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Abstract of the Dissertation

Structure Assignments to Excited States of
Heavy Nuclei from Lifetime Information

by

Alin Vasile Costin

Doctor of Philosophy

in

Physics

Stony Brook University

2008

The discovery of the neutron in 1932 led way to a series of suc-

cessful nuclear models. The first of them, the Liquid Drop Model,

describes a few basic nuclear properties such as binding energy

and level density. It was followed by what is today considered the

fundamental microscopic nuclear model, the Shell Model, which

suggests that protons and neutrons move in well defined orbits,

similar to electrons in atoms. With the development of nuclear

structure in medium and heavy nuclei far from closed shells, more

reliable approaches such as collective models have been proposed.

They bypass the shell model by stressing the macroscopic motions,
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rotations or vibrations, and excitations of a nucleus having a spe-

cific shape or by exploiting the dynamical symmetry structure of

nuclei. One class is referred to as geometrical models and the

other as algebraic models, respectively. The derivation of the Bohr

Hamiltonian, a part of the Bohr-Mottelson geometrical model, is

presented at the beginning of Chapter 1. The Bohr Hamiltonian is

the starting point for the critical point symmetry X(5). The devel-

opment of the X(5) model was prompted by evidence of nuclei dis-

playing shape phase transition properties between the vibrational

and rotational benchmarks of nuclear structure. The second part

of Chapter 1 deals with the Confined β-soft Rotor Model (CBS), an

interpolation between the spherical-to-deformed critical point ap-

proximation X(5) and the rigid rotor limit. After looking into the

analytical formulation of the CBS, some predictions and compar-

isons with experiment are given. A key prediction is the increase

in average deformation of nuclei with angular momentum, phe-

nomenon referred to as centrifugal stretching. This phenomenon is

observed in nuclei close to the phase transition region. Pushing the

observations of centrifugal stretching toward the region of strongly

deformed nuclei is the intended purpose behind this Thesis work.

Absolute transition rates provide an important insight into the

properties of nuclear many-body systems. They are sensitive to

fundamental interactions, like the electro-weak interaction in β-

and γ-decay processes or the strong interaction in α-decay and fis-
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sion processes, through the wave functions of the nuclear states

involved in the transition. In this context, a major effort is placed

in the measurement of lifetimes of these nuclear states, as one of

the ways of determining the transition rates. The range over which

lifetimes have been measured spans more than 40 orders of mag-

nitude, starting from the very long lifetime of the α-emitter 209Bi

(τ = 2.0×1019 y) to very short decay processes, such as the α-decay

of the 8Be ground state (τ = 1.0×10−19 s). Due to this large span,

different timing methods were developed which cover certain time

ranges. Chapter 2 and 3 summarize two direct timing techniques,

delayed coincidence timing and recoil distance Doppler shift timing

respectively, both of which were used in experiments connected to

the purpose of this Thesis. The principle of the delayed coinci-

dence timing consists of measuring the distribution of time delays

between the formation and subsequent decay of the nuclear state

of interest. The two most common analysis methods of delayed

coincidence data, the slope method and the centroid shift method

are summarized. The principle of the recoil distance Doppler shift

timing consists of measuring the change in intensities of unshifted

and Doppler shifted peaks with changing distance between a tar-

get and a stopper. The description of the plunger and the general

formulation of the differential decay curve method for analysis of

recoil distance data are also given in Chapter 3.

New, more precise lifetime measurements were performed on
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ground state levels of 168Hf and 170Hf for a precision test of the

CBS rotor model. Their experimental details, data analysis and

results are presented in Chapter 4. The discussion of these results

represents the content of Chapter 5.
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1

Chapter 1

The Confined β-soft Rotor Model

The content of this chapter is largely based on material taken from Refs.

[1, 2, 3].

1.1 Introduction

The Liquid Drop Model (LDM) has been the first successful nuclear model.

Formulated by N. Bohr [4, 5], the LDM treats the nucleus as a drop of in-

compressible fluid made of nucleons held together by the strong force. The

fundamental modes of nuclear excitation correspond to collective types of mo-

tion, such as surface oscillations and elastic vibrations. The LDM has found

numerous applications in the theory of nuclear reactions. The model gives an

explanation of the rapid increase of level density with increasing excitation

of the nucleus and also accounts for certain static properties of the nucleus.

Thus, the binding energy of the nuclear droplet is expressed analytically as

a sum of five terms in the semi-empirical mass formula of Weizsäcker. An

important application of the Weizsäcker formula was in the analysis of nuclear
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fission [6, 7]. While successful in predicting the binding energy of heavier nu-

clei, the formula fails to deliver accurate results for lighter nuclei because the

LDM does not consider the internal shell structure of nuclei.

The Shell Model (SM) was developed independently in the late 1940s by

M. G. Mayer [8] and J. H. D. Jensen [9, 10, 11] and is now considered the

fundamental microscopic nuclear model phenomenologically using the protons

and neutrons as the relevant degrees of freedom. Experimental evidence that

the nucleons, like electrons in atoms, move in well defined orbits was the origin

of the SM. This is a surprising finding because it suggests that nucleons move

rather freely in the interior of the nucleus despite the very strong nuclear force.

The SM has proven very successful in describing, from a microscopic point of

view, far more properties of nuclei with few valence nucleons, than the LDM:

energy levels, electromagnetic transition probabilities, quadrupole moments,

beta-decay rates, reaction cross-sections etc. It provides a well-defined pro-

cedure, with only a few basic ingredients (some single-particle energy levels

and the residual interaction), for the calculation of these observables. Unfor-

tunately, the use of the shell model is, in practice, severely limited. Except

for very light nuclei and those very near closed shells, SM calculations involve

matrices with sizes that rapidly become enormous, due to increasing valence

nucleons or model space. Even for a few valence nucleons in several j orbits,

one can construct hundreds of states of a given Jπ value and the results are

difficult to interpret physically. Nevertheless, since the SM is the only broadly

applicable microscopic model available, it is the standard against which others

are compared.
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With the development of nuclear structure in medium and heavy nuclei

far from closed shells where the SM is either intractable or unreliable, new

theoretical approaches have been developed. A significant class represents the

geometrical or collective models which bypass the shell model by stressing the

macroscopic motions, rotations or vibrations, and excitations of a nucleus hav-

ing a specific shape. It is an undeniable experimental fact, e.g. the quadrupole

moments observed for many nuclei are too large to be accounted for in terms of

individual nucleons, that many nuclei show evidence of collective behavior that

seems to contradict the concept of a shell structure. Despite all the predictive

power and success of collective models, it was a critical issue whether or not

such structures can be derived microscopically from the shell model. Indeed,

it was demonstrated in the early 1960s that macroscopic collectivity could re-

sult from the shell model with appropriate realistic residual interactions. The

method is called Random Phase Approximation (RPA). The collective model

of Bohr and Mottelson [1, 12, 13, 14] will be briefly discussed in the next

section, as a basis for the subsequent discussion of the Confined β-soft Rotor

Model (CBS) [2] which is the underlying model behind this thesis work.

Another class of models developed more recently takes a different approach

to collective behavior in nuclei. It exploits the dynamical symmetry structure

of nuclei and utilizes powerful group theoretical techniques to obtain many

nuclear properties by simple algebraic manipulations. Of these, the most tested

and successful to date has been the Interacting Boson Approximation (IBA).

IBA was proposed by Arima and Iachello in 1974 [15] and further developed

in the following years [16, 17, 18]. The existence and role of symmetries in
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the IBA framework represent its most unique and characteristic feature. There

are three of these symmetries, called dynamical symmetries, that are physically

interesting, known by the labels U(5), SU(3) and O(6). Their description is

simple and analytic, they have clear geometrical relationships and physical

interpretations [U(5) corresponds to spherical harmonic vibrator, SU(3) to

axially symmetric rotor and O(6) to axially asymmetric shapes] and their

predictions depend on a minimum of parameters.

It should be stressed that IBA is a model for collective behavior. One

usually refers to collective models of the Bohr-Mottelson type as “geometric”

models and those of the group theory-based class as “algebraic” models. In

this sense, IBA provides an alternative to the situation in which a number of

geometrical models, each applicable to a different structure, would be applied

according to the empirically observed characteristics. Despite its phenomeno-

logical character, IBA has a microscopic aspect since the key ingredient of its

formalism is the number of valence nucleons available and a substantial part

of the predicted structural changes across a major shell arise automatically

from the change in this number.

Although in general the analytical approach fails to describe nuclei with

structures intermediate between two symmetries, the symmetries act as bench-

marks for more detailed calculations. Moreover, the critical point symmetries

with exact analytical solutions E(5) [19] and X(5) [20] have been identified

by Iachello at phase transition regions between U(5) and O(6), and U(5) and

SU(3) dynamical symmetries, respectively.

The three classes of models shortly introduced here - shell, geometric and
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algebraic - are as many tools with which one can solve basic problems of nuclear

structure. Although they are different in certain important details, they reflect

three approaches to nuclear structure that emphasize complementary aspects

of nuclear phenomena.

1.2 Nuclear Collectivity

A derivation and thorough understanding of the Bohr Hamiltonian [1]

which is the starting point to the CBS model will be attempted in this section.

The importance of taking into account the collective aspects of the nuclear

structure was mentioned in the previous section. The various collective prop-

erties of a nucleus are an effect of a deformable surface. It is more appropriate

to describe these properties using a Hamiltonian expressed in terms of the

macroscopic coordinates of the system, such as radius, mass and volume. In

the following, the Hamiltonian of the nuclear surface will be derived using the

classical approach of the theory of nuclear surface oscillations. The quantum

mechanical equivalent will be then obtained by means of quantization.

The surface of the nucleus away from its equilibrium spherical shape, in

polar coordinates, may be described in the following way:

R(θ, φ; t) = R0

{

1 +
∑

λ,µ

αλµ(t)Yλµ(θ, φ)

}

, (1.1)

where R0 is the equilibrium radius, the expansion parameters αλµ(t) are the

coordinates which describe the deformation of the nuclear surface and Yλµ(θ, φ)

are the normalized spherical harmonics of order λ, µ, with 2λ+ 1 values of µ:
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−λ, −λ+1,. . ., λ−1, λ. Since R(θ, φ; t) is real, using the property of spherical

harmonics that

Y ∗
λµ(θ, φ) = (−1)µYλ,−µ(θ, φ), (1.2)

the number of independent shape parameters αλµ(t) becomes smaller according

to

αλµ(t) = (−1)µα∗
λ,−µ(t). (1.3)

The change in both kinetic and potential energy of the nucleus is related to

the nuclear shape: nucleons move from a location to another and the potential

energy increases or decreases when a change of shape occurs. As a result,

the energy associated with oscillatory motion may be discussed in terms of

variations in time in the shape parameters αλµ(t) and they also become the

appropriate canonical variables of motion, rather than, for example, the coor-

dinates specifying the position of each nucleon. For small αλµ(t), the kinetic

energy of deformation takes the form

T =
1

2

∑

λ,µ

Bλ |α̇λµ|2 , (1.4)

where Bλ plays a role equivalent to mass from ordinary kinetic energy. For

an incompressible nucleus of constant density ρ0, assuming nuclear matter to

have irrotational flow,

Bλ =
ρ0R

5
0

λ
. (1.5)

The associated potential energy is given by

V =
1

2

∑

λ,µ

Cλ |αλµ|2 , (1.6)
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where Cλ is connected to the surface and Coulomb energies of the nucleus from

LDM by (Ref. [14], p. 660)

Cλ =
1

4π
(λ− 1) (λ+ 2)α2A2/3 −

3

2π

λ− 1

2λ+ 1
α3
Z(Z − 1)

A1/3

, (1.7)

with α2 and α3 the surface and Coulomb energy parameters of the Weizsäcker

formula (Ref. [21], p. 140).

The Hamiltonian of the nuclear surface, for an excitation of order λ, takes

the form

Hλ = T + V =
∑

µ

(

Bλ

2
|α̇λµ|2 +

Cλ

2
|αλµ|2

)

. (1.8)

Analysis of excitations of order zero and one will not be included in the present

discussion. Monopole oscillations (λ = 0) involve only variations in size with-

out changes to the overall shape while dipole oscillations (λ = 1) represent just

translations of the nucleus center of mass relative to a fixed reference frame.

The really interesting physical case is the quadrupole oscillation (λ = 2). This

degree of freedom is capable of exhibiting both rotational and vibrational sep-

arations in kinetic energy. Figure 1.1 depicts the above mentioned collective

modes. For small values of α, deformations of order λ = 2 represent an el-

lipsoid oriented randomly in space. Since the orientation is immaterial as far

as the intrinsic nuclear shape is concerned, it is convenient to characterize the

deformation by three Euler angles, (θi) = (θ1, θ2, θ3) = (θ, ϕ, ψ), specifying

the orientation of the ellipsoid and two internal parameters determining its

shape, instead of the five α2µ coordinates. This may be expressed formally by

transforming the coordinate system K to one fixed with the nucleus, K
′

(θ, ϕ

represent the polar angles of the z′-axis in the K-system, while θ, π − ψ are
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Quadrupole vibration

Monopole vibration

Dipole vibration

Quadrupole rotors

Figure 1.1: Schematic illustration of several collective oscillation modes. While

it would be difficult to represent quadrupole rotations, the two equilibrium

shapes of quadrupole rotors are shown in the last row: oblate on the left, and

prolate rotor on the right. The rotation takes place around an axis perpendic-

ular to the symmetry axis.

the polar angles of the z-axis in the K ′-system). The deformation defined by

α2µ in K is given in K
′

by the coefficients

a2ν =
2

∑

µ=−2

α2µD
2
µν(θi), (1.9)

where D2
µν(θi) are the unitary rotation matrices of order 2 (see [21], p. 399),

also known as Wigner D-matrices. Since there are only two degrees of freedom

left, the body-fixed shape parameters a2ν have the following properties

a2,−1 = a2,1 = 0 a2,−2 = a2,2 . (1.10)
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In the remainder of the analysis we drop the index 2. Taking the inverse of

Eq. (1.9) we obtain

αµ =
2

∑

ν=−2

aνD
∗
µν(θi). (1.11)

Instead of the two nonvanishing intrinsic deformation variables a0 and a2, it is

convenient to use the Hill-Wheeler variables β and γ, defined by the relations

a0 = β cosγ a−2 = a2 =
1√
2
β sinγ . (1.12)

From the definitions given by Eq. (1.12), it can be seen that the parameter β

provides a measure of the extent of deformation and γ, of the departure from

axial symmetry. There are different conventions for the ranges of the β and

γ variables. The most used one is the Lund convention in which β ≥ 0 and

−120◦ ≤ γ ≤ −60◦ if the rotation is around the largest axis, −60◦ ≤ γ ≤ 0◦ if

the rotation is around the intermediate axis and 0◦ ≤ γ ≤ 60◦ if the rotation

is around the smallest axis. An alternate convention is that γ ranges from

0◦ (axially symmetric) to 30◦ (maximum axial asymmetry) and that prolate

nuclei have β > 0, while oblate nuclei have β < 0. The relation between β,

γ and the nuclear radii can be seen in the increments of the three axes of the

ellipsoid given by

δRκ =

√

5

4π
β R0 cos

(

γ − κ
2π

3

)

, (1.13)

where κ = 1, 2, 3 for the x
′

, y
′

and z
′

axes of the K
′

coordinate system. The

five shape and angular coordinates β, γ, θi will be referred to as βµ. This

set is not unique. A given deformation αµ only specifies the three symmetry

planes of the ellipsoid, but the labeling of the intrinsic axes is arbitrary. The
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Hamiltonian and the wave functions must be invariant with respect to the

symmetry operations that correspond to a relabeling of the intrinsic axes.

By differentiating Eq. (1.11) with respect to time

α̇µ =
∑

ν

ȧνD
∗
µν(θi) +

∑

ν,j

aν θ̇j
∂

∂θj
D∗

µν(θi) (1.14)

and introducing α̇µ in Eq. (1.4), the kinetic energy splits into three terms.

The term quadratic in ȧν represents vibrations by which the ellipsoid changes

its shape, but retains its orientation and is therefore the vibrational energy of

the oscillations. The term quadratic in θ̇i represents a rotation of the ellipsoid

without change of shape and is the rotational energy of the oscillations. It can

be shown from the properties of the Dµν-functions and their derivatives that

the third term in ȧν θ̇i vanishes. We may thus write

T = Tvib + Trot (1.15)

with

Tvib =
1

2
B

∑

ν

|ȧν |2 =
1

2
B

(

β̇2 + β2γ̇2
)

(1.16)

easily calculated due to the unitary character of Dµν, and

Trot =
1

2

∑

κ

Iκ(β, γ)ω
2
κ (1.17)

(see [1], p.12, for a more detailed derivation of Trot) where Iκ are the moments

of inertia given by

Iκ(β, γ) = 4Bβ2sin2

(

γ − κ
2π

3

)

(1.18)

and

ωκ =
∑

j

ωκj θ̇j (1.19)
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denote the components of the angular velocity on the three intrinsic axes of the

ellipsoid. With our choice of rotations mentioned before, the matrix elements

ωκj are








sinψ −cosψ 0

sinθcosψ sinθsinψ cosθ

0 0 1









. (1.20)

The rotational energy may also be written as

Trot =
1

2

∑

κ

M2
κ

Iκ
, (1.21)

where Mκ are the projections of the angular momentum on the intrinsic axes

of the oscillating nucleus. By comparing (1.17) with (1.21), one observes that

Mκ = Iκωκ . (1.22)

The potential energy of deformation takes the form

V =
1

2
C

∑

ν

|aν|2 =
1

2
Cβ2 . (1.23)

With this last result it is possible now to write the classical Hamiltonian of

the nuclear surface in the new coordinates βµ

Hs =
1

2
B

(

β̇2 + β2γ̇2
)

+
1

2

∑

κ

M2
κ

Iκ
+

1

2
Cβ2 . (1.24)

It has been shown by Podolsky [22] that the quantization rule is not suffi-

cient to obtain the kinetic energy operator from the classical Hamiltonian. To

construct the correct Schrödinger equation in an arbitrary set of coordinates,

the Laplace-Beltrami operator multiplied with −h̄2/2 has to be used as the

appropriate form for the quantum mechanical kinetic energy operator. The
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potential energy V is not a function of momenta and will therefore be identical

with its classical form. The Hamiltonian of the nuclear surface now takes the

form

Hs = T + V = − h̄
2

2

∑

µν

g−1/2 ∂

∂βµ
g1/2gµν ∂

∂βν
+ V , (1.25)

where g is the determinant of the 5-dimensional metric tensor (g)µν defined by

ds2 =
∑

µν

gµνdβµdβν = 2Tdt2 , (1.26)

and gµν = (g−1)µν . Replacing T in the previous equation with the explicit

form given by (1.16), (1.17), (1.18) and (1.19), one can identify the elements

and construct the metric tensor (g)µν and its inverse. Its determinant is found

to be

g = 4B5β8sin23γ sin2θ . (1.27)

After carefully performing the calculations suggested by (1.25), one obtains

the well-known form of the Hamiltonian derived by Bohr [1]

Hs = − h̄2

2B

[

1

β4

∂

∂β
β4 ∂

∂β
+

1

β2sin3γ

∂

∂γ
sin3γ

∂

∂γ

− 1

4β2

∑

κ

Q2
κ

sin2
(

γ − κ2π
3

)

]

+ V , (1.28)

with Qκ the quantum mechanical intrinsic angular momentum operators ex-

pressed as differential operators of θi:


















































Q1 = −ih̄
(

sinψ
∂

∂θ
+

cosψ

sinθ

∂

∂ϕ
− cosθcosφ

sinθ

∂

∂ψ

)

Q2 = −ih̄
(

−cosψ
∂

∂θ
+

sinψ

sinθ

∂

∂ϕ
− cosθsinφ

sinθ

∂

∂ψ

)

Q3 = −ih̄ ∂

∂ψ

(1.29)
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They are related to Mκ by

Mκ = h̄Qκ . (1.30)

The differential operators for the kinetic energy correspond to wave func-

tions normalized with respect to the volume element

dτ = β4dβ |sin3γ|dγ sinθdθ dφ dψ . (1.31)

Next section will deal more closely with solutions of the Bohr Hamiltonian.

1.3 The Confined β-soft Rotor Model

As it was mentioned in the introduction, two approaches to the shape tran-

sition regions between vibrator and γ-soft nuclei [19] on one hand, and vibrator

and prolate deformed nuclei [20] on the other hand, have been developed by

Iachello in the framework of the geometric collective model. The critical point

symmetries E(5) and X(5) investigated in these approaches focus on the β

degree of freedom and are based on a separation of the β degree of freedom

from the γ degree of freedom. They describe nuclei placed at very well defined

’distances’, in terms of the R4/2 = E4+

1
/E2+

1
ratio, from the benchmarks of

nuclear structure: 2.20 and 2.90, respectively, as seen in Fig. 1.2. The param-

eter free (up to overall scale factors) predictions provided by these symmetries

are closely realized in some atomic nuclei [23, 24, 25, 26]. The success of the

E(5) and X(5) models has led to the development of numerous extensions

involving either no free parameters or a single parameter. We discuss here the

confined β-soft (CBS) rotor model [2] which interpolates between X(5) and
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R4/2 =2.0

R4/2 =2.20

R4/2 =2.50

4/2 =2.90R

SU(3)
Prolate Rotor

U(5)
Vibrator

O(6)
γ− unstable

E(5)

X(5) CBS
R4/2 =3.33

Spherical

Prolate deformed

Figure 1.2: Symmetry triangle, also known as the Casten triangle, of the IBA

model. The three dynamical symmetries of the IBA, U(5), O(6) and SU(3), are

indicated at the vertices. These correspond to vibrational nuclei with a spheri-

cal form [U(5)], axially asymmetric rotors with a flat potential in γ [O(6)] and

axially symmetric prolate rotors with a minimum at γ = 0◦ [SU(3)]. The crit-

ical point symmetries E(5) and X(5) occur on the U(5)-O(6) and U(5)-SU(3)

legs of the triangle, respectively. An interpolation between X(5) and SU(3) has

been achieved in the framework of the CBS model. Most nuclei inhabit the

interior of the Casten triangle.

the rigid rotor [SU(3)] limit (see Fig. 1.2) by using in the X(5) framework

infinite square-well potentials in the quadrupole deformation parameter β with

boundaries allowed to vary in the range 0 ≤ βm ≤ β ≤ βM . The model con-

tains one free parameter rβ = βm/βM ∈ [0, 1]. The limiting case with rβ = 0

corresponds to the original X(5) model, and rβ → 1 leads to the rigid rotor
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[SU(3)] limit. The potential in the γ degree of freedom is assumed to be a

harmonic oscillator.

As in [20], we consider the case in which the potential V (β, γ) in the Bohr

Hamiltonian (Eq. 1.28) has a minimum at γ = 0◦. The solutions will be of

the form Ψ(βi) = ϕL
K(β, γ)DL

M,K(θi). Around γ = 0◦, the sum in the last term

of Eq. (1.28) can be written as

∑

κ

Q2
κ

sin2
(

γ − κ2π
3

) ' 4

3

(

Q2
1 +Q2

2 +Q2
3

)

+Q2
3

(

1

sin2γ
− 4

3

)

. (1.32)

With this, the Schrödinger equation becomes

{

− h̄2

2B

[

1

β4

∂

∂β
β4 ∂

∂β
+

1

β2sin3γ

∂

∂γ
sin3γ

∂

∂γ
− 1

4β2

(

4

3
L(L + 1)

+ K2

(

1

sin2γ
− 4

3

))]

+ V (β, γ)

}

ϕL
K(β, γ) = EϕL

K(β, γ) . (1.33)

If we now consider potentials V (β, γ) = u(β) + v(γ), the wave functions ap-

proximately separate into Ψ(βi) = ξL(β)ηK(γ)DL
M,K(θi) and Eq. (1.33) can be

split into a “radial” (in the shape parameters)

{

− h̄2

2B

[

1

β4

∂

∂β
β4 ∂

∂β
− 1

3β2
L(L + 1)

]

+ u(β)

}

ξL(β) = EβξL(β) , (1.34)

and an “angular”

{

− h̄2

2B

[

1

〈β2〉 sin3γ

∂

∂γ
sin3γ

∂

∂γ
− 1

4 〈β2〉K
2

(

1

sin2γ
− 4

3

)]

+ v(γ)} ηK(γ) = EγηK(γ) (1.35)

differential equations, where E = Eβ + Eγ and 〈β2〉 is the average of β2 over
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ξ(β). Making the change of variables



























z =
√

2B
h̄2 E β (a)

ξ̃(z) = β3/2ξL[β(z)] (b)

(1.36)

and by setting

ν =

[

L(L+ 1)

3
+

9

4

]1/2

, (1.37)

Eq. (1.34) transforms into the Bessel equation

ξ̃′′ +
ξ̃′

z
+

[

1 − ν2

z2

]

ξ̃ = 0 , (1.38)

with solutions the Bessel functions of the first and second kind, Jν(z) and

Yν(z), respectively, of irrational order ν. The general solutions are a linear

combination of the Bessel-J and Bessel-Y functions:

ξ̃ν(z) ∝ Jν(z) + γY Yν(z) . (1.39)

The boundary conditions imposed by the choice of potential (infinite square-

well) require the wave function to vanish outside the well

ξ̃ν(zm) = ξ̃ν(zM ) = 0 . (1.40)

With the definition of rβ and Eq. (1.36a), the above conditions become

ξ̃ν(rβzM) = ξ̃ν(zM) = 0 , (1.41)

and they determine the relative amplitude

γY =
Jν(zM) − Jν(rβzM)

Yν(rβzM) − Yν(zM)
, (1.42)
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and the quantization condition

Q
rβ
ν (zM) = Jν(zM)Yν(rβzM) − Jν(rβzM )Yν(zM ) = 0 . (1.43)

For each value of ν(L) and rβ, the corresponding zM are obtained as the sth

zero, z
rβ

L,s, of the function Q
rβ
ν (z). The quantum number s counts the number

of nodes of the wave function in β for β > βm. We define as first beta excitation

the 0+
2 state with s = 2.

The normalization constants cL,s are obtained by imposing the condition

∫ βM

βm

β4ξ2
L,s(β)dβ = 1 . (1.44)

Here, the wave functions are normalized with respect to the volume element

in the β degree of freedom suggested by Eq. (1.31). Then, the normalized

eigenfunctions of Eq. (1.34) are

ξL,s(β) = cL,sβ
−3/2

[

Jν

(

z
rβ

L,s

β

βM

)

+ γY Yν

(

z
rβ

L,s

β

βM

)]

, (1.45)

with eigenvalues

Eβ
L,s =

h̄2

2Bβ2
M

(

z
rβ

L,s

)2
(1.46)

and constant

cL,s =

{
∫ βM

βm

β
[

Jν(z
rβ

L,sβ/βM) + γY Yν(z
rβ

L,sβ/βM)
]

dβ

}−1/2

. (1.47)

The parameter Bβ2
M defines the energy scale. The relative excitation energies

depend only on the model parameter rβ. For the ground band we have [27]

RL/2 =
Ex(L

+
1 )

Ex(2
+
1 )

=

(

z
rβ

L,1

)2 −
(

z
rβ

0,1

)2

(

z
rβ

2,1

)2 −
(

z
rβ

0,1

)2 . (1.48)
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The solution to equation (1.35) is identical with the one given in [20]. Let

ṽ(γ) = 2B
h̄2 v(γ) and εγ = 2B

h̄2 Eγ . With the choice of potential mentioned before,

Eq. (1.35) becomes the radial equation of a two dimensional oscillator when

one expands in powers of γ

[

− 1

〈β2〉
1

γ

∂

∂γ
γ
∂

∂γ
+

(K/2)2

〈β2〉
1

γ2
+ (3a)2γ

2

2

]

ηK(γ) = ε̃γηK(γ) , (1.49)

where

ε̃γ = εγ +
4

3

(K/2)2

〈β2〉 . (1.50)

By imposing the normalization condition

∫ π/3

0

|sin3γ| η2
nγ ,K(γ)dγ = 1 , (1.51)

the normalized eigenfunctions of Eq. (1.49) are

ηnγ ,K(γ) = cn,Kγ
|K/2|e−(3a)γ2/2L|K|

n (3aγ2) , (1.52)

where n = (nγ − |K|)/2 and L
|K|
n is a Laguerre polynomial. The eigenvalues

are

ε̃γ =
3a

√

〈β2〉
(nγ + 1) . (1.53)

The quantum number nγ takes the 0, 1, 2, . . . values and is related to the K

quantum number as follows

nγ = 0 K = 0; nγ = 1 K = ±2; nγ = 2 K = 0,±4; . . . (1.54)

The values of L in a sequence s, nγ are determined by K. For K = 0, L =

0, 2, 4, . . . and for K 6= 0, L = K,K + 1, K + 2, . . . [1].
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Combining all results, we obtain the full, properly symmetrized solution to

Eq. (1.33) of the form

Ψs,nγ ,K,L,M(βi) =

√

2L+ 1

8π

[

ϕs,nγ ,K,L(β, γ)DL
M,K(θi)

+ (−1)L+Kϕs,nγ ,−K,L(β, γ)DL
M,−K(θi)

]

. (1.55)

The difference between this solution and the X(5) solution resides only in the

choice of a finite rβ value.

1.3.1 Predictions and Comparisons with Experiment

The structural parameter rβ defines the width of the square-well potential

in the β degree of freedom and thus also the stiffness of the nucleus. The wave

functions with many nodes or those for states with low angular momentum

have larger contributions in the region close to βm than others. In effect,

increasing the value of rβ shifts all levels to higher energy since the potential

narrows, but the most affected will be the aforementioned states. For example,

in the ground band, which comprises all states with s = 1, the energy of the

0+ state increases the most, followed by the energies of the 2+, 4+ states and

so on. The 2+ → 0+ energy difference shrinks by a larger fraction than the

4+ → 0+ difference. Consequently, the R4/2 value increases with rβ until the

rigid rotor limit with R4/2 = 3.33 is reached for rβ → 1. For a given angular

momentum L, the energy increases strongly with s as rβ increases. Therefore,

the ratio R0/2 = E0+

2
/E2+

1
strongly increases with rβ and becomes infinite in

the limit rβ → 1. This behavior is readily noticed in Fig. 1.3.

For a fixed rβ, the average deformation of the wave function increases with
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Figure 1.3: Absolute energies in the CBS rotor model for three widths of the

square-well potential. The values of the structural signatures R4/2 and R0/2

are indicated in green and blue, respectively. The figure was taken from [2].

increasing angular momentum L, as seen in Fig. 1.4. Over the available range

in β, the nucleus gains angular momentum due to centrifugal forces, partially

by increasing its rotational moment of inertia rather than its angular velocity.

We refer to this phenomenon as centrifugal stretching. The effect of stretching

attenuates with increasing stiffness of the potential, up to the limit rβ → 1,

when the nucleus is a rigid rotor and increases its angular momentum solely

by angular velocity.

Table 1.1 compares experimental ground state band energies of three tran-

sitional nuclei, two Sm isotopes and 164Y b, with predictions of X(5), CBS and

Rigid Rotor (RR) models where they are applicable. Since CBS describes the

evolution of collectivity between the other two models, we find its predictions

for all nuclei while one or the other model fails to give good predictions away
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β/βΜ
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ξ2 β4

<β>0+
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rβ=0.45

Figure 1.4: Wave function densities for the 0+ and 10+ states in a potential

characterized by rβ = 0.45. The average deformation 〈β〉 increases by about

5% from the 0+ to the 10+ state due to centrifugal stretching. The figure was

taken from [27].

from their respective R4/2 structural signatures. CBS predicts the energies of

each ground state level with less than 5% error, with the accuracy increasing

as rβ → 1. It has been demonstrated in [27] that the analytical energy for-

mula of CBS systematically predicts ground state bands (at least up to the

10+ state) of strongly deformed even-even nuclei in the rare-earth and actinide

regions with R4/2 > 3.30 within a precision of about 1/1000, one to two orders

of magnitude more precise than RR.

Model predictions based on energies alone are not enough to validate the

CBS model, or for that matter, any other model based on solutions of the

Bohr Hamiltonian. An important test for the applicability of the CBS model

to transitional and near rigid nuclei is the comparison of its predicted B(E2)

with experimental values. The E(2) transition operator for β excitations with
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Table 1.1: Slightly modified version of Table I from [2] with ground state band

energies in 152,154Sm, and 164Yb compared to relevant analytical models, X(5),

CBS, and the RR model, where those apply. Structural parameters rβ and

signatures R4/2 are also given. Neither X(5) nor RR can competitively de-

scribe 164Yb with an R4/2 value in the middle between the X(5) and the rotor

predictions.

152Sm 154Sm 164Yb

J X(5) Exp. CBS RR Exp. CBS Exp. CBS

rβ = 0.14 rβ = 0.35 rβ = 0.23

R4/2 2.90 3.01 3.01 3.33 3.26 3.27 3.13 3.13

2+
1 122 122 122 82 82 82 123 123

4+
1 354 366 367 273 267 267 386 386

6+
1 661 707 695 574 544 544 760 753

8+
1 1033 1125 1093 984 903 901 1223 1202

10+
1 1465 1609 1554 1503 1333 1325 1753 1723

12+
1 1954 2149 2077 2131 1826 1810 2330 2315

nγ = 0 takes the form [2]

T∆K=0
µ (E2) = eeff

[

β

βM
+ χ

(

β

βM

)2
]

D2
µ0 , (1.56)

where the effective charge

eeff = e(1)βM 〈cosγ〉γ (1.57)

and

χ = −
√

2

7
e(2)βM

〈cos2γ〉γ
〈cosγ〉γ

(1.58)
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Table 1.2: Comparison of ground state band E2 transition rates in 152,154Sm

[28, 29] with the X(5) limit and the CBS rotor model for rβ = 0.14 and 0.35

from Table 1.1. χ = −0.535 was kept constant in the E2 operator. The B(E2)

values are in Weisskopf units and scales are normalized to the 2+
1 → 0+

1 tran-

sition. This table is a modified version of Table II from [2].

J+
i → J+

f X(5) 152Sm CBS 154Sm CBS

2+
1 → 0+

1 144 144(3) 144 174(5) 174

4+
1 → 2+

1 230 209(3) 213 244(6) 251

6+
1 → 4+

1 285 245(5) 249 290(8) 281

8+
1 → 6+

1 328 285(14) 273 318(17) 300

10+
1 → 8+

1 361 320(30) 290 314(16) 314

are free parameters to be adjusted to data. Table 1.2 shows experimental

B(E2) values compared to analytical results for X(5) and CBS models. Here

too we see good agreement (within the uncertainties up to at least the 10+)

with experiment. The size of the E2-transition matrix element is related to

the deformation of the intrinsic state, characterized by the intrinsic quadrupole

moments Q0. The reduced transition probability B(E2) is given by [14]

B(E2; Ji → Jf) =
5

16π
e2Q2

0 〈JiK20|JfK〉2 (1.59)

where the quantities 〈JiK20|JfK〉 are Clebsch-Gordan coefficients. We call

the product eQ0 a transitional quadrupole moment Qt. In the CBS model we

attributed the change in deformation from state to state to centrifugal stretch-

ing. A clear way to verify the existence of this phenomenon is to compare

the model predictions (calculated by means of Eq. (1.59) from the predicted
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B(E2) values) with experimental Qts. Figure 1.5 offers such a comparison for

two nuclei, 152Sm and 172Yb. Centrifugal stretching is clearly observed for the

5 6 7 8 9 10
Qt (eb)

0

2

4

6

8

10

12

14
J

Rigid Rotor
CBS rotor
152Sm (R4/2 = 3.01)
172Yb (R4/2 = 3.31)

Figure 1.5: Theoretical and experimental Qt values as a function of spin, J for

152Sm and 172Yb. The dashed lines represent the rigid rotor prediction while

the solid curve is the CBS rotor model prediction with the E2 operator in

the lowest order in the quadrupole deformation parameter, β (χ = 0, see Eq.

(1.56)). Qt values including a second order correction (χ = −0.535) in the E2

operator are represented by the dashed curves. The figure was taken from [27].

transitional nucleus 152Sm, in good agreement with the CBS prediction using

the E2 operator up to second order in β. Due to the limit of precision for life-

time measurements, observation of the predicted small centrifugal stretching

of strongly deformed nuclei with R4/2 values of about 3.3, such as 172Yb, is

still not possible because the effect to be measured is predicted by the CBS

rotor model to be of the same size as the experimental uncertainties. However,



25

in order to push the observations of centrifugal stretching toward the region

of strongly deformed nuclei it would be interesting to extend the precision

lifetime information to nuclei with larger stiffness than those near the critical

point. This is the intended purpose behind the Thesis work which consisted

mainly in performing two experiments on transitional nuclei 168,170Hf using two

different timing techniques that will be described in the next chapters.

As closing remarks for this subsection, we note that the interband E2 tran-

sition strengths are also well predicted [2] by the CBS model. E0 transitions

can be studied in the CBS. They are predicted to be largest for X(5) and

decrease when approaching the rigid rotor limit. For rβ < 1, E0 transitions

between two k = 0 bands are predicted to decrease with increasing spin.
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Chapter 2

Delayed Coincidence Timing

The content of this chapter is largely based on material taken from Ref.

[30].

2.1 Introduction

The principle of the delayed coincidence method consists of measuring the

distribution of time delays between the formation and subsequent decay of

the nuclear state of interest. The time of formation is usually determined by

detecting the ’start signal’ (γ radiation, β particle, beam pulse) populating the

state. The time of decay, the ’stop signal’, is marked by the detection of the

decay product (γ rays, conversion electrons). The roles of the start and stop

signals are often reversed by delaying the pulse which indicates the population

of the state under consideration.
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2.2 Two-detector Delayed Coincidence Method

The two-detector delayed coincidence method is based on the conventional

fast-slow coincidence electronic circuit shown in Fig. 2.1. Beginning from the

output of the two detectors D1 and D2, the fast (time) part of the circuit

comprises time derivation devices (TDD) and a time-to-amplitude converter,

while the slow (energy) part uses main amplifiers (AMP), single-channel an-

alyzers (SCA) and a coincidence analyzer (CA). Common to the two circuits

are a linear gate (LG) and a multi-channel analyzer (MCA) or computer. The

fast circuit serves for measuring the time difference between any event in de-

tector D1 and any succeeding event in detector D2. Fast pulses coming from

detectors are normalized in the TDD. They are then used as start and stop

signals for the TAC, which converts the time differences between them to pulse

heights in the form of a voltage signal. In the slow circuit, the signals out of D1

and D2 are first amplified and shaped by the main amplifier. The SCA’s have

to be tuned to the energy windows according to the energies of interest. If the

height of the signal from AMP is within the set energy window, a logical sig-

nal appears as output. The signals from the two SCA must occur at the same

time at the CA if they are physically correlated. If that is the case, a logical

signal is generated at exit, which opens the gate of the linear gate stretcher.

The TAC signal from the fast circuit is then allowed to pass. A multi-channel

analyser or a computer records the amplitude of the TAC signals on the x-axis

and their frequency on the y-axis.

If certain conditions are fulfilled in the fast-slow coincidence circuit, acci-
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Figure 2.1: Fast-slow coincidence circuit with two detectors.

dental coincidences can be measured. They are as follows:

1. the energy condition on D1 set by the SCA must be satisfied;

2. the energy condition on D2 must also be satisfied;

3. the energy conditions 1. and 2. must occur within the time range of the

coincidence analyzer;

4. the timing pulses of the two detectors must occur within the range of

the TAC.

Based on these conditions, accidental coincidences of first order and higher

order can be distinguished. Accidental coincidences of first order are those

for which the timing and the energy pulse of detector D1 is due to an event

coming from the decay of one nucleus while the timing and energy pulse of

D2 is due to a decay from another nucleus. Thus, the two events are not
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correlated, although they originate from the same physical process. Accidental

coincidences of first order always fulfill condition 3. if the other conditions

are fulfilled. Accidental coincidences of higher order are those for which the

timing and energy pulses of one or both detectors do not originate from the

same physical process. Thus, condition 3. is an additional requirement for

accidental coincidences of higher order.

2.3 Pulsed Beam Method

Nuclear excited states are produced during the beam bursts by nuclear

reactions, and the time of the decay of these excited states is observed relative

to the time of the beam burst. The shortest lifetime that can be determined

with this method is limited by the width of the pulsed beam. The longest

lifetime that can be determined by the pulsed beam method depends on the

time interval between pulses as it is schematically shown in Fig. 2.2

In this method the time spectra are measured by starting the time analyzer

with the pulses from the detector and stopping it with a delayed signal which is

synchronized with beam pulses provided by an accelerator. The start and stop

signal origins can be in principle exchanged but it would lead to diminished

statistics since the counting rate of the detector is usually much lower than

the number of beam pulses per second. The advantage of the pulsed beam

method compared with the two-detector delayed coincidence method is that

one measures essentially a single spectrum since each energy pulse is associated

with a time pulse. One can thus obtain good statistics within short measuring
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width ∆ T
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Figure 2.2: Time distribution of a pulsed beam. The dashed line represents the

population and subsequent decay of a state.

times.

The problems in pulsed beam experiments are that the counts in the

prompt time distribution are usually very high and that part of the back-

ground is time correlated with the pulsed beam. There is a background which

is constant as a function of time, but there is also a background which is

caused by the pulsed beam and which is not constant: γ rays and neutrons are

produced at the slits before or behind the target and neutrons are produced

at the target and some of these may reach the detector between the prompt

time peaks of the gamma rays from the target. In this way a non-constant

contribution of accidental coincidences to the pulsed beam time spectrum is

obtained. They may cause difficulties if one wants to measure lifetimes of

states that decay by gamma rays of similar energy.

No time correlated accidental coincidences are observed when measuring

delayed coincidences with two detectors using a continuous beam for an in-

beam experiment or when making measurements with a radioactive source.

The measurements with two detectors are more selective than experiments

with a pulsed beam. But to obtain good statistics, the measuring times with



31

two detectors must be appreciably longer than with the pulsed-beam method.

2.4 Analysis Methods of the Time Spectra

2.4.1 Principle

The experimentally determined time distribution F (t), is the convolution of

the prompt time distribution P (t), the experimental time distribution function

obtained in the limit τ → 0, with an exponential decay curve f(t) having a

decay constant λ. f(t) is normalized to the unit area and has the following

form

f(t) =



























λe−λt for t ≥ 0

0 for t < 0

(2.1)

The delayed time spectrum can be expressed as

F (t) =

∫ ∞

0

f(t
′

)P (t− t
′

)dt
′

, (2.2)

where the number of counts, F, observed at time t are due to events at time t
′

that are displaced by the time jitter. Changing the variable to y = t− t
′

one

obtains

F (t) = f(t)

∫ t

−∞

eλyP (y)dy. (2.3)

Differentiating Eq. (2.3) yields

dF (t)

dt
= λ[P (t) − F (t)]. (2.4)
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It can be observed that for

P (t) = F (t) ⇒ dF (t)

dt
= 0, (2.5)

which means that the maximum of the delayed time distribution lies on the

prompt curve.

2.4.2 Slope Method

Dividing both sides of Eq. (2.4) with F (t) one obtains

d[lnF (t)]

dt
= −λ

[

1 − P (t)

F (t)

]

. (2.6)

In the time region where F (t) � P (t), Eq. (2.6) becomes:

d[lnF (t)]

dt
= −λ. (2.7)

The slope of the straight line obtained by fitting the semilogarithmic plot of

F (t) in the part of the measured time spectrum which does not contain the

prompt distribution, is the decay constant λ = 1/τ . This method of analysis

is called the slope method. The applicability of the method is constrained to

measurements of lifetimes that are approximately two times longer than the

lifetime of the prompt time distribution, provided the prompt contributions

from other cascades are not too high. For lifetimes much longer than those of

the prompt time distribution, even large prompt contributions do not intro-

duce any systematic errors. The slope method is straightforward because it

does not involve any measurements on the prompt time distribution.
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2.4.3 Centroid Shift Method

The convolution integral (2.2) yields the lifetime τ as the difference between

the first moments (centroids) of the delayed and prompt time distributions [31]:

τ = M1[F (t)] −M1[P (t)]. (2.8)

In practice, the lifetime information is extracted from a centroid plot versus

γ-ray energy, called centroid diagram. The centroids of the prompt gamma

transitions form the zero-time line. Deviations of other centroids from the

zero-time line are interpreted as an indication of measurable lifetimes. The

centroid of a time distribution can be determined with great accuracy. If we

assume the time spectrum to have a Gaussian distribution, then the statistical

uncertainty of the centroid, C, is given by

∆C =
σ√
N
, (2.9)

where

σ = 0.4247 × FWHM (2.10)

is the root mean square deviation and N is the total number of counts recorded

in the time spectrum. By means of the centroid shift method, lifetimes much

shorter (10-100 times) than the FWHM of the prompt time distribution can

be measured.

One of the challenges encountered when employing the centroid shift method

is to find prompt transitions close to the γ-ray of interest. This is necessary

for a good determination of the difference between the centroid of the delayed

transition and the zero-time line. Thus one usually uses two different sources
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or targets to obtain the prompt and delayed time distributions. As a result

of this procedure, drifts in electronics as a function of time or count rate and

differences in source position may introduce systematic errors. Even if the

position of the two sources or targets does not differ by more than 0.5 mm,

a systematic error of more than 30 ps can be introduced due to the differ-

ent times at which reactions are produced and gamma rays take to reach the

detectors. Experiments with a single source or target eliminate these errors.

Ambiguities in the identification of the radiations feeding and depopulat-

ing the level of interest may introduce several errors, especially in experiments

involving elements with a complicated level scheme or in-beam where reac-

tions with other materials than the target add to the final spectrum. These

ambiguities may involve

1. prompt admixtures from other cascades;

2. delayed admixtures from other cascades;

3. scattering from one detector into another;

4. exchange of populating and depopulating radiation.

It was noticed that the time distributions of the Compton background are

somewhat delayed compared with those of prompt photopeaks. This effect

is understood to be due to the charge collection process [32, 33]. Lifetime

information can be extracted only after carefully eliminating the influence of

the Compton background.

In general, when applying the centroid shift method for determination of
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lifetimes, one expects that the systematic errors in most experiments are much

higher than the statistical errors.
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Chapter 3

Recoil Distance Doppler-shift Timing

3.1 Introduction

Doppler shift methods can be used to measure lifetimes of nuclear states in

the range ∼ 10−9 s to ∼ 10−14 s, which conveniently bridges the gap between

direct timing methods and resonance studies in which the width rather than

the lifetime is measured. Two different Doppler shift methods were developed,

corresponding to the time ranges over which their usage provides a satisfactory

accuracy for the measured lifetimes: recoil distance Doppler-shift (RDDS) for

the 10−9 s to 10−12 s interval and Doppler shift attenuation method (DSAM)

for the 10−12 s to 10−14 s interval. The separation time ∼ 10−12 s of the two

methods is given by the characteristic slowing down time of a nucleus in a

material. Pioneering experiments using the RDDS method were performed by

Devons et al. [34, 35] at a time when accelerator and detector technologies

were in their infancy. Thus the measurements were very difficult with only

a few experimenters venturing into the field at the time. The regular opera-
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tion of tandem electrostatic generators in 1959 and the discovery of lithium

drifted germanium detectors in 1965 transformed the measurements of nuclear

lifetimes by Doppler shift methods into routine ones. The following sections

apply to the RDDS method.

3.2 Principle

The excited nuclei are produced at time t = 0 by means of fusion-evaporation,

Coulomb excitation or transfer reactions in a very thin target. The momentum

transferred by the beam to the compound system causes the excited nuclei to

recoil out of the target with a mean velocity v along a well-defined but variable

distance d. This distance extends between the target foil and a thick stopper

in which the recoiling nuclei are stopped in a time 10−12 s. The energy of

the photons emitted during the flight time t = d/v is given by the Doppler

expression

Eγ = E0

(

1 +
v

c
· cos θ

)

, (3.1)

here in the first order in v/c, where E0 is the energy of the photons emitted

at rest, in the stopper, and θ denotes the angle between the direction of the

photon emission and the recoil momentum (see Fig. 3.1). The ratio between

the number of γ-rays with energy E0 and those with energy Eγ depends only

on time of flight t and the lifetime τ of the decaying state.

Experimentally, one observes a doublet of lines at E0 and Eγ = E0 + ∆E

having the intensities Iu (stopped or unshifted component) and Is (flight or

shifted component), respectively. The velocity v is directly obtained from the
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Figure 3.1: Schematic set-up for an RDDS experiment.

energy separation of the doublet. The fractional Doppler shift

∆E

E0
=
v

c
· cos θ, (3.2)

has to be one order of magnitude greater than the line width δE/E of the

detectors used, in order to insure a complete separation of the energy doublet,

desired for a precise measurement of the stopped and flight intensities and

therefore of the lifetime. For comparison, modern day heavy ion induced

reactions produce a v/c ≈ 2 − 15 × 10−2 while Ge detectors have energy

resolutions of δE/E ≈ 2 × 10−3 making the RDDS method an elegant and

precise technique for measuring lifetimes.

A few systematic errors arise due to the intrinsic construction of the method.

The most significant error in the analysis of RDDS data is introduced by the

time delays of preceding γ-ray emissions from higher-lying states. The effects

of feeders can be accounted for if the relative feeding intensities and decay con-

stants are known, although the analysis becomes complicated since complex

decay chains have to be integrated.

The deorientation of the nuclear angular momentum under the influence of
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hyperfine interactions in ions recoiling into vacuum [40] is a disturbing factor

in singles RDDS measurements. The excited nuclei emerge from the target

foil at high speeds at which the average ionic charge state < q > can be rather

high and inner shell vacancies may be present. The electron rearrangement

processes in the freely flying ions involve Auger electron emission and radiative

decays and thus can lead to very high and fast changing magnetic hyperfine

fields which interact with the magnetic moments of the excited nuclear state

under consideration. This hyperfine interaction causes a reduced anisotropy

of the γ-ray angular distribution which can even approach isotropy for a long-

lived state, and thus introduces an unwanted time dependence of the angular

distributions. The γ-ray intensities Iu and Is taken versus time of flight t

appear modified. The deorientation effect introduces corrections in RDDS

experiments in heavy nuclei following heavy ion Coulomb excitation to low

spin states (J ≤ 6), but in general it is negligible for light ions and for high

spin states populated in heavy ion fusion reactions.

One can avoid these errors if data are recorded in coincidence mode and

the analysis is done using the differential decay curve method which will be

discussed in a later section of this chapter.

3.3 The Plunger

Although simple and elegant in principle, the RDDS requires a sophisti-

cated device called plunger in order to achieve high precision and to extend

the time range to 1 ps. For a typical v/c ≈ 3% of a recoil nucleus, the mean
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Figure 3.2: Schematic drawing of the plunger apparatus.

free path vτ for an excited level with τ ≈ 10−12 s is 10 µm. An accurate

determination of such a lifetime requires the stable positioning of the target

to stopper down to distances of 1 µm. The first application of a plunger in an

RDDS measurement was reported by Alexander and Allen [36]. Since then,

various designs have been proposed which optimize the flatness of the target

and stopper foils under beam irradiations, the accuracy in adjusting the flight

distance d and the integration of the instrument in modern Ge detector arrays

with Compton suppression. In this section, the Cologne plunger described in

Refs. [37, 38] will be presented.

Fig. 3.2 shows a schematic drawing of the Cologne plunger. The important

parts, where visible, are indicated in the figure. The target and stopper foils

are first glued on aluminum rings and then stretched by screwing the rings on

support holders with conical shapes in the center. The cones determine the

plane of the stopper and target. They are well polished around the circular ring

at the top to insure flat surfaces for both target and stopper, when screwed into

them. The diameter of the central hole of the stopper cone is bigger than that
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of the target in order to efficiently capture the recoils. The stretched target

and stopper are mounted on frames which are attached to a movable rod and

to the fixed body of the plunger, respectively. The target frame can be moved

very precisely, through the rod, by a piezoelectric drive (inchworm) which is

mounted inside one of the compartments of the plunger under vacuum. The

target and the stopper are adjusted parallel to each other by means of three

screws.

The plunger has a distance regulation system in action during experiments.

This is necessary due to small fluctuations in the beam current or due to the

high amount of energy deposited in the target and stopper and the thermal

expansion of their materials, all of which can cause significant changes in the

distance between foils. For example, bumps with sizes varying from 1 µm

to 100 µm, can appear at the beam spot when the beam current exceeds a

certain value. The distance regulation system determines the exact separation

of the foils by measuring the capacitance C between them. The method was

proposed by Alexander and Bell [39]. A step pulse of amplitude V from a

pulse generator is applied to the stopper. The target is connected to the input

of a charge sensitive amplifier. The capacitance is directly given by

C =
Q

V
, (3.3)

where Q is the charge integrated in the amplifier. A distance calibration

off-beam is necessary in order to extract a target-to-stopper distance from

the measured capacitance C. The target-to-stopper distance d is inversely
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proportional to the capacitance C according to the equation

C = ε
A

d
, (3.4)

where ε is the permittivity of the insulator between the foils and A is the

area of each plate. Assuming perfectly flat and exact parallelism of target

and stopper foils, a plot of the inverse capacity C−1 should linearly go to zero

as the separation approaches zero. In practice, due to imperfect alignment

and other factors described below, contact is made at some point before the

average separation goes to zero. That point will be the effective zero for the

micrometer. The expected linearity is observed up from the effective zero,

There are several factors that place an upper limit on the minimum distance

between foils. Dust particles sticking on one of the foils will deform them at

very small distances (< 20 µm). As a consequence, the measured target-

to-stopper capacitance will deviate from the expected one. In the distance

calibration, deviations to both larger as well as smaller values can be observed

depending on the conductivity of the dust particles. This is a sign of an

electrical contact occurring before the mechanical contact. One should avoid

measuring at distances where either contact occurs. Another factor is the

roughness of the target and stopper materials.

To keep the desired distance fixed during long periods of time, the plunger

is equipped with a piezo crystal. It compensates for shifts of the target-to-

stopper distances, caused by any of the above mentioned situations. The

regulation system is indicated in red in Fig. 3.3. When measuring at a certain

distance, the capacitance is read by the method described before at very short



43

µ −Meter

Target Stopper

Inchworm
Motor

PC Pulser

Piezo
Crystal

Figure 3.3: Schematic drawing of the plunger with the distance regulation sys-

tem components indicated in red.

time intervals. A computer compares it with the one obtained during the off-

beam distance calibration, and any differences are communicated to the piezo

crystal only in terms of forward or backward movements, but not in distances.

The whole cycle is repeated until the set distance coincides with the measured

one.

3.4 Differential Decay Curve Method (DDCM)

3.4.1 General Formulation

The differential decay curve method was proposed in 1989 by Dewald et

al. [41] and further developed by Böhm et al. [42] and P. Petkov [43].

Although there are no problems of principle in the conventional analysis

of RDDS data, it turns out that in practice it can become quite difficult. It

consists of fitting all observed decay curves by a set of coupled differential
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equations after which the individual lifetimes are determined by a χ2 anal-

ysis. In order to obtain a reliable fit, one has to limit the number of free

parameters which increases when the excited levels have a complex feeding

history. Therefore the intensities of the feeding transitions are usually deter-

mined from additional measurements and are kept fixed in the χ2 fit. If one or

more parameters describing the feeding history are not well determined, one

may obtain unrealistic lifetimes. Systematic errors are difficult to spot since

one can obtain good fits with wrong feeding assumptions.

DDCM replaces the set of coupled differential equations by a single first

order differential equation, where the unknown is the lifetime τ of an excited

level. All the terms in this equation can be directly obtained from data, if all

the feeders of the level of interest are known. To determine this equation, one

needs to start with the differential equation which gives the time evolution of

population ni(t) of a state i, fed from higher lying levels h by several transitions

and which depopulates by other transitions to lower lying levels j (Fig. 3.4):

d

dt
ni(t) = −λini(t) +

∑

h

bhiλhnh(t), (3.5)

where the λi, λh are the decay probabilities of levels i, h and bhi are the

branching ratios of levels h with respect to level i. Integrating Eq. (3.5) one

obtains

∫ ∞

t

d

dt
ni(t

′

)dt
′

=

∫ ∞

t

−λini(t
′

)dt
′

+

∫ ∞

t

∑

h

bhiλhnh(t
′

)dt
′

. (3.6)

Let

Ni(t) = λi

∫ ∞

t

ni(t
′

)dt
′

(3.7)
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Figure 3.4: Example of a level scheme where the lifetime of level i is investi-

gated.

and

Nhi(t) = bhiλh

∫ ∞

t

nh(t
′

)dt
′

. (3.8)

Both Ni(t) and Nhi(t) are observables of the measurement. The quantity

Ni(t) is called the decay function of level i. Nhi(t) is proportional to function

Nh(t) and represents the number of decays h→ i which occur after flight time

t. Ni(t) and Nhi(t) are proportional to the unshifted intensities Iu of the γ-

transitions i→ j and h→ i respectively, measured at flight time t. Similarly,

the shifted intensity Is can be expressed as an integral over ni(t) in the interval

[0, t).

The integration of the left hand side of Eq. (3.6) gives:

∫ ∞

t

d

dt
ni(t

′

)dt
′

= ni(∞) − ni(t) = −ni(t), (3.9)

where the assumption that the lifetimes τi of level i and of the feeding states
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are finite (ni(∞) = 0) was made. Eq. (3.6) can be written as:

−ni(t) = −Ni(t) +
∑

h

bhiNh(t). (3.10)

Observing that the time derivative of Eq. (3.7) is

d

dt
Ni(t) = λi (ni(∞) − ni(t)) = −λini, (3.11)

and λi = 1/τi, the basic relationship of DDCM for deriving lifetimes is deduced

from Eq. (3.10):

τi =
−Ni(t) +

∑

h bhiNh(t)

d
dt
Ni(t)

. (3.12)

Eq. (3.12) allows one to calculate the lifetime directly from measured data

without the need of a fit procedure, in principle at only three different flight

times, t−∆t, t and t+ ∆t. The decay curve of a given level depends strongly

on the lifetime of this level only in a certain time interval, called region of

sensitivity. Lifetime data should be taken mainly at distances in the region

of sensitivity. In single measurements, all feeding transitions with significant

intensities and their lifetimes have to be known to obtain a reliable lifetime

for the level of interest. In case this condition is not fulfilled, one can try to

fit the unknown feeding parameters. The best solution for this problem is a

coincidence measurement.

3.4.2 DDCM for Coincidence Measurements

For the application of the DDCM to coincidence measurements it has been

shown in Ref. [41, 42] how the quantities in Eq. (3.12) can be extracted from

the measured data. Only the relevant equations will be presented here.
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Two types of coincidences should be distinguished when attempting to find

the lifetime of level i in a coincidence measurement:

1. coincidences with depopulating transitions j can be used to reduce the

line density in the gated spectra. Coincidences of this type do not help

avoiding the problems related to the unknown feeding h, since the feeding

pattern of level i is not changed in coincidence with a depopulating

transition;

2. coincidences with preceding transitions h take into account only the ex-

perimentally observed feeding in the gated spectra. The problem of

unknown intensities and lifetimes of unobserved feeding transitions in-

herent to single measurements is solved. Coincidences with preceding

transitions are the main application of the DDCM for coincidence mea-

surements.

The number of events of two simultaneously observed transitions, X and Y ,

emitted from the same nucleus, are called coincidence intensities and denoted

{Y,X}. The time order of the transitions is included in this notation, with

the higher lying and thus earlier occurring transition Y in the first place. In

addition, the shifted and unshifted components of a transition are labeled by

the subscript s and u respectively. For a level of interest populated indirectly

by transition Y and directly by Z and which depopulates by transition X, the

lifetime is calculated by

τ(x) =
{Ys, Xu} (x) − α {Ys, Zu} (x)

v d
dx

{Ys, Xs} (x)
, (3.13)
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where v is the recoil velocity, x = v · t is the target-to-stopper distance, and

the factor α is given by

α =
{Ys, Xu} + {Ys, Xs}
{Ys, Zu} + {Ys, Zs}

. (3.14)

By gating on the shifted component of transition Y , the intensities {Ys, Xs}

and {Ys, Xu} can be determined as the peak areas of the two components of

transition X. The derivative d
dx

{Ys, Xs} (x) can be calculated either from the

ratio of differences

d

dx
{Ys, Xs} (xk) =

{Ys, Xs} (xk+1) − {Ys, Xs} (xk−1)

xk+1 − xk−1
, (3.15)

or by fitting piecewise continuously differentiable second-order polynomials to

the measured intensities {Ys, Xs} (xk). This way it is possible to calculate a

value for τ at every distance x, though it does not depend on the target-to-

stopper distance at which it was measured. Therefore one expects to measure

a constant lifetime τ throughout. Deviations from a straight line in the region

of sensitivity of a τ vs x plot point to systematic errors in the analysis. When

gates are set on a directly populating γ-ray transition Y , Eq. (3.13) reduces

to

τ(x) =
{Ys, Xu} (x)

v d
dx

{Ys, Xs} (x)
. (3.16)

In summary, the DDCM for the analysis of RDDS coincidence measure-

ments has the following advantages:

1. there are only directly measured coincidence intensities entering into

the analysis, no lifetimes or feeding intensities have to be known. The

measured lifetimes do not depend on fit parameters;
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2. the problem of the unknown feeding is bypassed due to the coincidence

measurements and is not specific to the DDCM;

3. only relative distances have to be known in the analysis, therefore the

knowledge of the absolute target-to-stopper distance is of no importance;

4. in many cases lifetimes can be obtained without taking into account de-

tector efficiencies and angular distribution factors, reducing the number

of possible experimental uncertainties;

5. the statistical uncertainty of the result is considerably reduced by using

only gates on the shifted component of the feeding transition;

6. the lifetimes derived are not affected by nuclear deorientation provided

the gates are set on transitions which feed directly the level of interest;

7. the τ vs x plot provides an excellent tool for the recognition of systematic

errors.
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Chapter 4

Experiments

It has been mentioned at the end of Chapter 1 that in order to push the

observations of centrifugal stretching toward the region of strongly deformed

nuclei it would be interesting to extend the precision lifetime information to

nuclei with larger stiffness than those near the critical point, hence our choice

of transitional nuclei 168,170Hf. Among nuclei in the rare earth region, 168Hf has

an R4/2 ratio of 3.11 which is intermediate between the value of 2.90 predicted

by the X(5) solution close to the critical point of the shape phase transition

and the value of 3.33 for the rigid rotor limit. The CBS rotor model pre-

dicts centrifugal stretching of about 8% from the 2+
1 state to the 10+

1 state for

this nucleus. Precise enough and reliable lifetime information is not available

for it. Lifetimes along the ground state band were measured with the RDDS

method described in Chapter 3. 170Hf has an R4/2 ratio of 3.19 which places

it in the region well described by the CBS model, but closer to the RR limit

than to the X(5) solution. Due to the intrinsic limitations associated with the

timing method used, delayed coincidence, described in Chapter 2, we could
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only measure the lifetime of the 2+
1 state in the ground band. Nevertheless, a

more precise determination of this lifetime and thus of the B(E2; 2+
1 → 0+

1 )

value is needed for a test of the relevant models and for making more accu-

rate model predictions for E2 strengths of higher-lying transitions. Lifetime

measurements on the ground band of 168,170Hf were previously done [44] with

the RDDS method in singles mode. This method is known to suffer from

systematic uncertainties due to unobserved feeding and contaminants.

4.1 The Experiment on 168Hf

4.1.1 Experimental Details

The purpose of the experiment is to measure lifetimes τ along the ground

state band in 168Hf. Low spin states of 168Hf were populated using the fusion

evaporation reaction 124Sn(48Ti,4nγ)168Hf at the TANDEM facility of WNSL

of Yale University. A 190 MeV 48Ti beam bombarded a 1 mg/cm2 thick 124Sn

self-supporting target. Recoiling nuclei were stopped in a 10 mg/cm2 197Au

stopper. The target and stopper foils were mounted parallel in the New Yale

Plunger Device (NYPD). The SPEEDY array was used for γ-ray detection. It

consists of 9 segmented CLOVER Ge detectors positioned in 3 groups (rings),

where each group (ring) contains only detectors which are positioned at the

same angle with respect to the direction of the beam: 1 detector at 0◦ and 4

detectors at 41.5◦ in forward position and 4 detectors at 138.5◦ in backward

position. Measurements were performed at 12 different distances between the

target and the stopper foils, ranging from 12 µm to 290 µm, for 5 to 11 h each,
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necessary in order to be able to determine lifetimes in the interval 1 ps - 50 ps

at a v/c ≈ 2% of the recoiling nuclei. γγ-coincidence matrices were recorded.

4.1.2 Data Analysis

The method used for the analysis of our RDDS data, the differential decay

curve method (DDCM), was described in detail in Chapter 3. For each target-

to-stopper distance x, 8 matrices were sorted corresponding to the possible

combinations of the 3 groups, except for the zero-zero combination, where

only one detector is involved. Of the 8 matrices only the 4 corresponding to

the forward and backward detectors were used in the analysis. The groups

involving the zero degree detector have sensibly less counts than the others,

making the determination of peak areas difficult. At a given distance, a lifetime

is determined for each group by gating on the shifted component of a direct

or indirect feeding transition and measuring the peak areas of the shifted

and unshifted depopulating transition or direct populating and depopulating

transitions respectively. Lifetimes corresponding to one group but different

distances are averaged thus presenting a unique lifetime for the group. The

distances selected to provide lifetimes are the ones in the region of sensitivity,

which is the time interval, or equivalently the distance interval, where the

decay curve of a given level depends the strongest on the lifetime of this level.

In practice, these are the distances where the numerator and denominator of

Eq. 3.16 are not close to zero. A final lifetime is determined by averaging over

the lifetimes provided by each group. Fig. 4.1 shows the gamma-ray spectra

of the 6+ → 4+ transition obtained at 3 different distances by gating on the
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direct feeding transition.
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Figure 4.1: Unshifted and forward shifted components of the 6+
1 →4+

1 transition

in 168Hf at 3 different distances in gated spectra. One can notice the decay

pattern on which the RDDS method is based.

4.1.3 Results

The 4+ state is populated by a 371.3 keV transition and depopulates by

a 261.6 keV transition as can be seen in Fig. 4.2. Gating on the shifted

components of the populating transition did not pose any problems so that
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Figure 4.2: Partial level scheme of 168Hf relevant to our analysis. New values

for the 4+, 6+, 8+ and 10+ states were obtained.

we could obtain 4 statistically independent lifetimes corresponding to the 4

groups that were analyzed. They are as follows: 43.9 ± 0.7 ps for the (41.5◦,

41.5◦) group combination, 44.3 ± 0.6 ps for (138.5◦, 138.5◦), 42.9 ± 0.6 ps for

(41.5◦, 138.5◦) and 45.7±0.7 ps for (138.5◦, 41.5◦). As an example, the lifetime

obtained for the backward-backward combination is shown in Fig. 4.3. The

lifetime of the level is

τ = 44.2 ± 2.1 ps. (4.1)

The error is the average of two differences: one calculated by subtracting the

average lifetime of the 4 group combinations from the highest lifetime and the
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Figure 4.3: Lifetime of the 4+ state determined in the backward ring. The

middle panel shows the shifted intensity at different distances. A continuous

curve is fitted through the points in order to calculate the derivative. In the

bottom panel, a curve which represents the product between the time deriva-

tive of the shifted intensities and the lifetime of the level is compared with the

experimental unshifted intensity. Out of this comparison, the lifetimes corre-

sponding to each distance in the region of sensitivity are extracted, as seen in

the upper panel.
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other by subtracting the lowest lifetime from the average. Thus it is a maximal

error. The corresponding B(E2; 4+
1 → 2+

1 ) transition probability is 244 ± 11

W.u.

Figure 4.4: Lifetime of the 6+ state determined in the backward ring. See

caption of Fig. 4.3 for further information.

The 6+ state is populated by a 456.6 keV transition. Direct gating was

possible only in the backward groups due to a contaminant 13− → 11− tran-

sition at 463.7 keV which decays on the ground-state band above the 6+ state

and coincides with the forward shifted component of the 8+ → 6+ transition.
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In addition to direct gating on the directly populating transition we also per-

formed indirect gating on the 14+ → 12+ transition at 551.5 keV in order to

check the consistency of our results obtained with direct gating. An example

is given in Fig. 4.4 in the case of indirect gating from above. The lifetime

obtained is

τ = 7.1 ± 0.4 ps. (4.2)

We used the same procedure as above for calculating the error. The B(E2; 6+
1 →

4+
1 ) = 283 ± 17 W.u.

The 8+ state is populated by a 522.0 keV transition. It was not possible

to gate directly from above due to a 18+ → 16+ transition with the same

energy located in the ground-state band. We gated indirectly from above on

the 12+ → 10+ transition. This does not immediately solve the problem of the

contaminant because when gating indirectly from above one needs to know

the intensities of the shifted and unshifted components of the populating and

depopulating transitions of the level of interest (see Eq. (2) and (3)), and the

shifted component of the populating transition will still be contaminated by

the shifted part of the higher transition. But the unshifted component of the

10+ → 8+ transition is not contaminated due to the coincidence requirements

we set when gating indirectly from above. We know that all intensity popu-

lating the 8+ level comes from 10+ → 8+ 522 keV γ-rays and all depopulating

intensity is in the form of 8+ → 6+ 456.6 keV γ-rays. The total 522 keV

intensity (shifted + unshifted), I t
522, that we measure in the cut spectra is the

sum of the shifted, Is
10+→8+, and unshifted, Iu

10+→8+, 10+ → 8+ intensity and

of the shifted, Is
18+→16+, 18+ → 16+ intensity. Subtracting from I t

522 the total
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456.6 keV intensity we obtain Is
18+→16+. Finally, the difference between the

shifted 522 keV intensity and Is
18+→16+ is Is

10+→8+. Due to the low number of

counts when gating indirectly, we summed the cut spectra obtained by gates

at forward and backward groups but with the cut spectra in the same group.

Thus we obtained two lifetimes. An example is given in Fig. 4.5. The average

Figure 4.5: Lifetime of the 8+ state determined in the forward ring. See caption

of Fig. 4.3 for further information.

lifetime is

τ = 2.10 ± 0.26 ps (4.3)
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Figure 4.6: Lifetime of the 10+ state determined in the forward ring. See

caption of Fig. 4.3 for further information.

and the B(E2; 8+
1 → 6+

1 ) = 348 ± 43 W.u.

The 10+ state is populated by a 570.1 keV transition. In this case we gated

directly from above and we followed the exact same steps as for the analysis

of the 8+ lifetime since the problem with the 18+ → 16+ contaminant was the

same. The resulting lifetime and transition probability are

τ = 1.02 ± 0.14 ps (4.4)
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Table 4.1: Lifetimes and their corresponding B(E2) transition probabilities

along the ground state band in 168Hf. The excitation and transition energies

along with the electron conversion coefficients α were taken from [49].

J E(J) Eγ(J → J − 2) τ(J) α(J → J − 2) B(E2; J → J − 2)

h̄ keV keV ps e2b2

this work Bochev et al.1

2 124.0 124.0(2) 1.57 0.838(35)

4 385.6 261.6(2) 44.2(21) 0.122 1.344(63) 1.152(116)

6 756.9 371.3(2) 7.1(4) 0.043 1.560(92) 1.300(127)

8 1213.6 456.6(3) 2.10(26) 0.0245 1.91(24) 1.398(132)

10 1735.6 522.0(3) 1.02(14) 0.0175 2.03(28) 1.422(216)

and

B(E2; 10+
1 → 8+

1 ) = 368 ± 52 W.u. (4.5)

respectively. An example with the lifetime measured in the forward group is

given in Fig. 4.6. Due to Doppler-shift attenuation (DSA) effects in the stop-

per, the lifetime given above represents a lower limit of the expected lifetime.

These DSA effects appear when the lifetime of the level is comparable to the

slowing down time of the recoil 168Hf nuclei, which amounts to approximately

1.3 ps. In analysis, this means that some of the intensity we measure in the

shifted peaks actually belongs to the unshifted component and the net effect

is the lowering of the lifetime. The correction amounts to 10-15% as indicated

in Refs. [45] and [46] and it is not necessary for lifetimes greater than 2 ps, at

this stopping time. In order to properly account for this effect, one needs to
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do a dedicated experiment and to use a DSA analysis method [47] or treat it

according to the technique described in Ref. [48], which Refs. [45, 46] follow.

A summary of the experimental results is given in Table 4.1. Previous liter-

ature values by Bochev et al. [44] are also given. We stress that they were

obtained in a RDDS measurement in singles mode. The analysis of such data

encounters known problems with systematic errors. For the purposes of the

discussion we use only our data.

4.2 The Experiment on 170Hf

The contents of this section and of the corresponding discussion, with few

modifications, have been published in [50].

4.2.1 Experimental Details

The purpose of the experiment is to measure the lifetime τ of the 2+
1 state in

170Hf. Low spin states of 170Hf were populated using the 158Gd(16O,4nγ)170Hf

fusion evaporation reaction at the TANDEM-LINAC facility of SUNY at Stony

Brook. An 80 MeV pulsed 16O beam bombarded a 4.5 mg/cm2 thick 158Gd

target with a 4 mg/cm2 thick 232Th backing. The pulsed 16O beam with a

frequency of 150.4 MHz and a width of about 1.5 ns allows us to measure

sub-nanosecond lifetimes [51]. The detection system consisted of two HPGe

coaxial detectors and two Low Energy Photon Spectrometer (LEPS) detectors

mounted in the Stony Brook cube array [52]. The pulses from the Ge detectors

provided the start signals for delayed γ-radiofrequency (rf) coincidences [53].
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Figure 4.7: Part of the γ-ray spectrum obtained in the experiment. The x-ray

transitions of interest in 232Th and the delayed 100.8-keV 2+
1 →0+

1 transition

in 170Hf are labeled.

Signals synchronized to the LINAC rf were used to stop the time-to-amplitude

converter. Smaller values for the time difference ∆tstart−stop between the start

and stop signals correspond to γ rays that arrive later at the detector with re-

spect to a prompt γ ray of the same energy. The γ-ray energies as well as their

corresponding time difference ∆tstart−stop were recorded and sorted off-line into

γ-time matrices. The total number of events collected during the experiment

was approximately 107 at an average count rate of 2.5 kHz/detector. Sample

γ-ray and time spectra are presented in Fig. 4.7 and Fig. 4.8 respectively.
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Figure 4.8: Time difference histograms corresponding to the delayed 100.8-

keV 2+
1 →0+

1 transition in 170Hf (black) and to the prompt 93.3-keV (red) and

105.6-keV (green) x-ray transitions in 232Th. The histograms were normalized

with respect to the one with maximum integral. Their shape is related to the

time structure of the beam bunches.

4.2.2 Analysis

We use the generalized centroid shift method for data analysis. The prin-

ciples of the method were described in Chapter 2 and [53]. An experimental

improvement with respect to the data analysis described in Ref. [51] resides

in the fact that in order to construct the zero-time curve we only used x rays

coming from electron capture in the atomic shells of the 232Th backing. The

lifetimes of the atomic states that produce these x rays are known to be of the

order of femtoseconds. Both the 158Gd target and the 232Th backing were foils
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Figure 4.9: Centroid diagram obtained in the 158Gd(16O,4nγ)170Hf fusion-

evaporation reaction for one of the Ge detectors. Crosses represent the cen-

troids of the time distributions of the prompt x-ray transitions. The solid circle

represents the data point for the 2+
1 →0+

1 transition in 170Hf. The radii of the

symbols correspond to the statistical errors.

clamped tightly together by a frame. The zero-time curve was fitted with a

linear function as seen in Fig. 4.9. It clearly shows the time delay of the 100.8

keV 2+
1 →0+

1 transition in 170Hf. The observed shift from the zero-time curve

amounts to 31.3(10) channels for the example given in Fig. 4.9. The quoted

uncertainty includes statistical errors and the uncertainty of our linear fit for

the zero-time curve over the short energy interval of interest from 90-110 keV.

An additional uncertainty is related to the distance between the target and

the 232Th backing assumed to be below 0.1 mm, resulting in an uncertainty

of 0.03 ns in the time centroids for the 232Th x rays used for establishing the

zero-time curve. The quoted total error also includes this uncertainty.
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The time calibration was accomplished by means of shifting the 16O beam

bunches in time relative to the oscillator signal of the LINAC by multiples

of two r.f. periods (2×6.6489 ns). This beam-skipping procedure yields an

accurate result, with an uncertainty in the determination of the slope of the

time calibration line smaller than 0.2 ps/ch.

4.2.3 Results

The deviation from the zero-time curve measured for the time centroid

of the 2+
1 →0+

1 transition reveals a time delay ∆t=1.86(6) ns with respect

to the prompt X-rays. This value was obtained from an average over the

observed centroid shifts. At this point one has to take into account the effective

population time of the level of interest from the levels above it. For the 2+
1 level,

considering all known level lifetimes [49], ∆tpop=0.12(1) ns. After correcting

for this effect we obtain the 2+
1 state lifetime

τ = 1.74 ± 0.06 ns. (4.6)

The corresponding B(E2; 2+
1 → 0+

1 ) transition probability is calculated using

h̄

τ
= (1 + α)cE2E

5
γB(E2; 2+

1 → 0+
1 ) (4.7)

where α is the electron conversion coefficient. For our case α=3.47, as cal-

culated from the adopted Eγ and pure E2 multipolarity. Then B(E2; 2+
1 →

0+
1 )=181 ± 6 W.u.
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Chapter 5

Discussion

The data point obtained in the 170Hf experiment is compared to the liter-

ature values for the 2+
1 state of other even-even Hf isotopes in Fig. 5.1. Data

on E2 transition strengths are available for all nuclei from 164Hf to 180Hf [54].

The 2+
1 state’s excitation energy decreases smoothly to a minimum value at

the neutron mid-shell nucleus 176Hf. The B(E2) value almost doubles going

from 164Hf, R4/2 = 2.79, to 166Hf, R4/2 = 2.97. This, together with the sig-

nificant drop in E(2+
1 ), is interpreted as an increase in E2 collectivity of the

ground state due to the crossing from the vibrator region, 2.2<R4/2<2.9, to

the rotor region, 2.9<R4/2<3.33. From 168Hf on, an almost constant E2 tran-

sition strength is observed. Our new value for 170Hf is close to the maximum

values found in 174,176Hf at neutron mid-shell. For 174Hf, the data compila-

tion by Raman, Nestor and Tikkanen [54] reports B(E2; 2+
1 → 0+

1 ) values of

182(12) W.u. [55] and 185(12) W.u. [56] from Coulomb excitation conflict-

ing with B(E2; 2+
1 → 0+

1 ) values of 158(11) W.u. [57] and 154(9) W.u. [58]

from delayed coincidence measurements. Because both pairs have been con-
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Figure 5.1: 2+
1 → 0+

1 transition energies (top) and corresponding B(E2; 2+
1 →

0+
1 ) values (bottom) across the Hf isotopic chain. Two conflicting values of

B(E2) are plotted for 174Hf corresponding to Coulomb excitation (top value)

and delayed coincidence (bottom value) measurements. Data on Hf isotopes

other than 170Hf were taken from Ref. [54].

firmed independently but cannot be right simultaneously, we chose to plot the

weighted average of each pair. Because Coulomb excitation is the more di-

rect method for measurements of B(E2) values one might be inclined to favor

the higher-lying data point over the lower one. The isotope 172Hf for which

the B(E2; 2+
1 → 0+

1 ) value has the largest experimental uncertainty, does not

seem to follow the smooth trend of data from neighboring isotopes although
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the E(2+
1 ) energy does. The data point relied entirely on delayed coincidence

data from the 1960s [59]. Coulomb excitation of 172Hf has not been done

because the nuclide is radioactive. New measurements with higher accuracy

would be needed for checking whether an interesting structural effect causes

this anomaly or whether the error bars have been underestimated on the data

point. Except for the delayed coincidence data on 172,174Hf, the entire data set

of even-even Hf isotopes (Z=72) shows the smooth variation expected for fully

collective structures with maximum collectivity near neutron mid-shell.

The variation of collectivity seen in the Hf isotopes corresponds to the

variation in P factor defined [60] as the average valence proton-neutron inter-

action, P = NpNn/(Np+Nn). Here Np (Nn) is the number of proton (neutron)

particles or holes outside the nearest shell closure. The P factor is closely cor-

related to the evolution of nuclear collectivity [60]. Along the Hf isotopic

chain the P factor varies from 5.0 (164Hf) to 6.9 (176Hf). It is interesting to

compare the data on the Hf chain to those from nuclei that have the same P

factor. Our data point on 170Hf corresponds to P ' 6.2. Fig. 5.2 shows all

available data on E(2+
1 ) (top) and B(E2; 2+

1 → 0+
1 ) (bottom) for even-even

nuclei in the rare earth region with 5.9<P<6.5 and valence neutron particles.

It is interesting to note that the data points for E(2+
1 ) - with two exceptions

discussed below - fall on two constant lines: one line for nuclei with valence

proton holes and another one for nuclei with valence proton particles. The

2+
1 energies in nuclei with valence proton and neutron particles are lower than

those in nuclei with valence neutron particles and proton holes. This indi-

cates higher collectivity in particle-particle nuclei as compared to those in the
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Figure 5.2: 2+
1 → 0+

1 transition energies (top) and corresponding B(E2; 2+
1 →

0+
1 ) values (bottom) for nuclei with a P parameter of 6.2±0.3 and situated in

the p-p (Z=50-66, N=82-104) and p-h (Z=68-82, N=82-104) regions. Data

other than the B(E2; 2+
1 → 0+

1 ) value of 170Hf are taken from Ref. [54]. No

2+
1 → 0+

1 transition energies or B(E2; 2+
1 → 0+

1 ) values for 158,160Nd are known.

The B(E2; 2+
1 → 0+

1 ) values for 156,158Sm are also unknown.

particle-hole region. Valence proton-neutron interaction in nuclei with iden-

tical character (particle-particle or hole-hole) stronger than the interaction in

nuclei with opposite character (particle-hole) has recently been found to lead

to earlier formation of collectivity [61]. This is consistent with the jump in

E(2+
1 ) values seen at the top of Fig. 5.2. Unfortunately, B(E2) values are

not available for 158,160Nd and 156,158Sm to confirm this finding for nuclei with
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P = 6.2 ± 0.3 for quadrupole transitions strengths too. Only one data point,

the B(E2; 2+
1 → 0+

1 ) value of 158Gd, is known to date in the p-p region. The

data on the 164Yb and 172Hf nuclei deviate from the constant behavior of their

neighbors. 164Yb is less collective [higher E(2+
1 ), lower B(E2; 2+

1 → 0+
1 )] than

other nuclei with the same P . Although the P factor for 164Yb agrees within

5% with the ones of its neighbors, its valence nucleon product NpNn deviates

by 10% (NpNn=144) compared with that of 170Hf (NpNn=160). The valence

product NpNn is known to be an alternative parameter for the evolution of

collectivity [62]. It can be used to differentiate the behavior of nuclei with

equal P factors. The low value of NpNn for 164Yb is consistent with obser-

vations. Out of all other nuclei in Fig. 5.2, only 156Sm (-10%), 160Nd and

172Hf (+12.5%) have deviations of the NpNn product by more than 5% from

that of 170Hf. We already pointed out the case of 172Hf. We further note the

lower energy of its 2+
1 state compared to other p-h nuclei in Fig. 5.2 and its

higher NpNn product. We expected therefore a B(E2) value slightly higher

than those found for the other p-h nuclei in Fig. 5.2. This is not the case.

However, the questionable reliability of the literature B(E2) value for 172Hf is

discussed above.

A clear way to verify the existence of centrifugal stretching has been in-

troduced in Chapter 1 by means of Qt plots. Fig. 5.3 shows the predictions

of the rigid rotor model and CBS model with E2 operator T (E2) ∝ β + χβ2

(normalized to the experimental B(E2; 2+
1 → 0+

1 ) value) and the experimental

Qt values. Apparently, a precision of the order of the new data point is needed

in all values for concluding on the centrifugal stretching of the 170Hf nucleus.
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Figure 5.3: Theoretical and experimental transition quadrupole moments, Qt,

as a function of spin, J, in 170Hf. The dotted line represents the rigid rotor

prediction while the solid curve is the CBS rotor model prediction with the E2

operator in the lowest order in the quadrupole deformation parameter, β (χ =

0). Qt values including a second order correction (χ = −0.535 [2]) in the E2

operator are represented by the dashed curve. Our experimental Qt(2
+
1 → 0+

1 )

(red) is superimposed on the previously known experimental value.

Nevertheless, the small error (≈ 3%) makes this value sufficiently precise for

serving as a normalization parameter for meaningful tests of relevant models.

Recently, the precise lifetime measured in the 170Hf experiment has been used

for the calculation of the g factor of the 2+
1 state [63].

In the rigid rotor model the moments of inertia are fixed, they do not

change whether the nucleus is spinning slower or faster as seen in Eq. (5.1).

ERR(J) =
h̄2

2θRR
J(J + 1) . (5.1)

The change in energy is obtained entirely by increasing or decreasing the an-
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gular momentum. In the CBS, the level energies in the ground state band are

given by the expression

ECBS(J
+
1 ) =

h̄2

2Bβ2
max

[

(z
rβ

J,1)
2 − (z

rβ

0,1)
2
]

(5.2)

with z
rβ

J,s being the s-th zero of the parametric combination

D
rβ

J,s(z) = Jν(J)(z)Yν(J)(rβz) − Jν(J)(rβz)Yν(J)(z) (5.3)

of first order, Jν(z), and second order, Yν(z), Bessel functions of the irrational

order ν(J) =
√

[J(J + 1) −K2]/3 + 9/4. The only structural model parame-

ter rβ = βmin/βmax denotes the ratio of the boundaries of the infinite square

well potential V (β). In order to interpret the results in terms of variable mo-

ments of inertia, we define angular momentum dependent moments of inertia

in the spirit of the rotor model by

ECBS(J) =
h̄2

2θCBS(J)
J(J + 1) (5.4)

and analogously for the experimental energy

Eexp(J) =
h̄2

2θexp(J)
J(J + 1) . (5.5)

First, we compare the moments of inertia from the CBS rotor model to the

experimental ones. In order to become independent on any external scales, all

energies were normalized to the excitation energy of the first 2+ state according

to

Rθ(J) =
θ(J+

1 )

θ(2+
1 )

. (5.6)

A plot of the rigid rotor, CBS and experimental values Rθ(J) is shown in Fig.

5.4. The agreement between the predictions of the CBS model and experiment
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Figure 5.4: Theoretical and experimental Rθ ratios as a function of spin, J, in

168Hf. The vertical line represents the rigid rotor prediction while the curve is

the CBS rotor model prediction with the model parameter rβ = 0.23.

is quite satisfactory.

We stress that this agreement between energy data and theory is obtained

by sole consideration of a soft potential in β which results in centrifugal

stretching as a function of angular momentum. Figure 5.5 shows the wave

function densities for the 0+
1 ground state and the 10+

1 state obtained from

the CBS model as a function of the only model parameter (except for scales),

rβ = βmin/βmax (=0.23 for this example). With increasing angular momentum,

the center of gravity of the CBS wave functions shift to larger values of defor-

mation 〈β/βmax〉. The second column of Table 5.1 lists the values of 〈β/βmax〉

from the CBS rotor model for the parameter rβ = 0.23 obtained from a fit to

the energies.

Next it is interesting to see whether the predicted increase of deformation
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Figure 5.5: Wave function densities of the 0+
1 and 10+

1 states as a function of

deformation, with the model parameter rβ set at 0.23. The centers of gravitity

of these distributions are given in table 5.1 as 〈β/βmax〉(J).

with spin is reflected in the data on the E2 transition rates. Are the E2 data

consistent with the conclusions drawn from the energies ? For that purpose

we calculate the transitional quadrupole moments (Qt values) from the model

wave functions and from the E2 data in the usual fashion

Qt(Ji) =

√
16π√

5〈JiK20|JfK〉

√

B(E2; Ji → Jf = Ji − 2) . (5.7)

The B(E2) values in the CBS rotor model are obtained with the E2 operator

T̂ (E2) = eeff β̂ (5.8)

in leading order, only. Qt(J) is constant in the rigid rotor limit. In order to
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Table 5.1: Average deformations of the wave functions as a function of angular

momentum are given in columns 2 and 3 of the table. The absolute fluctuations

of these deformations and their relative values are shown in the fourth and fifth

columns.

J 〈β/βmax〉(J) 〈β〉(J) ∆β(J) ∆β/〈β〉

0+
1 0.631 0.260 0.056 0.217

2+
1 0.646 0.266 0.055 0.208

4+
1 0.674 0.277 0.053 0.191

6+
1 0.704 0.290 0.049 0.170

8+
1 0.730 0.300 0.046 0.151

10+
1 0.752 0.309 0.042 0.137

be independent of scales we consider the ratio

RQt
(J) =

Qt(J
+
1 )

Qt(2
+
1 )

(5.9)

for the rigid rotor model, for the CBS model, and for the data. The results

are plotted in Fig. 5.6. The experimental values follow the prediction of the

CBS model within the present experimental uncertainties. We observe that

the CBS rotor model describes both, the variable moment of inertia and the

increase of Qt(J) as a function of spin in 168Hf quantitatively in a purely

geometrical way. The geometrical CBS model correctly predicts the increase

of quadrupole deformation along the ground state band from a fit to the data

on excitation energies that solely involves the concept of centrifugal stretching.

The absolute values for the 2+
1 state of 168Hf, Ex = 124.0 keV and B(E2; 2+

1 →

0+
1 ) = 0.838(35) e2b2, yield the scale parameters βmax = 0.41 and h̄2/B = 7.3
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Figure 5.6: Theoretical and experimental RQt
ratios as a function of spin, J ,

in 168Hf. The line represents the rigid rotor prediction while the curve is the

CBS rotor model prediction with the E2 operator in the lowest order in the

quadrupole deformation parameter, β (χ = 0).

keV. From Figure 5.5 we conclude that the wave functions contain pieces with

deformation ranging from 0.23βmax = 0.09 to βmax = 0.41. Their fluctuations

are quite substantial. The absolute fluctuations ∆β =
√

〈β2〉 − 〈β〉2 and their

relative values ∆β/〈β〉 deduced from the wave functions of the CBS rotor

model are shown in the fourth and fifth columns of Table 5.1.



77

Chapter 6

Conclusions and Outlook

In summary, the lifetime of the 2+
1 state of 170Hf at 100.8 keV was mea-

sured to be τ = 1.74 ± 0.06 ns, using delayed coincidence timing. This level

decays by an E2 transition to the 0+
1 ground state with a transition strength of

B(E2; 2+
1 → 0+

1 ) = 181± 6 W.u. This E2 transition rate follows the expected

trend of known B(E2) values in isotopic nuclei and empirically confirms the

correlation between deformation and the filling of major shells. The small

error (≈ 3%) makes this value sufficiently precise to serve as a normalization

parameter for meaningful tests of relevant models. Lifetimes of the 4+
1 , 6+

1 , 8+1

and 10+
1 ground band states in 168Hf were also measured using recoil distance

Doppler-shift timing. The results are consistent with the concept of centrifugal

stretching of well deformed nuclei and fit well the CBS rotor model predictions

with one parameter rβ.

Fig 5.1 shows an inconsistency between the 2+
1 → 0+

1 transition energies

and corresponding B(E2; 2+
1 → 0+

1 ) values which we thought had to be checked

to see whether an interesting structural effect or experimental errors cause it.
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We performed experiments on 172,174Hf with the Double Orange Spectrometer

[64] at University of Cologne using e−−e−-coincidence coupled with the pulsed

beam technique in order to measure the 2+
1 state lifetimes. Preliminary results

yield τ2+ = 1.93(10) ns for 172Hf and τ2+ = 1.96(8) ns for 174Hf corresponding

to B(E2) values of 178(9) W.u. and 186(8) W.u., respectively. These new

values validate the smooth trend of data indicated by the transition energies.

The general result of this Thesis was to push the limit of observations of

centrifugal stretching further away on the path from spherical to deformed

nuclei. It is highly desired that lifetime measurements on the ground state

band be performed on nuclei with an R4/2 ratio greater than 3.11. The limit

on how close to rigid rotor nuclei we can observe centrifugal stretching is given

by the limits in present methods precision. The effects of stretching decrease

to about 3.9% change between the J = 2 and J = 10 states’ transitional

quadrupole moments for rβ = 0.45, which roughly corresponds to nuclei with

an R4/2 ≈ 3.3.

The CBS rotor model predicts the evolution of the R0/2 ratio as a function

of the R4/2 ratio in a parameter-free way. For nuclei with 2.9 < R4/2 ≤ 3.2,

the model prediction fits surprisingly well the existing data and points to the

fact that the β band, to which the 0+
2 states belong, in these transitional nuclei

has a related collective structure with the ground state band. Still, the energy

scale of excited states within the β band is over predicted by the CBS rotor

model. This may be due to changes in the pairing interaction in this band

relative to the ground state configuration, which are not accounted for in the

model. Measurements of the B(E2; 2+
2 → 0+

2 ) would help to solve some of
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these inconsistencies.
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