

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Computer Aided Diagnosis for Virtual Endoscopy

A Dissertation Presented

by

Wei Hong

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

August 2007

Copyright by

Wei Hong

2007

Stony Brook University

The Graduate School

Wei Hong

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Arie Kaufman - Dissertation Advisor

Distinguished Professor, Department of Computer Science

Klaus Mueller - Chairperson of Defense

Associate Professor, Department of Computer Science

Xianfeng Gu - Committee Member

Assistant Professor, Department of Computer Science

Wenli Cai - External Committee Member

Assistant Professor, Department of Radiology

Massachusetts General Hospital and Harvard Medical School

This dissertation is accepted by the Graduate School

Lawrence Martin

Dean of the Graduate School

ii

Abstract of the Dissertation

Computer Aided Diagnosis for Virtual Endoscopy

by

Wei Hong

Doctor of Philosophy

in

Computer Science

Stony Brook University

2007

Thousands of endoscopic procedures are performed each year. They are invasive and

often uncomfortable for patients. They sometimes have serious side effects such as per-

foration, infection, and hemorrhage. Virtual endoscopic visualization avoids the risks as-

sociated with real endoscopy, and when used prior to performing an actual endoscopic

procedure for therapeutics can minimize procedural difficulties and decrease the rate of

morbidity. Additionally, there are many body regions inaccessible to or complicated with

real endoscopy but can be explored with virtual endoscopy. In this dissertation, novel al-

gorithms are proposed in segmentation and digital cleansing, volume rendering, surface

flattening, and computer-aided detection (CAD) to improve and enhance virtual endoscopy

applications.

Effective colonoscopic screening for polyps with optical or virtual means requires ade-

quate visualization of the entire colon surface. We have investigated the colon surface vis-

ibility coverage using a simulation method to estimate the percentage of the colon surface

is missed in the optical colonoscopy (OC) and virtual colonoscopy (VC). Our simulation

study reveals that about 23% of the colon surface is missed in the standard OC examination

and about 9% of the colon surface is missed in the VC examination when navigating in

both directions.

We have adopted a partial volume model in the segmentation and digital cleansing to

handle the partial volume effect. Our algorithm is demonstrated with contrast-enhanced

CT colon data sets. The topological noise is automatically removed from the segmentation

result by a 3D region growing based algorithm using the concept of simple point. Further-

more, the topologically simple colon surface is extracted with a dual contouring method

for virtual colon flattening.

Most common methods in virtual endoscopy simulate the behavior of a real endoscope.

iii

Simulating a real endoscopy is not the most efficient technique in many endoscopy proce-

dures. A real endoscopy is restricted due to physical limitations that a virtual endoscopy

does not have. We present a conformal colon flattening technique which virtually unfolds

the colon, allowing physicians to inspect its surface and detect polyps on a single 2D image.

Direct volume rendering (DVR) can provide high-quality virtual endoscopic views for

virtual endoscopy applications. However, DVR of contemporary clinical data sets in real-

time at a high resolution is still a challenge. We present a GPU-based object-order ray-

casting algorithm to render large volumetric data sets on the GPU. We also exploit the

cooperation and trade-off between the GPU and the CPU to obtain further acceleration.

Although our ray-casting approach is of general applicability, we have specifically applied

it to our VC system.

We further present a novel pipeline for CAD of colonic polyps by integrating texture

and shape analysis with volume rendering and conformal colon flattening. Using our au-

tomatic method, the 3D polyp detection problem is converted to a 2D image segmentation

problem. The polyps are detected by a clustering method on the 2D flattened colon image.

The false positives (FPs) are further reduced by analyzing the volumetric shape features.

Our system detects 100% of the adenomatous polyps, and yields a low FP rate. The results

are easily integrated into a VC system, which allows physicians to perform their diag-

noses more accurately and efficiently. Since the suspicious areas are clearly identified to

the physician, the physician needs only traverse the colon in one direction, without fear of

missing a polyp.

All presented techniques have been tested with a number of data sets to show their

feasibility. In this dissertation, we focus on CT colon data sets although our techniques

could be used with a variety of other human organs, such as blood vessels and bladder.

iv

To My Wife, Yani Liu

My Parents, Xingnan Hong and Lianzhen Ding

with My Love!

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Virtual Colonoscopy . 2

1.2.2 Computer-Aided Detection . 5

1.2.3 Virtual Dissection . 7

1.2.4 Direct Volume Rendering . 9

1.3 Contributions . 12

1.4 Outline . 13

2 Colonoscopy Simulation 14

2.1 Introduction . 14

2.2 Fisheye Camera Calibration . 15

2.3 Optical Colonoscopy Simulation . 18

2.4 Virtual Colonoscopy Simulation . 20

2.5 Results . 20

2.6 Conclusions . 22

3 Segmentation and Digital Cleansing 24

3.1 Introduction . 24

3.2 Partial Volume Segmentation . 25

3.3 Topological Denoising . 28

3.3.1 Surface-based Method . 29

vi

3.3.2 Volume-based Method . 31

3.4 Conclusions . 34

4 Conformal Virtual Colon Flattening 35

4.1 Introduction . 35

4.2 Conformal Flattening . 36

4.2.1 Riemann Surface Theory . 37

4.2.2 Flattening Algorithm . 39

4.3 Visualization of the Flattened Colon . 43

4.3.1 Camera Registration . 43

4.3.2 Volumetric Ray-Casting . 44

4.4 Implementation and Results . 45

4.4.1 Preprocessing . 45

4.4.2 Discussion . 45

4.5 Conclusions . 49

5 Volumetric Ray-Casting 52

5.1 Introduction . 52

5.2 Object-Order GPU Ray-Casting . 54

5.2.1 Cell Projection . 56

5.2.2 Cell Sorting . 60

5.2.3 Implementation and Results . 62

5.3 Hybrid Volumetric Ray-Casting . 65

5.3.1 Ray Determination . 67

5.3.2 Multi-pass Slab Rendering . 67

5.3.3 Hole Filling . 70

5.3.4 Dynamic Workload Balancing . 70

5.3.5 Implementation and Results . 71

5.4 Conclusions . 74

6 Computer Aided Polyp Detection 75

6.1 Introduction . 75

6.2 Our CAD Pipeline . 77

6.2.1 Segmentation and Digital Cleansing 77

6.2.2 Colon Surface Extraction . 78

6.2.3 Conformal Virtual Colon Flattening 79

6.2.4 2D Electronic Biopsy Image Generation 79

6.2.5 Clustering . 80

6.2.6 Reduction of False Positives . 81

vii

6.3 Integration with Virtual Colonoscopy . 82

6.3.1 Polygonal Assisted Volume Rendering 82

6.3.2 Enhanced Virtual Colonoscopy . 83

6.4 Results . 85

6.5 Conclusions . 87

7 Conclusions 89

7.1 Summary . 89

7.2 Near Future Work . 90

7.2.1 General Volume Processing Framework 90

7.2.2 Volume Rendering for Very Large Data Sets 91

7.2.3 Unified Colon Flattening . 91

7.2.4 Conformal Volumetric Colon Flattening 91

7.2.5 Automatic Transfer Function Generation for Polyp Detection 92

7.2.6 Supine and Prone Registration . 92

7.2.7 Image-based Path Planning . 92

7.3 Long-term Future Work . 93

Bibliography 96

viii

List of Tables

1.1 Advantages and Disadvantages of Virtual Colonoscopy. 3

2.1 Specification of the calibrated colonoscope. 21

2.2 Average percentage covered in simulated OC and VC. 22

4.1 Average timings of every stage of our flattening algorithm. 46

5.1 The size of the data sets used in our experiments. 63

5.2 Average rendering frame rates per second (fps) for the engine and human

foot data sets. 71

5.3 Average rendering frame rates per second (fps) for car, lobster and tooth

data sets by using our hybrid volumetric ray-casting algorithm (HRC)

and pure GPU-based volumetric ray-casting algorithm (GRC). 74

6.1 Experimental results of our CAD pipeline. 86

ix

List of Figures

1.1 Virtual Colonoscopy: The 2D mutually perpendicular slice views are

oriented (a)axial, (b)coronal, and (c)sagittal; (d)A polyp is shown in a

typical 3D endoscopic view. 4

1.2 Direct volume rendering of a human abdomen data set with a semi-

transparent transfer function. 10

2.1 Fisheye camera model. 15

2.2 A frame of the calibration pattern captured by the colonoscope. 17

2.3 Layout of the simulated colonoscope distal end. 18

2.4 The OC examination path hugs the corner at a sharp turn. 19

2.5 (a) The simulated endoscopic view for OC and (b) the corresponding

view for VC. 21

2.6 The covered colon surface are painted in green: (a) the simulated OC,

and (b) VC in both directions. 23

3.1 (a) An original contrast enhanced CT image, (b) A zoomed-in view of

the marked rectangle in (a), (c) the classification result based on the mix-

ture information, (d) A zoomed-in view of the marked rectangle in (c). . 26

3.2 The result of digital cleansing. (a) An original CT image (slice), (b) the

corresponding cleansed slice, and (c) a zoomed-in view of the marked

rectangle in (b). 27

3.3 A zoom-in view of a colon surface with two handles, shown within the

boxes. 28

3.4 (a) Homotopy basis, and (b) topological surgery. 29

3.5 Topology concepts. 30

3.6 Illustration of a simple point (red) and a non-simple point (yellow). . . . 32

3.7 A close up view of the colon surface (a) extracted without topological

denoising, and (b) extracted with topological denoising. 33

4.1 Riemann Surface. 37

4.2 Holomorphic 1-form examples for (a) genus zero surface and (b) genus

two surface. 38

4.3 Holomorphic 1-form example for a colon surface. 42

x

4.4 Trace horizontal trajectory. 42

4.5 The colon is divided into segments colored in red and blue. 43

4.6 Colon haustral folds in (a) 3D endoscopic view and (b) corresponding

flattened image. 46

4.7 (a) A part of flattened colon image, (b) zoom-in view of the polyp en-

closed by a yellow rectangle in (a), and (c) the corresponding 3D endo-

scopic view of the polyp enclosed by the yellow rectangle in (a). 47

4.8 (a) A part of flattened colon image, (b) zoom-in view of the polyp en-

closed by a yellow rectangle in (a), and (c) the corresponding 3D endo-

scopic view of the polyp enclosed by the yellow rectangle in (a). 48

4.9 (a)-(c) are the 3D endoscopic views of four different polyps, and (d)-(f)

are the zoom-in views of corresponding polyps on the flattened colon

images. 49

4.10 A flattened image for a whole colon data set is shown in three images.

The bottom of image (a) is the rectum of the colon, and the top of image

(c) is the cecum of the colon. Two polyps are marked using yellow

ellipse in (a) and (c). 51

5.1 The three-layer structure used to store the cell data. 55

5.2 The overview of our GPU-based object-order ray-casting algorithm. . . . 57

5.3 The pipeline of the cell projection. 58

5.4 Cells with the same Manhattan distance can be projected together. (a)

The camera is located at the corner region, (b) The camera is located at

the side region. 61

5.5 (a) and (b) are rendered using Visible Male data sets with opaque and

semi-transparent transfer functions, (c) is rendered using Visible Female

data sets with an opaque transfer function. 63

5.6 (a) A top view of the full resolution brain data set rendered using our

algorithm, (b) The segmented brain stem rendered in real-time using our

algorithm, (c) The segmented brain ventricle rendered in real-time using

our algorithm. 64

5.7 (a) A close view of a polyp rendered at 24.3 fps, and (b) A typical endo-

scopic view rendered at 21.8 fps. 65

5.8 Flowchart of our hybrid volumetric ray-casting algorithm. 66

5.9 Volume rendering of the engine (a-b) and foot (c-d) data sets with opaque

and semi-transparent transfer functions. 72

5.10 Volume rendering of a semi-transparent lobster with out hybrid volumet-

ric ray casting (a) and with a pure GPU ray casting (b). 73

5.11 Volume rendering of the lego car data set with an opaque transfer func-

tion (a) and the human tooth data set with a semi-transparent transfer

function (b). 73

xi

6.1 (a)-(d) are the surface rendering of (a) retained stool, (b) a hyperplas-

tic polyp, (c) an adenoma, and (d) a tubulovillous adenoma. The small

square images in (e)-(h) are the electronic biopsy rendering of the re-

spective objects in (a)-(d), all with the same transfer function. In the

electronic biopsy images, the red color represents the highest densities

and blue represents the lowest densities. Green represents tissues of mid-

dle densities. Normal tissues have low to middle densities. 76

6.2 Overview of our CAD pipeline. 78

6.3 A close up view of a polyp rendered with volumetric ray casting (a)

without coloring, and (b) with coloring. 82

6.4 The user interface of our CAD system. 84

6.5 (a) The electronic biopsy image generated using our conformal colon

flattening and volumetric ray casting algorithm. (b) The result of our

clustering algorithm. (c) The result of the reduction of FPs with shape

analysis and 3D texture analysis. Two polyp candidates are obtained

using this data set, the real polyp at location A and a FP at location B. . . 85

6.6 (a) The 3D view of the detected polyp A. (b) The 3D view of the false-

positive finding B on a colon fold. 87

xii

1

Chapter 1

Introduction

1.1 Motivation

Endoscopy is a minimally invasive diagnostic medical procedure used to assess the in-

terior surfaces of hollow organs and perform therapeutic procedures by inserting a tiny tube

into the body, often, but not necessarily, through a natural body opening. The instrument

may have a rigid or a flexible tube and not only provide an image, for visual inspection and

photography, but also enable taking biopsies and retrieving of foreign objects. By changing

the position of the endoscope, the operator is able to see lesions and other surface condi-

tions of an organ while controlling the viewing position and angle of the probe. During this

interactive exploration, the endoscopist has full control of the navigation within the hollow

organ. Endoscopy procedures are increasing in medical importance because they have less

deleterious effects on the patient. These procedures have been used in gastroenterology,

surgery, neurosurgery, interventional radiology and many other fields.

Many endoscopic procedures are relatively painless and, at worst, associated with mild

discomfort although patients are sedated for most procedures. Complications are rare (only

5% of all operations) but can include perforation of the organ under inspection with the

endoscope or biopsy instrument. If that occurs open surgery may be required to repair the

injury. Furthermore, endoscopes display only the inner surface of hollow organs and yield

no information about the anatomy within or beyond the wall. This limitation prevents the

evaluation of the transmural extent of tumors and limits the ability to localize the lesion

relative to surrounding anatomic structures.

In contrast, virtual endoscopy [9] is a convenient alternative. It is based on a 3D scan

of the respective body region, such as computed tomography (CT) scans, and magnetic

resonance imaging (MRI) scans of the abdominal area, the heart, the head, the lungs or

rotational angiography of blood vessels in various body parts. Based on the resulting vol-

umetric data, the organs of interest are visualized and inspected from interior viewpoints.

1. INTRODUCTION 2

In particular, virtual endoscopy can provide information which is unavailable in optical

endoscopy due to its limited flexibility and field of view.

With continuing advances in software and hardware, virtual endoscopy offers the

promise of quicker and cheaper methods of evaluation. In certain clinical situations, virtual

endoscopy may enhance diagnosis, preoperative planning, operative technique, and post-

operative follow-up. Although not yet in routine use, the techniques have been found useful

in specific scenarios, such as virtual colonoscopy [48, 49] and virtual bronchoscopy [121].

Some hospitals no longer consider virtual colonoscopy a research protocol and are offering

it as a screening tool despite its limitations.

Virtual endoscopy has also been used to evaluate the bladder, kidneys, small intestine,

stomach, larynx, nasolacrimal ducts and paranasal sinuses. Therefore, this method could

potentially provide a means for the screening and surveillance of bladder tumors, which

tend to recur. Virtual endoscopy can also be used to simulate endoscopic surgery before

the actual performance, thus helping the surgeon plan the operative approach. In summary,

virtual endoscopy is a nascent technique with multiple potential applications that could

have a significant impact on common clinical issues, especially colorectal cancer screening.

Improved screening could detect certain cancers at an early, curable stage and could prevent

the development of cancer.

In this dissertation, novel algorithms are presented in segmentation and digital cleans-

ing, conformal virtual flattening, GPU-based volumetric ray-casting, and computer-aided

polyp detection techniques to support and enhance virtual endoscopy applications, mainly

for diagnosis purposes. We concentrate on the virtual colonoscopy system that focuses on

the examination of the colon although our techniques are general and could be used with a

variety of human organs.

1.2 Background

1.2.1 Virtual Colonoscopy

The most promising clinical use of endoluminal imaging is in examination of the colon.

Colorectal cancer is the second leading cause of cancer related deaths in the United States.

Colorectal cancer accounts for approximately 945, 000 new cases and 500, 000 deaths

worldwide each year [116].

Most colorectal cancers begin as a polyp, which is a small, harmless growth in the wall

of the colon. As a polyp gets larger, it can develop into a cancer that grows and spreads.

Early detection of colon cancer is the key to a good prognosis. The five-year survival rate

for colon cancer is nearly 90% for localized disease versus about 6% for distant metastases.

It can take from 10 to 15 years for an adenomatous polyp to become an invasive cancer

[94]. Thus, there is a considerable time for detection and clinical intervention if the proper

screening methods are used. Studies of fecal occult blood testing, flexible sigmoidoscopy,

and colonoscopy have shown that screening for colorectal cancer in high-risk countries can

decrease mortality by 50%. Evidence-based guidelines recommend the screening of adults

1. INTRODUCTION 3

who are at average risk for colorectal cancer, since the detection and removal of adenomas

has been shown to substantially reduce the incidence of cancer and cancer-related mortal-

ity. Therefore, many have advocated screening programs to detect polyps with a diameter

of less than one centimeter [87]. In optical colonoscopy (OC), a thin flexible fiber op-

tic endoscope is inserted into the patient’s rectum to inspect the entire colon for potential

polyps. Although colonoscopy detects nearly 90% of colorectal caners, it is invasive, un-

comfortable, and not without risks. Most people do not follow this advice because of the

discomfort and inconvenience of the conventional colonoscopy.

To encourage people to participate in screening programs, virtual colonoscopy (VC)

[49, 60, 93, 108], also known as computed tomographic colonography (CTC), has been

proposed and developed to detect colorectal polyps using CT images of a patient’s abdomen

and a virtual fly-through visualization system that allows physicians to navigate within a

3D model of the colon searching for polyps, the precursors of cancer. In the fly-though nav-

igation of VC, a virtual camera with a specific field of view moves along a special planned

path inside the colon to render its internal view. A typical 3D endoscopic view of VC show-

ing a polyp in VC is displayed in Figure 1.1(d). However, this polyp is hard to be identified

from the 2D mutually perpendicular slice views (Figure 1.1(a)-(c)), which demonstrates

that VC is much more efficient than 2D review. VC is minimally invasive, fast, inexpen-

sive, and has been successfully demonstrated to be more convenient and efficient than the

traditional OC. Moreover, VC doesn’t require a rigorous bowel cleansing preparation. The

patient needs only to have a modified diet with an oral contrast agent, for example barium.

The tagged material is enhanced in the CT scan, allowing it to be identified. However,

care must be taken during electronic cleansing to restore the CT density values where the

partial volume effect occurs. With the recent introduction of multi-detector CT capable of

generating 16 images in 0.5s, CT processing has become remarkably fast and the polyp

detection sensitivity has been enhanced. Pickhardt et al. [108] have demonstrated that the

performance of a VC compares favorably with that of a traditional OC. The radiation ex-

posure incurred during a virtual colonoscopy examination is currently equivalent to that of

two plain abdominal films and will probably decrease with continued software and hard-

ware developments [65]. Advantages and disadvantages of VC are compared and listed in

Table 1.1.

Table 1.1: Advantages and Disadvantages of Virtual Colonoscopy.

Advantages Disadvantages

1 Noninvasive Cost (no reimbursement code)

2 No sedation required Radiation exposure

3 Localize polyps and lesions precisely Cannot take biopsy specimens

4 Less technically demanding Retained feces can be misinterpreted

5 Sensitivity equal to that of conventional

OC for lesions > 10mm in diameter

Cannot show texture and color details

of mucosa

1. INTRODUCTION 4

(a) (b)

(c) (d)

Figure 1.1: Virtual Colonoscopy: The 2D mutually perpendicular slice views are oriented

(a)axial, (b)coronal, and (c)sagittal; (d)A polyp is shown in a typical 3D endoscopic view.

In fly-through navigation, it is crucial to generate an optimal camera path for efficient

clinical examination. Automatic path planning is needed because manual planning is dif-

ficult and time-consuming due to the complex shape of the human colon. For complete

and accurate diagnosis, a planned path should not produce significant blind areas on the

colon surface. Previous investigations of automatic path generation can be categorized into

approaches based on topological thinning and minimum cost spanning tree. Topological

1. INTRODUCTION 5

thinning algorithms can be used to eliminate the outermost layer of a segmented colon suc-

cessively with only the centerline voxels remaining. Hong et al. [48] have used the peel

onion technique to generate the centerline of colon. Paik et al. [98] have proposed the

thinning based on Euclidean distance mapping. By iteratively correcting a path toward the

medial axis, the necessity of evaluating simple point criteria during morphological thinning

is eliminated. Sadleir et al. [112] have optimized 3D topological thinning and reduced the

computational burden associated with the thinning process by referring to lookup tables.

With a 3D distance map generated in the preprocessing step, the minimum cost span-

ning tree can be built using the shortest path algorithm [22]. The combination of maximum

length and minimum cost trees enable it to find the optimal centerline. Hong et al. [49]

have used the difference between the global maximum distance value and the correspond-

ing value of the distance from the colon surface to calculate the single source shortest path

from the user specified start point to the end point. Bitter et al. [12] have introduced a

penalty cost for generating the minimum cost path by adding more edges and vertices to

incorporate penalties for coming close to the object boundary. Wan et al. [126] have used

exact Euclidian distance from each voxel inside the colon to the nearest colon boundary to

extract the colon centerline and its associated branches.

In other approaches, Kang et al. [63] have proposed a method to determine camera

positions and their view directions to minimize the blind areas during navigation. Kwon et

al. [75] have used image-based information generated in the rendering time to determine

the camera positions and directions. This method does not require pre-processing or extra

storage, but it is highly likely to converge to local minima in complex regions. Level set

methods [20, 46] have also been used to extract the centerline of the colon. However, it is

computationally expensive to calculate the level set propagation.

All techniques that examine the colon require a clean lumen, eliminating residual mate-

rials that may be falsely interpreted as colonic masses. Prior to any of these examinations,

patients undergo a bowl cleansing preparation which includes either washing the colon with

a large amount of liquids or administering medications and enemas to induce bowel move-

ments [48]. This bowel preparation is often more unpleasant than the examination itself.

An alternative method of cleansing the colon would be very attractive. In VC, contrast so-

lutions can be ingested to enhance the image intensities of the stool and fluid. By applying

image segmentation algorithms, these colonic materials can be virtually removed from the

images without the patient undergoing physical bowel washing [16, 78].

1.2.2 Computer-Aided Detection

VC has shown promising results for colorectal cancer screening. However, physicians

have encountered several obstacles in the clinical practicality of VC. For a physician to

make an accurate determination about the existence of polyps utilizing a VC system, he/she

needs to spend a substantial amount of time carefully inspecting the entire colon wall dur-

ing navigation. Even with a careful inspection, it is easy for a physician to miss polyps

that might be hidden around sharp bends and within deep folds of the colon walls. This

1. INTRODUCTION 6

problem can be minimized only through forward and reverse viewing of both supine and

prone images. This process does not, however, ensure full coverage and is extremely time-

consuming [10]. Therefore, the diagnostic performance of VC is indeterminate, being

susceptible to human error [31, 59]. The learning curve for the accurate interpretation of

CT colonographic scans can be one of the causes for variable sensitivity among reviewers

[102, 111]. Moreover, the absence of visual cues that normally exist with conventional OC

also make image interpretation tedious and susceptible to error.

To overcome these difficulties, computer-aided detection (CAD) schemes have been

developed for the automatic detection of colonic polyps. The second opinion offered by a

CAD scheme has the potential to reduce the interpretation time and to enhance diagnos-

tic accuracy. Overall interpretation time can be reduced if physicians focus on the small

number of regions indicated as suspicious by a CAD scheme. Thus, physicians can quickly

inspect a large portion of the colon that is likely to be normal. In addition, CAD has the

potential to reduce physicians’ perceptual errors, thereby improving the accuracy of VC.

In order for the CAD system to be useful, it must be able to identify 100% of colonic

polyps. In addition, it must be able to substantially reduce the number of false positives

(FPs). Without the reduction of FPs, there would be too many areas to be inspected in a

limited amount of time. An efficient CAD system would thus be used to make physicians

more effective and make their diagnoses more accurate. CAD of colonic polyps is particu-

larly challenging because the colon is highly deformable and colon surfaces have a number

of polyp mimics. In the past several years there have been several prototype CAD schemes

reported in the literature with variable success in polyp detection.

Shape and texture features are the two major characteristic features that have been used

to differentiate polyps from normal soft tissues. Vining et al. [124] have utilized the mea-

sure of abnormal colon wall thickness to detect polyp suspects. Summers et al. [122] have

employed local variations in curvature of the surface of the colonic wall to detect abnormal

shapes. Then, the candidates are filtered by the restrictions of mean curvature, dimension-

less ratio sphericity, and minimum polyp size to reduce FPs. Paik et al. [100] have observed

that normals on the colon surface usually intersect with normals on neighboring surfaces,

as polyps have 3D shape features changing rapidly in many directions. Based on this ob-

servation, they have introduced a method to detect polyps by the number of intersecting

normal vectors of a patch. Yoshida et al. [137, 136] and Näppi et al. [96] have further

characterized the curvature measures by shape index and curvedness to differentiate polyps

from haustral folds and the colon wall. The volumetric features gradient concentration

(GC) and directional gradient concentration (DGC) are used for reducing FPs.

Based on the assumption that polyps are composed of small, approximately spherical

patches, Tomasi and Göktürk [123] have designed a method of locally fitting a sphere to

the isosurface of each voxel on the colon wall. Groups of voxels having many neighboring

spheres are considered as polyp candidates. Kiss et al. [69] have utilized normal and sphere

fitting as the references to extract some geometric features on the polyp surfaces. Wang et

al. [130] have introduced a new shape description global curvature for polyp detection. All

these shape based methods are sensitive to the irregularity of the colon wall and therefore

1. INTRODUCTION 7

share a relatively high FP rate, which is undesirable.

Göktürk et al. [36] have presented a statistical approach that uses support vector ma-

chines to distinguish the differentiating characteristics of polyps and healthy tissue, and

use this information for the classification of the new cases. Acar et al. [1] have proposed a

CAD scheme using an edge-displacement field to analyze and improve the polyp detection.

Näppi et al. [97] have employed a conditional morphological dilation strategy to extract

the suspected regions. The FPs are reduced by further analyzing three shape features from

these suspicious regions. Yao et al. [135] have explored image segmentation methods in

CAD to reduce the FPs. This method is based on a combination of knowledge-guided

intensity adjustment, fuzzy c-mean clustering, and deformable models. The volumetric

features computed from the segmentation can further reduce FPs.

1.2.3 Virtual Dissection

Virtual dissection, also called virtual flattening, is an innovative technique whereby

the 3D model of the human organ is virtually unrolled, sliced open, and displayed as a

flat surface, similar to a physical pathologic specimen. This technique has the potential

to reduce the evaluation time by providing a more rapid 3D image assessment than a 3D

fly-through navigation. A disadvantage of virtual dissection is the potential for distortion

of lesions and normal anatomy.

The application of virtual dissection technique for colon data sets may ultimately im-

prove the accuracy by reducing blind spots presented with 3D endoluminal displays and by

reducing reader fatigue. Numerous algorithms have been investigated to alleviate the dis-

tortion that inevitably results from the virtual straightening and flattening of curved colonic

sections.

The straightforward method [129] starts with uniformly re-sampling the colonic central

path. At each sampling point, a cross section orthogonal to the path is computed. The

central path is straightened and the cross sections are unfolded and re-mapped into a new

3D volume. The iso-surface is then extracted and rendered. In this method, nearby cross

sections may overlap at high curvature regions. As a consequence, a polyp might appear

twice or be missed completely in the flattened image. Balogh et al. [6] have presented

an iterative method to correct cross sections, using two consecutive ones at a time. Their

method was tested both on artificial and cadaveric phantoms.

Wang et al. [18, 127, 128] have utilized electrical field lines generated by a local

charged path to generate curved cross sections instead of planar sections, which is called

soft straightening. If the complete path is charged, then the cross sections tend to diverge,

avoiding overlaps. However, due to the expensive computation of the global charge, the au-

thors only locally charge the path, which cannot guarantee that the curved cross sections do

not intersect each other any more. Zhang et al. [141, 142] have developed a fast algorithm

for soft straightening of the colon that greatly accelerates the unraveling process based on

the interpolation of representative electronic force lines. They also suppress the geometric

distortion associated with soft straightening of the colon by moderately adjusting curved

1. INTRODUCTION 8

cross sections, which is equivalent to appropriately modify the underlying electronic field.

Fletcher et al. [32] have proposed a method to use isometric volume rendering, which

did not require a colon centerline trace. They have concluded that this method, compared

with standard 2D axial and 3D endoluminal reviews, has the potential for improved detec-

tion of lesions with specific morphologic characteristics. However, the navigation of the

reconstructed images is reportedly time consuming. Paik et al. [99] have used cartographic

projections to project the entire solid angle of the camera. This approach samples the solid

angle of the camera, and maps it onto a cylinder which is finally mapped to the image.

However, this method causes distortions in shape.

Bartrolı́ et al. [8] have proposed a method to move a camera along the central path of

the colon. For each camera position a small cylinder tangent to the path is defined. Rays

starting at the cylinder axis and being orthogonal to the cylinder surface are traced. The

cylinder is then opened and mapped to a 2D image. The result is a video where each frame

shows the projection of a small part of the inner surface of the colon onto the cylinder.

This avoids the appearance of double polyps since intersections can only appear between

different frames. However, this approach does not provide a complete overview of the

colon. They have presented a new two step technique to deal with double appearance of

the polyps and the nonuniform sampling problems [7]. First, curved rays are cast along the

negative gradient of the distance map from the central path of the colon, which returns the

distances between the camera and the intersection points on the colon surface. Then, the

height field is unfolded and the nonlinear 2D scaling is applied to achieve area preservation.

However, it is important to this method that the central path is smooth and has as many

linear segments as possible.

Haker et al. [43] have proposed a method based on the discretization of the Laplace-

Beltrami operator to flatten the colon surface onto the plane in a manner which preserves

angles. The flattened colon surface is colored according to its mean curvature. A mor-

phological method is used to remove minute handles resulting from the segmentation algo-

rithm, because their algorithm requires the input surface to be a topologically open-ended

cylinder. However, the color-coded mean curvature of the extracted surface is not effi-

cient for polyp identification, and it requires a highly accurate and smooth surface mesh to

achieve a good mean-curvature calculation.

Hoppe et al. [58] have compared virtual colon dissection with axial interpretation and

conventional colonoscopy. They concluded that virtual colon dissection may facilitate de-

tection of colonic polyps in isolated cases, its detection rate is not superior to axial inter-

pretation and conventional colonoscopy, which is mainly attributable to failed rendering

of insufficiently distended colonic segments or regions with residual feces. With further

improvement of path-finding, and image segmentation, however, virtual colon dissection

has the potential to be useful interpretation tool for CT colonography.

Recently, Johnson et al. [61] evaluated virtual dissection in a phantom and in a small

patient sample with endoscopic correlation. All 144 polyps in the phantom and all 20

clinically proved polyps in the patients were visible in retrospect. These results indicate a

high potential for improved polyp detection with this technique.

1. INTRODUCTION 9

1.2.4 Direct Volume Rendering

The term volume rendering [23, 26, 82, 85] describes a set of techniques for rendering

three-dimensional, that is, volumetric data. The two major approaches to volume rendering

are rendering an isosurface corresponding a given iso-value [86, 114], and direct volume

rendering (DVR). A direct volume rendered image with a human abdomen data set is shown

in Figure 1.2. DVR methods create images of an entire volumetric data set, without con-

centrating on, or even explicitly extracting surfaces corresponding to certain features of

interest. DVR requires an optical model [90] for describing how the volume emits, reflects,

scatters, or occludes light. In general, DVR maps the scalar field constituting the volume

to certain optical properties such as color and opacity, and integrates them along viewing

rays cast into the volume. The corresponding integral is known as the volume rendering

integral. For real-time volume rendering, the emission-absorption optical model is usually

used, in which a volume is viewed as being comprised of particles at a certain density that

are only able to emit and absorb light. In this case, the scalar data constituting the vol-

ume denotes the density of these particles. Mapping density values to optical properties is

achieved through a transfer function [67, 104], which determines how different structures

embedded in the volume appear in the final image. That is, transfer functions perform two

tasks of identifying different objects via classification [85], and subsequently assigning

optical properties to these objects.

Transfer functions for classification and mapping of volume densities to optical proper-

ties are an extremely important part of DVR. Objects in a volume are usually identified us-

ing a pure opacity transfer function with additional optical properties specified separately.

However, the most common type of transfer function is simply a 1D lookup table in the

domain of volume densities that stores RGBA values for colors and opacities. Separable

multi-dimensional transfer functions have also been in use for a long time, incorporating

gradient magnitude as the second dimension in addition to volume density [82]. Recently,

more general multi-dimensional transfer functions [67] have become a very important tool

for distinguishing different objects contained in a volume. They can be used in interactive

volume rendering on graphics hardware [70]. Transfer functions in the domain of principal

curvature magnitudes have also proven to be very powerful for highlighting and identi-

fying different shape structures [47, 113] and non-photorealistic volume rendering [68].

Pre-integrated volume rendering [27] substitutes a 1D transfer function lookup table by a

2D pre-integrated table, and decouples the frequencies contained in the scalar volume from

the frequencies in the transfer function. It thus allows to achieve high-quality results even

with low sampling rates.

Illumination and shading refer to well-known techniques in conventional computer

graphics to greatly enhance the appearance of a geometric model that is being rendered.

Shading tries to model effects like shadows, light scattering, and absorption that occur in

the real world when light falls on an object. Traditional local illumination models for sur-

face lighting can be easily adapted to volumetric representations. Local illumination mod-

els use the notion of a normal vector, which describes the local orientation of a surface.

1. INTRODUCTION 10

Such an illumination model calculates the reflection of light as a function of this normal,

the viewing direction, the angle of incidence, and a couple of material properties. Almost

any surface illumination model can be used in DVR by substituting the surface normal by

the normalized gradient vector of the volume.

Figure 1.2: Direct volume rendering of a human abdomen data set with a semi-transparent

transfer function.

DVR can provide high-quality endoscopic views for virtual endoscopy applications.

Algorithms for DVR generally fall into two categories: image-order algorithms (for exam-

ple, ray-casting [83]) and object-order algorithms (for example, splatting [133] or shear-

warp [76]). The ray-casting algorithm can produce high quality images, and can achieve

1. INTRODUCTION 11

an interactive rendering speed using graphics hardware. Unfortunately, a major drawback

of current consumer graphics hardware is the limited amount of on-board memory, which

imposes limits on the size of volumetric data sets that we can render at adequate update

rates.

VC fly-through navigation requires the mimicked endoscopic view to be rendered in

real-time. However, the typical size of a contemporary clinical 16bit CT data set is about

512 MB. It is still a challenge to render such a large volumetric data set in real-time at

a high resolution, even with the help of the contemporary graphics hardware. Real-time

rendering of large data sets equal to or larger than 512 MB using the image-order algorithm

is currently infeasible unless super-computers [71, 101] or PC clusters [95, 118] are used.

Parker et al. [101] have shown that it is feasible to perform interactive iso-surface rendering

of the full resolution Visible Woman data set with brute-force ray tracing on an SGI Reality

Monster. They achieved up to 20 fps when utilizing 128 processors. Kniss et al. [71]

have presented a hybrid volume renderer, which can render a full resolution time-varying

data set, such as the Raleigh-Taylor fluid flow data set, at nearly 5 fps on a 128-CPU, 16-

pipe SGI Origin 2000 with IR-2 graphics hardware. Muraki et al. [95] have proposed a

scalable PC cluster system designed specially for simultaneous volumetric computation and

visualization, using compositing hardware devices and the latest PC graphics accelerators.

Strengert et al. [118] have described a system for the texture-based direct volume rendering

of large data sets on a PC cluster equipped with GPUs. Hierarchical wavelet compression is

applied to increase the effective size of volumes that can be handled. However, these large

scale solutions do not fit in the needs and capacities in an ordinary medical environment.

Various approaches have been developed to deal with large data sets on PCs. The vol-

ume is usually subdivided into blocks, which are usually organized using an octree structure

[79]. Data compression is another natural approach to deal with large data sets. Guthe et al.

[41, 42] have presented a method for rendering large data sets at interactive frame rates on

standard PC hardware. The volumetric data set is converted into a compressed hierarchical

wavelet representation in a preprocessing step. During rendering, the wavelet representa-

tion is decompressed on-the-fly and rendered using texture mapping hardware. The level

of detail used for rendering is adapted to the local frequency spectrum of the data set and

its position relative to the viewer. However, the wavelet compression method degrades the

performance and quality of the rendering results. Hong et al. [52] have proposed a fea-

ture preserved volume simplification method, which produces results visually similar to

the original data set.

Ghosh et al. [34] have utilized a multi-board scheme for rendering large volumetric data

sets interactively. They implemented an image-partitioned rendering method by loading

the entire volume on all available boards, but restricting the range of the image and depth

buffers to be filled by each board. They achieved 24 FPS for rendering the Visible Male

on one PC with four VolumePro 1000 boards [103]. The limitation of this method is that

the size of the volumetric data set that can be rendered is limited by the memory size of the

single board.

1. INTRODUCTION 12

1.3 Contributions

We contribute to the visualization and CAD research by presenting a novel pipeline for

CAD of colonic polyps which integrates texture and shape analysis with volume render-

ing and conformal colon flattening. Using our automatic method, the 3D polyp detection

problem is converted into a 2D pattern recognition problem. By conformal virtual colon

flattening the entire inner surface of the colon is displayed as a single 2D image, which is

efficient for polyp detection. The final detection results are stored in the 2D image, which

can be easily incorporated into any VC system to highlight the polyp locations. Our VC

system uses a novel GPU-based volumetric ray-casting algorithm to generate the VC endo-

scopic view, which is designed to fulfill the requirements of virtual endoscopy applications.

In summary, our contributions include:

• Utilizing a simulation method to estimate the percentage of the colon surface missed

in the OC and VC examinations. Our simulation study reveals that the standard OC

and VC examinations lack adequate visualization of the entire colon surface.

• Utilizing a statistical method for colon segmentation to handle the partial volume ef-

fect. The entire colon can be automatically segmented and cleansed. The topological

noise is removed by a 3D region growing algorithm based on the concept of simple

point, allowing a topologically simple colon surface to be extracted.

• Presenting a GPU-based object-order ray-casting algorithm for the rendering of large

volumetric data sets on commodity computers. We also exploit the cooperation and

trade-off between the GPU and the CPU to obtain further acceleration. The perspec-

tive endoscopic view for virtual endoscopy applications can be rendered in real-time

at a very high resolution. The efficiency of our algorithm is demonstrated using con-

temporary clinical 16bit CT data sets and the Visible Human data sets.

• Proposing a general method for conformal surface flattening by computing the con-

formal structure of the surface based on the Riemann surface theory. The global

distortion from the 3D surface to the parametric rectangle is minimized, which is

measured by the harmonic energy. It is angle preserving, so the shape of colonic

polyps is preserved on the flattened colon image.

• Integrating texture and shape analysis with volume rendering and conformal colon

flattening for CAD of colonic polyps. Our system is 100% sensitive to polyps with a

very low FP rate. The detection results can be used to highlight the polyp locations

in the VC system, helping physicians detect polyps faster and with higher accuracy.

In summary, we provide a GPU-based ray-casting algorithm to support real-time vir-

tual endoscopy applications using large volumetric data sets. We propose a conformal

colon flattening algorithm to display the entire 3D colon surface as a single 2D image. We

1. INTRODUCTION 13

present a novel pipeline for computer-aided colonic polyp detection. We integrate con-

formal colon flattening and CAD results with our VC system to improve the performance

and efficiency of VC. We demonstrate that computer-aided diagnosis in combination with

virtual endoscopy is a promising alternative to the conventional endoscopy.

1.4 Outline

The dissertation is organized as follows. The percentage of the covered colon surface

during a routine optical colonoscopy is investigated by a simulation method in Chapter 2

[57]. Chapter 3 introduces segmentation and digital cleansing algorithms to handle the

partial volume effect and topological noise [54, 56]. In Chapter 4, we discuss the theory

and algorithm to flatten the 3D colon surface with conformal mapping and minimizing the

global distortion [50, 51]. Chapter 5 describes how to accelerate volume rendering for

virtual endoscopy applications using very large volumetric data sets [53, 55]. Furthermore,

the pipeline of our computer-aided detection for colonic polyps using conformal colon

flattening and volume rendering is presented in Chapter 6 [54, 56]. Finally, concluding

remarks are drawn and ongoing research work is summarized in Chapter 7.

14

Chapter 2

Colonoscopy Simulation

2.1 Introduction

OC is widely accepted as the gold standard for colonic polyp screening, which requires

adequate visualization of the entire colonic surface. It frequently happens that sizable areas

behind haustral folds are not inspected, although physicians sometimes depress the haustral

fold to look behind. Moreover, the hepatic and splenic flexures and other sharp bends are

blind spots. Recently, prospective back-to-back or ”tandem” colonoscopy studies have

reported miss rates for 10 mm adenomas ranging from 0% to 6% [111]. VC has proven

to be a useful tool for colonic polyp screening. Researchers at Stanford have shown that

if all surfaces of the colon lumen have been seen, 3D endoscopic navigation has a higher

sensitivity of polyp detection than viewing only 2D axial images [10, 105]. However, VC

shares the same problem with OC examination. In the VC examination, the radiologist

needs to navigate in both antegrade (from rectum to cecum) and retrograde (from cecum to

rectum) directions to improve the degree of surface coverage of the inspection. However,

the regions behind haustral folds and around sharp bends still may be missed, unless the

physician specifically moves the virtual camera to obtain better views of the mucosa.

In this chapter, we investigate the colon surface visibility coverage using a simulation

method to estimate the percentage of the colon surface is missed in the OC and VC exami-

nations. Previously Mori et al. [92] have presented a method using different colors to mark

the regions that had been observed versus the unobserved regions during a VC endoscopic

examination. This method worked for both surface rendering and volume rendering. Mori

et al. have presented two reasons why a given area could be considered unobserved. First,

the region does not ever appear on the display, which was termed as a physical factor, and

second, it was unobserved due to human error or carelessness, which was termed as a psy-

chological factor. They did not consider performing difficult eye-tracking when calculating

visualized surfaces. Kreeger et al. [73] have developed a technique that also marks visu-

alized surfaces during volume rendering endoscopic navigation. The unobserved areas are

automatically detected and sorted for quick examination. However, they simulated the OC

using a pinhole camera model, while a colonoscope uses a fisheye lens. In this dissertation,

2. COLONOSCOPY SIMULATION 15

we focus on using a fisheye camera model to simulate the OC examination and comparing

the simulation results with the VC examination. We also consider that in OC the camera is

not on the colon centerline but rather a hugging corner path. However, we do not consider

the psychological factors and the eye tracking problem.

2.2 Fisheye Camera Calibration

Before we simulate the OC, we first need to calibrate the colonoscope. The colonoscope

has a fisheye lens. In the computer graphics and computer vision communities, lenses are

simplified as the pinhole (linear) model. It depicts the relationship between 3D points and

their 2D projections. The perspective projection of a pinhole camera can be described by

the following formula:

r = f tan(θ) (2.1)

where θ is the angle between the optical axis and the incoming ray, r is the distance

between the image point and the principal point, and f is the focal length.

x

y

ϕ

θ

P

p

p′

f

r

Xc

Yc

Zc

(b)
Figure 2.1: Fisheye camera model.

2. COLONOSCOPY SIMULATION 16

However, the pinhole model is insufficient in the presence of various distortions. Ba-

sically, a camera lens could have several types of distortions, including radial distortions

and tangential distortions. In most cases, the most salient problem comes from the radial

distortion (i.e., the displacement of a pixel is dependent on its distance to the center of the

image). For a colonoscopy, radial distortions become more serious because it is a wide-

angle lens. To calibrate it, we used the algorithm proposed by Kannala and Brandt [64].

The fisheye camera model is shown in Figure 2.1. Fisheye lenses are usually designed to

obey one of the following models:

• Stereographic projection:

r = 2f tan(θ/2) (2.2)

• Equidistance projection:

r = fθ (2.3)

• Equisolid angle projection:

r = 2f sin(θ/2) (2.4)

• Orthogonal projection:

r = 2f sin(θ) (2.5)

However, these models could be represented by a generic model using the Taylor series:

r(θ) = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + . . . (2.6)

To further simplify the equation, the basic idea is to model the radial displacement

(distortion) about the image center using a polynomial function: r(θ) = k1θ + k2θ
3. This

approximately captures the possible radial distortions of the colonoscope.

First, we need to understand the imaging (projection) process from a 3D point to its

2D projection. During this projection process, we first transform the camera coordinates

of the point into the image pixel coordinates. Then, the normalized image coordinates are

computed as:
{

x = r(θ) cos(ϕ)
y = r(θ) sin(ϕ)

(2.7)

where (θ, ϕ) is the polar representation for the 2D projection (x, y). In the end, we

apply an affine transformation to compute the actual pixel location:

{

u = mux + u0

v = mvy + v0

(2.8)

where (u0, v0) is the principal point (image center) , mu and mv give the number of

pixels per unit distance in the horizontal and vertical directions, respectively. The goal of

calibration is to estimate the exact value of the six parameters: (k1, k2, mu, mv, u0, v0).

2. COLONOSCOPY SIMULATION 17

We have used a planar board with a specific target pattern to collect the data for cal-

ibration. Here, each black dot represents one 3D point. Since the points are arranged in

a specific way, we know their 3D locations up to an unknown Euclidean transformation.

Then, in the image space, we have clusters of pixels representing the projection of these 3D

points. The projection center in sub-pixel accuracy is computed as the center of each clus-

ter. Figure 2.2 depicts a single frame of our specific target pattern captured by the fisheye

endoscope.

Figure 2.2: A frame of the calibration pattern captured by the colonoscope.

Then, a four-step procedure is conducted for the calibration using M feature points

obtained in N views. Here internal parameters are the ones intrinsic to the endoscope.

They are not altered by the position and orientation of the camera. And the position and

orientation of the endoscope are referred as the external parameters. The four steps are

described as follows:

1. Initialization of internal parameters;

2. Refinement of internal parameters;

3. Initialization of external parameters;

4. Minimization of projection error.

For the first step, the initial values for k1 and k2 are obtained by fitting to the desired

projection with the nominal focal length and field of view provided by the manufacturer.

The initial values of mu, mv, u0, and v0 are estimated by fitting a field of view of the

fisheye lens to an ellipse. Because the target pattern is a planar surface, the feature points

under different views are related by a homography matrix, which are used to refine the

2. COLONOSCOPY SIMULATION 18

estimation of these internal parameters. In addition, using the homography but with internal

parameters fixed, we could estimate the external parameters. In the end, all parameters are

fed into an energy function, which computes the sum of projection errors. The result is

obtained by minimizing the energy using the Levenberg-Marquardt algorithm.

2.3 Optical Colonoscopy Simulation

We employ virtual models of the colon obtained by VC CT scans in order to simulate

the OC examination. Before the simulation, the virtual colon is electronically cleansed and

segmented from the CT scans, and the colon surface is extracted using a dual contouring

method [139] and stored using a triangle mesh. In previous OC simulation methods, cam-

eras are usually placed on the colon centerline, while a real colonoscope tends to hug the

corner, especially at the sharp bends. Moreover, from the layout of the simulated colono-

scope distal end (shown in Figure 2.3), it is noted that the center of the fisheye lens cannot

touch the colon surface and is not at the center of the distal end. During the OC examina-

tion, endoscopists typically keep the objective lens away from the colon wall. We use the

average between 10 mm and 2.8 mm as the radius of the simulated distal end.

Figure 2.3: Layout of the simulated colonoscope distal end.

We use an efficient distance mapping algorithm [126] to compute the hugging corner

shortest path. It treats the volume as a graph, and every voxel is a node. An edge is

added between every two 26-connected voxels. Then, the hugging corner shortest path

can be computed using the Dijkstra shortest path between the two colon ends (rectum and

2. COLONOSCOPY SIMULATION 19

cecum). In order to keep the hugging corner shortest path 6.4 mm away from the colon

wall, we computed the distance from boundary for every voxel using the segmented colon.

Voxels with the distance less than 6.4 mm are not considered in our algorithm to account

for objective lens moving away from the colon wall to simulate the OC examination path,

as shown in Figure 2.4.

Colon Wall Colon Lumen

6.4mm

Examination Path

Colon Wall

Figure 2.4: The OC examination path hugs the corner at a sharp turn.

After the hugging corner shortest path is obtained, a large number of fisheye cameras

are evenly placed along the path in retrograde direction. At each camera position, the ray

casting algorithm is used to generate the endoscopic view. The ray direction of each pixel

can be determined using the calibrated lens parameters. Since a fisheye camera model

is used in our simulation, Mori et al.’s method to detect unobserved regions cannot be

used in this situation. Instead, a brute-force ray-casting algorithm is used to determine

whether a triangle is observed or not. Because all triangles are very small (triangle area

< 1 mm2), we define that a triangle is observed if it is intersected by at least one ray, which

means that it is at least partially displayed on the screen. It is noted that the viewport of the

colonoscope is octagonal, because the shape of the objective lens is an ellipse. Therefore, in

our simulation the image plane is elliptical. Moreover, we do not consider the unobserved

regions caused by psychological factors during fly-through navigation. After all of the

cameras are processed, the unobserved triangles are counted. Consequently, the percentage

2. COLONOSCOPY SIMULATION 20

of covered colon surface can be estimated. Surface coverage at this point may serve as an

estimation of readily visualized mucosa at a standard OC examination.

2.4 Virtual Colonoscopy Simulation

The covered colon surface for the VC examination can be computed in a similar way,

using the colon centerline and a pinhole camera model. An advantage of using a pinhole

camera model is that we can use graphics hardware to accelerate the simulation process.

We use OpenGL extension occlusion query to test whether a triangle is observed from a

specified camera position. This extension can return the number of samples that pass the

depth and stencil tests. Thus, for each triangle we can use occlusion query to obtain how

many pixels can be observed at a camera position. At each camera position, the algorithm

is described as follows:

1. We first disable the depth test, and render all triangles. For each triangle, we use

occlusion query to obtain the number (Ntotal) of pixels that can be observed from

the current camera position. In fact, the observed pixels constitute the triangle on

the image plane. If this number is zero, the triangle is outside the view frustum and

should be clipped, which is unobserved from the current camera position.

2. We then enable the depth test, and render all observed triangles to obtain the depth

buffer.

3. For each observed triangle, we perform occlusion query again to obtain the number

(Nobserved) of pixels that can be observed in the final image.

(a) If Nobserved is zero, the triangle cannot be observed from the current camera

position.

(b) If Nobserved is equal to Ntotal, the triangle is fully visible.

(c) Otherwise, the triangle is partially visible.

For the VC, the computation is also performed for both antegrade and retrograde direc-

tions. It is noted that the field of view for VC is 90 degree which is very different from the

real colonoscope. We use the same depth of field parameters of a real colonoscope for both

OC and VC simulations.

2.5 Results

We used the above approach to calibrate an Olympus colonoscope (Model: CF-Q160L)

with a field of view of 140 degrees using a checker board image. The specification of

the calibrated colonoscope is shown in Table 2.2. The image acquired is about 525 × 440
pixels. The visible region is enclosed by an ellipse, centered at (267.05, 215.01) and with

2. COLONOSCOPY SIMULATION 21

the radius along the X/Y direction as 309.08/294.92. The calibration result for the six

parameters is (13.5747,−2.2982, 25.5903, 25.6000, 274.2596, 220.6445). An endoscopic

view for the simulated OC using the six parameters is shown in Figure 2.5 (a), and the

corresponding endoscopic view for VC using perspective projection is shown in Figure 2.5

(b). We can see that more information can be obtained when using a fisheye camera.

Table 2.1: Specification of the calibrated colonoscope.

Field of View 140 degree

Depth of Field 3 to 100 mm

Distal End Outer Diameter 12.8 mm

Minimum Visible Distance 5 mm from distal end

Objective Lens Inner Diameter 3.7 mm

Angulation Range up/down 180 degree, right/left 160 degree

(a) (b)

Figure 2.5: (a) The simulated endoscopic view for OC and (b) the corresponding view for

VC.

We used 52 CT data sets from the National Institute of Health (NIH) and 46 CT data

sets from Stony Brook University Hospital (SBUH) to estimate the average colon surface

coverage for both standard OC and VC examinations. The extracted colon triangle meshes

usually consists of about one million triangles. The simulation results are shown in Table

2.2:

Simulated OC covered an average of about 77% of the colon surface, primarily miss-

ing the backsides of haustral folds and around sharp bends, which is below the average

estimation of 90% coverage from 12 experienced endoscopists. In Figure 2.6(a), the cov-

ered colon surface obtained after retrograde navigation from rectum to cecum is painted in

2. COLONOSCOPY SIMULATION 22

Table 2.2: Average percentage covered in simulated OC and VC.

Number of Cameras Average Coverage

Simulated OC
1000 76.81
2000 77.02

VC in retrograde direction
1000 76.94
2000 77.37

VC in both directions
1000 91.05
2000 91.10

green. From this figure, we can clearly see that the hepatic and splenic flexures are blind

spots, and many regions behind haustral folds are uncovered in the simulated OC.

The VC fly-through navigation in retrograde direction covered an average of about

77% of the colon surface. The combined retrograde and antegrade VC fly-though covered

an average of about 91% of the colon surface. From Table 2.2, it is noted that we obtained

similar results when a different number of cameras is used in the simulation. In Figure

2.6(b), the covered colon surface obtained after fly-through navigation in both directions is

painted in green. We can observe that many regions behind haustral folds and around sharp

bends are still missed.

Kreeger et al. [73] proposed a method to automatically detect and sort unobserved

patches to cover all clinically significant areas of the colon surface, fly-through navigation

in antegrade and retrograde directions as well as examining unobserved patches. The colon

surface coverage can be increased to 98% by reviewing the missed regions with an area of

300 mm2 or larger and can potentially go to 100%.

Virtual colon flattening is an efficient visualization technique for colon polyps screen-

ing, in which the entire inner surface of the colon is displayed as a single 2D image. How-

ever, this method results in severe distortions. Several methods have been developed that

are either area preserving [7] or angle preserving [43, 50]. We have developed an angle

preserving method [50], in which the entire colon surface is mapped to a 2D rectangle. The

flattened colon image can be easily integrated with the VC system to achieve up to 100%
coverage.

2.6 Conclusions

By simulating a wide angle fisheye camera fly-through navigation along the hugging

corner shortest path in the retrograde direction, we evaluate the average colon surface cov-

erage in the standard OC examination. The average colon surface coverage is 77% in our

simulated OC. Considering that the endoscopists can flex the endoscope end and/or depress

the haustral folds to look behind, the real surface coverage of OC may be slightly higher

than our estimation. However, it is still not adequate for colonic polyp detection.

We have also compared the simulated OC to the VC examination. A better result is

2. COLONOSCOPY SIMULATION 23

(a) (b)

Figure 2.6: The covered colon surface are painted in green: (a) the simulated OC, and (b)

VC in both directions.

obtained by enabling endoscopic navigation in the VC along the colon centerline in both

antegrade and retrograde directions, which can visualize an average of 91% of the colon

surface. Combined bidirectional antegrade and retrograde 3D navigation, supplemented

by rapid review of missed regions, effectively covers the entire clinically significant colon

surface 100%. Virtual colon flattening is another promising technique to achieve 100%
surface coverage.

24

Chapter 3

Segmentation and Digital Cleansing

3.1 Introduction

All current implementations of VC and CAD techniques require a rigorous cleansing

of the colon prior to the virtual examination. With some stool residues and colonic fluids

remaining during the patient image acquisition, the efficiency of VC and CAD will be

lowered dramatically because the residues mimic polyps while the fluids may cover polyps.

Digital cleansing [107] is a relatively new technology that has been under development

to remove remnants of stool and residual fluids from the acquired images. First, the patient

undergos a less-stressful bowel preparation with oral contrast to tag out the colonic ma-

terials, so that the residue stool and fluid have an enhanced image density compared with

the colon/polyp tissues [84]. Taking advantage of image segmentation and pattern recog-

nition techniques, a digital cleansing method can identify the tagged colonic materials and

restore a cleansed colon lumen for both VC navigation and CAD analysis. Digital removal

of opacified residual fluid allows 3D evaluation of colonic mucosa that would have other-

wise been obscured. With effective electronic cleansing, the entire anterior and posterior

walls can be evaluated on 3D images obtained with patients in both the prone and supine

positions.

In general, there exist two major challenges for digital cleansing. The first is the re-

moval of the interface layer between the air and the tagged colonic materials. Due to the

partial volume effect, this layer covers the density values of colon tissues and so it is im-

possible to distinguish the voxels of colonic materials in this layer from that of the colon

tissues. Another challenge is the restoration of the CT density values of colon tissues in

the enhanced mucosa layer and the removal of the portion with tagged colonic materials.

Lakare et al. [78] have introduced a ray-based detection technique with utilizes a prede-

fined profile pattern to detect the interfaces. Chen et al. [16] have explored image gradient

information to address the partial volume effect. Zalis et al. [138] have presented a tech-

nique of using morphological and linear filters to mitigate the partial volume effect. Cai et

al. [15] have developed a novel method based on the analysis of the soft tissue structures

submerged in tagged fecal material. Their method is designed to preserve the soft tissue

3. SEGMENTATION AND DIGITAL CLEANSING 25

structures while removing the tagged fecal material. Franaszek et al. [33] have proposed

hybrid a algorithm using modified region growing, fuzzy connectedness and level set seg-

mentation. In this chapter, we present an automatic segmentation and digital cleansing

framework to handle both partial volume effect and topological noise.

3.2 Partial Volume Segmentation

In this section, we presented a statistical method for colon segmentation to handle the

partial volume effect. Instead of labeling each voxel with a unique class type, the percent-

age of different tissue types are estimated within each voxel [28, 81, 131].

Let the acquired CT image density distribution Y be represented by a column vector

[y1, y2, . . . , yN]T , where yi is the observed density value at voxel i and N is the total num-

ber of voxels in the image. Assume that the acquired image yi contains K tissue types

distributed inside the body. Within each voxel i, there possibly are K tissue types, where

each tissue type has contribution to the observed density value yi at that voxel. Let tissue

type k contribute xik to the observation yi at voxel i, then we have yi =
∑K

k=1
xik. Assume

the unobservable variable xik follows a Gaussian distribution with mean µik and variance

σ2
ik. Let mik be the fraction of tissue type k inside that voxel, called mixture, then we have

µik = mikµk and σ2
ik = mikσ

2
k, where

∑n

k=1
mik = 1 and 0 ≤ mik ≤ 1. Therefore, the

observed image density value at voxel i is expressed as:

yi =

n
∑

k=1

mikµk + εi (3.1)

where εi is Gaussian noise associated with density value yi at voxel i with its mean being

zero. The probability distribution of sampling xik, given the parameters mik, µi, σ
2, is

Pr(X|M, µ, σ) =
∏

i,k

1
√

2πmikσ2
k

exp[−
(xik − mikµki)

2mikσ
2
k

] (3.2)

where X = [x1, x2, . . . , xN]T with xi = [xi1, xi2, . . . , xiK]T , M = [m1, m2, . . . , mN]T

with mi = [mi1, mi2, . . . , miK]T , µ = [µ1, µ2, . . . , µK]T , and σ2 = [σ2
1, σ

2
2 , . . . , σ

2
K]T .

This is a well-known problem of parameter estimation from incompletely observed data

yi. The well-established expectation-maximization (EM) algorithm is used to estimate the

parameters via conditional expectation and maximization in an iterative manner.

When the mixture information within each voxel is estimated, a voxel can be classified

as air, soft tissue, or bone/tagged material if the corresponding mixture is larger than a

threshold, say 95%. If a voxel has two major tissue types, it has partial volume effect, and

it can be classified as the boundary of these two tissue types. In Figure 3.1, we show the

classification result for one CT image, in which air is shown in red, soft tissue is shown

in green, bone and tagged material are shown in blue, and the interface between air and

3. SEGMENTATION AND DIGITAL CLEANSING 26

tagged material is shown in pink. Our results demonstrated that the partial volume effects

between different types have been precisely detected.

(a) (b)

(c) (d)

Figure 3.1: (a) An original contrast enhanced CT image, (b) A zoomed-in view of the

marked rectangle in (a), (c) the classification result based on the mixture information, (d)

A zoomed-in view of the marked rectangle in (c).

After classification, we need to segment the colon lumen and identify the interface layer

between air and the tagged fluid based on the mixture information. The voxels in the colon

lumen are classified as air, mixture of air with tissue, mixture of air with tagged materials,

3. SEGMENTATION AND DIGITAL CLEANSING 27

or mixture of tissue with tagged materials. First, we use a labeling algorithm to extract all

connected components for the whole data set. It is noted that the interface layers between

air and the tagged fluid should be flat, and must be below its neighboring air component

and above its neighboring tagged material component due to gravity. Therefore, we first

identify these interface layers and mark them as colon. Then, the air and fluid components

connected with these interface layers are also marked as colon.

(a) (b)

(c)

Figure 3.2: The result of digital cleansing. (a) An original CT image (slice), (b) the corre-

sponding cleansed slice, and (c) a zoomed-in view of the marked rectangle in (b).

3. SEGMENTATION AND DIGITAL CLEANSING 28

When we obtained the segmentation of the colon lumen, the tagged material within

the colon lumen is cleansed based on Equation 3.3. The idea is that we can subtract the

contribution of tagged material from the observed density value and add some contribution

of air or soft tissue using the mixture information. The equation to remove the tagged

material is expressed as:

ynew = yold − mtagµtag + mairµair (3.3)

The enhanced mucosa layer can also be restored using a similar equation. After this step,

we obtain a segmentation of the colon and a clean colon lumen. One original CT axial

image (slice) and the corresponding cleansed slice are shown in Figures 3.2(a) and 3.2(b),

respectively, from which we can see that the interface layer has been removed and small

features have been well preserved. A zoomed-in view of the region bounded by the yellow

box in Figure 3.2(b) is shown in Figure 3.2(c).

3.3 Topological Denoising

After segmentation and digital cleansing, the colon surfaces need to be extracted for vi-

sualization and our flattening algorithm. The colon surfaces reconstructed from a CT data

set usually have complicated topologies caused by the noise and inaccuracy of the recon-

struction methods. In general several spurious handles will be introduced to a surface. This

topological noise complicates our flattening algorithm, and introduces large distortions.

Figure 3.3: A zoom-in view of a colon surface with two handles, shown within the boxes.

3. SEGMENTATION AND DIGITAL CLEANSING 29

It is challenging to locate these handles and remove them using some special ”topology

surgery”. El-sana and Varshney [25] have proposed a topology controlled simplification

method for polygonal models. Tiny tunnels are identified by rolling a sphere with small

radius over the object. Guskov and Wood [40] have presented a local wave front traversal

algorithm to discover the local topologies of the mesh and identify features such as small

tunnels. The mesh is then cut and sealed along non-separating cuts, reducing the topo-

logical complexity of the mesh. These methods are efficient for tiny handle identification.

However, we find that handles are not tiny in our colon data sets as shown in Figure 3.3.

We have proposed two approaches to do topological denoising: surface-based method and

volume-based method.

3.3.1 Surface-based Method

Intuitively, handles can be identified by locating the shortest loop for each homotopy

class. The topology of a closed oriented surface is determined by its number of handles

(genus). Two closed curves are homotopic if they can deform to each other on the surface.

Homotopic equivalence classes form the so-called homotopy group, which has finite gen-

erators, that is, homotopy basis. Each handle corresponds to two generators. A handle can

be removed by cutting the handle along one of its generators, and filling the resulting holes

as shown in Figure 3.4.

γ0 γ0

γ1

γ+

1

γ−

1

(a) (b)

Figure 3.4: (a) Homotopy basis, and (b) topological surgery.

In order to remove a handle, it is highly desirable to locate the shortest loop. It is

natural to compute the shortest loop using universal covering space. Suppose that M̄ and

M are two surfaces, then (M̄, π) is said to be a covering space of M if π : M̄ → M
is a surjective continuous map with every p ∈ M having an open neighborhood U such

that every connected component π−1(U) is mapped homeomorphically onto U by π. If

M̄ is simply connected, then it is said to be a universal covering space of M . A simply

connected region M̃ ⊂ M̄ is called a fundamental domain, if the restriction of π on M̃
is bijective. Intuitively, one can slice M along some curve set (cut graph) to obtain a

topological disk (a fundamental domain), and glue fundamental domains coherently to form

the universal covering space. For any point p ∈ M , its preimages are the discrete set

3. SEGMENTATION AND DIGITAL CLEANSING 30

γ1

γ2 γ+

1

γ−

1

γ+

2
γ−

2

φ
π

γ̄1

γ̄2

p̄0 p̄1

p̄2 p̄3

p

M
M̃

M̄

Figure 3.5: Topology concepts: Two curves γ1, γ2 on a surface M form a cut graph. M
is sliced open along the cut graph to become a fundamental domain M̃ , γi is mapped to

γ+

i and γ−

i . By gluing many copies of M̃ such that γ+

i is glued with γ−1

i , the universal

covering space M̄ can be obtained. π : M̄ → M is the projection map. Any point p on M
has a discrete preimage set π−1(p) = {p̄0, p̄1, p̄2, · · · }. Any closed curves through p on M
are lifted as curve segments connecting two points in π−1(p), e.g., γ1 is lifted as γ̄1, γ2 is

lifted as γ̄2. The shortest loops on M correspond to the shortest path on M̄ .

π−1(p) = {p̄0, p̄1, p̄2, p̄3 · · · } ⊂ M̄ . If γ̄k is a curve connecting p̄0 and p̄k in the universal

covering space M̄ , then γk = π(γ̄k) is a closed loop on M . By going through all end points

p̄k, γk goes through all homotopy classes. In order to find the shortest loop γk, we can find

the shortest path γ̄k in the universal covering space instead. Figure 3.5 demonstrates the

concepts of fundamental domain and universal covering space using a genus one surface.

It illustrates the idea of lifting a loop to a path and converting the shortest loop problem to

the shortest path problem. In computational topology, the algorithms to compute cut graph,

homotopy basis, and fundamental domain have been well developed [21, 29, 38, 80].

However, it has been proven by Erickson and Har-Peled [29] that this problem is NP-

hard. Erickson and Whittlesey [30] have presented a greedy algorithm to compute the

shortest system of loops in O(nlogn) time. However, each loop may not be the shortest

loop in its homotopy group. Given a system of loops, Colin de Verdière and Lazarus [19]

have proposed a method to compute the shortest simple loop homotopic to a given simple

loop (a loop without self intersection). However, the shortest loop within each homotopy

group may not be simple. In our case, the surfaces extracted from the segmented colon

data sets usually only have a small number of handles as shown in Figure 3.3. In order

to compute the shortest loop, we first simplify the mesh while preserving the topology of

the finest mesh. A finite portion of the universal covering space is constructed using the

coarsest mesh. The shortest loop is computed in the universal covering space and lifted

back to the finest mesh, which approximates the shortest loop on the finest mesh. Our

experiments show that this algorithm is manageable in our case.

The main procedure of our denoising algorithm is described as follows:

1. Compute the cut graph and homotopy basis.

3. SEGMENTATION AND DIGITAL CLEANSING 31

2. Simplify the cut graph, then slice along the simplified cut graph to form the funda-

mental domain.

3. Glue finite copies of the fundamental domain coherently to construct a finite portion

of the universal covering space.

4. Compute the shortest loop by finding the shortest path in the universal covering

space.

After the shortest loop is obtained, we slice the mesh along the loop and fill the holes

to remove a handle. This procedure is repeated until all handles are removed.

3.3.2 Volume-based Method

In this section, we discussed our volume-based method using the concept of simple

point. Han et al. [44] have presented a topology preserving level set method, which

achieves topology preservation by applying the simple point concept from digital topol-

ogy [11]. They conclude that it is only necessary to be concerned with topological changes

when the level set function is changing sign. Therefore, in their method the level set func-

tion sign changes are only allowed at a simple point. In this method, a cut is obtained at

each handle of the digital object to preserve topology. However, this method cannot guar-

antee that the cut of the handle is minimized. Moreover, solving the partial differential

equations in the level set method results in a significant computational burden, especially

when it is applied to volumetric data.

3.3.2.1 Simple Point

In this section, we present a new volume based topological denoising algorithm to re-

move small handles (that is, topological noise) from the segmented colon. Because we

already have a segmentation of the colon, we incorporate the simple point concept in a re-

gion growing based algorithm to extract a topologically simple segmentation of the colon

lumen. A point is simple if its addition to or removal from a digital object does not change

the object topology. In other words, a point is simple if it is adjacent to just one object com-

ponent and one background component. We show a 2D example with (4, 8) connectivity

in Figure 3.6, in which the red point is a simple point and the yellow point is a non-simple

point. To avoid the connectivity paradox, (6, 18), (18, 6), (6, 26) and (26, 6) are four pairs

of compatible connectivity used in 3D digital topology. In order to guarantee that the ex-

tracted colon surface using our topology preserving dual contouring algorithm [139] is a

manifold, 6-connectivity is used for the colon lumen and 18-connectivity is used for the

background. Thus, we use the topological numbers [11] corresponding to the compatible

connectivity pair (6, 18) to determine whether a voxel is simple. The topological number

is equal to the number of connected components within its geodesic neighborhood. There-

fore, if both of them are equal to one, the voxel is simple. The following definitions are

from [11].

3. SEGMENTATION AND DIGITAL CLEANSING 32

Figure 3.6: Illustration of a simple point (red) and a non-simple point (yellow).

Definition 3.1. Let X ⊂ Z3 and x ∈ Z3. The topological numbers relative to the point x
and set X are:

T6(x, X) = #C6[N
2
6 (x, X)] and

T18(x, X) = #C18[N
2
18(x, X)],

where Cn(X) stands for the set of all n-connected components of X , #Cn(X) stands for

the cardinal of Cn(X), Nk
n is the geodesic neighborhood of x inside X of order k and it is

defined recursively by:

N1
n(x, X) = N∗

n(x) ∩ X and

Nk
n(x, X) = ∪Nn(y) ∩ N∗

26(x) ∩ X, y ∈ Nk−1
n (x, X),

where N∗

n(x) is n-neighborhood of x.

3.3.2.2 Region Growing based Algorithm

In order to guarantee that each handle is minimally cut, we use the distance from the

boundary as a weight to control the region growing algorithm. The voxel with a larger

distance from the colon wall has a higher priority in our region growing algorithm. This can

be implemented efficiently using a priority queue. In our region growing algorithm, only

the simple point is removed from the priority queue and marked as colon. Because a non-

simple point may become simple when some points are added to the object, we decrease

its priority by a small value δ (δ = 0.1 in our current implementation) and insert it into the

priority queue again if its priority is larger than a predefined threshold Tth (Tth = 0.8 in our

current implementation). Thus, we first compute an unsigned exact distance field using the

segmented colon data obtained from the previous step. After that, we compute the skeleton

(that is, centerline) of the colon using the unsigned distance field, which is then used as the

initial seeds set for region growing. Our topology preserving region growing algorithm is

3. SEGMENTATION AND DIGITAL CLEANSING 33

described as follows:

1. Mark the voxels of the input skeleton as colon.

2. For each voxel of the skeleton, put its six neighboring voxels into a priority queue Q.

3. While Q is not empty do

(a) Let v be the top voxel in Q.

(b) If v is a simple point, mark v as colon and put its six neighboring voxels into Q.

(c) The priority of v is decreased by δ.

(d) If the priority of v is greater than Tth, it is inserted into Q again.

(a)

(b)

Figure 3.7: A close up view of the colon surface (a) extracted without topological denois-

ing, and (b) extracted with topological denoising.

After applying this algorithm, non-simple points are removed from the segmented

colon. Thus, all handles are removed. Then, we use our enhanced dual contour method

[139, 140] to extract a simplified smooth colon surface while preserving the topology of

3. SEGMENTATION AND DIGITAL CLEANSING 34

the finest resolution colon surface. A close up view of the colon surface extracted without

our topological denoising algorithm is shown in Figure 3.7(a). Figure 3.7(b) shows the

surface with topological denoising, and we can see that the two handles on the right hand

side of Figure 3.7(a) are removed by our topological denoising algorithm.

3.4 Conclusions

In this chapter, we have presented a segmentation and digital cleansing framework

to handle partial volume effect and topological noise. Our algorithm automatically lo-

cated and segmented all tagged material within the colon lumen. The performance of our

method was demonstrated by visual judgment of the 2D slice show and 3D views. From

the segmented colon data, the colon surface mesh with genus zero is extracted using a dual-

contouring method. The colon surface mesh is used as the input of our flattening algorithm,

which will be described in the next chapter.

35

Chapter 4

Conformal Virtual Colon Flattening

4.1 Introduction

In Chapter 2, we have shown that many regions behind haustral folds and around sharp

bends are still missed even after fly-through navigation has been performed in both ante-

grade and retrograde directions. Polyps behind haustral folds or around sharp bends may

be missed in the standard VC examinations. Colon flattening is an efficient visualization

technique for polyp detection, in which the entire inner surface of the colon is displayed as

a single 2D image. In this chapter, a conformal colon flattening method will be presented,

by which the shape of polyps is preserved in the flattened colon image.

If two surfaces do not have the same Gaussian curvature, there does not exist a mapping

which is length, area, and angle preserving at the same time. Therefore, all of the colon

flattening methods introduce some kind of distortion. Several methods have been devel-

oped that are either area preserving [7] or angle preserving [43, 50]. We are specifically

interested in an angle preserving method, because physicians identify polyps mainly based

on the shape information.

Haker et al. [43] have proposed a method based on the discretization of the Laplace-

Beltrami operator to flatten the colon surface onto the plane in a manner which preserves

angles. The flattened colon surface is then colored according to its mean curvature. A

morphological method is used to remove minute handles resulting from the segmentation

algorithm, because their algorithm requires the input surface to be a topologically open-

ended cylinder. However, the color-coded mean curvature of the extracted surface is not

efficient for polyp identification, and it requires a highly accurate and smooth surface mesh

to achieve a good mean-curvature calculation.

We propose a novel method for colon flattening by computing the conformal structure

of the colon surface, represented as a set of holomorphic 1-form basis. The conformal

mapping can be obtained by integration. Our method has the following advantages:

1. The algorithm is rigorous and theoretically solid, which is based on the Riemann

surface theory and differential geometry;

4. CONFORMAL VIRTUAL COLON FLATTENING 36

2. It is general, so it can handle high genus surfaces;

3. The global distortion from the colon surface to the parametric rectangle is minimized,

which is measured by harmonic energy;

4. It is angle preserving, so the shape of colonic polyps is preserved;

5. The topology noise is automatically removed by our shortest loop algorithm.

Combined with the direct volume rendering method, the flattened 2D colon image pro-

vides an efficient way to enhance VC systems.

4.2 Conformal Flattening

In our method, the colon surface is conformally mapped to a planar rectangle. Confor-

mal maps are extremely valuable for medical applications because of their special proper-

ties as follows:

• Conformal maps are angle preserving (local shape preserving). Because analytic

functions are angle preserving, therefore by definition, conformal maps preserve an-

gles. The shape of polyps is preserved in the flattened colon image. Physicians can

still identify polyps from the flattened colon image based on the shape information.

• Conformal maps minimize elastic energy (harmonic energy). One can treat colon

surface as a rubber surface, and the mapping to another surface will introduce stretch-

ing distortion and generate the elastic energy. It has been proven [62] that conformal

maps minimize the harmonic energy. It is highly desirable in practice to find the

best match between the colon surfaces and the 2D rectangle which minimizes the

distortion.

• Conformal maps are intrinsic. Conformal maps are determined by the metric, not

the embedding. For example, one can change a surface by rotation, translation, fold-

ing, bending without stretching, the conformal parameterization is invariant. This is

valuable for surface registration purpose.

• Conformal maps are stable and easy to compute. Computing conformal maps is

equivalent to solve an elliptic geometric PDE [115], which is stable and insensitive

to the noise and the resolution of the data. If two surfaces are similar to each other,

then the corresponding conformal maps are similar too.

• Conformal parameterization simplifies geometric processing from 3D to 2D. By pa-

rameterizing a surface, we map it to the planar domain with local shape preservation,

and it is easier to process in the planar domain than in the 3D domain. Some of the

3D geometric features are carried over by the mapping with high fidelity.

4. CONFORMAL VIRTUAL COLON FLATTENING 37

In the following sections, we first briefly introduce the major concepts and theorems

used in our colon flattening algorithms. Thorough discussion can be found in the Riemann

surface theory [62]. Then, the detail of the flattening algorithm will be presented.

4.2.1 Riemann Surface Theory

Uα Uβ

φα φβ

φαβ = φβ ◦ φ−1
α

φα(Uα) φβ(Uβ)

Figure 4.1: Riemann Surface: The manifold is covered by a set of charts (Uα, φα), where

φα : Uα → R
2. If two charts (Uα, φα) and (Uβ, φβ) overlap, the transition function φαβ :

R
2 → R

2 is defined as φαβ = φβ ◦ φ−1
α . If all transition functions are analytic, then the

manifold is a Riemann surface. The atlas {(Uα, φα)} is a conformal structure.

A manifold can be treated as a set of open sets in R
2 glued coherently.

Definition 4.1. A 2-dimensional manifold is a connected Hausdorff space M for which

every point has a neighborhood U that is homeomorphic to an open set V of R
2. Such a

homeomorphism φ : U → V is called a coordinate chart. An atlas is a family of charts

{(Uα, φα)}, where Uα constitutes an open covering of M .

Definition 4.2 (Analytic Function). A complex function f : C → C, (x, y) → (u, v) is

analytic (holomorphic), if it satisfies the following Riemann-Cauchy equation

∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −

∂v

∂x
.

A conformal atlas is an atlas with special transition functions.

Definition 4.3 (Riemann Surface). Suppose M is a 2-dimensional manifold with an atlas

{(Uα, φα)}. If all chart transition functions

φαβ := φβ ◦ φ−1

α : φα(Uα

⋂

Uβ) → φβ(Uα

⋂

Uβ)

4. CONFORMAL VIRTUAL COLON FLATTENING 38

are analytic, then the atlas is called a conformal atlas, and M is called a Riemann surface.

Two conformal atlases are compatible if their union is still a conformal atlas. All the

compatible conformal atlases form an conformal structure of the manifold as shown in

Figure 4.1. All oriented 2-dimensional manifolds with Riemannian metrics are Riemann

surfaces and have conformal structures [62], such that on each chart (Uα, φα) with local

parameter (u, v), the metric can be represented as ds2 = λ(u, v)(du2 + dv2).

(a) (b)

Figure 4.2: Holomorphic 1-form examples for (a) genus zero surface and (b) genus two

surface.

4.2.1.1 Holomorphic 1-form

In order to flatten the surface, we need special differential forms defined on the confor-

mal structure.

Definition 4.4 (Holomorphic 1-form). Given a Riemann surface M with a conformal struc-

ture A, a holomorphic 1-form ω is a complex differential form, such that on each local chart

(U, φ) ∈ A,

ω = f(z)dz,

where f(z) is an analytic function, z = u + iv is the local parameter in the complex form.

The holomorphic 1-forms of closed genus g surface form a g complex dimensional

linear space, denoted as Ω(M). It is noted that a genus zero surface has no holomorphic

1-forms. A conformal atlas can be constructed by using a basis of Ω(M). Considering

its geometric intuition, a holomorphic 1-form can be visualized as two vector fields ω =
(ωx, ωy), such that the curls of ωx and ωy equal zero. Furthermore, one can rotate ωx about

the normal a right angle to arrive at ωy,

∇× ωx = 0,∇× ωy = 0, ωy = n × ωx.

4. CONFORMAL VIRTUAL COLON FLATTENING 39

4.2.1.2 Conformal Parameterization

Suppose {ω1, ω2, · · · , ωg} is a basis for Ω(M), where g is genus of M . We can find a

collection of open disks Uα ⊂ M , such that Uα form an open covering of M , M ⊂ ∪Uα.

We define φk
α : Uα → C using the following formula, first we fix a base point p ∈ Uα, for

any point q ∈ Uα,

φk
α(q) =

∫

γ

ωk,

where the path γ : [0, 1] → Uα is arbitrary curve connecting p and q and inside Uα, γ ⊂
Uα, γ(0) = p, γ(1) = q. It can be verified that, we can select a φk

α, k = 1, 2, · · · , g, such

that φk
α is a bijection, we simply denote it as φα. Then, the atlas {(Uα, φk

α)} is a conformal

atlas.

For a genus one closed surface M , given a holomorphic 1-form ω ∈ Ω(M), we can find

two special curves Γ = γ1 ∪ γ2, such that M̃ = M/Γ is a topological disk. Furthermore,

on each open set Uα, if the curve
∫

γ1

ω is a horizontal line in the parameter plane, then γ1 is

a horizontal trajectory. In the current work, we choose γ2 such that
∫

γ2

ω is a vertical line

in the parameter plane, namely, γ2 is a vertical trajectory. Γ is called a cut graph.

Then, by integrating ω on M̃ , M̃ is conformally mapped to a parallelogram, as shown in

figure 3.5. Figure 4.2 illustrates holomorphic 1-forms on surfaces. The texture coordinates

are obtained by integrating the 1-form on the surface.

4.2.1.3 Conformal Maps

Suppose M1 is a Riemann surface with a conformal atlas {(Uα, φα)}, and M2 is another

Riemann surface with conformal atlas {(Vβ, τβ)}.

Definition 4.5 (Conformal Map). A map f : M1 → M2 is a conformal map, if its restriction

on any local charts (Uα, φα) and (Vβ, τβ),

fβ
α := τβ ◦ f ◦ φ−1

α : φα(Uα) → τβ(Vβ)

is analytic.

4.2.2 Flattening Algorithm

The concepts of Riemann surface and conformal map are defined using continuous

mathematics. Computing conformal parameterization is equivalent to solving an elliptic

partial differential equation on surfaces.

Unfortunately, in reality, all surfaces are represented by discrete piecewise linear

meshes, which are not differentiable in general. Fortunately, the solution to the elliptic

PDE can be approximated accurately by piecewise linear functions using finite element

method [110]. The convergence and accuracy have been thoroughly analyzed in finite ele-

ment field.

4. CONFORMAL VIRTUAL COLON FLATTENING 40

Therefore, our algorithm is mainly based on the finite element method. The key step

is to use piecewise linear functions defined on edges to approximate differential forms.

Furthermore, the forms minimize the harmonic energy, the existence and the uniqueness

are guaranteed by Hodge theory [115].

4.2.2.1 Double Covering

In our case, after the topological noise removal, the surface is a closed genus zero

surface. Because the genus zero surface has no holomorphic 1-form, a double covering

method is used to construct a genus one surface. Two holes are first punched on the input

surface. Then, a mesh M with two boundaries is obtained. The algorithm to construct a

closed genus one mesh is described as follows:

1. Make a copy of mesh M , denoted as M ′, such that M ′ has all vertices in M , if

[v0, v1, v2] is a face in M , then [v1, v0, v2] is a face of M ′.

2. Glue M and M ′ along their boundaries, if an halfedge [v0, v1] is on the boundary of

M [v0, v1] ∈ ∂M , then [v1, v0] is on the boundary of M ′. Glue [v0, v1] with [v1, v0].

The resulting mesh is a closed and symmetric, with two layers coincided. It is noted

that general genus one surface can be conformally mapped to a planar parallelogram, but

not a rectangle. In our case, the genus one surface is obtained by double covering method.

The Riemann metric defined on the double covered surface is symmetric. Each boundary

where we glue two surfaces is mapped to a straight line. Thus, the denoised genus zero

colon surface can be conformally mapped to a rectangle.

4.2.2.2 Computing Harmonic and Holomorphic 1-form

After getting the homology basis {γ1, γ2, · · · , γ2g}, it is easy to compute the holomor-

phic 1-form basis.

1. Select γk, compute ωk : K1 → R, form the boundary condition:

∑

e∈γi

ωk(e) = δk
i , ωk(∂f) = 0, ∀f ∈ K2, (4.1)

where

δk
i =

{

1 : i = k
0 : i 6= k

K1 is the edge set of M and K2 is the face set of M .

2. Under above linear constraints, compute ωk minimizing the quadratic energy,

E(ωk) =
∑

e∈K1

keω
2

k(e), (4.2)

4. CONFORMAL VIRTUAL COLON FLATTENING 41

using linear constrained least square method, where ke is the weight associated with

each edge. Suppose the angles in the adjacent faces against edge e are α, β, then

ke = 1

2
(cot α + cot β) [109]. Solving this equation is equivalent to solve Riemann-

Cauchy equation using finite element method.

3. On face [v0, v1, v2], its normal n is computed first, and a unique vector v in the same

plane of v0, v1, v2 is obtained by solving following equations:

< v1 − v0, v > = ωk([v1, v0])
< v2 − v1, v > = ωk([v2, v1])
< n, v > = 0

(4.3)

Rotate v about n a right angle, v∗ = n × v, then define

ω∗

k([vi, vj]) :=< vj − vi, v
∗ > .

The harmonic 1-form basis is represented by {ω1, ω2, · · · , ω2g}, and the holomorphic

1-form basis is given by {ω1 + iω∗

1, ω2 + iω∗

2, · · · , ω2g + iω∗

2g}. Figure 4.3 illustrates holo-

morphic 1-forms on a colon surface. The checkboard texture coordinates are obtained by

integrating the 1-form on the colon surface. This figure demonstrates that our method is

angle preserving.

4.2.2.3 Conformal Parameterization

Suppose we have selected a holomorphic 1-form ω : K1 → C, then we define a map

φ : M̃ → C by integration. The algorithm to trace the horizontal trajectory and the vertical

trajectory on φ(M̃) is as follows:

1. Pick one vertex p ∈ M̃ as the base vertex.

2. For any vertex q ∈ M̃ , find the shortest path γ ∈ D connecting p to q.

3. Map q to the complex plane by

φ(q) =
∑

e∈γ

ω(e).

4. Pick a vertex p ∈ M , trace the horizontal line γ on the plane region φ(M̃) through

φ(p). If γ hits the boundary of φ(M̃) at the point φ(q), q must be in the cut graph Γ,

then there are two points q+, q− on the boundary of M̃ , ∂M̃ . Assume γ hits φ(q+),
then we continue to trace the horizontal line started from φ(q−), until we return to

the starting point φ(p). The horizontal trajectory is φ−1(γ).

5. Trace vertical trajectory similar to step 4.

4. CONFORMAL VIRTUAL COLON FLATTENING 42

Figure 4.3: Holomorphic 1-form example for a colon surface.

6. The new cut graph Γ̃ is the union of the horizontal and vertical trajectories. Cut

the surface along Γ̃ to get M̃ ′, and compute φ̃. Then, φ̃(M̃ ′) is a rectangle, φ̃ is a

conformal map.

A+

A−

B+
B− C+

C−

φ(M̃)

Figure 4.4: Trace horizontal trajectory.

4. CONFORMAL VIRTUAL COLON FLATTENING 43

4.3 Visualization of the Flattened Colon

The result of the flattening algorithm is a triangulated rectangle where the polyps are

also mapped. The rendering of the flattened colon image is crucial for the detection of

polyps. Haker et al. [43] have utilized color-coded mean curvature to visualize the flattened

colon surface. Although it can show the geometry information of the 3D colon surface, it

is still unnatural for the physicians to detect colonic polyps. The shape and texture of the

polyps are good clues for polyp detection. In this section, we describe a direct volume

rendering method to render the flattened colon image. Each pixel of the flattened image

is shaded using a fragment program executed on the GPU, which allows the physician to

move and zoom a viewing window in real-time and to inspect the entire flattened inner

colon surface. The idea of our rendering algorithm is to map each pixel of the flattened

image back to the 3D colon surface, that is, the volume space. The pixel is shaded using

volumetric ray-casting algorithm in the volume space.

Figure 4.5: The colon is divided into segments colored in red and blue.

4.3.1 Camera Registration

In order to perform the ray-casting algorithm, the ray direction needs to be determined

for each vertex of the 3D colon surface first. A number of cameras are uniformly placed on

4. CONFORMAL VIRTUAL COLON FLATTENING 44

the central path of the colon. The ray direction of a vertex is then determined by the nearest

camera to that vertex.

Our camera registration algorithm starts with approximating the central path with a B-

spline and re-sampling it into uniform intervals. Each sampling point represents a camera.

Each vertex is then registered with a sampling point on the central path. The registration

procedure is implemented efficiently by first dividing the 3D colon surface and the central

path into N segments. The registration is then performed between the corresponding seg-

ments of colon and the central path. The division of the 3D colon is done by classifying

the vertices of the flattened 2D mesh into uniform N segments based on their height. As

a consequence, the vertices of the 3D colon mesh are also divided into N segments, as

shown in Figure 4.5. We then trace N − 1 horizontal lines on the flattened 2D mesh, which

uniformly divide the 2D mesh into N segments. Each traced horizontal line corresponds to

a cross contour on the 3D mesh. In fact, we do not need to really trace the horizontal lines.

For each horizontal line, we only need to compute the intersection points of the horizontal

line and the edges intersecting with it. For each intersection point, the corresponding 3D

vertex of the 3D colon mesh is then interpolated. The centroid of these interpolated 3D

vertices is computed and registered with a sampling point of the central path. Therefore,

the central path is also divided into N segments, and each segment of the 3D colon mesh

corresponds to a segment of the central path. Although the division of the 3D colon surface

and the central path is not uniform as that of the 2D mesh, it does not affect the accuracy

of the camera registration.

For each vertex of a colon surface segment, we find its nearest sampling point in its

corresponding central path segment and the neighboring two segments. This algorithm is

efficient because for each vertex the comparison is performed only with a small number of

sampling points on the central path. For each vertex, we only record the B-spline index of

the sampling points, instead of its 3D coordinates.

4.3.2 Volumetric Ray-Casting

To generate a high-quality image of the flattened colon, only coloring the vertices of the

polygonal mesh and applying linear interpolation is not sufficient. We need to determine

the color for each pixel of the 2D image. This can be performed efficiently using a fragment

program on the GPU. For each vertex of the flattened polygonal mesh, we pass its corre-

sponding 3D coordinates and camera index through texture coordinates to the fragment

program. When the flattened polygonal mesh is rendered, each pixel of the flattened image

will obtain its barycentric interpolated 3D coordinates and camera index. Its 3D position

may not be exactly on the colon surface, but very close to the colon surface. Because we

use a direct volume rendering method to determine the color for the pixel, it does not really

affect the image quality. We use the interpolated camera index to look up its corespondent

sampling point on the central path. Then, the ray direction is determined and volumetric

ray casting algorithm is performed using an opaque transfer function. By this method, we

can determine the color for each pixel on the flattened image to generate a high-quality

4. CONFORMAL VIRTUAL COLON FLATTENING 45

image.

Since our flattened image is colored per-pixel, we can in real-time provide the physician

with a high-quality zoom-in views of a suspicious area on the flattened image. Because

each vertex is registered with a sampling point on the central path, the flattened colon

image can be easily correlated with the VC fly-through navigation. The correlated 3D view

of the suspicious area can be also shown simultaneously.

4.4 Implementation and Results

We have implemented our conformal flattening and rendering algorithms in C/C++.

All of the experiments have been performed on a uni-processor 3.6 GHz Pentium IV PC

running Windows XP, with 2G RAM and NVIDIA Geforce 8800GTX graphics card. 98
colon CT data sets from the National Institute of Health and Stony Brook University have

been used to test our algorithms. All the data sets have a large number of slices, and the

resolution of each slice is 512 × 512. They all exhibit similar results.

4.4.1 Preprocessing

Before our colon flattening algorithm can be applied, we need to perform the following

tasks to extract the colon surface from the CT data set. First, a partial volume segmentation

algorithm [131] is applied, and a binary mask is generated, which labels the voxels belong-

ing to the colon interior and the colon wall. This algorithm ensures a fast and accurate

segmentation and electronic cleansing with the ability to consider the partial volume effect.

Second, the rendering algorithm involves the central path of the colon. The central path

is automatically extracted from the CT data set based on an accurate DFB-distance field

with the exact Euclidian values [126]. The path is then approximated by a B-spline curve.

Finally, given the binary mask and the CT data set, an enhanced dual contouring method

[139] is used to extract the simplified colon surface while preserving the finest resolution

isosurface topology. Since our algorithm can deal with small handles, we do not need to

remove these handles in the preprocessing step. All these algorithms used in the prepro-

cessing step are robust and efficient, and can be done in seconds on the PC platform. We

list the timings of every stage of our flattening algorithm in Table 4.1.

The whole process of our algorithm can be completed in about 13 minutes. Most steps

of our algorithm are done within seconds or minutes. The most time consuming part of

our algorithm is computing the harmonic holomorphic 1-form using the conjugate gradient

method for conformal mapping, which takes about seven minutes. The good news is that

the conjugate gradient method can be accelerated with the GPU [13].

4.4.2 Discussion

During an VC fly-through navigation, the virtual endoscopic view of the physician may

be blocked by haustral folds as shown in Fig. 4.6(a). The regions behind the haustral folds

4. CONFORMAL VIRTUAL COLON FLATTENING 46

Table 4.1: Average timings of every stage of our flattening algorithm.

No. Stage Timing

1. Segmentation and Digital Cleansing 3 mins

2. Centerline Extraction 1 min

3. Topological Denoising < 1 min

4. Colon Surface Extraction < 1 min

5. Conformal Mapping 7 mins

6. Flattened Colon Rendering 500 ms

may be missed even when both antegrade and retrograde navigations are performed. The

corresponding flattened colon of Fig. 4.6(a) is shown in Fig. 4.6(b), which demonstrates

that our conformal colon flattening method is an efficient way to inspect the regions behind

the haustral folds. It is clear that our virtual colon flattening method can provide 100%
colon inner surface coverage for polyp screening.

(a) (b)

Figure 4.6: Colon haustral folds in (a) 3D endoscopic view and (b) corresponding flattened

image.

For a typical 5123 colon data, the resolution of the flattened image generated by our

method is about 400 × 8000. The total rendering time for the whole flattened colon image

is about 500ms. A small part of a flattened colon image is shown in Fig. 4.7(a), which

has a small polyp enclosed by a yellow rectangle. The zoom-in view of this small polyp is

shown in Fig. 4.7(b). Since each pixel is registered with a virtual camera on the centerline,

the corresponding 3D endoscopic view can be generated easily using our method. The 3D

endoscopic view of this small polyp is shown in Fig. 4.7(c). Although the diameter of this

small polyp is only 4mm, it can be directly identified from the flattened colon image with-

out difficulty. In clinical applications, we recommend that the resolution of the flattened

image should be at least four times higher than the one that we used in this paper for physi-

cians to easily identify small polyps. In fact, it is unnecessary to pre-compute the entire

high resolution flattened image. Our rendering algorithm accelerated by the commodity

4. CONFORMAL VIRTUAL COLON FLATTENING 47

(a)

(b) (c)

Figure 4.7: (a) A part of flattened colon image, (b) zoom-in view of the polyp enclosed

by a yellow rectangle in (a), and (c) the corresponding 3D endoscopic view of the polyp

enclosed by the yellow rectangle in (a).

graphics hardware provides real-time zoom-in function with high-quality, which allows the

physician to interactively inspect the entire flattened colon at various resolutions.

Another example with three polyps is shown in Fig. 4.8(a). The zoom-in view of a

small polyp enclosed by yellow rectangle is shown in Fig. 4.8(b), and its corresponding 3D

endoscopic view is shown in Fig. 4.8(c). The other two polyps are also shown in 4.8(a) at

location A and B, which demonstrates that virtual colon flattening technique is an efficient

way for polyp screening.

4. CONFORMAL VIRTUAL COLON FLATTENING 48

(a)

(b) (c)

Figure 4.8: (a) A part of flattened colon image, (b) zoom-in view of the polyp enclosed

by a yellow rectangle in (a), and (c) the corresponding 3D endoscopic view of the polyp

enclosed by the yellow rectangle in (a).

Fig. 4.9 shows a comparison of polyps in 3D endoscopic views and zoom-in views

of flattened colon image to demonstrate that our virtual colon flattening method is angle

preserving. The 3D endoscopic views of four different polyps are shown in Fig. 4.9(a)-(c),

and its corresponding zoom-in views on the flattened images are shown in shown in Fig.

4.9(d)-(f). We can see that polyps can be clearly identified by the shapes from the zoom-in

views of flattened colon images as from the conventional endoscopic views. It is worth

to note that the shape of the polyp on the haustral fold is also preserved in our method as

4. CONFORMAL VIRTUAL COLON FLATTENING 49

shown in Fig. 4.9(f).

(a) (b) (c)

(d) (e) (f)

Figure 4.9: (a)-(c) are the 3D endoscopic views of four different polyps, and (d)-(f) are the

zoom-in views of corresponding polyps on the flattened colon images.

Fig. 4.10 shows that our method can map the entire colon inner surface to a rectan-

gle, which means that our method guarantees 100% surface visibility coverage for polyp

screening. There is no blind spot on the flattened colon image. This is important for clinical

applications. This data set contains two polyps enclosed by yellow ellipse. The diameter

of the larger polyp is 9mm, and the diameter of the smaller polyp is 4mm.

4.5 Conclusions

In this chapter, we have presented an efficient colon flattening algorithm using a con-

formal structure. Our algorithm is general for arbitrarily high genus surfaces, and does not

require the input surface to be a topological cylinder. We have proven that our algorithm

is angle preserving and the global distortion is minimal. The shape of colonic polyps on

the flattened colon image is well preserved, and can be easily identified by physicians. The

flattened colon image is rendered with a direct volume rendering method accelerated with

4. CONFORMAL VIRTUAL COLON FLATTENING 50

commodity graphics hardware. We demonstrate that the conformal colon flattening image

cooperates well with the fly-through VC system, which displays 100% of the endoluminal

surface to the physician. This technique can reduce evaluation time with a more rapid 3D

image assessment than with an antegrade and retrograde 3D endoluminal fly-through. It

may also ultimately improve accuracy by reducing blind spots presented in 3D endoscopic

views and by reducing reader fatigue.

4. CONFORMAL VIRTUAL COLON FLATTENING 51

(a) (b) (c)

Figure 4.10: A flattened image for a whole colon data set is shown in three images. The

bottom of image (a) is the rectum of the colon, and the top of image (c) is the cecum of the

colon. Two polyps are marked using yellow ellipse in (a) and (c).

52

Chapter 5

Volumetric Ray-Casting

5.1 Introduction

Virtual endoscopy applications require that the endoscopic view must be interactively

rendered with high quality. In this chapter, we first introduce the idea of the basic ray-

casting algorithm and its implementation on the GPU. Then, a GPU-based object-order

ray-casting approach for rendering large volumetric data sets on the commodity computers,

which is ideal for virtual endoscopy applications using large data sets. Furthermore, the

cooperation and trade-off between the CPU and the GPU is exploited to obtain further

acceleration.

Ray-casting [83] is a method for direct volume rendering, which can be seen as straight-

forward numerical evaluation of the volume rendering integral which sums up all optical

effects such as color and opacity along viewing rays. For each pixel in the generated image,

a single ray is cast into the volume. At equispaced intervals along the ray (the sampling

distance), the discrete volume data is resampled, usually using trilinear interpolation as

reconstruction filter. That is, for each resampling location, the scalar values of eight neigh-

boring voxels are weighted according to their distance to the actual location for which a

scalar data value is needed. After resampling, the scalar data values are mapped to op-

tical properties by means of the transfer function, which yields an RGBA value for this

resampling location. The volume rendering integral is approximated via alpha blending in

back-to-front or front-to-back order. The following iterative formulation evaluates volume

rendering integral in front-to-back order by stepping i from 1 to n:

C
′

i = C
′

i−1 + (1 − A
′

i−1)Ci

A
′

i = A
′

i−1 + (1 − A
′

i−1)Ai (5.1)

where the new color C
′

i and opacity A
′

i are calculated from the color Ci and opacity Ai

at the current location i, and the composited color C
′

i−1 and opacity A
′

i−1 from the previous

location i − 1. The initial condition is C
′

0 = 0 and A
′

0 = 0.

The ray-casting algorithm can be described by the pseudocode in List 5.1. Accordingly,

5. VOLUMETRIC RAY-CASTING 53

Listing 5.1: Pseudocode for ray-casting.

De te rm ine r a y e n t r y p o s i t i o n

Compute r a y d i r e c t i o n

While (r a y p o s i t i o n i n volume)

Do s a m p l i n g a t c u r r e n t p o s i t i o n

Com pos i t i ng o f c o l o r and o p a c i t y

Advance p o s i t i o n a l o n g t h e r a y

End w h i l e

ray-casting can be split into the following major components.

• Ray Setup: First, a viewing ray needs to be set up according to given camera param-

eters and the respective pixel position. This component computes the volume entry

position, which is the first intersection point between the bounding geometry of the

volumetric data set. This component also determines the direction of the ray.

• Traversal Loop: This main component traverses along the ray, evaluating the vol-

ume rendering integral. The ray is sampled at discrete positions, and the traversal

loop scans the rays along these positions. Each iteration of the loop consists of the

following subcomponents.

– Sampling: The data set is accessed at the current ray position, which might

involve a reconstruction filter (that is, interpolation). The corresponding color

and opacity are computed by applying the transfer function.

– Compositing: The previously accumulated color and opacity are updated ac-

cording to the front-to-back compositing equation (Equation 5.1).

– Advance Ray Position: The current ray position is advanced to the next sam-

pling location along the ray.

– Ray Termination: The traversal loop ends when the ray leaves the data set vol-

ume. This subcomponent checks whether the current ray position is inside the

volume and it only enters the next iteration of the loop when the ray is still

inside.

Ray-casting exhibits an intrinsic parallelism in the form of completely independent light

rays. This parallelism is compatible with hardware parallelism in GPUs. For example, by

associating the operations for a single ray with a single pixel, the built-in parallelism for

GPU fragment processing is used to achieve efficient ray-casting. In addition, volume data

and other information can be stored in textures and thus accessed with the high internal

bandwidth of a GPU.

Krüger and Westermann [74] have integrated the early ray termination and empty space

skipping into texture based volume rendering on GPU to implement multi-pass volumetric

5. VOLUMETRIC RAY-CASTING 54

ray-casting. They exploit the early z-test provided by ATI graphics card to terminate frag-

ment processing once sufficient opacity has been accumulated, and to skip empty space

in the ray level. This method is only considering general case, that is the camera is put

outside the data set. However, for some applications such as virtual endoscopy, the cam-

era is located within a very large data sets (usually 5123). In this case, using the longest

ray to decide the rendering passes is not acceptable, because of the overhead of interme-

diate rendering pass to enable early-z test. With real dynamic branching and loop sup-

port, single-pass ray-casting algorithm can be efficiently implemented on the GPU using

fragment program. Stegmaier et al. [117] have presented a framework for the hardware

accelerated visualization of volumetric data based on a single-pass ray-casting approach.

Their system exhibits very high flexibility and allows for an easy integration of non-trivial

volume rendering techniques. However, if the whole volume data cannot be held in the

GPU memory, the rendering performance of previous GPU ray-casting methods drop dra-

matically. In the next section, an object-order GPU ray-casting algorithm is described for

the rendering of large data sets.

5.2 Object-Order GPU Ray-Casting

Volumetric data sets used in a variety of virtual endoscopy applications usually contain

many regions that are classified as transparent or empty, for example, the colon lumen.

The object-order approaches are well-suited for skipping empty regions, but usually the

associated filters are too complex to be used for interactive rendering. And the hidden vol-

ume removal is also inefficient compared with the ray-casting method. Mora et al. [91]

have proposed a CPU-based object-order ray-casting algorithm to take the advantages of

both image-order and object-order approaches for interactive high-quality volume render-

ing. However, the cell projection implemented in this method can be efficiently performed

only in orthogonal projection. Grimm et al. [37] have presented a CPU-based volume

ray-casting approach based on image-ordered ray-casting with object-ordered processing.

They introduced a memory efficient acceleration technique for on-the-fly gradient estima-

tion and a memory efficient hybrid removal and skipping technique of transparent regions.

Their method is also limited to orthogonal projection.

In our object-order ray-casting approach, we define a cell as a cubical region which

corresponds to a sub-volume containing N ×N ×N voxels. A cell is classified as empty, if

all voxels of the cell are invisible based on the transfer function. Otherwise, it is classified

as non-empty. The min-max ocree [134] is used to organize the cells for efficient classifi-

cation. Each leaf node of the min-max octree contains a cell, as well as the minimum and

maximum density values of the cell. Each interior node only contains the minimum and

maximum density values found in that node’s subtree.

In stead of projecting a reconstruction kernel for each voxel onto the image plane as

in the splatting technique, we project the whole cell onto the image plane. Moreover,

we use a fragment program to perform ray integration for the projected cell on-the-fly, in

5. VOLUMETRIC RAY-CASTING 55

which a volumetric ray-casting algorithm is performed. For each cell, we need to store its

corresponding voxels in a 3D texture. Since the volumetric ray-casting algorithm requires a

neighborhood of voxels for proper interpolations and gradient calculations, the neighboring

voxels of the cell need to be stored in the 3D texture. Thus, for each cell the resolution of

the corresponding 3D texture is (N + 2) × (N + 2) × (N + 2).
In order to obtain correct compositing result, we must first determine the visibility order

of the cells so that the cells can be projected from front to back. Although the cells can be

hierarchically sorted using the min-max octree structure, we devised a more efficient prop-

agation algorithm to sort cells. As a result, the cells are front-to-back sorted and grouped

into layers. The cells within the same layer can be projected simultaneously, which dra-

matically improves the performance of our cell projection algorithm on the GPU. Our cell

sorting algorithm and cell projection algorithm can take the advantage of the parallelism

between the CPU and the GPU. Thus, when a layer of cells are determined, they can be

projected immediately to trigger fragment programs to be executed on the GPU. The CPU

then can be used to generate the next layer of cells.

Cell 1

AGP

Memory

System

Memory
Video

Memory

Cell 2

Cell L

Buffer 1

Buffer K

Texture 2

Texture M

DMA

Texture 1

Buffer 20

Figure 5.1: The three-layer structure used to store the cell data.

Although a large number of cells are classified as empty cells, which do not need to

be uploaded to the GPU, the 3D textures corresponding to the non-empty cells are still too

large to be fitted in the graphics card memory. We need to transfer some non-empty cells

to the graphics card memory on-the-fly. The OpenGL extension pixel buffer object (PBO)

defines an interface to using buffer objects for pixel data, which dramatically improves the

texture uploading performance. By using this extension, the GPU can asynchronously pull

the data from the AGP memory using DMA (Direct Memory Access). Thus, we use a three-

level structure to store the cell data in the graphics card memory, the AGP memory, and the

5. VOLUMETRIC RAY-CASTING 56

system memory as shown in Figure 5.1. Suppose that we can allocate M 3D textures in the

graphics card memory and N buffers of the same size in the AGP memory, and the first 20

buffers are used as a memory pool for transferring data on-the-fly. We first randomly choose

N non-empty cells and upload them into the graphics card memory. We then copy the other

M-20 non-empty cells into the AGP buffers. The rest of non-empty cells are still resident in

the system memory. For each cell, we use a flag to indicate whether its corresponding data

is resident in the graphics card memory, the AGP memory, or the system memory. Thus,

the size of the data set that can be rendered by our algorithm is limited by the size of the

system memory.

The overview of the proposed algorithm is shown in Figure 5.2. The min-max octree

construction, classification, and texture loading are performed in the pre-processing step,

which are view independent. Our cell sorting algorithm organizes cells into layers. When

a layer of cells are generated, we first check whether all non-empty cells are resident in the

graphics card memory. If any non-empty cell within the layer is not resident in the graphics

card memory, we need to upload it on-the-fly. Before we can transfer the data, we must

determine which 3D texture object is used to receive the data. In other words, the current

data stored in that 3D texture is replaced by the new data. We use a replacement queue to

hold the cells that are already projected and can be switched out. When a layer of cells are

sent to the GPU, we can not put them into the replacement queue immediately. Because

we do not know whether the corresponding fragment programs executed on the GPU are

finished or not. We use a NVIDIA OpenGL extension NV fence to determine whether the

cell projection of a layer of cells is finished on the GPU. This extension introduces the

concept of a ”fence” to the OpenGL command stream. Once the fence is inserted into the

command stream, it can be queried whether it is finished. After all OpenGL commands for

cell projection of the layer of cells are issued, we insert a fence into the commands. Then,

we query the fence’s state after every layer of cells are projected. If the fence is completed,

the cells before the fence are inserted into the replacement queue, and a new fence is in-

serted into the OpenGL commands stream again. In case the replacement queue is empty,

we randomly choose a 3D texture whose corresponding cell has not been projected to re-

ceive the data. We will discuss the detail of the cell projection algorithm and cell sorting

algorithm in the following sections.

5.2.1 Cell Projection

When the orthogonal projection is used, every cell projection on the image plane is

given by the same hexagon shape per viewing direction. This projection can be computed

once, and then used as a template for all cells, which can be obtained by translation. The

rays intersecting with the cell are then determined by the cell projection efficiently. How-

ever, when the perspective projection is applied, the situation becomes more complicated.

The cell projections on the image plane are different, and the pre-computed template can

not be used any more, which make the CPU-based object-order ray-casting algorithm in-

feasible. The good thing is that the cell projection can be efficiently implemented on the

5. VOLUMETRIC RAY-CASTING 57

Octree Construction

Classification

Texture Loading

Are all cells

projected?

Exit

Generating a layer of

cells

Projecting the non-

empty cells in the layer

Yes

No

View

Independent

View

Dependent

Uploading non-resident

cells

Figure 5.2: The overview of our GPU-based object-order ray-casting algorithm.

recent graphics card even when a perspective projection is used, which makes it possible to

implement an object-order ray-casting algorithm on the GPU.

Our cell projection algorithm is implemented using fragment programs running on the

5. VOLUMETRIC RAY-CASTING 58

Exiting Points

Computation

Depth Modification

Volumetric

Ray-Casting

Color

Accumulation

EPT

ACT

RIT

Pass 1:

Pass 2:

Pass 3:

Pass 4:

Occlusion Query

Figure 5.3: The pipeline of the cell projection.

GPU. When a cell is rendered, a number of fragments are generated, which are correspond-

ing to the rays intersecting with that cell. For every non-empty cell that has to be projected,

the rendering pipeline is shown in Figure 5.3. The proposed algorithm consists of four

rendering passes for each cell. The modelview matrix and projection matrix remain un-

changed for all four rendering passes. Hence, the fragments generated at the same window

position in the four rendering passes correspond to the same ray intersecting with the cell.

OpenGL provides pixel buffers (pbuffer for short) for off-screen rendering. Combined

with the render texture extension, it allows the color buffer of the pbuffer to be used for

both rendering and texturing. Three pbuffers are used as rendering targets for different

render passes in our algorithm. The first pbuffer, the rendering target of the first rendering

5. VOLUMETRIC RAY-CASTING 59

pass, is used to store the exiting points of the rays that intersect with the projected cell. It

is also bounded to a 2D RGB floating point texture, named exiting points texture (EPT),

which is accessed in the third rendering pass to compute the length of each ray segment

and normalized ray direction. The second pbuffer is made up of a depth buffer and a color

buffer, which are the rendering targets of the second and third rendering pass, respectively.

The depth buffer is used to implement early ray termination with the early-z test technique

described in [74]. This optimization happens only if the fragment program is not going

to modify the fragment depth. However, we need to modify the depth values based on

the opacity values. We thereby use a separate rendering pass to modify the depth values.

The color buffer is used to store the result of the ray integration, which is bound to a 2D

RGBA floating point texture, named ray integration texture (RIT) and accessed in the last

rendering pass. The third pbuffer is the rendering target of the last rendering pass, which

is used to accumulate the color values. It is bound to a 2D RGBA floating point texture in

the second rendering pass, which is named color accumulation texture (CAT). Its opacity

values are accessed in the second rendering pass to modify the depth values accordingly

for culling the fragments whose corresponding rays have already saturated their opacity

values. The cell projection algorithm is described as follows:

• Pass 1 (Exiting Points Computation): In the first rendering pass, the exiting points

for the rays intersecting with the projected cell are computed by only rendering the

back faces of the cell. For each vertex of the cell, we assign its texture coordinates

in the corresponding 3D texture space as its primary color. The fragment program

is straightforward, which just passes the fragment’s primary color as output. As a

result, we obtain a texture coordinate for each fragment, which is the coordinate for

the exiting point of the ray in the texture space.

• Pass 2 (Early Ray Termination): The opacity value of the fragment is accessed

through the color accumulation texture (CAT). For any fragment whose opacity value

exceeds 0.99, the depth value is set to one. As a consequence, if the depth test is set

to GREATER, the corresponding fragment in the third rendering pass is discard.

• Pass 3 (Volumetric Ray-Casting): The front faces of the cell are rendered to compute

the entry points for the rays using the same method as Pass 1. In the fragment pro-

gram, the exiting point is obtained through accessing the exiting point texture (EPT).

The normalized ray direction and length of ray segment are computed in the 3D tex-

ture space. The ray is then evenly sampled with a sampling distance 0.5 to perform

ray integration. It is impossible to pre-compute the gradient information and store

them on the GPU for large data sets. Thus, we estimate the gradient on each sam-

pling point on the fly. We use texture lookup to obtain the density at six neighboring

positions, then estimate the gradient using central difference.

• Pass 4 (Color Accumulation): The front faces of the cell are rendered again to gen-

erate corresponding fragments. In the fragment program, the color value and opacity

5. VOLUMETRIC RAY-CASTING 60

value of the projected cell are accessed through ray integration texture (RIT), and

returned as color output directly. OpenGL blending is enabled in this rendering pass

for accumulating the color and opacity values.

When all non-empty cells are projected, the color accumulation texture (CAT) holds

the final image. In fact, the rendering Pass 2 is not need to be executed for every layer. In

our implementation, we enable the rendering Pass 2 every other two layers.

Because the rendering context are switched three times during the cell projection, this

may cause a significant loss in performance on current GPUs. In order to decrease the

number of rendering context switching, we need to project more cells in each rendering

pass to improve the performance of the cell projection. Thus, we devise a cell sorting

algorithm, which allows us to project a layer of cells each pass.

For virtual endoscopy applications, the virtual camera is always moved inside the vol-

ume, exploring the data set in a fly-through mode. When the camera is located inside the

data set, the sorting algorithm of our object-order ray-casting approach becomes even sim-

pler. The source cell is right the cell where the camera is currently located. Moreover,

we only need to propagate the order information along with the viewing direction of the

camera. The cell projection of the starting cell is implemented a little different from the

of other cells. Only one rendering pass is needed to implement the projection of the start-

ing cell. The rendering target is the third pbuffer used for color accumulation. The back

faces of the starting cells are rendered to trigger the fragment program, which also give

the exiting points of the corresponding rays. The camera position is passed to the fragment

program as an uniform parameter. The ray direction is computed by using the exiting points

and camera position. Then, the ray is evenly sampled to perform ray integration from the

camera position. Our algorithm is efficient for virtual endoscopy applications using large

volumetric data set. Because only a small number cells are used to generate the endoscopic

view.

5.2.2 Cell Sorting

For a given viewing direction vector in the octree coordinate system, the signs of the

coordinates determine the order in which the eight children are visited when parallel pro-

jection is used. When perspective projection is used, visibility order of the eight children

can still be determined by the location of the camera to the octree. However, the octree

structure only allows us to project at most four cells in one pass for some viewing direc-

tions. We need to project cells as more as possible to decrease the number of rendering

context switching.

The main idea of our algorithm is to divide the cells into layers. We only need to

determine the visibility order of layers. The cells within the same layer can be projected

at the same time. It has been observed that the cells that have the same distance to the

camera can be projected together. However, using the Euclidean distance from the cells to

the camera to perform the cell sorting is inefficient. In order to improve the performance,

5. VOLUMETRIC RAY-CASTING 61

7 8 9 10 11 12 13

6 7 8 9 10 11 12

5 6 7 8 9 10 11

4 5 6 7 8 9 10

3 4 5 6 7 8 9

2 3 4 5 6 7 8

1 2 3 4 5 6 7

camera

10 9 8 7 8 9 10

9 8 7 6 7 8 9

8 7 6 5 6 7 8

7 6 5 4 5 6 7

6 5 4 3 4 5 6

5 4 3 2 3 4 5

4 3 2 1 2 3 4

camera
(a) (b)

Figure 5.4: Cells with the same Manhattan distance can be projected together. (a) The

camera is located at the corner region, (b) The camera is located at the side region.

we use the Manhattan distance instead of the Euclidean distance. Moreover, we use the

Manhattan distance between a source cell and the other cells to group the cells into layers.

A source cell is determined first for a given view point, which is the closet cell to the

camera. We then use a propagation method to compute the Manhattan distance for the

other cells. The cells that have the same Manhattan distance to the source cell are put into

the same layer. We first describe our cell sorting algorithm in the 2D case, and then extend

it to 3D.

In the 2D case, the whole object can be represented with a square, and the camera can be

set up around the square. We first find the closest cell to the camera based on the camera’s

location with respect to the square. If the camera is located at the corner region as shown

in Figure 5.4(a), the closest cell is the corresponding corner cell shown in grey. Otherwise,

the closest cell is on the edge of the square that is opposite to the camera as shown in Figure

5.4(b). The closest cell can be obtained by shooting a ray perpendicular to the edge. The

intersected cell is the closest cell. If the ray intersects two cells, the two cells are both used

as source cell. In Figure 5.4, we shows the Manhattan distance of each cell. It has been

observed that the cells show a very clear layer structure. It is also noted that each layer

consists of more cells by using the Manhattan distance than using the Euclidean distance.

In fact, we do not need to explicitly compute the Manhattan distance. From the Figure 5.4,

we can see that the source cell is made up of the first layer. And, the second layer consists

of the edge neighboring cells of the source cell. Thus, we can use a propagation method to

5. VOLUMETRIC RAY-CASTING 62

group the cells into layers from the source cell C0. The propagation algorithm is described

as follows:

1. Let C0.visited = 1 and put C0 into a list L0. Set the other cells to be un-visited.

2. For each cell Ci in the list L0

(a) Obtain the four edge neighboring cells Cij(j = 0, 1, 2, and3) of Ci. If

Cij .visited is 0, let Cij.visited = 1 and put Cij into the list L1.

3. Project the non-empty cells of L0. If all non-empty cells are projected, the algorithm

is terminated.

4. Copy L1 to L0, and goto 2.

By using this sorting algorithm, each layer of the cells have the same Manhattan dis-

tance to the source cell. The cells within the same layer does not occlude with each other,

which can be projected at the same time. This algorithm can be easily extended to the 3D

case. In the 3D case, the closest cell still can be find efficiently based on the region where

the camera is located with respect to the volumetric data set. The propagation process is

almost same, except that we need to use the six face neighboring cells for propagation in

the 3D case.

5.2.3 Implementation and Results

In this section, we present some implementation details and testing results. The pre-

sented algorithm is implemented using C/C++, and fragment programs are implemented

using Cg [88]. The experiments have been conducted on a 3.0GHz Intel Pentium IV PC,

with 2G RAM and a NVIDIA Quadro FX 3400 graphics card. We list the information of

the data sets used in our experiments in Table 5.1.

The size N of the cell is crucial to our algorithm. A smaller N is efficient for empty

space skipping, but inefficient for the cell projection executed on the GPU. Because using

a smaller N will increase the number of rendering context switching, which decreases the

performance. Furthermore, it also increase the number of texture objects switching because

our cells are stored in separate 3D textures. A smaller N will result in the projection of the

cell covering less pixels on the image plane, which degrade the efficiency of the volumetric

ray casting because of the poor caching. Moreover, for each cell normalized ray direction

and length of the ray segment are needed to be computed for the rays intersecting with that

cell. A larger N can decrease such computation. We choose N = 64 in our implementation

for the purpose of the trade-off between the empty space skipping and the cell projection

on the GPU.

We use the full resolution Visible Human CT data sets to test our algorithm. About a

half of cells are skipped after the classification. Thus, most cells are fitted into the graphics

card memory and the AGP memory. Only a small number of cells are still resident in the

5. VOLUMETRIC RAY-CASTING 63

Table 5.1: The size of the data sets used in our experiments.

Data Set Dimension Size

Visible Male 512 × 512 × 1887 0.71GB

Visible Female 512 × 512 × 1734 0.65GB

Visible Korean Human Brain 1080 × 1110 × 158 0.93GB

(a) 3.1 fps (b) 1.8 fps (c) 3.5 fps

Figure 5.5: (a) and (b) are rendered using Visible Male data sets with opaque and semi-

transparent transfer functions, (c) is rendered using Visible Female data sets with an opaque

transfer function.

system memory. We can achieve several frames per second for such large data sets on a

commodity PC. We show some resulting images in Figure 5.5, which are all rendered at

the resolution of 512 × 1024. In Figure 5.5(a), we show the skin of the Visible Male using

an opaque transfer function. In Figure 5.5(b), we show the bone structure and some organs

of the Visible Male using a semi-transparent transfer function. In Figure 5.5(c), the bone

5. VOLUMETRIC RAY-CASTING 64

of the Visible Female is shown by using an opaque transfer function. It is natural that we

achieve higher rendering speed when the opaque transfer functions are applied. Because

more cells are skipped in the object-space and less cells need to be projected.

(a) 1.5 fps (b) 21.8 fps (c) 23.1 fps

Figure 5.6: (a) A top view of the full resolution brain data set rendered using our algorithm,

(b) The segmented brain stem rendered in real-time using our algorithm, (c) The segmented

brain ventricle rendered in real-time using our algorithm.

We also use a segmented photographic volumetric data set to demonstrate the efficiency

of our algorithm. Compared with the CT data sets, the volume rendering for photographic

data sets requires an opacity transfer function from the non-linear color space, which is

more complicated than that for the CT data sets. We use the CIE Luv color space to obtain

a perceptually uniform representation of the color volume, and assign an opacity value for

each voxel using the method proposed by Ebert et al. [24]. Thus, each voxel of this data set

contains RGB color, opacity and segmentation information. In order to render segmented

data sets, for each cell we store a list of labels that are used for labeling the voxels in the

cell. When an organ is chosen for rendering, only the cells containing the corresponding

label are loaded into the graphics card memory for projection. These cells usually can

be fitted into the graphics card memory without on-the-fly transferring data, which allows

us to interactively explore the segmented organs. In Figure 5.6, we show some resulting

images rendered from the segmented brain data set with a resolution of 512 × 512. A top

view of the full resolution brain data set is shown in Figure 5.6(a). The segmented brain

stem and ventricle can be rendered in real-time shown in Figure 5.6(b) and 5.6(c), because

all the related cells can be fitted in the graphics card memory.

The size of the contemporary clinical CT data sets is usually 5123. It is impossible to

pre-compute the gradient information and store them on the GPU. Therefore, the gradient

at each sampling point needs to be estimated using central difference method on-the-fly,

which needs additional six texture lookups and lowers the rendering performance. By

means of object-order GPU ray-casting, it is possible to pre-compute the gradient infor-

mation and store them on the GPU, because only a small number of cells are utilized to

generate an endoscopic view. Figure 5.7 shows two different endoscopic views inside a

5. VOLUMETRIC RAY-CASTING 65

(a) 24.3 fps (b) 21.8 fps

Figure 5.7: (a) A close view of a polyp rendered at 24.3 fps, and (b) A typical endoscopic

view rendered at 21.8 fps.

human colon, rendered with a size of 512 × 512 in real-time.

5.3 Hybrid Volumetric Ray-Casting

The main bottleneck of our GPU-based ray casting algorithm for rendering large vol-

umetric data sets is on-the-fly transferring data from the system memory to the graphics

card memory, although we have already used OpenGL pixel buffer object (PBO) exten-

sion to accelerate it. Data transferring stalls the busy OpenGL pipeline, while the CPU

is almost free. Although the CPU-based direct volume rendering algorithm are not suit-

able to generate high-quality images in real-time due to the lack of the ability of parallel

processing and hardware support for trilinear interpolation and local illumination, many

techniques have been exploited for accelerating volume rendering in software. Knittel [72]

has described an architecture and implementation that makes extensive use of MMX and

streaming SIMD instructions for perspective ray-casting on a PC. Moreover, various pre-

computed data structures have been proposed in software to rapidly traverse or skip over

the empty voxels that have no contribution to the rendered image, such as octree [77, 83],

K-d tree [119], bounding convex polyhedrons [5], and proximity clouds [17]. The min-max

octree structure [77] allows changing the classification interactively, which have been used

in our object-order GPU ray-casting algorithm to organize volumetric data sets.

Since the CPU is almost free when the GPU is used for data transferring and rendering,

we can move some work from the GPU to the CPU to fully utilize the computation power of

5. VOLUMETRIC RAY-CASTING 66

the CPU. Westermann and Sevenich [132] have proposed to combine the processing power

of the CPU and the GPU to accelerate volumetric ray-casting. They computed the ray entry

points and exit points using texture mapping, and the results are read back from the GPU.

Then, the ray traversal is performed in software. The main drawback of this method is that

on current graphics hardware the performance of read back is poor and the whole pipeline

is stalled. Thus, the CPU and the GPU can not work in parallel in their method.

We devise a method that fully exploits the advantages of both the CPU and the GPU,

making them work in parallel to accelerate the volumetric ray-casting algorithm. The basic

idea of our hybrid volumetric ray-casting method is as follows. We use the GPU to perform

streamed trilinear interpolation, local illumination and compositing, and use the CPU to

perform the ray traversal and maintain an elaborate data structure. For example, the ray

determination and exiting points computation can be done by the CPU. This algorithm can

be seamlessly integrated with our object-order GPU ray-casting algorithm.

In order to take advantage of the parallelism between the CPU and the GPU, the rays

are grouped into small tiles. Each tile of rays corresponds to a square region on the image

plane. The flowchart of our hybrid volumetric ray-casting algorithm is shown in Figure 5.8.

After the tile construction, a ray determination step is executed on the CPU to compute ray

entry points and normalized ray directions. We then apply a multi-pass slab rendering

algorithm on the GPU, in which the CPU is only used to issue some non-block OpenGL

commands. The detail of the ray determination, multi-pass slab rendering, and hole filling

algorithms are described in the following sections.

Ray Determination

Slab Rendering

Hole Filling

Yes

Tile Construction

Are all rays

terminated?
No

Ray Termination

Multi-pass slab

rendering

Z-Cull

Figure 5.8: Flowchart of our hybrid volumetric ray-casting algorithm.

5. VOLUMETRIC RAY-CASTING 67

5.3.1 Ray Determination

In our hybrid volumetric ray-casting algorithm, the ray determination is done by the

CPU. The computation results will be uploaded to the GPU. First, we need to compute the

position of each pixel on the image plane, along with the normalized ray direction. The

main problem is the normalization of the ray direction, which requires more instructions

to compute the reciprocal of the distance between the camera and each pixel position. On

the positive side, the distance between the camera and the image plane as well as the angle

of the field of view are both fixed, the distance between the camera and each pixel on the

image plane is also unchanged for every frame. Thus, we can pre-compute the reciprocal

of distances between the camera and pixels on the image plane, and use them to scale

the ray direction to obtain the normalized ray direction, which only needs three multiply

instructions.

Second, we need to compute the first intersection point of each ray with the object

boundary. By using the min-max octree structure, this computation can be done very ef-

ficiently. Instead of computing the first intersection point of each ray with the real object

boundary, we compute the intersection point of each ray with the cell nodes of the min-max

octree first. We use a parameter lmin to control the minimal level of cells that the ray can

reach, which means that when the ray hits a non-empty cell with level equal to lmin, the ray

traversal is stopped. Whether moving these points to the exact object boundary is based on

the workload of the CPU.

5.3.2 Multi-pass Slab Rendering

After the ray determination step, all the ray entry points and normalized ray directions

are computed and stored in two 2D floating point textures. After these two textures are

uploaded to the GPU, we can perform ray integration using the GPU. However, at this

stage we do not know how far each ray of the tile will travel before being terminated or

leaving the volume. Our simple and efficient solution is using the GPU to perform multi-

pass slab rendering, and simultaneously using the CPU to decide when the multi-pass slab

rendering should be terminated on the GPU.

In order to make the multi-pass slab rendering more efficient, the rays within each tile

are further divided into quads. Each ray quad consists of 2 × 2 rays. It has been observed

that if one ray of the four rays are terminated, the other rays are likely terminated in the

following slab rendering pass. Consequently, we treat the ray quad as one basic unit in the

multi-pass slab rendering step.

After the empty space leaping in the ray determination step, some rays may already

leave the volume. For each quad of the tile, we check whether its four rays have already

left the volume or not. If so, the quad is marked as terminated. If only some part of the four

rays leave the volume, the quad is marked as a hole. Otherwise, the quad is marked as non-

terminated. If a tile does not contain any terminated quad and hole quad, the tile is called a

full tile. Otherwise, it is called a partial tile. We first employ the multi-pass slab rendering

algorithm to the full tiles until all full tiles become partial tiles. This is done by employing

5. VOLUMETRIC RAY-CASTING 68

slab rendering on the GPU, and in the meantime the ray termination is performed on the

CPU. The ray termination and slab rendering algorithms are same for full tiles and partial

tiles. The only difference is that the Z-cull step is skipped for the full tiles, because we do

not need to modify the depth values to cull the terminated quads for the full tiles in the slab

rendering.

5.3.2.1 Z-Cull

On the current graphics hardware, before a fragment reaches the fragment processor,

the z-cull unit is used to compare the fragment depth with corresponding value that already

exists in the depth buffer. If the fragment depth is greater, the fragment will not be visible,

and the fragment program is not executed by the fragment processor. In our implementa-

tion, the depth buffer is initialized with one at the beginning. In the ray termination step, it

will generates two lists containing the terminated quads and hole quads respectively. Be-

cause we only need to modify the depth buffer, the three color channels are masked in this

step. For the terminated quad, we render its corresponding quad with depth value zero. As

a result, the depth values corresponding to the terminated rays are all set to zero, and, the

corresponding fragments will be culled before they reach the fragment processors in the

following slab rendering passes. We perform the same for the hole quad using a different

depth value 0.4. Because the hole quads still need to be rendered to trigger fragment pro-

grams in the hole filling step. By this technique a quad with depth value smaller than 0.4
can be rendered to trigger hole filling fragment programs for the hole quad in the final step.

After the depth values are modified to enable z-cull, the quads corresponding to the partial

tiles are rendered to trigger the slab rendering fragment program.

5.3.2.2 Slab Rendering

When the fragments pass the z-cull test and reach the fragment processor, our fragment

program is executed on the GPU. In the fragment program, N uniformly sampled points

along the rays of sight are processed. At each sampling point, we perform trilinear interpo-

lation to obtain the density value and gradient, and perform the post-classification to obtain

the color for the sampling point. The gradient is pre-computed for each voxel with central

difference and uploaded to the GPU along with its density values using a 3D RGBA tex-

ture, if the gradient information can be held in the graphics card memory. Otherwise, we

need to compute the gradient on-the-fly.

Since we only integrate N sampling points along each ray in one slab rendering pass,

some rays may saturate their opacity values or leave the volume, which should be termi-

nated. While others still need to be processed in the following slab rendering pass. After

we issue the OpenGL commands to render the quads to trigger the fragment programs, we

start to detect which non-terminated quad becomes terminated, and which non-terminated

quad becomes hole quad after the slab rendering on the CPU. The slab rendering fragment

program and ray termination are performed in parallel on the GPU and the CPU respec-

tively.

5. VOLUMETRIC RAY-CASTING 69

5.3.2.3 Ray Termination

In order to accurately determine when a ray should be terminated on the GPU, the

ray also needs to be uniformly sampled on the CPU using the same sampling distance

as that on the GPU. At each sampling point, the density value should also be tri-linearly

interpolated. The opacity value is then queried through the same opacity transfer function

and accumulated along the ray. When the accumulated opacity value exceeds the predefined

threshold, the ray should be terminated on the GPU. It is obvious that the CPU and the GPU

perform some overlapping work in this method, which is inefficient. Moreover performing

the trilinear interpolation on the CPU causes a loss in performance.

We describe here an efficient method to estimate when a ray is terminated on the GPU.

As mentioned in the previous section, each leaf cell of the min-max octree is defined as the

cubical region with voxels on its eight corners. Given a transfer function, it is classified as

opaque, when the density values of its eight voxels are all greater than 0.99.

It is noted that the accumulated opacity value is greater than the source opacity value.

When a ray pass through an opaque cell, the sampling point in this cell has an opacity

value greater than 0.99, so does the accumulated opacity value. Thereby, a ray should be

terminated if it passes through an opacity cell. In this method, the time consuming trilin-

ear interpolation is avoided. The main task of this method is to compute the cells that are

pierced by the ray, which can be efficiently obtained by using a 3D digital differential ana-

lyzer (3DDDA) [4]. Given two endpoints of the ray, this algorithm generates a 6-connected

line, which includes all of the cells pierced by the ray.

For each non-terminated quad, we use the proposed method to check whether the quad

contains any ray will be terminated after the corresponding slab rendering pass. If all

four rays of the quad should be terminated after this slab rendering pass, it is marked as

terminated and put into a list that stores the new generated terminated quads. If all four

rays of the quad are not terminated after this slab rendering pass, we keep it unchanged.

Otherwise, the quad is marked as hole and put into a list that stores the new generated hole

quads. The two lists will be used to in the Z-Cull step to modify the corresponding depth

values.

For each partial tile, if the number of the non-terminated quads is less than a predefined

threshold, the whole tile of rays are terminated, and the tile is removed from the partial tile

list. This threshold value can also be used to control the balance between the CPU and the

GPU. We will discuss it in Section 5. If the partial tile list is empty, the multi-pass slab

rendering algorithm is terminated.

For semi-transparent transfer functions, the early ray termination is not as effective as

for opaque transfer functions. Consequently, we do not need to test whether a ray pierces an

opaque cell. Because the volume only contains very few opaque cells or not. We only need

to check whether the ray leaves the volume, which makes the ray termination algorithm

even simpler. To make this checking more efficient, we also compute the length for each

ray in the ray determination step.

5. VOLUMETRIC RAY-CASTING 70

5.3.3 Hole Filling

After the multi-pass slab rendering, the hole quads still need to be processed. For each

non-terminated rays within the hole quads, we first compute the point where the ray leaves

the volume. Then, we employ the space leaping from both ends of the ray based on the

workload of the CPU and the GPU. We will discuss this in detail in the next section. Then,

we store the length of ray segment in a 2D texture and upload it to the GPU.

Before we execute the hole filling fragment programs on the GPU, we need to modify

the depth values of the terminated rays within the hole quads to cull the corresponding

fragments. Then, a bounding box enclosing all hole quads is computed and rendered with

depth value 0.2 to trigger the hole filling fragment programs. The hole filling fragment

program is very similar to the slab rendering fragment program. The only difference is that

the hole filling fragment programs have different travel steps based on the the length of the

corresponding ray segment.

5.3.4 Dynamic Workload Balancing

The workload balance between the CPU and the GPU is crucial to our hybrid algorithm.

The ideal situation is that the programs running on the CPU and the GPU take almost the

same time for rendering one frame. In our method, we use NVIDIA performance toolkit to

access the gpu idle counter to determine if the GPU is underloaded. The gpu idle counter

contains the percentage of time the GPU is idle since the last call. If the gpu idle counter

is greater than zero, the workload of the CPU should be reduced and some work passed to

the GPU. On the other hand, if the GPU is always busy, some work needs to be passed to

the CPU. The basic idea to balance the workload of the CPU and the GPU is controlling

the degree of the empty space skipping on the CPU. The more empty voxels are skipped,

the less work needs to be done by the GPU. On the contrary, the CPU can do less work.

The ways to adjust the workload of the CPU and the GPU are described as follows:

1. The first place that we can control the empty space skipping is the ray traversal in

the min-max octree. If we want to reduce the workload on the CPU, we stop the rays

at a high level partial cell before reaching the object cell, when we compute the first

intersection point.

2. When we compute the first intersection point, we compute the intersection point

between the ray and the cell. The ray does not go inside the cell. If we want to

increase the workload on the CPU, we can let the ray move into the cell and reach

the real object boundary.

3. For each ray, we can also compute the existing point and employ empty space skip-

ping from existing point in the reverse direction. This way increases the workload on

the CPU and efficiently decreases the workload on the GPU.

5. VOLUMETRIC RAY-CASTING 71

4. For a partial tile, if the number of the non-terminated quads is less than a threshold,

the whole tile rays are terminated. A larger threshold can be used if the workload of

the GPU needs to be reduced. A smaller threshold results in the tiles are terminated

quickly on the CPU. Therefore, the workload of the GPU is increased.

5.3.5 Implementation and Results

In this section, we present some implementation details and testing results of our hybrid

volumetric ray-casting. All images shown in this section have a resolution of 512×512. We

use 0.5 as the sampling distance in our implementation, which is good enough to generate

high quality images for all tested data sets. Most of the experiments have been conducted on

a 3.0GHz Intel Pentium IV PC, with 1G RAM and an NVIDIA Quadro FX 3400 graphics

card (PC1). We have also used a 2.4GHz Intel Pentium IV PC, with 1G RAM and an

NVIDIA Geforce 6800 Ultra graphics card (PC2) to demonstrate workload balancing. Both

PCs are running Windows XP operating system.

We use CT engine and CT human foot data sets to demonstrate the proposed hybrid

volumetric ray-casting for general volume rendering on PC1. The image resolutions are

all 512 × 512. The two data sets are rendered both with an opaque transfer function and a

semi-transparent transfer function on both PC1 and PC2. We list the rendering timings in

Table5.2. The CPU on PC1 is faster than that on PC2. Thus, we employ accurate empty

space skipping on PC1 and a coarse empty space skipping on PC2. Because the GPU on

PC2 is faster than that on PC1, we obtain similar performance on both PC1 and PC2. The

performance on PC1 is a little faster than that on PC2, because the PC1 uses PCI Express

which is faster than AGP8 used by PC2, and the CPU on PC1 is also faster than that on

PC2. We can see that when the semi-transparent transfer function is applied on PC1, the

performance is dropped a little, because the early ray termination is not effective at this

situation. While the performance on the PC1 for two cases are nearly same. Because the

3DDDA algorithm is not performed on the CPU when semi-transparent transfer function is

applied.

Table 5.2: Average rendering frame rates per second (fps) for the engine and human foot

data sets.
Data Set Size Opaque Semi-transparent

PC1 PC2 PC1 PC2

Engine 256 × 256 × 128 21.9 17.9 17.8 18.0

Foot 152 × 256 × 220 19.8 14.5 14.3 13.6

Nvidia Geforce 6 series cards support dynamic branching in the fragment program,

which makes it possible to implement one-pass GPU-based volumetric ray-casting algo-

rithm. We use the lego car, lobster and human tooth data sets to compare our hybrid

algorithm with the pure GPU-based algorithm. In Figures 5.10(a) and 5.10(b), we show

5. VOLUMETRIC RAY-CASTING 72

(a) Opaque Engine (b) Semi-transparent Engine

(c) Opaque Foot (d) Semi-transparent Foot

Figure 5.9: Volume rendering of the engine (a-b) and foot (c-d) data sets with opaque and

semi-transparent transfer functions.

two semi-transparent lobsters rendered with the two different methods from the same view

point. We can see that we obtain the same image quality, the difference between the two

images can not be observed. For the lego car and human tooth data sets, we only show the

volume rendering images by our hybrid method in Figures 5.11(a) and 5.11(b). The perfor-

mance of the two algorithms are list in Table 5.3, which show that our hybrid algorithm is

faster than pure GPU-based algorithm, because we also use the power of the CPU to assist

5. VOLUMETRIC RAY-CASTING 73

(a) Lobster (HRC) (b) Lobster (GRC)

Figure 5.10: Volume rendering of a semi-transparent lobster with out hybrid volumetric ray

casting (a) and with a pure GPU ray casting (b).

(c) Lego Car (d) Human Tooth

Figure 5.11: Volume rendering of the lego car data set with an opaque transfer function (a)

and the human tooth data set with a semi-transparent transfer function (b).

the GPU. The experiments are conducted on the PC1.

5. VOLUMETRIC RAY-CASTING 74

Table 5.3: Average rendering frame rates per second (fps) for car, lobster and tooth data

sets by using our hybrid volumetric ray-casting algorithm (HRC) and pure GPU-based

volumetric ray-casting algorithm (GRC).

Data Set Size HRC GRC Speedup

Lego Car 256 × 256 × 128 19.1 16.5 15.8%

Lobster 152 × 256 × 220 28.3 20.4 39.1%

Tooth 128 × 128 × 256 32.8 16.9 94.1%

5.4 Conclusions

We have presented an object-order GPU ray-casting algorithm for rendering large vol-

umetric data sets such as the Visible Human CT data sets and 16bit CT data sets with

pre-computed gradient information. The volume data set is decomposed into small cells,

and organized using a min-max octree structure. The empty cells are skipped immediately

after the classification. The volumetric ray-casting algorithm is performed on the GPU for

each non-empty cell projection, and the resulting integration of the cell are front-to-back

composited to generate the final image. We devised a cell sorting algorithm to allow us

project a layer of cells at the same time, which improves the performance of the fragment

programs on the GPU. While the hybrid volumetric ray-casting algorithm exploits the par-

allelism between the CPU and the GPU to obtain further acceleration.

75

Chapter 6

Computer Aided Polyp Detection

6.1 Introduction

Because of the complex structure of the colon surface, the inspection is prone to errors,

and the physician needs to navigate antegrade (from rectum to cecum) and retrograde (from

cecum to rectum) to improve the coverage and accuracy of the inspection [57]. A complete

inspection by a radiologist conducting 3D VC takes 10-15 minutes [60]. The long inter-

pretation effort of the VC screening procedure suggests a CAD approach. A CAD scheme

that automatically detects the locations of the potential polyp candidates could substantially

reduce the physicians’ interpretation time and improve their diagnostic performance with

higher accuracy. However, the automatic detection of colonic polyps is a very challenging

task because polyps can occur in various sizes and shapes. Moreover, there are numerous

colon folds and residual colonic materials on the colon wall that mimic polyps and could

result in FPs. A CAD scheme should have the ability to identify true polyps and eliminate

the FPs.

In our earlier work [125], we have observed that the internal tissues of polyps have

a slightly higher density and different texture than healthy tissues. These high density

areas are beneath the colon wall and cannot be seen with an optical colonoscopy. How-

ever, the internal structure of polyps can be revealed through volume rendering with a

translucent transfer function, called electronic biopsy. Pickhardt [106] has presented that

translucency rendering effectively improves polyp specificity and increases overall diag-

nostic confidence, especially when barium tagging of residual stool is used to maximize the

full benefit of the technique. By significantly reducing the need for 2D correlation, translu-

cency rendering greatly decreases interpretation time for primary 3D virtual colonoscopy.

The four images of Figures 6.1(e)-(h) are the electronic biopsy images of the four cor-

responding objects of Figures 6.1(a)-(d). Although polyps and normal tissues may have

similar shapes, it is observed that adenomatous and malignant polyps have a higher density

and different texture beneath the surface. As shown in Figure 6.1, four different objects

including retained stool, a hyperplastic polyp, an adenoma, and a tubulovillous adenoma

have different rendering results for the same transfer function. The retained stool has a

6. COMPUTER AIDED POLYP DETECTION 76

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: (a)-(d) are the surface rendering of (a) retained stool, (b) a hyperplastic polyp,

(c) an adenoma, and (d) a tubulovillous adenoma. The small square images in (e)-(h) are

the electronic biopsy rendering of the respective objects in (a)-(d), all with the same transfer

function. In the electronic biopsy images, the red color represents the highest densities and

blue represents the lowest densities. Green represents tissues of middle densities. Normal

tissues have low to middle densities.

6. COMPUTER AIDED POLYP DETECTION 77

uniform high density inside the whole object with sharp boundaries due to the oral agent

tagging. The hyperplastic polyp is benign and does not have any high density voxels. The

adenoma and tubulovillous adenoma are neoplastic with irregular internal structures and

high density voxels gradually change to normal tissues towards the boundary. These obser-

vations suggest that polyps can be detected by analyzing the electronic biopsy images of

the whole colon.

In our method, we conformally map the colon surface to a 2D rectangle, which simpli-

fies the polyp detection problem from 3D to 2D. Our polyp detection method is then applied

on high-quality 2D electronic biopsy images generated with a volumetric ray-casting algo-

rithm. Unlike previous shape based methods, in which shape information is computed for

polyp detection in the entire colon, we only compute the shape information at suspicious

regions in order to reduce FPs.

6.2 Our CAD Pipeline

A diagram of our CAD pipeline is shown in Figure 6.2. First, for segmentation and

digital cleansing of the colon, an iterative partial volume segmentation algorithm is applied.

Then, a topologically simple colon surface is extracted for conformal colon flattening. The

electronic biopsy colon image is then generated using a volumetric ray casting algorithm

on the entire flattened colon. After that, our clustering algorithm and reduction of FPs are

performed. All of these processes are performed automatically in our pipeline. The details

of each step are discussed in the following subsections.

6.2.1 Segmentation and Digital Cleansing

The first step in our pipeline aims to segment the colon lumen from the CT scan of

the patient’s abdomen. The day prior to the scan, the patient drinks an oral contrast agent

in order to tag colonic material, making it unnecessary for the colon to be cleaned out

physically. The tagged material is enhanced in the CT scan, allowing it to be identified.

Care must be taken during electronic cleansing to restore CT density values where the

partial-volume effect occurs. A partial volume segmentation algorithm has been proposed

in Chapter 3 to handle partial volume effect. In this algorithm, the interface layer between

the air and the tagged colonic materials is identified and removed digitally. Moreover, the

CT density values of colonic tissues in the enhanced mucosa layer are restored based on

the mixture information. After this step, we obtained a segmentation of the colon and a

clean colon lumen. The segmentation of the colon will be used to compute centerline and

extract colon surface. The clean colon lumen will be used for visualization and automatic

detection of colonic polyps.

6. COMPUTER AIDED POLYP DETECTION 78

Colon Surface Extraction

Conformal Colon Flattening

Segmentation and Digital
Cleansing

Clustering

Virtual Colonoscopy

Segmented and Cleansed Colon

Colon Triangle Mesh

Flattened Colon Mesh

Suspicious Patches

Volumetric Ray Casting

Flattened Biopsy Image

Reduction of False
Positives

CAD Results

DICOM Images

Cleansed
Colon

Volume

Colon
Triangle

Mesh
and

Colon
Centerline

Diagnosis

Figure 6.2: Overview of our CAD pipeline.

6.2.2 Colon Surface Extraction

After segmentation and digital cleansing, we need to extract the colon surface for our

conformal virtual colon flattening algorithm. The topological noise makes our flattening

6. COMPUTER AIDED POLYP DETECTION 79

algorithm complex and introduces distortion. In Chapter 3, we have presented a volume-

based method to do topological denosing based on the concept of a simple point. In this

algorithm, non-simple points are removed from the segmented colon. Thus, all handles are

removed automatically. Then, we use our enhanced dual contour method [139] to extract

a simplified smooth colon surface while preserving the topology of the finest resolution

colon surface.

6.2.3 Conformal Virtual Colon Flattening

In the 3D endoscopic view of the virtual colonoscopy, we can only see a small part of

the colon. Moreover, our views are blocked by the colon haustral folds, so many regions

will be invisible in the endoscopic view. The worst scenario is that polyps may be missed

during navigation. Virtual colon flattening is an efficient visualization technique for polyp

detection, in which the entire inner surface of the colon is displayed as a single 2D im-

age. However, if two surfaces do not have the same Gaussian curvature, there does not

exist a mapping which achieves both area and angle preservation. We have presented our

conformal virtual colon flattening algorithm to achieve angle preserving in Chapter 4.

Instead of directly computing the conformal map between the 3D colon surface and

a 2D rectangle, we compute its gradient field first. Mathematically, this gradient field is

called holomorphic 1-form. Then, the conformal mapping can be obtained by integration.

Each gradient field of a conformal map is a pair of tangential vector fields with special

properties, such that the curl and Laplace are zero everywhere. All such vector fields form

a linear space. We construct a basis of this linear space by solving a linear system derived

from these properties. The global distortion from the colon surface to the parametric rect-

angle is minimized, which is measured by harmonic energy. The details of our flattening

algorithm can be found in Chapter 4.

As postulated in previous CAD papers [136, 137], the colonic polyps usually have an

elliptic curvature of the peak subtype, that is, the shape at the top section of a regular polyp

(toward the colon wall) is more likely to be a spherical cap. Because of the angle preser-

vation of our colon flattening algorithm, the elliptic shape of a colonic polyp is preserved

in the flattened image. It is noted that our conformal colon flattening has area distortion,

yet minimizes the global distortion. Consequently, polyps cannot be directly measured on

the 2D flattened colon image. Since we maintain a one-to-one mapping between the 3D

vertices and 2D vertices of the colon mesh, polyps can still be measured in 3D. Geometric

features and texture features [45] can also be computed in 3D and mapped to 2D. This

conformal mapping simplifies our polyp detection problem from 3D to 2D.

6.2.4 2D Electronic Biopsy Image Generation

The electronic biopsy technique uses a volume rendering algorithm to present the in-

formation inside the colon wall on a 2D image, the biopsy image. Each voxel is assigned

a specific color and opaque values according to its CT intensity. Then, the 3D volume is

6. COMPUTER AIDED POLYP DETECTION 80

volume rendered and transformed into a 2D texture image based on our conformal map-

ping. This 2D texture image provides the intensity distribution information along each ray,

which is hidden behind the colon surface.

In the canonical volumetric ray casting algorithm, a ray is shot for each pixel on the

image plane. The direction of the ray is defined by the locations of the viewpoint and the

pixel. When the ray hits the boundary of the volume, the ray starts to accumulate color and

opacity values while stepping inside the volume. In our pipeline, a constrained volumetric

ray casting algorithm is used to generate the 2D biopsy image. Each vertex of the mesh

of the flattened colon has a 3D coordinate in the volume space. The coordinate of the first

intersection point of each pixel is linearly interpolated from the three vertices of the triangle

with which the ray intersects. Because flattening the colon into a 2D mesh is a nonlinear

transformation, no one point can be defined as the viewpoint in the volume space for all

rays. Therefore, we define the gradient at the intersection point as the direction of the ray.

In our volumetric ray-casting algorithm, the sampling distance is 0.5 mm. Because we are

only interested in a thin layer (about 20 mm) beneath the colon surface, each ray is only

allowed to traverse up to 40 steps. Moreover, because the colon wall protrudes into the

lumen, some rays may enter the colon lumen again. In order to avoid rays re-entering the

colon lumen, these rays are terminated in our ray-casting algorithm using the segmentation

information of the colon lumen. We can efficiently generate high resolution biopsy images

accelerated on the GPU, where the thin layer beneath the colon wall is super-sampled. An

electronic biopsy image is shown in Figure 6.5(a).

6.2.5 Clustering

It is observed that similar color features appear in contiguous areas in several regions of

the 2D electronic biopsy image. It is reasonable to classify these features within a certain

range in the 2D image. The RGB values of the given pixel and its twelve neighboring pix-

els form a 39-dimensional local feature vector. Consequently, a high resolution flattened

electronic biopsy image is used in our CAD system, where each pixel has a 39-dimensional

local feature vector. It requires intensive computational effort to manipulate such a large

quantity of vectors. To reduce the computational burden, a feature analysis of the local

vector series is necessary. The principal component analysis (PCA) is applied to the local

vector series to determine the dimension of the feature vectors and the associated orthogo-

nal transformation matrix (that is, the K-L transformation matrix). The PCA on the training

data sets shows that a reasonable dimension of the feature vectors is 7, where the summa-

tion of the first 7 principal components variances is more than 96.5% of the total variance.

The K-L transformation matrix is applied to the local vector series belonging to hand

segmented polyps on the 2D flattened electronic biopsy images. In the K-L domain, the

feature vectors are formed by the first 7 principal components from the transformed vector

series. The mean vector of these feature vectors is computed and used as the representative

vector V of the feature vectors belonging to polyps. The square root of the variance of

these feature vectors is also computed and used as a threshold T for vector similarity in the

6. COMPUTER AIDED POLYP DETECTION 81

clustering.

For a given testing data set, we use the representative vector V and similarity threshold

T to classify the feature vectors in the K-L domain. If the Euclidean distance between a

feature vector and V is less than T , the corresponding pixel is classified as belonging to a

polyp. A 2D image is generated where the pixels classified belonging to a polyp are colored

in red. The red regions in this 2D image are highly suspicious for being polyps, indicating

that the physicians should observe these areas in the 3D view very carefully.

After the clustering algorithm, the pixels classified belonging to a polyp are marked.

We first use a labeling algorithm to extract the connected components on this image. Since

we only consider the polyps with a diameter larger than 5 mm, a component whose pixel

count is below such a threshold is classified as a false-positive finding. Consequently, many

small components are removed.

6.2.6 Reduction of False Positives

The false-positive findings can be further reduced by analyzing the shape features, such

as the shape index and curvedness [137], as well as volumetric texture features [136]. The

shape index is a measure of the shape. Every distinct shape, except for the plane, corre-

sponds to a unique value of the shape index. The shape index values increase smoothly from

the top section to the bottom peripheral region of a polyp on the colon wall inner surface.

The curvedness represents how gently curved the surface is. Curvedness is a dual feature

to the shape index in that the shape index measures which shape the local neighborhood of

a voxel has, whereas the curvedness measures how much shape the neighborhood includes.

The curvedness also provides scale information: a large negative value implies a very gen-

tle change, whereas a large positive value implies a very sharp edge. In the 3D volumetric

data, polyps generally appear as bulbous, cap-like structures adhering to the colonic wall,

with small to medium curvedness, whereas folds appear as elongated, ridge-like structures

with large curvedness. The colonic walls appear as nearly flat, cup-like structures with

small curvedness. Therefore, the shape index and the curvedness can differentiate polyps

from folds and colonic walls effectively.

Because of the partial volume effect, the soft-tissue density values within a polyp tend

to smoothly increase from the colonic air toward the center of the polyp. Therefore, most

density gradient vectors within a polyp tend to point toward the polyp center. A gradient

concentration feature that characterizes the overall direction of the gradient vectors around

a point is used for further reducing FPs.

The computation of these features for the entire volume is time consuming. In our

pipeline, we compute these features in a way similar to the shape based CAD methods.

However, the critical difference is that we only compute these features on several suspicious

areas for FP reduction, rather than for the entire colon.

6. COMPUTER AIDED POLYP DETECTION 82

6.3 Integration with Virtual Colonoscopy

The polyp detection results of our CAD pipeline are also stored with the flattened colon

image, which can be used for highlighting the corresponding VC endoscopic view. The

colon mesh extracted in our pipeline can also be used to accelerate the direct volume ren-

dering of the VC endoscopic view.

6.3.1 Polygonal Assisted Volume Rendering

When navigating or flying through the colon lumen, the colon wall is rendered with

direct volume rendering. Because of the large size of the colon volume data and the in-

herent complexity of volume rendering, it is very hard to achieve interactive frame rates

with a software implementation. 3D texture-based volume rendering [14] is a popular vol-

ume rendering method that can achieve real-time speed on commodity graphics hardware

(GPU). However, the rays shot from the image plane have different sampling rates due to

the planar proxy geometry. Ray casting has been implemented on the GPU, which has a

coherent sampling rate for all rays [74]. They have achieved interactive speed by using the

two common acceleration techniques, empty-space skipping and early ray termination.

(a) (b)

Figure 6.3: A close up view of a polyp rendered with volumetric ray casting (a) without

coloring, and (b) with coloring.

The polygonal mesh has been exploited by us to accelerate direct volume rendering

[5]. The polygonal mesh representing the object boundary is extracted from the volume in

the second step of our pipeline. Each vertex is associated with its coordinates in volume

texture space. The mesh is projected onto the image plane for calculating the entry points

6. COMPUTER AIDED POLYP DETECTION 83

of rays, and the empty space between the image plane and the object boundary is skipped.

Our detection result is also stored in a 2D image, in which we use yellow color for polyps

and red color for normal colon wall. When the flattened mesh is projected on the image, we

also obtain a 2D texture coordinates by interpolation. We use this 2D texture coordinates to

access the resulting image to determine the color of the ray. This method is very efficient

because the GPU is very efficient in rasterizing triangles onto the image plane.

Our algorithm has two passes. In the first pass, the mesh is rendered and the rasteriza-

tion hardware interpolates the texture coordinates for each fragment. In this pass, the depth

test is enabled so that only the nearest intersection points are preserved in the framebuffer.

In the second pass, the fragment shader reads back the intersection point for each pixel on

the image plane and a standard ray casting is performed from this point. A polyp rendered

with our method with and without coloring is shown in Figure 6.3. The rendering frame

rates is 17-20 per second for a 512 × 512 image.

6.3.2 Enhanced Virtual Colonoscopy

Our interactive user interface shown in Figure 6.4 provides multiple views of the colon

CT data. In the center is the 3D volume rendered endoscopic view. A flattened colon

image is shown on the right of the endoscopic view. Bookmarks for suspicious regions can

be stored on the flattened colon image. A zoom-in view to display the corresponding part of

the flattened colon image at the current camera position is provided under the endoscopic

view. The 2D mutually perpendicular slice views oriented axial, coronal, and sagittal are

shown on the left hand side. An outside overview of the patient’s colon and z zoom-in

slice view are shown on the right hand side. All these 2D and 3D images are correlated

and interlinked so that position in 3D is overlaid on the 2D images and the position of 2D

slices and the flattened colon image can be overlaid on the 3D images. This provides a

quick and simple mechanism to easily analyze suspicious patches in both 2D and 3D. It is

noted that the correlation between the flattened zoom-in view and the 3D endoscopic view

is established by our conformal colon flattening algorithm.

In our enhanced VC system, we provide a new mode to allow the physician to go over

solely the flattened colon image for polyp screening. In this mode, the physician only

need to fly over the flattened image from one end to the other. The physician only need to

go over the flattened colon image in one direction through the zoom-in view, because our

conformal colon flattening method guarantee 100% surface visibility coverage. Since the

3D endoscopic view is correlated with the zoom-in view of the flattened colon image, if

any suspicious polyp is found on the zoom-in view of the flattened colon, the physician can

double click the suspicious polyp to update the 3D endoscopic view and confirm it in the

3D endoscopic view. In this way, the physician mainly focus on the zoom-in view of the

flattened colon image, which can also reduce reader fatigue.

Although our conformal colon flattening method does not preserve area information,

measurement can still be performed on the flattened colon image by mapping points back

to the 3D world coordinate system and computing the diameter of the polyp in the 3D

6. COMPUTER AIDED POLYP DETECTION 84

Figure 6.4: The user interface of our CAD system.

world coordinate system. It is much more convenient for the physician to perform the

measurement on the 2D flattened colon image than that on the 3D endoscopic image.

We have integrated the detection result of our CAD pipeline into our VC system. Our

new VC system is enhanced in the following ways:

1. In the navigation mode, the suspicious patches are highlighted in the endoscopic

view to attract the attention of the physicians during navigation. Since our detection

algorithm is 100% sensitive to polyps, the missed polyps in the conventional VC

system will not be missed in our system.

2. All suspicious polyp candidates are also highlighted on the 2D flattened colon view.

Physicians can directly inspect these suspicious regions by clicking on them. All

other views are updated simultaneously.

3. Bookmarks for suspicious regions are stored on the flattened colon image and on

the colon overview image. From either image, the physicians can sequentially or

randomly go through all bookmarks of suspicious regions, which are automatically

provided by our CAD pipeline.

6. COMPUTER AIDED POLYP DETECTION 85

Our initial feedback from a physician using our prototype system has been very positive,

where the CAD results serving as a second reader guarantee a low miss examination and

that the user interface features indeed enhance the VC system.

6.4 Results

(a)

(b)

(c)

Figure 6.5: (a) The electronic biopsy image generated using our conformal colon flattening

and volumetric ray casting algorithm. (b) The result of our clustering algorithm. (c) The

result of the reduction of FPs with shape analysis and 3D texture analysis. Two polyp

candidates are obtained using this data set, the real polyp at location A and a FP at location

B.

We implemented our polyp detection pipeline in C/C++ and ran all of the experiments

on a 3.6 GHz Pentium IV PC running Windows XP with 3G RAM and one NVIDIA Quadro

4500 graphics board. We have been collaborating closely with physicians and gastroen-

terologists in developing and evaluating our methods. Our pipeline was tested using a total

of 198 CT data sets. We used 152 CT data sets from the National Institute of Health (NIH)

to demonstrate and test our CAD pipeline. Along with the raw DICOM images, there are

VC reports, OC reports, pathology reports, and OC videos. In addition, we used another 46

CT data sets along with VC reports and OC reports obtained from Stony Brook University

6. COMPUTER AIDED POLYP DETECTION 86

Hospital (SBUH) to test and demonstrate our pipeline. We used the specialists’ VC and

OC reports for the NIH and SBUH data sets to evaluate our CAD pipeline.

Twenty data sets from the NIH were used in the training of our pipeline, to compute

the K-L matrix and the representative vector V . The rest of the data sets were used to

test our CAD pipeline, which generated consistent results and is 100% sensitive to polyps.

No polyp in the 132 NIH data sets or the 46 SBUH data sets used for testing was missed

by our system. The polyps are colored using our volumetric ray casting algorithm with a

translucent biopsy transfer function. All the polyps are shown in similar colors on the 2D

image, which will not be missed by our clustering algorithm.

Table 6.1: Experimental results of our CAD pipeline.

Data Source Total Polyps FP per Data Set FP Reduction

SBUH 65 2.9 97.1%

NIH 82 3.5 96.1%

The experimental results of testing our pipeline are depicted in Table 6.1, which are

confirmed using VC reports and OC reports. In addition to detecting all polyps, our pipeline

also significantly reduced the number of FPs for each data set. The 132 NIH data sets used

for testing contain 82 polyps, all of which were identified by our pipeline. An average of

3.5 FPs was identified in each data set, after FP reduction. The FP reduction step removed

96.1% of the FPs. The 46 SBUH data sets contained 65 polyps, all of which were identified

by our pipeline. An average of 2.9 FPs was identified in each data set, after FP reduction.

The FP reduction step removed 97.1% of the FPs. The best shape analysis based systems

[36, 122, 130, 137] achieved 2 − 3 FPs per dataset with 100% sensitivity. Our experiment

results show that our method achieved similar results as these systems.

One of the SBUH CT data sets of size 512×512×460 has a polyp near the rectum. The

resolution of the flattened electronic biopsy image is 4000× 200, which is shown in Figure

6.5(a). The rectum is at the left end of Figure 6.5(a). There is a polyp of 8 mm diameter

near the rectum of this colon data set. The suspicious polyp candidates from our clustering

algorithm are shown in red in Figure 6.5(b). The FPs are reduced by shape analysis and 3D

texture analysis applied at these suspicious areas. As a result, we obtain 2 polyp candidates,

the real polyp at location A and a FP at location B, both shown in red in Figure 6.5(c). The

corresponding 3D VC views of these two locations are shown in Figures 6.6(a) and 6.6(b),

respectively. It is noted that the FP B is resulted from the protuberance on the colon haustral

fold.

Compared with shape-based CAD methods, our system is much faster. Our topological

denoising algorithm and colon surface extraction algorithm costs less than 1 minute. The

most time consuming step of our pipeline is the conformal colon flattening, which takes

about 7 minutes. The electronic biopsy image rendered with a resolution of 4000 × 200
costs only about 300 milliseconds accelerated on the GPU. Therefore, it takes our pipeline

about 8 minutes to gather features for polyp detection. In the shape-based CAD methods,

6. COMPUTER AIDED POLYP DETECTION 87

(a) (b)

Figure 6.6: (a) The 3D view of the detected polyp A. (b) The 3D view of the false-positive

finding B on a colon fold.

the computation step of shape index and curvedness is the most time consuming step. It

took us about 20 minutes to compute shape index and curvedness with a mask size of

5 × 5 × 5 for the entire mucosa layer, using the same data set on the same platform as our

approach. The computation time is about one hour when the mask size is 7 × 7 × 7. We

achieved an average of 3 FPs per data set with 100% sensitivity, which is equal or better

than the shape based methods. Our detection results are stored in 2D flattened images,

which are much easier to integrate into the VC system than that of other CAD systems.

Our pipeline provides a flattened colon view in the user interface of the VC system, which

is much more friendly than the other systems.

6.5 Conclusions

The pipeline we have presented here is a novel method for the CAD of colonic polyps.

Unlike previous shape-based method, our method uses a 2D volume rendered flattened

biopsy image of the colon to detect suspicious patches by a clustering method. This is

due to the fact that the adenomatous and malignant polyps in the volume rendered biopsy

images have different densities compared with normal tissues. The FPs are further reduced

in a subsequent step by performing shape analysis and 3D texture analysis only on these

patches, not on the entire endoluminal colon surface. Our system detects 100% of the

adenomatous polyps, and yields a low FP rate in only several minutes. The results are

easily integrated into any VC system, which allows physicians to perform their diagnoses

6. COMPUTER AIDED POLYP DETECTION 88

more accurately and efficiently. Since the suspicious areas are clearly identified to the

user, the physician needs only traverse the colon in one direction, without fear of missing a

polyp.

89

Chapter 7

Conclusions

7.1 Summary

In this dissertation, we have presented our solution to one of the attractive and challeng-

ing research topics in the visualization and medical imaging communities. Our conformal

colon flattening algorithm can display the entire inner colon surface as a single 2D image,

and our CAD pipeline is able to identify 100% of the polyps with a low FP rate, which

makes our VC system much more powerful and efficient. The primary research contribu-

tions of this dissertation are described as follows:

• A simulation method to estimate the percentage of the colon surface is missed in the

standard OC examination. An Olympus colonoscope, a wide angle fisheye camera,

is calibrated and simulated in our method. The simulated fisheye camera is moving

along the hugging corner shortest path, rather than the centerline of the colon as for

VC fly-through navigation. Our simulation study reveals that about 23% of the colon

surface is missed in the standard OC examination and about 9% of the colon surface

is missed in the VC examination when navigating in both antegrade and retrograde

directions.

• A fully automatic segmentation and digital cleansing framework with the capability

to handle the partial volume effect and topological noise. The mixture information is

estimated for each voxel using the well-developed EM algorithm in an iterative man-

ner. It allows us to accurately segment the colon lumen and restore the CT density

values of the tagged materials for digital cleansing. The topological noise is automat-

ically removed using a region growing based method. A topologically simple colon

surface can be extracted from the segmented colon and simplified for visualization

as well as virtual colon flattening.

• A conformal colon flattening algorithm based on Riemann surface theory and differ-

ential geometry. Our algorithm is general, which can be applied to arbitrarily high

genus surface. The global distortion from the colon surface to the parametric rectan-

gle is minimized, which is measured by the harmonic energy. We have proved and

7. CONCLUSIONS 90

shown that our algorithm is angle preserving (local shape preserving). The shape of

colonic polyps on the flattened colon image is well preserved. Even a small polyp in

the high resolution flattened colon image and can be easily identified by a physician.

The flattened colon image has been integrated into our VC system to enhance the

user interface and accuracy of the VC system.

• A GPU-based object-order ray-casting algorithm for rendering large volumetric data

sets. The volumetric data set is decomposed into small cells, and organized using a

min-max octree structure. The empty cells are skipped immediately after the clas-

sification. The volumetric ray-casting algorithm is performed on the GPU for each

non-empty cell. The cooperation and trade-off between the CPU and the GPU are

exploited in our hybrid volumetric ray-casting method to obtain further acceleration.

Our algorithm allows large volumetric data set to be rendered for virtual endoscopy

applications in real-time with high quality.

• A novel CAD pipeline for polyp detection integrating texture and shape analysis with

volume rendering as well as conformal colon flattening. Polyps are identified by a

clustering method on the 2D electronic biopsy images. The false positive findings

are further reduced by shape analysis. The polyp detection results can be seam-

lessly incorporated into the VC system to highlight the suspicious regions during

the fly-through navigation. The CAD enhanced VC system can reduce physicians’

perceptual errors, thereby improving the accuracy of VC.

7.2 Near Future Work

7.2.1 General Volume Processing Framework

Compute Unified Device Architecture (CUDA), a technique developed by NVIDIA, is

a new hardware and software architecture for issuing and managing computations on the

GPU as a data-parallel computing device without the need of mapping them to a graphics

API. CUDA features a parallel data cache or on-chip shared memory with very fast general

read and write access, that threads use to share data with each other. When programmed

through CUDA, the GPU is viewed as a compute device capable of executing a very high

number of threads in parallel. It operates as a coprocessor to the main CPU, or host: In other

words, data-parallel, compute-intensive portions of applications running on the host are off-

loaded onto the device. More precisely, a portion of an application that is executed many

times, but independently on different data, can be isolated into a function that is executed

on the device as many different threads. To that effect, such a function is compiled to the

instruction set of the device and the resulting program, called a kernel, is downloaded to

the device.

The mixture information of each voxel is estimated using the EM algorithm in an iter-

ative manner, which is the most time-consuming part in our partial volume segmentation

7. CONCLUSIONS 91

algorithm. The most time-consuming part of our conformal flattening algorithm is the mini-

mization of the harmonic energy using the conjugate gradient method. Applications such as

the EM algorithm and the conjugate gradient algorithm that require mathematically inten-

sive computing on large amounts of data are ideal targets for GPU computing with CUDA.

We would like to implement our partial volume segmentation algorithm and conformal sur-

face flattening algorithm using CUDA to further improve the overall performance of our

system.

Furthermore, we would also like to design a general framework for 3D medical image

processing using CUDA. In this framework, currently time-consuming algorithms, such

as volume filtering algorithms and 3D level set methods, can be implemented easily and

efficiently as kernel programs.

7.2.2 Volume Rendering for Very Large Data Sets

The newly released NVIDIA graphics hardware also provides the capability of ren-

der to 3D texture. It has the great potential to improve the state-of-the-art rendering and

simulation in computer graphics and visualization, which would benefit researchers and

end-users in a variety of applications. Due to the large size of the volume data, the gradient

is estimated on-the-fly on the GPU in our current system, which needs six texture lookups

for each sampling point and is not efficient. The rendering performance and quality of our

GPU-based volumetric ray-casting algorithm can be further improved, if we can compute

the gradient information for the whole cell on-the-fly using the render to 3D texture feature

and use tri-linear interpolation to obtain the gradient for each sampling point.

7.2.3 Unified Colon Flattening

If two surfaces do not have the same gaussian curvature, there is no way to achieve both

area and angle preservation for surface mapping. Therefore, in our conformal colon flat-

tening method, only angle preservation is achieved. The shape of colonic polyps on the 2D

flattened colon image can be identified by physicians. However, our method suffers from

the area distortion, that is, physicians cannot measure the size of the polyp directly. There-

fore, how to alleviate the area distortion in our harmonic energy minimization process is

another near future work. We would like to investigate a unified colon flattening algorithm

to minimize the overall distortion: angle distortion and area distortion.

7.2.4 Conformal Volumetric Colon Flattening

In our current conformal colon flattening algorithm, only the colon surface is mapped

to a 2D rectangle. We would like to flatten the colon surface as well as the soft tissues. In

other words, we would like to obtain a volume containing the flattened colon wall along

with soft tissues. The main idea is that we shrink and expand the colon surface along the

gradient direction to obtain two surfaces. Then, we tetrahedralize the space between the

7. CONCLUSIONS 92

two surfaces. We can compute a harmonic function on this domain by constraints that the

inner surface has a value zero and the outer surface has a value one. Then, we can extract

a set of isosurfaces at different values. We can obtain volumetric parameterizations by

conformally mapping them to a set of coaxial cylinder surfaces. The flattened volume can

be obtained by unfolding the cylinder. Furthermore, CAD algorithms can be applied to the

flattened volume to improve their computation performance.

7.2.5 Automatic Transfer Function Generation for Polyp Detection

How to define a transfer function in order to generate meaningful results is a common

problem in volume rendering [104]. In our current implementation for the electronic biopsy

[125], the semi-translucent transfer function is not automatically generated. We would like

to study the features of colonic polyps to devise a method to generate the transfer function

automatically. This transfer function will be multi-dimensional and use various features

such as density values, curvature, and eigenvalues of Hessian matrix [66]. In fact, the

features used in the shape-based CAD algorithms can be considered for the design of the

transfer function used for electronic biopsy. This can further improve the performance of

our VC and CAD system.

7.2.6 Supine and Prone Registration

Supine and prone registration allows the user to easily correlate between the supine and

prone scan. This technique empowers the user to switch at any time between the supine

and prone scan enabling a faster verification of findings or parts that might be collapsed or

hidden by residual stool and fluid in one of the two scans.

Supine and prone registration is difficult to be done directly in 3D due to the deforma-

tion of colon. In previous methods [2, 120], supine and prone is registered based on the

centerline, which simplifies the 3D registration problem to 1D. However, the registration

results based on the centerline cannot be used to correlate 3D endoscopic views. We would

like to register supine and prone data sets using our flattened feature colon images, which

supposedly provides better results than the method based on the colon centerline. If we can

establish a one-to-one mapping between two flattened colon images, the one-to-one map-

ping between two 3D colon surfaces can also be computed. Results from this registration

method could be used to double check for polyp detection. This registration method can

also be used to align two scans taken at different times.

7.2.7 Image-based Path Planning

In the VC fly-through navigation, it is crucial to generate an optimal camera path for ef-

ficient colonic polyp screening. Although it is useful for describing the shape of an object,

the centerline is not always the optimal camera path for observing the object. Hence, con-

ventional methods in which the centerline is directly used as a path produce considerable

7. CONCLUSIONS 93

blind areas, especially in areas of high curvature. Many automatic path planning algorithms

[49, 63] have been developed to improve visibility coverage. For comfortable user naviga-

tion, the camera path is usually smoothed and the amount of rotation between consecutive

endoscopic views needs to be minimized. However, all these algorithms require some time

consuming pre-processings such as colon lumen segmentation and distance transformation

computation [89] before the fly-through navigation.

We would like to design an image-based path planning automatic navigation algorithm

without the requirement of performing any pre-processing. Therefore, the VC fly-through

navigation can be performed immediately after the colon data set is loaded from the com-

puter hard drive. We also would like to integrate the CAD results into the path planning

algorithm, which can guarantee that no suspicious region is missed during the fly-through

navigation.

7.3 Long-term Future Work

In this dissertation, we focus on CT colon data sets for VC applications, although our

techniques are general. Our techniques can be used with a variety of human organs, such

as blood vessels and bladder, which includes topics like:

• Virtual angioscopy [35] is primarily used for detecting stenoses and calcifications

in blood vessels. Virtual angioscopy can aid in the characterization of broad-based

aneurysms, which can help to determine whether surgical treatment is preferable to

coil embolization. With many blood vessels being too narrow for a normal endo-

scope, virtual angioscopy is in many cases the only alternative. Our techniques can

be applied to blood vessels to enhance the virtual angioscopy applications. However,

blood vessels cannot be mapped to a 2D rectangle, due to their complex topology. A

new method to visualize the flattened blood vessels need to be designed. Moreover,

the corresponding user interface for virtual angioscopy also need to be investigated.

• Virtual cystoscopy [39] is a promising new technique based on the rendering of the

inner surface of the urinary bladder using volumetric MRI data sets, thus enabling

maneuvers that normally are not feasible with conventional cystoscopy. Therefore,

this method could potentially provide a means for the screening and surveillance

of bladder tumors, which tend to recur. Our conformal flattening technique can be

directly applied to the inner surface of the bladder to improve the performance of

virtual cystoscopy. However, the partial volume effect must be specially taken care

of during the segmentation of the bladder.

An abdominal Aortic Aneurysm (AAA) [3] is a bulge in the wall of an artery. It is

estimated that 1.5 million Americans have AAA, though only approximately 200, 000 are

diagnosed each year. AAA’s are almost always caused due to arteriosclerosis. As plaque

accumulates, the pressure of the blood blowing through the weakened section of the artery

7. CONCLUSIONS 94

causes the artery to balloon, forming an aneurysm.If the aneurysm is not detected in time,

the weakened aorta will rupture, often causing death.

It has become standard practice to treat AAA through minimally invasive surgery. The

procedure consists of placing a catheter into the iliac artery, inserted up to the kidney junc-

tion. A stent is then extracted from the catheter to protect the aneurysm from a rupture.

The entire operation is generally performed with the aid of an intraoperative X-ray scanner,

sometimes combined with an ultrasound probe. There are two primary problems with this

approach. First, selecting a properly fitting prosthesis for each patient is difficult. Second,

placing the stent quickly and accurately is hard to accomplish. Virtual AAA may aid sur-

geons in both diagnosis and treatment. A virtual AAA system should provide the following

functions:

• automatically extract the aorta, iliac arteries and aneurysm in order to build a 3D

model.

• enable surgeons to examine possible prosthesis locations and catheter trajectories.

• offer advanced measurement tools to assist evaluation of the surgical area. Our con-

formal flattening technique has the potential to be applied to aorta to provide efficient

measurement tools.

• automatically suggest a set of candidate prostheses and allow the surgeon to validates

his choice by simulating the prosthesis contact.

• noninvasively assess the wall stresses acting in individual aneurysms based on the

patient’s blood pressure and the 3D model.

The success of a surgical procedure is in direct relation to experience and intuition of

the surgeon. Visualization tools such as computer-aided planning of operations, surgery

simulation for training, and intra-operative surgery assistance are mostly still at an exper-

imental level and not yet well established in daily clinical routine. Many tasks connected

with the development of such tools can be accomplished by applying state of the art 3D

visualization techniques to high quality radiological data sets. Nevertheless, there exists

still a number of challenging open problems:

• Advanced visualization techniques have to be combined with high-level physics-

based simulation to get realistic images for surgery simulation. Moreover, the per-

formance of physics-based simulation should be improved.

• Quantization, manipulation, simulation and fast visualization very often requires a

geometric reconstruction of volumetric structures.

• Augmented reality allows the combination of intra-operative with pre-operative data

and enables the surgeon to realize a pre-operative plan exactly. The combination of

virtual reality, physics based simulation and the use of haptic feedback devices open

new methods for realistic surgery training.

7. CONCLUSIONS 95

• Speed and accuracy of visualization, simulation and tracking play a crucial role in

having the necessary interactivity for surgery training and intra-operative use of the

techniques in mind. A highly optimized software design and intelligent algorithms

in combination with the expected development of the hardware will lead to more and

more realistic simulations and visualizations.

96

Bibliography

[1] B. Acar, C. Beaulieu, S. Gokturk, C. Tomasi, D. Paik, R. B. Jeffrey, J. Yee, and

S. Napel. Edge displacement field-based classification for improved detection of

polyps in CT colonography. IEEE Transactions on Medical Imaging, 21:1461–1467,

2002.

[2] B. Acar, S. Napel, D. Paik, P. Li, J. Yee, R. Jeffrey, and C. Beaulieu. Medial axis reg-

istration of supine and prone ct colonography data. IEEE Engineering in Medicine

and Biology Society, 32:2433–2436, 2001.

[3] G. Ailawadi, J. Eliason, and G. Upchurch. Current concepts in the pathogenesis of

abdominal aortic aneurysm. Journal of Vascular Surgery, 38(3):584–588, 2003.

[4] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. EURO-

GRAPHICS, pages 3–9, 1987.

[5] R. Avila, L. Sobierajski, and A. Kaufman. Towards a comprehensive volume visu-

alization system. IEEE Visualization, pages 13–20, 1992.

[6] E. Balogh, E. Sorantin, L. G. Nyul, K. Palagyi, A. Kuba, G. Werkgartner, and

E. Spuller. Virtual dissection of the colon: technique and first experiments with

artificial and cadaveric phantoms. Proceedings SPIE, 4681:713–721, 2002.

[7] A. Bartrolı́, R. Wegenkittl, A. König, and E. Gröller. Nonlinear virtual colon unfold-

ing. IEEE Visualization, pages 411–418, 2001.

[8] A. Bartrolı́, R. Wegenkittl, A. König, E. Gröller, and E. Sorantin. Virtual colon

flattening. VisSym Joint Eurographics - IEEE TCVG Symposium on Visualization,

pages 127–136, 2001.

[9] D. Bartz. Virtual endoscopy in research and clinical practice. Computer Graphics

Forum, 24(1):111–126, 2005.

[10] C. Beaulieu, R. Jeffrey, D. P. C. Karadi, and S. Napel. Display modes for CT

colonography part ii. blinded comparison of axial CT and virtual endoscopic and

panoramic endoscopic volume-rendered studies. Radiology, 212:202–212, 1999.

BIBLIOGRAPHY 97

[11] G. Bertrand. Simple points, topological numbers and geodesic neighborhoods in

cubic grids. Pattern Recognition Letters, 15:1003–1011, 1994.

[12] I. Bitter, A. Kaufman, and M. Sato. Penalized-distance volumetric skeleton algo-

rithm. IEEE Transactions on Visualization and Computer Graphics, 7(3):195–206,

2001.

[13] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers on the gpu:

Conjugate gradients and multigrid. ACM Transactions on Graphics, 22(3):917–924,

2003.

[14] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic re-

construction using texture mapping hardware. Symposium on Volume Visualization,

pages 91–98, 1994.

[15] W. Cai, J. Näppi, M. E. Zalis, G. J. Harris, and H. Yoshida. Digital bowel cleans-

ing for computer-aided detection of polyps in fecal tagging ct colonography. SPIE

Medical Imaing, 6144:1–9, 2006.

[16] D. Chen, Z. Liang, M. R. Wax, L. Li, B. Li, and A. Kaufman. A novel approach to

extract colon lumen from CT images for virtual colonoscopy. IEEE Transactions on

Medical Imaging, 19(12):1220–1226, 2000.

[17] D. Cohen and Z. Sheffer. Proximity clouds: An acceleration technique for 3D grid

traversal. The Visual Computer, 11:27–38, 1994.

[18] S. Dave, G. Wang, B. Brown, E. McFarland, Z. Zhang, and M. Vannier. Straighening

the colon with curved cross section: an approach to ct colonography. Academic

Radiology, pages 398–410, 1999.

[19] É. C. de Verdière and F. Lazarus. Optimal system of loops on an orientable surface.

Discrete and Computational Geometry, 33(3):507–534, 2005.

[20] T. Deschamps and L. Cohen. Fast extraction of minimal paths in 3D images and

applications to virtual endoscopy. Medical Image Analysis, 5:281–299, 2001.

[21] T. K. Dey and H. Schipper. A new technique to compute polygonal schema for 2-

manifolds with application to null-homotopy detection. Discrete and Computational

Geometry, 14:93–110, 1995.

[22] E. Dijkstra. A note on two problems in connection with graphs. Nuerische Mathe-

matik, 1:269–271, 1959.

[23] R. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. ACM SIGGRAPH,

pages 65–74, 1988.

BIBLIOGRAPHY 98

[24] D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo. Designing effective transfer

functions for volume rendering from photographic volumes. IEEE Transactions on

Visualization and Computer graphics, 8:183–197, Apr. 2002.

[25] J. EI-Sana and A. Varshney. Controlled simplification of genus for polygonal mod-

els. IEEE Visualization, pages 403–412, 1997.

[26] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-Time

Volume Graphics. A K Peters, Ltd., 2006.

[27] K. Engel, M. Kraus, and T. Ertl. High-quality volume using hardware-accelerated

pixel shading. Graphics Hardware, pages 9–16, 2001.

[28] D. Eremina, X. Li, W. Zhu, J. Wang, and Z. Liang. Investigation on an EM frame-

work for partial volume image segmentation. SPIE Medical Imaging, 6144:1398–

1406, 2006.

[29] J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. ACM Sympo-

sium on Computational Geometry, pages 215–228, 2003.

[30] J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators.

ACM-SIAM Symposium on Discrete Algorithms, pages 1038–1046, 2005.

[31] J. Fletcher, C. Johnson, R. MacCarty, T. Welch, J. Reed, and A. Hara. Ct colonog-

raphy: potential pitfalls and problem-solving techniques. American Journal of

Roentgenology, 172:1271–1278, 1999.

[32] J. Fletcher, C. Johnson, J. Reed, and J. Garry. Feasibility of planar virtual pathology:

a new paradigm in volume rendered ct colonography. Journal of Computer Assisted

Tomography, pages 864–869, 2001.

[33] M. Franaszek, R. M. Summers, P. J. Pickhardt, and J. R. Choi. Hybrid segmentation

of colon filled with air and opacified fluid for CT colonography. IEEE Transactions

on Medical Imaging, 25(3):358–368, 2006.

[34] A. Ghosh, P. Prabhu, A. Kaufman, and K. Mueller. Hardware assisted multichannel

volume rendering. Proceedings of the Computer Graphics International Conference,

pages 2–7, July 2003.

[35] E. Gobbetti, P. Pili, A. Zorcolo, and M. Tuveri. Interactive virtual angioscopy. IEEE

Visualization, pages 435–438, 1998.

[36] S. B. Göktürk, C. Tomasi, B. Acar, C. F. Beaulieu, D. S. Paik, R. B. J. Jr., J. Yee, and

S. Napel. A statistical 3D pattern processing method for computer aided detection of

polyps in CT colonography. IEEE Trans. Med. Imaging, 20(12):1251–1260, 2001.

BIBLIOGRAPHY 99

[37] S. Grimm, S. Bruckner, A. Kanitsar, and E. Groller. Memory efficient acceleration

structures and techniques for CPU-based volume raycasting of large data. IEEE

Symposium on Volume Visualization and Graphics, pages 1–8, Oct. 2004.

[38] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. ACM Transactions on Graph-

ics, 21(3):355–361, 2002.

[39] G. Gualdi, E. Casciani, M. Rojas, and E. Polettini. Virtual cystoscopy of bladder

neoplasms: preliminary experience. Radiol Med, 97:506–509, 1999.

[40] I. Guskov and Z. Wood. Topological noise removal. Graphics Interface, pages

19–26, 2001.

[41] S. Guthe and W. Strasser. Real-time decompression and visualization of animated

volume data. IEEE Visualization, pages 349–356, 2001.

[42] S. Guthe, M. Wand, J. Gonser, and W. Strasser. Interactive rendering of large volume

data sets. IEEE Visualization, pages 53–60, 2002.

[43] S. Haker, S. Angenent, A. Tannenbaum, and R. Kikinis. Nondistorting flattening

maps and the 3D visualization of colon CT images. IEEE Transactions on Medical

Imaging, 19:665–670, Dec. 2000.

[44] X. Han, C. Xu, and J. L. Prince. A topology preserving level set method for geomet-

ric deformable models. IEEE Transactions on PAMI, 25(6):755–768, 2003.

[45] R. Haralick, K. Shanmugam, and I. Dinstien. Textural features for image classifica-

tion. IEEE Transactions on Systems, Man, and Cybernetics, 6:610–621, 1973.

[46] M. Hassouna and A. Farag. Robust centerline extraction framework using level sets.

IEEE Computer Vision and Pattern Recognition, pages 458–465, 2005.

[47] J. Hladuvka, A. König, and E. Gröller. Curvature-based transfer functions for direct

volume rendering. Spring Conference on Computer Graphics, pages 58–65, 2000.

[48] L. Hong, A. Kaufman, Y. Cai, A. Viswambharan, M. Wax, and Z. Liang. 3D virtual

colonoscopy. Biomedical Visualization, pages 26–33, 1995.

[49] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual voyage: Interactive

navigation in the human colon. ACM SIGGRAPH, pages 27–34, Aug. 1997.

[50] W. Hong, X. Gu, F. Qiu, M. Jin, and A. Kaufman. Conformal virtual colon flattening.

ACM Symposium on Solid and Physical Modeling, pages 85–94, 2006.

[51] W. Hong, X. Gu, F. Qiu, and A. Kaufman. Conformal colon flattening for virtual

colonoscopy. Submitted for publication, 2007.

BIBLIOGRAPHY 100

[52] W. Hong and A. Kaufman. Feature preserved volume simplification. ACM Sympo-

sium on Solid Modeling and Applications, pages 334–339, 2003.

[53] W. Hong, F. Qiu, and A. Kaufman. GPU-based object-order ray-casting for large

data sets. International Workshop on Volume Graphics, pages 177–186, 2005.

[54] W. Hong, F. Qiu, and A. Kaufman. A pipeline for computer aided polyp detection.

IEEE Transactions on Visualization and Computer Graphics, 12(5):861–868, 2006.

[55] W. Hong, F. Qiu, and A. Kaufman. Hybrid volumetric ray-casting. Submitted for

publication, 2007.

[56] W. Hong, F. Qiu, J. Marino, and A. Kaufman. Computer-aided detection of colonic

polyps using volume rendering. SPIE Medical Imaging, 6514:1–8, 2007.

[57] W. Hong, J. Wang, F. Qiu, A. Kaufman, and J. Anderson. Colonoscopy simulation.

SPIE Medical Imaging, 6511:1–8, 2007.

[58] H. Hoppe, C. Quattropani, A. Spreng, J. Mattich, P. Netzer, and H.-P. Dinkel. Virtual

colon dissection with CT colonography compared with axial interpretation and con-

ventional colonoscopy: Preliminary results. American Journal of Roentgenology,

182:1151–1158, 2004.

[59] C. Johnson and A. Dachman. Ct colonography: the next colon screening examina-

tion. Radiology, 216:331–341, 2000.

[60] C. D. Johnson and A. H. Dachman. CT colonography: The next colon screening

examination? Radiology, 216(2):331–341, 2000.

[61] K. Johnson, C. Johnson, J. Fletcher, R. MacCarty, and R. Summers. CT colonog-

raphy using 360 degree virtual dissection: a feasibility study. American Journal of

Roentgenology, pages 90–95, 2006.

[62] J. Jost. Compact Riemann Surfaces. Springer, 2002.

[63] D.-G. Kang and J. B. Ra. A new path planning algorithm for maximizing visibility

in computed tomography colonography. IEEE Transactions on Medical Imaging,

24(8):957–968, 2005.

[64] J. Kannala and S. Brandt. A generic camera calibration method for fish-eye lenses.

17th International Conference on Pattern Recognition, pages 10–13, 2004.

[65] C. Kay, D. Kulling, R. Hawes, J. Young, and P. Cotton. Virtual endoscopy–

comparison with colonoscopy in the detection of space-occupying lesions of the

colon. Endoscopy, 32:226–232, 2000.

BIBLIOGRAPHY 101

[66] S. Kim, J. Lee, J. Lee, J. Kim, P. Lefere, J. Han, and B. Choi. Computer-aided de-

tection of colonic polyps at ct colonography using a hessian matrix-based algorithm:

Preliminary study. American Journal of Roentgenology, 189:41–51, 2007.

[67] G. Kindlmann and J. Durkin. Semi-automatic generation of transfer functions for

direct volume rendering. IEEE Visualization, pages 79–86, 1998.

[68] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. Curvature-based transfer

functions for direct volume rendering: Methods and applications. IEEE Visualiza-

tion, pages 513–520, 2003.

[69] G. Kiss, J. Cleynenbreugel, M. Thomeer, P. Suetens, and G. Marchal. Computer-

aided diagnosis in virtual colonography via combination of surface normal and

sphere fitting methods. European Journal of Radiology, 12:77–81, 2002.

[70] J. Kniss, G. Kindlmann, and C. Hansen. Multi-dimentional transfer functions for

interactive volume rendering. IEEE Transactions on Visualization and Computer

Graphics, 8(3):270–285, 2002.

[71] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter, A. Keahey, and

C. Hansen. Interactive texture-based volume rendering for large data sets. IEEE

Computer Graphics and Applications, 21:52–61, July 2001.

[72] G. Knittel. The ultravis system. Proceedings IEEE Symposium on Volume Visual-

ization, pages 71–79, 2000.

[73] K. Kreeger, F. Dachille, M. Wax, and A. Kaufman. Covering all clinically significant

areas of the colon surface in virtual colonoscopy. SPIE Medical Imaging, 4683:198–

206, 2002.

[74] J. Kruger and R. Westermann. Acceleration techniques for GPU-based volume ren-

dering. IEEE Visualization, pages 38–44, 2003.

[75] K. Kwon and B. Shin. An efficient camera path computation using image-space

information in virtual endoscopy. Lecture Notes in Computer Science, 3280:118–

125, 2004.

[76] P. Lacroute and M. Levoy. Fast volume rendering using a shear–warp factorization

of the viewing transformation. ACM SIGGRAPH, pages 451–458, July 1994.

[77] P. Lacroute and M. Levoy. Fast volume rendering using a shear–warp factorization

of the viewing transformation. ACM SIGGRAPH, pages 451–458, July 1994.

[78] S. Lakare, M. Wan, M. Sato, and A. Kaufman. 3D digital cleansing using segmen-

tation rays. IEEE Visualization, pages 37–44, Oct. 2000.

BIBLIOGRAPHY 102

[79] E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interactive texture-

based volume visualization. IEEE Visualization, pages 355–361, 1999.

[80] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Computing a canonical polyg-

onal schema of an orientable triangulated surface. ACM Symposium on Computa-

tional Geometry, pages 80–89, 2001.

[81] K. V. Leemput, F. Maes, D. Vandermeulen, and P. Suetens. A unifiying framwork

for partial volume segmentation of brain MR images. IEEE Transactions on Medical

Imaging, 22(1):105–119, 2003.

[82] M. Levoy. Display of surfaces from volume data. ACM SIGGRAPH, pages 29–37,

1988.

[83] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics,

9(3):245–261, July 1990.

[84] Z. Liang, S. Lakare, M. Wax, D. Chen, J. Anderson, A. Kaufman, and D. Harrington.

A pilot study on less-stressful bowel preparation for virtual colonoscopy screening

with follow-up biopsy by optical colonoscopy. SPIE Medical Imaging, 5746:810–

816, 2005.

[85] B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction to Volume Rendering. Prentice

Hall, 1998.

[86] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. ACM SIGGRAPH, pages 163–169, 1987.

[87] J. S. Mandel, J. H. Bond, T. R. Church, D. C. Snover, G. M. Bradley, L. M. Schuman,

and F. Ederer. Reducing mortality from colorectal cancer by screening for fecal

occult blood. New England Journal of Medicine, 328(19):1365–1371, 1993.

[88] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A system for

programming graphics hardware in a C-like language. ACM SIGGRAPH, pages

896–907, 2003.

[89] C. R. Maurer, R. Qi, and V. Raghavan. A linear time algorithm for computing ex-

act euclidean distance transforms of binary images in arbitrary dimensions. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25(2):265–270, 2003.

[90] N. Max. Optical models for direct volume rendering. IEEE Transactions on Visual-

ization and Computer Graphics, pages 100–107, 1995.

[91] B. Mora, J. P. Jessel, and R. Caubet. A new object-order ray-casting algorithm. IEEE

Visualization, pages 203–210, Oct. 2002.

BIBLIOGRAPHY 103

[92] K. Mori, Y. Hayahsi, Y. Suenaga, J. Toriwaki, J. Hasegawa, K. Katada, C. Chen, and

A. Clough. A method for detecting unobserved regions in virtual endoscopy system.

SPIE Medical Imaging, 4321:134–145, 2001.

[93] M. M. Morrin and J. T. LaMont. Screening virtual colonoscopy – ready for prime

time? The New England Journal of Medicine, 349(23):2261–2264, 2003.

[94] B. Morson. The evolution of colorectal carcinoma. Clinical radiology, 35:425–431,

1984.

[95] S. Muraki, M. Ogata, K.-L. Ma, K. Koshizuka, K. Kajihara, X. Liu, Y. Nagano,

and K. Shimokawa. Next generation supercomputing using PC clusters with volume

graphics hardware devices. IEEE Supercomputing, pages 51–58, Nov. 2001.

[96] J. Näppi, H. Frimmel, A. Dachman, and H. Yoshida. Computerized detection of

colorectal masses in CT colonography based on fuzzy merging and wall-thickening

analysis. Medical Physics, 31:860–872, 2004.

[97] J. Näppi and H. Yoshida. Feature-guided analysis for reduction of false positives in

cad of polyps for CT colonography. Medical Physics, 30:1592–1601, 2003.

[98] D. Paik, C. Beaulieu, R. Jeffery, G. Rubin, and S. Napel. Automated flight path

planning for virtual endoscopy. Medical Physicis, 25(5):629–637, 1998.

[99] D. S. Paik, C. F. Beaulieu, R. B. J. Jeffrey, C. A. Karadi, and S. Napel. Visualization

modes for CT colonography using cylindrical and planar map projections. Journal

of Computer Assisted Tomography, 24:179–188, 2000.

[100] D. S. Paik, C. F. Beaulieu, G. D. Rubin, B. Acar, R. B. Jeffery, J. Yee, J. Dey,

and S. Napel. Surface normal overlap: a computer-aided detection algorithm with

application to colonic polyps and lung nodules in helical CT. IEEE Transactions on

Medical Imaging, 23(6):661–675, June 2004.

[101] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray tracing

for isosurface rendering. IEEE Visualization, pages 233–238, Oct. 1998.

[102] P. Pescatore, T. Glucker, J. Delarive, R. Meuli, D. Pantoflickova, B. Duvoisin,

P. Schnyder, A. Blum, and G. Dorta. Diagnostic accuracy and interobserver agree-

ment of ct colonography. Gut, 47(1):126–130, 2000.

[103] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The volumepro real-

time ray-casting system. ACM SIGGRAPH, pages 251–260, July 1999.

[104] H. Pfister, B. Lorensen, C. Baja, G. Kinklmann, W. Schroeder, L. S. Avila, K. Martin,

R. Machiraju, and J. Lee. Visualization viewpoints: The transfer function bake-off.

IEEE Computer Graphics and Applications, 21(3):16–23, 2001.

BIBLIOGRAPHY 104

[105] P. Pickhardt, A. Taylor, and D. Gopal. Surface visualization at 3D endoluminal CT

colonography: Degree of coverage and implications for polyp detection. Gastroen-

terology, 130:1582–1587, 2006.

[106] P. J. Pickhardt. Translucency rendering in 3D endoluminal CT colonography: A use-

ful tool for increasing polyp specificity and decreasing interpretation time. American

Journal of Roentgenology, 183(2):429 – 436, 2004.

[107] P. J. Pickhardt and J.-H. R. Choi. Electronic cleansing and stool tagging in CT

colonography: Advantages and pitfalls with primary three-dimensional evaluation.

American Journal of Roentgenology, 181:799–805, 2003.

[108] P. J. Pickhardt, J. R. Choi, I. Hwang, J. A. Butler, M. L. Puckett, H. A. Hildebrandt,

M. Roy K. Wong, P. A. Nugent, P. A. Mysliwiec, and W. R. Schindler. Computed

tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic

adults. New England Journal of Medicine, 349(23):2191–2200, 2003.

[109] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conju-

gates. Experimental Mathematics, 2(1):15–36, 1993.

[110] J. N. Reddy. An Introduction to Nonlinear Finite Element Analysis. Oxford Univer-

sity Press, 2004.

[111] D. K. Rex, C. S. Cutler, G. T. Lemmel, E. Y. Rahmani, D. W. Clark, D. J. Helper,

G. A. Lehman, and D. G. Mark. Colonoscopic miss rates of adenomas determined

by back-to-back colonoscopies. Gastroenterology, 112(1):24–28, 1997.

[112] R. Sadleir and P. Whelan. Fast colon centerline calculation using optimized 3D

topological thinning. Computerized Medical Imaging and Graphics, 29:251–258,

2005.

[113] Y. Sato, C. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura, and R. Kikinis.

Tissue classification based on 3d local intensity structures for volume rendering.

IEEE Transactions on Visualization and Computer Graphics, 6(2):160–180, 2000.

[114] S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of dual grids.

Pacific Graphics, pages 70–76, 2004.

[115] R. Schoen and S.-T. Yau. Lectures on Harmonic Mpas. International Press, 1997.

[116] W. Sidney. Screening of colorectal cancer. The Surgical clinics of North America,

14:699–722, 2005.

[117] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexiable volume ren-

dering framework for graphics-hardware-based raycasting. International Workshop

on Volume Graphics, pages 187–195, 2005.

BIBLIOGRAPHY 105

[118] M. Strengert, M. Magallon, D. Weiskopf, S. Guthe, and T. Ertl. Hierarchical visual-

ization and compression of large volume datasets using GPU clusters. Eurographics

Symposium on Parallel Graphics and Visualization, pages 41–48, 2004.

[119] K. R. Subramanian and D. S. Fussell. Applying space subdivision techniques to

volume rendering. IEEE Visualization, pages 150–159, 1990.

[120] J. Suh and C. Wyatt. Deformable registration of supine and prone ccolons using

centerline analysis. IEEE International Symposium on Biomedical Imaging, pages

708–711, 2007.

[121] R. Summers. Navigational aids for real-time virtual bronchoscopy. American Jour-

nal of Roentgenology, 168:1165–1170, 1997.

[122] R. M. Summers, C. D. Johnson, L. M. Pusanik, J. D. Malley, A. M. Youssef, and

J. E. Reed. Automated polyp detection at CT colonography: Feasibility assessment

in a human population. Radiology, 219(1):51–59, 2001.

[123] C. Tomasi and S. B. Göktürk. A graph method for the conservative detection of

polyps in the colon. 2nd International Symposium on Virtual Colonoscopy, 2000.

[124] D. Vining, Y. Ge, D. Ahn, and D. Stelts. Virtual colonoscopy with computer-assisted

polyps detection. Computer-Aided Diagnosis in Medical Imaging, pages 445–452,

1999.

[125] M. Wan, F. Dachille, K. Kreeger, S. Lakare, M. Sato, A. Kaufman, M. Wax, and

J. Liang. Interactive electronic biopsy for 3D virtual colonoscopy. SPIE Medical

Imaging, 4321:483–488, 2001.

[126] M. Wan, Z. Liang, Q. Ke, L. Hong, I. Bitter, and A. Kaufman. Automatic cen-

terline extraction for virtual colonoscopy. IEEE Transactions on Medical Imaging,

21:1450–1460, Dec. 2002.

[127] G. Wang, S. B. Dave, B. P. Brown, Z. Zhang, E. G. McFarland, J. W. Haller, and

M. W. Vannier. Colon unraveling based on electronic field: Recent progress and

future work. SPIE Medical Imaging, 3660:125–132, 1999.

[128] G. Wang, E. G. McFarland, B. P. Brown, and M. W. Vannier. GI tract unraveling

with curved cross section. IEEE Transactions on Medical Imaging, 17:318–322,

Apr. 1998.

[129] G. Wang and M. W. Vannier. GI tract unraveling by spiral CT. SPIE Medical

Imaging, 2434:307–315, 1995.

[130] Z. Wang, Z. Liang, L. Li, X. Li, B. Li, J. Anderson, and D. Harrington. Reduc-

tion of false positives by internal features for polyp detection in CT-based virtual

colonoscopy. Medical Physics, 32(12):3602–3616, 2005.

BIBLIOGRAPHY 106

[131] Z. Wang, Z. Liang, X. Li, L. Li, D. Eremina, and H. Lu. An improved electronic

colon cleansing method for detection of colonic polyps by virtual colonoscopy. IEEE

Transactions on Biomedical Engineering, 53:1635–1646, 2006.

[132] R. Westermann and B. Sevenich. Accelerated volume ray-casting using texture map-

ping. IEEE Visualization, pages 271–278, Oct. 2001.

[133] L. Westover. Footprint evaluation for volume rendering. Computer Graphics,

24(4):367–376, Aug. 1990.

[134] J. Wilhelms and A. V. Gelder. Octrees for faster isosurface generation. ACM Trans-

actions on Graphics, 11:201–227, July 1992.

[135] J. Yao, M. Miller, M. Franaszek, and R. Summers. Colonic polyp segmentation in

CT colonoscopy-based on fuzzy clustering and deformable models. IEEE Transac-

tions on Medical Imaging, 23:1344–1352, 2004.

[136] H. Yoshida, Y. Masutani, P. MacEneaney, D. T. Rubin, and A. H. Dachman. Comput-

erized detection of colonic polyps in CT colonography based on volumetric features:

A pilot study. Radiology, pages 327–336, Jan. 2002.

[137] H. Yoshida and J. Näppi. Three-dimensional computer-aided diagnosis scheme for

detection of colonic polyps. IEEE Transactions on Medical Imaging, 20(12):1261–

1274, 2001.

[138] M. Zalis, J. Perumpillichira, and P. hahn. Digital subtraction bowel cleansing for

CT colonography using morphological and linear filteration methods. IEEE Trans-

actions on Medical Imaging, 23(11):1335–1343, 2004.

[139] N. Zhang, W. Hong, and A. Kaufman. Dual contouring with topolgy-preserving

simplification using enhanced cell representation. IEEE Visualization, pages 505–

512, 2004.

[140] N. Zhang, H. Qu, W. Hong, and A. Kaufman. SHIC: A view-dependent rendering

framework for isosurfaces. IEEE/SIGGRAPH Symposium on Volume Visualization,

pages 63–70, 2004.

[141] Z. Zhang, G. Wang, B. Brown, E. Mcfarland, J. Haller, and M. Vannier. Fast al-

gorithm for soft straightening of the colon. Academic Radiology, pages 142–148,

2000.

[142] Z. Zhang, G. Wang, B. Brown, and M. Vannier. Distortion reduction for fast soft

straightening of the colon. Academic Radiology, pages 506–515, 2000.

	 List of Tables
	 List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Virtual Colonoscopy
	1.2.2 Computer-Aided Detection
	1.2.3 Virtual Dissection
	1.2.4 Direct Volume Rendering

	1.3 Contributions
	1.4 Outline

	2 Colonoscopy Simulation
	2.1 Introduction
	2.2 Fisheye Camera Calibration
	2.3 Optical Colonoscopy Simulation
	2.4 Virtual Colonoscopy Simulation
	2.5 Results
	2.6 Conclusions

	3 Segmentation and Digital Cleansing
	3.1 Introduction
	3.2 Partial Volume Segmentation
	3.3 Topological Denoising
	3.3.1 Surface-based Method
	3.3.2 Volume-based Method

	3.4 Conclusions

	4 Conformal Virtual Colon Flattening
	4.1 Introduction
	4.2 Conformal Flattening
	4.2.1 Riemann Surface Theory
	4.2.2 Flattening Algorithm

	4.3 Visualization of the Flattened Colon
	4.3.1 Camera Registration
	4.3.2 Volumetric Ray-Casting

	4.4 Implementation and Results
	4.4.1 Preprocessing
	4.4.2 Discussion

	4.5 Conclusions

	5 Volumetric Ray-Casting
	5.1 Introduction
	5.2 Object-Order GPU Ray-Casting
	5.2.1 Cell Projection
	5.2.2 Cell Sorting
	5.2.3 Implementation and Results

	5.3 Hybrid Volumetric Ray-Casting
	5.3.1 Ray Determination
	5.3.2 Multi-pass Slab Rendering
	5.3.3 Hole Filling
	5.3.4 Dynamic Workload Balancing
	5.3.5 Implementation and Results

	5.4 Conclusions

	6 Computer Aided Polyp Detection
	6.1 Introduction
	6.2 Our CAD Pipeline
	6.2.1 Segmentation and Digital Cleansing
	6.2.2 Colon Surface Extraction
	6.2.3 Conformal Virtual Colon Flattening
	6.2.4 2D Electronic Biopsy Image Generation
	6.2.5 Clustering
	6.2.6 Reduction of False Positives

	6.3 Integration with Virtual Colonoscopy
	6.3.1 Polygonal Assisted Volume Rendering
	6.3.2 Enhanced Virtual Colonoscopy

	6.4 Results
	6.5 Conclusions

	7 Conclusions
	7.1 Summary
	7.2 Near Future Work
	7.2.1 General Volume Processing Framework
	7.2.2 Volume Rendering for Very Large Data Sets
	7.2.3 Unified Colon Flattening
	7.2.4 Conformal Volumetric Colon Flattening
	7.2.5 Automatic Transfer Function Generation for Polyp Detection
	7.2.6 Supine and Prone Registration
	7.2.7 Image-based Path Planning

	7.3 Long-term Future Work

	 Bibliography

