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Abstract of the Dissertation

Accelerating Computed Tomography on Commodity
Graphics Hardware

by
Fang Xu

Doctor of Philosophy
in

Computer Science

Stony Brook University

2007

The task of reconstructing an object from its projections via tomographic
methods is a time-consuming process due to the vast complexity of the
data. For this reason, manufacturers of equipment for medical computed
tomography (CT) rely mostly on special ASICs to obtain the fast recon-
struction times required in clinical settings. Although modern CPUs have
gained sufficient power in recent years to be competitive for 2D recon-
struction, this is not the case for 3D reconstructions, especially not when
iterative algorithms must be applied. The recent evolution of commodity
programmable PC computer graphics boards (GPUs) has the potential to
change this picture in a very dramatic way.

In this thesis, we first show that many types of CT algorithms, both it-
erative and non-iterative, can greatly benefit from the high degree of SIMD
(Same Instruction Multiple Data) parallelism these platforms provide. By
doing so, results of high-fidelity can be obtained at speedups of over an
order of magnitude.

In addition to describing theories and implementation details, we fur-
ther show dedicated solutions for resolving various challenges presented
in cone-beam reconstruction using Feldkamp’s method on GPU. We also
propose optimization techniques specifically targeting the latest GPU ar-
chitecture that enables the implementation of our streaming-CT notion.

Next, we use electronic microscopy tomography as an example to demon-
strate the power of GPU’s computational capability which is even more
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important here due to EMT’s extensive usage of iterative algorithms. Here
a sinogram-based method was designed to achieve the maximum speedup
and system scalability.

Last, a new rendering method D2VR that can produce higher visualiza-
tion quality than traditional volume rendering algorithms but suffers from
high computational complexity, is accelerated by our rendering-driven
rapid-CT framework to obtain near-interactive framerates.

iv



To My Parents, Xijian Xu and Rusi Huang
My Grandma, Caiyun Chen

with My Love!



Contents

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Computed Tomography Methods . . . . . . . . . . . . . . . . 3

1.1.1 Feldkamp’s Algorithm . . . . . . . . . . . . . . . . . . 3
1.1.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . 5

1.2 Graphics Hardware . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 GPU for Medical Imaging Computing . . . . . . . . . . . . . 11

2 Theory and Framework 15
2.1 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . 15
2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Forward Projection . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Back-projection . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Pixel-wise Components . . . . . . . . . . . . . . . . . 25
2.2.4 Parallel Execution via the RGBA Color Channels . . . 26

2.3 Modeling Scattering Effects . . . . . . . . . . . . . . . . . . . 27
2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Forward Projection . . . . . . . . . . . . . . . . . . . . 29

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Basic Framework . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Advanced Effects . . . . . . . . . . . . . . . . . . . . . 34

2.5 Signal Analysis and Evaluation . . . . . . . . . . . . . . . . . 38

vi



2.5.1 Popular Interpolation and Integration Methods . . . 38
2.5.2 Optimal Sampling Grid . . . . . . . . . . . . . . . . . 42
2.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Streaming-CT 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Mapping Feldkamp’s Algorithm . . . . . . . . . . . . . . . . 61

3.2.1 Projection-space Filtering . . . . . . . . . . . . . . . . 62
3.2.2 Backprojection . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Additional Acceleration Strategies . . . . . . . . . . . 69

3.3 Practical Concerns . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Precision Issues . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Large Datasets and Cache Performance . . . . . . . . 75
3.3.3 Load Balancing . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Visual-CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.1 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5.2 Reconstruction Quality . . . . . . . . . . . . . . . . . 83
3.5.3 Reconstruction Performance . . . . . . . . . . . . . . 84

4 Electron Tomography Application 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 OS-SIRT . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.2 Accelerating the Forward Projection . . . . . . . . . . 98
4.2.3 Accelerating the Back-projection . . . . . . . . . . . . 101
4.2.4 Limited Detector Problem and Compensation . . . . 101

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.1 OS-SIRT and Effect on Performance . . . . . . . . . . 104
4.3.2 Performance of Sinogram-centric GPU-accelerated ET 107

5 Projection-based Volume Rendering 118
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 GPU Implementation . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Basic Framework . . . . . . . . . . . . . . . . . . . . . 122
5.3.2 Gradient Estimation . . . . . . . . . . . . . . . . . . . 123

vii



5.3.3 Viewport vs. Volume Resolution . . . . . . . . . . . . 125
5.3.4 Acceleration Methods . . . . . . . . . . . . . . . . . . 126

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusions 131
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



List of Tables

2.1 Reconstruction timings for various configurations. Nvidia
Geforce 8800GTX is employed to obatin GPU timings. . . . . 30

2.2 Reconstruction timings for the transmission and emission
CT on 8800GTX: 1283 volume, 160 projection angles. For
emission CT, attenuation correction and scattering effects
are modeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Slice-CT timings (speedups in parentheses) with various con-
ditions discussed (RGBA: 4-channel packing; P: partition-
ing; SP: 8-bit, single pass; DP: pseudo 16-bit, double pass). . 82

3.2 Performance of Slice-CT with larger input datasets, typi-
cally used in clinical practice. . . . . . . . . . . . . . . . . . . 84

3.3 Reconstruction speeds of various high-performance CT so-
lutions. Timings have been normalized for a Feldkamp cone-
beam CT reconstruction with 360 projections onto a volume
grid of 5123 resolution (note, not all implementations em-
ploy 32-bit floating point precision, bilinear interpolation,
and generalized source-detector positioning, which are all
used for our streaming CT application). . . . . . . . . . . . . 85

4.1 Timings for the reconstruction of a volume slice at different
resolutions using SIRT and parallel projections acquired at
88 tilt angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



5.1 Rendering performance in seconds for various datasets un-
der different strategies: D2VR is projection-based volume
rendering with reconstruction of density only (GFS); D2VR-
G is the projection-based volume rendering with reconstruc-
tion of both density and gradient properties (GFP); B uses
the bounding volume empty-space culling strategy, and OC
uses occlusion culling. All of the above timings are mea-
sured with shading. . . . . . . . . . . . . . . . . . . . . . . . . 128

x



List of Figures

1.1 The Feldkamp filtered backprojection algorithm. . . . . . . . 5
1.2 Rasterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The graphics pipeline. . . . . . . . . . . . . . . . . . . . . . . 10
2.1 (a)Transmission imaging: an external X-ray source emits

X-rays. (b)Emission imaging: internal radionuclides emit
photons at sites of biochemical (metabolic) activity. Both
are attenuated by the object’s densities. . . . . . . . . . . . . 17

2.2 Volume representation as a stack of 2D textures . . . . . . . . 20
2.3 3D forward projection with 2D texture slices (for simplicity

of illustration, only the 2D case is shown) . . . . . . . . . . . 21
2.4 Backprojection of a correction image texture onto a volume

slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Texture stack updates when the major projection direction

switches from one stack to the other . . . . . . . . . . . . . . 26
2.6 Modeling scattering effects using geometry dependent blur

kernels. (a)ideal case when 3D texture is used; (b)compensated
for 2D textures; (c)compensated for cone angle. . . . . . . . . 29

xi



2.7 Slice across the 3D (a)-(f) Shepp-Logan brain phantom and
(g)-(j) ellipsoid phantom, reconstructed as a 1283 volume
from a set of 80 analytically computed projections of size
1282 each [160 projections for (f)]. The iterative algorithms
used three iterations of projection/backprojections. (i) and
(j) are from the ellipsoid phantom, with random Poisson
noise added to the projections. The plots show the inten-
sity profiles across the center of three small ellipsoids near
the bottom of the phantom in (a)-(f) and near the top of the
phantom (g)-(j), as indicated by the white line in (a) and (g). 32

2.8 CC and background CV for various reconstructions. . . . . . 33
2.9 Projection evaluation of detector and axis-aligned scatter-

ing models. Profiles: detector-aligned (solid), axis aligned
(dashed) projections . . . . . . . . . . . . . . . . . . . . . . . 36

2.10 Projections obtained with different effects. E: emission; A:
attenuation; S: scattering. . . . . . . . . . . . . . . . . . . . . 37

2.11 Reconstructions results obtained with different effects. E:
emission; A: attenuation; S: scattering. Solid grey line: orig-
inal phantom profile; Dotted line: when the effect has not
been modeled; Solid black line: when the effect has been
modeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.12 The Marschner-Lobb function. . . . . . . . . . . . . . . . . . 41
2.13 Various interpolation and integration methods. The lines

are rays traversing the volume grid, with the empty dots
indicating the voxels. . . . . . . . . . . . . . . . . . . . . . . 43

2.14 (a) 2D hexagonal lattice (b) 3D BCC lattice . . . . . . . . . . 45
2.15 The empty dots are the pixels (from which the rays emerge),

and the full dots are the final pixels stored – the oversam-
pled methods downsample the images obtained with the
traced rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.16 A projection study with line-integrated scanner projections. 52
2.17 A projection study with beam-integrated scanner projections. 52
2.18 A reconstruction study with line-integrated scanner projec-

tions. RMS errors after 10 iterations are plotted in the inset . 53
2.19 A reconstruction study with beam-integrated scanner pro-

jections. RMS errors after 10 iterations are plotted in the inset 53
2.20 Iso-surface rendering of the Toes dataset: (left) CC-lattice

reconstruction, (right) BCC-lattice reconstruction . . . . . . . 54

xii



2.21 Blob phantom study. (Left): a row of blobs of decreasing
size extends diagonally across space. The smallest blobs
have the equivalent size of 1.5 voxels. The CC and BCC lat-
tice reconstructions of these are shown to the right. (Right):
Cross-sections of the blob phantom and its reconstructions.
We observe that the BCC lattice recovers the small blobs sig-
nificantly better, and in some cases is the only lattice to re-
cover them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.22 Tumor phantom study, which is a more realistic experiment
than the blob study. A set of small tumors (a slice of these is
shown on the left) was projected into existing brain projec-
tions images. The corresponding slice of the reconstruction
results using the CC and the BCC lattices are shown to the
right, respectively. We see that the BCC lattice cannot re-
cover all them either (due to their small size), but it recovers
significantly more of them and at higher intensity. . . . . . . 57

3.1 Streaming-CT pipeline . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Slice-CT pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Geometry defined in the Feldkamp filtered backprojection

algorithm. VCS(xv, yv, zv): volume coordinate system; DCSφ(xφ, yφ, zφ)
: source-detector coordinate system; r: voxel to be recon-
structed; O: rotation center (origin); S: source; w/h: de-
tector width/height in pixel counts; dphi: source-origin dis-
tance; Dphi: source-detector distance. . . . . . . . . . . . . . . 65

3.4 Backprojection of a volume slice on the GPU. An ortho-
graphic view (screen) onto the volume slice generates voxel
fragments, each of which will then sample the detector (one
fragment is shown here). . . . . . . . . . . . . . . . . . . . . . 66

3.5 Two options for GPU-based accelerated CT reconstruction:
(a) AG-GPU: accelerated graphics pipeline using both ver-
tex and fragment engines; (b) MP-GPU: multi-processor con-
figurations using fragment engine only. . . . . . . . . . . . . 70

3.6 Access pattern for the orthogonal-angle backprojection in
RGBA channels. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Feldkamp reconstruction from 8-bit data. Left: 0.5% con-
trast; Center: 1% contrast; Right: 2% contrast. . . . . . . . . . 73

3.8 Virtual double precision (pseudo-16bit) through data split-
ting, individual rendering and summation . . . . . . . . . . 74

xiii



3.9 Feldkamp reconstruction from pseudo-16bit data. Left: 0.5%
contrast; Center: 1% contrast; Right: 2% contrast. . . . . . . . 75

3.10 Nonlinear timing curve as a function of volume size (the
size numbers are to be taken cubed). . . . . . . . . . . . . . . 76

3.11 Strategy of texture partition and assembly. . . . . . . . . . . . 77
3.12 GPU load balance pipeline. . . . . . . . . . . . . . . . . . . . 79
3.13 A slice of the 3D Shepp-Logan Phantom reconstructed at

2563 resolution from 160 projections, obtained from 8-bit
and pseudo 16-bit computation under various contrast set-
tings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.14 Streaming CT performance for a Feldkamp cone-beam re-
construction (5123 volume, 360 projections, direct method,
32-bit floating point precision, bilinear sampling) using dif-
ferent buffer (window) sizes. . . . . . . . . . . . . . . . . . . 87

3.15 A slice of the 3D Shepp-Logan phantom, reconstructed with
our streaming-CT GPU-based framework (first column) and
with a traditional CPU-based implementation (middle col-
umn). A windowed density range of [1.0, 1.04] is shown.
The right column shows the line profiles across the three tu-
mors near the bottom of the phantom (dashed lines: ground
truth; solid gray lines: CPU results; solid black lines: GPU
results). We observe that the GPU reconstructions are essen-
tially identical to those computed on the CPU and that they
represent the original phantom well, for both parallel-beam
and come-beam. The bilinear filter yields slightly smoother
profiles than the box filter, but the reconstruction quality
does not suffer significantly when using nearest-neighbor
interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.16 Slices of streaming-CT reconstructions from simulated pro-
jection data of three representative medical volume datasets
(left to right): a human head, human toes, and a stented ab-
dominal aorta. The slight blurring stems from the (minimal)
low-passing induced by the resampling during simulation. . 89

3.17 Slices and volume rendered images obtained via Visual CT. . 90
4.1 Data representation and sampling: (a)two-stack; (b) one-

stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Forward projection loop of a straightforward CPU imple-

mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiv



4.3 A sample ray texture storing the initial positions and direc-
tions of the rays as RBGA values. . . . . . . . . . . . . . . . . 100

4.4 Pseudo code for sinogram-based forward projection. The
first two gray lines are executed on the CPU, while the re-
mainder is GPU-resident fragment code. . . . . . . . . . . . . 100

4.5 Pseudo code for sinogram-based back-projection. The first
two gray lines are executed on CPU, while the remainder is
GPU-resident fragment code. . . . . . . . . . . . . . . . . . . 101

4.6 Limited detector / long object problem. . . . . . . . . . . . . 103
4.7 Limited detector effect. (a) uncorrected result; (b)corrected

result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.8 A slice from the 3D Shepp-Logan phantom reconstructed

in 3D via SIRT and SART using different interpolation ker-
nels during the projection/backprojection. All images are
shown with the full intensity interval [0, 2.0] windowed to
[1.01, 1.04] in order to illustrate the ability to reconstruct re-
gions of low contrast (such as the three small tumors on the
bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Barbara image, reconstructed via various ordered subset meth-
ods. The image resolution is 256 × 256 all reconstructions
were run from 180 projection angles. Linear interpolation
was used in all reconstructions. (a) Reconstructions obtained
for various numbers of subsets after 100 iterations (b) Re-
constructions obtained for various numbers of subsets for a
fixed CC = 0.949. We observe that the best result is achieved
for 10 subsets. (c) Reconstructions obtained for various num-
bers of subsets for a fixed time = 5.13s. We observe that
again the best result is achieved for 10 subsets. . . . . . . . . 109

4.10 Barbara image, reconstructed via various ordered subset meth-
ods. The image resolution is 256 × 256 all reconstructions
were run from 140 projection angles. Linear interpolation
was used in all reconstructions. (a) Reconstructions obtained
for various numbers of subsets after 100 iterations (b) Re-
constructions obtained for various numbers of subsets for a
fixed CC = 0.93. We observe that the best result is achieved
for 10 subsets. (c) Reconstructions obtained for various num-
bers of subsets for a fixed time = 2.95s. We observe that
again the best result is achieved for 10 subsets. . . . . . . . . 110

xv



4.11 Noise study for the Barbara images shown in Figure 4.9: (a)-
(c) correspond to (a)-(c) in Figure 4.9. (left column) cropped
background patches illustrate the different noise levels at-
tained by the corresponding reconstruction settings, (right
column) calculated CV (Coefficient of Variation) values of
these cropped background patches. . . . . . . . . . . . . . . . 111

4.12 CC values vs. number of iterations for reconstructed Bar-
bara images shown in Figure 4.9. . . . . . . . . . . . . . . . . 112

4.13 CC values vs. running time for reconstructed Barbara im-
ages shown in Figure 4.9. . . . . . . . . . . . . . . . . . . . . . 113

4.14 Upper row: reconstructed tobacco mosaic virus data; lower
row: cropped patches from regions (outlined by boxes) in
the upper row. The resolutions: volume 680 × 800 × 100,
projections 680 × 800 pixels, and 61 tilt angles were used.
In all three cases the reconstruction was terminated at 315
seconds. We observe that OS-SIRT 5 achieves the best detail
resolution within this given time. . . . . . . . . . . . . . . . . 114

4.15 Upper row: reconstructed chromatin data; lower row: cropped
patches from regions (outlined by boxes) in the upper row.
The resolutions: volume 512 × 512 × 200, projections 512 ×
512 pixels, and 70 tilt angles were used. In all three cases
the reconstruction was terminated at 141 seconds. We ob-
serve again that OS-SIRT 5 achieves the best detail resolu-
tion within this given time. . . . . . . . . . . . . . . . . . . . 115

4.16 Line profiles across the reconstructed Barbara images shown
in Figure 4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.17 CC values for regular OS-SIRT and randomized OS-SIRT. . . 117
5.1 GPU-based D2VR pipeline . . . . . . . . . . . . . . . . . . . . 123
5.2 Rendering-driven occlusion culling. . . . . . . . . . . . . . . 127
5.3 Rendering results: D2VR+GFS (a, c, e, g, h-n); D2VR+GFP

(b, d, f); (g) is rendered from 16-bit pipeline; (h, j) are ren-
dered from matched volume and viewport resolution, and
(i, k) are rendered by upsampling on reconstructed volume
slices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvi



Chapter 1

Introduction

Various methods for 3D computed tomography (CT) reconstruction
have been devised in the past three decades. While analytical approaches
can be traced back to the Radon Transform [44], iterative algorithms seek
to optimize some objective function, such as maximum likelihood or min-
imal error. All of these algorithms have in common a series of backpro-
jection operations which dominate the computational cost. In addition, it-
erative algorithms also incorporate a series of forward projections, which
incur similar computational expense. Thus, to be useful in clinical prac-
tice, the backprojections (and projections) have to be made as efficient as
possible. However, this goal stands in stark conflict with the complex-
ity of these operations. Each projection/backprojection has a complex-
ity on the order of the size of the volume dataset, which is O(N3). This
complexity is always present, unless recursive [5] or Fourier space [3] ap-
proaches are employed. These, however, have their own limiting con-
straints, since the need to reduce domain interpolation artifacts [5] [62]
via oversampling increases the multiplicative constant in the complexity
term. Here, we shall assume straightforward projection/backprojection
in the spatial domain, at complexity O(N4). In this case, the only way
to reduce the actual computational cost is to reduce the constant factor k

1



CHAPTER 1. INTRODUCTION 2

that relates the complexity O(N3) to the computational cost k · N3. Un-
fortunately, even the most clever programming with cache-aware algo-
rithms and fast differencing schemes can only reach a limited peak perfor-
mance, when implemented on general purpose CPUs. The general prac-
tice of pre-computing the weight matrices in iterative reconstruction can
yield tremendous speedups in 2D reconstruction, but the memory cost
involved makes the use of such pre-computed matrices infeasible for 3D
reconstruction. For this reason, a number of commercial custom-hardware
based solutions have become available. One such approach (by TeraRecon,
Inc.) uses an ASIC (Application Specific Integrated Circuit), while another
(by Mercury Systems, Inc.) uses an FPGA (Field Programmable Logic Ar-
ray). Both reach very impressive speeds for Feldkamp’s cone-beam algo-
rithm [26], but they do not implement any iterative algorithms, such as EM
(Expectation Maximization) [82] or ART (Algebraic Reconstruction Tech-
nique) [33], which are preferable for functional imaging, such as SPECT
and PET. The special-purpose proprietary boards are also quite expen-
sive, in the range of 5- digit $-figures, and furthermore, their static custom
hardware design makes them inflexible for modification and generaliza-
tion. Hence, while it is economically viable to augment already expen-
sive tomography scanners in need for stable and proven reconstruction
algorithms with such hardware boards, less expensive and more flexible
solutions are desirable for researchers and experimental clinicians.

When defining an appropriate platform, it helps to realize that the
projection/backprojection operations, as well as the other operations in-
volved in the grid updates and correction computations, are straightfor-
ward voxel- and pixel-based operations, which have few dependencies
and are usually computed as array operations within a long loop. A very
suitable platform for these kinds of calculations are vector processors or
massively parallel architectures [12]. Vector processors view their input
data as streams, which are combined by operators to produce an output
stream. Also, while CPUs must decode every instruction in a loop, vector
processors execute the entire array operation within one instruction, amor-
tizing the cost for the single instruction decode over the entire loop. Paired
with extremely high memory bandwidth, programmable vector proces-
sors can accomplish array-based computations at impressive speeds. Un-
fortunately, vector processors, such as the Cray supercomputer family, are
expensive machines and very few people have access to them. An exciting
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new development in this regard is the emergence of a main-stream com-
puting platform that bears many features of vector processors - Graph-
ics Processors Units(GPUs). Graphics applications fit the SIMD (Same In-
struction Multiple Data) programming model of vector processors well.
They typically consist of largely independent compute and data-intensive
operations - the screen-rasterization of large numbers of texture-mapped
polygons - which expose both small-grain (per-polygon calculations) and
large-grain (per-polygon list calculations) parallelism. Graphics-heavy ap-
plications, such as computer games or engineering design, require ever-
increasing complex scenes to be rendered at rates of 30 frames per sec-
ond, and these large, consumer-driven demands have led to an unparal-
leled growth in the development of platforms that can satisfy these needs.
The development of graphics hardware grows so fast that the chip perfor-
mance doubles every 6 months, tripling Moore’s law. These GPU boards
gain their speed by devoting significantly more chip real estate to the
computational engine than a general-purpose CPU, such as the Intel Pen-
tium processor. They implement what is referred to as a stream processor,
which has become a widely researched computing paradigm for high per-
formance computing [45]. By casting the projection/backprojection oper-
ations as well as all other CT calculations in terms of stream operations (or
fragment rasterization operations, in graphics parlance), we can exploit
these affordable mainstream architectures to achieve rapid CT.

1.1 Computed Tomography Methods

1.1.1 Feldkamp’s Algorithm

The standard Feldkamp filtered backprojection (FDK) algorithm was
devised by Feldkamp, Davis, and Kress [26]. Different from exact 3D cone-
beam methods, such as [36] [35], which generalize the 2D filtered backpro-
jection by using an inverse 3D Radon transform, Feldkamp’s algorithm is
approximate (or non-exact) but for small cone angles, it manages to pro-
duce results very close to what can be obtained from exact methods. It
does not require non-truncated projections that are difficult to obtain in
clinical practice and is simple and efficient to perform, which makes it
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by far the most popular reconstruction method for 3D circular cone-beam
tomography. Basically, the Feldkamp algorithm consists of three stages:
projection-space filtering, backprojection, and volume-space weighting.
This is captured in the following three equations:

f(r) =
1

4π2

∫ 2π

0

d2

(d + r · xφ)2
P̂φ(r)dφ (1.1)

where

P̂φ(r) = P̂φ(Y (r), Z(r)), Y (r) =
r · yφ

d + r · xφ

D, Z(r) =
r · zφ

d + r · xφ

D (1.2)

and
P̂φ(Y, Z) =

D√
D2 + Y 2 + Z2

Pφ(Y, Z) ∗ ∗g(Y ) (1.3)

In these equations (also shown in Figure 1.1), a voxel is denoted by a
vector r = (x, y, z) in the (reconstruction) volume space defined by (Xv,
Yv, Zv), with Yv being the rotation axis. The elements on the projection
(detector) plane oriented at φ are represented by Pφ(Y, Z), where Y and Z
represent an element’s spatial location in detector coordinates. The vec-
tor X is orthogonal to the detector plane and connects the detector center
with the source S. The two orthogonal vectors Y and Z complete the 3D
coordinate system of the detector space, which is related to (Xv, Yv, Zv) by
ways of a transformation matrix composed of gantry rotation and possible
gantry warp. Finally, the distances from the source to the rotation center
O and the detector center are defined as d and D, respectively.

Equation (1.3) constitutes the projection-space filtering, while equation
(1.2) represents the backprojection operation, that is, the mapping of a
voxel to a location on the projection plane and the subsequent assignment
of the value interpolated there. Finally, equation (1.1) integrates the back-
projection contributions for a given voxel over all projections, properly
weighted in volume space.
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Figure 1.1: The Feldkamp filtered backprojection algorithm.

1.1.2 Iterative Methods

By defining the volume and projections (images) as discretized grids/arrays,
we can model the imaging procedure as the following equation:

pi =
N∑

j=1

vj · wij i = 1, 2, ...,M (1.4)

where pi is the approximate line integral on the ith ray/pixel, vj are those
voxels involved in the ray traversing and wij is the weight factor that
voxel vi contributes to the value of pi, while M and N are the number
of pixels/voxels. For large values of M and N presented in the tomog-
raphy study, it is difficult to solve the equation system by directly figur-
ing out the inverse weight matrix. Therefore, iterative methods are em-
ployed by repeatedly modifying the estimated volume, approximating the
ground truth (given images) and eventually minimizing the measurement
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difference to reach convergence. Popular iterative algorithms include alge-
braic methods, such as SIRT (Simultaneous Iterative Reconstruction Tech-
nique) [32], SART (Simultaneous Algebraic Reconstruction Technique) [2],
as well as statistical methods such as ML-EM (Maximum Likelihood / Ex-
pectation Maximization) [82] and their subset variants.

The definition of algebraic methods is shown in equation (1.5). Here
acquired projections are pre-grouped into sets of certain size and the cur-
rent estimated volume vk keeps being updated by the computed correction
calculated from all projections within the set. The update from all subsets
completes an iteration of the reconstruction. Within each set update, the
correction is computed as the difference between the measured projection
(ground truth) pixels pi and the estimated reprojection pixels ri, weighted
by the sum of weights, which is added to current kth volume v(k) to yield
the latest estimation v(k+1). The reprojection ri can be calculated by simu-
lating the ray integration procedure with raycasting approach (ray-driven
method), where the discretized volume is sampled along the ray path at
equidistant steps with appropriate kernels deployed to obtain interpolated
values that are accumulated in the end to form the pixel. The above pro-
cess repeats until convergence, where the difference between projections
and reprojections is small enough. Here, the number of projection con-
tained in each subset Pset can be adjusted, where SART and SIRT are spe-
cial cases when Pset is set to 1 and the total number of projections, respec-
tively. λ is the relaxation factor that is used to prevent instability when the
subset size is small.

v
(k+1)
j = v

(k)
j + λ

∑
pi∈Pset


pi − ri

N∑
l=1

wil


∑

pi∈Pset

wij

ri =
N∑

l=1

wil · v(k)
l (1.5)

Derived from statistical model, ML-EM and its variant OS-EM (Or-
dered Subsets Expectation Maximization) [40] performs well on models
that conforms to the Poisson distribution. It differs from algebraic meth-
ods in computing the correction with division of the projection values
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over the reprojection values and updating the current estimated volume
through multiplication (see equation (1.6)).

v
(k+1)
j =

v
(k)
j∑

pi∈Pset

wij

( ∑
pi∈Pset

(
pi

ri

)
wij

)
ri =

N∑
l=1

wil · v(k)
l (1.6)

1.2 Graphics Hardware

CPUs have been designed to provide a maximum of flexibility for the
programs that run on them. In CPUs, micro-instructions are fetched and
executed in a sequential fashion. This allows for any type of program
flow, but performance does not benefit per se from the more regular pro-
gram flow inherent to loops. The only benefit comes from the fact that
loops tend to localize data access, and CPUs typically provide two levels
of fast memory caches of significant size to exploit this data locality. These
caches pre-fetch and store data close to previously used data items and
thus provide faster access to them when needed soon after.

GPUs, on the other hand, are not known to be overly flexible in terms
of program flow, but they are extremely powerful when it comes to the
repetitive data processing often exhibited in loops. In fact, this form of
computational model is very typical for graphical objects, which consist
of large meshes of polygons, with each such polygon being defined as a
set of three or more vertices. Here, each such vertex is represented as a
3D floating point (x, y, z) coordinate triple. To view such a graphical ob-
ject from an arbitrary position, all vertices must first be transformed into
viewing-space (defined by the viewing direction), orthographically or per-
spectively, and then reconnected to form the (projected) polygons. If only
these connections (or edges) are displayed, then the object appears as a
wireframe model. However, if all screen pixels subtended by a given poly-
gon are assigned a value, then a process called rasterization is invoked.
More generally speaking, rasterization produces data (called fragments),
which are associated with the corresponding screen pixels. Also, apart
from shading effects, one can add more surface detail by assigning each
vertex a certain location in one or more images or textures. Each polygon
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then subtends a closed (polygonal) region in this texture, and the rasteriza-
tion process provides the coordinates (as part of the fragment) into these
textures (Figure 1.2). Since these do not necessarily coincide with a dis-
crete texture pixel, the texture must be interpolated (either with linear or
nearest neighbor interpolation) to yield the value assigned to or combined
with the screen pixel (Figure 1.3).

polygon

texture

screen

Figure 1.2: Rasterization.

Thus there is a strict computational pipeline governing the display of
a graphical object: (1) the vertex transformations, (2) the generation of
fragments, and (3) the computations imposed on the fragments, such as
texture interpolations or more complex tasks, which result in the RGBA
colors assigned to the screen pixels (see Figure 1.4). Since screen pixels are
numerous and typically independent, a high degree of SIMD (Same In-
struction Multiple Data) parallelism exists. Further, since this basic graph-
ics pipeline has no loop dependencies, the objects simply stream across the
pipeline, starting as a list of vertices, which generate fragments, which
in turn form the basis for computing the visual attributes assigned to the
corresponding screen pixels. GPUs are hence a streaming architecture, pro-
cessing massive sets of graphics primitives, i.e., polygons and textures, in
a highly parallelized fashion. This dedicated computational model greatly
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Figure 1.3: Interpolation.

simplifies the control circuitry which intensifies data processing and also
enables optimized memory access for maximum throughput with signifi-
cantly reduced latency.

More concretely, vertices and fragments that share similar operations
constitute the elements of a stream, where these similar operations on
them are implemented via user-defined shader programs, one at the ver-
tex stage and one at the fragment stage of the pipeline (see the orange
boxes shown in Figure 1.4). When rendering begins, a stream of vertices
generated on the CPU, or stored in GPU vertex memory, is passed into
the GPU’s geometry processing stage. These vertices usually carry multi-
ple properties to describe the target object, such as coordinate (xyz), color
(RGBA), normal, etc. A vertex shader can then be applied to transform and
map the 3D coordinates of each vertex to homogenous space and eventu-
ally screen space, while possibly complex vertex lighting effects can also
be calculated. Next, rasterization, which is performed in fast special GPU
hardware circuitry, reassembles each polygon in screen space and quickly
fills the space enclosed by it. This generates a stream of fragments, which
map to corresponding screen pixels. This fragment stream is processed in
the fragment shader, which performs a series of user-defined per-pixel cal-
culations. In this effort, the fragment shader also gives rise to another data
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Figure 1.4: The graphics pipeline.

stream, consisting of textures, which are stored in GPU texture memory
and provide the data used in the fragment shader. After fragment pro-
gram completion, the result is written to the corresponding pixels on the
screen (or the framebuffer).

Textures are the dominating data representation and storage primitive
used by GPUs. A texture is essentially a 1-3D array of data. Each texture
element can be represented in a certain format, ranging from a scalar to
a vector of up to four components. In a graphics context, the latter usu-
ally describes a Red/Green/Blue/Alpha (RGBA) value, but note that for
general-purpose GPU-computing this 4-channel representation can pro-
vide an additional 4-way parallelism. This parallelism can be exploited
by packing data sharing common operations together, and good speedups
can be obtained since GPUs tend to be very efficient at processing this type
of vectors. Current GPUs also support various texture precisions rang-
ing from basic 8-bit integer to advanced 32-bit floating point. There are,
however, still constraints on the use of textures in certain combinations of
formats and precisions. For example, 4-channel 16-bit fixed point textures
are not yet supported. Further, for most GPU-based applications, 2D tex-
tures are the preferred primitive since they are naturally optimized by the
hardware and support efficient read/write actions. 3D textures, in con-
trast, are used mainly in (read-only) visualization applications, since they
do not support direct-write operations. When write-access is desired they
are better represented as stacks of 2D textures.

The latest generations of GPUs (for example, the NVIDIA GeForce 8800
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GTX) provide 128 stream processors, with a theoretical memory band-
width throughput of 86.4GB/s and a pixel fill rate of 13.8GPixel/s. This is
equivalent to a computational power of 520GFlops, compared to a num-
ber of 25Gflops and 12GB/s that can be sustained on a dual-core Pentium
4 3GHz CPU. The performance growth rate of GPUs is consistently main-
tained at about triple of the Moore’s law while its cost is successfully kept
low thanks to the intense competitions on the market. Finally, dual-GPU
boards or even quad-GPU designs have also become recently available.
These designs use the Scalable Link Interface (SLI) to connect the multiple
GPUs together, and such a setup can double or quadruple, respectively,
the amount of performance of a single GPU, on a single PC.

1.3 GPU for Medical Imaging Computing

The emergence of modern Graphics Processing Units (GPU) not only
dramatically enhances the 3D object rendering speed and quality that en-
ables the production of high-quality images in real time, it also propels a
new wave of commodity high-performance computing (HPC) research in
the last few years. This new trend is called General Purpose Computing on
GPUs (GPGPU) [74], where the computational power of GPU is no longer
limited to computer game design but extended into a more general field
of scientific computing. This is enabled by the new features carried by
the current graphics hardware whose underlying SIMD (Single Instruc-
tion/Multiple Data) architecture has evolved to a very flexible and high
precision pipeline which contains programmable engines with high-level
language support and full 32-bit floating point computation capabilities.
These added features greatly reduce the effort users need to spend for har-
nessing the GPU’s huge computational power that derives from simplified
control circuitry and reduced memory latency.

Two fundamental computational kernels, conjugate gradient and multi-
grid solvers were implemented [9] for solving partial difference equations
(PDE). Linear algebraic calculations in numerical computing were also
mapped onto GPUs [9] [53] for solving sparse matrices and multi dimen-
sional finite difference equations, often used in fluid dynamics. Harris et
al. [38] [37] accelerated the performance of the couple map lattice (CML)
model for rendering physical phenomena such as reaction/diffusion and
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3D cloud, while Li et al. [58] experimented on Lattice Boltzmann model.
They both achieved interactive simulation speed on sophisticated physical
models. Scientific visualization as well as volume rendering research that
involves processing on massive data also benefit from GPU’s power [23]
[49] [77]. In the following we will concentrate on reviewing the previous
work contributed to the investigation of using GPU for medical imaging
applications.

In the 1990s, only midrange workstations, such as the SGI Octane or
Onyx, which are available at a cost of over $20,000, had the level of graph-
ics hardware necessary for CT reconstruction. The first works that sought
to exploit this hardware for the acceleration of CT was by Cabral et al. [13],
who implemented an analytical Feldkamp-type algorithm, and Mueller
and Yagel [70], who described the implementation of an iterative method
– the Simultaneous Algebraic Reconstruction Technique (SART) [2]. With
the emergence of low-cost PC-based graphics hardware of similar capabil-
ities than that of the SGI, more recent work by Chidlow and Möller [16]
focused on this platform. Using a NVIDIA GeForce 4, these authors im-
plemented another iterative algorithm the maximum likelihood expecta-
tion maximization method (ML-EM) [82], and its faster cousin, Ordered-
Subsets EM (OS-EM) [40]. However, all of the above approaches suffered
from the circumstance that the graphics hardware they employed only
had integer-arithmetic at 8-bit precision (PC) or 12-bit precision (SGI). This
severely limited their accuracy and performance. With integer arithmetic
at this precision one cannot perform the accumulation operations of the
projection and backprojections in hardware. Also, the short precision lim-
its the accuracy of the (sometimes small) grid corrections in iterative algo-
rithms. For this reason, the accumulation operations had to be performed
outside the GPU, on the CPU, which involved expensive data transfers be-
tween these two entities. A (virtual) 16-bit extension of the precision could
be achieved by splitting high-precision calculations among two of the four
color channels (Red, Green, Blue, Alpha) [70]. A similar mechanism could
also be employed to facilitate a subset of the accumulations (16 for a 4-bit
virtual extension) in hardware [16]. Although quite effective, this mech-
anism was only partially accurate since it dropped the lower 8 bits of the
high-end channel. The reconstruction of the Shepp-Logan brain phantom
using the hardware-accelerated SART algorithm as shown in [70] is clearly
not satisfactory for the 0.5% contrast and only acceptable for higher con-
trasts (1%, 2%), at speedups in the range of 35-68 when compared to a
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CPU-based method.
A further limitation of these older generations of graphics hardware

was their lack of programmability. For example, divisions are necessary
for the normalization step in the iterative algorithms, but were not sup-
ported on these older platforms. The major leap forward made by new
generations of GPUs is the fact that they offer programmability at float-
ing point precision at two stages in the graphics pipeline. A direct conse-
quence of this added functionality is that now the entire reconstruction can
be performed within the GPU, at CPU precision. Thus, there is no longer
a need to export and import data from and to the CPU, which overcomes
the severe bottlenecks inherent in these data transfers. Also, a direct con-
sequence of the GPU-resident computation is that the generated data can
be easily visualized. Since in “normal” settings the GPU’s main job is the
rendition of graphics images, one can simply inject a volume rendering or
a volume slicing cycle into the reconstruction and then map the resulting
image to the screen-visible portion of the GPU’s framebuffer.

Finally, the emergence of GPUs (for example, the NVIDIA FX series)
with full programmability and 32-bit floating point precision enabled com-
plete GPU-resident CT reconstruction, with both analytical and iterative
methods [98] and with large data [69] at a fidelity comparable to CPU-
based methods. Following these more fundamental works were a number
of papers targeting specific CT applications, all with impressive speedup
factors. Kole and Beekman [50] accelerated the ordered subset convex re-
construction algorithm, Xue et al. [102] accelerated fluoro-based CT for
mobile C-arm units, and Schiwietz et al. [80] accelerated the backprojec-
tion and FFT operations employed for MR k-space transforms. In [97], the
GPUs helped to achieve a fast calculation of PSF (point-spread function)
matrices used for OS-EM in SPECT imaging. One of our papers, [99] used
the GPU-accelerated CT framework to enable interactive volume visual-
ization directly from a full set of projection data. Finally, a real-time recon-
struction framework was proposed in [101] and advanced effects involved
in emission CT were implemented in [100].

Besides these GPU-based efforts, there have also been recent works
that exploited other high performance computing platforms for CT, in par-
ticular the Cell BE processor [43]. While the performance is quite good, the
Cell BE does not fit (at least not currently) the profile of a commodity plat-
form. Furthermore, it turns out that GPUs are in fact an excellent match for
CT reconstruction, as the (back-) projection operations of CT have much
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in common with traditional graphics operations, which receive super-fast
hardwired acceleration support in GPUs. Exploiting this fact represents a
major source of speedups, resulting in overall superior performance of our
approach. Further, given the time-critical interaction of the various GPU
pipeline components within our graphics-oriented framework, a careful
load-balancing among these components is also needed to maximize the
performance.



Chapter 2

Theory and Framework

2.1 Theoretical Considerations

We use the volume representation of Lewitt [57] and others, who model
a volume as a collection of point samples, positioned at the grid points. In
this model, values at off-grid positions are estimated from the grid sam-
ples via interpolation with some kernel function. While Lewitt has pro-
posed the use of pre-integrated Bessel functions (so-called blobs) for this
purpose, we will employ linear functions, which have also found wide-
spread use in backprojectors and, as we shall see later, lend themselves
well for implementation in graphics hardware.

Before describing how GPUs can be exploited to perform all calcula-
tions occurring in a variety of popular CT algorithms, it is helpful to es-
tablish a common notation for these. For this purpose, let us assume a vol-
umetric object composed of a material with attenuation function µ(x, y, z)
and separately irradiated by two imaging modalities: transmission and
emission X-ray. In transmission X-ray (see Figure 2.1a), the source is lo-
cated outside the object and a ray emanating with initial (source) intensity
Q0, traversing the object, and collecting in bin (u, v) of a 2D detector ori-
ented at angle φ will be recorded with intensity:

CQ
φ (u, v) = Q0 · e−

∫ L
0 µ(t)dt (2.1)

15
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Here, t is a parametric variable defined along the ray, and L is the distance
between the source and the detector bin. On the other hand, in emission
X-ray (see Figure 2.1b) the sources are the metabolic activities E(x, y, z) lo-
cated inside the object, each attenuated by the material between it and the
detector. Integrating over all metabolic sources along the ray orthogonal
to detector bin (u, v) gives the energy:

CE
φ (u, v) =

∫ L

0

E(s) · e−
∫ s
0 µ(t)dt (2.2)

where s is a parametric variable defined along the ray, and L and t are de-
fined as in (2.1). To illustrate the amenability of CT for vector processing,
let us choose an appropriate notation. For this, we denote CQ

i = CQ
φ (u, v)

and CE
i = CE

φ (u, v) for 0 ≤ i < Mφ, where Mφ is the total number of pixels
(rays) in the projection acquired at detector angle φ.

By further setting qi = −log(CQ
i /Q0), the transmission X-ray equation

(2.1) can be written as follows:

qi =

∫ L

0

µ(t)dt (2.3)

Since we would like to reconstruct the values at the volume grid positions,
it makes sense to rewrite (2.3) in an alternative, voxel-centric form:

qi =
N3−1∑
j=0

µjwij (2.4)

Here, a wij is the weight with which the object voxel j (of value µj) con-
tributes to detector pixel i (with final value qi). These weights are deter-
mined by the interpolation filter [57] and the integration rule. On the other
hand, the emission X-ray equation (2.2) indicates that the emissive quan-
tity E(s) is attenuated by the materials µ between site s and the detector.
Returning to the voxel-centric representation of (2.4), now using the Ej as
the values stored at the grid points, the projected emissive contribution
originating at any s is:

ei(s) =
N3−1∑
j=0

Ejwij(s) (2.5)
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Attenuating object (µ)

(a)
detector

radionuclides (E)
detector

Attenuating object (µ)

X-ray source (Q0)

(b)

Figure 2.1: (a)Transmission imaging: an external X-ray source emits X-
rays. (b)Emission imaging: internal radionuclides emit photons at sites of
biochemical (metabolic) activity. Both are attenuated by the object’s den-
sities.

Note that here the wij(s) are not only given by the voxel weights, as in
the transmission case, rather they now also incorporate the attenuation
integral up to s. The equation for the total projected emissive energy is
then given as:

ei =

∫ L

s=0

(
N3−1∑
j=0

Ejwij(s)) (2.6)

Re-ordering the integral yields:

ei =
N3−1∑
j=0

Ej

∫ L

s=0

wij(s)ds =
N3−1∑
j=0

Ejwij(a) (2.7)

Here, the wij(a) combines the voxel weights of (2.4) and the attenuation
factors. The subscript (a) is used to denote that the wij contain a factor
for attenuation correction. We observe that this equation is very similar
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to (2.4). Therefore we conclude that we can project the emission volume
E with methods similar to those that reconstruct the attenuation volume
µ, given knowledge about the more complicated wij(a) (in case we do not
care about the ray attenuation, we simply use the basic wij of (2.4) for
the projection of the emission volume). Thus, by generalizing (Ej, mj)
to vj and (ei, qi) to pi we can formulate a generalized projector and, by
exchanging the roles of vj and pi, we obtain a generalized backprojector:

pi =
N3−1∑
j=0

vjwij vj =

Mφ−1∑
i=0

piwij (2.8)

In the following, we will denote the projection operator in the first part
of (2.8) by Pφ(V ) and the backprojection operator in the second part of (2.8)
as Bφ(I). Here, V is the volume data vector (subject to reconstruction), I is
an image data vector, and the projectors/backprojectors are matrices op-
erating on them. However, in our framework the matrix elements, i.e., the
wij , will not be stored explicitly, but computed on the fly, using the inter-
polators in the rasterization hardware. We will now express the various
reconstruction methods by ways of these operators.

In the Feldkamp algorithm [26] the wij are multiplied by a depth cor-
rection factor during backprojection (see Figure 1.1 and Equation (1.1)):

wij(d) = wij
D√

D2 + Y 2 + Z2
(2.9)

Here, Y and Z return a voxel y and z coordinate and D is the distance from
the source to the rotation center. Finally, wij(d) is the depth-weighted wij in
(2.9). Using our shorthand notation, the backprojection process is written
as:

V =
∑
φ∈S

Bφ(d)(Iφ) (2.10)

where Iφ is the image obtained from the scanner at angle φ. The iterative
method SART [2] updates the grid on a projection-basis. This turns out to
be more convenient than the related (ray-based) ART [33] when used in
conjunction with texture mapping hardware. Using our notation, SART’s
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grid update equation is:

V = V +
Bφ(λ

Iφ−Pφ(V )

Pφ(W )
)

Bφ(W )
(2.11)

where λ is a relaxation factor. P (W ) and B(W ) denote the projection and
backprojection of the weights for normalization, which can be performed
using a unity I and V , respectively. Finally, the OS-EM [40] algorithm is
written as:

V =
V∑

φ∈OS

Bφ(a)(W )

∑
φ∈OS

Bφ(a)(
Iφ

Pφ(a)(V )
) (2.12)

where OS is one of the ordered subsets of S. We observe that, computation-
wise, the only real difference among these reconstruction methods is how
the results of the projection/backprojection operators are combined. How-
ever, these combination operations are straightforward vector calculations.
We will now discuss how equations (2.10) - (2.12) can be efficiently realized
in GPU hardware.

2.2 Implementation

In graphics hardware, just as images, volumes can also be represented
as textures. There are two choices: a stack of 2D textures or a single 3D
texture. While both allow projection, there is currently no convenient and
efficient facility that would allow a backprojection into a 3D texture. We
therefore store a volume as two stacks of 2D textures (see Figure 2.2), one
each for projections along the X and the Z main viewing axes. We do not
need a Y -major texture stack, since we only acquire data in a circular orbit
about the Y -axis.

2.2.1 Forward Projection

Perspective (cone-beam) projection is a straightforward operation with
2D textures (we shall consider parallel-beam a subset of perspective). We
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Texture slices along Z-axis

Y

X

Z

X

Z

Y

Texture slices along X-axis

Figure 2.2: Volume representation as a stack of 2D textures

can approximate equations (2.3) and (2.4) using 2D textures as follows (see
Figure 2.3):

q̂i =

L/∆t∑
k=0

µ(k∆t)∆t → q̂i =
N−1∑
k=0

N2−1∑
l=0

µlkwilk∆ti (2.13)

The left part is a discretized form of (2.3), which is further approximated
into the form of the right part by adapting (2.4), grouping the N2 voxels
within each of the N volume slice textures. The true voxel index j can be
derived from the index lk used in (2.13), where k indexes the slice and l
the voxels in the slice. There are two approximations here. First, the in-
tegration is now a discrete trapezoidal one, with the stepsize ∆t varying
across the slice (denoted as ∆ti in (2.13)). Since ∆t is never greater than√

3 this is a reasonable approximation. Second, the wilk are computed via
bilinear interpolation – a square neighborhood of 4 slice voxels will con-
tribute to each. (see Figure 1.3). We can compensate for the varying ∆t



CHAPTER 2. THEORY AND FRAMEWORK 21

φ

Texture-mapped polygons 

(volume slices)

Cone angle γ

Image plane (screen, projection)

Rotation angle φ

Figure 2.3: 3D forward projection with 2D texture slices (for simplicity of
illustration, only the 2D case is shown)

by pre-computing a sampling interval texture for each orientation angle
in the set and multiplying this texture with the texture of the projection
result, on the GPU.

We now look into the projection of the emission volume. If attenuation
is not modeled, then the mechanism of (2.13) will readily apply, simply
substituting (m, q) by (E, e). However, attenuation modeling can improve
reconstruction results considerably (see e.g. [47]), and our hardware-based
approach can realize this efficiently. We first discretize equation (2.2), in
a fashion similar to the first part of (2.13) (here, we use our notational
identity CE

φ (u, v) = CE
i = ei):

CE
i =

∫ L

s=0

E(s)
s−1∏
n=0

e−
∫

t=n µ(t)dt (2.14)

≈
∫ L

s=0

E(s)
s−1∏
n=0

(1−
∫ n+1

t=n

µ(t)dt)ds (2.15)

≈
L/∆s∑
k=0

E(k∆s)
k−1∏
n=0

((1− µ(n∆t))∆t)∆s (2.16)
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Figure 2.4: Backprojection of a correction image texture onto a volume
slice

Here, we map the m volume to a range [0.0, ..., 1.0]. The error of the Taylor
series approximation of the exponential is within reasonable bounds since
the interval ∆t is never greater than

√
3. The final expression in (2.14) al-

lows us to convert (2.7) into the texture slice-based representation, similar
to the second part of (2.13):

êi =
N−1∑
k=0

N2−1∑
l=0

Elkwilk(a)∆si (2.17)

where wilk(a) is the product of the interpolation weight wilk for the emis-
sions in slice k, and the product of the slice-wise interpolated attenuations
up to slice (k − 1):

wilk(a) = wilk

∏
n=0

(1− µ(n∆t))∆t = wilk

k−1∏
n=0

(1−
N2−1∑
m=0

(µnmwimn))∆ti (2.18)

Here, the wimn are also determined by the interpolation filter, and n in-
dexes the slices and m the voxels in the slices. We compute the attenuation
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part of the wilk(a) in (2.17) recursively, via implementation of a variant of
the familiar volume rendering front-to-back compositing equation [60]:

ef = ef + eb(1− µb) ⇒ ef = ef + eb · tf (2.19)
(1− µf ) = (1− µf )(1− µb) ⇒ tf = tf · (1− µb) (2.20)

Here, the two columns hold equivalent expressions, with t denoting trans-
parency. The eb and µb are the newly interpolated values, while ef and µf

are the recursive variables. Note, that in contrast to volume rendering,
e can grow past 1.0. In the end, e holds the emission volume projection,
properly attenuated by µ. Equation (2.19) states that we must maintain a
texture buffer for transparency t and one for emission e, and that we must
multiply t with the newly interpolated emission. Two texture volumes are
required, one for the emission volume that is being reconstructed and one
for the attenuation volume, possibly obtained via a prior transmission CT.

An alternative form is back-to-front compositing:

eb = eb(1− µf ) + ef = ebtf + ef (2.21)

The new (back) emission eb is calculated by adding the previous back
emission eb to the newly interpolated front emission ef . But before it is
added it must be attenuated by the interpolated transparency tf at this
point.

2.2.2 Back-projection

The grid updates in equations (2.9)-(2.12) all have a similar backprojec-
tion term, which can be written as:

dvj =
∑
i∈Iφ

diwij (2.22)

where dvj is the update to a voxel j, derived from grid update factors di.
The wij are determined similarly as outlined for the projection case. For
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emission tomography, matched projector/backprojector pairs [103] that
use full attenuation modeling (and other effects) only for the projection
phase, but not for the backprojection phase, have been proposed and can
be implemented by using wij in place of wij(a). However, it is desirable
to use the same wij in both projection and backprojection. The 2D slice
texture approach allows us to achieve the desired equivalent mapping by
using projective textures [81] for the backprojection, which is illustrated in
Figure 2.4. Essentially, projective textures work similar to a slide projector.
The backprojected image forms the “slide”, which is perspectively pro-
jected onto the “screen” formed by a polygon that is placed at the location
of the volume slice to be updated. The “slide projection” is then “viewed”
in parallel projection mode on the screen. The perspective transform is
given by the viewing geometry at which the projection was originally ob-
tained from the scanner. Using this mapping, the weight with which a
voxel j contributes to a projection image pixel i is identical to the weight
that a correction di coinciding with i has on j. Projective textures can be
implemented by filling the hardware texture mapping matrix with the ap-
propriate values in a vertex program (see [70] for further detail) and per-
forming the actual projective mapping in a fragment program.

The attenuation weighting can be implemented in two ways: (1) as an
interleaved projection/backprojection procedure, or (2) as a projection fol-
lowed by a backprojection. The former can be formulated as follows, with
D being initialized as the grid update image (computed from scanner im-
age and projection), DV being the volume that accumulates the updates,
and µ being the attenuation volume:

for each volume slice k = 0, ..., N−1, going in front-to-back order

backproject D onto DVk

project µk onto D executing blending D = D · (1− µk)

For the alternative, second method, we pre-compute a new set of textures
Dk by first rendering all projections of the µk slices (with the blending),
saving them in texture memory, and then performing all backprojections
using these Dk. This saves the somewhat expensive projection and back-
projection context switches, but it consumes more storage in texture mem-
ory. The algorithm is written as:

Initialize D0 to D
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for each volume slice k = 1, ..., N−1, going in front-to-back order

project µk onto Dk−1 executing blending Dk = Dk−1 · (1− µk)
for each volume slice k = 0, ..., N−1, going in front-to-back order

backproject Dk onto DVk

It is left to mention that both SART and EM also require a volume that
stores the wij for each updated voxel, to be used later for normalization.
In practice, we have found that SART does not require normalization, due
to the bilinear filter weights, while for EM we can just normalize by the
number of projections in the subset (similar to [16]). However, if atten-
uation correction is applied, a weight volume W must be accumulated,
which we accomplish by backprojecting a two-channel texture (D, µ) into
a two-channel texture stack (DV, W ).

2.2.3 Pixel-wise Components

In the iterative schemes, both the computation of the correction texture
D and the new state of the voxel textures V (i.e., E or µ) are pixel-wise
operations, implemented as simple texture blends. Denoting an original,
acquired projection as OP , the calculated projection as P , and a projection
of the weights as W , the (vector or stream) calculation of D can be written
as:

1. D = DIV(SUB(OP , P ), W ) for SART

2. D = DIV(OP , P ) for EM

The voxel update after backprojection of all projections in the set has oc-
curred can be written as:

1. V = V + DV for SART

2. V = (V ·DV )/W for EM

where W is the accumulated weight volume, if attenuation correction is
used.

In the iterative algorithms, our use of two stacks of 2D textures will
lead to inconsistencies if one stack of textures is updated by ways of back-
projection but the other is not. Therefore we must update a texture stack
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whenever its projection proceeds an update of the other texture stack. This
is frequently the case since two subsequent projections should be close to
orthogonal to maximize the rate of convergence. We implement each tex-
ture stack as a single large 2D texture, with one tile per slice. We can then
accomplish a stack update by adding an up-to-date column in the source
stack texture to the corresponding out-of-date column in the destination
stack texture (see Figure 2.5).

Column[j]Column[i]

X

Slice[j]

Slice[n-j]

Z

Figure 2.5: Texture stack updates when the major projection direction
switches from one stack to the other

2.2.4 Parallel Execution via the RGBA Color Channels

All three CT algorithms can exploit the inherent parallelism offered
by the four color channels. In Feldkamp’s filtered backprojection, we may
pack the data of four orthogonal projections into the RGBA channels, since
they share the same projection matrices. This gives rise to a 4-way (RGBA)
texture stack, one each for the four 90◦ intervals processed in the four chan-
nels. Then, after all backprojections are completed, the volume is assem-
bled by adding the data in the four channels, using a technique similar to
the stack update described before. This speedup strategy requires that the
projections were acquired at orthogonal angle increments.
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In SART, we cannot project/backproject orthogonal projections in par-
allel due to the projection-wise volume update. Here, we fold the upper
and lower halves of the volume and the projections into the RG channels,
while the BA channels are used to accumulate the weights in the projection
phase. The two halves share the same projection matrices, just reflected
about the mid-line. Projections, backprojections, and texture stack updates
all use this decomposition and the complete volume is only assembled at
the end, by merging the RG channels. The Feldkamp algorithm can also
use this folded partition, which reduces the number of required texture
stacks to two.

The unattenuated EM algorithm can employ a 4-times parallelism, ei-
ther using the folded decomposition in conjunction with two orthogonal
projections or the unfolded 4-way scheme. However, the latter incurs
significant overhead, both for volume assembly and volume distribution
from and to the four color channels each time a subset has been processed,
which only amortizes when the subsets are large. We therefore chose to
use the folded 2-way approach. Note that this EM parallelism poses cer-
tain constraints on the composition of the subset. The parallelism in the at-
tenuated EM algorithm is only two-fold since two channels are needed for
each projection/backprojection to hold (µ, e) and (DV, W ), respectively.

2.3 Modeling Scattering Effects

2.3.1 Background

Scattering effect is another important phenomena to be modeled in
functional imaging, which usually occurs along the photon paths [59].
These are mostly due to photon interactions with the traversed tissue,
leading to stray photons that are eventually counted in detector bins neigh-
boring the intended one. Proper modeling of these effects in the forward
projection step of iterative algorithms, such as OS-EM, can yield a signifi-
cantly more accurate estimate of the required grid correction in the subse-
quent back projection step. This, in turn, leads to faster and more accurate
reconstruction of the emission image.

Here, the amount of detector blurring a particular emission site causes
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is influenced by the local scattering properties of the traversed tissue as
well as the distance of this site to the detector. The most appropriate tech-
nique to model scattering is a Monte-Carlo simulation, using the current
reconstruction instance as the source. However, such a simulation is (cur-
rently) computationally infeasible to conduct within an iterative proce-
dure, at least when it comes to clinical routine. A good approximation
can be obtained by the slice-by-slice blurring method that has been pro-
posed for emission CT [4] as well as for volume rendering [48]. In both
approaches, the blurring is guided by the local scattering properties of the
tissue. The scattering as well as the attenuation modeling rely on the ex-
istence of a prior CT scan to provide an estimate of the attenuation and
scattering properties of the tissue.

To describe the approximate, non-Monte Carlo technique used to model
the scattering, let us first consider a scattering event in a differential vol-
ume patch dV . Here, depending on the patch’s scatter properties, a ray
of photons suffers some amount of diffusion, which can be modeled by a
suitable diffusion function kernel, such as a box, tent, or Gaussian, where
the extent of this kernel is determined by the amount of local scattering
potential, estimated from a map indexed by the underlying CT data. This
local model can be extended to a global one by recursion, where a detector-
aligned slice buffer is advanced step-by-step from the rear of the volume
to the detector, and the scatter-diffusion process is modeled, at each such
step, by convolving the slice image with a variable extent blurring func-
tion. Here, the size of the filter is dependent on the local scattering prop-
erties (higher scattering coefficients widen the filter). Also at each step,
an emission volume slice is interpolated and added to the advancing slice
buffer. In fact, this scheme can be combined with the attenuation model-
ing.

Modeling these effects in the forward projection provides a better esti-
mate of the actual image generation process, given the current state of the
emission volume under reconstruction. This in turn provides a better esti-
mate of the required grid correction for back-projection (which favors re-
construction speed and quality). This estimate can then be back-projected
via regular means (without modeling attenuation and scattering effects) or
by including these effects. The former leads to the concept of unmatched
projector/back-projector pair, which has been frequently used.
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2.3.2 Forward Projection

Figure 2.6a shows the blurring kernel in the ideal detector-aligned buffer
configuration. Here the recursive blurring (the red kernel) can occur at any
arbitrary buffer (blue dashed lines) distance ∆s(∆s = 1 is reasonable). This
is the configuration used when a 3D texture is interpolated.

Next, Figure 2.6b shows the texture-slice (or axis) aligned situation (as-
suming the texture slice distance is 1). In this case the scattering will occur
at a larger distance and therefore the width of the blurring kernel should
be scaled up accordingly, that is, by a factor 1/ cos α, where α is the rotation
angle of the detector.

Due to the perspective (cone-beam) distortion, the scattering on one
side of the principal direction (here the right half-cone as seen from the
scattering source) will occur in a larger distance before entering the slice
buffer than the other (the left half-cone), see Figure 2.6c. We can correct for
this as well, by additionally scaling the two kernel side lobes according to
their subtended half-cone volumes, V1 and V2.

Δs = 1
Δs = 1/cosα

α α(a) (b) (c)

V1
V2

Figure 2.6: Modeling scattering effects using geometry dependent blur
kernels. (a)ideal case when 3D texture is used; (b)compensated for 2D
textures; (c)compensated for cone angle.
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Platform Algorithm Volume Projection 1 iter. 3 iter.
SGI-hardware SART 1283 80× 1282 1.1 min 3.1 min

PC - GPU SART/OS-EM 1283 80× 1282 1s/2.5s 3.1s/5s
PC - GPU SART/SIRT 2563 160× 2562 7.5s/5.0s 22s/15s

Table 2.1: Reconstruction timings for various configurations. Nvidia
Geforce 8800GTX is employed to obatin GPU timings.

2.4 Results

2.4.1 Basic Framework

Table 2.4.1 lists the timings obtained in our experiments. All GPU re-
sults were produced on a Athlon 2.2GHz PC hosting a NVIDIA 8800 GTX
GPU with 768MB on-board memory. For results shown in Figure 2.7 we
employ a 3D version of the Shepp-Logan brain phantom (of size 1283) [71]
at the original 0.5% contrast level to demonstrate reconstruction quality.
Figure 2.7 shows slices across the reconstructed phantoms, while line plots
provide further insight into reconstruction fidelity and noise. These plots
are obtained from the intensity profile along the line indicated in Figure
2.7a [and Figure 2.7g for EM]. Finally, Figure 2.8 presents a formal error
analysis, where we compute the correlation coefficient (CC) of the phan-
tom with the reconstruction, both within the entire skull and within an
ellipsoid just enclosing the three small “tumor” at the bottom. We also
compute the coefficient of variation (CV) over four ellipsoidal regions with
uniform content. Here, the CV for region i is CVi = δi/µi, where µi

is the average and δi is the standard deviation of the region’s voxel val-
ues [71] [78].

We observe that a current, fairly optimized CPU implementation, us-
ing first-order (linear) interpolation filters, runs at about 1-2 order of mag-
nitude faster than the (older) SGI texture mapping hardware implemen-
tation. Meanwhile, the GPU reconstruction quality (Figure 2.7d) is nearly
equivalent to that obtained with the software implementation (Figure 2.7c),
which was infeasible with the integer-based SGI hardware (Figure 2.7b).
We suspect that the remaining artifacts for GPU SART may be due to the
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coarser sampling due to the fixed slice distance and the trapezoidal inter-
polation rule.



CHAPTER 2. THEORY AND FRAMEWORK 32

8

Poisson noise to the analytically computed projections. The
phantom consists of ellipsoids with four times the original
Shepp-Logan contrast (Fig. 7g). Fig. 7h shows an EM
reconstruction without noise, and Fig. 7i and j show a CPU
and GPU reconstruction, respectively, from noisy data. The
GPU-based EM implementation yields fairly good results

from both clean and noisy data. We notice some faint ring-
ing and some elevated level of noise in the both GPU-recon-
structed datasets. We attribute this again to the coarser
sampling rate and the trapezoidal integration rule. The EM
projector and backprojector are more costly than those for
SART since they incur the extra cost for attenuation correc-

   (a) Original (b) SGI SART

(e) Feldkamp FBP (f) Feldkamp FBP

(d) SART 80p(c) Software

(g) Original (h) EM (clean)

(i) Software (Poisson) (j) EM (Poisson)
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Figure 7:  A slice across the 3D Shepp-Logan brain phantom (a)-(f) and ellipsoid phantom (g)-(j), reconstructed as a 1283 volume from
a set of 80 analytically computed projections of size 1282 each (160 projections for (f)). The iterative algorithms used 3 iterations of
projection/backprojections. (i) and (j) are from the ellipsoid phantom, with random Poisson noise added to the projections. The plots
show the intensity profiles across the center of three small ellipsoids near the bottom of the phantom in (a)-(f) and near the top of the
phantom (g)-(j), as indicated by the white line in (a) and (g).
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Figure 2.7: Slice across the 3D (a)-(f) Shepp-Logan brain phantom and
(g)-(j) ellipsoid phantom, reconstructed as a 1283 volume from a set
of 80 analytically computed projections of size 1282 each [160 projec-
tions for (f)]. The iterative algorithms used three iterations of projec-
tion/backprojections. (i) and (j) are from the ellipsoid phantom, with ran-
dom Poisson noise added to the projections. The plots show the intensity
profiles across the center of three small ellipsoids near the bottom of the
phantom in (a)-(f) and near the top of the phantom (g)-(j), as indicated by
the white line in (a) and (g).
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The GPU implementation of Feldkamp FBP produces nearly perfect re-
sults. As indicated in Figure 2.7e and f, doubling the number of projections
from 80 to 160 can eliminate the residual streak artifacts that are common
for FBP when less than projections are used. In order to test the EM imple-
mentation, we designed a volume more suited for emission studies. We
also added Poisson noise to the analytically computed projections. The
phantom consists of ellipsoids with four times the original Shepp-Logan
contrast (Figure 2.7g). Figure 2.7h shows an EM reconstruction without
noise, and Figure 2.7i and j show a CPU and GPU reconstruction, respec-
tively, from noisy data. The GPU-based EM implementation yields fairly
good results from both clean and noisy data. We notice some faint ringing
and some elevated level of noise in the both GPU-reconstructed datasets.
We attribute this again to the coarser sampling rate and the trapezoidal
integration rule. The line plots of Figure 2.7 and the error metrics of Fig-

Figure 2.8: CC and background CV for various reconstructions.

ure 2.8 indicate that the GPU reconstructions have generally greater noise
and structural artifacts, but only at moderate levels, but distinguish the
phantom features quite well. The remaining artifacts are greater for the it-
erative algorithms than for Feldkamp, which we believe is due to the fact
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that projection errors accumulate through the iterative process.

2.4.2 Advanced Effects

Further results are obtained to validate the accuracy and performance
of the attenuation correction and scattering effects. We employed a dif-
ferent 3D phantom composed of a set of ellipsoids of varying emission
values.

Figure 2.9 compares the slice-by-slice blurring results obtained with
the detector-aligned vs. the axis-aligned projector for five orientations α:
0◦, 10◦, 20◦, 30◦, 40◦. Both simulations use the same scattering model and
volume. Next to the projections we show the difference images and the
intensity profile along the line indicated in the first image. A good fit is
observed. We also computed the overall RMS error and found it to be be-
tween 1-2% of the maximum value in a projection. We conclude from this
study that the axis-aligned projector is well suited for the recursive scatter
simulation we use in our GPU-accelerated iterative emission reconstruc-
tion framework.

Figure 2.10 shows a set of representative projections obtained with
our simulator, with emissions only, (E) emission with attenuation (E+A),
emission with scattering (E+S), and emission with scattering and attenua-
tion (E+S+A). Scattering creates substantially more blur, while attenuation
weakens the projections of emissions traversing highly attenuating mate-
rial, both with and without scattering.

Figure 2.11 shows a representative slice from a 3D reconstruction of our
phantom (10 SART iterations), for various modeling scenarios arranged
into rows. The first column shows the reconstructed slice when the (row)
effects are not modeled, while the second column shows the slice when
modeling took place. In the final column we show the intensity profiles for
the line indicated in the first image. We compare the original phantom pro-
file (solid grey), the profile obtained when the effect has not been modeled
(dotted) and the profile when the effect has been modeled (solid black).
We see that in all cases the contrast is greatly improved, the features are
sharper, and the profiles match the original better when the effect is mod-
eled. We also observe that without attenuation/scattering (A+S) model-
ing, the small ellipsoid between the two large ones in the upper third of
the phantom can not be detected.
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Projection Backprojection 1 iter. 10 iter.
Transmission CT 0.7s 0.7s 1.7s 18s

Emission CT (matched) 1.2s 7.3s 8.7s 90s
Emission CT (unmatched) 1.2s 0.7s 2.2s 23s

Table 2.2: Reconstruction timings for the transmission and emission CT on
8800GTX: 1283 volume, 160 projection angles. For emission CT, attenua-
tion correction and scattering effects are modeled.

Finally, Table 2.4.2 shows the detailed performance of running recon-
struction with both attenuation correction and scattering effects on a Nvidia
8800 GTX. We observe that adding attenuation and scattering only to the
projector (in an unmatched projector/back-projector reconstruction frame-
work) has a relatively small impact on performance (less than a factor of 2).
This verifies the observations of [4]. The results shown in Figure 2.11 were
all obtained with configuration. On the other hand, modeling these effects
for the back-projection operator is about 10 times more expensive. Over-
all, it takes 5 times longer if attenuation and scattering are modeled in both
he projection and backprojection stages (in the matched projector/back-
projector).
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Figure 2.9: Projection evaluation of detector and axis-aligned scattering
models. Profiles: detector-aligned (solid), axis aligned (dashed) projec-
tions
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E+A+SE+SE+AE

Figure 2.10: Projections obtained with different effects. E: emission; A:
attenuation; S: scattering.
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Figure 2.11: Reconstructions results obtained with different effects. E:
emission; A: attenuation; S: scattering. Solid grey line: original phantom
profile; Dotted line: when the effect has not been modeled; Solid black
line: when the effect has been modeled.
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2.5 Signal Analysis and Evaluation

2.5.1 Popular Interpolation and Integration Methods

Background

A plethora of methods for projection and backprojection methods has
become available for CT through the past three decades. One way to dis-
tinguish these is in the manner they relate the data to be generated (the
reconstruction) to the data provided (the scanner data). With 3D recon-
struction in mind, we shall refer to the former as the volume, composed of
voxels, and the latter as (projection) image, composed of pixels. While an-
alytical CT algorithms, such the approximation by Feldkamp (FDK) [26]
mainly involve a backprojection, iterative algorithms, such as SART [2]
and EM [82], involve both projections and backprojections. In most cases,
backprojection is simply the inverse of a projection, unless unmatched pro-
jector pairs are used [103]. The target of a projection is a (projection) image
P , while the target of a backprojection is the volume V . Iterative algo-
rithms work by projecting V to create an image estimate P which is then
compared with the acquired image P and a correction image P ′′ = s(P−P )
is backprojected – s being a scale factor – which brings V closer to an ac-
curate estimate. The projection operator is written as: P = WV and the
backprojection operator is written as V = W−1P . Here, P is a N2-long vec-
tor of pixels, V is a N3-long vector of voxels, and W is a N2 × N3 weight
matrix. In the general case, in particular for 3D cone-beam reconstruction,
the size of W prohibits its storage, and thus its elements have to be com-
puted on the fly. In fact, W is a sparse matrix, since generally a pixel in P
traces out a ray line or a ray beam, which only cover a subset of connected
voxels (see Figure 2.13).

The remaining issue is how the voxels that fall within the influence
of this beam or line contribute to the pixel emitting it. This is where the
various methods differ, and they do so in three, mostly orthogonal ways:

• Either they assume that the voxels are solid blocks or that the voxels
are infinitesimal thin spikes (or sample points). In fact, this just leads
to different kernels (a box for the former).

• Either they trace rays emerging from the pixels, or a few subpixels
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within a pixel, or they trace beams, usually bounded by the pixel
(detector) boundaries.

• Either they trace the rays (or beams) across the volume from the pix-
els or they project the voxels onto the image plane.

Finally, they either perform a piecewise constant, piecewise linear, or
continuous integration. We should note that not all of the combinations
have actually been proposed and implemented, and we shall restrict our
discussion to only those that have been.

We have studied these methods in a common framework designed to
perform these tests in a strict signal processing context. This is justified
by the fact that interpolation, and to a somewhat lesser extent, integration,
are operations that seek to estimate a continuous function from a set of dis-
crete sample points. While during data acquisition (the X-ray projection in
the scanner) the rays have traversed an object that was naturally defined
everywhere, this is not the case in the simulation of this process, where
the object under reconstruction is only defined at discrete data points.
The circumstance that a collection of rays that is averaged (before the log-
operation) within a certain detector bin, poses another challenge for this
simulation during reconstruction. A faithful simulation of the projection
process, however, is key to a faithful reconstruction, and we shall compare
the different methods with regards to this viewpoint (neglecting any other
adverse effects, such as scattering, beam hardening, and polychromaitic-
ity). But ultimately, we are interested in a faithful reconstruction, and this
motivates an extension of this comparative study to a reconstruction task.
In order to avoid possibly confounding perspective effects implied by fan
or cone-beam, we perform our study in a parallel-beam reconstruction sce-
nario, using our strict signal processing-motivated test function.

A wealth of publications exist that discuss and compare interpolation
filters, and the limited space only permits to mention a few of these here.
Thévenaz et al. [92] provide a comprehensive study on interpolation filters
using frequency domain arguments, while Möller et al. [66] view this task
from a numerical standpoint, via a Taylor series expansion. Siddon [83],
Joseph [42], Herman [39], and Lewitt [57] have described interpolation and
integration mechanisms that are frequently used in CT today. Other, more
recent papers, have enhanced and augmented these basic approaches, and
the reader is referred to [20] for a more complete list of references. CT re-
construction is in some ways similar to volume rendering, where the goal
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is to project a volume dataset for visualization purposes. A seminal pa-
per with respect to the study and comparison of interpolation filters in the
context of volume rendering was presented by Marschner and Lobb [63].
To conduct their comparison they designed a rigorous test function, now
known as the Marschner-Lobb (ML) function, which has a near-uniform
frequency content that extends very close to the Nyquist rate and is con-
tained within that interval to 99.8%. Its equation is given here:

ρ(x, y, z) =
(1− sin(πz/2) + α(1 + ρr(

√
x2 + y2)))

2(1 + α)
(2.23)

ρr(r) = cos(2π · fM · cos(
πr

2
)) (2.24)

Here, α = 0.25 and fM controls the frequency bandwidth for a given vol-
ume size. We set it fM = 18, which provides the desired full frequency
range for a volume size of 1283 when −1 < x, y, z < 1.

A volume iso-surface rendering of the function, sampled into a volume
of 403 with fM = 6 and rendered at an iso-value of 0.5 is shown in Figure
2.12. The interpolation filter used in the rendering (using raycasting) was
of good quality and only caused little aliasing, as is evident from the mod-
est deformations at the sinusoid rims. Since in CT we are reconstructing
an estimate of the volume dataset from a set of near-analytical projections,
we find it more useful to compare the reconstructed dataset with the true
function in a numerical sense, via its RMS, and not via a visualization,
which was done in the original ML work.

Methods

Figure 2.13 illustrates various interpolation and integration strategies.
Although we only show the interpolation for the 2D case, for 3D render-
ing, the drawings would extend into 3D (which turns every linear inter-
polation into a bilinear interpolation).

• The slice-interpolated method uses bilinear interpolation within each
slice and integrates the results in a trapezoidal fashion. This is a 3D
extension to Joseph’s method [42] and is also the method our GPU
projective-texture renderer employs [98]. Depending on the viewing
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Figure 2.12: The Marschner-Lobb function.

angle, the sampling rate along the ray varies (1...
√

2), and so does
the integration interval. One way to increase the integration quality
is to use a more sophisticated quadrature method, such as Simpson’s
method along with an intermediate sample.

• The grid-interpolated scheme can space the samples at the same dis-
tance, independent of viewing angle, usually at 1.0. Interpolation is
commonly performed with a trilinear filter, and integration is again
according to the trapezoidal rule.

• The box-line-integrated scheme was proposed by Siddon [83]. This
corresponds to a box interpolation filter (kernel) and a continuous
integration (assuming a piecewise constant signal).

• The RBF-line-integrated method (RBF = Radial Basis Function) was
proposed by Lewitt [57] and is used in conjunction with a forward
projection (splatting) of a pre-integrated kernel function. The in-
tegration is continuous, similar Siddon’s method, since the kernel
(usually a Gaussian or a Bessel function) is superior to a box, but
also much wider, taking longer to project.

• The box-beam-integrated method is an extension to Siddon’s method,
where now the entire box volume that falls inside the extended pixel
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boundaries is added to the integral. It still assumes an inferior box
kernel, but it captures the width-integrating nature of the X-ray beam
better than a line. The distance-driven method of [20] works along
these lines.

• In the pixel-driven method (we call it voxel-driven) [39], each voxel
is projected to the screen and its contribution written to the nearest
pixel or distributed with bilinear weighting among the four pixels in
the screen square. The latter is similar to the splatting of a bilinear
kernel.

Since the acquired data are proportional to the average to the beam
of rays that end in a given detector bin, a beam-integrated method is at
least potentially a better choice. We have just discussed the box-beam-
integrated (distance-driven) method, which uses an underlying box filter.
The task of computing the solid encapsulated within a beam is feasible
to compute. It is more difficult to do so for higher-order functions, al-
though it can be done with the radially-symmetric functions, such as the
RBF method, using a Summed-Area-Table [18]. An approximation of the
beam-tracing that can use better interpolation kernels is to trace extra rays
and then downsample the result, using some sort of lowpass filter tuned to
the sampling rate of the output grid. The most obvious way is the cartesian-
2×-oversampled scheme shown on Figure 2.15. However, this requires the
tracing of 4-times the number of original rays, which can be slow. A bet-
ter solution in this regard is what we call the hexagonal-2×-oversampled
scheme, which will achieve comparable results with much less samples.
We will describe this in details in the following section.

2.5.2 Optimal Sampling Grid

Background

Regular lattices typically are Cartesian lattices with grid samples distributed
on a separable, orthogonal raster of most often equal grid spacing in all di-
mensions. This type of lattice is very convenient for representation, index-
ing, and interpolation, and it is also easy to conceptualize. It is mostly for
these reasons that the regular Cartesian lattice has become the most dom-
inantly used regular raster structure today. But recent years have brought
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an increased awareness with respect to the sub-optimality of this grid
topology. Early efforts in this direction have mostly concentrated on ef-
ficiency, and the key observation motivating this is made in the frequency
domain. When assuming a radially symmetric (spherical) frequency spec-
trum of the rasterized signal, then the optimal packing of the alias spectra
is not a Cartesian lattice but a hexagonal one, since such a lattice packs
the frequency spectrum spheres closest together (which directly follows
from optimal sphere packing theory [17]). This, in turn, using the Fourier
scaling theorem, stretches the samples in the co-domain, here the spatial
domain, furthest apart, leading to the coarsest possible sampling pattern
without risking (pre-) aliasing. This makes possible a reduction of grid
points to 87% in 2D, 71% in 3D, and 50% in 4D, with a direct consequence
being a reduction in storage by these amounts, which can affect cache be-
havior as well. But possibly more importantly, grid processing costs are
reduced by these amounts as well, if these costs are strongly related to the
number of grid points. This is the case whenever a point-based projection
approach is used. We call such a scheme voxel-driven, in contrast to pixel-
driven schemes in which rays originating from projection pixels traverse
and interpolate the lattice.

It turns out that cost savings are only one aspect of optimal lattices.
They also provide a more uniform and isotropic sampling of the space [86],
under the condition of a tighter space sampling than that implied by the
sphere-packing results. Our research shows the important implications
this has for CT, and in fact, these aspects come into play in CT on two
occasions: (1) the initial data acquisition on the detector lattice, capturing
the object-attenuated transmission X-ray radiation, and (2) the object for-
mation on the reconstruction lattice accumulating the back-projected con-
tributions. In the subsequent sections, we will give theoretical arguments
as well as show practical examples for both.

Prior Work

The optimal lattice in 2D is the hexagonal lattice, and in 3D it is the
Body Centered Cartesian (BCC) lattice. These are illustrated in Figure 2.14,
with the grid distances expressed in terms of its frequency bandwidth-
equivalent Cartesian (CC) lattice. Note that this assumes frequency spec-
tra that fit into a radially symmetric hull (circle, sphere) with the radius
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given by the frequency bandwidth.

32

1

2

2

2

2/2

(a) (b)

Figure 2.14: (a) 2D hexagonal lattice (b) 3D BCC lattice

As mentioned above, optimal sampling lattices have been used for
quite some time for discrete object representation, both for 3D [91] and
4D volume datasets [72]. These works were mainly motivated by the re-
duction in the number of required lattice samples. Since the generation
of projective, volume-rendered images requires the interpolation of lat-
tice samples, now in this optimal lattice space, appropriate filters for this
operation have been proposed, such as box-splines [24], hex-splines [96],
and a pre-filtering scheme that operates in conjunction with a Gaussian fil-
ter [19]. Finally, the theoretical finding of space-optimality without quality
loss was confirmed in a user study which compared images rendered from
a Cartesian lattice and images rendered from the same object rendered
from an optimal lattice [65].

There were also researchers in the CT reconstruction arena who have
used optimal lattices [64] [68], and these works were all within iterative
reconstruction frameworks. Just as in volume rendering, these efforts
were mainly driven by the reduction of grid samples and the subsequent
speedup in terms of reconstruction time. Using optimal lattices brought
significant savings here since iterative algorithms typically project and
back-project the evolving reconstruction many times, and thus a reduction
in grid complexity can make a considerable difference in running time.

We will show that due to these intrinsic properties, optimal lattices can
reconstruct and acquire fine detail significantly better than the standard
Cartesian lattices, without a loss of performance. This is important, for
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example, when it comes to the detection of small lesions in CT. At the
same time, optimal lattices can also provide a higher-fidelity sampling of
the incoming X-ray signal on the detector plane.

Theory of Lattice Uniformity

In a uniform lattice the maximum distance of an arbitrary sample in
space to a lattice point is independent of direction. Thus, the Voronoi
cell of such a uniform lattice must be a sphere. A collection of spheres,
however, cannot be space-filling and thus optimal uniformity cannot be
achieved in practice. We therefore seek a lattice with a Voronoi cell that is
closest to a sphere. The sphere has the smallest surface area enclosing a
given volume. Setting the volume of a sphere to unity, the surface area Ss

is:
Ss = 4π(

1
3
√

4/3 · π
)2 = 4.83 (2.25)

The surface area Scc of a unit cube is an obvious Scc = 6. The Voronoi
cell of the BCC lattice is the truncated octrahedron, and the surface area
Sbcc of its unit cell is:

Sbcc = (6 + 12
√

3) · ( 1
3
√

8
√

2
)2 = 5.31 (2.26)

Here the second term is the lattice parameter value setting for a unit
cell. We see that the BCC lattice is about 10% worse than the sphere, but
12% better than the CC lattice. Finally, let us have a look at the Face-
Centered Cartesian (FCC) lattice, which is the dual of the BCC lattice. Its
Voronoi cell is the rhombic dodecahedron, and the surface area Sfcc of its
unit cell is:

Sfcc = (8
√

2) · ( 1

3

√
(16/9)

√
3
)2 = 5.34 (2.27)

Again, the second term is the lattice parameter value setting for a unit
volume cell. Thus, the BCC lattice is slightly more isotropic than the FCC
lattice, under this metric. We therefore choose the BCC lattice.
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Implementation

Data Acquisition Detectors are typically composed of an array of square
pixels. There has been a recent trend to CMOS flat-panel detectors, and
parallel to this, optical video cameras have also been introduced that adopted
hexagonal lattices for more isotropic sampling. This has led us to ex-
plore these types of lattices also for X-ray detection. However, as we
have seen in the previous section, GPU-accelerated reconstruction requires
a standard Cartesian grid for the mapping of the voxels onto the pro-
jections. Else, the added overhead incurred by application of fragment
shader-bound interpolation filters would cause a significant loss in per-
formance, as this would occur at a complexity of O(N4), assuming we
have O(N) projections to reconstruct N3 voxels. We therefore resample
the acquired projections from the hexagonal grid onto a double-resolution
Cartesian grid before reconstruction begins, using a high-quality filter.
This enables fast hardware accelerated bilinear interpolation, and it also
lowers the complexity of the hex-grid interpolation by an order of mag-
nitude (now it is a pre-processing step). In fact, we couple this opera-
tion with a projection of the raw projection images into a standard axis-
parallel configuration which allows for a faster voxel mapping in the back-
projection stage [43]. The result are projection images of resolution 2N2,
which can even be back-projected using with nearest neighbor interpola-
tion (but we use bilinear since there is almost no performance penalty on
GPUs).

In practice, assuming a unit grid spacing for the direct-sampled case,
the hexagonal grid would sample at 1/

√
3 along x and at 0.5 along y (see

Figure 2.15). This would require 13.4% less samples, that is, for a 1002 grid,
the cartesian scheme would require 40, 000 rays, compared to 34, 640 rays
for the hexagonal scheme.

Volume Reconstruction Essential for the work described here is the fact
that the back-projection operations are independent of the underlying lat-
tice. Lattice points (voxels) (i) are backprojected (mapped to a projection
image), (ii) then interpolate their updates from this projection image, and
(iii) finally receive their depth-weighting, all according to their individual
coordinates. It is the lattice’s “responsibility” that it can represent, in terms
of aliasing, the signal that is being compiled that way.

Our GPU-accelerated reconstruction algorithm only requires a slight
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Figure 2.15: The empty dots are the pixels (from which the rays emerge),
and the full dots are the final pixels stored – the oversampled methods
downsample the images obtained with the traced rays.

change for handing the BCC lattice. Since for BCC each slice is a standard
Cartesian lattice, we can employ our interpolation fragment program un-
changed. The only item requiring change is the vertex program that needs
to shift the slice polygon for each odd slice index.

We have chosen to keep the total number of voxels the same. This
reduces the in-slice lattice spacing from the space-optimal

√
2 to

√
3 =

1.26 (and an inter-slice distance of 3
√

2/2 ), yielding a system where the
reconstruction performance does not suffer at all. However, as we see next,
this arrangement is able to resolve small feature better than the standard
lattice with both in-slice and inter-slice spacing of 1.
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2.5.3 Results

Evaluation of Interpolation and Integration Methods

We conducted both a projection and a reconstruction study to evaluate
the performance of various interpolation and integration methods. All
results are produced on a 2.2GHz dual core AMD Athlon PC with 1GB
RAM.

Projection Study We generated both line-integrated and beam-integrated
reference images from the ML dataset. The latter are produced by calcu-
lating 16 sub-rays for each detector element and box-filtering the values.
Both types of reference images are computed by sampling the object func-
tion with a dense step size of 0.2 unit distances. A discretized 3D floating
point dataset (1283 resolution) sampled from the object function is used to
generate all other projections. We measure the RMS error from different
viewing angles, particularly focusing into oblique views in the range of
40◦ to 45◦ where slice-integrated schemes are prone to have artifacts due
to their insufficient sampling rate along the ray direction from those views.
Note that we compare all strategies in the beam-integrated study, but only
line-integrated schemes in the other.

Since the detector elements in the optimal lattices are regular hexagons,
let us first review some (regular) hexagon geometry metrics. The area of
a hexagon Ahex = 3

√
3/2 · a2, where a is the side length of the hexagon,

and the maximal diameter is 2a and the minimal diameter is
√

3a . The
minimal diameter is the horizontal in-slice lattice spacing, and the verti-
cal spacing is

√
3/2 of this. With this in mind, we explored the following

configurations:

1. The standard Cartesian case, assuming a lattice spacing of 1, and a
(square) detector element area of 1 (cartesian).

2. A standard Cartesian lattice with twice the resolution of #1, which
gives a detector element area of 0.25 (cartesian -2×-oversampled).

3. The space-optimal (hexagonal) lattice version of #2, which has 86%
(
√

3/2) of the elements of #2. Here, the detector element area is in-
creased by 23% to 0.28 (hexagonal-2×-oversampled).
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Figure 2.16 and 2.17 plot the evaluation results from each strategy against
line-integrated and beam-integrated reference images, respectively. We
observed that in the line-integrated scanner projections study, Siddon’s
method (box-line-integrated scheme) produces overall better projections
than all other methods, which we believe is partly due to its more ac-
curate continuous integration path. Slice-interpolated approaches, while
having less sampling density along the ray direction compared to grid-
interpolated methods, have nevertheless similar image quality. The voxel-
driven scheme with bilinear kernel has similar performance but suffers a
severe deterioration in image quality at angles close to 45◦. The blurry
effect from the RBF-line-integrated method leads to a low score when
compared to line-integrated scanner projections. Finally, we also observe
that Simpson’s integration does not help improve image quality for slice-
integrated schemes.

While in the beam-integrated study, the RBF-line-integrated method
using the Bessel kernel achieves the best image quality, slice-integrated
methods and grid-integrated approach perform as just as good as Siddon’s
method. Also it helps to generate more accurate projections by computing
extra rays for the ray-driven methods, where hexagonal-2×-oversampled
and trilinear-2×-oversampled schemes surpass the cartesian-2×-oversampled
scheme. If the trapezoidal integration is replaced by Simpson’s rule in
slice-integrated and hexagonal-2×-oversampled schemes, further improve-
ment on image quality can be obtained. However, oversampling in the
object space via computing intermediate slices has little impact for slice-
interpolated approaches. Similarly, the voxel-driven scheme with the bi-
linear kernel yields results close in quality to Siddon’s method, except at
views around 45◦.

Reconstruction Study We employed the Simultaneous Algebraic Recon-
struction Technique (SART) as our test algorithm to perform this study. In
addition to the ML dataset, a human CT skull volume is also used for eval-
uation. Both datasets are discretized into a grid of 1283, while 80 views
of reference images of detector elements are acquired uniformly within
360 degrees. A relaxation parameter of 0.1 and 20 iterations are applied
throughout the experiment. Both line-integrated and beam-integrated ref-
erence images are generated for the ML study, while only line-integrated
references are derived for the human CT skull study. Fig 2.18 and 2.19
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demonstrate the performance of all methods for the ML dataset in the line-
and beam-integrated settings, respectively.

We notice that the slice-integrated schemes have at least comparable
performance with Siddon’s method and the grid-integrated method, in
terms of both reconstruction quality and convergence speed. Similar to the
projection study, given beam-integrated scanner projections, over-sampling
on the detector plane helps to reduce the error, and here the hexagonal-2×-
oversampled scheme outperforms the cartesian-2×-oversampled scheme,
and even the RBF-line-integrated method. In contrast, there does not ap-
pear to be an advantage in applying Simpson’s rule over the trapezoidal
integration.



CHAPTER 2. THEORY AND FRAMEWORK 52

Projection Study
(Marschner-Lobb, Line-integrated Scanner Projections)
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Figure 2.16: A projection study with line-integrated scanner projections.

Projection Study
(Marschner-Lobb, Beam-integrated Scanner Projections)
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Figure 2.17: A projection study with beam-integrated scanner projections.
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Reconstruction Study (Marschner-Lobb)
Line-integrated Scanner Projections
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Figure 2.18: A reconstruction study with line-integrated scanner projec-
tions. RMS errors after 10 iterations are plotted in the inset

Reconstruction Study (Marschner-Lobb)
 Beam-integrated Scanner Projections
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Figure 2.19: A reconstruction study with beam-integrated scanner projec-
tions. RMS errors after 10 iterations are plotted in the inset
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Optimal Lattice for Volume Reconstruction

We then used the high-resolution detector images for 3D reconstruc-
tion. We first reconstructed the toes dataset, both onto a standard Carte-
sian lattice and then on the BCC lattice with the same number of elements,
using our streaming CT reconstruction application (Chapter 3). Fig 2.20
shows visualizations from the same viewpoint and at the same iso-surface
setting. We notice a slightly better recovery of the features and an overall
smoother surface quality. But the differences are not overly dramatic.

Figure 2.20: Iso-surface rendering of the Toes dataset: (left) CC-lattice re-
construction, (right) BCC-lattice reconstruction

The true advantages of optimal lattices lie in their ability to recover
small features better, and with less sensitivity to orientation (due to its
more isotropic sampling). A common task in medical imaging is the de-
tection of small lesions and tumors. To explore the performance of the two
candidate lattices in this context, we generated a 3D phantom dataset con-
sisting of blobs of various sizes and generated (standard Cartesian) pro-
jections of these. The projections had a resolution such that the smallest
blobs would still be detectable to at least 1-2 pixels. We then reconstructed
these blobs on both a CC and the equivalent BCC lattice at a resolution
matching that of the projections. At this lattice resolution the size of the
smallest blobs amounted to about 1.5 voxels. The reconstruction results
are shown in Figure 2.21. We see that only the BCC lattice is able to re-
cover the smaller blobs, and overall the blobs appear better refined.
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Next, we generated a tumor brain phantom by embedding a selec-
tion of randomly distributed small tumors into an existing brain volume
dataset. We generated projections and reconstructed them as well, using
the same protocol than for the blob phantom. Figure 2.22 shows a slice
of this reconstruction. Again, we observe that the BCC lattice is able to
recover almost all of the tumors, while the CC lattice fails in many cases.
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Figure 2.21: Blob phantom study. (Left): a row of blobs of decreasing size
extends diagonally across space. The smallest blobs have the equivalent
size of 1.5 voxels. The CC and BCC lattice reconstructions of these are
shown to the right. (Right): Cross-sections of the blob phantom and its
reconstructions. We observe that the BCC lattice recovers the small blobs
significantly better, and in some cases is the only lattice to recover them.
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Figure 2.22: Tumor phantom study, which is a more realistic experiment
than the blob study. A set of small tumors (a slice of these is shown on the
left) was projected into existing brain projections images. The correspond-
ing slice of the reconstruction results using the CC and the BCC lattices are
shown to the right, respectively. We see that the BCC lattice cannot recover
all them either (due to their small size), but it recovers significantly more
of them and at higher intensity.



Chapter 3

Streaming-CT

3.1 Introduction

Spiral (helical) CT has become the de-facto equipment for volumetric
diagnostic CT, and scanners of this nature can be found in almost abun-
dant quantities both in radiology departments of hospitals as well as at
commercial imaging services. In recent years, multi-row detectors have
given rise to a spiraling cone-beam data acquisition, shortening acqui-
sition time to single breath-hold imaging which is useful for pulmonary
and cardiac CT (see [10] for a comprehensive overview on the theoretical
aspects of dynamic CT). Scanners with 64 such rows are currently avail-
able, but scanners with 256 detector rows have already been prototyped in
research labs. Nevertheless, despite their obvious advantages, spiral CT
scanners can be large and costly, and at the same time less suited for inter-
active applications, such as planning or monitoring applications occurring
in radiotherapy, image-guided surgery, patient positioning, instrument
navigation tasks, trauma units with mobile scanners, and others. In that
context, the emergence of technologically advanced flat-panel displays,
manufactured from either amorphous silicon or CMOS, have created alter-
native image acquisition platforms seeking to fill these application areas
in which spiral CT equipment is less suitable. The traditional platform for
cone-beam CT is the C-arm gantry, which typically provides a spin-range
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of 270◦ at 30-50◦ /s. C-arm gantries often suffer from instability problems,
which need to be quantified and corrected, and novel closed-gantry scan-
ners have recently become available to eliminate these problems. On the
other hand, image acquisition speed and resolution are both dictated by
the flat-panel detector in use. Here, 30 frames/s are typically acquired, at
a matrix size of up to 10242. C-arm scanners have been the platform of
initial research in this direction, leading to the development of computed
rotational angiography where images acquired with standard rotational
angiography were used for volumetric reconstruction (see earlier research
by Fahrig et al. [25], which still used detectors based on X-ray image inten-
sifier (XRII) technology). Micro-tomography for small animal imaging has
also traditionally used this type of platform (see, e.g., Lee et al. [56]). Fi-
nally, more recent applications include CT-guided radiation therapy [41],
trauma imaging [95], 4D imaging for cardiac CT and others [51] [89] [67],
and the integration of CT with interventional procedures [61]. Further ap-
plications are in dentistry, but also in non-medical scenarios in industry
and security. The majority of these approaches use the cone-beam recon-
struction algorithm devised by Feldkamp, Davis and Kress [26], which is
a special case of the exact cone-beam reconstruction algorithm pioneered
by Grangeat [36].

For any of these applications, all one requires is an X-ray source, a (2D)
flat-panel detector, a gantry with rotation capabilities (C-arm or closed),
a computer programmed to perform both CT reconstruction and subse-
quent visualization of the results, and a high-speed interconnect to trans-
mit the detector data to the computer. X-ray sources, detectors, and gantries
are now readily available from various companies (small and large), either
in form of components or already assembled into turn-key systems. Com-
mon to many of the aforementioned cone-beam CT applications is the ex-
pectation to achieve reconstructions in an expedient manner. When used
in an interventional application, a near-interactive reconstruction is desir-
able. The overall goal motivating CT in all of these settings is to obtain a
visualization of the acquired data in a form different from what has been
originally acquired by the detector. Rather than viewing the scanned X-ray
projection images directly, as in standard fluoroscopic angiography, clini-
cians seek to create novel views and insight into the scanned subject. Once
the region of interest has been 3D reconstructed, these novel views can be
obtained via 3D slicing, goal-directed segmentation, and shaded volume
rendering. Ideally, clinicians also would like to obtain these novel views
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quickly, as if the scanner had produced this imagery directly. This is obvi-
ously important in interactive applications, such as image-guided surgery,
radiation therapy, and other tasks in which the imaged object, here the tis-
sue or bones, is manipulated or modified in real time. Being able to get
a quick volumetric snapshot of the current state of the object represents
a significant advancement over methods in which the object was imaged
before in a pre-operative scan, and in which only the tracked instruments
move, in this static volume. For example, Bonnet et al. [10] have described
the Sliding Window Principle for dynamic (4D) CT, in which the reconstruc-
tion is continuously updated with newly acquired projections while the
influence of older projections is phased out at the same rate.

To enable this type of operation for our commodity CT scenario, the
speed of the data processing must match that of the data acquisition. More
concretely, assuming an image acquisition rate of 30 2D projections/s, the
reconstruction must proceed at the same bandwidth, that is, at a rate of
30 projection/s. This then will result in a pipeline in which projection
data are produced by the acquisition process (the detector) and are imme-
diately consumed by the reconstruction process (the computer), without
any growing intermediate buffers. In that case the time delay incurred for
3D viewing is only constrained by the speed of the gantry. This is true
in most types of scanning protocols, such as full-scan, short-scan, sliding
window, and others [89] [10]. If the reconstruction speed matches the ac-
quisition speed (assuming properly dimensioned network interconnects),
then the reconstruction is obtained and can be viewed immediately af-
ter the protocol allows for it, plus the time a projection takes to flow (or
stream) across the computational pipeline. Therefore, in order to reflect
this type of dataflow architecture, we refer to this reconstruction paradigm
as streaming CT.

Unfortunately, in today’s practice even highly optimized CPU-based
reconstruction engines cannot achieve this degree of computational band-
width. Typically, reconstructing a 5123 volume from 360 5122 projections
still consumes 60-100 seconds on a dual Pentium PC, while streaming CT
would require reconstruction speeds an order of magnitude higher. The
usual resort to bridge this performance gap is to employ either high perfor-
mance, specialized proprietary hardware (ASIC or FPGA) or a multi-node
cluster, as for example the CPU/FPGA inline reconstruction architecture
by Brasse et al. [11]. However, all of these implementations are expensive
to develop and can be difficult to modify.
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With the help of modern programmable computer graphics boards (GPUs)
we are able to fulfill the requirement of streaming CT at a very low cost.
Although GPUs were mainly (and continue to be) designed to produce
dazzling visual and physical effects for computer games and entertain-
ment, they have also given rise to the strong trend of GPGPU (General
Purpose Computing on GPUs). The advantage of GPUs (over proprietary
platforms) is that they are widely available at a price of less than $400, their
programs are easily modified and updated, their programming model is
well understood and supported by a large user base, and their existence
is immensely boosted by the commercial power of interactive entertain-
ment. In fact, due to both the market pressure and their favorable general
architecture, the performance of GPUs has consistently doubled every six
months, which is triple of Moore’s law governing the growth of the per-
formance of CPUs. Therefore, in terms of the streaming CT paradigm, a
GPU-based platform is much better prepared to scale with growing gantry
speeds, and projection and volume dimensions. At the same time, GPU
on-board memory has also substantially increased (to 1GB and more),
enabling reconstructions of realistically-sized volume datasets (5123 and
more) at floating point precision without incurring any time-consuming
data communication to main memory. Finally, since GPUs are already fre-
quently used for the visualization of the final reconstruction results, they
naturally lend themselves also for the visual monitoring of the ongoing
reconstruction.

3.2 Mapping Feldkamp’s Algorithm

The three equations in Section 1.1.1 constitute a natural decomposition
of the FDK algorithm, forming a pipeline consisting of filtering, backpro-
jection, and weighting. Depending on how the stream is defined, we have
two modules that have different processing sequences with respect to both
projections and the volume being reconstructed. The first module, a rig-
orous Streaming-CT, processes the incoming individual acquisition com-
pletely before going to the next. This essentially eliminates the necessity
of keeping projections in memory but the reconstructed volume has to
remain in memory as a whole. There is no space concern for large projec-
tions, since projections are deleted from GPU memory immediately after
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they have been applied (consumed) for reconstruction. The other module,
which we call Slice-CT takes priority in processing the volume slices. Here
all projections should be ready before any reconstruction of slices of the
volume starts. The advantage is that reconstructed volume slices can be
swapped out of the pipeline and examined immediately. Despite the or-
der of processing, the underlying reconstruction operations with respect
to each voxel are the same, which constitute of the three steps mentioned
above.
Streaming-CT pipeline
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Figure 3.1: Streaming-CT pipeline

3.2.1 Projection-space Filtering

We choose to perform projection space filtering on the CPU, using the
cache-optimized FFTW library [30]. This is reasonable since the FFT is
a relatively sequential algorithm which involves many non-GPU-friendly
operations, such as sorting, indexing and bit-wise calculations. Although
a number of GPU-based FFT implementations are available [34] [88], sig-
nificant speedups are obtained only for 2D and 1D FFTs with sufficiently
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Figure 3.2: Slice-CT pipeline

large arrays (over 10k elements) - larger than those typically encountered
in CT applications. This also resonates well with the declared goal to inte-
grate the CPU as part of the computing pipeline, in order to make optimal
use of all available resources. It is also theoretically justifiable, consider-
ing that the complexity ratio of a projection filtering vs. its backprojection
(O(N2logN) vs. O(N3)) is in good correspondence to the performance ra-
tio of CPU vs. GPU (1-2 orders of magnitude). Using the Pixel Buffer
Object (PBO) and Vertex Buffer Object (VBO) software interface, in con-
junction with the PCI-Express memory bus, this streaming can be well
overlapped with ongoing backprojections and thus does not cause signifi-
cant pipeline delays.

Another important issue is the precision used within the pipeline. While
the projection data acquired by the detector typically have a dynamic range
within 12-16 bits, the filtering potentially widens this range, and therefore
maintaining full 32-bit floating point precision in later pipeline stages is
most appropriate in clinical settings. For reconstruction on objects that do
not require extreme accuracy such as industrial CT, we experimented with
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different data formats in Section 3.3.1.

3.2.2 Backprojection

In order to describe a generalized mapping from volume space into
perspective detector space, the (reconstruction) volume coordinate system
(VCS) is described here by axis vectors (xv, yv, zv) as the reference coordi-
nate system, with the volume center at location (0,0,0) (see Figure 3.3). In
this VCS, a given detector image Pφ has been acquired in a source-detector
pair coordinate system (DCSφ) described by axis vectors (xφ, yφ, zφ). Here
zφ is orthogonal to the (flat) detector plane, the source is located at s =
−dφzφ and the detector center is located at (Dφ − dφ)zφ. A backprojec-
tion is the mapping of a voxel with VCS coordinates r = (rx, ry, rz) onto
the detector plane, yielding coordinates Pφ(X(r), Y (r)). Here, X(r) and
Y (r) are scaling functions from VCS coordinates into detector pixel co-
ordinates. After the mapping, an interpolation operator Int() yields the
backprojected voxel update vφ(r), which is then depth-weighted accord-
ing to the FDK equation:

vφ(r) =
d2

φ

(dφ + r · zφ)2
· Int(Pφ(Xφ(r), Yφ(r)))

X(r) =
r · xφ

dφ + r · zφ

Dφ, Y (r) =
r · yφ

dφ + r · zφ

Dφ

(3.1)

In the GPU context, the target volume is represented as an axis-aligned
stack of 2D textures, since a single 3D texture does not support an efficient
update mechanism, as mentioned before. As illustrated in Figure 3.1, the
streaming-CT pipeline begins with generating a series of quadrilaterals Pi

(called proxy polygons) which define the location and spatial extent of each
volume slice as well as corresponding 2D textures Ti that contains voxel
values to be reconstructed (initialized to zero). Then from a specific pro-
jection angle, for each such slice Pi, viewing its host polygon face-on in
orthographic viewing mode produces the fragments that relate to the slice
voxels (solid arrows pointing downwards in Figure 3.4). The vertex shader
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Figure 3.3: Geometry defined in the Feldkamp filtered backprojection al-
gorithm. VCS(xv, yv, zv): volume coordinate system; DCSφ(xφ, yφ, zφ) :
source-detector coordinate system; r: voxel to be reconstructed; O: rota-
tion center (origin); S: source; w/h: detector width/height in pixel counts;
dphi: source-origin distance; Dphi: source-detector distance.

then performs the mapping of these fragments into the perspective coor-
dinate space of the back-projected image (the detector space). This is often
referred to as projective-textures mapping (the dash arrow in Figure 3.4). An
interpolation of this image at the mapped location produces the fragment
value, which is then added/written to the corresponding output texture
Ti representing the slice. These operations represent one rendering cycle
(pass) on the GPU. New passes will be initialized and executed repeatedly
until every volume slice is processed, from every projection angle.

In practical applications, the detector plane may not always be oriented
perfectly collinear with the rotation axis for all angles. This may be due to
(measurable) gantry instabilities, or it may be intended, in order to im-
plement specific acquisition protocols on non-circular orbits. A series of
matrix operation is used to represent the mapping, as shown in Equation
(3.3). Since the mapping is perspective, 4D(homogenous) vectors and 4×4
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Figure 3.4: Backprojection of a volume slice on the GPU. An orthographic
view (screen) onto the volume slice generates voxel fragments, each of
which will then sample the detector (one fragment is shown here).

matrices are employed.
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Here, θ is the cone-angle and d/c indicates terms that are not needed,
since we do not require zh. The model-view matrix M transforms a voxel
coordinate r from the VCS into the DCS. Another 4 × 4 matrix, P , de-
termined by Dφ, and detector dimensions w and h implements the subse-
quent perspective projection. M and P map r into a canonical viewing
space, which is essentially a volume whose Cartesian coordinates are in
[-1,1]. The following two transformations, translation matrix T and scal-
ing matrix S, are determined by the detector size (w and h) in pixels. Next
comes the perspective divide, using the wh term of the resulting 4D vector.
This produces the (floating point) coordinates Pφ(X(r), Y (r)) in detector
pixel space. After interpolating the detector image the FDK weighting is
performed, re-using the wh term. This weight is essentially computed as
| zφ · r − zφ · s | representing the voxel’s depth with respect to the source.

Note that this matrix only accommodates the case illustrated in Figure
3.3, that is, the source-detector pair can rotate in any (non-circular) orbit
and orientation, but the center ray must pass through the rotation center
(here the volume origin) and it must be orthogonal to the detector plane.
However, generalizations of this can be easily incorporated into the P ma-
trix by implementing a general viewing frustum (for more details of this
mapping see [28] and [81]. This can accommodate any type of instable
gantry situation, which often occur in practice.

For streaming-CT, once the fragment values have been generated, we
accumulate them into the corresponding slice voxels. The above proce-
dure is repeated for each volume slice until the entire volume is updated,
and we then move to the next filtered projection generated by the scanner.
The projection-processing iteration over all slice is illustrated as the solid
arrow in Figure 3.1. For Slice-CT, the accumulation is postponed until all
backprojection are completed from every projection. A large 2D texture
sheet to hold M 2D texture tiles computed from M projection angles is
prepared and each backprojected result is then directed to a designated
area on the sheet, according to its projection angle K (see Figure 3.2). After
all backprojections onto a given volume slice from all rotation angles have
been completed and written to the sheet, an accumulation stage that con-
sists of several passes is executed to combine multiple tiles into one. The
separation of the backprojection and accumulation stages within a slice re-
construction gives rise to a reduced number of rendering passes of dM/Le
for accumulation, instead of M .

With recent GPUs such as Geforce G80 series, the pipeline distinction
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between the vertex and pixel engines is no longer made explicit in the
hardware itself. For example, the NVidia 8800 GTX features 128 uniform
SIMD (Same Instruction Multiple Data) processors. These can then be
viewed either as a 128-way parallel processor, in the spirit of GPGPU and
in association with the CUDA (Compute Unified Device Architecture) pro-
gramming interface, or as a traditional graphics pipeline, in which case the
processors are dynamically assigned to vertex and fragment operations
in the manner described above. Therefore two choices are available: im-
plement backprojection (i) as a Multi-Processing task using the 128-way
parallel configuration (MP-GPU), or (ii) as a graphics task by ways of
the Accelerated Graphics pipeline shown above (AG-GPU). Most previ-
ous GPU-accelerated CT reconstruction solutions, as the one of [102] men-
tioned before, have relied on the MP-GPU configuration, but as the com-
parison will show, the AP-GPU configuration is by far preferable, due to
the fact that it benefits from the fast parallel ASIC rasterization hardware
for the compute-intensive texture coordinate generation.

Using the Accelerated Graphics Pipeline (AG-GPU)

In the AG-GPU configuration both vertex and fragment shaders are
used (see Figure 3.5(a)). First the matrix Tr = S · T · P · M for the spe-
cific projection is compiled and loaded into the vertex shader. Then, for
each slice, the vertices of its proxy polygon are passed into the vertex
shader, and the subsequent transformation produces the mappings of the
slice vertices into the detector plane (the 4D coordinate vector in Equa-
tion 3.3). The rasterizer, in turn, produces bilinear interpolations of these
coordinates, one for each slice voxel (mapped to its fragment). These in-
terpolated 4D coordinates are the correct mappings for the slice voxels,
since the matrix Tr originates in linear algebra and linear transformations.
With each such fragment containing the vector [xh, yh, zh, wh] for its slice
voxel r, the fragment program then performs the final perspective divi-
sion. This produces the detector coordinates needed for the sampling of
the (filtered) projection image, which is streamed in as a texture from the
CPU. The sampling position usually does not coincide with the detector
pixels and a sampling kernel needs to be applied to produce final val-
ues. Here, the method employed for this sampling is important. We use
bilinear interpolation, which in fact runs nearly at the same speed than
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nearest neighbor interpolation on the Nvidia 8800 GTX, but produces su-
perior results, especially in cases where the projection resolution is close
to the volume resolution. The last portion of the fragment program is the
computation of the FDK depth-weighting factor (dφ/wh)

2 and the result
is then written to the texture accumulating the backprojections. Thus, the
overall length of the fragment program is quite short: two divisions, two
multiplications, one (hardwired) interpolation, and one addition.

Using the Multi-Processor Configuration (MP-GPU)

In MP-GPU the generated fragments are processed in one uniform SIMD
multi-processor of the GPU, most appropriately called the fragment shader
(the vertex shader is not implemented). This mode is shown in Figure
3.5(b). Here, the processors, and not the built-in hardware, must per-
form the matrix-vector multiplication for each slice-voxel (represented by
a fragment), in addition to the other operations also performed in the AG-
GPU configuration. These additional calculations amount to 12 multipli-
cations and 9 additions, which requires nearly twice as many clock cycles
than the shader program of the AG-GPU configuration.

3.2.3 Additional Acceleration Strategies

RGBA Packing

Originally designed to process graphics primitives, the GPU architec-
ture is capable of efficiently processing 4-component vectors containing
red, green, blue and alpha properties of such a primitive. This feature
offers an opportunity to obtaining a second level of parallelism, that is,
channel parallelism. There are two different ways of implementation.

• When projections are acquired under parallel-beam geometry and
have the same resolution than the object grid, adjacent volume slices
share similar sampling patterns on the detector, which is indepen-
dent of the rotation axis Y . Therefore, every four neighboring pro-
jection rows and corresponding volume slices can be packed into a
texture of 4 channels and all the transformation and sampling can
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Figure 3.5: Two options for GPU-based accelerated CT reconstruction: (a)
AG-GPU: accelerated graphics pipeline using both vertex and fragment
engines; (b) MP-GPU: multi-processor configurations using fragment en-
gine only.

be implemented concurrently on the GPU. This method reduces the
number of rendering passes in both Streaming-CT and Slice-CT by
four, and in practice yields a 2-3 fold speedup.

• When projections are obtained in cone-beam setup and collected at
regular intervals over 360◦, we can process four projections spaced
apart by 90◦ in four separate channels, without committing any er-
rors (see Figure 3.6). These projections will share the GL transfor-
mation matrix, only the resulting backprojection result needs to be
rotated by 90, 180, or 270 degrees. For this purpose the tile sheet
is composed of 4 sub-sheets (RGBA), one for each rotation group.
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Figure 3.6: Access pattern for the orthogonal-angle backprojection in
RGBA channels.

These sub-sheets are first accumulated in parallel, and the resulting
four textures are then summed, after rotating them appropriately by
a multiple of 90◦, in a final fragment program. Similarly we can pack
adjacent incoming projections into 4 channels in the Streaming-CT
framework to reduce the number of rendering passes. But there is
no symmetry existed in the transformation matrices from adjacent
angles which results in re-interpolation/re-sampling in every chan-
nel and yields only minor speedup thanks to the reduced number of
rendering passes.

Early Fragment Kill

A source for additional speedups is a GPU facility known as early frag-
ment kill (EFK), which can be exploited when the density-range or the
spatial extent of the target object is known a-priori. In EFK a fragment is
culled from the pipeline before it enters the fragment shader, thus caus-
ing near-zero computational overhead. If the spatial extent of the object
is known or the reconstruction can be limited to a region of interest, then
the GPU stencil buffer can be set to a bit mask, which is tested in hard-
ware by a corresponding stencil threshold during rendering. The outcome
of the test then decides if the fragment is culled. Since the stencil buffer
has 32 bits, we divide the volume slice stack into 32 sub-stacks, find the
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2D stencil for each, and store it in one of the 32 bits. This stencil mask is
then loaded into the GPU at run-time. In addition, if the desired density
range of the object is known then the current density of a reconstructed
slice voxel (normalized to the number of backprojections applied so far)
can be used to determine if a subsequent fragment is passed into the frag-
ment shader or not. If a voxel’s value is outside the density range of in-
terest (plus a reasonable margin), then this slice fragment (corresponding
to a voxel) is guaranteed to fall outside the structure of interest (that is,
it is outside the shadow of the previously applied projections) and can be
safely rejected from the pipeline using EFK. This is a conservative rejection
criterion, with 100% sensitivity, and the specificity increases (that is, more
fragments end up rejected) as more projections are being applied, since
these lead to a better object definition. EKF can be controlled by copy-
ing the current density volume into either the depth- or stencil buffer, and
then setting the appropriate depth- or stencil thresholds according to the
desired density range (for more detail see e.g., [73]).

3.3 Practical Concerns

3.3.1 Precision Issues

Given a constant bandwidth processing rate on the GPU, the data for-
mat of textures will have a direct effect on its access/read speed in this
streaming computational model. Fixed-point precision such as 8-bit inte-
ger data will yield faster performance but might compromise the compu-
tational accuracy. Therefore, it is important to investigate the performance
of using different data format on GPU, in the sense of both computational
speed and precision. Note that in the following we describe the experi-
ments under the Slice-CT framework.

8-bit Integer

We observed that narrowing down the dynamic range of the filtered
CT images from 32 bits to 8 bits and a subsequent backprojection can result
in loss of detail. Figure 3.7 shows the reconstructed results at the original
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(0.5%), double (1%) and quadruple (2%) contrasts, created from the projec-
tions analytically computed from Shepp-Logan phantoms of two different
contrasts, filtered and narrowed down to 8-bit. We observe some streak
artifacts on both images, and we also have difficulties to distinguish the
three small tumors on the bottom in the lowest-contrast (0.5%) phantom.
For the dataset with contrast constraint slightly weakened (1% and 2%),
the tumors can be well separated and the streak artifacts are reduced. On
the other hand, the speedup of using 8-bit is around 20 over the 32-bit
floating framework, as shown in Table. 3.5.1. Thus, the integer precision is
quite useful for object reconstruction, as long as the contrast requirements
are not extremely strict. But we need do better for a diagnostic setting.

Figure 3.7: Feldkamp reconstruction from 8-bit data. Left: 0.5% contrast;
Center: 1% contrast; Right: 2% contrast.

Pseudo-16bit

Since in our rendering framework, the RGBA channels are often fully
occupied to obtain further speed-up, and currently 16-bit RGBA format is
not yet supported by NVIDIA’s GPUs, we devised a “double-precision”
scheme to alleviate the narrow dynamic range presented by 8-bit integer
data. For this, we first perform a compression of the dynamic range of the
original floating point SLP projection data into 16-bit fixed point words.
This is justifiable since data obtained from commercial scanners are usu-
ally never wider than 16 bits. Although filtering may result in a higher
precision depth, we have not noticed any adverse problems due to this
16-bit compression.
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Figure 3.8: Virtual double precision (pseudo-16bit) through data splitting,
individual rendering and summation

We then render these 16-bit words in two passes. First, every 16-bit
word is divided into two bytes and stored in two individual 8-bit textures,
containing the higher 8-bit and lower 8-bit words, respectively. Two back-
projection passes are then performed on each 8-bit texture individually to
obtain two tiled sheets, which are streamed into the floating point accumu-
lation pipeline in turn. Here, we should note that the interpolation result
obtained solely with the higher 8-bit texture will lose the lower 8 bits, if
generated there. This is similar to the scheme presented in [70]. When
assembling the two results, an additional shifting operation needs to be
executed on the sheet containing the higher 8-bit information before sum-
mation (see Figure 3.8). Our technique is somewhat related to the work
presented in [87] who emulated a complete set of arithmetic operations at
16-bit precision with RGBA8 textures on a NVIDIA GeForce 3, using ba-
sic arithmetic operations and dependent texture lookups. However, our
scheme is much simpler, and while it is slightly less accurate, it is consid-
erably faster.

Fig. 3.9 illustrates the reconstructed Shepp-Logan Phantom at 0.5%,
1% and 2% contrasts for the use of this technique, which shows that this
scheme delivers excellent reconstruction results, despite its slightly re-
duced accuracy compared to a fully 16-bit approach. Also, by design,
the total reconstruction time required with the extra spreading pass per-
formed is just slightly over twice as long as that required for the single
precision reconstruction (see Table 3.5.1).
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Figure 3.9: Feldkamp reconstruction from pseudo-16bit data. Left: 0.5%
contrast; Center: 1% contrast; Right: 2% contrast.

3.3.2 Large Datasets and Cache Performance

All popular PC graphics cards on the market have limited on-board
memory. Given the potentially large magnitude of CT projection images
(360 images of size 5122 or 10242) and the resulting volume at a matching
resolution, a trivial upscaling of the current implementation to these larger
datasets will not scale linearly in performance. In our experiments, we
have found that the increase in time spent for the reconstruction volumes
of linearly increasing size is not linear (see Figure 3.10). In simple cases,
the time required for the backprojection onto a slice of a 2563 volume on
a NVDIA 5900 is much higher than the expected four fold increase of the
time incurred for the same operation for a 1283 volume. A particularly
dramatic increase can be observed near a specific dataset size (a volume
size of 2023 in Figure 3.10). This can be explained by an excessive number
of cache misses, followed by texture reloads.

Texture compression strategies are often adopted to address problems
due to insufficient memory space. The existing OpenGL compression ex-
tension (ARB texture compression) has been designed to boost pipeline ef-
ficiency. However, this lossy scheme does not satisfy the strict quality
requirements of CT. Pre-compressing the CT images in a lossless way be-
fore texture loading, by ways of a user-defined compression scheme, is not
practical either, due to the unavailability of corresponding decompression
mechanism on the card, although this could be user-implemented.

We therefore adopt a scheme that alleviates the burden imposed by
large images and volumes through partitioning and subsequent stitching
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Figure 3.10: Nonlinear timing curve as a function of volume size (the size
numbers are to be taken cubed).

(assembly) of the results. The idea is to control the scale of computa-
tion on the GPU in order to maximize the efficiency of the memory op-
erations, while avoiding superfluous traffic incurred by large data. More
concretely, the reconstruction task of a N3 volume can be decomposed into
8 smaller volumes of size (N/2)3 (see Figure 3.11). Reconstruction of each
smaller volume still needs the participation of all projection images and
will go through the same procedures with regards to projection and accu-
mulation. But the complexity of all texture-related operations is kept at
O(N3/8) and the required bandwidth is thus bounded. This scheme can
be performed recursively until an appropriate size of the partial volume
is found. We observed in our experiments on the current platforms that
texture sizes of 1283 exhibit good cache behavior. Thus, our decomposi-
tion with the current GPU platforms uses volume blocks of size 1283. As
a simple example, the top and bottom partial volumes shown in Figure
3.11 consist of reconstructions and assemblies from blocks 0-3 and 4-7, re-
spectively, and are exported to the CPU in two transfers, if no subsequent
visualization is needed. Else, we compress the volume section in a quick
run length encoding (RLE), which compresses away the blank voxels near
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the boundaries of the volume.

Figure 3.11: Strategy of texture partition and assembly.

For extra large projections exceeding the physical graphics memory,
a straightforward compromise is to divide projection images into subsets,
perform the reconstruction set by set and combine the individual results in
the end. Another approach is to only reconstruct a certain range of volume
slices at a time. This requires the decomposition of the projections into a
corresponding set of segments. One can still use the volume block-scheme
described above to keep below the cache limits, and for both strategies the
projections for the next slice range can be streamed in while the previous
reconstruction is still in progress, since loading and GPU calculations can
occur simultaneously. Currently, we always decompose our volume into
their upper and lower halves, due to the independent calculation of these
volumes.
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3.3.3 Load Balancing

The powerful computational capability of GPU does not come without
careful planning and creative mapping of the target process onto the hard-
ware’s computational model. A correct assignment of the task to the var-
ious GPU pipeline components and an efficient management of the GPU
resources are crucial to harness and maximize the available computational
power. Refer to the callouts in Figure 3.12 where we indicate the locations
in the pipeline at which bottlenecks usually occur. One bottleneck occurs
(callouts 2, 3) when fragments, streaming out of the rasterization engine,
are being pooled into the multiple pixel pipelines, waiting to be processed
in the shader (where they usually request access to the texture stream).
A complex shader will result in stalling the pipeline because the raster-
ization process outpaces the shader’s processing speed and as an effect
produces more fragments than the shader can digest. The situation will
further deteriorate if the shader contains too many I/O requests from the
texture (callout 4), which are expensive operations compared to arithmetic
instructions. The latter usually occurs when sophisticated sampling (in-
terpolation) schemes are performed, requiring access to larger patches of
texture data. Another bottleneck (callout 1), resulting from these previous
bottlenecks and/or from insufficient processing power, manifests itself by
an overload of input data (projections and slices). It occurs when the pro-
cessor cannot keep up with the projection acquisition, which is exactly
what our streaming CT seeks to prevent.

For CPU-based programs, the use and scheduling of the cache as well
as other lower-level memory plays a very important role in overall per-
formance. Every cache (and memory) fault will lead to a delay within the
ongoing computation, and much work has been done to optimize memory
access patterns for an abundance of diverse application scenarios. This sit-
uation is considerably more complex on GPUs since they consist of several
components: (1) the cache and the main memory interface, but also (2) the
active units embodied by the rasterizer and the two programmable, SIMD-
parallel shaders. Thus, while CPU-based programs only need to minimize
wait for memory access and data delivery, GPUs must, in addition, also
balance the data flow across its several active units.

Therefore, load balancing is a very important issue in our high per-
formance streaming computation framework. A balanced load will avoid
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Figure 3.12: GPU load balance pipeline.

the accumulation of intermediate data within the pipeline, which is syn-
onymous with a wait-free overall state. Consider again Figure 3.12, where
the four callouts illustrate the locations where pipeline stalling may occur.
This is the case when the data production rate of the previous stage does
not match the consumption rate of the upcoming stage. If it is greater, then
data accumulation will occur, while if it is less, then the upcoming stage
stalls. For example, processing a single projection in one pass, which in-
cludes instruction execution and texture sampling (callout 3 and 4), cannot
produce enough workload on each fragment generated from the rasteriza-
tion engine. This results in the situation that the pipeline inside the shader
may be idle, waiting for more fragment output from the rasterization. To
eliminate this bottleneck, we created a projection buffer on the GPU to
temporarily store the acquired and filtered but not yet backprojected pro-
jections streamed in from the CPU. Here, the number of projections held
in the buffer is controlled by a window, which we can dynamically adjust
via the CPU-resident control process in order to optimize the load. When
using this projection buffer, the first cycle must wait until the buffer has
been filled, but for the remaining cycles the filling of the buffer with the
next batch occurs while the previous batch is being processed, thus there
will be no wait thereafter. In practice, when passing a batch of projection
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textures into the shader, we also transmit their acquisition geometry infor-
mation in order to perform multiple backprojection samplings for a given
slice. This multiplicity has already been indicated in Figure 3.5 (by the
multiple arrows). While the MP-GPU approach (Figure 3.5(b)) can cope
with arbitrary window sizes, the AG-GPU approach is limited by the num-
ber of floating point texture coordinate registers a rasterized fragment has
available. These are needed to pass the interpolated texture coordinates
and weights for each projection. The current hardware has a maximum of
8 such registers, which, however, did not pose a limit for our application.

The remaining bottleneck, callout 1, often occurs due to the slower data
transfer rate on the PCI Express bus connecting CPU and GPU, but for
synchronizing the GPU calculation and the data transfers from CPU to
GPU, we take advantage of the new Pixel Buffer Objects (PBO) and Vertex
Buffer Objects (VBO).

For multi-GPU board configurations, the projection buffer is dupli-
cated across different nodes and each GPU performs the same scheme,
as described in detail above. The CPU-based control process will then fill
each GPU buffer appropriately, with as many projections as determined
by the optimal window size. In order to minimize the initial buffer fill
rate, projections are assigned to the individual GPU projection buffers in
a round robin fashion. Dual-CPU PCs share the load for filtering. There is
only little overhead associated for communication during the reconstruc-
tion, and once all GPUs have completed their volumes, they are added
together (using a hierarchical algorithm when a quad-GPU is used) after
which one GPU contains the entire volume.

3.4 Visual-CT

In some application settings it can be useful to monitor and track the
state of the evolving object as the incoming projections are applied. A
traditional choice has been to simply view selected volume slices contain-
ing the features of interest. But if it is the goal to get a quick insight into
the three-dimensional shape of an object, for example, a part of the mus-
culoskeletal system, direct 3D volume rendering (DVR) may be a better
option. Further, in some cases it may also be of interest to generate real-
time X-ray views from an orientation different than those generated by the
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scanner, which can provide useful hints even if the object is not fully re-
constructed. Since X-ray viewing, and with some additional overhead also
DVR, are practically inverses of the rapid backprojection operations sup-
ported by our framework, it is relatively straightforward to inject an oc-
casional (or frequent) X-ray or DVR pass into the on-going reconstruction.
The fragments are then due to the pixels of the displayed image, while the
slices of the reconstructed volume for the textures, which are interpolated
by the mapping operation. We call this capability Visual CT. Visual CT has
two modes of operations, depending if the desired structures are known
a-priori or not. In the former case, a DVR can be easily obtained, given pre-
viously generated mappings of the Hounsfield densities to visual param-
eters, such as color and transparency (i.e., opacity). Since a DVR must also
include shading and transparency compositing, these operations must be
added to the shader program. In the latter case, the real-time reconstruc-
tion will likely prohibit the somewhat time-consuming parameter tweak-
ing needed to establish a good DVR from unknown densities, and thus
an X-ray or MIP (Maximum Intensity Projection) rendering from a novel
view point is probably more desirable.

3.5 Results

3.5.1 Precision

For the precision and large dataset techniques presented in the Slice-
CT framework, Figure 3.13 compares some reconstructions of the Shepp-
Logan Phantom at 3 different contrasts (the original 0.5%, a more moder-
ate 1% and 2%), obtained with both the single and the dual-pass approach.
The line plots show the intensity profile of a 1D cut across the 3 small tu-
mors near the bottom of the 3D SLP. Table 3.5.1 shows the performance ob-
tained with the different settings discussed here (for an NVIDIA 7800 FX
GPU), all using the 4-channel parallelism (RGBA) for the reconstruction of
a 2563 volume. We see that the better data caching achieved with the data
partitioning (P) allows speedups of 2-3, both at floating and at fixed-point
precision. We also observe that while the double-pass approach (DP) does
run about 1.5 times slower than the single-pass approach (SP), it is still
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Mode Time
CPU float 180s
RGBA float 42s
RGBA float + P 20s (2)
RGBA SP 6.1s (7)
RGBA SP + P 1.9s (21)
RGBA DP 9.0s (5)
RGBA DP + P 3.0s (3)

Table 3.1: Slice-CT timings (speedups in parentheses) with various con-
ditions discussed (RGBA: 4-channel packing; P: partitioning; SP: 8-bit,
single pass; DP: pseudo 16-bit, double pass).

14 times faster than the floating point approach, while producing an im-
age that is visually very close to the original. It is also 60 times faster
than a pixel-driven CPU floating point implementation. Although there
is a small amount of noise that can be detected in the line plot, the level
is too small to show up in the image. We should also mention that our
partitioning strategy provides the desired linear scaling in dataset size - a
reconstruction into a 1283 volume completes at 0.2s in the single-precision
(SP) mode and at 0.4s in double-precision (DP). Finally, Table 3.5.1 shows
the running speed for reconstructions from projection images increasing in
size. Although we did not increase the size of the reconstructed volume,
the larger resolution of the projections yields better interpolation results
in the reconstructions, which leads to higher reconstruction fidelity, when
the object requires it (the SLP can be reconstructed well with the 2562 pro-
jections). We observe that the reconstruction runs at the expected speed as
long as all projections fit into memory. Extra large images that exceed the
physical onboard memory are divided into subsets small enough to fit.
The reconstruction is then run individually and the results are summed
together.
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Figure 3.13: A slice of the 3D Shepp-Logan Phantom reconstructed at 2563

resolution from 160 projections, obtained from 8-bit and pseudo 16-bit
computation under various contrast settings.

3.5.2 Reconstruction Quality

To further test the performance of the Streaming-CT framework, we
used a 3D version of the Shepp-Logan phantom as well as a variety of
medical CT datasets (a human head, human toes, and a stented abdom-
inal aorta) to test our framework. All experiments were performed on
a 2.2GHz dual-core Athlon PC with 1GB RAM, equipped with NVIDIA
Geforce 8800 GTX card (768 MB on-board memory). The phantom pro-
jections were calculated analytically, while the medical projection data
were obtained by performing high-quality X-ray simulations on existing
CT volume datasets. All projections were acquired on a full circular orbit
at a 15◦ cone angle.

For the Shepp-Logan phantoms, we used 360 projections of size 5122

each to reconstruct a 5123 volume. Figure 3.15 shows slices from the re-
constructed 3D Shepp-Logan phantom (at the original 0.5% contrast) from
both parallel-beam (0◦) and cone-beam (15◦) projections, each obtained
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Projections Memory Time
160× 2562 20 MB 3.0s

160× 1024× 768 420 MB 4.0s
320× 1024× 768 540 MB 6.7s

Table 3.2: Performance of Slice-CT with larger input datasets, typically
used in clinical practice.

with our Streaming-CT framework as well as a traditional high-quality
CPU implementation. We also compared two interpolation schemes, box
(nearest neighbor) and bilinear. A Shepp-Logan filter was used for pre-
filtering. The shifted profile in the cone-beam images results from the non-
exact FDK reconstruction of the off-center slices [44] [94]. We found that
both interpolation kernels, bilinear and box, yield excellent and, by visual
inspection, nearly identical results. We observe that the box filter tends
to produce somewhat sharper, but also noisier images. These differences,
however, can only be discerned when comparing the values on an inten-
sity profile, such as the one across the small tumors in the bottom. Figure
3.16 compares slices reconstructed from the simulated projection data (top
row) with the corresponding slices from the original volume dataset (bot-
tom row). We observe that the quality of the reconstruction and the origi-
nal is nearly identical. The very slight blurring most likely stems from the
inherent low-passing in the resampling during the projection simulation.
Finally, Figure 3.17 presents a set of novel slices and volume rendered im-
ages of the toes dataset, obtained with the Visual CT reconstruction moni-
toring facility.

3.5.3 Reconstruction Performance

Table 3.3 compares the overall performance of our streaming-CT frame-
work with a selection of other current high-performance FDK-based CT
reconstruction solutions reported in the literature. To enable a compari-
son, we scaled all of these to a currently common problem size, which we
have also used for our own experiments: the reconstruction of a 5123 vol-
ume from 360 projections (the size of the projections is irrelevant, except
for filtering, since the backprojection is mostly determined by the volume
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size). We also use the metric projections/s to indicate the potential for
real-time (streaming) reconstruction, currently requiring processing rates
of 30-50 projections/s.

52.56.8AG-GPU with EFK

40.48.9AG-GPU

14.524.8MP-GPU

GPU Nvidia
8800 GTXStreaming CT

19 (37)19.1 (9.6)Direct (Hybrid)Cell BE

2.6135HybridCPU
Kachelrieß et al

8-940.2-46.4FPGAGoddard and Trepanier, 
Lesser et al, Li et al

1.623612 dual-core Xeon CPU 2.6GHz

0.137051 dual-core Xeon CPU 2.6GHz
Brasse et al

Projs/sTime (s)MechanismHardware 
Platform

Table 3.3: Reconstruction speeds of various high-performance CT solu-
tions. Timings have been normalized for a Feldkamp cone-beam CT re-
construction with 360 projections onto a volume grid of 5123 resolution
(note, not all implementations employ 32-bit floating point precision, bi-
linear interpolation, and generalized source-detector positioning, which
are all used for our streaming CT application).

In Table 3.3, the methods labelled ‘direct’ employ the full 3D projec-
tion matrix (Equation 3.3) when mapping a voxel onto the detector plane,
allowing practical scanning situations in which the detector - source pair
need not be confined to a aligned, perfectly circular orbit. In contrast, the
method labelled ‘hybrid’ uses data that stem from resampling the acquired
projections into a virtual detector, which conforms to this ideal circular or-
bit. The backprojection is then performed into this arrangement, which re-
duces and simplifies the back projection matrix and thus allows for faster
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voxel-projection mapping. All of our GPU-solutions use the general, di-
rect projection scheme. We first observe that neither FPGA nor CPU-based
solutions have reported processing rates of greater than 10 projections/s.
On the other hand, our AG-GPU solution achieves the desired real-time
projection throughput rate (40 projections/s) - however, the MPGPU solu-
tion does not. Further, while the Cell BE hybrid solution is quite compet-
itive to our standard AG-GPU method, the Cell BE direct method is only
comparable to the MP-GPU solution. This match is understandable since
the Cell BE is a multi-processor architecture, but without specific graphics
hardware support.

Next, we show results using the EFK GPU-facility. Since this is clearly
data-dependent, we only show the performance for the most frequent
case, that is, when the reconstruction focus falls into the maximal spher-
ical region covered by all projections. We observe that this can achieve a
further speed-up of factor 1.3, which enables data acquisition rates of over
50 projections/s or reconstructions of larger volumes at 30 projections/s.
cone-beam reconstruction (5123 volume, 360 projections, direct method,
32-bit floating point precision, bilinear sampling) using different buffer
(window) sizes.

Finally, Figure 3.14 graphs the effect of window size on reconstruction
performance for the AG-GPU solution. We found that a window size of
8 yields the best results for our specific experiment setting, but it can be
easily adjusted to fit others. We also see that load-balancing can have a
dramatic positive effect, here a speedup of 4 (comparing the no-buffer case
with the case when the projection buffer size is 8).
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Figure 3.14: Streaming CT performance for a Feldkamp cone-beam re-
construction (5123 volume, 360 projections, direct method, 32-bit floating
point precision, bilinear sampling) using different buffer (window) sizes.
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Figure 3.15: A slice of the 3D Shepp-Logan phantom, reconstructed with
our streaming-CT GPU-based framework (first column) and with a tradi-
tional CPU-based implementation (middle column). A windowed density
range of [1.0, 1.04] is shown. The right column shows the line profiles
across the three tumors near the bottom of the phantom (dashed lines:
ground truth; solid gray lines: CPU results; solid black lines: GPU results).
We observe that the GPU reconstructions are essentially identical to those
computed on the CPU and that they represent the original phantom well,
for both parallel-beam and come-beam. The bilinear filter yields slightly
smoother profiles than the box filter, but the reconstruction quality does
not suffer significantly when using nearest-neighbor interpolation.
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Figure 6. A slice of the 3D Shepp–Logan phantom, reconstructed with our streaming CT GPU-
based framework (first column) and with a traditional CPU-based implementation (middle column).
A windowed density range of [1.0, 1.04] is shown. The right column shows the line profiles across
the three tumours near the bottom of the phantom (dashed lines: ground truth; solid grey lines: CPU
results; solid black lines: GPU results). We observe that the GPU reconstructions are essentially
identical to those computed on the CPU and that they represent the original phantom well.
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Figure 7. Slices of streaming CT reconstructions from simulated projection data of three
representative medical volume datasets (left to right): a human head, human toes and a stented
abdominal aorta. The slight blurring stems from the (minimal) low-passing induced by the
resampling during simulation.

the small tumours near the bottom. Here, the slight shift comes from the non-exact FDK
reconstruction of the off-centre slices (Kak and Slaney 1988, Turbell 2001). We observe that
the CPU and GPU reconstructions are virtually identical (both for AP-GPU and MP-GPU).

Figure 7 compares slices reconstructed from the simulated projection data (top row) with
the corresponding slices from the original volume dataset (bottom row). We observe that the
quality of the reconstruction and the original is nearly identical. The very slight blurring most
likely stems from the inherent low-passing in the resampling during the projection simulation.

Figure 3.16: Slices of streaming-CT reconstructions from simulated pro-
jection data of three representative medical volume datasets (left to right):
a human head, human toes, and a stented abdominal aorta. The slight
blurring stems from the (minimal) low-passing induced by the resampling
during simulation.
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Figure 7. Slices and volume rendered images obtained via Visual CT. 
 

 
 

Figure 3.17: Slices and volume rendered images obtained via Visual CT.



Chapter 4

Electron Tomography Application

4.1 Introduction

Electron Tomography (ET) uniquely enables the 3D study of complex
cellular structures, such as the cytoskeleton, organelles, viruses and chro-
mosomes. It recovers the specimen’s 3D structure via computerized to-
mographic (CT) reconstruction from a set of 2D projections obtained with
Transmission Electron Microscopy (TEM) at different tilt angles. ET can be
accomplished using exact analytical methods (weighted back-projection
WBP) or via iterative schemes, such as the Simultaneous Algebraic Recon-
struction Technique (SART) [2], the Simultaneous Iterative Reconstruction
Technique (SIRT) [32], and others. The dominant use of the analytical
methods is most likely due to their computational simplicity and conse-
quently fast reconstruction speed. Iterative methods, however, have the
advantage that additional constraints can be easily and intuitively incor-
porated into the reconstruction procedure. This, for example, can be ex-
ploited to better compensate for noise [84] and to perform alignment cor-
rections [21] [29] [55] during the iterative updates. Additional challenges
are imposed by the fact that the projection sinogram is vastly undersam-
pled, both in terms of angular resolution (due to dose constraints) and
in terms of angular range (due to limited sample access). These types

91
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of scenarios can be handled quite well using iterative reconstruction ap-
proaches [1]. Thus, iterative approaches have great potential for ET. How-
ever, as data collection strategies [104] and electron detectors improve, the
push has been to reconstruct larger and larger volumes (20482 × 512 pix-
els and beyond). Although the benefits are significant, the major obstacle
preventing the widespread use of iterative methods in ET so far has been
the immense computational overhead associated with these, leading to
reconstruction times on the order of hours to days for practical data sce-
narios. As in many other scientific disciplines, the typical solution to meet
these high computational demands has been the use of supercomputers
and large computer clusters [27] [105], but such hardware is expensive
and can also be difficult to use and gain access to. Fortunately, the re-
cently emerging commodity programmable computer graphics hardware
boards (GPUs) offer an attractive alternative platform, both in terms of
price and performance, leading to a new trend called General Purpose
Computing on GPUs (GPGPU) [74]. GPUs are available at a price of less
than $500 at any computer outlet and, driven by the ever-growing needs
and tremendous market capital of computer entertainment, their perfor-
mance has been increasing at a triple of Moore’s law, which governs the
growth of CPU processors. For example, the latest NVIDIA GPU board,
the 8800GTX, has a peak performance of nearly 500 billion floating point
operations per second (500G Flops), which is 1-2 orders of magnitude
greater than that of a state-of-the-art CPU. This high potential of GPUs for
accelerating Computed Tomography (CT) has been recognized for quite
some time in the field of X-ray CT [13] [16] [50] [69] [80] [97] [98] [101] [102],
and more recently also for ET [21]. The majority of GPU algorithms devel-
oped for X-ray CT have focused on 3D reconstruction from data acquired
in perspective (cone- and fan-beam) viewing geometries, using flat-panel
X-ray detectors in conjunction with X-ray point sources. This poses cer-
tain constraints on how computations can be managed (pipelined) given
the highly parallel SIMD (Same Instruction Multiple Data) architecture
of GPUs. However, data acquisition in ET is typically posed within a
parallel-beam configuration, and this allows for additional degrees of free-
dom in the implementation, which are not available in the cone- and fan-
beam configurations. Our approach exploits these opportunities to de-
rive a novel high-performance GPU-accelerated iterative ET reconstruc-
tion framework.

The GPU method proposed by Diez et al. can be viewed as a first step
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towards achieving high-performance ET. Our framework is a substantial
advance of their method, speeding up their calculations by an order of
1-2 magnitudes. Such speedups are especially significant when it comes
to 3D reconstructions, which are the ultimate goal of ET. The method of
Diez at al. enables only 2D iterative reconstructions to be accomplished
at reasonable speeds (where reasonable is defined here as being on the
order of minutes). However, reconstructions at the same resolution, but
in 3D, still take hours to compute. Our framework, on the other hand,
obtains these 3D reconstructions in an order of minutes, on comparable
hardware. Furthermore, large 2D reconstructions of 20482 pixels, at 50
SIRT iterations, can now be obtained at (near) interactive speeds, at an
order of seconds, and not minutes. Finally, the latest generation of GPU
hardware enables further considerable speed increases, which may be val-
ued as another demonstration of the immense potential GPUs have for
iterative ET.

SIRT is a commonly used reconstruction algorithm in ET and has been
shown to produce good reconstruction results. On the other hand, SART
has been shown to converge at considerably faster rates, but generating
noisier reconstructions. This occurs since each update/correction is only
based on a single projection and therefore does not enjoy the stabilizing
effect of a global SIRT update (it is therefore advisable to choose a suitable
relaxation factor less than 1.0 to scale each SART update). We take the
stance that SIRT and SART are really just the two extreme cases of what
can be called Ordered Subsets SIRT (OS-SIRT), where SART has N subsets
of 1 projection each, and SIRT has 1 subset of N projections (with N being
the number of projections acquired). It has been shown for the Expectation
Maximization (EM) algorithm [82] that ordered subsets can lead to faster
reconstruction convergence - a fact that gave rise to the Ordered Subsets
EM (or OS-EM) algorithm [40]. In OS-EM, iterations are decomposed into
exclusive projection sets, where the size of each set can be chosen freely. In
this chapter, we examine the effects of different subset sizes in terms of the
algebraic reconstruction paradigm that underlies both SIRT and SART. We
study the dependence of subset size, reconstruction quality and fidelity,
and wall-clock time to convergence. Here, we find that OS-SIRT allows
one to balance blurring and noise artifacts, just by using different subset
sizes, and that there exists an optimal subset size that delivers the best re-
construction in the smallest amount of time. Finally, an important issue
in CT is the “long object” reconstruction problem. It arises in spiral CT
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when the goal is to reconstruct a region-of-interest (ROI) bounded by two
trans-axial slices, using a set of axially truncated cone-beam projections
corresponding to a spiral segment long enough to cover the ROI, but not
long enough to cover the whole axial extent of the object [54]. Essentially,
in this situation some rays used for ROI reconstruction also traverse object
regions not within the ROI, and these rays are sometimes called “contami-
nated” rays. This problem is similar to the “local tomography” problem in
ET. While for ET the data acquisition trajectory is orthogonal to the one in
spiral CT, ray contamination occurs whenever the object contains material
is not covered by every projection (that is, only a sub-region of the object is
exposed to electrons in a local view). These areas are then incompletely re-
constructed in the iterative procedure, which is evidenced by vignetting - a
brightness fall-off in the peripheral regions of the reconstructed object. We
derive a method, within our iterative framework, which effectively com-
pensates for this effect, correcting the contaminated rays for the missing
information.

4.2 Methods

The dimension of collected tomographic projections and the target vol-
ume to be reconstructed in ET is normally huge, varying between 512 to
2048 pixel/voxel counts, which turns out to be a data intensive problem
for GPU-based application. For relatively smaller dataset investigated be-
fore, we used to represent the volume into two stacks of slices (Figure 4.1a)
that are orthogonal to the data collection path. The selection of stack dur-
ing the forward-projection and back-projection stages depends on which
stack is more parallel to the viewing rays. The past study has shown a suc-
cessful implementation based on the above representation. Considering
the magnitude of data encountered in ET study and its specific parallel-
beam geometry, we decided to switch to the one stack representation (Fig-
ure 4.1b) with volume slices parallel to the data collection path due to the
following reasons:

• During the whole reconstruction, two-stack representation requires
two copies of the volume to stay in the limited GPU memory that
turns out to be too small for large data processing jobs such as ET



CHAPTER 4. ELECTRON TOMOGRAPHY APPLICATION 95

(a) (b)

Figure 4.1: Data representation and sampling: (a)two-stack; (b) one-stack.

(on-board memory provided by current hardware is around 256/512
MB).

• In the iterative reconstruction an additional shuffling operation is
required to be performed to maintain the data consistency between
two slice stacks when the two-stack representation is used. Although
the cost of this extra processing step can be minimized by only per-
forming when target slice stack changes, nevertheless there is still
overhead in terms of performance and data management.

• Due to the geometric limitation of the axis-aligned proxy, only on-
slice nearest/bilinear interpolation can be performed on the two-
stack representation, let alone the sampling steps/discretized ray
segments vary from angle to angle. Despite the fact that our pre-
vious work shows it neither imposes inaccuracy nor affects the con-
vergence speed with further optimization methods such as denser
integration path or over-sampled detector, the one-stack representa-
tion is still more flexible in applying different interpolation kernels
and adjusting the number of discretized integration segments.

• The one-stack representation has a high degree of data independency
between slices under the parallel-beam reconstruction scenario. It
is much easier to divide the target volume on a slice basis and dis-
tribute onto different computation nodes to implement a CPU/GPU
cluster framework, compared to the blocking-scheme discussed in



CHAPTER 4. ELECTRON TOMOGRAPHY APPLICATION 96

Section 3.3.2. This high parallelism also enables an easy use of GPU’s
inherent RGBA color channels.

In the following sections, we first give some theory on OS-SIRT and
then describe how these theoretical considerations affect and control our
acceleration strategies. Then we describe an efficient projection and back-
projection operator. The remaining operations, such as the correction com-
putations, are simple vector operations of low complexity and can be im-
plemented on the GPU by subtracting two 2D textures, the texture holding
the acquired projections and the texture computed during projection.

4.2.1 OS-SIRT

We have rewritten Equation 1.5 as a generalization of the original SART
and SIRT equations to support ordered subsets for our OS-SIRT:

v
(k+1)
j = v

(k)
j + λ

∑
pi∈OSs

pi − ri

N∑
l=1

wil

ri =
N∑

l=1

wil · v(k)
l (4.1)

Here, the pi are the pixels in the acquired images that form a specific
subset OSs, where 1 ≤ s ≤ S and S is the number of subsets. The factor
λ is a relaxation factor, which will be chosen as a function of subset size
(for SIRT where S = M, λ = 1, M is the total number of projections).
The factor k is the iteration count, where k is incremented each time all M
projections have been processed. In essence, all voxels vj on the path of
a ray ri are updated (corrected) by the difference of the projection ray ri

and the acquired pixel pi, where this correction factor is first normalized
by the sum of weight encountered by the (back-projection) ray ri. Since
a number of back-projection rays will update a given vj , these corrections
need also be normalized by the sum of (correction) weights. Note that for
SIRT, these normalization weights are trivial.

Ordered subsets are related to block-iterative methods. Since algebraic
methods pose the reconstruction problem as solving the matrix P = WV
(where P, W, V are the projection vector, system matrix, and voxel vector,
respectively), the first algebraic technique, ART [33], is also often called
a row-action method since an update is performed for every ray (which
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represents one row of the system matrix). Using more than one row of W
per update then results in a block-iterative scheme. In that context, SART
is a block-iterative scheme, where each block is composed of all rows at-
tributed to one physical projection. Block-iterative methods have been
studied early on by [15] [22], and have also been proposed recently for al-
gebraic reconstruction from spiral CT data [14]. Ordered subsets for alge-
braic methods have been studied mostly in the context of parallel comput-
ing on distributed systems (clusters) [6] [8], and the overall conclusion has
been that the growing communication costs associated with a larger num-
ber of subsets limit scalability in the number of processing nodes used.
We look at the problem from a different perspective, that is, the speedup
behavior in terms of problem size (volume resolution, number of projec-
tions, etc.). This is more important when it comes to GPUs since here the
number of processing nodes (the pipelines) is fixed. In [21] it was noted
that the ray-based update strategy of ART is not very amenable to GPU-
acceleration as it does not exhibit much SIMD parallelism, while SART and
SIRT perform better in these respects. We extend their study by widening
the scope of the problem size and also introduce the intermediate levels of
OS-SIRT, leading to interesting and valuable results.

Equation 4.1 described the generalization of algebraic reconstruction
into an OS configuration. What is left to define is how the subsets OSs are
composed and how λ is chosen for given number of subsets S. As speci-
fied above, OSs is the set of projections contained in each subset, to be used
in a pair of simultaneous forward projections and simultaneous backward
projections. In our application, each subset has the same number of pro-
jections, that is |OSs| = |OS|, which is typical. Thus, the total number of
projections M = |OS|·S. The traditional way of filling a certain subset OSs

is to select projections whose indices m(1 ≤ m ≤ M) satisfy m mod S = s.
This is what has been adopted in OS-EM. In contrast, we use a random-
ized approach to fill the subsets, which we find yields better results than
the regular subset population approach. For this, we simply generate a
projection index list in random order and sequentially divide this list into
S subsets.

The relaxation factor λ to be used for an arbitrary S is chosen by lin-
early interpolating the optimal λSART for SART and the typical value of
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λ = 1 used for SIRT (we have found that λSART = 0.1 works well in prac-
tice):

λ = (λSART − 1)(
S − 1

N − 1
) + 1 1 ≤ S ≤ N (4.2)

This scheme balances the smoothing effect achieved by the application
of a set of simultaneous projections with that obtained by using a lower
relaxation factor: the lesser projections in a subset, the lower the λ.

4.2.2 Accelerating the Forward Projection

Let us begin our discussion by writing the projection procedure in form
of a typical CPU implementation. Assuming S exclusive subsets and M
projections in total, the pseudo-code for projection is shown in Figure 4.2
(the backprojection is interleaved for each subset, but not shown here).

(1) For all VS/4 volume slices 
(2) For all S ordered subsets OSs

(3) For all pixel rays in OSs (loop parallelized into fragments)  
Fetch ray start location rayS(rx,ry) and direction rayV(rz,rw) from ray texture TXray
Calculate the entry and exit points on the volume bounding box: s1, s2
Set t=0, raySum=0;
For all ray positions along rayV

Compute the sampling location s along the ray: s = rayS + t*rayV
Interpolate sample value and add to ray sum: raySum += Interpolate (volSlice, s)
Increment t: t+= Δ t

Store rendering result in TXsim

(1) For all VS/4 volume slices
(2) For all S ordered sets OSs

(3) For all projections Pst in OSs
(4) For all pixel rays rsti in Psp

Initialize ray sum rssti
Set up space traversal for rsti
(5) For all slice positions pl along rsti

Advance rsti by step size Δr
Sum weighted contributions from the (bilinear) neighborhood of voxels vj
Add interpolated values to rssti using the trapezoidal integration rule   
Normalize rssti by the sum of weights

(1) For all VS/4 volume slices VSs
(2) For all S ordered subsets OSs

(3) For all voxels v in VSs
(4) For all projections Pst in OSs

Transform voxel position (vx, vy) to sinogram position (px, py);
Sample the sinogram texture using coordinates (px, py);
Add the sample value to current voxel value

Figure 4.2: Forward projection loop of a straightforward CPU implemen-
tation.

The final loop managing the casting of a ray is sketched in Figure 4.1c.
The summing of the weighted contributions is an interpolation operation,
and we assume that the sum of weights used for the final normalization
has been computed in an initialization phase before reconstruction is be-
gun (that is, the first loop is entered).

From the code in Figure 4.2 we observe that (i) the projection proce-
dure has 5 nested loops (indicated in blue), and (ii) the body of the final
level is the longest in terms of operations. The implementation of Diez et
al. mapped this loop structure directly to the GPU. Here, the body of loop
(4) as well as loop (5) and its body are executed in the fragment shader,
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while the head of loop (4) itself is parallelized by generating a raster of
fragments, one for each loop instantiation. This is done by creating a poly-
gon of size T × 1 (where T is the number of pixels within a projection) and
rasterizing this polygon to the screen. Note that since each volume slice
is processed separately, the projection data is just a set of 1D lines drawn
from the set of 2D projections. As outlined in Section 1.2, this process gen-
erates one fragment per pixel and for each pixel the fragment program is
executed.

We observe that executing all instantiations of loop (4) encompasses
a single pass, and therefore we have V S · M such passes. Furthermore,
GPUs have a limit on the number of instructions in an unrolled loop (all
fragment shader loops are unrolled at run time before execution in the
shader). This limit is currently 65535 instructions. This becomes problem-
atic in ET where the number of ray steps can become fairly large (assuming
a sampling distance of 1.0) due to the large size of the volume slices (up to
2048 voxels along each dimension). For this reason Diez et al. were forced
to break each volume slice into TL tiles and compute the rays sum for each
tile in a separate pass, adding the results in the end. Thus the final number
of passes becomes V S · M · TL. Assuming SIRT and M = 85, V S = 1024
slices, and TL = 4 tiles, this results in 348k passes, which causes significant
overhead.

For an efficient GPU acceleration, we desire an implementation with as
few passes as possible. One main obstacle was the size of the body in loop
(5) which required a pass amplification of factor TL. We can reduce this
body by pre-computing for reach ray its starting locations (rx, ry) at the
slice boundary as well as its direction vector (rdx, rdy) and store these four
values into a ray texture TXray. This texture is shown in Figure 4.3, with
the four values mapped to RGBA. This texture has M rows, one for each
projection line mapping to a specific volume slice. Since the interpolation
itself is just one instruction the loop body is now minimal and can easily fit
within the limits of an unrolled shader code, even for large volume slices
of 20482 voxels.

The second measure we have taken is to group all |OS| 1D projec-
tions in a subset (corresponding to a certain volume slice) into a single
2D sinogram texture TXproj . Then, during projection, we create a poly-
gon of size T × |OS|, and use TXsim as a rendering target. This generates
rays/fragments for all angles and pixels in the currently processed subset,
and eliminates loop (3).
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Figure 4.3: A sample ray texture storing the initial positions and directions
of the rays as RBGA values.

The third and final measure we have taken is to exploit the parallelism
of the RGBA channels. Note that for this to work, all fragments in these
parallel channels must exhibit the exact same mapping function - all that
can be different are the data and the rendering target, with each such si-
multaneous pair being stored in the RBGA channels. Such a strong paral-
lelism is readily exposed in parallel projection, and we can achieve it by
storing and processing a consecutive 4-tuple of volume slices and associ-
ated projection data in the RGBA channels of their corresponding textures.
This reduces the number of required passes theoretically by a factor of 4,
but in practice this factor is about 3.

Thus, all put together, we can reduce the number of passes required for
one iteration to V S/4 · S. This is shown in the pseudo code in Figure 4.4
below (with more specifics on ray traversal and integration). For example,
assuming classic SIRT with S = 1 and V S = 1024 slices as before, we
would have 256 passes. This is less than 0.1% of the implementation of
Diez et al., which has a dramatic impact on reconstruction performance.

(1) For all VS/4 volume slices 
(2) For all S ordered subsets OSs

(3) For all pixel rays in OSs (loop parallelized into fragments)  
Fetch ray start location rayS(rx,ry) and direction rayV(rz,rw) from ray texture TXray
Calculate the entry and exit points on the volume bounding box: s1, s2
Set t=0, raySum=0;
For all ray positions along rayV

Compute the sampling location s along the ray: s = rayS + t*rayV
Interpolate sample value and add to ray sum: raySum += Interpolate (volSlice, s)
Increment t: t+= Δ t

Store rendering result in TXsim

(1) For all VS/4 volume slices
(2) For all S ordered sets OSs

(3) For all projections Pst in OSs
(4) For all pixel rays rsti in Psp

Initialize ray sum rssti
Set up space traversal for rsti
(5) For all slice positions pl along rsti

Advance rsti by step size Δr
Sum weighted contributions from the (bilinear) neighborhood of voxels vj
Add interpolated values to rssti using the trapezoidal integration rule   
Normalize rssti by the sum of weights

(1) For all VS/4 volume slices VSs
(2) For all S ordered subsets OSs

(3) For all voxels v in VSs
(4) For all projections Pst in OSs

Transform voxel position (vx, vy) to sinogram position (px, py);
Sample the sinogram texture using coordinates (px, py);
Add the sample value to current voxel value

Figure 4.4: Pseudo code for sinogram-based forward projection. The first
two gray lines are executed on the CPU, while the remainder is GPU-
resident fragment code.
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4.2.3 Accelerating the Back-projection

Equivalent to the projection code, Figure 4.5 below lists the pseudo
fragment code for backprojection. Similar to Diez. et al., the final two
loops of the above pseudo codes are explicitly controlled and executed
on the GPU and are rendered in a single pass. However, in addition, we
also exploit the RGBA 4-way parallelism, reducing the total number of re-
quired passes to V S/4 ·S. Note that the major difference of backprojection
vs. forward projection is that rasterized fragments are generated on the
volume slices (now the rendering target), while the updates are obtained
via sampling on the projection textures.

(1) For all VS/4 volume slices 
(2) For all S ordered subsets OSs

(3) For all pixel rays in OSs (loop parallelized into fragments)  
Fetch ray start location rayS(rx,ry) and direction rayV(rz,rw) from ray texture TXray
Calculate the entry and exit points on the volume bounding box: s1, s2
Set t=0, raySum=0;
For all ray positions along rayV

Compute the sampling location s along the ray: s = rayS + t*rayV
Interpolate sample value and add to ray sum: raySum += Interpolate (volSlice, s)
Increment t: t+= Δ t

Store rendering result in TXsim

(1) For all VS/4 volume slices
(2) For all S ordered sets OSs

(3) For all projections Pst in OSs
(4) For all pixel rays rsti in Psp

Initialize ray sum rssti
Set up space traversal for rsti
(5) For all slice positions pl along rsti

Advance rsti by step size Δr
Sum weighted contributions from the (bilinear) neighborhood of voxels vj
Add interpolated values to rssti using the trapezoidal integration rule   
Normalize rssti by the sum of weights

(1) For all VS/4 volume slices VSs
(2) For all S ordered subsets OSs

(3) For all voxels v in VSs
(4) For all projections Pst in OSs

Transform voxel position (vx, vy) to sinogram position (px, py);
Sample the sinogram texture using coordinates (px, py);
Add the sample value to current voxel value

Figure 4.5: Pseudo code for sinogram-based back-projection. The first two
gray lines are executed on CPU, while the remainder is GPU-resident frag-
ment code.

4.2.4 Limited Detector Problem and Compensation

During the data collection stage only a small portion of the sample is
imaged to obtain the tilt projections. This results in the “limited detector”
or “long-object” problem as discussed in Section 4.1, and an illustration is
shown in Figure 4.6. Here an off-center acquired projection image contains
ray integrals across the whole sample, but the simulated projection at the
same angle does not have the complete integral since the reconstruction
volume must be limited (typically by a box). In other words, voxels re-
siding in the shadow area of the original complete sample (shown shaded
in grey) participate in the projection formation during imaging, but due
to the restricted reconstruction area (shown in solid red), they do not con-
tribute in the value formation of any pixels during the reconstruction, re-
sulting in severe vignetting effects if we do not compensate for this (see
Figure 4.7a).
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We propose a weight correction scheme that effectively resolves this
problem for iterative ET - other compensations exist for analytical algo-
rithms [79] based on Filtered backprojection, where an extended area of
around double the length of the region of interest (ROI) is used as the re-
construction target to prevent sampling artifacts. While the over-sampling
approach resolves the edge problem, it introduces significant extra compu-
tation. Our approach does not require these additional computations, as
we compensate for the missing target regions on the fly.

In our framework, at a particular tilt angle (see Figure 4.6), the original
correction is derived as:

Correction =
P −R

Wsumr

=
P

Wsumr

− R

Wsumr

(4.3)

Here we represent the acquired projection as P and the simulated pro-
jection as R. The problem of using this equation to derive a correction
is that the computed sum of weights Wsumr is calculated based on the
bounding box that does not exist (in this closed form) in the acquired data.
Therefore, this sum should not be applied towards the acquired projection
P . Instead, the acquired sum of weights Wsump (shown in Figure 4.6b) is
the correct value that should be used. Using these arguments, we derive
an updated correction equation as follows:

Correction =
P

Wsump
− R

Wsumr
=

P ·Wsumr −R ·Wsump

Wsump ·Wsumr
=

P · Wsumr

Wsump
−R

Wsumr
(4.4)

Consequently, an additional correction factor determined by dividing
Wsumr over Wsump should be computed to pre-weight the acquired projec-
tion P before it participates in the regular correction stage. The effect of
applying the new correction scheme is shown in Figure 4.7b, where the
strong vignetting artifacts present in Figure 4.7a are effectively removed.

4.3 Results

We first analyze the performance of the two interpolation kernels avail-
able as hardwired filter functions on the GPU, linear and box (nearest-
neighbor), for use in an iterative reconstruction procedure (both SART and
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Figure 4.6: Limited detector / long object problem.

(a) (b)

Figure 4.7: Limited detector effect. (a) uncorrected result; (b)corrected re-
sult.

SIRT). For this study we employ the 3D Shepp-Logan phantom, which is
a popular CT dataset composed of a set of ellipsoids, for which analyti-
cal projections can be generated. It has features where the contrast is only
0.5%, making it highly demanding. Nearest neighbor sampling has the
advantage that it only requires one data fetch and one weighting opera-
tion per sample (both in forward and backward projection), while linear
interpolation requires four. It should be noted that especially in iterative
reconstruction it is crucial that high-quality projections are generated since
these projections form the basis for the corrections used in the grid update
in the backprojection step. As Figure 4.8 demonstrates, only linear interpo-
lation can fulfill these demands - the reconstruction obtained with nearest
neighbor interpolation is of much lower quality with a significant amount
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of low and high-frequency noise. As it turns out, linear interpolation on
the latest GPU boards is nearly as efficient as nearest neighbor, thus the
performance hit is minimal.

Could put into chapter [introduction]

Nearest Neighbor Linear

SIRT        
(100 iter.)

SART           
(3 iter.)

Figure 4.8: A slice from the 3D Shepp-Logan phantom reconstructed in
3D via SIRT and SART using different interpolation kernels during the
projection/backprojection. All images are shown with the full intensity
interval [0, 2.0] windowed to [1.01, 1.04] in order to illustrate the ability to
reconstruct regions of low contrast (such as the three small tumors on the
bottom).

4.3.1 OS-SIRT and Effect on Performance

For the following experiments we used the popular 2D Barbara test
image also employed by [21] to evaluate the performance of the different
reconstruction schemes described above. The target 2D image is created
by cropping the original image to an area of 256 × 256 pixels resolution,
and 180 projections at uniform angular spacing of [0◦, 180◦] are obtained.
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First refer to Figure 4.9a where we show the images obtained from vari-
ous SIRT/SART reconstructions, using subsets of different sizes. Here, we
also list reconstruction timings and cross-correlation (CC) values after 100
iterations. The CC values are measured by comparing the reconstructed
image with the original input image, which is a common criterion to gauge
the status of the ongoing reconstruction. We observe that both the time re-
quired to finish the computation and the CC values increase with growing
numbers of subsets. Given equal iteration numbers, results from SART
achieve the best score, but they need the longest time to be obtained. This
originates in the fact that SART requires more rendering passes on the
GPU since the projection operations (and the backprojection operations)
per iterations cannot be combined into a single pass. The larger time con-
sumed for SART reconstructions on the GPU (in contrast to SIRT) was also
observed by [21], but the effect of various subset sizes (giving rise to OS-
SIRT) was not studied there.

Next, we study the noise behavior for the different OS-SIRT configura-
tions (in the following we shall refer to SART as an OS-SIRT reconstruc-
tion with M single-projection subsets). These behaviors are best revealed
in homogeneous image regions, such as the area to the far left of Barbara’s
head on the height of her eye. Figure 4.11a(left) shows a series of tiles of
this patch arranged in the same order as the images in Figure 4.9a (the first
tile shows the original patch). Figure 4.11a (right) gives the Coefficient of
Variation (CV) of these tiles. We observe that the smaller the subset, the
noisier the reconstructions and hence the larger the CV. However, with
more noise also comes better preservation of detail, as can be observed in
Figure 4.9a. Finally, the tendency of SART to produce reconstructions nois-
ier than the original and that of SIRT to produce reconstructions smoother
than the original is also demonstrated in Figure 4.16 , where we show the
renditions of a line profile across another area of the Barbara image (only
for the original image and reconstructions with SART and SIRT).

In practical applications, researchers would like to optimize the amount
of (wall clock) time required to achieve a reconstruction of given quality
(gauged by the CC value of the simulated and acquired projections). We
have seen that, for a fixed number of iterations, SART (OS-SIRT with M
subsets) runs the slowest on the GPU, but produces the best reconstruc-
tions. In fact, both reconstruction time and quality increase with the num-
ber of subsets Therefore, it appears worthwhile to study if there is in fact
an optimum in terms of the number of subsets. Such an optimum subset
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size could then be used to generate the best reconstruction in the smallest
amount of time. The following results produce insight with regards to this
goal.

Figure 4.9b shows the reconstruction results for a fixed CC value, which
means that all reconstructed images are nearly identical to each other. We
observe that the smaller the number of subsets, the larger the number of
iterations that are required to reach the set convergence threshold. How-
ever, due to the overhead involved in the GPU-based framework, differ-
ent wall-clock times are produced. Here, using a number of 10 subsets
achieves the best timing performance compared to the other subset config-
urations. The CV metric is also favorable in this configuration (see Figure
4.11b, comments as before). We should note that this finding is specific
to GPU-based reconstructions, since here the number of passes is partic-
ularly important. A CPU-based reconstruction, on the other hand, would
be much less sensitive to this relationship since the dominating cost here
is dominated by the elementary operations of projection/backprojection,
which are massively accelerated on GPUs.

Researchers might also be interested in knowing which configuration
works best given the same amount of computation time. Figure 4.9c presents
the results of such a study, where the reconstruction stops after reaching a
wall clock time threshold. Again, using a number of 10 subsets achieves
the best CC value. Figure 4.11c indicates that the CV metric for the back-
ground noise is also favorable for this configuration.

A similar study has also been performed from a number of 140 projec-
tions covering only 140 projection angles. This setup is more similar to the
real ET configurations and reconstructed images are presented in Figure
4.10. As we can see from the result, for this specific configuration, subset
size of 5 will achieve the best wall-clock time performance.

We have also measured the true CC values with respect to both num-
ber of iterations and the actual wall clock time. On Figure 4.12 we observe
that the smaller the number of subsets, the slower the speed of conver-
gence in terns of CC value. At the upper limit is SART which converges
fastest. While this relationship has been known, or at least suspected, be-
fore, Figure 4.13 is more novel. It reveals that there is a certain subset
number for which the lowest RMS value can be maintained, consistently
at all times. In the current experiment (the Barbara image reconstructed
from 180 evenly distributed projections), this number is 10. However, this
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optimal number may vary in different reconstruction scenarios and appli-
cations.

Our final experiment deals with the composition of the subsets them-
selves Figure 4.17 shows the performance of OS-SIRT with three differ-
ent numbers of subsets (here, 10, 20, and M - SART) using a regular in-
terleaved projection selection (as it has been suggested for OS-EM) and
our proposed random projection selection scheme. The results show that
the random approach always performs better than the regular method,
and the difference margin increases when more subsets are used, with the
largest difference obtained with SART.

4.3.2 Performance of Sinogram-centric GPU-accelerated ET

We benchmarked the performance of our framework in the context of
realistic ET dataset sizes. Table 4.1 compares the runtimes obtained with
our framework with those reported in [21]. The timings presented here
refer to a 3D reconstruction with SIRT, using projection data from 88 tilt
angles, and are standardized to list the time needed for reconstructing
a single slice. We have run our framework on GPU hardware compara-
ble to the one employed by [21], that is, the NVIDIA G70 chip (this chip
forms the core of both the Quadro 4500 and the GeForce 7800 GTX boards,
with only minor performance differences). Since then, a new generation of
NVIDIA chips has emerged, the G80 (available as the GeForce 8800 GTX
board), and we also report the timings for this new hardware. We observe
that the significant decrease in passes of our GPU-algorithm leads to con-
sistent speedups of more than an order of magnitude across all resolutions
and iteration numbers. The new G80 then yields another speedup of about
a factor of 2.5.

Thus, using our GPU-accelerated ET framework, one can now also re-
construct a 3D full-size volume (with a slice resolution of 10242) on the
order of minutes (20 minutes), while [21] report 5 hours for this task (both
with SIRT). A CPU-based reconstruction would take on the order of days.
These performance increases readily translate to all of the presented vari-
ations of OS-SIRT (including SART).

Finally, Figure 4.14 and 4.15 present reconstructions of two real ET
datasets (i) cryo data from frozen hydrated tobacco mosaic virus and (ii)
chromatin, using 61 and 70 projections, respectively, obtained at uniform
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spacing over a tilt angle of around 130◦. The reconstructed volume was of
size 680× 800× 100 and 512× 512× 200. Three different OS-SIRT configu-
rations are shown, and all were stopped at the same wall clock time of 315
and 141 seconds. All reconstructions also used the limited detector com-
pensation technique discussed in Section 4.2.4. We notice that OS-SIRT
with 5 subsets yields the best quality and contrast for both datasets.
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(a)
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(c)

Figure 4.9: Barbara image, reconstructed via various ordered subset meth-
ods. The image resolution is 256 × 256 all reconstructions were run from
180 projection angles. Linear interpolation was used in all reconstructions.
(a) Reconstructions obtained for various numbers of subsets after 100 iter-
ations (b) Reconstructions obtained for various numbers of subsets for a
fixed CC = 0.949. We observe that the best result is achieved for 10 sub-
sets. (c) Reconstructions obtained for various numbers of subsets for a
fixed time = 5.13s. We observe that again the best result is achieved for 10
subsets.



CHAPTER 4. ELECTRON TOMOGRAPHY APPLICATION 110

0.9599710.9592880.954590.9442490.937362CC values

132s43.99729.874s4.34s3.28sTime

140 (SART)702051 (SIRT)Subset number

15.844.538.962.432.46time

1215305675iteration

SARTOS-SIRT 70OS-SIRT 20OS-SIRT 5SIRTOriginal

0.8039660.9118230.8843850.935180.93472CC values

210106890iteration

SARTOS-SIRT 70OS-SIRT 20OS-SIRT 5SIRTOriginal

(a)

(b)

(c)

Figure 4.10: Barbara image, reconstructed via various ordered subset
methods. The image resolution is 256 × 256 all reconstructions were run
from 140 projection angles. Linear interpolation was used in all recon-
structions. (a) Reconstructions obtained for various numbers of subsets
after 100 iterations (b) Reconstructions obtained for various numbers of
subsets for a fixed CC = 0.93. We observe that the best result is achieved
for 10 subsets. (c) Reconstructions obtained for various numbers of subsets
for a fixed time = 2.95s. We observe that again the best result is achieved
for 10 subsets.
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Figure 4.11: Noise study for the Barbara images shown in Figure 4.9: (a)-
(c) correspond to (a)-(c) in Figure 4.9. (left column) cropped background
patches illustrate the different noise levels attained by the corresponding
reconstruction settings, (right column) calculated CV (Coefficient of Vari-
ation) values of these cropped background patches.
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Table 4.1: Timings for the reconstruction of a volume slice at different res-
olutions using SIRT and parallel projections acquired at 88 tilt angles.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

Reconstruction timings (second)

C
ro

ss
 C

or
re

la
tio

n-
C

oe
ff

ic
ie

nt

SIRT
OS-10
OS-20
OS-60
SART

Figure 4.12: CC values vs. number of iterations for reconstructed Barbara
images shown in Figure 4.9.
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Figure 4.13: CC values vs. running time for reconstructed Barbara images
shown in Figure 4.9.
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SART (1 iteration)OS-SIRT 5 (5 iterations)SIRT (16 iterations)

Figure 4.14: Upper row: reconstructed tobacco mosaic virus data; lower
row: cropped patches from regions (outlined by boxes) in the upper row.
The resolutions: volume 680× 800× 100, projections 680× 800 pixels, and
61 tilt angles were used. In all three cases the reconstruction was termi-
nated at 315 seconds. We observe that OS-SIRT 5 achieves the best detail
resolution within this given time.
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SART (1 iteration)OS-SIRT 5 (13 iterations)SIRT (19 iterations)

Figure 4.15: Upper row: reconstructed chromatin data; lower row:
cropped patches from regions (outlined by boxes) in the upper row. The
resolutions: volume 512 × 512 × 200, projections 512 × 512 pixels, and 70
tilt angles were used. In all three cases the reconstruction was terminated
at 141 seconds. We observe again that OS-SIRT 5 achieves the best detail
resolution within this given time.
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Figure 4.16: Line profiles across the reconstructed Barbara images shown
in Figure 4.9.
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Chapter 5

Projection-based Volume

Rendering

5.1 Introduction

Volumetric datasets can have many origins. They can be the output
of numerical simulations, such as CFD, finite elements, finite difference,
and other calculations of this nature. They may also be generated by in-
verse Fourier transform, which is the case for MRI imaging. And they
can be the product of the voxelization of analytical functions or polygo-
nal objects. Finally, they can result from tomographic reconstruction (CT),
which is a process invoked whenever an object is scanned with a trans-
missive radiation, such as X-ray, ultrasound, or infrared light. In CT, an
object is irradiated with a transmissive source on one side and a projec-
tion is acquired on the other side. This process is repeated at a sufficient
range of viewing angles, and the resulting projection set is processed in
the CT reconstruction procedure. Major applications are in medical imag-
ing and also in industrial CT and security. The well-known engine dataset,
for example, was obtained via industrial CT. Medical imaging with CT is

118
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ubiquitous. It is a relatively inexpensive scanning technology, when com-
pared to MRI, and has many diagnostic applications in medicine. Almost
all parts of the human body can be imaged and diagnosed with CT imag-
ing. This technique is dedicated to the large body of datasets obtained
with CT reconstruction methods.

There are a number of different scanning geometries: parallel-beam,
fan-beam, cone-beam, and spiral (helical) CT. Reconstruction algorithms
for the former two geometries are referred to as slice-based CT, while the
latter are referred to as volumetric CT. In fact, spiral CT has become a
multi-slice acquisition method, that is, a stacked (multislice) array of de-
tector arrays rotates about the patient, with a cone-beam source irradiat-
ing the patient. Nowadays, spiral CT scanners with up to 64-slices are em-
ployed in clinical practice. For fan and spiral beam geometries, there exists
the ability to rebin the projection data into parallel-beam data. If a suffi-
cient amount of projection (ray) data have been collected, then one may
sort these rays into equivalent bins of parallel beam rays, which can then
be used in conjunction with conventional parallel-beam CT reconstruction
methods. However, there are also reconstruction methods for fan-beam,
cone-beam, and spiral CT which do not use rebinning. This is the domain
of the exact reconstruction methods, as described in [44] [46] [54] [90] [93]
[36] and others. Finally, there are also approximate methods that work
well in practice and are very popular, under certain conditions. For exam-
ple, Feldkamp algorithm [26] is often used in cone-beam reconstruction
and produces good results for sufficiently small coneangles < 20◦.

The original projection-based volume rendering framework (called as
D2VR) [76] assumes that the CT reconstruction resulting in the volume
dataset is (or better, would have been) obtained with parallel beam data
and algorithms. However, direct fan and cone-beam reconstruction ge-
ometries would also be feasible with D2VR. Finally, the more complicated
reconstruction techniques used in advanced spiral-CT algorithms could be
considered as well, but these would produce a larger overhead.

CT reconstruction is a data conversion process, and due to associated
sampling with imperfect filters, it is a lossy data conversion process. CT
reconstruction is needed to convert the data into the format used by tra-
ditional volume renderers. D2VR, on the other hand, is a non-traditional
volume renderer, which does not require the data conversion and instead
produces volume renderings directly from the raw projection data, elimi-
nating the errors incurred in the conversion process.
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D2VR traverses the volume space as usual, but instead of performing
the sampling there, it maps the sample positions into each projection im-
age and interpolates the data in those. A sample value is then composed
by adding all contributions so obtained. By finding the derivatives in each
projection image, one can reconstruct the sample gradient in a similar
fashion. Once the sample and gradient values have been obtained, the
usual transfer function lookup, shading, and compositing can take place.
In essence, the 3D array of sample values that ensue from this process
are those that would be generated with a parallel-beam CT reconstruc-
tion, had the volume grid been placed at this orientation. Therefore, one
may say that the result using an axis-aligned volume rendering with tra-
ditional techniques and D2VR are identical (assuming the gradients were
calculated in volume space in both cases)

One should note, however, that the CT-based data conversion process
does not only produce data in a format that is more convenient to render,
it also reduces the overall data complexity. Assuming fan-beam geome-
try and rendering at no magnification, alias-free reconstruction requires
π/2 · N projections to reconstruct a slice with N2 voxels [44]. Thus, with
D2VR, each sample requires π/2 · N bilinear interpolations, which is sub-
stantially more effort than the K3 neighbors needed for an interpolation in
volume space (with K being the 1D extent of the interpolation filter). Even
with acceleration techniques, such as empty space skipping and early ray-
termination, which reduce the number of samples to be computed (at com-
plexity π/2 · N ), GPU-assistance in this task still seems necessary to over-
come this great computational burden.

5.2 Related Work

The combination of volume rendering and CT on graphics hardware is
not new. Already in 1995, Cabral et al. [13] utilized the inverse relation-
ship of these two procedures to derive a common mathematical theory
for both plus a common framework that would accelerate them on SGI
texture mapping hardware. The capabilities of this hardware were quite
limited, and in this early work the hardware was mainly used to accel-
erate the rasterization effort. Much of the work, such as accumulation
and filtering in CT, had to be performed on the CPU. There was also no



CHAPTER 5. PROJECTION-BASED VOLUME RENDERING 121

direct connection of CT and volume rendering, such as the one that was
formulated for D2VR. The same hardware was later used by Mueller and
Yagel [70] to accelerate iterative CT algorithms, such as SART (Simulta-
neous Algebraic Reconstruction Technique). This approach showed how
two color channels with 8-bit precision could be combined to reach higher
precision for integer-arithmetic. With the evolution of GPUs more sophis-
ticated CT implementations were possible. Xu and Mueller [98] described
a general framework for GPU-accelerated CT, spanning iterative and an-
alytical algorithms for transmission (CT) as well as emission tomography
(PET, SPECT), fully accelerated on the GPU. They achieved speedups of 1-
2 orders of magnitude, compared with CPU implementations of the same
accuracy. Chidlow and Möller [16] described a GPU accelerated imple-
mentation for SPECT imaging, but the accumulation stage was exported
to the CPU.

The GPU has been the source of many acceleration efforts for volume
rendering as well. As mentioned before, the common ancestor for both
domains is Cabral et al. [13], but the work that followed on the volume
rendering track was much more prolific. While the implementations us-
ing the SGI rendering hardware were constrained by the limited set of
operations, the revolution of the more recent PC-based graphics hardware
took away most of these restrictions. In the following, we shall just name a
few of the most prominent advancements, for regular grids. First, there is
the work by Rezk-Salama et al. [77], which used multi-texturing to enable
fully-hardware based volume rendering, and there is the work by Engel
et al. [23], which introduced pre-integrated volume rendering to eliminate
the stair-stepping artifacts caused by the common slice-based rendering
paradigm. A more recent work is that by Krüger and Westermann [52]
who describe a ray-casting implementation, fully GPU-accelerated. Their
implementation also includes mechanisms for early ray-termination and
empty-space skipping, the latter by using a low-resolution occupancy oc-
tree. Neophytou and Mueller [73] showed how the z-buffers early fragment-
kill capabilities can be exploited to skip over empty space and voxels that
would project into already opaque image regions. The latest development
is the system proposed by Stegmeier et al. [85], which completely elimi-
nates the use of slice rasterization and runs the entire ray advancement in
a single fragment shader loop. This bears some advantages for the imple-
mentation of non-linear ray effects, such as refractions.
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The approach presented here builds on our GPU-accelerated CT frame-
work for filtered backprojection [69], which is detailed in Chapter 3 but
generalizes it substantially. First, it allows the reconstruction of arbitrary
oriented volumes, which is not needed for CT, but is necessary for D2VR
since we must generate a matrix of samples exactly aligned with the image
plane, whose orientation is completely arbitrary. Second, we incorporate
various acceleration techniques to limit the reconstruction effort to only
the visible and non-occluded (the relevant) matrix samples. Our system
enables framerates of 2 frames/s and more for realistic dataset sizes.

5.3 GPU Implementation

The GPU implementation is based on the GPU-accelerated filtered back-
projection framework, which includes both Streaming-CT and Slice-CT
methods. Various strategies of selecting appropriate data precision and
optimizing the pipeline discussed in Chapter 3 can be also applied here.
In addition to the basic GPU-based D2VR framework, we also describe
techniques that can be used to accelerate it further in the following sec-
tions.

5.3.1 Basic Framework

Let us assume an arrangement in which all projections are distributed
around a circular orbit. In order to achieve a maximal volume resolution
N3, which we would like to reconstruct without aliasing, we need to have
M = π/2 ·N projections distributed around a half circle, assuming parallel
beam data. It is our goal to be able to reconstruct image-aligned volume
slices in front-to-back order, since this will enable us to perform occlu-
sion culling. We first create the volume proxy polygons, rotate and place
them in an orientation that is orthogonal to the viewing vector. By doing
so, the reconstructed voxels on slices defined by these polygons will be
aligned accurately with the viewing ray samples, as D2VR requires. Then
the slice stack is passed into the Streaming-CT/Slice-CT pipeline. The
view-aligned slices will be accumulated/reconstructed in a front-to-back
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fashion, and conventional volume rendering procedures such as classifi-
cation, shading and composition are performed slice by slice (see Figure
5.1).

GPU-D2VR Pipeline

Classification/shading
Front-to-back composition

slice-by-slice

Pre-filtered projections (density/gradient)

GPU-CT framework

Rendering-driven 
regional reconstruction

Create view-dependent volume slice proxies

Figure 5.1: GPU-based D2VR pipeline

5.3.2 Gradient Estimation

In D2VR, we have two choices. We can either reconstruct only the den-
sities and then compute the gradients in volume space directly by central-
differencing adjacent samples in all three orthogonal directions, or we can
estimate the gradients in projection space and reconstruct the gradients
as well. Note that when computed in projection space, the two gradient
components more parallel to the viewing direction should be scaled with
cos θ and sin θ, where θ is the projection angle with respect to the image.
We call this approach gradient-from-projections (GFP). The projection space
gradient is stored into the RGB color channels with the alpha channel car-
rying the filtered density values and both properties are reconstructed at
the same time. The other approach, called gradient-from-samples (GFS), re-
constructs only the density values and performs the gradient estimation
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from these samples in volume space. This reduces the memory band-
width in the accumulator. It benefits the reconstruction stage but slows
down the rendering procedure, but since memory bandwidth is usually
the GPU-bottleneck, this tradeoff is advantageous. The computation of
gradients in this approach will require 6 neighborhood samples when the
central-difference operator is used, and each such sample should be a di-
rect neighbor.

The GFS also tends to produce images of higher perceived definition
(or visual sharpness and acuity) than the GFP. As a justification, consider
the following. Let us first compare the D2VR with regular DVR in terms
of their filter pipelines:

CT+DVR → R{p⊗ hp}N ⊗ hv (5.1)
D2VR → R{p⊗ hp}N (5.2)

In this equation, p are the projection data, hp and hv are the interpola-
tion filters in projection and volume space, respectively, and R is the re-
construction operator with N being the number of projections. This is a
formal way to show that D2VR’s filter pipeline only involves one inter-
polation filter, and thus produces lesser artifacts. Most gradient filters, in
particular the central difference filter, fall off towards the highest frequen-
cies and mostly accentuate the midrange frequencies (see e.g. [7]). This is
a good feature in some respect since it reduces the effect of noise, which
typically resides in the higher bands. But on the other hand, the sharpness
of the gradients also suffers, since the desirable (signal) portions of the
higher bands are now missing. The difference of GFP and GFS are most
prominent when upsampling during the D2VR, that is, when the viewport
has a higher resolution than the reconstructed volume slices. We shall ex-
plain this now. Consider the following pair of filter pipelines for gradient
computation, assuming D2VR is used for both:

GFP → R{(p⊗ gp)⊗ hp}N (5.3)
GFS → R{p⊗ hp}N ⊗ gv (5.4)
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We observe that with the GFP method the gradient filter gp is applied
first, in projection space (followed by filtering with the ramp-filter), and
then, within the reconstruction R, the upsampling of the above-mentioned
band-passed frequency spectrum is performed, using interpolation filter
hp. On the other hand, for GFS the unlimited (ramp-filtered) frequency
spectrum is interpolated first, using hp in reconstruction R, which then
undergoes the band-passing of the gradient filter, in volume space. Here,
the upsampling plays an important role. It stretches the most-active (mid-
range) frequency window of the gradient filter into the higher frequency
bands of the reconstructed slices (that is, it better approximates the ideal
ramp filter), and thus accentuates these higher frequencies more than GFP.
This leads to stronger gradients, and therefore sharper object features, but
also possibly to enhanced noise.

For D2VR there is a special advantage that comes with the texture-
spreading method. If projections are spread onto the slice stack orthog-
onal to the view point, we can immediately start shading and compositing
the reconstructed slice as soon as the accumulation process from all pro-
jections is finished. This assumes that the gradients are reconstructed. Just
like in the projective texture method, when only the density values are re-
constructed, we need to wait until the slice behind it is generated, in order
to compute the gradients using the central difference operator.

5.3.3 Viewport vs. Volume Resolution

When determining the resolution of the volume slices to be reconstructed
from the projection data to obtain an image at a certain viewport resolu-
tion, one should realize that CT projection data of a certain resolution,
say N2, will not be able to yield a volume of higher resolution than N3

(assuming there are a sufficient number of them, theoretically π/2 · N , as
mentioned before). This is due to the frequency spectrum as derived from
the Fourier Projection Slice Theorem. Therefore, reconstructing density vol-
ume slices at the resolution of the projection data, with subsequent up-
sampling of these to the viewport resolution will produce similar results,
provided a decent interpolation filter is used to sufficiently suppress alias-
ing. An obvious consequence is faster rendering speed, since in-slice den-
sity upsampling is less expensive than density reconstruction on a finer
grid. Classification and shading is performed on the high-resolution grid
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in both such pipelines.

5.3.4 Acceleration Methods

According to the theory of computed tomography, reconstructed voxel
values are valid only for those voxels that fall into the “effective” recon-
struction area, which is a (truncated) circle for a 2D (rectangle) square vol-
ume slice, or a (truncated) cylinder for a 3D cubic (rectangular solid) vol-
ume, assuming parallel beam reconstruction. Hence we can calculate the
initial bounding volume and slice it according to the viewing direction.
We then use these bounding volume slices as our depth buffer to guide
the reconstruction, which essentially restricts the computation within the
effective area throughout the whole reconstruction pipeline. A more so-
phisticated scheme would, as a preprocess, reconstruct a volume mask
that would label all voxels that are in the shadow of all non-zero projec-
tion data. This occupancy mask could then be sliced, for each visualiza-
tion frame, with the present slice configuration to drive the reconstruction
more accurately than the bounding sphere. This is equivalent to empty
space skipping, with the former method being a good approximation for
many cases.

We shall now turn to early ray termination acceleration, a.k.a. occlu-
sion culling (the mechanism for GPU-D2VR is illustrated in Fig. 5.2). For
this, we must reconstruct the slice stack in front-to-back order. When
a new slice is computed from all projections, we composite it with the
current frame buffer. We then examine every fragment’s opacity value
and compare it to the preset threshold, which usually varies between 0.0
to 1.0, depending on the rendering mode (isosurface or full volume ren-
dering). All those fragments whose opacity values exceed the threshold
will be recorded to update the depth buffer. The updated depth buffer
will then be used for the reconstruction of the next slice to prevent the
GPU from generating fragments at those marked positions (which is the
early z-buffer kill mechanism). The technique effectively eliminates the
need for reconstructing voxels that do not contribute to rendering, hence it
greatly reduces the effort consumed on the computational intensive com-
ponent. For iso-surface rendering, where emitted rays are generally termi-
nated early, this rendering-driven technique can achieve good speed-ups.
Implementation-wise, the effect of early z-culling largely relies on how
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long the rendering of a fragment would take. Low computational effort
ratio with respect to a single fragment could offset the advantage brought
by early z-cull mechanism. Therefore, the spreading method that incor-
porates a longer fragment shader tends to benefit more from the above
acceleration strategies, compared to the projective texture method, where
texture mapping imposes relatively light rendering efforts on individual
fragments.

Volume 
Slice N+1

Acceleration: Occlusion Culling

Frame 
Buffer

composite

Early       Z-culling

Projections
Volume 
Slice N

Depth
Buffer

opacities

>threshold?
update

reconstruct

Figure 5.2: Rendering-driven occlusion culling.

5.4 Results

We experimented with the GPU-D2VR framework on an AMD Athlon
2.2GHz dual core PC with 1GB RAM and a GeForce 6800 GT. Shaded im-
ages were rendered into either a 1282 or a 2562 viewport.

Timings for the different strategies described, using various CT datasets,
are presented in Table 5.4. We observe a speedup of a factor 1.5 for density-
only D2VR over density+gradient D2VR. The 2563 size of volume could
not be reconstructed with both density and gradients since it exceeds the
current maximum size of the GPU memory. The acceleration techniques
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mentioned in Section 5.3.4 also yielded a factor of 1.5 speedup, as com-
pared to their respective basic GPU D2VR counterparts.

A near interactive performance (2.5 fps) is obtained for volumes of size
1283 when rendered into a 1282 viewport. Rendering into a larger viewport
of 2562 with in-slice interpolation of 1283 reconstructions (as described
above) only decreases performance by a small amount (1.7 fps). On the
other hand, rendering from a 2563 reconstruction volume takes 4 times as
much (0.6 fps).

The timings reported in [75] always match the reconstruction volume
resolution with the viewport resolution. Their CPU and GPU implemen-
tations take about 1453 s and 0.25 fps, respectively, for 128 1282 projections
and a 2562 viewport. Our framework offers a fairly large speedup over
these. The timings presented in Table 5.4 use the floating point pipeline. If
we use the dual-channel 16-bit pipeline, as mentioned in Section 3.3.1, we
can obtain another speedup of 2.

Rendering results are presented in Figure 5.3. We produced images
with the GPU D2VR projection-based volume rendering with density only
as well as with density+gradient renderings. The images are similar in
quality than those reported in [76]. We show images rendered with all
methods discussed before, including one rendered with the 16-bit pipeline.
We observe that the images rendered with D2VR reconstructing the gradi-
ents in volume space seem to have higher feature definition on zooms than
those where the gradients were backprojected. A theoretical justification
for this was presented in Section 5.3.2. At the same time, the method is
also more computationally efficient.

We also observe that reconstruction into a larger viewport indeed does
not require a reconstruction into a volume grid of identical resolution. Fig-
ure 5.3(i)(k) show that an upsampling on a slice-basis, followed by classi-
fication and shading produces very similar results (compare with Figure
5.3(h)(j)). Finally, we also observe (in Figure 5.3(g)) that the 16-bit pipeline
produces high-quality images as well.
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Figure 5:  Rendering results: D2VR+GFS (a, c, e, g, h-n); D2VR+GFP (b, d, f); (g) is rendered from 16-bit pipeline; (h, j) are
rendered from matched volume and viewport resolution, and (i, k) are rendered by upsampling on reconstructed volume slices.

(a) (b)

(c) (d)
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Figure 5.3: Rendering results: D2VR+GFS (a, c, e, g, h-n); D2VR+GFP (b,
d, f); (g) is rendered from 16-bit pipeline; (h, j) are rendered from matched
volume and viewport resolution, and (i, k) are rendered by upsampling
on reconstructed volume slices.



Chapter 6

Conclusions

6.1 Summary

The new GPU framework and techniques in the thesis demonstrate
that the recently escalating revolution in PC graphics board technology
has enormous potential for computed tomography. For the first time, the
quality that can be achieved rivals that obtained with software algorithms.
Yet, speedups of over an order of magnitude for both analytical and iter-
ative reconstruction methods are possible, on easily programmable and
mass-produced hardware available for less than $500 at any local com-
puter outlet. The results are especially encouraging since GPUs have in-
creased in performance at a triple of Moore’s law in the past few years. In
addition to the basic emission tomography model, attenuation and scat-
tering effects in iterative emission CT have been shown to be efficiently
performed with GPUs. Unmatched operators are significantly more effi-
cient and already seem effective to improve reconstruction quality in the
presence of these effects.

Quality-wise, our evaluation study demonstrates that the slice inter-
polated schemes employed in the GPU framework have projection and
reconstruction performances comparable to those of the grid-interpolated
and box-line-integrated schemes, despite the reduced and non-uniform
sampling rates. The optimal hexagonal-2×-oversampled scheme we have

131
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proposed in fact performs better than the cartesian-2×-oversampled scheme,
yet costs less computational effort, which enables the detector elements
to be made larger while obtaining more accurate projections. By extend-
ing the sampling pattern from 2D to 3D for the purpose of reconstruction,
we also demonstrated that 3D BCC lattices increases the recovery and de-
tectability of small features, for example, small tumors in the brain, which
is an important aspect in CT practice.

Targeting the widely-used Feldkamp filtered backprojection algorithm,
we have described the first continuous and buffer-free commodity com-
puting reconstruction pipeline for cone-beam CT. In our system, the pro-
jection data stream from the acquisition platform through a CPU-based
filtering stage into a load-balanced GPU-accelerated backprojection frame-
work. Our streaming CT can reconstruct a 5123 volume at a rate of 40 to
50 5122 and 10242 projections s−1, which is the current production rate of
commodity flat-panel detectors, and beyond. Larger volumes could be
easily accommodated by using the now available single-platform dual-
and quad-GPU setups, which provide up to 4GB of memory. Our pipeline
provides a throughput rate and reconstruction speed of one to two or-
ders of magnitude higher than existing systems based on commodity (PC)
hardware. It is also faster than less readily available, but more costly PC-
resident high-performance platforms based on the Cell BE processor and
FPGA technologies. We achieve this by (i) exploiting many of the GPU-
resident graphics facilities and (ii) careful load-balancing of the various
GPU pipeline components in light of the specific computing task of CT
reconstruction. Our rapid real-time reconstruction pipeline enables inter-
active use of commodity detectors and gantries, allowing, for example,
interactive monitoring of musculoskeletal systems for positioning in inter-
ventional procedures as well as applications in image-guided surgery or
radiotherapy. In fact, since the projection throughput is higher than their
production rate on common detector hardware, it would even be possible
to interject a 3D visualization rendering cycle into the reconstruction com-
putation. Our results indicate that for the reconstruction settings tested
here, a window size of 8 produced the best speedups, and along with it,
the most optimal memory bandwidth and instruction execution patterns.
This may change with different reconstruction scenarios, and this could
be easily corrected for by adjusting the window size dynamically in an
automatic binary-search optimization scheme, taking into account recon-
structions just acquired.
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George et al. [31] proposed a shear-based hierarchical backprojection
method that achieved a complexity of O(N2logP ) when backprojecting an
N×N pixel image from P projections. In practice, a speedup of an order of
magnitude has been obtained due to the reduction of the operations counts
without significant loss on the image quality. Compared to other popular
hierarchical and Fourier-based methods, the shear-based approach does
not need all the projections before the reconstruction begins. In addition,
the algorithm scales with the size of the region of interest (ROI). Most im-
portantly, the shear operation used in the approach is amenable to com-
modity graphics hardware, therefore an efficient implementation can be
easily obtained. Due to above advantages over conventional backprojec-
tion methods and the fact that our GPU-based CT framework has obtained
a performance of over two orders of magnitude faster than regular CPU
methods, we would expect a further degree of speedup when both hard-
ware and such optimized designed algorithms are coupled.

For the 3D Electron Tomography application, we have described new
contributions and presented confirming results within three major areas:
(i) an iterative reconstruction framework using algebraic methods, (ii) the
compensation for the artifacts stemming from the limited-angle range at
which projections can be obtained (iii) the acceleration of ET via commod-
ity graphics hardware (GPUs). For the last, we have presented a novel
data decomposition scheme that minimizes the number of GPU passes
required, yielding speedups of 1-2 orders of magnitude with respect to
present GPU-acceleration efforts. Our GPU-accelerated framework allows
full-size 3D ET reconstructions to be performed at an order of minutes. We
have also generalized the popular Simultaneous Iterative Reconstruction
Technique (SIRT) to OS-SIRT, which allows researchers to optimize the
wall clock time required for a GPU-accelerated reconstruction, enabling
high-quality reconstructions to be obtained faster, by taking full advan-
tage of the particularities associated with the GPU architecture and pro-
gramming model. Our OS-SIRT optimizes the reconstruction performance
by choosing the optimal number of subsets into which the projections are
distributed (in random order). Here, it is likely that this optimal number
of subsets will vary depending on the domain application and the gen-
eral reconstruction scenario. Thus, in order to identify the optimal sub-
set number for a new application setting, to be used later for repeated
reconstructions within this application setting, one may simply run a se-
ries of experiments with different numbers of subsets and use the setting
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with the shortest wall clock time required for the desired reconstruction
quality. In fact, such strategies are typical for GPU-accelerated general-
purpose computing applications (GPGPU). For example, the GPU bench
(http://graphics.stanford.edu/projects/gpubench/) was designed to run
a vast benchmark suite to determine the capabilities of the tested hard-
ware. The presented GPU-accelerated ET platform allows ET researchers
to achieve a major task which has so far been infeasible without expen-
sive and extensive hardware: the iterative reconstruction of full-size 3D
volumes.

Finally, our GPU framework provides an efficient solution to acceler-
ate the D2VR method which is able to deliver higher image quality than
conventional volume rendering methods. For this we have built on our
GPU-accelerated CT framework and extended it in the following ways.
First, we allowed the reconstruction of arbitrary oriented volumes, which
is not needed for CT, but is necessary for D2VR since we must generate
a matrix of samples exactly aligned with the image plane, whose orienta-
tion is completely arbitrary. Second, we incorporated various acceleration
techniques to limit the reconstruction effort to only the visible and non-
occluded (the relevant) matrix samples. Our system enables framerates of
up to 2 frames/s for realistic dataset sizes, which is 1-2 orders of magni-
tudes faster than the software solution.

6.2 Future Work

Future work lies in the following aspects. While the axis-aligned data
representation in our framework appeared sufficient, the 3D texture ap-
proach should be investigated once it is better supported by the hardware.

We will further study the “smart” multi-resolution grids using optimal
lattices that adapt their resolution to the projection images provided. This,
in some ways, is a continuation of earlier work on D2VR [75] [76], where
volume rendered images are generated directly from the projections and
no volume lattice is ever generated.

Future work on hexagonal detector lattices should focus on further ex-
plorations of the tradeoff in lattice resolution and detector element size.
More experiments will help to define the optimal configurations in that
respect, given the task of the application. This goes hand in hand with
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more research on better interpolation filters for the subsequent hexagonal-
Cartesian regridding. Meanwhile, backprojection from 45◦ usually pro-
duces results with downgrade quality. We exepect the special layout of
the hexagonal grid and its property of holding more frequency than the
regular Cartesian grid can help alleviate the problem.

For the ET application, the impact of the GPU-based framework en-
ables demanding iterative schemes crucial for the improvement of image
resolution and contrast, such as iterative projection alignment and regis-
tration. On the more fundamental side, we are also planning to research
the issue if even better convergence speeds can be obtained by varying
the number of subsets as iterations continue. For instance, one might start
with a small number of subsets to reconstruct the low detail aspects of the
volume and then switch to a large number of subsets or SART to recon-
struct the small detail. Multi-resolution lattices may also be a very good
way to significantly accelerate convergence, that is, first do cycles on 4× 4
or 2 × 2 binned (averaged) data, then interpolate and continue at higher
resolution.
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