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Abstract of the Dissertation

The dynamics of the seismogenic layer within the plate boundary zone

of Western North America

by

Elliot Charles Klein

Doctor of Philosophy

in

Geosciences

Stony Brook University

2008

I utilized inverse and forward dynamic modeling methods to investigate the forces

responsible for driving the long-term deformation of the seismogenic crust of western

North America. I have quantified depth integrated deviatoric stresses arising from in-

ternal buoyancy forces and the accommodation of relative plate motions for the upper

crust of the diffuse plate boundary zone. The deviatoric stress field generated with

the inverse method delineates nearly equal contributions from these driving forces.

The deviatoric stress field generated with the forward dynamic method identifies the

need for internal buoyancy forces that dominate over plate boundary forces for upper

crust within regions east of the San Andreas system. For the inverse models, I quan-

tified depth-integrated deviatoric stresses associated with differences in gravitational

potential energy per unit area (GPE) for the upper crust using densities defined by

seismic velocity data. I then accounted for sources of stress outside the model space

by solving for a deviatoric stress field boundary condition that provides a best-fit to

the tensor styles of the principal axes of the kinematic strain rates. The magnitudes

of total deviatoric stress in the long-term seismogenic crust, from the surface to 20 km
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below the sea level, range between 0.05 – 0.75 x 1012 N · m−1. The depth integrated

total stress differences are used as a proxy for depth integrals of fault strength in

moderate-to-high strain rate regions. I calculated low long-term fault friction coeffi-

cients (µ = 0.02 – 0.20), under hydrostatic pore pressure conditions, associated with

these deforming regions. I assimilated a large set of highly detailed Quaternary fault

observations into an existing data set in order to generate an updated long-term kine-

matic strain rate tensor field and model velocity field for western North America. I

constructed forward dynamic models of the upper crust where the body force distribu-

tions, inferred lateral variations in effective viscosity, and the known far-field velocity

boundary conditions are defined. The depth-integrated viscosities are proportional

to the assumed long-term friction on faults and inversely proportional to the long-

term strain rates. The velocity boundary conditions are defined using plate motion

estimates. Self-consistent dynamic strain rate tensor solutions to the force-balance

equations were solved and tested for best-fit match with the updated long-term kine-

matic strain rate and velocity fields of western North America. Models constructed

with low fault friction coefficients (µ < 0.20) achieve a better fit to Quaternary fault

observations than models with intermediate or high fault friction coefficients. I also

delineate block model geometries for the crust of western North America. These block

model geometries consist of weak shear zones and strong block-like interiors. The dy-

namic strain rate tensor styles associated with the forward dynamic models possessing

block geometries yielded a poor match to the updated long-term kinematic strain rate

and velocity fields of western North America. The scoring of self-consistent dynamic

model output with detailed kinematic output show that models with a distributed

fault fabric, defined with low uniform fault friction, provide a far better match to

patterns of finite strain observed within the diffuse plate boundary zone of western

North America than is achieved with the block model geometries explored to date.
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Introduction

Continental deformation zones do not fit into a simple plate tectonics model because

deformation associated with some of the Earths continental margins are not restricted

to narrow zones between rigid plates. Instead broad, diffuse zones of continental

lithosphere may deform far into the interior of a continent. A classic example of a

diffuse plate boundary zone is found in western North America. The North America

plate accommodates the right-lateral stike-slip motion of Pacific plate along the well

known San Andreas Fault system, yet deformation well into the plate interior is

predominately extensional. Deformation in North America gradually ends hundreds

of kilometers to the east of the transform boundary [e.g. Thatcher , 1995; Thatcher

et al., 1999; Thatcher , 2003; Bennett et al., 1999; Sonder and Jones , 1999; Humphreys

and Coblentz , 2007; Flesch et al., 2007]. How continental lithosphere deforms and

where it holds strength is still controversial [see e.g., Jackson, 2002; Burov and Watts,

2006]. Reasonable bounds for the absolute magnitudes of the long-term strength of

the continental lithosphere and how such strength is distributed laterally and with

depth need to be resolved. Such bounds hold important implications for the long-term

strength of faults and are of wide interest to geologists, geodesists, geophysicists, and

seismologists.

Constraints on long-term frictional resistance to sliding on active faults holds in-

formation on processes that affect earthquake rupture and the seismic cycle in general.

Knowledge of the limits of frictional strength on faults could potentially shed light on

the relative roles weakening mechanisms play in deforming seismogenic crust. High

friction coefficients have been found in rock mechanic experiments in dry conditions

for most upper crustal rock types [e.g. Byerlee, 1978]. Laboratory derived friction

coefficients were used by Brace and Kohlstedt [1980] to estimate the strength of the

brittle crust of the continental lithosphere. However much lower fault friction co-

efficients were found by Bird and Kong [1994] for the faults of California using a



thin-plate finite element model constrained to match geologic, geodetic, and stress

data. Similar fault friction results for regions in California were obtained using re-

lated finite element modeling techniques and updated geophysical data sets [Geist

and Andrews, 2000; Parsons , 2002]. More recently Fay and Humphreys [2006] pre-

dicted low effective fault friction coefficients using models that balanced the forces

and torques associated with GPE variations, tectonic loading, and basal tractions

acting on the Salton block. d’Alessio et al. [2006] used models of heat flow to con-

strain low apparent coefficients of fault friction along the creeping section of the San

Andreas fault.

Low friction coefficients may arise from dynamic weakening mechanisms capable

of lowering shear resistance on faults during the earthquake rupture process and the

seismic cycle in general [e.g. Di Toro et al., 2004]. Some potentially active dynamic

weakening mechanisms that occur within the fault zone during periods of rapid coseis-

mic slip include reduction of fault normal stress due to acoustic fluidization [Melosh,

1979, 1996; Sornette and Sornette, 2000], mechanical lubrication by a viscous fluid

[Brodsky and Kanamori , 2001; Ma et al., 2003; Spray , 2005], formation of silica gel

at slip velocities that approach seismic rates [Di Toro et al., 2004], thermal decompo-

sition of calcite as a result of frictional heating during seismic slip [Han et al., 2007],

reduction of fault normal stress through strain energy minimization as a consequence

of interacting faults [Parsons , 2002], and remote triggering of seismicity on faults by

seismic waves shortly after very large earthquake events [e.g. Gomberg et al., 2004;

West et al., 2005; Brodsky and Prejean, 2005; Johnson and Jia, 2005].

Low friction may also arise from intrinsic weakening mechanisms. Ancient expo-

sures of mid-crustal fault cores in geologic studies and results from deformation ex-

periments on material that closely match fault rocks suggest the presence of a broad

frictional-viscous regime in the upper crust [Handy and Brun, 2004; Holdsworth, 2004;

Jefferies et al., 2006]. Fault reactivation may result in the long-term weakening of



the fault zone [Holdsworth et al., 2001; Holdsworth, 2004; Edwards and Ratschbacher ,

2005]. An abundance of quartz-mica phyllonites in the middle to upper crust of

continental fault zones may indicate activation of fluid assisted deformation mecha-

nisms at lower differential stress than that predicted by Byerlee’s law [Janecke and

Evans , 1988; Stewart et al., 2000; Imber et al., 2001; Jefferies et al., 2006]. Numer-

ous experiments on water saturated clay minerals, which are often present in fault

gouge, have intrinsically low friction coefficients and their presence in the internal

structures of fault zones could explain fault weakness [e.g. Byerlee, 1978; Morrow

et al., 1992; Streit , 1997; Moore and Lockner , 2004]. Results of compression experi-

ments on natural samples containing high mica content indicate that the weakening

inferred from field studies of phyllosilicate-rich fault zones could be due to pressure-

insensitve, brittle-plastic deformation of micas [Shea and Kronenberg , 1992; Wintsch

et al., 1995]. Ring shear experiments on halite-muscovite mixtures led to microphys-

ical models that estimate differential strength reduction in the upper crust [Bos and

Spiers, 2001, 2002; Niemeijer and Spiers, 2005]. Tembe et al. [2006] ascertained low

friction from drill core and cuttings extracted from the San Andreas Fault Observa-

tory at Depth (SAFOD) scientific borehole. These authors indicate that the presence

of two weak shear zones at depth is consistent with, and may partially explain, the

apparent weakness of the San Andreas Fault

The role of fluids within fault zones also must be considered. Impermeable fault

gouge within the internal structure of a fault zone may promote sliding at low shear

stress through overpressure of fault sealed fluids [e.g. Sibson, 1990a; Byerlee, 1990;

Blanpied et al., 1992; Rice, 1992; Sleep and Blanpied , 1992; Byerlee, 1993; Faulkner

and Rutter , 2001]. How faults might seal and possibly over pressure the fault zone

has required most models to include a minimum of some interaction among fault zone

fluids, crustal structure, fault materials, and the stress field [Chester et al., 1993; Sleep

and Blanpied , 1994; Miller et al., 1996; Streit , 1997; Miller and Nur , 2000; Miller ,



2002; Parsons , 2002; Fitzenz and Miller , 2003; Wilson et al., 2005]. Fault zone fluids

may include CO2 derived from the upper mantle [Kennedy et al., 1997], the deep

crust[Miller et al., 2004], or meteoric water infiltration from surrounding country rocks

[Sleep and Blanpied , 1992; Byerlee, 1993]. Fluids may circulate in the lower crust

and eventually supply the seismogenic zone during the seismic cycle [e.g. McCaig ,

1988; Cox , 2002; Connolly and Podladchikov , 2004]. Fluid movements associated

with naturally occurring meteoric fluids or purposefully injected anthropogenic fluids

within the seismogenic crust can directly enhance deformation rates and lead to the

triggering of seismicity [Raleigh et al., 1976; Hill et al., 1993; Brodsky et al., 2000;

Bawden et al., 2001; Watson et al., 2002; Brodsky et al., 2003].

The incorporation of geodetic measurement into kinematic models has led to in-

sight regarding how interseismic strain is accommodated within diffuse plate boundary

settings [Haines and Holt , 1993; Shen-Tu et al., 1999; Holt et al., 2000; Beavan and

Haines , 2001; Pollitz , 2003; Pollitz and Vergnolle, 2006; Pollitz et al., 2008; Hammond

and Thatcher , 2004, 2005, 2007; McCaffrey , 2005; McCaffrey et al., 2007; Flesch et al.,

2007; Bürgmann and Dresen, 2008]. Recently, the United States Geologic Survey up-

dated its Quaternary fault and fold data base of the United States (QFBD). This

updated data base provides unprecedented spatial and temporal resolution for the

fault networks of the western United States. Kinematic constraints defined by the

QFBD provide an opportunity for hypothesis testing. Some unresolved and important

questions for the diffuse plate boundary zone of western North America include: (1)

What are the bounds on deviatoric stress magnitudes for the continental margins? (2)

What are the relative influences of the forces that drive continental deformation and

how might they change over the long-term? (3) Is a greater portion of the continental

strength in the crust or in the upper mantle? (4) What controls rupture history in

damaged volumes of crust? (5) Do off-fault earthquakes in block-like regions imply

that strain may be taken up on distributed sets of faults? (6) What are the precise



levels of fault strength in the seismogenic crust and how might they vary across the

plate boundary zone? (7) Which weakening mechanisms most likely facilitate slip on

faults within the diffuse plate boundary zone?

In this dissertation, I addressed some of these questions as I investigated the

dynamics of the continental lithosphere of western North America. This work uses

numerical models to shed light on the long-term physics of the seismogenic crust

within the diffuse plate boundary zone. The data-driven inverse and forward models

presented here are built upon seismic, geodetic, and Quaternary fault observations. I

solve the force balance equations to quantify the level and origin of deviatoric stresses

responsible for driving seismic deformation within the crust over the past 750,000

years. Calibrating the styles and magnitudes of deviatoric stress for the upper crust

allowed for the first time quantification of the long-term frictional strength of faults

throughout the diffuse plate boundary zone of western North America. I define lateral

variation in effective viscosity using an assumed fault friction to define the theoretical

value for depth-integrated stress difference for an expected fault style, along with use

of strain rates from the long-term kinematic modeling. I then use a forward modeling

method to solve the force-balance equations. Self-consistent dynamic stress tensor,

velocity, and strain rate tensor fields of the seismogenic layer are scored to determine

a best-fit match with long-term stress field indicators and kinematic indicators within

western North America. Forward dynamic solutions that closely match deformation

indicators and patterns of finite strain in western North America allowed, for the

first time, quantification of the Argand Number (Ar) for western North America. I

found that a more distributed fault fabric, with long-term friction coefficients of 0.10–

0.20 under hydrostatic conditions, rather than block model geometries, is required to

explain the patterns of finite strain observed within the diffuse plate boundary zone

of western North America. On the basis scoring self-consistent dynamic model output

with detailed kinematic output I solved the outstanding controversy of whether block-



like or distributed faulting can explain the long-term deformation field in western

North America.

In addition to this introductory chapter (Chapter 1), this dissertation consists of

three main chapters and a conclusion. Chapter 2 is recommended for publication,

pending minor revision. Chapters 3 and 4 are in preparation for publication. A

summary and the main conclusions of this dissertation are found in Chapter 5.

In Chapter 2, I address the strength of the faults within the seismogenic crust using

the inverse method. Within this chapter I define the modeling method that allowed

for the quantification of depth integrals of stress difference. These depth integrals

then provide a proxy for depth integrals of fault strength in moderate-to-high strain

rate regions. This in turn, allowed calculation of fault friction coefficients for the

long-term seismogenic crust of western North America. In chapter 3, I introduce

the updated suite of kinematic models defined with Quaternary fault observations.

Rather than infer fault strength from stress magnitudes, in Chapter 3 I assume a

fault strength, and then explore the dynamic response using the forward modeling

approach. I test models of crust defined with lateral variation in effective viscosity and

show that the forward dynamic solutions are sensitive to the level of friction on the

faults and the distribution of the fault fabric. These two factors primarily control the

relative influence that internal crustal buoyancies and plate boundary forces have on

the deformation field. In Chapter 4, I defined and scored block model geometries with

same long-term kinematic solutions determined in Chapter 3 to compare block model

geometries with the more distributed faulting defined by the uniform fault friction

models. Block model geometries explored to date yield dynamic strain rate tensor

styles that are a poor match with the kinematic strain rate tensor styles associated

with Quaternary deformation indicators.



Chapter 2

Evidence of long-term weakness on

seismogenic faults in western

North America from dynamic

modeling

8



Evidence of long-term weakness on seismogenic

faults in western North America from dynamic modeling

Elliot C. Klein, Lucy M. Flesch, William E. Holt, and A. John Haines

(Recommend for publication, pending minor revision in

Journal of Geophysical Research Solid Earth,

113, B, doi:10.1029/xxxxx, 2008)

Abstract

We investigate the long-term strength of faults within the plate boundary zone

of Western North America by quantifying the absolute magnitudes and styles of the

depth integrated deviatoric stresses acting within the seismogenic portion of the crust.

We solve the depth integrated 3-D force-balance equations for the deviatoric stress

field acting within the seismogenic layer of the plate boundary zone. Forcings are the

horizontal gradients in gravitational potential energy per unit area (GPE). Seismic

velocity data defines the densities we use to define GPE. We also solve for stress

field boundary conditions that when added to the contribution from GPE differences,

provides a best-fit to stress indicators. The absolute magnitude of the long-term

deviatoric stress field is calibrated by the absolute magnitude of deviatoric stresses

associated with GPE differences within the seismogenic layer. We estimate that the

long-term depth integrated deviatoric stress magnitudes range between 0.05 – 0.75 x

1012 N · m−1 for the case where depth integration is performed down to a maximum

depth of 20 km below sea level in western North America. Long-term depth integrated

total stress differences within the approximately 20 km thick seismogenic layer are of

the order of 0.05 – 1.4 x 1012 N · m−1. Using these stress differences as a proxy for

depth integrals of fault strength within the actively deforming regions, we infer that

the long-term values of coefficients of friction on faults within the Basin and Range of

Nevada and Utah, and most of California, are 0.02 – 0.30 under long-term hydrostatic

to wet conditions. We test the sensitivity of these results by considering a range of



maximum depths of integration. We show that for depths of integration in excess of

20 km below sea level, there is diminishing contribution to the depth integrated stress

differences, and by proxy depth integrated fault strength. This is consistent with a

brittle-ductile transition in the plate boundary zone at depths less than 20 km below

sea level, and with a weak lower crust.

2.1 Introduction

A more precise understanding of the fundamental physics that control the long-

term failure of frictionally sliding continental upper crust in diffuse plate boundary

zones requires linking tectonic fault regimes with geodynamic estimates of upper

crustal strength. For instance, a major question unresolved in the fault mechanics

community is whether or not the San Andreas Fault is a weak or strong fault [e.g.,

Brune et al., 1969; Mount and Suppe, 1987; Zoback et al., 1987; Lachenbruch and

Sass , 1992; Zoback and Beroza, 1993; Scholz , 2000; Saffer et al., 2003; Scholz and

Hanks , 2004; Townend and Zoback , 2004; Horsman and Tikoff , 2005; d’Alessio et al.,

2006]. Ambiguity about the relative degree of friction on this well- studied major

transform fault suggests that frictional strength on faults of all fault types in plate

boundary settings needs reexamination. Most estimates of the long-term strength of

the seismogenic upper crust and the frictional properties on faults within that layer

have come from extrapolation of experimental data obtained through rock mechan-

ics experiments [e.g., Byerlee, 1978; Brace and Kohlstedt , 1980; Carter and Tsenn,

1987; Kohlstedt et al., 1995] or from deep drilling into the crust [e.g., McGarr , 1980;

Zoback and Healy , 1992; Sibson, 1994; Brudy et al., 1997; Townend and Zoback , 2000;

Hickman and Zoback , 2004]. Others have constructed numerical models to ascertain

the level of friction on faults [e.g., Bird and Piper , 1980; Reasenberg and Simpson,

1992; Bird and Kong , 1994; Geist and Andrews, 2000; Chéry et al., 2001; Parsons ,



2002; Zoback and Townend , 2001; Chéry et al., 2004; Fialko et al., 2005; Fay and

Humphreys, 2006].

Rather than determine the fault strength of the seismogenic crust by assigning

friction coefficients obtained from deep drilling, modeling results, or from the labora-

tory to crustal rocks, we infer the long-term depth integrated strength of the faults

using a dynamic method. The approach we take enables us to directly estimate the

long-term depth integrated deviatoric stresses acting within the seismogenic layer us-

ing: (1) density variations isolated within the seismogenic crust and (2) constraints

provided by stress field indicators, which enable us to solve for stress field boundary

conditions. Solutions associated with (1) and (2) are added together to provide mag-

nitudes of total depth integrated deviatoric stresses acting within the seismogenic

layer. We are then able to independently estimate long-term friction on faults in

regions that are actively deforming over geologic time scales. The advantage of the

approach we take is that it enables us to estimate the magnitudes and directions of

depth integrated deviatoric stresses directly from sources of stress found within the

uppermost crust.

The depth integrated deviatoric stresses that we obtain provide constraints on the

long-term coefficient of friction magnitudes expected for seismogenic crust under long-

term hydrostatic and wet conditions. These fault friction coefficient results are most

robust within the diffuse plate boundary zone of the North American plate where the

long-term state of stress is inferred to be close to failure and thus where long-term

depth integrated stress differences can be interpreted to represent long-term depth

integrated fault strength.



2.2 Long-term Kinematics of the Seismogenic Layer

Seismically generated strain within the upper crust is relieved mainly by fric-

tional failure occurring on pre-existing fractures. The shaping of the deformed crust

results mainly from rare but large earthquakes within the seismogenic crust causing

the largest crustal strains [Sibson, 1984]. Figure 2.1 provides a comparison of the

distribution of faults with historic rupture with the distribution of faults that have

been reported to have last slipped as recently as 750,000 years ago. The Quaternary

fault and fold database (see Figure 2.1) identifies the relative timing and locations

involved in the long-term deformation of the crust [see Thatcher , 2003]. Inference of

long-term principal axes of strain rate and the strain rate tensor style from kinematic

models [e.g., Holt et al., 2000; Kreemer et al., 2003] are useful for constraining the

long-term directions of principal axes and style of deviatoric stress responsible for the

frictional slip of faults embedded within the seismogenic crust (e.g., Figure 2.1).

In order to quantify the long-term kinematics we define a curvilinear gird over

the uppermost crust that encompasses the zone of diffuse PA-NA plate boundary

deformation (Figure 2.2). We also solve each of our geodynamic thin sheet models

using this grid. Hetland and Hager [2004] argue that transient behavior recorded

by GPS measurements may cause appreciable error in estimates of magnitude and

spatial distribution of the long-term strain rate field. Therefore, we use a first order

long-term kinematic strain rate and velocity field model based on interpolation of

Quaternary strain rates, long-term spreading estimates of mid-ocean ridges, and to a

lesser extent, in areas where fault slip data are sparse, GPS velocity vectors (Figures

2.3 and 2.4) [see Flesch et al., 2007].

To date, we do not include the faults of the Quaternary fault and fold database for

the United States into our kinematic modeling. Instead, we use the Quaternary fault

data presented in the second, revised long-term kinematic model of Flesch et al. [2007].



As was done in that model, we remove GPS observations in Oregon and Washington

in order to avoid possible elastic effects due to the locked Juan de Fuca, Gorda, and

Explorer plates [e.g., McCaffrey et al., 2007]. Moreover, we also define the Cascadia

forearc and Sierra Nevada block to be more rigid than neighboring regions. As such,

the model yields concentrated strain rates in the Juan de Fuca Trench, and almost no

strain in the Cascadia Forearc, consistent with inference that the subduction thrust

there involves a weak fault [Hyndman and Wang , 1993] (Figure 2.4 ). Because this

is a long-term model it is reflective of the interaction of long-term applied stress and

accommodation of steady-state and associated long-term steady-state slip rates of

faults within the seismogenic layer. Although our modeled strain rate magnitudes

generally increase from east to west across western North America, it is only the

directions and tensor styles of the horizontal components of the principal strain rates

that constrain our modeled principal deviatoric stress directions.

2.3 Estimating Depth Integrals of Deviatoric Stress

Differences Within the Long-Term Seismogenic

Crust

In our approach, we perform depth integrals of the full three dimensional force-

balance equations (spherical form) from the surface of variable topography down to

depths in the vicinity of the base of the seismogenic layer or brittle-ductile transition

within actively deforming regions. The brittle-ductile transition divides the conti-

nental crust into two distinct rheologies [Bird , 1978; Sibson, 1982, 1984; Ranalli and

Murphy , 1987; Scholz , 1988]. The top rheological layer, is a mechanically strong

brittle upper crust, which overlies a mechanically weak plastic middle or lower crust

[Brace and Kohlstedt , 1980; Sibson, 1983; Ranalli and Murphy , 1987; Jackson, 2002].



The base of the seismogenic portion of the crust, marked by the ”cut-out” depth

of shallow earthquakes, effectively delineates the present depth at which there is a

transition from a brittle, seismically active elastic upper crust to a plastic, aseismic

lower crustal layer [Macelwane, 1936; Sibson, 1982; Chen and Molnar , 1983; Sibson,

1984; Jackson and White, 1989; Bonner et al., 2003].

Seismic observations suggest that the present-day transition depth from brittle to

ductile rheology is highly variable, but in general ranges from 5 to 40 km. The actual

depth of the present-day brittle-ductile transition for a given location is a consequence

of the local fault regime, strain rate, and temperature gradient [Chen and Molnar ,

1983; Wong and Chapman, 1990; Paterson, 2001; Bonner et al., 2003] and could be

modeled using the depth of the isotherm at 300◦ C. On the other hand, the depth

to the deepest anticipated crustal earthquake marks the location of the expected

long-term brittle-ductile transition within the crust [Sibson, 1984]. In spite of the

significant vertical variation in the depth to the present-day brittle-ductile transition,

we show in the following section that if horizontal shear stresses are small then our

solutions should reflect accurate depth integrals of deviatoric stress, regardless of the

location of the brittle-ductile transition.

For simplicity we provide the force balance equations in Cartesian form:

∂σij

∂xj

+ ρgi = 0 (2.1)

where g is acceleration of gravity, ρ is density, and σij is the total stress tensor.

If horizontal gradients in shear tractions τxz and τyz are small compared with ρg,

then we can relate the depth integral of density in a gravitational field,
∫

ρ(z)gdz, to

vertical stress, σzz(z) with depth, z. The depth integrated force-balance equation can

be written as

−∂σzz

∂xα

=
∂

∂xβ

(ταβ + δαβτγγ), (2.2)



where ταβ is the depth integrated horizontal deviatoric stress tensor, σzz is the depth

integrated vertical stress, and a 2-D summation notation with τ γγ = τxx+τ yy = −τ zz

is implied.

We express depth integrated vertical stress, σzz, or equivalently gravitational po-

tential energy per unit area (herein referred to as GPE), as

σzz = −g
∫ L

−h

[

∫ z

−h
ρ(ź)dź

]

dz, (2.3)

where ź is a variable of integration, h is elevation with respect to sea level, and L is

the depth to the approximate base of the seismogenic layer. The depth L, in equation

(2.3) also defines the reference level for the depth integrals of vertical stress.

2.3.1 Validity of approximation

On a global scale, tractions associated with coupling between density-buoyancy

driven mantle circulation and the lithosphere are important for explaining both plate

motions and the deviatoric stress field within the lithosphere [Steinberger et al., 2001;

Becker and O’Connell , 2001; Lithgow-Bertelloni and Guynn, 2004; Ghosh et al.,

2008b]. These driving tractions integrate over long wavelengths and are particu-

larly important for providing compressional deviatoric stress contributions across the

Andes and Tibet, where lithospheric gravitational potential energy differences are

large [Ghosh et al., 2008b]. The boundary conditions that we solve for include the

influence of such driving tractions outside of the plate boundary zone. However, even

in the presence of a weak middle crust, the question arises as to the influence of trac-

tions associated with density buoyancy driven mantle flow directly below the plate

boundary zone within western North America [Sonder and Jones , 1999]. We have

assumed that these tractions have a small enough effect such that (1) horizontal gra-

dients of the horizontal tractions are small relative to ρg and (2) despite the presence



of horizontal tractions at depth, one of the principal axes of stress will nevertheless

be near-vertical. In terms of the approximation in (1), what is important is that the

horizontal variations in the depth integral of horizontal shear stress need to be small

in comparison with the depth integrals of ρg:

∂

∂x

∫ z

−h
τxz(z)dz ≪

∫ z

−h
ρ(z)gdz. (2.4)

For the purpose of this argument let us assume τxz(z) is linear function varying from

zero at the surface to τxz(L) at the base of lithosphere:

τxz(z) =
τxz(L)

L
· z (2.5)

Assuming a depth of integration of 20 km and a crustal density of 2800 kg · m3 in

(2.4), horizontal gradients in shear stress have to be as high as 2.8 MPa · km−1 acting

at the base of the lithosphere in order for the the integral on the left of (2.4) to be 1% of

the integral on the right of (2.4). Large-scale density buoyancy driven flow calculations

associated with long-wavelength mantle circulation suggest that horizontal gradients

of horizontal shear tractions acting at the base of the lithosphere are ∼ 2–3 orders of

magnitude smaller than this [Steinberger et al., 2001; Becker and O’Connell , 2001;

Lithgow-Bertelloni and Guynn, 2004; Humphreys and Coblentz , 2007; Ghosh et al.,

2008b], thus showing the appropriateness of our approximation here.

In order for one of the principal axes to be vertical, the depth integral of the hori-

zontal shear tractions must be much smaller than the depth integrals of the horizontal

deviatoric stresses.
∫ z

−h
τxz(z)dz ≪

∫ z

−h
τxx(z)dz. (2.6)

In order to evaluate the integral expressions above we assume z = 20 km for the

base of the seismogenic layer and τxz(L) = 5 MPa for the horizontal shear tractions



acting at the base of the lithosphere at L = 100 km depth [Becker and O’Connell ,

2001; Humphreys and Coblentz , 2007], and ρ = 2800 kg · m−3. We find values

of order 1 x 1010 N · m−1 for the depth integral of shear traction. We will show

later that this magnitude is at most 20% of the magnitude of the depth integrals of

horizontal deviatoric stresses that we calculate within the seismogenic layer, and in

most places is of order 2-5% of the horizontal values. This result is consistent with

the observation that large normal fault earthquakes within the Basin and Range have

moment tensors reflecting near vertical compression axes [Jackson and White, 1989].

Therefore, despite the likely existence of moderate-sized horizontal basal tractions

beneath the plate boundary zone of western North America, their influence is still

small enough on the regional scale such that assumptions in (1) and (2) above appear

valid for the seismogenic layer. That is, because the depth-integrals of τxz are small,

our solutions should contain accurate stress magnitudes within the seismogenic layer.

This conclusion holds true regardless of whether the maximum depth of integration

is above or below the brittle-ductile transition zone.

2.3.2 Estimation of depth integrated vertical stress within

the seismogenic layer

Our first step is to estimate depth integrated vertical stress distributions (GPE)

in the upper crust of western North America. Spatial variations of these quantify the

magnitude of the depth integrated horizontal deviatoric stress (equation 2.2). This

requires ρ(z ), which we assign empirically from scaling density to seismic velocity

data. The seismic velocities we use were collected from a large seismic data set

presented by Chulick and Mooney [2002] who reported estimates of crustal thickness

for regions within the North American plate and surrounding ocean basins. The

seismic records used herein contain P -wave velocity measurements that define velocity



structure profiles beneath survey areas down to the Moho. We assigned density within

the crust at every kilometer below sea level throughout the entire thickness of the

seismogenic zone at grid locations where velocity structure profiles exist.

We quantify our seismically defined densities at depth by applying a simple veloc-

ity to density conversion to the P -wave velocity, depth, and density data presented

in Lowry and Smith [1995]. We construct a 5 th order polynomial curve to interpo-

late Lowry and Smith’s seismically defined data set, which was obtained by group-

ing and averaging their P -wave velocity and associated density data for each of ten

provinces defined within the western U.S. Cordillera. The densities produced by our

method (Figure 2.5) are consistent with expected densities at depth within western

U.S. Cordillera [Lowry and Smith, 1995; Kaban and Mooney , 2001] and the earth’s

crust in general [Ludwig et al., 1970; Brocher , 2005].

We seek to establish both vertical and lateral density distributions beneath our

grid areas but do not have sufficient seismic velocity data coverage to do so. In order

to overcome the lack of adequate areal data coverage in our data set we smooth the

existing vertical density distributions laterally throughout the entire grid space. We

perform lateral smoothing on available seismically inferred density data for each layer

of 1 km thickness, one layer at time. If more than one density estimate exists at a

particular grid location depth, we compute the mean density there before smoothing.

We assign a grid area a density value, which corresponds to the weighted average of

the densities of its immediate neighboring grid areas. The weights assigned to the

density values reflect the surface area of each grid location. The smoothing procedure

is repeated until each grid area is assigned a non-zero density value. We specify

uniform density values to crustal rock in grid areas above sea level. Such density

values are defined to be equal to the density values found in the topmost seismically

defined layer below sea-level. We assign a uniform density of 1030 kg · m−3 for sea

water.



The vertical stress, expressed in terms of the overburden pressure at each layer is

σzz(zi) = −P (zi) = −P (zi−1) − g
∫ zi

zi−1

ρ(zi)dzi, (2.7)

where the subscript i denotes individual layers of seismically determined density at

depth. Depth integrated vertical stress for grid areas that are coincident with land

mass above sea level are calculated using

σzz = −
n
∑

i=1

1

2

[

P (zi) + P (zi−1)
]

(zi − zi−1). (2.8)

Since sea water only contributes pressure to the depth integrated vertical stresses, we

calculate the depth integration of the vertical stresses for grid areas overlying ocean

floor with

σzz = −
n
∑

i=2

1

2

[

P (zi) + P (zi−1)
]

(zi − zi−1), (2.9)

taking i = 1 to correspond to the water layer.

Maggi et al. [2000] argue that variations in the effective elastic thickness of the

continental crust reveal and correlate to variations in seismogenic zone thickness.

They show that elastic thicknesses rarely exceed 15 kilometers and found that the

bulk of continental seismicity occurs within the upper continental crust. Therefore,

in Figure 2.6 we quantify GPE magnitudes for western North American seismogenic

crust with seismically defined densities down to a uniform base 20 kilometers below

sea level. These GPE magnitudes range from 4.6 – 7.0 x 1012 N · m−1 (Figure

2.6) throughout western North America. In general, the seismically defined densities

produce the highest magnitudes of GPE for areas with highest topography and lowest

magnitudes of GPE for areas beneath sea water.



2.3.3 Deviatoric stress field associated with horizontal vari-

ations in depth integrated vertical stress

Deformation due to frictional sliding within seismogenic crust is expected to be

driven in part by horizontal variations in the GPE field. We follow the method of

Flesch et al. [2000, 2001, 2007] to determine the horizontal components of the depth

integrated deviatoric stress field associated with GPE differences, where depth of in-

tegration is performed to a uniform base 20 kilometers below sea level (see Figure

2.6). The depth integrated force-balance equations are solved under the constraint

of minimization of the second invariant of depth integrated deviatoric stress [Flesch

et al., 2001]. Solutions like that in Figure 2.7 are important inputs as they calibrate

the magnitude of the total depth integrated deviatoric stress field within the seis-

mogenic layer of western North America (see Appendix 2.8 for details). The depth

integrated deviatoric stress field associated with GPE differences within the bulk of

the seismogenic layer are within the range of 0.05 – 0.7 x 1012 N · m−1 (Figure 2.7)

throughout the western United States. Compressional deviatoric stresses associated

with the lower elevations of the PA-NA plate margin are oriented NE-SW. Areas

of high topography are in deviatoric tension. N-S tension dominates the Basin and

Range. The styles of deviatoric stress inferred from GPE variations are, by them-

selves, inconsistent with the styles of strain depicted by the principal axes of strain

rate shown in Figure 2.4. Sources of stress in addition to GPE differences are needed.

We incorporate all additional sources into a stress field boundary condition solution

that we solve for next.

2.3.4 Stress field boundary condition solution

To incorporate the stress field boundary condition we again solve equation (2.2)

using the method of Flesch et al. [2001, 2007]. In our implementation of this method



we form a continuous boundary condition along the entire grid boundary by divid-

ing the boundary into fifty six linked segments. We also use two additional ”ring”

boundaries each comprised of seven linked boundary segments within the interior

of the grid to define the Rivera and Juan de Fuca plate boundaries [Flesch et al.,

2007]. In total there are 70 boundary segments and in general the shortest boundary

segments are proximal to areas of the grid with highest GPS coverage (Figure 2.2).

At every boundary segment we calculate a deviatoric stress field response that min-

imizes the second invariant of deviatoric stress while satisfying the depth integrated

3-D force-balance equations (see equation 2.2), while all other boundary segments are

held fixed. In the boundary condition solution, σzz is set equal to zero, and forcing is

applied at one node point at the boundary only. This procedure yields a total of 210

stress field basis functions. The complete stress field boundary condition is arrived at

by summation of these stress field basis functions. This boundary condition is added

to the deviatoric stress field associated with horizontal variations in depth integrated

vertical stress such that

τ = τo +
n
∑

j=1

3
∑

i=1

aijτij (2.10)

where τo is the deviatoric stress field associated with depth integrated vertical

stress variations within the seismogenic crust (Figure 2.7), n is the total number of

boundary segments, aij are the scaling factors for the stress field basis functions (3

for each boundary segment), and τij are the stress field basis functions. We use an

iterative least-squares inversion to determine the 210 scaling factors. In the inversion

process we minimize the objective function

∑

areas

{

T − e · τ
E

}

∆S, (2.11)

where



E =
√

ǫ̇2
xx + ǫ̇2

yy + ǫ̇2
zz + ǫ̇2

xy + ǫ̇2
yx

=
√

2ǫ̇2
xx + 2ǫ̇xxǫ̇yy + 2ǫ̇2

yy + 2ǫ̇2
xy

T =
√

τ 2
xx + τ 2

yy + τ 2
zz + τ 2

xy + τ 2
yx

=
√

2τ 2
xx + 2τxxτyy + 2τ 2

yy + 2τ 2
xy

e · τ = ǫ̇xxτxx + ǫ̇yyτyy + ǫ̇zzτzz + ǫ̇xyτxy + ǫ̇yxτyx

= 2ǫ̇xxτxx + ǫ̇xxτyy + ǫ̇yyτxx + 2ǫ̇yyτyy + 2ǫ̇xyτxy

ǫ̇ij is the strain rate from our kinematic modeling (Figure 2.4), τij is the total

deviatoric stress tensor, and ∆S is the grid area [Flesch et al., 2007]. The objective

function is minimized when the directions and styles of deformation predicted by the

stress field and the directions and styles of strain rate inferred from the kinematic

modeling align and when the tensor styles of the total depth integrated deviatoric

stresses are matched to the tensor styles of the observed strain rate [Flesch et al.,

2001, 2007]. Like Flesch et al. [2000, 2007] we dded the constraint of a rigid Cascadia

forearc and have removed the San Andreas shear zone and from the data set to be

fitted, since there is unlikely to be an isotropic relation between the deviatoric stress

and strain rate tensors within that zone [Provost and Houston, 2001; Chéry et al.,

2004; Hickman and Zoback , 2004; Townend and Zoback , 2004].

As shown in Figure 2.8, the vast majority of long-term depth integrated stress

magnitudes in the boundary condition solution range between 0.05 – 0.65 x 1012 N ·

m−1, which is similar in magnitude to the depth integrated stress field associated with

GPE differences (Figure 2.7). Overall the style of deviatoric stresses obtained from



this solution agree well with the results of Flesch et al. [2007], which solves for the

applied stress field boundary conditions over the entire lithosphere thickness, rather

than for the upper crust alone, as we have done here.

Approximately 50% of the total depth integrated deviatoric stress field solution

results from GPE variations (Figure 2.7). The remaining contribution to the to-

tal depth integrated deviatoric stress field solution arises from boundary condition

stresses (Figure 2.8). The minimum total depth integrated deviatoric stresses de-

picted in Figure 2.9, obtained with the base of the seismogenic crust defined at a

uniform depth 20 kilometers below sea level, yields long-term deviatoric stress mag-

nitudes between 0.05 – 0.75 x 1012 N · m−1. Overall, this solution is very similar to

those obtained in previous studies by Flesch et al. [2000, 2007] see Table 2.1 of this

study and Table 1 of Flesch et al. [2007]).

As expected, we observe tensor styles of stress (thrust, normal, strike-slip, oblique

slip) that are consistent with stress field indicators for much of western North Amer-

ica. For example, the roughly NE-SW orientation of the directions of deviatoric

compression along the NA-PA plate margin in southern California correlate with

maximum horizontal crustal stress orientations obtained from focal mechanism in-

versions, borehole breakout data, and hydraulic fracture data [Townend and Zoback ,

2004]. In general, we find good agreement between model deviatoric stresses and the

stress field indicators throughout the Basin and Range and California (note regions

of interest 7–9 in Table 2.1).

2.4 Long-Term Frictional Strength

Deformation of the uppermost brittle crust is accommodated most readily by rapid

frictional slip failure of rock material along preexisting fault planes. This frictional

failure mode generally requires significantly less differential stress to activate when



compared with the amount of differential stress required to cause rock failure through

the breaking of new fault surfaces in otherwise equivalent conditions [e.g., Brace and

Byerlee, 1966; Byerlee, 1978; Sibson, 1985; Scholz , 1998; Ruff , 2004]. Mechanical

failure by frictional sliding has been estimated by laboratory controlled deformation

experiments for most upper crustal rock types. These studies show that the majority

of rock types of the uppermost crust frictionally fail in a predictable manner described

by the empirical relationship known as ’Byerlee’s law’ [Byerlee, 1968, 1978; Brace

and Kohlstedt , 1980]. Byerlee’s law also predicts differential stress and shear stress

magnitudes that vary as a function of tectonic regime when measured at the same

crustal depths and pore pressure conditions [Brace and Kohlstedt , 1980; Carter and

Tsenn, 1987; Kohlstedt et al., 1995]. For these reasons we use our depth integrated

total deviatoric stresses for the seismogenic layer to provide estimates on the long-

term frictional behavior of fault zones.

For areas undergoing active deformation, long-term depth integrated deviatoric

stresses within the seismogenic crust allow us to infer lateral variations of long-term

depth integrated fault strength. Within these regions we also investigate sensitivity of

the coefficients of friction to variations in long-term crustal pore pressure. We assume:

(1) one of the three principal stress directions is vertical (2) the crust fails by frictional

sliding on preexisting optimally oriented faults satisfying the Coulomb frictional-

failure criterion (3) effective stress only depends on the difference between applied

stress and pore pressure (4) randomly oriented fractures of all lengths permeate the

crust and (5) the long-term state of stress on the faults is close to the long-term

frictional yield strength of faults within deforming volumes of seismogenic crust within

the diffuse plate boundary zone of the North American plate.

Frictional failure on faults within the seismogenic crust is controlled by the Coulomb

frictional-failure criterion [Sonder and England , 1986], which can be written as



|τs| = c − µσn, (2.12)

where |τs| is the shear stress at failure on a fault, c is a constant, µ is the coefficient

of friction that supports the stresses in the upper crust, and σn is the total normal

stress with sign convention such that positive σn indicates tension. Since the simplest

expression for the effective normal stress, σ′
n , is written as σ′

n = σn − σp, we then

define λ as the ratio of pore pressure, σp, to lithostatic stress, σn, in the crust [Hubbert

and Rubey , 1959; Sibson, 1974; Sonder and England , 1986]. Cohesion is thought to

be small on faults [Sibson, 1974; Bird and Kong , 1994] so c is set to zero. Thus the

Coulomb frictional-failure criterion reduces to

|τs| = −µσ′
n = −µσn(1 − λ), (2.13)

which adequately approximates Byerlee’s [1978] curve for frictional strength associ-

ated with rocks of the brittle crust if µ ≈ 0.75 [Sibson, 1982, 1984]. In addition,

for actively deforming regions we define the depth integrated strength on the faults

within seismogenic crust down to the brittle-ductile transition, FBC , as

FBC =
∫ L

−h
(σ1 − σ3)dz, (2.14)

where BC is the thickness of the brittle crust above the brittle-plastic transition and σ1

and σ3 are the maximum and minimum principal total stresses for the brittle crust.

In order to make use of equation (2.14) we need to identify fault styles associated

with our long-term depth integrated deviatoric stress field solution, since Byerlee’s

law predicts differential stress and shear stress magnitudes that vary as a function of

tectonic regime [Brace and Kohlstedt , 1980].



2.4.1 Accounting for fault styles

Anderson [1951] showed how styles of faulting in the upper crust relate to relative

principal stress magnitudes and principal stress directions, concluding it reasonable

to assume one principal stress direction is nearly vertical with depth allowing for the

three major geologic fault types to be related to tectonic regimes. The assumption

Anderson [1951] made regarding the expected orientation of the principal stress di-

rections is reasonable since earth’s surface is a free surface, and thus one principal

stress direction must be in the direction normal to that free surface at the free surface

itself [Jaeger and Cook , 1976]. Furthermore, τxz and τyz are generally so much smaller

than σzz that one principal axis of deviatoric stress is effectively zero and therefore

one principal axis is effectively vertical throughout the seismogenic layer. Our thin

sheet modeling approach regards depth integrated principal stress directions within

the seismogenic layer as vertical and horizontal, allowing us to equate principal devi-

atoric stress styles with pure fault styles. However, in such cases we do not impose

a plane-strain or plane-stress constraint, but instead define τxx + τ yy = −τ zz. Con-

sequently, the long-term total depth integrated deviatoric stress field solution shown

in Figure 2.9 contains tensor styles that in some places do not represent either pure

dip-slip or pure strike-slip deformation. Instead, in such areas all principal axes may

be non-zero and of unequal length. One possible parameterization is to explicitly

partition the deformation for these cases into a combination of pure dip-slip and

pure strike-slip. We feel, however, that such a treatment of mixed styles may make

the model overly complicated in terms of defining fault strength or fault friction in

a given area. Therefore, we simplify the approach and make an approximation by

grouping fault styles associated with the long-term vertically integrated deviatoric

stress field into one of three pure tectonic fault regimes (i.e., normal, strike-slip, or

thrust). The delineation of discrete styles is obtained through normalization of the

horizontal principal axes, τxx and τ yy, of the long-term depth integrated deviatoric



stresses using

Ao =
τxx + τ yy
√

τ 2
xx + τ 2

yy

. (2.15)

Values possible for Ao (see second column of Table 2.2) must fall between pure

compression, −
√

2, and pure extension, +
√

2. The actual value of Ao allows us to

infer the relative magnitudes and signs of the three long-term principal deviatoric

stresses and to assign each grid area a pure fault style. It is important to note that

the fault styles inferred here refer to the expected style of deformation associated with

faults that are close to failure or that have failed within the seismogenic crust over

the long term, such as those regions shown in Figure 2.4). In contrast, for regions of

very low strain rate, fault styles are poorly constrained because such zones are not

expected to fail, and may not have failed over the longer-term.

The long-term fault styles determined for the case of a seismogenic crust extending

from the surface to a uniform depth 20 km below sea level are shown in Figure 2.10.

Normal faulting dominates the seismogenic crust of the Basin and Range in Nevada,

western Utah, southern Idaho, and southeastern Oregon. The strike-slip fault styles

that govern the deformation within areas of southern and eastern California indicate

small components of both crustal extension and contraction during seismogenic fail-

ure. The seismogenic crust within and to the west of California’s Central Valley is

defined by thrust styles of faulting, mixed with strike-slip styles of faulting, indicating

that the crust accommodates modest amounts of compression there during failure.

This region of coastal California contains the San Andreas system, which is likely

anisotropic in behavior. That is, the mixed thrust and strike-slip style of faulting

predicted there (Figures 2.9, 2.10), with long-term principal axes of compression at

a high angle to the strike of the San Andreas fault, is not necessarily a poor pre-

diction. Rather, the fault is likely weak in the direction of slip [Mount and Suppe,

1987; Zoback et al., 1987]. Fault styles associated with thrust faulting are found in a



distinct band to the west of western North America’s plate margin running parallel

with the Northern Mexican coast through the Mendocino Triple Junction.

2.4.2 Equating long-term depth integrated stress differences

with depth integrated fault strength

The value of Ao allows us to determine which of the three vertically integrated

principal stress directions is vertical, enabling us to equate the long-term depth inte-

grated stress differences with fault strength. The principal assumption here is that

volumes of seismogenic crust that are actively deforming have long-term depth inte-

grated stress differences that are equal to the long-term depth integrated strength of

the faults within the seismogenic crust. Therefore, to quantify the depth integrated

fault strength of the seismogenic crust we depth integrate equation (2.13). The so-

lution to the integrated form of equation (2.13) is equated to equation (2.14) and is

solved on the basis of the assigned pure fault style determined from (2.15). We also

employ the relations σij = τ ij + (σzz − τ zz)δij and τ zz = −(τxx + τ yy), such that

we define the depth integrated strength of the faults within the seismogenic crust

associated with normal faulting by,

∫ L

−h
(σ1 − σ3)dz = (σxx − σzz)

=
∫ L

−h

[−2µσzz(1 − λ)√
µ2 + 1 + µ

]

dz

= 2τxx + τ yy, (2.16)

thrust faulting by,

∫ L

−h
(σ1 − σ3)dz = (σzz − σxx)

=
∫ L

−h

[−2µσzz(1 − λ)√
µ2 + 1 − µ

]

dz



= −2τxx − τ yy, (2.17)

and strike-slip faulting by,

∫ L

−h
(σ1 − σ3)dz = |σxx − σyy|

=
∫ L

−h

[−2µσzz(1 − λ)√
µ2 + 1

]

dz

= τxx − τ yy, (2.18)

where σxx, σyy, and σzz are the long-term depth integrated principal stresses,

known from our dynamic solution (see Table 2.2). Long-term depth integrated fault

strength magnitudes, defined from the surface down to a depth of 20 kilometers below

sea level, range from 0.05 – 1.4 x 1012 N · m−1 (Figure 2.11). Discretization of the long-

term principal horizontal deviatoric stresses through use of equation (2.15) into single

pure faulting styles dictates that the depth integrated strength magnitudes associated

with non-pure dip-slip or non-pure strike-slip cases (constrained by tensor styles of

principal strain rate) are themselves first-order approximations of the true long-term

depth integrals of strength. However, as mentioned above the bulk of the regions

fall into styles of deviatoric stress that correspond to styles of faulting very close to

the pure end-member cases of strike-slip, normal, and thrust (Figure 2.9). Errors

in predicted fault strength may also occur within regions where anisotropic behavior

between stress and strain are predominant, such as along the San Andreas fault

system. Our dynamic model predicts thrust faulting styles along the San Andreas

fault from northern California to the Big Bend portion of fault in southern California

(see Figures 2.9 and 2.10). Therefore, in those locations we may over estimate the

long-term depth integrated fault strength and the long-term level of friction on the

faults within that volume of seismogenic crust.



2.4.3 Long-term depth integrated friction coefficients

Direct estimates of pore pressures and friction coefficients from deep boreholes

within the uppermost crust are scarce in location and rarely are made below five

kilometers depth [Hubbert and Rubey , 1959; Townend and Zoback , 2000; Zoback and

Townend , 2001]. However, the widespread occurrence of hydrostatic and suprahydro-

static pore pressure within the deforming crust is expected [Sibson, 1990b; Zoback

and Townend , 2001]. The most direct way of establishing the long-term coefficients

of friction from our dynamically constrained depth integrated strength magnitudes of

the faults is to assume that the vertically integrated long-term ratio of pore pressure

to lithostatic stress, λ, does not vary along fault planes throughout the entire seis-

mogenic layer considered. Using equations (2.16), (2.17), and (2.18) the long-term

depth integrated coefficient of friction is for normal faulting,

µ =

√

√

√

√

(2τxx + τ yy)2

4[σ2

zz(1 − λ)2 + (2τxx + τ yy)σzz(1 − λ)]
, (2.19)

for thrust faulting,

µ =

√

√

√

√

(−2τxx − τ yy)2

4[σ2

zz(1 − λ)2 + (2τxx + τ yy)σzz(1 − λ)]
, (2.20)

and for strike-slip faulting,

µ =

√

√

√

√

(τxx − τ yy)2

4σ2

zz(1 − λ)2 − (τxx − τ yy)2
. (2.21)

The long-term friction coefficients, µ, do not exceed values of 0.14 for long-term dry

conditions (λ = 0.0). If the pore pressure level is approximated as long-term ’hydro-

static’ (λ = 0.4) within the 20 km thick seismogenic layer (Figure 2.12a), then the

long-term coefficients of friction are all generally less than 0.20. Long-term friction co-

efficients are significantly lower (µ < 0.12) throughout the Basin and Range and much



of California. These long-term friction coefficient estimates are meaningful where ac-

tive faults since 750,000 years are concentrated (Figure 2.1b). Within such regions,

long-term friction coefficients of ∼ 0.1 are found within the San Andreas fault sys-

tem in California, central Nevada, and the Wasatch fault system from Southern Utah

into Yellowstone and eastern Idaho. Relatively low long-term friction coefficients are

found within the Lake Meade region of northwestern Arizona, northwestern Nevada,

and southern Oregon. Overall, these long-term friction coefficients are much lower

than the friction coefficients measured by Byerlee [1978] in the laboratory for rocks

typical of the brittle upper crust. The long-term coefficients of friction obtained for

long-term ’wet’ (λ = 0.7) 20 km thick seismogenic crust (Figure 2.12b) rarely exceed

values of 0.30 on land and remain far below accepted ’Byerlee-like’ friction coefficient

values found for typical upper crustal rocks. Only when long-term pore pressures

within the seismogenic crust reach levels approaching lithostatic stress magnitudes

do long-term friction coefficients become reconcilable with laboratory results for most

upper crustal rock types.

2.5 Sensitivity

We have limited our depth integration of the 3-D force-balance equations to a

uniform base of 20 km below sea level. We now test the sensitivity of our long-

term friction estimates to cases of deeper depth integration. We determine eight

different solutions for depth integrated deviatoric stress where the maximum depth

of integration is increased in steps of 5 km. All eight solutions gave good matches

to the deformation indicators, similar to the solution for the 20 km thick layer (see

Table 2.3).

The results of our sensitivity tests are shown as a function of maximum depth of

integration along three vertical cross-sections. Each of the three cross-sections tran-



sect through the diffuse plate boundary zone of deformation (see Figure 2.2). Figure

2.13 shows the long-term depth integrated fault strength for all eight layers tested

along the three transect lines. We find that long-term depth integrated fault strength

magnitudes within the Basin and Range do not steadily increase with each increase

in depth below 20 km. Instead there is a diminishing increase in depth integrated

strength for depths greater than 20 km. Long-term depth averages of fault strength

within the Basin and Range (Figure 2.14) clearly decline with increasing depth of

integration. This is consistent with sharply reduced long-term depth integrated fault

strength with increasing depth in those regions of the Basin and Range. However,

long-term depth averages of crustal strength remain nearly constant just outside of

the plate boundary zone, in areas where strain rates are much lower (Figure 2.4).

Figures 2.15a,b,c show that when the maximum depth of integration is at or below

20 kilometers below sea level, the decrease in long-term depth integrated friction co-

efficient values becomes less sensitive to increases in maximum depth of integration.

This result, suggests that most of the long-term strength for faults of the crust within

the diffuse plate boundary zone of western North America is located in the upper 20

km of the seismogenic crust.

2.6 Discussion

Our most reliable long-term depth integrated fault strength and friction coefficient

estimates are in areas well-covered by Quaternary fault slip-rate observations (Figure

2.1b). Such areas correspond to most of the Basin and Range and California (Figure

2.4). We find that within the Basin and Range depth averages of fault strength decline

with increasing depth of integration. The largest drops in long-term depth averaged

strength occurs when maximum depth of integration extends only as deep as 10 km

below sea level (see Figure 2.13). This may imply that peak long-term differential



stresses occur in the shallow upper crust ( ≤ 15 km) within the Basin and Range,

consistent with thicknesses found in models of effective elastic thickness for the region

[e.g., Lowry and Smith, 1995; Lowry et al., 2000; Puskas et al., 2007].

Observations of strain within the Great Basin region of western U.S. show that

deformation since 750,000 years ago has been relatively distributed across the Great

Basin region (Figure 2.1b). However, present-day strain rates, constrained by GPS

observations, are concentrated in western Great Basin and along eastern edge of Basin

and Range along the Wasatch Fault zone [Thatcher et al., 1999; Bennett et al., 2003;

Hammond and Thatcher , 2004, 2005; McCaffrey , 2005]. Central and eastern Nevada

and westernmost Utah are characterized by much lower strain rates (see Figure 2.4).

The disparity between present-day Great Basin strain rate distributions and the more

distributed distribution of ruptures since 750,000 years suggests that deformation

must migrate spatially over time [e.g., Wallace, 1984].

Relatively concentrated strain rates in parts of the Basin and Range may be

enhanced by transient strain rate phenomenon. Viscoelastic studies indicate that

transient behavior constitutes a viscous coupling between elastic upper crust and

straining visous lower crust and upper mantle that causes concentrations of strains in

regions of past crustal earthquakes [e.g., Dixon et al., 2000, 2003; Hetland and Hager ,

2004]. Concentrations of strain rates in regions such as western Nevada [Hetland and

Hager , 2004] are thus not an artifact of strong lateral strength heterogeneity within

the crust. Instead, these concentrations must come from transient stress heterogeneity

that is associated with the transient viscous coupling between crustal seismogenic

layer and viscoelastic lower layer [e.g., Pollitz and Vergnolle, 2006]. Given that stress

transients might govern where failure occurs, our steady state deviatoric stress field

estimates, and the long-term friction coefficients obtained from them, may represent a

minimum estimate. Estimates of such stress transients can be obtained by integrating

the transient surface displacements in the vicinity of fault rupture during an entire



seismic cycle. Maximum time integrated transient surface displacements, based on

calculations by Hetland and Hager [2004], are of the order of one half of the fault

displacement in the previous rupture. This would imply a maximum transient stress

accumulation during one seismic cycle of one half the stress drop. For a stress drop of

3 MPa the depth integrated stress transient would be about 3 x 1010 N · m−1 within

a 20 km thick seismogenic layer. This is about 10% of the depth integrated long-term

deviatoric stress magnitudes that we have calculated for the seismogenic portion of the

crust. Therefore, our estimates of long-term friction from the steady-state deviatoric

stress magnitudes may not be grossly underestimated.

In our models we do not evaluate the long-term frictional strength of the country

rock of the crust. At a minimum, the country rock may be only slightly frictionally

stronger than the faults within the crust. However, we place no upper bound on the

frictional strength of the country rock and speculate that the frictional properties out-

side shear zones may be Byerlee-like. We obtain long-term depth integrated friction

coefficients that are far less than those reported in rock mechanics studies under dry

conditions for most upper crustal rock types [e.g., Byerlee, 1978]. Low long-term fric-

tion coefficients with respect to those cited by Byerlee [1978] are thought to arise from

intrinsic and/or dynamic weakening mechanisms capable of lowering shear resistance

on faults during the earthquake rupture process and the seismic cycle in general [e.g.,

Di Toro et al., 2004]. For instance, results from ring shear experiments on halite-

muscovite mixtures led to microphysical models that predict differential strength

reduction in the upper crust by as much as 50 – 70% [Bos and Spiers , 2001, 2002;

Niemeijer and Spiers, 2005]. Experiments by Numelin et al. [2007] on natural fault

gouge samples from a low-angle normal fault in southeastern California discriminate

between weak fault gouge found for samples with greater than 50 wt% clay content

versus samples consistent with Byerlee’s law that contained less than 50 wt% clay

content. Tembe et al. [2006] measured the frictional properties of drill cuttings and



core extracted from the San Andreas Fault Observatory at Depth (SAFOD) scientific

borehole and found low friction coefficients (µ = 0.4 – 0.55) on alteration minerals at

approximately 2.5 and 3.0 km depth. The presence of these two weak shear zones at

depth is consistent with and may partially explain the apparent weakness of the San

Andreas Fault [Tembe et al., 2006]. More recently, slightly lower friction coefficients

(µ = 0.3 – 0.5) on hand selected clay-rich drill cutting separates from the SAFOD

scientific borehole were measured by Morrow et al. [2007].

Examination of ancient exposures of mid-crustal fault cores in geologic studies and

results from deformation experiments on material with qualities that closely match

fault rocks suggest the existence of a broad frictional-viscous regime in the upper crust

[Handy and Brun, 2004; Holdsworth, 2004; Jefferies et al., 2006]. For instance, the

rich presence of quartz-mica phyllonites in the middle to upper crust of continental

faults zones may indicate activation of fluid assisted deformation mechanisms at lower

differential stress than that predicted by Byerlee’s law [Janecke and Evans , 1988;

Stewart et al., 2000; Imber et al., 2001; Jefferies et al., 2006]. Long-term weakening

of the fault zone itself may be the result of fault reactivation [Holdsworth et al., 2001;

Holdsworth, 2004; Edwards and Ratschbacher , 2005] or thermomechanical feedback

effects [Regenauer-Lieb et al., 2006].

Our models indicate that long-term friction on faults is very low even if long-term

fault zone pore pressures are elevated well above hydrostatic conditions. These results

corroborate other thin-plate dynamic modeling efforts. For instance, Bird and Kong

[1994] computed fault friction coefficients of 0.17 for a best-fit thin-plate finite element

model of major faults within California. This low friction result was obtained with a

model constrained to match geologic, geodetic, and stress data with no shear tractions

at the base of the crust. Bird and Kong [1994] also included mantle shear tractions

in their models. They found values of µ ranged between 0.17 and 0.25 and concluded

that all faults in their model region are weak. Slightly lower friction results (µ <



0.15) were found on faults within the San Francisco Bay area by Geist and Andrews

[2000]. These authors used the modeling technique developed by Bird and Kong

[1994] and more recently obtained geophysical data sets to look at the San Francisco

Bay fault network in greater detail. Parsons [2002] used long-term fault slip behavior

and finite element modeling of a three layer lithosphere to obtain friction coefficients

comparable to those obtained by Geist and Andrews [2000]. These authors used the

modeling technique developed by Bird and Kong [1994] and more recently obtained

geophysical data sets to look at the San Francisco Bay fault network in greater detail.

Parsons [2002] used long-term fault slip behavior and finite element modeling of a

three layer lithosphere to obtain friction coefficients comparable to those obtained by

Geist and Andrews [2000].

Average differential stress in the upper crust, as quantified by Fialko et al. [2005]

using topographic and strike variations along the San Andreas fault, produced esti-

mates of effective fault strength that are a factor of two lower than frictional strength

estimates predicted by Byerlee’s law under hydrostatic pore pressure conditions. Fay

and Humphreys [2006] predict effective friction coefficients between 0.10 – 0.21 given

a brittle-ductile transition at depths from 15 to 30 km below sea level based on bal-

ance of forces and torques associated with GPE variations, tectonic loading, and basal

tractions acting on the Salton block. d’Alessio et al. [2006] use models of heat flow

to constrain the apparent coefficients of friction to be about 0.1 along the creeping

section of the San Andreas fault. These models combine slip rates, displacement his-

tories, and asperity sizes to a depth of 15 km to compare modeled surface heat flow

patterns with existing measurements. We predict long-term depth integrated friction

coefficients on faults ranging from 0.10 – 0.15 for the Salton Block area, from 0.13 –

0.19 for the San Francisco Bay area, and from 0.12 – 0.16 for the creeping section of

the San Andreas fault using depth integration extending from the surface to 15 km

below sea level under long-term hydrostatic pore pressure conditions.



2.7 Conclusions

We have used a geodynamic approach to quantify the long-term absolute magni-

tudes of depth integrated deviatoric stress for the seismogenic layer in western North

America. We exploited seismic velocity profiles to define density structure through-

out the seismogenic layer. The absolute magnitude of depth integrated deviatoric

stresses associated with gravitational potential energy differences calibrate the total

depth integrated deviatoric stress magnitudes acting within the seismogenic layer. In-

ferences on long-term deformation patterns provide constraints on the needed depth

integrated boundary condition solution; together, the boundary condition solution

and the GPE differences solution provide robust estimates of the magnitude of the

long-term depth integrated deviatoric stresses acting within the seismogenic layer.

We have used these absolute magnitudes of depth integrated deviatoric stress to infer

the long-term depth integrated fault strength of the seismogenic crust.

Our dynamic models estimate long-term depth integrated friction coefficients on

faults within the diffuse plate boundary zone of western North America that are far

less than those obtained for most upper crustal rock types sampled in the laboratory.

Dynamic weakening during large slip and/or intrinsic weakening of fault core material

due to repeated fault reactivation may be fundamental processes that promote the

progress of finite strain within the brittle seismogenic layer in the presence of the

relatively low values of long-term vertically integrated stress differences present in

the crust.

2.8 Appendix A:

Recall that we argue that the absolute magnitude of deviatoric stresses associated

with GPE differences calibrates the absolute magnitude of the long-term deviatoric

stress field. This is particularly true for cases where contributions to deviatoric stress



related to GPE differences are comparable to contributions from stress boundary

conditions. We will investigate whether our inversion methodology can retrieve the

absolute magnitudes of deviatoric stress, as well as the stress tensor style, using

synthetic dynamic solutions generated in forward dynamic models. We investigate

two cases: one where the faults within the crust are low friction of µ = 0.1, and one

where faults have higher, Byerlee-type, friction of µ = 0.75. We show that for weak

fault case the effects of GPE differences are approximately equal to effects of boundary

conditions and that we recover stress magnitudes and tensor styles exactly. For the

strong fault case, however, we show that the boundary conditions dominate over the

influence of GPE differences. For this case we recover the tensor field almost exactly,

but manage to recover only 70% of the absolute magnitudes of stress. Nevertheless,

the recovered stress magnitudes are significantly larger than in the weak fault case.

We use the forward model methodology of Flesch et al. [2001], and apply it to the

thickness of the long-term seismogenic crust. We define the internal body force dis-

tributions (GPE per unit area), velocity boundary conditions, and lateral variations

in depth integrated effective viscosity, from the surface to 20 km below sea level. The

depth integrated effective viscosities are defined by the friction on the faults, not the

strength of the regions between the faults. As in Flesch et al. [2001] we minimize the

functional,

Θ(v) =
∫ ∫

s
[D − vαfα] dxdy, (2.22)

where fα, is the body force term associated with gradients in gravitational potential

energy per unit area, vα is the velocity, and D is the dissipation potential, which

provides a solution to the force balance equations. Flesch et al. [2001] show that

the dissipation potential depends on the strain rates, on the value of the rheological

parameter B, and the power law exponent n,

D =
n

n + 1
B(ǫ̇αβ ǫ̇αβ + ǫ̇γγ ǫ̇γγ)

n+1

2n ), (2.23)



where ǫ̇γγ = (ǫ̇xx + ǫ̇yy) = −ǫ̇zz.

We estimate values of the depth integrated effective viscosity, B, for the seismo-

genic crust, [England and McKenzie, 1982; Sonder and England , 1986] for a given

element by

B =
T

E
1

n

, (2.24)

where E, and T , the second invariants of strain rate and stress respectively, are

defined in equation 2.11 of the main text. T and therefore B is defined by the fault

strength, FBC by equations (2.16), (2.17), and (2.18) in the main text. We simplify

the B value distribution by allowing variations in T that are only a function of fault

style, friction, and pore pressure. The discretization of the fault types per grid area

into one of three pure fault styles (i.e., thrust, normal, or strike-slip) per grid area,

as inferred from the long-term kinematic model shown in figure (2.4), yields the T

value distribution we use to define B values. For all three cases of pure fault style:

T =
FBC√

2
. (2.25)

We define both a frictionally weak and a frictionally strong long-term hydrostatic (λ

= 0.4) seismogenic crust. For the weak crust, the frictional strength on the faults

embedded within the layer are uniformly low (µ = 0.1), whereas for the strong crust

the frictional strength is Byerlee-like (µ = 0.75) on the same set of faults.

We test the two forward models with the B values thus defined using power law

exponent, n=1, input depth integrals of vertical stress, σzz from the surface to 20

km below sea level (GPE), velocity boundary conditions, and a starting guess for

strain rate from our long-term kinematic model. The depth integrals of vertical

stress, σzz, the gradients of which define the body forces, are defined with the seismic

data and methods described in section (2.3.2). It is therefore the same data set

of GPE used to define our actual stress field estimate for western North America.



The velocity boundary conditions are the known relative plate motions. For the

forward models in this appendix, we define our velocity boundary conditions using

the Pacific-North America (PA-NA) plate motion estimate of McCaffrey [2005], the

Cocos-North America (CO-NA) and Juan de Fuca-North America (JF-NA) plate

motion estimates of DeMets et al. [1994], and the Rivera-North America (RI-NA)

plate motion estimate of DeMets and Wilson [1997]. For slow strain rate regions the

B values are capped at a maximum value, as those low strain rate areas are unlikely to

possess faults that are yielding. In addition, we spatially smooth the input B value

distribution. Both of these procedures combine to dampen large order magnitude

variations in B values over short lateral wavelengths. For the weak fault synthetic

crust (Figure 2.16), the maximum B value is 3.05 x 1027 N/m · s. For the weak

fault model, the internal buoyancies forces play an approximately equal role as the

boundary conditions (Figure 2.17). Tensional deviatoric stress styles are prevalent in

the central and eastern portion of the diffuse plate boundary zone, consistent with

the dominant extensional faulting found there (Figure 2.17).

For the strong fault synthetic crust (Figure 2.18) the maximum B value is 6.10 x

1027 N/m · s. In the diffuse plate boundary zone, where strain rates are moderate to

high, the B values for the faults of the strong crust are five to seven times larger than

the B values for the same network of faults for the weak crust. For the strong fault

model, the velocity boundary conditions dominate the deviatoric stress field, and the

internal buoyancies play a minor role (Figure 2.19). For the strong fault model, the

deviatoric stress styles are consistent with strike-slip faulting (Figure 2.19). There is

also a dramatic difference east of the Juan de Fuca subduction zone for the strong

fault case (Figure 2.19) in comparison with the weak fault case [Hyndman and Wang ,

1993]. The deviatoric stress magnitudes of the strong fault model are generally five to

seven times larger than those of the weak fault model, consistent with the differences

in B values.



We use the strain rate output from the dynamic solution to constrain our boundary

condition solution in the inverse method. Recall that we seek a stress field boundary

solution that, when added to the deviatoric stresses associated with GPE differences,

provides a best fit to the tensor styles embedded in the strain rate tensor solution.

The deviatoric stresses associated with GPE differences for both the strong and weak

models are nearly identical to one another. Therefore, differences in the tensor fields

for both the strong and weak crust models arise from the different responses to bound-

ary conditions of velocity in the two forward dynamic models. The dynamic strain

rate tensor field associated with the weak fault model is dominated by pure extension

in the central and western Basin and Range (Figure 2.20). On the other hand, pure

extension is absent in the dynamic strain rate tensor field associated with the strong

crust model (Figure 2.21).

For the case of the weak fault model, the deviatoric stress field obtained with

the inverse method (Figure 2.22) and the deviatoric stress field associated with the

forward dynamic solution (Figure 2.17) are near exact matches with one another in

terms of magnitude, style and direction. For the case of the strong fault model, the

deviatoric stress field obtained with the inverse method (Figure 2.23) provide a nearly

exact match with the tensor styles from the forward dynamic model (Figure 2.21).

For the strong fault model, the inverse method recovers on average, roughly 70% of

the magnitude of the forward dynamic deviatoric stress field solution (Figure 2.19).

We have shown that the inversion method that we employ can distinguish between

the weak fault and the strong fault cases, even though we are unable to recover the

full stress magnitudes in the strong fault model. The inability to recover the full

stress magnitudes for the strong fault model arises because the solution is dominated

by boundary condition effects, with internal buoyancies playing a minor role in the

total deviatoric stress field. That is, our inverse method optimizes the fit to the

tensor styles. Because the boundary condition effects dominate, an increase in the



magnitudes of deviatoric stresses associated with the boundary conditions will not

yield a significant improvement in the fit to the tensor field. Therefore, for such cases

where boundary conditions dominate over the influence of internal crustal buoyan-

cies, there is a limit in ability to recover the full deviatoric stress magnitudes. The

plate boundary zone in western North America appears to be more consistent with

the scenario where boundary condition effects are at parity with internal buoyancy

effects. That is, for the weak fault case internal buoyancies and boundary conditions

contribute approximately equally, and it yielded deformation patterns in accord with

observation in the western United States (Figure 2.20). Moreover, our inverse method

was able to recover the exact deviatoric stress tensor magnitudes for the weak fault

case. Based on these tests, we are confident that our inverse approach is recovering

the long-term magnitudes of depth integrated deviatoric stresses in the seismogenic

layer of the plate boundary zone of western North America.



Figure 2.1: Western North America Quaternary fault data drawn as a function
of fault trace, fault type, and last slip event in years before present. Fault
characteristics obtained from the Quaternary fault and fold database for the
United States, 2006, maintained by the United States Geological Survey (web site:
http//earthquakes.usgs.gov/regional/qfaults/). (a) Distribution of historic faults to
present day (b) Distribution of faults from 750,000 years ago to present day.
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Figure 2.2: The grid (red mesh) from Flesch et al. [2007] used in the kinematic and
dynamic modeling. In this study we have defined the Pacific, Rivera, Cocos, Juan de
Fuca, and North American plates as rigid blocks. Dark blue dots represent the GPS
and VLBI data [IGS; USGS; SCEC; Sauber et al., 1997; Ma and Ryan, 1998; Antonelis
et al., 1999; Bennett et al., 1999, 2002, 2003; Freymueller et al., 1999; Khazaradze
et al., 1999; Dixon et al., 2000; Gan et al., 2000; Lavallee et al., 2001; McCaffrey
et al., 2000; McClusky et al., 2001; Miller et al., 2001b, a; Prescott et al., 2001; Svarc
et al., 2002a, b; Oldow , 2003; Savage et al., 2004]. Quaternary fault slip rate data
[DeMets and Stein, 1990; Wilson, 1993; DeMets et al., 1994; Jennings , 1994; Petersen
and Wesnousky , 1994; Plafker and Berg , 1994; DeMets , 1995; Bird , 1996; DeMets and
Dixon, 1999; Shen-Tu et al., 1999] ridge spreading rates, and long term estimates of
plate motions from NUVEL-1A [DeMets et al., 1994] are represented as light blue
lines. Large yellow stars denote the boundary condition segments used to determine
the stress field boundary conditions (see section 2.3.4 and Figure 2.8), small yellow
stars denote the internal ring segments. Boundary segments are calculated relative
to the fixed reference point denoted by the blue star. Numbered areas correspond to
Table 2.8. Green transect lines A-A’, B-B’, and C-C’ indicate locations of the three
vertical cross sections shown in Figures 2.13 – 2.15.
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Figure 2.3: Estimate for the continuous long-term model velocity field (black vectors),
along with GPS data (white vectors) from Bennett et al. [1999] plotted relative to a
North American frame of reference. The remaining GPS and VLBI data used in this
model are plotted as white dots for clarity. Error ellipses represent the 95% confidence
limits.
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Figure 2.4: The continuous model strain rate field associated with the model velocity
field in figure 2.3. Principal axes of the strain rates are plotted as unit tensors with
the second invariant of strain rate plotted in the background grid. Values of 20 x 10−9

· yr−1 or greater are plotted in red. Areas contained within the interior of the grey
boundary are locations where seismic events return over time periods of at most tens
of thousands of years. White vectors represent principal axes of extensional strain
rate, black vectors represent principal axes of compressional strain rate.
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Figure 2.5: Density as a function of P-wave velocity for western North America. Open
circles indicate grouped and averaged P -wave velocity and density data defined within
the western U.S. Cordillera. The solid black line represents the 5 th order polynomial
curve used to interpolate and extrapolate the seismically defined data set.



Figure 2.6: The absolute magnitudes of the depth integrated vertical stress (see
equations (2.3), (2.8), and (2.9)) associated with seismically defined densities in the
upper crust of western North America. Depths of integration are from the surface to
a uniform depth of 20 km below sea level.
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Figure 2.7: The depth integrated deviatoric stress field associated with gravitational
potential energy variations in Figure 2.6. White vectors represent tensional principal
axes of deviatoric stresses, black vectors represent compressional principal axes of
deviatoric stresses.
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Figure 2.8: The best-fit deviatoric stress field boundary condition. This boundary
condition solution is obtained through minimization of (2.11). The linear combina-
tion of basis functions, when added to the deviatoric stress field associated with GPE
variations in the seismogenic crust (Figure 2.7), provides a best-fit with the long-term
stress field indicators in Figure 2.4. White vectors represent principal axes of ten-
sional deviatoric stresses, and black vectors represent principal axes of compressional
deviatoric stresses.



235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

1x1012 N·m−1

Figure 2.9: The best-fit long-term total depth integrated deviatoric stress field within
a seismogenic layer extending from the surface to a uniform depth of 20 km below
sea level for western North America. White vectors represent principal axes of ten-
sional deviatoric stresses, and black vectors represent principal axes of compressional
deviatoric stresses.
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Figure 2.10: The style of faulting associated with the best-fit long-term total depth in
tegrated deviatoric stress field of western North America to a depth of 20 km below
sea level (see Figure 2.9). The value of the normalization parameter, Ao, denoted by
color, defines the fault style for a given grid area (equation (2.15)). Values ranging
from −

√
2 ≤ Ao < − 1√

5
indicate thrust style faulting regimes. Values ranging from

− 1√
5
≤ Ao ≤ + 1√

5
indicate strike-slip style faulting regimes and values ranging from

+ 1√
5

< Ao ≤ +
√

2 indicate normal style faulting regimes. All fault styles are divided
into one of three pure tectonic fault regimes. Grid areas regarded as pure thrust
regimes are striped with black horizontal lines. Grid areas regarded as pure strike-
slip fault regimes are marked with black crosses and grid areas regarded as pure
normal fault regimes are striped with black vertical lines.



Figure 2.11: The magnitudes of long-term vertically integrated fault strength (equa-
tion (2.15) and equations (2.16–2.18)) for western North America. Limits on inte-
gration are from the surface of variable topography to a depth of 20 km below sea
level. As shown in Figure 2.10, fault styles designated as pure thrust regimes are
striped with black horizontal lines, pure strike-slip fault regimes are marked with
black crosses, and pure normal fault regimes are striped with black vertical lines.
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Figure 2.12: (The long-term coefficients of friction, µ, resolved on faults for the
seismogenic crustal layer, obtained from depth integrals of stress differences in Figure
(2.11). As shown in Figure 2.10, fault styles designated as pure thrust regimes are
striped with black horizontal lines, pure strike-slip fault regimes are marked with
black crosses, and pure normal fault regimes are striped with black vertical lines. (a)
Assuming a long-term hydrostatic crust (λ = 0.4). (b) Assuming a long-term wet
crust (λ = 0.7).
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Figure 2.13: Long-term depth integrated fault strength as a function of position and
modeled layer thickness along three vertical cross-sections (see Figure 2.2). Colored
triangles indicate the uniform depth in kilometers to the base of the modeled layer.
The long-term vertically integrated fault strength magnitudes increase as layer thick-
ness increases. Note that there is a diminishing contribution to depth integrated
strength within the Basin and Range (between 500 – 1000 km) for depth integrals in
excess of 20 km. (a) Long-term vertically integrated fault strength variations along
transect A-A’. (b) same as (a) expect across transect B-B’. (c) same as (a) expect
across transect C-C’. Areas within the diffuse PA-NA plate boundary zone, as delin-
eated in Figure 2.4, plot in the unshaded region of each panel.
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(b) B B’
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Figure 2.14: Long-term depth averaged crustal strength as a function of position
and modeled layer thickness along the same three vertical cross-sections as Figure
2.13. Colored triangles indicate the uniform depth in kilometers to the base of the
modeled layer. The long-term depth averaged crustal strength declines with increase
in modeled layer thickness within the the Basin and Range province (between 500
– 1000 km). The declines are sharpest for cases in which the uniform base of the
modeled layer remains at or above the depth of 20 km below sea level. Outside the
Basin and Range province there is little to no dependence of long-term depth averaged
crustal strength with layer thickness. (a) Long-term depth averaged crustal strength
variations along transect A-A’. (b) same as (a) expect across transect B-B’. (c) same
as (a) expect across transect C-C’. Areas within the diffuse PA-NA plate boundary
zone, as delineated in Figure 2.4, plot in the unshaded region of each panel.
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(b) B B’
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Figure 2.15: Long-term depth integrated coefficients of friction, µ, as a function of
position and modeled layer thickness under long-term hydrostatic conditions (λ = 0.4)
along the same three vertical cross-sections as Figure 2.13. Colored triangles indicate
the uniform depth in kilometers to the base of the modeled layer. Long-term friction
coefficients associated with areas within the diffuse PA-NA plate boundary zone, as
delineated in Figure 2.4, plot in the unshaded region of each panel. Long-term friction
coefficients within the diffuse plate boundary zone diminish with increase in modeled
layer thickness. (a) Predicted long-term coefficients of friction along transect A-A’.
(b) same as (a) expect across transect B-B’. (c) same as (a) expect across transect
C-C’.



Figure 2.16: The distribution of B values associated with the weak fault model a.
The B values are defined with µ = 0.1, λ = 0.4, n=1, velocity boundary conditions,
σzz to 20 km below sea level, and a starting guess for strain rate from our long-term
strain rate tensor field. The B values are capped a maximum value of 3.05 x 1027

N/m · s. All fault styles are divided into one of three pure tectonic fault regimes.
Grid areas regarded as pure thrust regimes are striped with black horizontal lines.
Grid areas regarded as pure strike-slip fault regimes are marked with black crosses
and grid areas regarded as pure normal fault regimes are striped with black vertical
lines.
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Figure 2.17: The forward dynamic solution for the weak fault model associated with
the B value distribution shown in Figure 2.16. The internal buoyancies forces and the
velocity boundary conditions contribute nearly equally to this solution. White vectors
represent principal axes of tensional deviatoric stresses, and black vectors represent
principal axes of compressional deviatoric stresses.



Figure 2.18: The distribution of B values associated with the strong fault model.
The B values are defined with µ = 0.1, λ = 0.4, n=1, velocity boundary conditions,
σzz to 20 km below sea level, and a starting guess for strain rate from our long-term
strain rate tensor field. The B values are capped a maximum value of 3.05 x 1027

N/m · s. All fault styles are divided into one of three pure tectonic fault regimes.
Grid areas regarded as pure thrust regimes are striped with black horizontal lines.
Grid areas regarded as pure strike-slip fault regimes are marked with black crosses
and grid areas regarded as pure normal fault regimes are striped with black vertical
lines.
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Figure 2.19: The forward dynamic solution for the strong fault model associated with
the B value distribution shown in Figure 2.18. The velocity boundary conditions
dominate the deviatoric stress field, overwhelming the contribution of the internal
buoyancies. White vectors represent principal axes of tensional deviatoric stresses,
and black vectors represent principal axes of compressional deviatoric stresses.
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Figure 2.20: The continuous model strain rate field associated with the weak fault
model. Principal axes of the strain rates are plotted as unit tensors with the second
invariant of strain rate plotted in the background grid. Values of 30 x 10−9 · yr−1 or
greater are plotted in red.



230˚

230˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

55˚ 55˚

230˚

230˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

55˚ 55˚

230˚

230˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

25˚ 25˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

55˚ 55˚

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

x10−9⋅y−1

Figure 2.21: The continuous model strain rate field associated with the strong fault
model. Principal axes of the strain rates are plotted as unit tensors with the second
invariant of strain rate plotted in the background grid. Values of 30 x 10−9 · yr−1 or
greater are plotted in red.
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Figure 2.22: The best-fit total depth integrated deviatoric stress field extending from
the surface to a uniform depth of 20 km below sea level for the weak fault model.
This deviatoric stress field solution is arrived at through minimization of (2.11) such
that the linear combination of basis functions, when added to the deviatoric stress
field associated with GPE variations, provides a best-fit with the dynamic stress
field indicators shown in Figure 2.20 (see Section 2.8). Note the near exact match
between the deviatoric stress field solution obtained using the inverse method and
the deviatoric stress field solution (Figure 2.17) obtained in the forward modeling
approach. White vectors represent principal axes of tensional deviatoric stresses, and
black vectors represent principal axes of compressional deviatoric stresses.
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Figure 2.23: The best-fit total depth integrated deviatoric stress field extending from
the surface to a uniform depth of 20 km below sea level for the strong fault model.
This deviatoric stress field solution is arrived at through minimization of (2.11) such
that the linear combination of basis functions, when added to the deviatoric stress
field associated with GPE variations, provides a best-fit with the dynamic stress field
indicators shown in Figure 2.21 (see Section 2.8). Note the near exact matches in
styles of deviatoric stress field obtained with the inverse method and the forward dy-
namic solution (Figure 2.19). The inverse method recovers, on average, approximately
70% of the magnitude of the forward dynamic deviatoric stress field solution. White
vectors represent principal axes of tensional deviatoric stresses, and black vectors
represent principal axes of compressional deviatoric stresses.



Table 2.1: Model fit with stress field indicators for the case of a seismogenic layer with
a uniform base 20 kilometers below sea level for each region of interest as delineated
in Figure 1.

region number total average total average average average

of of regional strain misfitc misfitd correlation misfit

interest areas areaa magnitudeb between between

unit unit

tensorse tensorsf

All 3574 2.868e-01 54.5 4.634e+10 1.616e+11 0.56 0.22

1 66 6.494e-03 2.3 5.435e+08 8.370e+10 0.74 0.13

2 365 3.337e-02 111.7 6.714e+09 2.012e+11 0.50 0.25

3 325 1.695e-02 6.6 1.351e+09 7.968e+10 0.51 0.25

4 118 7.259e-03 111.6 2.010e+09 2.768e+11 0.59 0.20

5 71 6.417e-03 55.5 1.478e+09 2.303e+11 0.52 0.24

6 116 7.669e-03 5.0 5.214e+08 6.799e+10 0.58 0.21

7 257 2.817e-02 217.2 8.143e+09 2.890e+11 0.47 0.26

8 141 1.226e-02 11.6 1.865e+09 1.522e+11 0.50 0.25

9 146 1.155e-02 4.0 3.737e+08 3.236e+10 0.87 0.06

10 30 2.049e-03 8.5 4.159e+07 2.030e+10 0.93 0.04

11 162 1.964e-02 41.8 1.147e+09 5.841e+10 0.66 0.17

12 511 4.051e-02 1.8 5.074e+09 1.252e+11 0.66 0.17



Table notes:

a. Area normalized by the square of the radius of the Earth.

b. The average strain rate magnitude is defined as

√

∑

areas{E2}∆S
∑

areas ∆S
.

Strain rate magnitudes are in units of 10−9· yr−1

c. The total misfit to the objective functional defined in eq. (2.11),

∑

areas

{

T − e · τ
E

}

∆S.

Depth integrated stress units are N · m−1.

d. The average misfit to the functional is defined as

∑

areas

{

T − e·τ
E

}

∆S
∑

areas ∆S
.

e. The average correlation between the unit tensors is defined as

∑

areas

{

e·τ
ET

}

∆S
∑

areas ∆S
.

f. The average misfit between the unit tensors is defined as

∑

areas 0.5 ∗
{

1 − e·τ
ET

}

∆S
∑

areas ∆S
.



Table 2.2: Pure fault styles for seismogenic crust determined using Ao. Also indicated
are the principal stress orientations and the vertically integrated vertical strength
formulations for each fault style.

Fault Normalization
Style Parmeter σ1 σ3 FBC

Thrust −
√

2 ≤ Ao < − 1√
5

σzz σxx −2τxx − τ yy

Strike-slip − 1√
5
≤ Ao ≤ + 1√

5
σyy σxx τxx − τ yy

Normal + 1√
5

< Ao ≤ +
√

2 σxx σzz 2τxx + τ yy



Table 2.3: Model fit with stress field indicators for each of the layer thicknesses
modeled.

depth to average average misfit
base of correlation between between unit

layer (km) unit tensors tensors
5 0.57 0.21
10 0.57 0.22
15 0.57 0.22
20 0.56 0.22
25 0.56 0.22
30 0.55 0.22
35 0.56 0.22
40 0.56 0.22
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Abstract We investigate the dynamics of the seismogenic layer within the

plate boundary zone of western North America. Because the depth integrals of hori-

zontal tractions are expected to be small in comparison with depth integrals of hor-

izontal deviatoric stress, it is only necessary to integrate from the surface down to a

common depth reference level in order to infer accurate depth-integrated stress mag-

nitudes within the seismogenic layer under investigation. We use a forward dynamic

modeling approach, where the body force distributions, inferred lateral variations in

effective viscosity, and the known far-field velocity boundary conditions are defined.

Body forces are the differences in gravity potential energy per unit area (GPE), ob-

tained by performing depth integration of vertical stress from the surface down to a

uniform depth of 20 km below sea level. In our treatment of the long-term seismogenic

layer, the effective viscosity of a given crustal volume is proportional to the long-term

friction coefficients of the faults within that volume. We investigate models by assign-

ing a uniform friction coefficient to the fault planes of western North America using

a range of long-term fault friction coefficients from 0.02–1.0 under hydrostatic pore

pressure conditions. We score our dynamic model velocity and strain rate fields with

estimates of the long-term deformation field built from Quaternary fault observations.

Models where faults are given a long-term friction coefficient of 0.10 yield a best-fit to

deformation indicators. Models where faults are given a long-term friction coefficient

of 0.20 achieve a minimum reduced chi-square misfit between the long-term velocity

field and the forward dynamic model velocity field. The precise long-term friction on

the faults, along with the distribution of fault fabric, control the relative influence

that internal crustal buoyancies and plate boundary forces have on the deformation



field. Solutions determined for models constructed from lower fault friction (µ < 0.20)

require stress contributions from differences in GPE that are at a minimum equal to

stress contributions from boundary conditions. However, for higher fault friction

(µ > 0.50), stresses arising from boundary conditions dominate over stresses arising

from GPE differences. These solutions with higher fault friction yield poor fits to de-

formation indicators. Our modeling shows that GPE differences must dominate over

velocity boundary condition effects within regions east of the San Andreas fault sys-

tem in order to accurately predict deformation in western North America. Moreover,

GPE related effects cannot dominate over velocity boundary condition effects unless

the crust contains a relatively dense network of faults with low long-term friction of

0.10 – 0.20.

3.1 Introduction

Geodetic data provide an ideal constraint for defining the interseismic kinematic

fields associated with the contemporary deformation of the diffuse plate boundary

zone [Thatcher , 2003; Hammond and Thatcher , 2004, 2005, 2007]. Kinematic block

models defined with geodetic data, combined with some geologic data, successfully

delineate western North American interseismic deformation [McCaffrey , 2005; Mc-

Caffrey et al., 2007]. In many regions of western North America there are discrepan-

cies between geodetic and geologic slips rates [Dixon et al., 2003; Meade and Hager ,

2005; Becker et al., 2005; Pollitz and Vergnolle, 2006; Oskin et al., 2007]. Kinematic

velocity models defined with geodetic data may be significantly influenced by coseis-

mic, postseismic, and interseismic transient deformation [Pollitz , 2003; Hetland and

Hager , 2004, 2006; Freed et al., 2007]. Such transients need to be well-quantified in

order to produce accurate kinematic models of present-day deformation [Pollitz and

Vergnolle, 2006; Smith and Sandwell , 2006; Pollitz et al., 2008].



There is a link between longer-term deformation, in which the influence of many

seismic cycles are considered, and the interseismic deformation field described above.

Ultimately, however, this link cannot be bridged without an understanding of the

dyanmics responsible for longer-term deformation. The key to understanding long-

term deformation in western North America depends on our ability to link active

deformation with the relative driving influences of plate motion accommodation, in-

ternal crustal buoyancies, and horizontal tractions coming from below the crust. We

thus seek to quantify the long-term dynamics of the seismogenic crust in western

North America that can explain deformation mechanisms and kinematic motions

over time periods encompassing many seismic cycles. Such a dynamic description

then holds promise for understanding and interpreting dynamics responsible for the

interseismic deformation field, and ultimately whether block models or a more dense

network of active faults are most appropriate for a description of western North Amer-

ican kinematics and dynamics.

Our aim is to accurately quantify the levels and combinations of deviatoric stress

and strain rate for the long-term seismogenic layer that provide the best-fit to long-

term crustal deformation indicators. We take the long-term crustal deformation in-

dicators to be the styles of the strain rate tensor field that are associated with ob-

servations of Quaternary faulting. The self-consistent dynamic models have internal

body force distributions, lateral variations in depth-integrated effective viscosity, and

applied velocity boundary conditions equal to present-day plate motions. The depth-

integrated effective viscosities are controlled by the input fault friction coefficients

and expected long-term strain rate magnitudes. A first step is to therefore estimate

the long-term kinematic strain rates of the region using Quaternary fault slip rate

observations. We show in this paper that the input fault friction controls the relative

ratio of stresses associated with internal buoyancy forces to stresses associated with

the accommodation of plate motion. Furthermore, we show that only low long-term



friction on faults within the plate boundary zone interior can explain the long-term

dynamics of western North America.

3.2 Quaternary Fault Observations and a Long-

Term Kinematic Solution for Western North

America

It is necessary to have an estimate of the long-term kinematics of western North

America before undertaking the dynamic analysis. First, magnitudes of strain rate

provide constraints on initial estimates of depth-integrated effective viscosity. Sec-

ond, the forward dynamic models output a model strain rate tensor field and model

deviatoric stress tensor field, which will be scored with the strain rate tensor field

associated with the Quaternary fault slip rate data. Finally, the forward dynamic

model velocity field will be compared with the long-term estimate of the velocity field

in western North America.

In this study of the diffuse plate boundary zone of western North America, we

combine known relative plate motions, ridge spreading rates, and wide-spread Qua-

ternary fault slip rates to define a set of long-term kinematic observations. We de-

fine the Cocos, Juan de Fuca, North America, Rivera, and Pacific plates as rigid

blocks. We use the Pacific-North America (PA-NA) plate motion estimate of Mc-

Caffrey [2005]; McCaffrey et al. [2007], the Cocos-North America (CO-NA) and the

Rivera-North America (RI-NA) plate motion estimate of DeMets and Wilson [1997],

and the Juan de Fuca-North America (JF-NA) plate motion estimates of McCaffrey

et al. [2007]. We use ridge spreading rate estimates [DeMets and Stein, 1990; Wilson,

1993; DeMets et al., 1994; DeMets , 1995; DeMets and Dixon, 1999] and Quaternary

fault slip rate data estimates for Alaska, northwestern Canada, and much of Califor-



nia [Jennings , 1994; Petersen and Wesnousky , 1994; Plafker and Berg , 1994; Bird ,

1996; Shen-Tu et al., 1999] from previous long-term kinematic models of Flesch et al.

[2007] and Klein et al. [2008]. Additional Quaternary fault slip rate estimates were

culled from the U.S. Geological Survey, 2006, Quaternary fault and fold database

for the United States (herein referred to as QFDB), accessed March 23, 2006, from

USGS web site: http://earthquake.usgs.gov/regional/qfaults. We utilize QFDB fault

characteristics for grid areas with no other data sources. Moreover, we select from

the QFDB only those faults with established slip-sense and recorded slip rate during

the last 750 ka (see Figure 3.1).

We follow the method of Shen-Tu et al. [1999] to estimate the long-term average

horizontal strain rate tensor field for grid areas containing geologic rate data. The

procedure uses a variant of Kostrov’s 1974 formula,

¯̇ǫij = 1/2
n
∑

k=1

Lku̇k

∆S sin δk

mk
ij , (3.1)

where the cell area ∆S contains n number of fault segments. Each fault segment has

a length Lk, a dip angle δk, and slip rate u̇k. The fault orientation and unit slip vector

define the unit moment tensor mk
ij [Shen-Tu et al., 1999; Holt et al., 2000].

The long-term average horizontal strain rate tensor field associated with Quater-

nary fault observations is shown in Figure (3.2). Regions well-covered with long-term

strain rate observations include much of California, the Pacific Northwest coast, Ore-

gon, the Basin and Range, Yellowstone region, and the Rio Grande rift. Regions

without recorded strain rate observations include the Colorado Plateau, the Snake

River Plain, and the Sierra Nevada Block. In general, pure styles of deformation

(e.g., normal, thrust, and strike-slip) are associated with the majority of the long-

term strain rate observations. Extensional strain rates are ubiquitous in the normal

fault dominated Basin and Range. Compressional strain rates are found offshore



coastal Oregon and northern California, consistent with thrust faulting along the

Cascadia subduction zone. A mix of principal extensional and compressional strain

rate axes are present throughout southern and western California, compatible with

the multitude of right lateral strike-slip faults found within the San Andreas and east-

ern California fault networks. Figure 3.2 shows Quaternary rates of strain for western

North America. High strain rates are found in California, western Nevada, offshore

Oregon, and central Utah along the Wasatch. Low strain rates are concentrated in

the Pacific Northwest, Colorado, Arizona, and western Utah.

In order to establish a reliable estimate of a continuous long-term kinematic veloc-

ity and strain rate field within western North America, we build on the methodology

of previous workers [e.g., Haines and Holt , 1993; Shen-Tu et al., 1999; Holt et al., 2000;

Beavan and Haines , 2001; Kreemer et al., 2003] who model a continuous horizontal

deformation field on the Earths surface, described by

u(x̂) = rW(x̂) × x̂ (3.2)

where W(x̂) is a vector rotation function, x̂ is the position vector, and r is the Earth

radius. In a least-squares fitting procedure we minimize the objective function

χ =
∑

cells

∑

ij,kl

(¯̇eij − ¯̇e
obs

ij )TV−1

ij,kl(¯̇ekl − ¯̇e
obs

kl ) (3.3)

where ėij are the model strain rates predicted by the continuous model horizontal

velocity field, ėobs
ij are the observed rates of strain provided by the Quaternary rates

of slip, and Vij,kl is the variance-covariance matrix of the Quaternary rates of strain.

The variance-covariance matrix contains terms that are defined by fault slip rate

uncertainties, as well as an isotropic incompleteness factor that represents uncertainty

in strain rate associated with slip on unknown faults within grid areas [Shen-Tu et al.,

1999]. We chose an isotropic component equivalent to a slip rate on an unknown fault



that spans the dimension of any given grid region having a slip rate of 0.25 mm/yr.

We have tried a range of isotropic incompleteness factors of between 0.1 – 1 mm/yr

and have found only minor sensitivity of the solution to this value. Since the QFDB is

extensive, it is unlikely that an incompleteness factor much higher than 0.25 mm/yr

is justified.

Model velocities from the inversion of the Quaternary Fault strain rates are plotted

with respect to a North America frame of reference (Figure 3.3). Velocities predicted

by the long-term kinematic model in the easternmost portion of our grid are typically

less than 2 mm/yr. Velocities gradually increase in magnitude (up to 7 mm/yr)

from east to west throughout the Basin and Range, reflecting the dominant extension

across the region. However, extension rates are heterogeneous in space (Figure 3.4).

The direction of motion within these regions is to the west-northwest with respect

to North America. There is a broad pattern of clockwise rotation in the long-term

kinematic velocity field through Oregon and Washington, but the rotation is not as

pronounced as in the interseismic velocity field [McCaffrey et al., 2007].

Our long-term model continuous strain rate tensor solution (Figure 3.4) provides

an estimate of area-averaged strain rates for each grid cell, which arises from the best-

fit match to the Quaternary strain rates (see Figure 3.2). The long-term kinematic

model strain rate tensor solution is more smoothed than the Quaternary strain rate

distribution. The strain rate tensor solution yields a mix of principal extensional and

compressional strain rate axes within western Utah, just west of the Wasatch fault

zone. This is in contrast to the observed pure axes of extensional strain rate found

for these areas. Note, however, that model rates of strain here are low, less than 3 x

10−9 · yr−1, consistent with low interseismic rates there [McCaffrey , 2005; Hammond

and Thatcher , 2004, 2005, 2007]. Overall the fit to the Quaternary strain rates is

excellent, with a sum of squares divided by number of degrees of freedom of 0.579

(equation 3.3).



3.3 Parameterization of Forward Models

We seek a solution to the depth-integrated three-dimensional force balance equa-

tions, where depth integrals involve most of the seismogenic layer for most regions.

Force balance equations are solved through the optimization of the functional:

Θ(v) =
∫ ∫

s
[D − vαfα] dxdy, (3.4)

where fα is the body force term associated with gradients in gravitational potential

energy per unit area (GPE), vα is the velocity, and D is the dissipation potential

[Flesch et al., 2001]. The dissipation potential depends on the components of strain

rate, on the value of the rheological parameter B, and the power law exponent n,

D =
n

n + 1
B(ǫ̇αβ ǫ̇αβ + ǫ̇γγ ǫ̇γγ)

n+1

2n ), (3.5)

where ǫ̇γγ = (ǫ̇xx + ǫ̇yy) = −ǫ̇zz.

Flesch et al. [2001] have shown that optimization of equation 3.4 provides a solu-

tion to the depth-integrated three-dimensional force balance equations. Optimization

involves finding the optimal strain rate distribution (continuous velocity field) embed-

ded in the dissipation potential, D, where velocity boundary conditions of PA-NA,

JF-NA, CO-NA, and RV-NA are imposed (see section 3.2), and the internal body

forces are defined by gradients in vertically integrated vertical stresses (GPE). The

GPE distribution is the same as that defined by Klein et al. [2008]. Critical for defin-

ing these forward model solutions is the distribution of B for the seismogenic layer,

which we will show depends on the long-term friction on the faults, as well as the

expected strain rates for the volumes containing the faults.

The depth-integrated B-value for the seismogenic crust, [England and McKenzie,



1982; Sonder and England , 1986; Klein et al., 2008] for a given grid element is

B =

∫ L

−h
(σ1 − σ3)dz
√

2Ė
1

n

, (3.6)

where Ė is the second invariant of strain rate, and n is the power law exponent. The

numerator is the depth-integrated strength for the seismogenic layer containing faults

with long-term frictional resistance to sliding, where σ1 and σ3 are the maximum and

minimum, respectively, principal total stress at frictional failure. Since the strain

rates within areas are linked to the fault slip rates, and since the long-term friction

applies to the faults as well, the inferred B-value distribution is proportional to the

depth-integrated long-term friction on the faults, and is inversely proportional to the

long-term slip rates on the faults; the B-values do not represent the depth-integrated

influence of strength or strain rates of the country rock surrounding the faults.

Equation 3.6 can be written:

B =

∫ L

−h

[−2µσzz(1 − λ)√
µ2 + 1 + cµ

]

dz

√
2Ė

1

n

, (3.7)

where µ is the coefficient of fault friction that supports the stresses in the upper

crust, σzz is the vertical stress or lithostatic stress, λ is the ratio of pore pressure to

lithostatic stress, and c is a constant that is 1 for normal faulting, -1 for thrust faulting,

and 0 for strike-slip faulting domains [Klein et al., 2008]. Equation 3.7 has
√

2 in the

denominator in order to equate depth-integrated fault strength estimates with the

expected second invariant of deviatoric stress, T , at fault failure. Note that these

formulae apply to pure end-member fault cases. To build a B-value distribution,

we need to identify the expected fault style to define the c-coefficient in 3.7. The

principal axes of strain rate from our long term kinematic strain rate tensor solution

(see Figure 3.4) constrain the styles of faulting for the seismogenic crust of western



North America [Klein et al., 2008]. Once the expected fault style is identified, we then

use the second invariant of the strain rate from the long-term estimates within areas

to fully define the B-value distribution using a power law exponent of n=1 (equation

3.7).

We present the depth-integrated fault strength (scaled by 1/
√

2) associated with

the weak (µ = 0.10), intermediate (µ = 0.30), and strong (µ = 0.7) values for long-

term friction in Figure (3.5). Volumes of crust associated with thrust faulting hold

the largest depth integrals of fault strength, whereas volumes of crust associated with

normal faulting hold the smallest. The maximum depth integrals of strength (scaled

by 1/
√

2) for the strong fault case are 6.26 x 1012 N · m−1 and the maximum depth

integrals for the weak fault case are 0.51 x 1012 N · m−1. In contrast, the minimum

depth integrals of strength (scaled by 1/
√

2) for the strong fault case are 1.70 x 1012

N · m−1 and the minimum depth integrals for the weak fault case are 0.42 x 1012 N ·

m−1 (Figure 3.5).

Figure 3.6 shows the depth integrals of effective viscosity, B, associated for seis-

mogenic crust with weak (µ = 0.10), intermediate (µ = 0.30), and strong (µ = 0.70)

faults (equation 3.7). Regions associated with very low long-term strain rate define

the largest depth integrals of effective viscosity within western North America. Such

regions exhibit little lateral variation in stiffness. On the other hand, areas such as

the Basin and Range and the Rio Grande rift regions contain significant lateral vari-

ations in depth-integrated effective viscosity. The smallest depth integrals of effective

viscosity are associated with the high to very high strain rates found in much of

California and coastal Washington and Oregon (see Figure 3.6). In the diffuse plate

boundary zone, where strain rates are moderate to high, the B-values for the faults of

the strong crust are five to seven times larger than the B-values for the same network

of faults for the weak crust. Overall, the maximum B-values for the strong crust are

5.73 x 1029 N/m · s and the maximum values for the weak crust are 7.60 x 1028 N/m



· s. In contrast, the minimum B-values for the strong crust are 9.75 x 1025 N/m · s

and the minimum values for the weak crust are 1.20 x 1025 N/m · s.

3.4 Dynamic Modeling Results

We systematically test forward dynamic models using B-values generated using a

range of friction coefficients between µ = 0.02–1.0, with increment, µ=0.02 (see equa-

tion 3.7). Optimization of 3.4 yields a continuous strain rate and velocity field solution

that satisfies force-balance equations, given imposed velocity boundary conditions, in-

ternal body force distributions, and effective viscosity variations. The dynamic strain

rates are then used to calculate deviatoric stress, given the constitutive relation

τij = BE
1

n
−1ǫ̇ij , (3.8)

The forward dynamic stress field solutions associated with the weak and strong fault

models are dramatically different from each other. The weak crust model yields

tensional deviatoric stresses throughout most of the Basin and Range (Figure 3.7).

On the other hand, the strong crust model yields a mix of tensional and compressional

deviatoric stress in the southern and western portion of the Basin and Range and pure

compressional deviatoric stress in the northern portion of the Basin and Range (Figure

3.8). The weak crust model produces relatively heterogeneous tensor styles of stress

throughout the Pacific Northwest: East-West compression in the trench and North-

South oriented compressive deviatoric stress in Oregon and Washington, which is in

agreement with Wang and He [1999] and World Stress Map observations (available

online at www.world-stress-map.org). For the strong fault model, however, there is a

relatively homogeneous, northeast-southwest dominated compressional style of stress

over the same region; these orientations are significantly different from observation.

The strong fault model is dominated by a strike-slip style of deformation along the



San Andreas fault and within much of the Basin and Range. By contrast, the weak

fault model shows thrust style on the westernmost edge of the plate boundary zone,

strike-slip style throughout much of the San Andreas system and eastern California

shear zone, and normal style throughout the Basin and Range, Rio Grande Rift,

Yellowstone, and central Idaho. In general, the depth-integrated deviatoric stress

magnitudes associated with forward dynamic solution for the strong crust are roughly

five times greater than the depth-integrated deviatoric stress magnitudes of the weak

crust (see Figure 3.7).

3.4.1 Model misfit

Using the method of Flesch et al. [2007] we assess the misfit of each of the forward

model strain rate tensor fields with the Quaternary strain rate tensor observations

(Figure 3.2) using

M =
1

2

(

1 − eobs · edyn

EobsEdyn

)

, (3.9)

where the second invariant of strain rate, Eobs and Edyn are computed from Quater-

nary strain rate observations and forward dynamic strain rate solutions, respectively,

and

eobs · edyn = ǫ̇obs
xx ǫ̇dyn

xx + ǫ̇obs
yy ǫ̇dyn

yy + ǫ̇obs
zz ǫ̇dyn

zz + ǫ̇obs
xy ǫ̇dyn

xy + ǫ̇obs
yx ǫ̇dyn

yx

= 2ǫ̇obs
xx ǫ̇dyn

xx + ǫ̇obs
xx ǫ̇dyn

yy + ǫ̇obs
yy ǫ̇dyn

xx + 2ǫ̇obs
yy ǫ̇dyn

yy + 2ǫ̇obs
xy ǫ̇dyn

xy .

Our best-fit model (µ = 0.10), shown in Figure 3.9a, matches Quaternary stress

field indicators (M < 0.15) throughout the Basin and Range, Rio Grande rift, and

N-S compression orientations in Washington State. The poor correlation between

predicted stress tensor (Figure 3.7) and observed strain tensor (Figure 3.2) within

parts of coastal Pacific Northwest occurs where there are normal faults within the

QFDB. Our solutions do not predict this style of deformation there. Figure 3.9b



shows the spatial distribution of model misfit values for µ = 0.20. This model fits all

regions nearly the same as the model with µ = 0.10, with the exception of a degraded

fit within northern Oregon and Central Washington. That is, this model no longer

generates N-S oriented compression axes in Washington State; compression axes are

instead oriented NE-SW. Higher friction of µ = 0.30 yields a worse match (Figure

3.9c), with an expanded misfit within Oregon, Washington and Idaho. The spatial

distribution of model misfit values for strong uniform fault friction (µ = 0.70) show

significant misfit north of 40◦N, and degraded fit within the Basin and Range. Note

that the Yellowstone region is an area where deformation indicators are matched when

modeled with intermediate fault friction (µ = 0.30), but when modeled with strong

fault friction (µ = 0.70), deformation indicators are poorly fit.

The best-fit model for the aggregate of all (3,574) model grid cells is achieved with

a weak long-term fault friction coefficient of µ = 0.10, consistent with the results of

inverse and forward models of Klein et al. [2008]. Area 6 (delineated in Figure 3.1)

has a well-defined minimum at µ = 0.10, which corresponds to the prediction of N-

S oriented compression in Washington State that is in agreement with E-W striking

thrust faults there. This region is misfit as soon as friction coefficients reach µ = 0.20.

3.4.2 Comparison of Dynamic Predictions with the Long-

Term Kinematics

The dynamic strain rate tensor and velocity fields (Figures 3.11 – 3.20) can be

compared with our long-term kinematic estimates (Figures 3.4 and 3.3). Lower fault

friction has the influence of bringing out the extensional component within regions of

higher GPE. The most extreme example is the case where fault friction coefficients

are set to a uniform value of µ=0.02, where the velocity and strain rate tensor fields

show excessive extension rates for all regions east of the San Andreas (Figures 3.11



and 3.12). The model strain rate tensor solution that provides a best match with the

Quaternary fault data base (Figure 3.13) shows dominant extension east of the Sierra

Nevada. The westward directed velocities (Figure 3.14) within the Great Basin for

this model are significantly reduced from the case where µ is set to 0.02 (Figure 3.12),

but are still in excess of our long-term estimate. With friction coefficients set to 0.20,

the Eastern California Shear Zone and the Walker Lane regions are characterized

with a greater component of strike-slip faulting than the case where µ is set to 0.10

(compare Figures 3.15 and 3.13). East and northeast of Walker Lane, the solution

for µ=0.20 is dominated by pure normal faulting (Figure 3.15). As mentioned, this

solution misfits the observations of north-south compression within northern Oregon

and Central Washington. However, the velocity field throughout the Great Basin and

the motion of the Sierra Nevada block (Figure 3.16) appears to be in accord with the

long-term (Figure 3.3). The influence of higher friction is to increase the component

of strike-slip deformation within the Great Basin, as evidenced by velocity vectors

becoming subparallel to parallel to Pacific-North America relative motion directions

(Figures 3.17 – 3.20). The other characteristic of higher friction is the influence

of stronger coupling with the subducting Juan de Fuca plate (pervasive northeast-

southwest compressional strain-rate).

We output the dynamic model velocity fields on a 0.5◦ x 0.5◦ grid and compare

these predictions with the model velocity field inferred from our long-term kinematic

solution at the same points. The minimum reduced chi-square difference between the

long-term velocity field and the model dynamic velocity field occurs for the case of µ of

0.20 (Figure 3.16, 3.21, 3.22). The difference between the best-fit to the Quaternary

Fault Strain Rates (µ=0.10) and the best fit to the velocity field (µ=0.20) can be

explained by the failure of the higher friction model to match areas within the Pacific

Northwest. Otherwise, the higher friction model (µ=0.20) tends to produce a better

quality of solution within the Basin and Range region for both velocity and strain



rates. One possible explanation is that long-term friction on faults may vary spatially,

with lower values favored in the Pacific Northwest (µ=0.10) and higher values in the

Basin and Range region (µ=0.20).

It is important to note that different regions are more sensitive than others to

changes in long-term friction coefficient on faults. The region that contains the San

Andreas fault system is not sensitive to changes in friction coefficient on faults (area

7 of Figure 3.10). The Rio Grande Rift and Wasatch Fault regions are also relatively

insensitive to changes in long-term friction coefficients, where they are matched nearly

as well with higher friction (µ=0.70) as with low friction (µ=0.10) (Figure 3.9). On

the other hand, the Pacific Northwest region, as well as the northern Basin and

Range region are sensitive to increases in long-term friction coefficient. In general, as

friction coefficients are increased, strike-slip deformation within the Basin and Range

becomes more dominant and the influences of the Juan de Fuca subduction becomes

more dominant.

3.4.3 Argand number distribution for western North Amer-

ica

It is clear from the previous section that the relative contribution of GPE dif-

ferences and the contribution from the accommodation of plate motions changes as

a function of friction coefficient. In order to quantify this, we next compute the

following ratio, which we denote the Argand numbe, Ar:

Ar =
TGPE

Tflat

, (3.10)

where TGPE represents the second invariant of the deviatoric stress associated with

GPE differences and Tflat represents the second invariant of deviatoric stress related

to the accommodation of plate motions, in the absence of internal body forces or



GPE differences. This definition of the Argand number differs from the Argand num-

ber described by England and McKenzie [1982]. They designate the numerator for

the Argand number as the pressure difference associated with the crustal thickness

contrast, and not the stress magnitude associated with GPE differences. For this

reason their Argand numbers cannot be specifically equated with ours. We compute

the stresses associated with GPE differences using the method described in Flesch

et al. [2001], but with variable depth-integrated B values, for cases with µ=0.10 and

µ=0.70. The same B values are used in the computation of the GPE related stresses

as were used in the computation of the forward dynamic models. Secondly, we com-

pute the deviatoric stresses associated with the accomodation of velocity boundary

conditions through the minimization of the dissipation potential (equation 3.5), but

with no internal body forces.

The deviatoric stress distributions for GPE differences for cases with µ=0.1 and

µ=0.7 are similar to one another in both style and magnitude (Figures 3.23, 3.24).

It is clear that the GPE differences are not sensitive to the magnitude of the depth-

integrated B values. The patterns of deviatoric stress associated with accommodation

of plate motions are similar to one another, but show an increase in magnitude for the

higher friction coefficient of µ=0.70 (Figures 3.25, 3.26). Figures 3.27 and 3.28 show

the Argand number distribution for the weak and strong long-term fault friction

models for western North America, respectively. The Argand number distribution

associated with our best-fit model (µ=0.10) corresponds well with broad tectonic

features of the diffuse plate boundary zone and the Pacific Northwest. For example,

along the San Andreas Fault zone and the Juan de Fuca subduction zone the Ar is

less than 1.0, indicating that plate boundary forces are more important there than

GPE differences. For the Basin and Range and the Rio Grande rift regions, however,

Ar ranges from 1–10 , and for the Wasatch and Colorado Rocky mountain ranges,

Ar is greater than 10 (Figure 3.27, indicating that GPE differences are dominant in



these regions.

The Argand number distribution for the strong fault friction model (µ = 0.70)

also can be associated with broad tectonic features of the diffuse plate boundary zone

and the Pacific Northwest. For instance, along the San Andreas and Juan de Fuca

subduction zone, Ar is less than 0.10; for the Basin and Range and the Rio Grande

rift regions, Ar is generally less than 1, and for the Wasatch and Colorado Rocky

mountain ranges, Ar is greater than 1 (Figure 3.28). Overall, the Argand number

distribution associated with our strong fault model shows that in most regions the

forces associated with the accommodation of plate motion dominate over forces asso-

ciated with GPE differences, a feature that leads to a poor match with deformation

indicators.

We present area-averaged Argand numbers as a function of uniform fault fric-

tion coefficients in Figure 3.29. Argand distributions obtained with low fault friction

coefficients yield higher area-averaged Argand numbers than models built with inter-

mediate to strong fault friction coefficients. Argand distributions generated with low

long-term friction coefficients µ ≈ 0.1 are favored over those generated with interme-

diate to strong fault friction coefficients because low friction models provide a better

fit to Quaternary deformation indicators. For lower fault friction cases, the contribu-

tion to the total deviatoric stress field from differences in GPE is at minimum equal to

the contribution from the accommodation of plate motions (see Figure 3.29). Hence,

stresses arising from GPE differences (E and NE of Sierra Nevada) have a greater role

in driving the long-term deformation of the diffuse plate boundary zone of western

North America than boundary conditions stresses.



3.5 Discussion

We have refined the forward dynamic method of Flesch et al. [2001] to quan-

tify the absolute magnitudes of depth-integrated deviatoric stresses acting within the

long-term seismogenic layer by explicitly addressing the role of long-term friction on

faults. Klein et al. [2008] have shown that reliable depth integrals of deviatoric stress

magnitudes can be obtained for the seismogenic layer alone by integrating from the

surface down to a fixed-depth reference level. This is true if depth integrals of hori-

zontal shear stress terms are small in comparison with depth integrals of horizontal

deviatoric stress. Klein et al. [2008] demonstrate that depth integrals of horiozntal

tractions can be estimated from mantle-circulation-generated basal traction applied

at the base of the lithosphere (1-5MPa) [Becker and O’Connell , 2001; Humphreys and

Coblentz , 2007; Ghosh et al., 2008a, c] and that they are indeed small in comparison

with depth integrals of horizontal deviatoric stress. Furthermore, Klein et al. [2008]

infer that the horizontal gradients in shear stress acting at the base of the lithosphere

are a negligible percentage of depth integrals of ρg, validating the thin sheet approach.

Furthermore, [Klein et al., 2008] showed that with greater depths of integration there

is diminishing contribution to the depth-integrated stress differences, and by proxy

depth-integrated fault strength. This result was consistent with a brittle-ductile tran-

sition in the plate boundary zone at depths less than 20 km below sea level, and with

a weak lower crust [Klein et al., 2008]. We are thus confident that we have isolated

the dynamics of the seismogenic layer alone.

The Quaternary fault observations allow us to test and evaluate our set of forward

dynamic models in unprecedented detail. Our modeling results suggest that the long-

term patterns of finite strain in the western North America can be explained well

with a distributed fabric of uniformly weak faults embedded within the seismogenic

layer of the upper crust. Forward dynamic models built with such low long-term fault



friction coefficients fit the kinematic strain rate field associated with Quaternary fault

observations far better than models constructed with high long-term fault friction

coefficients (see Figure 3.10). Again, this result is compatible with low long-term

fault friction results obtained by Klein et al. [2008] using inverse modeling methods.

Other numerical studies of fault networks in California predict low fault friction for

the Californian faults [e.g., Bird and Kong , 1994; Geist and Andrews, 2000; Fay and

Humphreys, 2006]. Such results are in general agreement with our prediction for low

uniform long-term fault friction for the faults of western North America.

Although our simple forward dynamic models fit the kinematic strain rate and ve-

locity fields associated with Quaternary fault observations quite well in western North

America, they collectively fail to produce a good agreement with long-term geologic

fault data to the west of the Puget Sound region of Washington state. Quaternary

deformation indicators show the prevalence extensional strain styles to the west of

Puget Sound (see Figure 3.2). Yet our dynamic models do not produce the required

extension in this region (see Figure 3.13).

The minimum reduced chi-square misfit between the dynamic model velocity field

and the long-term velocity field estimate is achieved with a long-term fault friction

coefficient of 0.20. On the other hand, the minimum misfit for the forward dynamic

strain rate tensor field solution is achieved with a long-term fault friction coefficient

of 0.10. This discrepancy stems from the fact that the forward dynamic strain rate

solutions generated with friction coefficients of 0.2 fail to match the N-S oriented

compression within Washington State. The discrepancy may indicate that friction

coefficients are laterally variable, with a best-fit in the Basin and Range region of

µ=0.20 and a best-fit in the Pacific Northwest of µ=0.10.

Our forward modeling method allows us to solve directly for the Argand number

distribution. The input of low uniform long-term fault friction on the fault net-

works of western North America provides meaningful Argand number distributions.



This Argand number distribution reflects the delicate balance of forces that, over the

longer-term are responsible for driving the deformation of the seismogenic crust into

the spatially diverse patterns of finite strain observed in western North America.

3.6 Conclusions

We have constructed forward dynamic models of the seismogenic layer within

the plate boundary zone of western North America. In our method, forward dynamic

models of the crust are defined by the known internal buoyancy distributions, inferred

lateral variations in effective viscosity, and the known far-field velocity boundary

conditions. Our models extend from the surface to a uniform depth of 20 km below

sea level. Body forces are generated from differences in gravity potential energy per

unit area for the model layer. Uniform fault friction coefficients and fault styles

predicted from our long-term kinematic strain rate model define lateral variation

in effective viscosity. Solutions to the force-balance equations define self-consistent

dynamic stress tensor, velocity, and strain rate tensor fields of the seismogenic layer.

We built our models using a range of uniform long-term fault friction coefficients

under hydrostatic pore pressure conditions. Our forward dynamic solutions are sen-

sitive primarily to the level of friction on the faults and the distribution of the fault

fabric. These two factors control the relative influence that internal crustal buoyan-

cies and plate boundary forces have on the deformation field. We evaluate dynamic

solutions resulting from our fault friction models using two different measures of fit-

ness. In one fitness measure, the forward dynamic strain rate solutions are scored

with the kinematic strain rate field associated with Quaternary fault observations. In

another fitness measure, the dynamic model velocity fields are scored with the long-

term kinematic model velocity field. The long-term kinematic velocity field is defined

using estimates of long-term deformation built from Quaternary fault observations.



We determined that a uniform long-term fault friction coefficient of 0.10 applied to

the faults of western North America achieves a best-fit with tensor styles of strain rate

defined by Quaternary fault observations. We also found that the same network of

faults, given a uniform long-term fault friction coefficient of 0.20, achieves a minimum

reduced chi-square misfit with the long-term forward dynamic model velocity field.

Forward dynamic solutions require at least equal to or greater contributions of stress

from differences in GPE than from boundary conditions in order to closely match

deformation indicators and patterns of finite strain in western North America. Such

results are obtained for models of the seismogenic crust built with low (µ < 0.20)

fault friction coefficients.





Figure 3.1: The finite element grid (black) used in the kinematic and dynamic mod-
eling. We combine the Quaternary fault observations (red traces) of Flesch et al.
[2007] and Klein et al. [2008] with Quaternary fault data obtained from the Qua-
ternary Fault and Fold Database (QFDB). We depict the fault characteristics of the
QFDB as function of fault trace, fault type, and last slip event in years before present.
Results for all highlighted regions are quantified. Regions well constrained by geologic
data (asterisked entries in the legend) are particularly important to this study.
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Figure 3.2: The long-term estimate of the horizontal strain rate tensor field for grid
areas containing geologic rate data obtained from moment rate tensor summation
from QFDB. Principal axes of strain rates (area averages) have been normalized
by the maximum value of the principal axis strain rate within each grid area (bold
= compressional, white = extensional). Color background is the log of the second
invariant of strain rate (area averages). Grid areas without data plot in gray.
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Figure 3.3: Kinematic solution estimate for the long-term velocity field obtained
through fitting of Quaternary fault strain rate in Figure 3.2 observations with imposed
velocity boundary conditions for western North America. Model velocity vectors are
95% confidence.
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Figure 3.4: The long-term kinematic model solution for the horizontal strain rate
tensor field associated with Quaternary fault observations obtained through fitting
of QFDB observations in Figure 3.2, with imposed velocity boundary conditions.
Principal axes of strain rates (area averages) have been normalized by the maximum
value of the principal axis strain rate within each grid area (bold = compressional,
white = extensional). Color background is the log of the second invariant of strain
rate (area averages).
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Figure 3.5: The distribution of the log of depth-integrated fault strength scaled by
1/
√

2 for the weak, intermediate, and strong fault friction models. Depth integration
is from the surface of variable elevation to 20 km below sea level. All fault styles
are grouped into one of three pure tectonic regimes defined by the long-term kine-
matic strain rate tensor field solution. Vertical rule indicates normal faulting style,
horizontal is thrust, and cross is strike-slip. (a) weak fault friction model (µ = 0.10).
(b) intermediate fault friction model (µ = 0.30). (c) strong fault friction model
(µ = 0.70).
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Figure 3.6: The distribution of the log of the depth-integrated B-values for the weak,
intermediate, and strong fault friction models, assuming depth integrals of the fault
strength, a power law exponent of n = 1, and strain rate from our long-term model
strain rate tensor field. All fault styles are grouped into one of three pure tectonic
regimes defined by the long-term strain rate tensor field solution. Vertical rule indi-
cates normal faulting style, horizontal is thrust, and cross is strike-slip. (a) B-values
for the weak fault friction model (µ = 0.10). (b) B-values for the intermediate fault
friction model (µ = 0.30). (c) B-values for the strong fault friction model (µ = 0.70).
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Figure 3.7: The forward dynamic depth-integrated deviatoric stress field solution
associated with the weak fault friction model (µ = 0.10). White vectors represent
tensional principal axes of deviatoric stress. Bold vectors represent compressional
principal axes of compressional stress.
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Figure 3.8: The forward dynamic depth-integrated deviatoric stress field solution
associated with the strong fault friction model (µ = 0.70). White vectors represent
tensional principal axes of deviatoric stress. Bold vectors represent compressional
principal axes of compressional stress.
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Figure 3.9: The distribution of misfit (defined in equation 3.9) for weak, intermediate,
and strong fault friction models. The misfit function quantifies the agreement between
the unit tensors from the depth-integrated deviatoric stress fields obtained from for-
ward modeling with the long-term strain rate field inferred from Kostrov summation
of faults (see in Figure 3.2). The forward model with effective depth-integrated vis-
cosities defined with low friction on faults (µ = 0.10) provides a best-fit to long-term
observations of styles of strain rate. The misfit function values are plotted on top of
pure tectonic regimes defined by the long-term strain rate tensor field solution (Fig-
ure 3.4). Vertical rule indicates normal faulting style, horizontal is thrust, and cross
is strike-slip. (a) Misfit values with µ = 0.10 on the faults. (b) Misfit values with
µ = 0.20 on the faults. (c) Misfit values with µ = 0.30 on the faults. (d)Misfit values
with µ = 0.70 on the faults.
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Figure 3.10: Misfit as a function of long-term friction coefficient used in the forward
dynamic models for all grid elements as well as for regions well constrained by geologic
fault data (asterisked entries in the legend of Figure 3.1). The misfit quantifies the
agreement between the unit tensors from the depth-integrated deviatoric stress field
obtained from forward modeling, and the long-term strain rate field inferred from
Kostrov summation of the faults from Quaternary observations. Minimum misfit
occurs for most regions where long-term friction coefficients on the faults are low,
close to µ = 0.10.
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Figure 3.11: The forward dynamic strain rate tensor field for the case of a seismogenic
crust defined with µ = 0.02 on the faults. Principal axes of strain rates (area averages)
have been normalized by the maximum value of the principal axis strain rate within
each grid area (bold = compressional, white = extensional). Color background is the
log of the second invariant of strain rate (area averages).
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Figure 3.12: The forward dynamic velocity field for the case of a seismogenic crust
defined with µ = 0.02 on the faults.
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Figure 3.13: The forward dynamic strain rate tensor field for the case of a seismogenic
crust defined with µ = 0.10 on the faults. Principal axes of strain rates (area averages)
have been normalized by the maximum value of the principal axis strain rate within
each grid area (bold = compressional, white = extensional). Color background is
the log of the second invariant of strain rate (area averages). This forward dynamic
strain rate tensor field achieves a best-fit to the long-term strain rate field inferred
from Kostrov summation of the faults from Quaternary observations (see Figure 3.9).
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Figure 3.14: The forward dynamic velocity field for the case of a seismogenic crust
defined with µ = 0.10 on the faults.
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Figure 3.15: The forward dynamic strain rate tensor field for the case of a seismogenic
crust defined with µ = 0.20 on the faults. Principal axes of strain rates (area averages)
have been normalized by the maximum value of the principal axis strain rate within
each grid area (bold = compressional, white = extensional). Color background is the
log of the second invariant of strain rate (area averages).
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Figure 3.16: The forward dynamic velocity field for the case of a seismogenic crust
defined with µ = 0.20 on the faults. The dynamic velocities obtained with this fault
friction model achieve the minimum reduced chi-square misfit with the long-term
kinematic velocities shown in Figure 3.4.
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Figure 3.17: The forward dynamic strain rate tensor field for the case of a seismogenic
crust defined with µ = 0.30 on the faults. Principal axes of strain rates (area averages)
have been normalized by the maximum value of the principal axis strain rate within
each grid area (bold = compressional, white = extensional). Color background is the
log of the second invariant of strain rate (area averages).
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Figure 3.18: The forward dynamic velocity field for the case of a seismogenic crust
defined with µ = 0.30 on the faults.



235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

235˚

235˚

240˚

240˚

245˚

245˚

250˚

250˚

255˚

255˚

260˚

260˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

−10.4 −10.0 −9.6 −9.2 −8.8 −8.4 −8.0 −7.6 −7.2 −6.8 −6.4

log10(E)

/yr

Figure 3.19: The forward dynamic strain rate tensor field for the case of a seismogenic
crust defined with µ = 0.70 on the faults. Principal axes of strain rates (area averages)
have been normalized by the maximum value of the principal axis strain rate within
each grid area (bold = compressional, white = extensional). Color background is the
log of the second invariant of strain rate (area averages).
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Figure 3.20: The forward dynamic velocity field for the case of a seismogenic crust
defined with µ = 0.70 on the faults. The dynamic velocities obtained with this fault
friction model achieve a poor minimum reduced chi-square misfit with the long-term
kinematic velocities shown in Figure 3.4.



Figure 3.21: Reduced chi-square misfit for 1517 points in model region (see Figure
3.22) between long-term velocity field and that predicted by dynamic model with
given friction coefficient on dense network of faults. Minimum reduced chi-square
misfit occurs with low long-term fault friction coefficients.
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Figure 3.22: The velocity difference field between the minimum reduced chi-square
misfit forward dynamic and the long-term kinematic velocity models. The minimum
reduced chi-square misfit is obtained with a uniform value of µ = 0.20 on faults of
the seismogenic crust.
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Figure 3.23: The depth-integrated deviatoric stress field associated with gravitational
potential energy differences (GPE) for the weak fault friction model (µ = 0.10). White
vectors represent tensional principal axes of deviatoric stress. Bold vectors represent
compressional principal axes of compressional stress.
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Figure 3.24: The depth-integrated deviatoric stress field associated with gravitational
potential energy differences (GPE) for the strong fault friction model (µ = 0.70).
White vectors represent tensional principal axes of deviatoric stress. Bold vectors
represent compressional principal axes of compressional stress.
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Figure 3.25: The forward dynamic depth-integrated deviatoric stress field associated
with velocity boundary conditions for the weak fault friction model (µ = 0.10). White
vectors represent tensional principal axes of deviatoric stress. Bold vectors represent
compressional principal axes of compressional stress.
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Figure 3.26: The forward dynamic depth-integrated deviatoric stress field associated
with velocity boundary conditions for strong fault friction model (µ = 0.70). White
vectors represent tensional principal axes of deviatoric stress. Bold vectors represent
compressional principal axes of compressional stress.
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Figure 3.27: The Argand number distribution associated with the weak fault model
(µ = 0.10) that achieves a best-fit to the long-term deformation indicators (see text
for description and Figures 3.10 and 3.9a).
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Figure 3.28: The Argand number distribution associated with the strong fault
model(µ = 0.70) that achieves a poor fit to long-term deformation indicators (see
text for description and Figures 3.10 and 3.9c).
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Figure 3.29: Argand number as a function of long-term friction coefficient used in
the forward dynamic models for all grid elements (numbered regions correspond to
asterisked entries in the legend of Figure 3.1).



Chapter 4

Crustal dynamics within Western

North America: Is it block-like or

more evenly distributed?

125



Crustal dynamics within Western North America:

Is it block-like or more evenly distributed?

Elliot C. Klein, Lucy M. Flesch, William E. Holt, and A. John Haines

(In preparation for submission to Earth and Planetary Science Letters)

Abstract We investigate the dynamics that result from specific block-like

geometries for the crust of western North America. The block model geometries

contain block-bounding shear zones with low fault friction and block interiors with

high crustal friction. The forward dynamic models we build and test incorporate

internal body force distributions, the effects of plate interaction through imposed ve-

locity boundary conditions, and lateral viscosity variations defined by block model

geometries. We score our self-consistent dynamic model output with detailed kine-

matic output to explore the controversy of whether block-like behavior, or a more

distributed fabric of faults, is consistent with the observed patterns of finite strain

within the diffuse plate boundary zone. Observations from Quaternary fault net-

works provide a set of unparalleled constraints with which to test and evaluate our

forward dynamic block models. Block model geometries yield depth-integrated devi-

atoric stresses associated with velocity boundary conditions (accommodation of plate

motions) that dominate over the deviatoric stresses associated with GPE differences.

Dynamic solutions generated with block model geometries do not match the long-

term patterns of finite strain everywhere in western North America. Argand number

distributions associated with block model geometries are much lower than those pro-

duced with a best-fit, low uniform fault friction model defined with a more evenly

distributed fault fabric.



4.1 Introduction

Diverse models of continental deformation in western North America impart fun-

damental insight into the physics of diffuse plate boundary deformation. One end-

member model of continental deformation convincingly argues for block-like behav-

ior to explain the interseismic deformation field in western North America [Meade

and Hager , 2005; McCaffrey , 2005; McCaffrey et al., 2007; Hammond and Thatcher ,

2004, 2005, 2007]. The block models successfully describe the fundamental observa-

tion from GPS that deformation appears to be concentrated within relatively narrow

shear zones. The other end-member model of the continental deformation argues for

more distributed deformation in western North America [Sonder and Jones , 1999;

Shen-Tu et al., 1999; Flesch et al., 2000; Liu and Bird , 2002; Flesch et al., 2007;

Humphreys and Coblentz , 2007; Liu et al., 2007]. The advantage of the continuum

dynamics approach is that the forces responsible for deformation can be explicitly

dealt with. However, such continuum models require lateral variations in effective

rheology in order to reproduce the deformation gradients. Block models may suc-

cessfully match the kinematics, but what are the set of forces that move the blocks?

Because block model methods are purely kinematic, the forces remain unknown and

as such, these models cannot define the underlying dynamics of crustal motions. Fur-

thermore, a purely kinematic treatment makes it difficult to predict or understand

deformation within low strain rate regions (block interiors), such as the February 21,

2008, 6.0 Mw, Wells, Nevada earthquake. This places fundamental limitations on our

ability to interpret crustal motions in light of fault behavior, the role of crustal rheo-

logical variations, the role of internal crustal buoyancies, large-scale mantle circulation

and coupling, and plate motion accommodation.

Flesch et al. [2007] and Humphreys and Coblentz [2007] have quantified the relative

role of GPE differences, plate motion accommodation, and mantle convection-related



basal tractions, but these studies have not addressed how the relative forcings act on

crustal block geometries, or existing fault compliance, to yield the long-term, and even

interseismic deformation fields. We present a forward dynamic modeling approach to

investigate the fundamental long-term behavior of the seismogenic crust in western

North America. We investigate specific block models. For these dynamic models

the long-term friction of the blocks, as well as the faults that bound the blocks,

are defined, a priori. The forward models contain internal body force distributions,

the effects of plate interaction through imposed velocity boundary conditions, and

lateral viscosity variations that approximate fault-like and block-like distributions.

Our analysis of the dynamics is firmly linked with quantitative comparisons of model

predictions with surface observations possessing unprecedented detail.

4.2 Defining Block Geometries

In this study of the diffuse plate boundary zone of western North America, we

quantify the dynamics associated with two different block model geometries. In one

model geometry, called block model 1, block boundaries are defined by a set of Qua-

ternary fault observations since 15,000 years and in the second model geometry, called

block model 2, the block boundaries are defined by McCaffrey [2005]; McCaffrey et al.

[2007]. The block model 1 geometry combines faults defined in the long-term kine-

matic models of Flesch et al. [2007] and Klein et al. [2008] with Quaternary fault

slip rate estimates culled from the U.S. Geological Survey, 2006, Quaternary fault

and fold database for the United States (accessed March 23, 2006, from USGS web

site: http://earthquake.usgs.gov/regional/qfaults). We select from the Quaternary

fault and fold database for the United States only those faults with established slip-

sense and slip rate since 15 ka for block model 1. We do not incorporate additional

faults or shear zones into block model 2 geometry defined by McCaffrey [2005]; Mc-



Caffrey et al. [2007]. For both block models, grid areas that do not contain faults

are defined as block interiors and have assigned strong crustal friction coefficients. In

addition, grid areas that contain faults are treated as block-bounding shear zones,

defined with weak fault friction coefficients.

We utilize the long-term horizontal deformation field in western North America

defined with Quaternary fault observations (see Figure 4.1) to provide the basis for

evaluating the forward dynamic solutions associated with each of the block model

geometries. As in Chapter 3, we follow the forward model methodology of Flesch

et al. [2001] to define the internal body force distributions, known far-field velocity

boundary conditions, and lateral variations in effective viscosity for the upper crust.

However, lateral variations are controlled by the inferred friction of rock material, as

well as the expected strain rate magnitude [Klein et al., 2008]. Solutions to force-

balance equations define self-consistent velocity, strain rate tensor, and stress tensor

fields.

Flesch et al. [2001] show that a solution to the depth-integrated three-dimensional

force balance equations is arrived at through the minimization of the functional

Θ(v) =
∫ ∫

s
[D − vαfα] dxdy, (4.1)

where fα is the body force term associated with gradients in gravitational potential

energy per unit area (GPE), vα is the velocity, and D is the dissipation potential.

The dissipation potential is expressed as

D =
n

n + 1
B(ǫ̇αβ ǫ̇αβ + ǫ̇γγ ǫ̇γγ)

n+1

2n ), (4.2)

depends on the components of strain rate, where ǫ̇γγ = (ǫ̇xx + ǫ̇yy) = −ǫ̇zz , the value

of B [England and McKenzie, 1982; Sonder and England , 1986], and the power law

exponent n.



Optimization of equation 4.1 requires calculation of the optimal strain rate dis-

tribution (continuous velocity field) embedded in the dissipation potential, D, where

the known velocity boundary conditions of PA-NA, JF-NA, CO-NA, and RV-NA are

imposed in the dynamic modeling (see section 3.2 in Chapter 3). Also pre-defined are

the internal body forces, defined by gradients in vertically integrated vertical stresses

(GPE), and the B-value distribution [Flesch et al., 2001]. The GPE distribution is

the same as that defined by Klein et al. [2008].

In generating the forward model solutions of Chapter 3, we defined B-values de-

pendent on uniform long-term friction on the faults, as well as the expected strain

rates for the volumes containing the faults. In this study, the inferred B-value distri-

bution is sensitive to the spatial distribution of the frictionally weak shear zones and

the frictionally strong block interiors.

The depth-integrated B-value for the upper crust, [England and McKenzie, 1982;

Sonder and England , 1986; Klein et al., 2008] for a given grid element is

B =

∫ L

−h
(σ1 − σ3)dz
√

2Ė
1

n

, (4.3)

where Ė is the second invariant of strain rate, and n is the power law exponent.

The numerator is the depth-integrated strength for the upper crust. For the faults

resisting long-term frictional sliding within the block-bounding shear zones, σ1 are the

maximum, and σ3 are the minimum principal total stresses at frictional failure. For

the long-term strong crust associated with the block interiors, σ1 are the maximum,

and σ3 are the minimum principal total stresses necessary to fracture intact country

rock. Equation 4.3 can be written as

B =

∫ L

−h

[−2µσzz(1 − λ)√
µ2 + 1 + cµ

]

dz

√
2Ė

1

n

, (4.4)



where µ is either the coefficient of fault friction in shear zones or the coefficient of

friction for intact rock in block interiors, σzz is the vertical stress or lithostatic stress,

λ is the ratio of pore pressure to lithostatic stress [Klein et al., 2008], and c is a

constant that is 1 for normal faulting, -1 for thrust faulting, and 0 for strike-slip

faulting domains. These relations apply to pure end-member fault cases. To build

a B-value distribution, we identify the expected pure fault style from our long term

kinematic strain rate tensor solution (see Figure 3.4, Chapter 3) for the upper crust

of western North America.

Our estimate of effective viscosity, B, for the block model geometries involves

assignment of weak long-term fault friction coefficients of µ = 0.10 to grid elements

containing faults and strong long-term rock friction coefficients of µ = 0.70 to grid

elements containing block interiors. There are therefore six possible values of depth-

integrated strength for the upper crust of western North America associated with each

block model: three for shear zones and three for block interiors (see Figures 4.2 and

4.3). Depth-integrated strength is divided by
√

2 to determine the expected depth-

integrated second invariant of deviatoric stress, T , at failure. Grid locations that plot

in red or orange delineate the block-bounding, weak shear zones in Figures 4.2 and

4.3. The block model constrained with fault distributions since 15 ka (block model

1) results in wide block-bounding shear zones in the Basin and Range. In contrast,

the block boundaries in model 2 result in narrow block-bounding shear zones within

the Basin and Range and wide block-bounding shear zones in the Pacific Northwest.

The remaining step is defining the effective viscosity distribution, B, by division of

Ė
1

n . Within shear zones we use the strain rates from the long-term kinematic solution.

Within block interiors, we use a low nominal value 0.1 x 10−9 · yr−1. The power law

exponent, n is set equal to 1 in generation of all our dynamic models. The very low

long-term strain rates located in the interior of blocks exhibit the highest effective

viscosities in each of the block models (Figures 4.4 and 4.5). Such regions show little



lateral variation in stiffness. The lowest values of effective viscosity are associated

with block-bounding shear zones located in regions of high to very high strain rate

found in much of California and coastal Washington and Oregon (see Figures 4.4 and

4.5). The lowest B-value is 1.20 x 1025 N/m · s for the block geometries of block

model 2 and the minimum B-value is 2.89 x 1025 N/m · s for block model 2. Both

block model geometries have maximum B-values of 1.97 x 1030 N/m · s.

4.3 Dynamic Modeling Results

The dynamic horizontal strain rate solution from model 1 defines a mix of prin-

cipal extensional and compressional strain rate axes that dominate most regions of

western North America (Figure 4.6). The bulk of the deformation is accommodated

by the strike-slip style strain rates along the Pacific-North America portion of the

plate boundary zone. The forward dynamic horizontal strain rate solution in Figure

4.6 is inconsistent with deformation indictors associated with Quaternary fault ob-

servations. The strain rate solution for block model 2 defines compressional strain

rates for many areas of the northern Basin and Range, Oregon, central Washington,

southern Idaho and Montana, and the Yellowstone region, as well as dominant strike-

slip style deformation for most other regions of western North America. The forward

dynamic horizontal strain rate solution shown in Figure 4.7 is also inconsistent with

deformation indictors associated with Quaternary fault observations. In particular,

this solution produces no normal fault styles of deformation in the Great Basin or

larger Basin and Range regions. Both block models are dominated by strike-slip

mechanisms to the south of 40◦N with moderate-to-low strain rates within block in-

teriors and moderate to high strain rates concentrated in the block-bounding shear

zones. Each of these block models predict strain rate axes that are inconsistent with

the recent 6.0 Mw, Wells, Nevada, normal fault earthquake (41.153◦N, 114.867◦W).



Block model 1 yields strike-slip mechanisms for the Wells, Nevada region, whereas

block model 2 yields pure compression mechanisms. In contrast, the dynamic strain

rate solution defined with a more evenly distributed, uniform fault friction coefficient

of 0.10-0.20 (see Figure 3.15 of Chapter 3) yields strain rate styles in northeastern

Nevada that are consistent with the Wells, Nevada, normal fault earthquake event.

We investigate a distributed fault model defined that combines the best of models

from Chapter 3. That is, a model with uniform friction of 0.10 matched the Quater-

nary faults in Oregon and Washington; a model with uniform friction of 0.20 misfit

fault styles in Oregon and Washington but provided a best-fit to long-term velocities

across the Great Basin. This model, denoted model 3, is defined with long-term fault

friction coefficients of µ = 0.10 for the faults north of 40◦N and with long-term fault

friction coefficients of µ = 0.20 for the faults south of 40◦N. The effective viscosity

distribution for model 3 is more evenly distributed than the B-value distributions

associated with either block model 1 or 2 (Figure 4.8). The highest values of effective

viscosity for model 3 are generally found to the east of the Rio Grande Rift, where

B-values are as high as 1.27 x 1029 N/m · s. In addition, B-values in the diffuse plate

boundary zone are in general two orders of magnitude lower than this. B-values for

model 3 are as low as 1.20 x 1025 N/m · s along the coast of Oregon and Washington

State.

The forward dynamic strain rate solution associated with model 3 produces E-W

compression in the trench and N-S oriented compressive deviatoric stress in Oregon

and Washington state (Figure 4.9). These results are in accord with Wang and

He [1999] and are consistent with Quaternary fault observations. Model 3 produces

strike-slip faulting within the Eastern California Shear Zone and mixed strike-slip and

normal within the Walker Lane region. Model 3 also produces pure normal faulting

east and northeast of Walker Lane. The strain rate styles and orientations found

near Wells, Nevada are consistent with the inferred sense of slip associated with the



recent 6.0 Mw, normal fault earthquake there. The lowest strain rates associated

with model 3 are found neighboring the Rio Grande Rift rift and the Colorado Rocky

mountains. Low strain rates are also found to the east of Yellowstone, and within

northern Idaho and northeastern Oregon. Moderate to high strain rates are located

within the Eastern California Shear Zone and the Walker Lane regions, as well as

along the San Andreas system. The highest strain rates are off the coast of Oregon

and Washington State in the Juan de Fuca trench.

We assess the misfit of the forward dynamic strain rate tensor field for all models

with the Quaternary strain rate observations shown in Figure 4.1 using

M =
1

2

(

1 − eobs · edyn

EobsEdyn

)

, (4.5)

where the second invariant of strain rate, Eobs and Edyn are computed from Quater-

nary strain rate observations and forward dynamic strain rate solutions respectively

and

eobs · edyn = ǫ̇obs
xx ǫ̇dyn

xx + ǫ̇obs
yy ǫ̇dyn

yy + ǫ̇obs
zz ǫ̇dyn

zz + ǫ̇obs
xy ǫ̇dyn

xy + ǫ̇obs
yx ǫ̇dyn

yx

= 2ǫ̇obs
xx ǫ̇dyn

xx + ǫ̇obs
xx ǫ̇dyn

yy + ǫ̇obs
yy ǫ̇dyn

xx + 2ǫ̇obs
yy ǫ̇dyn

yy + 2ǫ̇obs
xy ǫ̇dyn

xy .

.

We present the spatial distribution of our model misfit values for each model

geometry. Block model 1 fits deformation indicators extremely well (M < 0.10) in the

northern portion of the Wasatch mountain range, along the Idaho and Wyoming state

border, and along sections of the San Andreas system. Block model 1 also matches

deformation indicators well (M < 0.30) in eastern Oregon and in southern California,

but misfits the deformation indicators (0.30 < M < 0.70) in central Oregon, and in

regions surrounding the Rio Grande Rift (Figure 4.10). Portions of northwestern

Nevada fail to adequately match (M > 0.70) Quaternary deformation indicators.



Block model 2 only matches deformation indicators along the San Andreas system

and in some portions of the Eastern California Shear Zone (0.10 < M < 0.30) (Figure

4.11). Elsewhere, block model 2 provides a poor fit to deformation indicators. Model

3 matches deformation indicators throughout the Eastern California Shear Zone, the

Basin and Range, and the Rio Grande rift (Figure 4.12). Model 3 also matches the

N-S compression orientations in Washington State, but misfits deformation indicators

within parts of coastal Pacific Northwest where Quaternary fault and fold database

for the United States shows normal faulting.

We plot the long-term dynamic velocity fields associated with each block model 1

and 2 with respect to a North America frame of reference (Figure 4.13 and 4.14). The

velocity fields for both block models 1 and 2 fail to adequately match the long-term

velocity model (see Figure 3.4 in Chapter 3). Ironically, the block models 1 and 2

fail to localize strain rate entirely within the weak shear zones. Some distributed de-

formation occurs also within the high strength block interiors. The dynamic velocity

field associated with model 3 does localize strain rates in the correct places while

adequately matching the long-term velocity model (Figure 4.15).

4.4 Depth-integrated Deviatoric Stress Fields As-

sociated With Crustal Block Geometry Mod-

els

Both block model solutions appear to be dominated by the accommodation of

velocity boundary conditions, with GPE differences playing a secondary very minor

role. We next evaluate the GPE related stresses and the boundary condition related

stresses separately in order to quantify their relative contribution throughout the

plate boundary zone for block models 1 and 2. To calculate GPE related stresses,



we use the method of Flesch et al. [2001], outlined in Chaper 2, but with a laterally

variable viscosity, rather than a constant viscosity. To evaluate the boundary condi-

tion stresses, we run the forward model in the absence of internal body forces (GPE

differences).

Block model 1 geometry produces relatively low depth-integrated deviatoric stresses

associated with GPE differences within broad regions of the Basin and Range and the

Rio Grande Rift (Figure 4.16). This result is consistent with the wide, diffuse block-

bounding shear zones, which define the block boundary geometries of block model 1

(see Figures 4.2 and 4.4). Block model 2 produces relatively high depth-integrated

deviatoric stresses associated with GPE differences throughout much of the Basin

and Range (Figure 4.17). However, tight bands of relatively low depth-integrated de-

viatoric stresses associated with GPE differences are also located in this region. The

principal axes of deviatoric stress are also predominately tensional for the diffuse plate

boundary zone. The differences of solutions in Figure 4.16 and Figure 4.17, as well

as differences with the GPE solution in Chapter 3, highlight the dependence of GPE

related stresses on the relative viscosity distribution. Overall, however, the range of

depth-integrated magnitudes of deviatoric stress associated with GPE differences are

limited in the range of 0.1 – 2 x 1012 N · m−1 for block models 1 and 2.

We evaluate the block model responses to the accommodation of velocity bound-

ary conditions by running dynamic forward models in the absence of internal body

forces (no GPE differences). Block model 1 geometry produces relatively low depth-

integrated deviatoric stresses within broad regions of the Basin and Range and the

Rio Grande Rift. However, rigid regions act as stress guides, transmitting large stress

magnitudes (Figure 4.18). Likewise block model 2 produces large depth-integrated

deviatoric stresses associated with velocity boundary conditions within high strength

regions (Figure 4.19). There are bands of relatively low depth-integrated deviatoric

stresses associated with velocity boundary conditions that are co-located with the



narrow block boundaries defined in block model 2 (see Figures 4.3 and 4.5). The

principal axes of deviatoric stress are also predominately a mix of compressional and

tensional for the diffuse plate boundary zone. The forward dynamic depth-integrated

deviatoric stress magnitudes associated with velocity boundary conditions are often

in excess of one order of magnitude larger than the depth-integrated deviatoric stress

magnitudes associated with GPE differences for both block model geometries. For

both solutions, the block-like regions act as tremendous stress guides for the high

values of depth-integrated stress, transmitting the influence of plate motions and

minimizing the influence of internal buoyancies.

In Chapter 3, we show that the Ar number can be redefined as the expected ratio

of the 2nd invariant of stress associated with GPE differences to the 2nd invariant

of stress associated with the accommodation of velocity boundary conditions. The

Argand number distribution for block model 1 highlights the strong influence of the

velocity boundary condition stresses throughout diffuse plate boundary zone and the

Pacific Northwest (Figure 4.20). Argand numbers are ubiquitously far less than 1.0

throughout western North America. Argand numbers are also less than 0.50 through-

out western North America for block model 2 ( Figure 4.21). These Argand number

distributions imply that deviatoric stresses arising from GPE differences would not

drive long-term deformation within western North America for such block models.

Instead the plate boundary zone deformation would be driven mainly by accommo-

dation of the Pacific and Juan de Fuca plates. The Argand number distribution

defined by model 3 is similar to Argand number distributions defined with low, uni-

form long-term fault friction models in Chapter 3. Argand numbers associated with

model 3 are less than 1.0 in northern Texas, northern Mexico, southern California,

southwestern Arizona, west of the Sierra Nevada mountains, along the Oregon coast,

and within Washington State (Figure 4.22). In the western portion of the Basin and

Range and in the interior Pacific Northwest, GPE differences are roughly equal to



velocity boundary conditions; however, stresses associated with GPE differences are

the dominant drivers of deformation (Ar = 2–5) in the eastern Basin and Range. For

the Colorado Rocky mountain ranges, the stresses associated with GPE differences

completely dominate over contribution from velocity boundary conditions (Ar > 10).

4.5 Conclusions

The Quaternary fault observations allow us to test and evaluate our set of forward

dynamic models in unparalleled detail. Our block model geometries have weak fault

friction (µ=0.1) in regions with block-bounding shear zones and much higher crustal

friction within block interiors (µ=0.7). Such models fail to produce the required

lateral variations in effective viscosity needed to define a dynamic strain rate tensor

field that achieves a best-fit with Quaternary deformation indicators. The block model

geometries also define deviatoric stresses arising from GPE differences that contribute

little to driving the long-term deformation of the Basin and Range. These models

instead result in diffuse plate boundary deformation driven mainly by accommodation

of the Pacific and Juan de Fuca plates (i.e., Ar < 1.0), in which the deformation field

is dominated by strike-slip strain rates south of 40◦N, or the influence of Pacific-

North America motion. In contrast to these results, we have shown in Chapter 3,

that a more distributed fault fabric, with uniform low fault friction, yields a far

better fit to the long-term deformation indicators. Similarly, model 3 yields a close

match to long-term deformation indicators throughout the diffuse plate boundary

zone. Surprisingly, such models with relatively uniform long-term friction yield the

primary and important zones of relatively concentrated shear (San Andreas System,

Juan de Fuca trench, Eastern California Shear Zone and Walker Lane, and Wasatch),

whereas block model 1 and 2 are prone to placing distributed shear within improper

zones. Furthermore, model 3 yields the proper balance of internal buoyancies relative



to plate motion accommodation mechanisms.

The level of the long-term friction on the faults, along with the distribution of

the fault fabric, controls the relative influence that internal buoyancies and plate

boundary forces have on the deformation field. Our dynamic models strongly suggest

that stress and strain rate tensor fields and velocity fields are exceedingly sensitive to

the intrinsic mechanical properties of the faults, and to the density of available fault

fabric. Based on our scoring of self-consistent dynamic model output with detailed

kinematic output, we argue that a more distributed fault fabric than that provided

by block model geometries is required to explain the patterns of finite strain observed

within the diffuse plate boundary zone of western North America. Moreover, we

suggest that ironically one needs a weak (in terms of long-term friction) broader

Basin and Range region in order to focus strain rates within the San Andreas and

Eastern California Shear Zone and Walker Lane Systems.
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Figure 4.1: The long-term estimate of the horizontal strain rate tensor field inferred
from Kostrov summation of faults for grid areas containing geologic rate data. Prin-
cipal axes of strain rates (area averages) have been normalized by the maximum value
of the principal axis strain rate within each grid area (bold = compressional, white =
extensional). Color background is the second invariant of strain rate (area averages).
Grid areas without data plot in gray.



Figure 4.2: Block model 1: The distribution of the log of depth-integrated strength
for the crust of western North America scaled by 1/

√
2. We assign weak fault friction

(µ = 0.10) to grid elements containing faults that have ruptured since 15k ago and
strong crustal friction (µ = 0.70) to all other grid elements. The depth integral
of strength depends on fault style. All fault styles are grouped into one of three
pure tectonic regimes defined by the long-term kinematic strain rate tensor field
solution shown in Figure 3.4 of Chapter 3. Vertical rule indicates normal faulting
style, horizontal is thrust, and cross is strike-slip (used to define the depth integral
of strength). The fault observations are located within the grid elements that plot in
red or orange. All faults associated with the Quaternary fault and fold database for
the United States are reported to have slipped no later than 15 ka.



Figure 4.3: Block model 2: The distribution of the log of depth-integrated strength
for the crust of western North America scaled by 1/

√
2. We assign weak fault friction

(µ = 0.10) to grid elements associated with the block boundaries of McCaffrey [2005];
McCaffrey et al. [2007] and strong crustal friction (µ = 0.70) to all other grid elements.
The depth integral of strength depends on fault style. All fault styles are grouped
into one of three pure tectonic regimes defined by the long-term kinematic strain rate
tensor field solution shown in Figure 3.4 of Chapter 3. Vertical rule indicates normal
faulting style, horizontal is thrust, and cross is strike-slip (used to define the depth
integral of strength). The block boundaries are those grid elements that plot in red
or orange.
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Figure 4.4: Block model 1: The log of the B-value distribution for the crust of western
North America assuming the distribution associated with the fault observations shown
in Figure 4.2, a power law exponent of n = 1 strain rates from our long-term model
strain rate tensor field for the shear zones and a value of 0.1 x 10−9 · yr−1 for the
block interiors. Vertical rule indicates normal faulting style, horizontal is thrust, and
cross is strike-slip, used to define the depth integral of strength.
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Figure 4.5: Block model 2: The log of the B-value distribution for the crust of western
North America assuming the distribution associated with the block boundaries of
McCaffrey [2005]; McCaffrey et al. [2007] shown in Figure 4.3, a power law exponent
of n = 1 and strain rates from our long-term model strain rate tensor field for the
shear zones and a value of 0.1 x 10−9 · yr−1 for the block interiors. Vertical rule
indicates normal faulting style, horizontal is thrust, and cross is strike-slip, used to
define the depth integral of strength.
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Figure 4.6: The forward dynamic strain rate tensor field defined with the B value
distribution shown in Figure 4.4 (block model 1). Principal axes of strain rates (area
averages) have been normalized by the maximum value of the principal axis strain rate
within each grid area (bold = compressional, white = extensional). Color background
is the log of the second invariant of strain rate (area averages).
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Figure 4.7: The forward dynamic strain rate tensor field defined with the B value
distribution shown in Figure 4.5 (block model 2). Principal axes of strain rates (area
averages) have been normalized by the maximum value of the principal axis strain rate
within each grid area (bold = compressional, white=extensional). Color background
is the log of the second invariant of strain rate (area averages).
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Figure 4.8: Model 3: The log of the B-value distribution for the crust of western North
America associated with assignment of relatively low values of friction (0.1 – 0.2) in
all areas (e.g., no high friction blocks). The long-term depth-integrated strength in
this distribution is defined by assigning fault friction coefficients of µ = 0.10 to all
areas north of 40◦N and by assigning friction coefficients of µ = 0.20 to all areas
south of 40◦N. We scale these expected depth integrals of strength by 1/

√
2. To

define the B-values we assume a power-law exponent of n = 1 and strain rates from
our long-term model strain rate tensor field. Vertical rule indicates normal faulting
style, horizontal is thrust, and cross is strike-slip, used to define the depth integral of
strength.
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Figure 4.9: The forward dynamic strain rate tensor field defined with the B value
distribution shown in Figure 4.8 (model 3). Principal axes of strain rates (area aver-
ages) have been normalized by the maximum value of the principal axis strain rate
within each grid area (bold = compressional, white=extensional). Color background
is the log of the second invariant of strain rate (area averages).
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Figure 4.10: The distribution of misfit (defined in equation 4.5) for block model
1. The misfit function quantifies the agreement between the unit tensors from the
forward dynamic strain rate tensor field (see Figure 4.6) with the long-term strain
rate field inferred from Kostrov summation of faults shown in Figure 4.1. Vertical
rule indicates normal faulting style, horizontal is thrust, and cross is strike-slip from
the long-term kinematic solution.
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Figure 4.11: The distribution of misfit (defined in equation 4.5) for block model
2. The misfit function quantifies the agreement between the unit tensors from the
forward dynamic strain rate tensor field (see Figure 4.7) with the long-term strain
rate field inferred from Kostrov summation of faults shown in Figure 4.1. Vertical
rule indicates normal faulting style, horizontal is thrust, and cross is strike-slip from
the long-term kinematic solution.
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Figure 4.12: The distribution of misfit (defined in equation 4.5) for model 3. The
misfit function quantifies the agreement between the unit tensors from the forward
dynamic strain rate tensor field (see Figure 4.9) with the long-term strain rate field
inferred from Kostrov summation of faults shown in Figure 4.1. Vertical rule indicates
normal faulting style, horizontal is thrust, and cross is strike-slip from the long-term
kinematic solution.
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Figure 4.13: The forward dynamic model velocity field for the upper crust defined
from block model 1.
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Figure 4.14: The forward dynamic model velocity field for the upper crust defined
from block model 2.
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Figure 4.15: The forward dynamic model velocity field associated with model 3.
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Figure 4.16: The depth-integrated deviatoric stress field associated with gravitational
potential energy differences (GPE) for the crust with B-values defined by block model
1. White vectors represent tensional principal axes of deviatoric stress. Bold vectors
represent compressional principal axes of compressional stress.
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Figure 4.17: The depth-integrated deviatoric stress field obtained associated with
gravitational potential energy differences (GPE) for the crust with B-values defined
by block model 2. White vectors represent tensional principal axes of deviatoric stress.
Bold vectors represent compressional principal axes of compressional stress.
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Figure 4.18: The forward dynamic depth-integrated deviatoric stress field associated
with velocity boundary conditions for a flat sheet (no internal buoyancies) defined
with B-values from block model 1. White vectors represent tensional principal axes of
deviatoric stress. Bold vectors represent compressional principal axes of compressional
stress.
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Figure 4.19: The forward dynamic depth-integrated deviatoric stress field associated
with velocity boundary conditions for a flat sheet (no GPE differences) defined with
B-values from block model 2. White vectors represent tensional principal axes of
deviatoric stress. Bold vectors represent compressional principal axes of compressional
stress.
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Figure 4.20: The Argand number distribution defined by block model 1. This model
achieves a poor fit to long-term deformation indicators shown in Figure 4.10.
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Figure 4.21: The Argand number distribution defined by block model 2. This model
achieves a poor fit to long-term deformation indicators shown in Figure 4.11.
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Figure 4.22: The Argand number distribution associated with model 3. This model
matches the long-term deformation indicators shown in Figure 4.12.
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Conclusions

In this dissertation I addressed the long-term frictional strength of the faults within

the seismogenic crust through investigation of the dynamics of the upper crust. I lim-

ited the integration depth to include only the layer of thickness from the topographic

surface down to the depth of the 20 km below sea level when generating forward

and inverse dynamic models. I used seismic velocity data to define the densities that

define the gravitational potential energy per unit area (GPE) within the upper crust.

I then solved for the depth-integrated deviatoric stress field that balances the lateral

differences in GPE within the upper crustal layer. For the inverse modeling case,

the deviatoric stress field associated with lateral differences in GPE calibrates the

magnitude of total deviatoric stress available within the upper crust. I then solved

for boundary condition stresses associated with stress field contributions from sources

outside the modeled region. The boundary condition stress field, when added to the

solution from GPE differences, provides a best match to deformation indicators within

western North America.

The inverse models of upper crust show that stresses due to GPE variations are

similar in magnitude to boundary condition stresses in western North America. The

magnitudes of total deviatoric stress in the long-term seismogenic crust from the

surface to 20 km below the sea level range between 0.05 – 0.75 x 1012 N · m−1.

From the best-fit total deviatoric stress field model, I obtain depth-integrated total

stress differences and used these as a proxy for depth integrals of fault strength in

moderate-to-high strain rate regions. The depth-integrated stress differences define

long-term fault friction coefficients, under hydrostatic pore pressure conditions, that

are considerably lower (µ = 0.02 – 0.20) than the Byerlee-like friction coefficients

obtained in laboratory studies on typical crustal rocks. I explored the sensitivity

of these results by testing a range of maximum depths of integration. For depth

integrals taken in excess of 20 km below sea level, there is diminishing contribution to



the depth-integrated stress differences, and by proxy depth-integrated fault strength.

Sensitivity test results indicate that a seismogenic layer thickness of approximately 20

km is consistent with the depth to the expected long-term brittle-ductile transition

for the diffuse plate boundary zone.

I used the recently updated United States Geologic Survey Quaternary fault and

fold data base of the United States (QFBD) to build a suite of kinematic models that

placed primary constraints on forward models of the upper crust for western North

America. In the forward dynamic modeling approach, the dynamics of the upper crust

are defined by the known internal buoyancy distributions, inferred lateral variations in

effective viscosity, and imposed far-field velocity boundary conditions. Input uniform

fault friction coefficients and pure fault styles inferred from our long-term kinematic

strain rate model, along with the strain rates themselves, defined lateral variation in

effective viscosity. Body forces are generated from differences in GPE. The velocity

boundary conditions are defined using PA-NA, CO-NA, RI-NA, and JF-NA plate

motion estimates. Solutions to the force-balance equations in the forward modeling

method define self-consistent dynamic stress tensor, velocity, and strain rate tensor

fields for the model crust. I tested and evaluated the model solutions to determine a

best-fit match with long-term stress field indicators within western North America

Crustal models are defined from the surface to 20 km below sea level using a range

of uniform long-term fault friction coefficients from (µ = 0.02–1.0) under hydrostatic

pore pressure conditions. I found that the forward dynamic solutions are sensitive

to the level of friction on the faults and the distribution of the fault fabric. These

two factors primarily control the relative influence that internal crustal buoyancies

and plate boundary forces have on the deformation field. Evaluation of fitness of the

dynamic solutions to deformation indicators is achieved using two different measures.

In one fitness measure, the forward dynamic strain rate tensor styles are scored by

misfit to the kinematic strain rate tensor styles inferred from Kostrov summation



of Quaternary fault observations. The uniform long-term fault friction coefficient of

µ = 0.10 achieved the best-fit with tensor styles of strain rate defined by Quaternary

fault observations. In a second fitness measure, the dynamic model velocity fields

are scored via reduced chi-square misfit with the long-term kinematic model velocity

field defined by Quaternary fault observations. A uniform long-term fault friction

coefficient of µ = 0.20, achieved the lowest reduced chi-square misfit with the long-

term kinematic model velocity field.

Forward dynamic solutions required at least an equal or greater contribution of

stresses from differences in GPE than stresses arising from velocity boundary condi-

tions in order to provide a close match to deformation indicators and patterns of finite

strain in western North America. I quantifed the ratio of stress related to GPE to

stress related to velocity boundary conditions, or Argand Number (Ar), for the first

time for western North America. For the case with uniform long-term fault friction co-

efficients of µ = 0.10, stresses associated with velocity boundary conditions made the

primary contribution to long-term deformation along the San Andreas fault system

(Ar < 1) only. Within the Basin and Range, however, stresses associated with GPE

differences are the dominant drivers of deformation (Ar = 2–6). For the Wasatch

and Colorado Rocky mountain ranges, the stresses associated with GPE differences

completely dominate over contribution from velocity boundary conditions (Ar > 10).

The lateral viscosity variations have a strong influence on the expected distribution

of the Ar number, particularly within the easternmost portion of the plate boundary

zone.

The strain rate tensor styles inferred from Kostrov summation of Quaternary fault

observations have allowed for evaluation of forward dynamic models in great detail.

I generate self-consistent dynamic stress tensor, velocity, and strain rate tensor field

solutions associated with specific block model geometries for the crust and compare

output from such models with observations of long-term patterns of finite strain



in the western North America. The block model geometries are defined with low

fault friction (µ = 0.10) in the narrow regions co-located with block bounding shear

zones. Strong crustal friction (µ = 0.70) is assigned to block interiors. Block model

geometries yield dynamic strain rate tensor styles that are at odds with the kinematic

strain rate tensor styles associated with Quaternary deformation indicators within

many regions of the plate boundary zone. Overall, these models do a relatively poor

job in fitting deformation styles throughout the diffuse plate boundary zone. The

block model geometries produce deviatoric stresses arising from GPE differences that

have little influence in driving long-term deformation within the Basin and Range.

The models instead predict that the diffuse plate boundary deforms primarily through

accommodation of the Pacific and Juan de Fuca plates (i.e., Ar < 1). The models

transfer large deviatoric stresses into the plate boundary zone interior. A surprising

result is that these block models, possessing large strength contrasts between shear

zones and block interiors, generate a more distributed deformation than do models

with uniform fault strength. Based on scoring of self-consistent dynamic model output

with detailed kinematic output, I argue that a more distributed fault fabric than

provided by block model geometries is required to explain the patterns of finite strain

observed within the diffuse plate boundary zone of western North America. Moreover,

the forward model results indicate that the level of long-term friction on the faults,

along with the distribution of the fault fabric, dictate the degree to which internal

buoyancies and plate boundary forces influence the deformation field. The dynamic

stress and strain rate tensor fields and the dynamic velocity field each are acutely

sensitive to the intrinsic mechanical properties of the faults, and to the density of

available fault fabric. The deformation field in western North America therefore

suggests and supports the premise of a sufficiently dense fabric of faults (e.g., like the

QFBD) that possess low long-term friction coefficients of 0.10–0.20.
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