

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Data Acquisition Scheduling for Wireless Sensors Networks

A Dissertation Presented

by

Carlos Gamboa

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2008

Stony Brook University

The Graduate School

Carlos Gamboa

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Thomas Robertazzi, Advisor of Dissertation

Professor, Department of Electrical and Computer Engineering

Sangjin Hong, Chairperson of Defense

Associate Professor, Department of Electrical and Computer Engineering

Wendy Tang

Associate Professor, Department of Electrical and Computer Engineering

Esther Arkin

Professor, Department of Applied Mathematics and Statistics

Lawrence Martin

Dean of the Graduate School

ii

Abstract of the Dissertation

Data Acquisition Scheduling for Wireless Sensors Networks

by

Carlos Gamboa

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2008

Wireless sensor networks have been increasingly studied by industry and

academic institutions due to their potential application in environmental

and geothermal monitoring, security enhancement among others. Such

technology would play an important role in future societies and would be

the key tool to make improvements in productivity and efficiency fast and

on a large scale. In this work it is proposed to use Divisible Load scheduling

Theory (DLT) as a mathematical tool to study data load distribution

on wireless sensors networks under time and monetary cost constraints.

Pursuing this aim, five different studies have been conducted. The first one

considered the total monetary cost optimization, and a sensitivity analysis

in a single level tree network. The problem of load distribution sequencing

for optimizing monetary cost in a single level tree network is reviewed and

iii

simulation results showed that the monetary cost function depends on the

fractions of loads assigned to each processor. In addition, a sensitivity

analysis performed on the monetary cost function suggested a complex

relationship between the cost function and the network parameters. The

second study explores such relationship proposing a strategy to study the

monetary total cost in a single level tree star network as a function of a

non-linear load parameter. The third study investigated three scheduling

load protocols on wireless sensors networks. A novel closed form solution

was found for each of the protocols presented for optimum finish, reporting

and pre-processing time for a single level tree sensor network including

an immediate measuring data feature. In the fourth study an adaptable

data scheduling methodology is presented. The schedule protocol presented

here takes into account the amount of load processed from previous load

assignments based on distributing the new incoming load to the sensor

network aiming to minimize the total finish time of processing the entire

Divisible Load Job Task (DLJT) and reducing the idle state of each

processor. Finally, the performance in terms of speedup for a single level

tree network with multiple links and cores is investigated.

iv

To my beloved wife and children

Table of Contexts

List of Figures xi

List of Tables xv

Acknowledgments xvi

1 Introduction 1

1.1 Research Purpose . 3

1.1.1 Research Objectives: 3

1.2 Justification of the Study . 3

1.3 Research Significance . 5

1.4 Organization of the Report 6

2 Efficient Scheduling for Sensing and Data Reporting in

WSN 7

2.1 Summary . 7

2.2 Introduction . 8

2.3 The Network Model and Parameters 10

2.3.1 Notations and Definitions 11

vi

2.4 Mathematical Model and Reporting Time 12

2.4.1 Sequential Reporting Time 12

2.4.2 Simultaneous Reporting Finish Time 16

2.4.3 Load Pre-processing, Sequential Reporting 18

2.5 Performance and Evaluation Results 20

2.5.1 Sequential Reporting Distribution 21

2.5.2 Simultaneous Reporting Distribution 21

2.5.3 Load Pre-processing, Sequential Reporting 28

2.6 Conclusion . 28

3 Heuristic Optimization of Sequential Load Distribution 29

3.1 Summary . 29

3.2 Introduction . 30

3.3 Mathematics: Model, Parameters and Expressions 31

3.3.1 The Model . 31

3.3.2 Optimal Finish Time and the Load Distribution . . . 33

3.3.3 Sequencing Distribution 35

3.3.4 Link-Processor and Total Monetary Cost 35

3.4 Monetary Cost Optimization 38

3.4.1 Optimization Sequencing Problem 38

3.4.2 Cost Sensitivity Analysis 40

3.5 Results and Commentaries 41

3.5.1 Algorithm Selected 41

vii

3.5.2 Sensitivity Analysis Results 42

3.6 Conclusions . 44

4 Optimizing a Divisible Load Nonlinear Cost Function 45

4.1 Summary . 45

4.2 Introduction . 45

4.3 The Model . 46

4.3.1 Notations and Definitions 46

4.4 Total Monetary Cost . 47

4.5 Results and Commentaries 47

4.6 Conclusions . 48

5 Adaptive multi scheduling protocol for divisible loads on

WSN 49

5.1 Summary . 49

5.2 Introduction . 50

5.3 The Divisible Load Job Task based reference model 51

5.4 The Divisible Load Job Task the adaptive model 56

5.4.1 CASE 1: Allocation time of LT (λt) load/job smaller

or bigger than the finish time Tf(LT (λt−1)) 56

5.4.2 CASE 2: Adapted DLJT scheduled protocol for a

partial sensor failure 58

5.4.3 Results and Commentaries 67

5.5 Conclusion . 74

viii

6 On Chip Interconnections for Wireless Sensor Networks

using DLT 76

6.1 Summary . 76

6.2 Introduction . 77

6.3 The model . 78

6.3.1 Sequential distribution, staggered start 81

6.3.2 Simultaneous distribution, staggered start 84

6.3.3 Simultaneous distribution, simultaneous start 87

6.4 DLT on SoC and NoC for Wireless Sensor Networks: M

parallel interconnection channels 90

6.5 Speedup for different schedule protocols on single level tree

network chip architecture with M parallel links 92

6.5.1 Speedup for sequential distribution sequential

processing with M parallel links 93

6.5.2 Speedup for simultaneous distribution sequential

processing with M parallel links 94

6.5.3 Speedup for simultaneous distribution simultaneous

start with M parallel links 95

6.6 DLT on SoC and NoC for Wireless Sensor Networks: M

parallel cores . 95

6.6.1 Speedup for sequential distribution sequential

processing with M parallel cores 97

ix

6.6.2 Speedup for simultaneous distribution simultaneous

processing with M parallel cores 98

6.7 Results and Commentaries 100

6.8 Conclusion . 104

7 Conclusion and Future Work 105

Bibliography 107

x

List of Figures

2.1 Single level tree (star) network with control processor 10

2.2 Timing diagram for a single level tree network with controller

and sequential reporting . 12

2.3 Timing diagram for a single level tree network with controller

and same reporting time finalization 16

2.4 Timing diagram for a single level tree network with controller

and same sequencing reporting with pre-processing 18

2.5 Finish time versus number of processors, variable inverse link

speed z and fixed load inverse measuring speed y in a single

level tree network with control processor and a sequential

reporting time. 22

2.6 Finish time versus number of processors, variable inverse

measuring speed y and fixed inverse link speed z in a single

level tree network with control processor and a sequential

reporting time. 23

xi

2.7 Finish time versus number of processors, variable inverse

link speed z and fixed inverse measuring speed y in a single

level tree network with control processor and a simultaneous

reporting time. 24

2.8 Finish time versus number of processors, variable inverse

measuring speed y and fixed inverse sensor speed z in a single

level tree network with control processor and a simultaneous

reporting time. 25

2.9 Finish time versus number of processors, variable inverse

link speed z, fixed inverse measuring speed y and inverse

processor speed w in a single level tree network with control

processor sequential reporting with pre-processing 26

2.10 Finish time versus number of processors, variable inverse

measuring speed y, fixed inverse link speed z and inverse

processor speed w in a single level tree network with control

processor sequential reporting with pre-processing 27

3.1 Single level three start network 31

3.2 Timing diagram sequence distribution 33

3.3 Methodology of the sensitivity analysis performed 39

3.4 Simulation results for heuristic algorithms tested 41

3.5 Sensitivity of monetary cost to link speed change 43

3.6 Sensitivity of monetary cost to processor speed change . . . 43

xii

4.1 Load distribution for a single level tree network Beta >0 . . 48

5.1 General DLJT’s system . 51

5.2 DLJT Load distribution finish time diagram 53

5.3 DLJT Load distribution finish time diagram including

arrival delay . 57

5.4 DLJT Load distribution finish time diagram one node partial

failure . 59

5.5 DLJT Load distribution finish time diagram one node partial

failure . 61

5.6 DLJT Load distribution finish time diagram one node partial

failure . 65

5.7 DLJT Load distribution finish time diagram one node 50

percent on Sensor ID 2 partial failure 68

5.8 DLJT Percentage load relocated for a 50 percent on Sensor

ID 2 partial failure . 69

5.9 DLJT Load distribution finish time diagram one node 50

percent on Sensor ID 5 partial failure 70

5.10 DLJT Percentage load relocated for a 50 percent on Sensor

ID 5 partial failure . 71

5.11 DLJT Load distribution finish time diagram one node 50

percent on Sensor ID 8 partial failure 72

5.12 DLJT Percentage load relocated for a 50 percent on Sensor

ID 8 partial failure . 73

xiii

5.13 DLJT percentage finish time per percentage load failure . . . 74

6.1 Single level tree network . 79

6.2 Timing diagram of single level tree with sequential

distribution and staggered start 81

6.3 Timing diagram of single level tree with simultaneous

distribution and staggered start 85

6.4 Timing diagram of single level tree with simultaneous

distribution and simultaneous start 88

6.5 Single level tree network M parallel interconnection channels 90

6.6 Single level tree network M parallel cores 96

6.7 Speedup for a single level tree M parallel links with

sequential distribution and sequential start 101

6.8 Speedup for a single level tree with M parallel links

simultaneous distribution and staggered start 102

6.9 Speedup for a single level tree with M parallel cores

simultaneous distribution and simultaneous start 103

xiv

List of Tables

3.1 Results improvement and numbers of swaps, heuristic

algorithms tested . 42

xv

Acknowledgments

I would like to start by thanking my advisor Dr. Thomas Robertazzi.

Besides his valuable advices and time, he showed me that with patience,

hard work and creativity an idea could become a fact. This research project

is an example of that.

During the past five years different many other people and institutions

contributed to this research project in many ways. I would like to thank

NSF-AGEP at Stony Brook which, through a Fellowship, provided me with

the necessary funding and support during the first year of my graduate

school and then allowed me to work as a graduate assistant giving me not

only the financial means to cover one more year of studies and research

but the opportunity to work with different AGEP students and staff

and learn from them. In addition, I would like to thank the Electrical

Engineering department especially Debbie Kloppenburg for her logistic

support, Professor Sussman-Fort for allowing me to be his teacher assistant

and Professor Vera Gorfinkel for her guidance and time while preparing for

the qualifying examination. I would also like to thank the NFS-MARIACHI

project for allowing me to work with them during part of my third year of

Graduate School.

To finish I would like to thank my family in Colombia: my brother

Leonardo, my sister Monica and my mother Elizabeth. Their example of

strength facing bad times inspired me to keep working. In the same way I

would like to thank my North American family, especially Fred, Bob and

Sharon Boutcher.

I would like to thank and dedicate this work to my wife Johanna and

my children Gabriel and baby Daniel. This work represents the effort of

all.

Chapter 1

Introduction

Among the next generation technology challenges are the design of an

energy efficient technology that can be used to acquire data, transmit and

process it in a robust and efficient fashion. In addition such technology has

to be inexpensive and in some cases easily configurable.

Such systems will be required to be able to work in complex distributed

situations to acquire data, process it and eventually to be able to make

decisions without the direct intervention of human judgment. Researchers

from industry and some academic institutions envision the use of wireless

sensor networks as a key technology that could be use to supply such needs.

The first study that used DLT to study wireless sensors networks was

presented in [1]. Different scheduling policies were presented where the

sensor has a measuring capacity. An energy use strategy for the same model

was presented as well. A divisible load is a load that can be arbitrarily

partitioned in a linear fashion and can be distributed to more than one

processor to achieve a faster solution time.

1

Initially a linear daisy chain network was considered to study optimal

divisible load sharing [2] becoming the first study that considered the DLT

optimality principle. Since then more than 15 years of research on Divisible

Load Theory has proved that this model is a tractable and suitable tool

that can be use in different applications such as parallel and distributed

processor network scheduling, data intensive computing, grid computing

and metacomputing [3].

Wired network configurations topology studies that have considered

optimum processing finish time can be found in [4] and [5]. Here, the

general assumption is that in order to obtain an efficient allocation of load

on each processor in the network the processors have to stop processing at

the same time. Optimal allocation of loads for network topologies including

bus networks and tree networks using a set of recursive equations were

studied in [6]–[7]. For complex networks, the concept of equivalent networks

was presented in [8].

Economic models for computers and telecommunications networks can

be referred to [8], [9] and [10]. The first study that related divisible

load distributions under monetary cost constrains was presented in [11].

Heuristics algorithms for optimizing the total monetary cost function in a

single level tree network function was presented [12]. There, it was shown

that the total monetary depends on the order in which a root processor

distributes load to its child processors within a network. In addition in [13]

the relationship between load distribution and energy use in a single level

2

tree wired network was introduced as a function of the network parameter

used in the DLT model. In [14] the relationship between a nonlinear load

and the total monetary cost was explored.

1.1 Research Purpose

It is proposed to study wireless sensors network under energy, monetary

cost and finish processing time constraints using Divisible scheduling Load

Theory (DLT) with the aim of developing a solid theoretical and practical

tool that could be used in the data acquisition processes.

1.1.1 Research Objectives:

1. To develop load distribution policies and sequences for minimal finish

time in wireless sensor networks using DLT.

2. To investigate the relationship between total monetary cost and load

measured in a wireless sensor network under DLT model.

3. To propose heuristic algorithms to study data load distribution on

wireless sensor networks.

1.2 Justification of the Study

Recent studies agreed that wireless sensor networks is a promising

technology that can contribute to solve problems where a traditional wired

data acquisition systems can not be used due to the cost of deployment or

3

geographical complexity. Scientists envision that the uses of this technology

would reduce costs on the data acquisition process and similarly this

technology would allow them to acquire information in strategic places to

monitor and sense data constantly such as disaster prevention applications

(volcanos eruption, building collapse), security, and scientific studies.

Due to its tractability, DLT has become a reliable mathematical tool

to study distribution of data load between processors over the pass 15

years producing more than seventy journal papers. The main aspects

(minimum finish time, monetary cost) studied in this research have been

researched within the wired network world using DLT. More recently Moges

and Robertazzi in 2006 [1] made the first attempt to use DLT in wireless

sensor networks obtaining important results and introducing the concept

of data measured into the formal DLT model. Despite this important first

effort to introduce the DLT as a mathematical tool to characterized load

distribution and energy use in wireless sensor networks there is a lot to be

considered when describing such technology using DLT. In using DLT it

is possible to describe or design schedule policies that take into account

energy availability in each sensor to perform a robust and reliable load

distribution policy. The classical combinatorial algorithms used in DLT

wired sensors networks have to be reviewed and in some cases have to be

changed. We attempt to outperform traditional mathematical techniques

for the distribution of load, minimal energy of use and monetary cost.

A further general question can be stated as can the nature of divisible

4

load theory be used to described wireless sensors networks not only from

the theoretical point of view but from the practical?

1.3 Research Significance

This research work intends to contribute in advancing knowledge from two

aspects on wireless sensors networks:

1. Theoretical: A new mathematical strategy is developed to described

the behavior of wireless sensors networks under energy, finish time and

monetary cost constraints. In doing so a new set of theoretical assumptions

will be considered that would be required to develop algorithms and

numerical experiments and simulations in order to compare them and

validate their effectiveness. As a consequence this study, we not only

attempt to propose a transparent theoretical mechanism to model wireless

sensor networks but also hope to contribute to the literature.

2. Practical: No doubt that concentrating efforts to develop this

technology can help society to reduce cost in the acquisition of information

where conventional mechanism are too expensive or are not specially

accessible with conventional wired sensor networks. To include a monetary

cost study on this research would help to develop a coherent model that

takes into account not only technical aspects but economical aspects that

should help realize potentially significant applications of wireless sensor

5

networks.

1.4 Organization of the Report

This report is organized as follows:

Chapter 2 is considers an innovative load scheduling strategy designed

for wireless sensor networks. An analytical expression, for optimal load

assignment and finish time is presented. This strategy has the potential to

reduce solution time (make span) significantly.

Chapter 3 begins to explore the total monetary cost model for a single

level tree network using DLT based on the model presented on [11]. Our

main goal pursued in this chapter is to understand how changes on intrinsic

parameters of the network affects the total monetary cost function when

processing a divisible load. In addition, a combinatorial optimization

algorithm was used in [13] is studied and modified to performed a sensitivity

analysis.

Chapter 4 a heuristic non-linear total monetary cost function analysis

is presented.

Chapter 5 an adaptable data scheduling methodology is presented.

Chapter 6 two different wireless sensor networks architecture using DLT

with M parallel links and M parallel cores per processor sensor using the

System on Chip technology (SoC) were proposed.

Chapter 7 conclusions are presented.

6

Chapter 2

Efficient Scheduling for
Sensing and Data Reporting in
Wireless Sensor Networks

2.1 Summary

This chapter considers an innovative scheduling strategy in which a

control processor assigns a load share to be measured by each of N

processors organized in a single level tree (star) wireless sensors network.

Here processors begin to sense as soon as receiving their own load

share assignment rather than waiting for all processors to receive their

assignments as done in previous research works. This strategy has the

potential to reduce solution time (make span) significantly. We find an

analytical expression for optimal load assignment and finish time which is

simple to compute and can be implemented in real time.

7

2.2 Introduction

Wireless sensor networks have been increasingly studied and developed

during the last decade due to their potential application fields such as

security, geothermal monitoring, traffic control and health care [13], [16].

Among the challenges that this technology faces are the communication

constraints (limited bandwidth and transmission energy) which could be

the most crucial aspects to be solved for this technology during the next

few years. An interesting approach to overcome this critical aspect is to

process the measured data and transmit a summarized version of the data

measured when the sensor devices and its architecture allows it. Doing so

would reduce the amount of data to be transmitted and consequently the

energy used for transmission of the reporting data [17].

Another interesting approach was proposed in 2006 [1]. It introduced a

novel scheduling strategy which considered single level tree (start) network

of N processors and a control processor. In this work, each processor starts

to sense when the control processor finishes distributing the entire load

share assignments to all of the processors in the network. Here load share

assignment means the amount of sensing load that is assigned by the control

processor to each of the processors in the network.

As in [1] this paper is done in the context of Divisible Load scheduling

Theory (DLT) that has been the focus of attention by researchers [6], [18],

[19] and [20] studying data load distribution in parallel and distributed

8

systems since 1988 [2]. Initially most of the jobs using DLT considered

communication and computation as the main parameters of the system to

find a optimal divisible (partitionable) load to be processed and transmitted

by each processor and link in the network in a minimal amount of time.

A partitionable data load is one that can be arbitrarily distributed among

the processor in the network and there is no precedence relations between

data.

The network architecture considered in this paper includes a control

processor that distributes the load share assignment to the other N

processors in the network. Thus the processors begin to sense as

soon as receiving their own load share assignment rather than waiting

for all processors to receive their assignments and after sensing their

correspondent fraction of load share each processor returns the result

to the control processor. This scheduling protocol is implemented for

homogeneous and heterogeneous networks configurations with processors

that have the capability to sense and processors that have the potential to

sense and compute.

This chapter is organized as follows: In section 2.3, network model and

parameters used in this study are presented. In section 2.4, mathematical

model and reporting time expressions for optimal allocation of load

using divisible load theory are discussed and presented. In section 2.5,

performance and evaluation results for the strategies presented in the

study are showed and analyzed. Finally, the conclusions for this study

9

are presented in section 2.6.

2.3 The Network Model and Parameters

Figure 2.1: Single level tree (star) network with control processor

Consider a single level tree (star) network consisting of N processors and

N-1 links as shown in Fig.(2.1). There is a control processor who distributes

load share assignments to the other processors in the network sequentially.

As soon as each processor receives its own load share assignment it starts to

sense. The results are reported back to the control processor sequentially.

In some cases, when the network topology allows it, the processor could

compute measured data load before transmitting it back to the control

processor.

10

2.3.1 Notations and Definitions

t: Is the time that the control processor takes to assign the

measurement instruction to each child processor.

αj: The load share fraction assigned by the control processor to the

jth link-processor pair to be measured.

yj: A constant that is inversely proportional to the measuring speed

of the processor jth in the network.

wj: The inverse of the computing speed of the jth processor.

zj: The inverse of the link speed of the jth link.

Tms: Measuring intensity constant: the entire load is processed in

yjTms seconds by the jth processor.

Tcp: Computing intensity constant: the entire load is processed in

wjTcp seconds by the jth processor.

Tcm: Communication intensity constant: the entire load can be

transmitted in zjTcm seconds over the jth link.

Tj: Is the total time measured from the beginning of the scheduling

process up to the end of the transmission of the data measured by

the jth processor.

Tf : Is the time when the last processor finishes reporting.

Tf=max(T1,T2,...,TN)

11

It is assumed that the fractions of load measured are normalized and

their addition should sum 1 in the control processor (2.1).

1 =
N∑

j=1

αj (2.1)

2.4 Mathematical Model and Reporting
Time

2.4.1 Sequential Reporting Time

Figure 2.2: Timing diagram for a single level tree network with controller
and sequential reporting

The control processor distributes load share assignment to each

processor sequentially Fig.(2.2). Each processor starts to measure the

data as soon as it receives its load assignment but for this configuration

12

the processor can only reports its result back sequentially. There is only

one channel available for transmission. The mathematical expressions that

describe this protocol in terms of the amount of finish time are:

T1 = t + α1y1Tms + α1z1Tcm (2.2)

T2 = 2t + α2y2Tms + α2z2Tcm (2.3)

T3 = 3t + α3y3Tms + α3z3Tcm (2.4)

TN = Nt + αNyNTms + αNyNTms (2.5)

It can be seen in Fig.(2.2) that the time required to measure a load share

assignment (αjyjTms) by the j processor will be equal to the time used by

the j+1 processor to wait for the assignment (t) and measure (αj+1yj+1Tms)

and report (αj+1zj+1Tcm) its result back to the control processor. Thus,

α1y1Tms = t + α2y2Tms + α2z2Tcm (2.6)

α2y2Tms = t + α3y3Tms + α3z3Tcm (2.7)

αN−3yN−3Tms = t + αN−2(yN−2Tms + zN−2Tcm) (2.8)

αN−2yN−2Tms = t + αN−1(yN−1Tms + zN−1Tcm) (2.9)

αN−1yN−1Tms = t + αN(yNTms + zNTcm) (2.10)

The previous equation system can be expressed in terms of fj and sj

13

as,

α1 = f1 + α2s(1) (2.11)

α2 = f2 + α3s(2) (2.12)

αN−2 = fN−2 + αN−1s(N−2) (2.13)

αN−1 = fN−1 + αNs(N−1) (2.14)

where

fj = t/yjTms (2.15)

sj = (yj+1Tms + zj+1Tcm)/yjTms (2.16)

The equation system previously presented consists of N-1 recursive

equations. Substituting recursively equation (2.14) into equation (2.13)

and so on for j processor in term of αN we have

αj = fj +
N−j−1∑

m=1

fj+m

m−1∏

t=0

sj+t + αN

N−j−1∏

l=0

sj+l (2.17)

where j=1,2,3,....,N-2.

As mentioned before the normalization equation is the expression that

states that the total amount of load is originated in the control processor

and has to be 1. In order to have a closed solution for different load share

assignments the expression (2.17) is used and evaluated for j=1,2,3,...,N-2.

As a consequence,

14

α1 = f1 +
N−2∑

m=1

f1+m

m−1∏

t=0

s1+t + αN

N−2∏

l=0

s1+l (2.18)

α2 = f2 +
N−3∑

m=1

f2+m

m−1∏

t=0

s2+t + αN

N−3∏

l=0

s2+l (2.19)

α3 = f3 +
N−4∑

m=1

f3+m

m−1∏

t=0

s3+t + αN

N−4∏

l=0

s3+l (2.20)

αN−2 = fN−2+
1∑

m=1

fN−2+m

m−1∏

t=0

sN−2+t+αN

1∏

l=0

sN−2+l (2.21)

And for j = N − 1 the equation is

αN−1 = fN−1 + αNsN−1 (2.22)

Substituting the expressions for α from equations (2.18-2.22) into the

normalization equation (2.1) αN can be found as,

αN =

1−
[
fN−1+

N−2∑
j=1

fj+
N−j−1∑
m=1

fj+m

m−1∏
t=0

sj+t

]

1 + sN−1 +
N−2∑
j=1

N−j−1∏
l=0

sj+l

(2.23)

Consequently we obtain and expression for αN (2.23) as a function of the

network parameters which allows us to calculate the load share assignments

αN−1 using equation (2.22) and for α1, ... , αN−2 using equation (2.17).

The minimum finish time for this network configuration using this

protocol can be found using equations (2.17) for j=1, (2.23), and

15

substituting them into (2.2).

T1 = t + [y1Tms + z1Tcm] α1 (2.24)

2.4.2 Simultaneous Reporting Finish Time

Figure 2.3: Timing diagram for a single level tree network with controller
and same reporting time finalization

In Fig.(2.3) a scheduling protocol for a single level tree sensor network

is considered. In this case, there is more than one channel for transmission

of the data previously measured by the sensors. Consequently each sensor

has an assigned channel which will be exclusively used to transmit its data

measured to the control processor. Besides the multi channel availability,

in this set up it is required that all processors finish at the same time. The

total finish time would be described by:

T1 = t + α1y1Tms + α1z1Tcm (2.25)

16

T2 = 2t + α2y2Tms + α2z2Tcm (2.26)

T3 = 3t + α3y3Tms + α3z3Tcm (2.27)

TN = Nt + αNyNTms + αNyNTms (2.28)

As mentioned before the finish time would be the same for each sensor.

Thus,

T1 = T2 = T2 = T3 =, ..., = TN (2.29)

Using the equation in terms of the network parameters the system would

look like:

α1(y1Tms + z1Tcm) = t + α2(y2Tms + z2Tcm) (2.30)

α2(y2Tms + z2Tcm) = t + α3(y3Tms + z3Tcm) (2.31)

αN−1 =
t + αN(yNTms + zNTcm)

(yN−1Tms + wN−1Tcp
(2.32)

Another way to express the last equation is:

α1 = h1 + α2g(1) (2.33)

α2 = h2 + α3g(2) (2.34)

αN−1 = hN−1 + αNg(N−1) (2.35)

17

Here

hj =
t

(yjTms + zjTcm)
(2.36)

gj =
(yj+1Tms + zj+1Tcm)

(yjTms + zjTcm)
(2.37)

Notice that the last set of equations (2.33-2.35) are the same obtained

for the sequential reporting time protocol equations (2.11-2.14). Using the

normalization equation (2.1) and following the same procedure as described

for the sequential reporting time protocol we obtain the same expression

for distribution of load to be measured for αN (2.19) but instead of using

fj and sj, the new equation would be in terms of gj and hj.

2.4.3 Load Pre-processing, Sequential Reporting

Figure 2.4: Timing diagram for a single level tree network with controller
and same sequencing reporting with pre-processing

18

As is widely known the energy used to transmit data in wireless sensors

networks is higher than the amount of energy used to compute it [17] so

processing the data load measured before transmitting it is an option that

has to be studied. In the following schedule protocol the same network

topology used in the previous section is considered but in addition to the

measuring capacity the sensors have a processing capability too. Fig.(2.4)

shows how the control processor assigns load to be measured to the sensors

in the network. As soon as the sensor receives its job starts to measure.

The processing of the load measured starts when the sensor has finished to

measure the whole fraction of load assigned. The results will be reported

by each sensor sequentially.

For this protocol the expression that describes the finish time are:

T1 = t + α1y1Tms + α1w1Tcp + α1z1Tcm (2.38)

T2 = 2t + α2y2Tms + α2w2Tcp + α2z2Tcm (2.39)

T3 = 3t + α3y3Tms + α3w3Tcp + α3z3Tcm (2.40)

TN = Nt + αNyNTms + αNwNTcp + αNyNTms (2.41)

Following the same procedure from the first protocol studied we express

the fraction of load in terms of the network parameters using the following

expressions:

α1(y1Tms + w1Tcp) = t + α2(y2Tms + w2Tcp + z2Tcm) (2.42)

α2(y2Tms + w2Tcp) = t + α3(y3Tms + w3Tcp + z3Tcm) (2.43)

19

αN−1 =
t + αN(yNTms + wNTcp + zNTcm)

(yN−1Tms + wN−1Tcp)
(2.44)

Using the normalization equation and solving the recursive equations

for αN it is obtained the flowing expression,

αN =

1−
[
oN−1+

N−2∑
j=1

oj+
N−j−1∑
m=1

oj+m

m−1∏
t=0

pj+t

]

1 + pN−1 +
N−2∑
j=1

N−j−1∏
l=0

pj+l

(2.45)

where

oj =
t

(yjTms + wjTcp)
(2.46)

pj =
(yj+1Tms + wj+1Tcp + zj+1Tcm)

(yjTms + wjTcp)
(2.47)

As in the last sections the mathematical expression obtained for αN in

term of the variables oj and pj will be the same as the expression obtained

in terms of fj and sj form the first scheduling protocol. As a consequence

what makes the expressions different from each other are the parameters

that defined the pair (f,s), (g,h) and (o,p) for each protocol respectively.

2.5 Performance and Evaluation Results

In order to investigate the relationship between the number of processors

and the communication time in the network the expressions for minimum

finish time, measuring time and reporting time were used. For each of the

protocols previously presented the finish time as a function of the number

20

of processors in the network for a fixed value of y and changing values of

z and for fixed values of z and changing values of y was simulated and

plotted.

2.5.1 Sequential Reporting Distribution

Fig.(2.5) shows the finish time versus number of processors variable inverse

link speed z. The inverse link speed z is evaluated between 50 and 90. The

y inverse measuring speed is fixed to 190. In all the simulation the values

for Tcm, Tcp and Tms are equal to one. It can be seen that the amount

of processors needed to reached the minimum finish time will depend on z.

On the other hand in Fig.(2.6) the inverse link speed z is fixed to 80

and the inverse measuring speed is variated between 100 to 160. Here it

can be seen that increasing the inverse measuring speed will lead us to find

a better finish time for this particular example.

2.5.2 Simultaneous Reporting Distribution

The simulations presented in this section are shown in Fig.(2.7) where the

inverse link speed z is evaluated between 50 and 90 and y is 190. In addition

in Fig.(2.8) results for this schedule protocol with the inverse link speed

fixed to 80 and inverse measuring speed y varying between 100 and 160,

are shown.

21

2 3 4 5 6 7 8 9 10
60

80

100

120

140

160

180

M
ea

su
re

m
en

t /
 F

in
ish

 ti
m

e

Number of Processors

z=50
z=60
z=70
z=80
z=90

Figure 2.5: Finish time versus number of processors, variable inverse link
speed z and fixed load inverse measuring speed y in a single level tree
network with control processor and a sequential reporting time.

22

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
80

90

100

110

120

130

140

150

M
ea

su
re

m
en

t/F
in

ish
 ti

m
e

Number of Processors

y=100
y=120
y=140
y=150
y=160

Figure 2.6: Finish time versus number of processors, variable inverse
measuring speed y and fixed inverse link speed z in a single level tree
network with control processor and a sequential reporting time.

23

2 2.5 3 3.5 4 4.5 5 5.5 6
40

60

80

100

120

140

160

M
ea

su
re

m
en

t /
 F

in
ish

 ti
m

e

Number of Processors

z=50
z=60
z=70
z=80
z=90

Figure 2.7: Finish time versus number of processors, variable inverse link
speed z and fixed inverse measuring speed y in a single level tree network
with control processor and a simultaneous reporting time.

24

2 2.5 3 3.5 4 4.5 5 5.5 6
30

40

50

60

70

80

90

100

110

120

130

M
ea

su
re

m
en

t /
 F

in
ish

 ti
m

e

Number of Processors

y=100
y=120
y=140
y=150
y=160

Figure 2.8: Finish time versus number of processors, variable inverse
measuring speed y and fixed inverse sensor speed z in a single level tree
network with control processor and a simultaneous reporting time.

25

2 3 4 5 6 7 8 9 10
40

60

80

100

120

140

160

180

200

220

M
ea

su
re

m
en

t /
 F

in
ish

 ti
m

e

Number of Processors

z=50
z=60
z=70
z=80
z=90

Figure 2.9: Finish time versus number of processors, variable inverse link
speed z, fixed inverse measuring speed y and inverse processor speed w in
a single level tree network with control processor sequential reporting with
pre-processing

26

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
80

100

120

140

160

180

200

M
ea

su
re

m
en

t /
 F

in
ish

 ti
m

e

Number of Processors

y=100
y=120
y=140
y=150
y=160

Figure 2.10: Finish time versus number of processors, variable inverse
measuring speed y, fixed inverse link speed z and inverse processor speed
w in a single level tree network with control processor sequential reporting
with pre-processing

27

2.5.3 Load Pre-processing, Sequential Reporting

As mentioned before, in order to reduce the amount of energy used to

report the data back to the control processor a load pre-processing can

be done. In this case we include in the model the Tcp constant which

will be fixed to 1. The inverse link speed varies from 50 and 90, inverse

processor speed is fixed to be 100 and the inverse measuring speed is 190.

Fig.(2.9) shows that for this particular example the finish time increases

in comparison to the first scheduling protocol. In the case of the variation

of the inverse measuring speed against the number of processor Fig.(2.10)

the results showed for this particular experiment that introducing a pre-

processing increases the finish time.

2.6 Conclusion

A novel closed solution for optimum finish, reporting and pre-processing

time was obtained for a single level tree sensor network including

immediately measuring data feature. Data and simulation were performed

and analyzed for different scheduling protocols. A pre-processing

scheduling strategy was proposed for a single level tree sensor network.

28

Chapter 3

Heuristic Optimization of
Sequential Load Distribution

3.1 Summary

The sequencing problem involves optimizing the order in which a root

processor should distribute divisible processing load to its children

processors. The purpose of this procedure is to complete the processing

of divisible load in a minimal amount of time or with a minimal energy

use. Applications include third party computing services provided by

Application Service Providers as well as wireless sensor networks. Four

different heuristic algorithms were tested in order to achieve an efficient

solution for the sequencing problem. Consequently, the optimum algorithm

(Best Swap) was selected to implement the sensitivity analysis. Such

analysis allowed an examination of the relationship between the total cost

function, changes in the speed of the links and the processors, and changes

in cost of processing and transmission.

29

3.2 Introduction

With the aim of introducing and reviewing the total monetary cost model

on DLT this chapter presents a sensitivity analysis study performed for the

total monetary cost function in terms of changes of the network parameters

(link speed and processors speed) in a single level three star computer

network. This study was a contribution to the research presented on [13]

and will be a good reference for future studies on monetary cost and wireless

sensors networks under DLT model.

From the prospective of services providers to be able to lease a high

performance computer machine to allow customers (researchers, credit card

companies, universities) to do processing while paying some cost. Thus

developing mathematical expressions that describes the time in which the

processor is busy either computing or communicating is an important and

complex procedure. Studies that considered DLT model and monetary cost

where presented in [11] and [15]. Research showed in [11] that there is an

intrinsic relationship between the cost and the sequencing problem. This

problem involves optimizing the order in which a root processor should

distribute divisible processing load to its processors. The goal of this

procedure is to complete the processing of divisible load in a minimal

amount of time (or with a minimal energy use in wireless networks).

In this chapter the sequence problem is studied and reviewed using

30

divisible load scheduling theory. In particular we study sensitivity cost as

a function of changes of the processors speed and link speed.

The organization for this chapter is: In section 3.3 the model

description and their mathematical expressions are presented using the

model presented in [6,11,15,21]. The optimization sequencing problem

and the cost sensitivity analysis is discussed in section 3.4. Final results,

commentaries and conclusions are described in the section 3.5 and 3.6

respectively.

3.3 Mathematics: Model, Parameters and
Expressions

3.3.1 The Model

Figure 3.1: Single level three start network

31

The topology considered in this chapter is a single-level tree network

consisting of (N +1) processors and (N) links Fig.(3.1). All the processors

are connected to the root processor, p0, via communication links. The root

processor is equipped with a front-end processor and it is the only processor

at which the load arrives. The root processor partitions the total load into

(N + 1) fractions, keeps its own fraction α0, and distributes the other

fractions α1, α2,..., αN to the other processors p1, p2,..., pN respectively

and sequentially. Each processor starts to compute only after receiving all

its assigned fraction of load. The linear costs cl
1, cl

2,..., cl
N and cp

0, cp
1,...,

cp
N are the cost coefficients associated with the links and processors in the

network, respectively. Where:

αi: The load fraction assigned to the ith link-processor pair.

wi: The inverse of the computing speed of the ith processor.

zi: The inverse of the link speed of the ith link.

Tcp: Computing intensity constant:

the entire load is processed in wiTcp seconds by the ith processor.

Tcm: Communication intensity constant: the entire load can be

transmitted over the bus in ziTcm seconds over the ith link.

Tf : The finish time: Time when the last processor ceases computation.

Our interest is to review the optimal arrangement (sequence) in which

load should be distributed by the root to its processor.

32

3.3.2 Optimal Finish Time and the Load Distribution

In order to minimize the processing time all processors finish computing at

the same time. Otherwise, the processing finish time could be reduced by

transferring some fractions of load from busy processors to idle processors

[6]. Nevertheless, in [6] is shown that under certain sets of network

parameters, in order to minimize the processing finish time, it is not

necessary that all processors be utilized. In this model it is assumed that

system parameters are such that all processors in the network are utilized

to compute the incoming load.

Figure 3.2: Timing diagram sequence distribution

The Gantt-chart-like timing diagram in the Fig.(3.2) represents the

33

process of sequential load distribution. The communication time and the

computation time are shown above the time axis and below the time axis

respectively. Using this timing diagram to derive the timing relationships

between processors we have [21]:

αiwiTcp = αi+1zi+1Tcm + αi+1wi+1Tcp i = 0, ..., N − 1 (3.1)

αi+1 = kiαi = (
i∏

j=0

kj)α0 i = 0, ..., N − 1 (3.2)

where:

ki =
wiTcp

(zi+1Tcm + wi+1Tcp)
i = 0, ..., N − 1

Notice that all processors in the network finish at the same time and

there are N equations and N + 1 unknowns in the equation (3.1) and

equation (3.2). The normalization equation is,

1 =
N∑

j=0

αj (3.3)

and is used to solve this system of equations.

Using the previous system of recursive equations the expression found

in [21] for α0, αN are:

α0 =

[
1 +

N∑

i=1

[
i−1∏

j=0

kj

]]−1

=
1

D

N∏

i=1

(ziTcm + wiTcp) (3.4)

αN =
1

D

N−1∏

i=0

(wiTcp) (3.5)

where:

34

D =
N∏

i=1

(ziTcm + wiTcp)

+
N∑

n=1

((
n−1∏

i=0

(wiTcp)

) (
N∏

i=n+1

(ziTcm + wiTcp)

))
(3.6)

3.3.3 Sequencing Distribution

Another interesting and fundamental concept is related with the order in

which a root processor should distribute the load to be processed. This

problem was treated on [21] and basically considered a single level tree

network with the following ordered set:

θ = p0, (l1, p1), (l2, p2), (l3, p3)..., (lj−1, pj−1), (lj, pj), (lj+1, pj+1), ..., (lN , pN)

(3.7)

The first processor that is assigned a fraction of load is p1. Such load is

assigned by p0 then this processor assigns load faction to processor p2 and

so on. The link-processor pairs is then defined as (lj, pj) and (lj+1, pj+1)

and in this ordered set may not necessarily be physically adjacent. Thus,

any change on the organization of the network would lead a change in the

distribution of the load. As a consequence, sequencing is a technique that

changes one arranged set to another ordered set. There are not physical

changes in the network.

3.3.4 Link-Processor and Total Monetary Cost

The monetary cost for processing a fraction of load at any processor

is defined as the cost incurred from utilizing the processor and its

35

corresponding link in order to process the assigned fraction of load [21].

The cost is defined only in terms of accounting for the duration during

which the resource is busy serving the assigned divisible load. The cost

coefficients associated with links and processors are fixed values.

The cost model parameters are defined as follows:

cl
n: The communication cost per second of utilizing the nth link.

cp
n: The computing cost per second of utilizing the nth processor.

cp
nwn: The computing cost per unit load of utilizing the nth processor.

cl
nzn: The communication cost per unit load of utilizing the nth link.

(cp
nwn + cl

nzn): The processing cost per unit load of the nth link-

processor pair.

The total monetary cost is the linear summation of the individual cost

incurred at each processor-link pair. This individual cost depends on

the assigned fraction of load assigned to each processor. The total cost

of processing an entire load is the main expression to be optimized and

analyzed in terms of the sensitivity analysis.

C0 = cp
0w0Tcp (3.8)

Cn = cl
nznTcm + cp

nwnTcp n = 1, ..., N (3.9)

36

Cn: the cost of processing the entire of load on the nth processor.

αnCn: the cost of processing the assigned fraction of load (αn) on the nth processor.

The total cost, Ctotal, is defined as:

Ctotal = α0C0 +
N∑

n=1

αnCn (3.10)

By substituting α0 and all αn from the equations (3.4) and (3.5) described

before into equation (3.10) the total monetary cost expression is obtained

explicitly in terms of the jth and (j + 1)st link-processor pairs as [21]:

Ctotal =
1

D

{
N∏

i=1

(ziTcm + wiTcp)(c
p
0w0Tcp)

+
j−1∑

n=1

[(
n−1∏

i=0

(wiTcp)

) (
N∏

i=n+1

(ziTcm + wiTcp)(c
l
nznTcm + cp

nwnTcp)

)]

+
j−1∏

i=0

(wiTcp)
N∏

i=j+1

(ziTcm + wiTcp)(c
l
jzjTcm + cp

jwjTcp)

+
j∏

i=0

(wiTcp)
N∏

i=j+2

(ziTcm + wiTcp)(c
l
j+1zj+1Tcm + cp

j+1wj+1Tcp)

+
N∑

n=j+2

[
n−1∏

i=0

(wiTcp)
N∏

i=n+1

(ziTcm + wiTcp)(c
l
nznTcm + cp

nwnTcp)

]}

(3.11)

Where D is:

D =
N∏

i=1

(ziTcm + wiTcp) +
j−1∑

n=1

(
n−1∏

i=0

(wiTcp)
N∏

i=n+1

(ziTcm + wiTcp)

)

37

+
j−1∏

i=0

(wiTcp)(zj+1Tcm + wj+1Tcp)
N∏

i=j+2

(ziTcm + wiTcp)

+
j−1∏

i=0

(wiTcp)(wjTcp)
N∏

i=j+2

(ziTcm + wiTcp)

+
N∑

n=j+2

((
n−1∏

i=0

(wiTcp)

) (
N∏

i=n+1

(ziTcm + wiTcp)

))
(3.12)

3.4 Monetary Cost Optimization

3.4.1 Optimization Sequencing Problem

The heuristic algorithms used here will, at each iteration, swap the

logical position of two processors which are logically adjacent in the load

distribution sequence if it leads to a cost improvement. Four different

algorithms were tested in order to solve the sequencing problem which

involves optimizing the order in which a root processor should distribute

divisible processing load to its children in order to complete the processing

of divisible load in a minimal amount of time or with a minimal energy

[13]:

(1) Adjacent Swap algorithm: Swaps adjacent link processor pairs until

an improvement is greater than a threshold is reached.

(2) Best Swap algorithm: Chooses the best swap between all possible

swaps in the network (N Combined 2).

(3) Random Swap algorithm: Picks two random nodes and swaps them

38

if and only if such swap yields a cost improvement.

(4) First Swap algorithm: Deterministically uses the first possible swap

if such swap yields an improvement in the cost function and keeps trying

all the possible swaps until the threshold value prevents it from obtaining

more improvement in the cost function.

To choose a heuristic algorithm several tests were made using the

algorithms described before. In Fig.(3.3) the three first levels represent

the methodology used to perform the different tests using the these

algorithms. Random values were chosen for the network parameters

which were constrained to have communication time less than computation

time. Consequently, a heterogeneous network was used to compare the

algorithms.

Figure 3.3: Methodology of the sensitivity analysis performed

39

3.4.2 Cost Sensitivity Analysis

To understand how the changes in the processor speed and link speed

affect the total cost in a single level tree network we implemented a

sensitivity analysis. In such a topology the speed of processors is equal

for all processors and all links speeds are identical. That is wi=w and zi=z

respectively.

For w the sensitivity expression is:

Sensitivity(w) =
Ctotal(wnom)− Ctotal(wvar)

wnom − wvar
(3.13)

For z the sensitivity function is:

Sensitivity(z) =
Ctotal(znom)− Ctotal(zvar)

znom − zvar
(3.14)

Where:

wnom: Nominal value of the processor speed to be compared.

znom: Nominal value of the link speed to be compared.

wvar: Changed value of the processor speed to be compared.

zvar: Changed value of the link speed to be compared.

In a homogeneous bus network the optimal distribution sequence is

where load distribution is in non-decreasing order of the sum of the link

and processor costs.

The sensitivity analysis was studied in three situations where the cost

of the link and the processor is cl
n < cp

n, cl
n=cp

n, cl
n > cp

n.

40

The sensitivity analysis was implemented using the more efficient

algorithm in order to achieve the optimal distribution sequence. This

algorithm is presented in the next section.

3.5 Results and Commentaries

3.5.1 Algorithm Selected

Figure 3.4: Simulation results for heuristic algorithms tested

Fig.(3.4) depicts a test for a 10 children network. The Best Swap

algorithm proved to be a strong and consistent algorithm in finding an

optimal solution in all the simulations with an almost vertically descending

cost function as it is shown. For this particular example the numbers of

swaps is presented in Table 1:

41

Algorithm Improvement(%) Swaps
Adjacent Swap 59.0194 47

Best Swap 58.8225 9
Random Swap 59.3896 30

First Swap 59.3896 48

Table 3.1: Results improvement and numbers of swaps, heuristic algorithms
tested

For the other three algorithms it was found that they have almost the

same improvement but that take a larger number of swaps.

3.5.2 Sensitivity Analysis Results

Due to its effectiveness the Best Swap algorithm was used to implement

the sensitivity analysis.

For homogeneous network configuration with 10 children processors the

parameters used here were:

wnom: 20.

znom: 10.

wvar: [11...40].

zvar: [1...10].

Random values were chosen for the cost of link and the processor. However,

three set of cost processors and cost of the links were constrained to cl
n <

cp
n, cl

n=cp
n, and cl

n > cp
n. Thus, three configurations of the network for those

processor and link costs were studied.

42

Figure 3.5: Sensitivity of monetary cost to link speed change

Figure 3.6: Sensitivity of monetary cost to processor speed change

43

In Fig.(3.5) the result of the analysis of sensitivity for z is shown.

Notice that when cl
n < cp

n the total cost function has a decreasing behavior.

Otherwise, when cl
n > cp

n the total function cost is increasing and this is

reflected in the sensitivity axis.

In Fig.(3.6) we present the results for the computation of sensitivity

when speed processor is varied. In this figure is evident that for all the w

variations in the three configurations for the of cost of the processors the

and link have positive values for the sensitivity axis.

The behavior of the sensitivity analysis for the total monetary cost

presented here is for specific values of parameters. That is, this is not a

general result for all possible values of the parameters. In addition this

behavior is due to the complexity of the expression defined for (3.5) and

its relationship with the total cost (3.11). Hence, results obtained in this

study show some of the representative curves of sensitivity of a single level

tree star network with specific network parameters.

3.6 Conclusions

Based on the result the Best Swap algorithm was found to outperform the

other algorithms presented. It was found that all algorithms improved the

cost function in some cases obtaining a cost improvement of more than

50%.

It was shown that only when cl
n > cp

n, the total cost function for this

configuration network increases in proportion to changes in w and z.

44

Chapter 4

Optimizing a Divisible Load
Nonlinear Cost Function

4.1 Summary

The behavior of load distribution for loads with nonlinear monetary

computing cost is studied.

4.2 Introduction

Companies are using third party machines as a result of a corporate interest

to create computer utilities for leasing. This tendency may lead researchers

and developers to use high performance parallel devices and algorithms

while paying some monetary charge. The monetary cost associated with

the production and operation of such machines leads to a requirement

to lease their processing in a time efficient manner. Indeed, there is an

intrinsic relationship between the cost and the sequencing problem [21].

This problem involves optimizing the order in which a root processor should

45

distribute divisible processing load to its processors. In [22] the scheduling

of nonlinear loads was studied. In this paper we explore the monetary cost

as a function of nonlinear processing loads.

4.3 The Model

Consider a single level tree (star) network consisting of N+1 processors

and N links which have related corresponding computation cp
n and

communication cost cl
n. Here the cn’s are linear monetary cost coefficients.

The root processor will receive all the load and distribute to each child

processor their assigned fraction of load sequentially.

4.3.1 Notations and Definitions

αi:The load fraction assigned to the ith link-processor pair.

wi: The inverse of the computing speed of the ith processor.

zi: The inverse of the link speed of the ith link.

Tcp: Computing intensity constant: the entire load is processed in

wiTcp seconds by the ith processor.

Tcm: Communication intensity constant: the entire load can be

transmitted over the bus in ziTcm seconds over the ith link.

46

4.4 Total Monetary Cost

Total monetary cost is the linear summation of the individual costs incurred

at each processor-link pair. This individual cost depends on the assigned

fraction of load. The monetary cost expression found in [21] was modified

expressing the load as a function of β, equation(1). Here β is a parameter

needed to express the nonlinearity characteristic of the load.

Ctotal = αβ
0cp

0w0Tcp +
N∑

n=1

αβ
n(cp

nwnTcp + cl
nznTcm) (4.1)

In order to get a solution for the sequencing problem the Best Swap

Algorithm presented in [13] was chosen due to its consistency in finding

an optimal solution and was modified to include the β parameter.

4.5 Results and Commentaries

A heterogeneous single level tree network with N=4 processors was

modeled. Random values were chosen and fixed for different parameters

in the network. An algorithm was run changing the β parameter (β>1

and β<1). The distribution of load in the network may explain the total

monetary cost behavior. In Fig. (4.1) is shown that for large values of β an

almost equal load distribution is generated. As consequence, it is expected

that the minimum total monetary cost grows with an almost constant rate

for large values of β. It was found that for values of β approaching 0 most

of the load is assigned to the processor (P3).

47

Figure 4.1: Load distribution for a single level tree network Beta >0

4.6 Conclusions

This load distribution behavior is related to the convexity and concavity

of (4.1) for different values of beta.

48

Chapter 5

Adaptive multi scheduling
protocol for divisible loads on
wireless sensor networks

5.1 Summary

This chapter considers an innovative scheduling mechanism to assign

divisible load jobs to wireless sensors in a single level tree network. The

schedule protocol presented here takes into account the amount of load

processed from previous load assignments based on distributing the new

incoming load to the sensor network aiming to minimize the total finish time

of processing the entire Divisible Load Job Task (DLJT) and reducing the

idle state of each processor. Here a DLJT is defined as the total addition

of individual loads that share a common characteristic and belong to a

data set. Each element of the DLJT can be arbitrarily partitioned and

distributed by the root processor to the rest of the wireless sensors.

49

5.2 Introduction

Potential applications of wireless sensor networks require the design of a

robust data acquisition strategy that take into account possible sensor

failure and reacts to it to minimize the risk of losing data samples or

measurements while minimizing energy. Practical situations are envisioned

where the numbers of nodes that belong to a WSN are small and the entire

performance of the network is affected if an inadequate performance in a

node occurs while processing load or acquiring data measurements.

Until now the schedule protocols on wireless sensors networks using

DLT have assumed that the nodes involved in the processing of the load can

successfully finish processing the entire load assigned by the root processors

under different controlled conditions scenarios. Thus in the previous

chapters the study of different scheduled protocols addressed different

distributions of load on sensor networks assuming successful functioning

of the node while processing the load assigned in order to estimate the

finish time.

In this chapter a methodology is proposed to overcome possible

scenarios when a node on the network fails to process its assigned fraction of

load, compromising the entire DLJT execution on the network. A technique

to find the best finish time solution is proposed for a constant DLJT arrival

rate. In addition a particular scenario is studied when the arrival load of

each element of the DLJT rate is constant and one of the sensors on the

50

network can not finish processing the previous load. This is a very practical

situation as predictions on available processor and link effort may diverge

from reality as time proceeds resulting in deviations in the timing of earlier

implemented schedules. As a result, in this paper a heuristic algorithm is

developed to estimate the total finish time of processing the DLJT.

5.3 The Divisible Load Job Task based
reference model

Figure 5.1: General DLJT’s system

The divisible load job task reference model is presented Fig.(5.1). The

DLJT system consists on a central root processor with buffer capabilities

linked to a set of sensors in a single level tree network topology. Equation

(5.1) describes the DLJT incoming task (DLJT) assigned to this system

51

(e.g. the sensors are asked to acquired data samples of the temperature

under certain conditions such relative humidity). The task assigned to the

root processor is composed by individual load/job assignments (L), each

one arriving with of λ rate and the size of this task is T . Under this scenario

it is assumed that the network will be available for processing incoming

load/jobs so that there is no overlapping among jobs. The L load/job can

be arbitrary partitioned, hence, the control processor will distribute the L

load/job to its children processors sequentially. The goal here is to process

different fraction of load/job assigned to the sensors while minimizing the

finish time. Thus all processors need to finish at the same time [5].

DLJT =
T∑

jt=1

Lj (5.1)

Fig.(5.2) shows the Gantt-chart like timing diagram for this DLJT

system for a constant arrival rate λ and sequential distribution The

mathematical expressions that describe the total finish time of a DLJT

task is shown in equation (5.2)

DLJTFT = Tf1(L1, λ1)+Tf2(L2, λ2)+....+Tf(T−1)(LT−1, λT−1)+Tf(T)(LT , λT)

(5.2)

The time that the load/job spends on the network can be found using

the classical Divisible Load Theory equations for a sequential distribution

and simultaneous finish time. In [6] it was proved that the optimal solution

52

Figure 5.2: DLJT Load distribution finish time diagram

was obtained when all processors finish at the same time. Tf denotes the

finish time.

Tf (λ, LT , P1) = Tf (λ, LT , P2) (5.3)

Tf (λ, LT , P2) = Tf (λ, LT , P3) (5.4)

Tf (λ, LT , PN−1) = Tf (λ, LT , PN) (5.5)

Thus analyzing Fig.(5.2) for a particular finish time Tf(T)(LT , λT) a set

of N-1 equations can be derived and are described as follows:

αT
1 w1Tcp = αT

2 w2Tcp + αT
2 w2Tcp (5.6)

αT
2 w2Tcp = αT

3 w3Tcp + αT
3 w3Tcp (5.7)

53

αT
i−1wi−1Tcp = αT

i wiTcp + αT
i wiTcp (5.8)

αT
NwNTcp = αT

NwNTcp + αT
NwNTcp (5.9)

Equation (5.10) represents the relationship of the total amount of

load/job, LT , that had arrived to the control processor and the individual

partitions that the control processor distributes to its children processors.

αT
1 + αT

2 + αT
3 + · + αT

i + · + αT
N−1 + αT

N = LT (5.10)

The previous equation system can be expressed in terms of sj as,

α1 = αT
2 s(1) (5.11)

α2 = αT
3 s(2) (5.12)

αi = αT
i+1s(i) (5.13)

αN−2 = αT
N−1s(N−2) (5.14)

αN−1 = αT
Ns(N−1) (5.15)

Where

si = (wi+1Tcp + zi+1Tcm)/wiTcp (5.16)

54

Using the equation system previously presented and the equation (5.10)

the expression for the load assigned to the first processor can be found as,

αT
1 (λ, LT) =

LT

1 +
N−1∑
i=1

i∏
j=1

1
S(j)

(5.17)

For a particular load/job assignment for processor one (P1) the

corresponding finish time will be,

Tf (LT (λT), P1) = (Tcp · w1 + Tcm · z1)α
T
1 (LT (λT)) (5.18)

In general equation (5.18) can be expressed in terms the optimal fraction of

load/job assignment. Thus equation (5.19) and equation (5.20) represents

the total finish time of a DLJT when assigned to this network topology.

DLJTFT =
T∑

jt=1

Tfjt(Ljt(λjt)) (5.19)

DLJTFT = (Tcp · w1 + Tcm · z1)
T∑

jf=1

Ljt(λjt)

1 +
N−1∑
i=1

i∏
j=1

1
S(j)

(5.20)

The control processor will check status of the individual load/job

assigned to its sensor at finish time prior distributing the next L load/job

to the sensor network.

55

5.4 The Divisible Load Job Task the
adaptive model

In the previous section DLJT batch jobs are assigned to the network under

the assumption that not there is not a overlapping among DLJT jobs.

This implied that the network was able to serve or resolve a DLJT task

before an incoming one was assigned to the network. In this section two

different cases are studied, considering the DLJT task being processed on

the network and the incoming one arriving to be served.

5.4.1 CASE 1: Allocation time of LT (λt) load/job
smaller or bigger than the finish time
Tf(LT (λt−1))

Fig.(5.3) shows the Gantt-chart diagram for a DLJT task when a delay

or shift occurs. On a real system implementation this delay or shift can

be generated by failure on the system transmitting L load/jobs from a

DLJT task to the control processor. In this case instead of retransmitting

the entire DLJT set of load/job LT the total finish time of processing the

entire set will take into account this delay or shift. Thus the finish time

for a DLJT when a load is LT delayed compared to the resolution time on

the network of the load/job LT−1 can be found as

DLJTdelayed = DLJTFT + TF delayM (5.21)

Using equation (5.19) the total finish time of a DLJT delayed is shown

in the following equation, where M represents the total number of delays

56

Figure 5.3: DLJT Load distribution finish time diagram including arrival
delay

per run.

DLJTdelayed =
T∑

jt=1

Tfjt(Ljt(λjt)) +
M∑

m=1

(Tf(Lm(λm−1))− λ−1
m) (5.22)

Another situation can occur when for the host submitter of LT load/job,

a particular DLJT task is sent to the control processor before the previous

LT−1 and the network finishes its entire processing. In this case the control

processor will queue the LT until the network is available for processing.

The calculation of this network delay will define the proper shift time. Here

the shift time is defined as the amount of time of a load/job has to wait at

57

the control process until is served by the network. This time can be found

using the equation presented below

DLJTshifted =
T∑

jt=1

Tfjt(Ljt(λjt)) +
M∑

m=1

(λ−1
m − Tf(Lm(λm−1))) (5.23)

Here M is the number of delays or shifts per DLJT task. M satisfies

the following constraint:

0 ≤M ≤ N − 1 (5.24)

where N = T , the size of DLJT task.

In the particular case when there is a homogeneous L job/task

assignment from a DLJT set the previously presented equations (5.22) and

(5.23) can be expressed respectively as

DLJTdelayed = M · Tfdelay + N · Tf (5.25)

and

DLJTshifted = M · Tfshift + N · Tf (5.26)

5.4.2 CASE 2: Adapted DLJT scheduled protocol for
a partial sensor failure

On wireless sensor networks retransmission of data is an expensive

operation. Retransmission of data could be caused by a failure of a node

58

to process its particular load/job αT
i . Being able to resume operation when

a wireless sensor node fails partially while avoiding retransmission of load

due to this failure will lead to a mitigation of the transmission energy and

increase of the utilization of the network. In order to do so the following

methodology is proposed to handle this partial failure on one node of the

wireless sensor network.

Figure 5.4: DLJT Load distribution finish time diagram one node partial
failure

In Fig.(5.4) is shown that sensor P2 fails partially when processing its

α1
2 assignation here where the subindex shows the processor number and

the super index specifies the L load/job assignment on the network. Since

with this wireless sensor network technology, transmitting and processing

data at the same time is avoided due to lack of front end processors, the

59

sensor has two possible operational states: receving state (communication)

or processing state (never both at the same time). The consequence of this

failure is reflected on the next allocation of load/job L2 since the second

processor is still processing load/job from the previous L1 allocation and

incoming load can not be allocated. Thus a remainder load αr would still

need to be processed in the L2 load/job while avoiding delay the entire L2

load distribution. A possible simple solution will be uses similar strategy

presented before in Case 1, buffer the L load/job and shift it distribution a

more interesting approach would be to been able to schedule the incoming

load (even if the temporal failure is detected) and distribute the incoming

L load/job taking into account these excess of load on the failing processor

Fig.(5.5) shows how this can be achieved.

Using Fig.(5.4) a set of equation can be derived to calculate the new

allocation of load which will take into account the remainder load on the

failed processor.

The new finish time will take into account this delay of processing the

failure on per a processor basis. Thus the delay is assigned to the finish

time equation of the failed node. This situation is described below when

processor number 2 fails partially to process the entire load:

The optimal finish time can be found using the same methodology as

shown [6] and it can be express using equation (5.18). Thus,

Tf(L2(λ1), P1) = (Tcp · w1 + Tcm · z1)α
2
1(L2(λ1)) (5.27)

60

Figure 5.5: DLJT Load distribution finish time diagram one node partial
failure

The corresponding new fractions of load/job assigned to each processor

can be found using the following set of equations

α2
1w1Tcp = α1

2rw2Tcp + α2
2z2Tcp + α2

2w2Tcp (5.28)

α2
2w2Tcp = α2

3z3Tcp + α2
3w3Tcp (5.29)

α2
3w3Tcp = α2

4z4Tcp + α2
4w4Tcp (5.30)

The previous equation system can be expressed in terms of sj.

α2
1 = α2

2s(1) + f(1) (5.31)

61

α2
2 = α2

3s(2) (5.32)

α2
3 = α2

4s(4) (5.33)

Equation (5.60) is used to find the corresponding values for sj . In this

case a new parameter is introduced fj ,

f1 = (α1
2rw2TcpTcp)/w1Tcp (5.34)

This parameter includes the amount of load that still needs to be

processed when there is a partial failure on sensor 1.

The corresponding normalization equation (5.35) for this example is

L2 + α1
2rL1 =

4∑

i=1

α2
i (5.35)

Using this equation system the α2
1 load/job fraction assigned for this

processor can be find as:

α2
1 =

L2 + α1
2rL1 + f1(

3∑
i=1

i∏
j=1

1
sj

)

1 +
3∑

i=1

i∏
j=1

1
sj

(5.36)

And the α2
4 load/job fraction assigned is:

α2
4 =

L2 + α1
2rL1 − f1(

3∑
i=1

i∏
j=1

sj)

1 +
3∑

i=1

i∏
j=1

sj

(5.37)

Notice when there is no load remaining to be processed, equation(5.37)

is similar to equation (5.17).

62

When a different node fails for example node 3 it can be shown that, on

this exercise, the solution for α1 and α4 the will depend on the following

equation system:

α2
1 = α2

2s(1) (5.38)

α2
2 = α2

3s(2) + f(2) (5.39)

α2
3 = α2

4s(4) (5.40)

Where

f2 = (α1
3rw3Tcp)/w2Tcp (5.41)

And the solution for α1 and α4

α2
1 =

L2 + α1
3rL1 + f2(

3∑
i=2

i∏
j=1

1
sj

)

1 +
3∑

i=1

i∏
j=1

1
sj

(5.42)

and the α2
4 load/job fraction assigned is:

α2
4 =

L2 + α1
3rL1 − f2(

3∑
i=2

i∏
j=1

sj)

1 +
3∑

i=1

i∏
j=1

sj

(5.43)

The same can be shown when processor 4 fails,

α2
1 = α2

2s(1) (5.44)

63

α2
2 = α2

3s(2) (5.45)

α2
3 = α2

4s(4)+f(3)
(5.46)

The corresponding set of equations will be

Where

f2 = (α1
4rw3Tcp)/w2Tcp (5.47)

and the solution for α1 and α4

α2
1 =

L2 + α1
4rL1 + f3(

3∑
i=3

i∏
j=1

1
sj

)

1 +
3∑

i=1

i∏
j=1

1
sj

(5.48)

and the α2
4 load /job fraction assigned is:

α2
4 =

L2 + α1
4rL1 − f3(

3∑
i=3

i∏
j=1

sj)

1 +
3∑

i=1

i∏
j=1

sj

(5.49)

The previous example is done for 4 sensors and a DLJT of 2 load/job.

The following section presents a suitable expression for a N sensor network

scenario. In the case of N single level tree network with one node Pi failure

per L load/job assignment the following set of equations can be derived:

Using Fig.(5.6) a equation system in term of the same sj and fj for the

i + 1th failing processor is shown below:

α2
1 = α2

2s(1) (5.50)

64

Figure 5.6: DLJT Load distribution finish time diagram one node partial
failure

α2
2 = α2

3s(2) (5.51)

α2
i = α2

i+1s(i)+f(i)
(5.52)

α2
i+1 = α2

i+2s(i+1) (5.53)

α2
N−1 = α2

Ns(N−1) (5.54)

(5.55)

The normalization equation will be,

L2 + α1
(pfail)r =

N∑

i=1

αi
2 (5.56)

Solutions for this equation system for the α2
1 and α2

N are presented

below:

65

α2
1 =

L2 + α1
pfailrL1 + f(pfail−1)(

N−(pfail−1)∑
i=(pfail−1)

i∏
j=1

1
sj

)

1 +
N−1∑
i=1

i∏
j=1

1
sj

(5.57)

α2
N =

L2 + α1
pfailrL1 − f(pfail−1)(

N∑
i=(pfail−1)

i∏
j=1

sj)

1 +
N−1∑
i=1

i∏
j=1

sj

(5.58)

The finish time for the L2 load/job processing can be found using

equation (5.27), thus

Tf(L2(λ1), P1) = (Tcp·w1+Tcm·z1)

L2 + α1
pfailrL1 + f(pfail−1)(

N−(pfail−1)∑
i=(pfail−1)

i∏
j=1

1
sj

)

1 +
N−1∑
i=1

i∏
j=1

1
sj

(5.59)

Where sj was defined in equation (5.60)

sj = (wj+1Tcp + zj+1Tcm)/wjTcp (5.60)

and fj as

fj = (α1
2pfailwj+1Tcp)/wjTcp (5.61)

After the control processor recalculates load/job fractions it will

assigned them to sensors. The incoming loaf of incoming L jobs the control

66

processor will queue until they are able to be assigned to the network. The

finish total time of the DLJT will be:

DLJTFT =
pfail−1∑

jt=1

Tfjt(Ljt(λjt))+Tfpfail(Lpfail(λpfail))+
T∑

jt=pfail+1

Tfjt(Ljt(λjt))

(5.62)

5.4.3 Results and Commentaries

In the following section different tests performed on a homogeneous single

level tree network are presented. The parameters for the setup of this

simulation are summarized below:

wi = 100

zi = 70

Tcp = 1

Tcm = 1

The DLJT4 represents the size of the load/job task to be processed

using the 10 sensor networks. Therefore there are 4 L load/jobs to be

processed by the network.

Fig.(5.7) is obtained when simulating a partial failure on sensor ID

2 during the entire DLJT4. The vertical axis represent the load/job

distribution among sensors. The horizontal axis represents the sensor

number. The star legend in the graph shows the load distribution on the

sensor when every sensor is able to processes the entire load assigned. In

67

this case this allocation of load will lead to obtain an optimal finish time

[6]. On the other hand, when sensor 2 is fails to process its entire load in

every Li load/job the graphs overlaps, and shows that the amount of load

reallocated to the failing processor is smaller than the optimal one. Notice

the intersection point where the graphs pass across. After this the load/job

fractions assigned to the nodes when the failure is presented are smaller

than the initial optimal scenario.

Figure 5.7: DLJT Load distribution finish time diagram one node 50
percent on Sensor ID 2 partial failure

68

Fig.(5.8) is present the percentage of load that is redistributed when

a sensor fails. The vertical axis shows the percentage of load that has to

be reallocated by the control processor when a failure is detected on the

sensors, in this case sensor 2. The horizontal axis describes the sensor id in

this wireless network. The positive values on the horizontal axis refers to

an increase of the load on the sensor as opposed the negative sign, which

means that the sensor node had less load reallocated.

Figure 5.8: DLJT Percentage load relocated for a 50 percent on Sensor ID
2 partial failure

69

In Fig.(5.9) a case where sensor node 5 fails is presented. Notice that the

crossing point, as in the Fig.(5.7) the crossing point among graph is located

before the node that fails. This situation is also reflected on Fig.(5.11) for

a sensor partial failure on sensor number 8.

Figure 5.9: DLJT Load distribution finish time diagram one node 50
percent on Sensor ID 5 partial failure

As seen on previous plots for a failing sensors when sensor 8 fails the

intersection point among the two graphs is located on the sensor preceding

the failing sensor. When sensor node 8 fails the percentage of load change

70

can be seen in Fig.(5.12). Notice that the percentage of load relocated to

other sensors is considerable small compared to the previous percentages

relocated when the sensor 2 and 5 failed as presented on Fig.(5.8),(5.9).

Figure 5.10: DLJT Percentage load relocated for a 50 percent on Sensor
ID 5 partial failure

Fig.(5.13) relates the percentage of finish time change presented on the

vertical axis of the figure obtained by simulating partial failures on different

nodes on the wireless sensor network. Thus, by looking at the outer plot of

the graph for sensor 2 when this nodes fails 10 percent of processing it load

71

Figure 5.11: DLJT Load distribution finish time diagram one node 50
percent on Sensor ID 8 partial failure

assignment the amount of finish time increased is 62 percent with respect

to the finish time obtained when the node is working on normal conditions.

On the other hand if the sensor 9 fails to process 10 percent of its load

assigned the finish time is affected only 37 percent, the graph that shows

this behavior is located on the inner part of the chart.

For percentages values exceeding more than half of it original load/job

L assigned the change of the finish time is small. Thus when the load

72

Figure 5.12: DLJT Percentage load relocated for a 50 percent on Sensor
ID 8 partial failure

assigned fails to process the 80 percent of its load/job the changes on

different sensor simulated it terms of resolution finish time is small only

a 5 percent is increased. Noticed also that for different simulation of sensor

failure for an 80 percent of load remain the finish time is higher for sensor

2 than sensor 9.

73

Figure 5.13: DLJT percentage finish time per percentage load failure

5.5 Conclusion

A novel strategy to processes different consecutive load assigned using

divisible load theory on wireless sensor networks was presented. A heuristic

methodology to handle different load distributions adapted to the current

state of the load being processed on the wireless sensors was developed.

A novel schedule mechanism was presented. Simulations showed that for

a particular test wireless sensor network scenario when a partial failure

74

of a sensor occurs, if there is a new incoming load to be distributed,

the preceding processor will increase the amount of load to be processed

compared to its value in normal conditions of sensor operation.

75

Chapter 6

On Chip Interconnections for
Wireless Sensor Networks
using Divisible Load Theory

6.1 Summary

Most recent goal of the microprocessor industry is to develop multi-core

architectures that currently range from 16 core to eventually hundreds

core architecture system. This architecture would be able to allocate

identical cores ordered on a single chip processor. Along with this

technology the systems on a chip (SoCs) are increasingly investigated.

This systems are composed of many cores and are allocated on the same

microprocessor. Individual chip components that belong to the same

system would require to have reliable interconnection networks that allows

the intercommunication among core on the same chip. The network

infrastructure that studies this interconnection topics is named as on-chip

intercommunication networks (OCIN) or also know as Network on Chip

76

(NoC)[23]. Due to the nature of the Divisible Load Theory model which

is based on the fact that the load to be process is arbitrarily partitionable

it is envisioned to start to understand the feasibility of the applicability of

this tool on SoCs. Speedup metrics for different DLT schedule protocols

considered and applied to different multilink and multi-core topologies

showing promising improvement when using multi-core architecture. Here

speedup is the ratio of computation time on one processor to computation

time on the entire network tree that could be implement on SoCs system

via OCIN interconnection.

6.2 Introduction

Minimizing the transmission energy on wireless sensor networks is highly

desirable due to the complexity on the conditions and the constraints

of accessing power sources on applications where this type of technology

could be deployed (environmental monitoring, security surveillance among

others). Different approaches are being studied such as designing efficient

protocols for transmission of data over wireless channels to reduce the signal

to noise ratio.

When using WSN for data acquisition some application might require

a pre filter or processed version of the data being collected by the network

sensor array so instead of sending the entire raw data sample the node

could send a synthesized version of the data measured. By transmitting a

summarized and shorter version of the data collected the amount of energy

77

required for transmission would decrease. Thus being able to pre process

samples in situ would enable a reduction in the energy of transmission

used by the wireless sensors when reporting back the status of the area

monitored.

The new emerging technology of system on a chip, SoCs, can be

considered as promising technology to be integrated into the wireless

sensors networks. Composed by several processors on a single chip the

sensor SoC would allow an increase in the node processing capability

which would be required when preprocessing the measured load is required.

On chip interconnection networks (OCIN) bring the infrastructure to

communicate between different cores on the same chip. Advantages of this

technology are high bandwidth, low latency, low power communication

compared to dedicated wiring devices. Different research efforts are on

this technology are motivated on different areas such as, applications for

embedded systems and personal electronics devices.

This chapter contributes to the research area of NoC and SoC by

proposing different DLT scheduled protocols as tool to model distribution

of load on the SoC. By doing so a possible more efficient network topology

could be designed and deployed on wireless sensor networks.

6.3 The model

Due to the realistic and tractable nature DLT model and analysis is

a suitable tool to be able to model interactions among different cores

78

located on a chip. On this section are presented different DLT scheduled

policies that will be used on this study presented on [24]. Contrary

to the methodology used initially on [24] to obtain optimal distribution

of loads per processor basis, a simpler way to handle the mathematical

relationships among processors is proposed. The focus is to obtain the

speedup expression for a network topology.

The classical network topology often studied on DLT is a single level

tree network show on Fig.(6.1)

Figure 6.1: Single level tree network

This network topology considers only one channel of communication zi

per root processor to children processor pair. Also only one processor is

79

available on every child on the network.

The variables or parameters used on this model are:

αi: The load share fraction assigned to the ith link-processor pair.

wi: The inverse of the computing speed of the ith processor.

zi: The inverse of the link speed of the ith link.

Tcp: Computing intensity constant: the entire load is processed in

wiTcp seconds by the ith processor.

Tcm: Communication intensity constant: the entire load can be

transmitted in ziTcm seconds over the ith link.

Ti: Is the total time measured from the beginning of the scheduling

process up to the end of the transmission of the data measured by

the ith processor.

Tf : Is the time when the last processor finishes reporting.

Tf=max(T1,T2,...,TN)

Three different scheduling protocols will be reviewed for this network

topology. The mathematical representation obtained for this based model

will allow to extrapolate it to two different network topologies that are

envisioned that could be apply or design using SoCs.

80

6.3.1 Sequential distribution, staggered start

As presented on different studies in past chapters, on this Gantt chart-

like timing diagram the load distribution on the network is presented. The

horizontal axis represents the time, communication time is presented above

the axis and computation time is presented below the axis.

Figure 6.2: Timing diagram of single level tree with sequential distribution
and staggered start

In order to find the optimal load distribution on each processor all

81

processors need to finish at the same time [24].

Tf(P0) = Tf(P1) (6.1)

Tf(P2) = Tf(P3) (6.2)

Tf(PN−1) = Tf(PN) (6.3)

The equations below presented states that the communication and

processing on the preceding processor is equal to the processing time of

the current processor.

α0w0Tcp = α1z1Tcm + α1w1Tcp

α1w1Tcp = α2z2Tcm + α2w2Tcp

αiwiTcp = αi+1zi+1Tcm + αi+1wi+1Tcp

αN−1wN−1Tcp = αNzNTcm + αNwNTcp

The normalization equation for N+1 processor is :

α0 + α1 + α2 + α3 + · + αi + · + αN−1 + αN = 1 (6.4)

Expressing this equation in terms Si

α0 = α1S(0) (6.5)

82

α1 = α2S(1) (6.6)

αi = αi+1S(i) (6.7)

αN−1 = αNS(N−1) (6.8)

where

Si =
(zi+1Tcm + wi+1Tcp)

wiTcp
(6.9)

After solving the previous equation system for α0 with the normalization

equation the following expression is obtained:

α0 =
1

1 +
N−1∑
i=0

i∏
j=0

1
Sj

(6.10)

This study will be focus on the speedup metric which is defined as the

ratio computation time on one processor to the computation time on the

entire N children network. Specifically the speedup will be studied for a

homogeneous single level tree network. So it is intended to measure the

parallel processing advantage on SoCs using the speedup relationship of

the conventional DLT as:

Speedup =
Tf0

TfN
(6.11)

Where Tf0 represents the time processing the entire load α0 equals to

1. Thus,

Tf0 = α0w0Tcp (6.12)

Tf0 = 1 · w0Tcp (6.13)

83

and

TfN =
1

1 +
N−1∑
i=0

i∏
j=0

1
Sj

w0Tcp (6.14)

And TfN represents the finish time for the load to be resolved using

the divisible load scheduling mechanism on the single level tree network

presented on Fig.(6.1).

As mentioned before, for the speedup for a homogeneous single level

tree network, in that particular case every Si = S for i from 1=N so link

speed are equal on the network and the processor speed as well. Thus

equation (6.14) can be rewriting as:

TfN =
1

1 + 1
S0

(1 +
N−1∑
i=1

1
Si)

w0Tcp (6.15)

And the corresponding speedup will be:

Speedup = 1 +
1

S0
(1 +

N−1∑

i=1

1

Si
) (6.16)

6.3.2 Simultaneous distribution, staggered start

Different than the previous protocol, the processors now simultaneously

receive the data and only start to process it a soon as the processor receives

it entire load assignment Fig.(6.3).

The equation that describes this model are:

84

Figure 6.3: Timing diagram of single level tree with simultaneous
distribution and staggered start

α0w0Tcp = α1z1Tcm + α1w1Tcp

α1w1Tcp + α1z1Tcm = α2z2Tcm + α2w2Tcp

αiwiTcp + αiziTcm = αi+1zi+1Tcm + αi+1wi+1Tcp

αN−1wN−1Tcp + αN−1zN−1Tcm = αNzNTcm + αNwNTcp

Equation (6.4) can be used as well as normalization equation.

85

Expressing the previous equation system in terms of g1 and si for i from

1 to N-1.

α0 = α1g(1) (6.17)

α1 = α2S(1) (6.18)

αi = αi+1S(i) (6.19)

αN−1 = αNS(N−1) (6.20)

where

Si =
(zi+1Tcm + wi+1Tcp)

ziTcm + wiTcp
(6.21)

and

g1 =
(z1Tcm + w1Tcp)

w0Tcp
(6.22)

The correspondent fraction of load for this particular schedule protocol

can be found as

α0 =
1

1 + 1
g1

(1 +
N−1∑
i=1

i∏
j=1

1
sj

)

(6.23)

The general expression for speedup will be,

Speedup =
1
1

1+ 1
g1

(1+
N−1P
i=1

iQ
j=1

1
sj

)

(6.24)

86

When the homogenous network is considered the speedup can be

expressed as

Speedup =
1
1

1+ 1
g1

(1+
N−1P
i=1

iQ
j=1

1
1)

(6.25)

Simplifying the above equation,

Speedup = 1 +
1

g1
(1 + N − 1) (6.26)

The final expression will be

Speedup = 1 +
1

g1
(N) (6.27)

6.3.3 Simultaneous distribution, simultaneous start

Fig.(6.4) presents the last protocol considered here.

In this case the processors are able to process the load as soon as they

receive the initial transmission. It is assume that all finish at the same time

to achieve the optimal distribution of load.

α0w0Tcp = α1w1Tcp

α1w1Tcp = α2w2Tcp

αiwiTcp = αi+1wiTcp

αN−1wN−1Tcp = αNwN−1Tcp

87

Figure 6.4: Timing diagram of single level tree with simultaneous
distribution and simultaneous start

Note, that it is assume that

αiziTcm < αiwiTcp

By expressing the previous equation system in terms of fi the previous

equation system can be written as,

88

α0 = α1f(0) (6.28)

α1 = α2f(1) (6.29)

αi = αi+1f(i) (6.30)

αN−1 = αNf(N−1) (6.31)

where

fi =
(wi+1Tcp)

wiTcp
(6.32)

The optimal load fraction assigned to each the root processor is

α0 =
1

1 +
N−1∑
i=0

i∏
j=0

1
fj

(6.33)

Here the speedup will be,

Speedup = (1 +
N−1∑

i=1

i∏

j=1

1

f(j)
) (6.34)

Considering a homogeneous network the equation below presented

represents the speedup for the simultaneous start simultaneous processing

protocol in this case it is assume that all processor on the network are

similar with the exception of the root processor which is w0. Thus the

speedup is,

Speedup = 1 +
1

f0
(1 +

N−1∑

i=1

i∏

j=1

1) (6.35)

89

After simplifying the above equation,

Speedup = 1 +
1

f0
(N) (6.36)

6.4 DLT on SoC and NoC for
Wireless Sensor Networks: M parallel
interconnection channels

On this section a specific node from a wireless sensor array will be

considered using SoC and NoC. There are two type of architectures

proposed to be used on the chip. The goal here is to use conventional

DLT to start to understand the interaction among cores and links on a

sensor using SoC and NoC.

Figure 6.5: Single level tree network M parallel interconnection channels

Fig.(6.5) shows a single level tree architecture consistent on N+1

90

processor and M links (χ) per processor pair. On this model root core

will be able to distribute the load assigned to every core in parallel fashion

using M links (χ) available. Every connection pair is similar on every node,

thus there always the same amount of channels available for every root core

child core pair in the network.

Two new variables used on this model needs to be presented at this

time;

πi,j: The inverse of the computing speed of the ith core on a virtual

processor.

χi,j: The zj / M inverse of the link speed of the jth link.

j: The represents the link number among root processor and children

processor ith.

A homogeneous network topology is considered during this study. Thus

every all the communication channels on the network are the same. In

addition all the cores used on the system are equal as well. Thus

χi,j =
Zij

M
(6.37)

where

i=1 · · · N number processors .

j=1 · · · M parallel links per processor pair.

91

For this particular case the mathematical expressions obtained to

described the optimal load assignment on the past section can be

extrapolated for the network architecture shown in Fig.(6.5) by adjusting

the proper parameter in this case the link speed parameter.

6.5 Speedup for different schedule protocols
on single level tree network chip
architecture with M parallel links

In the past sections different speedup expressions were reviewed for different

schedule protocols for the network architecture presented in Fig.(6.1).

These expressions were defined in terms for dummy variables which related

the link speed and the processor speed. Thus different expression for

different schedule protocols for the speedup were obtained in terms of this

dummy parameter which relates the speed of the processor and the link

speed.

By redefining the dummy parameter according to the new network

topology the new speedup expressions can be found. The following sections

will show the speedup for the network topology presented on Fig.(6.5)

92

6.5.1 Speedup for sequential distribution sequential
processing with M parallel links

Equation (6.16) shows the speedup for a network topology one link to one

processor. The dummy parameter defined in there is S(i),

Si =
(zi+1Tcm + wi+1Tcp)

wiTcp
(6.38)

When considering this parameter for M parallel links the new expression

need to be adjusted. The parameter adjusted is the speed of the link Zi.

Using equation (6.37) B will be the new name for the dummy variable for

this protocol on the new architecture.

Bi =
(Zji

M Tcm + wi+1Tcp)

wiTcp
(6.39)

In the case of using an homogeneous network topology where the M

links are equal and the the speed of processor is the same on all cores on

the network, equation (6.40) can be used: Thus,

Bi =
(Z

M Tcm + wTcp)

wTcp
(6.40)

and

B0 =
(Z

M Tcm + w1Tcp)

w0Tcp
(6.41)

93

The speedup for this found for this protocol and this architecture is:

Speedup = 1 +
1

B0
(1 +

N−1∑

i=1

1

Bi
) (6.42)

6.5.2 Speedup for simultaneous distribution
sequential processing with M parallel links

Following the same methodology as in section (6.5) the speedup expression

for this protocol will be obtained from equation (6.24). The dummy

variables used to related link speed and processor speed for this protocol

were:

Bi =
(χj(i+1)Tcm + wi+1Tcp)

χjiTcm + wiTcp
(6.43)

and

G1 =
(χj1Tcm + w1Tcp)

w0Tcp
(6.44)

Equation (6.45) represents the speedup equation using the new dummy

variables according to this network topology,

Speedup =
1
1

1+ 1
G1

(1+
N−1P
i=1

iQ
j=1

1
Bj

)

(6.45)

94

For a homogeneous network case from equation (6.27) and substituting

the parameters,

Speedup = 1 +
1

G1
(N) (6.46)

6.5.3 Speedup for simultaneous distribution
simultaneous start with M parallel links

The last schedule protocol considered on the network topology presented

on Fig.(6.5). Following the same methodology before proposed the dummy

parameters that represents the relationship among processors and links in

the case of M=1 the conventional case considered in section (6.3.3). As can

be seen the dummy variable does not depend on speed of the link. Thus,

the speedup for this network architecture remains the same.

6.6 DLT on SoC and NoC for Wireless
Sensor Networks: M parallel cores

The network topology is considered on Fig.(6.6) consist on a root processor

P0 that distribute or assigns load to a virtual equivalent processor which is

composed by G different cores. The load assignment among root processor

and virtual processor is can be done using the previous schedule protocols

from the classical DLT sections (6.3.1), (6.3.2) and (6.3.3). Within the

virtual processor the cores are organized in a single level tree fashion, DLT

is used to distribute the load among cores on every virtual processor.

95

It is assumed that every load assignment is arbitrarily partition able.

The schedule protocol studied for this technology is the Simultaneous

Distribution and Simultaneous processing.

Figure 6.6: Single level tree network M parallel cores

Where,

P0: Is the root processor with inverse of the computing speed w0.

g: The represents the core number that belongs to a virtual processor

ith.

πi,g: The inverse of the computing speed of the gth core on a virtual

processor.

96

zc: The inverse of the link speed of the gth link.

6.6.1 Speedup for sequential distribution sequential
processing with M parallel cores

Using the same methodology presented previously the speedup for the

virtual processors can be obtain as:

Speedup = 1 +
1

1 +
N−1∑
i=0

i∏
j=0

1
BPj

(6.47)

where

BP0 =
(z1Tcm + weq1Tcp)

w0
(6.48)

and for i = 1 to N virtual processors

BPi =
(zi+1Tcm + weqi+1Tcp)

weqi
(6.49)

The single level tree core network on the the virtual processor can

be collapsed into one single node this will allowed to find the equivalent

computation speed weq,

weqi =
1

1 +
G−1∑
i=0

i∏
j=0

1
scj

(6.50)

97

G is the number of cores on the every virtual processor and SC is

the constant that related interconnection links and cores on every virtual

processor.

SCg =
(zcg+1Tcm + πg+1Tcp)

πgTcp
(6.51)

The sequential distribution sequential processing is used as well on the

virtual processor to distribute load among cores processors.

Contrary as previously shown in equation (6.50) if the equivalent

computation speed weq in SoC virtual processor can be described as:

weq =
w

G
(6.52)

A possible theoretical limit can be found for this network topology with M

parallel cores per virtual processor.

6.6.2 Speedup for simultaneous distribution
simultaneous processing with M parallel cores

Another schedule protocol to assign load to the rest of the virtual processors

is simultaneous distribution simultaneous start. Equation (6.34), (6.35)

represent the speedup expressions for this protocol. When the incoming

load on every virtual processor arrives the load is partitioned and assigned

98

using the simultaneous distribution and simultaneous start presented on

section (6.3.3). For this case the weq will be expressed as:

weqi =
1

1 +
G−1∑
i=0

i∏
j=0

1
fcj

(6.53)

Where,

fcj =
(πj+1Tcp)

πjTcp
(6.54)

Considering a homogeneous network the equation below presented

represents equivalent computation speed weq for the simultaneous start

simultaneous processing protocol in this case it is assume that all cores on

the network are similar with the exception of the root processor which is

π0. Thus weqi is,

weqi =
1

1 + 1
fco

(1 +
G−1∑
i=1

i∏
j=1

1)

(6.55)

After simplifying the above equation,

weqi =
1

1 + 1
fco

G
(6.56)

To find the general speedup of the entire network topology the equations

(6.32), (6.34), (6.35) and (6.36) are used and adjusted to this network

topology using the equations above presented. Thus,

99

speedup = 1 + w0
(fco + G)

fco
N (6.57)

Equation (6.57) can be expressed in terms of cores π and root processor

w0 as :

speedup = 1 + w0N
(π1 + π0G)

π1
(6.58)

6.7 Results and Commentaries

The schedule protocols, Sequential distribution Staggered Start and

Simultaneous distribution Staggered Start was simulated for a singe level

tree network with M parallel links was simulated with the following

parameters:

wi = 100 for i=1 to 10, 20 40.

w0 = 90.

zi = 100 for i=1 to 20.

π0 = 95.

πi = 100 for i=1 to 10.

Tcp = 1

Tcm= 1

100

In Fig.(6.7) are shown results for the Sequential distribution and

Staggered start for single level tree M parallel links network topology.

Three different networks size were simulated composed of 10, 20 and 40

processors. On the vertical axis the value of speedup is presented. On the

other hand the on the horizontal axis presents the number of parallel links.

Figure 6.7: Speedup for a single level tree M parallel links with sequential
distribution and sequential start

It can be seen that the speedup achieved after 5 parallel links is higher

for the network simulated. After this point the value for speedup for the

network with 10 processor has a slower increase compared to the rests of

the network simulated.

101

Figure 6.8: Speedup for a single level tree with M parallel links
simultaneous distribution and staggered start

Fig.(6.8) presents the simulations results for the protocol with

Simultaneous Distribution and Staggered Start. The speedup plot for the

network of 10 processor rapidly saturates to 10 after 5 parallel links. After

this point adding extra links will not gain and eventually would increase the

energy used for transmission among nodes and root processor. In addition

the speedup is scaled by the network size, as shown on different plots for

the network simulated.

Fig.(6.9) shows the simulation for a single level tree network with M

parallel cores. The network topology simulated consisted on a single level

102

Figure 6.9: Speedup for a single level tree with M parallel cores
simultaneous distribution and simultaneous start

tree network that uses the a simultaneous distribution and simultaneous

start to assigned load from root to virtual. This protocol is used to

distribute load among cores on every virtual processor. On the vertical

axis is shown the metric for speedup on the horizontal axis are the number

of cores simulated per virtual processor basis. Notice the high values of the

speedup for different network sizes.

103

6.8 Conclusion

A novel network topology using DLT on NOC and SoC was presented. By

using the schedule protocol of the classical DLT and extrapolating them to

the new single level tree network topology with N parallel different links

and M different processors expressions for speedup were found. Simulation

showed that the Simultaneous Distribution and Staggered Start outperform

the rest of protocol simulated. Thus for the same network size and the

same amount of parallel links a grater speedup value could be obtained.

In addition simulation showed possible saturation points for the number

of parallel links, thus there is not a proportional increase on the speedup

while increasing the number of links on every protocol. This finding will

help future research on energy minimization for data transmission since

could avoid to deployed unnecessary links and therefore reduce energy. In

addition by simulating speedup of a network topology with M parallel cores

per processor (SoC) for a specific DLT protocol high speedup where found.

104

Chapter 7

Conclusion

On this research project different studies were presented taking into account

processing time and monetary cost for a single level tree networks. Chapter

2 presented an analytical close solution for optimum finish, reporting and

pre-processing time for a single level tree sensor network. Simulations for

each of the protocols were presented as well. Chapter 3 considered the

total monetary cost function for a single level tree network under changes

on the link speed and processor speed. Simulation results were provided for

a specific set of networks parameters that showed a complex relationship

between the total monetary cost and the specific network parameters. In

chapter 4 such a relationship is explored, proposing a strategy to study the

monetary total cost in a single level tree star network as a function of a

non linear load parameter simulation results were presented. Chapter 5 a

different heuristics methodologies to adapt the data acquisition protocols

were developed for a single level tree network. A robust mechanism was

developed using DLT when a sensor has a partial failure when processing

105

its load job assigned. On chapter 6 a for the first time on the DLT field the

possibility to use DLT on SoC and NoC for wireless sensor networks was

presented. Different classical DLT schedule protocol were adapted to this

new emerging technology. Simulations for speedups demonstrate wireless

sensor networks using DLT could take advantage of this new SoC and NoC

technology. The importance of this finding is that will encourage more

studies of DLT and SoC and NoC.

It has been found that DLT is a feasible mathematical tool to study

scheduling protocols for wireless sensor networks.

106

Bibliography

[1] M. Moges and T.G. Robertazzi,Wireless Sensor Networks: Scheduling

for Measurement and Data Reporting , IEEE Transactions on Aerospace

and Electronic Systems, vol. 42, no. 1, pp. 327-340, Jan. 2006.

[2] Y.C. Cheng and T.G. Robertazzi, Distributed computation with

communication delays, IEEE Transactions on Aerospace and Electronic

Systems, Vol. 22, pp. 60-79, 1988.

[3] T.G. Robertazzi, Ten reasons to use divisible load theory, Computer,

Vol. 36, pp. 63-68, 2003.

[4] Bharadwaj, V., Ghose, D., and Mani, V., A Study of Optimality

Conditions for Load Distribution in Tree Networks with Communication

Delays, Dept. of Aerospace Engineering, Indian Institute of Science,

Bangalore, India, Technical Report 423/GI/02-92, Dec. 1992.

[5] J. Sohn and T.G. Robertazzi, Optimal divisible load sharing for bus

networks, IEEE Transactions on Aerospace and Electronic Systems,

Vol. 32, pp. 34-40, 1996.

107

[6] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling

Divisible Loads in Parallel and Distributed Systems, IEEE Computer

Society Press, Los Alamitos, CA, 1996.

[7] T.G. Robertazzi, Processor equivalence for a linear daisy chain of load

sharing processors, IEEE Transactions on Aerospace and Electronic

Systems, Vol. 29, pp. 1216-1221, 1993.

[8] J.F. Kurose and R. Simha, A microeconomic approach to optimal

resource allocation in distributed computer systems, IEEE Trans.

Networking, Vol. 38, no. 5, pp. 705-717, May 1989.

[9] D. Menasce and V. Almeida,Cost-performance analysis of heterogeneity

in supercomputer architectures, Proc. IEEE ACM Supercomputing ’90,

pp.169-177, 1990.

[10] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, Pricing in computer

networks: motivation, formulation and example, Trans. Networking,

Vol. 1, no 6, pp.657-627, Dec. 1993.

[11] J. Sohn, T.G. Robertazzi and S. Luryi, Optimizing Computing Costs

Using Divisible Load Analysis, IEEE Transactions on Parallel and

Distributed Systems, Vol. 9, pp. 225-234, 1998.

[12] J. Blazewicz and M. Drozdowski, The performance limits of a

two dimensional network of load sharing processors, Foundations of

Computing and Decision Sciences, Vol. 21, pp. 3-15, 1996.

108

[13] M.Moges, L.A. Ramirez, C. Gamboa and T,G. Robertazzi, Monetary

Cost and Energy Use Optimization in Divisible Load Processing, Proc.

of the 2004 Conference on Information Sciences and Systems, Princeton

University, March 2004.

[14] C.F. Gamboa and T.G. Robertazzi, Optimizing a Divisible Load

Nonlinear Cost Function, 2005 Conference on Information Sciences and

Systems, The Johns Hopkins University, Baltimore, Maryland, March

2005.

[15] S. Charcranoon, T.G. Robertazzi and S. Luryi,Cost Efficient Processor

Arrangement in Single Level Tree Network, State Univ. of New York at

Stony Brook College of Eng. and Applied Science Technical Report 757,

30 Mar. 1998,available from T. Robertazzi. IEEE Trans. on Para. and

Dist. Sys. 9 (1998), 225-234. Also related: US Patent 5,889,989, J. Sohn,

T.G. Robertazzi and S. Luryi, Load sharing controller for optimizing

monetary cost, March 30, 1999.

[16] A. Cerpa et al., Habitat monitoring: Application driver for wireless

communications technology, 2001 ACM SIGCOMM Workshop on Data

Communications in Latin America and the Caribbean, Costa Rica,

April 2001.

[17] G. J. Pottie, W. J. Kaiser, Wireless Integrated Network Sensors,

Communications of ACM, vol. 43, no. 5, pp. 551-558, May 2000.

109

[18] V. Bharadwaj, D. Ghose, V. Mani, Design and Analysis of Load

Distribution Strategies for Infinitely Divisible Loads in Distributed

Processing Networks with Communication Delays, Dept. of Aerospace

Engineering, Indian Institute of Science, Bangalore India Technical

Report 422/GC/01-92, Oct. 1992.

[19] H.M. Wong, D. Yu, B. Veeravalli and T.G. Robertazzi,Data Intensive

Grid Scheduling: Multiple Sources with Capacity Constraints, Proc.

of the IASTED International Conference on Parallel and Distributed

Computing and Systems (PDCS 2003), Nov. 2003.

[20] V. Bharawaj, D. Ghose and T.G. Robertazzi, Divisible Load Theory:

A New Paradigm for Load Scheduling in Distributed Systems, in the

special issue of Cluster Computing on Divisible Load Scheduling (D.

Ghose and T. Robertazzi, editors), spring 2003.

[21] S. Charcranoon, T.G. Robertazzi, and S. Luryi, Load Sequencing

for a Parallel Processing Utility Journal of Parallel and Distributed

Computing, vol. 64, 2004, pp. 29-35.

[22] J.T. Hung and T.G. Robertazzi, Distributed Scheduling of Nonlinear

Computational Loads Proceedings of the 2003 Conference on

Information Sciences and Systems, The Johns Hopkins University,

Baltimore, MD, March 2003.

[23] J. D.Ownes, W. J. Daily, R. Ho, D.N. Jayasimha, S. W. Keckler,

110

L. Peh, Research Challenges for ON-CHIP Interconnections Networks

IEEE Computer Society, 0272-1732, 2007.

[24] T.G. Robertazzi, Networks and Grids Technology and Theory Stony

Brook, NY US. Springer ISBN 13-978-0-387-36758-3, 2007.

[25] Bharadwaj, V., Li, H.F. and Radhakrishnan, T., Scheduling

Divisible Loads in Bus Networks with Arbitrary Processor Release Times

Computers and Mathematics with Applications, Pergamon Press, Vol.

32, No. 7, 1996, pp. 57-77.

111

