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Abstract of the Dissertation

Lattice Boltzmann Simulation of Immiscible
Two-Phase Flow in Three Dimensional Porous

Media

by

Hagos Mehreteab Kifle

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2008

Multiphase flow in porous media at the pore scale is of major interest in oil
recovery, degradation of building materials, the spread of hazardous wastes in the
ground, contaminant remediation in aquifers, and the containment of nuclear wastes.
The challenges in simulating two-phase flow in a porous media include its geomet-
rical complexity and the vastness of the physical and geochemical parameters to be
incorporated in the model.

Unlike traditional computational schemes, the lattice Boltzmann model uses par-
ticle distribution functions to evolve macroscopic quantities such as density and veloc-
ity. For two phase flow, the model must incorporate fluid particles that collide with
particles of their own type, other fluid particles and an obstacle (wall boundaries)
under an applied external body force. The no-slip bounce back boundary condition
is used for particle-wall collisions and periodic boundary conditions are used at the
inlet-outlet ends of the domain. The Shan-Chen potential is employed to model the
interaction (collisions) between the two phases.

Phase relative permeabilities as a function of resident fluid saturation are com-
puted for the bulk media using Darcy’s law. The effects of different viscosities, pres-
sure gradient and fluid-fluid interaction constants in the model are studied exten-
sively.
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Chapter 1

Introduction

Simulating multiphase fluid flow in porous media has been an important field of
study due to its varied applications in physical sciences, life sciences, and engineering.
Major applications are in the study of oil recovery, degradation of building materials,
the spread of hazardous wastes in the ground, contaminant remediation in aquifers,
chemical processing, combustion mixing and reaction, and the containment of nuclear
wastes.

In today’s oil market, economic production of oil and gas resources requires
carefully engineered recovery projects of increasing technical complexity and sophis-
tication. Hydrocarbons do not reside in easily accessible pools awaiting discovery.
Usually they are found at enormous depths within the pore networks of sedimentary
deposits. In the complicated structure of pore network pathways there is significant
impedance to the flow of oil towards the production well. Furthermore, since wa-
ter resides in some of the pores, oil and water are recovered simultaneously at the
well-head. Even though large quantities of oil are known to reside in a reservoir, of-
ten only a relatively small fraction of it can be recovered with conventional pumping
technology. The most common method of enhancing oil recovery is the injection of
water toward the production wells [7] as illustrated in Fig. 1.1.

Recovery of subsurface fluids requires understanding the ways fluid(s) flow within
porous and fractured rocks and soil. This is particularly complicated in the presence of
multiple fluids. Experiments, combined with theoretical and computational modeling,
have tracked the flow of two phases in fractured and porous media and show how both
phases move competitively. Each phase separately responds to capillary pressure,
gravity and viscous forces. The relative mobility of any phase is a function of the
surface tension of phase boundaries, and one phase may act as a barrier to the flow
of the other. As a result, flow paths for a given fluid phase are significantly longer
than under single-phase conditions and transport is very sensitive to differences in
phase structure, even at relatively similar values of phase saturation and relative
permeability of the two phases [52].

1



Figure 1.1: An illustration of a modern oil-recovery project. Water is depicted in-
vading the pore network of a porous rock filled with oil (left). A simplified grid
discretization at a field scale recovery process (right) (after [7]).

1.1 The Study of Fluid Motion in Porous Media

The study of fluid motion covers a wide field, from the problems of creeping flow,
controlled by viscous forces, to those of very high speed Reynolds number, controlled
by inertia and compressibility forces. Scale analysis (the simplification of equations
with many terms by determining the approximate magnitude of individual terms
and ignoring negligibly small terms) and conservation laws have been the traditional
guiding principles for approximating the equations of fluid motion. The governing
equations for fluid motion in porous media are the mass continuity equation

∂ρ

∂t
+∇ · (ρ~u) = 0, (1.1)

and the Navier-Stokes equation (conservation of momentum)

∂~u

∂t
+ ~u · ∇~u = −∇P

ρ
+ ν∇2~u (1.2)

for a fluid with density ρ, velocity ~u, pressure P and kinetic viscosity ν. Equation (1.2)
is a second order partial differential equation which has no known analytic solution,
even for single phase flow, except in special cases. Analytic methods address the
existence of solutions to flow problems under different conditions but do not provide
closed form solutions. Numerical methods are used to find virtually all solutions.

1.2 Numerical Methods

The difficulty of carrying out laboratory and field experiments, measured in terms
of expense, make numerical methods attractive tools in understanding fluid motion.
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Challenges arise from the complexity of the geometry of the domain and number of
phases under consideration. Numerical methods employing finite difference, finite
volume and finite element techniques have been used extensively in studying fluid
flow at the macroscopic scale level.

One scheme that can handle the complex geometry encountered at the pore scale
is the Lattice Boltzmann Method. It has the property that its solutions approach
those of the Navier-Stokes equations for slow-flow (low mach number) problems. The
application of this method is the main topic of this dissertation.

1.3 Modeling Fluid Flow

The dynamics of fluid flows, which are generated at the microscopic level, could
in principle be modeled with direct simulation at the molecular scale. In practice it is
infeasible to solve macroscopic systems with such an approach due to the scarcity of
computing resources and time required for molecular-scale simulation on macroscopic
time scales. The challenge in modeling increases as we proceed from single to multi-
phase flow. Oil reservoirs are complex geological formations. To simulate them, it is
necessary to take solid, liquid, and gas phases into account, as well as any chemical
reactions occurring among and between the phases. “This is the main challenge for
porous media modeling, to handle highly nonlinear and hysteretic coupled flows with
multiscale, multiphase, multicomponent, and multiphysics features” [46].

1.4 Input Data Acquisition

A description of the geometry of the porous material in which the fluid is flowing
is crucial in determining transport properties such porosity, tortuosity and perme-
ability. Porous media data sets vary from model media (eg. sphere packs) to samples
taken from geologic deposits. The most widely used model consists of artificial sphere
packs. Artificial sphere packs are considerably different from rocks which are drilled
from oil wells. Use of X-ray computed microtomographic imaging of geologic samples
helps to avoid oversimplified models, resulting in improved data sets for understand-
ing the transport properties of geologic media.

A powerful image generating technique, X-ray computed microtomography gen-
erates 3D images of porous rocks. It provides the opportunity to directly measure
the complex morphology of pore space of the sedimentary rock at a resolution down
to few microns. As a result, synthetic images are replaced by X-ray computed micro-
tomographic (XCMT) images. XCMT discretizations of Fontainebleau sandstone of
different porosities and sizes are used as input data to the two-phase lattice Boltzmann
simulations in this thesis.
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1.5 Objectives

The main objectives of this work are:

1. Understanding and quantifying the transport properties of two flowing fluid
phases at the pore scale. We consider the effect on the residual resident phase
saturation of:

a) the strength of the pressure gradient, used as a driving force for the fluid
flow;

b) the variation in the relaxation time parameters (which model fluid viscos-
ity) in the model;

c) density differences of the invading and resident fluid phases.

2. Understanding and predicting the relative permeabilities of the two phases flow-
ing through three dimensional Fontainebleau sandstone.

3. Understanding the interfacial properties (moving boundaries) of the fluid-fluid
interaction. Four different values of the fluid-fluid interaction constant, G, are
considered to study the interfacial interaction between the two phases.

The dissertation is organized as follows. In Chapter 2, we describe the Boltzmann
transport equation and its relationship with the Navier-Stokes equation. Chapter 3
contains the details of the lattice Boltzmann model and the discretization of the
Boltzmann equation. We describe the lattice Boltzmann model for two-phase flow
in porous media in Chapter 4. Chapter 5 contains Fontainebleau sandstone analysis
and simulation results. Conclusions are presented in Chapter 6.
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Chapter 2

The Boltzmann Transport Equation

In this chapter the ideas underlying the Boltzmann equation of a fluid system in
the context of classical statistical mechanics are reviewed. The Boltzmann equation,
on which kinetic theory is highly dependent, was established by Ludwig Boltzmann
in 1872. Here, the Boltzmann equation is reviewed and the macroscopic quantities
of mass, momentum and energy are defined in terms of the distribution function of
the fluid. It is shown that the Boltzmann description of the fluid satisfies the fluid
conservation equations. The form of the collision operator for an ideal fluid, in which
only binary collisions are considered, is reviewed.

2.1 The Classical Boltzmann Equation

Consider the motion of N mutually interacting molecules in a box of volume V
at temperature T . Their microscopic dynamics is governed by the Newton equations

d~xi

dt
=

~pi

m
, (2.1)

d~pi

dt
= ~Fi, i = 1, . . . , N, (2.2)

where ~xi is the position of the i-th molecule, ~pi ≡ m~vi is its linear momentum and
~Fi the force experienced by the molecule as a result of intermolecular interactions.
With appropriate initial and boundary conditions, equations (2.1) and (2.2) form
a system of 6N functions of time [~xi(t), ~pi(t)], i = 1, . . . , N which can be solved in
principle. Since N is a large number, it is not feasible to seek a direct solution for
such equations. An approach which considers the collective behavior of the molecules
from a statistical point of view simplifies the computational burden of the N -particle
system.

Let f(~x, ~p, t) be the probability of finding a molecule at position ~x at time t with
momentum ~p. The quantity δn(~x, ~p, t) ≡ f(~x, ~p, t)δ~xδ~p is the probable number of
molecules in the position ~x → ~x + δ~x having momentum ~p → ~p + δ~p. The distribution
function f(~x, ~p, t) is the fundamental variable of the kinetic theory; the Boltzmann
equation describes the evolution of f in terms of molecular interactions.
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The kinetic equation for the distribution function, when all particles are of the
same type, is

∂tf(~x,~v, t) +
~p

m
· ∇~xf(~x, ~p, t) + ~F · ∇~pf(~x, ~p, t) = Ω(f), (2.3)

where the left hand side represents the streaming motion of the molecules along
trajectories associated with the force field ~F , which is similar to the Newtonian single
particle dynamics, and Ω(f) represents the effect of intermolecular collisions moving
molecules in and out the trajectory [64].

The intermolecular interactions can be described mainly in terms of localized
binary collisions (Boltzmann theory assumption). The collision term splits into gain,
G, and loss, L, components:

Ω(f) ≡ G− L =

∫
d(Ω)

∫
(f1′2′ − f12) |~v1 − ~v2| σ(Ω) d~p2, (2.4)

where f12 is the probability of finding, at time t, molecule 1 at ~x1 with velocity ~v1

and molecule 2 at ~x2 with velocity ~v2.

σ(Ω) is the differential scattering cross section which describes the probability
density for any given change of velocities {~v1, ~v2} → {~v′1, ~v′2}. The subscripts 1, 2 and
1′, 2′ are states corresponding to direct (~v1, ~v2 → ~v′1, ~v

′
2) and inverse (~v′1, ~v

′
2 → ~v1, ~v2)

collisions taking molecules out of/into the volume element d~v1d~v2, respectively (see
Fig. 2.1).

1 1

2 2

2 2

1 1

′

′

′

′

Figure 2.1: Direct (left) and inverse (right) intermolecular collision diagrams.

Using the Boltzmann closure assumption, f12 = f1f2 [66], the Boltzmann equa-
tion (2.3) takes the form

∂f

∂t
+ ~v · ∇~xf + ~F · ∂f

∂~p
=

∫
dΩ

∫
(f1′f2′ − f1f2) |~v1 − ~v2| σ(Ω) d~p2, (2.5)

where f1 = f(~x,~v1, t) and f1′ = f(~x,~v′1, t). Given an initial particle density function
f(~x,~v, 0), the solution function f(~x,~v, t) describes how the density function changes
over time.
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The fluid density ρ, velocity ~u and internal energy e can be obtained from the
distribution function f [9] as follows:

∫
mf(~x,~v, t) d~v = ρ(~x, t); (2.6)

∫
m~vf(~x,~v, t) d~v = ρ(~x, t)~u(~x, t); (2.7)

1

2

∫
m~u0f(~x,~v, t) d~v = ρ(~x, t)e(~x, t), (2.8)

where m is the molecular mass and ~u0 is the peculiar velocity ~u0 ≡ ~v − ~u, i.e. the
particle velocity relative to the average (or bulk) fluid flow velocity. The internal
energy related to f can be shown to be [64]

e =
3

2m
RT,

where T is the temperature and R is the Boltzmann gas constant.

2.2 Collision Operator

To facilitate the numerical solution of the Boltzmann equation, the complicated
nonlinear collision operator Ω of equation (2.4) is replaced by a simplified expres-
sion. There are at least two different general approaches that are currently in use to
compute the collision operator. These are the:

1. Eggels-Somers model described by Somers [62] and Eggels and Somers [20], and
used by Eggles [21] and Derksen and Van den Akker [17] to simulate single
phase flow;

2. Bhatnagar-Gross-Krook (BGK) model which is widely used and is our choice
in this work because it is easier to program than the former. It is based on a
simplified kinetic equation for dilute gases [4]. See Qian [68], Chen et al. [10],
and Qian et al. [53] for detailed explanation of the BGK model in the lattice
Boltzmann method.

The simplified expression given by the BGK model for the collision operator [4]
is

ΩBGK(f) = −f − f e

τ
, (2.9)

where f e is the equilibrium particle distribution function, which depends on the local
density, ρ, and the velocity, ~v and τ is a dimensionless relaxation time that depends
on the kinematic viscosity, ν. τ is related to ν by the following equation,

ν =
1

3
(τ − 1

2
), (2.10)

where τ > 1
2
.
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2.3 A Review of the Chapman-Enskog Expansion

Chapman and Enskog developed a multiscale analysis procedure [9] for the ap-
proximate solution of Boltzmann’s equation. For certain simple models such as hard
spheres their method produces predictions for f(~x,~v, t) (or its moments) which can
be tested in computer simulations [6]. The Chapman-Enskog procedure expands the
particle distribution function f(~x,~v, t) in terms of the independent space and time
(~x, t) variables in order to recover the Navier-Stokes equation.

The expansion uses a parameter, known as the Knudsen number, which is the
ratio of the molecular mean free (particle) path λ to the macroscopic (continuum)
characteristic length l,

Kn ≡ ε =
λ

l
. (2.11)

ε is introduced into the Boltzmann equation (2.5) in the following way,

t = ε−1t1 + ε−2t2, (2.12)

~x = ε−1~x1, (2.13)

where t1 and t2 are fast and slow time-scales corresponding to convective and diffusive
processes. The corresponding differential operator representations for equations (2.12)
and (2.13) are

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, (2.14)

∂

∂xa

= ε
∂

∂x1a

, a = 1, 2, 3. (2.15)

A small Knudsen number, ε, is necessary for the convergence of expansion terms.
Expansion moments of f are obtained by Taylor series expansion about f e(≡ f (0)),

f =
∞∑

n=0

εnf (n) = f e + εf (1) + ε2f (2) + · · · . (2.16)

Similarly expanding equation (2.5) up to second order in ε yields

ε
∂f

∂t1
+ ε2 ∂f

∂t2
+ εva

∂f

∂x1a

+
1

2
ε2vavb

∂2f

∂x1a∂x1b

= Ω(f e) + ε
∂Ω(f (1))

∂f
, a, b = 1, 2, 3.

(2.17)

The value of the collision operator Ω at the equilibrium distribution function f e is
zero by (2.9). The expansions, to second order, (details are given in [27]) of the mass
and momentum equations are

εM̂1 + ε2M̂2 = 0, (2.18)

εĴ1 + ε2Ĵ2 = 0, (2.19)

8



where M̂i, Ĵi, i = 1, 2, are the i-th order differential form for mass and momentum
respectively. At order ε, one obtains M̂1 = 0 and Ĵ1 = 0 (mass and momentum
conservation requirement), which can be written as

∂ρ

∂t1
+

∂(ρua)

∂x1a

= 0, (2.20)

∂(ρua)

∂t1
+

∂(ρuaub)

∂x1b

= −c2
s

∂ρ

∂x1a

. (2.21)

Equation (2.21) can be rewritten as

∂(ρua)

∂t1
+

∂(ρuaub)

∂x1b

= − ∂

∂x1b

(
ρ(1− d0)

2
c2δab

)
. (2.22)

This is an Euler equation for inviscid flow without dissipation.

2.4 The Navier-Stokes Equations

The Navier-Stokes equations can be derived using the second order terms from
(2.18) and (2.19), and are more complicated due to the involvement of equilibrium and
non-equilibrium terms and mixed space-time derivatives. The final result is relatively
simple [43] and can be stated as

∂ρ

∂t1
+

∂(ρua)

∂x1a

= 0, (2.23)

∂(ρua)

∂t1
+

∂(ρuaub)

∂x1b

= − ∂

∂x1b

(
ρ(1− d0)

2
c2δab

)
+ ν∇2ρua +

∂

∂x1a

(µ∇ · ρ~u),

(2.24)

where ν is the kinematic viscosity and µ is the dynamic viscosity.
In the next chapters, details of the Boltzmann equation and lattice Boltzmann

model are addressed.
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Chapter 3

The Lattice Boltzmann Model

In the last two decades, the lattice Boltzmann method (LBM) has emerged as a
potentially powerful numerical scheme for simulating fluid flow. Initially developed
to overcome certain deficiencies of lattice gas cellular automaton (statistical noise [55]
and lack of Galilean invariance [70]), the LBM has undergone continuous development.
The lattice Boltzmann equation can be derived as an approximate solution to the
Boltzmann equation (2.5). Unlike traditional numerical methods which solve partial
differential equations directly at the macroscopic level, the lattice Boltzmann equation
solves the microscopic kinetic equation for the particle distribution function f(~x,~v, t)
through moment integration.

The “Lattice” method, in which the continuous variables ~x and ~v are restricted
to discrete values, is used to approximate the solution of Boltzmann’s equation. The
time change of these values is then described by a modified transport equation which
lends it self to fast numerical solution methods.

DmQn is the most widely used abbreviation for lattice Boltzmann models where
m stands for the number of dimensions (3 in our case), and n is the number of
finite velocity vectors. There are different types of three dimensional discrete velocity
lattice models, but not all of them have enough symmetry to ensure macroscopic
isotropy [28]. By introducing a multi-speed model on a cubic lattice [19], models such
as D3Q15, D3Q19 and D3Q27 are widely employed. D3Q19 is a feasible choice for
our purposes, as it is more computationally stable than D3Q15 and it is more time
efficient than D3Q27.

Lattice Boltzmann models also vary according to the number of fluid phases mod-
eled and relaxation parameters governing the approach to the equilibrium. Examples
include:

1. Single-phase lattice Boltzmann model with typical lattice types: D2Q9, D3Q15,
D3Q19 and D3Q27 [28, 48].

2. Single and multiple relaxation models employing the assumption of an equi-
librium velocity distribution and a collision operator replaced by a single-step
collision towards equilibrium [4, 38, 53].

10



3. Multiphase lattice Bhatnagar-Gross-Krook (LBGK) models using single step
relaxation and gradient terms, pseudo-potentials, or free energy functions for
phase separation [31, 32, 34, 57, 58, 60].

3.1 Discretization of the Boltzmann Equation

The nonlinear collision operator of the Boltzmann equation (2.5) is simplified
using the BGK (Bhatnagar—Gross—Krook) model equation (2.9), but it is not dis-
cretized. We now discuss the discretization of the Boltzmann-BGK equation

∂f

∂t
+ ~v · ∇~xf + ~F · ∂f

∂~v
= −f − f e

τ
. (3.1)

3.1.1 Time Discretization

Assuming no external body force ( ~F = 0), (3.1) can be formulated into an
ordinary differential equation,

Df

Dt
+

f

τ
=

f e

τ
, (3.2)

using the convective derivative, D
Dt

= ∂
∂t

+ ~v · ∂
∂~x

= ∂
∂t

+ ~v · ∇. Since (3.2) is a first
order differential equation, its closed form solution can be formally expressed as

f(t + δt) = f(t)e−
δt
τ +

1

τ
e−

δt
τ

∫ δt

0

e−
s
τ g(t + s) ds. (3.3)

g(t + s) ≡ e
2s
τ f e(t + s) is a smooth function which, for δt very small, can be approxi-

mated with linear interpolation for 0 ≤ s ≤ δt by

g(t + s) = (1− s

δt
)g(t) +

s

δt
g(t + δt) + O(δt2). (3.4)

Using (3.4) to solve the integral term in (3.3) yields

1

τ
e−

δt
τ

∫ δt

0

e−
s
τ g(t + s) ds =

1

τ
e−

δt
τ

∫ δt

0

e−
s
τ (1− s

δt
)g(t) +

s

δt
g(t + δt) ds,

=
1

τ
e−

δt
τ

[
e

s
δt τg(t)− e

s
τ
( 1

τ
)(s−1)

√
τ

g(t)

δt
+ e

s
τ
( 1

τ
)(s−1)

√
τ

g(t + δt

δt

]δt

0

,

=
1

τ
e−

δt
τ g(t)

[
τe

δ
t
τ − (τ − τ 2

δt
)e

δt
τ − τ − τ 2

δt− t

]

+ g(t + δt)

[
(τ − τ 2

δt
)e

δt
τ +

τ 2

δt− t

]
,

= g(t)− e−
δt
τ g(t) +

[
1 +

τ

δt
(e−

δt
τ − 1)

]
[g(t + δt)− g(t)] .

11



To first order in δt, (3.3) can be rewritten as

f(t + δt)− f(t) = (e−
δt
τ − 1) [f(t)− g(t)]

+
(
1 +

τ

δt
(e−

δt
τ − 1)

)
[g(t + δt)− g(t)] . (3.5)

Taylor expansion of e−
δt
τ to first order in δt gives

e−
δt
τ ≈ 1− δt

τ
. (3.6)

Therefore (3.5) can be simplified to

f(t + δt)− f(t) =

(
1− δt

τ
− 1

)
[f(t)− g(t)]

+

(
1 +

τ

δt
(1− δt

τ
− 1)

)
[g(t + δt)− g(t)] ,

= −δt

τ
(f(t)− g(t)),

= −δt

τ
(f(t)− f e(t)). (3.7)

In the following sections, we describe the discretization of the velocity and the equi-
librium distribution function.

3.1.2 Approximation of the Equilibrium Distribution Func-
tion

In the lattice Boltzmann equation, the equilibrium distribution function is ob-
tained by a truncated, small macroscopic velocity (~u) expansion (low Mach num-
ber approximation) [27]. The Maxwell distribution (also known as the Maxwell-
Boltzmann distribution) for a three dimensional system is given by

f e(ρ,~v) =
ρ

(2πRT )3/2
e−

(~v−~u)2

2RT . (3.8)

Expanding the quadratic form in the exponent of the exponential and Taylor expan-
sion of f e in ~u up to second order gives

f e =
ρ

(2πRT )3/2
e−

~v2

2RT e
~v·~u
RT e−

~u2

2RT ,

=
ρ

(2πRT )3/2
e−

~v2

2RT {f e(0) + ~u(f e)′(0) +
~u2

2
(f e)′′(0)}+ O(~u3),

=
ρ

(2πRT )3/2
e−

~v2

2RT {1 + ~u · ~v

RT
+

~u2

2
· ( ~v2

(RT )2
− 1

RT
)}+ O(~u3),

=
ρ

(2πRT )3/2
e−

~v2

2RT {1 +
~v · ~u
RT

+
(~v · ~u)2

2(RT )2
− ~u2

2RT
}+ O(~u3).
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The local equilibrium distribution function will be used in the following form

f e =
ρ

(2πRT )D/2
e−

~v2

2RT × {1 +
~v · ~u
RT

+
(~v · ~u)2

2(RT )2
− ~u2

2RT
}, (3.9)

with further discretization of the velocities as described next.

3.1.3 Discretization of Velocities

We summarize the discretization of the velocities for the D3Q27 model in this
section. The velocity moments of integrals of (3.9) over the entire velocity space are
needed. The moments of particle distribution functions are essential for the consis-
tency of the Navier-Stokes equations. Isotropy, which is the most important of the
Navier-Stokes symmetries, should also be retained by the discretization.

In the LBM derivation, the velocity moments are directly used as constraints
for the numerical integration. For models that include temperature and for accurate
results, the integration of the second moment has to be correct; since we will use
an isothermal model, only the first moment of the velocity is required. The velocity
moments of (3.9) in three dimensions can be written as

I =

∫
φ(~v)f e d~v,

=
ρ

(2πRT )D/2

∫
φ(~v)e−

~v2

2RT {1 +
~v · ~u
RT

+
(~v · ~u)2

2(RT )2
− ~u2

2RT
} d~v, (3.10)

where φ is a function containing powers of the velocity components,

φ(~v) = vr
1v

s
2v

t
3. (3.11)

Therefore, from (3.10) and (3.11),

I =
ρ

π
√

π
(
√

2RT )−3

∫
vr

1v
s
2v

t
3e
− ~v2

(
√

2RT )2

(
1− ~u2

(2RT )
+

2~v · ~u
(2RT )

+
2(~v · ~u)2

(
√

2RT )4

)
d~v,

=
ρ

π
√

π
(
√

2RT )−3

[∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2 d~v

−
∫

vr
1v

s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2

(
u2

1 + u2
2 + u2

3

2RT

)
d~v

+

∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2

(
2(v1u1 + v2u2 + v3u3)

2RT

)
d~v

+

∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2

(
2(v2

1u
2
1 + v2

2u
2
2 + v2

3u
2
3)

(
√

2RT )4

)
d~v

+

∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2

(
4(v1u1v2u2 + v1u1v3u3 + v2u2v3u3)

(
√

2RT )4

)
d~v

]
. (3.12)
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The integration of the first term on the RHS of (3.12) is done explicitly below, the
results for the remaining three terms, which follow analogously, are merely listed.

ρ

π
√

π
(
√

2RT )−3

(∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2 d~v

)

=
ρ

π
√

π
(
√

2RT )−3

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e
− v2

1
(
√

2RT )2 vr
1e
− v2

2
(
√

2RT )2 vs
2e
− v2

3
(
√

2RT )2 vt
3 dv1 dv2 dv3

)
,

=
ρ

π
√

π
(
√

2RT )−3

(∫ ∞

−∞
e
− v2

1
(
√

2RT )2 vr
1 dv1

∫ ∞

−∞
e
− v2

2
(
√

2RT )2 vs
2 dv2

∫ ∞

−∞
e
− v2

3
(
√

2RT )2 vt
3 dv3

)
,

=
ρ

π
√

π
·
[
(
√

2RT )r

∫ ∞

−∞
e
−(

v1√
2RT

)2
(

v1√
2RT

)r

d
v1

(
√

2RT )

·(
√

2RT )s

∫ ∞

−∞
e
−(

v2√
2RT

)2
(

v2√
2RT

)s

d
v2

(
√

2RT )

· (
√

2RT )t

∫ ∞

−∞
e
−(

v3√
2RT

)2
(

v3√
2RT

)t

d
v3

(
√

2RT )

]
,

=
ρ

π
√

π
(
√

2RT )s+r+t ·
[∫ ∞

−∞
e
−(

v1√
2RT

)2
(

v1√
2RT

)s

d
v1

(
√

2RT )

·
∫ ∞

−∞
e
−(

v2√
2RT

)2
(

v2√
2RT

)r

d
v2

(
√

2RT )

·
∫ ∞

−∞
e
−(

v3√
2RT

)2
(

v3√
2RT

)t

d
v3

(
√

2RT )

]
,

=
ρ

π
√

π
(
√

2RT )s+r+t ·
(∫ ∞

−∞
e−ς2xςx

s dςx ·
∫ ∞

−∞
e−ς2y ςy

r dςy ·
∫ ∞

−∞
e−ς2z ςz

t dςz

)
,

=
ρ

π
√

π
(
√

2RT )s+r+tIs
xI

r
yI

t
z, (3.13)

where Ir
i is the r-th moment of the function eς2i .

The results for the remaining three integrals are

− ρ

π
√

π
(
√

2RT )−3

∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2

(
u2

1 + u2
2 + u2

3

2RT

)
d~v

= − ρ

π
√

π
(
√

2RT )s+r+t

(
~u√
2RT

)2

Is
xI

r
yI

t
z,

ρ

π
√

π
(
√

2RT )−3

∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2

(
2(v1u1 + v2u2 + v3u3)

2RT

)
d~v

=
ρ

π
√

π
(
√

2RT )r+s+t
2(u1I

r+1
x Is

yI
t
z + u2I

r
xI

s+1
y I t

z + u3I
r
xI

s
yI

t+1
z )√

2RT
,
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ρ

π
√

π
(
√

2RT )−3

∫
vr

1v
s
2v

t
3e
− v2

1+v2
2+v2

3
(
√

2RT )2

[
2(v2

1u
2
1 + v2

2u
2
2 + v2

3u
2
3)

(
√

2RT )4

+
2(v1u1v2u2 + v1u1v3u3 + v2u2v3u3)

(
√

2RT )4

]
d~v

=
ρ

π
√

π
(
√

2RT )r+s+t

[
u2

1I
r+2
x Is

yI
t
z + u2

2I
r
xI

s+2
y I t

z + u2
3I

r
xI

s
yI

t+2
z

RT

+
2(u1u2I

r+1
x Is+1

y I t
z + u2u3I

r
xI

s+1
y I t+1

z + u1u3I
r+1
x Is

yI
t+1
z )

RT

]
.

Equation (3.12) can be summarized as

I =
ρ

π
√

π
(
√

2RT )r+s+t

[(
1− ~u2

2RT

)
Ir
xI

s
yI

t
z

+
2(u1I

r+1
x Is

yI
t
z + u2I

r
xI

s+1
y I t

z + u3I
r
xI

s
yI

t+1
z )√

2RT

+
u2

1I
r+2
x Is

yI
t
z + u2

2I
r
xI

s+2
y I t

z + u2
3I

r
xI

s
yI

t+2
z

RT

+
2(u1u2I

r+1
x Is+1

y I t
z + u2u3I

r
xI

s+1
y I t+1

z + u1u3I
r+1
x Is

yI
t+1
z )

RT

]
. (3.14)

Gauss-Hermite [15] quadrature can be applied to numerically integrate these mo-
ments,

Ir
x =

∫ ∞

−∞
f(x)e−x2

dx =
N∑

k=1

wkf(xk). (3.15)

Using the Gauss-Hermite 3-point formula,

ς1 = −
√

3/2, ς2 = 0, ς3 =
√

3/2, (3.16)

w1 =

√
π

6
, w2 =

2
√

π

3
, w3 =

√
π

6
, (3.17)

the moment function can be expressed in the following form,

I =
ρ

π
√

π

3∑
i=1

3∑
j=1

3∑

k=1

wiwjwkφ(ςi,j,k), (3.18)

where ςi,j,k is the vector ςi,j,k = (
√

2RT )(ςi, ςj, ςk)
T . As each of the three sums runs

over three values, there are a total of twenty seven possible values for ςi,j,k and wiwjwk.
For an isothermal model, the temperature T has relevance only as scaling parameter
and can be replaced by a constant c =

√
3RT . This constant c is related to the speed

15



of sound by the equation cs ≡
√

RT = c/
√

3, c2
s = c2/3 = RT [36]. Dividing the

weights by π
√

π, we obtain

wα ≡ wiwjwk

π
√

π
,

=





8/27, i = j = k = 2, α = 0
2/27, i = j = 2, k = 1, α = 1, . . . , 6
1/54, i = j = 1, k = 2, α = 7, . . . , 18
1/216, i = j = k = 3, α = 19, . . . , 26,

(3.19)

and

~eα =





(0, 0, 0)T , α = 0
(±1, 0, 0)T c, (0,±1, 0)T c, (0, 0,±1)T c, α = 1, . . . , 6
(±1,±1, 0)T c, (±1, 0,±1)T c, (0,±1,±1)T c, α = 7, . . . , 18
(±1,±1,±1)T c, α = 19, . . . , 26.

(3.20)

With the discrete velocities, ~eα, (3.18) becomes

I =
26∑

α=1

Wαφ(~eα)f e
α. (3.21)

Identifying Wα as 2πRT
√

2πRTe
~v2

2RT , this yields the familiar form of the equilibrium
distribution function of D3Q27:

f e
α = wαρ

(
1 +

3(~eα · ~u)

c2
+

9(~eα · ~u)2

2c4
− 3~u2

2c2

)
. (3.22)

The 3-point Gauss-Hermite quadrature integrates up to fifth order polynomials (f(vi)
in 3.15) exactly for regular lattice models such as D2Q9 and D3Q27. Models on
irregular lattices such as D3Q15 and D3Q19, can be derived using an ansatz method
[67], as described in (§3.2) below.

3.2 The D3Q19 Lattice Model

D3Q19 is derived from a four dimensional hypercube (FDHC). The four dimen-
sional face centered hypercube (4D FCHC) lattice model limits velocities of particles
to (0, 0, 0, 0),(0, 0,±1,±1), (0,±1, 0,±1),(±1,±1, 0, 0), (±1, 0,±1, 0),(0,±1,±1, 0),
and (0, 0,±1,±1). Here there are 24 components including one corresponding to
the rest particles. D3Q19 is the same as 4D FCHC without the fourth component.
Projection of 4D FCHC to D3Q19 doubles the population of states in D3Q19 that
have a single non-vanishing velocity component. For instance, a component cor-
responding to (1, 0, 0) in the D3Q19 model is a combination of the (1, 0, 0, 1) and
(1, 0, 0,−1) components from 4D FCHC. Figure 3.1 shows the finite velocity vectors
of the D3Q19 model and its two dimensional yz-plane projection (D2Q9).
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Figure 3.1: The 19 distinct velocities of the D3Q19 lattice model (left) and the 9
distinct velocities of yz-plane projection (D2Q9) (right).

The D3Q19 lattice has three sublattices (see (3.23)) and 19 discrete velocity
vectors (1 “rest” velocity, 6 velocity vectors to the face centers, and 12 towards edge
centers of a cube). The basic velocity vectors of the D3Q19 lattice are

~eα = (~e0, ~e1, ~e2, ~e3, ~e4, ~e5, ~e6, ~e7, ~e8, ~e9, ~e10, ~e11, ~e12, ~e13, ~e14, ~e15, ~e16, ~e17, ~e18),

=





(0, 0, 0), α = 9,
(0, 0,±1), (0,±1, 0), (±1, 0, 0), α = 2, 6, 8, 10, 12, 16,
(0,±1,±1), (±1, 0,±1), (±1,±1, 0), α = 0, 1, 3, 4, 5, 7, 11, 13, 14, 15, 17, 18.

(3.23)

Weight factors for the D3Q19 model and its two dimensional yz-plane projection
(D2Q9) are given in Table 3.1.

Table 3.1: Weight factors wα for the most widely used lattice types.

Lattice Zero Simple cubic Diagonal cubic
model position vectors (100) vectors(110) vectors(111)
D2Q9 4/9 1/9 1/36 do not exist
D3Q19 1/3 1/18 1/36 do not exist

3.3 The Lattice Boltzmann Method for Single Phase Flow

In a single phase lattice Boltzmann method, the distribution function of particles,
fα(~x, t), is an averaged quantity for the boolean lattice particle number, nα(~x, t), with
velocity ~eα at point ~x and t, i.e., fα(~x, t) = 〈nα(~x, t)〉. The fα(~x, t) are real valued
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functions with range [0, 1]. Mean density, momentum and velocity are given by, (here
we implicitly assume the D3Q19 model),

ρ(~x, t) = m

18∑
α=0

fα(~x, t), (3.24)

~p(~x, t) = m

18∑
α=0

fα(~x, t)~eα, (3.25)

~u(~x, t) =
~p(~x, t)

ρ(~x, t)
. (3.26)

The evolution of fα(~x, t) is computed using the velocity discretization of (3.7),

fα(~x + ~eαδt, t + δt)− fα(~x, t) = −δt

τ
(fα(~x, t)− f e

α(~x, t)), α = 0, . . . , 18. (3.27)

3.4 External Body Force

Velocity and pressure boundary conditions must be imposed in an appropri-
ate way to simulate fluid flow. Proper velocity and pressure boundaries have been
proposed in [13, 30, 45]. For an incompressible fluid, an external body force and a
pressure gradient have similar effects in the Navier-Stokes equations (§2.4). It is often
possible to use a uniform body force [8, 22, 40, 41, 56] in lieu of pressure or velocity
boundary conditions. The pressure difference at the inlet and outlet divided by the
length, L of the porous media along the flow direction is the typical experimental
pressure gradient i.e., ∇P = ∆P

L
. This pressure gradient is modeled as a constant

external body force and (3.27) is modified to

fα(~x + eαδt, t + δt)− fα(~x, t) = Ωα(~x, t)− 3
wi

c2
δteα · ∇P. (3.28)

The body force defines the macroscopic flow direction by adding momentum to links
with non-zero projection in the direction of the force and taking into account the
weight factors (wα) of the links.

3.5 Initial Conditions

Initial conditions must be chosen consistent with the physical experiment to
be simulated. In our case, the initial velocity is zero (~u = 0) and initial density
(ρ = ρ0) is constant. The equilibrium distribution function (3.22) is initialized
using the initial velocity and density and the fα(~x, 0) are set from the equilibrium
distribution function.
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3.6 Boundary Conditions

Different types of boundary conditions are possible. In particular

• the no-slip boundary condition is appropriate for most fluids in contact with
solid (rock) sites;

• periodic boundary conditions are useful for modeling large systems because they
tend to minimize finite length effects.

3.6.1 No-slip Bounce Back Boundary Condition

In lattice Boltzmann simulations, no-slip boundary conditions are realized by the
so called bounce back rule [29, 37]. When fluid particles hit a solid wall, they are
reflected 180◦ with the same speed. Bounce back can be applied either at wall lattice
sites or half way along the links between the fluid and solid lattice sites. In more
complicated cases (such as curved and irregular boundaries), the no-slip boundary
lies more generally between the last fluid and the first solid lattice sites, the exact
placement depending on the geometry of the system, the relaxation parameter τ of
the LBGK model [37, 41] and the magnitude of the forcing term [35, 65]. Fig. 3.2
depicts wall sites (three small shaded circles in the first row) where fluid particles are
collided on and bounced back, and the pore sites where fluid particles are streaming
through.

(a) (b)

Figure 3.2: Lattice vectors at a fluid node (center point): (a) before streaming and
(b) after streaming for δt = 1 time unit. The three lattice vectors at the center node
in (b) result from bounce-back boundary conditions along the row of wall nodes

Several authors have proposed more sophisticated second order boundary con-
ditions, which model a no-slip boundary exactly at the wall nodes. Many of these
are restricted to regular geometries, like octagonal objects and flat walls [50, 61], but
there are also general boundary-fitting models [11, 23]. However, bounce back is very
attractive for simulation due to its simplicity and computational efficiency.
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3.6.2 Periodic Boundary Conditions

Periodic boundary conditions are imposed in the flow (z) direction by treating
pore lattice sites on the inlet and outlet faces as nearest neighbors if they have common
x and y coordinates. To achieve this, the medium must (usually) be doubled in the
z-direction by attaching a mirror image at one end. The new medium is now twice
the length, but with geometrically matching ends. As a result, the computational
volume expands by a factor of 2. Applying periodic boundary conditions preserves
mass because fluid leaving the porous media at the outlet “wraps around” at the
inlet,

f b
α(~x, t)inlet = f r

(18−α)(~x, t)outlet, α = 0–4,14–18, (3.29)

as shown in Figure 3.3.

Figure 3.3: Fluid particle distribution functions leaving the outlet are reintroduced
at the inlet under periodic boundary conditions. Fluid particle distribution function
leaving the medium has the same color as the one entering the medium.
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Chapter 4

Lattice Boltzmann Model for Two-Phase Flow in a

Porous Media

Multiphase flow phenomena are characterized by movable and deformable phase
boundaries at which the behavior of the flow may discontinuously change. An essential
feature of immiscible two-phase flows is the occurrence of a Laplacian surface tension
form of the phases which guides the system towards the reduction of interface energy
[54].

4.1 From Single Phase to Two-Phase Flow

The lattice Boltzmann model in §3.3 describes the simulation of single phase
flow. Here we review the extension to modeling fluid flow for two phases. We assume
only red (r) and blue (b) phases whose particle distribution functions are established
by the evolution of the modified lattice Boltzmann equations

fk
α(~x + ~eαδt, t + δt)− fk

α(~x, t) = Ωk
α(~x, t), (4.1)

where k denotes either red or blue fluid, and

Ωk
α = (Ωk

α)1 + (Ωk
α)2 (4.2)

is the collision operator. (Ωk
α)1 represents the kth single phase collision operator due

to relaxation to the local equilibrium analogous to the LBGK relaxation in (2.9),

(Ωk
α)1 = −δt

τk

(fk
α − fk(e)

α ), (4.3)

and (Ωk
α)2 describes the interaction between the two phases,

(Ωk
α)2 = ~eα · Fk, (4.4)

where Fk is the sum of both fluid-fluid, Fk
ff , and fluid-solid, Fk

fs, interactions as ex-

plained in §4.2. Here, f
k(e)
α is the local equilibrium distribution for phase k, which
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depends on the local macroscopic variables ρk and ~uk. The viscosity for phase k is
determined by the value of the relaxation time τk for that phase (since the corre-
sponding collision operator accounts for collisions only of the same type [54]). The
equilibrium distribution can be represented in the following form for fluid particles of
phase k [57],

f
k(e)
0 (~x, t) = ρk

[
dk

0 −
1

2c2
(~uk)2

]
, (4.5)

fk(e)
α (~x, t) = ρk

[
1− dk

0

φ
+

D

2φc2
~eα · ~uk +

D(D + 2)

8φc4
( ~eα · ~uk)2 − D

4φc2
(~uk)2

]
,

α = 0, . . . , 8, 10, . . . , 18, (4.6)

where dk
0(< 1) is a constant (the fraction of particles with zero speed equilibrium)

and determines the compressibility of each component of the fluid [1]. Equations (4.5)
and (4.6) are typically used for constant speed lattices such as the two dimensional
hexagon (D = 2, φ = 6) and the four dimensional face centered hypercube (D =
4, φ = 24). Applying the projection of the 4D FCHC to obtain the D3Q19 model (as
explained in §3.2), the following equilibrium equation is obtained [53],

fk(e)
α (~x, t) =





1
3
ρk

[
1− 3

2
(~uk)2

]
, if ‖ ~eα‖ = 0,

1
18

ρk
[
1− 3 ~eα · ~uk + 9

2
( ~eα · ~uk)2 − 3

2
(~uk)2

]
, if ‖ ~eα‖ = 1,

1
36

ρk
[
1− 3 ~eα · ~uk + 9

2
( ~eα · ~uk)2 − 3

2
(~uk)2

]
, if ‖ ~eα‖ =

√
2.

(4.7)

We have taken dk
0 = 1

3
, φ = 24, D = 4, and c2 = 1 (c = δx

δt
, δx = δt = 1 lattice unit).

The corresponding moments of the individual phase densities and velocities, and the
total density and velocity are

ρk(~x, t) = mk

18∑
α=0

fk
α, (4.8)

~uk(~x, t) =
1

ρk(~x, t)

18∑
α=0

fk
α ~eα, (4.9)

ρ(~x, t) =
∑

k

ρk(~x, t), (4.10)

~u(~x, t) =

∑
k(ρ

k~uk/τ k)∑
k(ρ

k/τk)
, (4.11)

where mk is the mass of the constituent particles of phase k and the product ρ(~x, t)~u(~x, t)
is the total local momentum vector. The velocity field in (4.11) is a solution of the
Navier-Stokes equation with kinematic viscosity ν [59],

ν =
1

3
cb(τb − 1

2
) +

1

3
cr(τr − 1

2
) (4.12)

with cb and cr being the fractions of red and blue phases respectively.
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4.2 The Interphase Interaction Model

Modeling the flow of two immiscible fluids presents the difficulty of how to treat
the dynamics at the interface between the two. These dynamics control the develop-
ment of viscous fingering and dendrite formation (such as the growth of snow flakes)
[7].

There are two different interaction models for the surface tension between the
two phases; they must be designed to capture the phase separation of the flow. In
the chromodynamic model [33], (Ωk

α)2 is defined in such a way that it influences the
configuration of neighboring sites, enabling the pressure tensor to become anisotropic
near the fluid surface. This anisotropy of the surface tension is the main source
of dependence on interfacial orientation. The chromodynamic model is relatively
complex from the computational perspective because of the variational minimization
required by a “recoloring” step.

The other interaction model, the pseudo-potential approach, which remedies the
deficiencies of the chromodynamic model was introduced by Shan and Chen [57]. It
uses microscopic interactions to modify the surface tension related collision operator
from which the interfacial force can be maintained automatically.

4.2.1 The Shan-Chen Model

To model the surface tension operator, the interaction potential V (~x, ~x′) and the
effective force on the kth phase Fk

ff , can be formulated as in [57],

V (~x, ~x′) = Gkk′(~x, ~x′)φk(~x)φk′(~x′), (4.13)

Fk
ff (~x) = −

∑

k′

∑
α

Vkk′(~x, ~x + ~eα) ~eα, (4.14)

where Gkk′(~x, ~x′) is a Green’s function. Care must be taken in the treatment of
Gkk′(~x, ~x′); values that insure the Galilean-invariance of the macroscopic equation
in three dimensional space should be used. The transitional zone between the two
fluids is controlled by φk(~x), which is a function of the density of the kth phase.
The following empirical form can be used, φk = ρk

0[1 − exp(−ρk/ρk
0)], where ρk

0 is a
free parameter [12]. For simplicity, only the nearest-neighbor interactions (separation
‖~eα‖) are involved in the Shan-Chen model. In particular,

Gkk′(~x, ~x + ~eα) =





2G, for ‖ ~eα‖ = 1,

G, for ‖ ~eα‖ =
√

2,
0, otherwise.

(4.15)

Gkk′ acts likes temperature; when G, the coupling constant controlling the interaction
strength, is smaller than a critical value Gc (determined by the lattice structure and
initial density), the fluids separate [12].
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Martys and Chen [46] have proposed an interaction force to describe the inter-
action between a solid and a fluid, having the form

Fk
fs(~x) = −ρk(~x)

18∑
α

W ks(~x + ~eα) ~eα, (4.16)

where s = 0 or 1 for a fluid or a solid respectively. The preference of the surface
of the solid to one of the fluids (wetting) is determined by adjusting the interaction
strength W k. It is positive for a non wetting fluid and negative for a wetting fluid.

The momentum change due to the interaction forces needs to be included in the
equilibrium function given by (4.7). With inclusion, the new equilibrium function
becomes

fk(e)
α (~x, t) =





1
3
ρk

[
1− 3

2
(~uk(e))2

]
, if ‖ ~eα‖ = 0,

1
18

ρk
[
1− 3 ~eα · ~uk(e) + 9

2
( ~eα · ~uk(e))2 − 3

2
(~uk(e))2

]
, if ‖ ~eα‖ = 1,

1
36

ρk
[
1− 3 ~eα · ~uk(e) + 9

2
( ~eα · ~uk(e))2 − 3

2
(~uk(e))2

]
, if ‖ ~eα‖ =

√
2,

(4.17)

where ~uk(e) = ~u + τk

ρk F
k is the new velocity due to the rate of net momentum change

induced at each site, Fk = Fk
ff + Fk

fs. Fk
ff is the fluid-fluid interaction force given by

(4.14), and Fk
fs is the fluid-solid interaction force as given in (4.16).

4.3 The Two-Phase Lattice Boltzmann Algorithm

We summarize the order of operations carried out for each “time step” in the
LBM simulation. Let Ω ∈ R3 represents a porous medium of dimensions Lx×Ly×Lz.
The corresponding computational lattice is nx× ny × nz nodes with a lattice spacing
δx = δy = δz. Setting the initial distribution functions, fα(~x, 0), the LBM algorithm
is executed for each time step in the following order:

1. compute density;

2. compute velocity;

3. compute fluid-fluid interaction;

4. compute fluid-solid interaction;

5. compute equilibrium distribution;

6. collision step;

7. streaming step;

8. apply inlet-outlet boundary condition.

(Note, as long as a consistent order is retained, the order of the steps is not important.)
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4.3.1 Termination Criterion

In order to compute bulk transport properties, such as relative permeability, the
velocity of each phase must reach steady state. The time step loop in the algorithm
should halt when a norm in velocity change over time step δt is less than a user
input tolerance, ε. In our calculation, steady state is assumed to be reached when
the following criterion, based on the relative L2-norm in velocity is satisfied,

eb ≡
√∑ ‖~ub(~x, t + δt)− ~ub(~x, t)‖2

∑ ‖~ub(~x, t + δt)‖2
≤ ε (4.18)

er ≡
√∑ ‖~ur(~x, t + δt)− ~ur(~x, t)‖2

∑ ‖~ur(~x, t + δt)‖2
≤ ε (4.19)

before the number of iterations reaches the user input limit. We fixed the tolerance ε
at 10−5 for our computation. If the maximum number of iterations was hit before the
tolerance limits were reached, the tolerance was refined to values greater than 10−5.
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Chapter 5

Fontainebleau Sandstone Data Analysis

Fontainebleau sandstone is a popular reference standard due to its exceptional
chemical, crystallographic and microstructural simplicity [5]. It is homogeneous, com-
posed of grains of a single mineral (quartz) and does not contain appreciable clay [3].
As a result, a considerable amount of experimental data [25, 39] is available for
Fontainebleau.

5.1 X-ray Computed Microtomographic Imaging

Synchrotron X-ray computed microtomography [14, 16, 24, 42, 63] and laser
scanning confocal microscopy [26] can measure the structure of a porous material
directly. The reconstructed slices can be combined into a 3D stack to reveal the
geometry of the interior structure. In essence, the equipment for computed tomograph
(depicted in Fig. 5.1) involves a microfocus x-ray source, a CCD (charge computed
device) camera and a computer to unload the CCD array.

5.2 Segmentation

A quantitative description of the material composition in a 3D digital image
using a voxel by voxel determination of phase type is known as segmentation [44]. It
is used on the sandstone images to identify pore sites from rock sites. The porosity
of the porous material can be directly determined from the segmented image. The
Kriging-based algorithm of Oh and Lindquist [51] was used to segment our images
(Fig. 5.2). In our LBM computation, there is one-to-one correspondence between a
computational node and voxel, i.e., each voxel is considered as a node.

5.3 Simulation Results

Our two phase lattice Boltzmann code was run on a subvolume of size 643

which was extracted from a 10243 voxel, microtomographic image of a 22% porosity
Fontainebleau sandstones. Each voxel has size 5.7 microns.
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Figure 5.1: Schematic of National Synchrotron Light Source X-2B beam line CMT
(computed microtomography) apparatus with array detection and expansion optics.

Figure 5.2: The segmented image of the pore space within a 643 voxel subvolume of
a larger 10243 voxel volume of a Fontainebleau sandstone of 22% porosity. The dark
shade indicates the pore space in the rock matrix, the rock phase is transparent.

Simulation results for the distribution of the two phases at different time steps
are shown in the Appendix. Initially, the invading phase (blue fluid) occupied the
inlet portion (the first two slices) of the Fontainebleau domain; the remaining part was
filled with resident phase (red fluid) (Fig. A.1). Thereafter the blue phase displaced
the red phase (Figs. A.2 to A.5) and eventually flushed the red phase from the porous
medium (Fig. A.6).

The saturation of a fluid is defined as the fraction of available volume occupied
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by that fluid. Thus the sum of all saturations of the fluid phases present is unity.
The saturation of the resident fluid is analyzed as a function of injected fluid volume
at different densities (ρb, ρr), relaxation times (τb,τr), uniform body forces (∇P ) and
fluid-fluid interaction constants (G) using parameter values given in Table 5.1.

Table 5.1: Parameter values used in the simulations. All measurement units are
lattice based units (lu). (1 lu length = 5.7 µm, 1 lu mass = 1.85193× 10−13 kg, and
1 lu time = 3.291× 10−6 s).

ρb 1.000
ρr 1.000, 0.773
τb 0.52, 1.00, 1.50, 2.00
τr 0.52, 1.00, 1.50, 2.00
∇P -0.00001, -0.00002, -0.00004, -0.00008
G -0.001, -0.002, -0.004, -0.008

5.3.1 Relaxation Time (Viscosity Variation)

To study the effect of viscosity on the residual saturation, four different relaxation
time values in the range (0.50, 2.00] were chosen; outside of this range the numerical
scheme becomes unstable. From (2.10),

νb

νr

=
νinvader

νresident

=
τb − 1

2

τr − 1
2

. (5.1)

By keeping the relaxation time of one phase fixed at τ = 1 and varying the relaxation
time of the other phase through the four values of τ in Table 5.1, we can vary νb/νr

over the range [0.04, 25] as shown in Table 5.2.

Table 5.2: Relaxation times and their corresponding viscosity ratios.

τr τb νb/νr τr τb νb/νr

1.00 0.52 0.04 0.52 1.00 25
1.00 1.00 1.00 1.00
1.50 2.00 1.50 0.50
2.00 3.00 2.00 0.33

For these simulations the remaining parameters are set to ∇P = −0.00001,
G = −0.001, and ρr = ρb = 1.000. Fig. 5.3 summarizes the observed behavior of the
saturation of the resident fluid with time. The results are in accord with standard
observation of fluid displacement, νb/νr < 1 corresponds to stable displacement (vis-
cosity of invading fluid greater than viscosity of resident fluid) and the resident fluid
is rapidly displaced. The reverse ratio, νb/νr > 1, is unstable — the invading fluid
invades via fingering. At extreme ratios, large amounts of resident fluid are by-passed.
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Figure 5.3: The saturation of the resident fluid versus time steps as a function of the
ratio of viscosities, νb/νr.

Fig. 5.4 summarizes the residual saturation as a function of νb/νr. The rate of
change of the residual saturation with respect to νb/νr is greater for νb/νr < 1 than
for νb/νr > 1. The residual saturation is about 62% when νb/νr = 1. The residual

saturation, Sr, is approximately related to νb/νr by Sr(νb/νr) = Sr(1)+ log10

[(
νb

νr

)p]
,

where Sr(1) = 0.680±0.004, p = 0.230±0.005 for νb/νr < 1, and Sr(1) = 0.642±0.003,
p = 0.070± 0.004 for νb/νr > 1.
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Figure 5.4: Computed residual saturation versus ratio of viscosities, νb/νr (triangles).
Least squares fits to data (solid lines).

29



5.3.2 Body Force and Density

Results for varying the pressure gradient agree with intuition, as the pressure
gradient is increased, the resident fluid saturation decreases (Fig. 5.5 (a)). Fig. 5.5 (b)
summarizes the residual saturation as a function of the magnitude of the uniform body
force, ∇P . The residual saturation decreases linearly with the magnitude of the body
force. Their relationship can be expressed approximately by Sr = a |∇P | + b, where
a = (−1.70± 0.03)× 103 and b = 0.695± 0.001.
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Figure 5.5: (a) The saturation of the resident fluid versus time steps as a function of
different uniform body forces; and (b) computed residual saturation versus uniform
body force (triangles) and least square fits to data (solid line).

The change in the initial density of the resident fluid (oil) from 1.0 to 0.773 while
keeping the density of the invading fluid ρb to unity affects the resident saturation
profile. At time step 30000 the resident fluid saturation is about 65% when its density
is 1.0 and closer to 14% when its density is reduced by a factor of 0.773 (Fig. 5.6).
Less dense fluids can be forced out easily than more dense ones because their dynamic
viscosity, µ (µ = ρν, µb = ρb = 1.000, µr = ρr = 0.773), decreases.
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Figure 5.6: The saturation of the resident fluid versus time steps as a function of
different densities.
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5.3.3 Fluid-Fluid Interaction Constant

The fluid-fluid interaction term controls separation of the phases, mimicking an
interfacial surface tension effect consistent with Laplace’s law [46] (which states that
there is a pressure drop proportional to the local curvature of the meniscus at the
interface boundary between the two fluids). It is not ordinarily possible to calculate
exactly a value for the critical coupling, Gc, for phase separation in three dimensional
flow [47]. We therefore consider a range of values for the coupling constant G and
investigate the dependence of resident fluid saturation. As the magnitude of the
coupling constant increases from 0.001 to 0.008, the resident fluid saturation decreases
gradually with respect to time as in Fig. 5.7 (a).

Fig. 5.7 (b) summarizes the residual saturation as a function of G. Residual
saturation increases monotonically with respect to G. Hence, the phases get separated
faster when the magnitude of the coupling constant is bigger.
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Figure 5.7: (a) The resident saturation of the red fluid (oil) versus time steps; and
(b) residual saturation versus G.

5.4 Darcy’s Law

Darcy’s law states that the rate of saturated flow of a single fluid through a porous
rock is proportional to the pressure drop per unit length along the direction of flow.
The constant of proportionality is called the absolute permeability k. Specifically,

Q = k
A

µ
∇P, (5.2)

where Q is the volumetric flow rate, A is the cross-sectional area of the porous rock
perpendicular to the flow direction (xy-plane in our case) and µ is the dynamic
viscosity of the fluid. The absolute permeability k describes the ease with which
fluids flow through the porous network. For a given pressure gradient, ∇P , fluid
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will flow more slowly through a rock of low permeability than through one of high
permeability. For the most part, the pore geometry of the rock (size and degree of
connectedness of the pores) determines its permeability [7].

Consider the case in which two fluid phases (“red” and “blue”) occupy the pore
space of the rock. Application of a pressure gradient will cause both fluids to flow
simultaneously. Darcy’s law is modified to accommodate both motions,

Q = Qb + Qr, (5.3)

Qb = kb
k0A

µb

∇P, (5.4)

Qr = kr
k0A

µr

∇P, (5.5)

where Q is the total flow rate, Qb is the flow rate of the blue fluid, Qr the flow rate
of the red fluid, kb and kr are the relative permeabilities of the blue and red fluids
respectively.
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Figure 5.8: The relative permeability coefficients of the 22% porosity porous medium
as a function of the displaced phase saturation. The arrow represents the direction
of displaced fluid saturation during the computations.

Relative permeability depends not only on the pore geometry, which is fixed,
but also on variable quantities such as the saturation of each fluid, and the spatial
distribution of each phase within the pores. The sum of the two relative permeabilities
is less than unity because fluid-fluid interaction increases the resistance to flow.

As shown in Fig. 5.8, as the saturation of the displaced fluid (dashed line) de-
creases from 1 to 0, its relative permeability, (kr) decreases from 0.6 to 0. This is
due to nonlinearities induced by fluid-fluid interfaces. For the invading fluid (solid
line), the relative permeability (kb) increases as the residual saturation of the red fluid
decreases form 1 to 0. This is due to the resistance of the resident red fluid to the
invading blue fluid.

32



Chapter 6

Conclusion

6.1 Summary

We have studied the relationship between the residual fluid saturation on control-
ling flow parameters, namely the driving pressure gradient (body force), the densities
of the fluids and parameters of the LB model — the fluid-fluid coupling constant
and the relaxation time (indirectly viscosities). The fluid saturation shows large time
convergence to a residual value (Figs 5.3, 5.5 (a) and 5.7 (a)).

The residual saturation increases as the ratio of the viscosity of the invading
fluid to the resident fluid, νb/νr, increases. For νb/νr < 1, the resident fluid is rapidly
displaced and the displacement is stable; and for νb/νr > 1, the displacement is
unstable and causes fingering (Fig 5.4).

The residual saturation decreases linearly with the magnitude of the uniform
body force (∇P ). A large pressure gradient forces out the resident fluid more easily
than small one (Fig 5.5 (b)).

A phase with higher density decreases its saturation slower than A phase with
lesser density; denser fluids can not be flushed out easily from the porous media (Fig
5.6). The residual saturation decreases monotonically as the magnitude coupling
constant,G, increases (Fig 5.7 (b)).

6.2 Future Work

The performance and predictability of our work can be improved in a number of
ways:

Most critical for the results of the current computation is the relatively small
volume employed for these results. At 325 microns on a side (64 voxels), there are
very few pores in the volume (typical sandstone grain sizes are ∼ 200 – 250 microns).
Thus the work here represents a proof of principal. Larger computational volumes are
required in order to determine whether the residual saturation relationships implied
by Figs 5.4, 5.5 (b) and 5.7 (b) are predictive. Extension to larger volumes will require
parallelization of the LB code.
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Fluid-solid interaction is not considered in our study. Its effect on wettability of
each phase should be studied by including the fluid-solid collision operator. Further-
more, our lattice Boltzmann model is an isothermal one but in geophysical oil recovery
problems temperature affects fluid flow [2]. Thermal lattice Boltzmann models such
as those used by [69] can be implemented to study the effects of temperature.

We can study a wider range of viscosities using a multiple relaxation time
model [18] than single relaxation time.

The error produced by no-slip bounce-back boundary condition has a linear order
of convergence. Making use of curved boundary conditions which are second order
accurate [49] can speed the computation.
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géométriques du grés de Fontainebleau. Rev. Inst. Français du Pétrole, 19:921–
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Appendix A

The Lattice Boltzmann Simulation of Two Phases

Figs. A.1 – A.6 show the LBM simulations at selected time steps for fluid invasion
into a 643 (Fig. 5.2) voxel subvolume of 22% porosity Fontainebleau sandstone. Values
of parameters that are used in the following six simulations are: ρb = 1, ρr = 1, τb = 1,
τr = 1, ∇P = −0.00001, and G = −0.001.

Figure A.1: Fluid distribution at time step 0
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Figure A.2: Fluid distribution at time step 100
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Figure A.3: Fluid distribution at time step 1000
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Figure A.4: Fluid distribution at time step 10000

43



Figure A.5: Fluid distribution at time step 20000
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Figure A.6: Fluid distribution at time step 40000
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