

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Massive Data Management for Distributed Volume
Visualization

a Dissertation presented

by

Susan Lavis Frank

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2008

Stony Brook University

The Graduate School

Susan Lavis Frank

We, the dissertation committee for the above candidate for

the Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Distinguished Professor Arie Kaufman, Dissertation Advisor
Department of Computer Science

Professor Klaus Mueller, Chairman of Defense
Department of Computer Science

Professor Michael Bender, Committee Member
Department of Computer Science

Professor Xiangmin Jiao, External Committee Member
Department of Applied Mathematics & Statistics

Stony Brook University

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Massive Data Management for Distributed Volume Visualization

by

Susan Lavis Frank

Doctor of Philosophy
in

Computer Science

Stony Brook University

2008

As memory and compute power become more affordable, the size of data sets has grown

rapidly due to the improved accuracy and memory capacity of data collecting devices. A

massive volume is one or more orders of magnitude larger than main memory on a single

visualization engine. We present a framework which automates load balancing volume dis-

tribution and ray-task scheduling for parallel rendering of massive volumes. Our solution

combines static network distribution with dynamic ray-task scheduling within each render

node. Our framework is designed to automate the volume distribution process for paral-

lel ray directed algorithms including ray casting and ray tracing on a heterogeneous mix

of hardware. This parallelization may occur within a new custom-designed hardware, on

multiple processing units, on a distributed super-computer, or on a visualization cluster.

High resolution and very large scale volume data sets frequently contain large portions

of empty space. The main bottlenecks for a distributed volume rendering system involve

moving data across the network and loading memory into rendering hardware. Space leap-

ing techniques are traditionally used to reduce the impact of wasted space at rendering time.

We remove empty space early in the pipeline in order to reduce the bandwidth required to

send volume data across a cluster, as well as processing cycles required for loading volume

iii

data into local memory during rendering. We introduce the flex-block partition, which gives

an unambiguous ray traversal order for any view direction. The scene is partitioned into

cells which each contain one or more closely cropped blocks of volume data, or flex-blocks.

Scene partitioning is driven by tightly cropped subvolumes to allow volume boundaries to

be followed in a natural manner.

Managing massive volumetric data requires the redesign of traditional algorithms for

out-of-core implementation. The out-of-core region growing algorithm performs region

growing on a consecutive group of slices, or slab. The output of is a mask volume which

is used for volume segmentation and empty space cropping. The last slice of the mask

volume supplies a set of independent region seeds for region growing on the next slab.

Special consideration is taken to deal with regions splitting and/or merging within a slab.

Our slab-projection slice is used to gather non-empty region information for one slab of

data at time. Our out-of-core bricking is used to create cropped subvolumes, or bricks,

sized for target memory. A directed acyclic graph representing the relative distance of the

bricks for a given viewpoint and direction is built concurrently. Our slab-projected kd-

tree partitioning uses a series of slab-projection slices to partition data between nodes for

parallel rendering applications.

The problem of load balancing network distribution (LBND) is defined as that of par-

titioning volumetric data for distribution across a cluster to achieve good load balancing

without violating priority order constraints required by image composition in parallel ray

casting. We have explored dynamic programming (DP) solutions to the LBND problem

that are particulary applicable to scenes with large portions of unevenly distributed empty

space. The first, brick grouping, inputs a directed acyclic graph (DAG) of data bricks and

finds an optimal partition with respect to a particular view direction, set of hardware con-

straints, and cost model. We attempt to minimize a cost function that reflects the end-to-end

rendering cost on a cluster. The algorithm average time complexity is reduced by limiting

the average number of bricks, which is a function of the brick size. The second DP solution,

iv

moving walls, inputs slab projection slices and incrementally builds a flex-block partition

by locally optimizing for a given set of constraints and cost model. The output is a view-

independent, approximate solution. The potential size of the problem is greatly reduced by

imposing restrictions on the cut plane ordering. Empirical results indicate that good load

balancing is achieved using these algorithms.

We present a dependency graph scheduling algorithm for distributed ray tracing. Our

cell-tree gathers clusters of eye, shadow, reflected and refracted rays into a compact de-

scription of all ray dependencies. Our cell-tree peeling algorithm exploits frame-to-frame

coherence. It determines a memory caching schedule from ray traversal order of the pre-

vious frame, which is encrypted in the cell-tree to predict a good schedule. This algorithm

works with any scene partition which allows unambiguous priority order for ray traversal.

Our flex-block partition approach removes empty space early in the pipeline. The cell-

tree is constructed with virtually no overhead at run-time during ray tracing. It is a con-

cise representation of ray-traversal dependencies between arbitrary blocks of data. In our

framework it is used for local ray-task scheduling within each render node. The dynamic

programming approach automates load balancing for a given set of system parameters. Our

algorithms have been designed to be independent of any specific cluster configuration. Al-

gorithms have been verified with several large high resolution volumetric data sets on the

Stony Brook Computing Cluster.

v

To my husband, Ken,

and my children, William, Tommy, Bobby, Katrina, and Michael.

Contents

List of Tables xii

List of Figures xiii

Acknowledgments xvi

List of Publications xviii

1 Introduction 1

1.1 Massive Data Applications . 2

1.1.1 Anthropology Data . 3

1.1.2 Geological Data . 4

1.1.3 Medical Imaging . 4

1.2 Stony Brook Visual Computing Cluster 5

1.3 Thesis Contributions . 8

1.3.1 Out-of-Core Data Management 8

1.3.2 Load Balancing . 9

1.3.3 Dynamic Programming . 10

1.3.4 Dependency Graph Acceleration 11

1.4 Thesis Organization . 12

vii

2 Background 13

2.1 Direct Volume Rendering . 14

2.1.1 Ray Casting . 14

2.1.2 Segmentation . 16

2.1.3 Volume Rendering Architectures 16

2.2 Parallel Ray Casting . 18

2.2.1 Visualization Clusters . 18

2.2.2 Image Compositing . 19

2.2.3 Hardware Compositing . 20

2.2.4 Scene Partitioning . 21

2.3 Volume Rendering on Graphics Accelerators 23

2.3.1 Multipass Partitioning . 24

2.3.2 DPMPP . 25

2.4 Ray Tracing . 25

2.4.1 Rendering Model . 26

2.4.2 Global Illumination . 27

2.4.3 Ray Traversal Acceleration . 28

2.4.4 Parallel Ray Tracing . 28

2.4.5 Ray Tracing Systems . 31

2.5 Summary . 31

3 Framework for Interactive Massive Volume Visualization 33

3.1 System Functionality . 34

3.2 Data Management . 35

3.2.1 Early Data Reduction . 37

3.2.2 Dependency Graph Data Structures 38

3.2.3 Flex-block Partition . 39

viii

3.3 Load Balancing Data Distribution . 40

3.4 Dynamic Task Scheduling . 41

3.5 Test Environment . 42

3.6 Interactive Visualization Results . 45

3.7 Discussion . 46

4 External Memory Solutions 48

4.1 Challenges in Massive Data Management 48

4.1.1 Distributed Preprocessing . 49

4.1.2 Empty Space Cropping . 50

4.2 Out-of-Core Data Management Pipeline 50

4.3 Slab-projection Slice . 52

4.4 Out-of-Core Bricking . 54

4.5 Slab-projected Kd-tree Partitioning . 55

4.6 Region-of-Interest Cropping . 57

4.7 Out-of-Core Region Growing . 58

4.8 Early Data Reduction Results . 60

4.9 Summary . 62

5 Load Balanced Network Distribution 64

5.1 Distributed Volume Rendering Overview 65

5.2 Load Balanced Network Distribution Problem 66

5.2.1 Graph Partitioning Software Packages 68

5.2.2 GPU Multipass Partitioning . 68

5.3 Dynamic Programming . 69

5.3.1 Brick Grouping DP Overview . 69

5.3.2 Objective Function . 71

ix

5.3.3 Locally Optimal Solution . 72

5.3.4 Example Stage . 74

5.3.5 Algorithm Analysis . 74

5.4 Results . 75

5.4.1 Test Environment . 76

5.4.2 Timing . 77

5.4.3 Load Balancing Results . 79

5.5 Summary . 82

6 Moving Walls DP Data Distribution 84

6.1 Overview . 84

6.2 Cost Function . 85

6.3 Moving Walls Algorithm . 87

6.3.1 Building the Flex-block Tree . 88

6.3.2 Efficiency Considerations . 88

6.3.3 Comparison to Brick Grouping . 89

6.4 Results . 90

6.5 Summary . 95

7 Cell-tree Scheduling for Ray Tracing 98

7.1 Ray Traversal . 99

7.1.1 Ray Queues . 100

7.1.2 Problem Definition . 100

7.2 Cell-tree . 101

7.2.1 Cell-tree Construction . 102

7.2.2 Cache Savings Links . 104

7.3 Cell-tree Peeling . 106

x

7.3.1 Definitions . 107

7.3.2 Algorithm Description . 107

7.3.3 Algorithm Correctness . 109

7.3.4 Worst Time Bounds . 110

7.4 Architecture Simulation . 110

7.4.1 GI-Cube Ray Tracing Architecture 111

7.4.2 DSP Cell-tree Scheduling Simulation 112

7.5 Results . 114

7.6 Summary . 118

8 Conclusions 120

8.1 Summary of Contributions . 121

8.2 Summary of Results . 122

8.3 Near-Term Future Work . 123

8.4 Extended Vision . 125

Bibliography 126

xi

List of Tables

1.1 Comparison of visualization clusters . 6

4.1 Preprocessing time . 63

5.1 Partition preprocessing time . 78

5.2 Empty space and slice preprocessing time 79

6.1 Rendering time for different partitions 91

xii

List of Figures

1.1 High-resolution X-ray Computed Tomography Data 3

1.2 Low resolution Visible Male . 5

1.3 Visible Korean raw data . 5

1.4 Stony Brook Visual Computing Cluster 6

1.5 Data sizes compared to cluster memory 7

2.1 Phong shading . 15

2.2 Parallel ray casting . 20

2.3 Ray tracing physics . 27

2.4 Pseudo-random ray traversal . 30

2.5 Hybrid object image ray tracing. 30

3.1 Visualization framework block diagram 34

3.2 Distributed rendering data management pipeline. 36

3.3 Flex-block tree . 40

3.4 HP MDS Cluster block diagram. 43

3.5 VolumePro1000 . 44

3.6 Image composition . 44

3.7 Volume rendering of seismic data . 45

3.8 Scalability of frame rates . 46

4.1 Distributed preprocessing compared with single node preprocessing . . . 51

xiii

4.2 Out-of-core preprocessing pipeline . 52

4.3 Slab-projection of the Visible Korean lungs 53

4.4 Out-of-core region growing seed slice 59

4.5 Composited full resolution four-channel Visible Male 61

4.6 Volume rendered teeth images. 62

4.7 Volume rendered fossil images. 62

4.8 Data storage reduction . 63

5.1 Distributed ray cast rendering block diagram 65

5.2 Partition of a DAG of bricks into a DAG of cells 70

5.3 Stage candidate transitions . 74

5.4 GPU-rendered segmented regions of the Visible Korean 77

5.5 VolumePro1000-rendered images of the Visible Korean 78

5.6 Data distribution load balancing . 80

5.7 Load balancing scalability . 81

6.1 Comparison of partitions with different algorithms 89

6.2 Sample partition slabs . 93

6.3 Preprocessing time comparison . 94

6.4 Load balancing and scalability . 94

6.5 Visible Male distribution . 95

7.1 Ray-cell dependencies . 102

7.2 Cell-tree construction . 103

7.3 Redundant dependencies . 105

7.4 Cell-tree peeling . 108

7.5 GI-Cube ray tracing PCI board. 111

7.6 Proposed ray tracing architecture PC board. 112

7.7 Proposed ray tracing architecture data structures. 114

7.8 Ray traced images for algorithm testing. 115

xiv

7.9 Cell-tree sizes . 115

7.10 Cell-tree scalability . 116

7.11 Performance comparison . 117

xv

Acknowledgments

I would like to begin by thanking my advisor, Distinguished Professor Arie Kaufman,

for his continual guidance, advice and support. Through years of dedication and hard work,

Professor Kaufman has developed a world-class research environment that has given stu-

dents the opportunity to work with top researchers and state-of-the art equipment. I am

thankful for the freedom he has given me to pursue interesting research problems. I am

proud to join his rich legacy of Ph.D. graduates. I am also thankful to my committee mem-

bers, Klaus Mueller, Michael Bender, and Xiangmin Jiao for their constructive critique,

assistance, and support.

I want to thank all my colleagues, friends and staff members at the Computer Science

department who have helped me in these years. I want to give special thanks to Stella

Mannino for her generous help. I owe special thanks to Bin Zhang for all his support with

the Stony Brook Visualization Cluster. I want to thank Brian Tria, Kathy Germana, Betty

Knittweis, Cynthia Scalzo, and Shakeera Thomas for their help and support. I want to

thank all my research colleagues for all the fruitful discussions and encouragement: Feng

Qiu, Zhe Fan, Joseph Marino, Kaloian Petkov, Abhijeet Ghosh, Sarang Lakare, Huamin

Qu, Kevin McDonnell, Kevin Kreeger, Nan Zhang, Xiaoming Wei, Suzi Stover, Kevin

Kreeger, Frank Dachille, Kevin McDonnell, and Wei Hong. I want to thank Professor Anita

Wasilewska, Professor Leo Bachmair, and Professor IV Ramakrishnan for their guidance

in supervising my recitation class teaching. I also want to thank the faculty at Stony Brook

for all the interesting courses and for their encouragement, especially Professor Esther

Arkin, Professor Hussein Badr, Professor Joseph Mitchell, Professor Hong Qin, Professor

David Smith, Professor Eugene Stark, and Professor Larry Witte. I am also thankful to my

research grant providers: National Science Foundation, and the people at Hewlett Packard,

IBM and TeraRecon.

I am deeply thankful to my parents, who instilled in me the desire to learn from a young

age. I would also like to thank my brothers and sisters, who have encouraged and motivated

me over the years. I would like to thank my children, William, Tommy, Bobby, Katrina and

Michael, who have taken this journey with me. I cannot begin to enumerate all the sacrifices

they’ve made on my behalf, yet they have been there with words of encouragement at every

turn. Finally, I want to thank my husband, Ken without whom this Ph.D. would not be

possible. I cannot write in words how much support and encouragement I have received

from him through these years and I am truly thankful to have him by my side.

List of Publications

S. Frank and A. Kaufman, Out-of-Core and Dynamic Programming Strategies for

Data Distribution on a Volume Visualization Cluster, Computer Graphics Forum,

2009.

S. Frank and A. Kaufman, Dependency Graph Approach to Load Balancing Dis-

tributed Volume Visualization, The Visual Computer, International Journal of Com-

puter Graphics, 2009.

S. Frank, Framework for Interactive Massive Volume Visualization, Grace Hopper

Celebration of Women in Computing, PhD Forum, October, 2008, Denver Colorado.

S. Frank, A Dynamic Programming Approach to Kd-Tree Based Data Distribution,

Supercomputing, Student Poster, November, 2007, Reno, Nevada, USA.

S. Frank and A. Kaufman, Distributed Volume Rendering on a Visualization Cluster,

CAD/Graphics, December, 2005, Hong Kong, China, pages 371-376.

S. Frank and A. Kaufman, Distributed Volume Rendering on a Visualization Cluster,

Computer Graphics International, Poster, June, 2005, Stony Brook, NY, USA.

S. Frank and A. Kaufman, Dependency Graph Scheduling in a Volumetric Ray

Tracing Architecture, SIGGRAPH/Eurographics Workshop on Graphics Hardware,

September, 2002, Saarbruecken, Germany, pages 127-135.

xviii

1

Chapter 1

Introduction

The goal of this research is to provide mechanisms which improve the efficiency and

scalability of distributed volume visualization. Volume visualization is a key technology

for data exploration. Realistic lighting and interactivity enhance the value of the visualiza-

tion process. State-of-the-art data sizes have consistently exceeded available memory even

on the most up-to-date computer systems. Increased memory capacity opens tremendous

potential in what can be visualized, but also introduces challenges in managing data on

distributed systems. Good load balancing requires careful distribution of data and run-time

task scheduling, and these processes must adapt to different cluster configurations. For a

scalable system, each processing unit, or node, performs an approximately equal portion of

the illumination and/or rendering tasks.

Parallelization may occur within custom-designed hardware, on a distributed super-

computer, on a multi-core PC, or on a visualization cluster. In parallel ray casting, a partial

image is rendered for each subvolume, and composited into a the final image using alpha

blending. The contribution of each image depends on the relative location with respect

to the eye, so a partial ordering of these images must be determined for any given view

1. INTRODUCTION 2

direction. Data distribution should partition render-node contributions so that each render-

node operates independently, avoiding inter-node dependency latency.

In parallel ray tracing, a recursive operation is used to compute reflective, refractive and

shadow rays. Each ray trace node calculates the ray contributions for the cell assigned to

it. Ray queues hold pending rays for each cell. The load balance problem results from the

non-uniform distribution of work, which arises because ray trajectories are influenced by

several object and lighting characteristics.

For many volumetric data sets, there is a large portion of voxels that are never intended

to be rendered, or empty space. This occurs, for example, in photographic data sets the

object of interest is suspended in a material, such as a gel, which has no relevance to the

subject. In our solutions, we take advantage of empty space. At the center of this research

is a framework designed to render very large scale, high-resolution volumes at interac-

tive rates. Our dependency graph data structures enable our load balancing algorithms to

efficiently use information about the relationships between data and processes.

In this chapter, we first describe several example applications of high resolution massive

data sets, used to motivate and test our data management strategies, in Section 1.1. We then

describe our test environment in Section 1.2. Finally, Section 1.3 gives an overview of the

contributions of this dissertation.

1.1 Massive Data Applications

Some sources of increasing data sizes include large-scale physical simulations, seismic

data, and the increased accuracy of CT technologies and medical imaging. Managing such

massive data sets requires careful planning in all stages, from long-term storage to the

moment it is cached into local memory for rendering. We rendered several very large scale,

high-resolution volumes on the Stony Brook Visual Computing Cluster in order to discover

the problems associated with massive data sets.

Volume data sets frequently contain large portions of empty space. We use early data

1. INTRODUCTION 3

reduction to remove this empty space at the beginning of the pipeline in order to prevent

using bandwidth on sending the empty volume data across a cluster. This has the additional

benefit of avoiding the need to load empty volume data into local memory for each frame

during rendering. In this chapter we present some example applications of massive data.

1.1.1 Anthropology Data

Data sets grow faster than memory capacity due to the improved accuracy and mem-

ory capacity of data collecting devices such as CT technologies and medical imaging. For

example, High-resolution X-ray Computed Tomography (HRXCT) is a new imaging ap-

proach with a resolution in the tens of microns. The accuracy of HRXCT is similar to the

destructive method of sectioning, which has been used to study fossils, teeth and bones.

Studies have shown that the high resolution is necessary for the accurate reconstruction of

bone in order to correctly quantify structural parameters [24].

Several HRXCT data sets have been obtained from the Stony Brook Anthropology

Department for our research. The very high resolution teeth and fossil data sets consist of

micro CT scanned images of 2048 × 2048 pixels, each with a slice thickness of around 10

microns (see Figure 1.1. The accuracy of tooth enamel measurements using micro-CT is

comparable (within 3− 5%) to that of destructive physical sectioning [85].

(a) Slice 115 (b) Slice 128 (c) Slice 215

Figure 1.1: High-resolution X-ray Computed Tomography Data

1. INTRODUCTION 4

1.1.2 Geological Data

Visualization of geological data has the potential of saving millions of dollars in the oil

exploration industry by aiding geophysicists in choosing sites for drilling. Seismic data is

like a giant sonogram of the earth. A team of geophysicists, engineers and others study

seismic data in conjunction with land contour maps, existing drill-hole information and

other data to determine the best place to drill. For example, Tracy Stark [107] creates a

Relative Geologic Time Volume in a preprocess step, which is used to segment layers of the

seismic data during interactive rendering.

1.1.3 Medical Imaging

Photographic volumetric data sets such as the Visible Male and Visible Female data sets

from the National Library of Medicine [80, 106], have become more prevalent. The size

of photographic data grows substantially due to multichannel information in photographic

data. The full Visible Male data set, from the Visible Human Project, is a sequence of axial

anatomical images of 2048 × 1216 pixels at 1 mm slices. The Visible Male color data set

has 1879 slices. With the addition of an alpha channel the data set is 18.7GB, more than

double the capacity of our MDS System VolumePro1000 boards. The typical solution to

is to volume render the data at a lower resolution. Figure 1.2 is a volume rendering of the

Visible Male down-sampled to a voxel resolution of 512 × 256 × 883. In order to utilize

all available information in the data set, and down-sampling may result in losing critical

information and resolution required for scientific and medical purposes. We do not use

any down-sampling, but instead remove empty space, or areas of the data with no valid

information, prior to distribution and rendering.

The Visible Korean male data from the Visible Korean Human Project [87] includes

8, 590 digitally captured photographic anatomic images of serially sectioned surfaces with

photographic image resolution 2, 468× 1, 407 and 24 bits color, for a total of 120GB. It is

accompanied by a corresponding 40GB set of 8 bit color mask slice (see Figure 1.3).

1. INTRODUCTION 5

Figure 1.2: Low resolution (512× 256× 883) volume rendering of Visible Male data set.

(a) RGB Slice (b) Mask Slice

Figure 1.3: Visible Korean raw data.

1.2 Stony Brook Visual Computing Cluster

The Stony Brook Visual Computing Cluster, shown in Figure 1.4, is the platform used

for developing our visualization framework. It is is an ever-evolving cluster environment.

The GPU cluster contains 66 dual-boot compute nodes connected with a gigabit Ethernet

frontend network and a 10 Gbps InfiniBand backend network, with a portion of the nodes

1. INTRODUCTION 6

(a) IBM Deep Computing
Visualization Cluster

(b) HP Market Development System Visual-
ization Cluster

Figure 1.4: Stony Brook Visual Computing Cluster.

Table 1.1: A comparison of visualization clusters.

GPU Cluster HP MDS IBM

Render Nodes 65 8 5
Interconnect Infiniband ServerNetII Infiniband

RAM 2GB 2GB 9GB
Texture Cache 512 256 256

VolumePro Memory 1GB 1GB n/a

connected to HP ServerNetII network through HP Sepia-2A card. Each node in the first

34 nodes contains a nVidia Geforce FX5800 Ultra graphics card, and a TeraRecon Vol-

umePro 1000 volume rendering board. Each node of the other 32 nodes contains a nVidia

Quadro FX4500 graphics card or better. Nine nodes of the Stony Brook Visual Computing

Cluster are configured as a HP Market Development System (MDS) Visualization System.

The IBM Deep Computing Visualization cluster contains five IBM IntelliStation Z Pro

Z20 workstations with a Gigabit Ethernet frontend network and each node is connected to

1. INTRODUCTION 7

Topspin 120 InfiniBand Server switch (10Gbps) through Topspin InfiniBand Host Channel

Adapter. Each node contains dual-Intel EM64T 3.6GHz/800MHz CPUs, 9GB memory and

a nVidia Quadro FX3400 PCI-Express graphics card. Table 1.1 is a summary of our current

cluster configurations.

(a) Data sizes

(b) Memory capacity

Figure 1.5: Data sizes compared to cluster memory (in log scale).

As memory and compute power become more affordable, the size of data sets which are

available has grown rapidly. Figure 1.5 shows a comparison of some the data sets rendered

1. INTRODUCTION 8

in this research with the Stony Brook Visual Computing Cluster hardware. We have de-

veloped algorithms that help bridge the gap between available resources and visualization

requirements.

1.3 Thesis Contributions

The techniques presented in this dissertation aim to advance research in distributed vol-

ume visualization. We have developed a volume visualization framework which is indepen-

dent of the underlying physical configuration, and can take full advantage of all available

hardware on a given system. This ray-directed system provides global illumination and

volume rendering of massive volumes on a heterogeneous mix of hardware. Special pur-

pose volume architectures have been developed for both ray casting and ray tracing. PC

clusters have become increasingly popular for volume visualization. Recently, multi-core

PCs have emerged as yet another parallel platform. Each of these options, as well as vari-

ous combinations of them, offer great potential for volume exploration. At the same time,

they open up new research areas as challenges are faced in process and data management.

The contributions of this dissertation are listed below in increasing level of significance.

• Out-of-core region growing and bricking

• Slab-projected kd-tree partitioning

• Dynamic programming solutions to load balanced network distribution

• Cell-tree for ray dependency encryption

• Dependency graph ray-task scheduling for ray tracing

1.3.1 Out-of-Core Data Management

A massive volume is one which is one or more orders of magnitude larger than free

memory. This includes free memory on rendering hardware or in the CPU main memory.

1. INTRODUCTION 9

We introduce an out-of-core region growing algorithm [29], which is used to find a mask

volume for segmentation. We introduce the slab-projection slice [31] as a tool for out-

of-core data processing. A consecutive series of data is gathered into an orthographic

projection. Our slab-projected kd-tree partitioning finds a kd-tree partition using non-

empty voxel information represented by a series of slab-projection slices. We use out-of-

core bricking to create bricks of volumetric data along with a directed acyclic graph (DAG)

of the relative distance of each brick along a single view direction. The bricks are aligned

with cropped subvolumes. A heuristic is used to evaluate the coherency of a series of data

slices, which are parsed into a set of bricks sized for rendering hardware.

1.3.2 Load Balancing

In our framework, preprocessing is used to remove empty space from data slices and to

find a good scene partition for distribution of the scene. Ray casting is typically performed

by special purpose hardware or a graphics card (GPU), and ray tracing is done in software.

The master node handles initial distribution of the data and subsequent scene updates. The

user defines view and lighting parameters. As view information is updated, the master

sends the new viewing parameters to each rendering node. Both software ray tracing and

hardware ray casting are supported.

In distributed ray casting, a brick is a subvolume that is sized for rendering hardware.

Data is distributed between nodes using a flex-block partition. A local flex-block partition

is used to create and schedule bricks within a render-node. The load balanced network

distribution (LBND) problem [31] is an optimization problem in which data is partitioned

to minimize end-to-end rendering time. This time is a function of the slowest render-node,

image composition time, and/or network communication time. Images are composited into

a final image using an alpha blending operation, which requires the relative depth of each

image. This equation is associative. If every image rendered on a node is composited into a

single image prior to blending it with images from other nodes, then the bandwidth required

1. INTRODUCTION 10

for transporting images between nodes is minimized. Traditional space-subdivision meth-

ods can be adapted to achieve this goal by using sufficiently large partition cells. However,

load balancing suffers due to the granularity required. If empty space is not uniform within

the scene, then some render-nodes are assigned large amounts of empty space, requiring

little or no computation, and leaving a disproportionate amount of computation for other

nodes.

Dynamic programming (DP) is a cost optimization technique. We have developed two

dynamic programming solutions to the LBND problem. We attempt to minimize a cost

function that reflects the end-to-end rendering cost on a cluster without violating the image

composition priority constraints. The first one, brick grouping, starts with a directed acyclic

graph of segmented and cropped bricks, and the second one, moving walls, applies dynamic

programming to the slab-projection slices. We use our out-of-core bricking to produce a

DAG of bricks for input to the first approach. We compare the load balancing using our

approaches to results obtained using traditional subdivisions for several segmented regions

of the Visible Korean data set.

For distributed ray tracing, we use a hybrid scheme for load balancing. The data is

distributed using a flex-block partition, and ray-task scheduling is updated dynamically

within the local partition of each render-node. Flex-blocks are used for cells. Space skip-

ping within each cell is automated using the data extents of each flex-block. As rays are

traced through the scene, one cell is worked on at a time. A ray queue [94] holds pending

rays for each cell. When a cell is in main memory, each ray in the corresponding ray queue

is traced through that cell. When a spawned ray exits the current cell, it is placed on the

queue of the next cell it intersects.

1.3.3 Dynamic Programming

Our brick grouping DP algorithm for LBND [31], presented in Chapter 5, evaluates a

cost function to create a load balanced network distribution. This solution is based on a DP

solution for the multipass partition problem (MPP) introduced by Heirich [41]. MPP is a

1. INTRODUCTION 11

problem that arises when a computation targeted for the GPU exceeds resource constraints.

The computation is divided into multiple passes that do not violate resource constraints, in

order to minimize total compute time.

The input to our algorithm includes a scene with volumetric data, a description of the

distributed system configuration, including the number of render-nodes, rendering and local

composition costs, network transfer costs, and the memory capacity of each render-node.

The output is a render-node assignment, which minimizes the total runtime cost, does not

violate any physical resource constraint of the system, and observes the precedence order

for image composition. The depth of the search tree is limited to prevent the recursion from

becoming intractable, which limits the size of the data bricks with respect to the whole data

set. In addition, the partition is optimized with respect to a single viewpoint.

Our moving walls DP algorithm [30], presented in Chapter 6, uses dynamic program-

ming find a solution to a relaxed version of the LBND problem. The output is a flex-block

partition, a view-independent partition of cells which contain a combination of empty space

and cropped subvolumes.

1.3.4 Dependency Graph Acceleration

In our cell-tree peeling algorithm [28], an efficient cell-processing schedule for the

next frame is determined using a ray dependency graph, the cell-tree. When a render-node

becomes available, the cell with the longest queue is assigned to it. As long as a cell of

data is in local memory, all rays on the corresponding queue are processed before it is

replaced with another cell. As with image composition of ray casting algorithms, there is

a priority order relationship in ray traversal, which must be preserved in parallelized ray

tracing. However, this is more difficult for parallel ray tracing. The rays travel through

the scene in a pseudo-random manner. The number of times each volume block is cached

depends on the order in which data cells are cached and rays processed.

Our cell-tree represents ray dependencies between cells. Each node in the cell-tree

has an associated cell ID, and more than one node may have the same cell ID. The tree

1. INTRODUCTION 12

is processed starting with the leaves by peeling the tree nodes with the same cell ID and

adding it to the reverse schedule. An interim tree is maintained by keeping a list of nodes

that have not been included in the schedule. The cell-tree peeling algorithm exploits frame-

to-frame coherence by using the cell tree to find potential cache savings links. A schedule

with any combination of non-conflicting link groups is a feasible one, and the optimal

schedule for a single render-node includes a maximal group of cache savings links.

Cache savings links are found by gathering leaf nodes which correspond to the same

cell. The cell-tree peeling algorithm performs well and has polynomial worst time. Ray

tracing efficiency improves using ray dependency encryption.

1.4 Thesis Organization

This dissertation is organized as follows. In Chapter 2 we introduce the key concepts

used in volume visualization, including the basic concepts of volume rendering and seg-

mentation. We discuss applications and advantages of ray tracing and give a brief overview

of the theory behind volume rendering and global illumination. We also discuss some of

the algorithms that have been developed to accelerate ray traversal. We present an overview

of special purpose ray casting and ray tracing hardware, along with a brief history of vol-

ume rendering on graphics hardware. We then explore some recent volume visualization

cluster systems and image compositing issues. In Chapter 3 we describe our framework.

We introduce the flex-block tree and cell-tree dependency graph data structures and their

advantages. In Chapter 4 we present our external memory solutions, including out-of-core

region growing, out-of-core bricking, the slab-projection slice and slab-projected kd-tree

partitioning. In Chapter 5 we present a theoretical description of the LBND problem, along

with our brick grouping DP solution. The moving walls DP algorithm is presented in Chap-

ter 6. In Chapter 7 we present our ell-tree for ray dependency encryption, and our cell-tree

peeling algorithm for ray-task scheduling. We conclude in Chapter 8 with a discussion of

the impact of our work and directions for future work.

13

Chapter 2

Background

Volume rendering encompasses techniques that allow the visualization of 3D volumet-

ric data. Volume data consists of information at sample locations in some space. The

information may be a scalar value such as density, a vector such as color in a photographic

data set, or a combination such as energy, density, and momentum in computational fluid

dynamics. The space is usually three-dimensional, either consisting of three spatial dimen-

sions or another combination of spatial and frequency dimensions.

The two predominate types of volume rendering techniques are indirect volume ren-

dering and direct volume rendering. Indirect volume rendering involves the extraction of

a surface from the input data, followed by projection of the extracted surface onto a 2D

image. Internal information is not rendered because only the polygon mesh of the region’s

surface is maintained. This dissertation is concerned with ray-directed volume rendering

techniques, which fall under the category of direct volume rendering, and so we present an

overview of these in this chapter.

2. BACKGROUND 14

2.1 Direct Volume Rendering

Direct volume rendering techniques [67, 84] project the entire volume directly onto a

2D image. Object-order algorithms iterate over the volume data and determine the contribu-

tion of each voxel to the screen pixels. Splatting, introduced by Westover [116], convolves

every voxel in object space with a 3D reconstruction filter and accumulates its contribution

to the image plane. Three dimensional convolution is usually replaced by less computa-

tionally expensive 2D convolution filters in practice, and lookup tables are used for filter

weights.

Image-order algorithms cast rays from the viewpoint through screen pixels into the vol-

ume and determine the contributions of voxels towards the pixel currently being composed.

Ray casting is an image-order technique which simulates optical projections of light rays

through the data set to find the pixel color. In our framework, we support ray casting and

ray tracing, which both fall into the category of image order techniques.

2.1.1 Ray Casting

Direct volume rendering models the physics of the interaction of light with particles in

a volume. Ray cast rendering, or ray casting uses a local illumination model and does not

include effects of ray reflections or refractions. The interaction is modeled by a volume

rendering integral [35].

I(x, r) =

∫ L

0

C(s)µ(s)e−
R s
0 µ(t)dtds (2.1)

where I(x, r) is the amount of light of wavelength λ coming from ray direction r that is

received at location x on the image plane. L is the length of the ray, µ(s) is the extinction

coefficient at a location s along the ray, C(s) is the light of wavelength λ emitted at location

s toward x. The extinction coefficient is set by the user to make an object transparent or

opaque. The value of C(s) is calculated using the illumination equation [27]:

2. BACKGROUND 15

C(s) = Caka + ClCo(s)kd ·N(s)L(s) + Clks · (N(s)H(s))ns (2.2)

where ka, kd, ks are the ambient, diffuse, and specular material components, respectively.

N is the normal vector (determined by the gradient), L is the light direction vector, H is the

halfvector, and ns is the Phong exponent (see Figure 2.1). Ca specifies the ambient light

color and Cl is the color of the light source. The parameter Co(s), is the color of the object.

Color components are usually represented as a red, green and blue vector value. Ray cast

rendering quickly creates images that look good without focussing on accuracy [38].

Figure 2.1: Phong shading

In ray casting techniques, the color at each pixel or partial pixel (fragment) is deter-

mined by shooting a ray through the scene and blending color and opacity of intersected

objects to approximate the lighting equation. This is known as alpha blending. A ray can

be described in terms of its origin O and direction ray R, where R(t) = O + tD. The vol-

ume rendering integral gathers the effect of the light particles along the parameter t. The

assignment of color and opacity to a sample location in the data set is called classification.

With ray casting, the user is able to selectively examine different regions of the data set by

setting some of the voxel opacities to transparent or translucent values.

2. BACKGROUND 16

Various acceleration techniques are commonly used to reduce the computational cost of

ray casting [70]. Some of these techniques include early ray termination and empty space

skipping. Li et al. [69] achieve space skipping by partitioning volumes based on voxel

attributes.

2.1.2 Segmentation

Visualizing a specific region of interest using direct volume rendering can be achieved

using a mask volume. The mask is set only for voxels which belong to the region of interest.

The technique of isolating a region of interest in a volumetric data set is commonly referred

to as segmentation. Segmentation is achieved by marking the voxels that belong to the

region of interest in the volume [64]. Methods for masking a region of interest have been

researched for many years.

Region growing is a technique used to extract a connected region from a 3D volume

based on some pre-defined connecting criterion. In the simplest form, region growing re-

quires a seed point to start with. From the seed point, the region is expanded to include

voxels within the target value range until the connecting criteria has been met. Some vol-

ume rendering implementations do not use the mask information directly; instead they use

a transfer function indexed by the mask volume produced by segmentation. Several tech-

niques have been developed for automating the transfer function development process and

for enhancing the visual effects of a volume rendering [56].

2.1.3 Volume Rendering Architectures

Volume rendering architectures have been developed since the early 1980’s. The con-

cept of 3D scalar field voxels is introduced in the GODPA/Voxel, the underlying archi-

tecture of a physician’s workstation [37]. This prototype uses a hierarchical pipelined

hardware design. The processors independently render their subcubes by traversing them

in back-to-front order and mapping each voxel onto image space using the 3D painters

2. BACKGROUND 17

algorithm [32]. Image-space shading [39] and pseudo-coloring are performed by a post-

processor.

The PARCUM system [49], is based on a specially organized 3D memory called the

Memory Cube, which allows simultaneous read/write of Macro Volume Elements. The

memory interface of the VERVE [58] architecture uses eight different memories to hold all

voxels necessary for trilinear interpolation. VIZARD [59] is a PCI-based volume-rendering

accelerator that uses DMA to access the volume from main memory. A second-generation

VIZARD system, VIZARDII [76] is a PCI card that performs shading and illumination

calculations and uses a local look-up-table for pre-calculated gradients. Doggett et al. [22]

have proposed a buffering scheme that prevents a second memory stall when a ray crosses

into a new sub-cube in a skewed memory architecture. Smart Memories is an architecture

which closely couples data with processing [74].

Igehy et al. [48] evaluate the effects of load imbalance on bandwidth requirements in

parallel texture caching architectures. They define the working set size as the amount of

memory that is being processed at a particular moment in time. Their results show that

as the number of texturing units increases, the working set size for each texturing unit

decreases. The point of diminishing returns for cache size is well correlated with working

set size.

Cube-1 [54] performs the first opaque parallel projection of 16 × 16 × 16 data sets

using the Cubic Frame Buffer, 3D skewed volume memory, and a voxel multiple write

bus for ray projection. The skewed memory organization allows for conflict-free access

to partial beams from any major direction. Cube-2 is a full-scale VLSI-based volume

visualization system based on Cube-1 technology, and Cube-3 [93] performs ray casting

with various composition algorithms. The Cube-4 architecture technology [92] uses the

skewed memory scheme and local communication between processors to implement the

shear warp volume-rendering algorithm. Each voxel of the data set is accessed exactly once

per projection. Beams of two adjacent data slices of voxels are processed simultaneously to

compute a new slice of interpolated sample values in between these two slices. The ahead,

2. BACKGROUND 18

current, behind buffers store the samples one slice ahead and one slice behind in order to

take advantage of data coherency. The samples are composited onto the base-plane, then

transformed onto the viewing plane.

The Cube-4 architecture technology was developed at Stony Brook University. It has

been licensed and produced by TeraRecon as the chip in the VolumePro 500 board [91],

and has also been incorporated in the U-Cube ultrasound visualization system produced by

Japan Radio Co. The next generation VolumePro 1000 is also commercially available, and

is used as a volume rendering engine in our research.

2.2 Parallel Ray Casting

Ray directed volume rendering algorithms are well suited for parallel implementation in

a distributed cluster environment. In volumetric ray casting, one or more rays emanate for

each pixel and each ray accumulates the color and opacity contribution of a series of voxels

along the ray in the volume data. Parallel volume rendering has been studied extensively

[33, 71, 72, 77, 78, 82].

2.2.1 Visualization Clusters

Clusters of commodity hardware play an increasingly important role in visualization.

A cluster can be scaled up as new hardware is introduced or as increased computing power

or memory needs arise. A visualization cluster is a network of PC nodes which each

have volume rendering hardware and/or one or more GPU. With the rapid development of

graphics hardware and network switching technologies, several cluster-based visualization

architectures that support parallel rendering algorithms have been proposed or developed

[45, 83, 108]. The advantage of such systems is that they are easy to build from commodity

components. Various methods have been proposed for splitting a scene among processing

units with graphic models [13, 25]. Samanta et al. [102] have introduced a view dependent,

hybrid 2D image and 3D polygon data partitioning scheme.

2. BACKGROUND 19

2.2.2 Image Compositing

Distributed ray cast rendering involves placing an image plane at the face closest to the

camera in the major axis direction, for each scene cell and taking a snapshot of that cell.

Image compositing is used to blend these snapshots together. Associative image composi-

tion allows any geometrically coherent group of sub-volumes to be rendered independently

then blended together. The relative distance to the viewpoint is needed for alpha blending,

and distance (priority) order must be respected. This result allows us to treat distributed

ray casting as an extension of classic ray casting. If we place bounding boxes over our

subvolumes, the operation is equivalent to ray casting in a geometric scene, with geometric

surfaces being replaced with images from subvolumes.

Lombeyda et al. [71] have shown the arithmetic equivalence of a single ray casting

composite computation and the combined result of a set of (smaller) composite computa-

tions. They propose the following concurrent composition operator, F , for alpha blending

subimages. They demonstrate that this operator is associative, but not communicative and

that it yields a parallel composition result, which is arithmetically equivalent to a serial

composition of sequential images using the ray casting alpha blending function:

F (i1, i2) = (Ci1 + (1− αi1)Ci2 , αi1 + (1− αi1)αi2) (2.3)

where i1 and i2 are subimages, and Cs is the accumulated color, and αs is the accumulated

opacity of a subimage.

Figure 2.2 illustrates parallel ray casting. When we composite images rendered by

different render-nodes using ray casting, it is equivalent to tracing rays from one node into

another in the same manner described in Section 2.1.1. The rendering time for a given

image size is roughly proportionate to the size of volume rendered.

Associative image composition implies that any geometrically coherent group of sub-

volumes may be rendered together as long as the overall priority order is respected. The

problem becomes analogous to the ray traversal problem through a triangle mesh.

2. BACKGROUND 20

Figure 2.2: Parallel ray casting. Partial images are generated for each subvolume, and
composited using a concurrent blending operator F (see Equation 2.2.2).

Software compositing has been used to composite geometric primitives distributed and

rendered on different renderers [78]. Compositing can also be performed on a GPU [33].

In the VG-Cluster system [82], a special image compositing hardware composites images

from eight PCs. These interim images are composited to produce the final image. In the

HP MDS Visualization cluster [77], a series of images are composited for each frame by a

special purpose board, HP Sepia-2a, located on each render-node. The Sepia-2a compos-

ites a local image with one received through DVI acquisition from another node. Image

composition priority order is the relative distance along the view direction. This can be

obtained from our flex-block tree.

The Chromium system [46] uses a stream-processing framework for interactive ren-

dering on clusters. SIMD arrays provide the power of an ASIC implementation with the

flexibility of a dynamic solution on a general-purpose machine. Special purpose hardware

has been used for compositing as well. In the VG-Cluster system [82] a special image

compositing hardware composites the images from eight PCs. The VG Cluster uses a tree

structure to direct composition.

2.2.3 Hardware Compositing

In the HP Market Development System (MDS) Visualization cluster [42], a series of

images are composited for each frame by composite hardware, HP Sepia-2a, located on

each render-node. The Sepia-2a [77] composites a local image with one received through

2. BACKGROUND 21

DVI acquisition from another node. The Sepia-2a architecture is a special purpose com-

positing hardware which combines the images produced from individual data subsets and

supports user mouse and keyboard interactive rendering. The Sepia board gets its graphi-

cal image data through the DVI display port of a commodity OpenGL graphics card when

configured as a render-node. The Sepia board connects to a ServerNet II high-bandwidth,

low latency network.

The Sepia-2a daughter board allows DVI output to the display board further increasing

speed-up; faster image acquisition for alpha blending is enabled by avoiding the frame

buffer read-back bottleneck. Composition order is not static and compositing operations

are not required to be communicative. The depth information required by alpha blending is

provided by the CPU. It can change from frame to frame as the camera position moves. The

volume correction matrix is used to place each subvolume in its correct position within the

whole volume. Compositing of images between nodes is executed either on a GPU [33], or

on special purpose compositing hardware compositing.

2.2.4 Scene Partitioning

Optimized octrees have been successfully used for multipass rendering task scheduling

[60]. Optimized octree-based rendering techniques that skip empty spaces directly on the

GPU can be used for local GPU rendering pass scheduling in conjunction with our methods.

However, the goal of the load balanced network distribution problem is different in that the

cost of moving data between nodes and inter-node image composition is more significant.

The smallest resolution cell is sized to fit the target rendering hardware because data bricks

are available in local disc memory. In contrast, for network distribution, only a subset of

bricks is available to each node, and the partition generally should minimize inter-node

communication. If a static partition is used, the granularity required to force all local

images to have consecutive depth priorities is typically orders of magnitude larger than

multipass partitioning cells. As a result, the rendering assignments are not evenly allocated

among resources if the empty space distribution is not uniform.

2. BACKGROUND 22

In parallel volume rendering the scene is typically subdivided using an acceleration

structure such as a grid, octree or kd-tree. Lombeyda et al. [71] have shown the arithmetic

equivalence of a single ray casting composite computation and the combined result of a

set of (smaller) composite computations. They demonstrate that the alpha compositing op-

erator is associative, which means portions of the scene can be rendered individually and

composited together as long as the overall priority order, or relative distance to the view-

point, is respected. In the VG-Cluster system [82], special purpose hardware composites

images from eight PCs. These interim images are composited to produce the final image.

In the HP MDS Visualization cluster, a series of images are composited for each frame

by composite hardware, HP Sepia-2a, located on each render-node. The Sepia-2a [77]

composites a local image with one received through DVI acquisition from another node.

Compositing is also performed on a GPU [33].

There are three main approaches to parallelization used in volume rendering: demand-

driven, data parallel and hybrid. Demand driven ray-parallel techniques divide the screen

into a number of regions where each region represents a task, a number of processors exe-

cute these tasks and whenever a task is completed the processor requests a new one from the

master. With ray-parallel techniques, all voxels along a ray are processed simultaneously.

Data parallel approaches partition the object space. The ray-slice-sweeping algorithm [10],

is a slice-parallel technique, which processes consecutive data slices that are parallel to a

face of the volume data set. Sectioning has been introduced by de Boer et al. [20]. The vol-

ume is divided into horizontal sections, which are each processed in turn. This reduces the

slice face area and hence the size of the slice buffers. PAVLOV [61] is a two-dimensional

array of SIMD processing elements used for parallel segmentation. The volume is dis-

tributed so that a complete beam of voxels along the z-axis is stored on each processing

element to allow conflict-free access to any z-slice so there is only a single clock cycle

delay between slices.

If the data is partitioned so that the priority order is maintained with respect to render-

node assignments, then each render-node contributes exactly one image to the final image.

2. BACKGROUND 23

In this case, the end-to-end rendering time is restricted by the slowest render-node. For

distributed ray casting, the scene must be partitioned between nodes for good load balanc-

ing, and a strict view dependent priority order is required for image composition. Kd-tree,

octree and grid partitions all meet the criteria of producing a deterministic priority order

for any given viewpoint. However, these schemes do not achieve good load-balancing for

data sets with large variations in sparsity because partitioning is not guided by the distribu-

tion of empty space throughout the data. The problem of partitioning volumetric data for

distribution across a cluster to achieve good load balancing for parallel ray casting is the

load balanced network distribution (LBND) problem. The goal of the LBND is to mini-

mize end-to-end render time in a distributed rendering system within resource and priority

order constraints. The input is a volumetric data set, along with render and network cost

information. The precedence order is defined as the relative distance of each voxel with

respect to a given view direction.

2.3 Volume Rendering on Graphics Accelerators

Volume rendering on graphics cards has become increasingly popular [3, 11, 19, 23, 57,

62, 75, 78, 119]. The functionality at the core of a graphics processor (GPU) uses single

instruction multiple data (SIMD) techniques with image-space partitioning. Researchers

capture the relatively cheap compute power of GPUs, using various techniques which lever-

age GPU optimizations originally designed for rasterization. Volume data is stored as 2D

or 3D texture for GPU rendering. A ring network of 20 graphics processors and eight ren-

derers is used in the Pixel-Planes system [119]. The ring network is bandwidth limited

and does not scale well. Akeley [3] propose storing the volume as a solid texture on the

graphics hardware, and then to sample the texture using planes parallel to the image plane

and composite them into a frame buffer using blending hardware. This method quickly

produces unshaded images, but with two main drawbacks: the volume must be re-shaded

and re-loaded every time any of the viewing parameters changed, and non-linear transfer

2. BACKGROUND 24

functions are not interpolated correctly by the texture hardware.

Cabral et al. [11] use texture mapping in combination with an accumulation buffer

on four Raster Manager Reality Engine Onyx machines to implement the filtered back

projection CT algorithm. PixelFlow [78] uses image composition to composite geometric

primitives distributed and rendered on different renderers. This approach has high network

bandwidth requirements for composition since every pixel is transferred multiple times

for every frame. Dachille and Kaufman [19] use a shear-warp [63] style method where

the texture mapping hardware performs the shearing and perspective scaling. In recent

years GPUs have been enhanced with features such as programmability and texture access,

and have become increasingly useful for general purpose programming [75]. Algorithmic

speed-ups are implemented using GPU features. For example, early ray termination takes

advantage of the z-buffer [62].

2.3.1 Multipass Partitioning

Shader programs allow complex problems to be solved on a GPU as long as the un-

derlying problem can be reformulated to fit the SIMD paradigm. However, most complex

applications, including texture-mapped volume rendering, exceed the resource capacity of

even the most up-to-date GPU hardware. The solution is to partition the problem into mul-

tiple passes. Our brick grouping DP solution to the load balancing, described in Chapter

5, is based on a dynamic programming (DP) solution to the multipass partitioning problem

(MPP), or the DPMPP solution, which is briefly described here.

The input to the MPP problem is a valid shader program in the form of a DAG. The

costs of each operation and GPU pass are included as well. The output is a schedule of

DAG operations partitioned into passes which minimize the total runtime cost, where the

schedule observes the precedence relations of the DAG, and no pass exceeds the physical

resource constraints of the GPU. Several solutions to the MPP problem [14, 41, 100] have

been proposed. These algorithms each evaluate the cost function of a proposed GPU pass

2. BACKGROUND 25

by generating the code for that pass. Chan et al. [14] have introduced a minimum-cut ap-

proach, the recursive dominator split (RDS) which optimizes to minimize the total number

of passes. RDS computes a limited search of a subregion of the solution space, and chooses

the solution with least cost. The runtime is O(n3). This time is reduced to O(n2) in RDSh,

which uses a heuristic to replace the subregion solution search with a tradeoff in the parti-

tion quality. These algorithms allow multiply-referenced nodes to be either recomputed or

saved. RDS considers only a single connected region of its input DAG at any time. Riffel

et al. [100] have observed that the MPP problem is an instance of the job-shop schedul-

ing problem. They introduce the MIO algorithm, which is a greedy algorithm based on

list scheduling. MIO gives an approximate solution with average time O(n log n) which is

optimal locally but may be suboptimal globally.

2.3.2 DPMPP

The algorithm proceeds backwards from the last stage to the first. Each stage evalua-

tion is initialized with a set T of transitions, where transition t consists of t.precondition,

t.postcondition, t.operation, and t.cost. For each transition, t, t.postcondition is the ma-

chine state in t.precondition following application of t.operation. For each stage, the prin-

ciple of optimal substructure is used to determine the transitions which may be optimal.

These are used as input to the next subsequent (earlier) stage. The resulting solution is

globally optimal because it observes the principle of optimality [8], which states that the

optimal solution for the current stage is optimal regardless of what policies or conditions

led to this stage. The time-complexity of the DPMPP algorithm could potentially be in-

tractable. However, an average time of O(n1.14966) is achieved experimentally.

2.4 Ray Tracing

Volumetric ray tracing methods include global illumination and higher-order light-

material interactions [36], which are excluded from the ray cast rendering. In ray tracing,

2. BACKGROUND 26

the same rays generated for ray casting (eye rays) are cast. In addition, rays are spawned

at ray-object intersection points to approximate reflected, refracted and shadow rays. A

common element in the ray casting and ray tracing techniques is that the contribution of

a data intersection point is dependent on the accumulated opacity of the ray at that point

from prior intersection points along the ray path.

Ray tracing methods are used for multiple purposes including rendering, intersection

testing, and global illumination with bidirectional reflectance distribution function (BRDF)

splatting. Ray tracing is a unifying method for rendering volume data, geometric primi-

tives, parametric Bezier or NURBS patches, implicit surfaces, point clouds, and more. It

is based on global illumination models of classic physics [35], and so it results in more

physically correct images, and is extensible to immersive environments [2]. The ray traced

rendering and the BRDF splatting algorithms both simulate the interaction of light with the

environment, either in a forward (splatting) or backward (gather) direction. The main dis-

advantage of ray tracing is that it requires out of order memory access and high computing

power.

2.4.1 Rendering Model

Most light particles will have no effect on the final image. It is more efficient to de-

termine the effect of light at each point (pixel or sub-pixel) on the image plane because it

doesn’t require simulating unseen light particles. The property of reciprocity states that the

path a light source takes from a light to the image plane is reversible. Ray traced render-

ing takes advantage of this property and traces the paths of particles, or light rays, which

actually do intersect the image plane.

An image is formed by finding an approximate solution to the rendering equation for

each pixel. Classic, or Whitted-style, ray tracing [117] captures shadows, reflection, re-

fraction and diffuse surface shading. The ray tracing model places an image plane in the

scene and captures the light arriving the image plane, see Figure 2.3(a). One or more rays

are sent through each pixel of an image plane and each ray gathers lighting information as

2. BACKGROUND 27

it hits objects in the scene. As the ray interacts with the environment, additional rays are

spawned as it is reflected and refracted through objects. Shadow rays are shot from each

intersection point toward each light source to indicate whether that point is blocked from

the light source.

(a) Classic ray tracing (b) BRDF

Figure 2.3: Ray tracing physics. (a) Rays P1 and P2 are sent through the scene, spawning
reflection rays R1 and R2, refraction rays T1 and T2 and shadow rays S1 and S2. Spawned
reflection and refraction rays are recursively traced; (b) Bidirectional reflectance distri-
bution function (BRDF). When light hits a surface, it is scattered and bounces off many
micro-facets. This process is approximated with the BRDF.

2.4.2 Global Illumination

The basic principal behind most global illumination algorithms is the physics of the

interaction of light with particles in a volume. In the physics model, light particles, called

photons, are emitted from one or more light sources and are scattered through the environ-

ment. Photons are either absorbed or reflected by the objects they intersect. When light

hits a surface, it is scattered and bounces off many micro-facets as shown in Figure 2.3(b).

2. BACKGROUND 28

Global illumination models these light particles, and is used to model indirect lighting ef-

fects, such as indirect illumination are color bleeding and caustics. These occur when light

bounces off of one surface to illuminate another.

Much research has been done for the generation of bidirectional reflectance distribution

function (BRDF) [6]. With the instant radiosity algorithm [55], a scene illuminated by a

small number of virtual point lights. The irradiance at any given surface point is approxi-

mated by the sum of the contributions from all power of each point light. Photon mapping

is a related technique which splats energy around a scene [50, 51].

2.4.3 Ray Traversal Acceleration

For decades research has been done on acceleration of ray tracing. Several techniques

reduce the number of rays to be traced. They include early ray termination, using fewer

samples on the image plane and reducing the number of rays to be traced for each sample.

For early ray termination a ray recursion is terminated once its pixel contribution drops

below a certain threshold. However, simply terminating such rays results in biased images

and an overall decrease in illumination. Russian roulette termination [5], help to remove

this bias at the cost of adding noise to the image. The main drawback of these methods

is that high-frequency details tend to get lost. Progressive ray tracing is a technique for

producing lower quality images which are then improved with time [15].

2.4.4 Parallel Ray Tracing

Image space partitioning techniques divide the screen space (rays or pixels). Ray traced

rendering is easily parallelized on scenes in which all data can be replicated and accessed by

all compute entities, or ray tracers. Yagel et al. [97] propose a discrete ray tracing method

that leads to fast implementations because all ray-traversal calculations can be performed

in parallel. More often than not, however, data sets are too large for this to be feasible,

and BRDF splatting requires unique scene access for each ray tracer. Therefore, there has

2. BACKGROUND 29

been much research on distributed ray tracing. For clarification, the original use of the term

distributed ray tracing was for rays generated with a distribution function [17]. This is

generally referred to as distribution ray tracing to avoid ambiguities, and is not discussed

here.

Object subdivision techniques are data-driven as with the bounding volume hierar-

chy [79, 101]. A bounding volume is a simple geometric primitive such as a box or sphere

that can be intersected very quickly to avoid costly ray-primitive intersection computations

for more complex objects. A B-kd-tree [118] is a hybrid approach which uses a kd-tree

partition with bounding volumes as leaf nodes. This approach is similar in concept to our

flex-block tree, except that our approach is designed for massive volumes, and the total size

of data distributed in our system is a function of the flex-block partition.

Space partitioning techniques organizes the scene into a set of non-overlapping cells,

and divide the scene among processing units [13, 25]. Each cell contains a list of references

to all the primitives that fall partially or completely within the cell bounding box. Ma et

al. [73] perform space subdivision in parallel. Space subdivision techniques include binary

space partitioning (BSP) trees [9], octrees [34], kd-trees, and regular grids. Acceleration

data structures are also used to mark empty space for skipping during ray casting and ray

tracing [16, 68, 69, 90, 112].

Efficient ray traversal is a well studied problem [4, 66, 90, 94].Figure 2.4 illustrates the

pseudo-random ray dependencies that result when cells are revisited by spawned rays.

Shadow rays for a point light source that are occluded by the same object are inherently

coherent. This coherence is exploited by the shadow caching [40] technique. Fernandez et

al. [104] subdivide the scene, and keep a list of light sources that will be fully occluded,

fully visible, or partially visible to each region of space. They use an approximation for

these, based on shadow rays, so that data structure can be built at run time for dynamic

scenes. Recently much attention has been focused on efficient building of kd-trees [47].

Pharr et al. [94] introduce the use of ray queues associated with each portion of the

scene volume, or cell. The scene is divided into an acceleration or scheduling grid as

2. BACKGROUND 30

Figure 2.4: Pseudo-random ray traversal. Arrows show possible ray traversal paths. Each
path may be followed by thousands of rays.

Figure 2.5: Hybrid object image ray tracing.

illustrated in Figure 2.5. When the queue for the current cell is emptied, another cell is

chosen for processing. A greedy max-work approach is used to choose the next cell. The

difficulty with optimizing ray traversal for ray tracing stems from the fact that the same

cell may be revisited by a ray and by its descendants any number of times, and these

descendants may not be generated until it has been processed within another cell.

2. BACKGROUND 31

Reinhard et al. [98, 99] use a pyramid clipping scheduling scheme and the demand-

driven scheduling of shadow ray tracing. Each processor handles both types of tasks, but

data parallel tasks are given higher priority. The geometry is distributed and the spatial

subdivision structure is replicated. A pyramid is constructed around a bundle of rays and

intersected with an octree subdivision of the volume. Clusters of rays are gathered to

improve coherency [90].

2.4.5 Ray Tracing Systems

Sobierajski and Kaufman have developed a complete framework for volumetric ray

tracing that includes global illumination effects such as shadows, reflections of the scene in

mirrors, light interaction between multiple volumetric and geometric objects, and volumet-

ric rendering effects such as fog and transparency [105]. The results have been incorpo-

rated into VolVis, a comprehensive volume visualization system developed at Stony Brook

University. GI-Cube [18] is a single PCI board volume ray tracing coprocessor with paral-

lelization based on cubic cells. Interleaved cubic cells are used to improve load balancing.

Ray tracing in our framework, described in Chapter 7, is based on the GI-Cube simulation.

The SaarCOR Realtime Ray Tracing Engine [103, 111, 113, 114, 115] is a hardware

developed for ray tracing triangles. The Galileo system uses kd-tree space subdivision for

ray tracing [88, 89]. It has been parallelized on a CPU cluster system [21]. Recently, ray

tracing has been implemented on graphics hardware [95, 96]. Vertex tracing [110] targets

primary rays directly towards the vertices of visible triangles, computes the color of these

vertices by recursive ray tracing, and uses graphics hardware to perform the interpolation

between the vertices.

2.5 Summary

Much research has been done to improve algorithms for high quality rendering and

interactive visualization. Volume rendering hardware has been developed to speed up this

2. BACKGROUND 32

process. The market has driven the production of low-cost, high compute power GPUs

and switching technologies. The result is an ever-changing environment of visualization

clusters, which need resource management which is not tightly coupled to the specifics of

any particular configuration. This is the environment which has driven our research.

33

Chapter 3

Framework for Interactive Massive

Volume Visualization

In this chapter, we present a framework which automates load balanced volume dis-

tribution and ray-task scheduling for parallel visualization of massive volumes. The main

bottlenecks in distributed volume rendering involve moving data across the network and

loading memory into rendering hardware. Our load balancing solution combines static net-

work distribution with dynamic ray-task scheduling. At the core of the dependency graph

approach are the flex-block tree and the cell-tree.

We first present the system functionality that our framework addresses in Section 3.1.

In Section 3.2 we describe our data management philosophy and argue the case that early

data reduction is an important aspect of managing massive volume data sets. We then

introduce the dependency graph data structures that are the basic elements of our framework

in Section 3.2.2. In Section 3.3 we introduce an overview of our data distribution and

dynamic ray-task load balancing. In Section 3.5 we describe our test environment, and in

Section 3.6 we show some interactive rendering results.

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 34

Figure 3.1: Block diagram of our visualization framework.

3.1 System Functionality

An overview of our framework is shown in Figure 3.1. The master node handles initial

distribution of the data and subsequent scene updates. As the user updates view informa-

tion, the master sends updated viewing parameters to each rendering node. Our framework

improves load balancing for both ray casting and ray tracing. Ray cast rendering is per-

formed by hardware and ray tracing is performed in the CPU.

Each node renders the image of its portion of the scene for the current frame. Wherever

these partial images overlap in screen space they must be composited. This requires the

bandwidth-intensive task of transporting images between compute nodes. By restricting

scene partitions to those which yield an unambiguous priority rule for any direction, all

compositing occurs between neighboring nodes, which significantly reduces overall net-

work communication compared with global image communication. The relative depth of

each image is an input to the alpha blending equation used for compositing.

Ray casting is typically performed by special purpose hardware or a graphics card

(GPU), and ray tracing is done in software. The master node handles initial distribution

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 35

of the data and subsequent scene updates. The user defines view and lighting parame-

ters. As view information is updated, the master sends the new viewing parameters to each

rendering node. Both software ray tracing and hardware ray casting are supported.

3.2 Data Management

Our data management pipeline is shown in Figure 3.2. The preprocessing consists of

the slice preprocessing phase, followed by the data distribution process. Slice preprocess-

ing is used for creating cropped slices to be distributed across the network for rendering.

Each raw data slice is read once during this phase. Non-empty regions are segmented using

a mask volume, cropped and written to disc memory. Out-of-core region growing is used

if no mask has been provided with the data set. Concurrently, data extent information is

consolidated into a series of slab-projection slices. Partitioning uses these slab-projection

slices to avoid any further raw data reads. Interactive rendering is done in parallel as view-

ing parameters are parsed and distributed by the master node. Render pass scheduling,

hardware ray casting and compositing all take place on the render-nodes.

In distributed ray casting, a brick is a subvolume that is sized for rendering hardware.

Data is distributed between nodes using a flex-block partition. A local flex-block partition

is used to create and schedule bricks within a render-node. End-to-end rendering time is

restricted by a combination of the slowest render-node, image composition time, and/or

network communication time. Images are composited into a final image using an alpha

blending operation, which requires the relative depth of each image. This equation is asso-

ciative. End-to-end render time increases with the maximum number of rendering passes

required by any node in the cluster. There are two ways to keep the maximum number of

rendering passes down: by assigning an equal number of rendering passes to each node,

and by decreasing the total amount of memory assigned. If every image rendered on a node

is composited into a single image prior to blending it with images from other nodes, then

the bandwidth required for transporting images between nodes is minimized.

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 36

Figure 3.2: Distributed rendering data management pipeline.

Traditional space-subdivision methods can be used to reduce total memory assigned,

but data distribution requires partition cells to be sufficiently large so that each render-

node contributes a single composited image per frame. However, load balancing suffers

due to the granularity required. If empty space is not uniform within the scene, then some

render-nodes are assigned large amounts of empty space, requiring little or no computation,

leaving a disproportionate amount of computation for other nodes.

Intra-node compositing takes place on the rendering engine. Multi-pass rendering is

used whether rendering is performed on volume rendering hardware or GPUs. If rendering

takes place on the VolumePro 1000 board, we leverage the capability of rendering multiple

volumes in a single context with on-board image compositing.

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 37

For distributed ray tracing, we use a hybrid scheme for load balancing. The data is

distributed using a flex-block partition, and ray-task scheduling is updated dynamically

within the local partition of each render-node. The problem of determining the optimum

order in which cells are cached is NP-Complete, so several optimizations have been pro-

posed [18, 90, 94, 98, 99]. A ray queue [94] holds pending rays for each cell. Space

skipping within each cell is automated by using flex-blocks for cells by advancing the ray

forward according to the data extents of each flex-block. As rays are traced through the

scene, one cell is worked on at a time. When a cell is in main memory, each ray in the

corresponding ray queue is traced through that cell. When a spawned ray exits the current

cell, it is placed on the queue of the next cell it intersects. It is not generally possible to

create a schedule which fetches each cell only once for ray tracing algorithms.

3.2.1 Early Data Reduction

A volume is defined as massive when it is one or more orders of magnitude larger than

the size of main memory available in a single visualization engine. Massive data requires

either out-of-core (external memory) or distributed preprocessing. We propose external

memory solutions, which attempt to minimize the number of times a piece of data is read

from disc memory. For example, we use the bounding boxes of bricks, rather than physical

data as an external memory approach to our dynamic programming algorithm. Bounding

boxes are used to create volume texture bricks, sized to fit the rendering hardware, from

pre-cropped slices at render time.

Space leaping is an important optimization used for ray directed techniques. However,

runtime space leaping does not alleviate the inefficiency of sending empty volume data

across a cluster, or bringing this data into texture or cache memory. We use preprocessing

to remove empty space from data slices and to find a good scene partition for distribution

of the scene. The problem of running out of memory occurs in all parts of the pipeline,

from the initial reading of raw data slices to moving data across the network. Frequently

volumetric data contains a large portion of empty space, or data with no useful information.

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 38

We can reduce the size of the distributed data by modifying the input volume such that it

only contains the voxels which belong to one or more regions of interest.

Large-scale data management requires an out-of-core approach because all data will

not fit into local memory. Preprocessing large-scale data for distribution must be handled

without the caching all data at once. We use out-of-core segmentation to determine the

bounding boxes and dependency graphs of volume boundaries for automated volume split-

ting. If segmentation is provided, as with the Visible Korean data set, then we read one slice

of raw data along with the corresponding segmented slice. Otherwise, a small slab of raw

slices is read at a time and out-of-core region growing is used to determine the segmented

area to crop. The slices are processed in slabs sized to fit the target rendering hardware

texture or cache size. We reduce data sizes to achieve space skipping prior to texturing

by cropping the empty or unused space. Out-of-core segmentation is used to determine

the bounding boxes and dependency graphs of volume boundaries for automated volume

splitting.

If segmentation mask data is provided, then we read one slice of raw data along with the

corresponding segmented slice. Otherwise, a small slab of raw slices is read at a time and

out-of-core region growing [29] is used to determine the segmented area to crop. Slice data

is kept in cache memory only long enough to do slice-to-slice comparisons for detection of

region overlaps, splits and merges. The most recent slice is used to seed the region-growing

process on the current slab. Each slice is cropped to the bounding rectangle of region of

interest.The goal of segmentation here is to segment out empty space, as indicated by the

user; any or all valid regions in the data are included.

3.2.2 Dependency Graph Data Structures

We use dependency graph information for both ray tracing and ray casting. The flex-

block partition is used for data distribution. The corresponding flex-block tree contains the

image order dependencies for ray casting. These dependencies are also used to accelerate

ray traversal in ray tracing by indicating potential neighbors a ray may enter. The cell-tree

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 39

is a compact representation of ray dependencies between cells, where a cell is a flex-block.

It is several orders of magnitude smaller than the number of dependencies represented. The

cell-tree is used for ray-task scheduling and for ray traversal speedup in ray tracing.

3.2.3 Flex-block Partition

Traditional space subdivision methods do not address the load balancing problem for

distributed rendering. Our flex-block partition is designed for this purpose. It is derived

from a kd-tree partition, but the leaf nodes are flex-blocks. In addition, the flex-block

partition does not restrict the order of partition cuts to alternate between axis. This is

particularly important for a scene with disproportionate lengths on each side.

We introduce the flex-block tree, our dependency graph data structure, derived from a

kd-tree, which describes a flex-block partition. The flex-block partition is used to define

a render-node assignment. The flex-block is the data structure used to define a flex-block

partition and is illustrated in Figure 3.3. Each cell in the partition is a flex-block. The

flex-block tree node, shown in Figure 3.3(a), contains cut plane and child node information

as in a traditional binary tree. The leaf nodes in the tree are flex-blocks. A flex-block is a

cell containing a tightly cropped subvolume, which does not necessarily occupy the whole

cell (see Figure 3.3(b)). Prior to distributing data for rendering, we reduce the overall size

of the data. We crop empty space by aligning a tight axis-aligned bounding box around a

cohesive non-empty area of the volume.

Partition walls are moved to simultaneously accommodate non-empty subvolume

boundaries and render-nodes for good load balancing. A flex-block is a cell containing

a tightly cropped subvolume, which does not necessarily occupy the whole cell. Empty

space skipping is generally treated as a render time solution. However, reducing the size

of data early in the pipeline has the advantages of reducing the run-time of later prepro-

cessing and processing steps as well as data movement across the network. The flex-block

partition is designed to reduce empty space, facilitate early data reduction, and to provide

a deterministic depth order of flex-blocks for any given view direction. The flex-block tree

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 40

(a) Tree Node (b) Flex-block

Figure 3.3: Flex-block tree data structure captures view-dependency order and data position
information. Leaf nodes are flex-blocks. (a) Flex-block tree node; (b) Flex-block data
structure.

is similar to a kd-tree except that leaf nodes are cells containing a combination of empty

space and tightly cropped subvolumes, or flex-blocks.

3.3 Load Balancing Data Distribution

Static data distribution is used for load balancing both for ray casting and ray trac-

ing. Dynamic task scheduling is used to schedule subvolumes, or flex-bricks, within each

render-node. For ray casting, this involves traversing the flex-block tree structure to de-

termine the order for compositing (and rendering) images. For ray tracing, this involves

scheduling flex-bricks for pending rays.

Our data management preprocessing pipeline for massive volumes proceeds as follows.

One raw data slice is read at a time and out-of-core region growing creates a mask for each

slice. Region growing is is skipped if a mask volume is is provided with the raw data, as

with the Visible Korean data set. Slices are cropped to cropped to one or more bounding

rectangles of regions of interest using the mask volume. Cropped slices are stored on disk

memory for distribution to render-nodes.

The bounding rectangle parameters of cropped slices are used as input to our moving

walls algorithm, which partitions the scene with a kd-tree space partition. Dynamic pro-

gramming creates flex-blocks within a kd-tree like partition of the scene. The kd-tree is

extracted from the output of the moving walls procedure. The image priority order for each

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 41

of eight quantized view directions is extracted from the kd-tree and stored in a look-up

table. This table represents a dependency graph of flex-blocks, which is used for image

composition and ray-task scheduling. Flex-block parameters, including the flex-block de-

pendency graph, are distributed across the cluster along with cropped slices. Volume blocks

are created locally by render-nodes. Alternatively, at the request of the user, volume blocks

are created during preprocessing for distribution.

The user has the option of creating flex-block volumes to be distributed, or to dis-

tribute cropped slices along with flex-block bounding boxes. For a stable configuration

volume blocks are stored locally on the render-nodes. However, it is generally better to

store cropped slices rather than volumes which have been targeted to a specific system. If

the configuration changes, the data distribution algorithm is run using the new constraints,

and cropped slices need not be regenerated. Blocks are never created until the end of pre-

processing because memory used by pre-processing unnecessarily restricts volume block

sizes.

We have introduced the use of dynamic programming for volume distribution and ren-

der task scheduling. The moving walls algorithm partitions the scene into cells which each

contain one or more closely cropped blocks of volume data. The total size of each group of

data blocks is closely matched to the target memory size. Scene partitioning is driven by

tightly cropped subvolumes to allow volume boundaries to be followed in a natural man-

ner. Our dynamic programming approach gives the user control over the tradeoff between

distribution quality and algorithm run time.

3.4 Dynamic Task Scheduling

In ray tracing mode, each node calculates the ray contributions for the portion of data

assigned to it. Ray queues in each node hold pending rays. Each ray tracing node com-

municates ray information to neighboring nodes. The flex-block dependency graph is used

to determine the next neighbor to enter, as selected by the direction of the ray segment. In

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 42

ray-cast mode, the ray queues are not used, but instead an ray cast image of the assigned

volume portion is rendered locally and sent to the next neighbor node for the view direction

of the current frame. Ray-dependencies are collected into a cell-tree which is used to create

an efficient cache schedule for the next frame. Each ray has an ordered sequence of cells

which it depends on. We call this its ray-cell dependencies. If ray r2 is spawned from ray

r1, it is defined to be a child of r1. The ray cell dependencies of ray r2 are the same as those

of r1 with the addition of any new cell r2 enters. For each eye ray r, the dependencies of all

rays spawned from r form a ray tree. For a 5122 image, there are over 250, 000 ray trees,

each with its own set of dependencies.

We gather these ray dependencies into coherent groups to create a single, consolidated,

cell-tree [28]. All rays which traverse from one cell to another at the same relative time

are represented by a single link in the cell-tree. Initial rays are projected from the eye

through the scene. As these hit the scene objects, reflection, refraction and shadow rays are

spawned. A ray dependency occurs when a ray traverses from one cell to another. Clusters

of eye, shadow, reflected and refracted ray-cell dependencies are gathered into a compact

description; the first ray dependency of each cluster of rays adds a branch to the cell-tree.

In our experiments, cell-trees were more than 100 times smaller than the average number

of rays represented.

3.5 Test Environment

Preprocessing has been implemented using the Open Volume Library, OpenVL [65].

OpenVL is an extensible plugin-based volume library, which offers support for image and

volume file reading and writing which has been developed at Stony Brook University. The

flexibility offered by this library has proven invaluable for unique situations which occur

in a wide variety of data. For example, the Visible Male data contains non-interleaved

RGB data. An incremental change to the OpenVL raw file I/O plugin allowed us to create

an interleaved RGB volume from this data. Another small change enabled us to use a

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 43

single channel for the region grow algorithm, rather than an extremely slow three channel

segmentation.

Distributed ray casting is done on our HP MDS Visualization System. Figure 3.4 shows

a block diagram. The MDS cluster has eight render-nodes and one display node with Sepia-

2a boards. Each node is an HP dual-processor Pentium Xeon 2.4GHz with 2.5GB memory.

The nodes are connected with a high speed backend network for fast sharing of partial

images and/or data, as well as a frontend network for process communication and control.

Figure 3.4: HP MDS Cluster block diagram.

Each node is also equipped with a VolumePro 1000 volume rendering accelerator,

shown in Figure 3.5(a), with 1GB of memory and a GeforceFX 5800 GPU with 128MB

memory. Figure 3.5(b) illustrates the process of compositing an image on the VolumePro

1000. Multiple subvolumes can be stored in the VolumePro 1000 memory. Each subvolume

is rendered as a separate pass, allowing subvolumes to be tightly cropped.

The resulting images are accumulated into an image buffer which is located in the

VolumePro board memory. The end result is sent to the GPU frame buffer for acquisition

by the Sepia-2a card at the end of each frame. Priority order along each axis is either

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 44

(a) VolumePro 1000 PCI board (b) Multipass rendering on the VolumePro 1000

Figure 3.5: VolumePro 1000. (a) PCI board; (b) Prior to rendering pass i, Image 1 contains
an image that is the composite of all prior rendering pass results.

strictly front-to-back or back-to-front, as determined from the dot product of the composite

direction with the view direction, as shown in Figure 3.6. An extension of this is to compose

a grid of images by compositing along one axis direction at a time.

Figure 3.6: Image composition. Image sequence order of a serial composite chain deter-
mined using dot product.

VolumePro 1000 rendering on an MDS cluster proceeds as follows:
1. Local processor updates viewing parameters.
2. VolumePro1000 renders, composites subvolumes.
3. Graphics card renders image to video memory.
4. Sepia receives pixels from local video memory and from upstream node.
5. Sepia combines pixels, transmits to next node.
6. Display node receives fully composited image.

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 45

3.6 Interactive Visualization Results

Interactive distributed volume rendering is demonstrated in our visualization of seismic

data, the Visible Male, and several teeth and fossil data sets. The seismic data (see Figure

3.7) is 8.3GB, consisting of 1834 × 1382 × 783 floating point with four bytes/voxel. Fol-

lowing standard practice of the Society of Exploration Geophysicists, it has been reduced

to a 2.1GB greyscale data set. Three VolumePro 1000 boards were used for volume ren-

dering, and Sepia-2a boards [82] for compositing. The end-to-end render time average is

0.45 seconds.

Figure 3.7: Volume rendering of seismic data on a cluster.

The full Visible Male data set, from the Visible Human Project, is a sequence of axial

anatomical images of 2048 × 1216 pixels at 1 mm slices. The Visible Male color data

set has 1879 slices. With the addition of an alpha channel the data set is 18.7GB, more

than double the capacity of our MDS System VolumePro1000 boards. The 6.7GB homo

sapiens molar contains 1589 slices, and the 8.5GB diademodon tooth fossil contains 2028

slices. Figure 3.8 shows frame rates for a varying number of nodes, each rendering a full

screen 1280 × 1024 resolution image of volumetric data which is nearly the same size as

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 46

the VolumePro1000 memory capacity.

Figure 3.8: Rendering frame rates for 1280 × 1024 image resolution and approximately
1GB data per node.

3.7 Discussion

We have developed a framework for distributed parallel visualization of massive vol-

umes. Distributed interactive volume rendering poses two related problems. The volume

must be split between the nodes to allow for the best load balancing as the camera pa-

rameters and other viewing parameters change. At the same time, restrictions imposed

by each part of the system on such things as GPU memory and I/O speed must be taken

into account for scalability. Data should be distributed to achieve maximum load balance

while maintaining a strict view dependent priority order for image composition. The image

composition order must be determined quickly in parallel with rendering, in order to avoid

reducing the frame rate. Massive volume data sets must be split up, or bricked, to fit within

memory capacity prior to rendering.

Our novel dependency graph approach to load balancing allows flexible and efficient

render-node assignments. Flex-blocks give more control over allocation of volumetric data

3. FRAMEWORK FOR INTERACTIVE MASSIVE VOLUME VISUALIZATION 47

between render-nodes. Image composition order is pre-computed in the flex-block depen-

dency graph. This is extracted from a kd-tree partition of the scene, which is driven by the

flex-blocks. By using the dependency graph of tightly cropped flex-blocks for large-scale

data management, block-level space leaping effectively occurs prior to data distribution.

This is true for both ray casting and ray tracing algorithms. Our approach is general enough

to be utilized in any distributed system.

48

Chapter 4

External Memory Solutions

In this chapter we discuss strategies we have developed for managing out-of-core data

In Section 4.1 we discuss the challenges, and we describe the parallel preprocessing used

for comparison to our out-of-core methods. In Section 4.2 we give an overview of the

data management pipeline. We introduce our slab-projection slice in Section 4.3, and our

out-of-core bricking in Section 4.4. Our slab-projected kd-tree partitioning is presented in

Section 4.5. We describe out-of core cropping in Section 4.6, and our out-of-core region

growing algorithm in Section 4.7. In Section 4.8 we present the results of cropping and

bricking.

4.1 Challenges in Massive Data Management

Managing massive volumes presents many challenges which arise due to the sheer size,

complexity and variability of the data sets. For example, the process of transferring data

from one to another is not only tedious, but it is error prone as well. Frequently there is

insufficient memory on an interim system, such as the master node on a visualization clus-

ter, and data must be moved in stages. Although the task of moving data can be automated

using scripts, precautions must be made to detect when all data has not been moved due to

lack of storage or another failure, such as a network interruption.

4. EXTERNAL MEMORY SOLUTIONS 49

We address the following specific problems encountered when rendering massive volu-

metric data sets. The full data set may not fit in the disc memory of a single render-node, so

that data must be distributed, rather than replicated on each render-node. In order to have

a scalable system that efficiently utilizes the available resources, a load balancing scheme

is needed to insure that all render-nodes perform an equitable amount of work during ren-

dering. In addition, data typically does not fit in main memory, so all preprocessing must

use either out-of-core or distributed methods. Finally, the data size may exceed total ren-

dering hardware memory available across all rendering nodes, requiring multiple rendering

passes. The likelihood of such problems increases with data size. This has motivated us to

reduce data as soon as possible in the preprocessing pipeline.

4.1.1 Distributed Preprocessing

Massive data requires either out-of-core (external memory) or distributed preprocess-

ing. We compare these approaches. For distributed preprocessing data must be replicated

on render-nodes, and moved again if non-static data distribution is used. Static data distri-

bution doesn’t achieve good load-balancing for data sets with large variations in sparsity

because partitioning is not guided by the distribution of empty space throughout the data.

A full portion of data might be assigned to one or more nodes while some nodes have lit-

tle or no data to render, so that the speedup obtained by parallel rendering is limited by

poor allocation of resources. If this is to be avoided, then data must be moved again after

preprocessing.

Data should be distributed in a manner which avoids having a disproportionate amount

of the rendering assigned to a few render-nodes. Distributed preprocessing uses a static

data structure, such as a grid, for distributing slices prior to reading. In order to avoid

unnecessary inter-node image transfers, the granularity of the grid is set so that an equal

contiguous portion of the data, one cell, is assigned to each render-node. The grid cell

size is equal to the whole scene extents divided by the number of render-nodes. Each

raw data slice is sent to every render-node that overlaps it. One drawback to distributed

4. EXTERNAL MEMORY SOLUTIONS 50

preprocessing is that empty space is unnecessarily sent to render-nodes.

4.1.2 Empty Space Cropping

In many data sets, such as the lobster, the Visible Human, Korean Visible Male, and the

teeth and fossil data sets used in our experiments, the data is surrounded by some material

which is irrelevant to the object being visualized. The challenge is to efficiently skip this

empty space. We can reduce the size of the distributed data by modifying the input volume

such that it only contains the voxels which belong to one or more regions of interest. We use

masking to distinguish this material from the areas of the data which may ever be examined

during interactive rendering.

Figure 4.1 illustrates that an order of magnitude is saved by cropping the Visible Korean

data set prior to distribution compared with sending full slices. The distributed preprocess-

ing data size shown represents the best case scenario. In addition, slices are replicated for

each overlapping cell in the grid. This allows early data reduction.

4.2 Out-of-Core Data Management Pipeline

We propose out-of-core preprocessing to minimize the number of times a piece of data

is read from disc memory. A volume is defined as massive when it is one or more orders of

magnitude larger than the size of main memory available in a single visualization engine.

We use early data reduction to remove empty space at the beginning of the pipeline. In

order to incorporate empty space information prior to distribution and reduce the amount

of empty space distributed to render-nodes, each slice is read, masked and cropped during

preprocessing. Traditional seeded region growing [1] runs out of memory in processing

a small portion of a massive data set. This algorithm is adapted for external memory im-

plementation. We introduce an incremental slab-to-slab version of seeded region growing,

where we read one small z-slab at a time.

This reduces the amount of empty space distributed to the render-nodes and loaded for

4. EXTERNAL MEMORY SOLUTIONS 51

(a) Distributed preprocess

(b) Preprocess prior to distribution

Figure 4.1: Distributed preprocessing compared with single node preprocessing: (a) Full
slices distributed prior to preprocessing; (b) Cropped slices distributed after preprocessing.
Data is reduced by nearly an order of magnitude using empty space removal.

rendering. Data is distributed at the completion of the out-of-core preprocessing. Data is

not moved between nodes during rendering. An overview of the pipeline for out-of-core

4. EXTERNAL MEMORY SOLUTIONS 52

preprocessing is shown in Figure 4.2.

Figure 4.2: Out-of-core preprocessing pipeline. By masking and cropping data early in the
pipeline, we are able to used non-empty region bounding boxes for the data partitioning
portion of preprocessing”

The preprocessing consists of the slice preprocessing phase, followed by the data dis-

tribution process. Slice preprocessing is used for creating cropped slices to be distributed

across the network for rendering. Each raw data slice is read once during this phase. Non-

empty regions are segmented using a mask volume, then cropped and written to disc mem-

ory. Out-of-core region growing is used if no mask has been provided with the data set.

Concurrently, data extent information is consolidated into a series of slab-projection slices.

Render pass scheduling, hardware ray casting and compositing all take place on the render-

nodes during rendering.

4.3 Slab-projection Slice

We have developed an algorithm which selects non-empty voxels in a massive volume

data set using out-of-core region growing, and gathers groups of slices into slab-aligned

volume blocks for distribution across a volume rendering cluster. Our out-of-core region

growing algorithm [29] is used to create mask volume slabs. These are assembled by our

4. EXTERNAL MEMORY SOLUTIONS 53

region of interest cropping into small volume blocks, which are gathered into spatially

coherent groups.

We gather a slab of data into an orthographic projection, the slab-projection slice as

shown in Figure 4.3. This is used to gather non-empty voxel information for the current

slab. Slices are freed from main memory once they are added to the slab-projection slice.

Figure 4.3: Slab-projection of the Visible Korean lungs.

A series of slab-projection slices are created during the initial preprocessing step of

masking and cropping. These are used to avoid any further raw data reads during the data

distribution preprocessing. We gather a consecutive series of slices, a slab, into an ortho-

graphic projection of slice data information, the slab-projection slice. Slices are masked,

cropped, and written to disc memory for use during rendering. The number of non-empty

voxels within the current slab of data is stored in the corresponding x-y position of the

slab-projection slice. This maintains a count of non-empty voxels for the current slab.

A z-cut is a cut across the z-axis. If the z-length of the slab is larger than a given slab

minimum, and either a split or merge is detected, or if the z-length is equal to a given slab

maximum, then a z-cut is made. The concepts of a split and a merge are introduced in [29].

A split occurs when a slice contains two distinct non-empty regions that both overlap a

single region in the current slab. A merge occurs when a single region in the slice overlaps

two or more regions in the slab. Whenever a z-cut is made, a new slab-projection slice is

initialized using the current slice.

We use a series of slab-projection slices for out-of-core preprocessing. The first step

4. EXTERNAL MEMORY SOLUTIONS 54

is to gather data extent information from slices. These are used either directly for slab-

projected kd-tree partitioning and brick grouping DP algorithms or to find the input brick

DAG for DP partitioning.

Data distribution uses either slab-projected kd-tree partitioning or our DP partitioning

[30, 31]. For brick grouping DP partitioning, a separate partition is derived for each viewing

octant by running DP with a DAG representing the corresponding visibility ordering. Data

bricks are replicated as needed across the rendering system, rather than moving data across

the network during rendering. The portion of data assigned to a render-node for each unique

partition, is stored in local disc memory. A kd-tree partition has the advantage of giving a

view-independent solution, but has several disadvantages for massive data sets. We must

restrict the number of render-nodes to a power of two, or either allow some render-nodes

have more data assigned than others using a non-balanced kd-tree or by assigning more

than one leaf node to a render-node.

4.4 Out-of-Core Bricking

Corresponding to the slab-projection slice is a list of flex-blocks, which are coherent

subvolumes within the slab of volume data which change shape to accommodate the bound-

aries of adjacent areas in new slices as they are added to the projection slice. A z-cut in-

volves calculating brick bounding boxes and dependencies from the candidate-block list,

and the current slab-projection slice is re-set to the current slice. The precedence con-

straints are defined with respect to the view direction along the positive z-axis. A z-cut is

indicated either with a merge or split, or when the footprint of data is close to a multiple of

the z-length. A merge is when data from more than one flex-blocks of data overlap within

the current slice. A split is when a new region is detected in the data, or length limit. A

proportionate footprint indicates that a z-cut would result in well-portioned bricks. A z-cut

is also made if the z-length of the slab is larger than a user-specified maximum.

Out-of-core bricking finds a DAG of bricks using the series of slab-projection slices

4. EXTERNAL MEMORY SOLUTIONS 55

obtained in the first step of preprocessing. The brick precedence order, with respect to a

specific viewing vector, is stored in a DAG, along with brick bounding box extents.

For each slab-projection slice, we find the set of candidate-blocks, or cropped, non-

empty regions. From these candidates we cut bricks of a predetermined size. For GPU

rendering, the bricks should be sized to fit the maximum texture memory and satisfy any

hardware-specific dimension requirements. However, bricks of this size may be too small

to control the algorithm run time for DP partitioning. In this case, larger bricks are used

for data distribution, and these are cut to the target GPU texture size prior to rendering. We

use bounding boxes of bricks, not physical data, in our brick grouping DP. At render time

these bounding boxes are used to create volume texture bricks, sized to fit the rendering

hardware, from pre-cropped slices.

4.5 Slab-projected Kd-tree Partitioning

A traditional kd-tree is obtained through recursive splitting of data using empty space

information. Each recursion requires one or more scans of every data slice. In order to avoid

these memory accesses during the partitioning process, we introduce the slab-projected kd-

tree partitioning algorithm.

The input to each recursion of the kd-tree partitioning includes a set of volume data

slices, current sub-scene Q, the current depth of the recursion, d, and a cut plane. The

center of a sub-scene is the plane that splits the non-empty voxels into nearly equal numbers

across the cut axis. At each recursion, the sub-scene is split with the center cut plane, and

then each side is recursively partitioned. The kd-tree root represents the whole scene, and

the depth is initialized to 0. The recursion ends when the number of leafs at the current level

is the same as the number of render-nodes, B. This requires the number of render-nodes to

be a power of two. The final depth of the kd-tree is bd = log2 n.

We use the number of non-empty voxels as the criteria for finding the center of a sub-

scene. The set of data slices that overlaps the current sub-scene is S. For each voxel

4. EXTERNAL MEMORY SOLUTIONS 56

position along the cut axis there is a data slice, s, that is orthogonal to the current cut axis.

The set of these cut crossing slices is Q, and Q = S for the z-cut axis. The number of

non-empty voxels in slice i is i.voxelCount, where i is either a data slice or a cut crossing

slice.

For each recursion of the partitioning algorithm, every data slice, s, that overlaps S is

examined. If it is not in main memory it is read from disc memory. Traditional kd-tree

partitioning proceeds recursively as follows:

∀s ∈ S, read s and scan to get s.voxelCount

Add s.voxelCount to sub-scene total

∀q ∈ Q update q.voxelCount from intersection with s

Find center cut plane using voxel count array

if d < bd then find kd-tree for each side of cut

The problem with this approach is that every slice in the current scene needs to be read

in order to determine the splitting axis. Instead, we use a series of slab-projection slices

in the slab-projected kd-tree partitioning algorithm. The slab-projected kd-tree partitioning

solution proceeds in the same way as a traditional kd-tree except that a series of slab-

projection slices provides non-empty voxel information instead of raw data slices. The

slab-projection slices are produced during the first step of preprocessing, as described in

Section 4.3.

At the start of the algorithm, all slab-projection slices are assumed to be in main mem-

ory. The minimum slab width in the slab-projection slice preprocessing step is used to

insure that this criteria is met. This circumvents the need to read any data from disc mem-

ory during kd-tree partitioning. The main advantage of using slab-projection slices is that

empty space information is consolidated prior to the partitioning process. This has a major

impact on the time spent in determining the splitting plane at each iteration of the recursion.

4. EXTERNAL MEMORY SOLUTIONS 57

4.6 Region-of-Interest Cropping

When the data manager processes a data slice for the first time, it is reduced by cropping

it to the bounding box of the non-empty voxels. Storing the cropped slices is an important

step in managing massive data. The time required for creating a block from cropped slices

rather than full slices is reduced proportionately to the slice size reduction. Data is loaded

into rendering hardware memory from pre-cropped slices according to the data bounding

boxes in the flex-block data structure. By pre-determining the size of each block, memory

allocation is efficient. The memory required to fit a volume block with full slices may not

be available for the prescribed z length, since only a small portion of the full slices fit in

memory at once.

As part of our out-of-core strategy, the data inside the flex-blocks is not loaded into

memory for our load balancing data distribution preprocessing. Only the bounding boxes of

bricks, not physical data, is used to drive the algorithms. Data distribution is re-calculated

for different cluster configurations, and stored in the form of a flex-block tree. The leaf

nodes, flex-blocks, are used to create physical volume blocks at render time.

In our approach, the volume is broken into small, segmented non-overlapping volume

blocks, which are recombined into larger subvolumes. We save the cropped slices to disk

memory and gather virtual volume blocks by comparing only the most recent slice with the

current slice and incrementally updating volume block bounding boxes. Our data distri-

bution management algorithm uses the bounding boxes of these volume blocks, and only

creates the actual blocks at run time. The region grow algorithm is run on each distinct

region of interest within a slab. A threshold range and the initial seed for each separate

region within the whole volume are provided by the user.

4. EXTERNAL MEMORY SOLUTIONS 58

4.7 Out-of-Core Region Growing

Methods for masking a region of interest have been researched for many years. Region

growing is a technique to extract a connected region from a 3D volume based on some pre-

defined connecting criterion. In the simplest form, region growing requires a seed point to

start with. From the seed point, the algorithm grows until the connecting criteria is satisfied.

Our out-of-core region growing algorithm [29] creates a mask volume for a massive data

set. Our algorithm selects non-empty voxels in a slab of data using seeded region growing

[1]. The output mask volume which is used for volume segmentation in our region of

interest cropping. We crop the segmented volume to the minimal axis-aligned cuboid which

contains non-empty voxels. The last slice of the mask volume supplies a set of independent

region seeds for region growing on the next slab. Special consideration is taken to deal

with regions splitting and/or merging within a slab. Slabs of approximately 20 slices work

well. These are each segmented using seeded region growing. For each detected region a

volume block is created, which is cropped to the region’s axis-aligned bounding box. The

block’s position and size are retained for later volume distribution steps.

Out-of-core region growing requires detection of overlaps, splits and merges at slab

boundaries. The quality of a volumetric data set is not always reliable. There may be

missing or damaged slices, which may cause region of interest boundaries to be indistinct

and disconnected. This makes it necessary to write robust code for segmentation which

can detect or adapt to these problems without compromising the integrity of the data set.

If a specific data set has a known problem, processing may be tweaked as a work-around.

However, a work-around for one data set will probably not process others correctly. For

example, there are several empty slices in the Visible Human data, which must be ignored.

However, there may be a data set where it is known to have empty regions that include full

empty slices. We set the default to treat empty slices as empty regions, but allow a flag to

be set to indicate that empty slices are ignored for region continuity purposes.

A mask volume is produced during region growing. The last slice of this mask volume,

the mask slice, is used for seeds in region growing on the next slab. If this slice contains

4. EXTERNAL MEMORY SOLUTIONS 59

Figure 4.4: Out-of-core region growing. Continuity between slab seeds is maintained by
using the final mask slice output from region growing on the previous slab, as a seed slice.
Separate regions merge within the region defined by slab i. This is detected by region
growing in slab i + 1.

more than one distinct region, we say that the volume has a split within that slab. We must

insure that a separate region grow process is initiated for each distinct region of interest

in the next slab which is connected to this mask’s region of interest. If there is only one

region, it means that the two regions merge in the next slab. In this case, we must be careful

not to produce duplicate copies of the same region. Thus, before using a seed voxel from

the mask slice on slab s we verify that it has not already been included in a segmented

region for s.

Volume blocks and their dependency graphs are built as raw data slices are gathered

into volume blocks. A link is created between two volume blocks whenever a split or

merge is detected within in a data slice and when a new volume block is generated because

a user-specified size has been reached. The resulting dependency graph is used for data dis-

tribution and for image composition order computation or ray-task scheduling. As volume

blocks are created they are grouped together.

A block group is a consecutive group of volume blocks which have common faces,

have contiguous nonempty voxels, and do not have a natural breaking point, such as a local

minimum slice or empty voxel region. Each block group bounding box and volume block

file list is maintained for the later steps in data distribution. A block group is opened when

a block is encountered which does not belong with an existing block group, and it is closed

4. EXTERNAL MEMORY SOLUTIONS 60

when the volume defined by that block group encounters a local minimum x-y slice. If

regions merge within a slab, then the block groups from each branch are closed and a new

one is opened. An active block group list is maintained which contains all block groups

which are still open.

Out-of-core region growing and cropping proceeds as follows:

For each slab s:

Use seeded region grow segmentation on s.

Create cropped volume block b for each region in s.

For each block b:

If b belongs with any active group g add b to g.

Else start a new group.

Close active groups that have no new blocks.

Use the final slice mask as seeds for next slab.

4.8 Early Data Reduction Results

The effectiveness of out-of-core region growing and cropping is demonstrated by ren-

dering and compositing the Visible Male photographic image data, and several very high

resolution CT scanned teeth and tooth fossils. Volumes rendered include the full Visible

Male photographic image data set, a cebus apella (spider monkey) tooth, a diademodon

fossil, a baboon fossil, and a homo sapiens molar.

Figure 4.5 shows a volume rendered and composited image of the full resolution Visible

Male using eight render-nodes on our MDS cluster. By default, a volume is distributed over

the minimum number of nodes required to fit it. Alternatively, the user may request that a

particular number of nodes be used. Each node renders one or more subvolumes. Each sub-

volume requires a separate rendering pass. In addition, one or more slices of voxels must

be replicated between adjacent subvolumes for correct interpolation and shading during

4. EXTERNAL MEMORY SOLUTIONS 61

Figure 4.5: Composited full resolution four-channel Visible Male. Data resolution: 2048×
1214× 1879. Image resolution: 1280× 1024.

rendering. We use distributed volume rendering on these data sets. The Visible Male data

is used to stress the MDS Visualization System, requiring all available VolumePro mem-

ory even after being cropped. The result of our out-of-core region growing and cropping

allows the full-scale Visible Male data to fit within the VolumePro1000 memory of these

eight-nodes without any down-sampling. Region of interest cropping reduces volume sizes

for the full Visible Male set and several CT scanned teeth and tooth fossils.

Figure 4.6(a) is a volume rendering of a cebus apella tooth data set. The 2.8GB data set

contains 663 slices. The 6.7GB homo sapiens molar contains 1589 slices, and is shown in

Figure 4.6(b). An volume rendered image of the 8.5GB diademodon tooth fossil, contain-

ing 2028 slices, is shown in Figure 4.7(a). A baboon fossil data set is volume rendered in

Figure 4.7(b). The data set is 6.6GB and contains 1570 slices. These were rendered on a the

eight-node MDS cluster, with frame rates ranging from 6Hz to 20Hz. In our experiments,

data is reduced by an average of 68%, and frame rates range from 6Hz to 20Hz.

In our experiments, data is reduced by an average of 68% (see Figure 4.8).

Table 4.1 shows the preprocessing time, including slice reading, region growing, and

cropping, for these data sets. We were unable to compare with traditional region growing

because the algorithm memory requirements exceeded memory available on our CPU.

4. EXTERNAL MEMORY SOLUTIONS 62

(a) Cebus apella tooth (b) Homo sapiens tooth

Figure 4.6: Volume rendered teeth images.

(a) Diademodon fossil (b) Baboon fossil

Figure 4.7: Volume rendered fossil images.

4.9 Summary

In our framework, we use early data reduction to reduce problems associated with dis-

tribution and rendering of massive volumetric data sets. External memory solutions are of

paramount importance in managing massive data for distributed rendering. We have devel-

oped an out-of-core region growing algorithm for pre-processing massive volumetric data,

and a scheme for distribution of this data on a volume rendering cluster. The region of

interest cropping algorithm assembles raw data slices into small volume blocks and gathers

these blocks into spatially coherent groups. We crop the segmented volume to the minimal

4. EXTERNAL MEMORY SOLUTIONS 63

Figure 4.8: Data storage reduction after cropping and data distribution.

Table 4.1: Volume sizes (MB) and preprocessing (sec).

4-Channel RGBA 1-Channel CT

Visible Cebus Homo Diademadon Baboon

Male Apella Sapiens Fossil Fossil
Image Fig 4.5 Fig 4.6(a) Fig 4.6(b) Fig 4.7(a) Fig 4.7(b)

Volume size 18,717 2,780 6,665 8,506 6,585
Preprocessing 7,800 921 1,605 2,440 1,398

axis-aligned cuboid which contains non-empty voxels. The slab-projection slice collects

data extent information used for our out-of-core bricking algorithm. Our results indicate

that this is a very effective strategy for data sets with large contiguous portions of empty

space.

64

Chapter 5

Load Balanced Network Distribution

In this chapter, we define the load balanced network distribution (LBND) problem,

and map it to the NP-complete precedence constrained job-shop scheduling problem. As

systems, memory, and data sets continue to grow, so does the problem of managing these

resources and the data sets they are capable of rendering. Dynamic programming (DP)

optimizes a cost function while meeting a set of constraints. Due to the wide variety and

the frequency of changes in visualization system hardware, we are motivated to find a

solution to the LBND which can adapt to new hardware as it is introduced; this is achieved

by defining an appropriate cost function and constraints for a DP solution. We present

two solutions to the LBND problem that are particulary applicable to scenes with large

portions of unevenly distributed empty space. The first, out-of-core slab-projected kd-

tree partitioning, uses non-empty voxel information collected in a series of slab-projection

slices. The second, brick grouping, inputs a directed acyclic graph (DAG) of data bricks

and finds an optimal partition with respect to the given cost model. We attempt to minimize

a cost function that reflects the end-to-end rendering cost on a cluster. Bricks are sized for

rendering hardware, and the DAG represents their view-dependent precedence order.

The specific contributions discussed in this chapter are:

• Definition of the LBND problem

5. LOAD BALANCED NETWORK DISTRIBUTION 65

• Mapping of LBND to job-shop scheduling

• Brick grouping DP algorithm

We have rendered several segmented portions of the Visible Korean Human [87] on

the Stony Brook Visualization Cluster. The segmented data does not preclude the use of

a transfer function to render translucent or color-enhanced images, but is used because it

provides a good cross-section of data with varying amounts of empty space.

5.1 Distributed Volume Rendering Overview

Figure 5.1: Distributed ray cast rendering block diagram for a sort-last architecture.

An overview of our distributed ray cast rendering is shown in Figure 5.1. A volumetric

data set in this context consists of a 3D grid of information at sample locations, or voxels.

The information is either a scalar value such as density, or a vector such as color in a

photographic data set. Volumetric ray casting is a technique in which one or more rays

emanates for each pixel and each ray accumulates the color and opacity contribution of a

series of voxels along the ray in the volume data. Our visualization cluster is a network of

5. LOAD BALANCED NETWORK DISTRIBUTION 66

PC nodes connected with a high speed backend network for fast sharing of partial images,

as well as a frontend network for process communication and control.

Interactive rendering is done in parallel as viewing parameters are parsed and dis-

tributed by the master node. Rendering is performed on individual render-nodes by Vol-

umePro1000 hardware or a GPU, and the final image for each frame is a composite of the

resulting images. The alpha blending equation used for image compositing requires the

relative depth of each image. The visibility ordering is unique for orthogonal projections

along one of the octants of a cube centered at the origin; images are composited in the

depth order for the current view direction. Both the GPU and VolumePro 1000 use parallel,

orthographic projection, ray cast rendering; perspective rendering requires more complex

image alignment, and is not used in our system.

Inter-node image composition is controlled by the master node, but takes place locally

on render-nodes (either in the GPU or in Sepia-2a compositing hardware). The rendering

time on each node for a given image size is roughly proportionate to the size of volume

rendered. Other factors include sampling rate and the cache coherency of the volume.

Early ray termination is programmed into the rendering hardware. However, taking full

advantage of this requires that data be redistributed between nodes as the opacity changes,

and the network transfer cost is relatively high in our system, so we do not move data during

rendering.

5.2 Load Balanced Network Distribution Problem

For a given scene of volumetric data and a given system configuration, our goal is to

distribute data across the system to optimize available rendering resources. The problem

input includes a scene with volumetric data, a description of the distributed system con-

figuration, including the number of render-nodes, rendering and local composition costs,

network transfer costs, and the memory capacity of each render-node.

5. LOAD BALANCED NETWORK DISTRIBUTION 67

We use multipass rendering within each render-node; the same hardware is used to ren-

der an image for each of several different bricks of data, each in a separate pass. Images

within the same render-node having consecutive depth priorities are composited into a sin-

gle image prior to inter-node composition. We define a cell to be any section of the scene

which can be assigned to a render node and all sub-images produced from a cell can be

composited without interleaving with images produced in another cell. The final image

must wait for every rendering pass to finish on each render-node, so end-to-end render-

ing time is a function of the slowest renderer plus inter-node composition time. For every

image requiring inter-node composition, additional network communication is required.

The input to the LBND is a volumetric data set, along with render and network cost

information. A volumetric data set consists of a grid of voxels, each defining a scalar or

vector field. The precedence constraints between voxels are defined by the relative distance

to the viewpoint along the view direction. The output is a render-node assignment, which

minimizes the total runtime cost, does not violate any physical resource constraint of the

system, and observes the precedence order for image composition. The LBND problem is

an instance of the job-shop scheduling problem as demonstrated by the following mapping.

The input to the job shop scheduling problem is a list of jobs, with associated resource

requirements, and a DAG of job dependencies. The goal of the problem is to schedule

each job to a shop, or resource, and minimize the overall job completion time, without

violating resource or job dependency constraints. Data voxels are jobs, rendering memory

is the limited resource required for each job, and the precedence constraints are given in a

DAG which is derived from the relative distance of voxels to the viewpoint along the view

direction. The goal is to create a scene partition, or schedule, which minimizes end-to-end

rendering time, or job completion time.

5. LOAD BALANCED NETWORK DISTRIBUTION 68

5.2.1 Graph Partitioning Software Packages

The graph partitioning problem occurs in many different contexts in computer science,

including applications such as differential equation solvers and finite element computa-

tion [26]. For parallel processing, a computational task is partitioned, and the sub-tasks

are assigned to different processors. The communication cost for dependent results is a

key issue in the load balancing efficiency of the partition. Several graph partitioning algo-

rithms have been proposed. Algorithms including the hypergraph approach [86], terminal

propagation [43], and the multiple constraint method [52], have been implemented in the

software packages, including METIS [53], and Chaco [44]. The LBND problem is a

graph partitioning problem. However, the edge-cut metric used in algorithms implemented

in METIS and Chaco do not adequately describe the physical characteristics of the image

composition constraint in the LBND problem. This requires each partition to define a plane

aligned surface area, and the cost of each of these planes consists of a relatively high fixed

cost and an often inconsequential per pixel cost for the data transfer. Two solutions to graph

partitioning that address this are octree and kd-tree partitioning [7]. Algorithms for find-

ing these partitions require external memory solutions for distributing massive volumetric

data sets. Our slab-projection kd-tree partitioning 4.5is a solution that addresses this issue.

However, the kd-tree solution has some shortcomings as well, as described in Section 5.3,

so we propose a dynamic programming (DP) solution as well.

5.2.2 GPU Multipass Partitioning

Task scheduling for multipass GPU rendering requires local partitioning, and the small-

est resolution cell is sized to fit the target rendering hardware. The drawback to using tra-

ditional partitions, such as an octree, for LBND is that a scene cannot be partitioned to the

granularity needed for reducing sufficient empty space. Network distribution partition cells

are typically orders of magnitude larger than those for local partitions. Such large partition

cells result in poor load balancing for any data set with a non-uniform distribution of empty

5. LOAD BALANCED NETWORK DISTRIBUTION 69

space.

Although the underlying structure of these problems are the same, there are several dif-

ferences between them. For example, the cost calculation used in the DPMP [41]P solution

to the multipass partitioning problem is based on resource usage of compiled shader code;

this is measured as part of the optimization decision in DPMPP. Partition costs are directly

calculated from the DAG of bricks in our LBND solution. The cost function for end-to-

end render time depends on the time of the slowest renderer in LBND, a function of the

maximum number of bricks assigned to a render-node. The cost function for DPMPP is

a function of the sum of operations, which reflects resource use in total across the whole

shader program. We start with a high level overview, then describe our solution in terms

that are comparable to those used in DPMPP.

5.3 Dynamic Programming

The kd-tree solution does not attempt to solve an explicit cost function but rather op-

erates under the assumption that evenly distributing the data is always the best solution. It

also restricts the number of render-nodes to a power of two. We propose a DP partitioning

solution that can readily adapt to different system configurations by using a well-defined

cost function, and does not have any restriction on the number of render-nodes.

5.3.1 Brick Grouping DP Overview

We propose a LBND solution which starts with a set of non-empty bricks that covers all

regions of interest in the volume, connected with a DAG that represents the viewing order

of these bricks. The general idea is to split the scene into cells, which each contain one or

more connected bricks. Figure 5.2 illustrates a partition of a DAG of bricks into a DAG of

cells. This is a feasible solution where each cell represents a render-node assignment. In

the following discussion, we use upper case variables for input variables, and lower case

for calculated variables and indices.

5. LOAD BALANCED NETWORK DISTRIBUTION 70

The solution is found incrementally in stages, where a stage corresponds to a brick in

the input DAG, and with each additional stage, one additional brick is added. We use bi

to label the brick in stage i. Each feasible partition p, for stage i, is defined by a DAG of

cells containing all bricks in stages from i to B − 1, where there are B bricks. The overall

optimal solution is the optimal partition for stage 0, which is actually the partition for all

stages and represents a render-node assignment.

Figure 5.2: Partition of a DAG of bricks (blue) into a DAG of cells (red). This is a feasible
solution where each cell represents a render-node assignment.

Cells in partition p are numbered 1 through pr, where pr is the number of cells in p. The

number of bricks in the kth cell in partition p is nk. Each cell corresponds to a composited

image to be produced by a render-node, where this image is not interleaved with any other

render-node image. Interleaving occurs when the number of cells in the partition exceeds

the number of render-nodes, so that there exists at least one render-node, a, such that every

image rendered on a cannot be combined locally. In other words, for some images, v1 and

v2, rendered on v, and image w1 from a different render-node, the relative priority order is

v1, w1, v2. This results in an additional inter-node composition and network transfer, and

may require additional image buffer space for storing v2 until the v1, w1 composited image

is ready.

If the network transfer time is high compared with the rendering time, then interleaving

images between render-nodes results in a slower end-to-end rendering time. Good load

balancing is achieved if each render-node is assigned a proportionate amount of the data,

5. LOAD BALANCED NETWORK DISTRIBUTION 71

and not necessarily by minimizing the sum of rendering times. If there are N render-nodes,

then the total number of partition cells in the optimal solution with a high network transfer

cost is X . We use this to prune the feasible solution search space by placing an upper

bound, M , on the number of bricks per cell, where M is derived from the total number of

non-empty voxels divided by N . This is the equivalent of the resource constraint of MPP,

and allows us to define our DP solution using the same terms as the DPMPP solution.

5.3.2 Objective Function

We use a cost metric to choose the optimum partition at each stage. For partition p,

the cost includes the direct rendering time per brick, R, plus local image composition

time, L, plus network transfer time, X , which includes inter-node image composition.

Rendering time is defined in terms of rendering hardware texture bricks. If the input bricks

are a multiple of this size, as explained in Section 5.3.5, then the cost function is scaled

accordingly. The correctness of the solution is determined by the accuracy of the cost

model.

The cost function presented here reflects the costs of our current cluster implementation.

An advantage to using dynamic programming is that the global cost formula can be adapted

to reflect different implementations such as multi-threading. Each brick is projected locally

and projection sizes do not vary significantly for orthogonal projection rendering with a

given viewing vector, so a constant rendering time is a good approximation. Although a

variable rendering time could be used, a constant simplifies the cost description. The cost

of image composition depends on whether any contributing image is sent over the network

or not. Local image compositing takes place in the rendering hardware. The most recently

rendered image is composited with another image, which must be loaded into memory.

Inter-node image compositing includes network communication time as well.

The input to our problem includes a volumetric data set consisting of a set of brick

bounding boxes, a DAG representing the image composition priority order of these bricks,

and the following set of rendering system parameters:

5. LOAD BALANCED NETWORK DISTRIBUTION 72

B: number of bricks

N : number render-nodes

M : maximum bricks per cell

R: rendering time per brick

L: local composition time

X: network transfer time

The network transfer cost for p is X ∗ (pr − 1), the rendering cost is max(R ∗ nk),

∀k ∈ p, and the local image composition cost is
∑pr

k=1(L ∗ (nk − 1)). The total cost of p is:

cp = X ∗ (pr − 1) + max(R ∗ nk) +

pr∑
k=1

(L ∗ (nk − 1)) (5.1)

5.3.3 Locally Optimal Solution

Stages are processed in decreasing order. At each stage, a list of feasibly optimal parti-

tions is determined. Each partition represents adding the brick associated with the current

stage, to some partition encountered so far. We determine the cost of every feasibly optimal

DAG of cells for each stage, i, and mark the lowest cost of these as the local optimum. A

feasible cell is one that has a neighbor of brick I (corresponding to stage i), and contains no

more than M bricks. At each stage, each feasible cell is considered. The algorithm com-

pares a set T of transitions. Transition t consists of t.postcondition, t.operation, t.cost,

and t.solution. Partition t.postcondition contains bricks for stages i + 1 to B − 1, and

t.operation involves either concatenation of brick bi to a cell in partition t.postcondition,

or the creation of a new cell containing only bi. The cost of each transition, t.cost, is

computed as described in Section 5.3.2. Partition t.solution contains bricks for stages i to

B − 1. The notation here is similar to that used in DPMPP, except that we use t.solution

instead of t.precondition.

5. LOAD BALANCED NETWORK DISTRIBUTION 73

The goal is to find a partition which assigns approximately the same portion of the

volume to each render-node, without violating the given precedence order. The optimal

transition for stage i is t∗[i], and c∗[i] = t∗[i].cost is the cost of optimal solution for stage i.

We use brackets to distinguish stage optimal transitions from the following interim values,

which are calculated for adding brick bi to partition t.postcondition:

t0.solution = t.postcondition plus new cell containing only brick bi

tk.solution = t.postcondition with brick bi added to cell k

Only feasible transitions are considered. The optimal groups of cells for different stages

can overlap. A globally optimal solution is obtained using DP because the complete set of

feasibly optimal solutions is evaluated at each stage, and the optimal path through these

solutions is traversed from the initial stage for the final solution. The local optimality

condition ensures that the largest cells are selected first. The algorithm processes the brick

DAG starting with the last node.

In summary, DP partitioning stage i, entered with transition set T ,where k is a cell,

proceeds as follows:

∀t.postcondition ∈ T

Create t0.solution

Calculate cost

∀k ∈ t.postcondition that contains a neighbor of bi

if |k| >= M

Create tk.solution

Calculate cost

t∗i = lowest cost transition

Stage 0 is the final stage evaluated, and the solution partitions the original scene. It

minimizes the objective function, c∗[0], while satisfying the following constraints:

5. LOAD BALANCED NETWORK DISTRIBUTION 74

1. t∗[0].solution assigns each brick to exactly one cell

2. Input brick DAG precedence order is not violated,

5.3.4 Example Stage

At each stage, the set of feasibly optimal partitions is compared. Each connected set of

bricks with up to M bricks, which includes the new brick, is considered. Figure 5.3 illus-

trates stage d, which compares feasible solutions for the placement of brick bd, in a system

where M = 2. The value of M = 2 is not typical, but is used here for a simple illustration.

Stage d is entered with postconditions p0, p1, and p2. Brick bd can be concatenated to a cell

in both p0 and p2, but for p1 the only cell with a link to brick bd already has the maximum

number of bricks, so a new cell is started. In addition to the solutions shown are partitions

with brick bd added as a separate cell to p0 and to p1.

(a) p0 (b) p1 (c) p2

Figure 5.3: Stage d with M = 2. Evaluate partitions that add brick bd to postconditions p0,
p1, and p2. Not all feasible solutions are shown. (a) Brick bd concatenated with bb; (b) New
cell is started; (c) Brick bd concatenated with bc.

5.3.5 Algorithm Analysis

The principle of optimality [8] states that the optimal solution for the current stage is

optimal regardless of what policies or conditions led to this stage. If every feasibly optimal

partition is considered for each stage, then the resulting solution is globally optimal because

it observes this at each stage.

Stage i is entered with set pi+1, where pi+1 is the set of partitions t.solution ∀t ∈ ti+1.

5. LOAD BALANCED NETWORK DISTRIBUTION 75

The time-complexity for this algorithm is O(
∑B−1

i=0 (|Pi|)) for B stages. For a DAG con-

structed from a tree with the addition of a sink node that is the child node of all leaf nodes,

where A is the average number of children per node in the brick DAG, there are Am unique

cells of an arbitrary size, m, adjacent to i, and each of these is part of a unique partition.

Stage i solutions include each of these concatenated with bi, and also includes each of these

with an additional cell containing only brick bi. This represents the worst case, since some

of these solutions are not unique for a general DAG. If cells are restricted to contain no more

than M bricks, then the number of unique solutions is |Pi| =
∑M−1

i=1 (Am) +
∑M

i=1(A
m).

This is controlled by the maximum number of bricks per cell, M .

In order to prevent the DP algorithm from becoming intractable we reduce the average

number of feasible solutions. We do this by increasing the size of input data bricks to

reduce the average number of bricks per cell in each feasible solution. The size of bricks

is calculated so that the average number of bricks per render-node is less than the number,

M , set by the user prior to building the DAG. Brick dimensions are each a multiple of the

target GPU texture brick size. Bricks are further divided up into the final textures using a

local grid prior to rendering. The DP solution obtained is optimal with respect to the input

bricks.

5.4 Results

To validate our slab-projected kd-tree partitioning and brick grouping algorithm we

have used them to distribute data for the Visible Korean. We compare these with a grid

partition, preprocessed in parallel on the render-nodes. We use a 3D grid, which defaults

to 2D for all clusters in our experiments except for the 64 node. The granularity of the grid

used for distributing data between nodes is set so that the number of grid cells is equal to

the number of render-nodes. For the Visible Korean data set, the z-axis is four times as

long as the x and y axes, so the kd-tree algorithm is modified slightly to start with several

z-cuts.

5. LOAD BALANCED NETWORK DISTRIBUTION 76

We compare out-of-core preprocessing to distributed preprocessing. Distributed pre-

processing uses a static data structure, such as a grid, for distributing slices prior to reading.

In order to avoid unnecessary inter-node image transfers, the granularity of the grid is set

so that an equal contiguous portion of the data is assigned to each render-node. The grid

cell size is equal to the whole scene extents divided by the number of render-nodes. Each

raw data slice is sent to every render-node that overlaps it. Empty cells are marked in the

grid as data is read and cropped.

5.4.1 Test Environment

Cost parameters used for the DP partitioning are based on using the ServerNetII and

HP Sepia-2a card for image communication and composition, and the VolumePro 1000 or

GeforceFX5800 for rendering. On the MDS cluster, there is a two-tier cost function for

network transfer. For each frame, the first image transfer from each node occurs through

a DVI output across the SeverNetII, and inter-node composition time is X1. All other

transfers are done over the Ethernet and require a framebuffer readback, with inter-node

composition time X2. If pr, the number of cells in partition p, is more than the number of

render-nodes, N , in the system, then the inter-node composition cost for p is X1 ∗ (N −

1) + X2 ∗ (pr −N).

The Visible Korean Male data includes 8, 590 digitally captured photographic anatomic

images of serially sectioned planes with photographic image resolution of 2, 468 × 1, 407

and 24 bits color, with a slice-interval of 0.2mm. The data set is accompanied by a corre-

sponding 40GB set of 8 bit color mask slices with several regions of interest marked with

different colors, for a total of 120GB. Mask slices are used to index a transfer function at

run time. We have rendered several segmented regions of data from the Visible Korean Hu-

man Project on our cluster. The goal of segmentation here is to segment out empty space for

the sake of illustrating the load balancing problem on a scene with an uneven distribution

of empty space. It does not preclude changing coloring and translucency using a transfer

function during rendering. The cerebellum and brain stem are shown in Figure 5.4. They

5. LOAD BALANCED NETWORK DISTRIBUTION 77

(a) Cerebellum

(b) Brain Stem

Figure 5.4: GPU-rendered images of segmented regions from the Visible Korean data set:
(a) Cerebellum, (b) Brain Stem.

have been rendered on a GPU using a gradient mask volume and pre-segmented texture

slices. The Visible Korean Male bones, cerebrum and lungs, rendered on VolumePro1000

hardware, are shown in Figure 5.5.

5.4.2 Timing

The partitioning times for traditional kd-tree, slab-projected kd-tree, and DP partition-

ing are compared in Table 5.1. We also ran experiments where cropped data was distributed

with an octree subdivision, however the maximum data rendered is not generally reduced

by using this strategy. The slab-projected kd-tree is a better choice because it allows the

partition planes to adapt to the data, and avoids additional overhead in managing multiple

5. LOAD BALANCED NETWORK DISTRIBUTION 78

(a) Bones

(b) Cerebrum (c) Lungs

Figure 5.5: VolumePro1000-rendered images of the Visible Korean data set: (a) Bones, (b)
Cerebrum, (c) Lungs.

subvolumes assigned to a render-node. The slab-projected kd-tree uses an order of mag-

nitude less preprocess time on average that the traditional one that requires multiple slice

reads. The brick grouping DP partitioning preprocessing does not grow significantly as

long as the size of the maximum number of bricks per render-node assignment is constant.

Preprocessing for the grid partitioning is completed in the slice preprocessing phase, so is

not included in this table. Grid preprocessing is significantly simpler and faster. However,

for interactive rendering the improvement in rendering speed achieved by our partitions is

more important.

Table 5.1: Partition preprocessing time (sec) for kd-tree and slab-projected kd-tree parti-
tioning, and brick grouping DP (including bricking) for the Visible Korean bones on clus-
ters with 8, 16, 32 and 64 nodes.

Cluster nodes 8 16 32 64
Kd-tree 792 1697 3508 7129

Slab-projected kd-tree 213 215 218 221
Brick grouping 251 252 253 255

5. LOAD BALANCED NETWORK DISTRIBUTION 79

Table 5.2: Empty space (percent) and slice preprocessing time (sec) on eight-nodes for the
Visible Korean data set.

Cerebellum Brain Stem Bones Cerebrum Lungs
Data Size (GB) 3.61 2.1 117.43 8.7 22.61

Empty space (%) 85 90 81 89 82
Slice preprocessing 4.7 0.45 109.2 8.01 21.03

Parallel slice preprocessing 0.8 0.34 18.4 1.36 3.54

A comparison of parallel and single node slice preprocessing, on an eight-node cluster,

is shown in Table 5.2. The time required to segment, crop and distribute each data slice is

the same for DP and slab-projected kd-tree partitioning and brick grouping DP algorithms.

The time for data distribution is higher for the grid partition because it is done prior to

cropping. However the slice preprocessing is done in parallel, and the additional overhead

for marking grid cells during this process is negligible. Rendering times for all except

the bones data were interactive (32 frames per second (fps)). The cropped bone data did

not fit when the grid partitioning was used, and rendering was unsuccessful after several

minutes. For these cases, a large amount of data is loaded into the VolumePro1000 memory

during rendering, causing the system to hang up. Using a fine granularity local grid reduces

rendering time on some nodes. However, it doesn’t improve the end-to-end render time

because it is bound by the slowest node, which contains no empty cells even within the

finer granularity. For the DP partitioning and slab-projected kd-tree partitioning and brick

grouping DP algorithms, the data fit into the total memory of the VolumePro1000 cards on

our cluster. The average frame rate for the bones data rendered on 8 nodes was 1.35fps

with slab-projected kd-tree partitioning and 2.6fps using DP partitioning.

5.4.3 Load Balancing Results

Data cropping is only useful in reducing end-to-end rendering time if it results in reduc-

ing the maximum data rendered on any node. Figure 5.6 shows the maximum data assigned

per node using our algorithms compared with the grid partition. The largest decrease in

data rendered compared with a grid partition is due to cropping because the maximum data

5. LOAD BALANCED NETWORK DISTRIBUTION 80

rendered with the grid is the same as the full portion of data assigned prior to cropping,

with some nodes rendering no data. This is due to the high grid granularity required on the

intra-node distribution level. All of the data sets show large reductions for both the slab-

projected kd-tree partitioning and brick grouping algorithm and DP partitions compared

with the grid partition. The smaller maximum data per node for DP partition is strictly due

to using a cost function in incrementally finding the partition. Load balancing improve-

ments over the slab-projected kd-tree partitioning and brick grouping algorithm partition is

most significant for data sets that have large variations in empty space, which demonstrates

the feasibility of using a cost-driven approach to reduce rendering time using DP.

Figure 5.6: Data distribution load balancing. Maximum data assigned to any node for an
eight-node cluster (in log scale).

Partitioning using DP was similar, and in some cases identical to, the slab-projected

kd-tree partitioning and brick grouping algorithm partition for the cerebellum, lungs, brain

stem, and cerebrum. This is because most of the empty space is cropped prior to data

distribution. The speedup of DP compared with slab-projected kd-tree partitioning for the

bones is probably due to the fact that we restricted the depth of the kd-tree to force the

number of leaf nodes to be equal to the number of render-nodes to avoid interleaving of

images between render-nodes. The speed up due to empty space comes from the fact that

data is distributed in a manner that only requires a single image to be sent from any render-

node. This is the result of the cost function which assigns a high penalty for data transfers.

5. LOAD BALANCED NETWORK DISTRIBUTION 81

In order for an octree to meet this criterion the data must be statically distributed prior to

cropping, resulting in an uneven distribution of empty space. In a system where the transfer

function cost is not dominant, multiple image compositions/transfers per node may be part

of the DP solution. The load balancing was most improved for the bones because there

is a wider variation in empty space distribution for the segmented bones in the original

data set. For these cases, it is clearly advantageous to preprocess the data using one of

the algorithms presented. When there is a large variation of empty space in the data set,

static parallel partitioning results in poor load balancing. The grid assigns zero data to

some nodes for several of the data sets because of the high grid granularity required on the

intra-node distribution level.

The scalability of load balancing is illustrated in Figure 5.7 for the bones on different

sized clusters. While the grid partition improves with a larger cluster because of the finer

grid granularity, the number of render-nodes that remain idle also increases. The amount

of data assigned per node does not reach our more adaptive techniques, and it is expected

that this gap will persist for any system size.

Figure 5.7: Load balancing scalability. Maximum data assigned to any render-node in 8,
16, 32 and 64 node clusters.

5. LOAD BALANCED NETWORK DISTRIBUTION 82

5.5 Summary

Managing massive data sets is a fundamental requirement for distributed volume ren-

dering. We have introduced practical methods for reducing data early in the preprocessing

pipeline and for out-of-core data distribution. Scalable priority-constrained data distribu-

tion is an open area of research. We have introduced a solution using DP, which allows a

cost function to drive the distribution process, and a kd-tree solution. Our slab-projected

kd-tree partitioning and brick grouping algorithms each find a good partition with a moder-

ate preprocessing time using a series of slab-projection slices. As demonstrated by our test

results, our solution allows the scene partition to be controlled so that data is distributed

more evenly between render-nodes. The portion of the scene assigned to each render-node

is dictated by the distribution of non-empty regions, resulting in better load balancing than

with traditional partitioning methods.

In our slab-projected kd-tree partitioning and brick grouping algorithm and DP parti-

tions, natural boundaries of non-empty regions are cropped prior to data distribution, re-

sulting in a smaller maximum data assigned per node compared with a grid partition with

the same number of cells. In our experiments, scenes with large portions of non-uniformly

distributed empty space show more dramatic improvements using our approach than those

with more homogeneous data distributions.

Slab-projected kd-tree partitioning has some advantages over the DP model. For in-

stance, it is more suitability for perspective projection. The main drawback of the DP is

that a solution for each octant is required, and some replication of bricks is necessary. The

other drawback is that it is intractable if the number of decision branches at any stage is not

controlled by the average number of neighbor bricks per brick. However, this algorithm

demonstrates the potential to reduce rendering time using a cost-driven DP approach.

A promising area of future work is dynamic load balancing. Interactive transfer func-

tion updates are possible with our method. Recent developments in dynamic scanner tech-

nologies produce time varying data scans which are very well suited for these render clus-

ters due to their tremendous size. Further research is needed for adapting the partition found

5. LOAD BALANCED NETWORK DISTRIBUTION 83

during our slab-projected kd-tree partitioning or DP preprocessing. One solution would use

an incremental update approach to move partitions as regions of non-empty voxels move

throughout the scene.

84

Chapter 6

Moving Walls DP Data Distribution

In this chapter we introduce the novel moving walls [30] dynamic programming (DP)

solution to LBND, which effectively merges our out-of-core bricking with DP for a solution

to a relaxed version of the LBND problem. In Section 6.3 we present a description of

our moving walls DP algorithm. Implementation and experimental results are presented

in Section 6.4. We compare our moving walls algorithm with partitioning using a more

straightforward kd-tree partitioning as well as our brick grouping DP solution [31].

6.1 Overview

The input to our algorithm includes a scene with volumetric data, a description of the

distributed system configuration, including the number of render-nodes, rendering and local

composition costs, network transfer costs, and the memory capacity of each render-node.

Without loss of generality, we label the longest axis z, and the shortest axis y, and use

x × y slices. The output is a render-node assignment, which minimizes the total runtime

cost, does not violate any physical resource constraint of the system, and observes the

precedence order for image composition.

Moving walls is a DP algorithm that finds the optimal solution of a constrained version

of LBND. This solution allows cost function evaluation to influence the data distribution,

6. MOVING WALLS DP DATA DISTRIBUTION 85

but greatly reduces the potential size of the problem by imposing restrictions on the cut

plane ordering. In addition, these restrictions allow a deterministic view-dependency order

to be derived from the resulting partition for any viewpoint, whereas brick grouping DP

solves the problem for a single viewpoint. The flex-block tree is derived directly from the

flex-block partition to determine the image composition order.

A cost function is derived from a description of the distributed system configuration,

which includes the number of render-nodes, rendering and local composition costs, network

transfer costs, and the memory capacity of each render-node. For a given stage, each

feasible solution divides the scene data from the current stage to the end of the scene. The

optimal partition for each stage is independent of all partitions prior to that stage. Stages

are processed starting with the last stage and proceeding to the first.

6.2 Cost Function

The solution to our DP problem is:

Minimize the objective function, c∗0, while satisfying the following constraints:

1. The final partition, p∗0, assigns each brick to exactly one render-node.

2. An image composition precedence order is well defined for all viewpoints;

where p∗i is optimal partition for stage i, and c∗i is the cost of the optimal solution for stage

i.

For convenience, we list algorithm definitions here:

bp,k: number of bricks in cell γp,k

M : average number of bricks per render-node

We use a cost metric to choose the optimum partition for each stage. The cost function

is tailored to the specific system configuration. For this example, the cost function is for

hardware ray cast rendering of blocks with relatively similar surface areas. For ray tracing,

other factors such as the surface area of the blocks could be included in the cost function.

6. MOVING WALLS DP DATA DISTRIBUTION 86

The rendering time cost per brick is R. Image compositing requires that one or more of

the contributing images be loaded into composite hardware memory; compositing is sched-

uled so that the image in memory at the end of a rendering pass is one of the contributing

images. The cost of image composition depends on whether any contributing image is sent

over the network or not. The cost of each local composition, L, includes the time required

for loading any contributing image which is not resident in memory at the time of composi-

tion. Network communication time, N , is the cost of sending an image across the network.

The rendering hardware memory capacity constraint, C, is used to determine the brick sizes

at input. The input to our problem includes a volumetric data set and the following set of

rendering system parameters:

n: number of render-nodes

R: direct rendering cost per pass

L: local composition cost

N : cost of each inter-node composition

C: rendering hardware memory capacity

Each feasible solution p, for period i, is defined by a partition of the slab of data from

stages from i to n. The cost of this solution is defined in terms of the number of render-

nodes assigned and the number of bricks assigned to each render-node.

Parameters associated with partition p are:

rp: the number of render-nodes required by solution p

btp: the number of bricks in render-node t for solution p

If the number of render-nodes for solution p is no more than the number of render-

nodes in the system, then the inter-node composition cost for p is N ∗ r. The rendering

cost is R ∗ max(btp), where t is any render-node in p. The image composition cost is∑r
t=1(L ∗ (btp − 1)). The total cost of p is:

cp = N ∗ (r − 1) + max(R ∗ btp) +
r∑

k=1

(L ∗ (btp − 1)) (6.1)

6. MOVING WALLS DP DATA DISTRIBUTION 87

6.3 Moving Walls Algorithm

Our algorithm requires two sweeps through the data. In the first pass, original data

slices are read and each slice is segmented to clear empty space regions, then cropped

and written back to new file. The algorithm sweeps along the longest axis in the data and

determines the best set of partitions along this axis. A stage corresponds to a consecutive

group of slices, or slab of data. The number of slices in a slab is calculated from the given

number of stages. In the second pass, the pre-cropped data slices are read, and the partition

extents are obtained through a traversal through the optimal path.

The cost of a z-partition is determined by summing the cost of each slab in the partition.

We further reduce the solution space by restricting plane cuts within a slab to occur on the

longest slice axis, or the x-axis in our case. The cost of a slab is the cost of the optimum

x-partition within that slab. For clarity, we refer to the partition along the z-axis as z-

partitions and those along the x-axis as x-partitions.

A slab-projection slice is the accumulation of all slices between the first slice and the

last slice of that slab. Each x-partition is found using DP on the corresponding slab projec-

tion slice, where stages are columns of data. To distinguish these stages from those along

the z-axis, we refer to these as x-stages. The smallest group of bricks within a column is

found by cropping out empty space and slicing off regions close in size to the target brick

size.

In order to follow conventions of DP, stages are processed in reverse order. Thus, slices

are read in reverse order as well. For each stage i, feasible solutions include a z-cut at each

stage j, between i and the scene end. The slab with all data from the start of stage i to the

end of stage j is slabij . The cost of the solution which cuts the scene at stage j is the optimal

cost of slabij , or c∗ijplus the optimal cost of stage j +1, or c∗j+1. SlabPartition determines

the cost of the optimal partition for all slabs between i and j. Dynamic programming is

used to determine the optimum partition for each stage. This is calculated using DP along

x-stages on the group of slab projection slices, which corresponds to these slabs.

A summary of the moving walls algorithm follows:

6. MOVING WALLS DP DATA DISTRIBUTION 88

For each stage i:

Read all slices in i and create slab projection slice pi

For each stage j from i scene end:

c∗ij = SlabPartition(i, j)

if c∗ij + c∗j+1 is optimal for i

Store partition and cost parameters

6.3.1 Building the Flex-block Tree

The output of the moving walls algorithm defines a partition of flex-blocks in terms of

the cut planes. However, in order for this partition to be useful for ray traversal and image

composition order, the flex-block tree must be constructed. The procedure for constructing

the tree is straightforward. The solution to the moving walls is a series of z-cut planes. The

top of the flex-block tree is defined by the center one of these cuts. The left and right sides

of the cut are recursively added to the tree until all z-cuts are included in the tree. Each leaf

node in this tree at this point contains a slab of the scene. Within each of these slabs, the

optimal partition is traversed and added to the tree in the same way as the z-cut planes.

6.3.2 Efficiency Considerations

Since segmented and cropped slices are saved during the first pass of the algorithm,

they are available in disk memory for subsequent executions of the algorithm. In this case

these are used for the first pass as well as the second one in order to reduce the total data

processed. Preprocessing could also be done in parallel across the cluster.

The number of stages used determines the granularity of the cost function analysis, and

therefore the accuracy of the solution. At the limit, each slice of raw data represents a

stage. We evaluated different sized slabs in order to determine a good trade-off between

the algorithm run-time and accuracy. Moving walls preprocessing could also be done in

6. MOVING WALLS DP DATA DISTRIBUTION 89

parallel by the render-nodes. For applications used in our experiments, the full data set

did not fit in the hard drive of each render-node, so this would have required overhead of

moving slices between nodes before and after preprocessing. In addition, cropping reduced

data slice sizes by an average of 30%, reducing the inter-node communication required for

initial data distribution.

6.3.3 Comparison to Brick Grouping

Our brick grouping DP algorithm for LBND evaluates a cost function to create a load

balanced network distribution. This solution is based on a DP solution for the multipass

partition problem (MPP) introduced by Heirich [41]. MPP is a problem that arises when

a computation targeted for the GPU exceeds resource constraints. The computation is

divided into multiple passes that do not violate resource constraints, in order to minimize

total computing time. The depth of the search tree is limited to prevent the algorithm from

becoming intractable, which limits the size of the data bricks with respect to the whole

data set. With brick grouping DP, out-of-core bricking is done in conjunction with data

partitioning. In addition, the partition is optimized with respect to a single viewpoint. We

compare a typical decision stage for each algorithm in Figure 6.1.

(a) Brick grouping (b) Moving walls

Figure 6.1: Comparison of partitions with different algorithms. (a) Brick grouping DP con-
siders partitions which alternate between cut planes; (b) Moving walls eliminates recursion
by using parallel cut planes.

Since both algorithms attempt to minimize the same cost function, the solutions tend to

converge. In Figure 6.1(a), the cost of every combination of cut planes for every stage is

calculated, and recursion is needed. The problem size is reduced by simplifying the cuts,

6. MOVING WALLS DP DATA DISTRIBUTION 90

as shown in Figure 6.1(b). The flex-blocks in each partition are the same in this case. This

illustrates the reason the moving walls algorithm produces partitions which are comparable

to those derived from the brick grouping DP algorithm. However, the partitions may differ

because the brick grouping version compares more partitions overall.

6.4 Results

We compare our flex-block partition with both the brick grouping DP partition and a

grid data distribution combined with a local kd-tree partition on each render-node on the

Stony Brook Visual Computing Cluster. Several massive volumetric data sets have been

volume rendered on the Stony Brook Visual Computing Cluster as part of this research.

We tested our data distribution preprocessing for larger clusters to demonstrate scalability.

We used the MDS cluster and VolumePro 1000 with 1GB memory for the volume rendered

images.

The very high resolution teeth and fossil data sets consist of micro CT scanned images

of 2048 by 2048 pixels, each with a slice thickness of around 10 microns. The 6.7GB

Homo Sapiens tooth contains 1589 slices, the 2.8GB data set contains 663 slices, and the

8.5GB diademodon fossil data set contains 2028 slices, and the 6.6GB baboon fossil data

set contains 1570 slices.

The Visible Korean male data [87] includes 8, 590 digitally captured photographic

anatomic images of serially sectioned surfaces with photographic image resolution 2, 468×

1, 407 and 24 bits color, for a total of 120GB. It is accompanied by a corresponding 40GB

set of 8-bit color segmented masks.

The full Visible Male data set, from the Visible Human Project [106], is a sequence of

axial anatomical images of 2048 by 1216 pixels at 1 mm slices. The Visible Male color

data set has 1879 slices. With the addition of an alpha channel the data set is 18.7GB.

We use out-of-core region growing to create mask volumes for all data sets used in

our experiments except for the Visible Korean. We take advantage of these slices and skip

6. MOVING WALLS DP DATA DISTRIBUTION 91

the region growing part; each slice is segmented to the selected region using its associated

mask slice. The bones from the Visible Korean data set are rendered as an application with

a large portion of empty space. Alternatively, the segmented slices could be used to derive

a transfer function to segment the bones during rendering.

We compare to a kd-tree built locally on each render-node after the data has been split

at the top level with a grid partition. Prior to the top level splitting the data is reduced

initially by cropping empty space that is exterior to all non-empty voxels. A traditional

kd-tree could be used to distribute data between nodes as well. However, if the entire data

set does not fit in main memory or cache (typically the case for massive data sets), it must

be re-read from disc memory for each splitting plane. By partitioning the data prior to This

is done in parallel on the render-nodes because the bulk of empty space cropping occurs in

the inter-node partitioning step. Frame rates range from 6Hz to 20Hz using flex-blocks.

A comparison of the rendering times for the grid with kd-tree and the flex-block par-

titions, on an eight-node MDS cluster with ray cast rendering done on VolumePro 1000

boards, is listed in Table 6.1. The flex-block partitions generated by the brick grouping DP

and moving wall algorithms vary slightly, as shown in the table. The jump in time for the

Visible Male without using flex-blocks, as shown in Table 6.1, is explained by the fact that

when assigned data exceeds the on-board memory capacity, local rendering stalls to load

new data bricks. Frame rates achieved using the grid with kd-tree partition demonstrate

inferior load-balancing compared with the flex-block partition.

Table 6.1: Rendering time (sec) on a ray casting hardware cluster using a grid data distri-
bution with local kd-tree partitions, compared with flex-block partitions (generated by the
brick grouping DP and moving walls algorithms). Data includes segmented Visible Korean
Bones, the Visible Human Male, and the Teeth and Fossils.

Korean Visible Cebus Diademodon Baboon Homo
Bones Male Apella Fossil Fossil Sapiens

Grid with kd-tree 13.1 13.1 2.7 8.5 6.6 6.7
Brick grouping 11.27 0.72 0.11 0.24 0.18 0.19
Moving walls 11.44 0.77 0.11 0.24 0.18 0.19

The partitions found using moving walls in our experiments were the same or close to

6. MOVING WALLS DP DATA DISTRIBUTION 92

those found using our brick grouping DP algorithm. However, moving walls algorithm pro-

vides a partition that is view-independent, whereas brick grouping finds a view-dependent

solution to LBND.The preprocessing time is comparable for both algorithms, but for brick

grouping it depends on the data being pre-cut into bricks that are sized to control the algo-

rithm branching. Moving walls operates directly on the slab-projection slices.

In Figure 6.2 we show several slab-projection slices with local partitions for a 64 -node

distribution of bones using our moving walls. The memory read, composition and network

transfer times used in the cost function were derived from prior rendering experiments

on our MDS cluster. We used a range of brick sizes; further reduction in data size is

achieved with smaller bricks that can closely crop the data, but at the expense of overhead

in managing and loading bricks during rendering. The following parameters were used in

both moving walls and brick grouping DP:

n: 8, 16, 32 and 64 render-nodes

R = 0.001 s

L = 0.0002 s

N = 0.0005 s

C = 10 bricks

In order to avoid floating point calculations, integers representing the relative values

of these costs were used in both of the flex-block partitioning programs. We compared

the algorithm run-time and maximum data size rendered per block for grid with kd-tree

subdivision with both brick grouping DP and the moving walls algorithm. The prepro-

cessing times are shown in Figure 6.3. The slowest running was the brick grouping DP

algorithm. The dominating factor for both of these is the slice read-time. The difference in

preprocessing time is due to the following slice-skipping efficiency used for the grid with

kd-tree.

In Figure 6.4, we show load balancing results using flex-block DP partitions compared

with grid distribution and local kd-tree partitions. The teeth and fossil data did not show

6. MOVING WALLS DP DATA DISTRIBUTION 93

Figure 6.2: Sample partition slabs of the Visible Korean bone data partition for a 64 node
cluster.

significant improvement using a flex-block partition compared with an grid with kd-tree,

and are not included in the scalability results. The moving walls partitions have comparable

data distributions to those found using brick grouping DP, with a reduced preprocessing

6. MOVING WALLS DP DATA DISTRIBUTION 94

Figure 6.3: Preprocessing time (sec) for flex-block data distribution of the Visible Human
(VM) and the Visible Korean bones (Bones) as a function of the number of render-nodes
(in log scale).

time. The load balancing is measured at the maximum data assigned to any render-node.

Figure 6.4: Load balancing and scalability results. Maximum volume data (MB) assigned
to any node for the Visible Male (VM) and Visible Korean bones (Bones), using flex-block
partition compared with grid with kd-tree partition on 4, 8, 32, and 64 nodes (in log scale).

The distribution of this data set on an eight-node cluster is shown in Figure 6.5. The

separate arm piece in Figure 6.5(d) demonstrates that multiple data blocks are rendered by

6. MOVING WALLS DP DATA DISTRIBUTION 95

the same render-node. By using DP to create our space partition, we are able to force render

assignments to be more even. Although the grid with kd-tree partition is used to reduce data

within each render-node, the size of data assigned to each node varies significantly. The

maximum data size per node constraint, in conjunction with the cost function, results in

even load balancing.

(a) Node 1 (b) Node 2 (c) Node 3 (d) Node 4

(e) Node 5 (f) Node 6 (g) Node 7 (h) Node 8

Figure 6.5: Visible Male distribution on eight rendering nodes.

6.5 Summary

We presented a framework for distributed parallel visualization of massive volumes.

Our algorithms have been designed to be independent of the operating system or hardware

of the cluster. Our novel dependency graph approach to load balancing allows flexible and

efficient render-node assignments, and is general enough to be utilized in any distributed

system.

6. MOVING WALLS DP DATA DISTRIBUTION 96

We have introduced the flex-block partition, and corresponding flex-block tree. Flex-

blocks give more control over allocation of volumetric data between render-nodes. The

flex-block partition reduces empty space, facilitates early data reduction, and provides a

deterministic depth order of flex-blocks for any given view direction. Our cell-tree auto-

mates ray dependency encoding for distributed volumetric ray tracing, and cell-tree peel-

ing is used for ray-task scheduling. The flex-block partition can be used along with our

cell-tree, to improve ray traversal and task scheduling for ray tracing. Image composition

dependency order is pre-computed in the flex-block tree. Flex-blocks facilitate reducing

the size of data early in the pipeline, thereby reducing network traffic and the run-time of

later preprocessing steps.

We have also introduced a view-independent solution to LBND, the moving walls al-

gorithm. Our moving walls algorithm uses the slab-projection slice to enable out-of-core

processing of massive volume data. By using the dependency graph of tightly cropped

bricks for large-scale data management, block-level space leaping effectively occurs prior

to data distribution. This is true for both the ray casting and ray tracing algorithms. Load

balancing data distribution based on empty space is only applicable for scenes in which a

portion of data will never be rendered. The classification of empty space is defined by the

user. In our experiments we have considered two situations: one, in which region growing

is used to segment the object of interest, and the other, in which a set of mask slices have

been provided. Although we illustrate our algorithm using bones from the Visible Korean,

the same algorithm would be applicable if we chose to include all regions that are part of

the actual body.

The moving walls DP algorithm has several advantages. Our method optimizes for re-

source allocation between render-nodes. It allows blocks to expand or contract for good

load balance in systems with varying configurations. The primary advantage of our algo-

rithm is that local processing leads to a scalable system. Different system configurations

can be modeled by reformulating the objective function. Different viewing priorities are

accommodated by changing the cost function.

6. MOVING WALLS DP DATA DISTRIBUTION 97

Our z-cut stages take advantage of the somewhat regular nature of the human body. In

particular, the slabs of data do not generally vary too much over long spans of slices. As

a future work, we plan to run additional experiments on less regular data to determine the

impact on the template approach. Future work also includes extending our algorithm for

limited data replication. This would have the same effect as the RDS solution using the

possibility of recomputing multiply referenced nodes. A parallel version of the moving

walls algorithm in which each render-node partitions an equal portion of non-empty vox-

els is also a possible area of future research. The moving walls algorithm could also be

extended to include ray densities in the cost function for dynamic load balancing.

98

Chapter 7

Cell-tree Scheduling for Ray Tracing

In this chapter we present our cell-tree [28], which concisely describes ray dependen-

cies in a distributed parallel ray tracing environment. We also present our cell-tree peeling

ray-task scheduling algorithm, which seeks to minimize the number of memory fetches in

a distributed memory ray trace engine, or ray tracer. The term memory is defined to mean

local memory with respect to the ray tracer. The ray tracer could be implemented in soft-

ware, a special purpose ray tracing architecture, or in a GPU. We compare two algorithms

for scheduling of cells to be processed. The first one is a greedy algorithm called max-work,

and the second one is our cell-tree peeling algorithm. In our experiments, using the cell-

tree algorithm reduced the number of memory fetches compared with using the max-work

algorithm.

This chapter is organized as follows. We present our cell-tree ray dependency encryp-

tion algorithm in Section 7.2, and our cell-tree peeling algorithm in Section 7.3. In Section

7.4 we discuss our architecture simulation, and in Section 7.5 we summarize our results.

We conclude in Section 7.6 with a discussion of potential research areas for cell-tree.

7. CELL-TREE SCHEDULING FOR RAY TRACING 99

7.1 Ray Traversal

For distributed volumetric ray tracing, we divide the scene into cells. The ray tracer can

operate on one cell at a time. When a ray is cast through the scene, the first cell it intersects

with is detected. The ray is then placed on a queue of pending rays which is maintained

for that cell. The ray tracer incurs a memory fetch cost each time it switches between

cells; the aim is to minimize the number of these memory fetches. The basic assumption

is that the memory fetch cost is very high compared to the ray contribution or splatting

computation plus ray spawning and traversal costs. Our cell-tree peeling algorithm can be

used for BRDF splatting and for ray traced rendering. We present it from the point of view

of a renderer for clarity.

When the ray tracing process begins, one or more eye rays are shot into the scene

for each pixel in the image plane. Eye rays are the rays which originate from the image

space. Each ray accumulates opacity until either it reaches a predefined maximum opacity,

it has reached a predefined maximum number of bounces, or it exits the volume. As a ray

intersects the volume it can spawn additional reflection and/or refraction rays. A reflection

ray is generated when a ray reflects off a surface, a refraction ray is generated when a

ray is spawned through a translucent surface, and a shadow ray is shot from each point of

intersection toward each light source to determine if the object is blocked from the light

at that point. Every ray, with the exception of eye rays, is dependent on its parent ray as

well as on all of its predecessor rays. As with image composition of ray casting algorithms,

there is a strict relationship between ray segments defined by the compositing equation.

It is not possible to spawn secondary rays, or calculate the contribution of scene cells to

different ray segments, until we find the intersection positions of the rays that cause them

to be spawned.

Each ray has an ordered sequence of cells which it depends on. We call this its ray-cell

dependencies, or ray dependencies for short. However, the same ray may traverse through a

cell more than once, resulting in cyclic ray dependencies, as illustrated in Figure 7.1(a). In

ray tracing, a ray segment is the intersection of a ray with a scene cell. Note that spawned

7. CELL-TREE SCHEDULING FOR RAY TRACING 100

rays do not define a new dependency until they exit the cell they are spawned from. For

the remainder of this section, we use the word ray instead of ray segment for improved

readability.

7.1.1 Ray Queues

Eye rays which intersect the volume are placed in the queue of the intersected scene

cell at the start of ray tracing. Once a cell is in memory, all of the rays on the queue for that

cell are processed. This includes any additional rays which are generated while processing

the rays from that cell if they intersect the volume in the same cell which intersect the same

cell.

When a ray exits the cell, it can either exit the volume or enter an adjoining cell. When

a (non-shadow) ray exits the scene its contribution is added to the image buffer. Shadow

rays which exit the scene without hitting an object in the scene have no effect, which

those that do diminish or eliminate the contribution of rays which originated from the same

intersection point. When a ray travels from one cell to another, it is placed on the queue

for that cell. As long as a cell of data is in local memory, all rays on that cell’s queue are

processed before it is replaced with another cell. If a ray is reflected back into a cell it has

previously exited, then the same cell is read from memory again. The order in which rays

are processed influences the number of times each cell is cached from memory. Our goal

is to minimize this number.

7.1.2 Problem Definition

The problem can be stated formally as follows: We define a job to be a group of rays

requiring processing. For every job j there is an associated cell, cj . If cell cj is not available

in local memory at the start of job j, then there is a cost of p for fetching it from a higher

memory level such as main memory. Given a partial order of jobs, find the schedule that

obeys the partial order and has the lowest overall cost. The priority order must be preserved

7. CELL-TREE SCHEDULING FOR RAY TRACING 101

in parallelized ray tracing applications. There is not generally a scheduling order which

would allow each cell to be read from memory only once. One heuristic approach is to

choose the cell with the most rays pending, or the max-work algorithm.

7.2 Cell-tree

The set of ray segments spawned from an initial ray defines a tree of ray-cell depen-

dencies. For a 512 × 512 image, there are over 250, 000 ray trees, each with its own set

of dependencies. If ray r2 is spawned from ray r1, it is defined to be a child of r1. The

ray-cell dependencies of ray r2 are the same as those of r1, with the addition of any new

cell r2 enters. For each primary, or eye, ray, all of the dependencies spawned from that ray

form a ray tree, as shown in Figure 7.1(b). If ray s is spawned from ray r, s is defined to

be a child of ray r. The ray dependencies of ray s are the same as ray r with the addition

of any new cell ray s enters.

For a 5122 image, there are over 250, 000 ray-trees, each with its own set of depen-

dencies. The large number of ray-trees, along with the cyclic ray dependencies inherent

in distributed ray tracing, has discouraged researchers from investigating ray dependency

graph scheduling algorithms. However, if the time required to fetch the cell is significant

with respect to the processing time, then the order in which the cells are processed greatly

affects the frame rate. Since memory fetches can be orders of magnitude higher than pro-

cessing speed, we would like to find a cell processing schedule based on the behavior of

rays in one frame that can be used in the next frame to reduce the total number of cell

fetches.

Our cell-tree [28] gathers these trees into a single, compact description of all ray de-

pendencies. The dependencies of clusters of eye, shadow, reflected and refracted rays are

gathered into a compact description. In our experiments, cell-trees were several orders of

magnitude smaller than the number of dependencies represented. We use the cell-tree to

determine a cache scheduling policy for the subsequent frame.

7. CELL-TREE SCHEDULING FOR RAY TRACING 102

(a) Cyclic dependencies (b) Ray-cell dependency tree

Figure 7.1: Ray-cell dependencies. (a) Ray tasks traverse between the cells. Ray tracing has
pseudo-random ray traversal between data blocks resulting in cyclic dependencies which
require some cells to be cached more than once; (b) A ray-cell dependency tree shows these
dependencies, but there is a unique tree for each initial ray.

7.2.1 Cell-tree Construction

We gather ray-cell dependencies into coherent groups to create a single, consolidated,

cell-tree. All rays which traverse from one cell to another at the same relative time are

represented by a single link in the cell-tree, as shown in Figure 7.2. Each node in the cell

tree has a cellID and a unique nodeID. Several cell-tree nodes may have the same cellID.

Each ray has a cell-tree nodeID that indicates where the progress of that ray path, is being

encoded in the cell-tree.

The cell-tree is initialized with a single node corresponding to each cell that is inter-

sected with an eye ray. Cell-tree construction proceeds by adding new dependencies to the

cell-tree as rays are spawned. When ray r traverses from cell i to cell j, the dependency is

encoded by adding a node to the cell-tree as a child to the cell-tree node which corresponds

to the r, or r.nodeID. If this dependency has already been encoded when another ray tra-

versed along the same dependency path, then one of the child nodes of r.nodeID will have

a cellID that matches that of .

This process is illustrated in Figure 7.2. The subtree in Figure 7.2(a) has two branches

that represent ray dependencies from the viewpoint to cell B and cell C, and the rays are

initial eye rays. In Figure 7.2(b), the new rays are reflection and shadow rays that are

generated during ray tracing. Figure 7.2(c) illustrates secondary reflections. A separate list

of cell-tree nodes is maintained for each cell for later use in the cell-tree peeling algorithm.

In order to have a dependency graph that represents all ray dependency trees, a group

7. CELL-TREE SCHEDULING FOR RAY TRACING 103

(a) Primary rays (b) Reflection, refraction and
shadow rays

(c) Secondary reflections

Figure 7.2: Cell-tree construction. A ray dependency occurs when a cluster of rays, shown
in orange, traverses from one cell to another. The first ray dependency of each cluster,
shown in black, adds a branch to the ray tree. (a) Eye rays intersect volume in cells B
and C; (b) Reflection, refraction and shadow rays intersect the volume in cell A, C and F
(behind C) from cell B and cells B and G (behind B) from cell C; (c) Secondary reflection
rays enter cells A, C and D from cell B.

of rays traversing along the same path is represented by a chain in the tree. This is accom-

plished by tagging each ray, r, with its corresponding place in the cell-tree, or r.nodeID.

As long as a spawned ray remains in the same cell, that ray is tagged with the cell-tree

node of its parent ray. When a spawned ray traverses from cell i to cell j, the cell-tree node

corresponding to its parent p, p.nodeID is examined. If p.nodeID has a child node, c,

with c.cellID = j, then the spawned ray dependency is represented by c, and the spawned

ray is tagged with the c.nodeID of the child node. Otherwise, a new node is added to the

cell-tree.

Cell-tree construction consists of a simple piggy-back operation during ray tracing, and

is not dependent on any particular scene partition structure. The dependency description

of a ray, traversing from cell c1 to cell c2, is added to the cell-tree if it intersects the brick

in c2. A ray dependency is represented by two nodes in the cell-tree. For each node n in

7. CELL-TREE SCHEDULING FOR RAY TRACING 104

the cell-tree, n.cell is the corresponding scene cell. The ray dependency for all rays going

from cell c1 to cell c2 at the same relative stage along the ray path is represented by parent

node n1 and child node n2, or c1 → c2, where n1.cell is c1 and n2.cell is c2. Eye ray

dependencies have parent node root. Each ray is tagged with a cell-tree nodeId, which

indicates the current stage in the ray’s traversal. Cell-tree construction proceeds by adding

new dependencies to the cell-tree as rays are spawned. If a spawned ray follows the same

path as another ray, then no new entry is made in the cell-tree. More than one tree node has

the same cell value due to the fact that dependent rays may enter the same cell more than

once.

A formal description of cell-tree construction follows:

Initialization:

For each eye ray r with first intersection cell c

If root has child node n1 where n1.cell = c

Tag r with n1

Else insert new node n2 as a child to root

Tag r with n2

Ray Traversal:

For each ray r entering cell c

If r.nodeID has child node n1 where n1.cell = c

Update ray count in n1 and tag r with c

Else insert new node n2 as child of r.nodeID

Tag r with n2

7.2.2 Cache Savings Links

In order to take advantage of ray-cell coherence, we introduce the notion of cache sav-

ings links. Our cell-tree peeling algorithm attempts to maximize these links. Each ray has

an ordered sequence of cells which it depends on. When the same dependency occurs at

7. CELL-TREE SCHEDULING FOR RAY TRACING 105

(a) Cache savings links (b) Conflict

(c) Conflict chain (d) Multiple chains

Figure 7.3: Redundant dependencies (a) Cache savings links. When the same dependency
occurs at different points in the overall process, the potential cache savings is noted as a
cache savings link; (b) Dependencies that cannot be combined in a feasible schedule are
called conflicts; (c) Conflict caused by a chain of non-conflicting links is shown in red; (d)
Conflict caused by multiple chains, which are each independently valid is shown in red.

different points in the overall process, a potential cache savings is shown in Figure 7.3(a)

as a cache savings link. Dependencies that cannot be combined in a feasible schedule are

called conflicts, as illustrated in Figures 7.3(b), 7.3(c), and 7.3(d). Only one of the conflict-

ing cache savings links can be used to reduce caching. A schedule with any combination

of non-conflicting link groups is a feasible one. The optimal schedule contains a maximal

group of non-conflicting links.

7. CELL-TREE SCHEDULING FOR RAY TRACING 106

7.3 Cell-tree Peeling

The cell-tree peeling algorithm exploits frame-to-frame coherence by using the cell-tree

to find potential cache savings links. As with image composition of ray casting algorithms,

there is a priority order relationship in ray traversal, which must be preserved in parallelized

ray tracing. The number of times each volume block is cached depends on the order in

which data cells are cached and rays processed. However, optimizing task scheduling for

ray tracing is more difficult than for parallel ray casting because rays travel through the

scene in a pseudo-random manner. If there is sufficient inter-frame coherence, the ray-cell

dependencies remain the nearly the same from one frame to the next, so we introduce the

cell-tree peeling heuristic to take advantage of frame-to-frame coherence. The dependency

graph information gathered in one frame allows the cell-tree peeling algorithm to generate

the cell processing schedule for the next frame.

The max-work ray-task scheduling algorithm is used by many systems that are based

on ray queues, including the GI-Cube architecture, and we use it as the default algorithm

for the first frame, as well as for any rays that fall outside of our cell-tree peeling algorithm

schedule. In the max-work algorithm, when a render-node becomes available, the cell with

the longest queue is assigned to it. As long as a cell of data is in local memory, all rays on

the corresponding queue are processed before it is replaced with another cell.

In our cell-tree peeling algorithm [28], an efficient cell-processing schedule for the

next frame is determined using a ray dependency graph, the cell-tree. The cell-processing

schedule for the next frame is determined in reverse order from the cell-tree. The tree

is processed starting with the leaves by peeling the tree nodes with the same cellID and

adding it to the reverse schedule. An interim tree is maintained by keeping a list of nodes

that have not been included in the schedule.

If there is not sufficient inter-frame coherence, for example when there is a sudden

change in the viewing parameters or in the scene, then the solution for one frame is not

necessarily feasible for the next frame. In this case, there will be pending rays for one

or more cells after the schedule of cells has been followed, and the max-work scheduling

7. CELL-TREE SCHEDULING FOR RAY TRACING 107

algorithm is used for the rest of the frame.

7.3.1 Definitions

Each node in the cell-tree has an associated cell ID, and more than one node may have

the same cell ID. The generation of a node is one plus the number of nodes with the same

cell that are ancestors to that node. We define i.maxGen to be the maximum generation of

cell i on the current tree. If all of the maxGen nodes of a cell are leaf nodes on the current

tree, then the cell is in a ready state. In this case, we do a completion peel on that cell

by pushing it to the front of the schedule, and peeling all of its leaf nodes from the current

tree. If no cell has all of its maximal generation nodes ready, the schedule must include an

extra memory fetch for some cell. We call this a split peel; the peel is unable to gather all

remaining nodes of a cell’s highest generation on the current tree.

7.3.2 Algorithm Description

The tree is processed starting with the leaves by peeling the tree nodes with the same

cell ID and adding it to the reverse schedule. An interim tree is maintained by keeping a

list of nodes that have not been included in the schedule. Cache savings links are found

by gathering leaf nodes which correspond to the same cell. The cell-tree peeling algorithm

performs well and has polynomial worst time. The cell-tree algorithm proceeds as follows

until all nodes have been peeled from the tree as follows:

Determine if any cell is in the ready state

If i is in the ready state, completion peel i:

Push i to the front of the schedule

Peel all leaf nodes with cell=i and decrement i.maxGen

Else split peel cell with the most leaf nodes j:

Push j to the front of the schedule

Peel all leaf nodes with cell=j

7. CELL-TREE SCHEDULING FOR RAY TRACING 108

(a) Completion D (b) Completion A, B, E (c) Split H

(d) Completion F (e) Completion C and D (f) Completion H and F

Figure 7.4: Cell-tree peeling. All maxGen nodes for each cell being peeled are high-
lighted. All iterations except (c) are completion peels. A split peel is shown in (c), where
inner node is highlighted because it is a maxGen node for cell H . Every leaf node has
some inner maxGen node. H has the most leaf cells, so we add it to the schedule and
remove all H leaf nodes.

Figure 7.4 shows an example of cell-tree peeling. The maximum generation nodes

for cells that are peeled in each iteration are highlighted. In Figure 7.4(a), D.maxGen

is 2, and the only cell D generation 2 nodes are leaf nodes, so cell D is a ready cell. A

completion peel of D is made, and the schedule is initialized with cell D. In Figure 7.4(b),

cells A, B, and E are each ready cells, so they are added to the schedule with completion

peels. The resulting sub-tree after these steps is shown in Figure 7.4(c). There is no ready

cell, so Cell H is selected for a split peel since it has the most leaf nodes. As a result,

the only F.maxGen node is a leaf nodes in Figure 7.4(d), so it is completion peeled. In

Figure 7.4(e), all C nodes are leaf nodes, so cells C and D are now in a ready state and

7. CELL-TREE SCHEDULING FOR RAY TRACING 109

it is completion peeled. The resulting sub-tree after these steps is shown in Figure 7.4(f).

This exposes the remaining nodes for cells H and F , which are completion peeled and the

algorithm is finished with a schedule of FHDCFHAEBD.

7.3.3 Algorithm Correctness

The cell-tree algorithm always finds a feasible solution. A feasible schedule is one

where every ray dependency is included in some subsequence of the schedule. First, we

show that the cell-tree contains a link for each ray dependency. After that we show that

the construction of the schedule guarantees that the partial order is not violated on the cell-

tree, and that every node in the tree is included in the schedule. The cell-tree is constructed

by considering every ray dependency. The rays are marked with their current place in the

tree, and when a ray (original or spawned) enters a new cell, the dependency is added to

the cell-tree if it is not there already. This guarantees that the cell-tree represents all ray

dependencies. Hence, all ray paths exist as sub-paths of the cell-tree. Since the reverse

schedule is produced by traversal from the cell-tree leaves to the root, no two jobs j and

j−1 will be placed on the reverse schedule with job j−1 preceding job j. This means that

the partial order of ray dependencies is never violated. No dependency is ignored since the

schedule is not complete until all nodes are peeled.

The cell-tree algorithm will produce an optimal schedule if the best choices of split

peels are always made. The expected amount of sub-optimality increases with the number

of split peels. Empirical results indicate that the completion peels tend to dominate, thus

the algorithm is close to optimal. If there are no completion peels for some sub-tree, then

we know that whatever cell we peel at this level must be fetched from memory at least

twice. If the current schedule has been obtained strictly by completion peels, then it is

optimal.

For comparison, an optimal schedule can be determined recursively as follows. If we

compare the optimal schedule of each sub-tree that is obtained by peeling each cells’ leaf

nodes from the current sub-tree, one cell at a time, the optimal for the original tree is

7. CELL-TREE SCHEDULING FOR RAY TRACING 110

the current schedule concatenated with the cell whose peel results in the sub-tree with

the shortest optimal schedule, together with the optimal schedule of that sub-tree. The

recursion can be ended when any sub-tree is found to have all completion peels. If each

iteration reveals another split, then a recursive call is made for each cell until the root is

reached, and each of these peels may involve only a single node. This means that the

recursive algorithm has a worst time bound of O(n!), where n is the number of nodes in

the cell-tree. Furthermore, a clone of the current tree must be kept at each stage of the

recursion. Both of these problems make the recursive algorithm impractical. We use a

simpler version, with polynomial worst time bounds, which is close to optimal. Instead of

determining the best choice for the split peel recursively, we simply choose the cell with

the most leaf nodes. Alternate criteria include maximum generation or maximal tree level.

7.3.4 Worst Time Bounds

The minimal schedule is equal to the sum of each cell’s maximum generation plus the

minimum number of split peels. This can be shown as follows: The minimum number of

memory fetches for a cell is the largest generation number of that cell. This follows from

the definition of generation. If cell i is part of a completion, then peeling cell i would

result in no extra memory fetches compared with an optimal schedule. When a completion

peel is made, exactly one generation, g, of the cell is completed. Although some nodes

that are peeled may be from a smaller generation, f , all of the nodes from f cannot be

peeled because each chain leading to the generation g node also contains a generation f

node which cannot be peeled at the same time. Thus cell i must be cached in at least once

for generation g and a separate time for generation f .

7.4 Architecture Simulation

Ray tracing in our framework is based on the GI-Cube [18] ray tracing coprocessor

simulation. It is designed to accelerate volume rendering with Phong shading and local

7. CELL-TREE SCHEDULING FOR RAY TRACING 111

Figure 7.5: GI-Cube ray tracing PCI board.

illumination, as well as with global illumination including shadow casting, reflections,

glossy scattering and radiosity. In addition, it provides volumetric ray tracing acceleration

support for various algorithms including hyper-texture, photon maps, polygonal global illu-

mination, tomographic reconstruction, bi-directional path tracing, volumetric textures and

BRDF evaluation. The volume is subdivided among the processors. We have simulated a

ray tracing architecture as an extension of the GI-Cube architecture.

7.4.1 GI-Cube Ray Tracing Architecture

The GI-Cube design has three major components: the Digital Signal Processor (DSP),

the processors and the memory. A block diagram of the system is illustrated in Figure 7.5.

The DSP is directly connected to the frame buffer and has its own SDRAM. It loads the data

set, generates lighting and viewing rays, controls processor I/O and sends the result over

the PCI interface. The processors maintain and sort a group of fixed size hardware queues

of rays. Each queue is implemented as a pipelined insertion sorter on a separate embedded

DRAM (eDRAM) and can hold up to 256 rays. The active queue is processed until it is

empty. The queue with the most rays is selected when a processor becomes available.

7. CELL-TREE SCHEDULING FOR RAY TRACING 112

7.4.2 DSP Cell-tree Scheduling Simulation

Figure 7.6: Proposed ray tracing architecture PC board.

We simulated a DSP implementation of a ray tracing architecture using cell-tree

scheduling to extend the GI-Cube simulations. The block diagram of a ray tracing node

for these simulations is shown in Figure 7.6.

The DSP56311 can perform 255 MIPS, and has three megabits of on-chip static RAM

[81]. The DSP handles data set loading, generates lighting and viewing rays, controls

processor I/O, and sends the final image to the frame buffer. It has a dedicated SDRAM

to hold the ray queues of cells not currently in memory. The queues for cells that are

currently in on-board RDRAM memory are kept in processor eDRAM, as in GI-Cube.

When the volume currently in RDRAM memory no longer has any pending rays, the DSP

fetches a different sub-volume from disk memory.

We utilize the idle cycles in the DSP to determine a processing schedule for frame i+1

based on ray coherency information of frame i. As the DSP generates initial rays, the cell-

tree is initialized with one node for each cell that contains any eye rays. Our ray tracing

research is focused on improving memory performance for super volumes using both ray

coherence and inter-frame coherence. Distributed ray tracing is used for data which cannot

fit into the local memory of the rendering mechanism. As with our distributed ray casting

approach, the scene data is divided into axis-aligned cells. Each time a ray exits the cell

currently in memory, a ray packet is sent over the ray bus to the DSP. The bus frequency of

100 MHz allows one ray packet to be sent per processing cycle. The processor can generate

7. CELL-TREE SCHEDULING FOR RAY TRACING 113

either an exit ray or a neighbor ray in a cycle, but not both. This means that in any cycle at

most one ray is sent to the DSP. The DSP consolidates the ray dependencies into a cell-tree

during idle duty cycles. The DSP computes the schedule for loading the sub-volumes for

the next frame. This is done between frames. Alternatively, if a slower DSP is used, the

schedule can be created during idle cycles during the next frame. A new schedule can be

calculated for each frame in order to maximize the exploitation of inter-frame coherence.

The algorithm used by the DSP is further explained in the next section.

Cell-tree creation is done during idle DSP cycles. Each cell-tree node creation requires

one write. Each ray packet is used for a single decision and at most one write to the cell-

tree. The cell-tree node ID is updated before the ray packet is placed on a queue in the

DSP. When a ray needs to be queued by the DSP because it is exiting the cell currently in

memory, the ray packet is sent over the ray bus. The cell dependency information, included

in this packet, is gathered by the DSP. A prototype layout for the cell-tree node is shown in

Figure 7.7(a). The DSP RAM is used for storing the cell-tree; 96 KB are allocated to hold

up to 8, 000 12-Byte cell-tree nodes in our simulations.

In addition to the cell-tree itself, each ray contains a cell-tree node id, a cell id and a ray

id. These fit in the GI-Cube ray packet by decreasing the size of some items without any

resulting image quality degradation (see Figure 7.7(b)). The on-board RDRAM memory

bandwidth of 0.8GB/sec in our design is sufficient to avoid nearly all stalls due to RDRAM

fetches, so the only overhead results from retrieving data from disk. If smaller and/or

cheaper memory is used, our algorithm could be applied between the on-board and the

cache and would have an additional impact on rendering time.

Schedule creation is done in the DSP between frames. In our simulations the average

number of peels, including split peels, was 55, which is much less than the worst case,

which would be one peel per node. This is because peels usually result in the removal

of several nodes, and because in most iterations there is a completion peel. In our tests

the average number of nodes examined for each completion peel was 85. Based on our

experiments, we estimate the time for schedule creation in a 255 MIPS DSP to be between

7. CELL-TREE SCHEDULING FOR RAY TRACING 114

(a) Cell-tree node (b) Bit widths in the 32 byte ray packet

Figure 7.7: Proposed ray tracing architecture data structures.

5 and 10 microseconds. If, instead, the schedule for frame i + 1 is created while the

processor is rendering i, a copy of the cell-tree from frame i − 1 must remain on the DSP,

thus doubling the DSP memory requirement.

7.5 Results

We simulated our system in C++ using scenes which include a mix of volume and

polygonal data. The images rendered for testing the algorithm are shown in Figure 7.8.

Three scenes are shown, each rendered with a 256 × 256 image size. The first scene is an

MRI brain reflected in multiple mirrors for a complete look. It includes one 128×128×84

by eight bits/voxel volume and three planes. The second scene is two clouds and a moon

reflected in a lake. It includes two 120× 120× 120 volumes, a geometric sphere and three

planes. The third is a lobster reflected several times to give a tunnel appearance. It includes

one 256× 254× 57 volume and five planes. All of the volumes had eight bit voxels.

In our simulations, the cell-trees had an average of 1797 nodes (see Figure 7.9), which

is more than 100 times smaller than the average number of rays, which is 199, 919. Figure

7.10 illustrates the scalability of tree sizes as image size increases. It shows the number of

ray dependencies for the brain scene at resolutions of 100× 100, 256× 256 and 512× 512

pixels. We use a logarithmic scale because the cell-tree sizes grow much more slowly than

the number of ray dependencies. The sizes of the cell-trees did not grow nearly as quickly

7. CELL-TREE SCHEDULING FOR RAY TRACING 115

(a) CT brain with mirrors (b) Clouds and moon reflecting in
a lake

(c) CT lobster reflected in several
mirrors give a tunnel appearance

Figure 7.8: Ray traced images for algorithm testing.

Figure 7.9: Nodes in cell-tree compared with number of ray dependencies represented.
Cell-tree size is orders of smaller than number of ray dependencies.

as the number of rays. Image and volume sizes each had a relatively small influence on

cell-tree sizes. The biggest factor in the cell-tree sizes was the number of reflections.

7. CELL-TREE SCHEDULING FOR RAY TRACING 116

Figure 7.10: Cell-tree Scalability. Cell-tree sizes for ray-traced brain using different image
sizes.

In order to test our cell-tree construction and schedule creation algorithms, we con-

strained the on-board memory to be 1/8 and 1/27 of the volume for each scene. The rela-

tive number of misses with the cell-tree schedule compared with the max-work algorithm

schedule, and with the lower bounds of the optimal schedule, are shown in Figure 7.11.

The max-work algorithm solves the on-line version of the scheduling problem described

in Subsection 7.1.2. This means it solves the problem without knowing a priori what the

ray dependencies are. The cell-tree algorithm solves the off-line version, where the depen-

dencies are known. For the first frame, there is no dependency information at all, so the

max-work algorithm is used. The queue with the most rays is selected when a processor

has completed all rays in the queue of its current cell. As rays are generated, a cell-tree is

constructed. This is used to determine a better cache schedule for the next frame.

The memory fetches decreased an average of 30% by using dependency graph based

scheduling, with a range of 20% to 37%. Also shown are the lower bound sizes of the opti-

mal schedule. This is a very conservative lower bound. It assumes that the only necessary

7. CELL-TREE SCHEDULING FOR RAY TRACING 117

Figure 7.11: Performance comparison. Memory fetches with the max-work and the cell-
tree peeling algorithms, and the lower bounds of the optimal schedule.

split peel is the first one, which is not likely to be the case. The cell-tree schedule was

always within 33% of this lower bound. The performance improvement is greatest when

there are more inter-reflections, which is also when it is needed most because the cells must

be fetched from memory more frequently. The resulting frame rate increase depends on the

relationship between disk fetch time and on board memory cache-in time.

By comparing the number of split peels to the number of completion peels we can get a

feeling of how close to optimal the schedule is. The algorithm performs best when there are

relatively few split peels. Each iteration of cell-tree peeling removes at least one node from

the tree. Each node removal requires checking each node in the tree at most once. Thus,

the worst time case for cell-tree peeling is O(n2) where n is the number of tree nodes. The

upper bound of the cell-tree size is the total number of rays created. However this is an

unrealistic bound in that it would mean that each ray is independent of every other ray.

7. CELL-TREE SCHEDULING FOR RAY TRACING 118

7.6 Summary

In this chapter we provided an overview of our ray tracing acceleration framework. We

have demonstrated the effectiveness of using ray dependency information in reducing the

total number of memory fetches for a ray tracing system where the volume is subdivided

into cells. The cell-tree can be constructed easily in hardware with virtually no cost. Since

the cell-tree takes very little time and memory to build, it can easily be rebuilt for each

frame, which increases the chances of having sufficient inter-frame coherence. Depending

on the implementation platform this can be done either between frames at very high pro-

cessing speeds, or during frame i to be used in frame i + 1. A data-structure containing a

compact description of cell-dependency information gives us a scientific means to compare

several configurations.

Our cell-tree peeling algorithm performs well and has polynomial worst time. Ray trace

rendering efficiency improves using ray dependency encryption. In our experiments, ray-

task schedules created by our cell-tree peeling algorithm result in an average cache miss

reduction of 30% during ray trace mode compared with the max-work algorithm. The cell-

tree algorithm could be extended for dynamic load balancing in both distributed and shared

memory systems. Simulations have indicated that volume sub-division could be improved

using ray dependencies. A future work would be to take advantage of geometric clusterings

[12] to increase the scalability of our ray tracer.

The cell-tree allows us to study the best way to split up a volume. For example, when

a ray is being reflected between two cells it is likely that the load balance would be im-

proved by a new subdivision which places the parts of the volume being reflected into the

same subdivision. Allowing multiple cells per memory unit allows greater flexibility in the

schedule at the cost of further complexity. This trade-off should be studied further.

An extension of the algorithm should prove useful in multiprocessor scheduling. If p

cells are to be processed at the same time, and cell i is repeated in the schedule within p

processes, it may be handled by the same processor, but it will stall while waiting for other

cells which the second occurrence of cell i is dependent on (and the first one is not), to

7. CELL-TREE SCHEDULING FOR RAY TRACING 119

complete processing. The tradeoff of waiting for other processors and fetching the cell an

extra time should be evaluated. This promises to be a richly theoretical as well as useful

endeavor.

120

Chapter 8

Conclusions

In this dissertation, we have presented a framework for distributed volume visualization.

We have developed several techniques to improve the efficiency and scalability of massive

data management. Parallel ray casting is accomplished by independently rendering por-

tions of the scene and compositing the images together. The correctness of the compositing

operation depends on a deterministic image composition order. We have introduced the

problem of finding an optimal partition of data for distribution under deterministic viewing

conditions as the LBND problem. The use of dynamic programming for volume distribu-

tion is also introduced.

In order to achieve sufficient resolution for scientific and medical studies, and to utilize

all available information, we do not use any down-sampling. Volumetric data sets fre-

quently contain large portions of empty space, or regions that will never be rendered. We

take advantage of this empty space. We reduce data sizes early in the pipeline and retain

data extent and brick dependency information as it becomes available. By removing empty

space early in the pipeline, both network bandwidth and rendering workloads are reduced.

8. CONCLUSIONS 121

8.1 Summary of Contributions

We have introduced several out-of-core techniques for processing massive data sets.

Segmentation is used to find a region of interest, or portion of data to be rendered. Region

growing is a segmentation algorithm that expands on an a priori seed voxel in the region of

interest. It is limited to small data sets, so we have introduced out-of-core region growing,

which processes a slab of consecutive data slices at a time. The valid seeds for each slab is

output from the previous slab. We have also introduced the slab-projection slice to encrypt

empty space information so that preprocessing steps used for data distribution can proceed

without moving data in and out of main memory. These steps include out-of-core bricking

and kd-tree partitioning.

We have demonstrated a mapping of the LBND problem to the NP-complete job-shop

scheduling problem. The use of dynamic programming for volume distribution is also

introduced. Brick grouping DP minimizes a cost function on geometrically coherent groups

of bricks to partition a directed acyclic graph of bricks into a view-dependent load balanced

data distribution. Moving walls DP finds a view-independent flex-block partition using

slab-projection slices directly. Our flex-block contains a combination of empty space and a

cropped subvolume. Our flex-block tree, which represents a flex-block partition, is similar

to a kd-tree partition, except that the cut planes do not alternate, and partition cells, the tree

leafs, are flex-blocks.

Ray tracing is used to enhance rendering realism with global illumination. It is similar

to ray casting, except that additional rays are spawned at ray-object intersection points to

approximate reflected, refracted and shadow rays. With parallel ray tracing, scene cells

cannot be rendered independently. A ray segment is the intersection of a ray with a scene

cell, and the set of these defines a tree of ray-cell dependencies. The order in which ray

segments are processed impacts the end-to-end rendering time, and the problem of finding

the optimum processing order is NP-complete. We have introduced the cell-tree, which is

a concise representation of ray-traversal dependencies, and cell-tree peeling, a dependency

graph ray-task scheduling for ray tracing. The cell-tree peeling algorithm is designed to be

8. CONCLUSIONS 122

run in parallel with ray tracing process cycles.

8.2 Summary of Results

This research has provided several algorithms which automate the volume distribution

and task scheduling processes for volume visualization. Our algorithms improve the ef-

ficiency and scalability of global illumination, segmentation, and volume rendering in a

PC cluster. Although new graphics, networking and image compositing hardware have

emerged continuously throughout this research, these changes in technology have not af-

fected the applicability of these algorithms, which have been designed to be hardware in-

dependent.

Our out-of-core region growing enables segmentation of massive volumetric data. We

use a heuristic to choose volume boundaries to crop away empty space and create subvol-

umes which may be set to a particular maximum size. For data sets with a large portion

of empty space, cropping reduced memory consumption by an average of 68%. Our slab-

projection slice encodes data extent information for out-of-core preprocessing Dynamic

programming distributes data using a cost function to reduce load imbalance by an average

of 100

Our out-of-core bricking algorithm creates bricks of data which are connected by a

DAG which represents the relative priority order of these from the view direction defined

to follow the input slice data, the z-axis in our experiments. These bricks are sized primarily

to fit GPU hardware, but may be larger to prevent the recursion from becoming intractable.

Our brick grouping DP algorithm finds a partition that is optimal with respect to these

bricks and DAG. However, the average time of the algorithm depends on the brick sizes.

We have also introduced the moving walls DP algorithm, which finds a near-optimal

solution to the LBND problem. A flex-block partition is produced from a sweep through

a series of slab-projection slices while shrink-wrapping volume blocks to remove empty

space. These algorithm have the advantage of using a cost function, which facilitates the

8. CONCLUSIONS 123

study of various cluster configurations by using algorithm parameter changes.

Our dependency graph approach uses neighbor block information from the flex-block

tree to determine which neighbors a ray may enter, and for image composition order for

parallel ray casting. We achieve more control over allocation of volumetric data between

render-nodes on a visualization cluster, and ray-task scheduling for ray tracing. Our other

dependency graph data structure, the cell-tree, represents dependencies between ray seg-

ments. A single link in the cell-tree encodes hundreds to thousands of ray-cell traversal

dependencies. The cell-tree is constructed as a simple piggy-back operation to the ray

traversal process during ray tracing.Our cell-tree peeling algorithm, which is a ray-task

scheduling for distributed volumetric ray tracing based on our automatic ray dependency

encoding. Simulations have shown that the cell-tree peeling algorithm can be used to im-

prove cache coherency by an average of 30%.

Several massive volumetric data sets have been rendered on the Stony Brook Visual

Computing Cluster as part of this research. These volumes have sizes that would not allow

region-growing or direct volume rendering without using out-of-core and/or parallel meth-

ods. Our techniques reduce the average segmentation and rendering time significantly for

all data-sets segmented and rendered.

8.3 Near-Term Future Work

An immediate research goal is to incorporate algorithms developed in this research

into the HP open source Parallel Compositing Library software package.Scalable priority-

constrained data distribution is an open area of research. We have introduced a solution,

using dynamic programming, which allows a cost function to drive the distribution process.

As demonstrated by our test results, our solution allows the scene partition to be controlled

so that data is distributed more evenly between render-nodes. The portion of the scene

assigned to each render-node is dictated by the distribution of empty space in the scene,

resulting in better load balancing than with traditional partitioning methods such as octrees.

8. CONCLUSIONS 124

Our framework for managing of massive volumetric data sets has opened new avenues

for future research. Algorithms have been designed to be independent of the underlying

hardware and operating system. They are equally appropriate for implementation on a

cluster, on a special purpose hardware, or on programmable FPGA or DSPs hardware. Our

dependency graph data structures can also be used in conjunction with other data primitives

such as geometry data. Current and near-future work includes running additional tests on

several data sets to determine the impact our algorithms have on rendering in different

cluster environments, as well as other hardware settings.

In our framework, we use early data reduction to reduce problems associated with dis-

tribution and rendering of massive volumetric data sets. The slab-projection slice kd-tree

has some advantages over the dynamic programming model. Recent developments in dy-

namic scanner technologies [109], produce time varying data scans which are very well

suited for these render clusters due to their tremendous size. Further research is needed for

adapting the partition found during our dynamic programming preprocess. A likely solu-

tion is to use an incremental update approach to move partitions as regions of non-empty

voxels move throughout the scene. The transfer function driven dynamic load balancing

method proposed by Li et al. [69] marks value ranges in each cell, and is applicable to the

cells in our data distribution.

Future work includes adjusting our algorithms to manage dynamic scenes. We plan to

explore the impact of dynamic volumes on our algorithms. Changes in a particular volume

block may result in localized changes to the scene. An incremental version of our moving

walls algorithm would be an interesting avenue to explore for these changes. The cell-tree

building and peeling algorithms do not need additional updates to handle dynamic volumes,

as long as the underlying data structure has a well-defined neighbor relationship between

scene cells. The inter-frame coherency is affected by dynamic scenes, and this would be an

interesting area for further exploration.

The cell-tree algorithm is designed to be run in parallel with ray tracing at run-time, so

no change should be required for dynamic scenes. The dependency graph approach could

8. CONCLUSIONS 125

also be adapted for data primitives other than volumes. In this case the brick would be a

bounding volume of the primitives. Our dependency graph approach is extendible to any

scene partition which has an unambiguous distance order from any viewpoint, including

more general BSP partitions.

8.4 Extended Vision

Our long-range research goal is to develop data management techniques which support

other large-scale, distributed systems to solve real-world problems using a solid theoretical

basis. For example, visual analytics applications in cyber security extract information from

an vast volume of data to create a intuitive picture of the vulnerabilities of critical infras-

tructure. This is a rich area of research with many of the same underlying characteristics as

distributed volume visualization.

A long-range research goal is to develop data management techniques which support

other large-scale, distributed systems and computationally intense science and engineer-

ing simulations. Complex computer systems require computer scientists to work closely

with experts in application areas to insure that stringent mathematical models are accu-

rately implemented. The dependency graph and dynamic programming approaches could

be extended to data management in other contexts such as large-scale simulations.

In addition, visualization is becoming increasingly important in education contexts.

Volume rendering allows real-time manipulation of 3D objects in space. Visualization adds

an artistic aspect to the process to illustrate complex concepts to enhance understanding.

Today’s students are exposed to interactive games from an early age, making a multi-media

format appropriate for teaching. Familiarity with games is likely to make them a successful

platform for instilling a positive attitude toward subject areas which are difficult to teach in a

traditional setting. This is especially important for abstract concepts in science, technology,

engineering and math, or the STEM subject areas.

126

Bibliography

[1] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16:641–647, 1994.

[2] S. Adelson and L. Hodges. Stereoscopic ray-tracing. The Visual Computer,

10(3):127–144, Dec. 1993.

[3] K. Akeley. Reality Engine graphics. ACM SIGGRAPH Computer Graphics, pages

109–116, 1993.

[4] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. ACM

SIGGRAPH Eurographics, pages 3–10, 1987.

[5] J. Arvo and D. Kirk. Particle transport and image synthesis. ACM SIGGRAPH

Computer Graphics, 24(4):63–66, August 1990.

[6] M. Ashikhmin, S. Premoze, and P. Shirley. A microfacet-based BRDF generator.

ACM SIGGRAPH Computer Graphics, pages 65–74, July 2000.

[7] C. Aykanat, V. Isler, and B. Ozguc. An efficient parallel spatial subdivision al-

gorithm for parallel ray tracing complex scenes. First Bilkent Computer Graphics

Conference, ATARV-93, 26:883–890, 1994.

[8] R. E. Bellman. Dynamic Programming. Dover, 1957.

[9] J. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, 1975.

BIBLIOGRAPHY 127

[10] I. Bitter and A. Kaufman. A ray-slice-sweep volume rendering engine. SIG-

GRAPH/Eurographics Workshop on Graphics Hardware, pages 121–130, 1997.

[11] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware. ACM Symposium on Volume Visu-

alization, pages 91–98, 1994.

[12] V. Capoyleas, G. Rote, and G. Woeginger. Geometric clusterings. Canadian Con-

ference on Computer Geometry, pages 28–31, 1990.

[13] A. Chalmers. Practical Parallel Rendering. A K Peters, 2002.

[14] E. Chan, R. Ng, P. Sen, K. Proudfoot, and P. Hanrahan. Efficient partitioning of

fragment shaders for multipass rendering on programmable graphics hardware. SIG-

GRAPH/Eurographics Workshop on Graphics Hardware, pages 69–78, Sept. 2002.

[15] S. Chen, H. Rushmeier, G. Miller, and D. Turner. A progressive multi-pass method

for global illumination. ACM SIGGRAPH Computer Graphics, 25:165–174, July

1991.

[16] D. Cohen. Voxel traversal along a 3D line. pages 366–369. 1994.

[17] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. ACM SIGGRAPH

Computer Graphics, 18:137–145, July 1984.

[18] F. Dachille and A. Kaufman. GI-Cube: An architecture for volumetric global illumi-

nation and rendering. SIGGRAPH/Eurographics Workshop on Graphics Hardware,

pages 119–128, August 2000.

[19] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman. High-quality volume

rendering using texture mapping hardware. SIGGRAPH/Eurographics Workshop on

Graphics Hardware, pages 69–76, 1998.

BIBLIOGRAPHY 128

[20] M. de Boer, A. Gröpl, J. Hesser, and R. Manner. Latency and Hazard-Free Vol-

ume Memory Architecture for Direct Volume Rendering. SIGGRAPH/Eurographics

Workshop on Graphics Hardware, pages 109–118, 1996.

[21] D. E. DeMarle, S. G. Parker, M. Hartner, C. Gribble, and C. D. Hansen. Distributed

interactive ray tracing for large volume visualization. IEEE Symposium on Parallel

Visualization and Graphics, pages 87–94, 2003.

[22] M. Doggett, M. Meissner, and U. Kanus. A low-cost memory architecture for

pci-based interactive ray casting. SIGGRAPH/Eurographics Workshop on Graph-

ics Hardware, pages 7–13, 1999.

[23] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume rendering us-

ing hardware-accelerated pixel shading. SIGGRAPH/Eurographics Workshop on

Graphics Hardware, pages 9–16, Sept. 2001.

[24] R. Fajardo, T. Ryan, and J. Kappelman. Assessing the accuracy of high-resolution

X-ray computed tomography of primate trabecular bone by comparisons with histo-

logical sections. American Journal of Physical Anthropology, 118(1):1–10, 2001.

[25] J. Falby, M. Zyda, D.Pratt, and R. Mackey. NPSNET: Hierarchical data structures

for real-time three-dimensional visual simulation. IEEE Computer Graphics and

Applications, 17(1):65–69, 1993.

[26] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, and L. Ziantz. Paral-

lel structures and dynamic load balancing for adaptive finite element computation.

Applied Numerical Math, 26:241–263, 1998.

[27] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer graphics: Principles and

practice in C. Addison-Wesley Professional, 1995.

BIBLIOGRAPHY 129

[28] S. Frank and A. Kaufman. Dependency graph scheduling in a volumetric ray tracing

architecture. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages

127–135, Sept. 2002.

[29] S. Frank and A. Kaufman. Distributed volume rendering on a visualization cluster.

CAD/Graphics, pages 371–376, 2005.

[30] S. Frank and A. Kaufman. Dependency graph approach to load balancing distributed

volume visualization. The Visual Computer, 2009.

[31] S. Frank and A. Kaufman. Out-of-core and dynamic programming for data distribu-

tion on a volume visualization cluster. Computer Graphics Forum, 2009.

[32] G. Frieder, D. Gordon, and R. Reynolds. Back-to-front display of voxel-based ob-

jects. IEEE Computer Graphics and Applications, 5(1):52–60, 1985.

[33] A. Ghosh, P. Prabhu, A. Kaufman, and K. Mueller. Hardware assisted multichannel

volume rendering. Computer Graphics International, pages 2–7, July 2003.

[34] A. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and

Applications, 4(10):15–22, 1984.

[35] A. S. Glassner. Principles of Digital Image Synthesis, Volume Two. Morgan Kauf-

mann Series in Computer Graphics and Geometric Modeling, 1995.

[36] A. Glassner, ed. An Introductin to Ray Tracing. Morgan Kaufmann, 1989.

[37] S. M. Goldwasser, R. A. Reynolds, T. Bapty, D. Baraff, J. Summers, D. A. Talton,

and E. Walsh. Physician’s workstation with real-time performance. IEEE Computer

Graphics & Applications, 5(12):44–57, Dec. 1985.

[38] C. Goral, K. Torrance, D. Greenberg, and B. Battaile. Modelling the interaction of

light between diffuse surfaces. ACM SIGGRAPH Computer Graphics, 18:213–222,

July 1984.

BIBLIOGRAPHY 130

[39] D. Gordon and R. A. Reynolds. Image space shading of 3-dimensional objects.

Computer Vision, Graphics, and Image Processing, 29, pages 361–376, 1985.

[40] E. A. Haines and D. P. Greenberg. The light buffer: A ray tracer shadow testing

accelerator. IEEE Computer Graphics and Applications, 6(9):6–16, 1986.

[41] A. Heirich. Optimal automatic multi-pass shader partitioning by dynamic program-

ming. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 91–98,

2005.

[42] A. Heirich and L. Moll. Scalable distributed visualization using off-the-shelf com-

ponents. Symposium on Parallel and Large-Data Visualization and Graphics, pages

55–59, Oct. 1999.

[43] B. Hendrickson and T. Kolda. Graph partitioning models for parallel computing.

Parallel Computing, 26:1519–1534, 2000.

[44] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.

ACM/IEEE conference on Supercomputing, pages 435–446, 1995.

[45] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan. WireGL:

A scalable graphics system for clusters. ACM SIGGRAPH Computer Graphics,

pages 129–140, August 2001.

[46] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. Kirchner, and

J.Klosowski. Chromium: A stream-processing framework for interactive rendering

on clusters. ACM Transactions on Graphics, 21(3):693–702, 2002.

[47] W. Hunt, W. Mark, and G. Stoll. Fast kd-tree construction with an adaptive error-

bounded heuristic. IEEE Symposium on Interactive Ray Tracing, pages 81–88, 2006.

[48] H. Igehy, M. Eldridge, and P. Hanrahan. Parallel texture caching. pages 95–106,

1999.

BIBLIOGRAPHY 131

[49] D. Jackel and W. Strasser. Reconstructing solids from tomographic scans - the PAR-

CUM II system. Advances in Computer Graphics Hardware II, pages 209–227,

1988.

[50] H. W. Jensen. Global illumination using photon maps. Eurographics Rendering

Workshop, pages 21–30, 1996.

[51] H. W. Jensen. Realistic Image Synthesis using Photon Mapping. A K Peters, 2001.

[52] G. Karypis. Multi-constraint mesh partitioning for contact/impact computations. In

ACM/IEEE Conference on Supercomputing, page 56, 2003.

[53] G. Karypis and V. Kumar. Metis: unstructured graph partitioning and sparse matrix

ordering system. Technical Report, 1995.

[54] A. Kaufman and R. Bakalash. Memory and processing architecture for 3d voxel-

based imagery. Computer Graphics and Applications, 8(6):10–23, November 1988.

[55] A. Keller. Instant radiosity. ACM SIGGRAPH Computer Graphics, pages 49–56,

1997.

[56] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller. Curvature-based transfer

functions for direct volume rendering: Methods and applications. IEEE Visualiza-

tion, pages 513–520, 2003.

[57] J. Kniss, G. Kindlmann, and C. Hansen. Interactive Volume Rendering Using Multi-

Dimensional Transfer Functions and Direct Manipulation Widgets. IEEE Visualiza-

tion, pages 255–262, 2001.

[58] G. Knittel. VERVE - voxel engine for real-time visualization and examination. Com-

puter Graphics Forum, 12(3):37–48, 1993.

[59] G. Knittel and W. Strasser. VIZARD: Visualization accelerator for realtime dis-

play. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 139–147,

August 1997.

BIBLIOGRAPHY 132

[60] A. Knoll, I. Wald, S. Parker, and C. Hansen. Interactive isosurface ray tracing of

large octree volumes. pages 115–124, 2006.

[61] K. Kreeger and A. Kaufman. Interactive volume segmentation with the PAVLOV

architecture. Symposium on Parallel Visualization and Graphics, pages 61–68, Oc-

tober 1999.

[62] J. Krüger and R. Westermann. Acceleration Techniques for GPU-Based Volume

Rendering. IEEE Visualization, pages 287–292, 2003.

[63] P. Lacroute and M. Levoy. Fast volume rendering using a shearwarp factorization of

the viewing transform. ACM SIGGRAPH Computer Graphics, pages 451–457, July

1994.

[64] S. Lakare. Ray Based Exploration of Volumetric Data. PhD thesis, Stony Brook

University, 2004.

[65] S. Lakare and A. Kaufman. OpenVL: The open volume library. International Work-

shop on Volume Graphics, pages 69–78, July 2003.

[66] S. Lakare and A. Kaufman. Light weight space leaping using ray coherence. IEEE

Visualization, pages 19–26, 2004.

[67] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and

Applications, 8(5):29–37, May 1988.

[68] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics,

9(3):245–261, 1990.

[69] W. Li, K. Mueller, and A. Kaufman. Empty space skipping and occlusion clipping

for texture-based volume rendering. IEEE Visualization, pages 317–324, Oct. 2003.

[70] B. Lichtenbelt. Design of a high performance volume visualization system. SIG-

GRAPH/Eurographics Workshop on Graphics Hardware, pages 111–119, 1997.

BIBLIOGRAPHY 133

[71] S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich. Scalable interactive vol-

ume rendering using off-the-shelf components. Symposium on Parallel Visualization

and Graphics, pages 115–121, Oct. 2001.

[72] K. Ma and J. Painter. Parallel volume visualization on workstations. IEEE Computer

Graphics and Applications, 17:31–37, 1993.

[73] K. Ma and S. Parker. Massively parallel software rendering for visualizing large-

scale data sets. IEEE Computer Graphics and Applications, 21(4):72–83, 2001.

[74] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart mem-

ories: a modular reconfigurable architecture. ACM International Symposium on

Computer Architecture, pages 161–171, 2000.

[75] W. Mark, R. S. Glanville, K. Akeley, and M. Kilgard. Cg: A system for programming

graphics hardware in a C-like language. ACM Transactions on Graphics, 22(3):896–

907, July 2003.

[76] M. Meissner, U. Kanus, and W. Strasser. VIZARD II, a PCI-card for real-time vol-

ume rendering. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages

61–68, 1998.

[77] L. Moll, A. Heirich, and M. Shand. Sepia: scalable 3D compositing using PCI

pamette. IEEE Symposium on Field Programmable Custom Computing Machines,

pages 146–155, April 1999.

[78] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed rendering using image

composition. Computer Graphics, 26(2):231–240, 1992.

[79] B. Moloney, D. Weiskopf, T. Mller, and M. Strengert. Scalable sort-first parallel

direct volume rendering with dynamic load balancing. Eurographics Symposium on

Parallel Graphics and Visualization, pages 45–52, May 2007.

BIBLIOGRAPHY 134

[80] C. Morris and D. S. Ebert. Direct photographic volume rendering using multi-

dimensional color-based transfer functions. pages 115–124, 2002.

[81] Motorola Semiconductor Products Sector. Digital signal processors: Product speci-

fication. http : //ewww.motorola.com/webapp/, 2002.

[82] S. Muraki, E. Lum, K. Ma, M. Ogata, and X. Liu. A PC cluster system for simulta-

teous interactive volume modeling and visualization. IEEE Symposium on Parallel

and Large-Data Visualization and Graphics, pages 95–102, October 2003.

[83] H. Nishimura, T. Endo, T. Maruyama, J. Saito, and P. H. Christensen. Parallel ren-

dering and the quest for realism: The KILAUEA massively parallel ray tracer. SIG-

GRAPH Course Notes, pages 1–59, Aug. 2001.

[84] N.Max. Optical models for direct volume rendering. IEEE Transactions on Visual-

ization and Computer Graphics, pages 99–108, 1995.

[85] A. Olejniczak and F. Grine. Assessment of the accuracy of dental enamel thick-

ness measurements using micro-focal X-Ray computed tomography . The Anatom-

ical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology,

288A(3):263–275, 2006.

[86] M. Ozdal and C. Aykanat. Hypergraph models and algorithms for data-pattern-based

clustering. Data Mining and Knowledge Discovery, 9(1):29–57, 2004.

[87] J. Park, J. Chung, S. Hwang, B. Shin, and H. Park. Visible Korean Human: Its

techniques and applications. Clinical Anatomy, 19:216–224, 2006.

[88] S. Parker, W. Martin, P.-P. J. Sloan, P. S. Shirley, B. Smits, and C. Hansen. Interactive

ray tracing. ACM Symposium on Interactive 3D Graphics, pages 119–126, 1999.

[89] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley. Interactive ray

tracing for volume visualization. IEEE Transactions on Visualization and Computer

Graphics, 5(3):238–250, July 1999.

BIBLIOGRAPHY 135

[90] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray tracing

for isosurface rendering. IEEE Visualization, pages 233–238, 1998.

[91] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro real-

time ray-casting system. ACM SIGGRAPH Computer Graphics, pages 251–260,

August 1999.

[92] H. Pfister and A. Kaufman. Cube-4 - a scalable architecture for real-time volume

rendering. ACM Symposium on Volume Visualization, pages 47–54, 1996.

[93] H. Pfister, A. Kaufman, and T.-C. Chiueh. Cube-3: a real-time architecture for high-

resolution volume visualization. ACM Symposium on Volume Visualization, pages

75–82, 1994.

[94] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering complex scenes with

memory-coherent ray tracing. ACM SIGGRAPH Computer Graphics, 31:101–108,

August 1997.

[95] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on programmable graph-

ics hardware. ACM SIGGRAPH Computer Graphics, 21(3):703–712, July 2002.

[96] T. Purcell, C. Donner, M. Cammarano, H. Jensen, and P. Hanrahan. Photon map-

ping on programmable graphics hardware. SIGGRAPH/Eurographics Conference

on Graphics Hardware, pages 41–50, 2003.

[97] D. C. R. Yagel and A. Kaufman. Discrete ray tracing. IEEE Computer Graphics and

Applications, 12(5):19–28, 1992.

[98] E. Reinhard, A. Chalmers, and F. Jansen. Hybrid scheduling for parallel rendering

using coherent ray tasks. IEEE Parallel Visualization and Graphics Symposium,

pages 21–28, 1999.

[99] E. Reinhard, B. Smits, and C. Hansen. Dynamic acceleration structures for interac-

tive ray tracing. Eurographics Workshop on Rendering, pages 299–306, 2000.

BIBLIOGRAPHY 136

[100] A. Riffel, A. E. Lefohn, K. Vidimce, M. Leone, and J. D. Owens. Mio: fast multipass

partitioning via priority-based instruction scheduling. SIGGRAPH/Eurographics

Workshop on Graphics Hardware, pages 35–44, 2004.

[101] S. M. Rubin and J. T. Whitted. A 3-dimensional representation for fast rendering of

complex scenes. Computer Graphics, 14:110–116, July 1980.

[102] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-first and sort-last

parallel rendering with a cluster of PCs. SIGGRAPH/Eurographics Workshop on

Graphics Hardware, pages 97–108, August 2000.

[103] J. Schmittler, I. Wald, and P. Slusallek. Saarcor - a hardware architecture for ray

tracing. SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 27–36,

Sept 2002.

[104] K. B. Sebastian Fernandez and D. Greenberg. Local illumination environments for

direct lighting acceleration. Eurographics Workshop on Rendering, pages 7–14,

2002.

[105] L. Sobierajski and A. Kaufman. Volumetric ray tracing. Volume Visualization Sym-

posium, pages 11–19, October 1994.

[106] V. M. Spitzer, M. Ackerman, A. Sherzinger, and D. Whitlock. The Visible Human

Male: A technical report. Journal of the American Medical Informatics Association,

pages 118–130, 1996.

[107] T. Stark. Relative geologic time (age) volumes - relating every seismic sample to

a geologically reasonable horizon. The Leading Edge, pages 928–932, September

2004.

[108] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy, C. Caywood,

M. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A high-performance display

BIBLIOGRAPHY 137

subsystem for PC clusters. ACM SIGGRAPH Computer Graphics, pages 141–148,

August 2001.

[109] Toshiba Medical Systems. Aquilion one: Worlds first dynamic volume CT scanner.

http : //www.medical.toshiba.com/products/ct/aquilion one/, 2007.

[110] T. Ullmann, A. Schmidt, D. Beier, and B. Brüderlin. Adaptive progressive vertex

tracing in distributed environments. Eurographics Workshop on Rendering, pages

285–294, 2001.

[111] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,

Universitat des Saarlandes, January 2004.

[112] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker. Ray tracing animated scenes

using coherent grid traversal. ACM Transactions on Graphics, 25(3):485–493, 2006.

[113] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek. Interactive global illumi-

nation using fast ray tracing. Eurographics Workshop on Rendering, pages 15–24,

2002.

[114] I. Wald, T. J. Purcell, J. Schmittler, C. Benthin, and P. Slusallek. Realtime Ray

Tracing and its use for Interactive Global Illumination. Eurographics State of the

Art Reports, 2003.

[115] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive rendering with coherent

ray tracing. Computer Graphics Forum, 20(3):153–164, 2001.

[116] L. A. Westover. Splatting: a parallel, feed-forward volume rendering algorithm.

PhD thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,

1991.

[117] T. Whitted. An improved illumination model for shaded display. Communications

of the ACM, 23(6):343–349, 1980.

BIBLIOGRAPHY 138

[118] S. Woop, G. Marmitt, and P. Slusallek. B-kd trees for hardware accelerated ray

tracing of dynamic scenes. SIGGRAPH/Eurographics Workshop on Graphics Hard-

ware, pages 67–77, 2006.

[119] T. Yoo, U. Neumann, H. Fuchs, S. Pizer, T. Cullip, J. Rhoades, and R. Whitaker.

Direct visualization of volume data. IEEE Computer Graphics and Applications,

12(4):63–71, 1992.

