having

e2,3 and e2,4 as fan-out edges. In case that there is one fan-in/fan-out edge, ”N/A”

appears in Table 2.2. In terms of start write and start read, [Ii,j Ik,j] and [Oi,j Oi,k]

are expressed as the following equations.

Ii,j = start readi,j −min(start readi,j, start readk,j),

Ik,j = start readk,j −min(start readi,j, start readk,j),

Oi,j = start writei,j −min(start writei,j, start writei,k),

Oi,k = start writei,k −min(start writei,j, start writei,k).

Fig. 2-5 shows the buffer-based dataflow converted from the dataflow of Fig. 2-4.

11



1 3 4 52BCin,1Input OutputBC1,2

BC3,1

BC2,3 BC3,4

BC2,4

BC4,5 BC5,out

Figure 2-5: The buffer-based dataflow derived from Fig. 2-4.

Since BCi,j has the operational characteristics of ei,j in Table 2.1, start writei,j and

start readi,j of Table 2.1 are used to represent the operational dependency of this

buffer-based dataflow. In the buffer controller BCi,j, the start signals are realized

with the primary parameters introduced in Section 2.1 as follows:

start writei,j = Li + nwi,j + starti, (2.1)

start readi,j = start writei,j + max{nri,j, Di,j}, (2.2)

stop writei,j = start writei,j + Mi,j, (2.3)

stop readi,j = start readi,j + Mi,j. (2.4)

In (2.1), starti is the time value in which node i begins reading data from the previous

buffer controller through its fan-in port. Equation (2.2) reflects the rate mismatch be-

tween source node i and destination node j. In one iteration period, the data transfer

through each buffer controller is done once. Thus, once data have been written to (or

read from) the buffer controller BCi,j, the data are continuously being written to(or

read from) BCi,j until the size of transferred data reaches Mi,j. Equations (2.3) and

12



Data DataBCi,j j

Global 

controller

start_writei,j start_readi,j

BCj,k

start_writej,k

Datai

Figure 2-6: Buffer controllers are synchronized by a global controller.

(2.4) represent the end time of writing and reading data to/from BCi,j, respectively.

To synchronize the data transfer between a node and a buffer controller, start write

and start read are generated by a global controller, as shown in Fig. 2-6. Each el-

ement receives its start write and start read from a global controller. start write

enables the data transfer from a node to a buffer controller and start read initiates the

data transfer from a buffer controller to a node. stop write (stop read) corresponds

to the signal transition which changes start write (start read) from 1 to 0.

13



Chapter 3

Energy-Aware Interconnect

Resource Reduction Through

Buffer Access Manipulation

3.1 Introduction

In this chapter, we propose the sharing methodology to reduce the numbers of buffers

and buses in a buffer-based dataflow. Since the buffers in a buffer-based dataflow

represent the interconnects between nodes, we propose a methodology for sharing

buffers in a buffer-based dataflow in order to reduce the number of the interconnects

required. Buffer sharing is a well-known technique to reduce system memory in

register transfer level (RTL) designs. The register allocation problem occurring in

compiler design is also related. Existing buffer-sharing techniques merge those buffers

that have non-overlapping lifetimes into one [9–12]. These approaches are based on

14



buffer lifetime analysis but possess limited control of buffer lifetimes.

In the proposed approach, buffer lifetimes are fully controlled in a given time

constraint in order to increase the possibility of buffer sharing. Our buffer sharing

method moves (or translates) buffer lifetimes within the time constraint so that the

buffer lifetimes become non-overlapped with each other. Furthermore, for a finer-

grained control of data transfers, a buffer lifetime is separated into two: reading-

activity time and writing-activity time. In case activity times are non-overlapped,

they are allocated to the same interconnect (i.e., bus) to reduce the number of buses.

Thus, our bus-sharing method also translates activity times within the time constraint

so that the translated activity times are non-overlapped with each other as much as

possible. In addition, the proposed bus-sharing method further splits activity times

in order to balance data transfers among buses.

Even though the techniques to share buffers and buses can reduce the synthesiz-

able resources, they may increase the total energy consumption when the runtime

operation such as data transfers has the dominant effect on the total energy con-

sumption. When the buffers having different sizes of memory are merged to one, it

is possible that a large buffer memory is activated by a small buffer-memory access.

Therefore, the energy consumption by the buffer memory activation becomes larger

after buffer sharing is applied. In addition, since the bus sharing increases the num-

ber of ports in a bus, bus sharing increases the energy consumption of data transfers

due to the increased port-loading capacitance. Thus, the sharing case consuming the

minimum energy may be different from the sharing case demanding the minimum re-

source, depending on the buffer and bus costs of the target system used. In order to

15



determine the sharing case consuming the minimum energy, we construct an energy

consumption model with the estimated buffer and bus costs.

This chapter is organized as follows. Section 3.2 provides the overview of the

proposed approach to reduce interconnect resources by using a buffer-based dataflow.

In Section 3.3, we propose a sharing methodology to reduce buffers and buses in a

buffer-based dataflow. In order to explain the procedures to share buffers and buses,

we define slack as the time to translate lifetimes and activity times so that they are

non-overlapped. The method of splitting activity times is also proposed to balance

data transfers through buses. In the end of Section 3.3, we establish our energy con-

sumption model used to find the sharing case consuming the minimum energy. We

also propose an algorithm to find the sharing case based on the energy consumption

model. Section 3.4 evaluates the proposed method described in Section 3.3 and dis-

cusses the dataflow decomposition that is to reduce the complexity of evaluation. In

the evaluation of energy consumption, we observe that the sharing case consuming

the minimum energy does not correspond to the sharing case having the minimum

resources.

3.2 Approach and Objectives

Fig. 3-1 illustrates the realization of a dataflow in a reconfigurable platform. When

a dataflow is synthesized in the reconfigurable target platform such as FPGA, the

edges are realized through pre-assigned interconnects. If a dataflow is converted to a

buffer-based dataflow, inserting buffer controllers doubles the number of interconnects

16



R
e

c
o

n
fi

g
u

ra
b

le
 I
n

te
rc

o
n

n
e

c
ts

B
C

2
,3

N
o

d
e

 1

In
p

u
t

N
o

d
e

 2

N
o

d
e

 3

B
C

1
,2

B
C

in
,1

N
o

d
e

 1

In
p

u
t

N
o

d
e

 2

N
o

d
e

 3

R
e

c
o

n
fi

g
u

ra
b

le
 I
n

te
rc

o
n

n
e
c

ts

N
o

d
e
 1

In
p

u
t

N
o

d
e
 2

N
o

d
e
 3

R
e

c
o

n
fi

g
u

ra
b

le
 I
n

te
rc

o
n

n
e

c
ts

1
B

C
in

,1
In

p
u

t

C
o

n
s

tr
u

c
t 

B
u

ff
e

r 
b

a
s

e
d

 d
a

ta
fl

o
w

B
C

1
,2

2
B

C
2
,3

3

B
u

ff
e

r 

S
h

a
ri

n
g

1
In

p
u

t
2

3
O

u
tp

u
t

B
C

3
,o

u
t

O
u

tp
u

t

R
e

a
li
z
a
ti

o
n

R
e

a
li
z
a

ti
o

n

O
u

tp
u

t

B
C

3
,o

u
t

O
u

tp
u

t

#
 o

f 
in

te
rc

o
n

n
e

c
ts

 =
 4

#
 o

f 
in

te
rc

o
n

n
e

c
ts

 =
 8

#
 o

f 
in

te
rc

o
n

n
e
c

ts
 =

 2

N
o

d
e

 1

In
p

u
t

N
o

d
e

 2

N
o

d
e

 3

B
C

(i
n

,1
)(

2
,3

)(
3

,o
u

t)

R
e

c
o

n
fi

g
u

ra
b

le
 I
n

te
rc

o
n

n
e

c
ts

#
 o

f 
in

te
rc

o
n

n
e
c

ts
 =

 4

O
u

tp
u

t

B
u

s
 

S
h

a
ri

n
g

B
C

1
,2

B
C

(i
n

,1
)(

2
,3

)(
3
,o

u
t)

B
C

1
,2

O
u

tp
u

t

C
a

s
e

 (
a

)
C

a
s

e
 (

b
)

C
a

s
e

 (
c

)
C

a
s

e
 (

d
)

F
ig

u
re

3-
1:

R
ea

li
za

ti
on

of
a

d
at

afl
ow

in
a

re
co

n
fi
gu

ra
b
le

p
la

tf
or

m
.

17



Data

time constraint

Data

Data

Data

BCin,1

BC1,2

BC2,3

BC3,out

iteration period

Data

Data

Time

Overlapped data transfer times

Figure 3-2: Control of data transfers for buffer sharing in Fig. 3-1.

as shown in Case (b). However, the buffer-based dataflow controls data transfers

by using the buffer controller parameters introduced in Chapter 2. Therefore, the

data transfer control does not require any change of the functional characteristics of

nodes. If data transfers are controlled to use the same interconnects, the number of

interconnects may be reduced.

In Fig. 3-1, data transfers are controlled by applying the buffer and bus sharing

technique to the buffer-based dataflow. As the result of sharing, compared with

Case (a), the number of interconnects is reduced by two in Case (d). In Fig. 3-1,

BC(in,1)(2,3)(3,out) is the buffer controller which BCin,1, BC2,3 and BC3,out are merged

into. Since the buffer controller corresponds to the edge of the original dataflow,

buffer sharing reduces the number of interconnects (i.e., buses) in a target platform.

Fig. 3-2 illustrates the control of data transfers for the buffer sharing shown in

Fig. 3-1. The rectangles enclosed with solid lines correspond to the data transfer

times of the buffer controllers in the y axis. The rectangles with dotted lines and

18



Writing

Time constraint

Writing

BCin,1

BC1,2

BC2,3

BC3,out

Reading

Reading

Writing

Reading

Writing

Reading

Figure 3-3: Finer-grained view of the data transfers shown in Fig. 3-2

blue arrows represent delayed data transfers. The data transfers corresponding to

the solid rectangles require four buffer controllers because the data transfer times are

overlapped in the iteration period. However, if a time constraint is larger than the

iteration period such that the data transfers corresponding to the dotted rectangles

are delayed to be non-overlapped, the number of buffer controllers required for data

transfers is reduced into two. Therefore, in Fig. 3-2, the data transfers of BCin,1,

BC2,3 and BC3,out are done through BC(in,1)(2,3)(3,out) of Fig. 3-1. For a finer-grained

control of data transfers, we further divide the data transfer of a buffer controller

into two parts, namely writing and reading. Fig. 3-3 illustrates the case where the

writing and reading parts of the buffer controllers in Fig. 3-2 are arranged to be non-

overlapped within a time constraint. Note that non-overlapped writings and readings

can be assigned to the same bus. Thus, the bus sharing of Fig. 3-1 is achieved by

assigning the reading of BCin,1 to one bus and all others to the same bus. Compared

with the case where the original dataflow is directly realized, the number of buses is

reduced into two. However, the data transfers through buses are unbalanced because

19



Writing of BCin,1 Writing

BUS 1

BUS 2

Reading of BCin,1

Reading

Part A Part B

Figure 3-4: Splitting the writing of BCin,1 in Fig. 3-3

only one reading (i.e. the reading of BCin,1) occupies one bus. To resolve this, the

writing of BCin,1 can be split, as shown in Fig. 3-4. Here, the writing of BCin,1 is

split into two: parts A and B. During the time corresponding to part A, there is

no data transfer in BUS1. Thus, part A is assigned to BUS1 to balance the data

transfers between BUS1 and BUS2.

3.3 Proposed Methodology

The three techniques described in the previous section are called buffer sharing (Sec-

tion 3.3.1), bus sharing (Section 3.3.2) and data transfer splitting (Section 3.3.4),

respectively. In this section, we explain more details of these three techniques in

turn. We also discuss in Section 3.3.3 the relationship between the interconnect re-

source sharing and energy consumption. Finally, Section 3.3.5 explains the energy

consumption model to determine the sharing case which consumes the minimum en-

ergy.

20



3.3.1 Buffer Lifetime and Buffer Sharing

The buffer lifetime of BCi,j is defined as the time period from the start time when

node i writes the first data to BCi,j to the end time when node j reads the last data

from BCi,j. Thus, the buffer lifetime of BCi,j, T (BCi,j) is given by

T (BCi,j) = stop readi,j − start writei,j. (3.1)

Fig. 3-5 illustrates the parameterized buffer-based dataflow corresponding to the

dataflow in Fig. 2-1(a). The buffer-based dataflow shown in Fig. 3-5 has the minimum

iteration period possible. Therefore, the buffer lifetimes have their minimal values,

and they are maximally overlapped each other. If a dataflow has multiple outputs,

the end of an iteration period is the maximum value among stop reads of outputs.

Thus, the iteration period of Fig. 3-5 is from start write0,1 to stop read10,out2. Since

buffer controllers are shared when buffer lifetimes are non-overlapped, buffer lifetimes

are translated in order to create non-overlapped areas between lifetimes. The range

of translated lifetimes is defined as the slack of lifetime:

slack = given constraint−min{iteration period} (3.2)

where given constraint comes from the application specification and min{ iteration

period} is the minimum iteration period of the buffer-based dataflow corresponding to

the application. Thus, when slack of lifetime > 0, buffer lifetimes can be translated.

Buffer sharing is done through merging buffer controllers. In order to merge BCi,j

21



T(BC0,1)

T(BC1,2)

T(BC2,3)

T(BC3,4)

T(BC3,5)

T(BC4,5)

T(BC5,out1)

T(BC1,6)

T(BC6,7)

T(BC7,6)

T(BC7,8)

T(BC8,9)

T(BC9,10)

T(BC10,out2)

All life times are overlapped.

T(BC10,out3)

Iteration period is determined 

by stop_read10,out2 .

1

3 4 52

Input

Output 1

7 8 96 Output 210

Output 3

BC1,2 BC2,3

BC3,5

BC3,4 BC4,5 BC5,out1

BC1,6 BC6,7

BC7,6

BC7,8 BC8,9 BC9,10 BC10,out2

BC10,out3

BC0,1

Figure 3-5: The parameterized buffer-based dataflow derived from Fig. 2-1(a).

22



Separation of buffer lifetimes

∀ BCi,j , Buffer_lifetimei,j

Buffer controllers are merged 

according to equation (3.3)

Translation of buffer lifetimes

Figure 3-6: Proposed buffer sharing procedure.

and BCk,l into the merged buffer controller BC(i,j)(k,l), the lifetimes of BCi,j and BCk,l

must satisfy the following condition:

max{stop readi,j, stop readk,l} −min{start writei,j, start writek,l}

> T (BCi,j) + T (BCk,l) (3.3)

where i 6= k, j 6= l. Equation (3.3) represents that two lifetimes are non-overlapped if

the difference between the maximum stop read and the minimum start write of two

lifetimes is larger than the summation of the two lifetimes.

Fig. 3-6 shows the overall procedure of the proposed buffer sharing. The first step

is to separate buffer lifetimes in a coarse-grained manner. For the separation, buffer

lifetimes are moved only to the right. The next step is to translate buffer lifetimes

in a finer-grained manner. In order to decrease the number of overlapped lifetimes,

buffer lifetimes are moved to either left or right. When all separation and translation

steps are completed, buffer controllers are merged according to (3.3).

23



Algorithm 1 Maximal Separation Scheme
1: MAX SEPARATION( T (BCi,j) )
2:
3: while (1) do
4: if (node j is an output) and (node i has a single fan-out) then
5: nwi,j ← nwi,j + given constraint − stop readi,j ;
6: else
7: Count the number of overlapped lifetimes;
8: Record the counting number to cnt bf tr;
9: nwi,j ← nwi,j + slack of lifetime;

10: Count the number of overlapped lifetimes;
11: Record the counting number to cnt af tr;
12: if (cnt bf tr ≤ cnt af tr) then
13: //The translation of T (BCi,j) increases the number of overlapped lifetimes
14: //Restore the previous nwi,j

15: nwi,j ← nwi,j − slack of lifetime;
16: break;
17: end if
18: end if
19: end while

For the separation of lifetimes in Fig. 3-6, we propose a procedure called the

maximal separation scheme, which is detailed in Algorithm 1. When a constraint

is given for slack of lifetime > 0, the scheme begins moving lifetimes toward the

output (i.e., lifetimes are moved to the right) in order to decrease the number of over-

lapped lifetimes. If two lifetimes, T (BCi,j) and T (BCk,l) does not satisfy (3.3), then

T (BCi,j) and T (BCk,l) are overlapped. The maximal separation scheme stops when

the number of overlapped lifetimes is not decreased by the translation of lifetimes.

When a buffer lifetime is translated, only nw of the corresponding buffer controller

is changed because the amount of varying nw reflects to all start and stop signals as

described in equations (2.1)–(2.4). If a buffer controller translates its lifetime to the

right, its nw is increased. When a buffer controller translates its lifetime to the left,

its nw is decreased.

24



T(BC0,1)

T(BC1,2)

T(BC2,3)

T(BC3,4)

T(BC3,5)

T(BC4,5)

T(BC5,out1)

T(BC1,6)

T(BC6,7)

T(BC7,6)

T(BC7,8)

T(BC8,9)

T(BC9,10)

T(BC10,out2)

T(BC10,out3)

min(iteration period) given constraint 

4

1

1

2

3

5

5

5

slack_of_lifetime

T(BC8,9)

T(BC9,10)

T(BC10,out2)

T(BC10,out3)

T(BC3,4)

T(BC3,5)

T(BC4,5)

T(BC5,out1)

6

Figure 3-7: Maximal separation of the lifetimes shown in Fig. 3-5.

25



Fig. 3-7 shows how the maximal separation scheme is applied to the lifetimes

of Fig. 3-5. The shaded boxes represent the translated lifetimes and the numbers

below arrows indicate the order of translations. For the maximal separation be-

tween lifetimes of the input and output sides, the amount of each translation except

BC5,out1 is equal to slack of lifetime. In case of BC5,out1, its amount of transla-

tion is larger than slack of lifetime. Even though original stop read5,out1 < original

stop read10,out2, the translated stop read5,out1 does not have to be less than the trans-

lated stop read10,out2 because there is neither operational dependency nor the fan-

ins/fan-outs offset between BC5,out1 and BC10,out2. Thus, the original stop read5,out1

is moved up to the given constraint. This translation case corresponds to line 4 of

Algorithm 1.

The translation starts from the buffer controllers connected to outputs. The next

translation begins from the buffer controller having the largest start write because the

largest start write represents that the buffer controller has no operational dependency

on the other buffer controllers which do not yet translate their lifetimes. This rule

determines the order of translations. In the fifth translation of Fig. 3-7, BC3,4, BC3,5

and BC4,5 simultaneously translate their lifetimes because BC4,5 has the fan-in offset

with BC3,5, and BC3,5 has the fan-out offset with BC3,4. The separation stops at

the sixth translation because the lifetime translation of BC7,8 increases the number

of overlapped lifetimes.

When the separation process is completed, a new slack is created in the middle of

the input and output sides. The range of slack is from the maximum stop read of the

input side to the minimum start write of the output side. In order to further decrease

26



the number of overlapped lifetimes, lifetimes are translated within the slack range.

The buffer controllers in the input side translate their lifetimes to the right until

(upper bound of slack − 1). The right translation updates the upper bound of slack

as start write of the translated lifetime. The buffer controllers in the output side

translate their lifetimes to left until (lower bound of slack + 1). The left translation

updates the lower bound of slack as stop read of the translated lifetime. Algorithm 2

details the procedure described above and corresponds to the step labeled ‘Translation

of buffer lifetimes’ in Fig. 3-6.

Fig. 3-8 illustrates the lifetime translations when the separation process depicted

in Fig. 3-7 is completed. The shaded boxes represent the translated lifetimes and

the numbers below arrows denote the ordering of translations. The upper bound of

slack is start write3,4 of T (BC3,4) and the lower bound of slack is stop read7,8 of

T (BC7,8). However, when T (BC7,8) is translated, all lifetimes in the input side are

also translated in the same amount as T (BC7,8) to preserve fan-ins/fan-outs offsets.

Thus, the translation does not reduce the number of overlapped lifetimes. In order

to translate one lifetime at a time, the right translation starts from T (BC2,3) and the

left translation begins from T (BC8,9).

3.3.2 Activity time and Bus Sharing

A buffer controller has one writing and one reading ports, and one writing and one

reading activity times are defined for each buffer controller. In T (BCi,j), the writing

activity time is defined as the time from start writei,j to stop writei,j. The reading

27



T(BC0,1)

T(BC1,2)

T(BC2,3)

T(BC1,6)

T(BC6,7)

T(BC7,6)

T(BC7,8)

given constraint 

slack after separation

T(BC10,out2)

T(BC10,out3)

T(BC3,4)

T(BC3,5)

T(BC4,5)

T(BC5,out1)

stop_read7,8 

T(BC8,9)

T(BC9,10)

T(BC2,3)

T(BC8,9)

T(BC9,10)

1

2

3

start_write3,4 

Figure 3-8: Lifetime translation when the separation in Fig. 3-7 is completed.

28



Algorithm 2 Translation of lifetimes when the maximal separation scheme is com-
pleted
1: TRANSLATION AFTER SEPARATION( T (BCi,j) )
2:
3: if (T (BCi,j) in the input side) then
4: Count the number of overlapped lifetimes;
5: Record the counting number to cnt bf tr;
6: //Right translation of T (BCi,j)
7: nwi,j ← nwi,j + (upper bound of slack − stop readi,j − 1);
8: Count the number of overlapped lifetimes;
9: Record the counting number to cnt af tr;

10: if (cnt bf tr ≤ cnt af tr) then
11: // Since the translation of T (BCi,j) is invalid,
12: // nwi,j is restored to its previous value.
13: nwi,j ← nwi,j − (upper bound of slack − stop readi,j − 1);
14: else
15: // Since the translation of T (BCi,j) is valid,
16: // upper bound of slack is updated.
17: upper bound of slack ← start writei,j ;
18: end if
19: else if (T (BCi,j) in the output side) then
20: Count the number of overlapped lifetimes;
21: Record the counting number to cnt bf tr;
22: //Left translation of T (BCi,j)
23: nwi,j ← nwi,j − (start writei,j − lower bound of slack) + 1;
24: Count the number of overlapped lifetimes;
25: Record the counting number to cnt af tr;
26: if (cnt bf tr ≤ cnt af tr) then
27: // Since the translation of T (BCi,j) is invalid,
28: // nwi,j is restored to its previous value.
29: nwi,j ← nwi,j + (start writei,j − lower bound of slack) − 1;
30: else
31: // Since the translation of T (BCi,j) is valid,
32: // lower bound of slack is updated.
33: lower bound of slack ← stop readi,j ;
34: end if
35: end if

activity time is defined as the time from start readi,j to stop readi,j. Fig. 3-9 shows

the writing and reading activity times in T (BCi,j). Wi,j and Ri,j represent the writing

and reading activities of BCi,j, respectively, and T (Wi,j) and T (Ri,j) correspond to

the writing and reading activity times, respectively. The duration of each activity

time is determined by Mi,j, the size of transferred data. The direction of writing

activity is from a node to a buffer controller; the direction of reading activity is the

29



T(BCi,j )

start_writei,j 

stop_readi,j

stop_writei,j 

start_readi,j 

T(Wi,j)

T(Ri,j)

Figure 3-9: Writing and reading activity times in T (BCi,j)

opposite. Each writing or reading activity uses a bus for the data transfer between a

node and a buffer controller. Bus sharing is done by assigning non-overlapped activity

times to the same bus. In order to assign activity times of BCi,j and BCk,l to the

same bus, the activity times must satisfy the following condition:

max{stop(Acti,j), stop(Actk,l)} −min{start(Acti,j), start(Actk,l)}

> Mi,j + Mk,l, Acti,j ∈ {Wi,j, Ri,j}, Actk,l ∈ {Wk,l, Rk,l} (3.4)

where i 6= k, j 6= l, stop(Act) represents stop of activity time and start(Act) denotes

start of activity time. For example, if Acti,j = Wi,j, stop(Acti,j) is stop writei,j and

start(Acti,j) is start writei,j. Equation (3.4) represents that two activity times are

non-overlapped if the difference between the maximum stop and the minimum start

of two activity times is larger than the summation of transferred data sizes of the two

activities.

Fig. 3-10 shows the overall procedure of the proposed bus sharing technique. In

the first step, all activity times are separated without considering a time constraint.

30



BCi,j , Wi,j , Ri,j

Separation of Activity times

∀

Translation of Activity times to satisfy 

iteration_period ≤ time constraint

Assign activity times to buses 

according to equation (3.4)

Figure 3-10: Proposed bus sharing procedure.

Then, if the iteration period exceeds a given time constraint, activity times are trans-

lated to satisfy the condition that the iteration period should be less or equal to the

time constraint. When all separation and translation steps end, according to (3.4),

non-overlapped activity times are assigned to the same bus.

We consider two strategies to use buses: one is to separate writing and reading

activities, and the other is not to distinguish writing and reading activities. Based

on these bus strategies, we propose the method of separating activity times for bus

sharing. Basically, the method separates activity times to be non-overlapped with

each other. The separation has two steps: one is separating activity times within

a single buffer controller, and the other is separating activity times among buffer

controllers.

Algorithm 3 provides the details of the procedure labeled ‘Separation of activity

times’ in Fig. 3-10. Line 11 represents that two activity times are overlapped if the

difference between the maximum stop and the minimum start of two activity times is

31



Algorithm 3 Separation of activity times
1: //Acti,j ∈ { Wi,j , Ri,j }, Actk,l ∈ { Wk,l, Rk,l }
2: SEPARATION(Acti,j, Actk,l)
3:
4: if (i == k) and (j == l) then
5: //Separation of activity times within a single buffer controller.
6: if (Acti,j 6= Actk,l) then
7: nri,j ← nri,j + (stop writei,j − start readi,j) + 1;
8: end if
9: else

10: //Separation of activity times between buffer controllers.
11: if (max{stop(Acti,j) , stop(Actk,l)} − min{start(Acti,j), start(Actk,l)}) ≤ (Mi,j +

Mk,l) then
12: if max{stop(Acti,j) , stop(Actk,l)} == stop(Acti,j) then
13: if Acti,j == Wi,j then
14: nwi,j ← nwi,j + (stop(Actk,l) − start writei,j) + 1;
15: else if Acti,j == Ri,j then
16: nri,j ← nri,j + (stop(Actk,l) − start readi,j) + 1;
17: end if
18: else if max{stop(Acti,j) , stop(Actk,l)} == stop(Actk,l) then
19: if Actk,l == Wk,l then
20: nwk,l ← nwk,l + (stop(Acti,j) − start writek,l) + 1;
21: else if Actk,l == Rk,l then
22: nrk,l ← nrk,l + (stop(Acti,j) − start readk,l) + 1;
23: end if
24: end if
25: end if
26: end if

smaller than the summation of transferred data sizes of the two activities. According

to the sequence of two separation steps, the following two separation approaches are

possible: (1) the separation within a single buffer controller precedes the separation

among buffer controllers; (2) the activity times among buffer controllers are separated

prior to the separation of activity times within a buffer controller.

Fig. 3-11 illustrates these two separation approaches applied to the buffer con-

trollers depicted in Fig. 3-5 under the assumption that the target platform uses

separate buses for writing and reading activities. The shaded boxes represent the

overlapped region of writing and reading activity times within buffer lifetimes. The

32



T
(B

C
5

,o
u

t1
)

T
(B

C
9
,1

0
)

T
(W

1
0

,o
u

t2
)

T
(R

1
0
,o

u
t2

)

T
(B

C
1
0

,o
u

t3
)

T
(B

C
9
,1

0
)

T
(B

C
5

,o
u

t1
)

T
(B

C
1
0

,o
u

t2
)

T
(B

C
1
0

,o
u

t3
)

C
a

se
 a

)

S
ep

a
ra

ti
o

n
 o

f 
a

ct
iv

it
y

 t
im

es
 a

m
o

n
g

 b
u

ff
er

 

co
n

tr
o

ll
er

s 
p

re
ce

d
es

 t
h

e 
se

p
a

ra
ti

o
n

 o
f 

a
ct

iv
it

y
 

ti
m

es
 w

it
h

in
 a

 b
u

ff
er

 c
o

n
tr

o
ll

er
.

T
(W

1
0

,o
u

t2
)

T
(R

1
0
,o

u
t2

)

C
a

se
 b

)

S
ep

a
ra

ti
o

n
 o

f 
a

ct
iv

it
y

 t
im

es
 w

it
h

in
 a

 b
u

ff
er

 

co
n

tr
o

ll
er

 i
s 

p
ri

o
r 

to
 t

h
e 

se
p

a
ra

ti
o

n
 o

f 

a
ct

iv
it

y
 t

im
es

 a
m

o
n

g
 b

u
ff

er
 c

o
n

tr
o

ll
er

s.

T
(W

1
0

,o
u

t3
)

T
(R

1
0
,o

u
t3

)

T
(R

5
,o

u
t1

)
T

(W
5

,o
u

t1
)

T
(R

9
,1

0
)

T
(W

9
,1

0
)

sl
a
ck

 o
f 

T
(W

1
0

,o
u

t2
)

sl
a
ck

 o
f 

T
(W

1
0

,o
u

t2
)

1

3

4
5

3

7

8

8

9

2

2

1

3

4

5

6

F
ig

u
re

3-
11

:
T

w
o

se
p
ar

at
io

n
ap

p
ro

ac
h
es

ap
p
li
ed

to
th

e
b
u
ff
er

co
n
tr

ol
le

rs
in

F
ig

.
3-

5
w

h
en

b
u
se

s
ar

e
se

p
ar

at
ed

fo
r

w
ri

ti
n
g

an
d

re
ad

in
g

ac
ti

v
it

ie
s.

33



circled numbers denote the order of separation. The arrows represent the internal

separation of writing and reading activity times within a buffer lifetime. Case a)

represents the case that the separation of activity times among buffer controllers pre-

cedes the separation of activity times within a buffer controller. Case b) corresponds

to the case that the separation of activity times within a buffer controller is prior to

the separation of activity times among buffer controllers.

In case a) of Fig. 3-11, the separation process starts from the reading activity

of a buffer controller connected to an output because the reading activity does not

have the operational dependency on other activities. If there are multiple outputs,

the output reading activity having the largest stop read value is selected for the first

separation. In the figure, for the first separation, T (R10,out2) is thus translated to the

right in order to be non-overlapped with T (R10,out3). The translation of T (R10,out2)

leads to the change of nr as follows:

∆nr10,out2 = stop read10,out3 − start read10,out2 + 1

where ∆nr10,out2 is the amount of increased nr10,out2 due to the translation of T (R10,out2).

The next separation step is determined by the stop signals of activity times. Since

stop read10,out3 > stop write10,out2, the sequence of separation is T (R10,out3)→ T (W10,out2).

When T (R10,out3) is translated, T (R10,out2) is also translated by the same amount to

preserve the previous separation between T (R10,out2) and T (R10,out3).

When buses separate writing and reading activities, the separation of activity

times within a buffer controller does not reduce the number of buses because writing

34



and reading activities within a buffer controller are not assigned to the same bus.

Therefore, in Fig. 3-11, case b) requires more separation steps than case a).

According to the separation approaches, the slack size of an activity time varies.

The slack of an activity time represents the range within which translating an activity

time does not increase the number of overlapped activity times. In case a) of Fig.

3-11, the slack size of an activity time is 1 because the separation distance between

non-overlapped, adjacent writing (or reading) activity times is 1. For example, when

the separation of T (W10,out2) is completed, start write10,out2 = stop write5,out1 + 1.

However, in case b) of Fig. 3-11, the slack size is affected by the internal overlap

between writing and reading activity times within a lifetime. Thus, start write10,out2

= stop write5,out1 + stop write9,10 − start read9,10 + 1 (i.e., the translation amount

to separate T (R9,10) from T (W9,10) is reflected). As the result, case b) has larger

slack of T (W10,out2) than case a) has as illustrated in Fig. 3-11.

If iteration period > given constraint when the separation of activity times is com-

pleted, a coming-back scheme begins to satisfy iteration period ≤ given constraint

from the activity time having the largest slack size in a descending order. By re-

ducing each slack sizes to 1, iteration period approaches to given constraint. If

iteration period is still larger than given constraint even after all slack sizes are

minimized, the left translation of activity times starts from the output reading ac-

tivity. Each left translation overlaps activity times as much as possible to reduce

iteration period. When iteration period ≤ given constraint, the left translation stops.

Algorithm 4 describes the coming-back scheme corresponding to the translation of ac-

tivity times in Fig. 3-10.

35



Algorithm 4 Coming-back scheme
1: COMING BACK(given constraint)
2:
3: while (iteration period > given constraint) do
4: Minimize slack of activity times;
5: if (iteration period ≤ given constraint) then
6: Break;
7: end if
8: if (All slacks of activity times are minimized) then
9: left translation of activity times;

10: end if
11: end while

In case buses do not distinguish writing and reading activities, the two separation

approaches shown in Fig. 3-11 further isolate overlapped regions between writing and

reading activities. Fig. 3-12 illustrates such cases. Fig. 3-12(a) and 3-12(b) corre-

spond to case a) and case b) of Fig. 3-11, respectively. In both cases, activity times

are translated to be non-overlapped with other activity times except the case where

activity times have fan-out offsets. Thus, the numbers of non-overlapped activity

times are the same in both cases. However, the numbers of non-overlapped lifetimes

of these two approaches are different due to the different separation sequences used.

Compared to Fig. 3-12(a), lifetimes of Fig. 3-12(b) are more stretched such that the

number of overlapped lifetimes of Fig. 3-12(b) is larger than that of Fig. 3-12(a). In

Fig. 3-12(a), the number of overlapped lifetimes is 1 (i.e., BC10,out2 and BC10,out3). On

the other hand, in Fig. 3-12(b), the number of overlapped lifetimes is 2 (i.e., BC10,out2

and BC10,out3, BC5,out1 and BC9,10). To this end, our proposed bus sharing separates

activity times among buffer controllers prior to the separation of activity times within

a buffer controller. Note that the bus sharing technique allocates as many activity

times to the same bus as possible in order to reduce the number of buses. It is thus

36



T(W5,out1)

T(W9,10) T(R9,10)

T(R5,out1)

T(W10,out2) T(R10,out2)

T(W10,out3) T(R10,out3)

(a)

T(W5,out1) T(R5,out1)

T(W10,out2) T(R10,out2)

T(W9,10) T(R9,10)

T(W10,out3) T(R10,out3)

(b)

Figure 3-12: Two separation approaches when buses are not distinguished for writing
and reading activity. (a) Separating activity times among buffer controllers is prior
to the separation of activity times within a buffer controller. (b) Separating activity
times within a buffer controller precedes the separation of activity times among buffer
controllers.

possible that the data transfers through buses are unbalanced, as shown in Fig. 3-13.

Here, we assume that M8,9 = M10,out2 = 100 and M5,out1 = M10,out3 = 50. In one

iteration period, BUS1 is activated for 250 cycles and BUS2 is activated for 150 cycles

to transfer data. For balanced data transfers through BUS1 and BUS2, BUS2 may

be activated for extra 50 cycles to transfer the data of R8,9 instead of BUS1. This

issue will be further discussed in Section 3.3.4.

37



T(R5,out1)T(W8,9) T(R8,9)

T(R10,out3)

BUS 1

BUS 2
T(W10,out2)

(M8,9  / 2) = 50

Figure 3-13: Unbalanced data transfers.

3.3.3 Relation between Activity time and Lifetime

We have so far characterized the lifetimes and activity times of buffer controllers for

buffer and bus sharing. For buffer sharing, lifetimes are translated for maximal sep-

aration. For bus sharing, activity times are translated for separation within a buffer

controller or among buffer controllers. Since the buffer and bus sharing starts from

the minimal lifetimes, lifetimes are stretched only when activity times are separated.

When the lifetime of BCi,j is stretched, MEM(BCi,j), (i.e., the memory size of BCi,j)

is increased because of the following:

MEM(BCi,j) = min{Mi,j, (start readi,j − start writei,j)}. (3.5)

In (3.5), when writing and reading activity times are overlapped within the lifetime

of BCi,j, the buffer memory, MEM(BCi,j) is determined by the difference between

start readi,j and start writei,j. Otherwise, BCi,j needs the buffer memory to store

Mi,j, the total amount of transferred data. In order to minimize the buffer memory

size, we translate lifetimes prior to activity times.

Fig. 3-14 illustrates the relationship between buffer sharing and bus sharing when

buses are not separated for writing and reading activities. BC(1,2)(4,5)(9,10) represents

38



BC1,2 BC4,5

BUS1 

BUS4 

BUS2 

BUS5 

BC9,10

BUS3 

BUS6 

1

4

9

2 5 10

W1,2

W4,5

W9,10

R1,2

R4,5

R9,10

2Cload

2Cload

2Cload

2Cload

2Cload

2Cload

(a) Neither buffer nor bus sharing is
applied

BC(1,2)(4,5)(9,10)

BUS1 

BUS2 

1 4 9

2 5 10

W1,2 W4,5 W9,10

R1,2 R4,5 R9,10

4Cload

4Cload

(b) Only buffer sharing is applied

BC(1,2)(4,5)(9,10)

BUS1 

1 4 9 2 5 10

W1,2 W4,5 W9,10 R1,2 R4,5 R9,10

7Cload

(c) Both buffer and bus sharing are applied

Figure 3-14: Buffer and bus sharing when buses are not separated for writing and
reading activities.

39



the shared buffer controller merging BC1,2, BC4,5 and BC9,10. BUS1–BUS6 are pre-

assigned buses in the target platform used. The lifetimes of BC1,2, BC4,5 and BC9,10

are non-overlapped, and there are enough slacks for the translation of all activity

times to be non-overlapped. In Fig. 3-14(a), neither buffer sharing nor bus sharing

is applied. In this case, each bus has only one activity. When only buffer sharing

is applied as shown in Fig. 3-14(b), the number of buses is two for the writing and

reading activities of BC(1,2)(4,5)(9,10). In addition, since only one activity transfers data

through a bus at a time, there is no additional hardware required in order to multiplex

accessing a bus/a shared buffer controller. On the other hand, due to the increased

number of activities assigned to each bus, the load capacitance per bus increases.

Furthermore, the activated buffer memory size for each activity is determined by the

maximum buffer memory size among BC1,2, BC4,5 and BC9,10. In Fig. 3-14(c), the

activated buffer memory size is the same as in Fig. 3-14(b), but the load capacitance

per bus has increased more than that in Fig. 3-14(b) because all activities are assigned

to one bus. The dynamic energy−consumption amounts of Fig. 3-14(a), 3-14(b) and

3-14(c) are

2× {2CloadV
2fM1,2 + 2CloadV

2fM4,5 + 2CloadV
2fM9,10}

+ 2× {MEM(BC1,2)× T (BC1,2) + MEM(BC4,5)× T (BC4,5)

+ MEM(BC9,10)× T (BC9,10)} ×mem cost, (3.6)

40



2× {4CloadV
2fM1,2 + 4CloadV

2fM4,5 + 4CloadV
2fM9,10}

+ 2× {MEM(BC(1,2)(4,5)(9,10))× T (BC1,2) + MEM(BC(1,2)(4,5)(9,10))× T (BC4,5)

+ MEM(BC(1,2)(4,5)(9,10))× T (BC9,10)} ×mem cost, (3.7)

2× {7CloadV
2fM1,2 + 7CloadV

2fM4,5 + 7CloadV
2fM9,10}

+ 2× {MEM(BC(1,2)(4,5)(9,10))× T (BC1,2) + MEM(BC(1,2)(4,5)(9,10))× T (BC4,5)

+ MEM(BC(1,2)(4,5)(9,10))× T (BC9,10)} ×mem cost, (3.8)

respectively, where Cload is the load capacitance of the buses in Fig. 3-14, f is the

operating frequency of the buses, V is the supply voltage and mem cost is the power

consumption per unit memory access. Compared with (3.6), the load capacitance

for each activity is doubled in (3.7) and is 3.5 times higher in (3.8). In addition,

the maximum buffer memory size, MEM(BC(1,2)(4,5)(9,10)) (= max{MEM(BC1,2),

MEM(BC4,5), MEM(BC9,10)}) is activated for accessing each buffer memory in

(3.7) and (3.8). Therefore, the energy consumption in (3.6) < the energy consumption

in (3.7) < the energy consumption in (3.8).

3.3.4 Split Activity Times

Even after both buffer sharing and bus sharing are completed, there still exist spare

times between activity times in a bus. Thus, the translation of activity times within

the ranges of spare times does not reduce the number of buses. However, the spare

41



Algorithm 5 Split of activity times
1: //Acti,j ∈ { Wi,j , Ri,j }
2: SPLIT(Acti,j , spare time, split amount)
3:
4: if (spare time > 1) then
5: //Split creates new start(Act′i,j)
6: start(Act′i,j) ← stop(Acti,j) − split amount;
7: Translate Act′i,j to be assigned to the different BUS;
8: end if

T(R5,out1)T(W8,9) T(R8,9 (1))

T(R10,out3)

BUS 1

BUS 2
T(W10,out2)

1

2

T(R8,9 (2))

T(R8,9 (2))

(stop_read8,9 – 50)

Figure 3-15: Splitting T (R8,9)

times are used to split activity times for balanced data transfers through buses. Al-

gorithm 5 describes the split of activity times.

Since the split of an activity time creates a new activity time, line 6 of Algorithm 5

generates start(Act′i,j) (i.e., either start write′i,j or start read′

i,j) for the new activity

time. Fig. 3-15 illustrates the case where Algorithm 5 is applied when M8,9 = M10,out2

= 100 and M5,out1 = M10,out3 = 50. In one iteration period, BUS1 is activated for

250 cycles and BUS2 is activated for 150 cycles to transfer data. For balanced data

transfers through BUS1 and BUS2, the half of T (R8,9) is assigned to BUS2.

The numbers within circles represent the sequence of splitting T (R8,9). In the first

step, T (R8,9) is split into T (R8,9(1)) and T (R8,9(2)). According to line 6 of Algorithm

5, start read′

8,9 for T (R8,9(2)) is (stop read8,9 − 50). Then, T (R8,9(2)) is translated

by the amount of one cycle in order to be assigned to BUS2. Finally, start read′

8,9

becomes (stop read8,9 − 49). However, since T (R8,9(2)) adds one port to BUS2, the

42



load capacitance of BUS2 also gets increased. The dynamic energy consumption for

the case without splitting activity times and the case where splitting activity times

is applied gets changed as follows:

3CloadV
2f × 250 + 2CloadV

2f × 150 = 1050CloadV
2f (3.9)

and

3CloadV
2f × 200 + 3CloadV

2f × 200 = 1200CloadV
2f, (3.10)

respectively, where Cload is the load capacitance, f is the operating frequency and

V is the supply voltage. Equation (3.9) is the dynamic energy consumption when

T (R8,9) is not split, and (3.10) is the dynamic energy consumption when T (R8,9(2))

is split and assigned to BUS2. Due to the increased load capacitance in BUS2, the

amount in (3.9) is less than the amount in (3.10).

When an activity is split, other activities having the operational dependency on

the split activity must be split in the same ratio to preserve the functional character-

istic of a node. The ratio of input and output data size in a node is predetermined

before the original dataflow is converted to a buffer-based dataflow. Therefore, the

ratio must be maintained even though the split activity is applied.

Fig. 3-16 illustrates the split activities in the inputs/outputs of a node. Here,

cont represents no split activities. n-split denotes that one activity time is split into

43



j BCj,l

BCj,m

n-split

BCi,j

cont

BCk,j

n-split

n-split n-split

cont

cont

cont

Figure 3-16: Split activities in the inputs/outputs of a node.

n activity times. The ratio of input and output data size in node j is given by

Mn
i,j

Mi,j

=
Mn

j,l

Mj,l

=
Mn

k,j

Mk,j

=
Mn

j,m

Mj,m

, (3.11)

where Mn
i,j is the n-th part of the n-split reading activity in BCi,j and Mn

j,l is the n-th

part of n-split writing activity in BCj,l. Note that the ratio of each part is identical.

3.3.5 Energy Consumption

According to the buffer and bus costs for energy consumption, the sharing case having

the minimum resources may not be the case consuming the minimum energy. If the

buffer cost is larger than the bus cost, the buffer sharing among the buffers having

different sizes of buffer memory contributes the energy consumption more than the

bus sharing that increases the number of ports in buses does. Otherwise, bus sharing

affects the energy consumption more than buffer sharing does.

Therefore, in order to select the sharing case consuming the minimum energy, all

sharing cases must be examined with the energy consumption model that incorporates

all the factors such as buffer costs, bus costs, the number of buffers, the number of

buses, the number of ports in buses, activity times, buffer lifetime and the size of

activated buffer memory. However, the exhaustive search is a very time-consuming

44



process if there are a great amount of sharing cases. For example, when the time

constraint is given as 1900 cycles in the buffer-based dataflow in Fig. 3-5, more than

370,000 sharing cases are possible. In order to reduce the computational complexity,

we need to limit the search range by reducing the number of sharing cases examined.

For the buffer-based dataflow having five buffers and ten buses, Fig. 3-17 illustrates

Number of Buses

Number of Buffers1 2 3 4

1

2

3

4

Search Range when α = 1, β = 3

5

6

7

8

α

β

Search Range when α = 3, β = 1

Search Range when α = 1, β = 1

Figure 3-17: All possible sharing cases for the buffer-based dataflow that has five
buffers and ten buses.

all possible sharing cases. Each point of the grid represents a possible sharing case

with some buffers and buses. A point does not distinguish different sharing cases that

have an identical number of buffers and buses. A cross mark in the grid represents

that there is no possible sharing case in the given numbers of buffers and buses.

For example, when the number of buffers is two, there is no case having five buses

because the maximum number of buses is twice the number of buffers. The cases

having neither a solid circle nor a cross mark in the grid are not considered by buffer

45



and bus sharing. α and β represent the cost of buffer energy consumption and the cost

of bus energy consumption, respectively, and are dependent on the target platform

used. The red (solid), green (dashed) and blue (dotted) lines represent the search

ranges of finding the sharing case consuming the minimum energy according to α and

β (i.e., buffer and bus costs). The boundary condition determining the search range

is found by the following equations:

Eest(number of buffers, number of buses)

= {α(number of buffers) + β(number of buses)} × itr period, (3.12)

Ebound =














































































{α(minimum number of buffers + 1) + β(minimum number of buses)}

×itr period, when α > β,

{α(minimum number of buffers) + β(minimum number of buses + 1)}

×itr period, when α < β,

{α(minimum number of buffers + 1)

+β(minimum number of buses + 1)} × itr period, when α = β,

(3.13)

where Eest(number of buffers, number of buses) is the estimated energy consumption

value corresponding to the point (number of buffers, number of buses) in the grid

of Fig. 3-17, itr period is the iteration period of a given buffer-based dataflow and

46



Ebound is the boundary condition to determine the search range for the minimum

energy consumption.

If one resource (i.e., either buffer or bus) consumes more energy than the other,

Ebound is set to minimize the number of the resource consuming more energy. Thus, the

search range is determined between the minimum number and (the minimum number

+ 1) of the resource, whichever is more expensive (i.e., the resource consuming more

energy). In Fig. 3-17, when the cost of one resource is more expensive than the other,

the search range is biased to the resource having the lower cost. If buffer and bus

costs are the same, both buffers and buses have the same impact on determining the

search range. In this case, the search range is evenly spread toward both buffer and

bus axes in Fig. 3-17.

However, if the costs are inaccurately given, the sharing case having the minimum

energy consumption may appear outside the search range. For example, in Fig. 3-17,

when α = 1 and β = 3, the sharing case consuming the minimum energy may appear

at (3,3) if actual α is 3. However, (3,3) resides outside the search range. When the

search range is determined, the sharing case for the minimum energy consumption is

found within the search range based on the following energy consumption model:

Etotal = α× Ebuffer + β × EBUS

= α× {( # of BCs × itr period ) +

# of BCs
∑

n=1

(T (BCn)×MEM(BCn))}

+ β × {

# of buses
∑

n=1

{(# of ports in BUSn)×

# of act in BUSn
∑

m=1

T (Actm)}}, (3.14)

47



where Etotal is the total energy consumption, Ebuffer is the energy consumption by

buffers, EBUS is the energy consumption by buses, (# of act in BUSn) denotes the

number of activities in BUSn and T (Actm) is the activity time assigned to BUSn. (#

of BCs × itr period) represents the leakage energy consumption of buffer controllers.

The other terms indicate the dynamic energy consumption by buffer memory access

and data transfers through buses. Since the iteration period, the number of BCs and

the size of activity time come from the buffer-based dataflow to which buffer and bus

sharing is not applied, they are not determined by the sharing methodology.

Compared with Eest in (3.13), Etotal incorporates not only the number of resources

but also the variables related to the dynamic energy consumption such as the activated

buffer memory sizes, lifetimes, activity times and the numbers of ports in buses.

Therefore, all sharing cases within a search range are evaluated with Etotal to find the

sharing case consuming the minimum energy. Algorithm 6 summarizes the procedure

of finding the sharing case which consumes the minimum energy.

3.4 Evaluation of The Proposed Methodology

In this section, we evaluate the methodology proposed in Section 3.3 using the buffer-

based dataflow shown in Fig. 3-5. This example should work as a representative of

many practical cases; this dataflow consists of a feed-forward path, multiple fan-ins,

multiple fan-outs and a feedback loop. The proposed methodology was implemented

in C.

48



Algorithm 6 Find the sharing case consuming the minimum energy
1: // X = set of buffer sharing cases
2: // Y = set of bus sharing cases
3: // S = set of the search range to find the minimum energy consumption
4: // n(x) = number of buffers in x ∈ X

5: // n(y) = number of buses in y ∈ Y

6: // α = buffer cost for energy consumption
7: // β = bus cost for energy consumption
8: // Eest (n(x), n(y)) = estimated energy consumption for the sharing cases (n(x), n(y))
9: // Ebound = boundary condition to determine the search range for the minimum energy con-

sumption
10: // Etotal = total energy consumption in equation (3.14)
11:
12: MINIMUM ENERGY(α, β)
13:
14: // Buffer sharing is applied.
15: X ← Buffer sharing of Fig. 3-6;
16:
17: // Bus sharing is applied.
18: (X, Y ) ← Bus sharing of Fig. 3-10;
19:
20: // Set up boundary condition to determine the search range
21: if (α > β) then
22: Ebound = α (minimum n(x) + 1) + β (minimum n(y));
23: else if (α < β) then
24: Ebound = α (minimum n(x)) + β (minimum n(y) + 1);
25: else if (α = β) then
26: Ebound = α (minimum n(x) + 1) + β (minimum n(y) + 1);
27: end if
28:
29: // Search range is constructed with Ebound

30: S = { (n(x), n(y)) | Eest (n(x), n(y)) ≤ Ebound };
31:
32: //Find (x, y) having the minimum Etotal

33: min{ Etotal(x, y, α, β) | (x, y) ∈ { (x,y) | (n(x), n(y)) ∈ S } };
34:

3.4.1 Evaluation of Buffer Sharing and Bus Sharing

The buffer lifetimes of Fig. 3-5 are listed in Table 3.1. Fig. 3-18 shows the results

of buffer and bus sharing. In all plots of Fig. 3-18, the x-axis represents the given

time constraint. The top plots of Fig. 3-18(a) and Fig. 3-18(b) show the minimum

number of buffers and buses in each time constraint, respectively. In Fig. 3-18(a) and

Fig. 3-18(b), the bottom plots show the amount of buffer memory when the minimum

49



600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

2

4

6

8

10

12

14

Minimum number of buffers

Time Constraint

M
in

im
u

m
 n

u
m

b
er

 o
f 

b
u

ff
er

s

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
20

22

24

26

28

30

32

Required Buffer Memory for the minimum number of Buffers

Time Constraint

B
u

ff
er

 M
em

o
ry

(a) Minimum number of buffers and required buffer memory

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
5

10

15

20

25

30

Minimum number of buses

Time Constraint

M
in

im
u

m
 n

u
m

b
er

 o
f 

b
u

se
s

 

 

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

200

400

600

Required Buffer Memory for the minimum number of buses

Time Constraint

B
u

ff
er

 M
em

o
ry

 

 

 Buses do not separate

 writing and reading.

 Buses separate

 writing and reading.

Buses do not separate writing and reading.

Buses separate writing and reading.

(b) Minimum number of buses and required buffer memory

Figure 3-18: Results of buffer and bus sharing.

50



Table 3.1: Buffer Controller Parameters for the Minimum Iteration Period of the
Dataflow in Fig. 3-5

L M start write start read

BC0,1 0 500 0 1

BC1,2 50 450 52 53

BC2,3 70 400 124 125

BC3,4 100 300 226 227

BC3,5 100 250 246 247

BC4,5 50 250 278 297

BC5,out1 110 150 408 409

BC1,6 50 400 102 103

BC6,7 50 350 154 155

BC7,6 0 500 2 3

BC7,8 100 200 302 303

BC8,9 50 150 354 355

BC9,10 50 100 406 407

BC10,out2 50 300 458 459

BC10,out3 50 100 478 479

number of buffers/buses is used in each time constraint.

In Fig. 3-18(a), for the time constraint greater than 1000, the minimum number of

buffers becomes seven because at least seven buffer controllers are required to preserve

the fan-ins/fan-outs offsets and the feedback loop.

In Fig. 3-18(b), when a target platform does not separate buses for writing and

reading, the buffer memory size increases for the time constraint greater than 1300

because the separation of activity times within a buffer controller starts there. How-

ever, when writing and reading buses are separated in the target platform used, the

buffer memory size does not increase because there is no separation of activity times

within a buffer controller.

Fig. 2-1(a) in Section 2 is the original dataflow (without buffer controllers) of Fig.

3-5. In order to realize the dataflow of Fig. 2-1(a), the target platform used utilizes

51



Table 3.2: The number of buses when the proposed sharing methodology is applied
to SIRF [8] and IPv4 forwarding [14]

# of buses # of buses Buffer Constraint Reduction

(original) (sharing) memory ratio

SIRF [8] 9 5 308 bytes 4Mbps 44.4 %

IPv4 [14] 13 8 136 bytes 33M 38.5 %

Packets/s

15 buses. When our proposed sharing methodology is applied to the buffer-based

dataflow of Fig. 3-5, which is converted from the dataflow of Fig. 2-1(a), the total

number of buses becomes smaller than 15 if the time constraint is greater than or

equal to 1000.

We also apply the proposed sharing methodology to data-centric applications such

as sample importance resample filter (SIRF) [8] and IPv4 forwarding [14]. Table 3.2

summarizes the results we obtained.

In Table 3.2, the second column shows the number of buses in the original dataflow.

When each node in the original dataflow is implemented as an individual hardware,

the number of edges is the same as the number of buses in the original dataflow.

The third column is the number of buses when the proposed sharing methodology is

applied to the original dataflow. Since our sharing methodology uses the buffer-based

dataflow, which is constructed from its original dataflow, additional buffer memory is

required as shown in the fourth column of the table. The fifth column is the constraint

which comes from the application specification, and the sixth column indicates the bus

reduction ratio. As shown in Table 3.2, our proposed sharing methodology can reduce

the number of buses with additional buffer memory for controlling data transfers.

52



T(W1,2) T(W3,5) T(R3,5)T(R1,2)

T(W7,8) T(W10,out3)T(R7,8)

BUS1 

BUS4

T(W1,2)

T(W3,5)

T(R3,5)T(R1,2)

T(W7,8) T(R7,8)

BUS1

BUS4

T(R10,out3 (1)) T(R10,out3 (2))

After Split

T(R10,out3)

T(W10,out3)

Figure 3-19: Evaluation of split activity times.

3.4.2 Evaluation of Split Activity Times

In order to evaluate the technique to split buffer access activity, we derive from Fig.

3-5 one sharing case where time constraint is 1900. In this case, the amount of data

transfers through BUS1 is 1400 and the amount of data transfers through BUS4

is 600. By applying the proposed splitting technique, the amounts of data transfers

through BUS1 and BUS4 become 1150 and 850 respectively.

Fig. 3-19 shows the process. Here, M1,2 = 450, M3,5 = 250, M7,8 = 200 and

M10,out3 = 100. In order to assign T (W3,5) to BUS4, T (R10,out3) is split into two

parts, namely T (R10,out3(1)) and T (R10,out3(2)). For the space of T (W3,5) in BUS4,

T (R10,out3(2)) is translated to the right. The translation effect of T (R10,out3(2)) is

reflected to D in the buffer controller parameter table as shown in Table 3.3.

From (3.5), the buffer memory for BC10,out3 is min{M10,out3, max{nr10,out3, D10,out3}}.

This is because start read10,out3−start write10,out3 = max{nr10,out3, D10,out3}. In both

cases (i.e., split and non-split cases), M10,out3 determines the buffer memory size be-

53



Table 3.3: Buffer Controller Parameters of BC10,out3 when split buffer access activity
is applied in Fig. 3-19.

L nr nw D M start read stop read

BC10,out3 50 101 624 0 100 1203 1303

Without Split

BC10,out3 50 101 624 0 50 1203 1253

With Split 252 50 1505 1555

1

3 4 52

Input

Output 1

7 8 96 Output 210

Output 3

BC1,2 BC2,3

BC3,5

BC3,4 BC4,5 BC5,out1

BC1,6 BC6,7

BC7,6

BC7,8 BC8,9 BC9,10 BC10,out2

BC10,out3

BC0,1

Merged node 6'

Merged node 3'

Figure 3-20: Decomposition of the buffer-based dataflow in Fig. 3-5.

cause M10,out3 < max{nr10,out3, D10,out3}. Therefore, the buffer memory is unchanged

even though T (R10,out3(2)) is translated.

3.4.3 Decomposing A Buffer-Based Data Flow to Reduce the

Complexity of Evaluation

If a buffer-based dataflow has many buffers, intensive computation is required to find

the sharing cases satisfying the given cost such as the buffer memory size and the

number of buses. In order to reduce the computational complexity, a given buffer-

based dataflow is hierarchically decomposed as shown in Fig. 3-20.

54



In Fig. 3-20, since BC6,7 and BC7,6 form a feedback loop, these buffer controllers

are not merged into one, whereas nodes 6 and 7, BC6,7 and BC7,6 are merged to

node 6′. The latency L6′ of the merged node 6′ is found by using the operational

dependency from Table 3.1. After the nodes and the buffer controllers are merged,

BC1,6 and BC7,8 are changed to BC1,6′ and BC6′,8, respectively. This leads to the

following:

start read1,6′ = start read1,6,

start write6′,8 = start write7,8,

start read1,6′ + L6′ < start write6′,8. (3.15)

From (3.15) and Table 3.1, L6′ < 199. Since the lifetimes listed in Table 3.1 have

their minimal values, L6′ = 198. In the same fashion, the latency L3′ of the merged

node 3′ becomes 282. Fig. 3-21 shows the evaluation results when either node 6′ or

node 3′ is used.

In Fig. 3-21, as the time constraint increases, the gap between the original buffer-

based dataflow and the decomposed dataflow increases because the buffer controllers

within a merged node do not involve any sharing. Thus, the minimum number of

buffers/buses found in the decomposed buffer-based dataflow does not reach the min-

imum number found in the original buffer-based dataflow. However, by the decom-

position, the computational complexity of finding the sharing cases satisfying a given

cost is reduced.

To demonstrate the reduction of the computational complexity by decomposing a

55



600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
4

5

6

7

8

9

10

11

12

13

14

15

Minimum number of buffers

Time Constraint

M
in

im
u

m
 n

u
m

b
er

 o
f 

b
u

ff
er

s

 

 

Original buffer based data flow

Decomposed data flow with merged node 6’

Decomposed data flow with merged node 3’

(a) Minimum number of buffers in the decomposed dataflows

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
8

10

12

14

16

18

20

22

24

26

28

30

Minimum number of buses

Time Constraint

M
in

im
u

m
 n

u
m

b
er

 o
f 

b
u

se
s

 

 

Original buffer based data flow

Decomposed data flow with merged node 6’

Decomposed data flow with merged node 3’

(b) Minimum number of buses in the decomposed dataflows

Figure 3-21: Evaluation results with the decomposed dataflow.

56



buffer-based dataflow, the sharing cases, in which the number of buffers is 9 and the

buffer memory size is 27 with the time constraint of 1900, are found in the original

buffer-based dataflow and the decomposed dataflow having the merged node 3′ in Fig.

3-20. In the first step, the sharing cases satisfying the number of buffers = 9 with

time constraint = 1900 are found in both the original buffer-based dataflow and the

decomposed buffer-based dataflow. In our evaluation, there are 180792 cases found in

the original buffer-based dataflow and 9720 cases found in the decomposed dataflow.

From these cases, the sharing cases satisfying the buffer memory = 27 are found.

As the results of our simulation, 56128 buffer sharing cases are found in the original

buffer-based dataflow, and 7920 buffer sharing cases are found in the decomposed

buffer-based dataflow. The sharing cases satisfying the given cost are found in the

decomposed buffer-based dataflow with the higher probability: i.e., 7920
9720

= 0.81 in the

decomposed buffer-based dataflow, which is greater than 56128
180792

= 0.31 in the original

buffer-based dataflow. Thus, decomposing the buffer-based dataflow indeed reduces

the computational complexity of finding the sharing cases satisfying the given cost.

3.4.4 Energy Consumption

The sharing case consuming the minimum energy can be found by Algorithm 6 pro-

posed in Section 3.3.5. In this section, we simulate the algorithm with the buffer

controller parameters in Table 3.1 and the time constraint of 1900 cycles (1 cycle =

10 ns).

Fig. 3-22 shows the search ranges according to buffer and bus costs. In the figure,

57



Number of Buses

Number of Buffers7 8 9 10

10

11

12

13

αβ

11 12 13 14

14

α = 0.5,   β = 10

α = 10,   β = 0.5

α = 5,    β = 5

Figure 3-22: Search ranges for the minimum energy consumption.

α, the unit of buffer cost, is mW/buffer and β, the unit of bus cost, is mW/bus. The

regions enclosed with colored lines represent the search ranges according to α and β.

The green (dashed) line denotes the search range when α = 0.5 and β = 10. The red

(solid) line represents the search range when α = 10 and β = 0.5. The region within

blue (dotted) line corresponds to the search range when α = 5 and β = 5. Each point

in the grid represents the sharing cases having the same numbers of buffers and buses.

Even though only 25 points appear in the grid, the total number of sharing cases is

371,856. After the search range is found by Eest and Ebound in (3.13), the number

of the sharing cases examined to find the minimum energy consumption is greatly

reduced. For example, when α = 5 and β = 5, the number of sharing cases within

the search range becomes the largest value (i.e., 40,016) among the search ranges in

Fig. 3-22. However, this value is only 10.8% of the total number of sharing cases.

Fig. 3-23 shows the simulation results of finding the sharing case consuming the

minimum energy within each search range of Fig. 3-22. In Fig. 3-23, the pair values

58



(7,10) (7,11) (8,10) (9,10) (10,10) (11,10) (12,10) (13,10)
4.5

5

5.5

6

6.5

7

                                    

(number of buffers, number of buses)

E
to

ta
l (

 µ
 J

 )
Sharing Case Consuming

The Minimum Energy

(a) Etotal when α = 0.5 mW/buffer and β = 10 mW/bus

(7,10) (7,11) (7,12) (8,10)
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

                                    

(number of buffers, number of buses)

E
to

ta
l (

 µ
 J

 )
 

Sharing CaseConsuming 

The Minimum Energy

(b) Etotal when α = 10 mW/buffer and β = 0.5 mW/bus

(7,10) (7,11) (7,12) (8,10) (8,11) (9,10)
2

2.5

3

3.5

4

4.5

5

5.5

                                    

(number of buffers, number of buses)

E
to

ta
l (

 µ
 J

 )

Sharing Case Consuming

The Minimum Energy

(c) Etotal when α = 5 mW/buffer and β = 5 mW/bus

Figure 3-23: Simulation results of finding the sharing case consuming the minimum
energy

59



(number of buffers, number of buses) in the x-axis correspond to the points within

each search range in Fig. 3-22. The pair values of Fig. 3-23(a), Fig. 3-23(b) and

Fig. 3-23(c) correspond to the points within the green, red and blue lines of Fig.

3-22, respectively. Since one point in Fig. 3-22 represents the sharing cases having

the same numbers of buffers and buses, the Etotal values in one point vary because

of the different sharing combination with the same numbers of buffers and buses. As

shown in Fig. 3-23, depending on the values of α and β, the sharing case having the

minimum Etotal (i.e., the sharing case consuming the minimum energy) may appear

at different points in Fig. 3-22. Furthermore, no minimum Etotal appears at the

sharing case having the minimum resources (i.e., the point (7,10)). Our proposed

methodology thus configures the search range as shown in Fig. 3-22. However, the

misestimated values of α and β mislead to finding the sharing case consuming the

minimum energy. For example, when α and β are estimated as 0.5 mW/buffer and

10 mW/bus in the target platform used, respectively, the sharing case having the

minimum Etotal appears at (7,11) in the grid of Fig. 3-22. However, if the actual α

is 5 mW/buffer and actual β is 5 mW/bus in the target platform, the actual sharing

case having minimum Etotal appears at (7,12) in the grid of Fig. 3-22. Furthermore,

the point (7,12) is not within the search range in the case where α = 0.5 mW/buffer

and β = 10 mW/bus.

60



Chapter 4

Buffer Controller Based Multiple

Processing Element Utilization for

Dataflow Synthesis

4.1 Introduction

Since programs running on processors have variable execution times, it is difficult to

synchronize the data transfer between processing blocks mapped to different proces-

sors (alternatively, one is mapped to a processor and the other is implemented as a

hardware logic). In order to synchronize the data transfers, we use a buffer-based

dataflow which inserts buffers between processing blocks in a given dataflow. The

buffer-based dataflow is globally synchronized by a global controller and every data

transfer is done through the buffers between processing blocks. Due to the buffers, a

pair of sending and receiving processors does not have to access the same bus simul-

61



taneously. Furthermore, by isolating the data transfer from the functional execution

of a processing block, the timing mismatch of data transfers due to the different bus

speeds between two processors (or between a processor and a hardware) is solved with

the buffer controller parameters in the level of a dataflow.

By utilizing the data transfer characteristics of the buffer-based dataflow, we pro-

pose a mapping methodology for a target system having multi-core processors and

programmable logics (or hardwares). The proposed methodology translates the data

transfer activities of processing blocks into the primitive templates running on pro-

cessors. With the primitive templates and estimated execution times, the method-

ology creates a mapped partition. From the mapped partition and the library for

target-specific bus operations, template code written in C language is automatically

generated. In order to prevent wrong operations due to the variable execution times,

we also devise a processor initiation scheme which notifies the ends of functional ex-

ecutions and data transfers to the global controller. Thus, even if execution times

change with large variations, the execution ordering is preserved.

This chapter is organized as follows: Section 4.2 describes the approach and ob-

jectives of this research. In Section 4.3, we characterize the mapping technique that

utilizes the buffer-based dataflow. Section 4.4 discusses the resource utilization of

mapping and the synchronization of estimated execution times. This section also

proposes the mapping algorithm and template code generation. In Section 4.5, we

evaluate the proposed mapping algorithm with the SystemC model and demonstrate

that the generated template code works on Xilinx ISE 10.1.

62



4.2 Our Approach and Objectives

When a dataflow is synthesized in a target platform having multi-core processors

and programmable logics, it is critical to synchronize data transfers between proces-

sors/between a processor and a hardware logic. Even though all processing elements

are globally synchronized, synchronizing data transfers is difficult because the pro-

grams running on processors have variable execution times.

In order to synchronize the data transfers at the level of a dataflow graph, we use

the buffer-based dataflow for mapping processing blocks to processors. Our methodol-

ogy creates a mapped partition from the buffer-based dataflow representing an appli-

cation, the resource constraint of a target platform and estimated times for functional

executions and data transfers. The data transfers of processing blocks mapped to pro-

cessors are realized as target-dependent primitive templates. The primitive templates

are the programs parameterized for data transfers in a buffer-based dataflow. Fig.

4-1 shows the overall flow of the proposed mapping methodology. In Section 4.3, the

mapping of processing blocks is characterized with primitive templates. In Fig. 4-1,

the mapped partition has the global timing information to synchronize data transfers

between processors (or between a processor and a hardware). When the mapped

partition is synthesized in a target platform, the synchronization of data transfers is

realized through a global controller and buffer controllers as illustrated in Fig. 4-2.

In Fig. 4-2, f(i) is mapped to a processor, and f(j) is implemented as a hardware.

The data transfer from f(i) to f(j) is done through BCi,j. In order to synchronize

data transfers between each processing block (i.e., f(i) and f(j)) and BCi,j, the global

63



Buffer/Global 

Controller

Application Data flow 

and Timing information

Mapping 

Algorithm
Mapped 

Partition

Target Resource and 

Operational Constraint

Processing blocks 

mapped to Processors
Processing blocks 

realized as HWs

Target 

Platform

Target dependent 

primitive template

Figure 4-1: Overall flow of proposed mapping methodology.

DataBCi,j f(j)

Global 

controller

Dataf(i)

Processor Hardware

W_BCi,j R_BCi,j

Figure 4-2: Synchronization of data transfers through a global controller and a buffer
controller.

controller generates W BCi,j and R BCi,j. W BCi,j is the signal which enables f(i)

to write data to BCi,j, whereas R BCi,j is the signal which initiates f(j) to read data

from BCi,j.

64



f(3)f(1) BC1,2 f(2)

f(1)

BUS 1

f(2)

Processor 1

BC1,2

f(4)

f(4)

BC2,3 BC3,4

Mapping 

Processor 2

f(3)

BUS 2

BUS 3

Processor 3

f(5)

BC4,7

f(7)BC5,6 f(6) BC6,7BC1,5

f(5)

BC1,5

BC2,3

BC3,4

BC5,6

BC4,7

BC6,7

Buffer 

Controllers

Hardware 

Modules

f(6)

f(7)
Global Controller/

Bus Controller

BC0,1

BC4,1

BC7,out

BC0,1

BC7,out

BC4,1

Figure 4-3: Mapping a buffer-based dataflow to a target platform.

4.3 Mapping Characterization

This section characterizes the mapping of processing blocks in a buffer-based dataflow

onto a processor architecture. Fig. 4-3 illustrates that a buffer-based dataflow is

mapped to a target platform having multi-core processors and hardware logics. In

Fig. 4-3, the processing blocks mapped to processors are realized as the programs

running on processors. The other processing blocks are implemented as hardware

logics. Buffer controllers are located outside the processors. The interconnects be-

tween processors and buffer controllers are the buses provided by the target platform

used. The global controller synchronizes the data transfers between the processing

65



blocks which are either mapped to processors or realized as hardware logics and buffer

controllers. Therefore, the mapped processing blocks need the entities for the data

transfers with buffer controllers outside the processors. Section 4.3.1 defines primi-

tive templates as the entities for the data transfers with buffer controllers. In Section

4.3.2, some design parameters are introduced to generate the primitive templates.

Section 4.3.3 investigates how the design parameters affect mapping.

4.3.1 Entities for Data Transfers of Processing Blocks Mapped

to Processors

When a processing block is realized as a hardware logic, its functional execution and

data transfer may work at the same time. However, if a processing block is mapped

to a processor architecture, not only its functional execution is the program running

on a processor, but also its data transfers sequentially run on the target processor as

a program. The primitive templates, RCV and SND are devised to realize the data

transfers of the processing blocks mapped to a processor. Since buffer controllers

are outside a processor, RCV and SND use the bus provided by a target processor

to transfer data between the processing block mapped to a processor and a buffer

controller. RCV reads data from a buffer controller, whereas SND writes data to a

buffer controller. In order to notate the direction of data transfer, RCVi,j and SNDi,j

are used. The subscript i represents the source of data, and j indicates the destination

of data. The operations of RCVi,j and SNDi,j are described as the pseudo-code in

Fig. 4-4.

66



function   (  ) { 

         while(    == 0) 

                 wait(); 

         // Read  data  from  through a bus interface. 

  read (bus, );

}

end function 

(a)  Functional   Description of   

function   (  ) { 

         while(    == 0) 

                 wait(); 

          // Write data to  through a bus interface. 

            write(bus, , );

}

end function 

      (b)  Functional  Description of

Figure 4-4: Pseudo codes of SNDi,j and RCVi,j.

In Fig. 4-4, RCVi,j corresponds to the fan-in operation of f(j), and SNDi,j

represents the fan-out operation of f(i). R BCi,j is the signal initiating RCVi,j to

read data from BCi,j. W BCi,j is also the signal initiating SNDi,j to write data to

BCi,j. Both R BCi,j and W BCi,j are generated by a global controller. The “read”

and “write” functions indicate target-dependent bus operations. The “bus” in “read”

and “write” functions represents the descriptor for reading/writing data from/to the

corresponding buffer controller through a bus interface. The transferred data through

RCV and SND are bound to the arguments of the function which corresponds to

the mapped processing block. The template codes running on a target processor

are generated from the argument passing (binding) between primitive templates (i.e.,

67



SND, RCV ) and functions, as shown in Fig. 4-5.

  (  ); 

function p[f(i)] (  ) { 

      while(   == 0) 

             wait(); 

Do   the   functional   execution  of   p[f(i)]; 

   Store ;

}

end function 

  ( ,  ); 

  (  ); 

function p[f(j)] ( ){

   while(   == 0) 

             wait(); 

   Do   the   functional   execution  of   p[f(j)]; 

   Store ;

}

end function 

  ( , );

BCi,j f(j) BCj,k

RCVl,i p[f(i)]

f(i)BCl,i

SNDi,j RCVi,j SNDj,kp[f(j)]

Figure 4-5: Pseudo template codes of a given buffer-based dataflow.

In Fig. 4-5, p[f(i)] and p[f(j)] are the programs corresponding to f(i) and f(j),

respectively. END R BCl,i (END R BCi,j) is the signal to notify p[f(i)] (p[f(j)])

that RCVl,i (RCVi,j) is completed. Both END R BCl,i and END R BCi,j are gen-

erated by a global controller. Since the relation of functional arguments represents

the data dependency between programs, it determines the sequence (ordering) of

programs. Therefore, data transfers and functional executions are fully sequential-

ized. For example, function p[f(i)] starts when RCVi,j ends and returns its value

to Input of p[f(i)]. However, in case f(i) and f(j) are mapped to different proces-

sors, SNDi,j and RCVi,j simultaneously access BCi,j via different buses under the

68



following condition:

T (W BCi,j) < T (R BCi,j) < T (END W BCi,j)

where T (W BCi,j) is the start time of writing data to BCi,j, T (R BCi,j) is the start

time of reading data from BCi,j and T (END W BCi,j) is the end time of writing

data to BCi,j. When two consecutive processing blocks are mapped to the same

processor, it is unnecessary to transfer data through the buffer controller because

their arguments can be internally bound. In this case, the data transfer is realized as

JOINT which merges SND and RCV . Fig. 4-6 shows the pseudo-code of JOINTi,j.

function   ( , )

{

       // Data  transfer  from  the  output  of  f(i)  to  the  input  of   f(j).

       memcpy (  ,  , );

           

}

end function 

Figure 4-6: Pseudo code of JOINTi,j.

In Fig. 4-6, compared with RCV and SND operations, there is no signal from a

global controller because JOINT does not use any bus for data transfer. Therefore,

when pairs of SND and RCV are replaced with JOINT s, the total number of bus

accesses is reduced by (2 × number of JOINT s). In addition, since JOINT s replace

buffer controllers, the total number of buffer controllers is reduced by the number of

JOINT s.

69



4.3.2 Design Parameters For Primitive Template Generation

In Section 4.3.1, the signals, R BC, W BC and END R BC, are used to represent

the data transfers between the processing block mapped to a processor and a buffer

controller. However, the signals do not represent the data transfers of the processing

block implemented as a hardware logic because hardware logics may be able to transfer

data while they are performing their functions. In order to represent the data transfers

of hardware logics, the primary parameters introduced in Section 2.1 are used to define

start and stop signals as follows:

start writei,j = Li + nwij + starti, (4.1)

stop writei,j = start writei,j + Mij, (4.2)

start readi,j = start writei,j + max(nrij, Dij), (4.3)

stop readi,j = start readi,j + Mij, (4.4)

where start writei,j represents the start time of writing data to BCi,j, start readi,j

denotes the start time of reading data from BCi,j, stop writei,j corresponds to the

end time of writing data to BCi,j and stop readi,j is the end time of reading data

from BCi,j. In (4.1), starti is the absolute time that f(i) begins reading data from

the previous buffer controller through its fan-in port.

In the buffer-based dataflow where all processing blocks are realized as hardware

logics, R BC, W BC and END R BC correspond to start read, start write and

stop read, respectively. In case f(i) is mapped to a processor, Li is replaced with the

70



f(3)f(1) f(2) f(4)BC2,3 BC3,4

f(5)

BC4,7

f(7)BC5,6 f(6) BC6,7

BC1,2

BC1,5

BC0,1

BC7,out

BC4,1

Figure 4-7: A buffer-based dataflow

execution time of the program p[f(i)]. In addition, start writei,j is delayed to (end

of program p[f(i)] + 1). Therefore, (4.1) changes as follows:

start writei,j = Ti + starti + 1 (4.5)

where Ti is the execution time of the program p[f(i)] and starti is the start time of

p[f(i)]. Since fan-in operations are also sequentialized, starti corresponds to (the end

time of the last RCV preceding p[f(i)] + 1). With the design parameters in (4.1)–

(4.5), Section 4.3.3 compares the case in which processing blocks are implemented as

hardwares with the case where processing blocks are mapped to a processor architec-

ture.

4.3.3 Mapping Effects

In this section, we investigate mapping effects by comparing the case that all pro-

cessing blocks are hardwares. Fig. 4-7 is a buffer-based dataflow with parameterized

buffer controllers. When f(1) and f(2) are implemented as hardware logics, the op-

erational dependency from the input of f(1) to the output of f(2) is represented as

71



p[f(1)] JOINT1,2 p[f(2)]Processor 1 RCV0,1

T1 T2

SND1,5

M0,1 M1,2 M1,5 M2,3

start_write2,3

RCV4,1

M4,1

SND2,3

start_read4,1

start_read0,1

Figure 4-8: Execution timing when f(1) and f(2) of Fig. 4-7 are mapped to processor
1.

follows:

start write2,3 > start read1,2 + L2,

start read1,2 > start write1,2,

start write1,2 > max(start read4,1, start read0,1) + L1.

(4.6)

From (4.6), the minimum start write2,3 for the hardware realization is given by

min(start write2,3) for hardware = L2 + min(start read1,2) + 1

= max(start read4,1, start read0,1) + L1 + L2 + 3. (4.7)

Fig. 4-8 shows the execution timing from the input of f(1) to the output of

f(2) when f(1) and f(2) of Fig. 4-7 are mapped to processor 1. In Fig. 4-8, since

two successive processing blocks, f(1) and f(2), are mapped to the same processor,

JOINT1,2 is used for the data transfer between f(1) and f(2). The execution time

from RCV4,1 to SND2,3 is the minimum value because all data transfers and functional

executions start as soon as their previous programs are completed. From the execution

72



timing, the minimum start write2,3 for processor 1 is given by:

min(start write2,3) for processor = start read4,1 + T1 + T2

+M4,1 + M0,1 + M1,5 + M1,2 + 6. (4.8)

Compared with (4.7), all previous execution times (including data transfers) reflect

to start write2,3. Therefore, for the processing blocks mapped to processors, start

signals must be timely ordered to maintain the correct execution of programs running

on processors. If the execution time of RCV4,1 takes longer than M4,1, processor 1

receives start read0,1 before RCV4,1 is completed. The timing mismatch may lead

to the wrong operations of the programs running on processor 1. In Section 4.4, we

discuss the synchronization issue and propose a solution.

4.4 Resource Utilization and Synchronization

This section discusses the resource utilization of a target platform to which processing

blocks in a buffer-based dataflow are mapped. Since the target platform consists of

processors and hardware logics such as Xilinx FPGAs, we investigate the synchro-

nization of data transfers between processors and between a processor and a hardware

logic. Due to the variation of execution times in a processor, Section 4.4.1 provides

the mapping based on maximally estimated execution times. Section 4.4.2 discusses

the condition to reduce the number of processor buses. In Section 4.4.3, we propose

a processor initiation scheme for the correct operation when actual execution times

73



f(1) RCV0,1 p[f(1)] SND1,5 SND1,2

f(2) RCV1,2 p[f(2)] SND2,3

f(3) RCV2,3 p[f(3)] SND3,4

f(5) RCV1,5 p[f(5)] SND5,6

f(6) RCV5,6 p[f(6)] SND6,7

f(4) RCV3,4 p[f(4)] SND4,7

f(7) RCV4,7 p[f(7)] SND7,outRCV6,7

RCV4,1

SND4,1

(a) Execution timing for the mapping of processing blocks in Fig. 4-7

RCV0,1 p[f(1)] SND1,5 JOINT1,2 p[f(2)] p[f(3)]

RCV1,5 p[f(5)] p[f(6)]

p[f(4)] SND4,7

RCV4,7 p[f(7)] SND7,out

JOINT2,3 JOINT3,4

JOINT5,6

Processor 1

Processor 2 JOINT6,7

RCV4,1 SND4,1

(b) Execution timing when processing blocks of Fig. 4-9(a) are mapped to processors

Figure 4-9: Execution timing representation to map processing blocks to processors.

take longer than maximally estimated execution times. Section 4.4.4 discusses the

timing mismatch problem in the case of processor-hardware coexistence and provides

its solution. Based on the discussion from Section 4.4.1 to Section 4.4.4, we propose

a mapping algorithm and a template code generation method in Sections 4.4.5 and

4.4.6.

4.4.1 Processor Utilization of Mapping

In order to map processing blocks to processors, the execution timing of processing

blocks is represented by using primitive templates such as SND and RCV . When

a buffer-based dataflow is given as Fig. 4-7, Fig. 4-9 shows the execution timing

representation of processing blocks.

In Fig. 4-9(a), a straightforward way of mapping may be to map each process-

ing block to an individual processor. In this case, the number of processors is the

74



same as the number of processing blocks. Thus, seven processors are required for

mapping processing blocks. However, if the execution times of processing blocks are

non-overlapped, the processing blocks are mapped to the same processor in order to

reduce the number of processors. When f(i) and f(j) are mapped to the same pro-

cessor, their execution times satisfy the following non-overlapped condition [EXEi:

execution times of f(i), EXEj: execution times of f(j)]:

max(end(EXEi), end(EXEj))−min(start(EXEi), start(EXEj))

> (end(EXEi)− start(EXEi)) + (end(EXEj)− start(EXEj)) (4.9)

where start(EXE) and end(EXE) correspond to the start and end times of SND,

RCV and functional execution, respectively. Equation (4.9) represents that two exe-

cution times are non-overlapped if the difference between the maximum end(EXE)

and the minimum start(EXE) of two execution times is larger than the summation

of two execution times. According to the execution type of processing block f(i)

(i.e., SND, RCV and p[f(i)]), start(EXE) and end(EXE) of equation (4.9) are

translated to

end(EXEi) =































stop write, if EXEi = SND of f(i),

stop read, if EXEi = RCV of f(i),

end of p[f(i)], if EXEi = p[f(i)],

75



start(EXEi) =































start write, if EXEi = SND of f(i),

start read, if EXEi = RCV of f(i),

start of p[f(i)], if EXEi = p[f(i)].

The number of processors is further reduced by using JOINT . In Fig. 4-9(a),

the execution times of f(1) and f(2) are only overlapped in SND1,2 and RCV1,2. By

replacing SND1,2 and RCV1,2 with JOINT1,2, f(1) and f(2) are mapped to the same

processor. In the same way, f(1)–f(4) are mapped to processor 1 and f(5)–f(7) are

mapped to processor 2 as shown in Fig. 4-9(b). Therefore, the number of processors

required for mapping is the same as the number of the feed-forward paths because the

buffer controllers in a single feed-forward path are replaced with JOINT operations

when consecutive processing blocks are mapped to processors.

Even though JOINT is applied to reduce the number of processors, the mapping

result with JOINT s may not satisfy the number of processors provided by the target

platform used. If the number of processors in the target platform is 1, the execution

timing of Fig. 4-9(b) is not directly mapped to a single processor architecture. In

this case, for mapping all processing blocks to a single processor, the execution times

from f(5) to f(7) shift right to the end of the execution times from f(1) to f(4).

When f(i) is mapped to a processor, its functional execution is realized as program

p[f(i)]. If p[f(i)] is preempted by the task having the higher priority, the execution

time of p[f(i)] is delayed. The delayed execution of p[f(i)] leads to the wrong SND

operation as illustrated in Fig. 4-10.

In Fig. 4-10, processor 1 receives start writei,j while p[f(i)] is running. Processor

76



p[f(i)] SNDi,jProcessor 1

BCi,j

RCVh,i

Mi,j

Missed data due to the timing mismatch  of 

start_writei,j between processor 1 and BCi,j

f(i) BCi,jBCh,i

start_writei,j

Figure 4-10: Processor 1 receives start writei,j during the execution of p[f(i)].

1 starts running SNDi,j when p[f(i)] is finished. However, BCi,j starts receiving data

from processor 1 as soon as it gets start writei,j from a global controller. Therefore,

BCi,j misses data due to the timing mismatch of start writei,j between processor 1

and BCi,j.

In order to determine the execution time of p[f(i)], Ti(max) is introduced. Ti(max)

is estimated as the longest time to complete the execution of p[f(i)]. If Ti(max) is

mispredicted, it affects the mapping result. Table 4.1 lists Ti(max) and Ti(actual)

when f(1) − f(7) of Fig. 4-9(a) are mapped to processors. Fig. 4-11 shows the

mapping results of Fig. 4-9(a) when Ti(max) and Ti(actual) in Table 4.1 are applied.

In Fig. 4-11, in case Ti(max) of Table 4.1 is applied, processor 3 is used to map

f(7). Compared with the case where Ti(actual) is applied, one more processor is

used for mapping. Thus, the wrong estimation may waste the resource of a target

platform. In addition, since RCV , SND and JOINT are also programs running on

processors, the execution times of RCV , SND and JOINT must be estimated. In

77



Table 4.1: Estimated Ti(max) and Ti(actual) of the processing blocks in Fig. 4-9(a)

Processing Block f(i) Ti(max) [cycles] Ti(actual) [cycles]
f(1) 100 300
f(2) 250 200
f(3) 280 200
f(4) 800 150
f(5) 1250 200
f(6) 300 200
f(7) 700 400

0 f(1) f(2) f(3) f(4) f(5) f(6) f(7)
0

Processor 1

Processor 2

Processor 3

Processing Blocks Mapped to Processors

Misprediction of T
i
(max) leads to the different mapping 

compared to the case of T
i
(actual)

 

 

Case 1: T
i
(max) values of Table I are used for mapping

Case 2: T
i
(actual) values of Table I are used for mapping

Figure 4-11: Mapping results of Fig. 4-9(a) when Ti(max) and Ti(actual) in Table
4.1 is applied.

Fig. 4-9(b), if the execution of SND1,5 in processor 1 takes longer than M1,5, RCV1,5

of processor 2 partially receives the data from BC1,5. Therefore, processor 2 does not

execute its functions (i.e., p[f(5)], p[f(6)] and p[f(7)]) correctly. Fig. 4-12 illustrates

the case.

In Fig. 4-12, due to the execution delay of SND1,5, even though SND1,5 of

processor 1 starts before RCV1,5 of processor 2 begins, SND1,5 is finished after RCV1,5

78



RCV0,1 p[f(1)] SND1,5 JOINT1,2 p[f(2)]

RCV1,5 p[f(5)] JOINT5,6

Processor 1

Processor 2

RCV4,1

BC1,5

Execution delay of SND1,5

M1,5

Missed data generated by processor 1 

in the current iteration period  

M1,5

Wrong data by RCV1,5 

due to the execution delay of SND1,5

Figure 4-12: When the execution time of SND1,5 takes longer than M1,5 in Fig.
4-9(b).

is completed. Therefore, processor 2 receives wrong data from BC1,5 and misses the

data which processor 1 generates in the current iteration period. For the correct

operation, RCV1,5 starts running when SND1,5 finishes writing all data to BC1,5. In

order to determine the end of SND1,5, the execution time of SND1,5 is estimated

as its maximum value, Tmax(SND1,5). Thus, start read1,5 for RCV1,5 is changed as

follows:

start read1,5 = stop write1,5 + 1 = start write1,5 + Tmax(SND1,5) + 1,

Tmax(SND1,5) > M1,5.

Fig. 4-13 illustrates the case where start read1,5 with the estimated Tmax(SND1,5)

is applied to Fig. 4-12. In Fig. 4-13, the actual data transfer by SND1,5 is done

from start write1,5 to (start write1,5 + Tmax(SND1,5)). Since RCV1,5 starts running

after SND1,5 is completed (i.e., start read1,5 = stop write1,5 + 1), processor 2 always

79



RCV0,1 p[f(1)] SND1,5 JOINT1,2 p[f(2)]

RCV1,5 p[f(5)] JOINT5,6

Processor 1

Processor 2

RCV4,1

BC1,5

Estimated Tmax (SND1,5)

M1,5

M1,5

Estimated Tmax (RCV1,5)

Figure 4-13: When the estimated Tmax(SND1,5) is applied to Fig. 4-12.

receives the valid data which processor 1 generates in the current iteration period.

In the same way, the execution time of RCV1,5 is also estimated as Tmax(RCV1,5)

to receive the valid data from BC1,5. For the synchronization of data transfers, the

execution times of SNDs, RCV s and JOINT s are estimated as their maximum

values. In addition, the estimated execution times are reflected to start and stop

signals as follows:

stop writei,j = start writei,j + Tmax(SNDi,j),

start readi,j = stop writei,j + 1,

stop readi,j = start readi,j + Tmax(RCVi,j),

stop jointi,j = start jointi,j + Tmax(JOINTi,j),

Tmax(SNDi,j), Tmax(RCVi,j), Tmax(JOINTi,j) > Mi,j,

(4.10)

where start writei,j and start readi,j are generated by a global controller and other

signals are not generated but estimated to determine start write and start read.

80



Processor 1 p[f(1)] SND1,5 SND1,2

Processor 2 RCV1,2 p[f(2)] SND2,3

Processor 3 RCV1,5 p[f(5)] SND5,6

Processor 4 RCV5,6 p[f(6)] SND6,7

Figure 4-14: Estimated execution times when processing blocks of Fig. 4-7 are
mapped to 4 processors.

If SNDi,k starts when JOINTi,j is completed, start writei,k is (stop jointi,j + 1).

However, in case actual execution take longer than estimated, the signals of (4.10) fail

to synchronize data transfers. In Section 4.4.3, we propose a scheme to synchronize

data transfers by revising the signals of (4.10).

4.4.2 Bus Utilization of Mapping

Our basic assumption is that a single processor has its own bus. However, if the

execution times of bus operations (i.e., SND and RCV ) are not overlapped among

processors, the processors share the same bus in order to reduce the number of buses.

Fig. 4-14 shows the execution timing when processing blocks of Fig. 4-7 are mapped

to 4 processors.

In Fig. 4-14, the execution time of RCV1,2 is overlapped with the execution time

of p[f(5)]. Thus, f(2) and f(5) are not mapped to the same processor. However,

p[f(5)] does not access the bus which RCV1,2 uses for the data transfer with BC1,2.

In addition, p[f(2)] of processor 2 does not use the bus for SND5,6 of processor 3.

Therefore, processors 2 and 3 share the same bus because the execution times of

SND and RCV between them are non-overlapped. When processors i and j share

the same bus, their bus operations satisfy the following (BUSi: execution times of a

81



bus operation in processor i, BUSj: execution times of a bus operation in processor

j):

max(end(BUSi), end(BUSj))−min(start(BUSi), start(BUSj))

> (end(BUSi)− start(BUSi)) + (end(BUSj)− start(BUSj)) (4.11)

where start(BUS) and end(BUS) correspond to the start and end times of SND

and RCV , respectively. Equation (4.11) represents that the execution times of two

bus operations in processors i and j are non-overlapped if the difference between the

maximum end(BUS) and the minimum start(BUS) of two bus operations is larger

than the summation of the execution time of the two bus operations. According to the

data transfer types of processor i (i.e., SND and RCV ), start(BUS) and end(BUS)

in (4.11) are translated to

end(BUSi) =















stop write, if BUSi is a SND in processor i,

stop read, if BUSi is a RCV in processor i,

start(BUSi) =















start write, if BUSi is a SND in processor i,

start read, if BUSi is a RCV in processor i.

However, the execution times of Fig. 4-14 are estimated values for mapping. If actual

execution times are not within the range of estimated values, the bus sharing among

processors leads to wrong results. In Fig. 4-14, when the actual execution of RCV1,5

82



takes longer than estimated, RCV1,5 is overlapped with RCV1,2. In this case, RCV1,5

does not receive the correct data from BC1,5 because RCV1,2 occupies the shared bus

when processor 2 receives start read1,2 from the global controller.

4.4.3 Processor Initiation Scheme and Global Controller

When actual execution times take longer than estimated times, data transfers are not

synchronized so that entire dataflow operations may produce wrong results. In order

to prevent the misprediction of execution times, we propose a processor initiation

scheme notifying the end of a program to a global controller. The processor initiation

scheme is applied to the design of the mapped partition, which is created from the

estimated execution times.

For the correct execution of SNDi,j following p[f(i)], at the end of the functional

execution p[f(i)], the processor which runs p[f(i)] generates initiate start writei,j

signal to inform a global controller that p[f(i)] is completed. As soon as the global

controller receives initiate start writei,j, it sends start writei,j to both the processor

and the buffer controller BCi,j. Thus, the global controller needs the input port for

receiving initiate start writei,j from the processor. When the processor initiation

scheme is applied, start writei,j is changed to

start writei,j = initiate start writei,j + 1 = start of p[f(i)] + Ti(actual) + 1

where start of p[f(i)] is the start time of the program p[f(i)], and it is determined

by the last fan-in operation (i.e., RCV or JOINT ) prior to p[f(i)]. In the proposed

83



processor initiation scheme, stop signals are used to determine start signals for data

transfers. The stop signals for SND, RCV and JOINT are generated by processors

as follows:

stop writei,j = start writei,j + Tactual(SNDi,j),

stop readi,j = start readi,j + Tactual(RCVi,j),

stop jointi,j = start jointi,j + Tactual(JOINTi,j),

where Tactual(·)s represent the actual execution times of data transfers. However, in

the case of RCVi,j in multiple fan-ins, if a global controller generates start readi,j

only by referring to stop writei,j (i.e., start readi,j = stop writei,j + 1), the deadlock

condition may occur. Fig. 4-15 illustrates the deadlock problem when f(4), f(6) and

f(7) of Fig. 4-7 are mapped to 3 different processors.

As shown in Fig. 4-15(a), when stop read4,7 ≤ stop write6,7, start read6,7 (=

stop write6,7 + 1) does not lead to the operational problem. However, if stop read4,7

> stop write6,7, start read6,7 creates the deadlock problem indicated as the dotted

line of Fig. 4-15(b). In order to prevent the deadlock problem, the global controller

generates start read6,7 when it receives both stop write6,7 and stop read4,7. There-

fore, start read in multiple fan-ins is expressed as

start readi,j = max(stop writei,j, stop readk,j) + 1

for i 6= j 6= k, where RCVk,j is prior to RCVi,j.

84



SND4,7
Processor 1

Processor 2 SND6,7

p[f(7)] SND7,out
Processor 3 RCV6,7RCV4,7

stop_write4,7

stop_write6,7

start_read4,7 start_read6,7stop_read4,7

(a) Correct operation when start read6,7 = stop write6,7 + 1

Global 

Controller
Processors

Processor 1 sends stop_write4,7 

SND4,7
Processor 1

Processor 2 SND6,7

p[f(7)] SND7,out
Processor 3 RCV6,7RCV4,7

start_read4,7

Processor 3 sends stop_read4,7 

start_read6,7

Processor 3 starts RCV4,7 

Processor 2 sends stop_write6,7 

Processor 3 cannot starts RCV6,7  

because it still runs RCV4,7

Waiting for stop_read6,7 

from Processor 3
Processor 3 is waiting for 

start_read6,7 

stop_write4,7

stop_write6,7

stop_read4,7

stop_write4,7

stop_write6,7

start_read4,7 start_read6,7stop_read4,7

(b) Deadlock condition when start read6,7 = stop write6,7 + 1

Figure 4-15: Deadlock problem when start read of multiple fan-ins is determined by
stop write.

85



Global Controller

If Next Data 

Transfer = SND

initiate_start_write 

start_write

Processors

If p[f(i)] is finished

No

start_write 

start_read 

Buffer Controllers

If Next Data 

Transfer = RCV

stop_write 

stop_read 

stop_joint 
Yes

Do Nothing;

Since Next Data Transfer

= JOINT

No

start_read
Yes

If SND is finished

If RCV is finished

If JOINT is finished

start_write

start_read

initiate_start_write 

stop_write 

stop_read 

stop_joint 

Yes

Yes

Yes

Yes

Figure 4-16: Illustration of the signalling for processor initiation scheme.

Fig. 4-16 illustrates the relation of start and stop signals when processor initiation

scheme is applied. Here, the global controller has four input signals from processors

and two output signals to processors and buffer controllers. Even when the execution

times of the programs have a large variation, the processor initiation scheme guaran-

tees the correct operation by the signal handshaking between a global controller and

processors. However, as shown in Fig. 4-16, it increases the interconnect resources

and the number of ports in a global controller and processors.

4.4.4 Processor - Hardware Coexistence of Mapping

So far, we have considered the case where all processing blocks of a buffer-based

dataflow are mapped to processors. In this section, we investigate the synchronization

86



of data transfers in the case where some of processing blocks in a buffer-based dataflow

are mapped to processors and others are realized as hardware logics.

When one processing block is implemented as a hardware logic and other pro-

cessing blocks are mapped to processors, the buffer controllers, which are connected

to the fan-in(s) and fan-out(s) of the processing block realized as a hardware, are

accessed by both a processor through a bus and a hardware logic via an interconnect.

In this case, the timing mismatch problem exists between writing and reading of the

buffer controllers as illustrated in Fig. 4-17.

Fig. 4-17 illustrates the case where only f(2) is realized as a hardware logic in a

buffer-based dataflow. R1,2, W2,3 and W2,4 represent the reading and writing activities

of the processing block f(2). For example, R1,2 corresponds to the activity that f(2)

reads the data from BC1,2. Thus, the execution time of R1,2 takes from start read1,2

to stop read1,2. In Fig. 4-17(a), if the interconnect speed is faster than BUS speed,

R1,2 reads the same data more than once. Furthermore, as shown in Fig. 4-17(b),

R1,2 partially receives the data which SND1,2 writes to BC1,2 in the current iteration

period because R1,2 finishes before SND1,2 ends (i.e., stop read1,2 < stop write1,2).

If BUS speed is faster than the interconnect speed, RCV2,3 reads the same data

more than once and fails to read all the data written by W2,3 in the current iteration

period because stop read2,3 < stop write2,3 as shown in Fig. 4-17(c). Even if the

interconnect speed and BUS speed are the same, it is not guaranteed that the data

transfers are correctly done because the execution times of SND and RCV are non-

deterministic. For the correct data transfers through the buffer controllers accessed

by both a processor and a hardware logic, the reading of the buffer controllers must

87



R1,2

BC1,2 BC2,3 BC2,4

BUS 

BC1,2 f(2) BC2,3

BC2,4

Processors

f(2)

Interconnectors

W2,3 W2,4

SND1,2 RCV2,3 RCV2,4

(a) Only f(2) is implemented as a hardware.

SND1,2BUS 

start_write1,2 stop_write1,2

R1,2Interconnector

start_read1,2 stop_read1,2

(b) When the interconnect speed is faster than BUS speed

W2,3

BUS 

start_write2,3 stop_write2,3

RCV2,3

Interconnector

start_read2,3 stop_read2,3

(c) When BUS speed is faster than the interconnect speed

Figure 4-17: Timing mismatch problem in the processor-hardware coexistence of
mapping.

88



Mapping processing blocks to processors

No

Yes

Application Buffer Based Data Flow 

& Estimated times of functional 

executions and data transfers 

Execution timing representation of the 

processing blocks mapped to processors

If  # of processors  ≤ constraint

Move the processing blocks mapped to 

Processor N (N > constraint) to Processor 1.

Mapped Partition

Figure 4-18: Proposed mapping algorithm.

start when the writing of the buffer controllers are completely done. Therefore, even

though f(2) is implemented as a hardware logic, start read1,2 is determined not by

(4.3) but by (4.10) (i.e., start read1,2 = stop write1,2 + 1).

4.4.5 Mapping Algorithm

We propose a mapping algorithm which creates the mapped partition satisfying the

given resource constraint. In the first step, as shown in Fig. 4-9(a), we represent the

execution timing of a buffer-based dataflow with the estimated times of functional

executions and data transfers. From the execution timing representation, our pro-

posed mapping algorithm creates the mapped partition. Fig. 4-18 shows the overall

procedure of the proposed mapping algorithm.

89



Algorithm 7 Mapping processing blocks to processors
1: //G = (V, E): a buffer-based dataflow,
2: //V = the set of processing blocks, E = the set of buffer controllers.
3: //V = Vp

S

Vh,
4: //Vp = the set of processing blocks mapped to processors,
5: //Vh = the set of processing blocks realized as hardware logics.
6: //Ei,j = the buffer controller between Vi and Vj .
7: //np = number of processors
8: //processor[np] = array of the processors which Vi and Vj are mapped to.
9: //non overlap(a,b) = check if execution times of a and b are non-overlapped,

10: //non overlap(a,b) corresponds to equation (4.9).
11: //non overlap BUS(a,b) = check if bus operations of a and b are non-overlapped.
12: //non overlap BUS(a,b) corresponds to equation (4.11).
13: //Vi, Vj /∈ Vh

14: //Vi, Vj ∈ Vp

15: //np = 0;
16:
17: //Mapping Vi to processors
18: MAPPING(Vi)
19:
20: for all (Vi) do
21: for all (Vj ∈ processor[np]) do
22: if (non overlap(Vi, Vj)) == TRUE then
23: add Vi to processor[np];
24: else
25: //If there is BCi,j ,
26: //Check whether Vi is mapped to processor[np] by using JOINTi,j

27: if (Ei,j ∈ E) then
28: remove SNDi,j from Vi;
29: remove RCVi,j from Vj ;
30: //If only SNDi,j and RCVi,j is overlapped,
31: //Vi is mapped to processor[np] by using JOINTi,j

32: if (non overlap(Vi, Vj) == TRUE) then
33: add Vi to processor[np];
34: add JOINTi,j to processor[np];
35: else
36: // Restore Vi and Vj

37: add SNDi,j to Vi

38: add RCVi,j to Vj

39: //Vi is assigned to new processor.
40: add Vi to processor[np++];
41: end if
42: else
43: //Since Ei,j does not exist,
44: //Vi is assigned to new processor.
45: add Vi to processor[np++];
46: end if
47: end if
48: end for
49: end for
50: //Bus sharing among processors
51: np = 0;
52: for all (Vi ∈ processor[np], Vj ∈ processor[np+1]) do
53: //If SNDs and RCV s are non-overlapped between two processors,
54: //the processors share the same bus.
55: if (non overlap BUS(Vi, Vj) == TRUE) then
56: assign BUS of processor[np] to processor[np+1];
57: remove BUS of processor[np+1];
58: end if
59: np++;
60: end for

90



Algorithm 7 corresponds to the “Mapping processing blocks to processors” box of

Fig. 4-18. In Fig. 4-18, when the number of processors provided by a target platform

is smaller than that of the mapping found by Algorithm 7, the processing blocks

mapped to processor N (N > the number of processors in a target platform) are moved

to processor 1. The execution times of the moved processing blocks are sequentialized

to be non-overlapped with the execution times of the existing processing blocks in

processor 1. In addition, all processing blocks (including the moved processing blocks)

mapped to processor 1 are ordered to maintain the operational dependency of a buffer-

based dataflow. Thus, the iteration period of the buffer-based dataflow is delayed.

Algorithm 7 iterates until it finds the mapping to satisfy the number of processors

provided by a target platform. It also finds the bus sharing among processors to

reduce the number of buses in a target platform. The final outcome of the mapping

algorithm is the mapped partition.

4.4.6 Template Code Generation

Our proposed mapping algorithm finds the mapped partition from a buffer-based

dataflow, estimated times of functional executions and data transfers, and a resource

constraint (i.e., the number of processors). The mapped partition has the information

on which processing blocks are mapped to which processors. It also has the timing

information of processors and hardware logics.

When the functional execution of a mapped processing block is realized as a

subroutine, it is necessary to bind the input and output arguments of the subroutine

91



Mapped Partition

Template Codes Generation

Argument binding table
Target Dependent BUS 

operations (SND/RCV)

Template Codes written in 

C programming language

Figure 4-19: Procedure of template codes generation.

to the primitive templates for data transfers such as SND, RCV and JOINT . An

input/output argument binding table is extracted from the mapped partition by using

the operational dependency represented as the subscripts of programs. If p[f(i)] ,

JOINTi,j and p[f(j)] run on processor 1, the output argument of p[f(i)] is passed

to the input argument of JOINTi,j because the subscript i of JOINTi,j represents

p[f(i)]. In the same way, the output argument of JOINTi,j is passed to the input

argument of p[f(j)] because the subscript j of JOINTi,j corresponds to p[f(j)]. Since

bus operations are target dependent, SND and RCV are implemented by referencing

the external library for target processors. From the argument binding table and

the library for the target dependent bus operations, the template codes for target

processors are generated. Fig. 4-19 shows the procedure to generate the template

code.

92



4.5 Evaluation of Proposed Methodology

In this section, we evaluate the proposed mapping methodology and template code

generation. We use SystemC to model a target platform having multi-core processors

and reconfigurable logics. The proposed mapping algorithm in Fig. 4-18 is realized

through the C programming language. The template code generation in Fig. 4-19 is

validated in the Xilinx ISE environment.

4.5.1 Evaluation Setup

Our evaluation uses the buffer-based dataflow of Fig. 4-7 and targets the platform

consisting of multi-core processors cores at 400MHz and buses at 100MHz. Table 4.2

lists the buffer controller parameters of Fig. 4-7.

Table 4.2: Buffer Controller Parameters of Fig. 4-7

In Out nr D M start write start read

0 1 1 0 16 8 9

1 5 1 0 16 37 38

5 6 1 0 32 49 50

1 2 1 0 24 51 52

6 7 1 0 32 59 60

2 3 1 0 24 67 68

3 4 1 0 16 83 84

4 7 1 0 16 99 100

4 1 1 0 8 102 103

7 out 1 0 30 115 116

In Table 4.2, “In” and “Out” represent the input and output of the corresponding

buffer controller, respectively. As explained in Section 2.1, nr, D and M correspond

to the read offset, delay factor and block size, respectively. The estimated execution

times of processing blocks are shown in Table 4.3. In addition, the execution times

93



Table 4.3: Estimated Ti(max) of the processing blocks in Fig. 4-7

Processing block f(i) Estimated Ti(max)
f(1) 6000 ns
f(2) 6000 ns
f(3) 16000 ns
f(4) 4000 ns
f(5) 4000 ns
f(6) 8000 ns
f(7) 8000 ns

f(1) f(2) f(3) f(4) f(5) f(6) f(7)

Processor 1

Processor 2

Processor 3

Processing Blocks Mapped to Processors

Mapping results according to the estimated execution times of SND
1,2

 

 

Case 1: estimated SND
1,2

 = 480 ns

Case 2: estimated SND
1,2

 = 640 ns

Figure 4-20: Mapping cases according to the estimation of SND1,2.

of SNDs and RCV s are also estimated as twice as the corresponding M values in

Table 4.2. Fig. 4-20 shows that mapping is changed according to the estimation of

SND1,2.

In Fig. 4-20, if the actual execution time of SND1,2 is always within 480 ns, the

mapping result corresponds to case 1. In this case, BC1,2, BC2,3, BC3,4, BC5,6 and

BC6,7 are mapped to JOINT s. Thus, the total number of buffer controllers to be

realized as hardwares is 5 (= 10 BCs in Table 4.2 − 5 JOINT s). When the actual

94



0 f(1) f(2) f(3) f(4) f(5) f(6) f(7)
Hardware

0

Processor 1

Processor 2

Processing Blocks Mapped to Processors

Mapping results of Processor − Hardware Coexistence

 

 

Case 1:number of JOINT = 4,

iteration period = 37300

Case 2: number of JOINT = 3,

iteration period = 37850

Case 3: number of JOINT = 3,

iteration period = 33790

Figure 4-21: Mapping results of processor-hardware coexistence.

execution time of SND1,2 vary from 480 ns to 640 ns, the mapping produces wrong

outputs in the dataflow. In this case, the execution time of SND1,2 is re-estimated as

640 ns. The estimation changes the mapping from case 1 to case 2. Case 2 uses one

more processor to have the same iteration period with case 1. In addition, since the

mapping of case 2 has 2 JOINT s, the total number of buffer controllers implemented

as hardwares is 8. If some processing blocks are realized as hardware logics, the

iteration period is further reduced. Fig. 4-21 shows the mapping results when some

of processing blocks in case 1 of Fig. 4-20 are realized as hardware logics.

In Fig. 4-21, case 1 corresponds to the case where the processing block having

multiple fan-ins and fan-outs (i.e., f(1)) is realized as a hardware. Case 2 represents

that the processing block having a single fan-in and fan-out (i.e., f(2)) is implemented

as a hardware. Case 3 indicates that the successive processing blocks constructing one

feed-forward path (f(5) → f(6) → f(7)) are realized as hardwares. The latency of

95



hardware logics is configured as f(1) = 270 ns, f(2) = 140 ns, f(5) = 100 ns, f(6) =

80 ns and f(7) = 140 ns. In the results of mapping, even though the hardware latency

of f(2) is smaller than that of f(1), the iteration period of case 1 is shorter than that

of case 2 because more SNDs and RCV s become writing and reading activities of

the hardware logic. When there are multiple feed-forward paths in a buffer-based

dataflow, the number of processors for mapping is equal to/smaller than the number

of paths (the number of processors is smaller than the number of paths when all

execution times among paths are non-overlapped) because our mapping algorithm

maps consecutive processing blocks to the same processor as much as possible by

using JOINT . In case 3, since all successive processing blocks of one feed-forward

path are realized as hardwares, the number of processors for mapping is reduced by

1.

4.5.2 Processors Only

For the correct operation of a buffer-based dataflow, execution times are estimated

as their maximum values. However, in case maximum values rarely happen, the

estimation may waste the resource in a target system. In “case 2” of Fig. 4-20, if the

execution time of SND1,2 is observed as 640 ns only in one particular iteration period,

processor 3 runs only for one exceptional iteration period. In order to maximally

utilize resources in a target system, we use the execution times with a high probability

as the estimated values for mapping. When actual execution times take longer than

estimated, we apply the processor initiation scheme. Fig. 4-22 shows the simulation

96



results of the processor initiation scheme applied to the mapped partition of “case 1”

in Fig. 4-20.

In Fig. 4-22, a global controller generates start signals, and processors sends stop

signals to the global controller. Due to the variation of execution times, start read4,7

is enabled when either (stop joint6,7 + 1) in Fig. 4-22(a) or (stop write4,7 + 1) in

Fig. 4-22(b). For the correct operation in both cases, the global controller generates

start read4,7 when it receives stop write4,7 and stop joint6,7 from processor 1 and

processor 2. As a result, Fig. 4-22(a) shows that processor 2 starts running RCV4,7

when it finishes JOINT6,7. In Fig. 4-22(b), processor 2 begins running RCV4,7 when

processor 1 ends SND4,7.

4.5.3 Processor-Hardware Coexistence

In the case of processor-hardware coexistence, the writing and reading of the buffer

controller between a processor and a hardware are fully sequentialized to solve the

timing mismatch between a processor bus and a hardware interconnect. Fig. 4-23

shows the simulation results when f(1) to f(4) are mapped to processor 1 and f(5)

to f(7) are realized as hardwares in Fig. 4-7.

In Fig. 4-23, start write5,6, start read5,6, start write6,7 and start read6,7 are

overlapped because f(5), f(6) and f(7) are realized as the hardwares which are able

to generate data while they are reading data. On the other hand, the timings of

start write1,5 and start read1,5 (start write4,7 and start read4,7) are non-overlapped

because the reading port of BC1,5 (BC4,7) is connected to a processor bus and its

97



0 10 us 20 us

X+ 0000 0000

XXXX 000F

XXXX 000F

XXXX 000D

Time
RCV41_of_Processor1[15:0]=0000
stop_read_41=0
f(1)_mapped_to_Processor1=0
JOINT12_of_Processor1=0
f(2)_mapped_to_Processor1=0
JOINT23_of_Processor1=0
f(3)_mapped_to_Processor1=0
JOINT34_of_Processor1=0
f(4)_mapped_to_Processor1=0
initiate_start_write_47=0
start_write_47=0
SND47_of_Processor1[15:0]=000F
stop_write_47
f(6)_mapped_to_Processor2=0
JOINT67_of_Processor2
stop_joint_67
start_read_47
RCV47_of_Processor2[15:0]
stop_read_47=0
f(7)_mapped_to_Processor2=0
initiate_start_write_7out=0
start_write_7out=0
SND7out_of_Processor2[15:0]=XXXX
stop_write_7out=0

(a) stop joint6,7 determines start read4,7

0 10 us 20 us 30 us 40 us 50 us 60 us

0000 0000

XXXX 000F

XXXX 000F

XXXX 000D

Time
RCV41_of_Processor1[15:0]=0000
stop_read_41=0
f(1)_mapped_to_Processor1=0
JOINT12_of_Processor1=0
f(2)_mapped_to_Processor1=0
JOINT23_of_Processor1=0
f(3)_mapped_to_Processor1=0
JOINT34_of_Processor1=0
f(4)_mapped_to_Processor1=0
initiate_start_write_47=0
start_write_47=0
SND47_of_Processor1[15:0]
stop_write_47
f(6)_mapped_to_Processor2=0
JOINT67_of_Processor2=0
stop_joint_67
start_read_47
RCV47_of_Processor2[15:0]
stop_read_47=0
f(7)_mapped_to_Processor2=0
initiate_start_write_7out=0
start_write_7out=0
SND7out_of_Processor2[15:0]=XXXX
stop_write_7out=0

(b) stop write4,7 determines start read4,7

Figure 4-22: Simulation results of processor initiation scheme.

98



0 10 us 20 us 30 us

X+ 0000 00+

XXXX 000F

XXXX 000F

XXXX 0000

Time
RCV41_of_Processor1[15:0]=0000
stop_read_41=0
f(1)_mapped_to_Processor1=0
start_write_15
SND15_of_Processor1[15:0]
stop_write_15
JOINT12_of_Processor1=1
f(2)_mapped_to_Processor1=0
JOINT23_of_Processor1=0
f(3)_mapped_to_Processor1=0
JOINT34_of_Processor1=0
f(4)_mapped_to_Processor1=0
initiate_start_write_47=0
start_write_47=0
SND47_of_Processor1[15:0]=XXXX
stop_write_47=0
start_read_15
f(5)_on_HW
start_write_56
start_read_56
f(6)_on_HW
start_write_67
start_read_67
start_read_47=0
f(7)_on_HW=0
start_write_7out=0
Output_of_f(7)[15:0]=XXXX

(a) When SND1,5 takes longer than R1,5

0 10 us

XXXX 0000 0000

XXXX 000F

XXXX 000F

XXXX 0000

Time
RCV41_of_Processor1[15:0]=0000
stop_read_41=0
f(1)_mapped_to_Processor1=0
start_write_15
SND15_of_Processor1[15:0]
stop_write_15
JOINT12_of_Processor1=1
f(2)_mapped_to_Processor1=0
JOINT23_of_Processor1=0
f(3)_mapped_to_Processor1=0
JOINT34_of_Processor1=0
f(4)_mapped_to_Processor1=0
initiate_start_write_47=0
start_write_47=0
SND47_of_Processor1[15:0]=XXXX
stop_write_47=0
start_read_15
f(5)_on_HW
start_write_56
start_read_56
f(6)_on_HW
start_write_67
start_read_67
start_read_47=0
f(7)_on_HW=0
start_write_7out=0
Output_of_f(7)[15:0]=XXXX

(b) When R1,5 takes longer than SND1,5

Figure 4-23: Simulation results of processor-hardware coexistence.

99



Table 4.4: Argument binding table for processor 1 of case 3 in Fig. 4-21

Processing block Argument Data Transfer dependency size of M order
f(1) f1 out 1 N/A M 1 5 16 1

f1 out 2 N/A M 1 2 24 2
f1 in 1 RCV M 0 1 16 1
f1 in 2 RCV M 4 1 8 2
f1 bus out 1 SND M 1 5 16 1
f1 bus out 2 JOINT M 1 2 24 2

f(2) f2 out 1 N/A M 2 3 24 1
f2 in 1 JOINT M 1 2 24 1
f2 bus out 1 JOINT M 2 3 24 1

f(3) f3 out 1 N/A M 3 4 16 1
f3 in 1 JOINT M 2 3 24 1
f3 bus out 1 JOINT M 3 4 16 1

f(4) f4 out 1 N/A M 4 7 16 1
f4 out 2 N/A M 4 1 8 2
f4 in 1 JOINT M 3 4 16 1
f4 bus out 1 SND M 4 7 16 1
f4 bus out 2 SND M 4 1 8 2

writing port is connected to a hardware interconnect. Fig. 4-23(a) shows the re-

sult when SND1,5 takes longer than R1,5. This case represents that a processor bus

speed is slower than a hardware interconnect speed. In contrast, Fig. 4-23(b) shows

the case when R1,5 takes longer than SND1,5. In this case, a hardware interconnect

speed is slower than a processor bus speed. In both cases, a global controller gen-

erates start read1,5 = (stop write1,5 + 1) for the correct data transfer in the timing

mismatch between a processor bus and a hardware interconnect.

4.5.4 Template Code Generation

From the mapped partition created by the mapping algorithm of Fig. 4-18, our

methodology establishes the argument binding table to generate template codes. Ta-

ble 4.4 lists the argument binding table for processor 1 of “case 3” in Fig. 4-21.

In Table 4.4, “dependency” represents the direction of argument passing between

100



int* RCV(unsigned int size _of_M, u32 address_offset)
{

XCache_InvalidateDCacheRange _revised(XPAR_XPS_BRAM_IF_CNTLR_2_BASEADDR\
+ address_offset, size_of_M*sizeof(int));

memcpy(return_RCV, (int*)(XPAR_XPS_BRAM_IF_CNTLR_2_BASEADDR\
+ address_offset), size_of_M*sizeof(int));

return return_RCV;
}

void SND(int* output_of_fn, unsigned int size _of_M, u32 address_offset)
{

memcpy((int*)(XPAR_XPS_BRAM_IF_CNTLR_2_BASEADDR + address_offset),\ 
output_of_fn, size_of_M*sizeof(int));

XCache_FlushDCacheRange_revised(XPAR_XPS_BRAM_IF_CNTLR_2_BASEADDR \
+ address_offset, size_of_M*sizeof(int));

}

(a) Target dependent RCV and SND subroutines

void template _code()
{

f1_in_1 = RCV(M_0_1);
f1_in_2 = RCV(M_4_1);
f1_out_1 = f1(f1_in_1, f1_in_2);
f1_out_2 = f1(f1_in_1, f1_in_2);
SND(f1_out_1,M_1_5);
f1_bus_out_2 = JOINT(f1_out_2,M_1_2);
f2_in_1 = JOINT(f1_bus_out_2,M_1_2);
f2_out_1 = f2(f2_in_1);
f2_bus_out_1 = JOINT(f2_out_1,M_2_3);
f3_in_1 = JOINT(f2_bus_out_1,M_2_3);
f3_out_1 = f3(f3_in_1);
f3_bus_out_1 = JOINT(f3_out_1,M_3_4);
f4_in_1 = JOINT(f3_bus_out_1,M_3_4);
f4_out_1 = f4(f4_in_1);
f4_out_2 = f4(f4_in_1);
SND(f4_out_1,M_4_7);
SND(f4_out_2,M_4_1);

}

(b) Argument binding subroutine

(c) Simulation result in ModelSim 6.3c of Xilinx ISE 10.1

Figure 4-24: Generated template codes for Xilinx Virtex-5 FXT.

101



the subroutine of a functional execution and the primitive template such as RCV ,

SND and JOINT ; “order” indicates the order of arguments. For example, f1 out 2

is the second output argument of f1. Since f1 bus out 2 has the same “dependency”

(i.e., M 1 2) with f1 out 2, the output stored in f1 out 2 is passed to the input

argument of JOINT . Based on the argument binding table, the template code are

generated as shown in Fig. 4-24.

Fig. 4-24(a) shows RCV and SND primitive templates which are generated for

the Xilinx Virtex-5 FXT target platform. Fig. 4-24(b) is the automatically generated

template code based on Table 4.4. Compared with the subroutines of Fig. 4-24(a),

the argument binding subroutine does not contain the target specific library because

it is fully realized with the standard C library. In Fig. 4-24(c), the generated template

code is working in ModelSim 6.3c on Xilinx ISE 10.1. In the result, when “irq” is set

to 1, two RCV s and three SNDs run because start read and start write are realized

as the interrupt of PPC440 in Xilinx Virtex-5 FXT.

102



Chapter 5

Conclusion and Future Research

5.1 Conclusion

In this dissertation, we have presented a sharing methodology to reduce the intercon-

nect resource in a data-centric applications represented as a buffer-based dataflow.

The proposed sharing methodology rearranges the lifetimes and activity times of

buffers to increase the possibility of buffer and bus sharing. Our approach also splits

activity times in order to balance data transfers through buses. However, since buffer

and bus sharing increases the dynamic energy consumption, we do not guarantee

that the sharing case with the minimum resource consumes the minimum energy. In

order to find the sharing case consuming the minimum energy, we thus establish an

energy consumption model with the estimated buffer and bus costs. The proposed

sharing methodology was evaluated with several data-centric applications. Through

the evaluation, we confirmed that the sharing case having the minimum resource may

not correspond to the sharing case consuming the minimum energy.

103



We also proposed a mapping methodology to synthesize processing elements of a

dataflow in a target platform having multi-core processors and programmable logics.

In order to achieve synchronized data transfers between processors (or between a

processor and a hardware), we used the buffer-based dataflow. From the buffer-based

dataflow and estimated execution times for functions and data transfers, the proposed

methodology creates a mapped partition that satisfies a given resource constraint.

After the mapped partition is created, the template code for the processing blocks

mapped to processors is generated. We also devised a processor initiation scheme to

prevent wrong operations when the actual execution times take longer than estimated.

The proposed methodology was evaluated with the SystemC model and Xilinx ISE

10.1. Through the evaluation, we demonstrated that the mapping by our proposed

methodology is successfully working even with misestimated execution times.

5.2 Future research

The proposed methodologies are applied to the synthesis of an application dataflow

graph in order to reduce the interconnect resources and to synchronize data transfers

between different processsing elements (i.e., between processors/between a processor

and a hardware). However, they do not support the reconfiguration for synthesizing

multiple application dataflow graphs to the same platform. In order for two applica-

tion dataflow graphs which share a large number of processing blocks (e.g. MPEG4

and H.264) to be synthesized onto the same platform, we need a reconfigurable ar-

chitecture having reconfigurable interconnects.

104



Reconfigurable architectures can be configured to any of different operations dur-

ing post−fabrication, which allows flexibility traditionally provided only by pro-

grammable processors. Another important feature of reconfigurable architecture is

the ability to have application- dependent structure (dataflow and control flow) that

can achieve performance close to ASIC implementations. Due to these features, re-

configurable architectures have become platform for embedded processing systems.

Also, the algorithms are becoming more and more adaptive in nature with respect

to space and time. These algorithms have a unique execution characteristics where

the real−time constraint varies dynamically in time. For example, computation re-

quirements can be changed depending on performance level such as SNR as well as

sampling rate of the incoming data. These characteristics provide an opportunity to

investigate reconfigurable hardware design.

FPGAs are fine grained and boasting the ability to map any kind of algorithm.

The FPGAs expose the limitations of handling the high throughput and low power

applications created by the memory hungry systems. These commercial FPGAs are

embedding some coarse grained blocks (like multipliers) to increase the performance.

Nevertheless, they have not been able to achieve the performance desired by the sys-

tems today. The other approach to improve the performance is use of coarse grained

reconfigurable architecture. Such an architecture has large number of processing ele-

ments and buffers designed in ASIC fashion and they interact with each other through

reconfigurable interconnect. The idea is to group these individual logic blocks into a

Heterogenous Processing Element (abbreviated to HPE ) to interact within them-

selves and with memory. Such a system has the potential to further reduce area and

105



energy for embedded DSP applications. We will present an architecture consisting of

HPE and BUF interacting through a scalable and reconfigurable interconnect. The re-

configurable architecture will realize multiple applications represented as buffer-based

dataflows in the same platform.

106



Bibliography

[1] Ken Kundert, “Design of mixed-signal Systems on a Chip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, issue 12,
pp. 1561-1571, Dec. 2000.

[2] McCorquodale, M.S. Gebara, F.H. Kraver, K.L. Marsman, E.D. Senger and R.M.
Brown, “A Top-Down Microsystems Design Methodology and Associated Chal-
lenges,” Design, Automation and Test in Europe Conference and Exhibition, pp.
292-296, 2003.

[3] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya, “Parameterized
Dataflow Modeling for DSP Systems,” IEEE Transactions On Siganl Processing,
vol. 49, no. 10, Oct. 2001.

[4] A. Singh, G. Parthasarathy and M. Marek-Sadowska, ”Efficient circuit clustering
for area and power reduction in FPGAs,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 7, no. 4, pp. 643-663, Oct. 2002.

[5] D. Chen, J. Cong and Y. Fan, ”Low-power high-level synthesis for FPGA ar-
chitectures,” In Proceedings of the 2003 international Symposium on Low Power
Electronics and Design, pp. 134-139, Aug. 2003.

[6] J. Cong, Y. Fan and J. Xu, ”Simultaneous resource binding and interconnection
optimization based on a distributed register-file microarchitecture,” ACM Trans-
action on Design Automation of Electronic Systems, vol. 14, no. 3, pp. 1-31, May.
2009.

[7] J. Mun, S. H. Cho, and S. Hong, ”Flexible Controller Design and Its Application
for Concurrent Execution of Buffer Centric Dataflows,” Journal of VLSI Signal
Processing, vol. 47, no. 3, pp. 233-257, Jun. 2007.

[8] S. Hong, J. Lee, A. Athalye, P. M. Djuric, W. Cho, ”Design Methodology for
Domain Specific Parameterizable Particle Filter Realizations,” IEEE Transactions
on Circuits and Systems I:Regular Papers, vol. 54, no. 9, pp. 1987-2000, Sep. 2007.

[9] P. Briggs, K. Cooper and L. Torczon, ”Improvements to graph coloring register
allocation,” ACM Transactions on Programming Languages and Systems, vol. 16,
no. 3, pp. 428-455, May. 1994.

107



[10] P. K. Murthy and S. S. Bhattacharyya, ”Buffer merging − a powerful technique
for reducing memory requirements of synchronous dataflow specifications,” ACM
Transactions on Design Automation of Electronic Systems, vol. 9, no. 2, pp. 212-
237, Apr. 2004.

[11] H. Jung, H. Yang and S. Ha, “Optimized RTL Code Generation from Coarse-
Grain Dataflow Specification for Fast HW/SW Cosynthesis,” Journal of Signal
Processing Systems, vol. 52, no. 1, pp. 13-34, Jul. 2008.

[12] F. Berthelot, F. Nouvel and D. Houzet, “A Flexible system level design method-
ology targeting run-time reconfigurable FPGAs,” EURASIP Journal on Embedded
Systems, vol. 2008, pp. 1-18, Jan. 2008.

[13] R. Lauwereins, et al., “Grape-II: A system-level prototyping environment for
DSP applications,” IEEE Computers, pp. 35-43, February 1995

[14] N.R. Satish, K.Ravindran, K.Keutzer, ”Scheduling Task Dependence Graphs
with Vairable Task Execution Times onto Heterogeneous Multiprocessors”, Pre-
sentation slides on Embedded Systems Week, Oct. 2008.

[15] Xilinx Inc. Virtex-5 and Virtex-6 Field Programmable Gate Arrays, June 25,
2009. http://www.xilinx.com.

[16] J. Liu, M. Lajolo, and A. Sangiovanni-Vincentelli, ”Software timing analysis us-
ing HW/SW cosimulation and instruction set simulator,” In Proceedings of the
6th international Workshop on Hardware/Software Codesign, IEEE Computer So-
ciety, pp. 65-69, Mar. 1998.

[17] A. Bouchhima, S. Yoo, and A. Jeraya, ”Fast and accurate timed execution of
high level embedded software using HW/SW interface simulation model,” In Pro-
ceedings of the 2004 Conference on Asia South Pacific Design Automation, pp.
469-474, Jan. 2004.

[18] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon and Y. Joo, ”PeaCE: A hardware-software
codesign environment for multimedia embedded systems,” ACM Transaction on
Design Automation of Electronic Systems, vol. 12, no. 3, pp. 1-25, Aug. 2007.

[19] F. Fummi, M. Loghi, M. Poncino and G. Pravadelli, ”A cosimulation methodol-
ogy for HW/SW validation and performance estimation,” ACM Transaction on
Design Automation of Electronic Systems, vol. 14, no. 2, pp. 1-32, Mar. 2009.

[20] H. Jung, H. Yang, and S. Ha, ”Optimized RTL Code Generation from Coarse-
Grain Dataflow Specification for Fast HW/SW Cosynthesis,” Journal of Signal
Processing Systems, vol. 52, no. 1, pp.13-34, Jul. 2008.

[21] T. Yen and W. Wolf, ”Communication synthesis for distributed embedded
systems,” In Proceedings of the 1995 IEEE/ACM international Conference on
Computer-Aided Design, IEEE Computer Society, pp. 288-294, Nov. 1995.

108


