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Abstract of the Dissertation

Low Temperature Thermal Conductivity and
Competing Orders in d-wave Superconductors

by

Philip Ross Schiff

Doctor of Philosophy

in

Physics

Stony Brook University

2009

The low energy excitations of cuprate superconductors are Dirac
fermions which arise due to the d-wave nature of the superconduct-
ing order parameter. At low temperatures, these quasiparticles
lead to a striking prediction of a universal thermal conductivity,
κ00, which is independent of disorder.The universality of the low
temperature thermal conductivity is not always observed, how-
ever, in the underdoped region of the phase diagram for several
materials. In this region, the situation is complicated by evidence
of coexisting order parameters, such as charge and spin density
waves. These competing orders may be responsible for suppress-
ing the universal limit thermal conductivity via their effect on the
quasiparticle spectrum.

In this thesis we present the two following results. First, we suppose
the addition of a Q = (π, 0) charge density wave to a d-wave
BCS-like superconductor. At low temperatures, where impurities
are the dominant scattering mechanism, we calculate the thermal
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conductivity, including the effects of vertex corrections within the
self-consistent Born approximation.

Using the results of the previous calculation, which indicates that
simpler bare-bubble results are adequate to describe the thermal
conductance, we proceed to write a mean-field description of a d-
wave superconductor in the presence of a variety of density waves.
By calculating the effect of these competing orders on the quasi-
particle spectrum and comparing it to the low-temperature ther-
mal conductivity, we examine the way in which the universal limit
thermal conductivity is affected by the incipient density waves. In
general, the presence of competing orders induces disorder depen-
dence in κ00, and can suppress it entirely given sufficient amplitude
of density wave.
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Preface

In the near century since its first discovery by man, the phenomenon of
superconductivity has revealed itself to be one of the most intriguing subjects
under study in the natural sciences. While the first superconductors discovered
were elemental metals, in subsequent years superconductivity was observed in
compounds with magnetic impurities, a wide variety of alloys and thin films,
in organic compounds, as well as layered ceramic, and recently, iron-based
materials. We now know that the origins of this unusual phase of matter
lie deep in the foundations of quantum many body theory, as an example of
macroscopic phase coherence in a quantum system. Conventional supercon-
ductors, described by the Bardeen-Cooper-Schrieffer (BCS) theory, bear a deep
theoretical correspondence with Bose-Einstein condensates, another intriguing
phenomenon which requires global coherence of its constituent particles.

The discovery of superconductivity in layered ceramics referred to as cuprates
launched an explosion of theoretical and experimental work in 1986 as well as
a Nobel prize in 1987. The precise nature of these cuprates’ superconducting
state is similar, in some aspects, but very different in others, to that of the
conventional BCS superconductors. The cuprates display superconductivity
at much higher temperatures than BCS superconductors, for instance, but the
“normal” state from which they have condensed is quite different from that of
the metals which condense into BCS superconductors. In addition, the phase
diagram is filled with evidence of additional ordered states; some even coexist-
ing with the superconductivity.To date, no single microscopic theory has been
developed which conclusively explains all of this bizarre behavior, although the
physics is generally agreed to be that of adding dopant “holes” to a half-filled
Mott insulator

One of the observed properties of cuprate superconductors is the uncon-
ventional “d-wave” symmetry of the superconducting order parameter, which
causes the low energy properties of cuprates to be very different from those
of BCS superconductors. In contrast to conventional superconductors, which
cannot be excited without bridging an energy gap, in cuprates there are exci-
tations which lie at low energies. These low lying excitations may cause the



transport properties of cuprates to possess the extremely unusual property of
being independent of the imperfections and disorder which vary from sample
to sample. Previous research has indicated that this is likely to be the case
for the thermal conductivity in particular. Measurements of the low temper-
ature thermal conductivity in various superconductors affirm that a residual
resistance attributed to a quasiparticle current is observed in d-wave supercon-
ductors, but not observed in s-wave superconductors. This distinction helps
to establish the low temperature thermal conductivity as yet another means
of testing the order parameter symmetry of a superconductor.

While some measurements find a universal limit thermal conductivity which
agrees with the predicted value, others have found that it is smaller than ex-
pected, or not seen at all. Many experiments on cuprates indicate that they
are complex materials, and that other ordered phases (in addition to supercon-
ducting) may be present as well. These additional order parameters may play
a role in this suppression. In this thesis, we will develop models which account
for the presence of coexisting orders, and will investigate their effects on the
low energy properties, and on the thermal conductivity of the cuprates.

Summary of Thesis

In Chapter 1, we provide an introduction to d-wave superconductors. We
begin by providing a brief history of major developments in superconductivity.
We then go on to discuss some of the phenomenology of cuprate superconduc-
tors, in particular, the impact of their unusual pairing symmetry, and describe
the phase diagram. Next, we explain the concept of universal limit transport
in d-wave superconductors, a phenomenon which arises due to the impurity
induced low energy excitations. We then briefly discuss the history of stripes
and other spatial orderings in d-wave superconductors.

In Chapter 2, we review the situation regarding transport in a disordered
d-wave superconductor. We begin with some background on linear response
formalism, and derive the appropriate Kubo formula for the conductivity. We
describe how Matsubara formalism is used to calculate the requisite correlation
functions. We then review the low-energy model of a d-wave superconductor,
and describe how self-energy corrections are applied to the single-particle and
two-particle Green’s functions. We then calculate the density of states and
thermal conductivity, and find the universal limit result. Lastly, we review the
relation between the Boltzmann equation and different field-theoretic tech-
niques of computing conductivities, and the implications in dSC systems.

In Chapter 3 we calculate the universal limit thermal conductivity of a
d-wave superconductor as a Q = (π, 0) site-centered charge density wave is



turned on. As the density wave’s magnitude increases, the quasiparticle spec-
trum remains gapless up until a critical value, ψc. We calculate the vertex
corrections within the self-consistent Born approximation, and find that the
vertex corrections are not important for slowly and moderately varying scat-
tering potentials. The effect of the self-consistency in the disorder calculation
is to renormalize the transition point at which the thermal conductivity van-
ishes.

In Chapter 4 we consider the coexistence of d-wave superconductivity with
a variety of different orders, such as charge, spin and pair density waves. We
expand the formalism to include different wave vectors, including checkerboard
order. The universal limit thermal conductivity in such competing order sce-
narios is then derived. We then compare the evolution of the quasiparticle
spectrum with respect to the incipient order parameter to the universal limit
thermal conductivity.
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Chapter 1

Introduction

1.1 Conventional superconductors

Superconductivity was discovered in 1911 due to the pioneering work of
Kamerlingh Onnes. As he measured the low temperature resistance of mer-
cury, he found that the zero-frequency resistance vanished below a critical
temperature of 4.2 K[1]. By lowering the temperature of a metal, Onnes had
uncovered a phase transition to a then-unknown state of matter, now known
as the superconducting state. In 1933 Meissner and Oschenfeld found that
elemental superconductors were perfect diamagnets, meaning that an applied
magnetic field would be excluded from the volume of a superconductor, be-
ing non-vanishing only on a nanometer scale “penetration depth” from the
outside[2]. The Meissner effect demonstrates the rigidity of the phenomenon,
as the sample works cooperatively to expel the magnetic field.

Phenomenological theories were constructed in an attempt to resolve these
peculiar observations. A model of Gorter and Casimir postulated that there
were two seas of electrons: a normal fluid, and a superconducting fluid, whose
different behavior could account for some of the thermodynamic properties
observed, such as the specific heat[3]. Soon afterward, an expansion of their
model which would account for the Meissner effect was posited by Fritz and
Heinz London[4]. Pippard refined the London theory to take non-localities
into account, and was thereby able to explain the larger penetration depths
observed in samples with impurities[5]. Lev Landau and Vitaly Ginzburg
proposed a theory allowing for variations in the superfluid density. This theory
casts the problem as that of a phase transition occurring with the appearance of
an order parameter. Valid near the critical temperature Tc, it was found to be
useful in problems where the magnetic field could not be handled pertubatively,
and has been enormously useful in many other circumstances[6].
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Until the 1950’s, however, no single theory was able to explain all of the ex-
perimental observations simultaneously. This situation changed after theorists
began looking at the problem from the point of view of condensation, as was
suggested by Frölich[7]. Leon Cooper’s discovery that the electron-electron
interaction could be made attractive rather than repulsive was a giant piece
in the puzzle. Working with Robert Schrieffer and the eminent John Bardeen,
they found that a spin-singlet bound state of electrons with zero net angular
momentum could result from this attraction. With all of the phase- space-
accessible electrons condensed into these paired states, known as Cooper pairs,
electrons were not able to scatter from the usual low temperature scatterers:
impurities. This explained the drop in resistance. The fact that the conden-
sation was mediated by phonons resolved the then puzzling isotope effect, the
dependence on nuclear mass of the critical temperature, something which had
not been accounted for in the other theories. The robustness of the Meissner
effect was also explained by this phase coherence[8].

1.2 BCS theory and the gap

One of the hallmarks of BCS superconductors is the existence of an energy
gap, which accounts for the robustness of the superconducting state to per-
turbations such as application of a magnetic field, and to degradations of the
supercurrent from scatterers. The size of this energy gap can be seen from the
BCS pairing hamiltonian,

HBCS =
∑

kσ

εkc
†
kσckσ +

∑

kk′q

Vqc
†
k+q↑c

†
−k−q↓c−k↓ck↑, (1.1)

where the first term represents the kinetic energy of the constituent electrons,
and the second term represents the interactions. The BCS hamiltonian can be
diagonalized using the Bogoliubov-Valatin transformation (see Appendix ??).
The diagonalization leads to the self-consistency equation for the gap function,

∆(k) = −
∑

k′
V (k − k′)

∆(k′)
2E(k′)

tanh(
E(k′)
2kBT

) (1.2)

and leads to the quasiparticle energies

E(k) =
√

ε2
k + ∆2. (1.3)
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The existence of an energy gap is exhibited in the density of states,

N(ω) ∝ ω√
ω2 −∆2

Θ(ω −∆). (1.4)

There are many different ways to observe this gap. One instance is in the
activated behavior (exponentially decaying as T → 0) of the specific heat, due
to the Boltzmann factor, whereas the specific heat in metals is linear at low
temperatures[10]. Another method of observation was based on Leo Esaki’s
demonstration that electron tunneling occurred in junctions composed of a
superconductor and normal metal joined by a thin insulating later (S-I-N).
In 1960, Ivar Giaever followed up on this work in a way which demonstrates
the quasiparticle spectrum very clearly. He carefully cooled Niobium below
its critical temperature of 9.2 K and measured the tunneling current as he
adjusted a bias voltage[9]. While in the metallic state the current-voltage
curve is linear, with the slope equal to the inverse of the resistance. As the
niobium was cooled past the critical temperature, the onset of a gap in the
density of states was observed. An example of this measurement is displayed
in part (a) of Fig. 1.1, and the “semiconductor model” method of calculating
the tunneling current based on the density of states (which neglects coherence
effects in the tunneling) is displayed in part (b) of Fig. 1.1[10].

1.3 Cuprates

The 1986 realization that layered copper oxide materials, known collo-
quially as cuprates, exhibited superconductivity kicked off a new era in con-
densed matter physics[11, 12]. This discovery was particularly amazing not
only because the critical temperature was much higher than in previously
known superconductors, but also due to the complex structure of the cuprates
themselves[14]. While the behavior of many elemental superconductors is well
described by the Bardeen-Cooper-Schrieffer (BCS) theory, an underlying the-
ory of high temperature superconductors which explains their behavior in all
regions of their phase diagrams has not yet been fully formulated. The gener-
ally accepted picture, however, is that the high Tc state is obtained by adding
holes (or, in some cases, electrons) to a half-filled Mott insulator[14]. Indeed,
this recipe for creating high Tc materials can be seen experimentally, via a
chemical substitution which contributes the excess carriers. The antiferro-
magnetic ground state is quenched as doping increases, and soon (but not
immediately) afterwards, there is an onset of superconductivity. The critical
temperature, Tc, then increases with doping through what is known as the un-
derdoped regime. At some concentration of dopant (usually about 15%), the

3



4∆(T)

IV curve of normal state

IV curve at T = 8.7 K

2∆

a) b)

V

Figure 1.1: a) Current-voltage curve measured in a Niobium-Aluminum-
Niobium junction. The excitation energy of a broken pair is ∆(T ), the gap in
the density of states is 2∆, and the gap in between observing the tunneling
occurs as 4∆, in terms of the applied bias voltage V . b) Illustration of the
density of states in two BCS superconductors in the presence of a bias voltage
V . At T = 0, tunneling is possible only after reaching positive or negative
bias voltage of magnitude V = 2∆. At finite temperatures, some tunneling
can occur within the gap, as is seen experimentally in a).
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critical temperature is maximized (optimal doping), and Tc declines as doping
increases through the overdoped regime.

The hamiltonians of the microscopic models used to describe such doped
Mott insulators (Mott insulators are those which display insulating behavior
due to interactions, rather than because the Fermi level lies in a band gap)
contain terms for hopping, antiferromagnetism, and Coulomb repulsion[14].

Although there are literally hundreds of different allotropes of cuprate su-
perconductors, there are some universal features which are more or less shared
by all of them. The cuprates are all layered materials which have copper-
oxygen planes, where the copper atoms sit on the sites of a square (or rect-
angular) lattice[14]. The supercurrent is carried within these copper-oxygen
planes, as has been verified by a number of experiments[16]. Additionally,
the symmetry of the superconducting order parameter is very different than
that of BCS superconductors. Experiments based on the interferometry of
Josephson currents tunneling between two samples are able to see changes in
sign of the order parameter, and indicate that there is a d-wave component
present.[15]. A number of such phase sensitive tests, as well as other methods
which are sensitive only to the magnitude of the order parameter, all considered
together, indicate that the pairing symmetry is solely of dx2−y2 symmetry[16].
This means that, viewed in momentum space, the superconducting gap (order
parameter) necessarily vanishes along the lines kx = ±ky. The gap function
in momentum space is usually taken to be

∆(k) =
∆0

2

(
cos(kxa)− cos(kya)

)
, (1.5)

although higher harmonics are also sometimes seen in angle-resolved photoe-
mission (ARPES) experiments[17].

This gap is illustrated in Fig. 1.2, along with the Fermi surface implied by
a tight-binding model, fit from ARPES data.

One of the consequences of high Tc superconductors having an anisotropic
gap is that the excitation spectrum is quite different than that of a BCS
superconductor. The excitation energy of the d-wave superconductor is

Ek =
√

ε2
k + ∆2

k, (1.6)

where εk represents the normal state dispersion, and ∆k is the gap. These
excitions are also very k dependent: in some places, the excitation energy
is high, while at four “nodal points”, there exist gapless excitations, as seen
in Fig. In the vicinity of these nodes, εk and ∆k are linear functions in the
directions parallel to and perpendicular to the Fermi surface, respectively, so

5



a)

b)

ky

kx

ky

kx

Figure 1.2: a) Illustration of the model d-wave gap. Note that the phase
changes from positive to negative at four places; the gap necessarily vanishes
along those directions (kx = ±ky). b) Along the directions in which the gap
vanishes, and at the places where the normal state dispersion, εk is zero (the
Fermi surface), the quasiparticle energy is zero. Those locations are referred
to as nodes, and appear as red dots. The Fermi surface modelled here is taken
from Ref. 13; a slightly simpler model will be employed later.
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that we could write
εk ≈ vfk1 ∆k ≈ v∆k2, (1.7)

where k1 and k2 represent deviations from the nodal point in the directions
perpendicular and parallel to the Fermi surface, respectively. The dispersion
of these quasiparticles is therefore the same as that of electrons obeying the
Dirac equation, so they may be referred to as Dirac quasiparticles.

If we would perform the tunneling experiments of Giaever using d-wave
rather than s-wave superconductors, we would expect that due to the exis-
tence of quasiparticles below the gap maximum, tunneling current would not
completely vanish, but would include a non-zero current. Scanning tunneling
spectroscopy (STS) studies, which measure the tunneling current as a function
of bias voltage (meaning that they are essentially the derivative of the tunnel-
ing current measured by Giaever) at each point on the sample, have reproduced
this prediction qualitatively as well[18]. STS studies of the same compounds
which have been raised above the critical temperature for superconductiv-
ity see similar current-voltage characteristics as those in the superconducting
state, which gives rise to the name of the “pseudogap” phenomenon. The
pseudogap may be the consequence of d-wave electron pairs which lack global
phase coherence, and is under furious study at present[19].

In addition to observing a non s-wave gap, scanning tunneling microscopy
studies have also detected the presence of bound states within the gap[18].
These bound states arise due to the interaction of the quasiparticles with
impurities[20, 21].

1.4 Quasiparticles in d-wave superconductors

The order parameter of the cuprates has been well established by a variety
of tests to be of dx2−y2 symmetry, which leads to Dirac quasiparticles described
in the previous section. These quasiparticles may have some very unusual
properties, as was noticed by Patrick Lee[22]. Let us consider why that is.

The importance of the density of states in solid state physics in determining
physical properties is enormous, as we have seen in the Giaever tunneling
experiments. Whereas in metals, the density of states is roughly a constant at
the Fermi level, the Dirac nature of the quasiparticles gives a density of states
which is proportional to the energy[22, 23]. This extra factor of energy affects
the power counting involved in estimating transport equations. Such equations
are given in terms of the Green’s functions (more details on transport are given
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in Sec.2

σ ∼ v2
f

∑

k

GR(k)GA(k)

∼ v2
f

∫
ddk

1

ξk + i
2τ

1

ξk − i
2τ

ρ(k)

∼ v2
f

∫
dξ

1

ξ2 + 1
4τ2

ρ(ξ) (1.8)

where GR and GA represent retarded and advanced Green’s functions, ξk is the
energy of a quasiparticle, τ represents the lifetime of a quasiparticle, and ρ(ξ)
is the density of states. Clearly, whether the density of states is a constant or
is proportional to ξ will affect such a result.

In a metal, only states near the Fermi level are able to contribute, so that
ρ(ξ) ∼ ρ(Ef ), which leads to the Drude result,

σ ∝ τ ; (1.9)

the conductivity is proportional to the lifetime. If we estimate the conductivity
of the Dirac quasiparticles in this manner, using ρ(ξ) ∼ ξ, we instead find the
conductivity to be independent of the lifetime[22].

Since the modifications to Boltzmann transport due to disorder come about
through changes in the inverse lifetime of quasiparticles, this implies the possi-
bility that a universal limit exists, in which the residual conductivity is found
to be independent of the details of disorder. By details of disorder we mean:
the matrix elements of the scattering potential, the exact configuration of
disorder, and the amount of disorder.

A more careful calculation is necessary, however, for the exact result. In
fact, in d-wave superconductors, the electrical conductivity has been found
to be very sensitive to vertex corrections. The vertex corrections, which ac-
count for the weight of backscattering processes in degrading the current, are
important because the electrical current is proportional to the Fermi velocity
(dεk

dk
), rather than the group velocity (dEk

dk
), to which the spin current and heat

current are proportional[24].
The thermal current can thus relax by both intra-nodal and inter-nodal

scattering processes. The electronic current, on the other hand, cannot re-
lax by scattering into the same node when it is back scattered. The vertex
corrections therefore turn out to be not too important for the thermal con-
ductivity, while they are important even to zeroth order of impurity density
for the electrical conductivity. As such, a thermal current due to the Dirac
quasiparticles should be present in d-wave superconductors, and persist down
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to low temperatures.
To extract the quasiparticle contribution to the low temperature thermal

conductivity from experiments, we must first consider the remaining contri-
bution, which is due to the phonons. The entire thermal conductivity goes
as

κ(T ) = aT + bTα (1.10)

where α is typically three (but can also be a number between two and three,

due to boundary scattering)[25–27]. Then, by plotting κ(T )
T

as a function of
Tα−1, we expect to obtain a linear graph where the intercept is the universal
limit thermal conductivity. Note that in materials which lack the quasiparti-
cle contribution, the linear graph should have intercept zero. This is observed
plainly in s-wave superconductors[28]. As such, universal limit transport mea-
surements serve as another method to characterize the underlying symmetries
of superconductors. These experiments have been performed, and in many in-
stances demonstrate the conduction due to the quasiparticle heat current quite
clearly[25–27, 29–36]. Bare-bubble and vertex corrected calculations of the
type mentioned in Sec 2.2 indicate that the quasiparticle contribution to the
low temperature thermal conductivity is indeed independent of disorder[24],
given by the value

κ00

T
=

k2
B

3π2~
v2

f + v2
∆

vfv∆

(1.11)

However, in some circumstances, the universal limit thermal conductivity
is measured to be zero, or does not agree with the predicted value[28, 37–40].

1.5 Stripes in superconductors

Cuprates superconductors exhibit many interesting and unusual properties
which have made them the subject of intense theoretical and experimental
scrutiny for more than twenty years now. In addition to the “off-diagonal long
range order” which is the superconducting state, cuprates may contain other
kinds of orders. Studies of the Hubbard model predicted that striped phases,
that is, uni-directional modulations in charge or spin density, might be found
in cuprates[41–44].

Afterwards, stripes in superconductors were observed in LSCO (Lanthanum-
Strontium-Copper-Oxide) in neutron scattering experiments[45, 46]. Neutron
scattering measures the dynamical structure factor of materials, S(Ω), us-
ing the magnetic moment of an incident beam of neutrons. While only spin
density waves are observable in neutron diffraction, charge density waves can
be seen indirectly using crystallography, through their induced distortion of
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the lattice. Density modulations were not limited to LSCO, however: there
is a multitude for evidence of density ordering in a number of materials[47].
Scanning tunneling microscopy has revealed that there are multiple kinds of
inhomogeneities present in high temperature superconductors[48–62]. There
are spatial modulations in both the superconducing gap, as well as in the local
density of states in Bi2212. The fact that density waves are present in different
materials means that it is likely a universal trait, and is not just a structural
artifact resulting from the structure of one particular superconductor[63].

Different schools of thought exist as to whether or not the ubiquitous
stripes are of fundamental importance, or appear incidentally due to the anti-
ferromagnetic background. Some contend that the physics of doping the insu-
lator is the key point[14], while others think that stripe formation is intricately
entwined with the superconducting state itself[63]. Investigating the origin of
these many ordered phases is well beyond the scope of this thesis. What we
aim to do herein is to determine the effects of competing ordered phases on
some of the low-energy properties of d-wave superconductors, in particular, on
the low temperature thermal conductivity.
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Chapter 2

Transport in a disordered
d-wave superconductor

2.1 Response functions

2.1.1 Kubo formula

One of the primary ways in which condensed matter physicists study the
systems under consideration is to perform transport measurements. By this,
we mean we perturb the system with a gradient (of voltage, temperature,
etc.) and we measure the response of the system to the perturbation. The
most common example is the application of an electric field to a sample and
measurement of the induced current. The measured current is proportional to
this electric field plus the field arising in the sample due to polarization. The
constant of proportionality, which is a tensor quantity, is called the electrical
conductivity,

je
α(r, t) = σαβ(r, t; r′, t′)Eβ(r′, t′). (2.1)

Other kinds of gradients can be applied; in this work we will be concerned
instead with the thermal conductivity κ, defined as

jQ
α (r, t) = καβ(r, t; r′, t′)(−∇T )β(r′, t′). (2.2)

Response functions are correlation functions which provide information
about the system under study. In the language of statistical physics, the
poles of single-particle Green’s functions inform us of quasiparticle excitations
and lifetime[64]. Single-particle Green’s functions represent a “first functional
derivative” of a free energy[65], and can be used to compute equilibrium prop-
erties of a system[64, 66]. Two-particle Green’s functions, on the other hand,
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represent a second functional derivative of the free energy[65], and can be used
to calculate non-equilibrium properties[64, 66].

This last statement is not trivial. For small perturbations, we can derive a
Kubo formula, which is a relation between the transport coefficient and a two
particle Green’s function such as a current-current correlation function,

Re(σαβ(ω)) = −Im
ΠRet

αβ (ω)

ω
(2.3)

where
ΠRet

αβ ≡< jα(r, t)jβ(0, 0) > (2.4)

is the current-current correlation function, taken over the finite temperature
ensemble average[66]. Derivations of Kubo formulae can be found in many
books[64, 66, 68]. The essence of the formula is summarized here.

To an system which obeys the Schrödinger equation,

H0|ψ(t) >= i~
∂|ψ(t) >

∂t
(2.5)

we add a perturbation so that the Schrödinger equation becomes

(H0 + Hext)|ψ(t) >= i~
∂|ψ(t) >

∂t
, (2.6)

where the overbar indicates that the state vector is the eigenstate of the
nonequilibrium (perturbed) system. We wish to determine the change in ex-
pectation value of a current, j, in the presence of this perturbing field,

δ < j >≡< ψ(t)|j(t)|ψ(t) > − < ψ(t)|j(t)|ψ(t) > . (2.7)

We presume that the perturbing part of the hamiltonian is coupled to the
current according to

Hext =

∫
drjα(r, t)Fα(r, t), (2.8)

where F (r, t) is a generalized force. In the instance of electrical conductivity, F
would be the electric field, for instance. The perturbed eigenstate is obtained
from the unperturbed one via the s-matrix

|ψ(t) >= T exp
(
− i

∫ t

−∞
dt′Hext(t

′)
)
|ψ(t) > . (2.9)

where T here represents the time ordering operator, which orders the operator
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series[66]. In linear response, we wish to keep only terms which are linear in
the perturbing force. The result, after expanding the s-matrix, is

< jα(t) >= i

∫ t

−∞
dt′ < ψ(t)|[Hext(t

′), jα(t)]|ψ >, (2.10)

where the current in the absence of the perturbation is set to zero. With
the use of the assumption of Eq. (2.8) in Eq. (2.10), and the definition of a
retarded correlation function

ΠRet(rt; r′t′) = Θ(t− t′)
< ψ(0)|j(rt), j(r′t′)|ψ(0) >

< ψ(0)|ψ(0) >
, (2.11)

we find that the change in current can be written

δ < jα(rt) >= −i

∫ ∞

−∞
dt′

∫
drΠRet

αβ (x, t;x′, t′)Fβ(x′, t′), (2.12)

which brings us most of the way to Eq. (2.3).
To complete the derivation, we will Fourier transform into momentum and

energy spaces. Let us note that to systems which are translationally invariant
in space and time, we can render the simplification

G(rt; r′t′) = G(r− r′, t− t′), (2.13)

by a change in coordinates. In other words, the matrix representing the Green’s
function is Toeplitz, with constant entries along any diagonal[66, 67]. In prin-
ciple, while we intend to study the effects of density modulations, this simpli-
fication can still be made, since we are interested in long wavelength effects
only. The Fourier transform of Eq. 2.3 is

jα(q, ω) = σαβ(q, ω)fβ(q, ω). (2.14)

The Fourier transform of Eq. 2.8 is

Hext =
i

ω
jα(q)fαe−iωt, (2.15)

where we have assumed that the perturbing force is harmonic,

Fα = fαei(q·r−ωt). (2.16)
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The change in current due to the perturbation is thus

δ < jα(q, ω) >= −iΠαβ(q, ω)fβ(q, ω), (2.17)

which leads to Eq. (2.3).
The important simplification of linear response is that for small perturba-

tions we can calculate the non-equilibrium property, σαβ, using only the ex-
pectation value of the current-current correlation function evaluated between
the unperturbed states. This is a manifestation of the fluctuation-dissipation
theorem, whereby we obtain the dissipation (inverse conductivity) from the
fluctuations about equilibrium[69].

2.1.2 Thermal currents

In linear response, we measure currents which flow in response to general-
ized forces which act on the system, according to

jα = XαβFβ (2.18)

where Fα represent generalized forces, such as gradients in the electrical po-
tential, temperature, or particle concentration, and the Xαβ are the transport
coefficients, which inform us about how the system responds to perturbations.
In order to guarantee agreement with Onsager relations, which govern the
thermodynamics of irreversible processes, entropy produced due to irreversible
processes must be associated with these forces as

∂S

∂t
= jαFα (2.19)

where S represents the part of the entropy resulting from irreversibility[66].
We will presume that the systems of interest have only temperature gradients
in them. Then, we can define a Kubo formula which will preserve the Onsager
relations by associating

∂S

∂t
= − 1

T 2
J · ∇T (2.20)

Because heat transport occurs only when electrons above the Fermi level move
(since electrons below the Fermi level must absorb energy from the surround-
ings in order to find an unoccupied state, they do not participate in heat
transport), we can calculate the thermal conductivity, which we label κ, in a
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system perturbed only by a temperature gradient, defined as

jQ =
−1

T 2
κ∇T, (2.21)

where JQ is the heat current, obtained by defining all particle energies relative
to the Fermi level. This will be computed in terms of the current-current
correlation function. Therefore, the thermal conductivity can be found using
the Kubo formula,

κ(Ω)

T
= − 1

T 2

ImΠRet(Ω)

Ω
. (2.22)

More background on how to compute this correlation function will be given in
the next section.

2.1.3 Calculation of correlation functions

In order to calculate thermal conductivity using the Kubo formula (2.3),
we must have the retarded Green’s function. However, Wick’s theorem, which
tells us how to decompose the two-particle Green’s function in terms of single-
particles Green’s functions, is only valid for time-ordered Green’s functions[64,
66, 70]. In order to make use of diagrammatics, then, we need to realize an
indirect way of obtaining the retarded Green’s function. The easiest method
of doing this is by using an analytic continuation of an imaginary time Green’s
function; this method is known as the Matsubara method.

In the Matsubara method, the time is effectively taken as a complex tem-
perature variable. To understand why such a bizarre formalism would be used,
consider the expression for a finite temperature Green’s function,

∑
n

< n|e−βHeiHtcke
−iHtc†k(t

′)|n >, (2.23)

where the ensemble average is performed over some complete set of states,
|n >, and ck’s here represent the Schrödinger picture operators. The hamil-
tonian H is exponentiated in both the Boltzmann weight, and in the time
evolution operator. By treating t and β as real and imaginary parts of a
single complex variable, the temperature Green’s functions can be computed
using only a single s-matrix expansion. The definition of complex time τ = it
restricts the time domain of the Green’s functions to the range −β ≤ τ ≤ β.

Therefore, we define the Matsubara correlation function

Παβ(q, iωn) = −
∫ β

0

dτeiωnτ < Tτj
†
α(q, τ)jβ(q, 0) >, (2.24)
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where the time ordering operator Tτ is in terms of complex time. The Mat-
subara frequencies ωn are limited to

ωn =
(2n + 1)π

β
ωn =

2πn

β
(2.25)

for bosons and fermions, respectively.
The relation between the imaginary time, real time, and retarded Green’s

functions is made by the spectral density function, which is the same for each
of them. Using a spectral representation, the retarded Green’s function is

ΠRet(q, ω) =

∫ ∞

−∞
dω′

A(q, ω′)
ω − ω′ + iδ

(2.26)

and the Matsubara correlator is

Π(q, iωn) =

∫ ∞

−∞
dω′

A(q, ω)

iωn − ω′
. (2.27)

The spectral function

A(q, ω) =
1

Z
∑
mn

| < n|jq|m > |2(e−βEn − e−βEm)δ(ω + En − Em), (2.28)

is the same for both retarded and Matsubara (imaginary time) Green’s func-
tions. A(q, ω) is defined in terms the Grand canonical partition function Z,
and the states n and m. Alternatively, we can use a spectral function for the
single-particles Green’s functions,

A(q, ω) =
1

Z
∑
mn

| < n|ck|m > |2(e−βEn − e−βEm)δ(ω + En − Em). (2.29)

In this form, we can see that the spectral function satisfies a sum rule.
Integrating (2.29) over all ω and dividing by 2π, and relabeling indices on the
second term,

∫ ∞

−∞

dω

2π
A(q, ω) =

1

Z
∑
mn

e−βEn

(
< n|cq|m >< m|c†q|n > + < n|c†q|m >< m|cq|n >

)

=
1

Z
∑

n

e−βEn < n|(cqc
†
q + c†qcq)|n >

, =
1

Z
∑

eβEn < n|n >= 1, (2.30)
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where fermionic anti-commutation relations were used to reach the last line.
We can then calculate correlators in terms of Matsubara Green’s functions,
and obtain the retarded functions which correspond to physical observables
by making the appropriate analytic continuation.

2.2 Disordered d-wave superconductor

2.2.1 Model and bare Green’s function

We will now begin building the model to describe the low temperature
transport in d-wave superconductors. Although there is much evidence that
the normal state of the cuprates (i.e., a cuprate above the critical tempera-
ture) is far from normal (in the sense of not resembling a Fermi liquid), the
superconducting state is remarkably similar to a BCS superconductor[14].

There is vast evidence that the interesting behavior in cuprates is all oc-
curring within the CuO2 planes[16]. Therefore, we will build an effective field
theory in 2+1 dimensions, and will calculate the transport in a single plane.
To compare with experimental results, then, we must divide by the stacking
density d to obtain the conductivity in three dimensions. The effective theory
describes the low-energy properties of the system. Because we are interested
in low temperature properties, the high energy modes are thus frozen out.

Since phonon modes are frozen out at low temperatures, and we will not be
considering the effects of magnetic fields (which would generate vortices from
which quasiparticles could scatter)[71, 72], the only mechanism degrading a
quasiparticle current will be impurity scattering. Therefore, we will need to
incorporate a randomizing element into our description of the system. As such,
the effective hamiltionian has two components: the part describing the d-wave
superconductor, and the part describing the disorder (impurities).

Heffective = HdSC + Hdisorder (2.31)

First, let us explain HdSC. The hamiltonian for a system of interacting
electrons is

H =

∫
dxψ†σ(x)(

−∇2

2m
)ψσ(x) +

1

2

∫
dxdx′ψ†σ(x)ψ†λ(x

′)V (x− x′)ψλ(x
′)ψσ(x)

(2.32)
In BCS theory, the electron-electron interaction can become effectively

attractive due to an instability in electron-phonon coupling. In this event, the
interactions between electrons of zero net angular momentum are the only ones
with a sizable phase space. Then, the interacting hamiltonian is simplified to
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the pairing hamiltonian, which, due to the restriction on pair momentum, is
more easily written in momentum space.

Although cuprates are very different than BCS superconductors, a BCS-
like description will be valid in the superconducting state. Therefore, we will
make use of the pairing hamiltonian

HdSC =
∑

kσ

(
εkc

†
kσckσ + ∆kc

†
k↑c

†
−k↓

)
+ h.c., (2.33)

which differs from the conventional BCS hamiltonian only by the modification
to account for a d-wave order parameter, ∆ → ∆k.

Such a hamiltonian already represents a vast simplification over that of
(2.32), by virtue of the fact that the pairing hamiltonian is quadratic in terms
of the electron field operators. This was achieved by requiring self-consistency
relations for the order parameter

∆k =
∑

k′
∆k′Vkk′ < ckαc−kβ > (2.34)

The mean-field treatment has eliminated quartic operators from our hamil-
tonian, but the existence of ckc−k terms indicates that particle number is no
longer conserved: this corresponds to creation and destruction of Cooper pairs.
A useful formalism was developed by Yoichiro Nambu, whereby we represent
HdSC in terms of a single field operator,

ψ†k =
(
c†k↑ c−k↓

)
. (2.35)

To write HdSC in terms of the Nambu field operators, we will need to
rearrange a little bit. We write out the d-wave hamiltonian,

HdSC =
∑

k

(
εkc

†
k↑ck↑ + εkc

†
k↓ck↓ + ∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)
. (2.36)

Since we are only concerned with bulk properties of a single superconductor,
and will not need to consider coherence effects that can arise from Josephson
tunneling, we are free to choose the phase of the order parameter. We therefore
take ∆∗

k = ∆k. Additionally, making use of parity invariance, we also have
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ε−k = εk[99]. Therefore we have

HdSC =
∑

k

(
εk(c

†
k↑ck↑ + c†−k↓c−k↓) + ∆k(c

†
k↑c

†
−k↓ + c−k↓ck↑)

)

=
∑

k

(
εk(c

†
k↑ck↑ − c−k↓c

†
−k↓) + ∆k(c

†
k↑c

†
−k↓ + c−k↓ck↑)

)

=
∑

k

(
c†k↑ c−k↓

) (
εk ∆k

∆k −εk

)(
ck↑
c†−k↓

)

≡
∑

k

ψ†kH̃kψk (2.37)

where we have made use of fermionic anti-commutation relations.
As for the hamiltonian defined in terms of the Nambu field operators, we

can likewise consider a Nambu matrix formalism for the Green’s functions,
which includes the propagators for pairs. We make use of a tilde to signify
that an operator is considered in the Nambu space. The bare Green’s functions
(Matsubara) for the dSC system are thus

G̃0(k, iω) = ( ˜iω −Hk)
−1

=
1

((iω)2 − ε2
k −∆2

k)

(
iω + εk ∆k

∆k iω − εk

)
(2.38)

2.2.2 Self energy and impurity scattering

We have just computed the bare Green’s function, representing the prop-
agator of the quasiparticles of a system described by HdSC. We must now
incorporate the self-energy of the quasiparticles due to impurity scattering.

We therefore introduce a small, but finite density of (identical) impurities,

nimp(r) =
N∑

i=1

δ(r− ri) ≡ nimp(r; r1, ..., rN) (2.39)

These impurities generate the random potential

V (r) =

∫
dx′Vimp(x

′)nimp(x− x′), (2.40)

which is felt by quasiparticles as they move through the system. Inclusion
of the impurities destroys the translational invariance, so that the Green’s
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functions are once again a function of both k and k′,

G̃ = G̃(k,k′; iω). (2.41)

The Green’s functions, and by extension, the macroscopic observables
such as the thermal conductivity, technically now depend not only on the
density of impurities, but on their exact configuration within the sample
as well. This configuration dependence is important in mesoscopic conduc-
tance fluctuations,which can be important in low dimensional systems at low
temperatures[68]. If the sample is large enough, however, we can take a con-
figurational average, which will remove this dependence on impurity configu-
ration. The argument runs as follows: divide the entire sample into subcells.
In each subcell is a particular impurity configuration of density nimp. Then,
in calculating observables, we include a summation over the subcells of the
sample. This summation averages over each different configuration included
in each subcell (according to its proper probability distribution). Upon doing
this configurational average, we restore translation invariance to the Green’s
functions, that is,

< G̃(k,k′; iω) >configuration= G̃(k, iω), (2.42)

where the brackets represent the configuration average.
Proceeding in this manner, we can calculate the self-energy of the quasi-

particles, where we include the effects of the random potential,

V (k− k′) = Vimp(k− k′)
N∑

i=1

exp(−i(k− k′) · ri, (2.43)

and average over impurity configurations ri. The details of this procedure are
lengthy, and we refer to Rammer[68]. The result, however is simple: that we
obtain the configurational averaged dressed Green’s function by including the
Green’s functions self-consistently in a perturbation series, where the small
parameter is the impurity density nimp. Let us then apply this to our model
of a disordered d-wave superconductor.

Dyson’s equation[64, 66, 68] tells us that the dressed Green’s function is
given by

G̃(k, iω) = (G̃−1
0 (k, iω)− Σ̃(k, iω))−1, (2.44)

which is represented diagrammatically in Fig. 2.1. We will guess a form for the
self-energy, and then self-consistently compute the Green’s functions in terms
of that self-energy. The self-energy, like the Green’s functions, are Nambu
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Π  
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αβ

j
m

α j
n

β

G(k,iω)
a)

b)

Σ(k,iω)

G(k,iω+iΩ)

G(k,iω) G  (k,iω)
0

Σ

Figure 2.1: a) Bare-bubble approximation of current-current correlation func-
tion. The single particle Green’s functions include self-energy effects, but the
two-particle Green’s function (i.e. current-current correlator) does not. b)
Self-energy of the single-particle Green’s function.
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matrices,

Σ̃(k, iω) =
∑

i

Σi(k, iω)τ̃i (2.45)

which we have chosen to expand in terms of Pauli matrices.
Since the self-energy changes the location of the poles of the Green’s func-

tion, the imaginary part of the self-energy is proportional to the inverse of
quasiparticle lifetime, and the real part corresponds to a renormalization of
the quasiparticle dispersion[64, 70]. The analog for our Nambu Green’s func-
tions is that the imaginary part of the diagonal portion of the self-energy (Σ0)
will correspond to the scattering induced lifetime, and that the other parts (Σ1

and Σ3) correspond to some kind of renormalization. It has previously been
determined that in the unitary (strong scatterer strength) and Born (weak
scatterer strength) limits, that Σ1 and Σ3 can be neglected, although this
might not be justified for intermediate strength scatterers[73, 74].

We therefore obtain the dressed Green’s functions by allowing

Σ̃(k, ω) → −iΓ(ω)τ̃0, (2.46)

where Γ(ω) is the impurity scattering rate (inverse quasiparticle lifetime).
Putting this form of self-energy into Dyson’s equation, we obtain

G̃(k, iω) =
1

((iω + iΓ(iω))2 − E2
k)

(
iω + iΓ(iω) + εk ∆k

∆k iω + Γ(iω)− εk,

)

(2.47)
where we have made use of the definition Ek =

√
ε2
k + ∆2

k for the quasiparticle
energy.

2.2.3 Density of states

With the self-consistent Green’s functions (single particle) in hand, we can
proceed to calculate the density of states. The density of states is given by

N(ω) =
∑

k

Tr[Ã(k, ω)], (2.48)

where the spectral function,

Ã(k, ω) =
−1

π
ImG̃Ret(k, ω) (2.49)
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is given by

Ã(k, ω) =
−1

π

−Γ(ω)(ω2 − Γ2(ω)− E2
k)τ̃0 + 2ωΓ(ω)(∆kτ̃1 + εkτ̃3)

(ω2 − Γ2(ω)− E2
k)

2 + 4ω2Γ2(ω)
. (2.50)

Noting that it is nonzero only around the four nodal locations (near (±π/2,±π/2)),
we can make use of the fact that the dispersion and gap vary linearly in
the vicinity of those points to reparametrize these quantities, and scale out
the anisotropy of the Dirac cones. We therefore define p1 ≡ εk = vfk1 and
p2 ≡ ∆k = v∆k2, where vf ≡ ∂εk

∂k
and v∆ ≡ ∂∆k

∂k
are called the Fermi velocity

and gap velocity, and point in the directions perpendicular to, and parallel to
the Fermi surface, respectively, as depicted in Fig. 2.2.

Using this “nodal” parametrization, summations over momenta k are re-
placed by a summation over the four nodes, followed by integration around
the local coordinates. Some integrals will be done using angular coordinates,
p1 ≡ p cos θ and p2 ≡ sin θ, where θ will range from 0 to 2π, and p will range
from 0 to p0, as depicted in Fig. 2.2. The integrand far from the nodes is
effectively zero—but we still need to fix the size of each region to match the
size of a quarter of the Brillouin zone, in particular for quantities such as Born
approximation self-energy, which is logarithmically dependent on the cutoff,
p0. The sum over k-space becomes

∑

k

f(k) =
4∑

j=1

∫
d2pf (j)(p)

=
4∑

j=1

∫
dθ

2π

∫
pdp

2πvfv∆

f (j)(p). (2.51)

With this in mind, we calculate the density of states via the integral over p,
with result

N(ω) =
2Γ(ω)

π2vfv∆

(
log

p0

Γ(ω)
− log

√
Γ2(ω) + ω2

Γ2(ω)

)

+
|ω|

πvfv∆

(1

2
− 1

π
arctan(

Γ2(ω)− ω2

2|ω|Γ(ω)
)
)
. (2.52)

This result is illustrated in Fig. 2.3. In this form it is particularly clear that
there is an energy scale, Γ, in the density of states. For ω >> Γ(ω), the
first term is unimportant, compared with the second term, which goes as
|ω| arctan(ω/Γ(ω)) ∼ |ω|, which agrees with the prediction of a linear density
of states. The density of states does not vanish at zero energy, however. For
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Figure 2.2: Brillouin zone of the model d-wave superconductor. Local coordi-
nates p1 and p2 are defined around each node. Summations over k-space can
then be converted to a sum over nodes, and an integral about each node. If
integrals are done in local polar coordinates with p1 ≡ p cos θ and p2 ≡ sin θ,
the upper bound of the p integral is the cutoff p0, as illustrated about the
(π/2, π/2) node.
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N(ω)

ω

N(ω)

a) clean

b) with impurities

Γ

N(0)

Figure 2.3: a) Illustration of the density of states in a clean (free of impuri-
ties) d-wave superconductor (Γ = 0.001). The density of states is effectively
linear down to zero energy. b) Density of states in a disordered d-wave super-
conductor (Γ = 0.1). The presence of impurities induces a finite density of
states in energies ω < Γ.
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ω << Γ(ω), the second term of (2.52) is vanishing, while the first approaches
a small constant,

N(ω → 0) =
2Γ0

π2vfv∆

log(
p0

Γ0

), (2.53)

where we adapt the notation Γ0 ≡ limω→0 Γ(ω) for the zero frequency limit of
the scattering rate. Note that there is a leveling off of the vanishing density of
states at zero energy; the zero energy value goes as Γ0 log(Γ0/p0). A heuristic
argument for the existence of universal limit conductivity is based on the exis-
tence of these quasiparticles: the density of these quasiparticles is proportional
to the inverse lifetime, so that they are generated and scattered at the same
rate, hence leaving the conductivity unaffected by the disorder. This is only a
rough estimate—the calculation must be done in full for accuracy.

2.2.4 Thermal conductivity

Having found that there is a finite density of quasiparticle states down to
very low energies, we can now determine their contribution to the thermal
conductivity. The phononic contribution to thermal conductivity is known:
phonons add a term proportional to T 3 in large samples (the power law can be
modified due to phonon scattering from boundaries in some samples)[25–27].
By plotting κ

T
as a function of T 2, then, the quasiparticle contribution can be

isolated in experimental data.
We will use the linear response formalism developed in this chapter to

calculate the thermal conductivity. As a first estimate, we will use the “bare-
bubble” thermal conductivity, meaning that we will include self-energy cor-
rections to the single particle Green’s functions, but will not include them for
the two-particle Green’s functions. In other words, we will neglect the effects
of vertex corrections. We will explain the significance of this approximation
later in the chapter. The Kubo formula for the thermal conductivity is

κ(Ω, T )

T
= − 1

T 2

Im(ΠRet(Ω))

Ω
, (2.54)

where the (imaginary time) time-ordered current-current correlation function
is depicted by the diagram in Fig. 2.1.

The Matsubara correlation function depicted in the figure is

Πmn(iΩ) =
1

β

∑
iωn

∑

k

Tr
(
G̃(k, iω)j̃m

Q (k, iω, iω+iΩ)G̃(k, iω+iΩ)j̃n
Q(k, iω, iω+iΩ)

)
,

(2.55)

where G̃ are the Matsubara Green’s functions for the dSC derived in the pre-
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vious section, j̃Q is the dynamic limit of the current operator (derived in
Appendix F,

j̃m
Q (q → 0, Ω) =

∑

k

∑
iωn

(iωn +
Ω

2
)[vm

f ψ†kτ̃3ψk+q − vm
∆ψ†kτ̃1ψk+q] (2.56)

The indices m and n are components of the second-rank tensor in position
space; while the conductivity should be isotropic for the d-wave superconduc-
tor, this situation will change in the next chapter when we include density
waves. Defining the notation

j̃m
Q =

∑
α

∑

k

∑
iωn

(iωn +
Ωn

2
)vm

α ψ†kτ̃αψk (2.57)

we can write the Matsubara correlation function (breaking it into four pieces:
Fermi-Fermi, Fermi-gap, gap-Fermi and gap-gap) as

Πmn
αβ (iΩ) =

1

β

∑

k

vm
α vn

β

∑
iωn

(iωn +
iΩn

2
)2Tr

(
G̃(k, iω)τ̃αG̃(k, iω + iΩ)τ̃β

)
(2.58)

To compute the bare-bubble thermal conductivity, it is possible to make use
of the spectral representation in order to simplify the calculations. With the
definition

G̃(k, iω) =

∫
dω1

Ã(k, ω1)

iω − ω1

, (2.59)

where the spectral function is given by Eq. 2.49. the correlator becomes

Πmn
αβ =

∑

k

vm
α vn

β

∫
dω1

∫
dω2Tr

(
Ã(k, ω1)τ̃αÃ(k, ω2)τ̃β

)
S0(iΩ), (2.60)

where we defined the function

S0(iΩ) ≡ 1

β

∑
iωn

(iω + iΩ
2

)2

(iω − ω1)(iω + iΩ− ω2)
. (2.61)

S0(iΩ) is computed using the standard Matsubara techniques in AppendixE.
Analytically continuing iΩ → Ω + iδ We can make the analytic continuation
iΩ → Ω + iδ in the correlation through its effect on S0.

Im(SRet(Ω)) = −πδ(ω1−ω2 +Ω)
(
nf (ω1)(ω1 +

Ω

2
)2−nf (ω2)(ω2−Ω

2
)2

)
(2.62)
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whereupon we have

Im(ΠRet(Ω) =
∑

k

vm
α vn

β

∫
dω1Tr

(
Ã(ω1)τ̃αÃ(ω1+Ω)τ̃β

)(
nf (ω1)−nf (ω1+Ω)

)
(ω+

Ω

2
)2.

(2.63)
To proceed, we use the parametrization p1 ≡ vfk1, and p2 ≡ v∆k2, so that,
noting the alternating handedness of the velocities apparent in Fig.2.2, the
sum over the nodes becomes

∑

k

vm
α (k)vn

β(k) →
4∑

j=1

∫
d2p

4π2vfv∆

vm
α (j,p)vn

β(j′,p′)

=

∫
d2p v2

α

2π2vfv∆

δmn, (2.64)

where vf and v∆ are the values of the Fermi velocity and gap velocity near the
nodal locations at (±π/2,±/2), which is taken to be a constant over the area
around the nodes. The low temperature, low frequency thermal conductivity
is therefore

lim
Ω→0

κmn(Ω, T )

T
=

∫
d2p v2

α

2π3vfv∆

∫
dωTr

(
Ã(ω)τ̃αÃ(ω)τ̃α

)
(
∂nf (ω)

∂ω
)(

ω

T
)2 (2.65)

The derivative of the Fermi function is sharply peaked at the Fermi energy, so
that the only part of the spectral functions bearing any weight is at ω = 0.
We will make the assumption that the self-energy at zero energy is of the form

Σ̃(ω → 0) = −iΓ(ω →)) ≡ −iΓ0. (2.66)

From the form of the spectral function, (2.49), we find that

κ(Ω = 0, T → 0)

T
≡ κ00

T
=

∫
d2p (v2

f + v2
∆)

π3vfv∆

Γ2
0

(Γ2
0 + p2)

Iω, (2.67)
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where we have defined the integral

Iω ≡
∫

dω(
ω

T
)2(−∂nf

∂ω
)

=

∫
dω

βω2eβω

T 2(eβω + 1)2

= k2
B

∫ ∞

0

dx(
log x

x + 1
)2

=
π2k2

B

3
. (2.68)

We therefore find

κ00

T
=

k2
B

3π

v2
f + v2

∆

vfv∆

∫ p0

0

pdp
Γ2

0

(Γ2
0 + p2)2

=
k2

B

3π~
v2

f + v2
∆

vfv∆

, (2.69)

where we have evaluated the integral in the limit p0 >> Γ0, and restored a
factor of ~. This result was previously obtained by Durst and Lee[24].

2.3 Boltzmann equation and importance of ver-

tex corrections

2.3.1 Boltzmann equation in metals

In order to gain some physical understanding of the vertex corrections
which were neglected in the previous section, we will review some basics of
the theory of transport in metals[75, 76]. The simplest description of elec-
tronic transport is through the semi-classical picture, whereby the transport
of electrons is determined by the non-equilibrium electron distribution func-
tion, fk(r), which measures the probability of an electron in quantum state k
being found at point r at time t. There are three ways in which fk can evolve
in time. First, electrons are moving in and out of the neighborhood of r. By
Liouville’s theorem (conserving volumes in phase space),

fk(r, t) = fk(r− vkt, 0), (2.70)
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so that the rate of change of fk due to diffusion is

(∂fk

∂t

)
diff.

= −v · ∂fk

∂r
. (2.71)

The wave-vector of the electrons is affected by external fields as

dk

dt
=

1

~
F(r,k), (2.72)

this is just the k-gradient of the distribution function,

(∂fk

∂t

)
fields

= −∂k

∂t
· ∂fk

∂k
. (2.73)

The third manner in which the distribution function is affected is due to col-
lisions. We are considering only elastic scattering (assuming impurities to be
fixed, and without internal structure), which leads to the collision term

(dfk

dt

)
collision

= 2πnimp

∫
dk′δ(εk−εk′)

(
fk′(1−fk)−fk(1−fk′)

)
Wkk′ , (2.74)

where Wkk′ is the transition rate between states k and k′.
In a homogenous system, the diffusion term is not present, as the distribu-

tion function will not depend on r. The Boltzmann equation is then

∂k

∂t
· ∂f

∂k
+

(dfk

dt

)
collision

= 0 (2.75)

The difficulty in solving the Boltzmann equation lies in the evaluation of
the collision term. The easiest approximation is to make the relaxation time
approximation, which assumes that

(dfk

dt

)
collision

=
fk − f 0

k

τt(k)
, (2.76)

where f 0
k = 2

eβξk+1
is the equilibrium distribution function, which is the Fermi

function (times a factor of two for spin), and the quantity τt(k) is labelled the
transport relaxation time. The Boltzmann equation is

fk = f 0
k − eτt(k)E · ∂fk

∂k
(2.77)

For small fields, the system is not disturbed far from the equilibrium, so
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that we can approximate

∂fk

∂k
≈ ∂f 0

k

∂k
=

k

m

∂f 0

∂εk

, (2.78)

so that the current density

j = e

∫
dk

(2π)d
fk
~k
m

= e2

∫
dk

(2π)d
τt(k)vk(vk · E)

(
− df 0

k

dεk

)
, (2.79)

so that the conductivity is proportional to the transport time

σ =
ne2

m
τt. (2.80)

Evaluation of the integral in (2.74), and reduction of the common factor fk−f 0
k

leads to the definition

1

τt(k)
= 2πnimp

∫
dk′

(2π)d
δ(εk − εk′)|Wkk′|2(1− cos θ′) (2.81)

Note the importance of the factor (1− cos θ′) = 1− k · k′/k2. The time in
between scattering events (known as the relaxation time) is given by

1

τ(k)
= 2πnimp

∫
dk′

(2π)d
δ(εk − εk′)|Wkk′|2. (2.82)

The 1 − cos θ′ term thus accounts for the fact that small angle scattering
does not degrade a current as much as large angle scattering.

In terms of the field-theoretic techniques used in this dissertation, if one
uses the bare-bubble method (including only self-energy in the single-particle
Green’s functions) of calculating the conductivity, we obtain a conductivity
which is proportional to the relaxation time,

σbare−bubble ∝ τrel, (2.83)

whereas if we include self-energy corrections to the two-particle Green’s func-
tion as well, we get the results in terms of a transport time,

σvertex−corrected ∝ τtransport (2.84)

In using field-theoretic techniques to calculate a conductivity then, we must
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include vertex corrections if we want to account for the fact that small angle
scattering does not degrade a current as much as large angle scattering[66, 70].

2.3.2 Boltzmann equation in dSC

In a metal, both the charge and energy of the excitations are well defined:
this means that elastic collisions which degrade the heat current will have the
same effect on the electrical current. Thus, the ratio of electrical to thermal
conductivity is fixed,

κ

σ
= LT, (2.85)

where L is defined as the Lorentz number, and T is the temperature.
In d-wave superconductors, the elementary excitations are nodal quasipar-

ticles, rather than the electron-like excitations of a metal. Because a quasi-
particle is a superposition of an electron and hole,

α†k = ukc
†
k↑ + vkc−k↓, (2.86)

its charge is not well-defined. The electron and hole carry opposite charge in
opposite directions: this means that the electrical current is proportional to
the Fermi velocity, vf ≡ ∂εk

∂k
. On the other hand, the energy of the quasipar-

ticles remains well-defined, which means that the thermal current is instead
proportional to the group velocity, vG ≡ ∂Ek

∂k
.

Because the Fermi velocity’s magnitude and direction is relatively constant
in the vicinity of a single node, an electrical current is degraded much more ef-
fectively via inter-node scattering processes. Because the bare-bubble method
of calculating the conductivity does not distinguish between inter-nodal and
intra-nodal scattering, the vertex corrections are expected to be important for
the electrical conductivity: the full computations indeed verify this[24].

The group velocity, on the other hand, varies direction within a single node,
so that the thermal current can be degraded through either inter-node or intra-
node scattering. This indicates that the bare-bubble conductivity should be
sufficient to determine the thermal conductivity.

The calculations and conclusions of this chapter are due to previous work by
Adam Durst and Patrick Lee [22, 24]. In the following chapter, we extend the
low-temperature transport calculations to models of d-wave superconductors
in the presence of additional order parameters.
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Chapter 3

Transport in a d-wave
superconductor amidst
coexisting charge
density wave order of wave
vector Q = (π, 0)

3.1 Introduction

The superconducting phase of the cuprate superconductors exhibits d-wave
pairing symmetry[15]. As such, there exist four nodal points on the two-
dimensional Fermi surface at which the quasiparticle excitations are gapless,
and quasiparticles excited in the vicinity of a node behave like massless Dirac
fermions[12, 77, 78]. The presence of impurities enhances the density of states
at low energy[23] resulting in a universal limit (T → 0, ω → 0 ) where the
thermal conductivity is independent of disorder[22, 24, 79–83]. Calculations
have shown that the thermal conductivity retains this universal character even
upon the inclusion of vertex corrections[24]. Experiments have confirmed the
validity of this quasiparticle picture of transport by observing their universal
limit contribution to the thermal conductivity, and thereby measuring the
anisotropy of the the Dirac quasiparticles, vf/v∆[25–27, 29–36].

For some time, there has been significant interest[63, 84–88] in the idea of
additional types of order coexisting with d-wave superconductivity (dSC) in
the cuprates. And in recent years, as the underdoped regime of the phase
diagram has been explored in greater detail, evidence of coexisting order
has grown substantially[63]. Particularly intriguing has been the evidence of
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checkerboard charge order revealed via scanning tunneling microscopy (STM)
experiments[48–50, 52–63]. And if charge order coexists with d-wave supercon-
ductivity in the underdoped cuprates, it begs the question of how the quasipar-
ticle excitation spectrum is modified. Previous work[89] has shown that even
with the addition of a charge or spin density wave to the dSC hamiltonian, the
low-energy excitation spectrum remains gapless as long as a harmonic of the
ordering vector does not nest the nodal points of the combined hamiltonian, or
break the composite symmetry of time-reversal and lattice translation. How-
ever, if the coexisting order is strong enough, the nodal points can move to
k-space locations where they are nested by the ordering vector, at which point
the excitation spectrum becomes fully gapped[89–91].

Such a nodal transition should have dramatic consequences for low-temperature
thermal transport, the details of which were studied in Ref.91. That paper
considered the caes of a conventional s-wave charge density wave (CDW) of
wave vector Q = (π, 0) coexisting with d-wave superconductivity. It showed
that the zero-temperature thermal conductivity vanishes, as expected, once
charge order is of sufficient magnitude to gap the quasiparticle spectrum. In
addition, the dependence of zero-temperature thermal transport was calcu-
lated and revealed to be disorder-dependent. Hence, in the presence of charge
order, the universal-limit is no longer universal. This result is in line with the
results of recent measurements[28, 36? –40] of the underdoped cuprates, as
well as other calculations [93, 94].

We extend the work of Ref.91 herein. We consider the same physical sys-
tem, but employ a more sophisticated model of disorder that includes the
effects of impurity scattering within the self-consistent Born approximation.
We find that this self-consistent treatment of disorder requires that off-diagonal
components be retained in our matrix self-energy. These additional compo-
nents lead to a renormalization of the critical value of charge order beyond
which the thermal conductivity vanishes. Furthermore, we include the contri-
bution of vertex corrections within our diagrammatic thermal transport cal-
culation. While vertex corrections become more important as charge order
increases, especially for long-ranged impurity potentials, we find that for rea-
sonable parameter values, they do not significantly modify the bare-bubble
result.

In Sec. 3.2, we introduce the model hamiltonian of the dSC+CDW system
and describe the effect charge ordering has on the nodal excitations. In addi-
tion, the model for disorder is presented. In Sec. 3.3.1, a numerical procedure
for computing the self-energy within the self-consistent Born approximation
is outlined. The results of its application in the relevant region of parame-
ter space are presented in Sec. 3.3.2. In Sec. 3.4, we calculate the thermal
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conductivity using a diagrammatic Kubo formula approach, including ver-
tex corrections within the ladder approximation. An analysis of the vertex
corrected results, comparison with bare-bubble, and an analysis of the clean
limit thermal conductivity is presented in Sec. 3.5. Alo=so in this section, we
discuss how our self-consistent model of disorder renormalizes the nodal tran-
sition point, the value of charge order parameter at which the nodes effectively
vanish. Conclusions are presented in Sec. 3.6.

3.2 Model

We employ the phenomenological hamiltonian of Ref. 91 in order to calcu-
late the low temperature thermal conductivity of the fermionic excitations of a
d-wave superconductor with a Q = (π, 0) charge-density wave, in the presence
of a small but finite density of point-like impurity scatterers. The presence of
d-wave superconducting order contributes a term to the hamiltonian

HdSC =
1

2

∑

kα

(
εkc

†
kαckα + ∆kc

†
kαc†−kβ

)
+ h.c. (3.1)

where εk is a typical tight-binding dispersion, and ∆k an order parameter of
dx2−y2 symmetry. Due to the d-wave nature of the gap, nodal excitations exist
in the (±π,±π) directions with respect to the origin. The locations of these
nodes in the absence of charge ordering are close to the points (±π/2,±π/2),
and are denoted with white dots in Fig. 3.1. These low energy excitations
are massless anisotropic Dirac fermions. That is, the electron dispersion and
pair function are linear functions of momentum in the vicinity of these nodal
locations. We will refer to the slopes of the electron dispersion and pair func-
tion, defined by vf ≡ ∂εk

∂k
and v∆ ≡ ∂∆k

∂k
, as the Fermi velocity and gap

velocity respectively. The energy of the quasiparticles in the vicinity of the

nodes is given by Ek =
√

v2
fk

2
1 + v2

∆k2
2, where k1 and k2 are the momentum

displacements (from the nodes) in directions perpendicular to and parallel to
the Fermi surface. The universal limit (T → 0, Ω → 0) transport properties of
these quasiparticles was explored in Sec. 2.2[24].

While experiments have revealed evidence of a number of varieties of spin
and charge order, the system described in this chapter will be restricted to
the addition of a site-centered charge density wave of wave vector Q = (π, 0),
which contributes a term to the hamiltonian

HCDW =
∑

kα

akc
†
kαck+Qα + h.c. (3.2)
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In real space, this corresponds to the charge being modulated as ρ(x) = ρ0 +
δρ(x), with δρ(x) ∝ cos(πx). The charge density wave doubles the unit cell,
reducing the Brillouin zone to the shaded portion seen in Fig. 3.1. Restricting
summations over momentum space to the reduced Brillouin zone, and invoking
the charge density wave’s time-reversal symmetry and commensurability with
the reciprocal lattice, we are able to write the hamiltonian as

H =
∑

k

Ψ†
kHkΨ Hk = HdSC

k + HCDW
k , (3.3)

where

Hk =




εk ∆k ψ 0
∆k −εk 0 −ψ
ψ 0 εk+Q ∆k+Q

0 −ψ ∆k+Q −εk+Q


 , (3.4)

is a matrix in the basis of extended Nambu vectors,

Ψk =




ck↑
c†−k↓
ck+Q↑
c†−k−Q↓


 Ψ†

k =
(
c†k↑ c−k↓ c†k+Q↑ c−k−Q↓

)
(3.5)

and ψ represents the constant value taken at the nodes by the charge density
order parameter Ak = ak + a∗k+Q.

The onset of the charge order modifies the energy spectrum of the clean
hamiltonian so that the locations of the nodes evolve along curved paths to-
wards the (±π

2
,±π

2
) points at the edges of the reduced Brillouin zone, as was

noted in Ref. 90. “Ghost” nodes, their images in what is now the second re-
duced Brillouin zone, evolve the same way, until the charge density wave is
strong enough that the nodes and ghost nodes collide at those (±π/2,±π/2)
points. When that occurs, Q nests two of the nodes, gapping the spectrum so
that low temperature quasiparticle transport is no longer possible. We define
the value of ψ at which this occurs as ψc. Due to the nodal properties of
the quasiparticles, all functions of momentum space k can be parametrized in
terms of a node index j, and local coordinates p1 and p2 in the vicinity of each
node. We choose to parametrize our functions using symmetrized coordinates
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Figure 3.1: Illustrated is the Brillouin zone for our model, reduced to the
shaded region by unit-cell doubling charge order. The ψ = 0 nodal locations
are illustrated by white dots. They are displaced by a distance k0 from the
(±π

2
,±π

2
) points (stars). As the charge density wave’s amplitude increases,

the location of the gapless excitations evolves along curved paths toward the
(±π

2
,±π

2
) points, until ψ reaches ψc, when the spectrum becomes gapped be-

cause the nodes are nested by the charge density wave-vector. The gray dots
depict the images of the nodes in the second reduced Brillouin zone.
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centered at (±π/2,±π/2),

εk = ψc + βp1 ∆k =
1

β
p2

εk+Q = ψc + βp2 ∆k+Q =
1

β
p1 (3.6)

where we have rescaled
√

vfv∆k1 = p1 for the coordinate normal to Fermi
surface,

√
vfv∆k2 = p2 for the coordinate parallel to Fermi surface, and intro-

duced the definition β ≡
√

vf

v∆
. In this coordinate system, the displacement

of the original node locations from the collision points is given by ψc. A sum
over momentum space is therefore performed by summing over nodes, and
integrating over each node’s contribution, as follows.

∑

k

f(k) → 1

2

4∑
j=1

∫
d2p

4π2vfv∆

f (j)(p1, p2)

=
1

8π2vfv∆

4∑
j=1

∫ p0

−p0

dp1

∫ p0

−p0

dp2 f (j)(p1, p2) (3.7)

where the factor of 1
2

comes from extending the integrals to all p1 and p2,
rather than just the shaded part depicted in Fig. 3.1, and p0 is a high-energy
cutoff.

At sufficiently low temperatures, the thermal conductivity is dominated
by the nodal excitations, since phonon modes are frozen out, and other quasi-
particles are exponentially rare. Using this fact, we can calculate the low
temperature thermal conductivity of the system using linear response formal-
ism.

We incorporate disorder into the model by including scattering events from
randomly distributed impurities. Because the quasiparticles are created and
destroyed only in the vicinity of the four nodal locations near (±π/2,±π/2),
only limited information about the scattering potential is needed. In par-
ticular, the scattering potential Vkk′ can be simplified to contain only the
amplitudes V1, V2 and V3, for intra-node, adjacent node, and opposite node
scattering respectively[24]. We calculate the thermal conductivity using linear
response formalism, wherein we obtain the retarded current-current correlation
function by analytic continuation of the corresponding Matsubara correlator.

In previous research,using a simplified model for disorder, where the elec-
tron self-energy was assumed to be a negative imaginary scalar, the ther-
mal conductivity was calculated as a function of ψ, and found to vanish for
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ψ > ψc[91]. We now improve upon that result by calculating the self-energy
within the self-consistent Born approximation, and by including vertex cor-
rections within the ladder approximation in our calculation of the thermal
conductivity.

3.3 Self-energy

3.3.1 SCBA calculation

Within the self-consistent Born approximation (SCBA), the self-energy
tensor is given by

Σ̃(k, ω) = nimp

∑

k′
|Vkk′|2 (σ̃0 ⊗ τ3)G̃(k, ω)(σ̃0 ⊗ τ3) (3.8)

where nimp is the impurity density and Ṽkk′ = Vkk′(σ̃0 ⊗ τ3) accompanies each
scattering event, as seen in Fig. 3.2. The tilde signifies an operator in the
extended Nambu basis, and the σ’s and τ ’s are Pauli matrices in charge-
order-coupled and particle-hole spaces respectively. G̃(k, ω) is the full Green’s

Σ(k,ω)

G(k’,ω)

Vkk’ Vk’k

n
imp

Figure 3.2: Feynman diagram depicting self-energy in the self-consistent Born
approximation. The double line represents the dressed propagator, the dashed
line represents the interaction with the impurity, and the cross represents the
impurity density.

function, whose relation to the bare Green’s function G̃0(k, ω) and the self-
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energy Σ̃(k, ω) is given by Dyson’s equation

G̃(k, ω) = (G̃−1
0 (k, ω)− Σ̃(k, ω))−1, (3.9)

the bare Green’s function having been determined by

G̃0(k, ω) = (ω1̃− H̃k)
−1. (3.10)

Eq. (3.8) and Eq. (3.9) define a set of integral equations for the self-energy

Σ̃(k, ω).
For the calculation of the universal-limit thermal conductivity, it is suffi-

cient to find the zero-frequency limit of the self-energy. In its present form,
Σ̃ has 32 real components. Below, we demonstrate that this number can be
reduced further to six components.

If we write the Green’s function as

G̃(k, ω) =
1

Gden

( GA GB

GC GD

)
, (3.11)

where

Gα =
3∑

i=0

Gαiτi (3.12)

then the self-energy can be written as the set of 16 complex equations (for
α = {A,B, C,D}, i = {0, 1, 2, 3})

Σαi = nimp

∑

k′
|Vkk′|2 ξi

Gden

Gαi

= ξic

∫
d2p

Gαi (p1, p2)

Gden (p1, p2)
(3.13)

where ξi =

{
+1, i = 0, 3
−1, i = 1, 2

}
, c =

ni(V
2
1 +2V 2

2 +V 2
3 )

8π2vf v2
, and the final line is realized

by using the notation of Eq. (3.6) and Eq. (3.7) and completing the sum over
nodes. From the symmetries of the hamiltonian, we are able to ascertain
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certain symmetries the bare Green’s function will obey, specifically,

G(0)
A0 (p2, p1) = G(0)

D0 (p1, p2) (3.14)

G(0)
A1 (p2, p1) = G(0)

D1 (p1, p2)

G(0)
A3 (p2, p1) = G(0)

D3 (p1, p2)

G(0)
B0(p2, p1) = G(0)

C0 (p1, p2)

G(0)
B1(p2, p1) = G(0)

C1 (p1, p2)

G(0)
B2(p2, p1) = −G(0)

C2 (p1, p2)

G(0)
B3(p2, p1) = G(0)

C3 (p1, p2)

G(0)
den(p2, p1) = G(0)

den(p1, p2)

In addition, the realization that the integration is also symmetric with respect
to exchange of p1 and p2, coupled with these symmetries, lead to relations for
self-energy components

ΣAi = ΣDi (3.15)

ΣBi = ΣCi i = 0, 1, 2, 3

ΣB2 = ΣC2 = 0

so that we see a reduction from 32 components of the self-energy to 6 indepen-
dent components:{Σαi} ≡ {ΣA0, ΣA1, ΣA3, ΣB0, ΣB1, ΣB3}. A self-consistent
self-energy must therefore satisfy 6 coupled integral equations given by Eq. (3.13).

The self-consistent calculation of the self-energy proceeds by applying the
following scheme: First, a guess is made as to which self-energy components
will be included. The full Green’s function corresponding to such a self-energy
is then obtained from Dyson’s equation, Eq. (3.9). The quantitative values of
the Σαi’s are then determined as follows: An initial guess for the quantitative
values of each of the Σαi’s is made, and the six integrals of Eq. (3.13) are
computed numerically, which provides the next set of guesses for {Σαi}. This
process is repeated until a stable solution is reached. Finally, the resulting
solutions must be checked that they are consistent with the initial guess for
the form of Σ̃. If they are, the self-consistent calculation is complete.

We begin with the simplest assumption, that Σ̃(1)(ω) = −iΓ0
˜(σ0 ⊗ τ0),

where Γ0 is the zero-frequency limit of the scattering rate. The superscript
indicates that this is the first guess for Σ̃. The Green’s function components
are computed, which gives the explicit form of Eq. (3.8). Upon evaluating
the numerics, it is seen that this first iteration generates a nonzero (real and
negative) term for ΣB1. So, the diagonal self-energy assumption turns out to
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be inconsistent, in contrast to the situation for ψ = 0. We then modify our

guess, assuming self-energy of the form Σ̃(2) = −iΓ0
˜(σ0 ⊗ τ0) − B1

˜(σ1 ⊗ τ1).
The Green’s function is computed again, using Dyson’s equation, and the self-
energy equations are obtained explicitly. It is noted that the symmetries of
Eq. (3.14) still hold. Again, the equations (3.13) are solved iteratively; the
result is a non-zero ΣB3 component as well. Once again, the Green’s functions
are modified to incorporate this term, and the iterative scheme is applied.
Calculation of the self-energy based on the assumption

Σ̃(3) = −iΓ0
˜(σ0 ⊗ τ0)−B1

˜(σ1 ⊗ τ1)−B3
˜(σ1 ⊗ τ3)

Γ0, B1, B3 > 0 (3.16)

generates Γ0, B1 and B3 that are much larger than any remaining terms, and
hence provides the self-consistent values of ΣA0, ΣB1 and ΣB3. A plot of the
6 components of Σ̃ is displayed in Fig. 3.3 for a representative parameter set,
where we see that the three terms of the ansatz are indeed dominant. For the
remainder of this chapter, the effect of the ΣA1, ΣA3 and ΣB0 components will
be ignored. The self-consistent Green’s functions and bare Green’s functions
are provided in Appendix D.2, while further characteristics of the self-energy
are discussed in Appendix D.1.

3.3.2 SCBA results

In order to discuss the numerical results contained in this chapter, it is
necessary to make a note about the units employed. The following discussion
of units applies as well to the numerical analysis of the results of the thermal
conductivity in Sec. 3.5. Because we are studying the evolution of the system
with respect to increasing CDW order parameter ψ, we wish to express energies
in units of ψc, the value of ψ which gaps the clean system. In order to do
this, the cutoff p0 is fixed such that the Brillouin zone being integrated over in
Eq. (3.7) has the correct area. In this way, p0 sets the scale of the product vfv∆;

a parameter β ≡
√

vf

v∆
is defined to represent the velocity anisotropy. Then,

p0

ψc
= π

2a

√
vfv∆, so that we may eliminate the frequently occurring parameter

4πvfv∆ by expressing lengths in units of 4√
π
a ≈ 2.25a. Impurity density

nimp is thus recast in terms of impurity fractions z according to nimp = 16
π

z.
Finally, the parameters of the scattering potential are recast in terms of their
anisotropy: that is, we define V2 ≡ R2V1 and V3 ≡ R3V1.

With these modifications, the original set of parameters, {ni, V1, V2, V3, vf , v∆, p0, ψ, ψc}
is reduced to {z, V1, R2, R3, β, p0, ψ}. For the work contained herein, the cutoff
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Figure 3.3: Components of self-energy computed using iterative procedure
described in Section II. The third iteration self-energy, Σ̃(3), is shown here.
The dominance of Γ0 = −Im(ΣA0), B1 = −Re(ΣB1) and B3 = −Re(ΣB3) over
other components establishes this third iteration as yielding the self-consistent
value of the self-energy. ΣA1 and ΣA3 overlap.
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p0 is fixed at p0 = 100. The self energy in the self-consistent Born approxima-
tion was computed for different scattering potentials as a function of impurity
fraction and CDW order parameter ψ. Since it was found that three of the
components, ΣA0, ΣB1 and ΣB3, dominate over the others, we will subsequently
analyze only those three components, referring to their magnitudes as Γ0, B1

and B3 respectively.
As z → 0, the Green’s functions become impossibly peaked from a numer-

ical point of view. For sufficiently large z, depending on the strength of the
scatterers, the Born approximation breaks down. Given a scattering strength
of V1 = 110, cutoff p0 = 100, scattering potentials that fall off slowly in k-space
and velocity anisotropy ratios β ≡ √

vf/v∆ = 1, 2, 3, 4, this puts the range of
z in which our numerics may be applied at roughly between one half and one
percent.

Some results for Σ̃(ψ), for several values of z, are shown in Figs. 3.4 and
3.5. These graphs correspond to the same parameters, except that Fig. 3.4
illustrates the vf = v∆ case, and Fig. 3.5 illustrates vf = 16v∆. In all cases it
is seen that

B1(ψ, z) ' b1(z)ψ

B3(ψ, z) ' b3(z)ψ (3.17)

where the dependence of B1, B3, b1, and b3 on the remaining parameters is
implicit. For much of the parameter space sampled, Γ0 does not have much
ψ dependence, except that it typically rises and then falls to zero at some
sufficiently large ψ < ψc. This feature will be revisited in Sec. 3.5, wherein
it is explained that this vanishing scattering rate coincides with vanishing
thermal conductivity, and corresponds to the effective gapping of the system
by the self-consistent disorder. The value of ψ at which this occurs depends on
the entire set of parameters used, and will be referred to as ψ∗c . The observed
z dependence is not very surprising, in light of Eq. (3.13). Σ depends on z
roughly according to

Γ0 ∼ p0 exp (−1

z
)

B1 ∼ z

B3 ∼ z (3.18)

as can be seen in Fig. 3.6. When ψ = 0, Γ0 is given exactly by Γ0 = p0 exp( −1
2πc

),
where c is defined following Eq. (3.13), which is the same result found in
Ref. 24, up to a geometric factor in the definition of high-energy cutoff. For
finite ψ, this exact form does not hold, but the strong z dependence of Γ0
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Figure 3.4: Effects of disorder on charge-order-dependence of self-energy com-
ponents. To satisfy Dyson’s equation, it is necessary to include three (Nambu
space) components of the self energy. Their self-consistent values are plotted
here for several different values of impurity fraction z. Here, the scattering po-
tential is given in our three parameter model as {V1, R2, R3} = {110, 0.9, 0.8},
which represents a fairly short-ranged potential. These results are for the case
of isotropic nodes (vf = v∆). The energies of Σ̃ are in units of ψc.
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Figure 3.5: Effects of disorder on charge-order-dependence of self-energy com-
ponents. This figure illustrates the case where vf = 16v∆. The scattering
potential is again given by {V1, R2, R3} = {110, 0.9, 0.8}, representing a fairly
short-ranged potential. The plots for B1 and B3 terminate before ψ reaches
ψc because for sufficiently large ψ, the excitations become gapped and the
quasiparticle density of states goes to zero. The energies of Σ̃ are in units of
ψc.
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remains, in contrast to that of B1 and B3. Note that the z dependence of B1

and B3 is roughly linear for ψ ¿ ψ∗c . As ψ approaches ψ∗c the functions diverge
slightly from linearity. Results are shown in increments of 0.2 for ψ < ψ∗c .

3.4 Thermal conductivity

Thermal conductivity was calculated using the Kubo formula [? ],

κ(Ω, T )

T
= −ImΠRet(Ω)

Ω T 2
, (3.19)

where ΠRet(Ω) is the retarded thermal current-current correlation function.
To find this correlator, it is necessary to first compute the appropriate current
operator, which is done in Appendix F. In second quantized form,

j̃κ0 = lim
q→0
Ω→0

∑

k,ω

(ω +
Ω

2
)ψ†k (ṽfM + ṽ∆M) ψk+q, (3.20)

where a generalized velocity is defined as

ṽαM = vx
αM̃x

3 x̂ + vy
αM̃y

3 ŷ

M̃x
α ≡ ˜(σ3 ⊗ τα) M̃y

α ≡ ˜(σ0 ⊗ τα) (3.21)

with α = f, ∆ for Fermi and gap velocities respectively.

3.4.1 Vertex correction

To calculate a conductivity that satisfies Ward identities, vertex corrections
must be included on the same footing as the self-energy corrections to the
single particle Green’s function. The details of this calculation are similar to
those performed in Appendix B of Ref. 24. The impurity scattering diagrams
which contribute to the ladder series of diagrams are included by expressing
the correlation function in terms of a “dressed vertex”, as shown in part (a)
of Fig. 3.7. The current-current correlation function is obtained from this
“dressed bubble”. The bare current operator of Eq. 3.20 is associated with
one vertex of the bubble, while the dressed vertex depicted in Fig. 3.7 (b) is
associated with the other. Evaluating the dressed vertex, we find that the
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Figure 3.6: Disorder dependence of self-energy components, at different ampli-
tudes of CDW. Nonzero components of Σ̃(z) are shown for impurity fraction
z ranging from 0.5 to 1.0 %, for CDW strength ψ = 0, 0.2, 0.4, 0.6 and 0.8
(in units of ψc). These results are for scattering parameters {V1, R2, R3} =
{110, 0.9, 0.8} and vf = v∆. Similar results follow for anisotropic Dirac parti-
cles. Energies are measured in units of ψc. The ψ = 0 data here agrees with
the exact result, Γ0 = p0 exp( −1

2πc
), which appeared in Ref.24.
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Figure 3.7: (a) Feynman diagram representing the correlation function Πmn
αβ

in terms of a bare vertex jm
α , and a dressed vertex Γn

β. (b) Feynman diagram
representing the (ladder series) dressed vertex in terms of the bare vertex and
the Born scattering event.
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current-current correlation function takes the form

Πmn(iΩ) =
∑

α,β=f,∆

Πmn
αβ (iΩ)

Πmn
αβ (iΩ) =

1

kBT

∑
iω

(iω +
iΩ

2
)2

∑

k

Tr
[
G̃1vαkm

α M̃m
α G̃2vβM̃n

β Γ̃n
β

]
(3.22)

where G̃1 ≡ G̃(k, iω), G̃2 ≡ G̃(k, iω + iΩ), and Γ̃n
β = Γ̃n

β(k, iω, iΩ) represents
the dressed vertex depicted in Fig. 3.7. The Greek indices denote “Fermi” and
“gap” terms, while the Roman indices denote the position space components
of the tensor. We use Fig. 3.7 to find the form of the vertex equation, and
then make the ansatz that

Γ̃β(k, iω, iΩ) =
(
1̃ + Λ̃(|k|, iω, iΩ)

)
k̂, (3.23)

which leads to the scalar equations

Γ̃n
β(k, iω, iΩ) = kn(1̃ + Λ̃n

β). (3.24)

Looking for solutions of this form, we see that the scalar vertex function is

Λ̃n
β = ni

∑

k′
M̃n

β Ṽkk′G̃2M̃
n
β (1̃ + Λ̃n

β)G̃1Ṽk′k
k
′n
β

kn
β

. (3.25)

Since we are working with nodal quasiparticles, we utilize the parametrization
of Eq. (3.7), so that the vertex function is now a function of node index j and
local momentum p

Λ̃n
β = nimp

4∑

j′=1

V jj′V j′j(
k

(j′)
βn

k
(j)
βn

)

∫
d2p′

8π2vfv2

M̃n
β (σ̃0 ⊗ τ3)G̃2M̃

n
β (1̃ + Λ̃n

β)G̃1(σ̃0 ⊗ τ3). (3.26)
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Arbitrarily choosing j = 1, then for j′ = {1, 2, 3, 4}

k
(j′)
1x

k
(1)
1x

= {1,−1,−1, 1} k
(j′)
1y

k
(1)
1y

= {1, 1,−1,−1}

k
(j′)
2x

k
(1)
2x

= {1,−1,−1, 1} k
(j′)
2y

k
(1)
2y

= {1, 1,−1,−1}. (3.27)

Using the node space matrix representing the 3-parameter scattering potential

V jj′ =




V1 V2 V3 V2

V2 V1 V2 V3

V3 V2 V1 V2

V2 V3 V2 V1


 (3.28)

we obtain for the vertex equation

Λ̃n
β = γ

∫
d2p′

π
M̃n

β (σ̃0 ⊗ τ3)G̃2M̃
n
β (1̃ + Λ̃n

β)G̃1(σ̃0 ⊗ τ3) (3.29)

where γ ≡ nimp
V 2
1 −V 2

3

8πvf v2
. The correlator then becomes

Πmn
αβ (iΩ) = vαvβ

1

β

∑
iω

(iω +
iΩ

2
)2

∑

k

(kαmkβn)

Tr
(
G̃1M̃

m
α G̃2M̃

n
β (1̃ + Λ̃n

β)
)

= vαvβ
1

β

∑
iω

(iω +
iΩ

2
)2

4∑
j=1

(k(j)
αmk

(j)
βn)

∫
d2p

8π2vfv∆

Tr
(
G̃1M̃

m
α G̃2M̃

n
β (1̃ + Λ̃n

β)
)

. (3.30)

Since
4∑

j=1

k(j)
αmk

(j)
βn = 2 ((1− δαβ)ηm + δαβ) δmn (3.31)

we can write

Πmn
αβ (iΩ) = 2πcmn

αβ

1

β

∑
iω

(iω +
iΩ

2
)2Tr

(
Ĩmn
αβ (1̃ + Λ̃n

β)
)

(3.32)
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where

cmn
αβ ≡ 1

8π2

vαvβ

vfv∆

(
(1− δαβ)ηm + δαβ

)
δmn (3.33)

and

Ĩmn
αβ (iω, iω + iΩ) ≡

∫
d2p

π
G̃1M̃

m
α G̃2M̃

n
β . (3.34)

To calculate the conductivity, we will need Tr(Ĩm
αβ) and Tr(Ĩm

αβΛ̃n
β). For ψ = 0,

it is possible to compute the integral in Eq. (3.34) analytically, but for general
ψ we had to compute the integrals numerically. We note that if we write

Ĩ =

(
IA IB

IC ID

)
, (3.35)

apply the symmetry properties of Eq. (3.14) and reverse the order of inte-
gration of p1 and p2, then IA = ID, and IB = IC , so that the most general
expansion of Ĩmn

αβ in Nambu space is

Ĩmn
αβ =

1∑
i=0

3∑

i′=0

(Imn
αβ )ii′(σ̃i ⊗ τi′). (3.36)

Then

Tr(Ĩmn
αβ ) = Tr

(
1∑

i=0

3∑

i′=0

(Imn
αβ )ii′(σ̃i ⊗ τi′)

)

= 4(Imn
αβ )00, (3.37)

while if we use the same expansion for

Λ̃n
β =

1∑
i=0

3∑

i′=0

(Λn
β)ii′(σ̃i ⊗ τi′), (3.38)

52



we find

Tr(Ĩmn
αβ Λ̃n

β) =
1∑

ij=0

3∑

i′j′=0

(Imn
αβ )ii′(Λ

n
β)jj′

Tr( ˜σiσj ⊗ τi′τj′)

= 4
1∑

i=0

3∑

i′=0

(Imn
αβ )ii′(Λ

n
β)ii′ . (3.39)

Then Eq. (3.29) becomes

4(Λn
β)ii′ = Tr

(
(σ̃i ⊗ τi′)Λ̃

n
β

)

= γ

∫
d2p

π
Tr((σ̃i ⊗ τi′)M̃

n
β (σ̃0 ⊗ τ3) (3.40)

G̃2M̃
n
β (1̃ + Λ̃n

β)G̃1(σ̃0 ⊗ τ3))

= γTr
(
L̃n

βii′(1̃ + Λ̃n
β)

)
(3.41)

where

L̃n
βii′ ≡

∫
d2p

π
G̃1(σ̃0 ⊗ τ3)(σ̃i ⊗ τi′)

M̃n
β (σ̃0 ⊗ τ3)G̃2M̃

n
β . (3.42)

The symmetries of G̃ which were used to see which components of Ĩmn
αβ were 0

can also be applied to L̃n
βii′ with the result that (Ln

βii′)A = (Ln
βii′)D, (Ln

βii′)B =

ηi(L
n
βii′)C , where ηi =

{
+1, i = 0, 1
−1, i = 2, 3

}
. Since all that is required for the

conductivity is i = 0, 1, we use the expansion

L̃n
βii′ =

1∑
j=0

3∑

j′=0

(σ̃j ⊗ τj′)(L
n
βii′)jj′ (3.43)
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so that

(Λn
β)ii′ =

1

4
γTr

(
L̃n

βii′(1̃ + Λ̃n
β)

)

=
1

4
γ Tr (

1∑
j=0

3∑

j′=0

(Ln
βii′)jj′(σ̃j ⊗ τj′)

+
1∑

jk=0

3∑

j′k′=0

(Lβii′)jj′(Λ
n
β)kk′)

= γ

(
(Ln

βii′)00 +
1∑

j=0

3∑

j′=0

(Ln
βii′)jj′(Λ

n
β)jj′

)
. (3.44)

The thermal conductivity is obtained from the retarded current-current cor-
relation function

κmn(Ω)

T
= − 1

T

Im (Πmn
ret (Ω))

Ω
, (3.45)

where Πret(Ω) = Π(iΩ → Ω + iδ). To get the retarded correlator we first
perform the Matsubara summation. Consider the summand of Eq. 3.32, which
we redefine according to

J(iω, iω + iΩ) = Tr
(
Ĩmn
αβ (1̃ + Λ̃n

β)
)

. (3.46)

The function J(iω, iω+ iΩ) is of the form J(iω, iω+iΩ) = f(A(iω)B(iω+iΩ))
where A and B are dressed Green’s functions of a complex variable z = iωn,
so that J is analytic with branch cuts occurring where z and z + iΩ are real.
The Matsubara summation needed is performed by integrating on a circular
path of infinite radius, so that the only contribution is from just above and
just below the branch cuts,

Πmn
αβ = −cmn

αβ

1

i

∮
dz(z +

iΩ

2
)2J(z, z + iΩ)

= −cmn
αβ

1

i

∫ ∞

−∞
dε nf (ε)

(

(ε +
iΩ

2
)2(J(ε + iδ, ε + iΩ)− J(ε− iδ, ε + iΩ))

+(ε− iΩ

2
)2(J(ε− iΩ, ε + iδ)− J(ε− iΩ, ε− iδ))

)
. (3.47)
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To obtain the retarded function, we analytically continue iΩ → Ω + iδ. Then
we let ε → ε + Ω in the third and fourth terms, so that

Πmn
αβ (Ω)ret = cmn

αβ

∫ ∞

−∞
dε nf (ε + Ω)− nf (ε))(ε +

Ω

2
)2

×Re
(
JAR

αβ (ε, ε + Ω)− JRR
αβ (ε, ε + Ω)

)
(3.48)

where JAR and JRR are defined by Eqs. (3.46) and (3.44) and are composed
of the universal-limit Green’s functions given in Appendix D.2. Taking the
imaginary part, we find

κmn(Ω, T )

T
= −

∫ ∞

−∞
dε

nf (ε + Ω)− nf (ε)

Ω

(
ε + Ω

2

T

)2

∑

αβ

cmn
αβ Re (JAR

αβ (ε, ε + Ω))− JRR
αβ (ε, ε + Ω)). (3.49)

In taking the Ω → 0 limit, the difference in Fermi functions becomes a deriva-

tive. Evaluating the integral,
∫

dε(−dn
dε

)( ε
T
)2 =

π2k2
B

3
, we find that

κmm
αβ (0, 0)

T
=

π2k2
B

3
cmm
αβ Re

(
JAR

αβ (0, 0)− JRR
αβ (0, 0)

)
. (3.50)

That κxy = κyx = 0 is seen from Eq. (3.33). Finally, since the α 6= β integrals
are traceless, the result for the thermal conductivity is

κmm

T
=

k2
B

3

v2
f + v2

∆

vfv∆

1

8

(
JAR

αβ (0, 0)− JRR
αβ (0, 0)

)
. (3.51)

3.5 Results

For a discussion of the units employed in the analysis, one can refer to
Sec. 3.3.2. The reduced set of parameters for the model is {z, V1, R2, R3, β, p0, ψ}.

We explored a limited region of this parameter space, calculating the in-
tegrals and solving the matrix equation numerically. In particular, we looked
at the ψ dependence of κ. To vary the anisotropy of the scattering potential,
we considered the {R2, R3} values of {0.9, 0.8}, {0.7, 0.6}, and {0.5, 0.3}, and
kept fixed the constant c (given after Eq. (3.13))by appropriately modifying
V1. For {R2, R3} = {0.9, 0.8}, we used V1 = 110. The rationale for keeping
c fixed is that the self-energy depends only on c, β and p0. Additionally, we
explored the dependence of the thermal conductivity on impurity fraction z
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and velocity anisotropy β. For all computations we set the cutoff p0 = 100;
this simply fixes a particular value of the product vfv∆ for these calculations.

3.5.1 Vertex corrections

κ

κ

V
C

0
κ

  /
κ

z = .01

{R  , R }={.9, .8}2 3

v  = v
f ∆

ψ/ψ
c

VC(κ −κ   )/κBB BB

ψ/ψ
c

Figure 3.8: Vertex corrected thermal conductivity, in units of the universal
conductivity κ0 ≡ kB

3
(vf/v∆ + v∆/vf ). This data reflects a short range scat-

tering potential {V1, R2, R3} = {110, 0.9, 0.8}, impurity fraction z=0.01, and
isotropic Dirac quasiparticles (vf = v∆). The inset displays the discrepancy
between the bare-bubble and vertex corrected results, in units of the bare-
bubble result. It is clear that the vertex corrections are of little quantitative
importance for these particular parameters.

The importance of including the vertex corrections is determined by com-
paring the vertex corrected thermal conductivity with that of the bare-bubble.
If κV C−κBB

κBB << 1 for a region of parameter space, then in that regime the
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κ

κ

V
C

0
κ

  /
κ

{R  , R }={.5, .3}2 3

ψ/ψ
c

VC(κ −κ   )/κBB BB

ψ/ψ
c

Figure 3.9: Vertex corrected thermal conductivity, in units of the universal
conductivity κ0 ≡ kB

3
(vf/v∆ + v∆/vf ). This figure portrays the effect that

a different scattering potential has on the importance of vertex corrections.
Here, a longer range potential {V1, R2, R3} = {140, 0.5, 0.3} was used, again
with impurity fraction z=0.01 and vf = v∆. The inset displays the discrepancy
between the bare-bubble and vertex corrected results, in units of the bare-
bubble result. From this, we determine that vertex corrections make a more
substantial correction as the forward scattering limit is approached, but only
once the charge ordering is quite strong.
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κ

κ

V
C

0
κ

  /
κ

z = .006

ψ/ψ
c

ψ/ψ
c

VC(κ −κ   )/κBB BB

Figure 3.10: Vertex corrected thermal conductivity, in units of the universal
conductivity κ0 ≡ kB

3
(vf/v∆ + v∆/vf ). Again, a short-ranged scattering po-

tential, {V1, R2, R3} = {110, 0.9, 0.8} and isotropic nodes (vf = v∆) are used.
This figure displays the effect of a smaller impurity fraction than that depicted
in Fig.3.8. The inset displays the discrepancy between bare-bubble and vertex
corrected result, in units of the bare-bubble result; since the scattering po-
tential falls off slowly (in k-space) here, the vertex corrections are again quite
unimportant.
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  /
κ
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f ∆

ψ/ψ
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VC(κ −κ   )/κBB BB

ψ/ψ
c

Figure 3.11: Vertex corrected thermal conductivity, in units of the universal
conductivity κ0 ≡ kB

3
(vf/v∆ + v∆/vf ), for short-ranged scattering potential,

{V1, R2, R3} = {110, 0.9, 0.8} and impurity fraction z = 0.01. These calcula-
tions differ from those of Fig.3.8 in that they are for more anisotropic Dirac
particles with vf = 9v∆. The thermal conductivity has a qualitatively similar
ψ dependence, but vanishes for a smaller value of ψ than for the isotropic case.
The inset displays the discrepancy between the bare-bubble and vertex cor-
rected results, in units of the bare-bubble result; again, the vertex corrections
do not significantly modify the bare-bubble results.
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bare-bubble results can be used instead. This is of threefold practicality: the
bare-bubble results are less computationally expensive, the bare-bubble ex-
pression is much simpler to analyze, and other hamiltonians could be more
easily studied.

The bare bubble thermal conductivity can be obtained by setting Λ̃n
β → 0̃

in Eq. (3.46), or by using a spectral representation, as in Ref 91; both methods
have the same result. For impurity fraction z ranging from 0.5% to 1%, the
importance of the vertex corrections is largely seen to be negligible, which
implies that an analysis of the bare bubble results is sufficient.

Figs. 3.8-3.11 illustrate the vertex corrected thermal conductivities, κV C , in
the main graphs, while the insets display the relative discrepancy with respect
to the bare bubble thermal conductivities κV C−κBB

κBB . Each plot is as a function
of the amplitude of the CDW, ψ/ψc, where ψc indicates the maximal CDW
for which the clean system remains gapless. We will postpone analysis of the
character of the thermal conductivity until Section V C.

To gauge the importance of the vertex corrections, we look first at Fig. 3.8.
The inset indicates that the vertex corrections do not signifigantly modify the
bare bubble thermal conductivity. Although their importance grows somewhat
with increasing ψ, the correction is still slight.

Next, Fig. 3.8 is used as a reference against which to consider the de-
pendence of vertex corrections on scattering potential, impurity fraction, and
velocity anisotropy. The next three figures are the results of computations
with each of these parameters modified in turn. By comparing Fig. 3.9 with
Fig. 3.8 we conclude that the vertex corrections become more important when
the scattering potential is peaked in k-space, but are unimportant for poten-
tials that fall off slowly in k-space.

Fig. 3.8 and Fig. 3.10 correspond roughly to the largest and smallest z
for which these calculations are valid. Comparison of these two figures, as
well as that of intermediary values of z (not displayed) indicates that the
relative importance of the vertex corrections is independent of z. Nor does
increasing the velocity anisotropy affect their importance, as seen by making
a comparison between Fig. 3.8 and Fig. 3.11.

3.5.2 Clean limit analysis

It is of great interest to consider the behavior of the thermal conductivity
in the clean (z → 0) limit. Because the thermal conductivity is composed of
integrals over p-space of functions which become increasingly peaked in this
limit, there exists a sufficiently small z beyond which it is not possible to
perform the requisite numerical integrations. However, it is still possible to
obtain information about this regime. To that end, we will examine the form
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of the bare-bubble thermal conductivity, and consider the z → 0 limit. As we
shall see, this will enable us to determine the value of ψ at which the nodal
approximation, and hence this calculation, is no longer valid. Additionally, a
closed form result for the thermal conductivity in the z → 0 limit in the case
vf = v∆ is obtained. The bare-bubble thermal conductivity, identical with

setting Λ̃ → 0̃ in Eq. (3.51), is given by

κmm =
kB

3

v2
f + v2

2

vfv2

Jm (3.52)

where

Jm =

∫
d2p

2π

N1 + N2

D
(3.53)

and

N1 = A
(
(A + B + ε2

1 + ∆2
1)

2 + (A + B + ε2
2 + ∆2

2)
2
)

N2 = ηmA
(
(ψ −B3)

2((ε1 + ε2)
2 − (∆1 −∆2)

2) + B2
1((∆1 + ∆2)

2 − (ε1 − ε2)
2)

−4B1(ψ −B3)(ε1∆1 + ε2∆2))
)

D =
[
(A + B + ε2

1 + ∆2
1)(A + B + ε2

2 + ∆2
2)−B

(
(ε1 + ε2)

2 + (∆1 −∆2)
2
)

+4B1

(
B1(ε1ε2 −∆1∆2) + (ψ −B3)(ε1∆2 + ε2∆1)

)]2

, (3.54)

where A ≡ Γ2
0 and B ≡ (ψ − B3)

2 + B2
1 , and f1 ≡ fk, f2 ≡ fk+Q. Since the

results of Section 3.3.2 indicated that Γ0 ∼ exp (−1
z
) and B1, B3 ∼ z, in the

z → 0 limit, A → 0 much faster than B1 → 0 or B3 → 0. Therefore in taking
the z → 0 limit we will first let A → 0 to obtain a result still expressed in
terms of B1 and B3. The denominator can be rearranged as

D =
(
(A2 + A(2B + ε2

1 + ∆2
1 + ε2

2 + ∆2
2) + f

)2

, where

f = B2 + (ε2
1 + ∆2

1)(ε
2
2 + ∆2

2)− 2B(ε1ε2 −∆1∆2)

+4
(
B1(ε1ε2 −∆1∆2) + (ψ −B3)(ε1∆2 + ε2∆1)

)
(3.55)

=
(
(ε1ε2 −∆1∆2)− (2B2

1 −B)
)2

+
(
(ε1∆2 + ε2∆1) + 2B1(ψ −B3)

)2

We are thus considering, in the limit that A → 0, an integral of the form

∫
d2p

Ag(p)(
Ah(p) + f(p)

)2 (3.56)
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Note that any nonzero contribution to this integral must come from a region
in p-space in which f(p) = 0. We will consider separately the cases for which
vf = v∆ and vf > v∆.

3.5.2.1 Isotropic case

For the special case vf = v∆, it is possible to calculate the integral of
Eq. (3.52) exactly, by taking the A → 0 limit, and choosing another parametriza-
tion. The coordinates q1 ≡ εk − εk+Q and q2 ≡ εk + εk+Q− 1, have their origin
located at the midpoint of the white and gray dots of Fig. 3.1. Using these
coordinates, in the A → 0 limit we find that the elements of Eq. (3.52) become

N1 = 2A
(
B2 + B(q2 + 1) +

1

4
(q2 + 1)2 + q2 − q2

2

)

N2 = 2ηmA
(
(ψ −B3)

2((ε1 + ε2)
2 − (∆1 −∆2)

2) + B2
1((∆1 + ∆2)

2 − (ε1 − ε2)
2)

−4B1(ψ −B3)(ε1∆2 + ε2∆1)
)

N2 = 2ηm

(
(ψ −B3)

2(q2
2 + 2q2 + 1− q2

1) + B2
1(q

2
2 − 2q2 + 1− q2

1)

−4B1(ψ −B3)(2q
2
2 − q2 − 1)

)

= 2ηmA
[
(2q2

2 − q2 + 1)
(
(ψ −B3)

2 − 2B1(ψ −B3) + B2
1

)

+2q2

(
(ψ −B3)

2 −B2
1

)
+ 4B1(ψ −B3)

]

D =
[
2A

(
1 + B − 2B1(ψ −B3)

)
+

(
q2 − (ψ2 −B2

1)
2
)2

+
1

4

(
q2 − (1− 4B1(ψ −B3))

)2]2

. (3.57)

For the special case vf = v∆, the term f in the denominator is zero when

q2 = (ψ −B3)
2 −B2

1 and q2 = 1− 4B1(ψ −B3). (3.58)

In q1/q2 coordinates, these are the equations of a horizontal line and a circle,
which must intersect for there to be a nonzero contribution to the integral,
since each term is positive definite. In the simplified disorder treatment of
Ref. 91 for which B1 = B3 = 0 and Γ0 = constant, these constraints simplify
to q2 = ψ2 and q2 = 1, so that no contribution occurs when ψ > 1 (Note that as
in the numerical analysis, ψ, being an energy, is measured in units of ψc). With
the self-consistent treatment of disorder, there will likewise be a sufficiently
large value of ψ beyond which the line and circle no longer intersect; we will
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0ψ = ψ 
c

ψ = *

Figure 3.12: Illustrated is a schematic view of the line and circle whose inter-
section determines whether gapless excitations remain, for the isotropic case
(vf = v∆). The left figure indicates the situation in the absence of charge
ordering, that is, for ψ = 0, where the radius of the circle is 1. The right
figure indicates the situation at ψ = ψ∗c , when charge ordering is such that
the excitation spectrum becomes gapped. In the clean case, the ψ evolution
corresponds to moving the line past the circle. With self-consistent disorder,
the radius of the circle and height of the line are both functions of ψ; in each
instance, this construction can be used to determine the value of ψ at which
the quasiparticle spectrum becomes gapped. This value of ψ is referred to as
ψ∗c in this paper.
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call this value ψ∗c (see Fig. 3.12). We interpret ψ∗c as the point beyond which
the system becomes effectively gapped. This is consistent with the exact result
found by computing the eigenvalues of the completely clean hamiltonian (as
ψ∗c = ψc in that case).

In Sec. 3.3.2 it was determined that B1 ' b1ψ and B3 ' b3ψ, where b1 and
b3 depend on the remaining parameters of the model. Using this approximate
form for B1 and B3, the condition for the maximum ψ for which the constraints
of Eq. (3.58) are satisfied,

1− 4B1(ψ −B3) =
(
(ψ −B3)

2 −B2
1

)2

, (3.59)

indicates that

ψ∗2c '
±

(
(1− b3)∓ b1

)2

(
(1− b3 − b1)(1− b3 + b1)

)2 . (3.60)

Since ψ∗2c > 0, we find that for vf = v∆,

ψ∗c '
1

1− b3 + b1

. (3.61)

We now proceed with the calculation of the clean limit conductivity. Substi-
tuting the conditions of Eq. (3.58) into Eq. (3.57), we find that the numerators
become

N1 = 4A
[(

1− 2B1(ψ −B3)
)(

1 + B − 2B1(ψ −B3)
)]

(3.62)

N2 = 4ηmA
(
1 + B − 2B1(ψ −B3)

)(
[(ψ −B3)

2 −B2
1 ]

2 + 2B1(ψ −B3)
)

both of which are independent of q, so that the clean limit result hinges upon
the integral

I =

∫
d2q

4π

A(
k1A + (q2 − k2)2 + 1

4
(q2 − k3)2

)2 , (3.63)

where

k1 = 2
(
1 + B − 2B1(ψ −B3)

)

k2 = (ψ −B3)
2 −B2

1

k3 = 1− 4B1(ψ −B3). (3.64)
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The details of this integration are reported in Appendix D.3, with the result

I =
1

2k1

√
k3 − k2

1

. (3.65)

We can now write the anisotropic clean limit thermal conductivity

J =
1− 2B1ψ + ηm

(
[(ψ −B3)

2 −B2
1 ]

2 + 2B1(ψ −B3)
)

√
1− 4B1(ψ −B3)− [(ψ −B3)2 −B2

1 ]
2

×Θ
(
1− 4B1(ψ −B3)− [(ψ −B3)

2 −B2
1 ]

2
)

Jxx =
√

1− 4B1(ψ −B3)− [(ψ −B3)2 −B2
1 ]

2

×Θ
(
1− 4B1(ψ −B3)− [(ψ −B3)

2 −B2
1 ]

2
)

Jyy =
1 + [(ψ −B3)

2 −B2
1 ]

2

√
1− 4B1(ψ −B3)− [(ψ −B3)2 −B2

1 ]
2

×Θ
(
1− 4B1(ψ −B3)− [(ψ −B3)

2 −B2
1 ]

2
)
, (3.66)

where the Θ function is the Heaviside step function. Using the definition for
ψ∗c found in Eq. (3.61), and defining

χ ≡ 1

1− b3 − b1

, (3.67)

we are able to rewrite the dimensionless conductivity in terms of parameters
easily extrapolated from SCBA calculations

Jxx =
Kxx

K0

=

√(
1− ψ2

ψ∗2c

)(
1 +

ψ2

χ2

)
Θ[

(
1− ψ2

ψ∗2c

)(
1 +

ψ2

χ2

)
]

Jyy =
Kyy

K0

=

(
1 + ψ4

ψ∗2c χ2

)
√(

1− ψ2

ψ∗2c

)(
1 + ψ2

χ2

) Θ[
(
1− ψ2

ψ∗2c

)(
1 +

ψ2

χ2

)
] (3.68)

in which form it is clear that the thermal conductivity vanishes for ψ > ψ∗c .

3.5.2.2 Anisotropic case

For the case vf > v∆, the integral of Eq. (3.52) becomes intractable. How-
ever, it is still possible to predict ψ∗c . Using the same q1/q2 coordinates, the
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f -part of the denominator is again a sum of two positive definite terms. Again,
the only contributions to the clean limit thermal conductivity arise when f = 0,
which again provides two equations

x2 + (y − a)2 = R2

(y − b)2 − x2 = c2 (3.69)

where

a =
1

β
(β − 1)

b =
β4 − 2β3 − 1

β4 − 1

c =
2β

β4 − 1

√
1− (β4 − 1)

(
(ψ −B3)2 −B2

1

)

R =

√
(1− 1

β
(β − 1))2 − 4B1(ψ −B3). (3.70)

This defines a hyperbola and a circle, again parametrized by ψ. One instance
of this is depicted in Fig. 3.13. The value of ψ at which these equations no
longer have a solution is ψ∗c . The computed values for ψ∗c are included for
comparison in the graphs of thermal conductivity in Fig. 3.14 and Fig. 3.15.

3.5.3 Effect of self-consistent disorder

Satisfied that vertex corrections are of little importance, we set about an-
alyzing the form of the thermal conductivity by studying the bare-bubble re-
sults. Thermal conductivity κ was computed for β ≡ √

vf/v∆ values of 1, 2, 3
and 4 (that is, for vf/v∆=1, 4, 9 and 16). In Fig. 3.14 is presented a represen-
tative plot of κ for vf = v∆. The clean limit prediction for κ (Eq. (3.68)) is
computed by fitting b1 and b3 from the self-energy calculations. These clean
limit predictions are then plotted on the same graph with the numerical re-
sults of the thermal conductivity for the same parameters. In addition, the
clean limit results of the simpler disorder model of Ref. 91 are also shown for
the vf = v∆ case. Increasing disorder broadens the peak in κyy near ψ∗c . For
z = 0.005, the numerical computation is already almost exactly given by the
clean limit results, while for z = 0.009, the features of the conductivity are
nearly totally smeared out, as seen in Fig. 3.14. In this figure, the value of ψ∗c
given by Eq. (3.61) is indicated with an arrow.

For vf > v∆, the thermal conductivity has the same characteristics as for
vf = v∆, except that ψ∗c is generally smaller with increasing β. The numerically
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Figure 3.13: For generally anisotropic Dirac quasiparticles, the construction
used in Fig.3.12 is modified to contain a hyperbola and circle. When these no
longer intersect, the excitation spectrum becomes gapped. Illustrated is the
construction for scattering parameter values {V1, R2, R3} = {110, 0.9, 0.8},
impurity fraction z = 0.01, and with vf = 4v∆. For these parameters it was
determined that this value of ψ at which the spectrum becomes gapped is
given by ψ∗c = 0.32ψc.
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Figure 3.14: Effects of disorder on bare-bubble thermal conductivity’s charge-
order dependence, isotropic case (vf = v∆). This figure illustrates the case of
short-ranged scatterers {V1, R2, R3} = {110, 0.9, 0.8}. Note how an increase
in the disorder, z, broadens out the peak in the conductivity. As the disorder
becomes sufficiently small, the computed conductivity (triangles and squares)
attains a limiting value that closely agrees with the analytic clean limit results
of Eq.(3.68) (shown with solid lines). The thermal conductivity obtained by

simply letting Σ̃ →-iΓ0 (obtained in Ref. 91) is shown with a dashed line. The
effect of the self-consistent disorder is to renormalize the effective ψ at which
the thermal conductivity vanishes (from ψc to some fraction of it).
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Figure 3.15: Effects of disorder on bare-bubble thermal conductivity’s charge-
order dependence, anisotropic case (vf = 16v∆). This figure illustrates the case
of short-ranged scatters {V1, R2, R3} = {110, 0.9, 0.8}. The effect of disorder
is the same as in the isotropic case, which is to mix gapped and gapless states,
smearing the peak in κyy across the renormalized nodal transition point, ψ∗c .
It is interesting to note that for this anisotropic case, ψ∗c is significantly smaller
than ψc.
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computed thermal conductivities for the case of β = 4 are shown in Fig. 3.15.
In this figure, the value of ψ∗c is computed by determining the largest value
of ψ for which Eqs. (3.69) have a solution, and is indicated with an arrow.
It is clear from these graphs that the self-consistent disorder renormalizes the
amplitude of charge density wave at which the thermal conductivity vanishes,
and that the amount of renormalization is heavily dependent on the velocity
anisotropy ratio, and varies only slightly with changing impurity fraction.

3.6 Conclusions

The work described in this chapter investigates the low temperature ther-
mal conductivity of a d-wave superconductor with coexisting charge order in
the presence of impurity scattering. We improve upon the model proposed
in Ref. 91 by incorporating the effect of vertex corrections, and by including
disorder in a self-consistent manner. Inclusion of vertex corrections does not
significantly modify the bare-bubble results for short range scattering poten-
tials. The role vertex corrections play increases somewhat for longer range
scattering potentials, in particular as the amplitude of charge ordering in-
creases. Nonetheless, for reasonable parameter values, the inclusion of vertex
corrections is not found to significantly modify the bare-bubble results. This
opens up the possibility of doing bare-bubble calculations for models with
different types of ordering.

In the forward scattering limit, where V1 >> V2, V3, the vertex correc-
tions played a more significant role, in particular near the nodal transition
point. This is consistent with Altland’s symmetry classification which finds
that pure forward scattering and isotropic scattering d-wave superconductors
lie in different universality classes[77].

Our analysis determined that for self-consistency, it is necessary to include
off-diagonal (in Nambu space) terms in the self-energy. As the charge ordering
increases, the off-diagonal components become more important, and are found
to dominate the self-energy in the clean limit. We also find that the thermal
conductivity is no longer universal, as it depends on the impurity density
and strength of charge ordering, rather than being solely determined by the
quasiparticles’ anisotropy.

In addition, inclusion of disorder within the SCBA renormalizes the crit-
ical value of ordering strength ψ at which the thermal conductivity becomes
effectively gapped. This renormalization is seen in the calculated thermal
conductivity curves, and depends primarily on the impurity fraction z and
velocity anisotropy vf/v∆. For larger vf/v∆, the renormalization becomes sig-
nificant, which may indicate that these signatures in κ0 could be observed even
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in systems with relatively weak charge order.
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Chapter 4

Extension to coexisting density
waves of various type and wave
vector

4.1 Introduction

The low energy excitations of cuprate superconductors are Dirac fermions,
which arise due to the d-wave nature of the superconducting order param-
eter. One expected signature of these nodal quasiparticles is the presence
of a universal term in the low-temperature thermal conductivity, κ00, which
depends only on the ratio of the gradient of quasiparticle dispersion to the gra-
dient of the gap, vf/v∆, but not on the disorder[22, 24, 82]. In the optimally
doped and overdoped regimes, κ00 has been observed in several instances,
and agrees closely with its predicted value[25–27, 29–36]. For instance, in
YBa2(Cu1−xZnx)3O6.9, κ00 is observed to be insensitive to the concentration of
Zn atoms.[29]. However, in some cases, the value of the universal limit thermal
conductivity, κ00, is smaller than expected, or not observed at all, in particular
as one approaches the underdoped regime[28, 37–40]. One possible reason is
that localization effects enhance the scattering rate while leaving the density
of states unaffected, thus reducing the transport[94].

Another mechanism which might account for non-observation of κ00 is the
presence of competing order parameters. For years, evidence of the presence of
additional symmetry breaking order parameters in cuprates has been compiled
in neutron scattering data and scanning tunneling microscopy experiments[48–
50, 52–63]. The presence of additional orders other than superconducting may
be incidental, yet it also may be intrinsically related to the complex phe-
nomenon of high temperature superconductivity itself. The addition of order
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parameters which preserve time-reversal symmetry followed by a lattice trans-
lation has been found to preserve the nodal nature of the quasiparticles, for
small amplitudes of order[89]. As the strength of such ordering perturbations
increases, the locations of the nodal excitations evolve in k-space: for suffi-
ciently large amplitude of order, the quasiparticle spectrum can be entirely
gapped[89–92]. This modification of the quasiparticle spectrum will manifest
itself in the low temperature thermal conductivity[91–93].

In this chapter, we model a cuprate superconductor using a mean-field for-
malism describing a BCS-like d-wave superconductor (dSC) perturbed by the
addition of an additional order parameter. We then proceed to calculate the
low-temperature thermal conductivity, accounting for the presence of several
different varieties of competing orders. We affirm that these predictions can
then be used as an indirect verification of the presence or absence of various
competing orders in cuprates.

The previous chapter’s linear response calculation of κ00 in a dSC with the
addition of a Q = (π, 0) charge density wave showed that vertex corrections
were not important for the universal limit thermal conductivitity, within the
self-consistent Born approximation[92]. As the charge density wave’s ampli-
tude increased beyond a critical value ψc, the quasiparticle spectrum became
gapped. Correspondingly, the thermal conductivity (made anisotropic by the
presence of the density wave) vanished beyond that critical strength of order-
ing. In addition, a dependence on disorder resulted, in particular for charge
orderings near the transition. Armed with this information, we then study
the effects of a wider class of density waves on the low-energy properties of
cuprates.

In Sec. 4.2, we will develop the mean-field formalism we will use to de-
scribe superconductors in the presence of competing orders. We write effective
hamiltonians for charge, spin and pair density waves of several wave-vectors.
Additionally, we describe configurations with multiple wave vectors, such as
checkerboard order. Next, in Sec. 4.3 we will derive the current operators as-
sociated with the various kinds of orders, and use this to establish a relation
for the bare-bubble thermal conductivity. Finally in Sec. 4.4, we will apply
our results to several different cases, and compare and contrast the results.

4.2 Model

4.2.1 States of broken symmetry

States that arise as a result of broken symmetries are characterized by the
presence of non-vanishing off diagonal matrix elements. The superconducting
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state itself,for instance, can be identified with the non-vanishing “anomalous
Green functions”, as was learned by Gor’kov[8]. These anomalous Green func-
tions are defined in space and time as

< ψα(r, t)ψβ(0, 0) > . (4.1)

Given singlet paired electrons of opposite momenta, this corresponds, in mo-
mentum space, to

< ψα(k, t)ψβ(−k, t) > . (4.2)

In a similar fashion, ordered states representing density waves will also admit
non-vanishing correlations between states separated by the wave-vector of the
density wave. In this chapter, we will consider the subset of those which are
defined in momentum space as

< ψα†(k + Q, t)ψβ(k, t) >≡ ΦQf(k)d(α, β), (4.3)

representing charge (d = δα
β ) and spin (d = δα

β (δα
↑ − δα

↓ )) density waves, as well
as pair density waves

< ψα†(k + Q, t)ψ†β(k, t) >≡ ΦQf(k)εα
β . (4.4)

For the purposes of simpler classification of orders, we are carefully follow-
ing some definitions made by Nayak in Ref. 95, so that ΦQ will represent the
magnitude and phase of the density wave and f(k) is an element of a represen-
tation of the space group of Q on a square lattice. Certain order parameters
obey restrictions. For instance, charge and spin density waves for which 2Q is
a member of the reciprocal lattice obey the additional condition

ΦQf(k + Q) = Φ∗
Qf ∗(k) (4.5)

as was pointed out in Ref. 95.
Written as a sum over real space, the hamiltonian representing a charge

density wave system is

HCDW =
∑
rr′
σ

ψe−iQ·(r−r0)f(r − r′)c†rσcr′σ + h.c.. (4.6)

Upon Fourier transform this becomes

HCDW =
∑

kσ

(ΦQfkc
†
k+Qσckσ + Φ∗

Qf ∗k c†kσck+Qσ), (4.7)
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with the definition ΦQ = ψeiQ·r0 , where r0 describes the shift of the density
wave from being site-centered and ψ is the amplitude of the density wave.
Coupled with Eq. (4.5), this indicates restrictions on certain density waves’
registration with the lattice.

4.2.2 Model

Our starting point is a model for d-wave superconductors

H =
∑

k,σ

(
εkc

†
kσckσ + ∆kc

†
k↑c

†
−k↓

)
+ h.c. (4.8)

where the normal state dispersion is given by a tight-binding hamiltonian,

εk = −2t(cos kx + cos ky)− t′ cos kx cos ky − µ. (4.9)

and the superconducting order parameter is of dx2−y2 symmetry,

∆k =
∆0

2
(cos(kx)− cos(ky)). (4.10)

As given, this hamiltonian has nodal excitations, which are located along the
dx2−y2 symmetry axis in the (±π,±π) directions. The nodes’ distance from
the (±π/2,±π/2) points is controlled by the chemical potential µ. These
quasiparticles are Dirac fermions in the sense that they have conical dispersion.
The excitation energy is

Ek =
√

ε2
k + ∆2

k, (4.11)

and at low energies, εk ∼ vfk1 and ∆k ∼ v∆k2, where k1 and k2 are dis-
placementss resulting from the normal state dispersion linear parallel to Fermi
surface, and linear gap perpendicular to the Fermi surface, with slopes vf and
v∆. For µ on the order of t or smaller, the ratio of Fermi velocity to gap
velocity is given as

vf

v∆

≈
4
√

t2 − µ
t
t′2

∆0

. (4.12)

Then, as perturbations are turned on, the locations of the nodes evolves in k-
space, although the stability of the nodes is generally preserved for non-nesting
perturbations which preserve the composite symmetry of lattice translation
followed by time-reversal as was noted by Berg and Kivelson[89].
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4.2.3 Density waves of different wave vectors

The presence of a uniform density wave in a superconductor changes the
system in both real and momentum space. In real space, the unit cell increases,
as the system becomes periodic over a larger distance. In momentum space,
we see an effective reduction of the Brillouin zone, also called band folding.
Accordingly, our second quantized descriptions of the systems are modified.
Whereas in a superconductor we can rewrite a quadratic effective hamiltonian
using Nambu field operators,

ψ†k =
(
c†k↑ c−k↓

)
ψk =

(
ck↑
c†−k↓

)
, (4.13)

we could alternatively write extended Nambu vectors, such as

ψ†k
(
c†k↑ c−k↓ c†k+Q↑ c−k−Q↓

)



ck↑
c†−k↓
ck+Q↑
c−k−Q↓


 (4.14)

where the wave-vector Q connects each point in the first reduced Brillouin
zone with a point in the second reduced Brillouin zone. Sums over k-space
are then performed by integrating over the reduced Brillouin zone (the shaded
regions in Fig.4.1), and taking the trace of the now-extended Nambu space
matrix. The two descriptions are equivalent, but the extended Nambu de-
scription naturally fits the effective hamiltonians of systems with non-zero
mean-field density waves. In Fig. 4.1, we illustrate four different density waves
which are considered in this paper: Q = (π, 0), Q = (π/2, 0), Q = (π, π) and
Q = (π, 0) + (0, π) (checkerboard) orders. These disturbances are illustrated
in real space in Fig.4.2.

4.2.3.1 Q = (π, 0) density waves

A density wave of wave vector Q = (π, 0) corresponds to a striped system:
the unit cell is doubled in the x-direction, and the Brillouin zone is reduced
by 50% as seen in Fig. 4.1. The extended Nambu vector is that of Eq. 4.14,
with Q = (π, 0).

4.2.3.2 Q = (π/2, 0) density waves

A density wave of wave vector Q = (π/2, 0) corresponds again to a striped
system, one in which the unit cell has increased by a factor of four, and the
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Figure 4.1: Illustrated are the reduced Brillouin zones of a square lattice in
the presence of different density waves. The dots illustrate approximately the
location of nodal excitations in a plain dx2−y2-symmetry superconductor; the
dashed line is the new zone boundary induced by the density wave. Illustrated
are density waves of wave vector: a) Q = (π, 0), b) Q = (π/2, 0), c) Q1 =
(π, 0), Q2 = (0, π) and d) Q = (π, π)
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a) δρ∼Cos(π x) b) δρ∼Cos(π/2 x)

c) δρ∼Cos(π x)+Cos(π y) d) δρ∼Cos(π x)Cos(π y)

Figure 4.2: Illustrated are the four different density waves considered in this
chapter, in real space. Each circle corresponds to the position of a Cu atom,
and the size of the circle indicates whether the density at that site is higher
or lower than the average. Illustrated are density waves of wave vector: a)
Q = (π, 0), b) Q = (π/2, 0), c) Q1 = (π, 0), Q2 = (0, π) and d) Q = (π, π)
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Brillouin zone is reduced by the same factor. The reduced Brillouin zone is
taken to be the region containing the pre-density-wave nodal quasiparticle
excitations of the d-wave superconductor; in Fig. 4.1 (b) this is indicated with
shading. The extended Nambu vector is that of Eq. 4.17.

4.2.3.3 Q1 = (π, 0);Q1 = (0, π) density waves

Two density waves of equal weight in orthogonal directions corresponds to
a checkerboard ordered system. As in the case of the Q = (π/2, 0) case, the
Brillouin zone’s area is reduced by a factor of four, although it is a different
reduced Brillouin zone, illustrated in k-space in Fig. 4.1 (c), and in real space
in Fig. 4.2.

4.2.3.4 Q = (π, π) density waves

A density wave of wave vector Q = (π, π) corresponds to a system which
is modulated in both kx and ky directions: δρ ∝ sin(kx) sin(ky). The reduced
Brillouin zone is indicated in Fig. 4.1 (d) as the shaded region, and the real
space modulation is illustrated in Fig.4.2 (d). The extended Nambu vector is
as in Eq. 4.14, with Q now representing the (π, π) density wave.

4.2.4 Charge density waves

A commensurate charge density wave is one for which the charge density
is oscillatory in real space and repeats itself after translation by an integer
number of lattice constants. In other words, ρ = ρ0 + δρ, where δρ is the
oscillatory part. The momentum space description of a mean field hamiltonian
for such a system is

HCDW =
∑

kσ

(
ΦQfkc

†
k+Qσckσ + Φ∗

Qf ∗k c†kσck+Qσ

)
. (4.15)

A charge density wave ρ = ρ0 + δρ which doubles the unit cell (so that δρ al-
ternates sign from cell to cell in the x-direction) has wave-vector Q = (π, 0). A
(π, 0) CDW perturbation in its 4-component extended Nambu basis (particle,
hole, shifted particle, shifted hole) is given by

HCDW =
′∑

k

ψ†k




0 0 A∗
k 0

0 0 0 −A−k

Ak 0 0 0
0 −A∗

−k 0 0


 ψk, (4.16)

79



where the sum is over the reduced Brillouin zone of Fig. 4.1 a), and we define
Ak ≡ ΦQfk+Φ∗

Qf ∗k+Q. A (π/2, 0) CDW perturbation written in its 8-component
extended Nambu basis

ψ†k =
(
c†k↑ c−k↓ c†k+2Q↑ c−k−2Q↓ c†k+Q↑ c−k−Q↓ c†k+3Q↑ c−k−3Q↓

)
(4.17)

is written as

H
(π/2,0)
CDW =

′∑

k

ψ†kHkψk (4.18)

where Hk is given by




A∗
k 0 Ak+3Q 0

0 −A∗
−k−Q 0 −A−k

Ak+Q 0 A∗
k+2Q 0

0 −A−k−2Q 0 −A∗
−k−3Q

Ak 0 A∗
k+Q 0

0 −A−k−Q 0 −A∗
−k−2Q

A∗
k+3Q 0 Ak+2Q 0
0 −A∗

−k 0 −A−k−3Q




(4.19)

4.2.5 Pair density waves

Scanning tunneling microscopy experiments have revealed the presence of
modulations in the local density of states in the vortex cores of the cuprate
Bi2Sr2Ca1Cu2O8+δ[48, 49, 53, 54, 56, 57], and in some instances, appear in the
absence of magnetic field[50, 51]. More recent measurements, conducted in the
absence of magnetic field, measured the spatial dependence of the supercon-
ducting gap[96]. Their finding was that the superconducting order parameter
is modulated, corresponding to superconducting pairs with a net center-of-
mass momentum, which has become known as a pair density wave[? ]. In
addition to modulations in the electron density, we can also consider the ef-
fects of modulations of the paired electrons. A pair density wave of wave vector
Q is written as

HPDW =
∑

k
αβ

(
ΘQgkc

†
k+Qαc†−kβ + Θ∗

Qg∗kc−kβck+Qα

)
. (4.20)
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or, with the definition Bk ≡ ΘQ (gk +g−k−Q) we can write (for (π, 0) or (π, π)
density waves)

HPDW =
′∑

k

ψ†k




0 0 0 Bk

0 0 B∗
−k 0

0 B−k 0 0
B∗

k 0 0 0


 ψk (4.21)

4.2.6 Spin density waves

The effective hamiltonian corresponding to spin density wave of wave vector
Q is

HSDW =
∑

kσ

σ
(
ΦQfkc

†
k+Qσckσ + Φ∗

Qf ∗k c†kσck+Qσ

)
. (4.22)

For example, a Q = (π, 0) or Q = (π, π) SDW is represented in its reduced
Brillouin zone as

H
(π,0)
SDW =

′∑

k

ψ†k




0 0 A∗
k 0

0 0 0 A−k

Ak 0 0 0
0 A∗

−k 0 0


 ψk, (4.23)

with the definition Ak ≡ ΦQfk + Φ∗
Qf ∗k+Q.

4.2.7 Checkerboard density waves

In addition to broken symmetry states arising due to a single density wave,
we can also consider multiple density waves. Scanning tunneling microscopy
experiments have previously revealed the presence of checkerboard order in
BiSCCoO[48–50, 52–54]. While the wave vectors of the order in those ex-
periments was seen to be near Q ≈ π

2
, for simplicity we first write down the

hamiltonian corresponding to Q1 = (π, 0) and Q2 = (0, π) checkerboard order.
The Brillouin zone is reduced to one fourth of its size, as is seen in Fig. 4.1.
The extended Nambu vector which describes such a system is

ψ†k =
(
c†k↑ c−k↓ c†k+Qx↑ c−k−Qx↓ c†k+Qy↑ c−k−Qy↓ c†k+Qx+Qy↑ c−k−Qx−Qy↓

)

(4.24)
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and the second quantized hamiltonian which describes the addition of a charge
density wave and pair density wave is

Hcheckerboard
CDW + Hcheckerboard

PDW =
′∑

k

ψ†kHkψk, (4.25)

where Hk is given by




0 0 A
(x)∗
k B

(x)
k A

(y)∗
k B

(y)
k 0 0

0 0 B
(x)∗
−k −A

(x)
−k B

(y)∗
−k −A

(y)
−k 0 0

A
(x)
k B

(x)
−k 0 0 0 0 A

(y)∗
k+Qx

B
(y)
k+Qx

B
(x)∗
k −A

(x)∗
−k 0 0 0 0 B

(y)∗
−k−Qx

−A
(y)
−k−Qx

A
(y)
k B

(y)
−k 0 0 0 0 A

(x)∗
k+Qy

B
(x)
k+Qy

B
(y)∗
k −A

(y)
−k 0 0 0 0 B

(x)
−k−Qy

−A
(x)
−k−Qy

0 0 A
(y)
k+Qx

B
(y)
−k−Qx

A
(x)
k+Qy

B
(x)
−k−Qy

0 0

0 0 B
(y)∗
k+Qx

−A
(y)∗
−k−Qx

B
(x)∗
k+Qy

−A
(x)∗
−k−Qy

0 0




(4.26)
where

A
(x)
k ≡ ΦQxfkx + Φ∗

Qx
f ∗k+Qx

A
(y)
k ≡ ΦQyfky + Φ∗

Qx
f ∗k+Qy

B
(x)
k ≡ ΘQx(gkx + g−kx−Qx)

B
(y)
k ≡ ΘQy(gky + g−ky−Qy) (4.27)

represent the amplitudes of the charge density and pair density waves in the
x and y directions.

4.3 Thermal conductivity

At low temperatures, the temperature dependent phonon contribution to
thermal conductivity vanishes as a power, κphonon ∼ T α [26, 28–31, 33, 34, 36–
40]. Therefore, the T -linear quasiparticle current can be extracted from ex-
perimental data by plotting the measured thermal conductivity over temper-
ature as a function of T α−1. In previous work, we considered a site-centered
Q = (π, 0) charge density wave and calculated the thermal conductivity us-
ing Green’s functions obtained from the self-consistent Born approximation,
and incorporated vertex corrections within the ladder approximation. Be-
cause the results of this work indicated that vertex corrections can usually be
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neglected, in what follows we will derive the thermal conductivity using the
“bare-bubble” correlation function. This will greatly simplify the calculation,
allowing its application to a variety of systems.

4.3.1 Current operators

In order to calculate the thermal conductivity, we first need to derive the
heat-current associated with the quasiparticles. Because heat and spin currents
are both proportional to the quasiparticle current, we can get the heat-current
by calculating the spin-current, and then using the energy measured from the
Fermi level as the associated charge (instead of the spin). To calculate the
spin current for any particular hamiltonian, we write the density operator in
second quantized form, and then use Heisenberg equations of motion to find
the momentum space representation of the current, that is

lim
q→0

(q · js) = [ρS
q , H]. (4.28)

The density operator is

ρs
q =

′∑

k

(
c†k↑ck+q↑ + c−k↓c

†
−k−q↓

)
. (4.29)

Taking the commutator with the hamiltonians Eqs. (4.8),(4.15), (4.20) and
(4.22), using anti-commutation relations, and discarding boundary terms, we
find

[ρs
q, H] =

∑

kk′
σ

[σc†k′σck′+qσ, ψ
†
kH̃kψk]

=
∑

k

q · ψ†k
∂H̃k

∂k
ψk (4.30)

for the spin current. The heat current in the Matsubara representation is given
by

j̃(iω, iΩ) = (iω +
iΩ

2
)
∑

k

∂H̃k

∂k
(4.31)

Now we have a generalized velocity operator in the Nambu space, ṽk = ∂H̃k

∂k
.

For instance, for the Q = (π, 0) pair density wave of Eq. 4.21 , the velocity
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operator would read

ṽ(k) =




vf,k v∆,k 0 ∂Ak

∂k

v∆,k −vf,k
∂A∗−k

∂k
0

0 ∂A−k

∂k
vf,k+Q v∆,k+Q

∂A∗k
∂k

0 v∆,k+Q −vf,k+Q


 (4.32)

For density waves without internal momentum dependance, or for those where
the variation is slight near the nodal locations, the velocity operator reduces
to the form found in Refs. 91, 92

ṽf,k =

(
vf,k v∆,k

v∗∆,k −vf,k

)
(4.33)

4.3.2 Universal limit thermal conductivity

The universal limit thermal conductivity is calculated using linear response
formalism. The thermal conductivity is given in terms of the retarded corre-
lation function.

K(Ω, T )

T
= lim

Ω→0
−Im(ΠRet(Ω))

ΩT 2
(4.34)

We evaluate the correlation function using the Matsubara method. The bare-
bubble correlator, given in terms of a spectral representation, is

Π(iΩ) =

∫
dω1dω2Tr

∑

k

[
Ã(ω1)ṽÃ(ω2)ṽ

]
S(iΩ) (4.35)

where

S(iΩ) ≡
∑
iωn

(iω + iΩ
2

)2

(iω − ω1)(iω + iΩ− ω2)
(4.36)

and A(k, ω) is the spectral function.
It is important to use the correct form of the spectral function in Eq. (4.39)

to avoid erroneous results, as is noted in Ref. 91. For example, a bond-centered
CDW of wave vector Q = (π, 0), which looks like

HCDW =




0 0 iψ 0
0 0 0 −iψ
iψ 0 0 0
0 −iψ 0 0


 (4.37)
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leads to a spectral function which is not real, and the spectral function is not
given by the formula

Ã(k, ω) = − 1

π
Im(GR(k, ω)), (4.38)

but rather by

A(k, ω) ≡ −1

2πi

(
GR(k, ω)−GA(k, ω)

)
. (4.39)

The details of the thermal conductivity calculation are similar to those of
Refs. 92. In general, the self-consistent t-matrix approximation can be used
to compute the Green’s functions, however, here we use a simpler, diagonal
self-energy as a first approximation. In terms of a model hamiltonian Hk and
incorporating impurity scattering by assuming a finite imaginary part of the
self-energy, Σ̃R(ω → 0) = −iΓ0, the universal limit thermal conductivity is

lim
T→0

κ0

T
=

k2
Bπ2

3

∑

k

Re
[
Tr[Ã(0)

∂H̃k

∂k
Ã(0)

∂H̃k

∂k
]
]

(4.40)

where

G̃R(k, ω) =
(
ω − H̃k + iΓ(ω)

)−1

G̃A(k, ω) =
(
ω − H̃k − iΓ(ω)

)−1

. (4.41)

4.4 Effects on spectrum and thermal conduc-

tivity

Here we modify the dSC hamiltonian (4.8) with the addition of density
waves such as (4.15), (4.20) and (4.22), which will be tuned by the real pa-
rameter ψ, the strength of the density wave. This is done to study the behavior
of the quasiparticle spectrum, and through (4.40), the universal limit thermal
conductivity. In each of the figures from Fig. 4.3 to Fig. 4.10, we present a)
The trajectory of the nodes in the region 0 < kx, ky < π

2
, as the density wave

is turned on. The starting place (node for dSC system) is indicated with a
star. b) (minimum) quasiparticle energy as a function of the order parameter
strength ψ; and c) universal limit thermal conductivity as a function of ψ. In

all instances, the universal limit conductivity κ00

T
is given in units of

v2
f+v2

∆

vf v∆
, the

value for the plain dSC system, and we measure ∆0, Emin, µ and Γ0 in units
of t, the hopping parameter.
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4.4.1 Q = (π, 0) density waves

The addition of a Q = (π, 0) charge density wave to a d-wave super-
conductor has been considered before[90–92]. As the perturbation is turned
on, the nodes’ locations evolve along curved paths, until they meet the im-
ages of the nodes from the second reduced Brillouin zone at the collision
point (π/2, π/2), as seen in Fig. 4.3. The effect is the same, regardless of
whether the density wave is of s-wave (ΦQ = ψ, fk = 1, site-centered), px-wave
(ΦQ = iψ, fk = sin(kxa), bond-centered) or py-wave (ΦQ = ψ, fk = sin(kya),
site-centered) symmetry. The critical value of ψ which gaps the system is
ψc = vfk0, where

k0 =
√

2
[π

2
− cos−1

(−t

2t′
+

√
(

t

2t′
)2 − µ

4t

)]
(4.42)

is the distance separating the ψ = 0 nodal point from (π/2, π/2) in k-space.
The resulting thermal conductivity is anisotropic, reflecting the stripiness of
the system. The nodes are deformed as they approach the collision point,
and the thermal conductivity κyy perpendicular to the direction of the density
wave increases at first, before both κxx and κyy vanish for larger amplitudes
of density wave, ψ. The effect of a Q = (π, 0) pair density wave is similar to
that of the charge density wave: the nodes evolve along a curved path until
they meet their images in the second reduced Brillouin zone, and the resulting
universal limit thermal conductivity is the same. The effects of a site-centered
(π, 0) pair density wave is shown in Fig. 4.5.

A more unusual case is that of the Q = (π, 0) spin density wave. With
this perturbation, the nodal points evolve directly towards the (π/2, ky) line,
as seen in Fig.4.6. The quasiparticle spectrum then evolves so that there
are two minima. In other words, the node splits in two, and nodes move up
and down the (π/2, ky) line. The nodes are nested by Q, but the spectrum
remains gapless, and the universal limit thermal conductivity is unaffected. If
the perturbation is allowed to become extremely large (ψ >> ∆0), then the
nodes (there are now twice as many) collide with their ghosts, and the thermal
conductivity then vanishes. The split-off nodes collide at different strengths
of ψ, however, and the spectral weight disappears in two batches, accordingly,
as does the thermal conductivity.

4.4.2 Q = (π, π) density waves

Adding a Q = (π, π) spin density wave was also discussed as an example
in Ref. 89. In real space, such a density wave is modulated as cos(kx) cos(ky),
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κ
Τ

00

Ε
min

ψ

a) b)

c)

(π,0) CDW

κ yy

κ xx

ψ

Figure 4.3: Effects on spectrum and low temperature transport of a Q =
(π, 0) charge density wave. The results are the same for site centered (s-wave
or py wave) and bond centered (px-wave) density waves, in that the nodes
evolve along the same curved paths toward the (±π/2,±π/2) points, where
they collide with their images from the next reduced Brillouin zone. As this
happens, the nodes are nested and the spectrum is gapped. The universal
limit thermal conductivity vanishes beyond this point. Disorder Γ0 broadens
the transition. Here we take µ = −0.6, ∆0 = 4 and Γ0 = 0.02.
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κ
Τ

00

Ε
min

ψ

a) b)

c)

(π,0) CDW v  > v

κ yy

κ xx

f ∆

ψ

Figure 4.4: Effects on spectrum and low temperature transport of a Q = (π, 0)
charge density wave. Depicted are the results for µ = −1, ∆0 = 0.4 and
Γ0 = 0.02. These parameters describe anisotropic Dirac quasiparticles, with
vf/v∆ = 10. The anisotropy tends to suppress κ00 slightly.
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κ
Τ

00

Ε
min

ψ

a) b)

c)

(π,0) PDW

κ yy

κ xx

ψ

Figure 4.5: Effects on spectrum and low temperature transport of a Q = (π, 0)
pair density wave. Depicted are the results for µ = −.6, ∆0 = 4 (vf = v∆) and
Γ0 = 0.02. As was the case for the CDW, the nodes evolve along a curved path
towards the (π/2, ky) line. Upon reaching kx = π/2, the nodes are nested, and
the spectrum is gapped. For ψ larger than the critical value ψc, the thermal
conductivity vanishes, up to disorder broadening.
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κ
Τ

00

Ε
min

a) b)

c)

(π,0)     SDW

κ yy

κ xx

ψ

ψ

Figure 4.6: Effects on spectrum and low temperature transport of a Q = (π, 0)
spin density wave. Depicted are the results for parameters ∆0 = 4, µ = −.6
and Γ0 = 0.02. As the density wave is turned on, the nodes move in a straight
line to the (±π/2, ky) lines. When they reach that line, each node splits in
two, and the two nodes move up and down along that line. The spectrum
remains gapless, even though the nodes are nested by the ordering vector.
Correspondingly, the thermal conductivity is unaffected at that energy scale.
For ψ much larger, these two nodes collide with their ghost nodes (at different
values of ψ), and the thermal conductivity is additively reduced by one half
of the pure dSC value after each such collision. The locations of the two
separate nodal collisions are illustrated by green and orange stars in (a), and
the strength at which they appear is given in (b) and (c).
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so that nodes remain along the (π, π) direction as the density wave is turned
on, as is seen in Fig. 4.7. When the nodes reach (π/2, π/2), the system is

κ
Τ

00

Ε
min

ψ

a) b)

c)

(π,π) SDW

Γ = 0.0010

Γ = 0.010

Γ = 0.040

Γ = 0.080

ψ

Figure 4.7: Effects on spectrum and low temperature transport of a Q =
(π, π) spin density wave. As the density wave is turned on, the nodes move
along the symmetry lines kx = ±ky toward (±π/2,±π/2), where they become
gapped. Accordingly, κ00 vanishes. In c) the effects of increasing disorder are
presented. The disorder tends to smear the thermal conductance around the
nodal transition; as such, κ00 is no longer universal.

gapped[89], and the thermal conductivity vanishes. On the other hand, a
Q = (π, π) charge density wave behaves in a similar manner to the (π, 0) spin
density wave, in that the nodes do not vanish for small perturbations.

The addition of a Q = (π, π) pair density wave drives the location of the
nodes towards the Γ point at (kx, ky) = (0, 0), an effect which is repeated by
the addition of the checkerboard pair density wave. In both instances, a large
perturbation ψ >> ∆0 is required to affect the thermal conductivity.
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4.4.3 Q = (π/2, 0) charge density wave

A Q = (π/2, 0) density wave behaves slightly differently than the (π, 0)
case. In this case, the nodes are driven towards the (π/4, ky) line, rather than
(π/2, ky). While they would become gapped if they arrived there, for realistic
parameters t, µ, and ∆0, such a density wave would dominate the system, that
is, ψ >> ∆0. The evolution is as seen in Fig. 4.8 and preserves the nodes for

κ
Τ

00

Ε
min

ψ

a) b)

c)

(  ,0) CDW

κ yy

κ xx

ψ

π

2

Figure 4.8: Effects on spectrum and low temperature transport of a Q =
(π/2, 0) charge density wave. As the density wave is turned on, the nodes
move in a curved path to the (±π/4, ky) lines. The spectrum becomes gapped
at that point, when the node is nested by the ordering vector and the thermal
conductivity vanishes for ψ larger than about 4t. Such a system is out of the
range of validity of our model, as it would be dominated by the charge order,
rather than the d-wave superconductor. For ψ on the order of ψc, κ00 retains
its dSC value. Here, µ = −.6, ∆0 = 4 and Γ0 = 0.05

ψ < ∆0. As such, the universal limit thermal conductivity is not significantly
affected by this perturbation.
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4.4.4 Q1 = (π, 0), Q2 = (0, π) checkerboard density waves

Configurations with more than one density wave can also be considered
in this formalism. In this paper, we turn our attention to the checkerboard
configuration illustrated in part c) of Fig. 4.1. As we turn on two charge density
waves of Q1 = (π, 0) and Q2 = (0, π) with equal amplitudes, the nodes are
perturbed along the symmetry line toward the (π/2, π/2) point, as shown in
Fig. 4.9. When the nodes reach the (π/2, π/2) point, the spectrum becomes

κ
Τ

00

Ε
min

ψ

a) b)

c)

checkerboard CDW

ψ

Figure 4.9: Effects on spectrum and low temperature transport of a Q1 =
(π, 0), Q2 = (0, π) charge density perturbation to the dSC system. The nodes
move in straight lines toward the (±π/2,±π/2) points. The spectrum becomes
gapped at that point, and κ00 vanishes for ψ larger than about 0.4t.

gapped, and the thermal conductivity vanishes, with a value of ψc about two-
thirds of that for the striped (π, 0) CDW. In contrast, the checkerboard pair
density wave seen in Fig. evolves the nodes along the same symmetry line, but
towards the Γ point (0, 0). At that point, the spectrum would become gapped,
and the universal limit thermal conductivity would vanish. However, systems
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which more closely resemble a d-wave superconductor than the checkerboard
(∆0 > ψ) will remain gapless, as the nodal evolution would not be driven that
far—about thirty times the critical value for the striped (π, 0) PDW .

κ
Τ

00

Ε
min

ψ

a) b)

c)

checkerboard PDW

κ yy

κ xx

ψ

Figure 4.10: Effects on spectrum and low temperature transport of a Q1 =
(π, 0), Q2 = (0, π) pair density perturbation to the dSC system. The nodes
move in straight lines toward the origin at (0, 0) points. The spectrum would
become gapped at that point, however, the value of ψ required is much larger
than the energy scale on which the system is superconducting. Therefore,
for reasonable strengths of the ordering vector, the thermal conductivity is
unaffected by this density wave.

4.5 Conclusion

In conclusion, we have written mean-field hamiltonians describing a d-
wave superconductor perturbed by a variety of density waves. We noted the
effects of such perturbations on the low energy quasiparticle spectrum, and by
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calculating the universal limit (T → 0, Ω → 0) thermal conductivity, see the
effect that density waves can have on the low temperature thermal transport.
We learned that whether the universal limit thermal conductivity is robust in
the presence of an incipient density wave depends on which density wave, and
which wave vector is added. For instance, in the case of Q = (π, 0) pair density
waves, the quasiparticle nodes evolve so that their k-space locations move
toward (±π/2,±π/2), as they do for a CDW of the same wave vector. When
they reach this point, which is the point at which the density wave vector nests
the nodes, the spectrum becomes gapped. However, for the Q = (π, 0) spin
density wave, the nodal structure is preserved beyond this strength, despite
the nesting of the nodes. For the Q = (π, π) density waves, the effects of SDW
and CDW are reversed from that of the (π, 0) case; the (π, π) CDW preserves
nodality beyond the nesting wave vector, while the (π, π) SDW is gapped
beyond a critical strength. In the case of Q = (π/2, 0), the different wave
vector drives the nodes toward (π/4, ky) instead. Given typical tight-binding
parameters, such a charge density wave will not gap the quasiparticle spectrum,
and will thus not affect the thermal conductivity, which remains universal. In
the case of Q1 = (π, 0), Q2 = (0, π) checkerboard charge order, whether or
not the universal limit thermal conductivity is robust depends on which type
of density wave is present: the CDW checkerboard nodes move toward the
(±π/2,±π/2) point, and become gapped, however the PDW checkerboard
nodes moves away from that direction, and the nodal structure is preserved.

Because the onset of charge ordering is believed to be correlated with un-
derdoping, observations which show that the low temperature thermal con-
ductivity differs from the universal value predicted in Ref. 24 may be due to
the influence of coexisting orders. There are some general features that ap-
pear in all of the models considered in this paper. (1) In general, the nodal
evolution is determined more by the wave-vector Q than by the chemical po-
tential µ, although µ will determine the amplitude of density wave which will
gap the system. (2) The physics still remains nodal in the following sense.
Whether the density waves considered were of s-wave or p-wave symmetry did
not have any effect; the only thing which mattered was the amplitude of the
density wave at the node. (3) It is interesting to note that the universal limit
thermal conductivity generally develops a disorder dependence, especially near
the nodal transition point. The presence of density waves are therefore one
possible explanation of the breakdown of universal limit thermal transport
in cuprates. (4) In general, there is an increase in the conductivity near the
nodal transitions (for models which have transitions), which is caused by the
deformations (effectively increasing vf/v∆) as the nodes meet their images.
This feature is consistent with thermal conductivity measurements of Proust
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et al.[97] which find a large enhancement in thermal conductivity of Bi-2201
over the pure dSC value.
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Chapter 5

Conclusions

We have considered a variety of effective hamiltonians corresponding to
d-wave superconductors coexisting with a variety of density waves, which has
been inspired by the observation of these symmetries in the cuprate supercon-
ductors. We have studied the ways in which the low temperature properties of
d-wave superconductors are modified by the addition of these coexisting order
parameters. The location of nodal quasiparticles evolves in k-space until the
spectrum becomes gapped; this evolution depends on which particular density
wave is under consideration.

We have seen that the low temperature thermal conductivity can be af-
fected by coexisting order parameters in two ways. In general, the thermal
conductivity which was disorder independent (universal) in a d wave super-
conductor develops a disorder dependence when density waves are present.
Also, for sufficiently large amplitudes, the density waves can suppress κ00 en-
tirely by gapping the quasiparticle spectrum.

The inclusion of vertex corrections was found to be unimportant in the dSC
+ Q = (π, 0) CDW system. This finding is in agreement with the heuristic
argument that thermal currents can relax via both internode and intranode
scattering, and that it is therefore not important to distinguish between those
scattering events.

Because of evidence that the density modulations may increase with under-
doping, it is possible that transport measurements on well prepared samples
could indirectly observe these density modulations, by observing a low tem-
perature thermal conductivity which changes as more underdoped samples are
measured. The thermal conductivity is affected in two ways. First, because
our calculations generally predict an upturn in κ00 near the nodal/gapped
transition (for models which have one) the quasiparticle contribution to ther-
mal conductivity should be enhanced from the pure dSC value as one under-
dopes the sample. Secondly, our calculations indicate that a non-universality
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develops near the nodal/gapped transition. Therefore, variations in κ00 are
also expected upon the introduction of controlled disorder (along the lines
of the kind used in Ref. 29), as long as the doping level puts the sample
near the nodal/gapped transition. This signature of ordering in transport
is depicted in Fig. 5.1. Experiments on Bi-2201 (Bi2+xSr2−xCuO6+δ indicate
that there is an enhancement of the universal limit thermal conductivity with
underdoping[97]. Our findings indicate that the low temperature thermal con-
ductivity is enhanced near the nodal/gapped transition, which is consistent
with this measurement.

Future directions
In real materials, the quasiparticle scattering mechanisms seem to occur

due to both in-plane (unitary limit scatters) and out-of-plane (Born limit scat-
terers), rather than any one of the two[35, 72]. Because of this, a more com-
plete model for the scattering should be considered, whereby the quasiparticle
lifetime would be generated by

1

τ
=

1

τBorn

+
1

τunitary

, (5.1)

with two impurity densities, nin and nout, representing in and out of plane
impurities.

STM experiments indicate that a checkerboard modulation of the local
density of states occurs, with the magnitude of the wave vector somewhere in
the range from Q = 2π

4.5
to Q = 2π

4
[48, 49]. To estimate the effect of Q1 =

(π
2
, 0),Q2 = (0, π

2
) checkerboard based on the Q = (π

2
, 0) CDW, we can com-

pare the effects of the Q = (π, 0) CDW to that of the Q1 = (π, 0),Q2 = (0, π)
checkerboard. The (π, 0) striped CDW drives the nodes along a curved path
toward the (π

2
, π

2
) point. The (π, 0) checkerboard CDW adds the direction

of the two constituent density waves, and the nodes evolve directly towards
(π

2
, π

2
). The nodal evolution of the pair density wave obeys the same logic:

the addition of the nodal direction for the pair density wave sends the (π, 0)
checkerboard PDW away from (π

2
, π

2
). This is indeed what our calculations

observed. If we apply this to estimate the nodal evolution of (π
2
, 0) checker-

board, we would not expect to see the nodal collision for a reasonably small
density wave perturbation, as the nodes would evolve toward the Γ point at
(0, 0).

The quest to understand the unusual behavior exhibited by cuprates is
nowhere near its end. By considering the effects of competing orders on the
quasiparticle spectrum and low temperature thermal conductivity of d-wave
superconductors, we augment our understanding by just one small parcel.
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Figure 5.1: a) Generic phase diagram of cuprates, with three prominent phases
labeled, and axes T and x representing temperature and doping. AF is the
anti-ferromagnetic insulating state present at low doping, SC is the super-
conducting state, and PG is the pseudogap region. Coexisting or competing
order parameters are believed to onset as one underdopes from optimal dop-
ing. Four increasingly underdoped samples are thus labeled by numbers one
through four.
(b) Samples which are increasingly underdoped might be expected to display
an increase in the quasiparticle term in the low temperature thermal conduc-
tivity (with respect to the optimally doped value representing a pure d-wave
superconductor). In addition, for strong enough ordering (i.e. far from optimal
doping), non-universal behavior is expected in the thermal conductivity, as is
exhibited by the different values of κ00 anticipated for samples with varying
Γ0 for doping level “3”.
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Appendix A

Pairing hamiltonians in the
mean field

Making the pairing approximation, the hamiltonian describing electrons
and their interactions is reduced to

H =
∑

kσ

ξkc
†
kσckσ +

∑

kk′
Vkk′c

†
k↑c

†
−k↓c−k′↓ck′↑. (A.1)

If we let

c−k′↓ck′↑ = bk′ + (c−k′↓ck′↑ − bk′)

c†k↑c
†
−k↓ = b†k + (c†k′↑c

†
−k′↓ − b†k) (A.2)

and neglect terms which are second order in the fluctuations,

H =
∑

kσ

ξkc
†
kσckσ −

∑

k

(
∆kc−k↓ck↑ + ∆kc

†
k↑c

†
−k↓ − b†k∆k

)
(A.3)

which we can diagonalize with the Bogoliubov-Valatin transformation:

ck↑ = u∗kαk + vkβ
†
k ck↑† = ukα

†
k + v∗kβk

c†−k↓ = −v∗kαk + ukβ
†
k c−k↓ = −vkα

†
k + u∗kβk, (A.4)

whereby the hamiltonian becomes

H =
∑

k

[(1

2
ξk(|uk|2 − |vk|2) + ∆∗

ku
∗
kvk + ∆kukv

∗
k

)
(α†kαk + β†kβk)

+(2ξkukvk + ∆∗
kv

2
k −∆ku

2
k)α

†
kβ

†
k + |vk|2ξk −∆kukv

∗
k

]
+ h.c.− b†k∆k (A.5)
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The condition that this transformation be canonical is

|uk|2 + |vk|2 = 1, (A.6)

therefore, H is diagonalized by requiring

2ξk(ukvk + ∆∗
kv

2
k)−∆ku

2
k = 0 (A.7)

Multiplying by
∆∗k
u2

k
, we find that

∆∗
k

vk

uk

= −ξk +
√

ξ2
k + |∆k|2, (A.8)

which is necessarily Real. With the definition Ek =
√

ξ2
k + |∆k|2, we find the

magnitudes of the coherence factors:

|uk|2 =
1

2Ek

(Ek + ξk) |vk|2 =
1

2Ek

(Ek − ξk) (A.9)

Using these in (A.5), we find that

H =
∑

k

[
(ξk − Ek)− b†k∆k + Ek(α

†
kαk + β†kβk)

]
(A.10)

where the first two terms represent the normal state energy and thermody-
namic condensation energy, and the final term is the energy associated with
the excitations αk and βk, which are known as Bogoliubons.
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Appendix B

Density of states

Here we will calculate the density of states in a few illustrative situations.
The density of states, which is the number of quantum states per unit energy,
can be computed using

N(ω) =
∑

k

δ(Ek − ω), (B.1)

where Ek is the energy of a particle in the state k.
For example, in a three dimensional metal, where excitations are described

by electrons with a renormalized (band) mass m as Ek = ~2k2

2m
, the density of

states is

N(ω) =

∫
d3k

(2π)3
δ(
~2k2

2m∗ − ω)

=

∫
dΩ

4π

∫
k2dk

2π2
δ(
~2k2

2m∗ . (B.2)

Let u = ~2k2

2m∗ , then du = ~2k
m∗ dk, and

N(ω) = 2π(
m∗

2π~2
)3/2

∫
du
√

uδ(u− ω) = 2π(
m∗

2π~2
)3/2

√
ω. (B.3)
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In a two dimensional metal, the density of states is

N(ω) =

∫
d2k

(2π)2
δ(
~2k2

2m∗ − ω)

=

∫
dφ

2π

∫
kdk

2π
δ(u− ω)

=

∫
m∗

2π~2
duδ(u− ω), (B.4)

so that N(ω) = m∗
2π~2 , a constant, in two dimensions.

Meanwhile, if we consider an s-wave superconductor, which has quasipar-
ticle spectrum Ek = ±

√
ε2
k + ∆2, where εk is the normal state dispersion, and

∆ is an isotropic gap function, we see that

N(ω) =
∑

k

δ(Ek − ω)

=

∫
dξkδ(

√
ξ2
k + ∆2 − ω), (B.5)

then, if we let u =
√

ξ2
k + ∆2, then du = ξkdξk√

ξ2
k+∆2

, and

N(ω) ∝
∫

udu√
u2 −∆2

δ(u− ω)

=
ω√

ω2 −∆2
Θ(ω −∆). (B.6)

On the other hand, we can consider a d-wave superconductor. For high ener-
gies, the presence of the energy gap will effect a similar trend in the density of
states; a sharp increase as ω approaches the gap maximum, ∆0, from above.
At low energies, however, the density of states is not zero, however, due to the
presence of quasiparticle excitations around (±π/2,±π/2). These Dirac quasi-
particles have electronic dispersion ξk ∼ vfk1 ≡ p1, and gap ∆k ∼ v∆k2 ≡ p2.
Therefore, the low energy ω << ∆0 density of states can be computed using

N(ω) =

∫
dp1

∫
dp2δ(E(p1, p2)− ω) (B.7)

These coordinates satisfy p2
1 +p2

2 = p2, so that we can transform to an angular
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integral

N(ω) ∝
∫

pdpδ(p− ω)

= ω. (B.8)
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Appendix C

SCBA self-energy in dSC

The retarded self-energy for the dSC quasiparticles in the self-consistent
Born approximation,

Σ̃Ret(k, ω), (C.1)

is realized by taking the analytic continuation of the Matsubara function,

Σ̃(k, iω) = nimp

∑

k′
Vkk′ τ̃3G̃(k, iω)Vk′kτ̃3, (C.2)

where τ̃3’s arise in the Feynman rules for interactions, because the interacting
term in the hamiltonian for electron-phonon and Coulomb interactions appears
as ψ†kτ̃3ψk.[? ]

The Green’s function then takes the form

G̃(k, iω) =
(
G̃0(k, iω)−1 − Σ̃(k, iω)

)−1

=
1

D

(
(iω − Σ0)τ̃0 + (∆k + Σ1)τ̃1 + Σ2τ̃2 + (εk + Σ3)τ̃3

)
,(C.3)

where D =
(
(iω −Σ0)

2 − (∆k + Σ1)
2 − (εk + Σ3)

2 −Σ2
2

)
. The components of
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the self-energy therefore obey the equations

Σ0(k, iω) = nimp

∑

k′
|Vkk′|2 iω − Σ0

D

Σ1(k, iω) = −nimp

∑

k′
|Vkk′|2 ∆k + Σ1

D

Σ2(k, iω) = −nimp

∑

k′
|Vkk′|2 Σ2

D

Σ3(k, iω) = nimp

∑

k′
|Vkk′ |2 εk + Σ3

D
. (C.4)

Clearly, it is self-consistent to assume that Σ2 = 0, and in the nodal parametriza-
tion

∑

k′
→

4∑
j=1

1

4π2vfv∆

∫ ps

−ps

dp1

∫ ps

−ps

dp2, (C.5)

(where ps represents a momentum cutoff for the “square” integration regions
surrounding each node) we see that the substitutions εk + Σ3 → p1 and ∆k +
Σ1 → p2 lead to odd integrals for Σ1 and Σ3, so that they are also zero for the
self-consistent Born approximation.

Assuming that the remaining term is of the form

Σ0(ω) = Λ(ω)− iΓ(ω), (C.6)

and assuming that Λ(ω → 0) = 0, then we find that Σ0(ω → 0) ≡ −iΓ0.
In the nodal parametrization, we don’t need all of the matrix elements

of the scattering potential: the only ones which are important are one for
scattering into the same node V1, one for scattering into an adjacent node V2,
or one for scattering into the opposite node V3. Therefore, assuming that k of
the LHS is near the (π/2, π/2) node, designated with j = 1, we see that the
nodal sum becomes

4∑

j′=1

|Vjj′|2 =
(
1 0 0 0

)



V1 V2 V3 V2

V2 V1 V2 V3

V3 V2 V1 V2

V2 V3 V2 V1







V1 V2 V3 V2

V2 V1 V2 V3

V3 V2 V1 V2

V2 V3 V2 V1







1
0
0
0




= V 2
1 + 2V 2

2 + V 2
3 . (C.7)
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Then, defining

c ≡ nimp
v2

1 + 2V 2
2 + V 2

3

4π2vfv∆

, (C.8)

we find that

− iΓ0 = c

∫
d2p

2π

iΓ0

−Γ2
0 − p2

= c

∫ p0

0

pdp
iΓ0

−Γ2
0 − p2

, (C.9)

so that

c =
1

2
log

Γ2
0 + p2

0

Γ2
0

, (C.10)

or, since Γ0 << p0,

Γ0 = p0 exp(− 1

2πc
). (C.11)
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Appendix D

Additional information for
Q = (π, 0) CDW

D.1 Cutoff dependence of self-energy

Here we note that the self-consistent Born approximation, when applied
to the mean-field Green’s functions used in this paper, produces a self-energy
which is proportional to the momentum cutoff. The physical observable, the
thermal conductivity, has no such dependence. One difficulty this introduces is
that the self-energy is dependent on the choice of coordinates. As the location
of the nodes evolves with charge density wave order parameter ψ, computa-
tions are necessarily performed in a different local coordinate system (than
one centered about a node itself). This coordinate shift in the p1 direction

introduces a constant Σ̃A3 term, even in the ψ = 0 instance (whereas using
node-centered coordinates, the anti-symmetric integral is found to vanish). In
the ψ = 0 case, a shift of ε corresponds to the integral

I =

∫ p0+ε

−p0+ε

dp1

∫ p0

−p0

dp2
p1

p2
1 + p2

2 + Γ2
0

. (D.1)

The integration results in

I = 2p0

[√
1 + g2 + 2m arctan(

1√
1 + g2 + 2m

) +
1

2
log

2 + g2 + 2m

2 + g2 − 2m

−
√

1 + g2 − 2m arctan(
1√

1 + g2 − 2m
)
]

(D.2)

where we have defined g ≡ Γ0/p0 and m ≡ ε/p0. We neglect terms of order g2

in favor of terms of order m, since the displacement ε we will be considering
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will be larger than Γ0 << p0, so

I = 2p0

[√
1 + 2m arctan(

1√
1 + 2m

)−√1− 2m arctan(
1√

1− 2m
)+

1

2
log(

1 + m

1−m
)
]
,

(D.3)
so that with the series expansions

arctan(
1√

1 + 2x
) ≈ π

4
− x

2

log(1 + x) ≈ x− x2

2
, (D.4)

we find that
I = πp0m +O(m). (D.5)

So, shifting the coordinates adds the amount, πε, which matches the discrep-
ancy. We therefore subtract off the ψ = 0 value of Σ̃A3; the results shown
in Fig. 3.3 reflect this recalibration, as do the subsequent iterations of the
self-consistent Born approximation.

D.2 Self-consistent Green’s functions

Here are the Green’s functions which fulfill the self-consistent Born approx-
imation. The superscript (3) refers to the fact that 3 successive applications of
our self-energy scheme were necessary for self-consistency, as is explained in

116



Section III.

G
(3)
den(ω) = −(f 2

2 + f 2
3 )

(
(2ψc + β(p1 + p2))

2 +
1

β2
(p2 − p1)

2
)

+

(
−f 2

1 + f 2
2 + f 2

3 + (ψc + βp1)
2 + (

1

β
p2)

2

)

×
(
−f 2

1 + f 2
2 + f 2

3 + (ψc + βp2)
2 + (

1

β
p1)

2

)

+4
(
f 2

2 ((ψc + βp1)(ψc + βp2)− 1

β2
p1p2)

−f3
1

β
((ψc + βp1)p1 + (ψc + βp2)p2)

)

G(3)
A0 (ω; p1, p2) = −f1

(
−f 2

1 + (ψc + βp2)
2 +

1

β2
p2

1 + f 2
2 + f 2

3

)

G(3)
A1 (ω; p1, p2) = − 1

β
p2

(
−f 2

1 + (ψc + βp2)
2 + (

1

β
p1)

2

)

− 1

β
p1(f

2
3 − f 2

2 ) + 2(ψc + βp2)f2f3

G(3)
A3 (ω; p1, p2) = −(ψc + βp1)

(
−f 2

1 + (ψc + βp2)
2 + (

1

β
p1)

2

)

+(ψc + βp2)(f
2
3 − f 2

2 ) +
2

β
p1f2f3

G(3)
B0(ω; p1, p2) = f1

(
f3(2ψc + β(p1 + p2)) + f2

1

β
(p1 + p2)

)

G(3)
B1(ω; p1, p2) = f2

(
f 2

1 − (ψc + βp1)(ψc + βp2) +
1

β2
p1p2 − f 2

2 − f 2
3

)

+f3

(
(ψc + βp1)p1 + (ψc + βp2)p2

)

G(3)
B2(ω; p1, p2) = f1

(
f3(

1

β
p2 − 1

β
p1) + f2β(p2 − p1)

)

G(3)
B3(ω; p1, p2) = f3

(
f 2

1 − f 2
2 − f 2

3 + (ψc + βp1)(ψc + βp2)− 1

β2
p1p2

)

+f2

(
(ψc + βp1)p1 + (ψc + βp2)p2)

)
(D.6)
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G(3)
C0(ω; p1, p2) = G(3)

B0(ω; p1, p2)

G(3)
C1(ω; p1, p2) = G(3)

B1(ω; p1, p2)

G(3)
C2(ω; p1, p2) = −G(3)

B2(ω; p1, p2)

G(3)
C3(ω; p1, p2) = G(3)

B3(ω; p1, p2)

G(3)
D0(ω; p1, p2) = G(3)

A0 (ω; p2, p1)

G(3)
D1(ω; p1, p2) = G(3)

C1(ω; p2, p1)

G(3)
D3(ω; p1, p2) = G(3)

C3(ω; p2, p1) (D.7)

To obtain the retarded Green’s function GR(ω) from the above we set

f1 = ω − ΣRet
A0 (ω)

f2 = ΣRet
B1 (ω)

f3 = ψ + ΣRet
B3 (ω). (D.8)

For the retarded Green’s function GRet(ω + Ω), we set ω → ω + Ω, and for the
advanced Green’s function GAdv(ω) we set ΣRet → ΣAdv by taking the complex
conjugate of the self-energy , not of the entire Green’s function.

D.3 Calculation of clean limit integral

For the clean limit of the thermal conductivity we need the integral

I =

∫
d2q

4π

A(
k1A + (q2 − k2)2 + 1

4
(q2 − k3)2

)2 , (D.9)

in the limit A → 0. With the substitution

x1 ≡ x cos θ = q1 − 1 x2 ≡ x sin θ = q2 (D.10)

the quantity Y1 ≡ (q2 − k2)
2 + 1

4
(q2 − k2

3)
2 becomes

Y1 =
x4

4
+ k2

2 +
(1− k3

2

)2

+
1− k3

2
x2 + x2

+(x2 + 1− k3)x cos θ − 2xk2 sin θ. (D.11)
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To simplify the angular integrand, we get rid of the sin θ term by shifting
θ → θ + α. Then, the last two terms of Eq. D.11 become

x2 + 1− k3

2
cos(θ + α)− k2 sin(θ + α). (D.12)

The appropriate trigonometric identities turn this into

(D.13)

We set the coefficient of the second term on the RHS of Eq. (D.13) to 0, so
that the first term becomes

− 1

k2

(
(
x2 + 1− k3

2
)2 + k2

2

)
sin α cos θ =

−1

r

(x4

4
+

1− k3

2
x2 + (

1− k3

2
)2 + k2

2

)
cos θ, (D.14)

where the RHS of Eq. (D.14) is obtained by setting sin α ≡ k2/r, where r =
r(x) is an undetermined function of x. With this substitution, Eq. (D.11)
becomes

Y1 =
x4

4
+

1− k3

2
x2 + (

1− k3

2
)2 + k2

2 + x2

−2x

r

(x4

4
+

1− k3

2
x2 + (

1− k3

2
)2 + k2

2

)
cos(θ + α)

(
(
x2 + 1− k3

2
)2 + k2

2

)(
1 +

x2

(x2+1−k3

2
)2 + k2

2

− 2x

r
cos(θ + α)

)

=
x2

a2

(
1 + a2 − 2a cos(θ + α)

)
, (D.15)

where

r =

√(x2 + 1− k3

2

)2

+ k2
2 and a =

x

r
. (D.16)
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Then, defining γ = k1a
2/x2, the integral of Eq. (D.9) becomes

I =

∫
d2x

4π

A(
k1A + x2

a2 (1 + a2 − 2a cos(θ + α))
)2

=

∫ ∞

0

xdx

2π

a4

x4

∫ π

0

A dθ(
Aγ + 1 + a2 − 2a cos(θ + α)

)2 (D.17)

after shifting θ → θ−α, and noting the evenness of the θ integral. The integral
is found in standard integration tables[104], and noting that (1±a)2 +Aγ ≥ 0,
we obtain

I =

∫ ∞

0

dx

2π

a4

x3

Aπ(1 + a2)

(1 + a)3

(
(1− a)2 + Aγ

)−3/2

. (D.18)

Since in the limit that A → 0,

A(
(1 + a)2 + Aγ

)3/2
→ 2

γ
δ(1− a), (D.19)

we find that

I =

∫ ∞

0

dx

4k1

x(
x2+1−k3

2

)2

+ k2
2

δ(a− 1). (D.20)

Making the further substitution y = (x2 + 1− k3)/2,

I =

∫ ∞
1−k3

2

dy

2k1

1

y2 + k2
2

δ
(2y − (1− k3)

(y2 + k2
2)

2
− 1

)

=

∫ ∞
1−k3

2

dy

4k1

y2 + k2
2∣∣∣k2

2 − y2 + y(1− k3)
∣∣∣

×
(
δ(y − y+) + δ(y − y−)

)
, (D.21)

where

y± = 1±
√

k3 − k2
2 (D.22)

are the intersections of the curves y2 +k2
2 and 2y− (1−k3). It is easily verified

that both y+ and y− are in the range of integration [1−k3

2
,∞) (y− just catching

the lower bound when ψ = 0). Then expanding the denominator of Eq. (D.21)
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using Eq. (D.22), we find

∣∣∣k2
2 − y2

± + y±(1− k3)
∣∣∣ = 2

√
k3 − k2

2

∣∣∣
√

k3 − k2
2 ±

1 + k3

2

∣∣∣ (D.23)

so that

I =
1

2k1

1

2
√

k3 − k2
2

(1 + k3 + 2
√

k3 − k2
2

1 + k3 + 2
√

k3 − k2
2

+
1 + k3 − 2

√
k3 − k2

2

1 + k3 − 2
√

k3 − k2
2

)

=
1

2k1

√
k3 − k2

2

(D.24)
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Appendix E

Matsubara summations

It is much easier to calculate finite temperature properties using imagi-
nary time (Matsubara) Green’s functions than real-time Green’s functions,
and to then obtain the retarded Green’s function through analytic continua-
tion. Therefore, in calculating Feynman diagrams, we will frequently encounter
summations over the Matsubara frequencies iωn = iπ(2n+1)

β
for fermions, and

iωn = 2πin
β

for bosons.
Since we are dealing with fermionic propagators, we will explain here a trick

which enables us to perform such summations over the fermionic frequencies.
Noticing that the poles of the Fermi function coincide with the Matsubara
frequencies, we conclude that if we wish to calculate the sum

S =
1

β

∑
n

f(iωn), (E.1)

for some analytic function f , we can instead multiply f by the Fermi function,
and perform the contour integral

I = lim
R→∞

∮
dz

2πi
f(z)nf (z), (E.2)

where the contour is over a circle of radius R. By the residue theorem, then,
we have

I =
∑
zi

Res(f(zi)nf (zi)) (E.3)

where zi are the poles of f(z)nf (z). Since f is analytic, these are simply
the poles of the Fermi function, known as “thermal poles”, which lie at the
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Matsubara frequencies. Because

Res(
1

eβz + 1
) =

−1

β
, (E.4)

we find that
S = −I. (E.5)

If there are branch cuts present in the function f , we must be careful to
include the integrations along the opposing branches, which will not cancel
one another.

If we use the bare-bubble approximation to evaluate a two-particle Green’s
function, we can make use of a spectral function to simplify a calculation. In
calculating the thermal conductivity, the summation

S0(iΩn) ≡ 1

β

∑
iωn

(iωn + iΩn

2
)2

(iωn − ω1)(iωn + iΩn − ω2)
(E.6)

will arise. Thus, using S = −I, we have

S0(iΩn) = −
∮

dz
(z + iΩn)2

(z − ω1)(z + iΩn − ω2)
nf (z), (E.7)

which has poles at z = ω1 and z = ω2 − iΩn. Thus

S0(iΩn) =
(ω1 + iΩn

2
)2nf (ω1)− (ω2 − iΩn

2
)2nf (ω2 − iΩn)

ω1 − ω2 + iΩn

. (E.8)

Because the Matsubara frequencies for the boson are even, iΩn = 2πin
β

,

nf (ω2 − iΩn) =
1

exp(β(ω2 − iΩn)) + 1
=

1

exp(βω2) + 1
= nf (ω2). (E.9)

Analytically continuing iΩn → Ω + iδ, we find

SRet(Ω) =
(ω1 + Ω

2
)2nf (ω1)− (ω2 − Ω

2
)2nf (ω2)

ω1 − ω2 + Ω + iδ
(E.10)
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Appendix F

Current Operators

We will calculate the quasiparticle heat current in d-wave superconducting
(d-SC) systems, as well as in systems with additional order parameters. The
heat current is obtained by measuring energies from the Fermi level, as was
noted in Chapter 2.1.2. Since the energy and spin of quasiparticles are both
well-defined quantities, we can calculate the spin current, and associate the
energy, rather than spin, to obtain the heat current.

We will then calculate the spin current using the Heisenberg equations
of motion for the mean field hamiltonian describing the dSC+DW (d-wave
superconductor + density wave) system,

∇ · jQ = −∂ρQ

∂t
= [ρQ, H], (F.1)

where H = HdSC +
∑

Qi
H

(Qi)
DW . The density operator written in terms of the

Nambu basis elements is

ρq =
∑

k

(c†k↑ck+q↑ + c−k↓c
†
−k−q↓). (F.2)

F.1 d-wave superconductor

The mean field hamiltonian describing the d-wave superconductor has two
parts;

HdSC = HTB + Hgap. (F.3)
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The kinetic portion of the hamiltonian is

HTB =
∑

k

(εkc
†
k↑ck↑ − εkc−k↓c

†
−k↓), (F.4)

where εk is obtained from a tight-binding model. Making use of the canonical
[anti]-commutation relations for the fermionic operators,

{ckσ, c
†
k′σ′} = δk,k′δσ,σ′

{ckσ, ck′σ′} = 0

{c†kσ, c
†
k′σ′} = 0 (F.5)

we find that

[c†k′↑ck′+q↑, c
†
k↑ck↑] = ck′↑ck′+q↑(δk,k′+q − δk,k′)

[c†k′↑ck′+q↑, c−k↓c
†
−k↓] = 0

[c−k′↓c
†
−k′−q↓, c

†
k↑ck↑] = 0

[ck′↑c
†
−k′−q↓, c

†
k↑[ck↑] = ck′↑ck′+q↑(δk,k′+q − δk,k′), (F.6)

so that

[ρQ, HTB] =
∑

kk′

(
εkc

†
k′↑ck′+q↑(δk,k′+q − δk,k′)− εkc−k′↓c

†
−k′−q↓(δk,k′+q − δk,k′)

)

=
∑

k′

(
(εk′+q − εk′)c

†
k′↑ck′+q↑ − (εk′+q − εk′)c−k′↓c

†
−k′−q↓

)
. (F.7)

As q → 0, then

[ρq, HTB] =
∑

k

q ·
(∂εk

∂k
c†k↑ck↑ − ∂εk

∂k
c−k↓c

†
−k↓

)

=
∑

k

q · ψ†k
(
vf 0
0 −vf

)
ψk, (F.8)

where vf ≡ ∂εk

∂k
, and the Nambu vector is

ψ†k =
(
c†k↑ c−k↓

)
. (F.9)

125



The term for the gap is (assuming ∆k = ∆∗
k),

Hgap =
∑

k

∆k(c
†
k↑c

†
−k↓ + c−k↓ck↑). (F.10)

For this part, we will need the relations

[c†k′↑ck′+q↑, ck ↑†c†−k↓] = c†k′↑c
†
−k′−q↓δk,k′+q

[c†k′↑ck′+q↑, c−k↓, ck↑] = −c−k′↓ck′↑δk,k′

[c +−k′ ↓c†−k′−q↓, c
†
k↑c

†
−k↓] = −c†k′↑c

†
−k′−q↓

[c−k′↓c +−k′ − q ↓†, c−k↓ck↑] = c−k′↓ck′ + q ↑δk,k′+q, (F.11)

so that

[ρq, Hgap] =
∑

kk′

(
∆kc

†
k′↑c

†
−k′↓(δk,k′+q − δk,k′) + ∆kc−k′↓ck′+q↑(δk,k′+q − δk,k′)

)

=
∑

k′

(
(∆k′+q −∆k′)c

†
k′↑c

†
−k′−q↓ + (∆k′+q −∆k′)c−k′↓ck′↓ck′+q↑

)
,(F.12)

and as q → 0,

[ρq, Hgap] =
∑

k

q ·
(∂∆k

∂k
c†k↑c

†
−k↓ +

∂∆k

∂k
c−k↓ck↑

)

=
∑

k

q · ψ†k
(

0 v∆

v∆ 0

)
, (F.13)

where v∆ ≡ ∂∆k

∂k
.

F.2 Q = (π, 0) charge density wave

For Q = (π, 0) density waves, we add the notation dk ≡ ck+Q, so that the
extended Nambu vector is

ψ†k =
(
c†k↑ c−k↓ d†k↑ d−k↓

)
(F.14)

The density operator is expanded to include d†kdk terms.

H
(π,0)
CDW =

∑

k

(
Akd

†
k↑ck↑ + A∗

kc
†
k↑dk↑ − A−kc−k↓d

†
−k↓ − A∗

−kd−k↓c
†
−k↓

)
(F.15)
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To compute [ρq, HCDW], we will need the terms

[c†k′↑ck′+q↑, d
†
k↑ck↑] = c†k′↑dk′+qδk+Q,k′+q − d†k′↑ck′+q↑δk,k′

[c†k′↑ck′+q↑, c
†
k↑dk↑] = c†k′↑dk′+q↑δk,k′+q − d†k′↑ck′+q↑δk+Q,k′

[c†k′↑ck′+q↑, c−k↓d
†
−k↓] = 0

[c†k′↑ck′+q↑, d−k↓c
†
−k↓] = 0

[c−k′↓c
†
−k′−q↓, d

†
k↑ck↑] = 0

[c−k′↓c
†
−k′−q↓, c

†
k↑dk↑] = 0 (F.16)

[c−k′↓c
†
−k′−q↓, c−k↓d

†
−k↓] = c−k′↓d

†
−k′−q↓δk,k′+q − d−k′↓c

†
−k′−q↓δk+Q,k′

[c−k′↓c
†
−k′−q↓, d−k↓c

†
−k↓] = c−k′↓d

†
−k′−q↓δk+Q,k′+q − d−k′↓c

†
−k′−q↓δk,k′ ,

so that

[ρq, H
(π,0)
CDW] =

′∑

kk′

(
Ak(c

†
k′↑dk′+q↑δk+Q,k′+q − d†k′↑ck′+q↑δk,k′) +

A∗
k(c

†
k′↑dk′+q↑δk,k′+q − d†k′↑ck′+q↑δk+Q,k′)

−A−k(c−k′↓d
†
−k′−q↓δk,k′+q − dk′↓c

†
−k′−q↓δk+Q,k′)

A∗
−k(c−k′↓d

†
−k′−q↓δk+Q,k′+q − d−k′↓c−k′−q↓δk,k′)

)
(F.17)

=
′∑

k

(
(Ak+Q+q − Ak+Q)c†k↑dk+q↑ + (A∗

k+q − A∗
k)c

†
k↑dk+q↑

−(A−k−q − A−k)c−k↓d
†
−k′−q↓ − (A∗

−k′−Q−q − A∗
−k−Q)c−k′↓d

†
−k′−q↓

)
.

Then, as q → 0,

[ρq, H
(π,0)
CDW] =

′∑

k

q · ∂

∂k

(
A∗

kc
†
k↑dk↑ + Akd

†
k↑ck↑ − A−kc−k↓d

†
−k↓ − A∗

−kd
†
−k↓c−k↓

)

=
′∑

k

q · ψ†k




0 0
∂A∗k
∂k

0

0 0 0 −∂A−k

∂k
∂Ak

∂k
0 0 0

0 −∂A∗−k

∂k
0 0


 (F.18)
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F.3 Q = (π
2 , 0) charge density wave

The notation is expanded to include dk ≡ ck+Q, mk ≡ ck+2Q and nk ≡
ck+3Q. Thus the hamiltnonian is,

H
(π/2,0)
CDW =

′∑

k

(
Akd

†
k↑ck↑ − A−kc−k↓n

†
−k↓ + A∗

kc
†
k↑dk↑ − A∗

−kn−k↓c
†
−k↓ (F.19)

+Ak+Qm†
k↑dk↑ − A−k−Qd−k↓m

†
−k↓ + A∗

k+Qd†k↑mk↑ − A∗
−k−Qc−k↓d

†
−k↓

+Ak+2Qn†k↑mk↑ − A−k−2Qm−k↓d
†
−k↓ + A∗

k+2Qm†
k↑nk↑ − A∗

−k−2Qd−k↓n
†
−k↓

+Ak+3Qc†k↑nk↑ − A−k−3Qn−k↓m
†
−k↓ + A∗

k+3Qn†k↑ck↑ − A∗
−k−3Qm−k↓n

†
−k↓

)
.

We need commutators such as

[c†k′↑ck′+q↑, d
†
k↑ck↑] = c†k′↑nk′+q↑δk+Q,k′+q − d†k′↑ck′+q↑δk,k′

[c†k′↑ck′+q↑, c
†
k↑dk↑] = c†k′↑dk′+q↑δk,k′+q − n†k′↑ck′+q↑δk+Q,k′

[c†k′↑ck′+q↑, c−k↓n
†
−k↓] = 0

[c†k′↑ck′+q↑, n−k↓c
†
−k↓] = 0

[c−k′↓c
†
−k′−q↓, c−k↓n

†
−k↓] = c−k′↓n

†
−k′−q↓δk,k′+q − d−k′↓c

†
−k′−q↓δk+3Q,k′

[c−k′↓c
†
−k′−q↓, n−k↓c

†
−k↓] = c−k′↓d−k′−q↓δk+3Q,k′+q − n−k′↓c

†
−k′−q↓δk,k′

[[c−k′↓c
†
−k′−q↓, d

†
k↑ck↑] = 0

[[c−k′↓c
†
−k′−q↓, c

†
k↑dk↑] = 0. (F.20)
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We include the computations for one “octant”.

[ρq, H
(π/2,0)
CDW ] =

∑

kk′

(
Ak(c

†
k′↑nk′+q↑δk+Q,k′+q − d†k′↑ck′+q↑δk,k′)

+A +∗
k (c†k′↑dk′+q↑δk,k′+q − n†k′↑ck′+q↑δk+Q,k′

−A−k(c−k′↓n
†
−k′−q↓δk,k′+q − d−k′↓c

†
−k′+q↓δk+3Q,k′)

−A∗
−k(c−k′↓d

†
−k′−q↓δk+3Q,k′+q − n−k′↓c

†
−k′−q↓δk,k′)

)

=
∑

k

(
Ak+3Qc†k↑nk+q↑ − Akd

†
k↑ck+q↑ + A∗

k+qc
†
k↑dk+q↑ (F.21)

−A∗
k+3Qn†k↑ck+q↑ − A−k−qc−k↓n

†
−k−q↓ + A−k−Qd−k↓c

†
−k−q↓

−A∗
−k−Qc−k↓d

†
−k−q↓ + A−kn−k↓c

†
−k−q↓

)

=
′∑

k

(
(Ak+3Q+q − Ak+3Q)c†k↑nk+q↑ + (A∗

k+q − A∗
k)c

†
k↑dk+q↑

−(A−k−q − A−k)c−k↓n
†
−k−q↓ − (A∗

−k−Q−q − A−k−Q)c−k↓d
†
−k−q↓

)
,

so that, in the limit that q → 0,

[ρq, H
(π/2,0)
CDW ] =

′∑

k

q · ∂

∂k

(
Ak+3Qc†k↑nk+q↑ + A∗

kc
†
k↑dk↑

−A−kc−k↓n
†
−k↓ − A∗

−k−Qc−k↓d
†
−k↓

)
(F.22)
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