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Abstract of the Dissertation

On the Design and Analysis of Freeform Motions Using

Subdivision Schemes

by

Carlos Andrés Trujillo Suárez

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2009

This dissertation aims to develop new approaches for motion design and anal-

ysis suitable for CAD-CAM integration. Therefore, not only shape but also

kinematic information should be conveyed in an efficient manner that can be

easily implemented in CAD-CAM systems and eventually interpreted by CNC

manufacturing equipment.

Dual quaternions, quaternions, and planar quaternions are used to repre-

sent spatial, spherical, and planar displacements, respectively. In this way,

displacements of a rigid body in Cartesian space are mapped into points in

the image space of displacements, transforming the kinematic problem of mo-

tion interpolation into a geometric problem where the powerful techniques

for curve and surface interpolation from Computer Aided Geometric Design
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(CAGD) can be readily applied.

Motivated by this consideration, initially in this dissertation a set of orien-

tations with angular velocity constraints are interpolated by means of quater-

nion biarcs. The resulting quaternion curve represents a piecewise spherical

line-symmetric rational motion with C1 continuity which is used for tool path

generation in 5-axis machining. Next, the four point interpolatory subdivision

scheme for curve generation is adapted to the interpolation of a given set of

positions of a cylindrical tool represented by dual quaternions. It is shown

that the resulting discrete model of the tool path lends itself naturally to an

algorithm for computing the characteristic curve belonging to the boundary

surface of the swept volume at each of the discrete positions as well as the con-

tribution from the top and bottom planes, and circular edges of the cylinder.

Then, the dual tensor-product extension of such subdivision scheme is also

used for two-parameter motion generation and swept surface computation.

A preliminary approach for mechanism simulation using subdivision schemes

is also attempted by analyzing the motion of the coupler link of a planar 4R

closed kinematic chain from the viewpoint of constrained motion interpolation.

In the early stage of this refinement process, each new in-between position must

be made to satisfy the 4R kinematic constraints exactly to ensure the correct

motion. When there is sufficient number of coupler positions, one can use
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the unconstrained four-point interpolatory scheme to generate the in-between

positions to allow for fast animation of the coupler motion.

The results obtained have applications in CNC tool path generation, robot

path planning, and computer animation.
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Chapter 1

Introduction

Current computer-aided manufacturing (CAM) processes such as Computer

Numerical Controlled (CNC) machining and robotic welding require efficient

methods not only for shape representation but also for motion generation. Tra-

ditionally, Computer Aided Geometric Design (CAGD) research has focused

on the development of tools for shape modeling. CAGD is a very developed

and mature field that encompasses a broad variety of well proved and estab-

lished techniques for shape representation compiled in a wealth of reference

textbooks, see for instance Farin [4, 5] and Piegl [6] among others. Due to their

relative easiness for computational implementation and numerical robustness,

CAGD techniques have even become industrial standards for shape represen-

tation in Computer Aided Design (CAD) software packages. Because of their

flexibility, geometric intuitiveness, and ability to represent analytic and free

form shapes, the so-called Non-Uniform Rational B-Splines (NURBS) [7, 8]

are the widespread method for shape design.

However, when it comes to manufacturing and motion planning, the para-

metric representation of the shape, either by means of NURBS or any other

method, is discretized and then locally described by a first order approxima-
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tion [9]. This first order approximation of the shape is commonly used for

collision avoidance in CNC milling either by lifting the cutter in the direction

of the tool axis or by changing the orientation of the tool by tilting it about the

cutter contact (CC) point as described by Klass and Schramm [10]. The latter

approach is only realizable in 5-axis milling or in a restricted fashion in 4-axis

milling. Based on the collision check a satisfactory set of CC points and tool

orientations is generated for all of the discrete positions of the cutter. In order

to manufacture the actual piece, a tool path that passes through these discrete

positions is created. The most common approach to achieve the translational

motion of the tool is by linear or circular interpolation from one position to

the next one although parabolic and cubic interpolation are available in spe-

cial controllers as mentioned by Thyer [11]. Generally, the orientation of the

tool is kept fixed when the machine is moving the cutter from one position

to the next. More sophisticated approaches assume a linear change of orien-

tation between two consecutive positions as in Sarma and Rao [12], or even

combine linear and circular interpolation as described by Liang et al. [13], or

aim to keep the tool axis perpendicular to the surface as proposed by Koren

and Lin [14]. In any case, the geometric information pertaining to the piece

is decoupled from the actual motion of the tool, i. e. the geometry and the

kinematics required to manufacture the piece are two different entities which

are usually dealt with in different software applications. Therefore, the link

between CAD and CAM remains weak.

Motivated by this last issue, researchers started to look into the blend of

CAGD techniques and motion design. To this end, it was realized that the
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elegant representation of spatial displacements by means of dual quaternions

was suitable in order to extend the powerful CAGD methods to the realm of

motion generation. Shoemake was arguably the first in using quaternions for

animation of rotation in Computer Graphics; he introduced the spherical linear

interpolation (Slerp) in order to generate interpolating orientations in between

two quaternions. Then, he used spherical Bézier curves to obtain piecewise

Bézier rotational (spherical) motions [15]. However, Slerp only generates C0

continuity, i.e. the motions lack velocity and higher order continuity. Wang

and Joe [16] interpolated orientations by spherical biarcs invoking the fact that

unit quaternions lie on a hypersphere. Barr et al. [17] developed a method for

orientation interpolation with unit quaternion curves that minimize tangential

acceleration. Ramamoorthi and Barr [18] implemented cubic splines and the

minimization of the Euler-Lagrange error functional for fast construction of

unit quaternion splines.

In order to fit the current standard of shape representation by rational

curves and surfaces employed in CAD an important effort has been devoted to

the extension of these methods to motion generation. Jüttler extended Bézier

curves to handle dual quaternions; however, he interpolated the real and the

dual part of the dual quaternions separately [19]. Jüttler and Wagner [20]

also explored the rational motion generation problem using NURBS and ma-

trix representation of spatial displacements but this approach is cumbersome

from a computational point of view when compared to the use of dual quater-

nions. Ge and Ravani studied the application of the de Castelajau algorithm

to handle dual quaternions and offered an alternative version of it that pre-
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serves the subdivision properties of regular Bernstein-Bézier curves [21]. They

also introduced the concept of orientable image space in order to avoid am-

biguities in the interpolation of dual quaternions and developed methods for

designing spline curves in the image space with tangent, curvature and, tor-

sion continuities [22]. The interested reader is referred to the survey prepared

by Röschel [23] for a comprehensive account on rational motion design and

specific results.

Even though rational curves and surfaces are the most common tool for

shape representation in current CAD systems, there is a growing trend among

the computer graphics community and solid modeling industry towards replac-

ing rational representation by subdivision schemes. Actually, large companies

in animation production have opted for subdivision schemes as their preferred

method for shape representation [24]. This fact stems from their ability to

represent shapes of arbitrary topology, more localized control than rational

representations, computational efficiency, and numerical robustness given their

simple linear refinement rules. Chaikin [25] introduced subdivision as an ef-

ficient technique for curve generation; he utilized fixed ratios on cutting off

the corners of a polygon. The application of subdivision in Computer Aided

Geometric Design (CAGD) became a reality when the extension of curve gen-

eration schemes to tensor-product rules was achieved. Catmull and Clark [26]

generalized bi-cubic uniform B-splines. Doo and Sabin [27] used the analytical

expression of the bi-quadratic uniform B-spline surface to generate a subdi-

vision scheme that produces C1 limit surfaces with arbitrary topology out of

arbitrary initial meshes. These subdivision procedures are of approximating
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nature. Dyn et al. [28] developed an interpolating butterfly scheme which is

the tensor-product extension of the four-point interpolatory scheme for curve

generation [29].

Subdivision has reached a mature level in CAGD literature and many other

schemes along with their convergence analysis and characteristic features have

been explored, see for instance Warren and Waimer [30]. Some researchers

have turned their attention to such schemes for the design of rigid body mo-

tions. Hofer et al. [31, 32] devised algorithms based on homologous points. In

such approach, a set of key points on a rigid body are chosen to be interpolated

along a set of discrete positions of the body by variational subdivision; registra-

tion techniques from computer vision need to be applied on the interpolating

points to correct deformations of the body during the motion. Wallner and

Pottmann [33] apply subdivision on the 3× 3 orthogonal rotation matrix and

the translation vector of a set of spatial displacements considering the terms of

the matrix and the vector for each position as a 12-dimensional vector. Again,

since this process does not guarantee that the interpolating components corre-

sponding to the interpolating matrix form an orthogonal matrix, a correction

procedure based on singular value decomposition of the matrix is required.

In this work, Wallner and Pottmann also claim that small perturbations to

subdivision schemes do not alter their smoothness.

This dissertation aims to develop new approaches for motion design and

analysis suitable for CAD-CAM integration. Therefore, not only shape but

also kinematic information should be conveyed in an efficient manner that

can be easily implemented in CAD-CAM systems and eventually interpreted
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by CNC manufacturing equipment. The results presented in this manuscript

are part of the kinematics-driven geometric modeling framework introduced

by Ge [34] in which techniques to integrate sculptured-surface design with

tool-path generation for 5-axis CNC machining are studied.

It should be pointed out that even though the aforementioned methods and

the ones here discussed can be readily implemented in CAD-CAM systems,

their actual use in motion control of CNC machines would only be achieved in

open architecture controllers since current CNC controllers are vendor-specific

standardized and hardware centered. Thus, our approaches are more suitable

for PC-based control where the PC-based system directly generates the ref-

erence commands for the axes and the spindle. A well documented overview

on open architecture controllers was presented by Pritschow et al. [35]. Also,

Rober and Shin [36] demonstrated the feasibility of PC-based open architec-

ture computer numerical control of milling machines. Nonetheless, the tech-

niques hereby developed are also useful alternatives to the traditional display

of CNC machining using Boolean substraction of solid objects introduced by

Van Hook [37] or to the G-buffer method used by Saito and Takahashi [38].

The organization of this document is as follows. The representation of spa-

tial and spherical displacements by means of dual quaternions and quaternions

is reviewed in chapter 2. In chapter 3 a method for orientation interpolation

with angular velocity constraints using piecewise quaternion biarcs is devel-

oped. Such a technique can be readily used for tool path generation in 5-axis

milling of sculptured surfaces. Chapter 4 elaborates on the extension of the

four-point interpolatory subdivision scheme for curve generation to the realm
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of motion interpolation and in the exploitation of its geometric characteristics

for swept volume approximation of a one parameter motion of a cylindrical

cutter. Chapter 5 uses the tensor-product version of the four-point scheme to

generate the swept surface of the two-parameter motion of the cylinder. A

preliminary exploration of mechanism simulation and animation by means of

subdivision schemes is presented in chapter 6. Finally, concluding remarks on

the main contributions of this research and an account of possible future work

is listed in chapter 7.
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Chapter 2

Kinematics Background

In the following sections, a description of quaternions and dual quaternions

as displacement operators is presented in the extent that pertains to this dis-

sertation. Then the motion of points, planes, and lines affected by those

displacement operators is reviewed. Finally, one- and two-parameter rational

Bézier motions are explained along with the computation of the swept surface

of a cylinder undergoing such motions.

2.1 Representation of Spatial Displacements

In 1843, Irish mathematician and astronomer William R. Hamilton discovered

quaternions as an algebraic extension of complex numbers to four dimensional

space and realized they were useful to represent the orientation of a rigid

body [39, 40, 41]. The four components of this special type of quaternions are

the Euler-Rodrigues parameters of rotations, commonly referred to as Euler

parameters (see Bottema and Roth [42] and McCarthy [43]). In 1873, William

K. Clifford devised biquaternions, now called dual quaternions, to represent

a general spatial displacement of a rigid body encompassing orientation and
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translation [44]. The primary part of the dual quaternion is the quaternion

made up by the Euler-Rodrigues parameters; the dual part is the quaternion

product of the translation vector and the primary part of the dual quaternion.

A delightful account of the historical development of quaternions, dual quater-

nions, and their intrinsic relationship with other representations of rigid body

displacements can be found in Dai [45].

In this dissertation, dual quaternions and quaternions, as a particular case

of dual quaternions, are adopted for the representation of spatial and spher-

ical displacements, respectively. This choice is made based on their concise

description of displacements and adequacy for computational implementation

when compared to the traditional matrix representation of displacements.

2.1.1 Quaternions

A quaternion q = q1i+q2j+q3k+q4 representing a rigid body rotation by angle

θ about the unit axis vector s = (s1, s2, s3) has as components the so-called

Euler-Rodrigues parameters of the rotation

q1 = s1 sin
θ

2
, q2 = s2 sin

θ

2
, q3 = s3 sin

θ

2
, q4 = cos

θ

2
(2.1)

which satisfy the relation

q2

1 + q2

2 + q2

3 + q2

4 = 1 (2.2)

Thus, this type of quaternions are commonly referred to as unit quaternions.

The quaternion basis units i, j, and k satisfy the following fundamental

multiplication rules

i2 = j2 = k2 = ijk = −1 (2.3)
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The corresponding rotation matrix [R] can be recovered from the Euler-

Rodrigues parameters by using (see [42])

[R] =
1

S2





q2
4 + q2

1 − q2
2 − q2

3 2(q1q2 − q4q3) 2(q1q3 + q4q2)
2(q1q2 + q4q3) q2

4 − q2
1 + q2

2 − q2
3 2(q2q3 − q4q1)

2(q1q3 − q4q2) 2(q2q3 + q4q1) q2
4 + q2

1 − q2
2 + q2

3



 (2.4)

where S2 = q2
1 + q2

2 + q2
3 + q2

4 .

From the above, it is clear that the rotation matrix [R] remains the same af-

ter multiplying each one of the Euler-Rodrigues parameters by a scalar w 6= 0.

Therefore, a unit quaternion q and a multiple of it Q = wq = (Q1, Q2, Q3, Q4),

w > 0, represent one and the same rotation. Hence, quaternions can be

thought of as points on a projective three-space for the representation of rota-

tions. Such a space has been termed as the image space of spherical displace-

ments by Ravani and Roth [46].

The homogeneous coordinates X = (X1, X2, X3, X4) of a cartesian point

x = (x1, x2, x3, 1) after a rotation represented by a nonunit quaternion Q are

related by

X = QxQ−1 (2.5)

being Q−1 the inverse of Q which is given by

Q−1 =
Q∗

N(Q)
(2.6)

where Q∗ = (−Q1,−Q2,−Q3, Q4) is the conjugate of Q and N(Q) = QQ∗ is

the norm of Q. The cartesian coordinates of the point after the rotation can

be obtained by dividing X by the homogenizing component X4.

Obviously, if Q(t) is a function of time t in the image space then Eq. 2.5

describes the spherical motion of a point. The time derivative q̇ of a unit
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Figure 2.1: A spatial displacement consisting of a rotation by angle θ about
axis s followed by a translation d

quaternion q is related to the instantaneous angular velocity vector ω of the

motion as follows

q̇ = (1/2)ωq. (2.7)

2.1.2 Dual Quaternions

A spatial displacement, as shown in Fig. 2.1, consisting of a rotation by an-

gle θ about the unit axis vector s = (s1, s2, s3) followed by the translation

d can be conveniently represented by a unit dual quaternion q̂. This unit

dual quaternion is made up by two quaternions q and q0, i.e. q̂ = q + εq0

where ε is the dual unit with the property ε2 = 0. The real part q is the

unit quaternion whose components are the Euler-Rodrigues parameters of the

rotation previously discussed. The dual part q0 = (q0
1, q

0
2, q

0
3, q

0
4) is obtained

from the quaternion multiplication of the translation vector written as a vector

quaternion, i.e. d = (d1, d2, d3, 0), and the unit quaternion q as follows

q0 =
1

2
dq. (2.8)
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The translation vector d can be recovered in terms of the components of the

dual quaternion by using the following expression

d =
q0q∗ − q(q0)∗

qq∗
(2.9)

which in matrix form can be recast as

d =
2

S2





q0
4q1 − q0

1q4 + q0
2q3 − q0

3q2

q0
4q2 − q0

2q4 + q0
3q1 − q0

1q3

q0
4q3 − q0

3q4 + q0
1q2 − q0

2q1



 (2.10)

where S2 = q2
1 + q2

2 + q2
3 + q2

4 . It is instructive to note that the rotation matrix,

described in the previous subsection, and the translation vector yielded from

a unit dual quaternion, q̂ = q + εq0, and a dual multiple of it, Q̂ = ŵq̂ =

Q + εQ0, are preserved. Hence, a dual quaternion Q̂ = ŵq̂ = Q + εQ0,

where ŵ = w + εw0 is a nonpure dual number such that w is a nonzero

scalar, is a valid representation of a spatial displacement. In other words, a

unit dual quaternion q̂ and a general dual quaternion Q̂ = ŵq̂ represent the

same spatial displacement. Dual quaternions have been used to define a dual

projective three-space, also known as the image space of spatial displacements,

by Ravani and Roth [47]. It has been widely accepted that in order to represent

a valid rigid body displacement a dual quaternion must be of unit magnitude,

i.e. N(Q̂) = Q̂Q̂−1 = 1, and that the components of the real part Q =

(Q1, Q2, Q3, Q4) and the components of the dual part Q0 = (Q0
1, Q

0
2, Q

0
3, Q

0
4)

must satisfy the Plücker, or normal, condition:

Q1Q
0
1 + Q2Q

0
2 + Q3Q

0
3 + Q4Q

0
4 = 0 (2.11)

However, the results stated in Eq. 2.4 and in Eq. 2.10 clearly express that

a normalization constraint and the Plücker condition are not needed for the
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design of motions in the image space. With these restrictions removed, CAGD

techniques for curve and surface design such as NURBS, Bézier curves, and

subdivision schemes can be readily extended to the generation of freeform rigid

body motions. See for instance [22], [19], and [20].

Another interpretation of a unit dual quaternion q̂ = (q̂1, q̂2, q̂3, q̂4) is its

function as a screw operator (see Fig. 2.2). Let s be the unit direction vector of

a line and s0 the moment of the line with respect to the origin of coordinates,

which can be obtained as the cross product of a vector from the origin to

any point on the line and s. These are called the Plücker vectors of the line.

Denoting the unit dual vector ŝ = s+εs0 = (ŝ1, ŝ2, ŝ3), where each component

is a dual number, e.g. ŝ1 = s1 + εs0
1, and the dual angle θ̂ = θ + εh, the four

dual components of the dual quaternion representing the screw displacement

by angle θ and translation h about and along the screw axis ŝ are given by the

dual Euler parameters as follows

q̂1 = ŝ1 sin θ̂, q̂2 = ŝ2 sin θ̂, q̂3 = ŝ3 sin θ̂, q̂4 = cos θ̂ (2.12)

where q̂2
1 + q̂2

2 + q̂2
3 + q̂2

4 = 1.

Thus, a function Q̂(t) in the image space represents a rigid body motion

regardless of the geometry of the rigid body, i.e. the dual quaternion repre-

sentation of displacements is frame invariant. As per dual unit quaternions q̂,

their time derivative is related to the dual velocity V̂ of the displacement by

the following expression [22]

˙̂q = (1/2)V̂q̂ (2.13)

where V̂ = ω + εV, being ω and V the angular and translational velocities
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Figure 2.2: A screw displacement consisting of a rotation by angle θ about
and a translation h along the screw axis ŝ

about and along the instantaneous screw axis, respectively, written as vector

quaternions.

It should be noted that dual quaternions encompass single rotations, trans-

lations, and planar displacements, all of them being particular cases of spatial

displacements. For details on quaternions, dual quaternions and their use in

kinematics, the interested reader is referred to [42] and [43].

Because of their intuitive geometric structure and appeal for computations,

dual quaternions are an elegant tool to represent spatial displacements that

feature computational advantages compared to the traditional matrix repre-

sentation.

14



2.2 Point, Plane, and Line Displacements

The spatial displacement of a point P, whose homogeneous coordinates are

(P1, P2, P3, P4), acted upon by a nonunit dual quaternion, Q̂ = Q + εQ0, is

given by (see [48]and [49])

P̃ = QPQ∗ + P4[(Q
0)Q∗ −Q(Q0)∗] (2.14)

where P̃ denotes the homogeneous coordinates of the point after the displace-

ment; Q∗ = (−Q1,−Q2,−Q3, Q4) and (Q0)∗ = (−Q0
1,−Q0

2,−Q0
3, Q

0
4) are the

conjugates of Q and Q0, respectively.

Similarly, a plane M represented by its homogeneous coordinates (m, m4),

where m = (m1, m2, m3) is the unit normal of the plane and m4 is the negative

of the perpendicular distance from the origin of the reference frame to the

plane, can be transformed to the plane M̃ as follows (see Xia and Ge [50])

M̃ = QMQ∗ + Q0mQ∗ − Qm(Q0)∗ (2.15)

Finally, a general dual quaternion Q̂ acting on a vector quaternion x̂, which

represents a line written in terms of the Plücker vectors, i.e. x̂ = x + εx0 =

(x̂1, x̂2, x̂3), causes the displacement of x̂ onto a new line represented by the

vector quaternion X̂ given by (see Li and Ge [51])

X̂ =
Q̂x̂Q̂∗

Q̂Q̂∗

(2.16)

where Q̂∗ = Q∗ + ε(Q0)∗ is the conjugate of Q̂.
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2.3 Rational Bézier Motions

As explained in section 2.1, a function Q̂(t) in the image space represents a

motion of a rigid body. Here, a review of one- and two-parameter rational

Bézier motions developed by Ge and Sirchia [48] is presented as well as the

computation of the swept surface of a cylinder undergoing such motions as

discussed in Xia and Ge [50, 52] and Xia [53] which will be used in further

chapters.

2.3.1 One- and Two-Parameter Motions

Suppose we are given a (m + 1) × (n + 1) array of dual quaternions Q̂i,j =

ŵi,jq̂i,j; (i = 0, ..., m; j = 0, ..., n), where q̂i,j are unit dual quaternions and ŵi,j

are dual weights. We may define the following tensor-product Bézier surface

in the space of dual quaternions representing a two parameter motion of an

object

Q̂m,n(u, v) = Qm,n(u, v) + εRm,n(u, v) (2.17)

where the real part is given by

Qm,n(u, v) =
m
∑

i=0

n
∑

j=0

Bm
i (u)Bn

j (v)Qi,j (2.18)

and the dual part by

Rm,n(u, v) =

m
∑

k=0

n
∑

l=0

Bm
k (u)Bn

l (v)Rk,l (2.19)

Bm
i (u), Bn

j (v), Bm
k (u) and Bn

l (v) are Bernstein polynomials defined over the

sequence parameters 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, respectively. Substituting

16



Eq. 2.18 and Eq. 2.19 into Eqs. 2.14, 2.15, and 2.16 yield the surface trajec-

tory traced out by a point, a plane, and a line, respectively. It is worth noting

that a tensor product surface in dual quaternion coordinates of degree (m, n)

corresponds to a two-parameter rational Bézier motion with degree (2m, 2n) in

cartesian space. The control dual quaternions of the surface in the dual quater-

nion space have been termed as the kinematic control structure; depending on

the geometric feature that undergoes the motion, i.e. point, plane, or line, the

surface generated will have points, planes, or lines as control features which

are termed the geometric control structure. The geometric control structure

form a (2m + 1) × (2n + 1) array and is determined by the (m + 1) × (n + 1)

array of Bézier quaternions Qi,j and Ri,j as well as by the coordinates of the

specific geometric feature.

In this dissertation, we make use of the trajectory M̃2n,2m(u, v) of a moving

plane M in matrix form, which can be written as follows (see Ge et al. [54])

M̃2n,2m(u, v) =
[

H2n,2m,∗(u, v)
]

M (2.20)

where the 4 × 4 matrix [H2n,2m,∗(u, v)] represents the rigid transformations

of the plane M under the two-parameter motion. The two-variable matrix

function can be put in tensor product Bézier form as

[

H2n,2m,∗(u, v)
]

=

2n
∑

g=0

2m
∑

h=0

B2n
g (u)B2m

h (v)
[

H∗

g,h

]

(2.21)

where
[

H∗

g,h

]

denote the Bézier control matrices and they are given by

[

H∗

g,h

]

=
∑

i+k=g

∑

j+l=h

Cn
i Cm

j Cn
k Cm

l

C2n
g C2m

h

[

H∗

i,j,k,l

]

(2.22)
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where terms like Cn
i denote binomial coefficients and

[

H∗

i,j,k,l

]

=
[

Q+

ij

] [

Q−

kl

]

+
[

Q−

kl

] [

Rm+

ij

]

−
[

Q+

ij

] [

Rm−

kl

]

(2.23)

with

[

Q+

ij

]

=









Qij,4 −Qij,3 Qij,2 Qij,1

Qij,3 −Qij,4 −Qij,1 Qij,2

−Qij,2 Qij,1 Qij,4 Qij,3

−Qij,1 −Qij,2 −Qij,3 Qij,4









(2.24)

[

Q−

kl

]

=









Qkl,4 −Qkl,3 Qkl,2 −Qkl,1

Qkl,3 Qkl,4 −Qkl,1 −Qkl,2

−Qkl,2 Qkl,1 Qkl,4 −Qkl,3

Qkl,1 Qkl,2 Qkl,3 Qkl,4









(2.25)

[

Rm+

ij

]

=









Rij,4 −Rij,3 Rij,2 0
Rij,3 Rij,4 −Rij,1 0
−Rij,2 Rij,1 Rij,4 0
−Rij,1 −Rij,2 −Rij,3 0









(2.26)

[

Rm−

kl

]

=









Rkl,4 −Rkl,3 Rkl,2 0
Rkl,3 Rkl,4 −Rkl,1 0
−Rkl,2 Rkl,1 Rkl,4 0
Rkl,1 Rkl,2 Rkl,3 0









(2.27)

In the above, Qij,k and Rij,k; (k = 1, ..., 4) denote the components of the

quaternions Qi,j and Ri,j, respectively.

A one-parameter motion is a simplification of the two parameter motion

when only one parameter, t, is considered. For instance, the following repre-

sents a rational Bézier curve of degree n in the space of dual quaternions

Q̂(t) =
n
∑

i=0

Bn
i (t)Q̂i =

n
∑

i=0

Bn
i (t)ŵiq̂i (2.28)

being q̂i and ŵi; (i = 0, ..., n) a set of unit dual quaternions and dual weights,

respectively; 0 ≤ t ≤ 1. Again, by substituting Eq. 2.28 into Eq. 2.15 the
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surface trajectory M̃2n(t) of a moving plane M can be obtained

M̃2n(t) =

2n
∑

k=0

B2n
k (t)M̃k (2.29)

where M̃k denote the Bézier control planes given by

M̃k =
1

C2n
k

∑

i+j=k

Cn
i Cn

j (QiMQ∗

j + RimQ∗

j − QimR∗

j ) (2.30)

Equation 2.29 can be put in matrix form as follows

M̃2n(t) =
[

H2n,∗(t)
]

M (2.31)

where

[

H2n,∗(t)
]

=
2n
∑

k=0

B2n
k (t) [H∗

k ] (2.32)

is the rigid transformation matrix and

[H∗

k ] =
∑

i+j=k

Cn
i Cn

j

C2n
k

([

H+

i

] [

H−

j

]

+
[

H−

j

] [

H∗0+

i

]

−
[

H+

i

] [

H∗0−

j

])

(2.33)

are the control Bézier matrices with

[

H+

i

]

=









Qi,4 −Qi,3 Qi,2 Qi,1

Qi,3 Qi,4 −Qi,1 Qi,2

−Qi,2 Qi,1 Qi,4 Qi,3

−Qi,1 −Qi,2 −Qi,3 Qi,4









(2.34)

[

H−

j

]

=









Qj,4 −Qj,3 Qj,2 −Qj,1

Qj,3 Qj,4 −Qj,1 −Qj,2

−Qj,2 Qj,1 Qj,4 −Qj,3

Qj,1 Qj,2 Qj,3 Qj,4









(2.35)

[

H∗0+

i

]

=









Ri,4 −Ri,3 Ri,2 0
Ri,3 Ri,4 −Ri,1 0
−Ri,2 Ri,1 Ri,4 0
−Ri,1 −Ri,2 −Ri,3 0









(2.36)
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[

H∗0−

j

]

=









Rj,4 −Rj,3 Rj,2 0
Rj,3 Rj,4 −Rj,1 0
−Rj,2 Rj,1 Rj,4 0
Rj,1 Rj,2 Rj,3 0









(2.37)

The dual quaternion Bézier curve given by Eq. 2.28 defines a rational Bézier

motion of degree 2n, as is obvious from Eq. 2.14. It is noted here that Q̂(t)

is required to satisfy neither the normalization nor the Plücker conditions as

discussed in subsection 2.1.2. This statement also applies in the case of two-

parameter motion.

2.3.2 Swept Surface of a Cylinder Undergoing Rational

Bézier Motions

A half circular cylinder of radius r aligned with the X axis can be represented

as a developable surface in rational Bézier form as follows

M2(s) =

2
∑

i=0

B2
i (s)Mi (2.38)

where 0 ≤ s ≤ 1, M2(s) are the homogeneous coordinates of the tangent plane

corresponding to a parameter s, and the control planes are given by

M0 = (0, 1, 0,−r), M1 = (0, 0, 1, 0), M2 = (0,−1, 0,−r) (2.39)

Recalling the duality between plane and point geometries (see, e.g. [55] which

states that any geometric theorem or algorithm regarding points can be trans-

formed into the equivalent regarding planes by exchanging ‘points’ with ‘planes’

and ‘join’ with ‘intersection’; then, any ruling line of the cylinder can be evalu-

ated as the intersection of the last two intermediate planes M1
0(s) and M1

1(s) in

the de Casteljau algorithm associated with Eq. 2.38. The Plücker coordinates
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of this ruling line L̂(s) can be conveniently computed from the wedge or exte-

rior product “∧” of the corresponding intermediate planes, i.e. M1
0(s)∧M1

1(s).

The wedge product is an extension of the vector cross product into higher di-

mensions (see Flanders [56] or McCarthy [43]). The other half of the circular

cylinder can be similarly represented but with the middle control plane in an

opposite orientation, i.e. M3 = −M1 = (0, 0,−1, 0).

If the cylinder is undergoing a one-parameter rational Bézier motion of

degree 2n, its rational Bézier form, Eq. 2.38, can be substituted into Eq. 2.29

yielding the displaced coordinates of the tangent plane with parameter s at

time instant t as follows

M(s, t) =
[

H2n,∗(t)
]

M2(s) =

2
∑

i=0

2n
∑

j=0

B2

i (s)B
2n
j (t)Mij (2.40)

with Bézier control planes

Mij =
[

H2n,∗
j (t)

]

Mi (2.41)

Equation 2.40 defines a two-parameter set of tangent planes corresponding to

the boundary surface of the swept volume of the cylinder undergoing a rational

Bézier motion of degree 2n.

In order to determine the point representation of the boundary surface,

one just needs to determine the point of intersection of the ruling line of the

cylinder with the ruling line of the rational Bézier motion for each tangent

plane M2(s) at the instant t. Since each of the ruling lines corresponds to the

intersection of the two intermediate planes in the last step of the corresponding

de Casteljau algorithm, the intersection point of the ruling lines is the same

point of intersection of these four planes. The point of intersection P(s, t)
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can be obtained from the wedge product of any three of the four planes. For

instance,

P(s, t) =
[

H2n,∗(t)
]

M1

0(s) ∧
[

H2n,∗(t)
]

M1

1(s) ∧
[

H2n−1,∗
0 (t)

]

M2(s) (2.42)

For every time instant t′, Eq. 2.42 describes a quartic curve c(s) = P(s, t′)

which is the characteristic curve of the enveloping surface at instant t′. Since

the entire cylinder consists of two rational quadratic cylindrical surfaces, for

every time instant t′, there are in general two characteristic curves which are

diametrically opposite.

For a finite-height cylinder undergoing a one-parameter rational Bézier

motion, the top and bottom faces of the cylinder trace out boundary surfaces

as well. One is the developable surface swept by the top and bottom planes.

This surface can be computed by plugging the homogeneous coordinates of

the plane, with respect to the same fixed frame of the cylinder, into Eq. 2.29.

An expression for the ruling of this developable surface can be obtained from

the wedge product of the last two intermediate planes in the de Casteljau

algorithm; one may check the perpendicular distance from the center of the

circular face to the ruling line and only when this distance is smaller or equal

than the radius r of the cylinder, the developable surface, i.e the ruling line at

a specific time t′, is part of the surface swept by the finite cylinder. Otherwise,

only the circular edge of the face will contribute to the swept surface. In the

case the ruling is part of the swept surface then the circle will be divided into

four arcs by the ruling line of the plane and by the corresponding points on

the characteristic curve of the cylindrical face. Either case, it is needed to

determine the grazing points which are the contribution of the circular edge
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Characteristic curves on 
cylindrical surface 
computed from the 
intersection of any three of 
four planes in last step of de 
Casteljau algorithm 

Circular top and bottom 
edges are divided in up to 
four circular arcs. Only 
those made up by grazing 
points are locally visible. 

Ruling lines of top and 
bottom planes 

Figure 2.3: The different contributions to the swept surface from the top and
bottom planar faces, the circular edges, and the cylindrical surface of a cylinder
undergoing one-parameter rational Bézier motion at a specific instant.

to the boundary surface. This can be achieved by evaluating the following

condition on each arc [57, 58]

(N0 · V)(N1 · V) ≤ 0 (2.43)

where N0 is the normal of the circular face, N1 is the normal of the cylinder

at a specific point, and V is the velocity of the point under consideration. It is

only necessary to evaluate one point inside each arc to determine whether the

whole arc is locally visible or not, i.e. are grazing points or not. This requires

the determination of the dual velocity and the velocity of points on the circular

edge as described in appendix A. Figure 2.3 illustrates the contributions from

the top and bottom planar faces, the circular edges, and the cylindrical surface

of a cylinder undergoing one-parameter rational Bézier motion, at a specific

instant t′, as has just been described.
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The swept surface of the two-parameter motion of a finite cylinder can

be considered as the enveloping surface of a three-parameter (s, u, v) family

of planes. For a two parameter motion, if we fix v and let u vary, we have a

one-parameter motion, then a characteristic curve Pu(s, u, v) can be generated

from this one-parameter motion; by a similar procedure, a characteristic curve

Pv(s, u, v) can be obtained by fixing u and varying v. Because normals of all

the points on Pu(s, u, v) are perpendicular to Vu and normals of all the points

on Pv(s, u, v) are perpendicular to Vv, where V(Vu,Vv) is the velocity of the

point under consideration, so the normal of the intersection point of above two

curves must be perpendicular to V. Then for a given set of parameter val-

ues (u0, v0), the intersection of the two-characteristic curves, Pu(s, u, v0) and

Pu(s, u0, v), on the same cylindrical surface yields the corresponding charac-

teristic point of the cylinder for the two-parameter motion. The intersection

point can be obtained from the condition that the point of intersection is the

concurrent point of the planes that generate the characteristic points on each

one of the one-parameter motions, i.e. Eq. 2.42. This may lead to four, two,

or no points at all that belong to the swept surface of the cylindrical surface

at the specific parameters (u0, v0) (see Xia and Ge [52] and Xia [53]).

As for the top and bottom planar faces of the cylinder undergoing a two-

parameter motion, the point that belongs to the swept surface of the plane

undergoing a two-parameter motion can be computed as the intersection of

any three of the four planes in the last step of the two-parameter de Casteljau

algorithm when applied to Eq. 2.20. The distance from this point to the center

of the circular face may be checked in order to determine if it lies on the finite
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cylinder. Finally, in order to determine the points on the circular edge that are

grazing points, it is required to determine the points that are locally visible

both in u and v directions. Thus, the points that satisfy the following two

conditions

(N0 · Vu)(N1 · Vu) ≤ 0

(N0 ·Vv)(N1 · Vv) ≤ 0 (2.44)

are the grazing points that belong to the swept surface of the two-parameter

motion of the circular edge. The velocity V(Vu,Vv) can be obtained from the

instantaneous dual velocity and instantaneous screw axis. Figure 2.4 sketches

the different contributions to the swept surface from the top and bottom planar

faces, the circular edges, and the cylindrical surface of a cylinder undergoing

two-parameter rational Bézier motion, at a specific set of parameters u and v,

as explained.

The dual velocity is calculated by normalizing the function Q̂m,n(u, v),

finding the partial derivatives ∂Q̂

∂u
and ∂Q̂

∂v
after the normalization, and solving

for the dual velocities V̂u and V̂v from Eq. 2.13. The dual velocities V̂u

and V̂v are not to be confused with the actual velocities Vu and Vv of the

point of interest since the dual velocities are the velocities with respect to the

instantaneous screw axes of the motion in the u and v directions, respectively.

The dual velocity V̂ is related to the angular velocity Ω, the linear velocity

Ω0, and the unit dual vector v representing the instantaneous screw axis as

follows [22]

V̂ = 2Ω̂v̂ (2.45)

where Ω̂ = (Ω + εΩ0) is the magnitude of the dual velocity with Ω ≥ 0 and
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Intersection points of 
characteristic curves, in u 
and v directions, on 
cylindrical surface belong to 
the swept surface. 

Circular top and bottom 
edges are divided in up to 
eight circular arcs. Only 
those made up by grazing 
points are locally visible. 

Ruling lines of top and 
bottom planes in u and v 
directions. Intersection point 
is on the swept surface. 

Figure 2.4: The different contributions to the swept surface from the top
and bottom planar faces, the circular edges, and the cylindrical surface of a
cylinder undergoing two-parameter rational Bézier motion at a specific set of
parameters u and v.

Ω0 ≥ 0. Obviously, after knowing the instantaneous screw axes and dual

velocities in the u and v directions it is possible to find the velocity of any

point on the cylinder as the velocity of any point on the screw axis plus the

relative velocity of the point on the cylinder with respect to the point on the

screw axis.
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Chapter 3

Piecewise Line-Symmetric

Spherical Motions for 5-Axis

CNC Tool Path Planning

3.1 Introduction

It is common practice in Computer Graphics and Computer Aided Geometric

Design (CAGD) to approximate a space curve such as a cubic B-spline with

C0 piecewise line segments, or better, with G1 continuous biarcs [59]. Such

techniques are commonly employed in robot motion planning to generate joint

trajectories in what is called the configuration space (C-space) [60, 61]. There

is abundant literature on the subject (e.g. [62, 63]) but the general approach

consists of optimizing some parameter or objective function while avoiding

obstacles and kinematic singularities which are mapped onto the C-space. A

similar approach is followed in CNC motion generation for 5-axis machining.

In this context, a discrete set of tool positions, or cutter location (CL) data, is

generated out of the geometry of the surface to be machined; then, the inverse

kinematics is performed for each CL data, the corresponding joint parameters

are obtained, and the C-space techniques are applied (see, e.g. [64, 65, 66]).
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However, in most commercial machines a simple piecewise linear interpolation

of the joint parameters is commonly used which requires a huge amount of data

in order to achieve the desired tolerance and does not offer velocity continuity

since the cutter has to abruptly change its direction of motion and orientation

between line segments compromising surface accuracy and machining time [14,

67]. Furthermore, a drawback of the C-space for motion design is that it does

not seamlessly reflect the traits of the actual rigid body motion and does not

allow for intuitive manipulation and fine-tuning of the motion.

This is why the space defined by the four components of a quaternion is

recognized as an elegant tool for handling spherical motions and it is referred

to as the image space of spherical displacements because it permits a direct

description of the spherical motion of a rigid body [47, 42]. Typically, unit

quaternions are used and the resulting image space is a unit hypersphere [43].

Alternatively, when four components of a quaternion are considered as ho-

mogeneous coordinates, the resulting image space is a projective three-space

where no normalization of the quaternions is required in order to be valid

representations of spherical displacements [48]. Thus, the study of a spheri-

cal motion corresponds to that of a curve (called image curve) in the image

space. For example, a great circle of the unit hypersphere corresponds to a

pure rotational motion about a fixed axis. This property has formed the basis

for the so-called spherical linear interpolation (Slerp) by Shoemake [15] and

has been used for spherical motion planning in robotics and 5-axis machin-

ing, yet the angular velocity is not continuous [68, 69]. Although regular (or

small) circular arcs on the unit hypersphere such as spherical biarcs have been
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used to generate interpolating spherical motions (see, for example, [16]) and

even C1 quaternion biarcs on the hypersphere have been used to approximate

cubic B-spline quaternion curves [19], it is far less well known that a planar

curve in the image space corresponds to a line-symmetric motion [51]. Line-

symmetric motions offer more flexibility to the motion designer since they are

not restricted to be circular arcs and can be designed in the projective three-

space decreasing the computational burden inasmuch as no constraint in the

magnitude of the quaternions is imposed.

The purpose of the current chapter is to put line-symmetric motions into

use from the viewpoint of motion approximation and show their potential ap-

plications in Computerized Numerical Control (CNC) machining simulation

and tool path planning. To this end quaternion biarcs are used for motion de-

sign. Kinematically, this means that we can use a velocity-continuous piecewise

line-symmetric spherical motion to approximate the B-spline rational spher-

ical motion. The advantage of using quaternion biarcs is that they can be

generated much more efficiently than cubic b-spline quaternion curves.

The content hereby presented is organized as follows. Firstly, some kine-

matics fundamentals are briefly reviewed including quaternions and line-symmetric

motions. Secondly, the kinematic constraint manifold of a positioning head for

5-axis machining is obtained and its differential properties are discussed which

will be used in the application discussed next. Thirdly, the biarc technique

is extended to handle quaternions resulting in an image curve describing a

piecewise line-symmetric spherical motion. Then, the quaternion biarcs are

used for 5-axis tool path generation; the algorithm is sketched and an example
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is discussed. Concluding remarks are drawn at the end of the chapter.

3.2 Kinematics Fundamentals

In this section the representation of spherical displacements using quaternions

and line-symmetric motions are reviewed in the extent that pertains to this

chapter.

3.2.1 Spherical Displacements

A unit quaternion q = q1i+q2j+q3k+q4 representing a spherical displacement

is made up by the so-called Euler-Rodrigues parameters as follows

q1 = s1 sin
θ

2
, q2 = s2 sin

θ

2
, q3 = s3 sin

θ

2
, q4 = cos

θ

2
(3.1)

where θ and the unit vector s = (s1, s2, s3) represent the angle and the axis

of the rotation, respectively. The quaternion basis units i, j, and k satisfy the

fundamental multiplication rules

i2 = j2 = k2 = ijk = −1 (3.2)

The quaternion q is said to be a unit quaternion since its magnitude is one,

i.e. q2
1 + q2

2 + q2
3 + q2

4 = 1. Although it has been widely accepted that only

unit quaternions represent spherical displacements, it has been shown that this

restriction is not necessary in case of rational motion synthesis (see Purwar

and Ge [70]). Therefore, a unit quaternion q and a multiple of it Q = wq =

(Q1, Q2, Q3, Q4), w > 0, represent the same rotation since the components of

Q are homogeneous coordinates of q and the quaternion space is referred to

as the image space of spherical kinematics.
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The spherical displacement of a point P, whose homogeneous coordinates

are (P1, P2, P3, P4), is given by

P̃ = QPQ∗ (3.3)

where P̃ denotes the homogeneous coordinates of the point after the displace-

ment; Q∗ = (−Q1,−Q2,−Q3, Q4) is the conjugate of Q. Thus, a curve Q(t)

in the image space describes the spherical motion of a rigid body being t a

parameter usually associated with time.

The time derivative q̇ of a unit quaternion q is related to the instantaneous

angular velocity vector θ̇ of the rotation as follows

q̇ = (1/2)θ̇q (3.4)

θ̇ is a vector quaternion whose scalar part is zero. For details on quaternions

and the image space, the interested reader is referred to [42], [43], and, [47].

3.2.2 Line-Symmetric Spherical Motion

A general line-symmetric motion is a geometric construction of motion in which

an arbitrary position in the space is rotated half-turn about a continuous

set of lines. The set of positions obtained is called a line-symmetric motion.

The arbitrary position is called polar position and the ruled surface formed

by the set of lines is the basic surface of the line-symmetric motion. If the

polar position is described as a quaternion P relative to a frame F ; and the

rotation of the i-th line-symmetric position with respect to the polar position

is described by the quaternion si; then, the line-symmetric rotation Qi of each
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one of the positions relative to F is

Qi = Psi (3.5)

Since every one of the quaternions Qi is displaced half-turn with respect to

the unique polar position P in the quaternion space then P is analogous to

the normal of a plane. Thus, P can be obtained from the wedge product “∧”

of any three of the quaternions Qi (i = 0, 1, . . . , n), e.g.

P = Q0 ∧Q1 ∧Q2 (3.6)

This means that all the quaternions representing a line-symmetric spherical

motion lie on a hyperplane in the image space. Hence, a quadratic curve on the

image space indeed represents a line-symmetric spherical motion. Therefore,

the curve can be defined by a set of three Bézier control positions and written

as a rational Bézier conic, for instance. For a thorough discussion on line-

symmetric motions see [42] and [51].

3.3 Kinematic Constraint Manifold of a CNC

Positioning Head

In this chapter, the problem of spherical motion planning in 5-axis CNC ma-

chining will be addressed assuming that the tool is attached to a positioning

head as shown in Fig. 3.1. Nevertheless, a similar analysis applies for a tilting

rotary-table type of machine setting up the appropriate coordinate frames. In

our case, we attach the moving frame xyz to the tool and the fixed frame

XYZ to the machine. The designation of angles A and C follows the tradi-

tional G-code convention as standardized by ISO 6983 [71].
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Figure 3.1: Positioning head for 5-axis machining

With these conventions the structure equation of the head is defined by

a rotation of the tool about the z axis on the moving frame by angle A, a

rotation about x by an angle of 90o, and a rotation of the head about Z on

the fixed frame by angle C. In terms of quaternions we have

D(A, C) =

(

0, 0, sin
C

2
, cos

C

2

)(

sin
90o

2
, 0, 0, cos

90o

2

)(

0, 0, sin
A

2
, cos

A

2

)

Expanding this product, the parameterized constraint manifold in R4 is

D(A, C) =

√
2

2
(D1(A, C), D2(A, C), D3(A, C), D4(A, C)) (3.7)
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where

D1(A, C) = cos

(

C + A

2

)

D2(A, C) = cos

(

C − A

2

)

D3(A, C) = sin

(

C − A

2

)

D4(A, C) = sin

(

C + A

2

)

Eliminating A and C in Eq. 3.7, the algebraic equation of this surface is

D2

1 − D2

2 − D2

3 + D2

4 = 0 (3.8)

The constraint manifold Eq. 3.7 represents, geometrically, the constraint

imposed on the positions of the tool by the configuration of the head. In

other words, the positions D = (D1, D2, D3, D4) that satisfy this equation are

reachable by the tool.

Let the coordinates of points in R4 be represented by the vector x =

(w, x, y, z), so Eq. 3.8 can be viewed as the canonical form of a quadric hyper-

cone:

xT [Q]x = 0 (3.9)

with coefficient matrix

[Q] =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









(3.10)

This may be considered to be the equation of a quadric written in the homo-

geneous coordinates of three dimensional projective space. The projection of
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this quadric onto the hyperplane w = 1 results in

x2 + y2 − z2 = 1 (3.11)

which is a right circular hyperboloid of one sheet. The axis of the hyperboloid

is the z coordinate axis, and the radius of its center circle is 1. The canonical

form of 3.10 is a result of the choice of the fixed and moving reference frames.

Therefore, from a quaternion representing a given position of the tool based

on the reference frames described above, the inverse kinematics of the head can

be carried out by solving for A and C from the constraint manifold equation.

A = arctan(D4/D1) − arctan(D3/D2) (3.12)

C = arctan(D4/D1) + arctan(D3/D2) (3.13)

with −π/2 ≤ A ≤ π/2 and −π < C ≤ π.

In traditional CNC machining, the angles A and C are linearly parameter-

ized with respect to the time t , i.e. in between two consecutive positions, say

(A0, C0) and (A1, C1), the control system performs a linear interpolation of the

angular values [14, 58, 72]. Thus, the intermediate angles can be written as

A(t) = A0 + t(A1 − A0) (3.14)

C(t) = C0 + t(C1 − C0) (3.15)

Plugging these expressions into Eq. 3.7, one obtains a curve X(t) that lies on

the constraint manifold of the positioning head. It is instructive to analyze

the differential properties of such a curve as it will be explained next.
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The differential properties of a curve X(t) in the image space of spherical

kinematics can be derived from the following expressions (see McCarthy [73])

κ2 =
(dX/dt ∧ d2X/dt2 ∧X) · (dX/dt ∧ d2X/dt2 ∧ X)

(dX/dt · dX/dt)3
(3.16)

τ =
∗(dX/dt ∧ d2X/dt2 ∧ d3X/dt3 ∧ X)

(dX/dt ∧ d2X/dt2 ∧X) · (dX/dt ∧ d2X/dt2 ∧ X)
(3.17)

where κ is the geodesic curvature and τ is the geodesic torsion. The wedge

product, symbolized by ∧, is a generalization of the vector cross product to

four dimensional vectors (see Flanders [56]). The term dX/dt∧d2X/dt2∧X in

Eq. 3.16 is the vector formed from the four 3×3 minors in the 3×4 matrix with

rows dX/dt, d2X/dt2, and X. The numerator of Eq. 3.17 is the determinant

of the 4× 4 matrix formed by the four vectors dX/dt, d2X/dt2, d3X/dt3, and

X.

Substituting the image curve X(t), which is obtained after plugging Eq. 3.14

and Eq. 3.15 in the constraint manifold Eq. 3.7, into Eq. 3.16 we obtain, af-

ter some algebraic manipulation using the symbolic package MAPLEr, the

formula for the curvature of X(t)

κ =
2 |(C1 − C0)(A1 − A0)|

(C1 − C0)2 + (A1 − A0)2
(3.18)

The absolute value results from computing the square root of κ2 from Eq. 3.16.

Notice that κ is independent of the parameter t which means that the curvature

of the image curve X(t) is constant.

The torsion of X(t) is obtained by substituting the image curve into Eq. 3.17.

This yields after some algebraic manipulation with MAPLEr
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τ =
|(C1 − C0)

2 − (A1 − A0)
2|

(C1 − C0)2 + (A1 − A0)2
(3.19)

The torsion τ is also constant. Therefore, the image curve X(t) is a helix

in the image space when linear interpolation is performed by the controller.

Since in traditional CNC machining, the discrete positions of the tool are

linearly interpolated, the image curve is a piecewise helical curve with only

C0 continuity. This is because no smoothing conditions are imposed at the

junction of contiguous pieces of the image curve. This means that there is

room for improvement in the path generation of the tool since a smoother

motion will enhance the appearance of the machined surface and may convey

significant increase in the efficiency of the process.

3.4 Interpolation of Orientations with Speci-

fied Angular Velocities Using Quaternion

Biarcs

Biarcs are a technique of interpolation of data based on the fact that two

points and their corresponding tangent vectors can be fitted not by one cir-

cular arc but by two, though some special cases need four arcs [59]. In the

traditional biarc technique, unit tangent vectors are used so that the fitting

curve obtained is G1 continuous [59, 74]. In this section the goal is to ex-

tend this approach in order to interpolate a set of orientations expressed in

terms of unit quaternions, which can be regarded as points on a unit hyper-

sphere in R4, with angular velocity constraints. Moreover, we are not willing

to limit our approach to circular arcs but to allow for elliptical, parabolical,
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Figure 3.2: Biarcs scheme

or hyperbolical arcs, i.e. quadric arcs, achieving a flexible technique for the

motion design task. Therefore, for two given orientations Qs and Qe with

respective angular velocities θ̇s and θ̇e, and consequently with corresponding

non-unit tangent vectors Q̇s and Q̇e, an interpolating piecewise quadric arc,

i.e. a biarc, must meet the following conditions: it passes through Qs and Qe;

the tangent vectors at those points are Q̇s and Q̇e respectively; and the con-

tinuity of the arcs is C1 at the junction point. Although Eq. 3.4 is only valid

for unit quaternions, there is no need to impose normalization constraints on

the interpolating quaternions if homogeneous coordinates are used to compute

the rotations of points of a rigid body since a unit quaternion and a multiple

of it represent the same rotation as explained before.

Let Qs = Q0 and Qe = Q4 represent two desired orientations of a rigid

body with respect to an arbitrary fixed frame as illustrated in Fig. 3.2.

It should be noticed that Fig. 3.2 sketches a biarc for regular planar points

although the current chapter deals with quaternions which are impossible to
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visualize in R4. However, the considerations on biarcs can be extended to the

quaternion space since a quadratic arc is also a planar curve in R4.

The unit quaternions Q0 and Q4 and their respective derivatives is all what

is needed to apply the biarc method. It is required to find the Bézier control

quaternions Q1, Q2, Q3 such that the arcs C1 defined by Q0, Q1, Q2, and

C2 defined by Q2, Q3, Q4 can be written as rational Bézier curves

C1(t) =
w0Q0B

2
0(t) + w1Q1B

2
1(t) + w2Q2B

2
2(t)

w0B2
0(t) + w1B2

1(t) + w2B2
2(t)

(3.20)

C2(t) =
w2Q2B

2
0(t) + w3Q3B

2
1(t) + w4Q4B

2
2(t)

w2B2
0(t) + w3B2

1(t) + w4B2
2(t)

(3.21)

where wi are the weights and B2
0(t), B2

1(t), and B2
2(t) are quadratic rational

Bernstein polynomials. When the weights of the end points are equal to one,

the arcs can be written in standard form [4], as follows

C1(t) =
Q0B

2
0(t) + w1Q1B

2
1(t) + Q2B

2
2(t)

B2
0(t) + w1B2

1(t) + B2
2(t)

(3.22)

C2(t) =
Q2B

2
0(t) + w3Q3B

2
1(t) + Q4B

2
2(t)

B2
0(t) + w3B2

1(t) + B2
2(t)

(3.23)

Similar to the traditional CAGD theory, it can be said that if the weight is

smaller than one an elliptical arc is obtained, if the weight is equal to one the

arc is parabolic, and if the weight is larger than one the arc is a hyperbola.

Recalling the derivative for a rational Bézier B-spline conic in standard form

and denoting the parameter intervals ∆1 = u1 − u0 and ∆2 = u2 − u1 for
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each arc, the unknown control quaternions Q1 and Q3 are correlated to the

interpolated quaternions by

Q1 = Q0 +
∆1

2w1

Q̇0 (3.24)

Q3 = Q4 −
∆2

2w3

Q̇4 (3.25)

Let

α =
∆1

2w1

(3.26)

and

β =
∆2

2w3

(3.27)

Then, Eq. 3.24 and Eq. 3.25 can be written as follows

Q1 = Q0 + αQ̇0 (3.28)

Q3 = Q4 − βQ̇4 (3.29)

Q2 is the end point of one arc and the start point of the next one; thus, the

derivatives at this quaternion must be equal for both arcs in order to guarantee

C1 continuity of the biarc segment. From this

Q2 =
βQ1 + αQ3

α + β
(3.30)

α and β are degrees of freedom that allow the designer to fine-tune the motion

which also depend on the parameter intervals and weights. For instance, after

choosing α and β one can pick the parameter interval and solve for the weight

of each arc segment. This course of action makes sense in the context of CNC

machining since the parameter interval is related to the sampling time of the
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controller which is a fixed feature of the machine hardware. Of course, one can

instead pick the weights and use the derived values of α and β for computation

of the control quaternions of the arc segments. It should be recalled that a

change in the weights affects the shape of the actual motion of the rigid body

and that the rational arc segments can always be reparameterized such that

the path of the motion does not change but only the speed of the motion

does as explored in [70]. The choice of α = β facilitates computations, avoids

awkward-looking curves and, as pointed out in [74], optimized values of α and

β do not offer significant advantages and this is the alternative used in this

work. In such a case Eq. 3.30 becomes

Q2 =
Q1 + Q3

2
(3.31)

It must also be noticed that the local parameter t defined as follows must be

used when evaluating each of the arcs Eqs. 3.22 and 3.23

t =
u − ui

∆i
, (i = 0, 1) (3.32)

This procedure can be carried out for every two consecutive quaternions repre-

senting a set of specified key orientations such that the b-spline curve obtained,

which is composed by biarc segments, interpolates the series of input orienta-

tions and is C1 continuous. Finally, since each of the segments is a quadratic

arc, the rigid body motion obtained is a continuous-velocity piecewise line-

symmetric spherical motion.
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3.5 Tool Path Generation by Means of Piece-

wise Line-Symmetric Spherical Motion

This section describes the application of the quaternion biarcs, or piecewise

line-symmetric spherical motion, in path generation of a cutter mounted on a

positioning head as that described in section 3.3. Let us assume that a set of n

key orientations of a cutter is specified in quaternion form qi, (i = 1, 2, . . . , n)

along with their respective angular velocities θ̇i. Such a CL data set can be

obtained from discretization procedures and local gouging analyses as those

found elsewhere [10, 75].

It should be noticed that the angular velocity can be established from ve-

locity tracking control if this type of control is available in the machine [64] and

then the quaternion derivative can be computed. Otherwise, local estimation

methods borrowed from CAGD may be implemented [7, 76, 77] in order to

compute the tangent at each quaternion. This is the type of approach that we

propose in this dissertation. Basically, one can use the unit direction vector of

the line that joins two quaternions qi−1 and qi+1 as the direction of the tangent

vector ti at qi. Kinematically this means that the tangent vector points along

the direction of the screw displacement between the positions represented by

qi−1 and qi+1 [21, 22]. For the first and last quaternions, q0 and qn, the tan-

gent vector can be computed from the line that joins q0 and q1, and qn−1 and

qn, respectively, as depicted in Fig 3.3. As far as the magnitude goes one can

use the maximum angular velocity allowed by the machine motors as an upper

bound and eventually fine tune it after the interpolation if it is required.

The quaternions are assembled from the angles A and C of the CL data
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Figure 3.3: Local estimation technique of the tangent vector at the junction
points of the biarcs

using Eq. 3.7. The time derivatives are computed by means of Eq. 3.4, if the

angular velocity is known at each tool position, or by the local estimation

method aforementioned. The parameter interval for each arc may be attached

to the sampling period of the controller. Here, we assume a uniform param-

eterization of the piecewise biarc curve. The value of α is found by solving

Eq. 3.26. The weights of each quaternion biarc can be interactively adjusted

by the motion designer in order to fine-tune the motion of the tool and this way

improve the accuracy of the machining if required. The control quaternions

of each biarc segment are evaluated using Eqs. 3.28, 3.29, and 3.30. After the

control quaternions of the piecewise biarc curve have been obtained, several in-

termediate positions on each biarc segment can be evaluated by using Eqs. 3.22

and 3.23; i.e. a piecewise line-symmetric motion interpolates the key orienta-

tions and approximates the actual motion of the machine. Equations 3.12 and

3.13 provide reference values of joint displacement to the machine controller.

After applying the quaternion biarc interpolation method to the orientation

data in Tab. 3.1, several intermediate orientations are obtained, see Fig. 3.4.

In this case a weight of 0.5 and an angular velocity of 0.2 rad/s were assumed
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CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10
A(o) 0 5.737 18.2106 35.4977 45.4198 46.9018 54.8255 60.8735 73.8073 83.3593
C(o) 0 -5.946 -16.6741 -20.4189 -30.4049 -47.4576 -58.5542 -74.7468 -81.813 -86.7452

Table 3.1: Orientation data used in example

for all of the biarc segments. The plots of the joint displacements and C-space

are shown in Fig. 3.5 which are smoother compared to the traditional piece-

wise linear interpolation used by CNC interpolators even though the curves

obtained are very close to the line segments. Figure 3.6 shows a closeup on a

segment of the joint trajectories where the smoothness claimed for the curves

obtained from the biarc technique is evidenced.

Figure 3.7 shows the motion generated when the weight was changed to

2. As expected, a slight change in the path of the motion is evidenced. Also,

the plots of the displacements of the joints suffer changes as seen in Fig. 3.8.

Nonetheless, the joint displacement curve is smoother than the piecewise linear

one. The algorithm was implemented on a 1.50 GHz laptop using MATLAB.

The computational time to generate the motion and the joint displacement

curves of these examples was less than 2 s.

3.6 Conclusions

Quaternion biarcs permit to interpolate a set of orientations by means of a

piecewise quadratic curve constituted by arcs. Quadratic curves in the image

space of spatial motions describe line-symmetric motions so that the b-spline

obtained describes a piecewise line-symmetric motion. The spherical line-

symmetric motion achieved with this b-spline curve is C1 continuous which is

a desirable feature for orientation interpolation in 5-axis machining of sculp-
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Figure 3.4: Line-symmetric positions interpolating ten key orientations; all
weights equal to 0.5

tured surfaces in order to avoid poor surface finish as in the traditional method

of linear interpolation of tool orientation. Moreover, the biarc technique is a su-

perior alternative since the discrete orientations are exactly interpolated. The

computational efficiency and flexibility offered for fine-tuning of the piecewise

line-symmetric motion makes it an appealing choice for motion interpolation.

Therefore, the method described in this chapter is useful in CAD/CAM, robot

path planning, computer graphics, and simulation of some types of mecha-

nisms.
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Figure 3.5: a) Joint displacements b)C-space. The solid lines correspond to
the piecewise linear interpolation and the dashed curves are obtained by the
biarc technique. All weights equal to 0.5.
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Figure 3.6: Closeup on joint trajectories where the smoothness of the curves
obtained by the biarc technique, dashed curves, is evidenced compared to the
solid line segments.
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Figure 3.7: Line-symmetric positions interpolating ten key orientations; all
weights equal to 2
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Chapter 4

Motion Generation And Swept

Volume Analysis of a Cylinder

Using a Curve Subdivision

Scheme

4.1 Introduction

Much of the existing work on the generation of freeform motions such as Bézier

and b-spline motions as well as the analyses of their swept volumes are based

on basis functions and control nets of tool positions (see, for example, Jüttler

and Wagner [20], and Xia and Ge [50] ). This chapter explores an alternative

approach to freeform motion synthesis and swept volume analysis based on

subdivision schemes. While the kinematic structure of a continuous model of

a freeform motion is defined by the choice of the basis functions, the kinematic

structure of a discrete model of a freeform motion is defined by the choice of

the subdivision scheme. This is in contrast to the unstructured set of discrete

tool positions generated from the conventional NC tool path planning process

that converts a kinematic problem of tool path planing into a geometric one
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at each of the tool positions.

This approach follows our previous work of continuous kinematic geome-

try that uses dual quaternions for the presentation of spatial displacements.

Once a set of displacements are represented as points in the space of dual

quaternions, a subdivision scheme for curve generation such as the four-point

interpolatory subdivision scheme introduced by Dyn et al. [29] can be readily

adapted to discrete motion generation. The focus of this chapter is to develop

a fast and robust algorithm to compute the swept volume of the resulting dis-

crete motion that takes advantage of the geometric structure of the subdivision

algorithm . A swept volume is defined as the volume traced out by a rigid body

when moving along a path. Central to the problem of swept volume analysis is

the computation of the boundary surfaces of the swept volume. Swept surface

analysis is a well studied subject. There are at least three major approaches

to the computation of the swept surface. Wang and Wang [78] introduced the

envelope theory which basically makes use of the fact that the points on the

swept surface fulfill the envelope condition

N(p) · V(p) = 0 (4.1)

where N is the normal at a point p on the surface of the rigid body and V

is the instantaneous velocity of the point. This condition is derived from the

evaluation of the singularities of the Jacobian of the sweep. Abdel-Malek and

Yeh [79] studied the rank-deficiency conditions of the Jacobian and used this

result to compute the swept surface of multi-parameter sweep. Blackmore

and Leu [80] formulated the sweep differential equation and correlated it to

the Lie group structure of the Euclidean motion which led them to establish
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criteria regarding the geometry and topology of swept volumes. Several other

developments and specific approaches can be found in related literature. For a

thorough state-of-the-art review on swept volumes see Abdel-Malek et al. [81].

In this chapter a new approach is proposed to compute the swept surface of

a cylindrical cutter when a set of discrete or key positions of the cutter is spec-

ified. Every position may be a combination of a translation and orientation

as well. To this end, the convenient representation of spatial displacements

by means of dual quaternions is used, then the four-point interpolatory sub-

division scheme [29] is adapted to the interpolation of dual quaternions and

used for the generation of in-between positions of a rigid body. Because of

the geometric features of the subdivision scheme, the new generated positions

can be considered as part of a screw displacement. Here, we take advantage of

this feature and make use of the the work presented by Xia [53] and Xia and

Ge [50] to calculate the characteristic curve of a swept surface at a specific

instant. This approach is numerically robust and computationally efficient

since the procedure is based on linear combinations. In section 4.2 the four-

point interpolatory subdivision scheme is extended to dual quaternions and

its geometric traits are exploited to compute a discrete representation of the

swept surface of a cylinder. The algorithm and an example are described in

section 4.3. Finally, conclusions are drawn.
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4.2 Discrete Computation of the Swept Sur-

face

In this section, a summary of the four-point interpolatory subdivision scheme

developed by Dyn, Levin and Gregory [29] is presented. Then, an adaptation

of the scheme to handle dual quaternions is introduced along with a kinematic

interpretation that is used to generate a discrete representation of the swept

surface of a cylindrical cutter.

4.2.1 Four-Point Interpolatory Subdivision Scheme

The four-point interpolatory subdivision scheme has the useful feature that

the resulting curve in the limit interpolates the vertices of all intermediate

polygons obtained during the subdivision process. The algorithm finds the

point pi+1/2 from four consecutive points pi−1, pi, pi+1, pi+2 by the following

formula

pi+1/2 = (1/2 + w)(pi + pi+1) − w(pi−1 + pi+2) (4.2)

The new polygon has vertices pi−1, pi, pi+1/2, pi+1, pi+2, i.e. after each

round of subdivision the old points are reinserted along with the newly gen-

erated points as to obtain a refined polygon. This procedure is consecutively

repeated regarding the augmented set of points as new control points up

to any desired level of refinement. Hence, starting from a set of points pi,

−2 ≤ i ≤ n + 2, a new set of points pk
i , −2 ≤ i ≤ 2n + 2, is generated.

Let k > 0 be the level of refinement or subdivision round. Then, the
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subdivision scheme defines the control points at level k + 1 by







pk+1

2i = pk
i , −1 ≤ i ≤ 2kn + 1,

pk+1

2i+1 = (1/2 + w)(pk
i + pk

i+1) − w(pk
i−1 + pk

i+2), −1 ≤ i ≤ 2kn

(4.3)

where p0
i = pi, −2 ≤ i ≤ n + 2.

The geometric meaning of the subdivision scheme can be interpreted by

reorganizing Eqn. (4.2) as follows

pi+1/2 = (1/2)(pi + pi+1) + 2w[(1/2)(pi + pi+1) − (1/2)(pi−1 + pi+2)] (4.4)

From this expression, it can be seen that the effect of the scheme is to translate

the midpoint between pi and pi+1 by a vector 2we, e = (1/2)(pi + pi+1) −

(1/2)(pi−1 + pi+2), along the line through the midpoints of the upper and the

lower sides of the polygon as depicted in Fig. 4.1. The parameter w acts as

a shape factor by controlling the magnitude of the translation vector. The

smaller the value of w the closer the generated point is to the midpoint of the

upper side of the polygon. Indeed, when w = 0 the new point coincides with

this very same midpoint and the scheme reproduces a refined version of the

original polygon.

The four point interpolatory subdivision scheme converges to a limit curve

p(t) which is defined over a uniform parametrization in the range t ∈ [0, n]

attaching the point pk
i to the parameter value 2−ki, k ≥ 0, 0 ≤ i ≤ 2kn. When

0 < w < 1/8 the limit curve of the subdivision process is C1 continuous and

for w = 1/16 polynomials up to degree 3 can be reproduced.

Another interesting feature is the local nature of the scheme since changing

a specific point only perturbs the neighboring points computed from it; i.e.,
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Figure 4.1: 4-Point interpolatory subdivision scheme

the curve segment p(t), t ∈ (i, i + 1) depends only on pi−2 . . .pi+3.

It is worth to note that when applying the subdivision scheme cyclicly to

n points, a closed curve is obtained. However, if an open curve is desired then

two additional points on each end of the set of points are required. These

additional points can be chosen by controlling the tangent vector of the limit

curve at the end points. The tangent vector at a point i obtained at the

subdivision stage k can be calculated in terms of its neighboring points, at the

same subdivision stage, as follows

p′

i =
2k

1 − 4w
[(1/2)(pi+1 − pi−1) − w(pi+2 − pi−2)] (4.5)

Thus, when k = 0, Eq. 4.5 can be used to determine the additional points

by manipulating the tangent vector at the endpoints. A simpler solution is

to take the endpoints twice and perform the subdivision with this choice of

additional points.

Because of these four ingredients: subdivision, locality, interpolation, and

shape control; the four-point subdivision scheme is a simple and convenient
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technique for curve design that has been applied for the generation of ruled

surfaces [82] and is also appealing for the interpolation of dual quaternions

and the design of motion and computation of the the swept surface as will be

discussed next.

4.2.2 Discrete Swept Surface

Suppose a set of discrete positions of a cylindrical cutter is specified along a

toolpath. Each of these positions can be represented by a dual quaternion

Q̂i by attaching the moving reference frame to the center of the cylinder such

that its z-axis is along the axis of the cylinder (see [75]). The aforementioned

subdivision scheme may be applied directly to the set of dual quaternions

in order to generate in-between positions. The new positions obtained by

the scheme may need to be checked for gouging avoidance using a similar

procedure as described in [75]. If, after certain level of refinement by means

of the subdivision scheme, a manufacturing tolerance is not expected to be

exceeded, the unconstrained scheme can be continuously applied in order to

obtain a refined set of positions of the cutter. It is worth to note that since

the converging dual quaternion curve is C1 as long as the shape parameter

0 < w < 1/8, then, the converging rigid body motion is also C1. Shape

parameters out of this range cause non-smooth motions which are not useful

for numerical control machining simulation [2].

Should the cutter follow an open trajectory, Eq. 4.5 may be used to adjust

the tangent of the limit curve at the end dual quaternions. In such a case the

relationship between the dual-quaternion derivative ˙̂
Q and the dual velocity

V̂ can be used in order to take into account the angular velocity v about and
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linear velocity v0 along the instantaneous screw axis of the displacement. Such

relationship can be found in [22]:

˙̂
Q = (1/2)V̂Q̂ (4.6)

where the dual velocity V̂ = v+ǫv0. The derivative ˙̂
Q defines a tangent vector

of the limit curve at the dual quaternion Q̂. Another option to generate the

two additional dual quaternions is to input the dual quaternions representing

the end positions twice in the corresponding subdivision step as explained in

the previous subsection.

After the desired level of refinement has been reached, one might make use

of the dual quaternion version of Eq. 4.5 and then by means of Eq. 4.6 solve for

the dual velocity at each position, from which the angular and translational

velocities could be obtained. Finally, the envelope condition, Eq. 4.1, could

be invoked to find the points that belong to the swept surface at each specific

position. These points, at each discrete position, which satisfy the envelope

condition make up what is known as the characteristic curve [78].

However, recalling the geometric meaning of the four-point subdivision

scheme, Fig. 4.1, it is realized that the dual quaternion generated lies on the

same line passing through the dual quaternions located at the “midpoints”

of the upper and lower sides of the polygon. Given that a line in the image

space represents a screw motion [22], one can take advantage of this geometric

fact to calculate the characteristic curve by applying what was described in

section 2.3 specifically to the case of a screw motion since a line in the image

space is the simplest case of a rational Bézier curve. Before continuing, it

is instructive to notice that a line in the image space generates a Darboux’s
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Figure 4.2: Dual quaternion version of the 4-point subdivision scheme. Q̂i+1/2

belongs to the screw motion that contains Ŝi and T̂i

motion where the path of any point of a rigid body is a planar curve [42].

Referring to Fig. 4.2, let Q̂i+1/2 denote a dual quaternion obtained by the

subdivision scheme, and, Ŝi and T̂i denote the dual quaternions at the lower

and upper midpoints of the polygon, respectively. Then, a line segment Q̂i(t)

representing the screw motion that contains Q̂i+1/2 can be given by

Q̂i(t) = (1 − t)Ŝi + tQ̂i+1/2, 0 ≤ t ≤ 1 (4.7)

Obviously, when t = 1 we obtain the dual quaternion Q̂i+1/2 that belongs to

the subdivision process.

Now, the trajectory M̃2(t) of any tangent plane M of the cylinder under-

going the screw motion can be found by plugging Q̂i(t) into Eq. 2.15

M̃2(t) =

2
∑

l=0

B2

l (t)M̃l (4.8)

where B2
l (t) are Bernstein basis polynomials of degree 2 and M̃l denote the
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control Bézier planes given by

M̃l =
1

C2
l

∑

f+g=l

C1

fC
1

g (QfM(Q0

g)
∗ + Q0

fmQ∗

g −Qfm(Q0

g)
∗) (4.9)

and terms such as C2
l denote binomial coefficients.

The plane trajectory M̃2(t) can be written in matrix form as follows

M̃2(t) =
[

H2,∗(t)
]

M (4.10)

where

[

H2,∗(t)
]

=
2
∑

l=0

B2

l (t) [H∗

l ] (4.11)

with

[H∗

l ] =
1

C2
l

∑

f+g=l

C1

fC
1

g ([H
+

f ][H−

g ] + [H−

g ][H∗0+

f ] − [H+

f ][H∗0−

g ]) (4.12)

and

[H+

f ] =









Qf,4 −Qf,3 Qf,2 Qf,1

Qf,3 Qf,4 −Qf,1 Qf,2

−Qf,2 Qf,1 Qf,4 Qf,3

−Qf,1 −Qf,2 −Qf,3 Qf,4









(4.13)

[H−

g ] =









Qg,4 −Qg,3 Qg,2 −Qg,1

Qg,3 Qg,4 −Qg,1 −Qg,2

−Qg,2 Qg,1 Qg,4 −Qg,3

Qg,1 Qg,2 Qg,3 Qg,4









(4.14)

[H∗0+

f ] =









Q0
f,4 −Q0

f,3 Q0
f,2 0

Q0
f,3 Q0

f,4 −Q0
f,1 0

−Q0
f,2 Q0

f,1 Q0
f,4 0

−Q0
f,1 −Q0

f,2 −Q0
f,3 0









(4.15)

[H∗0−

g ] =









Q0
g,4 −Q0

g,3 Q0
g,2 0

Q0
g,3 Q0

g,4 −Q0
g,1 0

−Q0
g,2 Q0

g,1 Q0
g,4 0

Q0
g,1 Q0

g,2 Q0
g,3 0









(4.16)
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Equation 4.8 can be evaluated by means of the de Casteljau algorithm.

Recalling the duality between the geometry of points and the geometry of

planes [55], it can be said that any ruling line of the developable surface traced

out by the tangent plane during the screw motion can be obtained from the

intersection of the two intermediate planes [H1,∗
0 ]M and [H1,∗

1 ]M of the de

Casteljau algorithm. Since we are only interested in the ruling when t = 1, we

can compute that line which lies on the swept surface of the screw motion by

finding the intersection of the two control planes M̃1 and M̃2. The Plücker

coordinates of the intersection line are given by the wedge product of the two

planes M̃1 ∧ M̃2. The wedge product is a generalization of the cross product

into higher dimensions, see [43]. Finally, the intersection between the ruling

line on the screw motion and the corresponding ruling line of the cylinder

intersect at one point. It must be noticed here that the ruling line on the

screw motion and the tangent line parallel to the cylinder axis lie on the same

tangent plane. The intersection point can be obtained from the wedge product

of any three of the four intermediate planes from the screw motion and from

the rational Bézier representation of the cylinder as described by Xia and

Ge [50] which leads to an analytical expression for the characteristic curve as

explained in subsection 2.3.2. This way, the characteristic curve at a discrete

position can be constructed. Figure 4.3 sketches the computation of the point

on the characteristic curve as the intersection of the ruling line of the cylinder

and the ruling line of the screw motion of the corresponding tangent plane.

The contribution to the swept surface from the upper and bottom planes

of the finite cylinder and from the circular edge are computed as described in
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Figure 4.3: Computation of point on swept surface. The intersection point of
the ruling line on the tangent plane of the cylinder and the ruling line of that
tangent plane undergoing the screw motion is the point on the characteristic
curve

subsection 2.3.2.

4.3 Computer Implementation And Example

The algorithm to generate the swept surface out of a set of discrete positions

of a cylindrical cutter can be summarized as follows.

Given an ordered set of dual quaternions representing the discrete positions

of a cylindrical cutter, the four-point subdivision scheme is applied, Eq. 4.2.

Then, based on the screw motion of the tangent planes of the cylinder, Eq. 4.10,

the control structure is obtained for the screw displacement of each plane.

Finally, the intersection of the three planes, the two intermediate obtained from

the screw motion of the tangent plane for t = 1 and any of the intermediate

planes that originate the tangent plane in the rational Bézier representation
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of the cylinder in the discrete position, permits to obtain the points on the

characteristic curve, Eq. 2.42. The contributions from the top and bottom

planes as well from the circular edges to the swept surface are also determined.

Figure 4.4 shows the characteristic curves of the interpolating positions

obtained by the four-point interpolatory subdivision scheme for a cylindrical

cutter given ten positions extracted from the NC part program presented by

Chiou and Lee [58]. The shape parameter used for this example was w = 1/16.

The ten cutter contact (CC) points are transcribed in Table 4.1. x, y, and

z are the cartesian components of the translation vector of the pivot point of

the tool, which in this example is the midpoint along the axis of the cylinder.

θA and θC are the corresponding rotations about the x and z axes in degrees.

For implementation purposes, a cylindrical cutter of unit height was used.

In order to determine which points on the characteristic curve should be dis-

played, the distance between the computed points and the midpoint along the

axis of the cylinder was checked at each discrete position in the local frame of

the cutter. If this distance was outside of the range of the unit height cylinder

then the points are not displayed. As for the ruling lines traced out by the top

and bottom planes, after determining whether they contribute to the swept

surface by simple trigonometry taking into account the radius of the cylinder

one can determine the effective length of the ruling line. For the circular arcs

that contribute to the swept surface, the condition stated in Eq. 2.43 must be

checked. Figure 4.5 shows the swept surface with the contributions from the

cylindrical surface, the top plane, and the circular edge of the cylinder.

The application was implemented on a 1.50 GHz laptop using Microsoft R©
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CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10
x -0.0499 -0.0148 0.0004 0.0102 0.0136 0.0125 0.0072 -0.0012 -0.0052 -0.0017
y 1.1717 -1.1867 -2.7558 -4.1193 -5.2711 -6.2307 -6.7454 -6.4152 -5.5897 -4.6435
z 4.8600 5.2681 5.1969 4.9501 4.6330 4.3285 4.2291 4.4644 4.6232 4.4840
θA 11.4210 -7.3160 -16.7896 -24.0767 -28.9988 -31.4808 -28.4045 -15.4525 2.6137 22.7803
θC 2.7550 -1.1910 0.0809 0.3361 0.3501 0.2974 0.2008 0.0082 0.9420 0.0098

Table 4.1: NC part program for Fig. 4.4

Figure 4.4: Characteristic curves on the surface swept by the cylindrical cutter
after four rounds of subdivision; the shape parameter w=1/16.

Visual C++ and OpenGL R©. In this example four rounds of subdivision were

performed obtaining 135 in-between positions. The computational time was

6.5 min. For a lower level of refinement, e.g. three rounds of subdivision, the

computational time is reduced in half.

4.4 Conclusions

The four-point interpolatory subdivision scheme was readily adapted to the

interpolation of dual quaternions representing rigid body displacements. Such

scheme is numerically robust and computationally simple to implement in

order to generate fast interpolation of a rigid body motion. Since the limit

curve of such scheme is a C1 b-spline curve, the motion generated is C1 as
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Figure 4.5: Swept volume of example with w=1/16. The yellow surface is
traced out by the cylindrical surface; the green is the contribution of the top
plane; and the red is the swept of the circular edge of the top face of the
cylinder.

long as the shape factor is between the appropriate range from 0 to 1/8. Given

the geometric meaning of the algorithm when extended to the image space,

the computation of the characteristic curve for each of the discrete positions

of a developable surface can efficiently be carried out. In this chapter only

a cylindrical body was considered. Nonetheless, a similar approach may be

implemented on any developable surface, i.e. generated by the motion of a

plane. Moreover, if the convenience of such a surface is not possible, the

approach still is useful since it allows to compute the dual velocity for each

discrete position in the image space and to determine the velocity of any

point on a rigid body and then invoke the envelope condition to calculate the

characteristic curve. This last fact has not been implemented by the authors

and will be explored in future work.

Overall, the discrete method for motion interpolation and swept surface

generation is a useful tool for numerical control tool-path verification and

simulation, robot path planning, and computer animation.

64



Chapter 5

Motion Generation And Swept

Volume Analysis of a Cylinder

Using a Surface Subdivision

Scheme

5.1 Introduction

The notion of two-parameter motions has been introduced by Bottema and

Roth [42] when the positions of a rigid body depend on two parameters, u and

v say. In this case, the locus of a point is, in general, a surface which is called

the trajectory surface; that of a plane is the set of tangent planes of a surface,

enveloped by the plane; and the locus of a moving line is its trajectory con-

gruence. The connection with time, a one dimensional phenomenon, can be

recovered when arbitrary functions of one parameter t are introduced, i.e. u(t)

and v(t); thus, a motion in the ordinary sense is defined. Ge and Sirchia [48]

developed computer aided design methods for synthetizing two-parameter ra-

tional Bézier and b-spline motions. Ge et al. [54] studied the plane trajectory

of a two-parameter rational Bézier motion. Xia and Ge [52] used the duality
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between point and plane geometry in projective geometry to exactly compute

the boundary surfaces of a cylinder undergoing a two-parameter rational Bézier

motion.

This chapter extends the approach employed in chapter 4 to the compu-

tation of the swept surface of a cylinder undergoing the motion prescribed by

the surface (tensor-product) version of the four point interpolatory subdivi-

sion scheme which is a two-parameter dependent scheme. Here, we also take

advantage of the geometric features of the subdivision scheme in the image

space and make use of the results obtained by Xia and Ge [52].

5.2 Discrete Swept Surface Computation

In this section, the tensor product version of the four-point interpolatory sub-

division scheme developed by Dyn, Levin and Gregory [29] is presented. Then,

an adaptation of the scheme to handle dual quaternions is introduced along

with a kinematic interpretation that is used to generate the swept surface of

a cylindrical cutter undergoing the two-parameter motion.

5.2.1 Tensor Product Interpolatory Subdivision Scheme

The four point interpolatory subdivision scheme used in chapter 4 can be easily

extended for the design of a surface which passes through a set of control points

assembled as a regular squarelike grid of the form

pi,j; −2 ≤ i ≤ n + 2, −2 ≤ j ≤ m + 2 (5.1)

First, the subdivision rule, Eq. 4.2, is applied to the index i, inserting points

between pk
i,j and pk

i+1,j . Then, the same scheme is applied to the index j
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ending up with a denser net of points that can be further refined as required.

Thus, the tensor-product form of the four point interpolatory scheme is the

following























































pk+1

2i,2j = pk
i,j , −1 ≤ i ≤ 2kn + 1,−1 ≤ j ≤ 2km + 1,

pk+1

2i+1,2j = (1/2 + w)(pk
i,j + pk

i+1,j) − w(pk
i−1,j + pk

i+2,j),

−1 ≤ i ≤ 2kn,−1 ≤ j ≤ 2km + 1,

pk+1

i,2j+1 = (1/2 + w)(pk+1

i,2j + pk+1

i,2j+2) − w(pk+1

i,2j−2 + pk+1

i,2j+4),

−1 ≤ i ≤ 2kn + 1,−1 ≤ j ≤ 2km.

(5.2)

It should be noticed here that applying the scheme to the index j first and

then to the index i yields the same set of points as sketched in Fig. 5.1.

For 0 < w < 1/8 the points computed by the above process converge to

a surface which has continuous tangent plane. This surface may be viewed

as a blending surface of the m + 2 curves pj(t), t ∈ [0, n], obtained by the

application of the refinement rule 4.2 to the points {pij;−2 ≤ i ≤ n + 2} for

j = −2, . . . , m + 2. The blending process uses 4.2 again on the sets of control

points {p−2(t), . . . ,pm+2(t)}, t ∈ [0, n], to yield the surface p(t, s), t ∈ [0, n],

s ∈ [0, m] which interpolates the curves pj(t), 0 ≤ j ≤ n.

An appealing feature of subdivision schemes is their ability to represent

surfaces of arbitrary topology. Therefore, they can be used to interpolate

closed and open surfaces; i.e. patches. In the former case, the subdivision

process is applied cyclicly. In the latter case, one may use Eq. 4.5 to control

the tangent in each direction i and j in order to generate the additional points

required. Another option is to repeat the first and the last control points in
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pk i , j pk i , j+1 pk i , j+2 

Pk+1 i-1 , j 

Pk+1 i , j 

Pk+1 i+1 , j 

Pk+1 i+2 , j 

Pk+1 2i+1,2 j+1 

Figure 5.1: Any interior point, represented by the black dot, can be obtained
from either a set of points in the i direction (red dots) or a set of points in the
j direction (turquoise dots) in the tensor-product subdivision scheme.

the subdivision process as was explained for the curve case in the previous

chapter. This is the approach used in this work for implementation purposes.

5.2.2 Discrete Swept Surface

The subdivision scheme 5.2 can be readily extended to interpolate a given set

of positions of a rigid body represented by dual quaternions. Since the algo-

rithm converges to a surface with continuous tangent plane the motion is C1

continuous given the fact that the motion is as smooth as its dual quaternion

surface in the image space.

In the previous subsection, it was recalled that any interior point on the

converging surface can be obtained from either a set of four points in the

i direction or a set of four points in the j direction. This means that any

interior dual quaternion can be obtained from a set of four dual quaternions
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in the i or in the j direction from the immediately previous subdivision stage.

Therefore, a position obtained from the subdivision scheme is the intersection

of two screw motions, one in the i direction and one in the j direction. Each

screw motion can be described by a line in the image space as follows

Q̂(i) = (1 − i)̂si + iq̂i+1/2, 0 ≤ i ≤ 1 (5.3)

Q̂(j) = (1 − j)̂sj + jq̂j+1/2, 0 ≤ j ≤ 1 (5.4)

where ŝi and ŝj are the midpoint quaternions of the lower side of the corre-

sponding parallelogram in the image space as explained in the previous chap-

ter; q̂i+1/2 and q̂j+1/2 are the same dual quaternion representing the position

obtained from the subdivision scheme which is at the last instant, i.e. i = 1,

j = 1, on both screw motions.

When using the tensor product scheme to generate the two-parameter mo-

tion of a cylinder, each of the screw motions has a characteristic curve on the

cylindrical surface at the last instant, i.e. Pi=1(s) and Pj=1(s), being s the

parameter in the rational Bézier representation of the cylinder Eq. 2.38. The

characteristic curves can be obtained by the method described in chapter 4.

Because normals of all the points on Pi=1(s) are perpendicular to Vi and nor-

mals of all the points on Pj=1(s) are perpendicular to Vj, where V(Vi,Vj)

is the velocity, so the normal of the intersection point of above two curves

must be perpendicular to V and, thus, belongs to the swept surface of the

cylindrical surface.

Now, as it was described in the previous chapter, the analytical expression

of the characteristic curve can be obtained as the intersection of the two last

intermediate planes in the de Casteljau algorithm of the cylindrical surface
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and of the two last intermediate planes in the de Casteljau algorithm of each

tangent plane of the cylinder undergoing the screw motion. This statement

applies to both screw motions; therefore, in order to find the intersection point,

one must find the parameter or parameters s, where the set of four planes that

gives origin to Pi=1(s) and the set of four planes that gives origin to Pj=1(s)

are concurrent. This condition for concurrency can be expressed such that

the determinant of the 4 × 4 matrix formed by the four homogeneous vectors

representing any three of the four planes from one set and any one of the two

non-overlapping planes from the other group vanishes. As shown by Xia and

Ge [52] this results in a polynomial equation of degree 6 in the variable s that

can be reduced to a quartic equation in s. The quartic equation might have

4, 2, or 0 real roots; there are 2 real roots, 1 real root, or 0 real root inside

[0,1), respectively. After obtaining s, the intersection point can be obtained

by plugging s into any of the equations of the characteristic curves Pi=1(s) or

Pj=1(s). For a finite cylinder, the distance to a reference point on the cylinder

must be checked in order to determine if the point belongs to the swept surface

of the finite cylinder.

As for the top and bottom circular faces, each of their planes traces out a

ruling line in the i and in the j direction. Therefore, the intersection of these

two ruling lines is the point on the swept surface of an infinite plane at the

position obtained from the subdivision scheme, which can be solved by finding

the intersection point of any three of the four last intermediate planes in the

de Casteljau algorithms from the screw motions in i and j directions of the

corresponding plane. In order to check if this point lies on the swept surface
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of a finite cylinder one needs to compare the distance from the point to the

center of the circular face with the radius of the circle.

In regards to the circular edges, the grazing points need to be determined

by checking the circular arcs that fulfill the conditions 2.44. The quaternion

derivative at each discrete position is determined by using Eq. 4.5 in the i and

j direction. Then the normalization procedure described in subsection 2.3.2 is

carried out to solve for the velocities Vi and Vj , respectively.

5.3 Computer Implementation And Example

The procedure just developed for the discrete representation of the swept sur-

face of a cylindrical tool of unit length undergoing a motion as prescribed

by the tensor-product subdivision scheme 5.2 has been applied to the cutter

location (CL) data displayed in Fig. 5.2

The contributions of the cylindrical face, the top plane, and the top circular

edge are shown in Fig. 5.3.

For implementation purposes a data structure consisting of a matrix whose

elements are objects, with private members containing the dual quaternions

ŝi, ŝj , and q̂i+1/2 that give origin to the representative screw motions at each

discrete position represented by q̂i+1/2 , was designed. Appropriate operator

overloading functions were implemented that are used during the subdivision.

5.4 Conclusions

A tensor-product subdivision scheme was extended to handle dual quaternions.

The tensor-product dual quaternion surface in the image space has continuous
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Figure 5.2: Initial positions of a cylindrical cutter

tangent plane; thus, the resulting two-parameter motion described by the rigid

body is of C1 continuity. The geometry of the subdivision scheme in the image

space of spatial kinematics is exploited to generate a discrete representation of

the swept surface of a cylindrical tool undergoing the motion prescribed by the

scheme. The results have applications in CNC machining simulation, collision

detection, and computer graphics.
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Figure 5.3: Swept surface generated by a cylindrical tool after 5 rounds of
subdivision using a shape factor ω = 1/16. The yellow surface is generated
by the cylindrical face; the red surface is generated by the top plane; and the
green surface is generated by the top circular edge.

73



Chapter 6

Mechanism Animation by

Means of Subdivision

This chapter is concerned with the classical problem of position analysis of a

planar four-bar linkage, also known as a planar 4R closed chain. The four-

bar position analysis is such a well-solved problem that it is covered in every

undergraduate text in the area of mechanism analysis and synthesis (see for

example, [83, 84]). It involves the solution of a so-called loop closure equa-

tions, which is a pair of trigonometric equations relating angular positions of

the output and coupler links to the angular position of the input link. The

analytical solution can be obtained by reducing the loop closure equation to a

quadratic equation.

In theoretical kinematics ([42], [43]), the motion of the coupler link of a

planar 4R chain is studied as the constrained motion of a rigid body (the

coupler) subject to the geometric constraints that two points (the moving piv-

ots) of the body stay on two separate circles. Following this perspective, this

chapter seeks to develop a method for generating positions of the coupler link

of a planar 4R chain as a constrained subdivision problem. The main idea

74



is to use planar quaternions to transform coupler positions into points in the

space of planar quaternions. In this way, the coupler motion becomes a pla-

nar quaternion curve, which is obtained as the intersection of two constraint

surfaces that correspond to the geometric constraints that two moving pivots

stay on two separate circles. The four-point interpolatory subdivision scheme

developed by Dyn, Levin and Gregory [29, 82] for curves in the field of Com-

puter Aided Geometric Design (CAGD) is extended to planar quaternions for

the generation of an inbetween candidate position of the coupler link from a

given set of four key positions. The planar quaternion corresponding the can-

didate position is then checked and modified according to constraint surfaces

of the planar 4R chain. The resulting new inbetween position that satisfies the

kinematic constraints is then inserted into the given set of key positions. In

the early stage of this refinement process, each new inbetween position must

be made to satisfy the 4R kinematic constraints exactly to ensure the correct

motion. When there is sufficient number of coupler positions, one can use

the unconstrained four-point interpolatory scheme to generate the inbetween

positions to allow for fast animation of the coupler motion.

The work presented in this paper is partly related to the recent work of Jin

and Ge [85] that deals with the problem of synthesizing rational interpolating

motions subject to the kinematic constraints of planar 2R and 3R open chains.

Instead of formulating the problem using an analytic form of B-spline interpo-

lation, this paper seeks to obtain inbetween positions of the coupler link based

on a subdivision and refinement process. For computer aided synthesis of pla-

nar 4R chain, this paper offers a new approach for four-bar motion simulation
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by generating the simulation data for the coupler positions directly from a set

of given positions used for rigid body guidance. The method presented in this

chapter may also be used for generating additional coupler positions for task

specification in computer aided synthesis of four-bar linkages.

The chapter is based on the paper by Trujillo and Ge [2] and is organized

as follows. Firstly, a review of planar quaternions as well as the kinematics

of planar 4R closed chains is presented. Then, the numerical geometry of the

coupler motion is studied. A constrained subdivision scheme for generating

inbetween positions of the coupler motion is developed by combing the four-

point interpolatory subdivision scheme with the kinematic constraints of the

coupler motion. Examples and discussion on the issue concerning how to adjust

the shape parameter and the choice of the initial positions in the four-point

interpolatory scheme are included. Finally, concluding remarks are stated.

6.1 Kinematics of Planar 4R Closed Chains

Planar quaternions are an elegant tool to represent general planar displace-

ments involving both rotations and translations. In this section, a review of

planar quaternions and their use in the kinematics analysis of the planar 4R

closed chain is presented in so far as necessary for the development of this

chapter. More details on the subject can be found in [43].

6.1.1 Planar Quaternions

Let d1 and d2 denote the coordinates of the origin o of the moving frame M

with respect to the origin O of the fixed frame F. Let α be the angle between
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M and F as depicted in Fig. 6.1. The planar displacement can be represented

by a planar quaternion Z = Z1ǫi + Z2ǫj + Z3ǫk + Z4, where i, j, k and 1 form

the quaternion basis and ǫ is the dual unit with the property ǫ2 = 0. The

components of the planar quaternion Z = (Z1, Z2, Z3, Z4), are given by

Z1 = (d1/2) cos(α/2) + (d2/2) sin(α/2)

Z2 = −(d1/2) sin(α/2) + (d2/2) cos(α/2) (6.1)

Z3 = sin(α/2)

Z4 = cos(α/2)

These four components can be identified as a point in four dimensional space.

The point Z is called the image point of a planar displacement. The set

of image points that represent all planar displacements is called the image

space of planar displacements. From Eqn. (6.1), the coordinates of a planar

quaternion must satisfy the relationship

Z2

3 + Z2

4 = 1 (6.2)

The composition of two planar displacements is obtained by the multiplication

of the two planar quaternions, G = (G1, G2, G3, G4) and H = (H1, H2, H3, H4),

representing each of the displacements and can be computed in matrix form

as follows

GH = [G+]H = [H−]G (6.3)

where

[G+] =









G4 −G3 G2 G1

G3 G4 −G1 G2

0 0 G4 G3

0 0 −G3 G4









(6.4)
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Figure 6.1: Planar displacement

and

[H−] =









H4 H3 −H2 H1

−H3 H4 H1 H2

0 0 H4 H3

0 0 −H3 H4









(6.5)

The components of a planar quaternion are related to the homogeneous

matrix of a planar displacement by

[A] =
1

Z2
3 + Z2

4





Z2
4 − Z2

3 −2Z3Z4 2(Z1Z4 − Z3Z2)
2Z3Z4 Z2

4 − Z2
3 2(Z1Z3 + Z4Z2)

0 0 Z2
4 + Z2

3



 (6.6)

Notice, as pointed out in [70], that the matrix [A] remains unaltered after

multiplying each of the quaternion components by a nonzero scalar w, i.e., Z

and wZ represent the same planar displacement. Therefore, Eqn. (6.2) may

be transformed in the more general relationship

Z2

3 + Z2

4 = w2 (6.7)

This means that if a quaternion is obtained by an interpolation or approxima-

tion process, there is no need to normalize its coordinates in order to use it as a

displacement operator, since any quaternion can be viewed as a homogeneous
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Figure 6.2: Planar 4R closed chain

equivalent of the quaternion that fulfills Eqn. (6.2) and the computations are

performed using homogeneous coordinates.

6.1.2 Planar 4R Closed Kinematic Chain

A planar 4R closed chain is composed of a pair of planar 2R chains with

their end links rigidly connected. For each of the 2R chains, the constraint

manifold can be computed as a composition of the corresponding displace-

ments from the moving frame M to the fixed frame F, as shown in Fig. 6.2.

For instance, the transformation Y(θ1, φ1) of the coupler computed through

the left side chain, with M attached to the midpoint of the coupler and

F attached to the midpoint of the ground link, is composed of a transla-

tion by the planar quaternion H1(h) = (h/4, 0, 0, 1), a rotation by Z(φ1) =

(0, 0, sinφ1/2, cos φ1/2), a translation by X(a1) = (a1/2, 0, 0, 1), another rota-

tion by Z(θ1) = (0, 0, sin θ1/2, cos θ1/2), and finally a translation by the planar

quaternion G1(g) = (−g/4, 0, 0, 1). Therefore,

Y(θ1, φ1) = G1(g)Z(θ1)X(a1)Z(φ1)H1(h) (6.8)
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whose components are

Y1(θ1, φ1) = (a1/2) cos((θ1 − φ1)/2) − τ cos((θ1 + φ1)/2)

Y2(θ1, φ1) = (a1/2) sin((θ1 − φ1)/2) + σ sin((θ1 + φ1)/2)

Y3(θ1, φ1) = sin((θ1 + φ1)/2)

Y4(θ1, φ1) = cos((θ1 + φ1)/2) (6.9)

where

τ = (g − h)/4, σ = (g + h)/4 (6.10)

Similarly, the constraint surface for the 2R chain on the right side Y(θ2, φ2) can

be obtained. Since both are transformations for the same points on M with

respect to F, then Y(θ1, φ1) = Y(θ2, φ2) = Y = (Y1, Y2, Y3, Y4). Eliminating

θ1 and φ1 from Eqn. (6.9), and carrying out the same procedure with the

components of Y(θ2, φ2), the equations of the constraint manifolds may be

written as follows

(Y1 + τY4)
2 + (Y2 − σY3)

2

Y 2
3 + Y 2

4

=
a2

1

4
(6.11)

(Y1 − τY4)
2 + (Y2 + σY3)

2

Y 2
3 + Y 2

4

=
a2

2

4
(6.12)

The constraint manifolds can be viewed by projecting them onto the hy-

perplane Y4 = 1. Therefore, the equations of the projected surfaces are

(Y1 + τ)2 + (Y2 − σY3)
2 =

a2
1

4
(1 + Y 2

3 ) (6.13)

(Y1 − τ)2 + (Y2 + σY3)
2 =

a2
2

4
(1 + Y 2

3 ) (6.14)
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which are the equations of two hyperboloids. Hence, the kinematic constrain of

the planar 4R chain, projected onto Y4 = 1, is the intersection curve of this two

hyperboloids which also recalls the fact that the planar 4R chain has one degree

of freedom. Keeping Y4 and Y3 constant, Eqns. (6.11) and (6.12) become the

equations of two circles. Therefore, the position of the coupler corresponding

to that slice is any of the two possible intersections of the circles.

The constraint curve Y = (Y1, Y2, Y3, Y4) describing the motion of the cou-

pler in the 4R closed chain can be parameterized by determining the angle φ1

in terms of θ1 and plugging it into Eqn. (6.9), yielding the components of the

planar quaternions along the curve. The angle φ1 is given by Eqn. (6.15), as

follows

φ1(θ1) = 2 arctan

(

−B ±
√

∆

C − A

)

(6.15)

where

A = 2ha1 − 2gh cos θ1

B = 2gh sin θ1 (6.16)

C = g2 + h2 + a2

1 − a2

2 − 2a1g cos θ1

Picking the positive or negative root in Eqn. (6.15) determines which of the

two possible configurations of the linkage the curve represents.

6.2 Constrained Subdivision of Coupler Posi-

tions

The 4-point interpolatory subdivision algorithm described in chapter 4 can

handle planar quaternions by considering these as regular points in R4 since
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planar quaternions are a singular case of dual quaternions. The first step is

to convert a given set of ordered positions of the coupler into a set of ordered

planar quaternions, Z2i (i = 0, . . . , n) using Eqns. (6.9) and (6.15). We then

generate inbetween planar quaternions Z2i+1 (i = 0, . . . , n − 1) by applying

the 4-point interpolatory subdivision using the four points, (Z2i−2, Z2i, Z2i+2,

Z2i+4). In the case of a Grashof linkage, the kinematic constraint is a closed

curve and the subdivision scheme can be applied continuously using the initial

set of key positions. However, for non-Grashof linkages the kinematic con-

straint is an open curve. It should be noted here that Schrocker et al. devised

a method to study the branch problem in 4R planar closed chains [86]. Basi-

cally, the method determines the tangential contact points of the circular cross

sections of the constraint hyperboloids of the 2R open chains comprising the

4R closed chain. Such method is useful to identify the number and type of

branches of a 4R linkage and the branch that a specific position of the coupler

belongs to. As the scheme requires four points to generate a new inbetween

point, special treatment is required for the generation of Z1 and Z2n−1. The

first inbetween point Z1 is generated from the point set (Z0,Z0,Z2,Z4), effec-

tively counting the point Z0 twice. Similarly, Z2n−1 is generated from (Z2n−4,

Z2n−2, Z2n, Z2n), effectively counting Z2n twice. Another possibility of gener-

ating the missing points is by controlling the slope of the tangent of the curve

at the end points as suggested by Dyn et al. Nonetheless, the first approach

generates acceptable results as will be shown in the examples.

An inbetween point such as Z2i+1 in general does not satisfy the kinematic

constraints of the coupler motion, i.e., it does not satisfy the equations (6.11)
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and (6.12) simultaneously. It has to be modified in order to meet the kine-

matic constraints. One way to modify Z2i+1 is to find its normal projection on

the planar quaternion curve that represents the coupler motion of the planar

4R chain. The normal projection method was developed for quaternion based

approach for four-bar linkage synthesis by Ravani and Roth [46] and refined by

Boddulurri and McCarthy [87]. In this paper, we use a more efficient way of

modifying the planar quaternion Z2i+1 by fixing the third and fourth compo-

nents of the planar quaternion and then solving for the first two components

from the constraint equations (6.11) and (6.12). This problem is essentially

reduced to that of finding the intersection of two circles in a plane. Kinemati-

cally, this means that we are fixing the angular orientation of the coupler link

while translating the link so that the kinematic constraints would be satisfied.

The resulting new inbetween planar quaternion that satisfies the kinematic

constraints is then inserted into the given set of planar quaternions. In the

early stage of this refinement process, each new inbetween planar quaternion

must be made to satisfy the 4R kinematic constraints exactly to ensure the

correct motion. When there is a sufficient number of coupler positions, one

can use the unconstrained four-point interpolatory scheme to generate the

inbetween positions to allow for fast animation of the coupler motion.

We now turn our attention to the choice of the shape parameter w. The

value of the shape parameter w can be adjusted as the one that would minimize

the distance between the computed candidate position and the closest exact

point on the constraint surfaces. This can be formulated as the minimization

of the squared distance from the new point to the circular intersections for the
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kinematic constraints since the radii of these circles can be determined from

Eqns. (6.11) and (6.12). However, after performing the aforementioned adjust-

ment procedure and through experimentation, it has been observed that using

four exact positions as the initial points to initiate the subdivision scheme, a

value of w equal to 1/16, and after the first round of subdivision the uncon-

strained procedure generates acceptable and good-looking results.

6.3 Examples and Discussion

Figure 6.3 shows the intermediate positions obtained from eight initial key

positions and a value of w of 1/16. The initial initial key positions were com-

puted from the parameterized equation of the constraint curve as described

in the previous subsection. This is a Grashof linkage of the type crank-rocker

where its link lengths are: a1 = 100, a2 = 200 and h = g = 300. In Fig. 6.4

the quaternion curve generated by the subdivision algorithm is projected onto

3D space, dividing the vector components of the planar quaternions by their

real component, and it is compared to the exact curve computed using the

parameterized curve equation. In this case, the maximum deviation from the

kinematic constraint is 2.69%, computed as the Euclidean distance from the

interpolating quaternion to the corresponding exact quaternion divided by the

magnitude of the latter. The exact quaternion representing the position on

the parameterized curve is computed substituting the last two components of

the interpolating quaternion in the equations of the circles for the correspond-

ing slice, i. e., Eqns. (6.13) and (6.14), and simultaneously solving them.

Figures 6.5 and 6.6 display the effect of w = 1/8. In this case the maximum
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Figure 6.3: Discrete positions for planar 4R closed chain computed from 8 key
frames after first round of subdivision, w = 1/16.

Figure 6.4: Quaternion curves projected onto 3-D space. Blue: exact curve,
red: obtained by subdivision scheme, 8 key frames after first round of subdi-
vision, w = 1/16.

deviation is 5.83% and the discrepancy of the motion is visually noticeable.

Figures 6.7 and 6.8 reproduce the simulation, and the comparison of the

quaternion curves, based only on 4 initial key frames and w = 1/16. The

maximum deviation is 9.56%. The simulation of a non-Grashof linkage of

the type rocker-rocker is displayed in Fig. 6.9 and its corresponding quater-

nion curve comparison, Fig. 6.10. The simulation was achieved repeating the

end-points as described before and the maximum deviation found was 1.86%.

Comparing the computational efficiency of the scheme to that of the exact
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Figure 6.5: Discrete positions for planar 4R closed chain computed from 8 key
frames after first round of subdivision, w = 1/8.

Figure 6.6: Quaternion curves projected onto 3-D space. Blue: exact curve,
red: obtained by subdivision scheme, 8 key frames after first round of subdi-
vision, w = 1/8.

simulation using Eqns. (6.9) and (6.15), it seems that the subdivision approach

is faster since for the exact simulation trigonometric and inverse trigonomet-

ric functions are required which are computationally more expensive than the

fewer multiplications in the subdivision algorithm. The difference in comput-

ing time between both methods increases as the number of required frames

to display grows. For instance, if displaying 32 positions of the coupler, the

subdivision scheme is three times faster than using the exact simulation and

almost seven times faster when displaying 128 positions, according to experi-
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Figure 6.7: Discrete positions for planar 4R closed chain computed from 4
initial key frames without constraint check, w = 1/16.

Figure 6.8: Quaternion curves projected onto 3-D space. Blue: exact curve,
red: obtained by subdivision scheme, 4 key frames without constraint check,
w = 1/16.

mentation.

6.4 Conclusions

The 4-point interpolatory subdivision scheme was readily extended to pla-

nar quaternions. This procedure can be used to efficiently generate accurate

discrete positions of the coupler in a planar 4R closed chain. Computing

four exact positions using the exact simulation by means of the parameter-

ized curve and using a shape factor of 1/16 offer a very precise simulation
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Figure 6.9: Discrete positions for non-grashof linkage, 8 key frames after first
round of subdivision, w = 1/16.

Figure 6.10: Quaternion curves projected onto 3-D space for non-grashof link-
age. Blue: exact curve, red: obtained by subdivision scheme, 8 key frames
after first round of subdivision, w = 1/16.

tool for Grashof and non-Grashof linkages. Furthermore, after only one round

of subdivision the unconstrained scheme can be continuously applied since

it generates very accurate simulations. The procedure utilizing the 4-point

interpolatory subdivision algorithm possesses the interesting feature of gener-

ating fast simulations and animations within acceptable precision. Therefore,

this type of motion simulation procedure can be implemented in applications

where fast animation of the coupler and the whole linkage is desired; for in-

stance, on-line four-bar linkage position analysis [88]. Moreover, the technique

may have potential applications in robot path planning and CNC machining.
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The extension of the approach to more complex kinematic chains where the

constraint check becomes more challenging is an open issue.
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Chapter 7

Concluding Remarks and

Future Work

The work carried out along the course of this research has aimed to develop

new approaches for design and analysis of motion suitable for CAD-CAM in-

tegration. In the hope that not only shape but also kinematic information

should be conveyed in an efficient manner that can be easily implemented in

CAD-CAM systems and eventually interpreted by CNC manufacturing equip-

ment.

Towards this goal, a technique for orientation interpolation with angular

velocity constraints based on quaternion biarcs was developed. The resulting

b-spline quaternion curve represents a piecewise line-symmetric rational spher-

ical motion with C1 continuity. This attractive feature makes this approach for

orientation interpolation more advantageous than current approaches formally

used in 5-axis milling of sculptured surfaces. However, the actual deployment

of the quaternion biarc technique into CNC machining can only be achieved

through open architecture controllers.

The utilization of subdivision schemes for motion design seems to be a
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promising contribution. Their computational ease and numerical robustness

together with their interesting geometric traits make subdivision schemes an

attractive option for CAD-CAM applications. In this research the four point

interpolatory subdivision scheme for curve generation was adapted to the in-

terpolation of a given set of positions of a cylindrical tool represented by dual

quaternions. It was shown that the resulting discrete model of the tool path

lends itself naturally to an algorithm for computing the characteristic curve

belonging to the boundary surface of the swept volume at each of the discrete

positions as well as a discrete representation of the swept surface traced out

by the cylinder. The tensor-product version of the four-point scheme was also

utilized for the generation of the swept surface of a cylindrical cutter under-

going a two parameter motion. This is a very useful resource for tool path

verification, machining simulation, and collision avoidance.

The application of subdivision schemes in mechanism simulation has also

been explored. A preliminary attempt for the motion simulation of the coupler

link of a planar 4R closed kinematic chain was successfully achieved. However,

the use of subdivision schemes for simulation, task specification, and motion

planning in more complex kinematic chains remains unexplored. The main

challenge being the increased complexity of the kinematic constraints. This

problem can be stated in a more general way as constrained subdivision. To

this end first or even second order approximations of the kinematic constrains

can be used in order to estimate the deviation of the positions generated by the

subdivision scheme from the kinematic constrain. Should this approach prove

successful it would pave the path for generalized utilization of subdivision in
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mechanism simulation applications.
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Appendix A

Dual Velocity

The dual velocity V̂ = v + εv0 is a vector dual quaternion representing the

velocity distribution of a rigid body motion with respect to the instantaneous

screw axis of the motion. Its real part v is the angular velocity about the

instantaneous screw axis of the motion and the dual part v0 is the translational

velocity of any point on and along the screw axis. In this appendix we explain

how to compute the instantaneous dual velocity of a motion prescribed by

a generalized homogeneous dual-quaternion function Q̂(t), i.e. Q̂(t) is not

necessarily a unit dual-quaternion valued function, in the image space and

how to compute the velocity of a point on a rigid body which is undergoing

the motion described by Q̂(t).

A.1 Computation of the Dual Velocity

Let Q̂(t) = ŵ(t)q̂(t) be a generalized homogenous dual-quaternion valued

function of t in the image space where ŵ(t) = (Q̂(t)Q̂∗(t))1/2 = w + εw0

is the normalizing factor and q̂(t) are the equivalent unit dual-quaternion
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coordinates.Then

q̂ =
Q̂

ŵ
(A.1)

and the unit dual quaternion derivative ˙̂q can be obtained as

˙̂q =
ŵ ˙̂
Q − ˙̂wQ̂

ŵ2
(A.2)

where

˙̂w = (1/2)
˙̂
QQ̂∗ + Q̂

˙̂
Q∗

(Q̂Q̂∗)1/2
= (1/2)

˙̂
QQ̂∗ + Q̂

˙̂
Q∗

ŵ
(A.3)

The dual velocity V̂ is [42]

V̂ = 2 ˙̂qq̂∗ (A.4)

Plugging Eq. A.2 and q̂∗ = Q̂∗/ŵ into Eq. A.4, we obtain

V̂ = 2

[

˙̂
QQ̂∗

ŵ2
−

˙̂w

w

]

(A.5)

Therefore, the dual velocity can be obtained in terms of the homogeneous

coordinates Q̂, Q̂∗, and their corresponding derivatives ˙̂
Q and ˙̂

Q∗.

The dual velocity can be normalized as any dual quaternion in order to

obtain the instantaneous screw axis of the motion and the dual magnitude of

the dual velocity. Then V̂ can be written as follows

V̂ = (v + εv0)(l + εl0) (A.6)

where v̂ = v + εv0 is the magnitude of the dual velocity and l̂ = l + εl0 is the

instantaneous screw axis of the motion.
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A.2 Computation of the Velocity of a Point

After obtaining the dual velocity at a specific instant for a motion, the velocity

Vp of any point p on a rigid body undergoing such a motion can be computed

as follows

Vp = v0 + v × (p − l × l0) (A.7)

where l and l0 are the Plücker vector of the screw axis that can be obtained

from the dual velocity vector as previously explained.
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