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Abstract of the Thesis

Energy and Performance Evaluation of Lossless File Data Copression on Computer
Systems

by
Rachita Kothiyal
Master of Science
in
Computer Science
Stony Brook University
2009

Data compression has been claimed to be an attractive @oltttisave energy consumption
in high-end servers and data centers. However, there hdserata study to explore this. In this
thesis, we present a comprehensive evaluation of energguogption for various file compression
techniques implemented in software. We apply various cesgion tools available on Linux
to a variety of data files, and we try them on server, workstatind laptop class systems. We
compare their energy and performance results against i@ae r@nd writes. Our results reveal that
software based data compression cannot be considered ageesahsolution to reduce energy
consumption. Various factors like the type of the data fikee tompression tool being used,
the read-to-write ratio of the workload, and the hardwarefiguration of the system impact the
efficacy of this technique. We found that in some cases, cesspn can save as much as 33%
energy and improve performance by 37.85%. However, in athses we found that compression
canincreaseenergy consumption 7 times addteriorateperformance 4 fold.
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Chapter 1

Introduction

Until recently, power management research was mostly @idestowards battery powered portable
computers and mobile devices [4, 32, 37, 38, 49, 55, 56]. Togvation behind these efforts has
been to enhance user satisfaction by reducing the frequainogittery recharges. However, the
growing costs of power and cooling have now caused researtbdook at the same issue on
desktops and commercial servers [10, 11, 17, 25, 27, 4054.7D@&ta centers and servers primarily
deal with data. Data compression has been suggested ativeff@ay of saving energy in such
systems. To the best of our knowledge, there has not beenaetaluating these claims.

In this thesis, we study several compression algorithmplémented in software, applied to
various types of data files, on three different classes ofhinas, and evaluate all in terms of
performance and energy metrics. We use four different tyjféges for our experimentszerq
text binary, andrandom These file types exhibit different levels of data redungamdgth zero
being the highest and random being the lowest. Our benchlnireelude five popular compression
utilities on Linux: gzip, Izop, bzip2, compress, and ppmdile Eompression is known to be
computationally intensive, but can reduce the amount obkg incurred due to a reduction in
file size. The aim of this study is to evaluate each of the cesgion tools, and determine if the
savings due to reduced I/O (both in time and energy) are wbeladded overhead at the CPU and
memory. To be able to view the effects of compression/decession on energy and performance
simultaneously, we use the energy-delay product metrigfi#2ur analysis.

Our results reveal that software based data compressiarotae considered a universal so-
lution to reduce energy consumption in computer systenggestly depends on the type of data
files being compressed, the compression algorithm appledworkload of the system, and the
hardware configuration. As we expected, compressing z&®\ihs found to almost always save
energy, compared to raw reads and writes, no matter what i@ssipn algorithm was used. We
realize that such high levels of redundancy are not commaeahlife settings, but we include
it in our study to evaluate the best-case scenarios. Sewordrd files, we observed that text
files exhibited the most potential for energy savings by casgion, followed by binary files.
Although some utilities always performed better than phaiites and reads for text files, other
tools required some number of reads for every write to raauttnergy savings. This is because
compression typically consumes more CPU than decompresSio represent the possible sav-
ings in such cases, we developed a simple read-write madedidulates the minimum number



of decompressions required to offset the extra energy elgbiy a single compression. This
number can be useful in deciding whether or not a workloadsehead-to-write ratio is known

would benefit from compressing its data files using a padicocbmpression tool. Finally, also as
expected, random files showed no energy or performance beopbn compression. Again, we
included random files to be able to evaluate the worst-camgasios for compression.

The rest of the thesis is organized as follows. Chapter 2igesvsome background and dis-
cusses related work in the area. In Chapter 3 we talk abowattieus metrics used for evaluating
our results. We describe the details of the experimentahatetiogy and present the read-write
model of evaluation in Chapter 4. We present the actual @xeetal results obtained from the
various benchmarks in Chapter 5, and we conclude in Chapter 6



Chapter 2

Background and Related Work

Section 2.1 begins with an overview of some existing tealesgfor power management in com-
puting systems. In Section 2.2, we present various poweragement solutions for primary
storage media. In Section 2.3, we address compressionigeesnimplemented at various levels
and their energy impact. We also draw out important disitmst between our work and other
research in this area.

2.1 Power Management Approaches

Energy management techniques can be implemented at skwesislin a computer system. The
fundamental idea behind these approaches has been tditrargsscomponent to a lower power
mode or to turn it off completely when not in use. Lorch et akcdss software techniques to
utilize the power saving provisions provided by the varitiasdware components, such as the
CPUs, disks, displays, wireless communication devices) mamory, etc. [37]. Dynamic \Volt-
age and Frequency Scaling (DVFS) techniques have beenywaaebloyed for reducing CPU
power consumption [10, 55, 56]. DVFS allows processors twadyically switch to different oper-
ating voltages and frequencies. Choosing a lower voltaggddivoanslate to a reduction in power
consumption. However, since voltage cannot be changegémdient of the frequency, it would
also result in some degree of performance degradation.r&guecessors suppo@lock Gating
as a means to halt idle components, and save power [14, 26124,

Su et al. proposed and evaluated several CPU cache desiggs ®aGray codesand cache
organization [49]. As Gray codes require only one bit modifien to represent consecutive num-
bers, Su et al. were able to obtain significant energy saviegsuse of reduced bit switching.
They also found that cache sub-banking [50] (i.e., orgagiziache into banks), was an effective
way to reduce energy consumption of caches. Power Aware Rbgeation [32] reduces the
memory energy consumption by adding energy awareness tap#rating system’s virtual mem-
ory page allocator. The authors explored various page atimt policies to harness the power
management features of emerging DRAM devices.

The OS has also been used to monitor the usage of hardwargaespin order to transition
the components to low power states during periods of iniagtid, 18, 38]. Zeng et al. propose an
Energy-Centric Operating System (ECOSystem), which alewergy to be managed as a first-



class resource by the OS [64].

2.2 Energy Saving Techniques for Storage

One of the earliest ideas for energy conservation in disks twaspin them down when idle.
The controls on when to spin them down have ranged from siripéshold-based policies to
intelligent prediction policies [15, 16, 35, 58]. Techn@gusuch as Massive Array of Idle Disks
(MAID) [11], Popular Data Concentration (PDC) [43], and troff-loading [40] are based on the
idea of directing the requests to a subset of the disks olia@degging devices. This increases the
idle time between requests, hence justifying the spin doftheounused disks. GreenFS [27], is
a stackable file system for client systems. It services lgDests from remote servers in addition
to adding a flash layer to the storage hierarchy. In enterpdtings, with existing backup server
infrastructure already in place, the energy cost of netwaaksfers for small transfers is much
smaller than spinning up and writing to the local disk. THievas the hard disks to be powered
down for longer, and hence save more energy. Many vendogs, &etApp, EMC, etc.,) provide
a large NVRAM to cache disk writes.

Analogous to DVFS for CPUs, Gurumurthi et al. [47] proposeksl which can dynamically
change their rotation speeds based on the request traffi@ktyr lowering their power consump-
tion. Zhu et al. [65] considered storage cache replacensstiniques to selectively keep some
blocks from the disk in the main memory cache, to increasdigies idle times; this allows disks
to remain in low power mode for longer.

Another approach taken by many researchers, distinct fleandtsk spin-down policy, has
been to reduce the energy consumed by head seek operatissaty et al. present a Predictive
Data Grouping technique [17] which attempts to co-locatated data blocks on disk through
remapping and replication. Huang et al. proposed a file Byst&S2 [25] which dynamically
replicates data so that the nearest copy of the data can\edsan a request. As the mechanical
movement of the disk head is reduced by these techniquessutts in power savings. Interest-
ingly, the increased proximity of the data to the disk heamb akduces the seek and rotational
delays, which translates to better performance.

2.3 Saving Energy Using Compression

Compression has been widely used to reduce traffic and iateionn communication channels
(Data bus, network, etc.) [6,9, 26, 31, 59], and save stospgee [2,44]. Over the last decade,
compression has been implemented at various levels of theonyehierarchy and proved to be a
successful method of saving energy. For example, sevecaldimg schemes have been proposed
for compressing the contents of the CPU instruction cach@, B3, 62]. These techniques, called
code compressigrmap the program instructions into a set of much shorterunsbns, thereby
reducing the memory requirements and bus traffic. A decosspre typically between the cache
and the CPU, translates the compressed instructions todtmaah program instructions before
execution on the CPU. Various compression algorithms haea lemployed on CPU data caches
as well [29, 30, 51, 53].



Benini et al. propose a hardware implementation of the cesgion-decompression logic be-
tween the main memory and the CPU cache for embedded procgsgtems [5]. On a cache
write-back, compressed data is written to main memory, ewtdicompressed data is written from
main memory to the cache. IBM’s Memory Expansion Technol@gXT) [52] has made main
memory data compression commercially available to a widgezof systems. Kandemir et al.
extend compression to multi-bank memory systems, by cossprg infrequently used data, and
transitioning those banks to lower power mode after a tlolesidle time [28]. Sadler et al.
employ lossless compression on data communication in s@es@orks to reduce energy expen-
diture [48].

The work most closely related to ours, albeit in a differemtimnment of embedded and mo-
bile devices, is that of Barr et al. [3]. Because the energy oba single bit wireless transmission
is many times that of a single 32-bit computation in a hardlileeimputer, they apply lossless
compression techniques to data before transmitting. lin Wk, Barr et al. analyze various data
compression algorithms from the energy perspective. @rtlileir work, our study is focused on
file compression and on server, desktop and laptop systemisgdal, is to investigate potential
energy savings in the storage stack, rather than from tresgmn over a network. Typically on
the systems of our interest, the energy cost of computasianuch higher than performing 1/0O
to the storage. While Barr et al. fouhdop andconpr ess to be the most energy efficient, we
found onlyl zop to be widely applicable in our test environments.

Another related work by Xu et al. [61] explores data com@dmsas a means to reduce battery
consumption of hand-held devices when downloading data fpooxy servers over a wireless
LAN. They assume that the data from the proxy server is avigilin compressed format and
hence focus their study only on the energy costs related cordpression. Our target systems
differ from theirs in that our systems would have to incurthsts of both reads and writes. Hence,
we take into account the energy costs of both compressiomlecmmnpression in our analysis.

Data compression for storage can be implemented at bottwheed[13, 41] and software
levels. However, in this work we focus our analysis on sofewianplementations only, so as to
minimize variations due to hardware changes.



Chapter 3

Metrics

The increasing number of studies in the area of green teobies have revealed a problem of
lack of agreement on a proper metric for comparing energgieficy of computer systems. The
choice of an appropriate metric depends on several factglsch component of a system the
metric will be applied to, what are the purposes of comparied how different the systems are.
For our study, the metric must be generic enough to expressribrgy efficiency of the system
as a whole. We also would like the metric to be usable for dhfie purposes of comparison.
Therefore, we present in this section, not one, but seveedlics based on a simple view of a
computer system. This family of metrics allows us to desctiie energy efficiency profile of a
system from several angles, which offers enough scope fovadbanalysis.

We define asystemas any device capable of performing computational work. Whek is
provided to the system by a user as a listaxks A task is a logically independent unit of work
that the user wants the system to perform. The rational megpresenting the performance of
such a system is its computational power: the number of theksystem is able to perform in a
unit of time. For the purposes of our discussion, howeves, fihore convenient to use the inverse
value of computational power: the time required to finishregkd task. We denote this value as
T and measure it in seconds per task. Notice that the notionsgstem and a task are highly
conceptual here. Depending on the specific scenario, themsysan be a CPU that is executing
instructions, a disk drive performing 1/O requests, a seexecuting compression algorithms on a
piece of data and writing the results to a disk, and more.

While performing computational work, the system consuniestecal energy. In other words,
the system converts electrical energy (typically measinebules) to computational work (mea-
sured in tasks accomplished). In terms of power consumptianare mostly interested in the
effectiveness of this conversion: the number of tasks te&egy is able to perform by using a unit
of energy—or in its inverse form—the energy consumed by trstesn to perform a single task.
We denote the latter value @&and measure it in Joules per task. Figure 3.1 provides therays
view we used in our study.

Many projects use the plain metric to compare energy efficiency of different systems [12,
23, 55, 56]. However, this metric ignores the amount of tindiakes to complete a task, For ex-
ample Gonzaleze et al. [22] showed that it is fairly easy forowe a processor’s energy efficiency
E, but it typically leads to degraded performance of the cl8pmetimes, it is reasonable to ig-
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Figure 3.1: System view for energy efficiency estimations.

noreT'. For instance, when each system already has the desiremtiparice characteristics [12].

However, in some cases we would like to have a unified metatgives us a solid understanding
of both the system'’s energy efficiency and its performanoe skch a metric we need to take into
account both quantities. It is useful to know, for examplewmany tasks per Joule per second

the system can produce:
Tasks
Joulesx Seconds

This metric has a clear physical meaning: given its value, can multiply it by the amount of
energy and time available and obtain the number of tasks/diers is able to perform under these
constraints. The inverse of this metric can be written infatlewing form

Joulesx Seconds __ Joules _ Joules
Tasks ~ Tasks/Seconds ~— Throughput

Again, this number has a natural meaning: how many Joulesaydqr the speed of execution
of a task, as tasks per seconds in the denominator is thegtimpati of the system. This metric is
widely known asenergy-delay22, 36, 66]. We denote it a7

We believe that omitting any of the metrics represented aelfoyF, E'T") takes away valuable
information about the syster: gives a good understanding of performance, but does noegonv
power consumption.E provides reliable information about energy efficiency, mrores the
performance. Th&T metric has an intuitive underlying physics and is valualolecompare
systems in the general case, but is not applicable when omeigsted in energy savings or
performance only. For these reasons we adopt all threeaaétrihis thesis. The metrics we used
are summarized in Table 3.1. By convention we omit tasks fumiih the table, as all units are
implicitly per task.

Metric Notation Unit
Time T Seconds
Energy E Joules
Energy-delay| ET Joules x Seconds

Table 3.1: The metrics and corresponding units we used tluaeaperformance and energy
efficiency of a system.

Another well-known metric of energy efficiency isiergy x delay?® [39]. However, it is
specific to the situations where the voltage applied var@s fsystem to system, for instance for
comparison of different DVFS levels.



Chapter 4

Experimental Methodology

This section details the setup used for our evaluations. ®¥¢ertbe our testbed and the instru-
ments used for energy measurement in Section 4.1. We degbebvarious benchmarks and the
motivation behind their selection in Section 4.3. We présem evaluation model in Section 4.4.

4.1 Experimental Setup

We used three different machines for our experiments. Tkevias a Dell PowerEdge SC1425
rack-mountable server, with 2 dual-core I@IXeon™ CPUs at 2.8GHz, 1GB RAM, 73GB
primary hard disk (SCSI SEAGATE ST373207LW, 10000 RPM) amtdicated 20GB partition
on a separate hard disk (SCSI SEAGATE ST373207LW, 10000 RBM)e tests. The server
was running the Fedora Core 6 (kernel 2.6.20-1.2952.fcjildution of Linux.

The second machine was a desktop system, with an@nintiuni®) CPU at 1.7GHz, 1GB
RAM, 20GB primary hard disk (WDC WD200BB-00AUA1, 7200 RPMida 20GB test partition
on a separate disk (Maxtor 6E040L0, 7200 RPM). It was runiifegsame 2.6.20-1.2952.fc6
Linux kernel as the server.

The third machine was an Acer Aspire 5600 Laptop, with InteteCDuo processor at 1.6GHz,
1GB RAM, 100GB primary disk (Toshiba MK1032GAX, 5400 RPM)wathich a 30GB partition
was used as the test partition. It was running Ubuntu 8. 1héke.6.27-9-generic) Linux flavour.
In order to simplify our evaluation, we enabled only one j@ssor unit on all these three ma-
chines by using theraxcpus = 1 boot time parameter in Linux. Table 4.1 summarizes the
configuration of our testbed.

As our goal is to study the energy impact of data compressipthe entire system, and not
on a component in isolation, we measure the total energy efrthchine. Hence, we used a
WattsUP Pro ES [54] power meter to measure the energy cortgamgf the system under test,
instead of a current clamp attached to a digital multimet®r 20], which can provide component
level energy measurements. The WattsUP Pro ES is a plugdim gbwer meter, which allows
power measurements by plugging in the AC supply of the testhma in the meter’s receptacle.
It calculates the cumulative energy in Watt-hours (1 Waitith= 3,600 Joules) every second,
and stores in its non-volatile memory. It has a 1 second tieselution and a 0.1 Watt-hour
(360 Joules) resolution for energy measurements; it hageauracy of1.5% + 3 counts of the



L Machine type
Specification Server Desktop Laptop
CPU model Intel Xeon | Intel Pentium 4| Intel Core Duo
CPU speed 2.8 GHz 1.7 GHz 1.6 GHz
No. of CPUs 2 dual core| 1 single core 1 dual core
CPU DVEFS support No No Yes
CPU c-states support No No Yes
L1 cache size 16K 8K 16K
L2 cache size 2M 256K 2M
FSB speed 400 MHz 400 MHz 533 MHz
RAM size (actual) 2048M 1152M 2560M
RAM type DIMM RIMM SODIMM
Disk RPM 10000 7200 5400
Disk transfer rate 320Mbps 133Mbps 100Mbps
Disk cache 8MB 2MB 16MB
Disk spindown on idle No No Yes
Machine age 3yrs 6 yrs 2.5yrs
Average ldle Power 218W 91W 17w
SPEC CPU2006 sjeng sco 6.89 4.47 8.54

Table 4.1: Hardware specification of the machines comisie testbed.

displayed value. We usedveat t sup Linux utility [57] to download the data from the meter
over a USB interface to the test machine. For measurementiseolaptop system, we powered
it through the AC power and removed the battery to ensure ahiahe power being used was
reported.

4.2 File types and Compression Tools

Power consumption in the evaluated systems depends onféletivefness of compression, which
is typically measured bZompression Rati¢CR) defined as:

CR = Original filesize

— Compressedfilesize

Compression ratio is heavily affected by the type of inpuadiée. Hence, we include the file
type as one of the dimensions for our evaluation. In ordeaieta representative set of possible
data files, we chose to run the tests on four types of files &f 2@B each:zerq text binary,
andrandom These represent files with highly redundant data, regekrfiles, binaries, and files
with highly random data, respectively. These files denotebist-to-worst cases of compression,
in order. We chose the file size to be 2GB to ensure that eattatefor a considerable amount of
time, thereby reducing the scope of errors and high standiewvations arising out of even slight
differences in recorded values across multiple iteratiohthe test. Also, the 2GB file, being
larger than the system RAM (1GB), forces /O to take place.cvéated the zero file by writing



zeroes to the file. We generated the text file by concatenabgce files from the Linux kernel
and other open source projects. We created the binary testyfitombining object files from the
Linux kernel, Linux libraries and other open source exellets We created the random file by
reading fromvy dev/ ur andom

Another factor influencing the compression of a file is the pogasion algorithm itself. This
constitutes the second dimension for our analysis. We enexhfive popular compression utilities
available on Linux: compress, gzip, Izop [42], bzip2 and dpfhey have significant differences
in implementation and cover a wide range of compressionrigifigos. Bar and Asanovic discuss
these tools and their algorithms in detail [3]. The comprgiiiy, regarded as the oldest, imple-
ments the Lempel-Ziv-Welch (LZW) algorithm which is a variaf the LZ78 algorithm. It uses
m bits (9—16) to encode the input symbols, and stores thegstoitode mapping in a dictionary.
Although based on the same LZ77 algorithm, gzip and Izogdgfgnificantly in their implemen-
tation. As Izop was designed with the main goal to improve p@ssion/decompression speed, it
tends to be generally faster than gzip. In particular, |zepsua 16KB hash table, enabling it to be
cache resident, thus reducing the frequency of cache nusse®) its execution. It is also imple-
mented using macros instead of function calls, to redudeeance overheads. The bzip2 utility
is based on the Burrows Wheeler Transform (BWT); it achidyetser compression ratio than the
Lempel-Ziv based tools, at the expense of compression spEeel block size for compression
(100k—900k) can be specified at command invocation. A laogmrk size typically increases the
compression ratio, while increasing the memory footprit.Md implements the Prediction with
Partial Match (PPM) algorithm. PPM is known to produce thstlm®mpression ratio compared
to all other algorithms. It, however, uses considerabhatretime and memory resources.

4.3 Benchmarks

Writing an uncompressed file involves reading the input amding it to disk. We will refer
to this as gplain-write in the rest of the thesis. Writing a compressed file involeesding the
uncompressed input, compressing it, and writing the cosge® file to disk. We shall call this
compress-write Similarly, we use the terrplain-read to denote reading the uncompressed file
from the disk; and we usdecompress-reatb indicate reading the compressed file and decom-
pressing it. Each of the operations described above (plaite; compress-write, plain-read, and
decompress-read), constitute a task which we defined indBe:t

The aim of this study is to compare @ain-write to compress-write and aplain-read to
decompress-readn terms of both energy consumption and performance. Weftee broadly
have four types of benchmarkgtain-write, compress-write, plain-read, and decompressd As
mentioned above, we used four different compression t@alsh of which can be invoked with
tunable parameters. For example, gzip allows the user tfgn effort parameter in the range
1-9 to choose between speed of compression and compreasrarchoice of 1 would result in
fast compression, but poorer compression ratio; and a 9oagivé the best compression ratio, but
would be slower than 1. Table 4.2 lists the various parametieles considered for the compress-
write benchmarks. For each of the compression tools we ctimseefault invocation, and the
options which provide the best and worst case of compresgiead (if not already covered by the
default option). Table 4.3 lists the compression ratioseadt by compressing different types of

10



files using various compression applications.

Invocation Algorithm Implications
gzip -1 max.chain = 32, other parameters
gzip —6 (default) Lz77 max_chain = 32, other params
gzip -9 max_chain = 4096, other params
lzop -1 max_chain = 4, other params
Izop —3 (default) Lz77 nearly identical to lzop-1
lzop -9 max_chain = 4096, other params
bzip2 -1 BWT Use 100K block size
bzip2 -9 (default) Use 900K block size (default)
compress —b 10 LZW Use 10 bit codes
compress —b 16 (default) Use 16 bit codes
ppmd —o 2 PPM Predict next character based on last 2 seen
ppmd —o 16 Predict next character based on last 16 seen

Table 4.2: Parameters used for invocation of various cosgiwa tools for compress-write bench-
mark.

We used the Auto-pilot test suite infrastructure [60] to tbe benchmarks. Auto-pilot mea-
sures the time required to run a benchmark and reports irmsef Elapsed, System, User, and
Wait times. We developed an Auto-pilot script plug-in to @@ the energy consumed while
running the benchmark. The plug-in relies on the Linux wytilescribed in Section 4.1 to com-
municate with the meter. The plug-in uses the utility to sancbmmand to clear the meter’s
internal memory before starting the benchmark. After thedbenark has finished execution, we
invoke the utility to send a command to read the data from theemand extract the total energy
expended (in Joules) while running the benchmark. Sincéo#imehmark themselves run for a
significant time, any energy measurement errors due to tfesumement tool itself are negligible.

We ran all tests at least five times and computed the 95% cowckdimtervals for the mean
elapsed, system, user, and wait times using the Studedistribution. In each case, unless
otherwise noted, the half widths of the intervals were lbs®t5% of the mean. In all bar graphs,
we show the half widths using an error bar. Wait time is eldpg®e less system and user time
and mostly measures time performing 1/O, though it can aésaffected by process scheduling.

We ran the tests on a dedicated hard disk, with the partibométted with the Ext2 file system
and mounted using the default options. To ensure that wiatéise partition were flushed to the
disk during our measurements, we unmounted the partitidmeaend of each test iteration.

4.4 Read-Write Model

The best case for compression would be when compress-witipeidorms plain-write, and decom-
press-read fares better than plain-read, in terms of a edttowever, there might be scenarios
when only one of these comparisons favor compression. Fample, for a given compression
tool, compress-write might require more energy than plaiite, but expends less energy for a
decompress-read than a plain-read. Notice that the me&icomsider in this example is energy,
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File Type

Text | Binary | Rand | Zero
None 1 1 1 1
gz-1 416 | 1.81 0.95 | ~10?
gz-6 479 | 1.81 0.95 | ~10?
gz-9 484 | 1.81 0.95 | ~10?
Izo-1 352| 153 | 0.95 | ~10?
Izo-3 351| 153 | 0.95 | ~10?
1zo-9 437| 1.81 | 0.95 | ~10?
bz-1 5.09| 1.81 | 0.95 | ~10°
bz-9 6.11| 2.09 0.95 | ~107
c-10 1.17| 1.04 0.8 | ~10°
c-16 207 | 1.17 0.8 | ~10°

ppmd-02 | 3.86| 1.81 | 0.95 | ~10°

ppmd-o16| 7.7 | 2.44 | 0.95 | ~10°

Tool

Table 4.3: Compression ratios achieved by various comiomressilities on 2GB files.

but the argument applies to the other metrics as well (dérge or energy-delay). Compression
might still achieve energy savings in such a case if the numwitreads is more than a “break-even”
value to amortize the extra energy consumed by a single cesaprite.

Workloads are characterized byead-to-writeratio (n), which represents the distribution of
read and write 1/O requests. There have been extensiveesttalicharacterize workloads based
on this parameter [34, 45]. Given a workload, with knowledf@jeut its read-to-write ratio and the
type of file data it handles, we can use this break-even valyg {0 decide if compressing the
data files would be beneficial. We formalize this by the follagvmodel.

For a given metric M, let M}, M., M,., and M; be the measured values of M on a plain-write,
compress-write, plain-read, and decompress-read, riaggigc Let ngg represent the break-even
read-to-write ratio to obtain energy savings. Assuming st fieed to write once before reading,
the following inequality must hold to compensate the exesssgy expended during the write:

Mc_Man{,\gX(Mr_Md)

Solving forn)?, we get

il 2
whereM € {T,E,ET}
We calculate and present thg! values for thel", E and ET metrics for the various compres-
sion tools and test files in Tables 5.1, 5.2 and 5.3 of Section 5
We define the energy savingg(,,) for decompress-read and compress-write vs. plain-read
and plain-write for a given value of read-to-write ratia,

Esav - (n X (Er - Ed)) + (Ew - EC)

12



where,E,,, E., E,., andEy is the energy expended in plain-write, compress-writenplead, and
decompress-read, respectively.

Note that a negative value @f,,, means energy loss. Figure 5.4 presents the valués of
for n ranging from O to 30 for different compression algorithm®légd on a text file. The value
of n for which E,, becomes zero is the? .
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Chapter 5

Evaluation

In this chapter, we evaluate the effect of compression acdrdpression on energy savings and
performance, based on the metrics: tiri@,(energy §), and energy-delayKT), as discussed
in Chapter 3. Section 5.1 explains the terms we use in thiptehaWe present the results of the
PPMd compression utility on the server and desktop machinedection 5.2. In Section 5.3 we
analyze the results of the other four compression utilifgzsp, Izop, bzip2, and compress) on the
server class machine. We evaluate the results obtaineceatetktop machine in Section 5.4, and
those for the laptop in Section 5.5. Finally, we summarizealservations in Section 5.6.

5.1 Terminology

We present the graphs of the PPMd results for the server asktage systems in Figures 5.1
and 5.2. The x-axis of these plots dendte_type-level wherefile_type is the type of the input
data file:_zro, Text, Binary, and Rindom;level is passed as a parameter to ppmd: 02, denoting
the use of order of 2 for compression, and 016 denoting thefuseler 16. Both these invocations
use 256 MB of memory. We plot the Time, Energy, and Energyapehetrics for compressing
and decompressing using the PPMd tool. For reasons elabdoraiSection 5.2, we present the
results for PPMd and those for the other four compressiols {@zip, 1zop, bzip2, and compress),
in separate graphs.

Figures 5.3, 5.5, 5.6, and 5.7 show the metrics plotted #dr ténary, random, and zero files
respectively for the server machine. These figures evalh&tgzip, |zop, bzip2, and compress
utilities. Figures 5.8, 5.9, 5.10, 5.11 and Figures 5.12355.14, 5.15 are the corresponding
graphs for the desktop and laptop systems, respectivelll lihese figures, the x-axis denotes
alg-modelevel wherealg is the type of the compression/decompression algorithnip, dzop,
bzip2, or mpressmodeis either @mpression or Bcompressionfevel is passed as a parameter
to the compression/decompression algorithm to controttmapression ratio (CR). Similarly, we
use the notatiom/g-level to refer to a given tool operating at a specific compressiuall

The time result figures show the total time required to comprerite or decompress-read
a 2GB file using the compression utilities discussed abovmpared to plain-writes and plain-
reads, respectively. The y-axis on this graph denotes #q@set time, which constitutes of the
systentime, usertime, andwait time.
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The second type of metric plotted is energy. These resultgpace the total energy required in
performing a plain-write/plain-read versus a compresgeitecompress-read. On the y-axis we
have the total energy, constituting aétiveandpassiveenergy. Passive energy is the energy that
is consumed by an idle system, for the elapsed period, withioy other activity. For calculating
the passive energy, we first need to estimate the average pongumption of the idle system. To
compute this, we let the system idle ten times for 10 minuée$f grecorded the energy consumed,
and we verified that the standard deviations were small. \&fe divided the total energy measured
by the duration of the idleness, yielding the average idiggrmf the system. Passive energy can
be obtained by multiplying the average idle power with thepekd time. Active energy is the
extra energy required, apart from the passive countergatpmplete the required task. In our
graphs, we represent energy in units of Kilojoules, whek@loJoule = 103 Joules.

The energy-delay produdf£T’) metric, as discussed in Section 3, comparesHHtéresults
of compression/ decompression versus pure writes/readslagto the energy results, the total
ET also consists of an active and passive component. We hattecptbe ET" results in units of
MegaJoule-seconds, and in KiloJoule-seconds in some.cases

5.2 PPMd Analysis

PPMd is based on the Prediction with Partial Match (PPM)ritlygm. PPM is known to produce
the best compression ratio, at the expense of consideraddyay time and memory resources. For
example, PPMd yields a compression ratio of 7.7 on a textTable 4.3), but consumes about 10
times more time and energy to compress than a plain writeorsemes approximately 30 times
more time and energy during decompression as compared toraheead. Even in the best case
scenario of highly redundant data (Zero file), we see PPMcetavbrse than plain I/O. Unlike
all other compression utilities, which often decomprestdiathan they compress, PPMd has to
perform similar operations during compression as well aodgression. Hence, it is equally
slow and energy exhaustive during both compression andhaeession of files. As PPMd does
not save time or energy during either compression or decesspyn, for any type of file, it cannot
prove to be better than plain I/O. Hence, we do not includerrither in our evaluation. In the
following sections, we will therefore only evaluate theeatfour compression utilities (gzip, 1zop,
bzip2, and compress).

5.3 Server Results

In this section, we present and discuss the results of thehipegrks run on the server class ma-
chine. We discuss the results by the file type in the followfoigr sections (5.3.1, 5.3.2, 5.3.3
and 5.3.4).

5.3.1 Text File Analysis

As we observe in Figures 5.3(a) and 5.3(b), the plain-reat @ain-write spend most of their
time performing 1/0. The compress-read and compress-warité¢he other hand, spend most of
their time performing computation on the CPU. They have aiB@antly smaller portion of time
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(c) Energy consumed for write vs. compression (d) Energy consumed for read vs. decompression
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write Z-02 Z-016 T-02 T-016 B-02 B-016 R-02 R-016 read Z-02 Z-016 T-02 T-016 B-02 B-016 R-02 R-016
(e) ET for write vs. compression (f) ET for read vs. decompression

Figure 5.1:PPMd results for the server: The time, energy and energy-delay produ€f() for
compressing/decompressing text, binary, random and Zesoudsing PPMd. In (a) and (b), the
values along the x-axis are of the forfife_type-level where file_type is the type of the file:
Text, Bnary, Random, or £ro; level is order2or orderlg Both the levels use 256MB of RAM.
The energy results in (c) and (d) represent the total enddjdules) required for compress-
ing/decompressing the various files with PPMd. In (e) and/€lse Megajoule-seconds to denote
the energy-delay product to compress-write/decompread-the files.

spent on I/O, compared to their plain-read and plain-writerterparts. This is expected, because
compression results in a reduction of the file size (as showrable 4.3). We also observe that

the heights of the compression plots (both time and enefgydiven compression tool, increases

with the effort level. This shows that the harder a tool ttieschieve a better compression ratio,

the more resources it needs. However, the correspondimgntisein the decompression plots of a

particular compression tool are only slightly affected bg effort level of compression.
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write Z-02 Z-016 T-02 T-016 B-02 B-016 R-02 R-016 read Z-02 Z-016 T-02 T-016 B-02 B-016 R-02 R-016
(e) ET for write vs. compression (f) ET for read vs. decompression

Figure 5.2:PPMd results for the desktop

As we observe in Figures 5.3(a), 5.3(b), 5.3(c), and 5.3£d}1 and Izo-3 always outperform
pure writes and reads in terms of both time and energy consomjor text files. 1zo-1 and 1zo-3
take 34% lesser time to compress than a plain-write, and @&%el time to decompress than a
plain-read. They save approximately 29% energy compargdiain-writes, and 68% compared
to plain-reads. The plots for thBT metric in Figures 5.3(e) and 5.3(f) show that compressing
text files using 1zo-1 or I1zo-3 is beneficial in terms of thd" metric. They exhibitE'T values
which are lower by 53% than plain-write, and 90% lesser tlnan tor plain-read. The compress
utility however does not fair better than plain-write oriplaead by any metric. We observed that
although the compress tool achieves a worse compressiortan Izo, the compress tool takes
significantly more time than Izo. Specifically it has a sigrdfitly higher system time than the
other compression utilities. We raxt r ace and found that compress performs multiple read and
write system calls in units of 1024 bytes, instead of a moteyad unit such as 4KB (page frame
size), thereby increasing system time. This, in additiotheofact that 1zo is designed for speed,
is the reason for this behavior.
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wite  gz-C-1 gzC-6 gzC9 I20C-1 Iz20C3 120C-9 bzC-l bzC9 c-C10 ¢C-16 read  gzD-1 gzD6 gzD-9 IzoD-1 Iz0D-3 1z0D-9 bzD1l bzD-9 D10 cD-16

(e) ET for write vs. compression (f) ET for read vs. decompression

Figure 5.3: Text file results for server: The time, energy and energy-delay produktli) for
compressing/decompressing a 2GB text file. In (a) and (b)ydiues at the x-axis are of the form
alg-modelevel wherealg is the type of the compression/decompression algorithnip, dzop,
bzip2, or mmpress;modeis Compression or Bcompressionfevel is the parameter passed to
the compression/decompression algorithm. The energytsesu(c) and (d) represent the total
energy (kilojoules) required for compressing/decomgregshe file with the corresponding al-
gorithm. Section 5.1 describes the terdistive-Energyand Passive-Energyln (e) and (f) we
use Megajoule-seconds to denote the energy-delay produzinipress-write/decompress-read
the same file.

Conversely, gz-6, for example, takes more time and require@se energy to compress-write
than plain-write, but it saves during the decompress-rédaecsame file compared to a plain-read.
This implies that compression on text files with gz-6 can ls&lhelpful for workloads which read
a file more often than write. As discussed in Section 4.4, weese significant energy savings
without compromising performance when the read-to-widtiorexceeds thbreak-evervalue.
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Energy savings or loss (KiloJoules)

-400

Figure 5.4: Energy savings or los&'(,,) compared to plain read and write depending on the
number of reads per one write for text files on the server aystehe 1zo-1 and |1zo-3 results are
so close, that we put them on the same line.

Figure 5.4 demonstrates the dependency of energy savingssoon the read-to-write ratio
on a server system. The y-axis denotes the energy savihgs, (in Kilojoules). A positive value
of K., means some energy savings, whereas a negative value denetgey loss.E,, = 0
indicates neither energy savings nor energy losses. The\@ln for which E,,, = 0 is the
nf. The plots for gz-1, gz-6, gz-9, and 1zo-9 cross fig, = 0 line, denoting that there exists
a read-to-write ratio when the corresponding algorithmobees beneficial in terms of energy.
For example, gz-1 crosses t&,, = 0 line whenn is equal to 20.2. This means that if for
every write the system experiences 21 or more reads, we a@neseergy. The lines for [zo-1
and |zo-3 (coincided because of the proximity of result) always above thé',,, = 0 line,
indicating that these compression tools save energy foratty. Conversely, the plots for bz-1,
bz-9, c-10, and c-16 never cross thg,, = 0 line, implying that these tools expend so much more
energy compared to plain-write and plain-read that theyuagble to amortize the energy losses
for any read-to-write ratio. Both bz-1 and bz-9 consume ntione and energy during compress-
write as well as decompress-read, because of the algodtbomiplexity of bzip2, which uses the
Burrows-Wheeler transform, the move-to-front transfoemd Huffman coding.
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Figure 5.5:Binary file plots for the server

5.3.2 Binary File Analysis

In the case of a 2GB binary file, as shown in Figure 5.5(c), thergy consumption during
compress-write using both 1zo-1 and Izo-3 is greater thamplrite. Conversely, both of them
save energy during decompress-read, seen in Figure 5.B@hce, similar to the discussion in

Sections 4.4 and 5.3.1, we compute that Izo-1 and 1zo-3 sasg)e only Whem{fe > 2. How-

ever, if we consider the energy-delay metric, shown in Fegus.5(e) and 5.5(f), the value of the
break-even ratio changes to 4 and 4.3, for 1zo-1 and |zosheeively. We also see that 1zo-9

consumes significantly more energy during compression eoeapto pure-write, that it is diffi-

cult to recoup the over-consumption of energy through mpldtdecompress-read workloads. This
is evident from the large value @f?, ¢102) in Table 5.1. All the compression utilities, other than
Izop, have a greater energy consumption than plain-writelsptain-reads. Hence, they cannot be

considered as good candidates for compression with enexgygs in mind.
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Figure 5.6:Random file plots for the server

5.3.3 Random File Analysis

It is evident from Figure 5.6 that no compression utility saenergy during compression or de-
compression. Consequently, tievalues for the compression utilities is also greater that th
of plain-read and plain-write. The reason is that compaogssitilities find it difficult to discover
repeated patterns in a random file, which inherently has la éigropy [1]. Therefore, the tools
waste a lot of CPU time and energy trying to compress, but dgaim much in terms of CR, as
shown in Table 4.3. Hence, modern storage systems shouwdmize high entropy files, such as
multimedia, random, encrypted, etc., and write them diydotthe disk without compression.

5.3.4 Zero File Analysis

As expected, all the compression utilities, except Izogbstime less energy than writes and reads
(Figure 5.7). The energy consumption by 1zo-9 compressgevisialmost twice that of plain write,
but it recovers from the energy losses fdf > 5.4 (Table 5.1). Considering thET metric, the
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Figure 5.7:Zero file plots for the server: The energy-delay product(l') is in KiloJoules-sec.

break-even ratio for 1zo-9 rises to 20. Most of the compu@ssitilities achieve a high CR without
increasing thel'T" because of the large frequency of repeated patterns. Frsnoliiservation,
we can suggest that if a storage system consists of files watga number of repeated patterns
(e.g., log files) compression is definitely a better altaveain terms of saving on energy without
performance degradation.

Summary of Server results. Table 5.1 contains the calculations of , nZ andnfT for the
compression tools discussed in this thesis, for the sep&es. The break-even value varies
depending on the compression tools used and their CR valift=n, the higher the CR, the slower
the utility operates, consuming more energy, therebymrgighe break-even ratio. Although the
break-even ratio for some utilities (gz-9, 1zo-9, etc.) isaer than the read-to-write ratio on a
common server system [34, 45], we can consider them berdfiicia read-intensive workload
(e.g., public FTP mirrors). In this case, tools with a higd® can be applicable, especially if
storage space and network traffic are a great concern.
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Tool Text Binary Rand Zero
gz-1| 2.8/20.2/18.3 X X v

gz-6| 10.9/19.7/62.5 X X v

gz-9| 24.9/49.0/~103 X X v

lzo-1 v 0.8/2.1/4.0 X v
Izo-3 v 1.0/2.0/4.3 X v

1zo-9| 26.8/35.4 /~10? ~10% / ~10% /~103 X 3.6/5.4/19.9
bz-1 X X X vV/103/V
bz-9 X X X 02/1.3/24
c-10 X X X v

c-16 X X X v

Table 5.1: The number of reads for each write required to fitiginem compression fof” (nZ;), E

(nf) and ET (nf’T) metrics on aserver system separated by A. For break-even values greater
than 100 we only report magnitudes. denotes that it is beneficial to use compression for any
read-to-write ratio. The symbot denotes scenarios when no savings can be made. Values less
than 1 represent that just one read can compensate for feultifies.

5.4 Desktop Results

In this section, we present and discuss the results of thehbesrks run on the desktop class
machine. Overall the results on the desktop show similaidigeas those on the server machine
(Section 5.3).

5.4.1 Text File Analysis

As the desktop is equipped with components relatively stdahvan those on the server machine,
we observed that tasks took longer to complete on the desktmhine. For example, since the
desktop has a slower disk (7,200 RPM) than the server (103Fd), the reads and writes are
much slower than on the server. From Figures 5.8, 5.9, 54@,5a11 we see that the disk on
the desktop is about twice as slow as that on the server, rimstef performing 1/0. Similarly the
slower CPU (1.7 GHz) causes the compression tasks to tagerl@s well. Correspondingly, the
average power requirements of these components are loaettiiat of the higher performance
server class machine. The average idle power of the deskag®l Watts (compared to the 218
Watts of the server).

Similar to our observations on the server class machine, meelfio-1 and 1zo-3 to always
do better in performance and energy savings than plain-aeadplain-write. The gzip utility
takes more time and energy during the compression phassabes both time and energy while
decompressing. Hence, gzip can also prove beneficial, ggdvihat the workload has a read-to-
write ratio greater than the corresponding break-evenevgili). We calculate and present thg.
values for the desktop system in Table 5.2. However, notiag tinlike in the server, gz-1 never
saves energy for any value of This is because the energy consumption from our measutemen
for decompressing is almost the same as that of the pladh-fdance, any number of reads will

23



= 225343 w| = s69.02

System mm— System m—
2000 | 350

300 283.76
1488.58

Elapsed Time (seconds)
Elapsed Time (seconds)

1500 [ 250
110496 20
1000 |~
150
500 |- 476 48 418.9 Rl
258.5! N s 46.59 40, 97 40.54
15094 154 22 10650 10649 176.02 % - 1049, 1959 1607
] \ S=IN \ AR Y 2,

write gz—Cl gCG gz-C-9 IDCl |DC3 1z0-C-9 bz-C-1 bz-C9 ¢-C-10 c-C-16 read gz-D-1 gzD-6 gzD-9 Izo-D-1 |DD3 \nDQ bz-D-1 bzD9 ¢-D-10 c-D-16
(a) Time taken for write vs. compression (b) Time taken for read vs. decompression
=0 PRy = 33540 of PRy = 57.33
300 50
& 42.17
or 222,62 S Wl
=)
2 200 g
> 162.46 3 30
& ol 2 2316
100 | 14.25
70.20 60.79
50 38.30 o 648 648 576 576
22.10 22.39 - -
, ey S 2% 2 - , e o 2
write gz-C-1 gz-C-6 gzC9 Izo-C-1 Iz0-C-3 Iz0-C-9 bz-C-1 bz-C9 ¢-C-10 ¢-C-16 read gz-D-1 gzD-6 gz-D-9 Izo-D-1 Izo-D-3 Izo-D-9 bz-D-1 bz-D-9 ¢-D-10 c-D-16
(c) Energy consumed for write vs. compression (d) Energy consumed for read vs. decompression
800 | Passive-Energy-Delay —— 755.81 = Passive-Energy-Delay ——— 22.36
w Active-Energy-Delay <1 . w Active-Energy-Delay E<<1
g = g —E
S 700 b 8
g 20
® ®
3 600 3
g g
£ so0f $ s
bt bt 11.99
g wor 33155 g
> > 10 F
£ 300 | £
2 e
g § g §
§ 200 18910 g 3.84
é é 5F
£ 100 g 143
= gg1 3350 25.47 2 044 030 024 023
o 2.17 3.41 . = 136 1.29 3.94 — o 0. p4 0. 04 0.p3
write gz-C-1 gz-C-6 gzC9 Izo-C-1 Iz0-C-3 Iz0-C-9 bz-C-1 bz-C9 ¢-C-10 ¢-C-16 read gz-D-1 gzD-6 gz-D9 Izo-D-1 Izo-D-3 Izo-D-9 bz-D-1 bz-D-9 ¢-D-10 c-D-16
(e) ET for write vs. compression (f) ET for read vs. decompression

Figure 5.8:Text file results for desktop

not be sufficient to compensate for the extra energy expeddedg the compress-write. We also
notice that thez}?e values for gz-6 and gz-9 are higher than those for the seraehime (Table 5.1).

5.4.2 Binary File Analysis

Similar to the server results, we observe that only 1zo psowebe beneficial for compressing
binary files on the desktop. We see from Table 5.2 that#fievalues for the desktop are higher
than those for the server. 1zo-1 and Izo-3, require abouadgdor every write to compensate for
the additional energy requirements, compared to about théoserver machine. Compression is
more expensive than a plain writ€{ — E,,) on the desktop than the server, and the savings from
decompression over the reall,(— FE,) are less prominent on the desktop than the server. Hence
then? is higher (Section 4.4).
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Figure 5.9:Binary file results for desktop

Tool Text Binary Rand Zero

gz-1 0.2/ x19.1 X X v

gz-6| 4.1/33.2/384 X X \4

gz-9| 10.8/78.6/~10? X X v

Izo-1 v 1.0/3.8/6.7 X \4

Izo-3 v 0.9/35/5.9 X \4

1z0-9| 18.6/31.6/~10° 89 /~10% /~10° X 1.9/4.2/15.3

bz-1 X X X V/I13/14

bz-9 X X X V117123

c-10 X X X v

c-16 X X X i

Table 5.2:nf , nZ andnZT values for various compression tools for the desktop system
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Figure 5.10:Random file results for desktop

5.4.3 Random and Zero File Analyses

As the trends we see for the random and zero files for the deski® not much different than
that on the server, we only present the graphs here. Disgussnilar to the server machine case
follows here.

Summary of desktop results. We summarize the evaluation results for the desktop system i
Table 5.2. We observe trends similar to those on the sengteisy(Table 5.1).

5.5 Laptop Results

In this section, we present and discuss the results of thehipearks run on the laptop.
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Figure 5.11:Zero file results for desktop

5.5.1 Text file Analysis

Similar to our observation on the server and desktop systemdind [zo-1 and 1zo-3 to always
perform better than plain-write and plain-read in terms ofhbperformance and energy savings
(Figure 5.12). Using Izo-1 or 1zo-3 for compression ach&eem average of 28% performance
improvement compared to a plain-write; and 69% performamggEovement compared to a plain-
read. Their energy consumption is 23% lower than plaineyidnd 75% lower than a plain-read.
Iz0-9 and gz-9, like on the server and desktop, need a brezk ealue of reads to writes in order
to be beneficial (Table 5.3).

The disk on the laptop is much slower than the CPU. Hence, Big iGtensive gz-1 and gz-6
finish faster than the plain I/O to the disk. We also see thtAbabh compressing the file using
gz-1 and gz-6 take less time than a plain-write, they requibee energy than the plain-write. That
is, although gz-1 and gz-6 always perform better than plaite and plain-read, they save energy
only after some number of reads per write. Such behavior waseen on the server and desktop
systems, where savings in time directly translated to ggvin energy. The reason for this is the
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Figure 5.12:Text file results for laptop

superior power management ability of the laptop, whichltesn different levels of average power
consumption with different workloads. For example, wher/@nintensive workload like plain-
write is being executed, the processor is dynamically $witicto a lower frequency, and hence a
lower power state. Therefore, the average power consumpliming execution of a plain-write
will be lower than that of compress-write, which requirestbthe CPU and disk to be active and
in their highest power states. As the server and the desktbpat support Dynamic Voltage
and Frequency Scaling (DVFS) based power management, llvaysaran in full power mode,
irrespective of the component usage.

Another interesting observation is that in spite the faBeguency of the desktop’s CPU than
the laptop’s (Table 4.1), bzip2 and higher effort invocataf some tools (Izo-9, gz-6, gz-9) tend
to be significantly faster on the laptop, than on the deskt®dhis is because the desktop has
much smaller CPU caches than the laptop (Table 4.1). Whemaression tool is invoked with a
higher effort parameter, it attempts to look ahead more tainkan even longer match. This, and
algorithms with large memory footprints (e.g., bzip2),ukt$n more cache misses on the desktop
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Figure 5.13:Binary file results for laptop

than on the laptop, thereby increasing the execution timdelesktop.

5.5.2 Binary file Analysis

Overall, the trends are again similar to those of the sermerdesktop. From Figure 5.13 we
notice that although gzip and Izo finish faster than a plasadfplain-write, only |zo saves energy.
It, however, needs some number of reads per write to achieesy savings (Table 5.3). The
corresponding,. values are, however, much smaller in magnitude than thasiadéoserver and
desktop. Finally, bzip2 and compress do not save either dinemergy.

5.5.3 Random and Zero file Analyses

We see similar results for random and zero files as seen onetiversand desktop machines.
Hence, we omit the discussion here for brevity.
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Figure 5.14:Random file results for laptop

Tool Text Binary Rand Zero
gz-1 V/0.03/V 0.7/ x [46.8 X v
gz-6 V/1.9/2.1 7.21 x [~10? X v
gz-9| 1.6/6.3/18.3 38.3/ x [ ~10? X v
[zo-1 i vI10.71V X i
[zo-3 i v/109/V X i
Izo-9] 7.4/15.5/~10? 34.6/84.2 1 ~107 X V1031V
bz-1 X X X v
bz-9 X X X v
c-10 0.2/ x 1/ x X X i
c-16 09/ x/x X X Y

Table 5.3:nf, n andnZT values for various compression tools for the laptop system.
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Figure 5.15:Zero file results for laptop

Summary of Laptop results. Table 5.3 summarizes the results of our experiments on gtega
system. In general, we fing,. values on the laptop to be much smaller than those on theapeskt
and server machines. In some case we also see that while ia tamilbeneficial from the energy
perspective, it exhibits the potential for savings froméehergy-delay perspective. Like mentioned
earlier in Section 5.5.1, this is because different worlloaonsume different amounts of average
power on the laptop. Even though some compression mighhfiaister than a plain-write, it
consumes more energy than the plain-write. In such caseife tiese compression tools are
worse than plain-write in terms df, they have a smalleE'T" value than the plain-write. Hence
they display a value for”T, even when they have ngf’.

5.6 Summary of Evaluation

On the server and desktop systems, we notice a strong liepandency between energy and time
found in all experiments. This indicates that all the corspien and plain 1/O tasks require almost
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the same amount of average power. This leads to the concltisa the fastest algorithm is the
most energy-efficient one. On the laptop system, equipp#dynamic Voltage and Frequency
Scaling (DVFS) for the CPU, we found that the average poweplain I/O was different from
that for a compression task. All the compression tasks, levwexhibited linearity between
energy and time. In general, the time required to accomiitishiask consists of the time required
to perform an I/O and the time required to compress (or decess) the data. The time for
completing 1/O operations, in turn, depends on the amourdadd to be written, whereas the
compression time depends on the algorithm used. This meahsn optimal compression tool
should have a high compression ratio and low compressiaa fithere is a clear trade-off between
compression ratio and the speed of compression.

The file data type affects the compression ratio dramagic&lbne of the compression tools
we considered provided advantages in energy consumptiothéofiles with random content.
For zero files, however, almost all tools provided benefitsbimth reading and writing. For text
and binary files, we observe situations when compress-igitess energy-efficient than plain-
write, but decompress-read is more energy-efficient thamplkad. We calculated the break-even
ratio of reads to writesr{,.) in such cases. For most of the compression tools, this value
significantly higher than the read-to-write ratio on comnsenver systems, which has been found
to be typically 2—4 [34,45]. Some notable exceptions weeellzand |1zo-3, which are always
beneficial for text files. They also save energy in case ofrpifiees, if the read-to-write ratio is
at least 2 (or about 4 in terms &71" metric) for the server machine, 4 for the desktop, and 1 for
the laptop system. We recommend the use of 1zo-1 and Izo-8 gases, except the situations
where disk space is a greater concern than energy or penfa@en&\Ve also recommend that future
systems recognize high-entropy files (e.g., encryptedjaim etc.) and avoid compressing them
at all.

In general, we observed similar trends on the three classemohines we included in our
experiments. However, depending on the individual comptenen each of these machines, they
exhibited potential for energy savings at different breskn values.
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Chapter 6

Conclusions

In this thesis, our research contribution was to investighae validity of the assumption that data
compression is an effective technique to reduce energyucopison in server systems. We evalu-
ated several compression tools on three different cladseschines running Linux, on a variety
of data files and compared them against raw reads and wrisesltzm performance and energy
metrics. Our experimental results suggest that no gemerhtonclusion regarding the efficacy of
compression can be drawn. It greatly depends on the datadaduay of the file, the compression
algorithm being used, the read-to-write ratio of the woddpand the hardware configuration of
the system. We found that compressing zero files is benefiicialmost all the compression tools.
Random files are better-off not being compressed at all. filest when compressed with 1zop
using options 1 and 3, will always save energy, irrespeafhe workload's read-to-write ratio.
We developed a simple read-write model to evaluate energggsin cases where only compres-
sion or decompression saves energy. When applied to texbiaady files, it reveals that only
gzip and lzop can offer energy savings; in most cases, ondiversand desktop, the break-even
read-to-write ratio is significantly greater (more than Btgn that found in common workloads.
The laptop system however requires much smaller correspgreéad-to-write ratio to achieve
energy savings. Other than on zero files, bzip2 and the cawprdity never save any energy.
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Chapter 7

Future Work

We intend to extend this study to a wider range of systemsydinay systems with multiple cores
and multiple CPUs, more CPUs with Dynamic Voltage and Fraguécaling (DVFS), different
disk speeds, etc. We also plan on conducting our study orsezaér workloads. Compression
significantly reduces the storage requirement for data, t@mte can result in lesser spinning
disks. We plan to extend our current model to factor in thatamvhl power savings thus achieved.
We are currently also working on extending gzipfs [63], aktdle compression file system, to
include the various compression algorithms we wish to campa the future, we plan to explore
and evaluate data de-duplication as an energy saving tpahni

Another interesting direction would be to include archs/ar the evaluation. Archivers gen-
erally work by combining multiple files into one. In scenari@here we have several small files,
with similar content or format, compressing their archiveuhd typically result in better compres-
sion. Decompression on an archive to read one file will, h@ydye more expensive than if the
file was individually compressed.
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