

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Energy and Performance Evaluation of Lossless File Data
Compression on Computer Systems

A Thesis Presented
by

Rachita Kothiyal

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2009

Stony Brook University

The Graduate School

Rachita Kothiyal

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Prof. Erez Zadok, Thesis Advisor
Associate Professor, Computer Science

Prof. Samir Das, Thesis Committee Chair
Associate Professor, Computer Science

Prof. Jennifer Wong
Assistant Professor, Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Thesis

Energy and Performance Evaluation of Lossless File Data Compression on Computer
Systems

by

Rachita Kothiyal

Master of Science

in

Computer Science

Stony Brook University

2009

Data compression has been claimed to be an attractive solution to save energy consumption
in high-end servers and data centers. However, there has notbeen a study to explore this. In this
thesis, we present a comprehensive evaluation of energy consumption for various file compression
techniques implemented in software. We apply various compression tools available on Linux
to a variety of data files, and we try them on server, workstation and laptop class systems. We
compare their energy and performance results against raw reads and writes. Our results reveal that
software based data compression cannot be considered as a universal solution to reduce energy
consumption. Various factors like the type of the data file, the compression tool being used,
the read-to-write ratio of the workload, and the hardware configuration of the system impact the
efficacy of this technique. We found that in some cases, compression can save as much as 33%
energy and improve performance by 37.85%. However, in othercases we found that compression
canincreaseenergy consumption 7 times anddeteriorateperformance 4 fold.

iii

To my parents and my sisters, Ruchi and Rachna.

Contents

List of Figures vii

List of Tables viii

Acknowledgments ix

1 Introduction 1

2 Background and Related Work 3
2.1 Power Management Approaches 3
2.2 Energy Saving Techniques for Storage 4
2.3 Saving Energy Using Compression 4

3 Metrics 6

4 Experimental Methodology 8
4.1 Experimental Setup .. . 8
4.2 File types and Compression Tools 9
4.3 Benchmarks . 10
4.4 Read-Write Model .11

5 Evaluation 14
5.1 Terminology .14
5.2 PPMd Analysis . 15
5.3 Server Results .. 15

5.3.1 Text File Analysis . 15
5.3.2 Binary File Analysis .20
5.3.3 Random File Analysis . 21
5.3.4 Zero File Analysis . 21

5.4 Desktop Results .. 23
5.4.1 Text File Analysis . 23
5.4.2 Binary File Analysis .24
5.4.3 Random and Zero File Analyses .. 26

5.5 Laptop Results .26

v

5.5.1 Text file Analysis . 27
5.5.2 Binary file Analysis . 29
5.5.3 Random and Zero file Analyses .29

5.6 Summary of Evaluation .. . 31

6 Conclusions 33

7 Future Work 34

Bibliography 35

vi

List of Figures

3.1 Generic model of a system .. . 7

5.1 PPMd results for the server 16
5.2 PPMd results for the desktop 17
5.3 Text file results for the server 18
5.4 Break-even read/write ratio for text files on a server 19
5.5 Binary file results for the server 20
5.6 Random file results for the server 21
5.7 Zero file results for the server 22
5.8 Text file results for the desktop 24
5.9 Binary file results for the desktop 25
5.10 Random file results for the desktop 26
5.11 Zero file results for the desktop 27
5.12 Text file results for laptop 28
5.13 Binary file results for laptop 29
5.14 Random file results for the laptop 30
5.15 Zero file results for laptop 31

vii

List of Tables

3.1 Performance and Energy Metrics 7

4.1 Testbed Setup .9
4.2 Various invocations of the compression tools 11
4.3 Compression ratios .. . 12

5.1 Break even read/write ratio for the server 23
5.2 Break even read/write ratio for the server 25
5.3 Break even read/write ratio for the server 30

viii

Acknowledgments
My immense gratitude to my advisor, Dr. Erez Zadok, for his constant guidance and moti-

vation. I thank Dr. Samir Das and Dr. Jennifer Wong for being on my defense committee, and
providing valuable suggestions. I am thankful to everyone at the File Systems and Storage Lab
(FSL), for making it a great learning experience. I also wantto specially thank Vasily Tarasov and
Priya Sehgal, for their help through the project.

This thesis was made possible in part thanks to a 2008 IBM Faculty Award and a 2009 NetApp
award. The thesis is also sponsored in part by the Stony BrookAdvanced Energy Research and
Technology Center (AERTC,www.aertc.org).

Chapter 1

Introduction

Until recently, power management research was mostly directed towards battery powered portable
computers and mobile devices [4, 32, 37, 38, 49, 55, 56]. The motivation behind these efforts has
been to enhance user satisfaction by reducing the frequencyof battery recharges. However, the
growing costs of power and cooling have now caused researchers to look at the same issue on
desktops and commercial servers [10, 11, 17, 25, 27, 40, 47, 65]. Data centers and servers primarily
deal with data. Data compression has been suggested an effective way of saving energy in such
systems. To the best of our knowledge, there has not been a study evaluating these claims.

In this thesis, we study several compression algorithms, implemented in software, applied to
various types of data files, on three different classes of machines, and evaluate all in terms of
performance and energy metrics. We use four different typesof files for our experiments:zero,
text, binary, andrandom. These file types exhibit different levels of data redundancy, with zero
being the highest and random being the lowest. Our benchmarks include five popular compression
utilities on Linux: gzip, lzop, bzip2, compress, and ppmd. File compression is known to be
computationally intensive, but can reduce the amount of I/Obeing incurred due to a reduction in
file size. The aim of this study is to evaluate each of the compression tools, and determine if the
savings due to reduced I/O (both in time and energy) are worththe added overhead at the CPU and
memory. To be able to view the effects of compression/decompression on energy and performance
simultaneously, we use the energy-delay product metric [22] for our analysis.

Our results reveal that software based data compression cannot be considered a universal so-
lution to reduce energy consumption in computer systems; itgreatly depends on the type of data
files being compressed, the compression algorithm applied,the workload of the system, and the
hardware configuration. As we expected, compressing zero files was found to almost always save
energy, compared to raw reads and writes, no matter what compression algorithm was used. We
realize that such high levels of redundancy are not common inreal-life settings, but we include
it in our study to evaluate the best-case scenarios. Second to zero files, we observed that text
files exhibited the most potential for energy savings by compression, followed by binary files.
Although some utilities always performed better than plainwrites and reads for text files, other
tools required some number of reads for every write to resultin energy savings. This is because
compression typically consumes more CPU than decompression. To represent the possible sav-
ings in such cases, we developed a simple read-write model: it calculates the minimum number

1

of decompressions required to offset the extra energy expended by a single compression. This
number can be useful in deciding whether or not a workload whose read-to-write ratio is known
would benefit from compressing its data files using a particular compression tool. Finally, also as
expected, random files showed no energy or performance benefits upon compression. Again, we
included random files to be able to evaluate the worst-case scenarios for compression.

The rest of the thesis is organized as follows. Chapter 2 provides some background and dis-
cusses related work in the area. In Chapter 3 we talk about thevarious metrics used for evaluating
our results. We describe the details of the experimental methodology and present the read-write
model of evaluation in Chapter 4. We present the actual experimental results obtained from the
various benchmarks in Chapter 5, and we conclude in Chapter 6.

2

Chapter 2

Background and Related Work

Section 2.1 begins with an overview of some existing techniques for power management in com-
puting systems. In Section 2.2, we present various power management solutions for primary
storage media. In Section 2.3, we address compression techniques implemented at various levels
and their energy impact. We also draw out important distinctions between our work and other
research in this area.

2.1 Power Management Approaches

Energy management techniques can be implemented at severallevels in a computer system. The
fundamental idea behind these approaches has been to transition a component to a lower power
mode or to turn it off completely when not in use. Lorch et al. discuss software techniques to
utilize the power saving provisions provided by the varioushardware components, such as the
CPUs, disks, displays, wireless communication devices, main memory, etc. [37]. Dynamic Volt-
age and Frequency Scaling (DVFS) techniques have been widely employed for reducing CPU
power consumption [10, 55, 56]. DVFS allows processors to dynamically switch to different oper-
ating voltages and frequencies. Choosing a lower voltage would translate to a reduction in power
consumption. However, since voltage cannot be changed independent of the frequency, it would
also result in some degree of performance degradation. Several processors supportClock Gating
as a means to halt idle components, and save power [14, 21, 24,46].

Su et al. proposed and evaluated several CPU cache designs based onGray codesand cache
organization [49]. As Gray codes require only one bit modification to represent consecutive num-
bers, Su et al. were able to obtain significant energy savingsbecause of reduced bit switching.
They also found that cache sub-banking [50] (i.e., organizing cache into banks), was an effective
way to reduce energy consumption of caches. Power Aware PageAllocation [32] reduces the
memory energy consumption by adding energy awareness to theoperating system’s virtual mem-
ory page allocator. The authors explored various page allocation policies to harness the power
management features of emerging DRAM devices.

The OS has also been used to monitor the usage of hardware resources, in order to transition
the components to low power states during periods of inactivity [4, 18, 38]. Zeng et al. propose an
Energy-Centric Operating System (ECOSystem), which allows energy to be managed as a first-

3

class resource by the OS [64].

2.2 Energy Saving Techniques for Storage

One of the earliest ideas for energy conservation in disks was to spin them down when idle.
The controls on when to spin them down have ranged from simplethreshold-based policies to
intelligent prediction policies [15, 16, 35, 58]. Techniques such as Massive Array of Idle Disks
(MAID) [11], Popular Data Concentration (PDC) [43], and write off-loading [40] are based on the
idea of directing the requests to a subset of the disks or special logging devices. This increases the
idle time between requests, hence justifying the spin down of the unused disks. GreenFS [27], is
a stackable file system for client systems. It services I/O requests from remote servers in addition
to adding a flash layer to the storage hierarchy. In enterprise settings, with existing backup server
infrastructure already in place, the energy cost of networktransfers for small transfers is much
smaller than spinning up and writing to the local disk. This allows the hard disks to be powered
down for longer, and hence save more energy. Many vendors, (e.g., NetApp, EMC, etc.,) provide
a large NVRAM to cache disk writes.

Analogous to DVFS for CPUs, Gurumurthi et al. [47] proposed disks which can dynamically
change their rotation speeds based on the request traffic, thereby lowering their power consump-
tion. Zhu et al. [65] considered storage cache replacement techniques to selectively keep some
blocks from the disk in the main memory cache, to increase thedisk’s idle times; this allows disks
to remain in low power mode for longer.

Another approach taken by many researchers, distinct from the disk spin-down policy, has
been to reduce the energy consumed by head seek operations. Essary et al. present a Predictive
Data Grouping technique [17] which attempts to co-locate related data blocks on disk through
remapping and replication. Huang et al. proposed a file system, FS2 [25] which dynamically
replicates data so that the nearest copy of the data can be served on a request. As the mechanical
movement of the disk head is reduced by these techniques, it results in power savings. Interest-
ingly, the increased proximity of the data to the disk head also reduces the seek and rotational
delays, which translates to better performance.

2.3 Saving Energy Using Compression

Compression has been widely used to reduce traffic and latencies on communication channels
(Data bus, network, etc.) [6, 9, 26, 31, 59], and save storagespace [2, 44]. Over the last decade,
compression has been implemented at various levels of the memory hierarchy and proved to be a
successful method of saving energy. For example, several encoding schemes have been proposed
for compressing the contents of the CPU instruction cache [7, 8, 33, 62]. These techniques, called
code compression, map the program instructions into a set of much shorter instructions, thereby
reducing the memory requirements and bus traffic. A decompressor, typically between the cache
and the CPU, translates the compressed instructions to the normal program instructions before
execution on the CPU. Various compression algorithms have been employed on CPU data caches
as well [29, 30, 51, 53].

4

Benini et al. propose a hardware implementation of the compression-decompression logic be-
tween the main memory and the CPU cache for embedded processor systems [5]. On a cache
write-back, compressed data is written to main memory, while decompressed data is written from
main memory to the cache. IBM’s Memory Expansion Technology(MXT) [52] has made main
memory data compression commercially available to a wide range of systems. Kandemir et al.
extend compression to multi-bank memory systems, by compressing infrequently used data, and
transitioning those banks to lower power mode after a threshold idle time [28]. Sadler et al.
employ lossless compression on data communication in sensor networks to reduce energy expen-
diture [48].

The work most closely related to ours, albeit in a different environment of embedded and mo-
bile devices, is that of Barr et al. [3]. Because the energy cost of a single bit wireless transmission
is many times that of a single 32-bit computation in a handheld computer, they apply lossless
compression techniques to data before transmitting. In their work, Barr et al. analyze various data
compression algorithms from the energy perspective. Unlike their work, our study is focused on
file compression and on server, desktop and laptop systems. Our goal, is to investigate potential
energy savings in the storage stack, rather than from transmission over a network. Typically on
the systems of our interest, the energy cost of computation is much higher than performing I/O
to the storage. While Barr et al. foundlzop andcompress to be the most energy efficient, we
found onlylzop to be widely applicable in our test environments.

Another related work by Xu et al. [61] explores data compression as a means to reduce battery
consumption of hand-held devices when downloading data from proxy servers over a wireless
LAN. They assume that the data from the proxy server is available in compressed format and
hence focus their study only on the energy costs related to decompression. Our target systems
differ from theirs in that our systems would have to incur thecosts of both reads and writes. Hence,
we take into account the energy costs of both compression anddecompression in our analysis.

Data compression for storage can be implemented at both hardware [13, 41] and software
levels. However, in this work we focus our analysis on software implementations only, so as to
minimize variations due to hardware changes.

5

Chapter 3

Metrics

The increasing number of studies in the area of green technologies have revealed a problem of
lack of agreement on a proper metric for comparing energy efficiency of computer systems. The
choice of an appropriate metric depends on several factors:which component of a system the
metric will be applied to, what are the purposes of comparison and how different the systems are.
For our study, the metric must be generic enough to express the energy efficiency of the system
as a whole. We also would like the metric to be usable for different purposes of comparison.
Therefore, we present in this section, not one, but several metrics based on a simple view of a
computer system. This family of metrics allows us to describe the energy efficiency profile of a
system from several angles, which offers enough scope for a broad analysis.

We define asystemas any device capable of performing computational work. Thework is
provided to the system by a user as a list oftasks. A task is a logically independent unit of work
that the user wants the system to perform. The rational metric representing the performance of
such a system is its computational power: the number of tasksthe system is able to perform in a
unit of time. For the purposes of our discussion, however, itis more convenient to use the inverse
value of computational power: the time required to finish a single task. We denote this value as
T and measure it in seconds per task. Notice that the notion of asystem and a task are highly
conceptual here. Depending on the specific scenario, the system can be a CPU that is executing
instructions, a disk drive performing I/O requests, a server executing compression algorithms on a
piece of data and writing the results to a disk, and more.

While performing computational work, the system consumes electrical energy. In other words,
the system converts electrical energy (typically measuredin Joules) to computational work (mea-
sured in tasks accomplished). In terms of power consumption, we are mostly interested in the
effectiveness of this conversion: the number of tasks the system is able to perform by using a unit
of energy—or in its inverse form—the energy consumed by the system to perform a single task.
We denote the latter value asE and measure it in Joules per task. Figure 3.1 provides the system
view we used in our study.

Many projects use the plain metricE to compare energy efficiency of different systems [12,
23, 55, 56]. However, this metric ignores the amount of time it takes to complete a task,T . For ex-
ample Gonzaleze et al. [22] showed that it is fairly easy to improve a processor’s energy efficiency
E, but it typically leads to degraded performance of the chip.Sometimes, it is reasonable to ig-

6

Energy

Task 1
Task 2
Task 3
...

System
Task

Seconds

Joules
Task

Completed
tasks

Joules

Tasks

Figure 3.1: System view for energy efficiency estimations.

noreT . For instance, when each system already has the desired performance characteristics [12].
However, in some cases we would like to have a unified metric that gives us a solid understanding
of both the system’s energy efficiency and its performance. For such a metric we need to take into
account both quantities. It is useful to know, for example, how many tasks per Joule per second
the system can produce:

Tasks
Joules×Seconds

This metric has a clear physical meaning: given its value, one can multiply it by the amount of
energy and time available and obtain the number of tasks the system is able to perform under these
constraints. The inverse of this metric can be written in thefollowing form

Joules×Seconds
Tasks = Joules

Tasks/Seconds = Joules
Throughput

Again, this number has a natural meaning: how many Joules we pay for the speed of execution
of a task, as tasks per seconds in the denominator is the throughput of the system. This metric is
widely known asenergy-delay[22, 36, 66]. We denote it asET .

We believe that omitting any of the metrics represented above (T , E, ET) takes away valuable
information about the system.T gives a good understanding of performance, but does not convey
power consumption.E provides reliable information about energy efficiency, butignores the
performance. TheET metric has an intuitive underlying physics and is valuable to compare
systems in the general case, but is not applicable when one isinterested in energy savings or
performance only. For these reasons we adopt all three metrics in this thesis. The metrics we used
are summarized in Table 3.1. By convention we omit tasks unitfrom the table, as all units are
implicitly per task.

Metric Notation Unit
Time T Seconds

Energy E Joules

Energy-delay ET Joules × Seconds

Table 3.1: The metrics and corresponding units we used to evaluate performance and energy
efficiency of a system.

Another well-known metric of energy efficiency isenergy × delay2 [39]. However, it is
specific to the situations where the voltage applied varies from system to system, for instance for
comparison of different DVFS levels.

7

Chapter 4

Experimental Methodology

This section details the setup used for our evaluations. We describe our testbed and the instru-
ments used for energy measurement in Section 4.1. We describe the various benchmarks and the
motivation behind their selection in Section 4.3. We present our evaluation model in Section 4.4.

4.1 Experimental Setup

We used three different machines for our experiments. The first was a Dell PowerEdge SC1425
rack-mountable server, with 2 dual-core IntelR© XeonTM CPUs at 2.8GHz, 1GB RAM, 73GB
primary hard disk (SCSI SEAGATE ST373207LW, 10000 RPM) and adedicated 20GB partition
on a separate hard disk (SCSI SEAGATE ST373207LW, 10000 RPM)for the tests. The server
was running the Fedora Core 6 (kernel 2.6.20-1.2952.fc6) distribution of Linux.

The second machine was a desktop system, with an IntelR© PentiumR© CPU at 1.7GHz, 1GB
RAM, 20GB primary hard disk (WDC WD200BB-00AUA1, 7200 RPM) and a 20GB test partition
on a separate disk (Maxtor 6E040L0, 7200 RPM). It was runningthe same 2.6.20-1.2952.fc6
Linux kernel as the server.

The third machine was an Acer Aspire 5600 Laptop, with Intel Core Duo processor at 1.6GHz,
1GB RAM, 100GB primary disk (Toshiba MK1032GAX, 5400 RPM) ofwhich a 30GB partition
was used as the test partition. It was running Ubuntu 8.10 (kernel 2.6.27-9-generic) Linux flavour.
In order to simplify our evaluation, we enabled only one processor unit on all these three ma-
chines by using themaxcpus = 1 boot time parameter in Linux. Table 4.1 summarizes the
configuration of our testbed.

As our goal is to study the energy impact of data compression on the entire system, and not
on a component in isolation, we measure the total energy of the machine. Hence, we used a
WattsUP Pro ES [54] power meter to measure the energy consumption of the system under test,
instead of a current clamp attached to a digital multimeter [19, 20], which can provide component
level energy measurements. The WattsUP Pro ES is a plug-in style power meter, which allows
power measurements by plugging in the AC supply of the test machine in the meter’s receptacle.
It calculates the cumulative energy in Watt-hours (1 Watt-hour = 3,600 Joules) every second,
and stores in its non-volatile memory. It has a 1 second time resolution and a 0.1 Watt-hour
(360 Joules) resolution for energy measurements; it has an accuracy of±1.5% + 3 counts of the

8

Specification
Machine type

Server Desktop Laptop
CPU model Intel Xeon Intel Pentium 4 Intel Core Duo
CPU speed 2.8 GHz 1.7 GHz 1.6 GHz

No. of CPUs 2 dual core 1 single core 1 dual core
CPU DVFS support No No Yes
CPU c-states support No No Yes

L1 cache size 16K 8K 16K
L2 cache size 2M 256K 2M

FSB speed 400 MHz 400 MHz 533 MHz
RAM size (actual) 2048M 1152M 2560M

RAM type DIMM RIMM SODIMM
Disk RPM 10000 7200 5400

Disk transfer rate 320Mbps 133Mbps 100Mbps
Disk cache 8MB 2MB 16MB

Disk spindown on idle No No Yes
Machine age 3 yrs 6 yrs 2.5 yrs

Average Idle Power 218W 91W 17W
SPEC CPU2006 sjeng score 6.89 4.47 8.54

Table 4.1: Hardware specification of the machines comprising the testbed.

displayed value. We used awattsup Linux utility [57] to download the data from the meter
over a USB interface to the test machine. For measurements onthe laptop system, we powered
it through the AC power and removed the battery to ensure thatall the power being used was
reported.

4.2 File types and Compression Tools

Power consumption in the evaluated systems depends on the effectiveness of compression, which
is typically measured byCompression Ratio(CR) defined as:

CR = Originalfilesize
Compressedfilesize

Compression ratio is heavily affected by the type of input data file. Hence, we include the file
type as one of the dimensions for our evaluation. In order to have a representative set of possible
data files, we chose to run the tests on four types of files of size 2GB each:zero, text, binary,
andrandom. These represent files with highly redundant data, regular text files, binaries, and files
with highly random data, respectively. These files denote the best-to-worst cases of compression,
in order. We chose the file size to be 2GB to ensure that each test ran for a considerable amount of
time, thereby reducing the scope of errors and high standarddeviations arising out of even slight
differences in recorded values across multiple iterationsof the test. Also, the 2GB file, being
larger than the system RAM (1GB), forces I/O to take place. Wecreated the zero file by writing

9

zeroes to the file. We generated the text file by concatenatingsource files from the Linux kernel
and other open source projects. We created the binary test file by combining object files from the
Linux kernel, Linux libraries and other open source executables. We created the random file by
reading from/dev/urandom.

Another factor influencing the compression of a file is the compression algorithm itself. This
constitutes the second dimension for our analysis. We examined five popular compression utilities
available on Linux: compress, gzip, lzop [42], bzip2 and ppmd. They have significant differences
in implementation and cover a wide range of compression algorithms. Bar and Asanovic discuss
these tools and their algorithms in detail [3]. The compressutility, regarded as the oldest, imple-
ments the Lempel-Ziv-Welch (LZW) algorithm which is a variant of the LZ78 algorithm. It uses
m bits (9–16) to encode the input symbols, and stores the string-to-code mapping in a dictionary.
Although based on the same LZ77 algorithm, gzip and lzop differ significantly in their implemen-
tation. As lzop was designed with the main goal to improve compression/decompression speed, it
tends to be generally faster than gzip. In particular, lzop uses a 16KB hash table, enabling it to be
cache resident, thus reducing the frequency of cache missesduring its execution. It is also imple-
mented using macros instead of function calls, to reduce performance overheads. The bzip2 utility
is based on the Burrows Wheeler Transform (BWT); it achievesbetter compression ratio than the
Lempel-Ziv based tools, at the expense of compression speed. The block size for compression
(100k–900k) can be specified at command invocation. A largerblock size typically increases the
compression ratio, while increasing the memory footprint.PPMd implements the Prediction with
Partial Match (PPM) algorithm. PPM is known to produce the best compression ratio compared
to all other algorithms. It, however, uses considerably greater time and memory resources.

4.3 Benchmarks

Writing an uncompressed file involves reading the input and writing it to disk. We will refer
to this as aplain-write in the rest of the thesis. Writing a compressed file involves reading the
uncompressed input, compressing it, and writing the compressed file to disk. We shall call this
compress-write. Similarly, we use the termplain-read to denote reading the uncompressed file
from the disk; and we usedecompress-readto indicate reading the compressed file and decom-
pressing it. Each of the operations described above (plain-write, compress-write, plain-read, and
decompress-read), constitute a task which we defined in Section 3.

The aim of this study is to compare aplain-write to compress-write, and aplain-read to
decompress-read, in terms of both energy consumption and performance. We therefore broadly
have four types of benchmarks:plain-write, compress-write, plain-read, and decompress-read. As
mentioned above, we used four different compression tools,each of which can be invoked with
tunable parameters. For example, gzip allows the user to specify an effort parameter in the range
1–9 to choose between speed of compression and compression ratio; a choice of 1 would result in
fast compression, but poorer compression ratio; and a 9 would give the best compression ratio, but
would be slower than 1. Table 4.2 lists the various parametervalues considered for the compress-
write benchmarks. For each of the compression tools we chosethe default invocation, and the
options which provide the best and worst case of compressionspeed (if not already covered by the
default option). Table 4.3 lists the compression ratios achieved by compressing different types of

10

files using various compression applications.

Invocation Algorithm Implications
gzip –1

LZ77
max chain = 32, other parameters

gzip –6 (default) max chain = 32, other params
gzip –9 max chain = 4096, other params
lzop –1

LZ77
max chain = 4, other params

lzop –3 (default) nearly identical to lzop-1
lzop –9 max chain = 4096, other params
bzip2 –1

BWT
Use 100K block size

bzip2 –9 (default) Use 900K block size (default)
compress –b 10

LZW
Use 10 bit codes

compress –b 16 (default) Use 16 bit codes
ppmd –o 2

PPM
Predict next character based on last 2 seen

ppmd –o 16 Predict next character based on last 16 seen

Table 4.2: Parameters used for invocation of various compression tools for compress-write bench-
mark.

We used the Auto-pilot test suite infrastructure [60] to runthe benchmarks. Auto-pilot mea-
sures the time required to run a benchmark and reports it in terms of Elapsed, System, User, and
Wait times. We developed an Auto-pilot script plug-in to measure the energy consumed while
running the benchmark. The plug-in relies on the Linux utility described in Section 4.1 to com-
municate with the meter. The plug-in uses the utility to senda command to clear the meter’s
internal memory before starting the benchmark. After the benchmark has finished execution, we
invoke the utility to send a command to read the data from the meter, and extract the total energy
expended (in Joules) while running the benchmark. Since thebenchmark themselves run for a
significant time, any energy measurement errors due to the measurement tool itself are negligible.

We ran all tests at least five times and computed the 95% confidence intervals for the mean
elapsed, system, user, and wait times using the Student’s-t distribution. In each case, unless
otherwise noted, the half widths of the intervals were less than 5% of the mean. In all bar graphs,
we show the half widths using an error bar. Wait time is elapsed time less system and user time
and mostly measures time performing I/O, though it can also be affected by process scheduling.

We ran the tests on a dedicated hard disk, with the partition formatted with the Ext2 file system
and mounted using the default options. To ensure that writesto the partition were flushed to the
disk during our measurements, we unmounted the partition atthe end of each test iteration.

4.4 Read-Write Model

The best case for compression would be when compress-write outperforms plain-write, and decom-
press-read fares better than plain-read, in terms of a metric. However, there might be scenarios
when only one of these comparisons favor compression. For example, for a given compression
tool, compress-write might require more energy than plain-write, but expends less energy for a
decompress-read than a plain-read. Notice that the metric we consider in this example is energy,

11

Tool
File Type

Text Binary Rand Zero
None 1 1 1 1
gz-1 4.16 1.81 0.95 ˜10

2

gz-6 4.79 1.81 0.95 ˜10
3

gz-9 4.84 1.81 0.95 ˜10
3

lzo-1 3.52 1.53 0.95 ˜10
2

lzo-3 3.51 1.53 0.95 ˜10
2

lzo-9 4.37 1.81 0.95 ˜10
2

bz-1 5.09 1.81 0.95 ˜10
6

bz-9 6.11 2.09 0.95 ˜10
7

c-10 1.17 1.04 0.8 ˜10
2

c-16 2.07 1.17 0.8 ˜10
5

ppmd -o 2 3.86 1.81 0.95 ˜10
3

ppmd -o 16 7.7 2.44 0.95 ˜10
3

Table 4.3: Compression ratios achieved by various compression utilities on 2GB files.

but the argument applies to the other metrics as well (e.g., time or energy-delay). Compression
might still achieve energy savings in such a case if the number of reads is more than a “break-even”
value to amortize the extra energy consumed by a single compress-write.

Workloads are characterized by aread-to-writeratio (n), which represents the distribution of
read and write I/O requests. There have been extensive studies to characterize workloads based
on this parameter [34, 45]. Given a workload, with knowledgeabout its read-to-write ratio and the
type of file data it handles, we can use this break-even value (nbe) to decide if compressing the
data files would be beneficial. We formalize this by the following model.

For a given metric M, let Mw, Mc, Mr, and Md be the measured values of M on a plain-write,
compress-write, plain-read, and decompress-read, respectively. Let nM

be represent the break-even
read-to-write ratio to obtain energy savings. Assuming we first need to write once before reading,
the following inequality must hold to compensate the excessenergy expended during the write:

Mc − Mw ≤ nM
be × (Mr − Md)

Solving fornM
be , we get

nM
be ≥ (Mc−Mw)

(Mr−Md)

whereM ∈ {T,E,ET}
We calculate and present thenM

be values for theT , E andET metrics for the various compres-
sion tools and test files in Tables 5.1, 5.2 and 5.3 of Section 5.

We define the energy savings (Esav) for decompress-read and compress-write vs. plain-read
and plain-write for a given value of read-to-write ratio,n:

Esav = (n × (Er − Ed)) + (Ew − Ec)

12

where,Ew, Ec, Er, andEd is the energy expended in plain-write, compress-write, plain-read, and
decompress-read, respectively.

Note that a negative value ofEsav means energy loss. Figure 5.4 presents the values ofEsav

for n ranging from 0 to 30 for different compression algorithms applied on a text file. The value
of n for which Esav becomes zero is thenE

be.

13

Chapter 5

Evaluation

In this chapter, we evaluate the effect of compression and decompression on energy savings and
performance, based on the metrics: time (T), energy (E), and energy-delay (ET), as discussed
in Chapter 3. Section 5.1 explains the terms we use in this chapter. We present the results of the
PPMd compression utility on the server and desktop machines, in Section 5.2. In Section 5.3 we
analyze the results of the other four compression utilities(gzip, lzop, bzip2, and compress) on the
server class machine. We evaluate the results obtained on the desktop machine in Section 5.4, and
those for the laptop in Section 5.5. Finally, we summarize our observations in Section 5.6.

5.1 Terminology

We present the graphs of the PPMd results for the server and desktop systems in Figures 5.1
and 5.2. The x-axis of these plots denotefile type-level, wherefile type is the type of the input
data file: Zero, Text, Binary, and Random;level is passed as a parameter to ppmd: o2, denoting
the use of order of 2 for compression, and o16 denoting the useof order 16. Both these invocations
use 256 MB of memory. We plot the Time, Energy, and Energy-Delay metrics for compressing
and decompressing using the PPMd tool. For reasons elaborated in Section 5.2, we present the
results for PPMd and those for the other four compression tools (gzip, lzop, bzip2, and compress),
in separate graphs.

Figures 5.3, 5.5, 5.6, and 5.7 show the metrics plotted for text, binary, random, and zero files
respectively for the server machine. These figures evaluatethe gzip, lzop, bzip2, and compress
utilities. Figures 5.8, 5.9, 5.10, 5.11 and Figures 5.12, 5.13, 5.14, 5.15 are the corresponding
graphs for the desktop and laptop systems, respectively. Inall these figures, the x-axis denotes
alg-mode-level, wherealg is the type of the compression/decompression algorithm: gzip, lzop,
bzip2, or compress;modeis either Compression or Decompression;level is passed as a parameter
to the compression/decompression algorithm to control thecompression ratio (CR). Similarly, we
use the notationalg-level, to refer to a given tool operating at a specific compression level.

The time result figures show the total time required to compress-write or decompress-read
a 2GB file using the compression utilities discussed above, compared to plain-writes and plain-
reads, respectively. The y-axis on this graph denotes the elapsed time, which constitutes of the
systemtime,usertime, andwait time.

14

The second type of metric plotted is energy. These results compare the total energy required in
performing a plain-write/plain-read versus a compress-write/decompress-read. On the y-axis we
have the total energy, constituting ofactiveandpassiveenergy. Passive energy is the energy that
is consumed by an idle system, for the elapsed period, without any other activity. For calculating
the passive energy, we first need to estimate the average power consumption of the idle system. To
compute this, we let the system idle ten times for 10 minutes each, recorded the energy consumed,
and we verified that the standard deviations were small. We then divided the total energy measured
by the duration of the idleness, yielding the average idle power of the system. Passive energy can
be obtained by multiplying the average idle power with the elapsed time. Active energy is the
extra energy required, apart from the passive counterpart,to complete the required task. In our
graphs, we represent energy in units of Kilojoules, where1KiloJoule = 103Joules.

The energy-delay product(ET) metric, as discussed in Section 3, compares theET results
of compression/ decompression versus pure writes/reads. Similar to the energy results, the total
ET also consists of an active and passive component. We have plotted theET results in units of
MegaJoule-seconds, and in KiloJoule-seconds in some cases.

5.2 PPMd Analysis

PPMd is based on the Prediction with Partial Match (PPM) algorithm. PPM is known to produce
the best compression ratio, at the expense of considerably greater time and memory resources. For
example, PPMd yields a compression ratio of 7.7 on a text file (Table 4.3), but consumes about 10
times more time and energy to compress than a plain write. It consumes approximately 30 times
more time and energy during decompression as compared to a normal read. Even in the best case
scenario of highly redundant data (Zero file), we see PPMd to be worse than plain I/O. Unlike
all other compression utilities, which often decompress faster than they compress, PPMd has to
perform similar operations during compression as well as decompression. Hence, it is equally
slow and energy exhaustive during both compression and decompression of files. As PPMd does
not save time or energy during either compression or decompression, for any type of file, it cannot
prove to be better than plain I/O. Hence, we do not include it further in our evaluation. In the
following sections, we will therefore only evaluate the other four compression utilities (gzip, lzop,
bzip2, and compress).

5.3 Server Results

In this section, we present and discuss the results of the benchmarks run on the server class ma-
chine. We discuss the results by the file type in the followingfour sections (5.3.1, 5.3.2, 5.3.3
and 5.3.4).

5.3.1 Text File Analysis

As we observe in Figures 5.3(a) and 5.3(b), the plain-read and plain-write spend most of their
time performing I/O. The compress-read and compress-writeon the other hand, spend most of
their time performing computation on the CPU. They have a significantly smaller portion of time

15

 0

 1000

 2000

 3000

 4000

 5000

 6000

write Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

68.53 107.39 109.42
526.03

811.05

1448.38

2395.98

4574.48

5828.74Wait
User

System

(a) Time taken for write vs. compression

 0

 1000

 2000

 3000

 4000

 5000

 6000

read Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

29.9 149.67 154.88
588.56

873.33

1557.42

2590.78

4789.53

6316.19Wait
User

System

(b) Time taken for read vs. decompression

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

write Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

15.41 29.14 29.57
148.75

232.78

403.86

680.45

1298.06

1676.45Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

read Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.70 40.50 41.33
165.60

247.21

433.22

737.15

1356.55

1771.27Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 2000

 4000

 6000

 8000

 10000

write Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

1.06 3.14 3.24 78.25 188.79
584.94

1630.34

5937.93

9771.65Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 2000

 4000

 6000

 8000

 10000

 12000

read Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.20 6.08 6.42 97.47 215.91
674.71

1909.80

6497.25

11187.63Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.1:PPMd results for the server: The time, energy and energy-delay product (ET) for
compressing/decompressing text, binary, random and zero files using PPMd. In (a) and (b), the
values along the x-axis are of the formfile type-level, wherefile type is the type of the file:
Text, Binary, Random, or Zero; level is order2or order16; Both the levels use 256MB of RAM.
The energy results in (c) and (d) represent the total energy (kilojoules) required for compress-
ing/decompressing the various files with PPMd. In (e) and (f)we use Megajoule-seconds to denote
the energy-delay product to compress-write/decompress-read the files.

spent on I/O, compared to their plain-read and plain-write counterparts. This is expected, because
compression results in a reduction of the file size (as shown in Table 4.3). We also observe that
the heights of the compression plots (both time and energy)of a given compression tool, increases
with the effort level. This shows that the harder a tool triesto achieve a better compression ratio,
the more resources it needs. However, the corresponding heights in the decompression plots of a
particular compression tool are only slightly affected by the effort level of compression.

16

 0

 2000

 4000

 6000

 8000

 10000

write Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

150.94 212.71 215.33
843.28

1443.3

2283.55

4218.37

6061.46

9258.16Wait
User

System

(a) Time taken for write vs. compression

 0

 2000

 4000

 6000

 8000

 10000

read Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

67.47 261.13 260.49
921.07

1525.65

2380.47

4309.2

6176.72

9938.08
Wait
User

System

(b) Time taken for read vs. decompression

 0

 200

 400

 600

 800

 1000

 1200

 1400

write Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

14.40 30.46 30.72
127.51

215.71

345.53

639.07

936.29

1431.43Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

read Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.48 37.37 37.12
137.16

228.24

356.84

652.79

935.35

1523.98Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

write Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

2.17 6.48 6.62 107.53 311.37
789.07

2744.55

5675.34

13253.07Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

read Z-o2 Z-o16 T-o2 T-o16 B-o2 B-o16 R-o2 R-o16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.44 10.09 9.91 126.76 348.26
850.29

2813.66

5777.42

15148.62Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.2:PPMd results for the desktop

As we observe in Figures 5.3(a), 5.3(b), 5.3(c), and 5.3(d),lzo-1 and lzo-3 always outperform
pure writes and reads in terms of both time and energy consumption for text files. lzo-1 and lzo-3
take 34% lesser time to compress than a plain-write, and 69% lesser time to decompress than a
plain-read. They save approximately 29% energy compared toplain-writes, and 68% compared
to plain-reads. The plots for theET metric in Figures 5.3(e) and 5.3(f) show that compressing
text files using lzo-1 or lzo-3 is beneficial in terms of theET metric. They exhibitET values
which are lower by 53% than plain-write, and 90% lesser than that for plain-read. The compress
utility however does not fair better than plain-write or plain-read by any metric. We observed that
although the compress tool achieves a worse compression ratio than lzo, the compress tool takes
significantly more time than lzo. Specifically it has a significantly higher system time than the
other compression utilities. We ranstrace and found that compress performs multiple read and
write system calls in units of 1024 bytes, instead of a more optimal unit such as 4KB (page frame
size), thereby increasing system time. This, in addition tothe fact that lzo is designed for speed,
is the reason for this behavior.

17

 0

 200

 400

 600

 800

 1000

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

68.53 85.06
154.75

274.23

44.81 45.38

645.86 673.83

918.6

82.98
122.04

Wait
User

System

(a) Time taken for write vs. compression

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

29.9
24.06 21.43 21.62

9.2 9.38 8.36

142.56

169.94

71.79

44.71

Wait
User

System

(b) Time taken for read vs. decompression

 0

 50

 100

 150

 200

 250

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

15.41 22.68
40.97

74.52

11.16 10.94

175.90
187.62

259.06

21.31
32.76

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 10

 20

 30

 40

 50

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.70 6.34 5.40 5.49

2.16 2.09 2.16

39.60

47.84

19.37

11.88

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 50

 100

 150

 200

 250

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

1.06 1.93 6.34
20.44

0.50 0.50

113.60
126.44

237.97

1.77 4.00

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 1

 2

 3

 4

 5

 6

 7

 8

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.20 0.15 0.12 0.12 0.02 0.02 0.02

5.65

8.13

1.39

0.53

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.3: Text file results for server: The time, energy and energy-delay product (ET) for
compressing/decompressing a 2GB text file. In (a) and (b), the values at the x-axis are of the form
alg-mode-level, wherealg is the type of the compression/decompression algorithm: gzip, lzop,
bzip2, or compress;mode is Compression or Decompression;level is the parameter passed to
the compression/decompression algorithm. The energy results in (c) and (d) represent the total
energy (kilojoules) required for compressing/decompressing the file with the corresponding al-
gorithm. Section 5.1 describes the termsActive-EnergyandPassive-Energy. In (e) and (f) we
use Megajoule-seconds to denote the energy-delay product to compress-write/decompress-read
the same file.

Conversely, gz-6, for example, takes more time and requiresmore energy to compress-write
than plain-write, but it saves during the decompress-read of the same file compared to a plain-read.
This implies that compression on text files with gz-6 can still be helpful for workloads which read
a file more often than write. As discussed in Section 4.4, we achieve significant energy savings
without compromising performance when the read-to-write ratio exceeds thebreak-evenvalue.

18

-400

-300

-200

-100

 0

 100

 200

 5 10 15 20 25 30

E
ne

rg
y

sa
vi

ng
s

or
 lo

ss
 (

K
ilo

Jo
ul

es
)

n - number of reads per one write

gz-1
gz-6
gz-9
lzo-1, lzo-3
lzo-9
bz-1
bz-9
c-10
c-16

Figure 5.4: Energy savings or loss (Esav) compared to plain read and write depending on the
number of reads per one write for text files on the server system. The lzo-1 and lzo-3 results are
so close, that we put them on the same line.

Figure 5.4 demonstrates the dependency of energy savings orloss on the read-to-write ratio
on a server system. The y-axis denotes the energy savings,Esav, (in Kilojoules). A positive value
of Esav means some energy savings, whereas a negative value denotesenergy loss.Esav = 0
indicates neither energy savings nor energy losses. The value of n for which Esav = 0 is the
nE

be. The plots for gz-1, gz-6, gz-9, and lzo-9 cross theEsav = 0 line, denoting that there exists
a read-to-write ratio when the corresponding algorithm becomes beneficial in terms of energy.
For example, gz-1 crosses theEsav = 0 line whenn is equal to 20.2. This means that if for
every write the system experiences 21 or more reads, we can save energy. The lines for lzo-1
and lzo-3 (coincided because of the proximity of results) are always above theEsav = 0 line,
indicating that these compression tools save energy for anyratio. Conversely, the plots for bz-1,
bz-9, c-10, and c-16 never cross theEsav = 0 line, implying that these tools expend so much more
energy compared to plain-write and plain-read that they areunable to amortize the energy losses
for any read-to-write ratio. Both bz-1 and bz-9 consume moretime and energy during compress-
write as well as decompress-read, because of the algorithmic complexity of bzip2, which uses the
Burrows-Wheeler transform, the move-to-front transform,and Huffman coding.

19

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

66.35
161.96

361.63

1193.29

74.01 75.58

1655.46

585.81
677.98

88.5 136.03

Wait
User

System

(a) Time taken for write vs. compression

 0

 50

 100

 150

 200

 250

 300

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

29.34
41.8 38.84 38.58

19.06 19.59 17.08

253.76

305.09

79.3
59.84

Wait
User

System

(b) Time taken for read vs. decompression

 0

 100

 200

 300

 400

 500

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

14.69
43.99

99

333.05

19.01 18.86

460.73

164.08
191.38

22.39 36.07

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.70
11.16 10.08 10.15

4.68 4.68 4.10

70.62

86.00

21.60
16.20

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 100

 200

 300

 400

 500

 600

 700

 800

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.97 7.13
35.80

397.42

1.41 1.43

762.71

96.13
129.75

1.98 4.91

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 5

 10

 15

 20

 25

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.20 0.47 0.39 0.39 0.09 0.09 0.07

17.92

26.24

1.71
0.97

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.5:Binary file plots for the server

5.3.2 Binary File Analysis

In the case of a 2GB binary file, as shown in Figure 5.5(c), the energy consumption during
compress-write using both lzo-1 and lzo-3 is greater than plain-write. Conversely, both of them
save energy during decompress-read, seen in Figure 5.5(d).Hence, similar to the discussion in
Sections 4.4 and 5.3.1, we compute that lzo-1 and lzo-3 save energy only whennE

be ≥ 2. How-
ever, if we consider the energy-delay metric, shown in Figures 5.5(e) and 5.5(f), the value of the
break-even ratio changes to 4 and 4.3, for lzo-1 and lzo-3, respectively. We also see that lzo-9
consumes significantly more energy during compression compared to pure-write, that it is diffi-
cult to recoup the over-consumption of energy through multiple decompress-read workloads. This
is evident from the large value ofnE

be (̃ 102) in Table 5.1. All the compression utilities, other than
lzop, have a greater energy consumption than plain-writes and plain-reads. Hence, they cannot be
considered as good candidates for compression with energy savings in mind.

20

 0

 200

 400

 600

 800

 1000

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

66.82

226.92 229.68 229.55

122.53 121.76

751.88
829.43

1051.63

108.31
168.16

Wait
User

System

(a) Time taken for write vs. compression

 0

 100

 200

 300

 400

 500

 600

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

29.32 30.62 30.25 30.63 31.06 31.7 31.29

403.18

547.16

91.67 82.18

Wait
User

System

(b) Time taken for read vs. decompression

 0

 50

 100

 150

 200

 250

 300

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

14.83

60 60.82 60.62

30.96 30.46

200.34

232.40

297.96

26.28
43.06

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 20

 40

 60

 80

 100

 120

 140

 160

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.48 7.56 7.34 7.56 6.84 6.98 7.13

111.35

154.01

24.54 21.82

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 50

 100

 150

 200

 250

 300

 350

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.99
13.62 13.97 13.92

3.79 3.71

150.63

192.80

313.38

2.85 7.25

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.19 0.23 0.22 0.23 0.21 0.22 0.22

44.90

84.27

2.25 1.79

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.6:Random file plots for the server

5.3.3 Random File Analysis

It is evident from Figure 5.6 that no compression utility saves energy during compression or de-
compression. Consequently, theE values for the compression utilities is also greater than that
of plain-read and plain-write. The reason is that compression utilities find it difficult to discover
repeated patterns in a random file, which inherently has a high entropy [1]. Therefore, the tools
waste a lot of CPU time and energy trying to compress, but do not gain much in terms of CR, as
shown in Table 4.3. Hence, modern storage systems should recognize high entropy files, such as
multimedia, random, encrypted, etc., and write them directly to the disk without compression.

5.3.4 Zero File Analysis

As expected, all the compression utilities, except lzo-9, consume less energy than writes and reads
(Figure 5.7). The energy consumption by lzo-9 compress-write is almost twice that of plain write,
but it recovers from the energy losses fornE

be ≥ 5.4 (Table 5.1). Considering theET metric, the

21

 0

 20

 40

 60

 80

 100

 120

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

69.46

29.98
36.96 37

29.58 30.91

126.68

62.19
72.34

29.52 29.44

Wait
User

System

(a) Time taken for write vs. compression

 0

 5

 10

 15

 20

 25

 30

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

30.54

7.15

10.08 10.09

16.14 16.19
14.64

10.96 11.21

5.9 6.75

Wait
User

System

(b) Time taken for read vs. decompression

 0

 5

 10

 15

 20

 25

 30

 35

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

15.41

7.74
9.65 9.72

6.98 7.20

33.41

16.56

20.64

7.27 7.27

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 2

 4

 6

 8

 10

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.91

1.56

2.37 2.42

3.94 3.96

3.58 2.80 2.81

1.22 1.44

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

c-C-16c-C-10bz-C-9bz-C-1lzo-C-9lzo-C-3lzo-C-1gz-C-9gz-C-6gz-C-1write

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
K

ilo
jo

ul
e-

se
co

nd
s)

1070.21

232.04 356.51 359.66 206.63 222.52

4234.98

1029.81

1493.34

214.70 214.11

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 50

 100

 150

 200

 250

c-D-16c-D-10bz-D-9bz-D-1lzo-D-9lzo-D-3lzo-D-1gz-D-9gz-D-6gz-D-1read

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
K

ilo
jo

ul
e-

se
co

nd
s)

211.10

11.14
23.88 24.38

63.55 64.10
52.37

30.68 31.53

7.20 9.72

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.7:Zero file plots for the server: The energy-delay product (ET) is in KiloJoules-sec.

break-even ratio for lzo-9 rises to 20. Most of the compression utilities achieve a high CR without
increasing theET because of the large frequency of repeated patterns. From this observation,
we can suggest that if a storage system consists of files with alarge number of repeated patterns
(e.g., log files) compression is definitely a better alternative in terms of saving on energy without
performance degradation.

Summary of Server results. Table 5.1 contains the calculations ofnT
be, nE

be andnET
be for the

compression tools discussed in this thesis, for the server system. The break-even value varies
depending on the compression tools used and their CR values.Often, the higher the CR, the slower
the utility operates, consuming more energy, thereby raising the break-even ratio. Although the
break-even ratio for some utilities (gz-9, lzo-9, etc.) is greater than the read-to-write ratio on a
common server system [34, 45], we can consider them beneficial for a read-intensive workload
(e.g., public FTP mirrors). In this case, tools with a higherCR can be applicable, especially if
storage space and network traffic are a great concern.

22

Tool Text Binary Rand Zero
gz-1 2.8 / 20.2 / 18.3 × × ∀

gz-6 10.9 / 19.7 / 62.5 × × ∀

gz-9 24.9 / 49.0 / ˜10
3 × × ∀

lzo-1 ∀ 0.8 / 2.1 / 4.0 × ∀

lzo-3 ∀ 1.0 / 2.0 / 4.3 × ∀

lzo-9 26.8 / 35.4 / ˜10
2

˜10
2 / ˜10

2 / ˜10
3 × 3.6 / 5.4 / 19.9

bz-1 × × × ∀ / 0.3 / ∀
bz-9 × × × 0.2 / 1.3 / 2.4

c-10 × × × ∀

c-16 × × × ∀

Table 5.1: The number of reads for each write required to benefit from compression forT (nT
be), E

(nE
be) andET (nET

be) metrics on aserver system, separated by a/. For break-even values greater
than 100 we only report magnitudes.∀ denotes that it is beneficial to use compression for any
read-to-write ratio. The symbol× denotes scenarios when no savings can be made. Values less
than 1 represent that just one read can compensate for multiple writes.

5.4 Desktop Results

In this section, we present and discuss the results of the benchmarks run on the desktop class
machine. Overall the results on the desktop show similar trends as those on the server machine
(Section 5.3).

5.4.1 Text File Analysis

As the desktop is equipped with components relatively slower than those on the server machine,
we observed that tasks took longer to complete on the desktopmachine. For example, since the
desktop has a slower disk (7,200 RPM) than the server (10,000RPM), the reads and writes are
much slower than on the server. From Figures 5.8, 5.9, 5.10, and 5.11 we see that the disk on
the desktop is about twice as slow as that on the server, in terms of performing I/O. Similarly the
slower CPU (1.7 GHz) causes the compression tasks to take longer as well. Correspondingly, the
average power requirements of these components are lower than that of the higher performance
server class machine. The average idle power of the desktop was 91 Watts (compared to the 218
Watts of the server).

Similar to our observations on the server class machine, we find lzo-1 and lzo-3 to always
do better in performance and energy savings than plain-readand plain-write. The gzip utility
takes more time and energy during the compression phase, butsaves both time and energy while
decompressing. Hence, gzip can also prove beneficial, provided that the workload has a read-to-
write ratio greater than the corresponding break-even value (nbe). We calculate and present thenbe

values for the desktop system in Table 5.2. However, notice that, unlike in the server, gz-1 never
saves energy for any value ofn. This is because the energy consumption from our measurements
for decompressing is almost the same as that of the plain-read. Hence, any number of reads will

23

 0

 500

 1000

 1500

 2000

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

150.94 154.22
258.59

476.48

108.58 105.49

1104.96

1488.58

2253.43

176.02

418.9

Wait
User

System

(a) Time taken for write vs. compression

 0

 50

 100

 150

 200

 250

 300

 350

 400

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

67.47
46.59 40.97 40.54

19.49 19.53 16.07

283.76

389.62

165.64

100.38

Wait
User

System

(b) Time taken for read vs. decompression

 0

 50

 100

 150

 200

 250

 300

 350

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

14.40 22.10
38.30

70.20

12.53 12.24

162.46

222.62

335.40

22.39

60.79

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 10

 20

 30

 40

 50

 60

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.48 6.48 5.76 5.76
2.16 2.16 1.80

42.17

57.33

23.16

14.25

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 100

 200

 300

 400

 500

 600

 700

 800

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

2.17 3.41 9.91
33.50

1.36 1.29

180.70

331.55

755.81

3.94 25.47

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 5

 10

 15

 20

 25

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.44 0.30 0.24 0.23
0.04 0.04 0.03

11.99

22.36

3.84

1.43

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.8:Text file results for desktop

not be sufficient to compensate for the extra energy expendedduring the compress-write. We also
notice that thenE

be values for gz-6 and gz-9 are higher than those for the server machine (Table 5.1).

5.4.2 Binary File Analysis

Similar to the server results, we observe that only lzo proves to be beneficial for compressing
binary files on the desktop. We see from Table 5.2 that thenbe values for the desktop are higher
than those for the server. lzo-1 and lzo-3, require about 4 reads for every write to compensate for
the additional energy requirements, compared to about 2 forthe server machine. Compression is
more expensive than a plain write (Ec −Ew) on the desktop than the server, and the savings from
decompression over the read (Er − Ed) are less prominent on the desktop than the server. Hence
thenE

be is higher (Section 4.4).

24

 0

 500

 1000

 1500

 2000

 2500

 3000

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

151.67
275.03

673.45

2170.66

176.47 168.23

2843.02

1424.1 1480.21

215.58
434.21

Wait
User

System

(a) Time taken for write vs. compression

 0

 100

 200

 300

 400

 500

 600

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

67.34 81.52 73.7 74.52
42.69 42.18 36.97

473.1

623.42

193.49

138.77

Wait
User

System

(b) Time taken for read vs. decompression

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

14.47
39.89

98.21

318.69

21.46 20.23

411.91

210.62 221.47

27.24

61.71

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 20

 40

 60

 80

 100

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.48
11.52 10.51 10.51

4.68 4.68 3.96

70.95

92.81

27.04
19.44

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 200

 400

 600

 800

 1000

 1200

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

2.20 10.97
66.27

694.35

3.79 3.40

1171.90

300.27 327.85

5.87 26.80

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 10

 20

 30

 40

 50

 60

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.44 0.94 0.77 0.78 0.20 0.20 0.15

33.75

57.88

5.23
2.70

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.9:Binary file results for desktop

Tool Text Binary Rand Zero
gz-1 0.2 / × / 9.1 × × ∀

gz-6 4.1 / 33.2 / 38.4 × × ∀

gz-9 10.8 / 78.6 / ˜10
2 × × ∀

lzo-1 ∀ 1.0 / 3.8 / 6.7 × ∀

lzo-3 ∀ 0.9 / 3.5 / 5.9 × ∀

lzo-9 18.6 / 31.6 / ˜10
2 89 / ˜10

2 / ˜10
3 × 1.9 / 4.2 / 15.3

bz-1 × × × ∀ / 1.3 / 1.4

bz-9 × × × ∀ / 1.7 / 2.3

c-10 × × × ∀

c-16 × × × ∀

Table 5.2:nT
be, nE

be andnET
be values for various compression tools for the desktop system.

25

 0

 500

 1000

 1500

 2000

 2500

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

154.94

367.21 386.42 385.42
262.07 242.26

1640.16

2189.18

2457.86

311.07

583.37

Wait
User

System

(a) Time taken for write vs. compression

 0

 200

 400

 600

 800

 1000

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

67.31 68.05 68.04 70.71 68.09 67.62 67.61

787.42

1000.17

225.58
192.94

Wait
User

System

(b) Time taken for read vs. decompression

 0

 50

 100

 150

 200

 250

 300

 350

 400

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

14.76

52.63 55.26 55.11
33.41 30.74

231.05

328.74

370.86

39.53

82.55

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 20

 40

 60

 80

 100

 120

 140

 160

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.48 8.14 8.14 8.28 6.55 6.48 6.48

116.60

148.97

31.37 26.59

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 200

 400

 600

 800

 1000

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

2.29 19.33 21.37 21.27 8.78 7.45

379.08

719.86

911.57

12.30
48.16

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 20

 40

 60

 80

 100

 120

 140

 160

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.44 0.55 0.55 0.59 0.45 0.44 0.44

91.87

149.00

7.08 5.13

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.10:Random file results for desktop

5.4.3 Random and Zero File Analyses

As the trends we see for the random and zero files for the desktop are not much different than
that on the server, we only present the graphs here. Discussion similar to the server machine case
follows here.

Summary of desktop results. We summarize the evaluation results for the desktop system in
Table 5.2. We observe trends similar to those on the server system (Table 5.1).

5.5 Laptop Results

In this section, we present and discuss the results of the benchmarks run on the laptop.

26

 0

 50

 100

 150

 200

 250

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

151.3

68.42 72.38 73.7 68.16 67.98

253.47

139.1
147.95

67.77 67.8

Wait
User

System

(a) Time taken for write vs. compression

 0

 10

 20

 30

 40

 50

 60

 70

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

68.82

11.66

17.65 17.72
15.31 15.2 15.02

19.1 20.13

9.6 11.03

Wait
User

System

(b) Time taken for read vs. decompression

 0

 5

 10

 15

 20

 25

 30

 35

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

14.54

9.66 10.51 10.80

6.98 6.98

35.28

20.03 21.24

9.02 9.34

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 2

 4

 6

 8

 10

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

6.79

1.44

2.38 2.38 1.87 1.80 1.80 2.58

2.79

1.08 1.42

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
K

ilo
jo

ul
e-

se
co

nd
s)

2200.73

660.92 760.85 795.88
476.05 474.72

8941.99

2786.73
3142.48

611.41 633.51

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 100

 200

 300

 400

 500

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
K

ilo
jo

ul
e-

se
co

nd
s)

468.92

16.79
42.04 42.27 28.64 27.36 27.03

49.29
62.12

10.38 15.62

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.11:Zero file results for desktop

5.5.1 Text file Analysis

Similar to our observation on the server and desktop systems, we find lzo-1 and lzo-3 to always
perform better than plain-write and plain-read in terms of both performance and energy savings
(Figure 5.12). Using lzo-1 or lzo-3 for compression achieves an average of 28% performance
improvement compared to a plain-write; and 69% performanceimprovement compared to a plain-
read. Their energy consumption is 23% lower than plain-write, and 75% lower than a plain-read.
lzo-9 and gz-9, like on the server and desktop, need a break-even value of reads to writes in order
to be beneficial (Table 5.3).

The disk on the laptop is much slower than the CPU. Hence, the CPU intensive gz-1 and gz-6
finish faster than the plain I/O to the disk. We also see that although compressing the file using
gz-1 and gz-6 take less time than a plain-write, they requiremore energy than the plain-write. That
is, although gz-1 and gz-6 always perform better than plain-write and plain-read, they save energy
only after some number of reads per write. Such behavior was not seen on the server and desktop
systems, where savings in time directly translated to savings in energy. The reason for this is the

27

 0

 200

 400

 600

 800

 1000

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

220.58
167.78

204.39

295.96

159.79 157.37

657.46

840.51

1077.62

211.73 233.43

Wait
User

System

(a) Time taken for write vs. compression

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

80.34

38.31 34 33.6
24.88 26.07 21.45

155.69

174.62

133.7

66.59

Wait
User

System

(b) Time taken for read vs. decompression

 0

 5

 10

 15

 20

 25

 30

 35

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

4.46 4.47
5.76

9

3.53 3.39

21.24

27.36

35.28

5.11
6.84

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 1

 2

 3

 4

 5

 6

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

1.44 1.08

0.74 0.72 0.36 0.36 0.36

4.75 5.47

3.77

1.80

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 5

 10

 15

 20

 25

 30

 35

 40

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.99 0.75 1.18
2.66

0.56 0.54

13.96

23.00

38.02

1.08 1.60

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.12 0.04 0.03 0.02 0.01 0.01 0.01 0.74

0.96

0.51 0.12

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.12:Text file results for laptop

superior power management ability of the laptop, which results in different levels of average power
consumption with different workloads. For example, when anI/O-intensive workload like plain-
write is being executed, the processor is dynamically switched to a lower frequency, and hence a
lower power state. Therefore, the average power consumption during execution of a plain-write
will be lower than that of compress-write, which requires both the CPU and disk to be active and
in their highest power states. As the server and the desktop did not support Dynamic Voltage
and Frequency Scaling (DVFS) based power management, they always ran in full power mode,
irrespective of the component usage.

Another interesting observation is that in spite the fasterfrequency of the desktop’s CPU than
the laptop’s (Table 4.1), bzip2 and higher effort invocation of some tools (lzo-9, gz-6, gz-9) tend
to be significantly faster on the laptop, than on the desktop.This is because the desktop has
much smaller CPU caches than the laptop (Table 4.1). When a compression tool is invoked with a
higher effort parameter, it attempts to look ahead more to obtain an even longer match. This, and
algorithms with large memory footprints (e.g., bzip2), result in more cache misses on the desktop

28

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

215.89 226.77

375.23

1125.95

195.49 197.99

1701.94

727.43
795.01

235.01
300.87

Wait
User

System

(a) Time taken for write vs. compression

 0

 50

 100

 150

 200

 250

 300

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

91.05
75.04 68.79 67.28 63.48 67.93

48.09

268.45

308.43

158.41

115.67

Wait
User

System

(b) Time taken for read vs. decompression

 0

 10

 20

 30

 40

 50

 60

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

4.32
6.48

11.52

34.92

4.61 4.56

56.16

23.40
25.92

5.54
9

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 2

 4

 6

 8

 10

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

1.70 1.90 1.83 1.80

1.31 1.42 1.08

8.64

9.72

4.49

3.15

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 20

 40

 60

 80

 100

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.93 1.47 4.32

39.32

0.90 0.90

95.58

17.02
20.61

1.30 2.71

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 0.5

 1

 1.5

 2

 2.5

 3

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.16 0.14 0.13 0.12 0.09 0.10 0.05

2.32

3.00

0.71 0.37

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.13:Binary file results for laptop

than on the laptop, thereby increasing the execution time onthe desktop.

5.5.2 Binary file Analysis

Overall, the trends are again similar to those of the server and desktop. From Figure 5.13 we
notice that although gzip and lzo finish faster than a plain-read/plain-write, only lzo saves energy.
It, however, needs some number of reads per write to achieve energy savings (Table 5.3). The
correspondingnbe values are, however, much smaller in magnitude than those for the server and
desktop. Finally, bzip2 and compress do not save either timeor energy.

5.5.3 Random and Zero file Analyses

We see similar results for random and zero files as seen on the server and desktop machines.
Hence, we omit the discussion here for brevity.

29

 0

 200

 400

 600

 800

 1000

 1200

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

218.31
294.95 294.77 298.17

242.25 247.66

842.55

1167.11
1256.51

277.6

385.41

Wait
User

System

(a) Time taken for write vs. compression

 0

 100

 200

 300

 400

 500

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

95.47 103.72 97.42 106.79 99.29 104.94 108.58

395.16

532.9

196.09 183.46

Wait
User

System

(b) Time taken for read vs. decompression

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

4.39

8.64 8.64 8.64
5.90 5.94

26.74

38.14
41.15

6.48

11.34

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

1.80
2.38

2.13
2.42

1.99 2.07 2.09

12.60

16.99

5.64
5.02

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 10

 20

 30

 40

 50

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.96
2.55 2.55 2.58 1.43 1.47

22.53

44.63

51.71

1.80
4.38

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 2

 4

 6

 8

 10

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
M

eg
aj

ou
le

-s
ec

on
ds

)

0.18 0.25 0.21 0.26 0.20 0.22 0.23

4.98

9.06

1.11 0.93

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.14:Random file results for laptop

Tool Text Binary Rand Zero
gz-1 ∀ / 0.03 / ∀ 0.7 / × / 46.8 × ∀

gz-6 ∀ / 1.9 / 2.1 7.2 / × / ˜10
2 × ∀

gz-9 1.6 / 6.3 / 18.3 38.3 / × / ˜10
2 × ∀

lzo-1 ∀ ∀ / 0.7 / ∀ × ∀

lzo-3 ∀ ∀ / 0.9 / ∀ × ∀

lzo-9 7.4 / 15.5 / ˜10
2 34.6 / 84.2 / ˜10

2 × ∀ / 0.3 / ∀
bz-1 × × × ∀

bz-9 × × × ∀

c-10 0.2 / × / × × × ∀

c-16 0.9 / × / × × × ∀

Table 5.3:nT
be, nE

be andnET
be values for various compression tools for the laptop system.

30

 0

 50

 100

 150

 200

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

217.71

109.78 111.49 115.79

93.16 95.37

167.46

137.43
153.98

109.2 108.99

Wait
User

System

(a) Time taken for write vs. compression

 0

 20

 40

 60

 80

 100

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

95.01

10.76
16.69 16.65

9.03 9.06 9.1

22.51 22.77

7.47 7.2

Wait
User

System

(b) Time taken for read vs. decompression

 0

 1

 2

 3

 4

 5

 6

 7

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

) 4.32

2.61

2.79 2.87

1.75 1.80

4.84

3.87 4.32

2.57 2.57

Passive-Energy
Active-Energy

(c) Energy consumed for write vs. compression

 0

 2

 4

 6

 8

 10

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y
(K

ilo
jo

ul
es

)

1.78

0 0.36 0.36 0 0 0 0.36 0.36 0 0

Passive-Energy
Active-Energy

(d) Energy consumed for read vs. decompression

 0

 200

 400

 600

 800

 1000

write gz-C-1 gz-C-6 gz-C-9 lzo-C-1 lzo-C-3 lzo-C-9 bz-C-1 bz-C-9 c-C-10 c-C-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
K

ilo
jo

ul
e-

se
co

nd
s)

940.48

295.56 314.98 337.89

171.66 180.08

812.79

534.11

665.19

287.86 286.67

Passive-Energy-Delay
Active-Energy-Delay

(e) ET for write vs. compression

 0

 50

 100

 150

 200

read gz-D-1 gz-D-6 gz-D-9 lzo-D-1 lzo-D-3 lzo-D-9 bz-D-1 bz-D-9 c-D-10 c-D-16

T
ot

al
 E

ne
rg

y-
D

el
ay

 P
ro

du
ct

 (
K

ilo
jo

ul
e-

se
co

nd
s)

178.41

0 6.01 5.99 0 0 0
8.10 8.20

0 0

Passive-Energy-Delay
Active-Energy-Delay

(f) ET for read vs. decompression

Figure 5.15:Zero file results for laptop

Summary of Laptop results. Table 5.3 summarizes the results of our experiments on the laptop
system. In general, we findnbe values on the laptop to be much smaller than those on the desktop
and server machines. In some case we also see that while a toolis not beneficial from the energy
perspective, it exhibits the potential for savings from theenergy-delay perspective. Like mentioned
earlier in Section 5.5.1, this is because different workloads consume different amounts of average
power on the laptop. Even though some compression might finish faster than a plain-write, it
consumes more energy than the plain-write. In such cases, while these compression tools are
worse than plain-write in terms ofE, they have a smallerET value than the plain-write. Hence
they display a value fornET

be , even when they have nonE
be.

5.6 Summary of Evaluation

On the server and desktop systems, we notice a strong linear dependency between energy and time
found in all experiments. This indicates that all the compression and plain I/O tasks require almost

31

the same amount of average power. This leads to the conclusion that the fastest algorithm is the
most energy-efficient one. On the laptop system, equipped with Dynamic Voltage and Frequency
Scaling (DVFS) for the CPU, we found that the average power for plain I/O was different from
that for a compression task. All the compression tasks, however, exhibited linearity between
energy and time. In general, the time required to accomplishthe task consists of the time required
to perform an I/O and the time required to compress (or decompress) the data. The time for
completing I/O operations, in turn, depends on the amount ofdata to be written, whereas the
compression time depends on the algorithm used. This means that an optimal compression tool
should have a high compression ratio and low compression time. There is a clear trade-off between
compression ratio and the speed of compression.

The file data type affects the compression ratio dramatically. None of the compression tools
we considered provided advantages in energy consumption for the files with random content.
For zero files, however, almost all tools provided benefits for both reading and writing. For text
and binary files, we observe situations when compress-writeis less energy-efficient than plain-
write, but decompress-read is more energy-efficient than plain-read. We calculated the break-even
ratio of reads to writes (nbe) in such cases. For most of the compression tools, this valueis
significantly higher than the read-to-write ratio on commonserver systems, which has been found
to be typically 2–4 [34, 45]. Some notable exceptions were lzo-1 and lzo-3, which are always
beneficial for text files. They also save energy in case of binary files, if the read-to-write ratio is
at least 2 (or about 4 in terms ofET metric) for the server machine, 4 for the desktop, and 1 for
the laptop system. We recommend the use of lzo-1 and lzo-3 in all cases, except the situations
where disk space is a greater concern than energy or performance. We also recommend that future
systems recognize high-entropy files (e.g., encrypted, random, etc.) and avoid compressing them
at all.

In general, we observed similar trends on the three classes of machines we included in our
experiments. However, depending on the individual components on each of these machines, they
exhibited potential for energy savings at different break-even values.

32

Chapter 6

Conclusions

In this thesis, our research contribution was to investigate the validity of the assumption that data
compression is an effective technique to reduce energy consumption in server systems. We evalu-
ated several compression tools on three different classes of machines running Linux, on a variety
of data files and compared them against raw reads and writes based on performance and energy
metrics. Our experimental results suggest that no generalized conclusion regarding the efficacy of
compression can be drawn. It greatly depends on the data redundancy of the file, the compression
algorithm being used, the read-to-write ratio of the workload, and the hardware configuration of
the system. We found that compressing zero files is beneficialfor almost all the compression tools.
Random files are better-off not being compressed at all. Textfiles, when compressed with lzop
using options 1 and 3, will always save energy, irrespectiveof the workload’s read-to-write ratio.
We developed a simple read-write model to evaluate energy savings in cases where only compres-
sion or decompression saves energy. When applied to text andbinary files, it reveals that only
gzip and lzop can offer energy savings; in most cases, on the server and desktop, the break-even
read-to-write ratio is significantly greater (more than 20)than that found in common workloads.
The laptop system however requires much smaller corresponding read-to-write ratio to achieve
energy savings. Other than on zero files, bzip2 and the compress utility never save any energy.

33

Chapter 7

Future Work

We intend to extend this study to a wider range of systems, including systems with multiple cores
and multiple CPUs, more CPUs with Dynamic Voltage and Frequency Scaling (DVFS), different
disk speeds, etc. We also plan on conducting our study on realserver workloads. Compression
significantly reduces the storage requirement for data, andhence can result in lesser spinning
disks. We plan to extend our current model to factor in the additional power savings thus achieved.
We are currently also working on extending gzipfs [63], a stackable compression file system, to
include the various compression algorithms we wish to compare. In the future, we plan to explore
and evaluate data de-duplication as an energy saving technique.

Another interesting direction would be to include archivers in the evaluation. Archivers gen-
erally work by combining multiple files into one. In scenarios where we have several small files,
with similar content or format, compressing their archive would typically result in better compres-
sion. Decompression on an archive to read one file will, however, be more expensive than if the
file was individually compressed.

34

Bibliography

[1] Ke Yang Alina Oprea, Michael K. Reiter. Space-efficient block storage integrity. InPro-
ceedings of the NDSS Symposium, 2005.

[2] P. A. Alsberg. Space and time savings through large data base compression and dynamic
restructuring.Proceedings of the IEEE, 63(8):1114–1122, 1975.

[3] K. C. Barr and K. Asanovi. Energy-aware lossless data compression.ACM Transactions on
Computer Systems, 24(3):250–291, 2006.

[4] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco. Monitoring system activity for OS-
directed dynamic power management. InProceedings of the 1998 international symposium
on Low power electronics and design (ISLPED ’98), pages 185–190, New York, NY, USA,
1998. ACM.

[5] L. Benini, D. Bruni, A. Macii, and E. Macii. Hardware-assisted data compression for energy
minimization in systems with embedded processors.Design, Automation and Test in Europe
Conference and Exhibition (DATE ’02), pages 449–453, 2002.

[6] L. Benini, D. Bruni, B. Ricco, A. Macii, and E. Macii. An adaptive data compression scheme
for memory traffic minimization in processor-based systems. IEEE International Symposium
on Circuits and Systems (ISCAS ’02), 4:IV–866–IV–869, 2002.

[7] L. Benini, A. Macii, E. Macii, and M. Poncino. Selective instruction compression for mem-
ory energy reduction in embedded systems. InProceedings of the 1999 international sym-
posium on Low power electronics and design (ISLPED ’99), pages 206–211, New York, NY,
USA, 1999. ACM.

[8] L. Benini, A. Macii, and A. Nannarelli. Cached-code compression for energy minimization
in embedded processors. InProceedings of the 2001 international symposium on Low power
electronics and design (ISLPED ’01), pages 322–327, New York, NY, USA, 2001. ACM.

[9] L. Benini, F. Menichelli, and M. Olivieri. A class of codecompression schemes for reducing
power consumption in embedded microprocessor systems.IEEE Transactions on Comput-
ers, 53(4):467–482, 2004.

[10] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, and L. C. Mcdowell. The case for
Power Management in Web Servers, 2002.www.research.ibm.com/people/l/
lefurgy/Publications/pac2002.pdf.

35

[11] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage archives. InProceed-
ings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–11, 2002.

[12] CompuGreen, LLC. The Green500 List.www.green500.org, 2008.

[13] D. J. Craft. A fast hardware data compression algorithmand some algorithmic extensions.
IBM Journal of Research and Development, 42(6):733–745, 1998.

[14] G. Debnath, K. Debnath, and R. Fernando. The Pentium processor-90/100, microarchitecture
and low power circuit design. InProceedings of the 8th International Conference on VLSI
Design (VLSID ’95), page 185, Washington, DC, USA, 1995. IEEE Computer Society.

[15] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spin-down Policies for Mobile
Computers. InProceedings of the 2nd Symposium on Mobile and Location-Independent
Computing, pages 121–137, Berkeley, CA, USA, 1995. USENIX Association.

[16] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Power-Hungry Disk. InProceedings
of the 1994 Winter USENIX Conference, pages 293–306, 1994.

[17] D. Essary and A. Amer. Predictive data grouping: Defining the bounds of energy and latency
reduction through predictive data grouping and replication. ACM Transactions on Storage
(TOS), 4(1):1–23, May 2008.

[18] J. Flinn and M. Satyanarayanan. Energy-Aware adaptation for Mobile Applications. InPro-
ceedings of the seventeenth ACM symposium on Operating systems principles, volume 33,
pages 48–63, 1999.

[19] Fluke 289 Digital Multimeter.http://assets.fluke.com/manuals/287_289_
umeng0100.pdf.

[20] Fluke i410 AC/DC Current Clamp. http://assets.fluke.com/manuals/
i4101010iseng0200.pdf.

[21] S. Gary, P. Ippolito, G. Gerosa, C. Dietz, J. Eno, and H. Sanchez. PowerPC 603, A Micro-
processor for Portable Computers.IEEE Design and Test, 11(4):14–23, 1994.

[22] R. Gonzalez and M. Horowitz. Energy Dissipation in General Purpose Microprocessors.
IEEE Journal of Solid-state Circuits, 31(9):1277–1284, September 1996.

[23] B. Gordon and T. Meng. A low power subband video decoder architecture. InProceeding of
the IEEE International Conference on Acoustics, Speech, and Signal Processing, volume ii,
pages 409–412, 1994.

[24] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power considerations in the design of the Alpha
21264 microprocessor. InProceedings of the 35th annual conference on Design automation
(DAC ’98), pages 726–731, New York, NY, USA, 1998. ACM.

36

[25] H. Huang, W. Hung, and K. Shin. FS2: Dynamic data replication in free disk space for
improving disk performance and energy consumption. InProceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05), pages 263–276, Brighton, UK,
October 2005. ACM Press.

[26] E. Jeannot, B. Knutsson, and M. Bjorkman. Adaptive online data compression. InProceed-
ings of the 11th IEEE International Symposium on High Performance Distributed Computing
(HPDC ’02), pages 379–388, Edinburgh, Scotland, July 2002. IEEE Computer Society.

[27] N. Joukov and J. Sipek. GreenFS: Making enterprise computers greener by protecting them
better. InProceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008 (EuroSys 2008), Glasgow, Scotland, April 2008. ACM. (Won best paper
award).

[28] M. Kandemir, O. Ozturk, M.J. Irwin, and I. Kolcu. Using data compression to increase
energy savings in multi-bank memories. InProceedings of the 10th International Euro-
Par Conference on Parallel Processing (Euro-Par ’04), volume 3149 ofLecture Notes in
Computer Science, pages 310–317. Springer-Verlag Berlin Heidelberg, 2004.

[29] G. Keramidas, K. Aisopos, and S. Kaxiras. Dynamic Dictionary-Based Data Compression
for Level-1 Caches. InProceedings of the 19th International Conference on Architecture of
Computing Systems (ARCS ’06), pages 114–129, 2006.

[30] N. Kim, T. Austin, and T. Mudge. Low-Energy Data Cache using Sign Compression and
Cache Line Bisection. InProceedings of the 2nd Annual Workshop on Memory Performance
Issues (WMPI ’02), 2002.

[31] C. Krintz and B. Cadler. Reducing delay with dynamic selection of compression formats.
In Proceedings of the 10th IEEE International Symposium on High Performance Distributed
Computing (HPDC ’01), pages 266–277, 2001.

[32] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page Allocation. InProceedings
of Architectural Support for Programming Languages and Operating Systems, pages 105–
116, 2000.

[33] H. Lekatsas, J. Henkel, and W. Wolf. Code compression for low power embedded system
design. InProceedings of the 37th conference on Design automation (DAC ’00), pages 294–
299, New York, NY, USA, 2000. ACM.

[34] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. Measurement and analysis of
large-scale network file system workloads. InProceedings of the USENIX Annual Technical
Conference (ATC ’08), pages 213–226, Berkeley, CA, 2008. USENIX Association.

[35] K. Li, R. Kumpf, P. Horton, and T. Anderson. A Quantitative Analysis of Disk Drive Power
Management in Portable Computers. InProceedings of the 1994 Winter USENIX Confer-
ence, pages 279–291, 1994.

37

[36] Wei-Cheng Lin and Chung-Ho Chen. An energy-delay efficient power management scheme
for embedded system in multimedia applications. InProceedings of The IEEE Asia Pacific
Conference on Circuit and System (APCCAS), pages 869–872, 2004.

[37] J. R. Lorch and A. J. Smith. Software strategies for portable computer energy management.
IEEE Personal Communications, 5:48–63, 1998.

[38] Y. Lu, L. Benini, and G. D. Micheli. Operating-System Directed Power Reduction. In
Proceedings of the 2000 international symposium on Low power electronics and design,
pages 37–42, 2000.

[39] R. Manohar and N. Nystrom. Implications of voltage scaling in asynchronous architectures.
Technical Report CSL-TR-2001-1013, Departament of Computer Science, Cornell Univer-
sity, 2001.

[40] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: practical power man-
agement for enterprise storage. InProceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST 2008), 2008.

[41] J. L. Nunez and S. Jones. Gbit/s lossless data compression hardware.IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 11(3):499–510, 2003.

[42] M.F.X.J. Oberhumer. lzop data compression utility.www.lzop.org/.

[43] E. Pinheiro and R. Bianchini. Energy Conservation Techniques for Disk Array-Based
Servers. InProceedings of the 18th International Conference on Supercomputing (ICS 2004),
pages 68–78, 2004.

[44] T. Raita. An automatic system for file compression.The Computer Journal, pages 80–86,
1987.

[45] D. Roselli, J. R. Lorch, and T. E. Anderson. A comparisonof file system workloads. In
Proc. of the Annual USENIX Technical Conference, pages 41–54, San Diego, CA, June 2000.
USENIX Association.

[46] S. B. Furber. ARM System Architecture. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[47] S. Gurumurthi and A. Sivasubramaniam and M. Kandemir and H. Franke. DRPM: Dynamic
Speed Control for Power Management in Server Class Disks. InProceedings of the 30th
annual international symposium on Computer architecture, pages 169–181, 2003.

[48] C. M. Sadler and M. Martonosi. Data compression algorithms for energy-constrained devices
in delay tolerant networks. InProceedings of the 4th international conference on Embedded
networked sensor systems (SenSys ’06), pages 265–278, New York, NY, USA, 2006. ACM.

[49] C. Su and A. M. Despain. Cache design trade-offs for power and performance optimization:
a case study. InProceedings of the 1995 international symposium on Low power design,
pages 63–68, 1995.

38

[50] C. Su and A. M. Despain. Cache designs for energy efficiency. In Proceedings of the 28th
Hawaii International Conference on System Sciences (HICSS’95), page 306, Washington,
DC, USA, 1995. IEEE Computer Society.

[51] K. Tanaka and T. Kawahara. Leakage energy reduction in cache memory by data compres-
sion. ACM SIGARCH Computer Architecture News, 35(5):17–24, December 2007.

[52] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B. Smith, M. E. Wazlowski,
and P. M. Bland. IBM Memory Expansion Technology (MXT).IBM Journal of Research
and Development, 45(2):271–286, 2001.

[53] L. Villa, M. Zhang, and K. Asanovi. Dynamic zero compression for cache energy reduction.
In Proceedings of the 33rd annual ACM/IEEE international symposium on Microarchitecture
(MICRO 33), pages 214–220, New York, NY, USA, 2000. ACM.

[54] Watts up? PRO ES Power Meter.www.wattsupmeters.com/secure/products.
php.

[55] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. In
Proceedings of the 1st USENIX conference on Operating Systems Design and Implementa-
tion, 1994.

[56] M. Weiser, B. Welsh, A. Demers, and S. Shenker. Scheduling for reduced CPU energy.
Mobile Computing, 353:449–471, 1996.

[57] D. Wheeler. Linux utility for wattsup pro es power meter. www.wattsupmeters.com/
forum/index.php?topic=7.0.

[58] J. Wilkes. Predictive power conservation. Technical Report HPL-CSP-92-5, Hewlett-
Packard Laboratories, February 1992.

[59] Y. Wiseman, K. Schwan, and P. Widener. Efficient end to end data exchange using config-
urable compression.ACM SIGOPS Operating Systems Review, 39(3):4–23, 2005.

[60] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok. Auto-pilot: A platform
for system software benchmarking. InProceedings of the Annual USENIX Technical Con-
ference, FREENIX Track, pages 175–187, Anaheim, CA, April 2005. USENIX Association.

[61] R. Xu, Z. Li, C. Wang, and P. Ni. Impact of Data Compression on Energy Consumption of
Wireless-Networked Handheld Devices. InProceedings of the 23rd International Confer-
ence on Distributed Computing Systems (ICDCS ’03), page 302, 2003.

[62] Y. Yoshida, B. Song, H. Okuhata, T. Onoye, and I. Shirakawa. An object code compression
approach to embedded processors. InProceedings of the 1997 international symposium on
Low power electronics and design (ISLPED ’97), pages 265–268, New York, NY, USA,
1997. ACM.

39

[63] E. Zadok, J. M. Anderson, I. Bădulescu, and J. Nieh. Fast indexing: Support for size-
changing algorithms in stackable file systems. InProceedings of the Annual USENIX Tech-
nical Conference, pages 289–304, Boston, MA, June 2001. USENIX Association.

[64] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: Managing Energy as a First
Class Operating System Resource. InProceedings of the Tenth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS X),
pages 123–132, 2002.

[65] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao. Reducing Energy Consump-
tion of Disk Storage Using Power-Aware Cache Management. InProceedings of the 10th In-
ternational Symposium on High-Performance Computer Architecture, pages 118–129, 2004.

[66] V. Zyuban and P. Kogge. Optimization of high-performance superscalar architectures for
energy efficiency. InProceedings of the 2000 International Symposium on Low Power Elec-
tronics and Design (ISLPED ’00), pages 84–89, 2000.

40

