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Abstract of the Dissertation
Growth Mixture Modeling as an Exploratory Analysis Tool in a Longitudinal

Quantitative Trait Locus Analysis
by
Su-Wei Chang
Doctor of Philosophy
in
Applied Mathematics and Statistics
Stony Brook University
2009

I examined the properties of growth mixture modeling (GMM) in finding longitudinal
quantitative trait loci. Two software packages are commonly used in GMM analyses:
Mplus and the SAS TRAJ procedure. I analyzed the 200 replicates of the simulated data
from the Genetic Analysis Workshop 16 with these programs using three tests: the
likelihood ratio test statistic (LRTS), a direct test of genetic model coefficients, and the
chi-square test classifying subjects based on the trajectory model’s posterior Bayesian
probability. The Mplus program was not effective in this application due to its
computational demands. The distributions of these tests applied to genes not related to the
trait were sensitive to departures from Hardy-Weinberg equilibrium (HWE). Genotyping
error might be partially responsible for this departure. It may not be valid to apply GMM
procedures to single-nucleotide polymorphisms (SNPs) that are apparently not in HWE.
The LRTS was not usable in this application as its distribution was far from the expected
asymptotic distributions when applied to markers with no genetic relation to the

quantitative trait. The other two tests were satisfactory. Power was still substantial when
il



markers near the gene rather than the gene itself were used. That is, GMM may be useful
in genome wide association studies. The direct test of the coefficients and the posterior
Bayesian probability chi-squared test had essentially the same power when analyzing
genes in the disease mechanisms. When analyzing data from markers near the true gene,
there was somewhat greater power for the direct test of the coefficients and less power

for the posterior Bayesian probability chi-squared test.
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Chapter 1 Introduction

1.1 Background

Growth mixture modeling (GMM) is an important tool for analyzing longitudinal
data (Muthén & Shedden, 1999; Li, Duncan, and Hops, 2001; Colder et al., 2001). GMM
is a combination of the conventional growth curve model and finite mixture modeling
(Muthén, 2004). Use of GMM not only provides researchers the opportunity to study
growth curves of a single or multiple measurable characteristics, such as phenotypes or
traits, but also provides the chance to improve the accuracy for detection of genetic or
environmental factors that influence growth change. The conventional growth curve model
treats the data as inferred from a homogeneous population where population members
follow a common developmental process of growth or decline. In contrast, GMM
hypothesizes that there is a fixed but unknown number of components of distinctive
trajectory patterns observed within the population. GMM applies mixture analysis
methods to estimate the number of trajectory components and the probability that a trait
variable (such as a genotype) affects the trajectory component membership. The modeling
technique generalizes multilevel random effects growth modeling to model a combination
of continuous and categorical latent variables. The continuous latent variables denote the
growth parameters, such as intercept or slope, and determine the trajectory shapes, while
the latent categorical variables represent the latent trajectory components underlying the

1



latent growth variables. Under the assumption of multinormally distributed random effects,
GMM allows researchers to test for the departure of an individual’s latent growth
parameters from the population mean growth parameters, which can be modeled as
functions of risk factors (time-invariant covariates) or time-varying covariates (TVCs).
Further, the model has estimates of the probability that the risk factors affect the trajectory
component membership. The posterior probability of membership of an individual in each
latent component is used to assign latent class membership. Such latent trajectory class

membership can further be used as a covariate in a post-hoc cluster analysis.

There are two software packages for GMM. One is the SAS TRAJ procedure
developed by Nagin and colleagues (Nagin & Land, 1993; Nagin, 1999; Nagin &
Tremblay, 2001; Jones, Nagin, and Roeder, 2001). The other is Mplus, a widely used
structural equation modeling software package created by Bengt Muthén, Linda Muthén,
and colleagues (Muthén & Muthén, 2000; Muthén et al., 2002; Kreuter & Muthén, 2008).
The main difference between the two GMM analytic tools is that the variance and
covariance matrix of growth parameters are held to be zero in the SAS TRAJ procedure,
while the Mplus GMM program allows for the variation of these parameters. That is, all
individuals are assumed to behave identically within a trajectory component using the
SAS TRAIJ procedure. The term “growth mixture modeling” originally was used by
Muthén and his colleagues. They regarded the approach used by SAS PROC TRAJ as a
simplified version of GMM and called it “latent class growth analysis” (LCGA) in Mplus
to signify the difference. The principle advantage of Mplus GMM compared with the

SAS TRAJ procedure is that fewer number of trajectory components may be required to

2



identify a satisfactory model by allowing variations about the group mean (Muthén, 2004;
Nagin & Tremblay, 2005a). To accommodate such variation, Mplus uses a far more
complex set of parameters to model trajectory components. This increases the
computational complexity and instability of the analysis. Muthén and Muthén (1998-
2007) suggested that, before conducting GMM, one should use Mplus LCGA as a
preliminary analytic tool, since model convergence is generally easier and faster to

achieve with that subroutine.

1.2 Literature Review

1.2.1 Application of Growth Mixture Modeling

In recent years, the prevalence of GMM modeling has been increasing in social
and psychological studies as well as other scientific disciplines. The application of GMM
can be traced back to 1990s. It was first used to study criminal behaviors longitudinally.
Nagin and Land (1993) introduced the fundamental framework of the trajectory-based
approach and used it to study the life course of individual offending patterns. The
popularity of this approach among criminologists and sociologists and its advantages in
the study of the outcome of change over time or at different ages drew attention from

many researchers.

A great number of papers applying GMM have been focused on the relations

between behavioral problems of children, such as antisocial acts, physical aggression,
3



opposition, and physical violence, and adolescent delinquency (e.g. Nagin and Tremblay,
1999; Broidy et al., 2003; Schaeffer et al., 2003; Wiesner & Capaldi, 2003, etc.).
Different developmental trajectories of problem behavior in childhood may lead to
different types of juvenile delinquency. For example, trajectory component members with
chronic oppositional tendency and with constant low-level physical aggression and
hyperactivity at age 6 through 15 were more likely to commit a covert crime such as theft,
while trajectory component members with physical aggression behaviors and with minor
opposition and hyperactivity were more likely to commit an overt crime and serious
delinquent acts (Nagin and Tremblay, 1999). Using data from multiple sites in three
countries, Broidy et al. (2003) found that for males, constant physical aggression during
the elementary school years was associated with increased risk of continued physical
violence as well as other nonviolent forms of delinquency during adolescence. Schaeffer
et al. (2003) reported that boys with trajectories defined by chronically high and
increasing ratings of aggression, evaluated longitudinally from the 1* to the 7" grade by
school teachers, appeared to be at increased risk for antisocial personality disorder,

conduct disorder, and juvenile and adult arrest

There are a considerable number of studies applying GMM in cigarette smoking
(Colder et al., 2000; White, Pandina, and Chen, 2002), alcohol drinking (Li, Duncan, and
Hops, 2000; Chassin, Pitts, and Prost, 2002), drug or substance use (Ellickson, Martino,
and Collin, 2004; Hix-Small et al., 2004; Tucker et al., 2005). GMM was used to identify
developmental trajectory components and potential predictors or risk factors underlying

them. For instance, Chassin et al. (2002) showed that among the three drinking trajectory
4



components identified, the trajectory component members who started drinking early (at
about age 13) and were heavy drinkers were characterized by parental alcoholism and
antisocial tendency, peer drinking, drug use, and (for boys) high levels of externalizing
behavior, but low depression. The infrequent drinking trajectory component members
distinguished themselves by having parental alcoholism and (for girls) adolescent
depression, while the trajectory component members who started drinking late (at about
age 16) and were modest drinkers showed the most favorable adolescent psychosocial

status.

Researchers also used GMM to study the life course of mental illness (Tremblay
et al, 2004; Aneshensel et al, 2004; Romano et al, 2006; Xie, Drake, and McHugo, 2006;
Odgers et al., 2007), and patterns of medication or therapy visits (Mojtabai et al., 2009).
Aneshensel et al. (2004) identified four trajectories of depressive symptoms over time
among caregivers following bereavement. They reported that caregivers were not
identical in their emotional responses to bereavement. The caregivers followed distinct
trajectory patterns connected with their previous experiences as care-givers, in particular
exposure to stress and access to resources. Mojtabai et al. (2009) employed GMM to
identify four trajectory patterns of mental health service use for a community sample of

schizophrenia patients during the four year period after their first admission.

In genetic studies, finite mixture modeling approaches have been applied to
microarray gene expression data to cluster genes with distinctive gene-expression levels

in organisms (Yeung et al., 2001; Pan, Lin, and Le, 2002; McLachlan, Bean, and Peel,
5



2002; Allison et al., 2002; McLachlan, Do, and Ambroise 2004). Rodriguez-Zas et al.
(2006) used GMM methods to characterize gene expression trajectories across time. To
date, I have not found any research articles applying GMM for the identification of a

longitudinal quantitative trait locus.

1.2.2 Current Studies about Identification of Quantitative Trait Loci

For genetic studies, there is currently considerable interest in quantitative traits
such as blood pressure, body mass index, and cholesterol levels. A quantitative trait locus
(QTL) is a region of a chromosome that has been shown through genetic mapping to

contain one or more of the genes that contribute to quantitative phenotypic differences.

A wide variety of QTL mapping techniques have been developed to allow the
dissection of quantitative traits in a certain populations (Haseman & Elston, 1972;
Goldgar 1990; Zeng, 1993 & 1994; Lynch & Walsh, 1998; George et al., 2000). Most of
these studies have focused on traits measured at a single time point. The genetic
mechanism of some traits may be better understood by collecting and analyzing them
longitudinally. Macgregor et al. (2005) proposed a flexible random regression model to
analyze longitudinal QTL data based on the covariance function (CF) structure. They
showed that the change in the genetic effects over time can be well characterized by this
approach and that including parameters to model the change in effect with age can result
in a substantial increase in power to detect QTL compared with repeated measure or

univariate techniques.



A third technique to identify longitudinal QTL is the functional mapping
approach developed by Rongling Wu and his colleagues (Ma, Casella, and Wu, 2002; Wu
et al., 2004). They claimed that this mapping technique can characterize the QTLs and
nucleotides (QTNs) that underlie a complex dynamic trait in a single analysis, showing a
substantial improvement on the method proposed by Weiren Wu and his group (Wu et al.,
2002). Functional mapping estimates parameters that describe the developmental
mechanisms of traits and expression for each QTL or QTN. The modeling approach also
allows for assessing the interplay between gene actions or interactions between

developmental changes.

The value of functional mapping has been affirmed in mapping longitudinal QTL
(Zhao et al., 2004a, 2004b; Wu & Lin, 2006). However, the construction of functional
mapping within the context of simple interval mapping makes it unsuitable for analyzing
multiple linked QTLs that jointly affect developmental patterns. Zeng (1993, 1994) and
Jansen and Stam (1994) proposed composite interval mapping to simultaneously model
two flanking markers and to test for the existence of a QTL by interval mapping and the
markers outside the interval by a partial regression analysis. Incorporating the strengths
of functional mapping and composite interval mapping, Yang et al. (2006) presented a
so-called “composite functional mapping” framework, which allowed for modeling the
time-varying genetic effects of a QTL tested within a marker interval, and aimed at

increasing the resolution of multiple QTL on the same region of a chromosome.



1.3 Research Problems and Specific Aims

There are no precedents in which GMM has been used in the discovery of
longitudinal QTL in genome-wide association searches. There has not been previous
work evaluating the statistical properties of GMM applied to longitudinal quantitative
genetic traits when the underlying mechanism of the data is known a priori. My goal is to
evaluate the strength and limitations of methods using GMM through a simulation study.
I will analyze the 200 replicates of the Genetic Analysis Workshop (GAW) 16 simulated
datasets with the SAS TRAJ procedure and the Mplus GMM programs using three tests:
the likelihood ratio test statistic (LRTS), a direct test of genetic model coefficients, and
the chi-square test classifying subjects based on the trajectory model’s posterior Bayesian

probability.

There are several research questions that I would like to answer in this study. First,
using 200 replicates of the GAW 16 simulated data on the coronary artery calcification
(CAC) measurements taken at the three visits, I would like to assess whether genotypes
appear to be associated with trajectory component membership and hence identify
longitudinal quantitative trait loci (QTL) employing GMM techniques. I will also evaluate

the applicability of the two GMM software packages to this kind of study.

Second, to estimate the empirical power for each test, it is necessary to estimate its

empirical null distribution. I would like to explore the properties of the empirical null



distributions of three proposed measures of association for genes not in the genetic

mechanism for CAC and compare them with the conjectured null distributions.

Third, using posterior probability for the assignment of trajectory component
membership and using such latent component membership as a predictor of other
outcomes of interest has been commonly used in a variety of research articles (Nagin,
1999; White, Bates, and Buyske, 2001; Tremblay et al., 2004; Nagin & Tremblay, 2005b).
Since the statistical properties of such an analytic approach have never been discussed or
studied, I would like to compare the power of GMM analyses that explicitly incorporate
genotype measurements of the genes in the genetic model for CAC into the mixture

modeling to GMM analyses that assess genetic association with post hoc tests.

Fourth, I would like to investigate the change in power using markers close to the
true gene rather than the gene itself and assess whether GMM might be useful in genome

wide association studies.

Fifth and finally, the evaluation of the effects of genotyping errors is crucial, since
their consequences might be devastating. Existence of genotyping errors may influence
the empirical null distributions, increase the critical value, and thus reduce the power of
the study. Therefore, I will evaluate the effect that genotyping errors have on the three

proposed procedures.



Chapter 2 Growth Mixture Modeling

Growth Mixture Modeling (GMM) extends the conventional mixed effects model
and finite mixture analysis and models a mixture of continuous and categorical latent
variables. The continuous latent variables define growth within classes with factors for
baseline level and trend, and the latent categorical variable defines the unobserved

developmental trajectory components.

GMM permits estimation of trajectory shapes (eg, linear, quadratic, cubic),
trajectory classification probabilities for each participant (posterior probabilities), class-
specific growth parameter variance, and regression of the latent trajectory class variable
on covariates for trajectory characterization. With multinomial logistic regression
methods, the characterization allows for identification of the most likely members of a
given trajectory in relation to a comparison trajectory, which is generally the most
common trajectory component or the trajectory with mean values closest to zero. Adding
a binary variable (a distal outcome) or another growth process in the Mplus GMM model
will make it a generalized growth mixture modeling (GGMM), which is a special case of
GMM where the distal outcome is regressed on the latent trajectory variable and

covariates can be added to improve model specification.
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2.1 The Growth Mixture Model Structure

The GMM model T use throughout the study is based on the group-based
trajectory model proposed by Nagin (2005). It has been seen as a special case of GMM
since the variance and covariance of growth parameters are held to be zero, and the
model assumes that there is no variation among individuals within the same trajectory

component. Let Y, = {yil, Vi seens yir} denote the longitudinal sequence of independent

observations for individual i over ¢ time periods. The simple heterogeneity model
assumes that the population sampled is heterogeneous and consists of a mixture of K

underlying sub-populations. The probability density function for the data Y is given by
K K
S = ZP(Ci =k)PY, =y|C =k)= zpk(ﬁ“k)f(yi’ﬂk)a (2.1
k=1 1

where p, (4,)represents the probability of membership C in component & given A, . The
corresponding parameters A, are time-invariant covariates (time-stable covariates or risk
factors), and x, ’s are time-varying covariates (TVCs) that do not affect the probability of

individual i belonging to a component k.

Since risk factors influence only the probability of belonging to a trajectory
component, it is assumed that no more information can be acquired from the data Y
through the risk factor Z given component membership C. Therefore, suppose for

individual i, there are R risk factors Z, = {Z 9Ly s L [R} and a sequence of time-varying

covariates W, = {W, ,W,.,...W,} over t time periods. Given that there are K trajectory

il>
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components, the conditional distribution of the observed data Y; in (2.1) can be rewritten

as

K
Silz,w)= ZP(Ci =k|Z, =z)PY, =y, |C, =kW, =w), (2.2)

k=1
The effect of the risk factor Z on component membership C is modeled with a

multinomial logistic regression function as follows:

P(Cl :k‘Zl. =Zl.)= Kexp(ek +/1k Zi) )

zexp(ek +4.'z,)

k=1

(2.3)

where 6, = (6,,...,0; )1s a vector of K scalar, and 4, '=(4,,,...,4; ) is a vector of length

R, with 8; and 4; set to be zero.

2.2 Modeling for Trajectories

There are three options for the conditional distributions of observed data in the
SAS PROC TRAJ program. The censored normal model is useful for modeling
continuous outcome or interval scale data. The zero-inflated Poisson model is used to
analyze count data when there are more zeros than would be expected under the Poisson
assumption (Lambert 1992, Jones et al., 2001). The binary logit model is suitable for the
analysis when the outcome at each measurement point is binary. In Mplus, for mixture

modeling with longitudinal data, observed outcome variables can be continuous, censored,

12



binary, ordered categorical (ordinal), counts, or combinations of these variable types

(Muthén & Muthén, 1998-2007).

2.2.1 Model Specification for the Censored Normal Distribution in the SAS TRAJ
Procedure

Since the outcome of interest CAC is the longitudinal quantity in my research and
is continuous, I will apply GMM using the censored normal distribution. The censored
normal model is applicable to estimate trajectory models when the observed outcome,
such as a psychometric scale, tends to cluster at the scale maximum or minimum. For the

censored normal model, the linkage between observed outcome and age (or time) when

the outcome is measured is established via a variable y, . Up to a fifth-order polynomial

relationship is assumed between y; and age (or time) such that

y; = B + B Age, + ﬂzkAgei + ﬂ3kAgei3t + ﬂ4kAge;: + ﬂSkAgeiSt +&,. (2.4)

2
it

where Age, , Age. ..., Age; are the age, age squared,..., and age to the fifth power for each
individual i in trajectory component k, and ¢, is a disturbance assumed to be normally
distributed with a zero mean and a standard deviation o¢. The parameters
B> B Bs; determine the shape of the trajectory, which is allowed to vary freely

across different trajectory components.

Let Suin and Sy, denote the minimum and maximum possible score of the

measured outcome, respectively. If the variable y; 1s less than S,.;,, then the measured
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outcome Y; is set to be equal to S, If the variable y; is greater than Sy, then the
measured outcome Y; is set to be equal to Sy,. Only if y; ranges between Sy, and Spx

does Y;equal to y; . The censored normal model can also be used for uncensored data by

setting the scale minimum S,,;, less than all data values and setting the scale maximum

Smax greater than all data values.

Let BuXy denote S, + B, Age, + B, Age; + Py Age;, + B, Age, + B, Age; for
notational convenience. Then Equation (2.4) can be written as y, = S, X, +¢&,, where

y; is normally distributed with mean fiX; and standard deviation o¢. Hence, the

probability of observing the trajectory for individual i, given membership in component £,
is
P(Y, =y, C, = k)=

Mo e el e

Sinin <Vi <Smax =S, o

where y; = By + By Age, + ﬁzkAgeé +ﬁ3kAgei3t +ﬁ4kAge; +ﬂ5kAgeiSt +¢,.Note that Y;

= Smin lf y;S Smina Yz = y,*, 1f Smin <y,*, < Smax; and Yz = Smax 1f y;E Smax

w,,.w,

i200%

When adding L time-varying covariates W, = Wl.Lt}into the model,

it
the specification of y; for individual i at time ¢ is restated by including them in Equation
(2.4). Hence, the likelihood of observing the data trajectory for individual i at time t,

given component membership £ is
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PY =y, |C =kW,=w,)=

1 CD(Smin —Gﬂanj T %(%_Tﬂk)(nj I1 (p@(%)} (2.6)

Yir=Smin Simin <Vit <Sax o Yir=Smax

x 5
where y, = By, + B Age, +...+ B, Age, +ay wy, +ay Wy, o tapw,, +é&,.

2.2.2 Model Specification for the Uncensored Normal Distribution in the Mplus
GMM

The Mplus GMM program allows the continuous outcome variable to be censored
or uncensored. As noted in Chapter 1, the Mplus GMM model adds random effects to the
growth parameter 5, , 5, ..., Bs; » which define a component’s mean trajectory such that

Boi =00 +0,.2, 705 (2.7)
where m = 0, 1, ..., 5 denoting the polynomial order; S, , are random growth parameters
varying across individuals i = 1,..., n in a trajectory component. The residuals y,, are

assumed to be normally distributed with zero means and uncorrelated with age or time,

&, and other covariates.

2.3 Model Estimation

All analyses to be discussed can be carried out using maximum-likelihood
estimation in GMM programs (Jones et al., 2001; Muthen & Muthen, 1998-2007). As of

May 2009, the default program in Mplus 5.2 first generates 10 sets of random starting
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values, runs through 10 iterations with each set, and then takes the set with the highest
log-likelihood value and continues to iterate with that specific set until convergence
criteria are satisfied. In the initial iterations, the Mplus program uses an expectation-
maximization (EM) algorithm to improve the stability of estimation. It then switches to a
Newton-Raphson, quasi-Newton, or Fisher scoring algorithm to increase the speed of
convergence. The SAS PROC TRAJ macro uses a quasi-Newton algorithm and currently
has no provision for automatically varying starting values, though one can manually input
sets of starting values. The variance —covariance matrix for the parameter estimates is
obtained from the inverse observed information matrix with the likelihood of the
parameter estimates maximized (Nagin, 2005). With regard to missing data, Mplus GMM
handles missing data using the “missing at random” (MAR) approach, while the SAS

TRAJ procedure applies “missing completely at random” (MCAR) method (Rubin, 1976).

2.4 Testing for the Number of Trajectory Components and Selection

Criteria

There is continuing debate about which criterion is best to decide on the optimal
number of trajectory components in a growth mixture model is a complicated issue that is
as unsettled. In general, researcher use a combination of different criterion, including
Akaike Information Criterion (AIC; Akaike, 1987), Bayesian Information Criterion (BIC;
Schwartz, 1978), Adjusted BIC (Sclove, 1987) and entropy. Additionally, to determine

the number of trajectory components, the meaningfulness for conceptual interpretation of
16



the trajectories is also considered. There are a number of studies that show that the AIC
overestimates the correct number of components in finite mixture models (Soromenho,
1993; Celeux & Soromenho, 1996), while the BIC has been reported to performed well
(Roeder & Wasserman, 1997; Magidson & Vermunt, 2004). In this study, I follow the
recommendation of D’Unger et al. (1998) and Nagin (1999) and use the BIC as the
primary basis for the selection of the optimal model. For a given model in the SAS TRAJ
procedure, BIC is defined as

BIC =1log(L)—0.5-log(n)(k), (2.8)
where L represents the value of model’s maximized likelihood, » is the number of
parameters in the model, and n denotes sample size. Note that the value of BIC
calculated in the SAS TRAJ procedure multiplied by -2 is the value of BIC calculated in

Mplus GMM models.

A widely accepted rule to decide on the number of components is to model with
increasing number of trajectories as long as the BIC continues to increase, with the
restrictions that each trajectory component has at least ten subjects and each trajectory is

interpretable and substantively meaningful.

2.5 Limitations and Important Issues

One limitation of GMM is that there is no guarantee of model convergence or

existence of an optimal solution. Model failure often occurs due to excessive number of
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model parameters or over-extraction of the trajectory components. Even when
convergence is achieved, different sets of starting values may results in multiple solutions
of the likelihood function. That is, the model may converge at a local rather than a global
maximum. The failure to identify the global maximum of the likelihood function may
result in serious consequences. Specifically, one may select an incorrect number of
trajectory components. To find the global maximum of log-likelihood, Dolan, Jansen &
van der Maas (2004) reported the use of as many as 5,000 randomized sets of starting
values. However, the recommendation to vary the number of starting values provided by
Mplus User’s Guide or SAS TRAJ procedure is vague, and it is still unclear how many
random starting values are necessary to get the optimal log-likelihood solution of a GMM

model.

Bauer and Curran (2003, 2004) brought up several important issues about the
implementation of GMM. First, when the data are drawn from non-normal distributions,
incorrect estimation for the number of latent trajectory components may be likely, with fit
indices, such as the AIC and the BIC, selecting a higher number of components than are
present. Secondly, in GMM, the incorporation of covariates is used to assess their effects
on the probability of belonging to certain trajectory components. If a covariate has
differential effects on the growth parameters, that is, has positive effects on the intercept
and negative effects on the slope, the capacity to detect the effects of covariates may be
reduced and thus may lead to spurious estimation of the number of trajectory components.

In addition, the results from the GMM analysis may not reflect actual population
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heterogeneity by correctly estimating the number of trajectory components. Rather, it

may over-simplify the description of a complex population distribution.

Although GMM 1is a common and important tool to evaluate population
heterogeneity and to study the pattern and determinants of such heterogeneity in an
outcome of interest over time, the interpretation of the modeling results may be difficult.

Researchers should be aware of this complexity and apply GMM with cautions.
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Chapter 3 Method

3.1 Genetic Models Known

The 200 replicates of data used in this research were generated from the
Framingham Heart Study (FHS) using simulation with known genetic mechanisms and
were given as GAW 16 Problem 3 (Kraja et al., 2008). Each replicate of the data includes
a total of 6,476 participants with simulated phenotype and true genotype information.
Specifically, each replicate contains 188 singletons (participants with no other relatives)
and 942 pedigrees ranging across 3 generations. The measured genotypes include a total
of approximately 550,000 SNPs (GeneChip® Human Mapping 500K Array Set and the
50K Human Gene Focused Panel). These are the actual genotypes from the FHS for both
the genome-wide scan and additional candidate gene SNPs. Because the three generations
of the family members in the FHS attended various examinations and were observed at
different time points, Kraja et al. simulated the FHS pedigrees, calculated the family
member’s ages at a selected exam, and then assigned a simulated age at two subsequent
time points, 10 and 20 years later. The details of the simulations for each phenotype
generated can be found in Kraja et al. (2008). The simulated etiologic pathways of genes

and risk factors determining quantitative traits are shown in Figure 3.1.
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Figure 3.1 Simulated genetic mechanisms for GAW 16 data set
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Source: Kraja et al., 2008.

3.2 Longitudinal Quantitative Trait CAC

In this research, the dependent variable I use is a simulated quantity called
“coronary artery calcification” (CAC), given at 3 time points, with 10 year intervals
between measurements in 6,476 individuals. Kraja et al. (2008) modeled the longitudinal
CAC in two stages. First, they modeled an age independent CAC (CACp) as a function

of two lipid variables CHOL and HDL, and 5 genes 7,,...,75 which had direct effects on
21



its development. The locations of 7,,...,7;are given in Table 3.1. Note that a RefSNP

(RS) is a reference SNP. A “RS” number is a RefSNP accession ID used to identify and

cluster SNPs that are mapped to the same location on the genome.

Table 3.1 The identities of genes contributing to CAC and MI event

Trait Factor RS number Chromosome
T 1s6743961 2
T rs17714718 19
CAC T3 rs1894638 6
Ty rs1919811 7
Ts rs213952 7
0 1512565497 1
MI event
02 rs11927551 3

Source: Kraja et al., 2008.

The values of CACy; were simulated using the following model:

CACy; = 500 + 20(Total CHOL - 200) — 25(HDL - 53) + ME + PE + Het + ¢, 3.1)

where £~ N(0,300). Since CAC cannot be negative, CACy is set as 0 if the generated
value is not positive. In the model, 7, and 7, has a joint 2-locus genetic effect on ME;

however, the effect 7, displays is only minimal compared with a considerable additive
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main effect from 7, . From Kraja et al. (2008), the interactions between the more
common/less common homozygous genotype of 7, (CC and TT, respectively) and the
more common homozygous genotype of 7, (CC) decrease the mean effect of ME on
CAC4; by 250 points. The interaction between the heterozygous genotype of 7, (CT) and
the less common homozygous genotype of 7,(TT) decreases the mean effect of ME on
CAC4; by 150 points; the interaction between the heterozygous genotype of 7, (CT) and
the common homozygous genotype of 7, (CC) increases the mean effect of ME on
CAC,; by 150 points; the interactions between the homozygous genotypes of 7, (CC and
TT) and the less common homozygote of 7, (TT) increase the mean effect of ME on
CAC4; by 250 points. The interactions between the genotypes of 7, (CC, CT and TT)

and the heterozygous genotype of 7, (CT) do not have any effects.

The pair of genes, 7, andz,, have a joint 2-locus, purely epistatic effect on PE in
Equation (3.1). The interactions between the heterozygous genotype of 7, (CT) and the
more common/less common homozygous genotypes of 7, (AA and CC, respectively)
and the interactions between the homozygous genotypes of 7, (CC and TT) and the

heterozygous genotype of 7, (AC) both decrease the mean effect of PE on CACx; by 200

points. Other combinations increase the mean effect of PE on CACx; by 200 points.

The gener, has an over-dominant allele for high CACy,; and determines the Het

effect. The heterozygous genotype of 7, (AG) decreases CAC,; by 100 points on average,
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the more common homozygote AA increases CACar by 25 points, and the less common

homozygote GG increases CACx; by 400 points.

The residual value ¢ is drawn from N(0,1) and then multiplied by 300. It

represents the sum of deviations from the mean of normally distributed modeled genetic
effects and “noise” from other environmental and genetic effects not explained by the

factors described in Equation (3.1).

The simulated CAC is derived from CACy,; using a piecewise linear function
adjusted by age. Participants under age 20 have not developed measurable levels of CAC;
for participants from age 20 to 60, the CAC progresses linearly; for participants older

than 60, CAC is equal to CACa.

As shown in Figure 3.1, CAC influences the chance of having a myocardial
infarction (MI) event before each visit. In addition, smoking and two genetic loci ¢, and
¢, interact with CAC to determine the risk of an MI event. The MI data were not
analyzed in this paper. The two SNPs ¢, and ¢, are not associated with CAC levels but
are associated with the MI event. They will be used later in the study as candidate “null”
genes, with the expectation that they are not CAC risk factors. The positions of ¢, and

@, are listed in Table 3.1.
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3.2.1 Genes Used in the Analysis

A total of 27 SNPs are studied in this analysis: 5 SNPs (z,,7,,7;,7,,75) that have
effects on the simulated CAC, 2 SNPs (¢, and ¢,) which determine MI but not the CAC
level, and 20 “null” SNPs (u,,u,,...,u,, and v,,v,,...,v,, ), randomly selected from

human chromosome (HC) 5 and HC 22, respectively, that were not in the genetic
mechanism determining the simulated CAC and myocardial infarction (MI) events. The

minor allele frequency (MAF) for each of the 4 SNPs 7,,...,7,1s approximately 0.5; 7,

has MAF equal to 0.2; all of the other 20 SNPs have MAF greater than 0.15.

For each gene considered, I create two indicator variables: whether the
participant’s genotype is the more common homozygote and whether the participant’s
genotype is the less common homozygote. These indicator variables are used as trait
variables (also called “time-invariant covariates” in Mplus or “risk factors” in the SAS
PROC TRAJ programs) in the GMM models. The results for u,,u,,...,u,,,v,,V,,...,V,,are
one basis of the empirical null distribution of the test statistics. The results for ¢ and
¢,should be similar to the results for u ,u,,...,u,,v,,v,,...,v,,. I also report results for

four randomly chosen SNPs near 7, andr,, respectively, that have MAF greater than 0.1

and have genotype frequencies that are in Hardy-Weinberg equilibrium (HWE) to
demonstrate the possible applicability of the proposed procedures for genome wide

association studies (GWANS).
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3.2.2 Measures of Association with Genes

I use the SAS TRAJ procedure (Jones, Nagin, and Roeder, 2001) and the Mplus
program (Muthén, 2004) to perform GMM and to assess whether genotypes appear to be
associated with trajectory component membership and hence suggest longitudinal QTL.
Each SAS TRAJ analysis reports the maximized log likelihood, the maximum likelihood
estimates (MLEs) of the trajectory component parameters, the t-statistics of the trajectory
component parameters, the estimated frequency of each trajectory component, the
Bayesian posterior probability (BPP) that each subject is a member of each trajectory
component and the Bayesian Information Criterion (BIC) statistic which is used to assess

the number of trajectory components. Mplus also reports these statistics.

Two sets of analyses applied to the 200 replicates are considered. Each replicate
of data consists of 6,476 participants with genotypes and simulated phenotypes. For each
of the 27 candidate SNPs, the first set uses the longitudinal CAC measures with the two
genetic indicator variables used as traits but without the TVCs CHOL and HDL. The
second is the longitudinal CAC with the TVCs and with the two genetic indicator
variables as traits. [ use a quadratic trend function and set the number of components to 2
and 3. I treat each participant as an independent observation. That is, I ignore the

relationships within a pedigree.

For each set of analyses, I analyze the 200 replicates of the simulated data using

three tests and assess their power: the likelihood ratio test statistic (LRTS), a direct test of
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genetic model coefficients, and the chi-squared test classifying subjects based on the

trajectory model’s posterior Bayesian probability.

3.2.3 Direct Coefficient Test

In an analysis that identifies ¢ trajectory components, there are 2(c —1) indicator
variables associated with gene i,i € {7,,...,75,8,,@,,u,,....,u;,,V,,...,V,,} . For example, for
the 7, gene (which has homozygous genotypes 44 and GG), there are estimated

coefficients for the two homozygous indicators in components 2 through ¢. Component 1

is a reference group with coefficients of trait variables set to 1 identically in the SAS

TRAJ procedure. Withz, I caleulate S, =» (T}, +T; ;) and approximate its null

J=2
distribution with the empirical distribution foru,u,,...,u,,,v,,v,,...,v,,. 1 call this the
“direct coefficient test” (DCT) and use the empirical critical value corresponding to a
level of significance equal to 0.05 from the distribution foru,,u,,...,u,,,v,,v,,...,v,,. 1
conjecture that a chi-squared random variable with 2(c —1) degrees of freedom may be a

good approximation for this null distribution.

3.2.4 Bayesian Posterior Probability Chi-Squared Test

The second procedure is the Bayesian posterior probability (BPP) chi-squared test
on the 3 genotype rows by c trajectory component column contingency table. I use the
results of the GMM model and classify each subject into the trajectory component that

has the largest BPP. A significant value of the chi-squared test for independence
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( p<0.05 based on the empirical distribution of the chi-squared test
foru,,u,,...,u,,,v,,v,,...,v,, ) indicates association with the gene. I conjecture that the

empirical distribution will be approximately a central chi-squared distribution with

2(c—1) degrees of freedom.

3.2.5 Likelihood Ratio Test Statistic

The third procedure is the LRTS. I take the difference of the likelihood function
with the two genetic indicator variables and the likelihood function without the two
genetic indicator variables. I perform this test without TVC and with TVC respectively.

A significant value of the LRTS ( p<0.05 based on the distribution
foru,,u,,...,u,,,v,,v,,...,v,,) indicates association with the gene. 1 conjecture that the
distribution of the LRTS for u,,u,,...,u,,,v,,v,,...,V,,1s bounded by a central chi-squared

distribution with 2(c —1) degrees of freedom.

3.3 Gene-Gene Interaction Analysis

Two pairs of the genes, 7, with 7,and 7, withz,, have epistatic associations with

CAC. To evaluate the power of GMM to detect the interactions between 7, andr,, for

each of the 6,476 participants, I create four mutually exclusive indicator variables ME;,

ME, ME;;, MEy based on each individual’s level of the mean effect of ME on CACy;
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induced by the epistasis of 7, andr,: whether CAC,; increases by 250 points (ME; = 1,
and 0 otherwise), whether CAC,; increases by 150 points (ME = 1, and 0 otherwise),
whether CACy; decreases by 150 points (ME; = 1, and 0 otherwise), and whether CAC
decreases by 250 points (MEy = 1, and 0 otherwise). For example, if a participant has the
genotype CC for 7,and the genotype TT forr,, the interaction increases the mean effect
of ME on CACj,; by 250 points. Thus, for this participant, ME; = 1, ME; = 0, MEy; =0,
and ME;y = 0. In a GMM analysis that identifies ¢ trajectory components, there are
estimated coefficients for the four indicators in components 2 through c, as well as t
statistics which hypothesize that the parameter equals 0 and their corresponding p-values.

I use the DCT procedure and calculate the sum of the t-squared statistics

Sur = z (T AfIE, S+ AjE” ST ]jEm’ ;+T ]jEW ;) - L approximate its null distribution with a chi-
j=2

squared random variable with 4(c —1) degrees of freedom using level of significance 0.05.

Similarly, since an individual has one of only two possible combinations of the
mean effect level of PE on CACy; caused by the epistasis of 7,andz,, I create one

indicator variable PE; = 1 when CAC,; decreases by 200 points, and PE; = 0 when

CAC, increases by 200 points. In a GMM analysis that identifies 2 through ¢ trajectory

components, I perform the DCT and calculate S,, = ZT PZE”, ; and approximate its null
j=2

distribution with a central chi-squared distribution with (¢ —1)degrees of freedom using

level of significance 0.05. I do not study the BPP and LRTS for detecting these epistatic

relations.
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3.4 Tests for Hardy-Weinberg Equilibrium

To evaluate deviations from HWE for each SNP studied in this research, I use
Pearson’s chi-squared test. Suppose there is a single locus with two alleles 4 and a, with

frequencies denoted by p and g, respectively. We have P(4) = p, P(a) =g, and p + g = 1.

If HWE holds for the genotype distribution in the population, we will have P(44) = p*

for the homozygote A4, P(aa)=q" for the homozygote aa, and P(Aa)=2pq for the
heterozygote Aa. Suppose the observed genotype frequencies for A4, Aa, and aa for a
total of N individuals with  complete  genotype information  are

obs(AA),obs(Aa), and obs(aa) . The allele frequencies can be estimated as:

2x0bs(AA) + obs(Aa)
2N

p= and ¢ =1— p. Under the hypothesis of HWE, the expected

number of  subjects for each  genotype can be  expressed as:
Exp(AA) = p°N,Exp(Aa) =2pgN, and Exp(aa) = §°N . Therefore, the Pearson’s chi-

square test statistic can be calculated as:

) z (O-E)? _ (obs(AA) - Exp(AA))* N (obs(Aa) — Exp(Aa))® N (obs(aa) — Exp(aa))*
4 E Exp(AA) Exp(Aa) Exp(aa) '
with one degree of freedom, since the degree of freedom equals the number of
phenotypes minus the number of alleles. The 1% level of significance for y/ = 6.64 is

used. If the chi-square statistic is larger than this value, the null hypothesis that the

population is in HWE will be rejected.
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Example: The gene 7 has the observed genotype frequencies for 44, AG, and GG

for a total of 6,474 (genotypes for 2 participants were missing) individuals as 4,176,
2,014, and 284. The sample frequency of the less common allele G is

2x284+2,014

=0.1994 , which is also the estimated MAF for z, . The sample
2x6,474

frequency for allele 4 is therefore equal to 1 — MAF = 0.8006. The expected number of
subjects for the genotypes A4, AG, and GG are therefore (0.8006)%(6,474) = 4,149.6,
2(0.8006)(0.1994)(6,474) = 2,067.0, and (0.1994)*(6,474) = 257.4, respectively. The chi-

square test statistic with degree of freedom 1 is obtained as follows:

s _(4176-4,149.6)° (2,014-2,067.0)° (284-2574)° _

P% 427.
4,149.6 2,067.0 257.4

Since 4.27 is less than the critical value 6.64, we do not reject the null hypothesis and

report that 7, appears to be in HWE.

3.5 Linkage Disequilibrium Measures and the Chi-Squared Test

In addition to the true genes, I study the power of the three procedures for nearby
SNPs and evaluate the association between the linkage disequilibrium (LD) and change
of power. LD between disease locus alleles and alleles at nearby markers can be used to

refine the location of the disease locus. In general, LD is expected to be related to the
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distance between two loci, but there are many factors that may affect disequilibrium,
including recombination, migration, selection, mutation, and population admixture and
stratification. There may even be disequilibrium between alleles at loci located on

different chromosomes.

LD involves haplotype frequencies and refers to the association between tightly
linked SNPs. Two markers are said to be in LD if their alleles are in statistical
association. For example, if P45 is the probability that allele 4; at genetic locus A occurs

together with allele B; at locus B on the same chromosome, LD occurs when P, , # P, P, .

Thus the A4;B; haplotype occurs either more or less frequently than would be expected on
the assumption of statistical independence. Table 3.2 shows the observed haplotype

frequencies between alleles at loci 4 and B.

Table 3.2 Haplotype frequencies between alleles at loci 4 and B

Locus B
B; B> Total
Locus 4 A; P, P, P,
A; P 4,B, PAsz P 4
Total B, B, 1
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There are a variety of LD measures. I will focus on three of the most common
measures: the disequilibrium coefficient D (also called LD coefficient), Lewontin’s D’
(Lewontin, 1964), which is a normalized disequilibrium coefficient, and the squared
correlation coefficient /°. There are more measures discussed in Devlin and Risch (1995).
Using the information in Table 3.2, the disequilibrium coefficient D, the most basic
measure of LD, can be easily calculated (Lewontin and Kojima, 1960):

D = P P _P P = PAIBI _R4|PBI - R4232 _PAZPBZ = PAIPBZ _PAIBZ = P PBI _PAZBI‘

A B, 4B, 4B, 4B 4

The calculation of D depends only on observed frequencies. The value of D ranges from -
0.25 to 0.25. If both haplotype frequencies are 0.5, D will be maximal. Although D
captures the intuitive concept of disequilibrium, its numerical value is difficult to use for

measuring and comparing the strength of LD.

Lewontin (1964) proposed a normalized D by diving D by the absolute maximum

D which could be achieved from the observed haplotype frequencies. Lewontin’s D’ is

defined as
- D ,D>0
min(P, P, ,P, P;)
D'= A Dz b by
D<0

min(P, P, ,P, P,) ’

The value of Lewontin’s D’ is between - 1 and 1. When |D’| = 1, the LD is said to be
complete. However, |D’| = 1 may indicate that at least one haplotype is missing. Since
Lewontin’s D’ is derived from population genetic considerations, there is no implication

that D’ = 1 should imply that the two markers carry the same information. The squared
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correlation coefficient 7 as used by Hill and Roberson (1968) and Franklin and Lewontin

(1970) has this property. The measure is defined as

po_ D
P,P PP,

The value of 7 is between 0 and 1 with /* = 1 indicating perfect LD. That is, observations
at one marker provide complete information about the other marker, making the second

redundant. The value of  can be small even when |D’| is 1.

To evaluate the significance of LD, one can use the chi-square statistic to test
whether the LD coefficient D between two markers is different from zero as follows

(Weir, 1979 & 1990):

2 2nD?

Ko = PP, PP,

where df = (k —1)(I —1) for the pair of markers with k£ and / alleles, respectively; # is the
number of individuals in the population. Here, the degree of freedom parameter equals 1.
If the test statistic is larger than the critical value y; =3.84 with 5% level of significance,

D is apparently different from zero, and the population under study appears to be in LD.

3.6 Evaluation of the Two Software Packages

I ran the Mplus software on replicates 1 through 11 with two and three trajectory

components specified with participants’ age as individually-varying times of observations
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for the outcome CAC. The software either failed to converge or failed to identify the
solution due to excessive numbers of local maxima. I used at least 500 sets of starting
values in the initial stage and 100 optimizations in the second stage. Mplus computation
times were between 67 and 75 hours for each replicate to fit the 2-component models
without any time-invariant or time-varying covariates. The Mplus software was not
considered any further.

As for the SAS TRAJ procedure, the GMM modeling for each replicate took less
than one minute to identify two trajectory components without adding any covariates,
nearly one minute to identify two trajectory components with genetic indicator variables,
and about one minute to identify two trajectory components with genetic indicator
variables and time-varying covariates. It took about three minutes for the SAS TRAJ
procedure to identify three trajectory components with genetic indicator variables and

time-varying covariates for each replicate.
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Chapter 4 Obtaining Empirical Values for the Null

Distribution of Test Statistics

4.1 Null Distribution Based on Two Human Chromosomes Not in the

Disease Mechanism

The 20 candidate SNPs wu,,u,,...,u,,,V,,V,,...,V,, for the empirical null distribution

were chosen from HC 5 and HC 22 which were not in the simulated genetic model
determining CAC or any of the CAC related traits (eg. CHOL and HDL). The MAF
ranged from 0.16 to 0.49 for these SNPs. Half were in HWE, and half were not. The chi-

squared test statistics for HWE and the corresponding p-values are given in Table 4.1.
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Table 4.1 Summary characteristics of the twenty candidate SNPs used for the empirical
null distribution

Physical

2
C_}Slf)(;;réo Iilj)le)l RS number P(()sli\t/};)n MAF I)SI\{‘?E P-value | In HWE
Ul rs819910 15.2689 0.30 187.38 <0.001 No
U2 rs1754389 15.4451 0.39 2.31 0.1284 Yes
U3 | rs53610702 | 15.5514 0.31 0.00 0.9800 Yes
U4 | rs11542515 16.8158 0.28 2.04 0.1536 Yes
5 US | rs15648724 | 23.3948 0.28 0.38 0.5367 Yes
U6 | 1576666545 | 25.7556 0.45 0.07 0.7846 Yes
U7 | rs77537313 | 31.0333 0.41 25.60 <0.001 No
U8 | rs12098179 | 43.9496 0.26 58.04 <0.001 No
U9 | rs41622162 | 44.9991 0.38 16.53 <0.001 No
U10 | rs14007463 | 49.4872 0.29 24.27 <0.001 No
V1 | rs15268900 0.8199 0.25 579.21 <0.001 No
V2 | rs15445079 1.7544 0.25 1.11 0.2906 Yes
V3 | rs15551377 | 53.6107 0.27 101.84 <0.001 No
V4 | rs16815794 | 11.5425 0.25 3.07 0.0799 Yes
) V5 | 1s23394809 | 156.4872 0.25 496.26 <0.001 No
V6 | rs25755592 | 76.6665 0.34 0.55 0.457 Yes
V7 | rs31033292 | 77.5373 0.40 31.94 <0.001 No
V8 | rs43949633 | 120.9818 0.49 177.68 <0.001 No
V9 | rs44999080 | 41.6222 0.16 0.51 0.4748 Yes
V10 | rs49487182 | 14.0075 0.29 0.39 0.5341 Yes

I ran the SAS TRAJ procedure for u,,u,,...,u,,,V,,V,,...,v,, with two and three

trajectory components, with and without TVCs. The distribution of the results from the
three tests using the SAS TRAJ procedure had greater means and standard deviations for

the ten SNPs that were not in HWE (u,,u, —u,,,v,,v;,vs,v,,v¢) than for the ten in HWE

(uy, —ug,v,,v,,V6,vy,v,,) as shown in Table 4.2. Out of the 200 replicates, the rates of
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model failure for 2-component models without TVCs and 2-component models with
TVCs were both 0%. The rates of model failure for 3-component models without TVCs
CHOL and HDL and 3-component models with TVCs were 10% and 16% on average,
respectively. The means and standard deviations of the DCT and BPP tests but not the

LRTS for the 2 trajectory component models appeared to be relatively close to the value
2, which holds for a y; distribution when the SNP was in HWE. The LRTS was well
beyond the expected asymptotic distributions, particularly for the group of SNPs not in
HWE. The use of TVC appeared to increase the mean and standard deviation observed

for all the test statistics. I used the 95™ percentile for the ten markers in HWE as the

critical value for subsequent tests.
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Table 4.2 Summary statistics of three tests for the 20 null SNPs from HC5 and HC22,

200 replicates

Test, components, In HWE Not in HWE 9 StEHE?nX]rEical
TVC Mean (Std) Mean (Std) Percentile
LRTS, 2, n0 TVC 1680.85 (2890.89) 19159.28 (12361.63) 10083.25
LRTS, 2, TVC 15213.58 (2747.61) 31852.81 (11753.07) 23171.14
LRTS, 3, n0 TVC 1678.50 (2883.70) 19096.85 (12314.53) 10059.77
LRTS, 3, TVC 15654.12 (2752.35) 32056.14 (11639.50) 23583.94
DCT, 2,n0 TVC 1.77 (1.74) 2.28 (2.52) 5.22
DCT, 2, TVC 1.83 (1.84) 3.15(3.35) 5.67
DCT, 3,n0 TVC 3.88 (3.13) 3.93 (3.15) 9.90
DCT, 3, TVC 4.29 (5.09) 4.57 (3.90) 11.16
BPP, 2, no TVC 2.96 (2.92) 4.06 (4.65) 8.79
BPP, 2, TVC 3.19 (3.03) 6.80 (11.51) 9.27
BPP, 3,n0 TVC 7.27 (5.43) 8.16 (6.37) 17.60
BPP, 3, TVC 9.99 (16.57) 14.06 (16.58) 22.98

4.2 Distribution of the DCT and BPP Tests

I compared the distributions of DCT and BPP for the groups of SNPs in HWE and
for the group of SNPs not in HWE using Kolmogorov-Smirnov (K-S) tests. All analyses
indicated that the distributions of the two groups differed significantly except for the
DCT based on the 3-component models without TVCs. The comparison results are

reported in Table 4.3.
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Table 4.3 The asymptotic K-S statistics (ksa) and p-values: comparisons of the
distributions for DCT and BPP from the 10 null SNPs in HWE and the distributions for
DCT and BPP from the 10 null SNPs not in HWE

2 components 3 components
Ksa, p-value
No TVCs TVCs No TVCs TVCs
DCT 2.17,p<0.001 |5.89,p<0.001 |0.67,p=0.766 |2.29,p<0.001
BPP 2.75,p<0.001 |5.49,p<0.001 |1.88,p=0.002 |4.11,p<0.001

As shown in Figure 4.1, the empirical distribution of the DCT applied to the ten
SNPs in apparent HWE were significantly different from the distribution of DCT applied
to the other ten SNPs not in HWE for the 2-component models without TVCs. The
distribution of DCT of the 2-component models without adding TVCs for the ten SNPs in
HWE has both the mean and the standard deviation close to 2, consistent with a
7 distribution. The DCT of the 2 trajectory component models without adding TVCs for
the ten SNPs not in HWE has larger mean and standard deviation than the DCT for the
ten SNPs in HWE. The results for the distributions of BPP applied to the SNPs in HWE
and to the SNPs not in HWE are given in Figure 4.2. Like DCT, the mean and standard
deviation for the BPP of the 2 trajectory component models without adding TVCs from
the ten SNPs not in HWE are much larger than those from the ten SNPs in HWE. Similar

results hold for the models with TVCs and for the 3-component models (also see Table

42).
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Figure 4.1 Histograms of the empirical distributions of DCT applied to the 10 null SNPs
in HWE and to the 10 null SNPs not in HWE for 2-component models without TVCs,

200 replicates
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Figure 4.2 Histograms of the empirical distributions of BPP applied to the 10 null SNPs
in HWE and to the 10 null SNPs not in HWE for 2-component models without TVCs,
200 replicates
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The distributions of DCT and BPP tests for each of the ten SNPs in HWE are shown in
Figures 4.3 (A) - (D). The descriptive characteristics for the distributions of each test
using 2-component models are shown in Table 4.5 — Table 4.7. Among these ten markers,
the distributions for U5 of DCT and BPP with 2-component models, with and without
TVCs, appeared to be different from the distributions for all other SNPs. The U5 SNP
had the highest means and standard deviations for the distributions of most of the tests.
The U6 SNP also had high means and standard deviations and showed great variability in

the distributions.
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Figure 4.3 (A) Empirical distribution function plot for the distributions
component models without TVCs for the 10 null SNPs in HWE
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Figure 4.3 (B) Empirical distribution function plot for the distributions
component models with TVCs for the 10 null SNPs in HWE
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Figure 4.3 (C) Empirical distribution function plot for the distributions of BPP of 2-
component models without TVCs for the 10 null SNPs in HWE
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Figure 4.3 (D) Empirical distribution function plot for the distributions of BPP of 2-
component models with TVCs for the 10 null SNPs in HWE
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Table 4.4 Characteristics of the DCT test statistic values obtained without TVCs for the
10 null SNPs in HWE: 2-component trajectory models

SNP Label Mean (Std) 95 percentile 99 percentile

U2 1.69 (1.77) 5.28 10.28
U3 2.49 (2.04) 6.87 8.14
U4 1.34 (1.22) 3.58 6.04
U5 3.16 (2.22) 7.56 10.35
U6 2.93 (1.87) 6.43 8.42
V2 0.91 (1.05) 3.17 5.58
V4 0.92 (1.03) 2.95 5.58
V6 1.46 (1.18) 3.92 5.45
V9 1.73 (1.59) 4.66 8.73
V10 1.11 (1.06) 3.42 4.56

Table 4.5 Characteristics of the DCT test statistic values obtained with TVCs for the 10
null SNPs in HWE: 2-component trajectory models

SNP Label Mean (Std) 95 percentile 99 percentile

U2 0.87 (1.06) 3.01 5.67
U3 2.08 (1.45) 5.06 6.52
U4 0.89 (0.96) 2.74 5.38
U5 4.48 (2.69) 9.49 13.08
U6 1.84 (1.35) 4.59 5.73
V2 1.53 (1.34) 3.99 6.13
V4 1.13 (1.03) 3.21 481
V6 2.23 (1.88) 6.14 9.42
% 2.25 (1.68) 5.68 8.26
V10 0.99 (1.02) 3.02 5.13
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Table 4.6 Characteristics of the BPP test statistic values obtained without TVCs for the
10 null SNPs in HWE: 2-component trajectory models

SNP Label Mean (Std) 95 percentile 99 percentile

U2 2.49 (2.46) 7.07 11.90
U3 3.45(2.84) 8.82 12.08
U4 2.33(2.20) 7.10 9.26
uUs 4.66 (3.37) 11.07 16.02
U6 5.65 (3.94) 13.39 18.31
V2 1.55(1.61) 5.07 9.25
V4 1.67 (1.89) 5.27 10.05
Vo6 2.70 (2.23) 7.33 9.14
\%& 3.04 (3.05) 8.46 13.04
V10 2.03 (1.91) 6.39 9.16

Table 4.7 Characteristics of the BPP test statistic values obtained with TVCs for the 10
null SNPs in HWE: 2-component trajectory models

SNP Label Mean (Std) 95 percentile 99 percentile

U2 1.54 (1.59) 4.32 8.01
U3 3.93(2.79) 9.01 14.18
U4 1.78 (1.85) 5.96 8.94
Us 6.15 (3.90) 13.03 18.69
U6 3.70 (3.10) 9.45 15.32
V2 0.91 (1.05) 2.98 2.59
V4 0.92 (1.03) 1.90 1.76
Vo6 1.46 (1.18) 3.86 3.20
V9 1.73 (1.59) 10.05 14.80
V10 1.11 (1.06) 6.42 9.11
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The empirical distributions of the DCT and BPP for genes not associated with
CAC values appeared to depend on whether the gene was apparently in HWE. Since
violation of HWE is often used as a test for large genotyping error rates (Leal, 2005), a
question to be considered is the robustness of these procedures to genotyping error. I
have evaluated the effect of genotyping errors on the empirical null distributions and of

other genes and will present the results in Chapter 7.
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Chapter 5 Genes in the Genetic Models Known

5.1 The Seven Genes in the Genetic Mechanisms

I ran the SAS TRAJ procedure for the 200 replicates and studied two and three
trajectory components, with and without TVCs for the seven genes ¢,,4,,7,,7,,7;,7,,and
7, in the genetic model. I used the 95™ percentile for the ten markers in HWE from HC 5

and HC 22 as the critical value in my power study (see Table 4.2). That is, the fraction of
replicates that yield a value of the statistic greater than the critical value of a
corresponding test is the estimated power of the test or the “rejection rate”. Table 5.1
contains the rejection rates by gene for the analysis results of the three procedures using

the 2 and 3 trajectory component models, either including or excluding TVCs.

5.2 Results for the Two Genes Associated with MI but Not CAC

For ¢, and ¢,, which were genes associated with MI but not CAC, the DCT and

BPP rejection rates were low and consistent with 5% level of significance as shown in
Table 5.1. The LRTS rejection rates were all 0, suggesting that the test might not be well

defined for this application.
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Table 5.1 Rejection rates of each test by gene, 200 replicates

2 components,

2 components,

3 components,

3 components,

Gene, Test no TVC TVC no TVC TVC
LRTS 0 0 0 0
4 DCT I 5 2 75
BPP 6 7 35 9
LRTS 0 0 0 0
4, DCT I I 2 2
BPP 0.5 1 I 15
LRTS 0 0 0 0
. DCT 100 100 90 85
BPP 100 100 90 85
LRTS 0 0 0 0
., DCT 85 99.5 62 85.5
BPP 90.5 100 78.5 85.5
LRTS 0 0 0 0
- DCT 5.5 2 15 28
BPP 4 0.5 15 15
LRTS 0 0 0 0
. DCT 2 I 3 3
BPP I 15 15 3
LRTS 0 0 0 0
7, DCT 0.5 3 I 25
BPP 0.5 2 0.5 0
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5.3 Results for the Five Genes in the Genetic Mechanisms Determining

CAC

Forz, , the rejection rate was 100% for both DCT and BPP using the 2 trajectory

component model with and without TVCs. The rejection rate for 7, is 85% for DCT and

91% for BPP with the 2 trajectory component model without TVCs. When the TVCs

were included, the rejection rate for both DCT and BPP increased forz,. Forz,,7,, and

7, , the rejection rates for DCT and BPP are mostly below 5%, the level of significance.

For the five genes, the rejection rate of DCT and BPP tests was nearly the same
on average. Use of TVCs did not increase the power since approximately 17% of the
replicates did not have a solution when three components were specified with TVCs.
However, when solutions with TVCs existed for all the GMM analyses that identified 2
trajectory components, there was an apparent increase in the power of DCT and BPP.
That is, using three trajectory components rather than two did not appear to increase
power due to failure of solutions. Compared to a 0% failure rate for both 2 trajectory
component models without TVCs and 2 trajectory component models with TVCs, the
rate of model failure was 10% for all the 3 trajectory component models without TVCs

and 16% - 20% for the 3 trajectory component models with TVCs.
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5.4 Results for the Gene-Gene Interactions

I ran the SAS TRAJ procedure for the 200 replicates and studied the epistasis

effect of the two pairs of genes, 7, with 7,and 7, withz, on CAC, using two and three

trajectory component models and with and without TVCs.

In the GMM analyses that identified 2 trajectory components, excluding or
including TVCs, the 7, and 7, interaction had 100% rejection rate for the DCT, since the
sum of t-squared statistics of all the 200 replications was larger than the critical value
71 =9.488 with 5% level of significance. The rejection rate was also 100% for the DCT
of the 7, and 7, interaction in the analyses that identified 3 trajectory component models,
with and without TVCs. The critical value y; =15.507 with 5% level of significance was

used. The DCT for the 2 trajectory component had much higher means and standard
deviations than the DCT for the 3 trajectory component. Use of TVCs increased the mean

and the standard deviation of the DCT for the interaction of 7, and z, substantially. The

analysis results for the DCT are given in Table 5.2.

Similarly, the interaction of 7, and r, had 100% rejection rate for DCT in the

analyses that identified 2 and 3 trajectory components, whether excluding or excluding
TVCs (see Table 5.2). The means and standard deviations for DCT with the 2 trajectory

component were much higher than those for DCT with the 3 trajectory component.
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Inclusion of TVCs did not necessarily increase the mean and the standard deviation of the

DCT associated with the interaction of 7, and 7.

Table 5.2 Descriptive characteristics of the DCT for the epistasis from 7, with r, and
from 7, withz,, 200 replicates

Rate of
Epistasi Model Mean (Std) | Minimum Maximu mpdel
S m failure

(%)

2 components, no TVC | 162.15 (13.64) 124.50 201.02 0

2 components, TVC 246.07 (16.97) 208.07 301.82 0

%2 '3 components, no TVC | 134.70 (12.03) | 10141 | 173.56 10
3 components, TVC 190.71 (44.03) 132.80 625.08 16.5

2 components, no TVC | 410.92 (20.13) | 362.40 464.62 0

2 components, TVC 699.42 (27.58) 619.59 795.99 0

B '3 components, no TVC | 355.00 (25.11) | 290.47 | 431.24 10
3 components, TVC 289.21 (60.09) 40.69 574.22 15.5
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Chapter 6 Markers near the Actual Gene

6.1 Markers near the Two Genes 15 and 7,

I selected and analyzed four SNPs near 7, and 7, that had MAF greater than 0.1

and were in HWE respectively to demonstrate the possible applicability of the three
procedures for genome-wide association studies (GWAS). The SAS ALLELE procedure
(Czika et al., 2005) and the chi-squared test were used to test for linkage disequilibrium
(LD) and to calculate the LD measures of 7 and 7, with their nearby markers. As shown
in Table 6.1, the chi-squared test indicated that the LD coefficient of each of the four

SNPs near 7, appeared to be significantly different from 0 (p <0.001). That is, there was
apparent LD between 7, and each of the four flanking markers. The position, LD
measures, chi-squared statistics and the corresponding p-values of the SNPs near 7, are

given in Table 6.1. The LD measures for the four SNPs near ts by physical position on
HC7 are shown in Figure 6.1. There was no apparent association between the LD
measures and the distance between 7, and the four SNPs near z,. The Pearson correlation
(0.30, 0.58, -0.89 for [LD coefficient|, /°, and |[Lewontin's D'|, respectively, p > 0.1)
confirmed that there was no significant association between the LD measures and the

physical distance.
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Table 6.1 Physical location and the LD measures for ts and the 4 nearby SNPs

LD measures Chi-squared test for
SNP Position LD with 15
Label cM in'
(M) |ILD coeff] ¥ |Lewl(;'r|1t1n s x2 P-value
FM51 | 116.9034 0.12 0.38 0.98 2427.92 | p<0.001
FM52 | 116.9502 0.04 0.06 1 374.67 | p<0.001
Ts 116.9907 . . . . .
FM53 | 117.0168 0.12 0.35 0.94 2258.14 | p<0.001
FM54 | 117.0926 0.12 0.53 0.75 3303.80 | p<0.001

Figure 6.1 LD measures for the 4 SNPs near 15 by physical position
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As shown in Table 6.2, the results of the chi-squared tests for LD indicated that
three of the four SNPs near 7, were in LD with 7, (p <0.001). The SNP FM22 had very
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low values for all of the LD measures, and was not in LD withz, (p = 0.4816). Figure 6.2

depicts the relationship between the three LD measures and the physical position on
HC19 for the 4 SNPs near t,. There appeared to be no apparent association between the
LD measures and the physical position (Pearson correlation = -0.15, -0.11, 0.1 for |[LD

coefficient|, 7, and |Lewontin's D'|, respectively, p > 0.8).

Table 6.2 Physical location and the LD measures for 1, and the 4 nearby SNPs

LD measures Chi-squared test for
SNP Position LD with 1,
Label cM in'
(M) ILD coeff] ¥ |LewD0{|1t1n > 1 P-value
FM21 49.7015 0.06 0.07 0.36 841.90 | p<0.001
FM22 | 49.7400 0.00 0.00 0.01 0.50 0.4816
T 49.7426 . . , . .
FM23 49.7444 0.24 0.92 1 11863.58 | p <0.001
FM24 | 49.8182 0.03 0.03 0.46 450.38 | p<0.001
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Figure 6.2 LD measures for the 4 SNPs near 1, by physical position
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6.2 Markers flanking 75

I ran the SAS TRAJ procedure for the 200 replicates and studied the four SNPs

near 7, using two and three trajectory component models and with and without TVCs.
Figure 6.3 shows the rejection rate of the three procedures for 7, (116.9907 ¢cM) and the

four SNPs near 7, using two trajectory components without TVCs. The rejection rate for

the nearby SNP FM54 (117.0926 cM) was 100% for all the three tests. The rejection rate
was greater than 40% for DCT for two nearby SNPs (FMS51 and FM53). The rejection

rate for BPP was about half the rejection rate for DCT for the SNPs FM51, FM52 and
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FM53. The rejection rate for both DCT and BPP for the SNP FM52 was at or below 1%.

The LRTS had 0% rejection rate for three of the four markers near 7, except FM54.

Figure 6.3 Rejection rate’ of tests for ts and SNPs near 15 by physical position
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Note ': The empirically obtained critical values were used (see Table 4.2, column 4).

I also examined three LD measures for the four SNPs near 7, and looked at their

changes by the test as shown in Figure 6.4. The DCT rejection rate increased as the
increased (Pearson correlation = 0.97, p < 0.05), while the LD coefficient showed a
similar but weaker association (Pearson correlation = 0.81). The Lewontin's D’ measure
showed a negative association (Pearson correlation = -0.85). Similarly, the rejection rate
of the BPP test appeared to be associated with the LD coefficient and the ° measures as
shown in Figure 6.5. The Lewontin's D’ measure showed a strong but negative

association with the BPP rejection rate (Pearson correlation = -0.97, p < 0.05). The BPP
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rejection rate and the r°was also highly correlated (Pearson correlation = 0.87).

correlation between the BPP rejection rate and the LD coefficient was 0.59.

Figure 6.4 LD measures by DCT rejection rate for the 4 SNPs near 15
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Figure 6.5 LD measures by BPP rejection rate for the 4 SNPs near ts
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6.3 Markers flanking 7,

I obtained analogous PROC TRAJ results for the rejection rate of tests for the four

SNPs near 7, . Figure 6.6 shows the rejection rate of the LRTS, DCT, and BPP procedures
for 7, (49.8182 cM) and the four SNPs near using two trajectory component models

without TVCs. The rejection rate for two of the nearby SNPs FM22 (49.7400 cM) and
FM23 (49.7444 cM) was at or above 60% for both DCT and BPP. The rejection rate was
about 38% for DCT and BPP for the nearby SNP FM24. The rejection rate for the
remaining SNP FM21 was 1.5% for DCT and BPP. The rejection rate for BPP was nearly
the same as the rejection rate for DCT. The LRTS rejection rate was 0 for all the four

nearby SNPs.

Figure 6.6 Rejection rate of tests for 1, and the 4 SNPs near 1, by physical position
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Note 1: The empirically obtained critical values were used (see Table 4.2, column
4).
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The SNP FM23, which is closest to the 7, gene had the highest value of the *and

Lewontin’s D’ as shown in Figure 6.7. All the three LD measures were very low for the

SNP FM22, which is not in LD with z,. The power of the DCT and BPP tests appeared

to have stronger association with the Lewontin’s D’ measure than with the LD coefficient

or with the 7 for the three SNPs near 7, other than FM22 as shown in Figure 6.7 and

Figure 6.8. The Pearson correlation for the Lewontin’s D’ measure with the rejection rate
of DCT was 0.91. The LD coefficient and the  also appeared to be association with the
DCT rejection rate (Pearson correlation = 0.77 and 0.82, respectively). The Pearson
correlation with the BPP rejection rate for the Lewontin’s D’, the LD coefficient and the

¥ were 0.93, 0.81, and 0.86, respectively.

Figure 6.7 LD measures by DCT rejection rate for the 4 SNPs near 1,
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Figure 6.8 LD measures by BPP rejection rate for the 4 SNPs near 1,
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Chapter 7 Genotyping Error Study

7.1 Effects of Genotyping Errors

Genotyping errors can cause deviations from HWE and reduce the power of a
genetic study (Leal, 2005). The error is particularly costly when misclassifying the more
common homozygote as the less common homozygote, and the more common
homozygote as the heterozygote, with the minimum sample size necessary to maintain
constant asymptotic power that becomes infinitely increasing as the minor SNP allele
frequency approaches zero (Kang et al., 2004, Ahn et al., 2006). From Chapter 4, the
empirical distributions of DCT and BPP for genes not associated with CAC appeared to
be sensitive to departures from HWE. Without further testing and examination, it is
impossible to assess the extent that genotyping errors are responsible for such departures.
In this chapter, I simulate different rates of genotyping errors and evaluate the inflation of

the level of significance when the genotyping error is present.

64



7.2 Simulations of Genotyping Errors

I used a simple but realistic error model to simulate genotyping errors. This error
model is a modified version from a general model for di-allelic marker loci as used by
Mote and Anderson (1965), Kang et al. (2004), and Ahn et al. (2006). Table 7.1
represents the conditional probability of three observed genotypes given the true
genotypes: the more common homozygote AA, the heterozygote AB, and the less
common homozygote BB. Tintle et al. (2005) showed that the error rate of classifying a
homozygote as the other homozygote is extremely rare (in only 0.00011% of the
classifications), and the rates of misclassifying a homozygote as a heterozygote and
misclassifying a heterozygote as a homozygote are roughly the same (about 0.2%).
Therefore, 1 set the error rate of recoding a more common homozygote 44 as a less
common homozygote BB equal to 0, and vice versa. I set the error rates of the other four
inconsistently identified classifications as identically €, and the error rates of the three
consistently identified classifications as 1 - ¢ or 1 - 2¢, as shown in Table 7.1. In my
simulations, ¢ was set to 4% to imply a higher level of error rate, and 0.5% to imply a

lower level of error rate.
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Table 7.1 Conditional probability of the simulated genotypes given the true genotypes

Simulated Genotype
True Genotype AA AB BB
AA l-¢ € 0
AB e 1-2¢ €
BB 0 € l-¢

Based on Table 7.1, I created two sets of simulated genotypes for the 20 “null”

SNPs u,,u,,....,u,V,,V,,...,V,, that were not associated with CAC values or any of the

CAC related traits for the 6,476 individuals in the sample using the error rates 4% and

0.5% respectively.

7.3 Effects of Genotyping Errors on the Empirical Null Distribution

For the 200 replicates, I ran the SAS TRAJ procedure for
Uy, Uy,..sllyg, V), Vs,V USING the two sets of simulated genotypes with the number of

trajectory components fixed to 2 and 3, and excluding or including TVCs. The results for

the DCT and BPP tests are reported in Tables 7.2 (A) and (B), and Tables 7.3 (A) and (B).

Tables 7.2 (A) and (B) summarize the test statistics not including TVCs for the

ten null SNPs in HWE and the ten null SNPs not in HWE, respectively. For the ten SNPs
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in HWE, the mean and standard deviation for the DCT that identified 2 and 3 components
and for the BPP that identified 2 components without TVCs appeared to be
systematically increasing when the rate of genotyping error was increasing (p < 0.05, see
Table 7.2 (A)). In contrast, the ten SNPs not in HWE, the mean and standard deviation of
the DCT and the BPP that identified 2 components without TVCs tend to be decreasing

with the rate of genotyping error increasing for (p < 0.05, see Table 7.2 (B)).

When the TVCs were included, for the ten SNPs in HWE, the mean and standard
deviation for the DCT and BPP tests that identified 2 components appeared to be
systematically increasing when the rate of genotyping error was increasing (p < 0.001),
while the mean and standard deviation for the DCT and BPP tests that identified 3
components had a less clear tendency (see Table 7.3 (A)). With regard to the ten SNPs
not in HWE, the mean and standard deviation of the BPP that identified 2 and 3
components with TVCs tend to be decreasing when the rate of genotyping error was
increasing (p < 0.01), but the mean and standard deviation of the DCT did not appear to

be systematically changing with the error rate as shown in Table 7.3 (B).
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Table 7.2 (A) Mean and standard deviation of DCT and BPP tests for the 10 null SNPs

from HCS and HC22: in HWE, no TVCs

In HWE

Error rate
Test, components, 0% (Original) 0.5% 4% F (P-value)
TVC
DCT, 2,n0 TVC 1.77 (1.74) 1.81 (1.77) 2.01 (2.06) 9.05,p<0.001
DCT, 3,n0 TVC 3.88 (3.13) 3.90 (3.06) 4.19 (3.30) 5.60, p=0.004
BPP, 2, no TVC 2.96 (2.92) 3.00 (2.98) 3.19(3.23) 3.37,p=0.034
BPP, 3, n0o TVC 7.27 (5.43) 7.41 (5.50) 7.68 (5.48) 2.67,p=0.069

Table 7.2 (B) Mean and standard deviation of DCT and BPP tests for the 10 null SNPs
from HC5 and HC22: not in HWE, no TVCs

Not in HWE
Error rate

Test, components, 40, (riginal) 0.5% 4% F (P-value)
TVC

DCT, 2, no TVC 228 (2.52) 2.11(222)  2.10(2.02) 3.88,p=0.021
DCT, 3, no TVC 3.93 (3.15) 3.78(3.03)  3.89(3.09) 1.01,p=0.364
BPP, 2, no TVC 4.06 (4.65) 3.75(4.09)  3.61(3.44) 641, p=0.002
BPP, 3, no TVC 8.16 (6.37) 781(5.93)  7.70(5.50) 2.95,p=0.053
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Table 7.3 (A) Mean and standard deviation of DCT and BPP tests for the 10 null SNPs
from HCS and HC22: in HWE, with TVCs

In HWE
Error rate
Test, components, o/ Original) 0.5% 4% F (P-value)
TVC
DCT, 2, TVC 1.83 (1.84) 1.87(190)  2.17(227) 16.56, p<0.001
DCT, 3, TVC 429 (5.09) 410(3.49)  4.63(5.09  5.60, p=0.004
BPP, 2, TVC 3.19 (3.03) 328(3.15)  3.65(3.58) 11.14, p<0.001
BPP, 3, TVC 9.99(1657)  9.69(11.21) 1046 (11.78) 1.40, p=0247

Table 7.3 (B) Mcan and standard deviation of DCT and BPP tests for the 10 null SNPs
from HCS5 and HC22: not in HWE, with TVCs

Not in HWE
Error rate
ﬁftc COMPONENTS, g0, (Original) 0.5% 4% F (P-value)
DCT, 2, TVC 3.15(335) 295(322)  3.09(3.04)  2.10,p=0.122
DCT, 3, TVC 457(3.90)  4.66(586)  4.65(4.04) 020,p=0816
BPP, 2, TVC 6.80 (11.51)  6.07(12.42) 529 (5.24) 10.87, p<0.001
BPP, 3, TVC 14.06 (16.58)  13.65(17.01) 12.19(15.90)  5.94, p = 0.003

For the ten SNPs in HWE, the effect of genotyping error is noticeable. Without
adding TVCs, the 95" empirical percentile of the tests was about 2% higher with the
presence of 0.5% genotyping error rate, and about 10% higher on average with 4%
genotyping error rate as shown in Table 7.4 (A). When TVCs were included, the 95"

empirical percentile of the tests was about 3% higher when the genotyping error rate was

69



0.5%, and about 13% higher on average when 4% genotyping error rate was present, as

shown in Table 7.4 (B).

Table 7.4 (A) The 95™ empirical percentile of DCT and BPP tests for the 10 null SNPs
from HC5 and HC22: in HWE, no TVCs

In HWE
95™ empirical percentile

Test, components,

TVC 0% (Original) 0.5% 4%

DCT, 2, no TVC 522 5.33 6.28
DCT, 3, no TVC 9.90 9.77 10.38
BPP, 2, no TVC 8.79 9.02 9.63
BPP, 3, n0 TVC 17.60 17.89 18.27

Table 7.4 (B) The 95" empirical percentile of DCT and BPP tests for the 10 null SNPs
from HCS and HC22: in HWE, with TVCs

In HWE
95™ empirical percentile
Rs(t: components, o1 Original) 0.5% 4%
DCT, 2, TVC 5.67 5.82 6.70
DCT, 3, TVC 11.16 11.04 12.21
BPP, 2, TVC 9.27 9.65 10.88
BPP, 3, TVC 22.98 23.45 24.49
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7.4 Summary

For the ten “null” SNPs in HWE, the effect of genotyping error on the null
distribution of the DCT and BPP is detectable. The empirical null distribution of DCT
and BPP is thus sensitive to high genotyping error rates. The incorporation of the
simulated genotyping errors in the analysis appeared to increase the mean and the
standard deviation of the DCT and BPP statistics in the null case. In addition, the 95"
empirical percentile increased about 2% with presence of a 0.5% error rate, and could

increase as high as 20% with the presence of a 4% error rate.

For the ten SNPs not in HWE, the incorporation of the simulated genotyping
errors either increased or decreased the mean and the standard deviation of the DCT and
BPP tests. As expected, in the event that the failure of HWE was due to genotyping errors,
the addition of the simulated genotyping errors would be expected to have minor effect.
Additionally, there seemed to be unknown causes responsible for the departure from
HWE. More investigation in the potential genotyping errors of the data is needed. As of
now, it appears not to be a wise choice to apply GMM procedures to SNPs that are

apparently not in HWE.
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Chapter 8 Conclusion and Discussion

The analyses based on the SAS TRAJ procedure have power to detect genes
associated with CAC longitudinal QTLs. For CAC, the SAS TRAJ analysis of unadjusted
CAC values with 2 trajectory components and no TVCs had excellent power (100%

rejection rate for both DCT and BPP) to detect the 7. association and good power (85%
rejection rate for DCT and 91% for BPP) to detect the 7, association. When TVCs were
included and the solution existed, there was still 100% rejection rate for both DCT and
BPP for z,, while for r,, there was a noticeable increase in the power of DCT (99.5%
rejection rate) and BPP (100% rejection rate). The associations withz,,7, and 7, were
not detected with these procedures. There was 100% power to detect the epistasis
between 7, and 7, and between 7, and 7,using DCT when the interaction mechanism

was specified in the GMM model.

The LRTS was not usable, possibly due to the dependence of values taken from
subjects within pedigrees and the non-normality of the distribution of CAC, especially
values obtained from the first visit. In an actual genetic analysis, to reduce the chances
that skewness of the data would result in an apparent genetic association, one should

follow Maclean et al. (1976) and consider multiple transformations of the data.
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Procedures to find the most effective transformation should be developed to enhance the

applicability of GMM analysis.

The Mplus software was not effective in analyzing these simulated datasets due to
computational instability and computer time needs. Computational instability also
affected the SAS TRAJ Procedure. One effect of this instability was that using TVCs did
not increase the overall power as had been expected. About 10% of the replicates did not
have a PROC TRAJ solution in the analyses where three components were specified
without TVCs. If TVCs were incorporated along with a 3-component model, the model
convergence was even more difficult to achieve. In this case, about 17% of the replicates
did not have a PROC TRAJ solution. However, since 100% of the 200 replicates had a
solution for the GMM analyses that identified 2 trajectory components with TVCs and

without TVCs, there was an apparent increase in the power of DCT and BPP with TVCs.

The empirical null distribution of the DCT and BPP for genes not associated with
CAC values appeared to depend on whether the gene was apparently in HWE. The
empirical null distribution of the tests was also sensitive to genotyping errors. With
presence of a 4% error rate, the 95" empirical percentile could increase by 20% for the
ten null SNPs in apparent HWE. For the ten null SNPs not in HWE, there was no
systematical change observed in the empirical distribution of these tests when genotyping
error was present. In addition, there might be other underlying factors differentiating the
SNPs in HWE and the SNPs not in HWE that influenced the empirical null distributions

of the tests.
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Another approach that might be used to calculate the p-value of the DCT or BPP
statistics and to explore the properties of the empirical null distribution is use of
permutation procedures (Fisher, 1922; Koehler, 1986; Mielke & Berry, 2001).
Specifically, one can generate a large number of random permutations of the n vectors
(here n = 6,476 participants) of CAC values. The fraction of permutations that yield a

value of the statistic larger than the one observed is the permutation p-value.

For the markers flanking the actual genes, the rejection rates at a marker near 7,
could be as large as the 74 rejection rate. The rejection rate for DCT was high for
markers near 7 (42% - 100%), except as expected, for one marker with low LD measures.

The BPP had approximately 50% lower rejection rates than the DCT. The rejection rates
of DCT and BPP for the markers near r; appeared to be associated with LD.
Specifically, the markers with higher rejection rate for both DCT and BPP appeared to be

with higher values of disequilibrium coefficient and #°, with Pearson correlations above

0.5.

With regard to the markers nearr,, the rejection rates at a marker near 7, were
somewhat lower than the 7, rejection rate. The rejection rate for DCT was 37% - 67%

for markers nearz, , except for one marker with very low LD measures. One marker that

was not in LD (y° = 0.50, p = 0.48) still had a modestly high rejection rate for both DCT

(67%) and BPP (60%). On average, the BPP had essentially the same rejection rates as
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DCT. As expected, the rejection rates of DCT and BPP for the markers near z, appeared

to be associated with LD. The markers with higher rejection rate of the two tests
appeared to be correlated with higher values of Lewontin's D' measure (Pearson

correlations > 0.9).

The BPP test seems to be as powerful as the DCT test for the identification of the
genes directly affecting the CAC. However, when it comes to the detection of markers

flanking the actual gene, in particular for 7., the BPP appeared to be less powerful than

DCT. Overall, analyses that incorporate genotype measurements of the genes into the
mixture modeling appeared to have somewhat greater power than GMM analyses that

assess genetic association with post hoc tests.

The results of my study showed that the SAS TRAIJ procedure was a useful tool in
this application. The use of Mplus was computationally demanding, since the
specification of model parameters was more complicated in the Mplus growth mixture
modeling programs, and a large number of random staring points need to be specified to
achieve convergence. DCT and BPP tests using the SAS TRAJ procedure had power to
detect CAC longitudinal QTLs. In particular, the LRTS was not usable in this application
in that its distribution was far from the expected asymptotic distributions when applied to

markers with no genetic relation to the quantitative trait.

In this research, the procedures using growth mixture modeling has been applied

on pedigree data. I have treated the participants from 942 pedigrees as independent
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observations. The effect of dependence of observations taken from related individuals has
not been evaluated. For future work, my fellow graduate students and I seek to expand
our work and replicate our analyses on unrelated individuals. We will also consider the
use of PC-POPCORN, a new principal-component-based method proposed by McPeek,
Zhang, and Abney (2008) to correct for population stratification. Moreover, we will
extend our work to the GMM analysis of a binary trait, myocardial infarction (MI) events

using a binary logit regression model.

76



Bibliography

Ahn, K., Haynes, C., Kim, W., St. Fleur, R., Gordon, D., and Finch, S. J. (2006). The
effects of SNP genotyping errors on the power of the cochran-armitage linear trend test for

case/control association studies. Annals of Human Genetics, 71, 249-261.

Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332.

Allison, D. B., Gadbury, G. L., Heo, M., Fernandez, J. R., Lee, C. K., Prolla, T. A., and
Weindruch, R. (2002). A mixture model approach for the analysis of microarray gene

expression data. Computational Statistics & Data Analysis, 39, 1-20.

Aneshensel, C. S., Botticello, A. L., and Yamamoto-Mitani, N. (2004). When caregiving
ends: The course of depressive symptoms after bereavement. Journal of Health and

Social Behavior, 45 (4), 422-440.

Bauer, D. J. & Curran, P. J. (2003). Distributional assumptions of growth mixture models:

Implications for over-extraction of latent trajectory classes. Psychological Methods, 8,

338-363.

Bauer, D. J. & Curran, P. J. (2004). The integration of continuous and discrete latent

77



variable models: Potential problems and promising opportunities. Psychological

Methods, 9 (1), 3-29.

Broidy, L. M., Nagin, D. S., Tremblay, R. E., Bates, J. E., Brame, B., Dodge, K. A.,
Fergusson, D., Horwood, J. L., Loeber, R., Laird, R., Lynam, D. R., Moffitt, T. E., and
Pettit,. G. S. (2003). Developmental trajectories of childhood disruptive behaviors and

adolescent delinquency: A six-site, cross-national study. Developmental Psychology, 39

(2), 222-245.

Celeux, G. & Soromenho, G. (1996). An entropy criterion for assessing the number of

clusters in a mixture model. Journal of Classification, 13, 195-212.

Chassin, L., Pitts, S. C., and Prost, J. (2002). Binge drinking trajectories from
adolescence to emerging adulthood in a high-risk sample: Predictors and substance abuse

outcomes. Journal of Consulting and Clinical Psychology, 70 (1), 67-78.

Colder C. R., Mehta P., Balanda K., Campbell R. T., Mayhew K., Stanton W. R., Pentz ,
M. A., and Flay B. R. (2001). Identifying trajectories of adolescent smoking: An

application of latent growth mixture modeling. Health Psychology, 20 (2), 127-135.

Czika, W., Yu, X, Clark, V., and Pratt, R. (2005). SAS/Genetics 9.1.3: user's guide. SAS

Publishing.

78



Devlin, B. & Risch, N. (1995). A Comparison of Linkage Disequilibrium Measures for

Fine-Scale Mapping. Genomics, 29 (2), 311-322.

Dolan, C. V., Jansen, B. R. J., and van der Maas, H. L. J. (2004). Constrained and
unconstrained multivariate normal finite mixture modeling of Piagetian data. Multivariate

Behavioral Research, 39 (1), 69-98.

D'Unger, A. V., Land, K. C., McCall, P. L., and Nagin, D. S. (1998). How many latent
classes of delinquent/criminal careers? Results from mixed poisson regression analyses.

The American Journal of Sociology, 103 (6), 1593-1630.

Ellickson, P. L., Martino, S. C., and Collin, R. L. (2004). Marijuana use from adolescence
to young adulthood: Multiple developmental trajectories and their associated outcomes.

Health Psychology, 23 (3), 299-307.

Fisher, R. A. (1922). On the interpretation of 5* from contingency tables, and the

calculation of P. Journal of the Royal Statistical Society, 85 (1), 87-94.

Franklin, I. & Lewontin, R. C. (1970). Is the gene the unit of selection? Genetics, 65 (4),

707-734.

George, A. W., Visscher, P. M., and Haley, C. S. (2000). Mapping quantitative trait loci

in complex pedigrees: A two-step variance component approach. Genetics, 156, 2081-

79



2092.

Goldgar, D. E. (1990). Multipoint analysis of human quantitative genetic variation.

American Journal of Human Genetics, 47 (6), 957-967.

Haseman, J. K., & Elston, R. C. (1972). The investigation of linkage between a

quantitative trait and a marker locus. Behavior Genetics, 2 (1), 3-19.

Hill, W. G., & Robertson, A. (1968). Linkage disequilibrium in finite populations. 7AG

Theoretical and Applied Genetics, 38 (6), 226-231.

Hix-Small, H., Duncan, T. E., Duncan, S. C., and Okut, H. (2004). A multivariate
associative finite growth mixture modeling approach examining adolescent alcohol and

marijuana use. Journal of Psychopathology and Behavioral Assessment, 26 (4), 255-270.

Jansen, R. C., & Stam, P. (1994). High resolution mapping of quantitative traits into

multiple loci via interval mapping. Genetics, 136, 1447-1455.

Jones, B., Nagin, D., and Roeder, K. (2001). A SAS procedure based on mixture models
for estimating developmental trajectories. Sociological Methods & Research, 29, 374-

393.

Kang, S. J., Gordon, D., and Finch, S. J. (2004). What SNP genotyping errors are most
80



costly for genetic association studies? Genetic Epidemiology, 26 (2), 132-141.

Koehler, K. J. (1986). Goodness-of-fit tests for log-linear models in sparse contingency

tables. Journal of the American Statistical Association, 81 (394), 483- 493.

Kraja, A. T., Culverhouse, R., Daw, E. W., Wu, J., Brunt, A. V., Province, M. A., and
Borecki, 1. B. (2008). Genetics Analysis Workshop 16 Problem 3: FHS Simulated Data Set

— The Answers.

Kreuter, F. & Muthen, B. (2008). Longitudinal modeling of population heterogeneity:
Methodological challenges to the analysis of empirically derived criminal trajectory
profiles. In Hancock, G. R., & Samuelsen, K. M. (Eds.), Advances in latent variable

mixture models, pp. 53-75. Charlotte, NC: Information Age Publishing, Inc.

Lambert D. (1992). Zero-inflated Poisson regression, with an application to defects in

manufacturing. Technometrics, 34 (1), 1-14.

Leal, S. M. (2005). Detection of genotyping errors and pseudo-SNPs via deviations from

Hardy-Weinberg Equilibrium. Genetic Epidemiology, 29, 204-214.

Lewontin, R. C. & Kojima, K. (1960). The evolutionary dynamics of complex

polymorphisms. Evolution, 14 (4), 458-472.

81



Lewontin, R. C. (1964). The interaction of selection and linkage. I. General

considerations; heterotic models. Genetics, 49 (1), 49-67.

Li F., Duncan, T. E., and Hops, H. (2001). Examining developmental trajectories in
adolescent alcohol use using piecewise growth mixture modeling analysis. Journal of

Studies on Alcohol and Drugs, 62 (2), 2001.

Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sinauer

Associates, Sunderland, MA.

Ma, C., Casella, G., and Wu, R. (2002). Functional mapping of quantitative trait loci

underlying the character process: A theoretical framework. Genetics, 161, 1751-1762.

Macgregor, S., Knott, S. A., White, 1., and Visscher, P. M. (2005). Quantitative trait locus
analysis of longitudinal quantitative trait data in complex pedigrees. Genetics, 171 (3),

1365-1376.

Maclean, C. J., Morton, N. E., Elston, R. C., Yee, S. (1976). Skewness in commingled

distributions. Biometrics, 32 (3), 695-699.

Magidson, J. & Vermunt, J. (2004). Latent Class Models. In D. Kaplan (Ed.), Handbook
of Quantitative Methodology for the Social Sciences. Newbury Park, CA: Sage

Publications.

82



McLachlan, G. J., Bean, R. W, and Peel, D. (2002). A mixture model-based approach to

the clustering of microarray expression data. Bioinformatics, 18 (3), 413-422.

McLachlan, G. J., Do, K., and Ambroise, C. (2004). Analyzing microarray gene

expression data. Hoboken, NJ: Wiley.

McPeek, M. S., Zhang, J., and Abney, M. (2008). Association testing with principal-
components-based correction for stratification: When and how does it work? Genetic

Epidemiology, 32 (7), 707-707 (Meeting Abstract: 130).

Mielke, P. W. & Berry, K. J. (2001). Permutation methods: A distance function approach.

Springer, New York.

Mojtabai, R., Fochtmann, L., Chang, S. W., Kotov, R., Craig, T. J., Bromet, E. J. (2009).

Unmet need for care in schizophrenia. Schizophrenia Bulletin (in press).

Mote, V. L. & Anderson, R. L. (1965). An investigation of the effect of misclassification
on the properties of x’-tests in the analysis of categorical data. Source: Biometrika, 52,

95-109.

Muthén, L. & Muthén, B. (1998-2007). Mplus user’s guide. Fifth Edition. Los Angeles,

CA: Muthén & Muthén.
83



Muthén, B. & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using

the EM algorithm. Biometrics, 55, 463-469.

Muthén, B. & Muthén, L. (2000). Integrating person-centered and variable-centered
analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical

and Experimental Research, 24, 882-891.

Muthén, B., Brown, C.H., Masyn, K., Jo, B., Khoo, S.T., Yang, C.C., Wang, C.P.,
Kellam, S., Carlin, J., and Liao, J. (2002). General growth mixture modeling for

randomized preventive interventions. Biostatistics, 3, 459-475.

Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related
techniques for longitudinal data. In: Handbook of quantitative methodology for the social

sciences, pp. 345-368. Edited by Kaplan D. Thousand Oaks, CA: Sage.

Nagin, D. & Land, K. C. (1993). Age, Criminal careers, and population heterogeneity —
specification and estimation of a nonparametric, mixed Poisson models. Criminology, 31

(3), 327-362.

Nagin, D. (1999). Analyzing developmental trajectories: A semi-parametric, group-based

approach. Psychological Methods, 4, 139-177.

84



Nagin, D. & Tremblay, R E. (1999). Trajectories of boys' physical aggression,
opposition, and hyperactivity on the path to physically violent and nonviolent juvenile

delinquency. Child Development, 70 (5), 1181-1196.

Nagin, D. & Tremblay, R E. (2001). Analyzing developmental trajectories of distinct but

related behaviors: A group-based method. Psychological Methods, 6, 18-34.

Nagin, D. & Tremblay, R. E. (2005a). Developmental trajectory components: Fact or a

useful statistical fiction? Criminology, 43, 873-904.

Nagin, D. & Tremblay, R E. (2005b). What has been learned from group-based trajectory
modeling? Examples from physical aggression and other problem behaviors. Annals of

the American Academy of Political and Social Science, 602, 82-117.

Nagin, D. S. (2005). Group-based modeling of development. Cambridge, MA: Harvard

University Press.

Odgers, C. L., Caspi, A., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H.L.
Poulton, R., Sears, M. R., Thomson, W. M., and Moffitt T. E. (2007). Prediction of
differential adult health burden by conduct problem subtypes in males. Archives of

general psychiatry, 64 (4), 476-484.

Pan, W., Lin, J., and Le, C. T. (2002). Model-based cluster analysis of microarray gene-
85



expression data. Genome Biology, 3 (2): Research 0009.1-0009.8.

Rodriguez-Zas, S. L., Southey, B. R., Whitfield, C. W., and Robinson, G. E. (2006).
Semiparametric approach to characterize unique gene expression trajectories across time.

BMC Genomics, 7: 233.

Roeder, K. & Wasserman, L. (1997). Practical Bayesian density estimation using

mixtures of normals. Journal of the American Statistical Association 92, 894-902.

Romano, E., Tremblay, R. E., Farhat, A., and Cote, S. (2006). Development and
prediction of hyperactive symptoms from 2 to 7 years in a population-based sample.

Pediatrics, 117 (6),2101-2110.

Rubin, D. B. (1976). Inferences and missing data. Biometrika, 63, 581-592.

Schaeffer, C. M., Petras, H., Ialongo, N., Poduska, J., and Kellam, S. (2003). Modeling
growth in boys' aggressive behavior across elementary school: Links to later criminal
involvement, conduct disorder, and antisocial personality disorder. Developmental

Psychology, 39 (6), 1020-1035.

Schwartz, G. (1978). Estimating a dimension of a model. The Annals of Statistics, 6, 461-

464.

86



Sclove, L. (1987). Application of model-selection criteria to some problems in

multivariate analysis. Psychometrika, 52, 333-343.

Soromenho, G. (1993). Comparing approaches for testing the number of components in a

finite mixture model. Computational Statistics, 9, 65-78.

Tintle, N. L., Ahn, K., Mendell, N. R., Gordon, D., and Finch, S. J. (2005).
Characteristics of replicated single-nucleotide polymorphism genotypes from COGA:

Affymetrix and center for inherited disease research. BMC Genetic, 6 (Suppl 1): S154.

Tremblay, R. E., Nagin, D. S., Séguin, J. R., Zoccolillo, M., Zelazo, P. D., Boivin, M.,
Pérusse, D., and Japel, C. (2004). Physical aggression during early childhood:

Trajectories and predictors. Pediatrics, 114 (1), e43-e50.

Tucker, J. S., Ellickson, P. L., Orlando, M., Martino, S. C., and Klein, D. J. (2005).
Substance use trajectories from adolescence to emerging adulthood: A comparison of

smoking, binge drinking, and marijuana use. Journal of Drug Issues, 35 (2), 307-332.

Weir, B. S. (1979). Inferences about linkage disequilibrium. Biometrics, 35 (1), 235-254.

Weir, B. S. (1990). Genetic data analysis. Sunderland, Massachusetts' Slnauer.

White, H. R., Bates, M. E., and Buyske, S. (2001). Adolescence-limited versus persistent
87



delinquency: Extending Moffitt's hypothesis into adulthood. Journal of Abnormal

Psychology, 110 (4), 600-609.

White, H. R., Pandina, R. J., and Chen, P. (2002). Developmental trajectories of cigarette
use from early adolescence into young adulthood. Drug and Alcohol Dependence, 65 (2),

167-178.

Wiesner, M. & Capaldi, D. M. (2003). Relations of childhood and adolescent factors to
offending trajectories of young men. Journal of Research in Crime and Delinquency, 40

(3), 231-262.

Wu, R., Ma, C,, Lin, M., Wang, Z., and Casella, G. (2004). Functional mapping of
quantitative trait loci underlying growth trajectories using a transform-both-sides logistic

model. Biometrics, 60 (3), 729-738.

Wu, R. L., & Lin, M. (2006) Functional mapping-how to map and study the genetic

architecture of dynamic complex traits. Nature Reviews Genetics, 7, 229-237.

Wu, W., Zhou, Y., Li, W., Mao, D., and Chen, Q. (2002). Mapping of quantitative trait

loci based on growth models. Theoretical and Applied Genetics, 105 (6-7), 1043-1049.

Xie, H., Drake, R., and McHugo, G. (2006). Are there distinctive trajectory components
in substance abuse remission over 10 years? An application of the group-based modeling

88



approach. Administration and Policy in Mental Health & Mental Health Services

Research, 33, 423-432.

Yang, R. Q., Tian, Q., and Xu, S. Z. (2006). Mapping quantitative trait loci for

longitudinal traits in line crosses. Genetics, 173 (4), 2339-2356.

Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E., and Ruzzo, W. L. (2001). Model
based clustering and data transformations for gene expression data. Bioinformatics, 17

(10), 977-987.

Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in
mapping quantitative trait loci. Proceedings of the National Academy of Sciences of the

United States of America, 90 (23), 10972-10976.

Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136 (4), 1457-

1468.

Zhao, W., Wu, R. L., Ma, C. X., and Casella, G. (2004a). A fast algorithm for functional

mapping of complex traits. Genetics, 167, 2133-2137.

Zhao, W., Zhu, J., Gallo-Meagher, M., and Wu, R. L. (2004b). A unified statistical model
for functional mapping of genotype x environment interactions for ontogenetic
development. Genetics, 168, 1751-1762.

89



