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Abstract of the Dissertation 

Growth Mixture Modeling as an Exploratory Analysis Tool in a Longitudinal  

Quantitative Trait Locus Analysis 

by 

Su-Wei Chang 

 Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

 Stony Brook University 

2009 

 

I examined the properties of growth mixture modeling (GMM) in finding longitudinal 

quantitative trait loci. Two software packages are commonly used in GMM analyses: 

Mplus and the SAS TRAJ procedure. I analyzed the 200 replicates of the simulated data 

from the Genetic Analysis Workshop 16 with these programs using three tests: the 

likelihood ratio test statistic (LRTS), a direct test of genetic model coefficients, and the 

chi-square test classifying subjects based on the trajectory model’s posterior Bayesian 

probability. The Mplus program was not effective in this application due to its 

computational demands. The distributions of these tests applied to genes not related to the 

trait were sensitive to departures from Hardy-Weinberg equilibrium (HWE). Genotyping 

error might be partially responsible for this departure. It may not be valid to apply GMM 

procedures to single-nucleotide polymorphisms (SNPs) that are apparently not in HWE. 

The LRTS was not usable in this application as its distribution was far from the expected 

asymptotic distributions when applied to markers with no genetic relation to the 

quantitative trait. The other two tests were satisfactory. Power was still substantial when 
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markers near the gene rather than the gene itself were used. That is, GMM may be useful 

in genome wide association studies. The direct test of the coefficients and the posterior 

Bayesian probability chi-squared test had essentially the same power when analyzing 

genes in the disease mechanisms. When analyzing data from markers near the true gene, 

there was somewhat greater power for the direct test of the coefficients and less power 

for the posterior Bayesian probability chi-squared test. 
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Chapter 1 Introduction 
 
 
 
 
 
 
1.1 Background  

 

Growth mixture modeling (GMM) is an important tool for analyzing longitudinal 

data (Muthén & Shedden, 1999; Li, Duncan, and Hops, 2001; Colder et al., 2001). GMM 

is a combination of the conventional growth curve model and finite mixture modeling 

(Muthén, 2004). Use of GMM not only provides researchers the opportunity to study 

growth curves of a single or multiple measurable characteristics, such as phenotypes or 

traits, but also provides the chance to improve the accuracy for detection of genetic or 

environmental factors that influence growth change. The conventional growth curve model 

treats the data as inferred from a homogeneous population where population members 

follow a common developmental process of growth or decline. In contrast, GMM 

hypothesizes that there is a fixed but unknown number of components of distinctive 

trajectory patterns observed within the population. GMM applies mixture analysis 

methods to estimate the number of trajectory components and the probability that a trait 

variable (such as a genotype) affects the trajectory component membership. The modeling 

technique generalizes multilevel random effects growth modeling to model a combination 

of continuous and categorical latent variables. The continuous latent variables denote the 

growth parameters, such as intercept or slope, and determine the trajectory shapes, while 

the latent categorical variables represent the latent trajectory components underlying the 



2 
 

latent growth variables. Under the assumption of multinormally distributed random effects, 

GMM allows researchers to test for the departure of an individual’s latent growth 

parameters from the population mean growth parameters, which can be modeled as 

functions of risk factors (time-invariant covariates) or time-varying covariates (TVCs). 

Further, the model has estimates of the probability that the risk factors affect the trajectory 

component membership. The posterior probability of membership of an individual in each 

latent component is used to assign latent class membership. Such latent trajectory class 

membership can further be used as a covariate in a post-hoc cluster analysis. 

 

There are two software packages for GMM. One is the SAS TRAJ procedure 

developed by Nagin and colleagues (Nagin & Land, 1993; Nagin, 1999; Nagin & 

Tremblay, 2001; Jones, Nagin, and Roeder, 2001). The other is Mplus, a widely used 

structural equation modeling software package created by Bengt Muthén, Linda Muthén, 

and colleagues (Muthén & Muthén, 2000; Muthén et al., 2002; Kreuter & Muthén, 2008). 

The main difference between the two GMM analytic tools is that the variance and 

covariance matrix of growth parameters are held to be zero in the SAS TRAJ procedure, 

while the Mplus GMM program allows for the variation of these parameters. That is, all 

individuals are assumed to behave identically within a trajectory component using the 

SAS TRAJ procedure. The term “growth mixture modeling” originally was used by 

Muthén and his colleagues. They regarded the approach used by SAS PROC TRAJ as a 

simplified version of GMM and called it “latent class growth analysis” (LCGA) in Mplus 

to signify the difference. The principle advantage of Mplus GMM compared with the 

SAS TRAJ procedure is that fewer number of trajectory components may be required to 
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identify a satisfactory model by allowing variations about the group mean (Muthén, 2004; 

Nagin & Tremblay, 2005a). To accommodate such variation, Mplus uses a far more 

complex set of parameters to model trajectory components. This increases the 

computational complexity and instability of the analysis. Muthén and Muthén (1998-

2007) suggested that, before conducting GMM, one should use Mplus LCGA as a 

preliminary analytic tool, since model convergence is generally easier and faster to 

achieve with that subroutine.    

 

 

1.2 Literature Review  

 

1.2.1 Application of Growth Mixture Modeling 

In recent years, the prevalence of GMM modeling has been increasing in social 

and psychological studies as well as other scientific disciplines. The application of GMM 

can be traced back to 1990s. It was first used to study criminal behaviors longitudinally. 

Nagin and Land (1993) introduced the fundamental framework of the trajectory-based 

approach and used it to study the life course of individual offending patterns. The 

popularity of this approach among criminologists and sociologists and its advantages in 

the study of the outcome of change over time or at different ages drew attention from 

many researchers.  

 

A great number of papers applying GMM have been focused on the relations 

between behavioral problems of children, such as antisocial acts, physical aggression, 
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opposition, and physical violence, and adolescent delinquency (e.g. Nagin and Tremblay, 

1999; Broidy et al., 2003; Schaeffer et al., 2003; Wiesner & Capaldi, 2003, etc.). 

Different developmental trajectories of problem behavior in childhood may lead to 

different types of juvenile delinquency. For example, trajectory component members with 

chronic oppositional tendency and with constant low-level physical aggression and 

hyperactivity at age 6 through 15 were more likely to commit a covert crime such as theft, 

while trajectory component members with physical aggression behaviors and with minor 

opposition and hyperactivity were more likely to commit an overt crime and serious 

delinquent acts (Nagin and Tremblay, 1999). Using data from multiple sites in three 

countries, Broidy et al. (2003) found that for males, constant physical aggression during 

the elementary school years was associated with increased risk of continued physical 

violence as well as other nonviolent forms of delinquency during adolescence. Schaeffer 

et al. (2003) reported that boys with trajectories defined by chronically high and 

increasing ratings of aggression, evaluated longitudinally from the 1st to the 7th grade by 

school teachers, appeared to be at increased risk for antisocial personality disorder, 

conduct disorder,  and juvenile and adult arrest 

 

There are a considerable number of studies applying GMM in cigarette smoking 

(Colder et al., 2000; White, Pandina, and Chen, 2002), alcohol drinking (Li, Duncan, and 

Hops, 2000; Chassin, Pitts, and Prost, 2002), drug or substance use (Ellickson, Martino, 

and Collin, 2004; Hix-Small et al., 2004; Tucker et al., 2005). GMM was used to identify 

developmental trajectory components and potential predictors or risk factors underlying 

them. For instance, Chassin et al. (2002) showed that among the three drinking trajectory 
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components identified, the trajectory component members who started drinking early (at 

about age 13) and were heavy drinkers were characterized by parental alcoholism and 

antisocial tendency, peer drinking, drug use, and (for boys) high levels of externalizing 

behavior, but low depression. The infrequent drinking trajectory component members 

distinguished themselves by having parental alcoholism and (for girls) adolescent 

depression, while the trajectory component members who started drinking late (at about 

age 16) and were modest drinkers showed the most favorable adolescent psychosocial 

status.  

 

Researchers also used GMM to study the life course of mental illness (Tremblay 

et al, 2004; Aneshensel et al, 2004; Romano et al, 2006; Xie, Drake, and McHugo, 2006; 

Odgers et al., 2007), and patterns of medication or therapy visits (Mojtabai et al., 2009). 

Aneshensel et al. (2004) identified four trajectories of depressive symptoms over time 

among caregivers following bereavement. They reported that caregivers were not 

identical in their emotional responses to bereavement. The caregivers followed distinct 

trajectory patterns connected with their previous experiences as care-givers, in particular 

exposure to stress and access to resources. Mojtabai et al. (2009) employed GMM to 

identify four trajectory patterns of mental health service use for a community sample of 

schizophrenia patients during the four year period after their first admission.  

 

In genetic studies, finite mixture modeling approaches have been applied to 

microarray gene expression data to cluster genes with distinctive gene-expression levels 

in organisms (Yeung et al., 2001; Pan, Lin, and Le, 2002; McLachlan, Bean, and Peel, 
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2002; Allison et al., 2002; McLachlan, Do, and Ambroise 2004). Rodriguez-Zas et al. 

(2006) used GMM methods to characterize gene expression trajectories across time. To 

date, I have not found any research articles applying GMM for the identification of a 

longitudinal quantitative trait locus.  

 

1.2.2 Current Studies about Identification of Quantitative Trait Loci 

For genetic studies, there is currently considerable interest in quantitative traits 

such as blood pressure, body mass index, and cholesterol levels. A quantitative trait locus 

(QTL) is a region of a chromosome that has been shown through genetic mapping to 

contain one or more of the genes that contribute to quantitative phenotypic differences.  

 

A wide variety of QTL mapping techniques have been developed to allow the 

dissection of quantitative traits in a certain populations (Haseman & Elston, 1972; 

Goldgar 1990; Zeng, 1993 & 1994; Lynch & Walsh, 1998; George et al., 2000). Most of 

these studies have focused on traits measured at a single time point. The genetic 

mechanism of some traits may be better understood by collecting and analyzing them 

longitudinally. Macgregor et al. (2005) proposed a flexible random regression model to 

analyze longitudinal QTL data based on the covariance function (CF) structure. They 

showed that the change in the genetic effects over time can be well characterized by this 

approach and that including parameters to model the change in effect with age can result 

in a substantial increase in power to detect QTL compared with repeated measure or 

univariate techniques. 
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A third technique to identify longitudinal QTL is the functional mapping 

approach developed by Rongling Wu and his colleagues (Ma, Casella, and Wu, 2002; Wu 

et al., 2004). They claimed that this mapping technique can characterize the QTLs and 

nucleotides (QTNs) that underlie a complex dynamic trait in a single analysis, showing a 

substantial improvement on the method proposed by Weiren Wu and his group (Wu et al., 

2002). Functional mapping estimates parameters that describe the developmental 

mechanisms of traits and expression for each QTL or QTN. The modeling approach also 

allows for assessing the interplay between gene actions or interactions between 

developmental changes. 

 

The value of functional mapping has been affirmed in mapping longitudinal QTL 

(Zhao et al., 2004a, 2004b; Wu & Lin, 2006). However, the construction of functional 

mapping within the context of simple interval mapping makes it unsuitable for analyzing 

multiple linked QTLs that jointly affect developmental patterns. Zeng (1993, 1994) and 

Jansen and Stam (1994) proposed composite interval mapping to simultaneously model 

two flanking markers and to test for the existence of a QTL by interval mapping and the 

markers outside the interval by a partial regression analysis. Incorporating the strengths 

of functional mapping and composite interval mapping, Yang et al. (2006) presented a 

so-called “composite functional mapping” framework, which allowed for modeling the 

time-varying genetic effects of a QTL tested within a marker interval, and aimed at 

increasing the resolution of multiple QTL on the same region of a chromosome.  
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1.3 Research Problems and Specific Aims 

 

There are no precedents in which GMM has been used in the discovery of 

longitudinal QTL in genome-wide association searches. There has not been previous 

work evaluating the statistical properties of GMM applied to longitudinal quantitative 

genetic traits when the underlying mechanism of the data is known a priori. My goal is to 

evaluate the strength and limitations of methods using GMM through a simulation study. 

I will analyze the 200 replicates of the Genetic Analysis Workshop (GAW) 16 simulated 

datasets with the SAS TRAJ procedure and the Mplus GMM programs using three tests: 

the likelihood ratio test statistic (LRTS), a direct test of genetic model coefficients, and 

the chi-square test classifying subjects based on the trajectory model’s posterior Bayesian 

probability. 

 

There are several research questions that I would like to answer in this study. First, 

using 200 replicates of the GAW 16 simulated data on the coronary artery calcification 

(CAC) measurements taken at the three visits, I would like to assess whether genotypes 

appear to be associated with trajectory component membership and hence identify 

longitudinal quantitative trait loci (QTL) employing GMM techniques. I will also evaluate 

the applicability of the two GMM software packages to this kind of study. 

 

Second, to estimate the empirical power for each test, it is necessary to estimate its 

empirical null distribution. I would like to explore the properties of the empirical null 
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distributions of three proposed measures of association for genes not in the genetic 

mechanism for CAC and compare them with the conjectured null distributions.  

 

Third, using posterior probability for the assignment of trajectory component 

membership and using such latent component membership as a predictor of other 

outcomes of interest has been commonly used in a variety of research articles (Nagin, 

1999; White, Bates, and Buyske, 2001; Tremblay et al., 2004; Nagin & Tremblay, 2005b). 

Since the statistical properties of such an analytic approach have never been discussed or 

studied, I would like to compare the power of GMM analyses that explicitly incorporate 

genotype measurements of the genes in the genetic model for CAC into the mixture 

modeling to GMM analyses that assess genetic association with post hoc tests.  

 

Fourth, I would like to investigate the change in power using markers close to the 

true gene rather than the gene itself and assess whether GMM might be useful in genome 

wide association studies. 

 

Fifth and finally, the evaluation of the effects of genotyping errors is crucial, since 

their consequences might be devastating.  Existence of genotyping errors may influence 

the empirical null distributions, increase the critical value, and thus reduce the power of 

the study. Therefore, I will evaluate the effect that genotyping errors have on the three 

proposed procedures.   



10 
 

Chapter 2 Growth Mixture Modeling 
 
 
 
 
 
 

Growth Mixture Modeling (GMM) extends the conventional mixed effects model 

and finite mixture analysis and models a mixture of continuous and categorical latent 

variables. The continuous latent variables define growth within classes with factors for 

baseline level and trend, and the latent categorical variable defines the unobserved 

developmental trajectory components.  

 

 GMM permits estimation of trajectory shapes (eg, linear, quadratic, cubic), 

trajectory classification probabilities for each participant (posterior probabilities), class-

specific growth parameter variance, and regression of the latent trajectory class variable 

on covariates for trajectory characterization. With multinomial logistic regression 

methods, the characterization allows for identification of the most likely members of a 

given trajectory in relation to a comparison trajectory, which is generally the most 

common trajectory component or the trajectory with mean values closest to zero. Adding 

a binary variable (a distal outcome) or another growth process in the Mplus GMM model 

will make it a generalized growth mixture modeling (GGMM), which is a special case of 

GMM where the distal outcome is regressed on the latent trajectory variable and 

covariates can be added to improve model specification. 

 

 



2.1 The Growth Mixture Model Structure  
 

The GMM model I use throughout the study is based on the group-based 

trajectory model proposed by Nagin (2005). It has been seen as a special case of GMM 

since the variance and covariance of growth parameters are held to be zero, and the 

model assumes that there is no variation among individuals within the same trajectory 

component. Let { }
tiiii yyyY ,...,,

21
=  denote the longitudinal sequence of independent 

observations for individual i over t time periods. The simple heterogeneity model 

assumes that the population sampled is heterogeneous and consists of a mixture of K 

underlying sub-populations. The probability density function for the data Y is given by   

∑ ∑
= =

=====
K

k

K

k
kikkiiii yfpkCyYPkCPyf

1 1
),,()()|()()( μλ                          (2.1) 

where )( kkp λ represents the probability of membership C in component k given kλ . The 

corresponding parameters kλ are time-invariant covariates (time-stable covariates or risk 

factors), and kμ ’s are time-varying covariates (TVCs) that do not affect the probability of 

individual i belonging to a component k.  

 

Since risk factors influence only the probability of belonging to a trajectory 

component, it is assumed that no more information can be acquired from the data Y 

through the risk factor Z given component membership C.  Therefore, suppose for 

individual i, there are R risk factors { }iRiii ZZZZ ,...,, 21=  and a sequence of time-varying 

covariates  over t time periods. Given that there are K trajectory { itiii WWWW ,...,, 21= }
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components, the conditional distribution of the observed data Yi in (2.1) can be rewritten 

as 

∑
=

======
K

k
iiiiiiiiiii wWkCyYPzZkCPwzyf

1
),,|()|(),|(                      (2.2) 

The effect of the risk factor Z on component membership C is modeled with a 

multinomial logistic regression function as follows: 

     .
)'exp(

)'exp(
)|(

1
∑
=

+

+
=== K

k
ikk

ikk
iii

z

z
zZkCP

λθ

λθ
                                                           (2.3) 

where ),...,( 1 Kk θθθ = is a vector of K scalar, and ),...,(' 1 Rkkk λλλ = is a vector of length 

R , with θ1 and λ1 set to be zero. 

 

 

2.2 Modeling for Trajectories 

 

There are three options for the conditional distributions of observed data in the 

SAS PROC TRAJ program. The censored normal model is useful for modeling 

continuous outcome or interval scale data. The zero-inflated Poisson model is used to 

analyze count data when there are more zeros than would be expected under the Poisson 

assumption (Lambert 1992, Jones et al., 2001). The binary logit model is suitable for the 

analysis when the outcome at each measurement point is binary. In Mplus, for mixture 

modeling with longitudinal data, observed outcome variables can be continuous, censored, 
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binary, ordered categorical (ordinal), counts, or combinations of these variable types 

(Muthén & Muthén, 1998-2007). 

 

2.2.1 Model Specification for the Censored Normal Distribution in the SAS TRAJ 

Procedure 

Since the outcome of interest CAC is the longitudinal quantity in my research and 

is continuous, I will apply GMM using the censored normal distribution. The censored 

normal model is applicable to estimate trajectory models when the observed outcome, 

such as a psychometric scale, tends to cluster at the scale maximum or minimum. For the 

censored normal model, the linkage between observed outcome and age (or time) when 

the outcome is measured is established via a variable . Up to a fifth-order polynomial 

relationship is assumed between and age (or time) such that  

*
ity

*
ity

.5
5

4
4

3
3

2
210

*
ititkitkitktikitkkit AgeAgeAgeAgeAgey εββββββ ++++++=             (2.4) 

where are the age, age squared,..., and age to the fifth power for each 

individual i in trajectory component k, and 

52 ,...,, ititit AgeAgeAge

itε  is a disturbance assumed to be normally 

distributed with a zero mean and a standard deviation σ. The parameters 

kk 51 ,...,ok , βββ determine the shape of the trajectory, which is allowed to vary freely 

across different trajectory components.  

 

 Let Smin and Smax denote the minimum and maximum possible score of the 

measured outcome, respectively. If the variable is less than Smin, then the measured *
ity
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outcome Yi is set to be equal to Smin. If the variable is greater than Smax, then the 

measured outcome Yi is set to be equal to Smax. Only if ranges between Smin and Smax 

does Yi equal to . The censored normal model can also be used for uncensored data by 

setting the scale minimum Smin less than all data values and setting the scale maximum 

Smax greater than all data values.  

*
ity

*
ity

3kβ

*
ity

|yi

 

 Let βkXit denote for 

notational convenience. Then Equation (2.4) can be written as , where 

is normally distributed with mean βkXit and standard deviation σ. Hence, the 

probability of observing the trajectory for individual i, given membership in component k, 

is 

5
5

4
4

32
210 itkitkititkitkk AgeAgeAgeAge βββββ +++++

iitkit Xy εβ +=*

Age

*
ity

=== )( kCYP ii   

min min max max

min max1 1 ,
i i i

k it i k it k it

y S S y S y S

S X

k +

y X S Xβ β βφ
σ σ σ σ= < <

− − ⎛ − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∏ ∏
=
∏                (2.5) 

where Note that Yi 

= Smin if ≤  Smin, Yi =  if Smin < <  Smax, and Yi = Smax  if ≥  Smax. 

.5
54

3
3

2
210

*
ititkkitktikitkit AgeAgeAgeAgey εββββββ +++++=

*
ity *

ity *
ity *

ity

4
itAge

 

{ }iLttiit WW ,...,2When adding L time-varying covariates W tiW 1 ,= into the model, 

the specification of for individual i at time t is restated by including them in Equation 

(2.4). Hence, the likelihood of observing the data trajectory for individual i at time t, 

given component membership k is 

*
ity
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==== ),|( itiiiti wWkCyYP  

min min max max

min max1 1 ,
it it it

k it i k it k it

y S S y S y S

S X y X S Xβ βφ
σ σ σ σ= < < =

− − ⎛⎛ ⎞ ⎛ ⎞ ⎛Φ −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

∏ ∏ ∏ β− ⎞⎞Φ ⎟
⎠

           (2.6) 

where                      ....... 2211
5

510
*

itiLtLktiktikitkitkkit wwwAgeAgey εαααβββ ++++++++=

 

2.2.2 Model Specification for the Uncensored Normal Distribution in the Mplus 

GMM 

The Mplus GMM program allows the continuous outcome variable to be censored 

or uncensored. As noted in Chapter 1, the Mplus GMM model adds random effects to the 

growth parameter kkok 51 ,...,, βββ , which define a component’s mean trajectory such that  

,10 miimmmk z γδδβ ++=                                                                                       (2.7) 

where m = 0, 1, ..., 5 denoting the polynomial order; mkβ are random growth parameters 

varying across individuals i = 1,..., n in a trajectory component. The residuals miγ are 

assumed to be normally distributed with zero means and uncorrelated with age or time, 

itε and other covariates.  

 

 

2.3 Model Estimation 

 

All analyses to be discussed can be carried out using maximum-likelihood 

estimation in GMM programs (Jones et al., 2001; Muthen & Muthen, 1998-2007). As of 

May 2009, the default program in Mplus 5.2 first generates 10 sets of random starting 
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values, runs through 10 iterations with each set, and then takes the set with the highest 

log-likelihood value and continues to iterate with that specific set until convergence 

criteria are satisfied. In the initial iterations, the Mplus program uses an expectation-

maximization (EM) algorithm to improve the stability of estimation. It then switches to a 

Newton-Raphson, quasi-Newton, or Fisher scoring algorithm to increase the speed of 

convergence. The SAS PROC TRAJ macro uses a quasi-Newton algorithm and currently 

has no provision for automatically varying starting values, though one can manually input 

sets of starting values. The variance –covariance matrix for the parameter estimates is 

obtained from the inverse observed information matrix with the likelihood of the 

parameter estimates maximized (Nagin, 2005). With regard to missing data, Mplus GMM 

handles missing data using the “missing at random” (MAR) approach, while the SAS 

TRAJ procedure applies “missing completely at random” (MCAR) method (Rubin, 1976). 

 

 

2.4 Testing for the Number of Trajectory Components and Selection 

Criteria 

 

There is continuing debate about which criterion is best to decide on the optimal 

number of trajectory components in a growth mixture model is a complicated issue that is 

as unsettled. In general, researcher use a combination of different criterion, including 

Akaike Information Criterion (AIC; Akaike, 1987), Bayesian Information Criterion (BIC; 

Schwartz, 1978), Adjusted BIC (Sclove, 1987) and entropy. Additionally, to determine 

the number of trajectory components, the meaningfulness for conceptual interpretation of 



the trajectories is also considered. There are a number of studies that show that the AIC 

overestimates the correct number of components in finite mixture models (Soromenho, 

1993; Celeux & Soromenho, 1996), while the BIC has been reported to performed well 

(Roeder & Wasserman, 1997; Magidson & Vermunt, 2004). In this study, I follow the 

recommendation of D’Unger et al. (1998) and Nagin (1999) and use the BIC as the 

primary basis for the selection of the optimal model. For a given model in the SAS TRAJ 

procedure, BIC is defined as 
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                                                                           (2.8

 represents the value of model’s maximized likelihood, 

),()log(5.0)log( knLBIC ‧‧−=  ) 

where L r  is the number of 

A widely accepted rule to decide on the number of components is to model with 

increas

 

.5 Limitations and Important Issues 

One limitation of GMM is that there is no guarantee of model convergence or 

existence of an optimal solution. Model failure often occurs due to excessive number of 

parame s in the model, and n  denotes sample size. Note that the value of BIC 

calculated in the SAS TRAJ procedure multiplied by -2 is the value of BIC calculated in 

Mplus GMM models.  

 

ter

ing number of trajectories as long as the BIC continues to increase, with the 

restrictions that each trajectory component has at least ten subjects and each trajectory is 

interpretable and substantively meaningful.  

 

2
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model 

portant issues about the 

implem ntation of GMM. First, when the data are drawn from non-normal distributions, 

incorre

parameters or over-extraction of the trajectory components. Even when 

convergence is achieved, different sets of starting values may results in multiple solutions 

of the likelihood function. That is, the model may converge at a local rather than a global 

maximum. The failure to identify the global maximum of the likelihood function may 

result in serious consequences. Specifically, one may select an incorrect number of 

trajectory components. To find the global maximum of log-likelihood, Dolan, Jansen & 

van der Maas (2004) reported the use of as many as 5,000 randomized sets of starting 

values. However, the recommendation to vary the number of starting values provided by 

Mplus User’s Guide or SAS TRAJ procedure is vague, and it is still unclear how many 

random starting values are necessary to get the optimal log-likelihood solution of a GMM 

model. 

 

Bauer and Curran (2003, 2004) brought up several im

e

ct estimation for the number of latent trajectory components may be likely, with fit 

indices, such as the AIC and the BIC, selecting a higher number of components than are 

present.  Secondly, in GMM, the incorporation of covariates is used to assess their effects 

on the probability of belonging to certain trajectory components. If a covariate has 

differential effects on the growth parameters, that is, has positive effects on the intercept 

and negative effects on the slope, the capacity to detect the effects of covariates may be 

reduced and thus may lead to spurious estimation of the number of trajectory components. 

In addition, the results from the GMM analysis may not reflect actual population 
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lthough GMM is a common and important tool to evaluate population 

heterog

heterogeneity by correctly estimating the number of trajectory components. Rather, it 

may over-simplify the description of a complex population distribution. 

 

A

eneity and to study the pattern and determinants of such heterogeneity in an 

outcome of interest over time, the interpretation of the modeling results may be difficult. 

Researchers should be aware of this complexity and apply GMM with cautions. 
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Chapter 3 Method                                                                                               
 
 
 
 
 
 
3.1 Genetic Models Known  

 

The 200 replicates of data used in this research were generated from the 

Framingham Heart Study (FHS) using simulation with known genetic mechanisms and 

were given as GAW 16 Problem 3 (Kraja et al., 2008). Each replicate of the data includes 

a total of 6,476 participants with simulated phenotype and true genotype information. 

Specifically, each replicate contains 188 singletons (participants with no other relatives) 

and 942 pedigrees ranging across 3 generations. The measured genotypes include a total 

of approximately 550,000 SNPs (GeneChip® Human Mapping 500K Array Set and the 

50K Human Gene Focused Panel). These are the actual genotypes from the FHS for both 

the genome-wide scan and additional candidate gene SNPs. Because the three generations 

of the family members in the FHS attended various examinations and were observed at 

different time points, Kraja et al. simulated the FHS pedigrees, calculated the family 

member’s ages at a selected exam, and then assigned a simulated age at two subsequent 

time points, 10 and 20 years later. The details of the simulations for each phenotype 

generated can be found in Kraja et al. (2008). The simulated etiologic pathways of genes 

and risk factors determining quantitative traits are shown in Figure 3.1. 

 



Figure 3.1 Simulated genetic mechanisms for GAW 16 data set  
 

 

Source: Kraja et al., 2008. 
 

 

3.2 Longitudinal Quantitative Trait CAC 

 

In this research, the dependent variable I use is a simulated quantity called 

“coronary artery calcification” (CAC), given at 3 time points, with 10 year intervals 

between measurements in 6,476 individuals. Kraja et al. (2008) modeled the longitudinal 

CAC in two stages. First, they modeled an age independent CAC (CACAI) as a function 

of two lipid variables CHOL and HDL, and 5 genes 51 ,, ττ … which had direct effects on 
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its development. The locations of 51 ,, ττ … are given in Table 3.1. Note that a RefSNP 

(RS) is a reference SNP. A “RS” number is a RefSNP accession ID used to identify and 

cluster SNPs that are mapped to the same location on the genome. 

 

 

Table 3.1 The identities of genes contributing to CAC and MI event 
 

Trait Factor RS number Chromosome 

CAC 

τ1 rs6743961 2 

τ2 rs17714718 19 

τ3 rs1894638 6 

τ4 rs1919811 7 

τ5 rs213952 7 

MI event 
φ1 rs12565497 1 

φ2 rs11927551 3 
Source: Kraja et al., 2008.  
 

 

The values of CACAI were simulated using the following model: 

 

CACAI = 500 + 20(Total CHOL - 200) – 25(HDL - 53) + ME + PE + Het + ε ,           (3.1) 

 

where ε ~ . Since CAC cannot be negative, CACAI is set as 0 if the generated 

value is not positive. In the model, 

(0,300)N

1τ  and 2τ has a joint 2-locus genetic effect on ME; 

however, the effect 1τ  displays is only minimal compared with a considerable additive 
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main effect from 2τ . From Kraja et al. (2008), the interactions between the more 

common/less common homozygous genotype of 1τ (CC and TT, respectively) and the 

more common homozygous genotype of 2τ  (CC) decrease the mean effect of ME on 

CACAI by 250 points. The interaction between the heterozygous genotype of 1τ (CT) and 

the less common homozygous genotype of 2τ (TT) decreases the mean effect of ME on 

CACAI by 150 points; the interaction between the heterozygous genotype of 1τ (CT) and 

the common homozygous genotype of 2τ (CC) increases the mean effect of ME on 

CACAI by 150 points; the interactions between the homozygous genotypes of 1τ (CC and 

TT) and the less common homozygote of 2τ  (TT) increase the mean effect of ME on 

CACAI by 250 points. The interactions between the genotypes of 1τ  (CC, CT and TT) 

and the heterozygous genotype of 2τ  (CT) do not have any effects.  

 

The pair of genes, 3τ and 4τ , have a joint 2-locus, purely epistatic effect on PE in 

Equation (3.1). The interactions between the heterozygous genotype of 3τ  (CT) and the 

more common/less common homozygous genotypes of 4τ  (AA and CC, respectively) 

and the interactions between the homozygous genotypes of 3τ  (CC and TT) and the 

heterozygous genotype of 4τ (AC) both decrease the mean effect of PE on CACAI by 200 

points. Other combinations increase the mean effect of PE on CACAI by 200 points. 

 

The gene
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5τ  

effect. The heterozygous genotype of 

has an over-dom AI e Het inant allele for high CAC  and determines th

5τ (AG) decreases CACAI by 100 points on average, 
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the mo  re common homozygote AA increases CACAI by 25 points, and the less common 

homozygote GG increases CACAI by 400 points. 

 

The residual value ε is drawn from )1,0(N and then multiplied by 300. It 

presents the sum of deviations from the mean of normally distributed modeled genetic 

effects 

 CACAI using a piecewise linear function 

djusted by age. Participants under age 20 have not developed measurable levels of CAC; 

for partic

ces the chance of having a myocardial 

farction (MI) event before each visit. In addition, smoking and two genetic loci 

re

and “noise” from other environmental and genetic effects not explained by the 

factors described in Equation (3.1). 

 

The simulated CAC is derived from

a

ipants from age 20 to 60, the CAC progresses linearly; for participants older 

than 60, CAC is equal to CACAI.  

 

As shown in Figure 3.1, CAC influen

in 1φ  and 

2φ interact with CAC to determine the risk of an MI event. The MI data were not 

analyzed in this paper. The two SNPs 1φ  and 2φ are not associated with CAC levels but 

 associated with the MI event. They will be used later in the study as candidate “null” 

genes, with the expectation that they e not CAC risk factors. The positions of 1

are

ar φ  and 

2φ are listed in Table 3.1. 
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.2.1 Genes Used in the Analysis 

A total of 27 SNPs are studied in this analysis: 5 SNPs (

3

54321 ,,,, τττττ ) that have 

effects on the simulated CAC, 2 SNPs ( 1φ  and 2φ ) which determ t the CAC 

level, and 20 “null” SNPs ( and

ine MI but no

10,u21 ,,uu … 102 ,,,1 ννν …

1 ,,

), random

ectively, that were not in the genetic 

yocardial infarction (MI) even

4

ly selected from 

human chromosome

mechanism determining the sim ts. The 

minor allele frequency (MAF) for each of the 4 SNPs 

 (HC) 5 and HC 22, res

ulated CAC a

p

nd m

ττ … is approximately 0.5; 5τ  

has MAF equal to 0.2; all of the other 20 SNPs have MAF greater than 0.15. 

 

For each gene considered, I create two indicator variables: whether the 

participant’s genotype is the more common homozygote and whether the participant’s 

genotype is the less common homozygote.  These indicator variables are used as trait 

variables (also called “time-invariant covariates” in Mplus or “risk factors” in the SAS 

PROC TRAJ programs) in the GMM models. The results for 1 2 10 1 2 10, ,..., , , , ,u u u ν ν ν…

of the test statistics. The results for 1

are 

one basis of the empirical null distribution φ  and 

2φ should be similar to the results for 1 2 10 1 2, ,..., , , , ,u u u 10ν ν ν… . I also report results for 

four randomly chosen SNPs near 5τ  and 2τ , respectively, that have MAF greater than 0.1 

and have genotype frequencies that are in Hardy-Weinberg equilibrium (HWE) to 

demonstrate the possible applicability of the proposed procedures for genome wide 

association studies (GWAS). 
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 Genes 

 to

ponent memb

Each SAS TRAJ analysis reports the maximized log likelihood, the maximum likelihood 

estimates (MLEs) of the trajectory component parameters, the t-statistics of the trajectory 

component parameters, the estimated frequency of each trajectory component, the 

Bayesian posterior probability (BPP) that each subject is a member of each trajectory 

component and the Bayesian Information Criterion (BIC) statistic which is used to assess 

the number of trajectory components. Mplus also reports these statistics. 

 

Two sets of analyses applied to the 200 replicates are considered. Each replicate 

of data consists of 6,476 participants with genotypes and simulated phenotypes. For each 

of the 27 candidate SNPs, the first set uses the longitudinal CAC measures with the two 

Cs CHOL and HDL. The

c

va d function and set the n

es, I analyze the 200 replicates of the simulated data using 

ree tests and assess their power: the likelihood ratio test statistic (LRTS), a direct test of 

3.2.2 Measures of Association with

I use the SAS TRAJ procedure (Jones, Nagin, and Roeder, 2001) and the Mplus 

program (Muthén, 2004) to perform GMM and  assess whether genotypes appear to be 

associated with trajectory com ership and hence suggest longitudinal QTL. 

genetic indicator variables used as traits but without the TV  

second is the longitudinal CAC with the TVCs and with the two genetic indi ator 

riables as traits. I use a quadratic tren umber of components to 2 

and 3. I treat each participant as an independent observation. That is, I ignore the 

relationships within a pedigree.  

 

For each set of analys

th
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ared test classifying subjects based on the 

trajecto

genetic model coefficients, and the chi-squ

ry model’s posterior Bayesian probability. 

 

3.2.3 Direct Coefficient Test 

In an analysis that identifies c trajectory components, there are )1(2 −c  indicator 

variables associated with gene i, 1 5 1 2 1 10 1 10{ , , , , , ,..., , , , }i u uτ τ φ φ ν ν∈ … … . For example, for 

the 5τ gene (which has homozygous genotypes AA and GG), there are estimated 

coefficients for the two homo ponent 1 

ce group  SAS 

R procedure. With

zygous indicators in components 2 through 

 with coefficients of trait variables set to 1 iden

c. Com

tically in theis a referen

AJ 5τ , I calculate ∑
=

+=
c

j
jGGjAA TTS

2

2
,

2
, )(

5τ
 and approximaT te its null 

distribution with the empirical distribution for 1 2 10 1 2 10, ,..., , , , ,u u u ν ν ν… . I call this the 

“direct coefficient test” (DCT) and use the empirical critical value corresponding to a 

level of significance equal to 0.05 from the distribution for , , , ,u u u1 2, ,..., 10 1 2 10ν ν ν… . I 

conjecture that a chi-squared random variable with )1(2 −c degrees of freedom may be a 

good approximation for this null distribution.  

 

3.2.4 Bayesian Posterior Probability Chi-Squared Test 

The second procedure is the Bayesian posterior probability (BPP) chi-squared test 

on the 3 genotype rows by c trajectory component column contingency table. I use the 

results of the GMM model and classify each subject into the trajectory component that 

has the largest BPP. A significant value of the chi-squared test for independence 



( 05.0<p  based on the empirical distribution of the chi-squared test 

for 1 2 10 1 2 10, ,..., , , , ,u u u ν ν ν… ) indicates association with the gene. I conjecture that the 

 approximately a central chi-squared distribution with 

 

istic  

A significant value of the LRTS (

empirical distribution will be

)1(2 −c  degrees of freedom. 

3.2.5 Likelihood Ratio Test Stat

The third procedure is the LRTS. I take the difference of the likelihood function 

with the two genetic indicator variables and the likelihood function without the two 

genetic indicator variables. I perform this test without TVC and with TVC respectively. 

05.0<p  based on the distribution 

for 1 2 10 1 2 10, ,..., , , , ,u u u ν ν ν…

distribution of the LRTS for 

) indicates associ e gene.  I conjecture that the ation with th

10, ,1 2 10 1 2, ,..., , ,u u u ν ν ν… is bounded by a central chi-squared 

 

 

Two pairs of the genes,

distribution with )1(2 −c  degrees of freedom. 

 

3.3 Gene-Gene Interaction Analysis 
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1τ  with and 2τ 3τ with 4τ , have epistatic associations with 

CAC. To evaluate the power of ct the ctions between  GMM to dete  intera  and , for 1τ 2τ

each of the 6,476 participants, I create four mutually exclusive indicator variables MEI, 

MEII, MEIII,  MEIV based on each individual’s level of the mean effect of ME on CACAI 



induced by the epistasis of 1τ  and 2τ : whether CACAI increases by 250 points (MEI = 1, 

and 0 otherwise), whether CACAI increases by 150 points (MEII = 1, and 0 otherwise), 

whether CACAI decreases by 150 points (MEIII = 1, and 0 otherwise), and whether CACAI 

s by 250 points (MEIV decrease nd 0 otherwise). For example, if a participant has the 

enotype CC for 

= 1, a

g and the genotype TT for 2τ1τ , the interaction increases the mean effect 

or th articipant, MEI = 1, MEII = 0, MEIII = 0, 

and M

the sum

of ME on CACAI by 250 points. Thus, f is p

 

EIV = 0. In a GMM analysis that identifies c trajectory components, there are 

estimated coefficients for the four indicators in components 2 through c, as well as t 

statistics which hypothesize that the parameter equals 0 and their corresponding p-values. 

I use the DCT procedure and calculate  of the t-squared statistics 

+ jMEjMEME TTS 2
,

2
, ) . I approximate its null distribution with a chi-∑

=

+=
c

j
jMEjME IVIIIIII

T
2

2
,

2
,(

squared random variable with (4

+T

)1−c

Sim

ean effect level of PE on CAC

degrees of freedom

 caused by the epis

 using level of significance 0.05. 

 only two possible combinations of the 

tasis of 

 

ilarly, since an individual has one of

3τm and 4τ , I create one 

II = 0 when 

analysis that identifies 2 through c trajectory 

and approximate its null 

AI

indicator variable PE  decreases by 200 points, and PEII = 1 when CACAI

ACAI increases by 200 points. In a GMM 

components, I perform the DCT and calculate 

C

∑= jPEPE II
TS 2

,
=

c

j 2

distribution with a central chi-squared distribution with )1( −c degrees of freedom using 

level of significance 0.05. I do not study the BPP and LRTS for detecting these epistatic 

relations. 
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i g

To evaluate deviations from HWE for each SNP studied in this research, I use 

Pearson’s chi-squared test. Suppose there is a single locus with two alleles A and a, with 

frequencies denoted by p and q, respectively. We have P(A) = p, P(a) = q, and p + q = 1. 

If HWE holds for the genotype distribution in the population, we will h ve

3.4 Tests for Hardy-We nber  Equilibrium 

 

a

for the homozygote AA,  for the homozygote aa, and pqAaP 2)(

heterozygote Aa. Suppose the observed genotype frequencies for AA, Aa, and aa for a 

total of N individuals with complete genotype information are 

),(),( AaobsAAobs and )(aaobs . The allele frequencies can be estimated as: 

2)( pAAP =  

= for the 2)( qaaP =

N
AA

2
) + Aaobs(obsp (2ˆ ×

=
)  and q 1ˆ p̂−= . Under the hypothesis of HWE, the expected 

square 

number of subjects for each genotype can be expressed as: 

,ˆˆ2) Nqp=(AaExp,2 Nˆ)( pAAExp = and NqaaExp 2ˆ)( = . Therefore, the Pearson’s chi-

test statistic can be calculated as: 

 

.
)(

))()((
)(

))()((
)(
()(()(2

1 aaExp
aaExpaaobs

AaExp
AaExpAaobs

AAExp
AAExpAA

E
EO −

+
−

+
−

=
−

= ∑χ

  

used. If the chi-square statistic is larger than this value, the null hypothesis that the 

population is in HWE will be rejected. 

 

)) 2222 obs

with one degree of freedom, since the degree of freedom equals the number of 

phenotypes minus the number of alleles. The 1% level of significance for = 6.64 is 2
1χ



Example: The gene 5τ has the observed genotype frequencies for AA, AG, and GG 

r a total of 6,474 (gen es for 2 participants were missing) individuals as 4,176, 

2,014, and 284. The sample frequency of the less common allele G is 

fo otyp

2 284 2,014 0.1994
2 6,474

=
×

, which is also the estimated MAF for 5
× + τ . The sample 

frequency for allele A is therefore equal to 1 – MAF = 0.8006. The expected  

subjects for the genotype  and GG are therefore (0.8006 ,149.6, 

2(0.8006)(0.1994)(6,474) = 2,067.0, and (0.1994)2(6,474) = 257.4, respectively. The chi-

square test statistic with degree of freedom 1 is obtained as follows: 

 number of

s AA, AG, )2(6,474) = 4

  

27.4
4.2572

=+ . 

 

ot reject the null hypothesis and 

report that 5

)4.257284(
0.067,

)0.067,2014,2(
6.149,4

)6.149,4761,4( 222
2
1

−−
+

−
=χ

Since 4.27 is less than the critical value 6.64, we do n

τ appears to be in HWE. 

 

 

age Disequilibrium Measures and the Chi-Squared Test 

 alleles at nearby markers can be used to 

e location of the disease locus. In general, LD is expected to be related to the 

3.5 Link

 

In addition to the true genes, I study the power of the three procedures for nearby 

SNPs and evaluate the association between the linkage disequilibrium (LD) and change 

of power.  LD between disease locus alleles and

refine th
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distanc  b

different chromosomes. 

 

rs when

e between two loci, ut there are many factors that may affect disequilibrium, 

including recombination, migration, selection, mutation, and population admixture and 

stratification. There may even be disequilibrium between alleles at loci located on 

LD involves haplotype frequencies and refers to the association between tightly 

linked SNPs. Two markers are said to be in LD if their alleles are in statistical 

association. For example, if PAB is the probability that allele A1 at genetic locus A occurs 

together with allele B1 at locus B on the same chromosome, LD occu  
1 1 1 1A B A BP P P≠ . 

Thus the A1B1 haplotype occurs either more or less frequently than would be expected on 

the assumption of statistical independence. Table 3.2 shows the observed haplotype 

frequencies between alleles at loci A and B. 

 

Table 3.2 Haplotype frequencies between alleles at loci A and B 

 Locus B 
 

B1 B2 Total 

Locus A A1 
1 1A B 1 2A B 1AP  P  P  

A2 
2 1A BP  

2 2A BP  
2AP  

Total 
1BP  

2BP  1 
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ore measures discussed in Devlin and Risch (1995). 

sing the information in Table 3.2, the disequilibrium coefficient D, the most basic 

measur

 -

0.25 to 0.25. If both haplotype frequencies are 0.5, D will be maximal. Although D 

captures the intuitive concept of disequilibrium, its numerical value is difficult to use for 

measuring and comparing the strength of LD.  

 

Lewontin (1964) proposed a normalized D by diving D by the absolute maximum 

 which could be achieved from the observed haplotype frequencies.  Lewontin’s D’ is 

defined as 

There are a variety of LD measures. I will focus on three of the most common 

measures: the disequilibrium coefficient D (also called LD coefficient), Lewontin’s D’ 

(Lewontin, 1964), which is a normalized disequilibrium coefficient, and the squared 

correlation coefficient r2. There are m

U

e of LD, can be easily calculated (Lewontin and Kojima, 1960): 

1 1 2 2 1 2 2 1 1 1 1 1 2 2 2 2 1 2 1 2 2 1 2 1
.A B A B A B A B A B A B A B A B A B A B A B A BD P P P P P P P P P P P P P P P P= − = − = − = − = −

 

The calculation of D depends only on observed frequencies. The value of D ranges from

D

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

≥

=
0,

),min(

0,
),min(

'

2211

122

D
PPP

D

D
PPP

D

D

BABA

BAB

P

PAA  

The value of Lew  D’  is between - 1 and 1. When |D’| = 1, the LD is said to be 

omplete. However, |D’| = 1 may indicate that at least one haplotype is missing. Since 

ewontin’s D’ is derived from population genetic considerations, there is no implication 

that D’ = 1 should imply that the two markers carry the same information. The squared 

ontin’s

c

L
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correlation coefficient r2 as used by Hill and Roberson (1968) and Franklin and Lewontin 

(1970) has this property. The measure is defined as  

2121

2
2

BBAA PPPP
Dr = . 

The value of r2 is between 0 and 1 with r2 = 1 indicating perfect LD. That is, observations 

at one marker provide complete information about the other marker, making the second 

redundant. The value of r2 can be small even when |D’| is 1. 

 

To evaluate the significance of LD, one can use the chi-square statistic to test 

whether the LD coefficient D between two markers is different from zero as follows 

(Weir, 1979 & 1990): 

2121

22nD2

BBAA
df PPPP
=χ , 

where

er than the critical value  with 5% level of significance, 

D is apparently different from zero, and the population under study appears to be in LD. 

 

 

 

tatistic is larg

)1)(1( −−= lkdf for the pair of markers with k and l alleles, respectively; n is the 

number of individuals in the population. Here, the degree of freedom parameter equals 1. 

If the test s 84.32
1 =χ

3.6 Evaluation of the Two Software Packages 

 

I ran the Mplus software on replicates 1 through 11 with two and three trajectory 

components specified with participants’ age as individually-varying times of observations 
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. I used at least 500 sets of starting 

values in the initial stage and 100 optimizations in the second stage. Mplus computation 

times were between 67 and 75 hours for each replicate to fit the 2-component models 

 for each replicate took less 

an one minute to identify two trajectory components without adding any covariates, 

nearly 

ying covariates. It took about three minutes for the SAS TRAJ 

procedure to identify three trajectory components with genetic indicator variables and 

time-varying covariates for each replicate. 

for the outcome CAC. The software either failed to converge or failed to identify the 

solution due to excessive numbers of local maxima

without any time-invariant or time-varying covariates. The Mplus software was not 

considered any further. 

As for the SAS TRAJ procedure, the GMM modeling

th

one minute to identify two trajectory components with genetic indicator variables, 

and about one minute to identify two trajectory components with genetic indicator 

variables and time-var
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Distribution of Test Statistics                                                                             

4.1 Nu

Chapter 4 Obtaining Empirical Values for the Null 

 
 
 
 
 
 

ll Distribution Based on Two Human Chromosomes Not in the 

Disease Mechanism  

 

The 20 candidate SNPs 1 2 10 1 2 10, ,..., , , , ,u u u ν ν ν… for the empirical null distribution 

were chosen from HC 5 and HC 22 which were not in the simulated genetic model 

determining CAC or any of the CAC related traits (eg. CHOL and HDL). The MAF 

ranged from 0.16 to 0.49 for these SNPs. Half were in HWE, and half were not. The chi-

uared test statistics for HWE and the corresponding p-values are given in Table 4.1. 

 

sq
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or the empirical 

-some Label RS number Position 
(cM) 

MAF HWE P-value In HWE 

Table 4.1 Summary characteristics of the twenty candidate SNPs used f
null distribution 
 

Chromo SNP Physical χ2 for 

U1 rs819910 15.2689 0.30 187.38 <0.001 No 
U2 rs1754389 15.4451 0.39 2.31 0.1284 Yes 

U3 rs53610702 15.5514 0.31 0.00 0.9800 Yes 

U4 rs11542515 16.8158 0.28 2.04 0.1536 Yes 

5 
U5 rs15648724 23.3948 0.28 0.38 0.5367 Yes 

U6 rs76666545 25.7556 0.45 0.07 0.7846 Yes 
U7 rs77537313 31.0333 0.41 25.60 <0.001 No 

U8 rs12098179 43.9496 0.26 58.04 <0.001 No 

U9 rs41622162 44.9991 0.38 16.53 <0.001 No 

U10 rs14007463 49.4872 0.29 24.27 <0.001 No 

22 

V1 rs15268900 579.21 <0.001 No 0.8199 0.25 
V2 rs15445079 1.7544 0.25 1.11 0.2906 Yes 
V3 rs15551377 53.6107 0.27 101.84 <0.001 No 
V4 rs16815794 11.5425 0.25 3.07 0.0799 Yes 
V5 rs23394809 156.4872 0.25 496.26 <0.001 No 
V6 rs25755592 76.6665 0.34 0.55 0.457 Yes 
V7 rs31033292 77.5373 0.40 31.94 <0.001 No 

V8 rs43949633 120.9818 0.49 177.68 <0.001 No 

V9 rs44999080 41.6222 0.16 0.51 0.4748 Yes 
V10 rs49487182 14.0075 0.29 0.39 0.5341 Yes 

 

 

I ran the SAS TRAJ procedure for 1 2 10 1 2 10, ,..., , , , ,u u u ν ν ν…

nd without TVCs. The distributi

greater mean

8753110 ,,,,, vvvvvu

with two and three 

trajectory components, with a on of the results from the 

three tests using the SAS TRAJ procedure had s and standard deviations for 

the ten SNPs that were not in HWE ( 71,uu − ) than for the ten in HWE 

 the 200 replicates, the rates of ( 10964262 ,,,,, vvvvvuu − ) as shown in Table 4.2. Out of



model failure for 2-component models without TVCs and 2-component models with 
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VCs were both 0%. The rates of model failure for 3-component models without TVCs 

d n en with TVCs were 10% and 16% on average, 

respectively. The me and tions of the DCT and BPP tests but not the 

LRTS for th aj one  ap  to ative  to th ue 

2, which ho or

T

CHOL an  HDL a d 3-compon t models 

ans and st ard devia

e 2 tr ectory comp nt models peared be rel ly close e val

lds f  a 2
2χ distributio he S as E. S w ell 

beyond the e te  d s, p larly he g SNP in 

HWE. The use of TVC appeared t e th n a dar on ob ed 

for all the test stat  th cen r the ten markers in HWE as the 

critical value for subsequent tests. 

 

n when t NP w in HW The LRT as w

xpec d asymptotic istribution articu  for t roup of s not 

o increas e mea nd stan d deviati serv

istics. I used e 95  perth tile fo
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200 replicates 

TVC Mean (Std) Mean (Std) 

Table 4.2 Summary statistics of three tests for the 20 null SNPs from HC5 and HC22, 

 

Test, components, In HWE              Not in HWE          In HWE 
95th Empirical 

Percentile 

LRTS, 2, no TVC 1680.85 (2890.89) 19159.28 (12361.63) 10083.25 

LRTS, 2, TVC 15213.58 (2747.61) 31852.81 (11753.07) 23171.14 

LRTS, 3, no TVC 1678.50 (2883.70) 19096.85 (12314.53) 10059.77 

LRTS, 3, TVC 15654.12 (2752.35) 32056.14 (11639.50) 23583.94 

DCT, 2, no TVC 1.77 (1.74) 2.28 (2.52) 5.22 

DCT, 2, TVC 1.83 (1.84) 3.15 (3.35) 5.67 

DCT, 3, no TVC 3.88 (3.13) 3.93 (3.15) 9.90 

DCT, 3, TVC 4.29 (5.09) 4.57 (3.90) 11.16 

BPP, 2, no TVC 2.96 (2.92) 4.06 (4.65) 8.79 

BPP, 2, TVC 3.19 (3.03) 6.80 (11.51) 9.27 

BPP, 3, no TVC 7.27 (5.43) 8.16 (6.37) 17.60 

BPP, 3, TVC 9.99 (16.57) 14.06 (16.58) 22.98 
 

 

4.2 Distribution of the DCT and BPP Tests  

 

I compared the distributions of DCT and BPP for the groups of SNPs in HWE and 

for the group of SNPs not in HWE using Kolmogorov-Smirnov (K-S) tests. All analyses 

indicated that the distributions of the two groups differed significantly except for the 

DCT based on the 3-component models without TVCs. The comparison results are 

reported in Table 4.3.  
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he 
r DCT and BPP from the 10 null SNPs in HWE and the distributions for 

CT and BPP from the 10 null SNPs not in HWE 
 

Ksa, p-value 
2 on

Table 4.3 The asymptotic K-S statistics (ksa) and p-values: comparisons of t
distributions fo
D

components 3 comp ents 
No TVC TVCs s s No TVC TVCs 

D 17, p  0.0 2.2  CT 2.  < 0.001 5.89, p < 01 0.67, p = 0.766 9, p < 0.001
B 2.75, p 0.0 4.1  PP  < 0.001 5.49, p < 01 1.88, p = 0.002 1, p < 0.001
 

 

n Figure 4 rical distribution of the DCT applied to the ten 

S t HWE were  different fr bution of DC lied 

to the other ten SNPs not in HW e 2-component m  

d T of the 2- odels without adding TVCs for the te

H  the mean dard deviation close to 2, consistent with a 

As shown i .1, the empi

NPs in apparen  significantly om the distri T app

E for th odels without TVCs. The

istribution of DC component m n SNPs in 

WE has both and the stan

2
2χ distribution. The DCT of the 2 trajectory component m

e ten SNPs not in HWE has larger mean and standard deviation than the DCT for the 

n SNPs in HWE. The results for the distributions of BPP applied to the SNPs in HWE 

Like DCT, the mean and standard 

eviation for the BPP of the 2 trajectory component models without adding TVCs from 

the ten

odels without adding TVCs for 

th

te

and to the SNPs not in HWE are given in Figure 4.2.  

d

 SNPs not in HWE are much larger than those from the ten SNPs in HWE. Similar 

results hold for the models with TVCs and for the 3-component models (also see Table 

4.2).  

 



Figure 4.1 Histograms of the empirical distributions of DCT applied to the 10 null SNPs 
in HWE and to the 10 null SNPs not in HWE for 2-component models without TVCs, 
200 replicates 
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s, 

Figure 4.2 Histograms of the empirical distributions of BPP applied to the 10 null SNPs
in HWE and to the 10 null SNPs not in HWE for 2-component models without TVC
200 replicates 

0

100

200

300

400

500

C
o
u
n
t

H
W
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

0

100

200

300

400

500

C
o
u
n
t

N
O
T

BPP,  2 COMP. ,  NO TVCS

 

 

 
The distributions of DCT and BPP tests for each of the ten SNPs in HWE are shown in 

Figures 4.3 (A) - (D). The descriptive characteristics for the distributions of each test 

using 2-component models are shown in Table 4.5 – Table 4.7. Among these ten markers, 

the distributions for U5 of DCT and BPP with 2-component models, with and without 

TVCs, appeared to be different from the distributions for all other SNPs. The U5 SNP 

had the highest means and standard deviations for the distributions of most of the tests. 

The U6 SNP also had high means and standard deviations and showed great variability in 

the distributions. 

 



Figure 4.3 (A) Empirical distribution function plot for the distributions of DCT of 2-
component models without TVCs for the 10 null SNPs in HWE 
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Figure 4.3 (B) Empirical distribution function plot for the distributions of DCT of 2-
component models with TVCs for the 10 null SNPs in HWE 
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Empiric31 Distribution for DCT _2C_ TVCs 
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E 
Figure 4.3 (C) Empirical distribution function plot for the distributions of BPP of 2-
component models without TVCs for the 10 null SNPs in HW
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Figure 4.3 (D) Empirical distribution function plot for the distributions of BPP of 2-
component models with TVCs for the 10 null SNPs in HWE 
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SNP Label Mean (Std) 95 percentile 99 percentile 

Table 4.4 Characteristics of the DCT test statistic values obtained without TVCs for the 
10 null SNPs in HWE: 2-component trajectory models 
 

U2 1.69 (1.77) 5.28 10.28 
U3 2.49 (2.04) 6.87 8.14 
U4 1.34 (1.22) 3.58 6.04 
U5 3.16 (2.22) 7.56 10.35 
U6 2.93 (1.87) 6.43 8.42 
V2 0.91 (1.05) 3.17 5.58 
V4 0.92 (1.03) 2.95 5.58 
V6 1.46 (1.18) 3.92 5.45 
V9 1.73 (1.59) 4.66 8.73 
V10 1.11 (1.06) 3.42 4.56 

 

 

Table 4.5 Characteristics of the DCT test statistic values obtained with TVCs for the 10 
ull SNPs in HWE: 2-component trajectory models 

 

SNP Label Mean (Std) 95 percentile 99 percentile 

n

U2 0.87 (1.06) 3.01 5.67 
U3 2.08 (1.45) 5.06 6.52 
U4 0.89 (0.96) 2.74 5.38 
U5 4.48 (2.69) 9.49 13.08 
U6 1.84 (1.35) 4.59 5.73 
V2 1.53 (1.34) 3.99 6.13 
V4 1.13 (1.03) 3.21 4.81 
V6 2.23 (1.88) 6.14 9.42 
V9 2.25 (1.68) 5.68 8.26 
V10 0.99 (1.02) 3.02 5.13 
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Table 4.6 Characteristics of the BPP test statistic values obtained without TVCs for the 
10 null SNPs in HWE: 2-component trajectory models 
 

SNP Label Mean (Std) 95 percentile 99 percentile 

U2 2.49 (2.46) 7.07 11.90 
U3 3.45 (2.84) 8.82 12.08 
U4 2.33 (2.20) 7.10 9.26 
U5 4.66 (3.37) 11.07 16.02 
U6 5.65 (3.94) 13.39 18.31 
V2 1.55 (1.61) 5.07 9.25 
V4 1.67 (1.89) 5.27 10.05 
V6 2.70 (2.23) 7.33 9.14 
V9 3.04 (3.05) 8.46 13.04 
V10 2.03 (1.91) 6.39 9.16 

 

 

Table 4.7 Characteristics of the BPP test statistic values obtained with TVCs for the 10 
null SNPs in HWE: 2-component trajectory models 
 

SNP Label Mean (Std) 95 percentile 99 percentile 

U2 1.54 (1.59) 4.32 8.01 
U3 3.93 (2.79) 9.01 14.18 
U4 1.78 (1.85) 5.96 8.94 
U5 6.15 (3.90) 13.03 18.69 
U6 3.70 (3.10) 9.45 15.32 
V2 0.91 (1.05) 2.98 2.59 
V4 0.92 (1.03) 1.90 1.76 
V6 1.46 (1.18) 3.86 3.20 
V9 1.73 (1.59) 10.05 14.80 
V10 1.11 (1.06) 6.42 9.11 
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AC values appeared to depend on whether the gene was apparently in HWE. Since 

violation of H n use or l g e al, 2005), a 

question to be considered is ss of these procedures 

have evaluated the effect of genotyping errors on the empirical null distributions and of 

other genes and w resent th hapter 

The empirical distributions of the DCT and BPP for genes not associated with 

C

WE is ofte d as a test f arge genotypin rror rates (Le

the robustne to genotyping error. I 

ill p e results in C 7. 
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Chap

I ran the SAS TRAJ procedure for the 200 replicates and studied two and three 

trajectory components, with and without TVCs for the seven genes

ter 5 Genes in the Genetic Models Known 
             
 
 
 
 
                                                          
5.1 The Seven Genes in the Genetic Mechanisms  

 

1φ , 2φ , ,,,, 4321 ττττ and 

5τ in the genetic model. I used the 95th percentile for the ten ma  5 

and HC 22 as the critical value in my power study (see Table 4.2). That is, the fraction of 

replicates that yield a value of the statistic greater than the critical value of a 

corresponding test is the estimated power of the test or the “rejection rate”. Table 5.1 

contains the rejection rates by gene for the analysis results of the three procedures using 

the 2 and 3 trajectory component models, either including or excluding TVCs.  

 

 

5.2 Results for the Two Genes Associated with MI but Not CAC 

 

For 

rkers in HWE from HC

 and 2φ1φ , which were genes associated with MI but not CAC, the DCT and 

BPP rejection rates were low and consistent with 5% level of significance as shown in 

Table 5.1. The LRTS rejection rates were all 0, suggesting that the test might not be well 

defined for this application. 
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1 Rejection rates of each test by gene, 200 replicates 

Gene, Test 2 components, 
no TVC 

2 components, 
TVC 

3 components, 
no TVC 

3 components, 
TVC 

Table 5.
 

 LRTS 0 
 
 

0 0 0 
DCT 1 5 2 7.5 
BPP 6 7 3.5 9 

 

 

LRTS 0 0 0 0 

1φ

 DCT 1 1 2 2 

 LRTS 0 0 0 

2φ
BPP 0.5 1 1 1.5 

 

0 
 DCT 100 100 90 85 

 

 

LRTS 0 0 0 0 

5τ
BPP 100 100 90 85 

 DCT 85 99.5 62 85.5 
BPP 90.5 100 78.5 85.5 

 

 
 

LRTS 0 0 0 0 
DCT 5.5 2 1.5 28 

 

 
 

LRTS 0 0 0 0 

1τ

2τ

BPP 4 0.5 1.5 15 

DCT 2 1 3 3 
3 

 LRTS 0 0 0 0 

3τ
BPP 1 1.5 1.5 

DCT 0.5 3 1 2.5 
BPP 0.5 2 0.5 0 

 4τ
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.3 Results for the Five Genes in the Genetic Mechanisms Determining 

 

Fo

5

CAC 

r 5τ  , the rejection te was 100% f both DCT and BPP using the 2 trajectory 

component model with and without TVCs. The rejection rate

 ra or 

 for 2τ  is 85% for DCT and 

91% for BPP with the 2 trajectory compon  model without TVCs. When the TVCs 

w re inclu  rejection te for both DCT and BPP increased for

ent

e ded, the  ra . For 1τ ,2τ 3τ , and 

4τ , the rej  rates for D nd BPP are y below 5% e sig ce.  

 

For the five genes, the rejection rate CT and BP s was near  same 

o  averag  of TVCs not increase  power since roximately 17% of the 

replicates did not have a solution when three components were specified with TVCs. 

H wever, solutions w  TVCs existed r all the GMM analyses that identified 2 

t jectory ents, ther as an apparent increase in the power of DCT and BPP. 

T at is, u hree trajec components er than two did not appear to increase 

ower due to failure of solutions. Compared to a 0% failure rate for both 2 trajectory 

omponent models without TVCs and 2 trajectory component models with TVCs, the 

rate of model failure was 10% for all the 3 trajectory component models without TVCs 

and 16% - 20% for the 3 trajectory component models with TVCs.  

 

 

ection CT a mostl , the lev l of nifican

 of D P test ly the

n e. Use did the  app

o when ith  fo

ra compon e w

h sing t tory rath

p

c



5.4 Results for the Gene-Gene Interactions  
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I ran the SAS TRAJ procedure for the 200 replicates and studied the epistasis 

effect o  tf the wo pairs of genes, 1τ  with 2τ and 3τ with 4τ  on CAC, using two and three 

trajectory component models and with and without TVCs. 

 

In the GMM analyses that identified 2 trajectory components, excluding or 

1including TVCs, the andτ 2τ  interaction had 100% rejection rate for the DCT, since the 

lications was larger than the critical value 

with 5% level of significance. The rejection rate was also 100% for the DCT 

sum of t-squared statistics of all the 200 rep

488.92
4 =χ

of the 1τ and 2τ  interaction in the analyses that identified 3 trajectory component models, 

with and without TVCs. The critical value 507.152
8 =χ with 5% level of significance was 

used. The DCT for the 2 trajectory component had much higher means and standard 

deviations than the DCT for the 3 trajectory component. Use of TVCs increased the mean 

and the standard deviation of the DCT for the interaction of 1τ  and 2τ  substantially. The 

analysis results for the DCT are given in Table 5.2. 

 

Similarly, the interaction of 3τ and 4τ had 100% rejection rate for DCT in the 

analyses that identified 2 and 3 trajectory components, whether excluding or excluding 

VCs (see Table 5.2). The means and standard deviations for DCT with the 2 trajectory 

omponent were much higher than those for DCT with the 3 trajectory component. 

T

c
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n and the standard deviation of the 

CT associated with the interaction of

Inclusion of TVCs did not necessarily increase the mea

and 4τD 3τ . 

 

isTable 5.2 Descriptive character tics of T for the epistasis from 1 the DC τ  with 2τ  and 
from with 3τ 4τ , 200 replicates 

pistasi
s (Std) Minimum Maximu

m 

Rate of 
model 
failure 

 

E Model Mean 

(%) 

τ1τ2 

2 components, no TVC 162.15 (13.64) 124.50 201.02 0 
2 components, TVC 246.07 (16.97) 208.07 301.82 0 
3 components, no TVC 134.70 (12.03) 101.41 173.56 10 
3 components, TVC 132.80 625.08 16.5 190.71 (44.03) 

τ3τ4 

 components, no TVC 410.92 (20.13) 362.40 464.62 0 2
2 components, TVC 619.59 795.99 0 699.42 (27.58) 
3 components, no TVC 355.00 (25.11) 290.47 431.24 10 
3 components, TVC 40.69 574.22 15.5 289.21 (60.09) 
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τ5 and τ2   

 

I selected and analyzed four SNPs near 

Chapter 6 Markers near the Actual Gene                                       
 
 

 

 
6.1 Markers near the Two Genes 

 and 5τ 2τ  that had MAF greater than 0.1 

and were   ppl  of the ree 

pr re ia SAS ALLELE procedure 

(Czika et al., 2005) and the chi- ua e or l isequ m 

(L d easur

in HWE respectively to demonstrate the p

A

d 

ossible a icability  th

ocedu s for genome-wide assoc tion studies (GW S). The 

sq red test were us to test f inkage d ilibriu

D) an to calculate the LD m es of 5τ  and 2τ wi earb rs. As wn 

in Table 6 st in  L icien h of ur 

NPs near

t

D

h their n y marke sho

.1, the chi-squared te dicated that the  coeff t of eac the fo

S  5τ  appeared to be significantly different from p < 0.001).  That is, there was 

apparent L  between 

 0 (

D 5τ  arkers. The position, LD 

measures, chi-squared statistics and the corresponding p-values of the SNPs near 

and each of the four flanking m

5τ  are 

given in Table 6.1. The LD measur τ5 by physical position on 

tion betw

m ce between 

es for the four SNPs near 

HC7 are shown in Figure 6.1. There was no apparent associa een the LD 

easures and the distan 5τ  and the four SNPs near 5τ . The Pearson

(0.30, 0.58, -0.89 for |LD coefficient|, r2 , and |Lewontin's D'|, respectively, p > 0.1) 

confirmed that there was no significant association between the LD measures and the 

physical distance. 

 

 correlation 
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T
 

SNP 
Label 

Position 
(cM) 

LD measures Chi-squared test for 
LD with τ5 

able 6.1 Physical location and the LD measures for τ5 and the 4 nearby SNPs 

|LD coeff| r2 |Lewontin's 
D'| χ2 P-value 

FM51 116.9034 0.12 0.38 0.98 2427.92 p < 0.001 
FM52 116.9502 0.04 0.06 1 374.67 p < 0.001 
τ5 116.9907 . . . . . 

FM53 117.0168 0.12 0.35 0.94 2258.14 p < 0.001 
0.12 0.53 0.75 3303.80 p < 0.001 FM54 117.0926 

 

 

F
 

igure 6.1 LD measures for the 4 SNPs near τ5 by physical position 

 

 

As shown i

 

n Table 6.2, the results of the chi-squared tests for LD indicated that 

three of the four SNPs near  (p < 0.001). The SNP FM22 had very were in LD with 2τ2τ



low values for all of the LD measures, and was not in LD with 2τ  (p = 0.4816). Figure 6.2 

depicts the relationship between the three LD measures and the physical position on 

HC19 for the 4 SNPs near  a sociation between the 

LD re hys ositi arson ation -0 r |LD 

coefficient|, won '|, respectively, p > 0.8). 

 

able 6.2 Physical location and the LD measures for τ2 and the 4 nearby SNPs 
 

SNP Position 
LD measures i-squared test for 

LD with τ2 

τ2. There appeared to be no app rent as

Ch

 measu s and the p ical p on (Pe correl  = -0.15, .11, 0.1 fo

r2 , and |Le tin's D

T

Label (cM) 
|LD coeff| r2 |Lewontin's χ2 D'| P-value 

FM21 49.7015 0.06 0.07 0.36 841.90 p < 0.001 
FM22 49.7400 0.00 0.00 0.01 0.50 0.4816 
τ2 49.7426 . . . . . 

FM23 49.7444 0.24 0.92 1 11863.58 p < 0.001 
FM24 49.8182 0.03 0.03 0.46 450.38 p < 0.001 
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F
 

igure 6.2 LD measures for the 4 SNPs near τ2 by physical position 

 

 

 

6.2 Markers flanking τ5 

 

I ran the SAS TRAJ procedure for the 200 replicates and studied the four SNPs 

near 5τ , using two and three trajectory component models and with and without TVCs. 

Figure 6.3 shows the rejection rate of the three procedures for 5τ  (116.9907 cM) and the 

ear four SNPs n 5τ  using two trajectory components without T Cs. The rejection rate for 

the nearby SNP FM54 (117.0926 cM) was 100% for all the three tests. The rejection rate 

was greater than 40% for DCT for two nearby SNPs (FM51 and FM53). The rejection 

rate for BPP was about half the rejection rate for DCT for the SNPs FM51, FM52 and 

V
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 was at or below 1%. 

The LRTS had 0% rejection rate for three of the four markers near

FM53. The rejection rate for both DCT and BPP for the SNP FM52

5τ except FM54. 

 

Figure 6.3 Rejection rate1 of tests for τ5 and SNPs near τ5 by osition  
 

 physical p

 

 

I also examined three LD measures for the four SNPs near  5τ and looked at their 

change

showed a negative association (Pearson correlation = -0.85). Similarly, the rejection rate 

of the BPP test appeared to be associated with the LD coefficient and the r2 measures as 

shown in Figure 6.5. The Lewontin's D' measure showed a strong but negative 

association with the BPP rejection rate (Pearson correlation = -0.97, p < 0.05). The BPP 

s by the test as shown in Figure 6.4. The DCT rejection rate increased as the r2 

increased (Pearson correlation = 0.97, p < 0.05), while the LD coefficient showed a 

similar but weaker association (Pearson correlation = 0.81). The Lewontin's D' measure 



rejection rate and the r2was also highly correlated (Pearson correlation = 0.87). The 

correlation between the BPP rejection rate and the LD coefficient was 0.59.  

 

Figure 6.4 LD measures by DCT rejection rate for the 4 SNPs near τ5 
 

 

 

Figure 5  6.5 LD measures by BPP rejection rate for the 4 SNPs near τ
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6.3 Markers flanking τ2 
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I obtained analogous PROC TRAJ results for the rejection rate of tests for the four 

SNPs near 2τ . Figure 6.6 shows the rejection rate of the LRTS, DCT, and BPP procedures 

for 2τ  (49.8182 cM) and the four SNPs near using two trajectory component models 

without TVCs. The rejection rate for two of the nearby SNPs FM22 (49.7400 cM) and 

FM23 (49.7444 cM) was at or above 60% for both DCT and BPP. The rejection rate was 

about 38% for DCT and BPP for the nearby SNP FM24. The rejection rate for the 

remaining SNP FM21 was 1.5% for DCT and BPP. The rejection rate for BPP was nearly 

the same as the rejection rate for DCT. The LRTS rejection rate was 0 for all the four 

nearby SNPs. 

 

igure 6.6 Rejection rate of tests for τ2 and the 4 SNPs near τ2 by physical position F
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 is closest to the The SNP FM23, which 2τ  gene had the highest value of the r2 and 

ewontin’s D’ as shown in Figure 6.7. All the three LD measures were very low for the 

SNP F

L

M22, which is not in LD with 2τ . The power of the DCT and BPP tests appeared 

to have stronger association with the Lewontin’s D’ measure than with the LD coefficient 

or w h the r2 for the three SNPs near 2it τ other than FM22 as shown in Figure 6.7 and 

Figure 6.8. The Pearson correlation for the Lewontin’s D’ measure with the rejection rate 

of DCT was 0.91. The LD coefficient and the r2 also appeared to be association with the 

DCT rejection rate (Pearson correlation = 0.77 and 0.82, respectively). The Pearson 

correlation with the BPP rejection rate for the Lewontin’s D’, the LD coefficient and the 

r2 were 0.93, 0.81, and 0.86, respectively. 

 

Figure 6.7 LD measures by DCT rejection rate for the 4 SNPs near τ2 
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Figure o
 

 6.8 LD measures by BPP rejection rate f r the 4 SNPs near τ2 
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7.1 Effects of Genotyping Errors 

 

Genotyping errors can cause deviations from HWE and reduce the power of a 

genetic study (Leal, 2005). The error is particularly costly when misclassifying the more 

common homozygote as the less common homozygote, and the more common 

homozygote as the heterozygote, with the minimum sample size necessary to maintain 

constant asymptotic power that becomes infinitely increasing as the minor SNP allele 

frequency approaches zero (Kang et al., 2004, Ahn et al., 2006). From Chapter 4, the 

empirical distributions of DCT and BPP for genes not associated with CAC appeared to 

be sensitive to departures from HWE. Without further testing and examination, it is 

impossible to assess the extent that genotyping errors are responsible for such departures. 

In this chapter, I simulate different rates of genotyping errors and evaluate the inflation of 

the level of significance when the genotyping error is present. 

 

 

Chapter 7 Genotyping Error Study 
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I used a simple but realistic error model to simulate genotyping errors. This error 

odel is a modified version from a general model for di-allelic marker loci as used by 

l. (2004), and Ahn et al. (2006). Table 7.1 

ents the conditional probability of three observed genotypes given the true 

genotypes: the m

7.2 Simulations of Genotyping Errors 

 

m

Mote and Anderson (1965), Kang et a

repres

ore common homozygote AA, the heterozygote AB, and the less 

common homozygote BB. Tintle et al. (2005) showed that the error rate of classifying a 

homozygote as the other homozygote is extremely rare (in only 0.00011% of the 

classifications), and the rates of misclassifying a homozygote as a heterozygote and 

misclassifying a heterozygote as a homozygote are roughly the same (about 0.2%). 

Therefore, I set the error rate of recoding a more common homozygote AA as a less 

common homozygote BB equal to 0, and vice versa. I set the error rates of the other four 

inconsistently identified classifications as identically ε, and the error rates of the three 

consistently identified classifications as 1 - ε or 1 - 2ε, as shown in Table 7.1. In my 

simulations, ε was set to 4% to imply a higher level of error rate, and 0.5% to imply a 

lower level of error rate. 
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the true genotypes 
 

 Simulated Genotype 

Table 7.1 Conditional probability of the simulated genotypes given 

True Genotype AA AB BB 

AA 1 - ε ε 0 

AB ε 1 - 2ε ε 

BB 0 ε 1 - ε 

 

 

Based on Table 7.1, I created two sets of simulated genotypes for the 20 “null” 

SNPs 1 2 10 1 2 10, ,..., , , , ,u u u ν ν ν… that were not associated with CAC values or any of the 

CAC related traits for the 6,476 individuals in the sample using the error rates 4% and 

0.5% respectively.  

 

 

replicates, I ran the SAS TRAJ procedure for 

7.3 Effects of Genotyping Errors on the Empirical Null Distribution 

 

For the 200 

1 2 10 1 2 10, ,..., , , , ,u uu ν ν ν… using the two sets of simulated genotypes with the number of 

trajectory components fixed to 2 and 3, and excluding or including TVCs. The results for 

the DCT and BPP tests are reported in Tables 7.2 (A) and (B), and Tables 7.3 (A) and (B).  

 

Tables 7.2 (A) and (B) summarize the test statistics not including TVCs for the 

ten null SNPs in HWE and the ten null SNPs not in HWE, respectively. For the ten SNPs 
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ts 

and for the BPP that identified 2 c TVCs appeared to be 

systematica hen th p < 0.05, see 

Table 7.2 (A)). In trast, the te in HWE, the mean and standard deviation of 

the DCT and the BPP that identified 2 components without TVCs tend to be decreasing 

with the rate of genotyping error increasing for (p < 0 5, see Table 7

 

When the TVCs were included, for the ten SNPs in HWE, the mean and standard 

deviation for the DCT and BPP tests that identified 2 components appeared to be 

atically increasing when the ra

ess clear tendency (see Table 7.3 (A)). With regard to the ten SNPs 

ot in HWE, the mean and standard deviation of the BPP that identified 2 and 3 

omponents with TVCs tend to be decreasing when the rate of genotyping error was 

ar to 

e systematically changing with the error rate as shown in Table 7.3 (B).  

 
 

in HWE, the mean and standard deviation for the DCT that identified 2 and 3 componen

omponents without 

lly increasing w e rate of genotyping error was increasing (

 con n SNPs not 

.0 .2 (B)).  

system te of genotyping error was increasing (p < 0.001), 

while the mean and standard deviation for the DCT and BPP tests that identified 3 

components had a l

n

c

increasing (p < 0.01), but the mean and standard deviation of the DCT did not appe

b



68 
 

from HC5 and HC22: in HWE, no TVCs 

 

Table 7.2 (A) Mean and standard deviation of DCT and BPP tests for the 10 null SNPs 

 

 In HWE  
Error rate 

Test, components, 0% (Original) 0.5% 4% F (P-value) TVC 
DCT, 2, no TVC 1.77 (1.74) 1.81 (1.77) 2.01 (2.06 ) 9.05, p < 0.001 

DCT, 3, no TVC 3.88 (3.13) 3.90 (3.06) 4.19 (3.30) 5.60, p = 0.004 

BPP, 2, no TVC 2.96 (2.92) 3.00 (2.98) 3.19 (3.23) 3.37, p = 0.034 

BPP, 3, no TVC 7.27 (5.43) 7.41 (5.50) 7.68 (5.48) 2.67, p = 0.069 
 

Error rate 

 

Table 7.2 (B) Mean and standard deviation of DCT and BPP tests for the 10 null SNPs 
from HC5 and HC22: not in HWE, no TVCs 
 

 
 Not in HWE  

Test, components, 
TVC 0% (Original) 0.5% 4% F (P-value) 

DCT, 2, no TVC 2.28 (2.52) 2.11 (2.22) 2.10 (2.02) 3.88, p = 0.021 

DCT, 3, no TVC 3.93 (3.15) 3.78 (3.03) 3.89 (3.09) 1.01, p = 0.364 

BPP, 2, no TVC 4.06 (4.65) 3.75 (4.09) 3.61 (3.44) 6.41, p = 0.002 

PP, 3, no TVC 8.16 (6.37) 7.81 (5.93) 7.70 (5.50) 2.95, p = 0.053 B
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s 

 
 

Table 7.3 (A) Mean and standard deviation of DCT and BPP tests for the 10 null SNPs 
from HC5 and HC22: in HWE, with TVC
 

In HWE  
Error rate 

T
T 0% 0est, components, 

VC  (Original) .5% 4% F (P-value) 

D 1.8 1  CT, 2, TVC 3 (1.84) .87 (1.90) 2.17 (2.27) 16.56, p < 0.001

D 4.2 4

B 3.1 3  

B 9.9 9. 10.46 (11.78) 

CT, 3, TVC 9 (5.09) .10 (3.49) 4.63 (5.09) 5.60, p = 0.004 

PP, 2, TVC 9 (3.03) .28 (3.15) 3.65 (3.58) 11.14, p < 0.001

PP, 3, TVC 9 (16.57) 69 (11.21) 1.40, p = 0.247 
 

 

Table 7.3 (B) Mean and standard deviation of DCT and BPP tests for the 10 null SNPs 
from HC5 and HC22: not in HWE, with TVCs 

 N
E

 

 ot in HWE  
rror rate 

Test, components, 
TVC 0 0. 4% F% (Original) 5%   (P-value) 

DCT, 2, TVC 3 2. 3. 2.15 (3.35) 95 (3.22)  09 (3.04) .10, p = 0.122 
DCT, 3, TVC 
BPP, 2, TVC 

4.57 (3.90) 4.66 (5.86) 4.65 (4.04) 0.20, 
6.80 (11.51) 6.07 (12.42) 5.29 (5.24) 10.87, 
14 13. 12. 5

p = 0.816 
p < 0.001 

BPP, 3, TVC .06 (16.58) 65 (17.01) 19 (15.90) .94, p = 0.003 
 

 

For the ten SNPs in HWE, the effect of genotyping error is noticeable. Without 

adding TVCs, the 95th empirical percentile of the tests was about 2% higher with the 

presence of 0.5% genotyping error rate, and about 10% higher on average with 4% 

genotyping error rate as shown in Table 7.4 (A). When TVCs were included, the 95th 

empirical percentile of the tests was about 3% higher when the genotyping error rate was 
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own in Table 7.4 (B).   

 

 9 th rcentile T and BPP tests for the  
HC5 and HC22 VCs 

 HW
ical p

0.5%, and about 13% higher on average when 4% genotyping error rate was present, as 

sh

Table 7.4 (A) The
from 

5  empirical pe
: in HWE, no T

 of DC 10 null SNPs

 

 In
95th empir

E  
ercentile 

Test, compone (Orig .5% 4%nts, 
TVC 0% inal) 0   

DCT, 2, no TVC 5.22 5.33 6.28 

DCT, 3, no TVC 9.90 9.77 10.38 

BPP, 2, no TVC 8.79 9.02 9.63 

BPP, 3, no TVC 17.60 17.89 18.27 
 

 
 
Table 7.4 (B) The 9
from H

5 rcentil T and BPP tests for the 10 null SNPs 
C5 and HC22: in HWE, with TVCs 

n HW
rica

th empirical pe e of DC

 

 I E  
95th empi l percentile 

Test, compone
TVC ri .5nts, 0% (O ginal) 0 % 4% 

DCT, 2, TVC 5.67 5.82 6.70 

DCT, 3, TVC 11.16 11.04 12.21 

BPP, 2, TVC 9.27 9.65 10.88 

BPP, 3, TVC 22.98 23.45 24.49 
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or the ten “null” SNPs in HWE, the effect of genotyping error on the null 

nd BPP is thus sensitive to high genotyping error rates. The incorporation of the 

simulated genotyping errors in the analy the mean and the 

standar CT stics in ull case. In addition, the 95th 

empirical percentile increased about 2% with presence of a 0.5% error rate, and could 

increas ith the pre  of a 4% err .  

 

For the ten SNPs not in HWE, the incorporation of the simulated genotyping 

rrors either increased or decreased the mean and the standard deviation of the DCT and 

e addition of the simulated genotyping errors would be expected to have minor effect. 

Additionally, there seemed to be unknow the departure from 

HWE. M n th typing errors of the data is needed.   As of 

now, it  be a wise choice to apply GMM procedures to SNPs that are 

apparen . 

 

7.4 Summary 

 

F

distribution of the DCT and BPP is detectable. The empirical null distribution of DCT 

a

sis appeared to increase 

d deviation of the D  and BPP stati  the n

e as high as 20% w sence or rate

e

BPP tests. As expected, in the event that the failure of HWE was due to genotyping errors, 

th

n causes responsible for 

ore investigation i e potential geno

 appears not to

tly not in HWE
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nclusion and Discussion 
 

 
 
 

The analyses based on the SAS TRAJ procedure have power to detect genes 

associated with CAC longitudinal QTLs. For CAC, the SAS TRAJ analysis of unadjusted 

CAC values with 2 trajectory components and no TVCs had excellent power (100% 

rejection rate for both DCT and BPP) to detect the 

Chapter 8 Co

 

 

5τ  association and good power (85% 

rejection rate for DCT and 91% for BPP) to detect the 2τ  association. When TVCs were 

include  and the solution existed, there was still 100 jection rate for both DCT and 

BPP fo

d % re

r 5τ , while for 2τ , there was a noticeable increase in the power of DCT (99.5% 

rejection rate) and BPP (100% rejection rate). The associations with 1τ , 3τ  and 4τ  were 

not detected with these procedures. There was 100% power to detect the epistasis 

between 1τ and 2τ and between 3τ  and 4τ using DCT when the interaction mechanism 

was specified in the GMM model.  

 

The LRTS was not usable, possibly due to the dependence of values taken from 

subjects within pedigrees and the non-normality of the distribution of CAC, especially  

values obtained from the first visit. In an actual genetic analysis, to reduce the chances 

at skewness of the data would result in an apparent genetic association, one should 

follow Maclean et al. (1976) and consider multiple transformations of the data. 

th
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hould be developed to enhance the 

pplicability of GMM analysis. 

The Mplus software was not effective in analyzing these simulated datasets due to 

computational instability and computer tim

ts

The empirical null distribution of the DCT and BPP for genes not associated with 

CAC values appeared to depend on whether the gene was apparently in HWE. The 

empirical null distribution of the tests was also sensitive to genotyping errors. With 

presence of a 4% error rate, the 95th empirical percentile could increase by 20% for the 

ten null SNPs in apparent HWE.  For the ten null SNPs not in HWE, there was no 

systematical change observed in the empirical distribution of these tests when genotyping 

error was present. In addition, there might be other underlying factors differentiating the 

SNPs in HWE and the SNPs not in HWE that influenced the empirical null distributions 

of the tests.  

Procedures to find the most effective transformation s

a

 

e needs. Computational instability also 

affected the SAS TRAJ Procedure. One effect of this instability was that using TVCs did 

not increase the overall power as had been expected. About 10% of the replicates did not 

have a PROC TRAJ solution in the analyses where three components were specified 

without TVCs. If TVCs were incorporated along with a 3-component model, the model 

convergence was even more difficult to achieve. In this case, about 17% of the replicates 

did not have a PROC TRAJ solution. However, since 100% of the 200 replicates had a 

solution for the GMM analyses that identified 2 trajectory componen  with TVCs and 

without TVCs, there was an apparent increase in the power of DCT and BPP with TVCs. 
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ight be used to calculate the p-value of the DCT or BPP 

atistics and to explore the properties of the empirical null distribution is use of 

permut

 

 

Another approach that m

st

ation procedures (Fisher, 1922; Koehler, 1986; Mielke & Berry, 2001). 

Specifically, one can generate a large number of random permutations of the n vectors 

(here n = 6,476 participants) of CAC values. The fraction of permutations that yield a 

value of the statistic larger than the one observed is the permutation p-value. 

  

For the markers flanking the actual genes, the rejection rates at a marker near 5τ  

could be as large as the 5τ  rejection rate. The rejection rate for DCT was high for 

markers near  (42% - 100%), except as expected, for one marker with low LD measures. 5τ

The BPP had approxima lower rejection rates than the DCT. The rejection rates

of DCT and BPP for arkers near 

tely 50% 

 the m

 

5τ  appeared to be associated with LD.  

Specifically,

with higher values of disequilibrium coefficient and r2, with Pearson correlations above 

0.5. 

 

 the markers with higher rejection rate for both DCT and BPP appeared to be 

With regard to the markers near 2 , the rejection rates at a marker near 2τ τ  were 

somewhat lower than the 2τ  rejection rate. The rejection rate for DCT was 37% - 67% 

for markers near 2τ , except for one marker with very low LD measures. One marker that 

was not in LD (χ2 = 0.50, p = 0.48) still had a modestly high rejection rate for both DCT 

(67%) and BPP (60%).  On average, the BPP had essentially the same rejection rates as 



75 
 

DCT. As expected, the rejection rates of DCT and BPP for the markers near 2τ  appeared 

to be a

 

 markers 

nkin the actual gene, in particular for

ssociated with LD.  The markers with higher rejection rate of the two tests 

appeared to be correlated with higher values of Lewontin's D' measure (Pearson 

correlations > 0.9). 

The BPP test seems to be as powerful as the DCT test for the identification of the 

genes directly affecting the CAC. However, when it comes to the detection of

fla g  5τ , the BPP appeared to be less powerful than 

DCT.  

s, and a large number of random staring points need ified to 

achieve convergence. DCT and BPP tests using the SAS TRAJ procedure had power to 

detect C lar, lic

in that its distribution was far from the expected asymptotic distribut

markers with no genetic relation to the quantitative trait. 

Overall, analyses that incorporate genotype measurements of the genes into the 

mixture modeling appeared to have somewhat greater power than GMM analyses that 

assess genetic association with post hoc tests. 

 

The results of my study showed that the SAS TRAJ procedure was a useful tool in 

this application. The use of Mplus was computationally demanding, since the 

specification of model parameters was more complicated in the Mplus growth mixture 

modeling program to be spec

ions when applied to 

AC longitudinal QTLs. In particu  the LRTS was not usable in this app ation 

 

In this research, the procedures using growth mixture modeling has been applied 

on pedigree data. I have treated the participants from 942 pedigrees as independent 
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N, a new principal-component-based method proposed by McPeek, 

Zhang, and Abney (2008) to correct for population stratification. Moreover, we will 

extend 

observations. The effect of dependence of observations taken from related individuals has 

not been evaluated. For future work, my fellow graduate students and I seek to expand 

our work and replicate our analyses on unrelated individuals. We will also consider the 

use of PC-POPCOR

our work to the GMM analysis of a binary trait, myocardial infarction (MI) events 

using a binary logit regression model.  
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