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Abstract of the Thesis 
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2009 

Many countries in the world are now facing heightened social and economical demands 

in the health care environment due to the increase in the world’s elderly population. The 

World Health Organization has reported that health care professionals such as doctors, 

nurses, therapists and other related professions are experiencing a significant shortage in 

their work force. The demands to fill job openings are substantially higher than the 

available supply of qualified people. In order to meet these health care demands, 
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advanced technologies such as socially assistive robots need to be implemented in health 

care environments.  Socially assistive robots have the potential to assist health care staff 

by reducing their burden in performing repetitive and unskilled tasks. However, there are 

a number of research challenges that need to be addressed in order to develop such robots: 

(i) the robots need to have a high degree of autonomy, and cognitive and emotional 

capabilities, and (ii) the robots must be able to identify, understand and react to human 

intention and emotions.  In order to meet these challenges, the objective of this research 

work is to develop intelligent controllers via the use of appropriate processing 

mechanisms for socially assistive robots. In particular, this research focuses on the unique 

development of a robotic emotional state module and a decision making module which 

work together to determine a robot’s assistive behavior. The modules were integrated into 

the control architecture of a socially assistive robotic platform and experiments were 

conducted during one-on-one assistive interactions. The research work presented shows 

the potential utilization of these types of modules for robots engaged in human-robot 

assistive interaction scenarios.   
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Chapter 1 Introduction 

1.1 Motivation 

Most countries in the world are now facing heightened social and economical 

demands in health care environments due to the increase in the world’s elderly population. 

It is expected that the elderly will make up 20-32% of the population of a significant 

number of countries such as the U.S., Italy, Germany, and Japan in the next few decades 

[1, 2, 3]. These countries will need to invest billions of dollars to support and care for this 

age group in hospitals, nursing, veterans and private homes. What further escalates this 

issue is that the World Health Organization has also reported that health care 

professionals such as doctors, nurses, therapists and other related health professions are 

experiencing a significant shortage in their work force where the demands to fill job 

openings are substantially higher than the available supply of qualified people [4]. In 

order to combat these issues, advanced technologies should be implemented in patients’ 

health care processes. For example, the use of assistive robots is expected to provide 

significant improvement in patients’ safety and quality of care [5]. In particular, assistive 

robots have the potential to assist health care staff by reducing their burden in performing 

repetitive and unskilled tasks [6].   
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1.2 Literature Review 

In general, robots designed for health care applications are placed into two categories: (i) 

non-interactive and (ii) interactive assistive robots [7]. The former group of robots gives 

aid or support to a human user without having any social interaction. Non-interactive 

robots include hands-on physical therapy and surgical robots as well as medication 

dispensing robots. The interactive robots, also known as the socially assistive group, are 

mainly designed to give aid or support through social interaction. The interactive robotics 

group includes robots that monitor patient health, help a patient with non-physical contact 

therapy, i.e., accompany patient on daily walking exercises, and provide companionship. 

In the following sections, the pertinent literature is reviewed for these two types of 

robotic aids. 

1.2.1 Non-interactive robots  

There are a number of non-interactive assistive robots that have been developed 

for health care applications including rehabilitation robots [8 -13], mobile aid and 

wheelchair robots [14-20], surgical robots [21 - 24] and medical dispensing robots [25 - 

28]. A rehabilitation robotic arm, ARMin [9] is presented in Figure 1-1. ARMin is 

designed to assist in occupational therapy for patients with neurological and orthopedic 

injuries.  ARMin has a semi-exoskeleton structure with position and force sensors. The 

robotic arm also has 6 degrees of freedom to allow it to assist in moving and positioning 

a person’s arm during daily activities such as lifting, eating, and teeth brushing [9].  A 

mobile aid robot known as SmartCane, Figure 1-2, is designed as a walking aid for the 

elderly, in addition to being an active guide [14].  The SmartCane carries a CCD camera 
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to visually detect signposts placed strategically on the ceiling within the assistive living 

facility. The signposts that the CCD camera reads consist of three elements: Centerpiece 

Marker, Orientation Marker, and a unique pattern of Identification Markers. The 

Centerpiece Marker is used identify the position of the signpost location, the Orientation 

Marker is used to orient the position of the user relative to the signpost location, and 

Identification Markers are used to recognize each signposts. As long as the CCD camera 

reads at least one signpost, it can detect the absolute position and orientation of the 

SmartCane. Obstacles avoidance is accomplished in a crowded environment using 

acoustic sensors. The SmartCane is also designed to approximate the user’s directional 

intent by a 6 six-axis force-torque sensor, which measures the amount of force applied on 

the cane handle [14]. An example of a robotic wheelchair, NavChair, is presented in 

Figure 1-3 [17]. NavChair is deigned to be used by people that have impairments in their 

motor, sensory, perceptual, and cognitive processes.  NavChair has functions of obstacle 

avoidance, safe object approach, door passage, automatic wall following and keeping a 

straight path to minimize the use of motor and cognitive functioning to control the 

powered wheelchair [17].  Figure 1-4 presents the surgical robot, Zeus [21], which is 

designed for performing telesurgery remotely. It operates with the use of a master console 

and a patient console.  Zeus is designed to allow surgeons to safely navigate a standard 

minimally invasive operation by using a digital sensory technique that filters out excess 

sensory input for smoother operation. The master console has a high-quality video screen 

to display the view of a surgical tool and patient from the endoscope. The patient console 

consists of three robotic arms and one instrument controller to mange the manipulation of 

graspers, scissors and other surgical instruments. In [22], a commercial robotic surgical 
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system the Da Vinci Surgical System™ is introduced, in Figure 1-5. The Da Vinci 

Surgical System™ is designed to operate surgeries through tiny incisions in patients’ 

body, instead of fully exposing the operated part of the body in a traditional 

procedure. The Da Vinci Surgical System™ is the world’s first robotic surgical system 

with high resolution vision (3 Dimensional Hi-Definition) to enhance visualization of 

surgical parts of patients for doctors. It has an accurate fingertip control called Endo 

Wrist, a motion scaling and tremor reduction system to enhance dexterity and precision 

of a doctor’s surgical skills. The Da Vinci Surgical System™ has been utilized for a 

laparoscopic dismembered pyeloplasty surgery and performs complex procedures 

precisely [29]. In [25], a medical dispensing robot, SP 200, is introduced, Figure 1-6. 

This robot is designed to assist nurses and pharmacists to dispense prescriptions more 

efficiently and safely. By scanning the bar codes on a prescription receipt or vial, the 

robot determines the location of the medication and fills a vial held by its robotic arm 

with the exact number of prescribed pills.  The pills are transported along a conveyer belt 

where a label is printed on the bottle containing the patient’s name, instructions, and 

medication warnings.  This robot helps reduce the wait time in acquiring medication from 

the pharmacy in a quick and efficient manner.  

 The assistive robots discussed above do not have any social abilities, and a large 

majority is contact-based robots or robots that perform crucial health tasks, there is an 

important concern in regards to the safety of the patients when integrating these robots in 

health care applications.  
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       Fig. 1-1:  Rehabilitation Robotics Arm [9].                 Fig. 1-2: Mobile Robot: SmartCane [14]. 
 

 

 

 

 

 

   

Fig. 1-3: Wheelchair robot NavChair [17]. 

 

 

 

 

(a) (b) 
Fig. 1-4: Surgical robot: Zeus, (a) Master console and (b) Patient console [21]. 
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Fig. 1-5: The Da Vinci Surgical System™ [22]. 

 

 

 

 

 

 

(a) (b)  

Fig. 1-6: Medical dispensing robot, SP 200: a) SP 200, and (b) robotic arm of SP 200 [25]. 

1.2.2 Interactive (Socially Assistive) Robots 

 A socially assistive robot can be defined as an interactive robot that develops 

close and effective social interaction with a human user for the purpose of giving aid or 

support during rehabilitation, learning, and convalescence [30].  
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In recent years, a number of socially assistive robots for health care applications 

in hospitals, medical and rehabilitation centers have been developed. For example, Paro, 

Figure 1-7, is a toy-like interactive robot modeled after a baby seal, having fur, whiskers, 

moving eyes and flippers. Paro has five types of sensors and responds to touch, sound, 

sight, and temperature changes [31]. Studies presented in [31] have shown that Paro has 

the potential of stabilizing patients’ moods, reducing their dependency on the nursing 

staff and decreasing burden of the nursing staff. Similarly, a toy-like communication 

robot, Ifbot, Figure 1-8, has been developed [32]. Ifbot has 40 different facial expressions 

and several million patterns of word phrases to communicate with humans. It can be used 

as an aid to slow the progression of dementia in elderly people by providing continuous 

communication with the elderly via daily date, time and appointment schedule reminders. 

Ifbot also has a mental health diagnosis system, which asks specific questions and records 

the users’ responses to detect symptomatic changes such as psychosomatic disease, 

neurosis, and depression. Kaspar, (Kinesics and Synchronization in Personal Assistant 

Robotics), Figure 1-9, is a child sized humanoid robot which is designed to improve basic 

social interaction skills in children with Autism using turn-taking and imitation games 

[33]. Pearl, Figure 1-10, is a socially assistive robot designed to be used to remind elderly 

people about their daily activities [34]. Pearl can express its emotions by using a cartoon-

like face with moving eyes and eyebrows. Pearl also has a touch screen monitor for 

communication. Other socially assistive robots include CLARA [35], Patrol robot [36] 

and SIRA [37] that consist of a wheeled vehicle carrying a computer monitor projecting 

an image of a software agent or human.  
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The aforementioned socially assistive robots can provide significant 

improvements in hospitals, medical and rehabilitation centers though effective human-

robot interaction. However, these robots were designed to give social aid or support 

without taking into account the emotions of the human they are interacting with. In order 

for socially assistive robots to accomplish effective task-oriented human-robot interaction 

(HRI), the robots need to understand and react to a human’s emotion.   

   

 

 

 

 

 
 

Fig. 1-7: Paro [31]. 
 
 

 

 

 

 

 

 

 

 
                      Fig. 1-8: Ifbot [32].                                                        Fig. 1-9: Kaspar [33]. 
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Fig. 1-10: Pearl [34]. 

1.3 Research Problem Definition 

This research work focuses on addressing the design issues associated with the 

development of socially assistive robots for health care applications. In general, there are 

a number of challenges that need to be addressed in order to develop intelligent socially 

assistive robots for human-robot interaction scenarios. In particular, these robots need to 

have a high degree of autonomy, and cognitive and emotional capabilities, and be able to 

identify, understand and react to human intention and emotional state. It has been 

reported that the need for social intelligence in assistive robots is significantly important 

in a healthcare/eldercare environment [38]. However, the majority of socially assistive 

robots that have been developed today are unable to engage in emotion-based assistive 

interactions. Furthermore, the existing robots were designed with a focus on improving 

the robot’s wellbeing. Namely, these robots do not consider the emotions of the people 

they are interacting with, hence, they are considered to be egocentric. In order for socially 
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assistive robots to accomplish effective HRI, the robots need to understand and react to 

human emotional states similar to human-human interactions. To overcome these 

limitations, the objective of this research work is to develop intelligent controllers via the 

use of appropriate processing mechanisms for the application of socially assistive robots. 

Namely, these processing mechanisms must be designed in a manner to allow these types 

of robots to learn from their environment and decide their appropriate assistive behavior 

during HRI.  

1.4 Proposed Methodology and Research Tasks 

The overall proposed methodology comprises the following components with 

corresponding reference to the Dissertation Chapters: 

 

1. HRI Control Architecture 

In Chapter 2, the generic HRI control architecture for socially assistive robots 

developed by our research group that is utilized in this thesis work is presented and 

discussed with respect to the current state-of-the art in HRI control architectures. 

 

2. Controller Design: Robot Emotional State Module 

In Chapter 3, the design of the robot emotional state module of the overall control 

architecture is presented. A Markov stochastic model is proposed as the main 

processing mechanism to effectively determine the robot’s emotions during assistive 

HRI.  On-line updating utilizing a positive influence factor is also discussed in 
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regards to on-line emotional processing. Furthermore, system reliability is utilized to 

allow quick changes for the robot emotional state. 

 

3.  Controller Design: Decision Making Module  

In Chapter 4, the design of the decision making module of the overall control 

architecture known as the deliberative layer is presented. The deliberative layer is 

responsible for determining the task-driven behavior of a socially assistive robot that 

will best allow it to accomplish its given assistive tasks. For this module, the 

utilization and integration of a reinforcement learning method known as Q-learning is 

discussed.   

 

4. Implementation 

Chapter 5 presents the experiments performed to verify the effectiveness of the 

proposed robot control modules. In particular, the proposed processing mechanisms of 

the overall control architecture are integrated into a socially assistive robotic platform for 

one-on-one HRI.   

 

Lastly, Chapter 6 presents concluding remarks on this research work, highlighting 

its main contributions and future work. 
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Chapter 2   HRI Control Architecture 

2.1 Related Control Architectures  

There have been a number of low-level control architectures designed for robots 

to mimic human emotional expressions [39-41], and high-level multi-module control 

strategies used to generate robotic emotions [32, 34, 36, 37, 42-52].  

In [42], the CogAff (Cognition and Affection) control architecture was design to 

model cognitive behavior. The architecture is divided into three layers: a deliberative 

layer, a reactive layer and a meta-management layer. The reactive layer produces a 

combination of state changes as a response to internal and external conditions. The 

deliberative layer is used to analyze, compare, evaluate and react to probable scenarios. 

Working as a reflective layer, the meta-management layer is responsible for self-

observation or self-monitoring of internal states. The CogAff architecture was 

incorporated into a control architecture utilized to mimic human behavior for a service 

robot in [43]. The architecture consists of a number of modules: multi-modal interaction 

module, cognitive interaction module, environment intelligence module, and emotional 

interaction module. The multi-modal interaction module is responsible for perception of 

the environment, user identification and gesture recognition. The control architecture is 

designed to allow the robot to intelligently interact with humans through the use of the 
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cognitive interaction module, while the emotional interaction module consisting of the 

reactive and deliberative layers of the CogAff model is used to determine the robot’s 

emotional behaviors. In regards to the robot’s drive, the level of cognitive appraisal from 

an external stimulus influences the emotional expressions of the robot. This control 

architecture has yet to be implemented on a robotic platform to analyze its functionalities.  

In [44], the Automatic-Deliberative (AD) architecture was proposed for the 

control of autonomous mobile robots. The AD architecture consists of two modules; the 

Automatic module and the Deliberative module. The Automatic module is responsible for 

low level control of actuators and sensors.  The deliberative module is used for decision 

making capabilities and reasoning. Although the AD architecture presented in [44] is a 

human-based control architecture designed for autonomous robots, it does not take into 

account the use of emotions in its original design. In [45], an Emotional Control System 

(ECS) is integrated into the AD architecture providing an activity selection module used 

to determine goals and action tendencies based on the evaluation of a robot’s wellbeing. 

The control architectures presented in both [44] and [45] has not yet been integrated into 

physical or simulated robotic platforms. 

A computational model, Cathexis, was developed consisting of an emotion 

generation system and a behavior system to express emotional behavior within an object-

oriented agent framework representing a child known as Simon [46]. External 

(environmental events) and internal (drives) are utilized as inputs into the model. Outputs 

from the model include motor system commands to represent the behavior of the agent. 

In particular, the behavior system coordinates with the emotional system to determine an 

appropriate behavioral output. Simon has three expressive components of emotion: (i) 
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prototypical facial expressions, (ii) body postures, and (iii) vocal expressions. In [47], an 

extended version of Cathexis for a pet robot is presented. This architecture consists of the 

following systems: perceptual, behavioral, drive, emotional and motor system. First, the 

perceptual system is responsible for visual and auditory processing of stimuli. The 

behavioral system acts as a distributed network of varying behaviors. The drive system 

urges the robot to take an action. The emotional system evaluates the stimuli for 

behavioral responses and future perceptions. Once the behavior has been chosen, 

appropriate motor actions are executed via the motor system.  

In [48, 49], the behavioral control architecture of a robotic face, Kismet, is 

presented. This architecture consists of a number of systems: perceptual system, 

motivation system, attention system, behavior system and motor system. In the perceptual 

system, the sensory stimuli (i.e. visual images) are converted to meaningful information 

to guide the robot’s behavior. The motivation system consists of two related sub-systems 

which implements drives and, emotions and expressive states. The drives act as internal 

representation of tasks, and the emotions and expressive states reflect the degree of task 

achievement. In this architecture, the drives act as a representation of the robot’s agenda, 

and the emotions and expression states represent the satisfaction of the agenda 

achievement. The attention system determines saliency based on perception and 

motivation. In the behavior system, a chosen set of coherent actions are implemented. 

Finally, the motor system transfers behavior information to the actuators of the robot to 

display facial expressions.  In [50], an emotional control architecture was developed for a 

humanoid robot. Within the control architecture, there are three main parts: behavior, 

emotion and cognition. In the behavior module, the behavior of the robot is determined 
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by sensor information or the emotional state of the robot. The emotion module enables 

emotional behavior based on drives and emotional expression. The cognitive module 

generates a plan to reach a certain goal by utilizing sensory information, emotional 

information and behavior information. 

 The assistive seal-like robot Paro has a behavior generation system consisting of 

proactive and reactive layers to generate the robot’s proactive, reactive and physiological 

behaviors [51]. The proactive process, which is responsible for considering the internal 

state, stimuli, desire and rhythm of the robot, consists of two additional layers: behavior-

planning layer and behavior generation layer. The behavior-planning layer determines the 

basic behavior pattern (i.e. poses, motions), and sends the behavior pattern to the 

behavior generation layer. The behavior generation layer generates control references for 

actuators to perform the determined behavior. The reactive layer is response to process 

sudden stimulation for immediate reactions of the robot. For the emotional interactive pet 

robot, KOBIE, an emotional expression system was developed [52]. The system consists 

of three components: Emotion Feature Generation Module (EFGM), Internal Status 

Generation Module (ISGM) and Behavior Decision Module (BDM). The EFGM 

generates factors that change the emotions of an emotional robot depending on the 

situation by considering relationship among emotional feature. The ISGM generates the 

internal status information using the emotion feature information. The BDM determines 

the behavior for the robot’s emotion expression. The socially assistive robot, Pearl [34], 

has a hierarchical variant of a high level control architecture to determine the robot’s 

behavior. For this architecture, a hierarchical partially observed Markov decision process 

(POMDP) was utilized to calculate optimal control actions under uncertainties. In this 
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architecture, the decision making is fully depended on probability distribution. The 

POMDP was also utilized in an assistive robot, SIRA, for learning, planning, and 

localization [37] 

Even though a number of emotion-based behavior architectures have been 

developed in the literature, many of them have not been integrated into real-life scenarios 

and none have been designed for task-driven socially assistive robots. The 

aforementioned emotional behavior architectures have been designed to generate control 

commands based on the evaluation of the well-being of the robots. In fact, the affective 

state of the humans that the robots interact with is not taken into account in the control 

architecture. As mentioned before, the capabilities of understanding and reacting to 

human emotions is important especially in healthcare and elderly care environment. In 

order for socially assistive robots to accomplish effective HRI, the robots need to 

understand and react to human emotional states similar to human-human interactions. 

Therefore, it is useful to update control commands for socially assistive robots based on 

feedback from the emotional state of a human.  This thesis focuses on developing 

appropriate processing mechanisms for a task-driven control architecture for socially 

assistive robots with an emphasis on utilizing human affective states to determine the 

robots’ task-driven assistive behaviors.  

2.2 A Robotic HRI Control Architecture 

 The main objective of a HRI control architecture is to incorporate artificial 

intelligence (AI) to enhance robot interactions with humans.  The AI within the robot 

provides a function of autonomy, and recognition and identification of the user and 
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demonstrates human-like reactions and responses. These functions are especially 

important for socially assistive robots to understand human emotions and have real-time 

decision making capabilities to achieve effective interactions with humans.  This section 

introduces the overview of the robot control architecture that has been developed by our 

research group, [53, 54, 55], and that will be utilized in this thesis work.    

 Figure 2-1 presents the overall HRI control architecture.  The inputs into the 

architecture include the affective state of the person that the robot is interacting with (via 

the Human Mood Classifier module) and the robot’s internal/external sensory 

information. The tasks that the robot needs to complete are stored in the long term 

memory module. The robot uses the human’s ID to recognize the person. Once the robot 

identifies the person it is interacting with, tasks specific to that person will be sent to the 

drives module. The drives module will also consist of drives directly related to the 

robot’s health (i.e., battery power, operation of motors) as updated from the robot’s 

sensors. These drives will then be utilized to assist in determining the robot’s emotional 

state via the robot emotional state module, and the output behavior via the reactive or 

deliberative layer. The emotional state is stored in the short term memory. In this 

architecture, the concept of deliberative and reactive layers, which was first developed in 

[45], was adapted for socially assistive robots. The deliberative layer determines a robot’s 

behavior (i.e. actions, facial expression, and gestures) based on the human’s affective 

states and its own emotional states. The reactive layer is utilized in determining a robot’s 

behavior in case of interactive situations that require immediate response. The priority 

layer manages the final decision of the robot’s behavior based on prioritizing the 

information during the interaction in regards to robot and human health and safety.  Then 
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this information is relayed to the robot actuators to implement the appropriate behavior. 

This work focuses on non-contact socially assistive robots, the defined tasks that the 

robot needs to satisfy during interaction include providing reminders to patients, health 

and safety monitoring and providing companionship.  
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Fig. 2-1: Control Architecture [53, 54, 55]. 

 

To make HRI interactions more realistic, a robot’s emotions need to be taken into 

account during the process of decision making for the following reasons: (1) the 

appropriate robot emotion has to correspond with the drive the robot must satisfy (i.e. the 

robot should not display the angry emotional state when providing companionship, and (2) 
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in the case when the robot is not able to satisfy a drive with a particular emotional state, 

the robot needs to adjust its emotion in order to decide on the best emotion to satisfy the 

drive. For example, during an interaction, a person may refuse to perform one of the daily 

tasks given by the robot while the robot is in one particular emotional state, the robot 

must change its emotion according to the situation in order to complete its task. 

Furthermore, the robot’s behavior should reflect the task it needs to complete and 

its emotional state should assist in the robot completing the task, unless the robot is 

physically incapable (e.g. it does not have enough battery power). Hence, the objective is 

not to have the robot mimic human emotions, but to use emotions to assist in determining 

the behavior necessary for the robot to accomplish its tasks. 

Particularly, in this thesis, the development of the robot emotional state module 

and deliberative layer is focused.  

 

2.2.1 Human Mood Classifier  

Human mood state 

In human mood classifier, the human mood state, which is utilized in the robot 

emotional state module and deliberative module, are determined. In the robot emotional 

state module, human mood state is required to determine the robot emotional state and in 

the deliberative layer it is required to determine appropriates robot behavior during HRI.  

 In order to determine the human mood state, the Nonverbal Interaction and States 

Analysis (NISA) of the Davis Nonverbal States Scale (DNSS) [56] is utilized in this 

control architecture to determine the affective state of a human during assistive 

interactions with a robot [53, 54, 55]. The DNSS is a nonverbal coding system, which has 
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been developed by Davis and Hadiks, for the use of therapy application [56]. Davis and 

Hadiks have found that a significant relationship between a patient’s body movement 

pattern and his/her accessibility level during patient-therapist interactions. NISA is 

developed to identify a person’s accessibility level, which indicates how much the person 

is willing to have a one-on-one conversation, by categorizing the  accessibility levels into 

four different levels: Level I(least accessibility) to Level IV(most accessibility). In this 

architecture, the accessibility level is used to reflect the person’s mood state. For example, 

when the person is in accessibility level I, it can be assumed that he/she is not in a good 

mood to have a conversation with the robot. On the other hand, when the person is in 

accessibility level IV, he/she is happy to interact with the robot. These accessibility levels 

are categorized according to the following body part poses: (i) trunk lean and orientation; 

and (ii) arm symmetry, location and orientation. The human accessibility values 

determined by the scale during the interaction will be utilized by both the robot emotional 

state module and the deliberative layer in order to assist in determining the robot’s 

behavior.  

2.3 Chapter Summary 

Although there have been a number of emotional behavior architectures proposed 

in the literature, few have been the subject of extensive implementation and analysis and 

none have been designed specifically for assistive robotic applications. The type of 

processing mechanisms to be utilized in each layer of the control architecture is usually 

left as the sole responsibility of the designer of the agent/robot. The objective of this 

overall research is to design a complete control architecture that can be utilized 

effectively for task-driven socially assistive robots. In regards to this objective, the aim of 
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this thesis work is to devise and evaluate appropriate processing mechanisms for 

particular modules within this control architecture as described in Chapters 3 and 4.  
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Chapter 3 Robot Emotional State Module 

Humans express emotions and communicate with each other mainly by using a 

combination of speech, body gestures and facial expressions [57]. Ekman has determined 

that there are 6 basic or universal emotions that humans can have: Happy, Sad, Angry, 

Afraid, Surprise and Disgust, [58].  These six emotions are universally recognized and 

expressed during human-human interaction.  

In recent studies, many researchers have been developing the emotion in 

computer animated agents or robots to achieve emotional human-robot interactions. It has 

been reported that in order to accomplish such human-robot interaction, it is essential for 

the robot to have an ability to express its emotions [59, 60, 61]. In addition to the ability 

of emotional expression, the robots also need to have a capability to understand each 

other’s emotion through speech, body gesture, and facial expression during HRI. A 

number of studies have been conducted in regard to emotion in robots, [49, 50, 52, 62- 

64], these main objectives to allow the robots to have emotion is performing natural 

interaction/communication with human/environment which includes enhancing general 

robot behaviors. 

A 3-directional robotic head, Kismet has been developed by Cynthia Breazeal and 

colleagues at Massachusetts Institute of Technology (MIT), [48, 49].  Kismet has the 6 

universal emotions (happy, sad, angry, fear, surprise, disgust) and simulates the emotions 
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through various facial expressions by movable eye, eyelid, lips and ears to participate in 

human social interaction.  

In [62, 63], a humanoid robot, WE-4RII, was built as a platform to test their new 

mechanism which is able to interact naturally with human by using its 6 emotions -  

happy, neutral, sad, angry, disgust, and fear. WE-4RII expresses its emotion through 

facial expression and body gesture. WE-4RII was designed to communicate with human 

in human-like manner especially in medical or nursing care service with elderly people.  

KOBIE (Koala Robot with Intelligent and Emotion) is a koala-like emotional robot that 

was designed to give emotional support to patients through affective interaction by using 

its seven emotions (fear, surprise, joy, anger, sad, shame, and neutral). KOBIE expresses 

its emotion though facial expression, body gesture, and sounds, which are all associated 

with behavior of the robot [52]. KOBIE uses 20 force-sensing registers and 13 on/off 

sensors to react to actions of hitting, stroking, poking, tickling and embracing from a 

human. KOBIE was successfully implemented in a real life situation and the emotions 

KOBIE expressed were recognized by human users. In [64], an emotional based decision 

mechanism was developed. This mechanism was installed in a social robot to examine its 

effectiveness. The robot has explored a crowded area and interacted with humans using 3 

emotions (happy, sad, and angry).  

In order for the robots to achieve effective interactions with human, the robots 

must have an effective emotional processing mechanism to display its emotions. In this 

chapter, the proposed emotional processing mechanism, which emphasis on both human 

and robot emotional state to enhance HRI, are discussed. 
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3.1 Related Emotional Models  

In recent researches, a number of conventional emotional models have been 

developed [65, 66]. These emotional models consist of a number of layers (i.e. perception, 

planning, and learning). Commonly, these types of emotional models focus on 

constructing a relation and rules between each layer. Hence, the robots need to follow 

these rules, and the robot’s emotion will not have flexibility in dynamic or uncertain 

environments [67].  On the other hand, computational emotional strategies, which can 

construct human emotion models mathematically, have been developed in [68, 69, 70]. In 

particularly, it has been proven that Markov modeling theories work well, especially at 

modeling dynamic environmental changes and uncertainties by adjusting state transition 

probabilities, [68, 69, 70]. In particular, such models with Markov modeling theories 

consist of the Markov property. A Markov Chain consists of set of state S = { s1, s2…. sr}  

and transition probabilities. The process of the Markov chain starts in one of the states, 

and moves from one state to another. Each move from one state to another state is called 

a step.  For example, if the Markov chain is in currently in state si at time step k and 

moves to another state sj at time step k+1 with a probability called transition probability, 

denoted by  pij [71]. There are a number of advantages to use Markov Chain: i) it does not 

require much computation at each time step, ii) if the probability distribution is known at 

time , the distribution at the next time step (k 1k + ) can be calculated and iii) the 

calculation can be accomplished by only multiplying a given probability distribution with 

a transition matrix [72].  

In [70], a model to imitate human emotions was developed. This model consists 

of nodes and arcs. The nodes represent different emotional states and the arcs represent 
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the probability of moving out of each state. In [69], an emotional model for autonomous 

robots was developed. There are 4 emotional states (happy, fear, passivity, and anger) to 

express the robot’s emotions. The model was designed to update its emotion at each time 

step based on current state and input state of the emotion. In [70], an emotional 

interactive model was developed using 6 basic human emotions (happy, sad, angry, fear, 

surprise, and disgust). These emotions are categorized into three groups: positive, 

negative, and neutral. The emotion is determined by stochastic matrices, which contain 

probabilities of each combination of the 6 emotions. 

 However, in [68, 69, 70], online updating of the Markov probabilities was not 

incorporated in these algorithms. In general, the model parameters of most Markov 

models are estimated using data with conditions that match as closely as possible to the 

expected experimental conditions. The performance of the Markov chain begins to 

degrade over time when a mismatch between the model parameters and the experimental 

conditions exist. This can happen during HRI when new humans interact with the robot. 

In order to minimize this mismatch, the Markov chain parameters must be adapted online 

to match new scenarios. Furthermore, although Markov Chain have been used to model 

humans emotion, they have not been integrated into robotic controllers for socially 

assistive robots.  

 

3.2 Proposed Emotional State Module 

  In this work, a state space representation approach was utilized. This approach is 

able to express the robot’s emotional state transition easily.  

1 2( 1) ( ) ( 1) ( 1R R Hx k Ax k B x k B d k+ = + + + + ) ,                                             (3-1) 
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( ) ( ( ), )R Ry k f x k λ= ,                                                                             (3-2) 

where A, BB1 and B2B  represent state and control input. In particular, A matrix represents the 

robot emotional state transition probability distributions { }ija , BB1  represents the robot 

emotional state - human mood probability distributions { }1
ijb  and B2B  represents the robot 

emotional state-drive probability distributions{ }2
ijb .xR(k), xH(k) and d(k) represent state 

and control inputs defined as robot emotional state vector, human mood state vector and 

drive vector, respectively. 

  In this work, each of possible robot emotional state is determined by probability 

distributions, xR(k). f(xR(k),λ) represents a winner takes all threshold function utilized to 

determine the dominant emotional state, yR(k). As mentioned, the robot’s emotional state, 

xR(k) is expressed by probability distribution, and the emotional state has following 

Markov property; 

( )( 1) ( )R i RP x k e x k e+ = = j  is the same for all ,     (3-3) 1k ≥

where [ ]1, , me e e= K  is a vector of m  robot emotional states and  is a single emotional 

state in vector e . m represents the possible robot’s emotional state. In this thesis, 3 

universal emotions (happy, sad, and angry) and an additional emotion neutral, are utilized 

to express the robot emotion, hence, m=4. Initial state probabilities are determined based 

on a uniform state distribution denoted by π. The transition matrices

ie

1
ˆ ˆ,A B  and , which 

are transition counts moving from state i to state j, are defined. The transition matrices 

2B̂

1
ˆ ˆ,A B and are associated with the transition probabilities matrices 

and  respectively. 

2B̂

  A , B1 B2
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,                       (3-4) 

 The emotional state transition probabilities matrices A and   can be simply 

calculated by taking the column proportions of the number of transition matrices 

, B1 B2

1
ˆ ˆ,A B and . Hence, the transition probability matrices A and are defined as 

following: 

2B̂ , B1   B2

The emotional transition probabilities; 

  
aij = P xR(k +1) = ei xR(k) = ej( ).                                                                 (3-5) 

1

o
ij

ij n
o
ip

p

a
a

a
=

=

∑
.                                                        (3-6) 

The robot emotional state - human mood probabilities: 

  
b1

iik = P xR(k +1) = ei xH (k +1) = xHp( ) ,                                                           (3-7) 

1
1

1

1

o
ik

ik n
o

iq
q

bb
b

=

=

∑
,                                                                                     (3-8)  

Where 
1
, ,

rH H Hx x x⎡= ⎣ K ⎤⎦  is a vector of possible human emotions and 
pHx  is a single 

human mood state in Hx .                                  

The robot emotional state - drive probabilities:  
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b2

iil = P xR (k +1) = ei d(k +1) = dn( ),                                                  (3-9)

  

2
2

2

1

o
o il

il n
o

ir
r

bb
b

=

=

∑
,                                                                            (3-10) 

Where is a vector of all possible robot drives and  is a single drive in 

vector d . 

1, , qd d d⎡= ⎣ K ⎤⎦ nd

The probabilities ,  and  have the following properties:  ija 1
ikb 2

ilb

  
0 ≤ aij ,bik

1 ,bil
2 ≤ 1 ,                          (3-11) 

.                        (3-12) 
  

aij , bik
1 ,  

k=1

n

∑
j=1

n

∑ bil
2

l=1

n

∑ = 1

An Overview of the proposed Markov Chain based emotional state model is 

presented in Figure 3-1. Once the robot’s emotional state has been identified, it is utilized 

to assist in determining the robot’s appropriate behavior.  
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 Fig. 3-1: Emotional State Module [53] 

3.3 Online Updating 

As previously mentioned, there might be some mismatch between the model 

parameters and the experimental conditions during HRI. This mismatch will affect the 

performance the Markov chain. Therefore, in order to minimize the mismatch, the 

parameters of the Markov chain must be update online.   

In this work, online updating of the Markov chain transition probability matrices 

is achieved by using a positive influence factor, ( )i kε . The positive influence factor is 

applied to the transition matrices to update for each time step. By using the positive 

influence factor, the robot will be able to display the most suitable emotional state to help 

satisfy the drives.  
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3.3.1 The Positive Influence Factor 

 The positive influence factor is distributed to the individual elements of the 

transition matrices, 1ˆ ˆ,A B and  to update the transition probability matrices. There are 

two cases when the influence factor is applied to the transition matrices; i) when the robot 

successfully satisfies one of the drives, and ii) when the drives are not satisfied. For 

example, if the current robot emotional state is  in time k and the robot stays in the 

same emotional state at time k+1 during which it satisfies one of the drives d

2B̂

1e

i while the 

human is in accessibility level defined by xHi, a positive influence factor would be applied 

to all corresponding elements of the transition matrices. On the other hand, if the drive is 

not satisfied, a positive influence factor is applied to the remaining elements of the 

transition matrices. The influence factor, herein, is defined for the two aforementioned 

cases: 

1) When the drive is satisfied: 

( 1)i k 1ε + = ,                                                                                                                   (3-13) 

The positive factor is another transition 1 adding to the individual elements of 

1ˆ ˆ,A B and . 2B̂

2) When the drive is not satisfied: 

1( 1)
( 1i k
m

ε + =
− )

,                                                                                                         (3-14) 

Where m is the total number of possible robot emotional states. 

The positive influence factor can be treated as a type of “reward” for drive 

satisfaction or dissatisfaction. As can been see from Equation (3-13) and (3-14), when the 

drive is satisfied the full transition reward 1 is given to a single element of matrices. On 
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the other hand, when the drive is not satisfied, the full transition reward needed to be 

distributed evenly to the remaining elements of matrices. 

 

3.4 System Reliability 

Utilizing the aforementioned approach to determining the emotional state can be 

quite effective. However, there is one situation in which the above approach may take a 

long time to determine an appropriate emotional state for the robot during interaction. 

This occurs when the probability of a dominant emotional state is significantly higher 

than the other emotional states, however, during interactions its use is unable to allow the 

robot to satisfy a drive. In particular, if the robot’s dominant emotional state is ineffective 

in satisfying the drive at time k, then its probability of reoccurring at time k+1 within the 

same context (i.e., the same drive needs to be satisfied) should be reduced, hence 

providing opportunity for the other emotional states to be chosen. In order to address 

such situations, this work introduces the utilization of system reliability. 

In general, system reliability is a simple Markov Model used to determine the 

reliability of a system based on the reliability of each individual module and the 

measured inter-modular transition probabilities [76]. It has been widely used in a number 

of software systems [73-76].  

Herein, the reliability of emotion state i is denoted as and represents the 

probability that this emotion state will satisfy the required drive d

( )ir k

i. The equation 

governing  is [75]: ( )ir k
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,           (3-15) 

where  represents the transition counts moving from state i to state j and  is the 

number of times the robot’s emotion state fails to transition.  The system reliability is 

applied to the element of the transition probability matrices , and the reliability 

transition probability  can be determined by;  

ˆija ( )i k∑

ija

r
ija

( 1r
ij ij ia a r k= +                                                                                                             (3-16) 

 The system reliability can be applied to a particular element of the transition 

matrix A only when the same emotional state becomes the dominant emotional state 

consecutively. As mentioned above, the system reliability is useful when the probability 

of a dominant emotional state is significantly higher than the other emotional states. 

Namely, the system reliability reduces the probability of the emotional state, which has 

the higher probability, so that other emotional states can have an opportunity to be the 

dominant emotional state. An example using system reliability is explained in Appendix 

A. 

3.5 Chapter Summary 

This chapter presents the emotional state module for a multi-layer control 

architecture for assistive robots. The module is based on a Markov state-space model. 

The online updating of the Markov probability matrices is accomplished through the use 

of a positive influence factor, ( )i kε . System reliability, ri(k) was used to reduce the 

probability of a dominant emotional state of the robot, and give more opportunities to 

other emotional state to be a dominant emotional state.  
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Chapter 4 Deliberative Layer 

4.1 Reinforcement Learning  

  Within the control architecture, the deliberative layer determines the task-driven 

behavior of the robot that will best allow it to accomplish its given tasks. To provide this 

kind of intelligence to the robot, this work focuses on the utilization and integration of 

reinforcement learning (RL) for the robot’s decision making capabilities. Reinforcement 

learning is a real time, model free computational learning method in which an agent or 

robot learns how to accomplish its given tasks/goals by experiencing trial and error 

interactions with its environment [77,78]. Figure 4-1 presents a general reinforcement 

learning model. An agent/robot is in an environment, which consists of a set of states, S 

(s0, s1, s2...) and a set of actions, A(a0 ,a1,a2 ....) .  An agent/robot chooses an action ai in a 

state si to perform. After the action is performed, the agent/robot will move to a new state 

si+1 , . A reinforcement signal is received which indicates immediate reward ri of this state-

action interaction. Then the agent will choose another action ai+1 to execute in state si+1. 

Reinforcement learning repeats this cycle of learning to choose actions that maximize the 

following [79]; 

2
0 1 2r + + r +....rγ γ ,                                                                                                             (4-1) 
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Where γ is known as a discount factor that denotes dependency of future interaction with 

the environment [79];  

 

Agent 
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Action (  ) Reward (r) State (s) 

s0 s1 s2
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2a1a0a

a

…….. 
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Fig 4-1; Reinforcement learning model [79]  

 

Within reinforcement learning, there are a number of algorithms that can be applies; 

Temporal Difference (TD) learning which includes off-policy TD learning such as Q-

learning and R-learning, and on-policy of learning known as State-Action-Reward-State-

Action (SARSA). TD learning was first introduced by Samuel in 1959 and extended and 

modified by Sutton in 1988 [80]. TD learning has been proposed as a means of learning a 

wide variety of predictions about the interaction between an agent and its environment. 

However, conventional TD learning methods do not utilize trajectory data efficiently [80]. 

Hence, after an agent performs an update, the data of state transitions and rewards will be 

erased, [80]. Q-learning was introduced by Watkins and Dayan in 1992. Q-learning is 

considered as off-policy TD control algorithm, because the policy being learned might be 

different from the policy being executed. In Q-learning, an agent/robot learns from a 

state-action pair to a value called Q and compares the actions in the states and chooses 

the action, which has the highest Q value and executes it [79]. More detail about Q-

learning is discussed in 4.2. R-learning is also a part of off-policy TD learning. As 
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mentioned above, Q-learning learns from the policy that maximizes the total rewards, on 

the other hand, R-learning learns from a policy that maximizes the average rewards, [81].   

SARSA (state-action-reward-state-action) is an on-policy TD control algorithm. The 

SARSA learning algorithm is known as an on-policy algorithm because learning of the 

Q-value is fully depend on a policy it follows. SARSA learns an action-value function for 

a policy and estimates for the value of taking a state-action pair by sampling its future 

trajectory [82, 83].  

4.2 Q-Learning 

 In this work, Q-learning was utilized  to develop the deliberative layer for the 

robot’s decision making ability. There are a number of advantages utilizing Q-learning: i) 

a priori information about the environment is not needed, and ii) the learning process is 

on-line [84]. Q-learning has been investigated in many simulated environments and real 

world scenarios [85, 86, 87]. In [85], Q-learning was utilized for obstacle avoidance for a 

mobile robot. The robot’s action space is divided into six motion angles and for each 

motion angle, there are specific actions to take. After the motion angle is determined, Q-

learning is used to choose the action with the highest Q-value stored in a rank table. After 

implementing an action, a reward (-1 to 0) is given to the robot to update the Q- values, 

which is determined based on how far the robot is from obstacles. In addition in [86], Q-

learning is utilized for mobile robot navigation. The authors utilized a reward function, 

sparse, to update a Q-function. The sparse reward function 1 is assigned at goal and -1 at 

obstacles. By using this reward function, a distribution of Q-function on a lookup table 

will be obvious for the robot because the actions close to the goal would eventually 
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converge to higher Q-function than the ones around the obstacle. In [87], an intelligent 

transportation system (ITS), which provides the shortest path time to lead to a target 

place was developed by utilizing Q-learning and tested on Virtual Traffic Network 

(VTN). In this work, the most efficient path is found by using a Q-table, which contains 

the predicted time from current places to the target place. Hence, then it picks a path that 

has the smallest Q-values. The Q-values of each path are updated by getting a reward 

when the actual elapsed time is shorter than the predicted elapsed time.  

As the previous studies show, Q-learning has potential applications in the field of 

agent/robot intelligent; however, it has mainly been applied to navigation problems and 

has not yet been applied and adapted to the field of socially assistive robots.  

  Q-learning can be applied to both deterministic and non-deterministic 

environments. For the deterministic environments, the next state is predictable, on the 

other hand, for the non-deterministic environments, the next state is not predictable. 

Q-learning  

In deterministic environments, the Q value is calculated as [79]; 

'
( , ) ( , ) max ( ( , ), ')

a
Q s a r s a Q s a aγ δ= + ,             (4-2) 

Where ( , )r s a  is the immediate reward function for taking action a  from state s. γ is the 

discount factor and is set between 0 and 1 (γ represents independency of past experience) 

for future awards, i.e., a higher value places more emphasis on future awards). 

( , )s aδ represents the state resulting from taking action a to state s. The optimal action a  

to take in state  is selected by following equation: s

* ( ) arg max ( , )
a

s Qπ = s a ,                                                                                            (4-3) 
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where  is called greedy policy and this policy selects an action that has the highest 

Q-value [79].  

π*(s)

In order to estimate Q value for the first time the agent enters a new environment, Q(s, a) 

is approximated by following rule: 

'
ˆ ( , ) max ( ', ')

a
Q s a r Q s aγ← + ˆ ,                                                                                          (4-4) 

where  and  is the state resulting from applying action ( , )r r s a= s′ a  to state , and s 'a  

are the actions applicable to the new state. 

 

Q-learning in the Non-deterministic 

  On the other hand, for non-deterministic environments, the Q value can be 

expressed as [79]; 

( , ) ( , ) ( , ) max ( , ')n s a
Q s a r s a P s s a Q s aγ

′ ′ n′ ′= + ∑ ,                                                       (4-5) 

where ( ,P s s a′ )  is the probability of the resultant state based on the performed action.  n 

represents the number of iterations. s′  is the state resulting from applying action a  to 

state s , and 'a  are the actions applicable to the new state. 

In non-deterministic environment, if the rewards function is different at each time step, 

the same state-action pair will be selected. In order to avoid this situation, a training rule 

is needed to later the Q-values. The training rule is defined as [79];  

1( , ) (1 ) ( , ) [ ( , ) max ( ', ')]n n n n na
Q s a Q s a r s a Q s aα α γ
∧ ∧ ∧

− ′
← − + + 1− ,                                  (4-6)   

where,  
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  1
1 ( ,n

nvisit s a
α =

+ )
,                                                                                                    (4-7) 

The variable ( , )nvisit s a  in Equation (4-7) represents the number of times action a  has 

been selected while the robot is in state . Equation (4-7) is a learning rate, which 

decreases over time to allow for convergence. 

s

 Since human actions can be unpredictable when interacting with a robot, the non-

deterministic Q-learning scheme is investigated for task-driven socially assistive robots in 

this work, where rewards are represented by probability distributions, Figure 4-2. Each 

state is defined by the mood yHi of the person, the robot’s emotional state yRi and the drive 

di that needs to be satisfied. The socially assistive robot starts in a current state: i.e., 

s0(yHi ,yRi, di), and will perform an action that will lead it to satisfy its dominant drive, di. 

For the Q-learning design, each state has multiple actions that can be implemented. In 

this work, Q-values of all the actions in a specific state are stored in a Q-value table. For 

example, if the robot is in state s0, the robot compares Q-values of all possible actions in 

the state and executes an action that has the maximum Q-value. Due to the uncertainty of 

the human-robot interaction, the drive may or may not be satisfied. The Q-value of the 

action will be updated and stored in the Q-value table after the action is performed. 
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Drive 
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Drive  
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Q4Q3Q1 Q2

1 0 1( , )P s s a

yHi +yRi + di
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yHi+1 +yRi+1 + diyHi+1 +yRi+1 + di+1 yHi+1 +yRi+1 + di yHi+1 +yRi+1 + di+1

2 0 1( , )P s s a 4 0 1( , )P s s a3 0 1( , )P s s a

 

 

 

 

 

 

 

Fig. 4-2:  Learning-based Deliberative Layer. 
 

For example, assume Action 1, denoted by 1a  in Figure 4-2, has a higher Q value 

and is implemented, the drive is satisfied, the robot will go on to state s1, ready to 

perform a new set of actions. State s1 will consist of updated information regarding the 

robot’s emotional state, the person’s mood state and the next drive that needs to be 

satisfied (i.e., yHi+1, yRi+1, di+1).  If the drive is not satisfied, the robot will move into state 

s2, where it will attempt to continue to satisfy its current drive, by updating its emotional 

state and the mood state of the human.  

The immediate reward function in Equation (4-5) is defined by ( , ) dir s a w r= × . 

Where w is a weight determined by the human mood state and rdi is a reward represented 

by the drive that needs to be satisfied. The value of rdi increases as the robot approaches 

its final drive. Particularly, in this work, rdi is defined as 50, 100, 150 and 200 as it 

approach to the final goal. The weight w is defined as 0.2, 0.4, 0.7 and 0.9 when the 

human mood state is level I, level II, level III and level IV respectively. As previously 
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mentioned, the drives will be directly related to tasks specific to the person the robot is 

interacting with and the robot’s own health. The drives, in this work include, monitoring 

a human for health and safety, reminding the human of his/her daily activities, and 

providing companionship via verbal and non-verbal interaction in hospitals or nursing 

homes. In order for the robot to complete its tasks, the actions it must implement should 

be appropriate and fit within the context of the task at hand. The robot selects an action to 

perform based on the Q values in its current state. 

4.3 A Proof of Concept Example 

In this section, an example is given to illustrate the aforementioned methodology. 

The example is given by using actual values that are gained during experiments.  

Mr. Brown has an appointment to see his doctor for his final check up today. 2 

weeks ago he just underwent a surgery for stomach cancer and is to be discharged soon 

from the hospital. This is the final check up, which decides whether he can leave the 

hospital, or not. This is very important and it is imperative that he must see his doctor 

today. Since Mr. Brown is a few days away from discharging from the hospital, he has 

been in a good mood lately. In this situation, the human accessibility level yHi and current 

robot emotional yRi are determined as level III and Happy, respectively.   

In this particular situation, the robot has four possible actions to take to remind 

him about the doctor’s appointment:  

Action 1: “Let's go to see your doctor” with the robot pointing in the direction of the 

doctor’s room. 

Action 2: “It's time to see your doctor now” with the root’s arms to the side 
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Action 3: “You have a doctor’s appointment that you should go to” with the robot’s arm 

corssed” 

Action 4: “Your doctor is waiting for you. You must go now to see him” with the robot’s 

body leaning forward. 

Since human robot interaction is considered as non-deterministic Q-learning, the drive 

may or may not be satisfied. Therefore, there are two possible states that the robot can be 

after each action is implemented. Assume the robot is in current state of s0. Table 4-1 

shows Max Q-values and probabilities of each state.  

 

Table 4-1: Max Q-values and probabilities of each action. 

Action 1 Action 2 Action 3 Action 4
Max Q 338.7 280.5 215.6 285.6

Drive satisfied Q 1 Q3 Q 5 Q 7
Max Q 267.2 236.6 222.1 184.8

Drive unsatisfied Q2 Q4 Q 6 Q 8
Probability of drive 0.25 0.3 0.48 0.36

satisfaction
Probability of drive 0.75 0.7 0.52 0.64

unsatisfaction

1 0 1( , )P s s a

2 0 1( , )P s s a

3 0 2( , )P s s a

4 0 2( , )P s s a

5 0 3( , )P s s a

6 0 3( , )P s s a

7 0 4( ,P s s a

 

 

 
)

8 0 4( ,P s s a

 
)

 

In this example, the reward function, rdi is set to 150. The robot past experiences 

are to significantly influence  future experiences, hence, the value of the discount factor,γ 

is set to 0.8.  The weight w, 0.7 is used when corresponding the human accessibility level 

III is determined.  

The robot calculates the Q values, presented in Table 4-2, and decides on the 

action, which results in the maximum Q-value, i.e. action 1. Hence, action 1 is considered 

to be the most desirable action for the robot to take in this situation. 
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Table 4-2: Calculated Q-values. 

 Action 1 Action 2 Action 3 Action 4 

Q-values 333.1 304.1 280.3 281.8 

 

4.4 Chapter Summary 

In this Chapter, the main decision making module for a socially assistive robot is 

discussed. In particular, a reinforcement learning based approach known as Q-learning is 

utilized to determine the robot’s task-driven behavior. Since during HRI, a human’s 

actions can be unpredictable, the non-deterministic Q-learning method is adapted herein.  
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Chapter 5 Experiments 

Several preliminary experiments were conducted to verify the proposed modules of 

HRI control architecture. Herein, the social assistive robot, Brian developed in [88, 89, 90] 

was utilized to simulate real human-robot interaction scenario. This chapter outlines the 

experimental set-up, procedure and results of these experiments. Furthermore, results for 

additional experiments can be found in Appendix B.  

5.1 Experimental Set-up 

5.1.1 Socially Assistive Robot 

     In this thesis, a socially assistive robot, Brian, that was developed in [88, 89, 90], 

was used to simulate real human-robot interaction scenarios. Brian is designed to have a 

number of functions to behave and act similar to a human from its waist up. The robot is 

able to communicate through: (i) a unique human-like face capable of displaying facial 

expressions, (ii) a 3 degrees-of-freedom (DOF) neck capable of expressing head gestures, 

and (iii) an upper torso consisting of a 2 DOF waist and two 4 DOF arms designed to 

mimic human-like body language [90]. This robot is also capable of showing its emotion 

through a unique human-like face [87]. Brian is also able to verbally communicate with a 

human by utilizing commercial text-speech software. Figure 5-1 shows the social 

assistive robot, Brian. 
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Fig. 5-1: Social assistive robot, Brian [88, 89, 90] 

5.1.2 Software 

All algorithms of the proposed modules within HRI control architecture were 

coded in C++ using Microsoft Visual Studio 2005 and implemented on a Pentium IV, 

2.99GHz and 504MB of RAM personal computer.  

5.1.3 Human Mood State 

      As mentioned in Section 2.2.1, in order to determine the mood state of a 

potential human interacting with the robot, the Nonverbal Interaction and States Analysis 

(NISA) of the Davis Nonverbal States Scale (DNSS) [56] was utilized. The human mood 

state is categorized by 4 levels (level I to Level IV) to measure a human’s accessibility 

level during interaction. These accessibility levels are categorized according to the 

following body part poses: (i) trunk lean and orientation; and (ii) arm symmetry, location 
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and orientation. The human accessibility values determined by the scale during the 

interaction will be utilized by both the robot emotional state module and the deliberative 

layer in order to assist in determining the robot’s behavior. 

5.1.4 Robot Emotional State 

The socially assistive robot can express four emotional states: happy, neutral, sad and 

angry during interaction. Furthermore, the following guidelines were utilized to ensure 

effective and appropriate HRI would take place between a human and the robot: (i) the 

robot should not change its emotional state from one extreme emotion to another, i.e., 

from happy to angry, and (ii) when the robot is providing companionship, it should not do 

so in an angry state.  

5.1.5 Drives/Actions 

      In order to make the experiments as close to real-world interactive scenarios as 

possible, four situations that may be seen in a health care environment were defined as 

the robot’s given drives. For each drive, there are four possible actions that the robot can 

perform. These four drives and actions are as follows; 

Drive 1: To request users to perform a walking exercise 

The robot’s actions in order to satisfy this drive could be stating the following: 

Action 1: “The weather is nice. Let’s take a walk outside.” While the robot’s arms 

 raised to the ceiling. 
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Action 2: “Lets’ go for a walk outside.” While the robot points towards the door. 

Action 3: “I don’t like walking by myself, will you join me?” While the robot’s arm 

in a walking pose. 

Action 4: “Walking is crucial to your overall wellbeing. therefore, you must go for a 

walk now.” While the robot’s arms open. 

Drive 2: To remind users to take their medications. 

The robot’s actions in order to satisfy this drive could be stating the following: 

Action 5: “It's time to take your medication.” While the robot points at its mouth.  

Action 6: “Would you like to take your medication.” While the robot’s arm is on its 

forehead. 

Action 7: “This medication is very important for your health.” While the robot points 

at the patient. 

Action 8: “You must take your medication now.” While the robot’s one hand is 

pointing at the table with a medication bottle on it. 

Drive 3: To remind users to go to see their doctor. 

The robot’s actions in order to satisfy this drive could be stating the following: 

Action 9: “Let's go to see your doctor.” While the robot is pointing in the direction of 

the doctor’s office. 

Action 10: “It's time to see your doctor now” While the robot’s arm to the side. 

Action 11: “You have a doctor’s appointment that you should go to.” While the 

robot’s arms are crossed. 
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Action 12: “Your doctor is waiting for you. You must go now to see him.” While the 

robot’s body is leaning forward. 

Drive 4: To invite users to a one-on-one companionship. 

The robot’s actions in order to satisfy this drive could be stating the following: 

Action 13: “I have many interesting things to discuss with you. Would you like to join 

me in a nice conversation.” While the robot’s elbows are flexed and the palms up. 

Action 14: “Let’s spend some time together.” While the robot’s hand resting on its 

hip. 

Action 15: “I thought you would like to have my company right now” While the 

robot’ s head is tilted to one side. 

Action16: “I am currently by myself, would it be okay if I join you.” While the 

robot’s hand is on its chest. 

Figure 5-2 shows examples of the behavioral actions of the robot during the interaction. 

 

 

 

 

 

 

Fig. 5-2: Examples of the behavioral actions of the robot during the interaction. 
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5.2 Implementation Scenarios 

Initial experiments were implemented to test the efficiency of the proposed 

processing modules in assistive HRI scenarios utilizing a simulated human agent.  

This virtual agent was designed to mimic a human.  The agent generates human-like 

answers based on its mood state (as defined by the accessibility levels) to respond to the 

robot’s questions during interaction.  The interaction between the robot and the virtual 

agent is generated automatically.  The robot asks the virtual agent questions about the 

drives that need to be completed. Based on its accessibility level, the virtual agent 

responds. In these experiments, the accessibility level of the agent is determined from 

verbal content rather than nonverbal communication. The accessibility level of the agent 

is associated with the level of compliance. Particularly, the agent has four answers to 

choose from: “Yes”, “Maybe”, “I don’t know”, and “No.” These answers reflect on the 

accessibility levels IV, III, II, and I, respectively (i.e. level IV is “Yes”). The accessibility 

level is weighted by a predetermined probability. If the agent is in an angry mood, the 

probability that the agent is in a low accessibility level is high. The overall probabilities 

of the agent being in any of the accessibility levels during this mood state are defined as: 

1

2

3

4

( ) 0.4
( ) 0.3
( ) 0.2
( ) 0.1

H H

H H

H H

H H

P x x
P x x
P x x
P x x

= =
= =
= =
= =

,                                        (5-1) 

On the other hand, if the agent is in a happy mood, the probability that the agent is in the 

higher accessibility levels is also high: 
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1

2

3

4

( ) 0.1
( ) 0.2
( ) 0.3
( ) 0.4

H H

H H

H H

H H

P x x
P x x
P x x
P x x

= =
= =
= =
= =

,                                                (5-2) 

Moreover, probability of the agent to be neutral mood can be expressed as: 

1

2

3

4

( ) 0.2
( ) 0.2
( ) 0.2
( ) 0.4

H H

H H

H H

H H

P x x
P x x
P x x
P x x

= =
= =
= =
= =

,                                                    (5-3) 

The probability of the agent being in certain accessibility levels can be changed to reflect 

the mood state of the agent, therefore allowing different mood states to be designed for 

each agent.  

Assume that the “degree of the mood” of the agent is defined by a series of integers: 

{1, 2,3,4,5,6,7,8,9,10}Hx = ,                                        (5-4) 

The integers in Equation 5-4 representing the “degree of mood” are correlated with the 

four different accessibility levels via the following probability distribution determined for 

the agent angry mood state and happy mood state:   

From Equation (5-1) (agent in an angry mood) 

1 1

2 2

3 3

4 4

( ) ( )
( ) ( ) 0.3
( ) ( ) 0.2
( ) ( ) 0.1

H H

H H

H H

H H

P x x P C
P x x P C
P x x P C
P x x P C

= = =
= = =
= = =
= = =

0.4

,                                             (5-5) 

where C1=1, 2, 3, 4, C2=5, 6, 7, C3=8, 9, and C4=10. 

From Equation (5-2) (agent in a happy mood) 
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1 5

2 6

3 7

4 8

( ) ( ) 0.1
( ) ( ) 0.2
( ) ( )
( ) ( )

H H

H H

H H

H H

P x x P C
P x x P C
P x x P C
P x x P C

= = =
= = =
= = =
= = =

0.3
0.4

,                                       (5-6) 

where C5=1, C6=2, 3, C7=4, 5, 6, and C8=7, 8, 9, 10 

From Equation (5-3) (agent in an neutral mood) 

1 9

2 10

3 11

4 12

( ) ( ) 0.2
( ) ( ) 0.2
( ) ( ) 0.2
( ) ( ) 0.4

H H

H H

H H

H H

P x x P C
P x x P C
P x x P C
P x x P C

= = =
= = =
= = =
= = =

,                                             (5-7) 

where C9=1, 2, C10=3, 4, C11=5, 6, and C12=7, 8, 9, 10. 

 

During the experiments, the integer representation of the agent’s “degree of 

mood” was randomly picked to mimic an unknown HRI scenario. Based on the 

aforementioned relationship (i.e. Equations (5-4), (5-5), (5-6) and (5-7)) the accessibility 

level of the agent was then determined. A simple example of determining the accessibility 

level of agent is presented in Appendix C. 

The interaction begins with the robot trying to satisfy drive 1, where it asks 

questions about completion of the drive. Once satisfied, the robot moves on to drive 2 

and repeats this process until all four drives are satisfied. The robot does not move to the 

succeeding drive until the previous drive is satisfied. If drive 1 was not satisfied, the 

robot will continue attempting to satisfy the drive.  

In this thesis, four types of experiments were implemented utilizing the virtual 

agent and one experiment using humans. 

 50



• Experiment #1 – Initialization of Markov Probabilities for the Robot Emotional 

State Module 

In this experiment, the initial probabilities of Markov chains, which are required for 

the state-space matrices of the Markov-based robot emotional state module, is determined. 

(Performed with both the virtual agent and humans) 

• Experiment #2 – Implementation of the Emotional State Module and Deliberative 

Layer.  

Experiment #2 was conducted to determine the behavior of overall control 

architecture without updating the Markov probability matrices.  

• Experiment #3 - Implementation of Emotional State Module and Deliberative 

Layer with online updating of Markov probability matrices using the positive 

influence factor. 

This Experiment was conducted to determine the behavior of overall control 

architecture with online updating of Markov probability matrices using the positive 

influence factor. 

• Experiment #4 - Implementation of Emotional State Module and deliberative 

layer with the system reliability and online updating of Markov probability 

matrices using the positive influence factor.  

This Experiment was conducted to determine the behavior of overall control 

architecture in the proposed assistive manner during HRI with the system reliability and 

online updating of Markov probability matrices using the positive influence factor.  
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• Experiment #5 Robot Design experiment with human subjects. 

Experiment #5 was carried out to test how the robot’s overall control architecture was 

effective in real HRI scenarios with humans. In particular, two types of experiments were 

conducted with the robot having a real human voice and a computer simulated voice.  

Convergence of Q-value (Optimal Q-values) 

Optimal Q-values for each action of the robot’s drives were determined prior to 

implementing all the experiments. In this thesis, the virtual agent was utilized to interact 

with the robot to enhance the robot’s experience. In order to determine these optimal 

Q-values, the training algorithm must visit every possible state a large number of times. 

The number of training iterations was set to be 10,000. All the Q-values obtained are 

stored in a look-up table. As the Q-values are determined from the robot-agent 

interactions over a number of iterations, the look-up table will eventually be filled with 

optimal Q-values (i.e., converged values).  

Figures 5-3-5-5 present a sample of the optimal Q-values for Experiments #2, #3 and 

#4, respectively, after 10,000 iterations. Only 3 samples of the 16 optimal Q-values for 

each figure are shown since plotting all of the Q-values would make the figures difficult 

to read. All Q-values have converged. The three samples are for the robot implementing: 

Drive 1 under the emotional state of happy (Drive 1-Happy), Drive 3 under the emotional 

state of neutral (Drive 3-Neutral), and Drive 4 under the emotional state of happy (Drive 

4-Happy). As can been seen in Figures 5-3-5-5, the Q-values converge to particular 

values after approximately 5000 iterations.  
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Fig. 5-3: Optimal Q-values for Experiment #2. 
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Fig. 5-4: Optimal Q-values for Experiment #3. 
 
 
 
 
 
 
 

0
10
20
30
40
50
60
70
80
90

100

10
0

20
0

40
0

60
0

80
0

10
00

15
00

20
00

25
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of Iterations

Q
-v

al
ue

s

Drive1-Happy Drive3-Neutral Drive4-Happy

 
 
 
 
 
 

Figure 5-5: Optimal Q-values for Experiment #4. 
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5.2.1 Experiment #1: Initialization of Markov Probabilities for 

Robot Emotional State Module 

Experimental Procedure 

Experiment #1, the learning stage of the Markov chain, consists of using the Markov 

chain described in Section 3.2 to determine the initial probabilities required for the 

state-space matrices of the robot’s emotional state module. 

In this experiment, the initial probabilities of the Markov chain, i.e. matrix A, BB1 and 

B2B , which is required for the state-space matrices of the robot’s Markov-based emotional 

state module were determined. These matrices were simply constructed by assigning 

transition counts when the drives were satisfied. The matrices represent the state 

transition probabilities, the robot state – accessibility level probabilities and the robot 

state-drive probability, respectively. The rows of matrix A represent the current robot 

emotional state ei=[eH, eN , eS, eA] and the columns represent the robot emotional state 

ej=[eH, eN , eS, eA] for the next time step. Columns of matrix BB1 and B2 B represent the robot 

emotional state. The rows of matrix BB1 represent the accessibility levels: accessibility 

level I(xH1) - accessibility leve4 (xH4) and the rows B2 B represent drives: drive 1(d1) - drive 

4(d4)  

Experimental Results and Discussions 

The results of the Initial learning stage of Markov probabilities are presented below, 
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Equation (5-8):  

 

A=    
N

e

0.356 0.269 0.250 0.238
0.267 0.385 0.150 0.285
0.266 0.192 0.400 0.048
0.111 0.154 0.200 0.429

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

B1=   ,                                        (5-8)        

0.219 0.207 0.374 0.400
0.156 0.241 0.500 0.314
0.250 0.345 0.063 0.200
0.375 0.207 0.063 0.086

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎣ ⎦

⎥
⎥

                               

B2=   

0.286 0.286 0.250 0.357
0.179 0.250 0.321 0.357
0.250 0.214 0.179 0.286
0.285 0.250 0.250 0.000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

As can be seen in matrix A, the highest probabilities are distributed diagonally. This 

shows that the robot has the general tendency to stay in its current emotional state. In 

matrix BB1, when the accessibility level of a person is IV, the probability of the robot being 

in the emotional state of happy is the highest, because the robot tends to interact with 

humans well when they are more willing to interact with the robot. It can be seen in 

matrix B2B

 

 

, the probability of B2 (4, 4) is zero, because in general, the robot should not be 

in an angry state when it is providing companionship. 

eH    eN     eS     eA
eH 

e  

S

eA

xH1    xH2    xH3    xH4
eH  

eN  

eS

eA

d1     d2     d3     d4eH  

eN  

eS

eA
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5.2.2 Experiment #2: Implementation of Emotional State 

Module and Deliberative Layer  

Experimental Procedure 

This experiment was performed to determine the behavior of overall control 

architecture without updating the Markov probability matrices. First, the current robot 

emotional state, the agent’s mood state and the drive that the robot needs to satisfy are 

inputted to the robot emotional state module to determine the robot emotional state for 

next time step. The robot emotional state is calculated by using the initial probabilities of 

the Markov chain, matrix A, BB1 and B2B , which were obtained in Experiment #1. Once the 

robot emotional state for the next time step is determined, it is then sent to the 

deliberative layer to decide the most appropriate behavior of the robot.  

 

Experimental Results and Discussions 

Figures 5-6- 5-9 present experimental results for experiment #2. Figure 5-6 shows 

the average number of iterations needed to satisfy all four drives. Figure 5-7 presents the 

emotional states of the robot during drive satisfaction. Figure 5-8, shows the frequency of 

the accessibility levels of the agent when each drive was satisfied. Figure 5-9 depicts 

transitions in the robot emotional state, the agent’s accessibility level and the actions that 

were performed during drive satisfactions. Another set of experimental results is shown 
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in Figure B-1-Figure B-3 of Appendix B.  

In Figure 5-6, it took 2-3 iterations to satisfy the robot’s required drives. It can be 

seen in Figure 5-7, all four emotional states were utilized to satisfy the drives. In total, the 

drives were satisfied 66 percent of the time when the robot was in the emotional state of 

happy, 32 percent of the time when the robot was in the emotional state of neutral, and 2 

percent of the time when the robot was in the emotional state of sad, respectively. The 

emotional state of angry was not used to satisfy the drive because the probability of being 

angry is significantly lower than other 3 emotional states. In Figure 5-8, a greater number 

of drives were satisfied with the emotional state of happy and neutral when the agent was 

in accessibility level of IV or III. The robot was still able to satisfy the drives by using all 

four emotional states when the agent was in accessibility level of I or II. As mentioned in 

Section 5.1.5, each drive has 4 possible actions to take. Herein, a1-a4, a5-a8, a9-a12 and 

a13-a16 in Figure 5-9 represents different actions for drive 1, drive 2, drive 3, and drive 4, 

respectively. The roman numbers (I-IV) represent the accessibility levels of agent. In 

Figure 5-9(d), it took at most 13 iterations to satisfy all four drives. The average number 

of iterations that were required to satisfy all four drives was 11 iterations. The robot was 

in the emotional state of happy most of the time because the probability of the emotional 

state of happy was significantly higher than other emotional states, which can be seen in 

Equation 5-6. Even though the robot stayed in the emotional state of happy and neutral 

for a majority of the iterations, the robot was able to satisfy the drive by performing 

different actions.  
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Figure B-1 to Figure B-3 in Appendix B show similar results to Figure 5-6 to Figure 

5-8. In Figure B-1, it took 2 or 3 iteration to satisfy the required drives. In Figure B-2, the 

robot utilized the emotional state of happy the most to satisfy all four drives. Similar to 

Figure 5-7, 71 percent, 27 percent and 1 percent of the drives were satisfied with the 

emotional state of happy, neutral and sad, respectively in Figure B-2. Same as Figure 5-8, 

Figure B-3 shows that the robot was able to satisfy the drives a significant amount of time 

with the emotional state of happy even when the agent was in accessibility level I. 
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Figure 5-6: Average number of iterations needed to satisfy all four drives. 
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Figure 5-7: Emotional states of the robot during drive satisfaction. 
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Figure 5-8: Frequency of the accessibility levels of the agent when each drive was satisfied: (a) Drive 1, (b) 
Drive 2, (c) Drive 3, and (d) Drive 4.  

 

 

 

 

 

 

 

 

 

 

 

Fig 5-9: Transitions in the robot emotional state, the agent’s accessibility level and the actions without 
updating method: (a) iterations from agent 1, (b) iterations from agent 2, (c) iterations from agent 3 and (d) 

iterations from agent 4. 
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5.2.3 Experiment #3: Implementation of Emotional State 

Module and Deliberative Layer with online updating of 

Markov probability matrices using the positive influence factor 

Experimental Procedure 

The implementation procedure of Experiment #3 is similar to Experiment #2. 

However, during this experiment, a positive influence factor, ( )i kε , as described in 

Equations (3-13) and (3-14) was used to allow for online updating of the robot’s 

emotional model. The influence factor was applied to corresponding matrix elements 

when the robot successfully satisfied one of its drives. On the other hand, if the drive was 

not satisfied, a positive influence factor was applied to the remaining transition elements 

described in Section 3.3.  

 

Experimental Results and Discussions 

Figures 5-10- 5-13 present experimental results for experiment #3. Figure 5-10 

shows the average number of iterations needed to satisfy all four drives. Figure 5-11 

presents the emotional states of the robot during drive satisfaction. Figure 5-12, shows 

the frequency of the accessibility levels of the agent when each drive was satisfied. 

Figure 5-13 depicts transitions in the robot emotional state, the agent’s accessibility level 

and the actions that were performed during drive satisfaction. Another set of experimental 

results is shown in Figure B-4-Figure B-6 of Appendix B.  
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In Figure 5-10, it took 2-3 iterations to satisfy the robot’s required drives. It can be 

seen in Figure 5-11, all four emotional states were utilized to satisfy the drives. In total, 

the drives were satisfied 58 percent of the time when the robot was in the emotional state 

of happy, 31 percent of the time when the robot was in the emotional state of neutral, 10 

percent of the time when the robot was in the emotional state of sad and, 1 percent of the 

time when the robot was in the emotional state of angry, respectively. Similar to 

Experiment #2, in Figure 5-12, the majority of the drives were satisfied when the agent 

was in accessibility level of III and IV. In particular, the robot was able to satisfy the 

drive with the emotional state of angry when the agent was in accessibility level I in 

Figure 5-12(b) and accessibility level III in Figure 5-12(c). In Figure 5-13, actions a1-a4, 

a5-a8, a9-a12 and a13-a16 represent different actions for drive 1, drive 2, drive 3, and 

drive 4, respectively. The roman numbers (I-IV) represents accessibility level of agent. In 

Figure 5-13(d), it took at most 12 iterations to satisfy all four drives. The average number 

of iterations required to satisfy all four drives was 10 iterations. Figure 5-13 shows that 

the robot utilized all four emotional states (happy, neutral, sad, angry) to satisfy the drives.  

This experiment shows that the robot was able to utilize its four emotional states 

efficiently in addition to performing different actions. For example, in Figure 5-13(c), 

when drive 1 was implemented, the robot changed its emotional state from 

happy-happy-sad-sad according to the accessibility level transitioned from level 

III-III-II-I. The robot was able to satisfy the drive by performing action a1, a3, a2 and a4, 

respectively.  
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Similar experimental results can be seen in Figure B-4 to Figure B-6 in Appendix B. 

Figure B-4 shows that, in total 2 to 3 iterations was required for the robot to satisfy the 

drives in Figure B-4. Figure B-5 shows that all four emotional states were utilized to 

satisfy the drives. Similar to Figure 5-11, 60 percent, 28 percent, 10 percent and 1 percent 

of drives are satisfied with the emotional state of happy, neutral sad and angry, 

respectively in Figure B-5. a grater number of the drives were satisfy when the agent was 

in accessibility level IV or III with the robot emotional state of happy and neutral in 

Figure B-6. Figure B-6 (a) and (b) show that the robot was able to satisfy Drives 1 and 2 

with emotional state of angry. 
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Figure 5-10: Average number of iterations needed to satisfy all four drives. 
 
 

 

0
2
4
6
8

10
12
14
16
18
20

Drive

N
um

be
r o

f t
im

es
 d

riv
e 

is
 s

at
is

fie
d

H appy Neut ral Sad Ang ry

T ak e a 
walk

Take  a  
me dica t ion

 D oc tor's  
appo intme nt Compa nionship

 

 

 

 

Figure 5-11: Emotional states of the robot during drive satisfaction. 
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Figure 5-12: Frequency of the accessibility levels of the agent when each drive was satisfied: (a) Drive 1, (b) 

Drive 2, (c) Drive 3, and (d) Drive 4. 
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Fig 5-13: Transitions in the robot emotional state and the agent’s accessibility level and the actions with 

online updating using the positive influence factor: (a) iterations from agent 1, (b) iterations from agent 2, 
(c) iterations from agent 3 and (d) iterations from agent 4. 
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5.2.4 Experiment #4: Implementation of Emotional State 

Module and Deliberative Layer with the system reliability and 

online updating of Markov probability matrices using the 

positive influence factor  

Experimental Procedure 

The implementation procedure of Experiment #4 is similar to Experiment #2. This 

experiment consists of a detailed analysis to determine the feasibility of the overall 

control architecture using the system reliability and a positive influence factor in the 

proposed assistive manner during HRI. The system reliability was used to reduce the 

probability of a dominant emotional state of the robot, when the robot is consecutively in 

this particular state and the robot is unsuccessful in satisfying its drive.  

 

Experimental Results and Discussions 

Figures 5-14- 5-17 present experimental results for experiment #4. Figure 5-14 

shows the average number of iterations needed to satisfy all four drives. Figure 5-15 

presents the emotional states of the robot during drive satisfaction. Figure 5-16, shows 

the frequency of the accessibility levels of the agent when each drive was satisfied. 

Figure 5-17 depicts transitions in the robot emotional state, the agent’s accessibility level 

and the actions that were performed during drive satisfaction. Another set of experimental 

results is shown in Figure B-7-Figure B-9 of Appendix B.  
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In Figure 5-14, it took an average of 2 iterations to satisfy the robot’s required drives. 

It can be seen in Figure 5-15 that in total, the drives were satisfied 49 percent of the time 

when the robot was in the emotional state of happy, 32 percent of the time when the robot 

was in the emotional state of neutral, 16 percent of the time when the robot was in the 

emotional state of sad and, 2 percent of the time when the robot was in the emotional 

state of angry, respectively. Figure 5-16 shows that the robot was able to satisfy the drives 

a significant amount of the time by utilizing all four emotional states efficiently, 

regardless of the accessibility level of agent. In Figure 5-17, actions a1-a4, a5-a8, a9-a12 

and a13-a16 represent different actions for Drive 1, Drive 2, Drive 3, and Drive 4, 

respectively. The roman numbers (I-IV) represents accessibility levels of agent. In Figure 

5-17(a) and (d), it took at most 9 iterations to satisfy all four drives. The average number 

of iterations that were required to satisfy all four drives was 8 iterations. The number of 

iterations was lower than the results in Experiment #2 and #3. In this experiment, the 

robot performed the appropriate actions with suitable emotional state to satisfy the drives. 

In Figure 5-17, the robot changed its emotional state or actions quickly to satisfy the 

drive when the current emotional state or action did not work.  For example, in Figure 

5-17(a), when drive 1 was implemented, the accessibility level transitioned from IV-I-I 

influencing the robot to change its emotional state from happy-sad-angry with actions a4, 

a4, and a2 to satisfy the drive. This verifies that the robot has the ability of learning and 

adjusting its behavior based on environment changes.  

Experimental results in Figure B-7 - Figure B-9 in Appendix B are similar to Figure 
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5-14 - Figure 5-16. It can be seen in Figure B-7, it took 2 iterations to satisfy the required 

drives. In Figure B-8, 55 percent, 26 percent, 18 percent and 1 percent of drives are 

satisfied with the emotional states of happy, neutral sad and angry, respectively. Similar 

to Figure 5-16, Figure B-9 shows that the robot utilized all four emotional states 

efficiently to satisfy the four drives, implying that the robot was able to satisfy the drives 

regardless the agent’s accessibility level.  
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Figure 5-14: Average number of iterations needed to satisfy all four drives. 
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Figure 5-15: Emotional states of the robot during drive satisfaction. 
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Figure 5-16: Frequency of the accessibility levels of the agent when each drive was satisfied: (a) Drive 1, (b) 

Drive 2, (c) Drive 3, and (d) Drive 4. 

 

 

 

 

 

 

 

 

 

 

 
Fig 5-17: Transitions in the robot emotional state and the agent’s accessibility level and the actions with the 
positive influence factor and the system reliability: (a) iterations from agent 1, (b) iterations from agent 2, 

(c) iterations from agent 3 and (d) iterations from agent 4. 
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Comparison and Discussion of Experiments #2, #3 and #4 

Herein, three approaches were implemented to determine the robot’s behavior during 

HRI. Of the three experiments, Experiment #4 took the least number of iterations to 

satisfy all four drives. Experiment #4 used 2 iterations to satisfy each drive as shown in 

Figure 5-14, whereas Experiment #2 satisfied all four drives with an additional 2 

iterations in Figure 5-6, and Experiment #3 took an additional 1 iteration to satisfy all the 

drives in Figure 5-10. Although the comparison of a single set of iterations for drive 

completion may not seem significant, when the robot is interacting with a person, it is 

important to make sure that the interaction is effective. Hence, the robot should satisfy its 

drives with the least amount of iterations and hence minimizing the number of times the 

robot has to repeat itself in order to satisfy a given drive.  

Overall, the approach that best supports an efficient HRI was the one implemented in 

Experiment #4, where both a positive influence factor and system reliability was utilized 

to update the emotional state module. The approach allows the robot to effectively adjust 

its emotional state to satisfy all four drives with a minimum number of iterations. Robot 

Design experiment with human subjects. 
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5.2.5 Experiment #5: Robot Design experiment with human 

subject 

Experimental Procedure 

Experiment #5 was carried out to test how the robot’s overall control architecture was 

effective in real HRI scenarios with humans. In particular, two types of experiments were 

conducted with the robot having a real human voice and a computer simulated voice 

using the emotional state module and deliberative layer utilized in experiment #2. A total 

of 35 participants in the age group of 22-56 engaged in the interactions. Each human 

subject was asked questions by the robot, discussed in Section 5.1.5. The accessibility 

levels of the participants were determined using the DNSS. The robot is determined to 

satisfy a given drive when the human says “Yes” during the interaction. Otherwise, the 

robot continuously attempts to satisfy the drive, until the participant says “Yes”. After the 

robot successfully satisfies all four drives for the human subject, the robot starts 

interacting with other human subjects. 

Experimental Results and Discussions 

Experimental results are shown in Figures 5-18-5-20 for the real human voice and 

Figures 5-21- 5-23 for the computer generated voice. Figure 5-18 and Figure 5-21 show 

the average number of iterations needed to satisfy all four drives. Figure 5-19 and Figure 

5-21 present the emotional states of the robot during drive satisfaction. Figure 5-20 and 
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Figure 5-23, show the frequency of the accessibility levels of the agent when each drive 

was satisfied.  

The results presented are similar to those presented for Experiment #2. In Figures 

5-18 and 5-21, it took 2 to 3 iterations to satisfy each of the drives. In Figure 5-19, the 

robot was able to satisfy the four drives in the dominant emotional state of happy 

followed by neutral.  The drives were satisfied 68 percent of the time when the robot 

was in the emotional state of happy, and 25 percent of the time when the robot was in the 

emotional state of neutral, respectively. On the other hand, in Figure 5-22, the emotional 

state of neutral is used to satisfy all four drives 44 percent of the time, followed by happy 

(39 percent). During the experiments, the participants provided feedback in which they 

stated they felt more comfortable talking to the robot when it speaks with a real human 

voice. What is interesting to note is that the robot used all four emotional states more 

efficiently to satisfy all the drives when the computer generated voice was utilized.  
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Figure 5-18: The average number of iterations needed to satisfy all four drives for the real human voice. 
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Figure 5-19: Emotional states of the robot during drive satisfaction for the real human voice.  
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(d) 

Figure 5-20: Frequency of the accessibility levels of the agent when each drive was satisfied for real human 
voice: (a) Drive 1, (b) Drive 2, (c) Drive 3, and (d) Drive 4. 
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Figure 5-21: The average number of iterations needed to satisfy all four drives for the computer generated 
voice. 
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Figure 5-22: Emotional states of the robot during drive satisfaction for the generated computer voice.  
 

0
1

2
3
4

5
6

7
8

AL1 AL2 AL3 AL4

Accessibility Level

N
um

be
r o

f t
im

es
 d

riv
e 

is
 s

at
is

fie
d

Happy Neutral Sad Angry

 

(a) 

0

2

4

6

8

10

12

AL1 AL2 AL3 AL4

Accessibility Level

nu
m

be
r o

f t
im

es
 d

riv
e 

is
 s

at
is

fie
d

Happy Neutral Sad Angry

 

(b) 

 

 76



0

1

2

3

4

5

6

7

AL1 AL2 AL3 AL4

Accessibility Level

N
um

be
r o

f t
im

es
 d

riv
e 

is
 s

at
is

fe
d

Happy Neutral Sad Angry

 

(c) 
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(d) 

Figure 5-23: Frequency of the accessibility levels of the agent when each drive was satisfied for generated 
computer voice: (a) Drive 1, (b) Drive 2, (c) Drive 3, and (d) Drive 4. 

5.3 Chapter Summary 

This Chapter presented the results for five preliminary experiments performed to 

verify the effectiveness of proposed robot control modules. The proposed modules in the 

control architecture were integrated into a socially assistive robot. Separate experiments 

were performed to test the effectiveness of each control module in the HRI architecture. 

The experimental results verified the potential utilization of the proposed control modules 

in determining the appropriate robot behavior during effective HRI. 
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Chapter 6 Conclusions 

Socially assistive robots need to have a high degree of cognitive and emotional 

capabilities as well as the ability to react and understand human intention during HRI. 

This thesis focuses on modules in a socially assistive robot that would assist in task 

completion. The overall objective is to design specific modules within HRI control 

architecture to determine the appropriate behavior of socially assistive robots during 

assistive interactions. In particular, two main modules utilized in determining the 

task-driven behavior of these types of robots are designed: (i) the emotional state module, 

and (ii) the deliberative layer.  

 

6.1 Summary of Contributions 

The primary contributions of this work are summarized below:  
 

6.1.1 HRI Control Architecture 

In Chapter 2, the HRI control architecture for task-driven assistive robots that was 

designed by our research group was presented. This thesis focuses on developing the 

appropriate processing mechanisms of two important modules of the HRI control 

architecture: (i) the robot emotional state module, and (ii) the decision making 
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deliberative layer. In particular, the emotional state module has been designed to be 

utilized in determining in real-time an assistive robot’s most effective emotional state 

during its assistive task completion. The deliberative layer determines the explicit overall 

task-driven behavior of the robot, based on the robot’s emotional state, the human mood 

state and the drives that need to be satisfied.  

6.1.2 Robot Emotional Sate Module 

In Chapter 3, the robot emotional state module within in the context of the HRI 

control architecture is presented. In particular, a Markov state-space representation 

approach is utilized to determine robot’s emotional states during interaction based on the 

human’s mood (i.e. wellbeing), the drives that need to be satisfied and the robot’s current 

emotional state. Due to the degrading performance of a Markov chain over time, online 

updating of the Markov probability matrices needs to take place. In this work, a positive 

influence factor is introduced in order to address this problem. The positive influence 

factor is treated as a type of “reward” for drive satisfaction and is applied in scenarios: i) 

when a drive is satisfied, and ii) when a drive is not satisfied. In addition, system 

reliability was utilized to reduce the probability of a dominant emotional state of the 

robot, when the robot is consecutively in this particular state (i.e., the dominant state) and 

is unsuccessful in satisfying its drive.  Therefore, the system reliability allows for the 

incorporation of the other emotional state to determine the robot’s behavior.  

 

 79



6.1.3 Deliberative Layer 

 In Chapter 4, the main decision making module of the HRI control architecture 

is presented. In particular, a reinforcement learning method known as Q-learning is 

implemented. Since human’s actions during HRI are unpredictable, a non-deterministic 

approach to Q-learning is adapted. The Q-learning algorithm determines the overall 

assistive behavior of the robot based on a set of state and action pair. The state is a 

function of the robot’s emotional state, the human’s mood state and the specific drive to 

satisfy and an action represents the implemented behavior of the robot. 

6.1.4 Implementation 

     The proposed modules in the control architecture were integrated into a socially 

assistive robot named Brian. HRI experiments were carried out consisting of one-on-one 

interaction scenarios between a human and Brian in a lab setting. The robot provided 

reminders and companionship via four different drives in a similar manner to how it 

would in real-life situations. Brian is capable of being in four different emotional states: 

happy, neutral, sad, and angry during the interaction. The behavior of the robot is 

displayed by verbal and non-verbal communications. Separate experiments were 

performed to test the effectiveness of each control module in HRI setting. In addition, 

experiments were also performed to better inform the design of the robot. The 

experiments have shown the potential of developed control modules to provide proper 

interactive scenarios with appropriate emotion to accomplish the HRI. 
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6.2 Discussion and Future Work 

The proposed learning based intelligence for a socially assistive robot developed in 

this thesis were first attempt at addressing two main control modules in empathizing on 

human’s wellbeing. Hence, any future work in this research area should improve 

algorithm of processing modules that have been developed. There are some specific 

issues that may strengthen the results of this work. 

The socially assistive robot is able to learn the environment and implement the 

appropriate actions through exploration and exploitation of the environment. However, in 

some situations, the robot tends to implement the same actions in consecutive times. In 

this thesis, the exploration of the environment for the robot was implemented in off-line 

process and was not performed in on-line process. As a result, a Q-value of specific 

action becomes significantly higher than other actions and the action is chosen 

consecutively. Hence, the integrations of an algorithm that can perform the on-line 

exploitation during the exploration process will need to be considered.  

The proposed control modules are limited to the number of drives and actions that 

can be implemented, as well as the robot’s emotional state. For future work, a 

methodology that can efficiently process large number of drives, actions and the robot 

emotional state need to be considered. Moreover, processing for the remaining modules 

in the overall HRI control architecture will need to be developed. In addition, the 

controller will be expanded to incorporate multi-modal inputs from the human, i.e., 
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speech and facial expressions in addition to gestures. Once all the designs are optimized, 

the socially assistive robot can be tested in actual health care environment for its 

effectiveness. 

6.3 Final Concluding Statement 

In overall conclusion, the recent research efforts on the development of control 

module for robotic task-driven behavior provides the research community with insight 

into how to design learning based intelligence for robots involved in real-time 

human-robot interaction. Future work in this research area will help in the 

implementation to health care applications.  
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Appendix A 
 
 
 
 
 
 
 
 
 
 



The following example show how the state reliability function work.  

Â =    ⎢ ⎥
⎢ ⎥ , 
17 7 6 5
11 10 3 6
11 4 7 1
7 5 4 9

⎡ ⎤

⎢ ⎥
⎢ ⎥
⎣ ⎦

1B̂ =    
13 7 6 16
3 7 8 9
5 9 1 6
11 6 1 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1B̂ =     
eH  
eN  
eS
eA

 xH1     xH2      xH3      xH4eH      eN         eS        eAeH  
eN  
eS
eA

8 10 11 11
7 11

8 4 4 6
5 7 6 0

8 7
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣

eH  
eN  
eS
eA

d1         d2        d3         d4

 

⎦

0.369 0.269 0.3 0.238
0.239 0.384 0.15 0.285
0.239 0.153 0.35 0.047
0.152 0.192 0.2 0.428

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1

0.40625 0.241  0.37  0.444
0.09375 0.241  0.5    0.25
0.15625 0.310  0.06  0.168
0.34375 0.206  0.06  0.1389

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0.275 0.357 0.392 0.392
0.275 0.25 0.25 0.392
0.275 0.142 0.142 0.214
0.175 0.25 0.214 0.000

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Assume previous robot emotional state, xR(k-1)=eH=happy, current drive, d(k)=drive 1 
and current human’s accessibility level , xH(k) = level 3. 
By using Equation (3-1) and (3-2),  
 

( )Rx k =

0.369 0.37 0.275
0.239 0.5 0.275

* *
0.239 0.06 0.275
0.152 0.06 0.175

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   

0.0375
0.0328
0.0039
0.0016

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣

eH  
eN  
eS 
eA 

 

⎦
 
Since 0.0375 is the dominant number, the current robot emotional state xR(k) is 
determined as happy. 
The emotional state of happy occurred 2 times in a row. 
Therefore, the system reliability, Equation (3-15), is calculated as =( )ir k 17 1

17
−  and applied 

to element of happy of probability matrix A. 

( )Rx k =

17 0.37 0.275 0.03540.369*
17 1

0.5 0.275 0.03280.239 * *
0.06 0.275 0.00390.239
0.06 0.175 0.00160.152

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎢ ⎥+ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎦

 

After the system reliability is applied, 0.0354 - the happy emotional state, will then be 
displayed as the dominant robot emotional state at time step k.  
If this iteration had not satisfied drive 1, the system reliability, Equation (3-14), 

1( 1)
( 1) 4i k
m

ε + = =
− −

1
1

  is applied to the remaining elements of 1
ˆ ˆ,A B and . 2B̂

These are the new matrixes. 

17 7 6 5
11.333 10 3 6ˆ
11.333 4 7 1
7.333 5 4 9

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1

13 7 6 16
3 7 8.333 9ˆ
5 9 1.333 6
11 6 1.333 5

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

8 10 11 1
8.333 7 7 11ˆ
8.333 4 4 6
5.333 7 6 0

B

1⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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0.361 0.269 0.3 0.238
0.241 0.384 0.15 0.285
0.241 0.153 0.35 0.047
0.156 0.192 0.2 0.428

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1

0.40625 0.241  0.35  0.444
0.09375 0.241  0.49    0.25
0.15625 0.310  0.078  0.168
0.34375 0.206  0.078  0.1389

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0.267 0.357 0.392 0.392
0.278 0.25 0.25 0.392
0.278 0.142 0.142 0.214
0.178 0.25 0.214 0.000

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The robot emotional state, xR(k)= eH =happy and the current drive, d(k+1)=drive 1 and 
the current human accessibility level  xH(k+1) = level 3. 
By using Equation (3-1) and (3-2),  

( 1)Rx k +

0.361 0.35 0.267 0.0337
0.241 0.49 0.278 0.0329

* *
0.241 0.0078 0.278 0.0005
0.152 0.0078 0.178 0.0020

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ,  

happy is the dominant emotion again. 
This is the second time the emotional state of happy failed to satisfy the drive. 
Therefore, the system reliability, is calculated as ( 1)ir k + = 17 2

17
−  and applied to element of 

happy of probability matrix A. 
 

( 1)

17 0.35 0.267 0.03010.361*
17 2

0.49 0.278 0.03290.241 * *
0.0078 0.278 0.00050.241
0.0078 0.178 0.00200.152

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Rx k + =  

After the system reliability is applied, the neutral emotional state, 0.03529, is then 
displayed as the dominant robot emotional state at time step k+1.  
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Figure B-1 – Figure B-3 show experimental results for Experiment #3 with no updating 
method for the robot emotion model. 30 participants were utilized in the experiment.  
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Figure B-1: Average number of iterations needed to satisfy all four drives. 
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Figure B-2: Emotional states of the robot during drive satisfaction. 
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Figure B-3: Frequency of the accessibility levels of the agent when each drive was satisfied: (a) Drive 1, (b) 

Drive 2, (c) Drive 3, and (d) Drive 4. 
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Figure B-4 – Figure B-6 show experimental results for Experiment #4 with the positive 
influence factor for the robot emotion model. 30 participants were utilized in the 
experiment. 
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Figure B-4: Average number of iterations needed to satisfy all four drives. 
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Figure B-5: Emotional states of the robot during drive satisfaction. 
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(c) 
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(d) 

Figure B-6: Frequency of the accessibility levels of the agent when each drive was satisfied: (a) Drive 1, (b) 
Drive 2, (c) Drive 3, and (d) Drive 4. 
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Figure B-7 – Figure B-9 show experimental results for Experiment #5 with the positive 
influence factor and the state reliability function for the robot emotion model. 30 
participants were utilized in the experiment.  
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Figure B-7: Average number of iterations needed to satisfy all four drives. 
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Figure B-8: Emotional states of the robot during drive satisfaction. 
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(d) 

Figure B-9: Frequency of the accessibility levels of the agent when each drive was satisfied: (a) Drive 1, (b) 
Drive 2, (c) Drive 3, and (d) Drive 4. 
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A simple example is presented herein to show how the accessibility level of the agent can 
be determined. 
Assume that the “degree of the mood” of the agent is defined by a series of integers: 
 

{1,2,3,4,5,6,7,8,9,10}Hx = ,                                                                                         (C-1) 

The integers in Equation C-1 representing the “degree of mood” are correlated with the 
four different accessibility levels via the following probability distribution determined for 
the agent angry mood state:  
 

1 1

2 2

3 3

4 4

( ) ( )
( ) ( ) 0.3
( ) ( )
( ) ( ) 0.1

H H

H H

H H

H H

P x x P C
P x x P C
P x x P C
P x x P C

= = =
= = =
= = =
= = =

0.4

0.2
,                                                                                           (C-2) 

where C1=1, 2, 3, 4, C2=5, 6, 7, C3=8, 9, and C4=10 

During interaction between the robot and agent, the accessibility levels of agent are 
determined based on Equations C-1 and C-2. 
The following procedure is implemented: 
Step 1: The integer representation (1-10) of the agent’s “degree of mood” is randomly 
determined using a random number generator.. 
Step 2: The corresponding accessibility level, as defined by the given probability 
distribution, which associates with the integer is chosen to be the agent’s accessibility 
level. 
For example, if the integer 5 is picked when the agent is in an angry mood then the 
agent’s accessibility level will be level II, if integer 10 is pick, the agent’s accessibility 
level will be level I, etc. A similar procedure is utilized when the agent is in a happy 
mood. 

Moreover, a more precise agent’s mood can be designed by increasing the number 
of integers for “degree of the mood” (i.e.1-20, or 1-30). 
 For example: 
 

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}Hx = ,                                       (C-3) 

1 1

2 2

3 3

4 4

( ) ( ) 0.55
( ) ( ) 0.25
( ) ( ) 0.15
( ) ( ) 0.05

H H

H H

H H

H H

P x x P C
P x x P C
P x x P C
P x x P C

= = =
= = =
= = =
= = =

,                                                                                         (C-4) 

Where C1=1, 2, 3, 4,5,6,7,8,9,10,11, C2=12, 13, 14, 15, 16, C3=17, 18, 19, and C4=20. 
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