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Abstract of the Thesis

Visual Synthesis of Planar Parallel Manipulators using Constraint

Manifold Geometry

by

Sagar Anantwar

Master of Science

in

Mechanical Engeineering

Stony Brook University

2011

In this thesis, a visual approach for the dimensional synthesis of planar

parallel manipulators is discussed. The presented approach transforms the

kinematic constraint problem to a geometric constraint manifold manipulation

problem.

For planar mechanisms, the kinematic constraint equations represent the

limits for the motion of the links in the Cartesian space. The use of Quater-

nions is made in designing of this motion. The problem of motion of planar

mechanisms is translated into a problem of designing of a smooth rational

curve in the Quaternion space (Image space).

An intuitive graphical design tool has been developed. The design tool

facilitates the user for synthesis of planar parallel manipulators. The design

problem has been transformed into a problem of manipulation of surfaces so as

to contain the curve in the volume between the surfaces, yielding the desired

mechanism.
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Chapter 1

Introduction and Background

This thesis deals with the problem of dimensional synthesis of planar parallel

manipulators via use of constraint manifold geometry. In this introductory

chapter a general overview of the existing work in the area of dimensional

synthesis of planar parallel manipulator, main contributions of this thesis,

different optimization methods for synthesis of parallel manipulators and the

issue of singularity are presented.

Mechanisms are basically classified into three kinds based on their purposes:

1. function generation, 2. path generation and 3. motion generation. This

thesis is concerned with the dimensional synthesis of planar parallel manipu-

lators for motion generation. A motion generation mechanism is a mechanism

which guides a rigid body through the required positions via a rational mo-

tion. Rational motions are defined as a ratio of two polynomial functions and

are compatible with the industry standard Non-Uniform Rational B-splines
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(NURBS) based CAD/CAM systems.

A parallel manipulator consists of a moving platform that is connected to a

base by several legs. Another definition is given by (Merlet 2006 [1]): a gener-

alized parallel manipulator is a closed-loop kinematic chain mechanism whose

end-effector is linked to the base by several independent kinematic chains.

Although it was Dr. Eric Gough [66] who invented the first variable-length

octahedral hexapod in England in the 1950’s, his parallel mechanism, also

called tire-testing machine did not draw much public attention. Then in 1965,

Stewart [67] presented his paper on the design of a flight simulator based

upon a 6-DOF parallel platform. This work had a great impact on subsequent

developments in the field of parallel mechanisms. Since then, many researchers

have done much work on parallel mechanisms and both theoretical analyses

and practical applications have been studied.

In the past two decades significant amount of research has been done in

this field, evident from the application of well-known curve and surface design

algorithms from computer aided geometric design(CAGD) to the field of the-

oretical kinematics for the purpose of developing rational Bezier and B-Spline

motions of rigid bodies. The idea behind such a synergy is that the prob-

lem of designing rational curves in a higher dimensional projective space via a

special mapping. By choosing the quaternion representation of the displace-

ment and orientation, the problem is further reduced to designing curves in

the space of quaternions. Rational motions, with applications spanning across

areas such as motion animation in computer graphics, task specification in
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mechanism synthesis, and virtual reality systems as well as Cartesian motion

planning in robotics, are an attractive proposition since they integrate well

the industry standard nonuniform rational B-spline(NURBS) based computer

aided design/computer aided manufacturing(CAD/CAM) system. Further-

more, from a computational perspective they can easily exploit fast and stable

algorithms from CAGD.

Theory of mechanism synthesis is well-developed (see Sandor and Erd-

man [40], Suh and Radcliffe [41], and McCarthy [42]), and there has been a

great deal of academic research in the development of software systems for

the synthesis of mechanisms (KINSYN III from Rubel and Kaufamn [27],

LINCAGES from Erdman and colleagues [28, 29], Kihonge et al. [30], Spades

from Larochelle [31], Perez and McCarthy [35], Su and McCarthy [36], Syn-

thetica from Su et al. [37]). In the commercial domain, SyMech [38] and

WATT [39] are two well-known software systems for planar mechanisms de-

sign.

Researchers have also done work in the direction of synthesis of parallel

mechanisms considering the aspects of design such as optimization and sin-

gularity free work space. The work presented by Tsai and Kim [72] presents

the designing of a 3-DOF 3-PRRR type Cartesian Parallel Manipulator. For

designing of the manipulator they make use of the inverse kinematics and

forward kinematics relations. Using the inverse kinematics relations, all the

joint angles and the position vector for the second link are derived. Then, as

each limb has a finite reach, the relations derived for the position vector are
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subjected to constraints using the link length parameters. An this constraint

equation is used for designing of the parallel manipulator. A similar kind of

vector approach has been used by Tsai and Kim [73] for kinematic synthesis

of 3-DOF 3-RPS parallel manipulators.

For designing of 3-RPS type parallel manipulators the approach presented

by Rao N. and Rao K. [75] makes use of a hybrid design optimization method.

The approach uses the vector equations used by Tsai and Kim [73], and the

architectural parameters of the manipulator are determined by considering

the design problem as an optimization problem. The hybrid method first car-

ries out the global search for the solution using genetic algorithm and then

applies the simplex method for the local search. While determining the di-

mensions of the fixed platform, the physical constraints such as limitation on

the range of motion of the spherical joints are considered. The work presented

by Arsenault [68] makes use of geometrical method for determination of the

workspace and the optimization is done using genetic algorithms as they have

good converging property.

The general approach of the work presented is closely related to the kine-

matic mapping approach for dimensional synthesis of planar and spherical

mechanisms pioneered by Ravani and Roth [5]. Their work was followed by

Bodduluri and McCarthy [15], Bodduluri [16], and Larochelle [17]. Their ap-

proach involved minimizing the distance error between the given positions and

the image curve of the chain. This resulted in an approximate motion syn-

thesis. Venkataramanujam and Larochelle [20] used parametrized constraint

4



manifolds and employed non-linear optimization to give numerical methods

for approximate motion synthesis of open and closed chains.

To study the dimensional synthesis problem from the perspective of con-

strained motion interpolation, Jin and Ge [53] and Purwar and Jin [54] have

studied the problem of motion interpolation under kinematic constraints for

planar and spherical 6R closed chains. By using quaternions or dual quater-

nions and kinematic mapping approach, the problem of constrained motion

interpolation was transformed into a problem of designing a rational curve

constrained to satisfy geometry of the constraint manifold. Starting with an

initial unconstrained curve, the curve was manipulated using an iterative nu-

merical method until it fits inside the constraint manifold. The current work

investigates the inverse problem, that is, to manipulate the constraint man-

ifold while keeping the given rational curve fixed for dimensional synthesis.

Jun et al. [25] initially designed and developed a system for the dimensional

synthesis of planar 6R mechanisms, this system was then further developed

to account for planar parallel manipulators by Purwar and Gupta [55]. This

system was limited to the use of RRR and RPR configurations only, this work

is an extension of that to account for all the different configurations.

The design method treats a planar parallel manipulator as an assembly of

three open chains connected to a moving platform. Each open chain imposes

kinematic constraints that limit the positions and orientations of the object

connected to the end link. We use the algebraic form of the constraint manifold

for the planar open chains. Thus, the kinematic constraints are transformed
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into geometric constraints, and the given rational motion is transformed into

a rational curve in the image space. This way, the problem reduces to finding

the constraint manifold that accommodates the given rational curve. These

constraint manifolds can be manipulated so as to change their location, orien-

tation, and the mean curvature. Algebraically, the kinematic constraints are

derived in the inequality form, where the limits of the inequalities are functions

of link lengths, while the constraint functions themselves incorporate param-

eters that describe the location and orientation of fixed and moving frames.

In the end, we design open chains that simultaneously satisfy the kinematic

constraints and the motion requirements. A visual interpretation of this ap-

proach is that, we find the smallest possible pair of constraint manifolds that

will contain the given image curve entirely in the volume between them.

The work presented can be used for synthesis of mechanisms and for tra-

jectory verification. For trajectory verification, the designer can just input the

mechanism parameters available and the desired motion of the moving plat-

form, and upon inputting of these parameters, if the interpolated image curve

is fully contained in the volume between the pair of constraint manifolds for

each leg configuration, it can be validated that the mechanism will be able to

perform the desired task.

In addition to the synthesis of mechanisms optimization is a very impor-

tant part while synthesis of mechanisms. Many researchers have used different

methods. Gosselin [69] presented a non-linear optimization method by iden-

tification of relevant design parameters and objective functions for parasitic
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motion minimization of spatial parallel manipulators. Similar kind of opti-

mization technique was presented by Ceccarelli, Carbone and Ottaviano [70],

where a function was derived based on the desired parameters and the function

was optimized subjected to some constraints.

Mechanism consists of some spaces in its workspace where the mechanism

does not perform naturally, these areas are called as singularity spaces. In

the dimensional synthesis of planar parallel mechanisms, singularity of mech-

anisms [58] has a large effect on the synthesis of mechanisms. A singular

configuration is a special configuration in which the parallel mechanism gains

an uncontrollable freedom. For parallel manipulators, there are different sin-

gularity conditions based on the analysis of the Jacobian matrix that is formed

from the line of action of the leg connectors [63].

There are three types of singularities as stated by both Tsai [62] and Mer-

let [1] based on the Jacobian Matrix analysis: the inverse kinematic singularity,

where the manipulator loses one or more degrees of freedom; the direct kine-

matic singularity, where the platform gains additional degree(s) of freedom;

and the combined singularities. Other researchers [65] found some more kind

of singularities called architecture singularities, where the parallel manipulator

configuration exhibits a continuous motion with all actuators fixed; formula-

tion singularity and configuration singularity. In this thesis we do not deal with

the problem of singularity, and the focus has been on the design problem.

The rest of the thesis is organized as follows. Chapter 2 deals with kine-

matic constraint equations and manifolds of planar parallel manipulator. Chap-

7



Figure 1.1: A 3-RRR planar parallel manipulator. Source: Institute of Mecha-
tronic systems, Liebniz Universität Hannover

ter 3 is a guide to use the software tool developed for dimensional synthesis.

The final chapter summarizes the work of this research and discusses some of

the limitations of this work.
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Chapter 2

Constraint Manifold for Planar

Parallel Manipulator

2.1 Introduction

This chapter deals with the formulation of the kinematic constraints of pla-

nar parallel manipulators using quaternion based representation found in Mc-

Carthy [7] and Ge [56].

The organization of the chapter is as follows. Section 2.2 explains the

classification of different open chains used as the legs for planar parallel ma-

nipulators, section 2.3 explains planar displacements and planar quaternions,

and section 2.4 explains the derivation and kinematic constraint equation and

manifolds for the different types of planar open chains.
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2.2 Classification of Open Chains used as Legs

in a 3-Legged Planar Parallel Manipula-

tors

A three legged parallel manipulator is a 3 DOF closed loop kinematic chain

whose end effectors are linked to a base platform by three independent 3 DOF

open loop kinematic chains. Each open loop chain has one active joint and

two passive joints. Each chain consists of two types of joints Revolute(R) and

Prismatic(P) [23].

The possible combinations of Revolute(R) and Prismatic(P) joints in an

3-legged open loop chain are:

RRR, RPR, RRP, PRR, PRP, PPR, RPP

The PPP chain is not useful and must be excluded as it gives rise to only

translation with no change in orientation. Thus, there are seven possible

useful open loop kinematic chains.

For a 3 DOF open chain mechanism, there exists one active joint (actuated)

and two passive joints. This active joint is represented with an underscore.

There are 21 3-DOF legs in total (Table 2.2) [58]. The three configurations

represented with a cross mark (marked with X) do not yield 3-DOF planar

parallel manipulators (they contain only one controllable DOF). Also, there

are eight pairs of symmetric legs, where each pair leads to two kinematically

equivalent planar parallel manipulators. Therefore, these eight legs are elimi-
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Figure 2.1: All possible useful 3 DOF mechanisms
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Figure 2.2: A Planar Parallel Manipulator

nated (marked with ˜), which leaves us with only ten configurations.
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Table 2.1: All possible 3-DOF planar legs

RRR RPR RPPX PRR PRP PPR RRP

RRR RPR RPP PRR PRPX PPR˜ RRP˜

RRR˜ RPR˜ RPP˜ PRR˜ PRP˜ PPRX RRP˜

2.3 Planar Displacements and Planar Quater-

nions

A planar displacement can be represented by a planar quaternion (see Bot-

tema and Roth [6] and McCarthy [7]). Planar quaternions have been used for

designing planar open chains (Ravani and Roth [4], Larochelle [60], Murray et

al. [24], Perez and McCarthy [59]).

Figure 2.3: A planar displacement.

For a planar displacement shown in Fig. (2.3), let d1, d2 denote the co-

ordinates of the origin of the moving frame M in the fixed frame F and α

12



denote the rotation angle of M relative to F. Then a planar displacement can

be represented by a planar quaternion, Z = Z1εi + Z2εj + Z3εk + Z4, where

(i, j, k, 1) form the quaternion basis and ε is the dual unit with the property

ε2 = 0. The components of the planar quaternion, Z = (Z1, Z2, Z3, Z4), are

given by

Z1 = (d1/2) cos(α/2) + (d2/2) sin(α/2),

Z2 = −(d1/2) sin(α/2) + (d2/2) cos(α/2),

Z3 = sin(α/2),

Z4 = cos(α/2).

(2.1)

These four components can be identified as co-ordinates of a point in four

dimensional space. The point Z is called the image point of a planar displace-

ment. The set of image points that represent all planar displacements is called

the image space of planar displacements and is denoted as Σp. In view of

Eq.(2.1), the coordinates of an image point must satisfy the equation:

Z2
3 + Z2

4 = 1. (2.2)

The above equation may be interpreted as defining a hyper-circular cylinder

in four dimensions.

If the point x in R
2 is identified with x = yiε− xiε+ k, then the result of

planar displacement of x is obtained by

X = ZxZ∗, (2.3)

13



where Z = Z4 − Z1εi− Z2εj− Z3k is the conjugate of Z.

We can use homogeneous transform matrix to represent Eq.(2.3)

 X

1

 = [A]

 x

1

 , (2.4)

where

[A] =
1

Z2
3 + Z2

4


Z2

4 − Z2
3 −2Z3Z4 2(Z1Z4 − Z2Z3)

2Z3Z4 Z2
4 − Z2

3 2(Z1Z3 + Z2Z4)

0 0 Z2
3 + Z2

4

 . (2.5)

Note that when Zi (i = 1, 2, 3, 4) is replaced by wZi, where w is a non-zero

scalar, the matrix [A] is unchanged. From this perspective, the four compo-

nents of a planar quaternion can also be considered as a set of homogeneous

coordinates for a planar displacement.

Quaternion algebra is also used for composing two successive planar dis-

placements. Let Z0,Z1 denote two planar displacements. The composition of

two planar displacements Z1 followed by Z0 is given by the quaternion product

Z0Z1.
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2.4 Kinematic Constraint Equations and Man-

ifolds of Planar Open Chains

In this section, the kinematic constraint equations for all the seven planar

open chain configurations (RRR, RPR, RRP, PPR, PRR, PRP, RPP) have

been derived, and their standard form along with the constraint manifolds

representing these kinematic constraint equations have been shown.

Originally these equations were derived by Aditya ( see Jin[57], and Pur-

war, Gupta[55]), but except for configurations RRR, and RPR rest of the

cases were not in a form that could be used for geometric representation.

Later, Ping ([61]), re-derived the remaining five cases and implemented them

in Mathematica.

2.4.1 Planar RRR Open Chain

Consider a planar RRR open chain as shown in Fig. 2.4. The length of the

first link is a, the length of the second link is b and θ, φ, ψ are joint angles for

three revolute joints respectively. In the figure, F and M mark the fixed and

the moving frames, respectively. The fixed pivot is located at (x, y), while the

moving frame is located at a distance of h from the end pivot. The moving

frame is assumed to be tilted by angle of α from the line joining the end pivot

and the origin of the moving frame. When the fixed and moving frames are

located at A and B respectively the parametrized equation of the constraint

manifold Z(θ, φ, ψ) of a RRR robot open chain is obtained as follows:
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Figure 2.4: A planar RRR open chain

Z(θ, φ, ψ) = Z(θ)X(a)Z(φ)X(b)Z(ψ). (2.6)

The coordinates of Z(θ, φ, ψ) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 = a/2 cos (θ − φ− ψ)/2 + b/2 cos (θ + φ− ψ)/2, (2.7)

Z2 = a/2 sin (θ − φ− ψ)/2 + b/2 sin (θ + φ− ψ)/2,

Z3 = sin (θ + φ+ ψ)/2,

Z4 = cos (θ + φ+ ψ)/2.

From Eq.(2.7), it can be seen that the coordinates, Zi, satisfy the following

16



equations:

Z2
1 + Z2

2 = a2/4 + b2/4 + (ab/2) cos(φ). (2.8)

Z2
3 + Z2

4 = 1. (2.9)

Since the range of cos(φ) is [-1 1], Eq.(2.8) can be reduced to:

(a− b)2/4 ≤ Z2
1 + Z2

2 ≤ (a+ b)2/4. (2.10)

The variables θ and ψ can be eliminated from Eq.(2.7) to yield the following

equation:

4Z2
1 + 4Z2

2 − Z2
3(a2 + b2 + 2ab cosφ)− Z2

4(a2 + b2 + 2ab cosφ) = 0 (2.11)

a2 + b2 + 2ab cosφ is the square of the distance between the base joint and

third joint. Let it be denoted by R. Thus the equation becomes:

Z2
1 + Z2

2 −
R2

4
Z2

3 −
R2

4
Z2

4 = 0 (2.12)

Let the points of R4 be denoted x=(x,y,z,w) so the above equation can be

written as:

x2 + y2 − R2

4
z2 − R2

4
w2 = 0 (2.13)
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This can be written in the quadratic form as:

xT [Q]x = 0 (2.14)

with the coefficient matrix as:

Q =



1 0 0 0

0 1 0 0

0 0 −R2

4
0

0 0 0 −R2

4


(2.15)

As shown in the Figure 2.4 a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.16)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (x/2, y/2, 0, 1), (2.17)

[H] = (h/2 cos (α)/2,−h/2 sin (α)/2, sin (α)/2, cos (α)/2)

Z′(θ, φ, b)[Q′]Z(θ, φ, b) = 0 (2.18)
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Simplifying the above equation we get:

which gives the following equation:

(Z2
4 − Z2

3)(σ1 + σ2) + 2Z3Z4(τ2 − τ1) + Z1Z3 cosα (2.19)

−Z1Z4sinα− Z2Z3sinα− Z2Z4cosα = 0 (2.20)

Simplifying Eq.(2.19)

F (Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, and (2.21)

σ1 = (y + h sinα)/2, τ1 = (x+ h cosα)/2,

σ2 = (−x+ h cosα)/2, τ2 = (y − h sinα)/2.
(2.22)

(a− b)2

4
≤ F (Z1, Z2, Z3, Z4) ≤

(a+ b)2

4
, (2.23)

Eq.(2.23) characterize the kinematic constraints of a planar RRR open

chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar RRR closed chains is given

by a pair of concentric and co-oriented sheared hyperboloid and for the a

mechanism to pass through a given motion, the image curve would have to be

contained between the constraint manifolds.

Using the projective property of the planar quaternion, to visualize the

hyper-geometric shape described by Eq.(2.23), we observe its intersection

19



with the hyperplane Z4 = 1; in the other words, we project Eq.(2.23) onto

hyperplaneZ4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) =
(z1 − σ1z3 − τ1)2 + (z2 − σ2z3 − τ2)2

z23 + 1
(2.24)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.22).

The volume field described by Eq.(2.24) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [L2
min/4, L

2
max/4], and to be standard, we also reor-

ganize Eq.(2.24) to Eq.(2.25)

(z1 − σ1z3 − τ1)2

c
+

(z2 − σ2z3 − τ2)2

c
− z23 = 1 (2.25)

This is a typical sheared a circular hyperboloid in the projective (z1, z2, z3)

space. See Table 2.2. The hyperboloid centralizes at (τ1, τ2, 0). The cen-

tral axis is z1−τ1
σ1

= z2−τ2
σ2

= z3
1

, so that the hyperboloid orients along the

vector(σ1, σ2, 1). It is evident to tell that the center and the orientation are

decided by the location of the fixed pivot, the length of the floating link and

the relative angle of M to the floating link. Besides, the intersection circle

of the hyperboloid with the plane z3 = 0 has a radius, r, equal to
√
c, which

determines the size of the hyperboloid; the greater is c, the larger is the size of

the hyperboloid. While the value of F (z1, z2, z3, 1) is varying from the lower

boundary to the ceiling, except that the size of the hyperbolic manifold in-
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Table 2.2: Parameters for the projective sheared hyperboloid presented by
equation (2.25)

Geometric Features Constraint Parameters
Center (τ1, τ2, 0)

Orientation (σ1, σ2, 1)
Intersected Circle Lmin

2
≤ r =

√
c ≤ Lmax

2

creases correspondingly, the center and the orientation keep stationary.

The implicit surfaces is a set of concentric and co oriented sheared pro-

jective hyperboloid. The hyperboloid set occupies the space bounded by an

interior and an exterior hyperboloid in the projective image. Eq.(2.25). A rep-

resentation of the pair of sheared hyperboloids implemented in Mathematica

are shown in Fig. (2.5).

2.4.1.1 Inverse Kinematics for Planar RRR Open Chain

The inverse kinematics problem is stated: Given the end-effector pose {X, Y, δ}T ,

calculate the three actuated joint (R or P) values [71]. In the case of an RRR

open chain, the joint variables to be calculated are θ, φ and ψ. The notations

used in the inverse kinematic relations are given below:

Ax, Ay are the x−coordinate and y−coordinate of point A.

Bx, By are the x−coordinate and y−coordinate of point B.

a, b, and h are the link lengths of first link, second link and coupler link.
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Figure 2.5: A pair of sheared hyperboloids representing a pair of constraint
manifolds for an RRR open chain.

Bx = X − h cos(δ + α),

By = Y − h sin(δ + α)
(2.26)

The joint angles can be calculated using the following relations:

θ = 2 tan−1
(
−F ±

√
E2 + F 2 −G2

G− E

)
(2.27)
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φ = tan−1
(
By − Ay − a sin(θ)

Bx − Ax − a cos(θ)

)
− θ (2.28)

ψ = δ − α− θ − φ (2.29)

Where, the values of E,F,and G are given by the following relations:

E = 2(Bx − Ax)a,

F = 2(By − Ay)a,

G = b2 − a2 − (Bx − Ax)2 − (By − Ay)2.

(2.30)

2.4.2 Planar RPR Open Chain
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Figure 2.6: A planar RPR open chain
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Consider a planar RPR open chain as shown in Fig. 2.6. The length of the

first link is b and θ and φ are joint angles for two revolute joints respectively.

In the figure, F and M mark the fixed and the moving frames, respectively.

The fixed pivot is located at (x, y), while the moving frame is located at a

distance of h from the end pivot. The moving frame is assumed to be tilted

by angle of α from the line joining the end pivot and the origin of the moving

frame. When the fixed and moving frames are located at A and B respectively

the parametrized equation of the constraint manifold Z(θ, b, φ) of a RPR open

chain is obtained as follows:

Z(θ, b, φ) = Z(θ)X(b)Z(φ). (2.31)

The coordinates of Z(θ, φ, ψ) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 = b/2 cos (θ − φ)/2, (2.32)

Z2 = b/2 sin (θ − φ)/2,

Z3 = sin (θ + φ)/2,

Z4 = cos (θ + φ)/2.

From Eq.(2.32), it can be seen that the coordinates, Zi, satisfy the following

equations:

Z2
1 + Z2

2 = b2/4 (2.33)
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Z2
3 + Z2

4 = 1. (2.34)

Eq.(2.33) we get:

b21/4 ≤ Z2
1 + Z2

2 = b2/4 ≤ b22/4. (2.35)

This can be written in the quadratic form as:

xT [Q]x = 0 (2.36)

with the coefficient matrix as:

Q =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


(2.37)

As shown in the Fig. (2.6) a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.38)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.
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[G] = (x/2, y/2, 0, 1), (2.39)

[H] = (h/2 cos (α)/2,−h/2 sin (α)/2, sin (α)/2, cos (α)/2)

Z′(θ, φ, b)[Q′]Z(θ, φ, b) = 0 (2.40)

Simplifying the above equation we get:

(Z2
4 − Z2

3)(σ1 + σ2) + 2Z3Z4(τ2 − τ1) + Z1Z3 cosα (2.41)

−Z1Z4sinα− Z2Z3sinα− Z2Z4cosα = b2/4 (2.42)

Simplifying Eq.(2.41)

F (Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, and (2.43)

σ1 = (y + h sinα)/2, τ1 = (x+ h cosα)/2,

σ2 = (−x+ h cosα)/2, τ2 = (y − h sinα)/2.
(2.44)

b21
4
≤ F (Z1, Z2, Z3, Z4) ≤

b22
4
, (2.45)

Eq.(2.45) characterize the kinematic constraints of a planar RPR open
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chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar RPR closed chains is given

by a pair of concentric and co-oriented sheared hyperboloids and for the a

mechanism to pass through a given motion, the image curve would have to be

contained between the constraint manifolds.

Using the projective property of the planar quaternion, to visualize the

hyper-geometric shape described by Eq.(2.45), we observe its intersection

with the hyperplane Z4 = 1; in the other words, we project Eq.(2.45) onto

hyperplaneZ4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) =
(z1 − σ1z3 − τ1)2 + (z2 − σ2z3 − τ2)2

z23 + 1
(2.46)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.44).

The volume field described by Eq.(2.46) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [L2
min/4, L

2
max/4], and to be standard, we also reor-

ganize Eq.(2.46)

(z1 − σ1z3 − τ1)2

c
+

(z2 − σ2z3 − τ2)2

c
− z23 = 1 (2.47)

This is a typical sheared a circular hyperboloid in the projective (z1, z2, z3)

space. See Table (2.3). The hyperboloid centralizes at (τ1, τ2, 0). The cen-

tral axis is z1−τ1
σ1

= z2−τ2
σ2

= z3
1

, so that the hyperboloid orients along the
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vector(σ1, σ2, 1). It is evident to tell that the center and the orientation are

decided by the location of the fixed pivot, the length of the floating link and

the relative angle of M to the floating link. Besides, the intersection circle

of the hyperboloid with the plane z3 = 0 has a radius, r, equal to
√
c, which

determines the size of the hyperboloid; the greater is c, the larger is the size

of the hyperboloid. A representation of the pair of sheared hyperboloids im-

plemented in Mathematica are shown in Fig. (2.7).

Table 2.3: Parameters for the projective sheared hyperboloid presented by
Eq.(2.47)

Geometric Features Constraint Parameters
Center (τ1, τ2, 0)

Orientation (σ1, σ2, 1)
Intersected Circle Lmin

2
≤ r =

√
c ≤ Lmax

2

2.4.2.1 Inverse Kinematics for Planar RPR Open Chain

The inverse kinematics problem is stated: Given the end-effector pose {X, Y, δ}T ,

calculate the three actuated joint (R or P) values [71]. In the case of an RPR

open chain, the joint variables to be calculated are θ, b and φ. The notations

used in the inverse kinematic relations are the same as used for the RRR open

chain. The joint angles can be calculated using the following relations:

θ = 2 tan−1
(
−F ±

√
E2 + F 2 −G2

G− E

)
(2.48)
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Figure 2.7: A pair of sheared hyperboloids representing a pair of constraint
manifolds for an RPR open chain.

b =
Bx − Ax
cos(θ)

(2.49)

φ = δ − α− θ (2.50)
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Where, the values of E,F,and G are given by the following relations:

E = 2(Bx − Ax)b,

F = 2(By − Ay)b,

G = −b2 − (Bx − Ax)2 − (By − Ay)2.

(2.51)

2.4.3 Planar RRP Open Chain
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Figure 2.8: A planar RRP open chain

Consider a planar RRP open chain as shown in Fig. (2.8). The length of

the first link is a, length of the second link is b and θ and φ are joint angles for

two revolute joints respectively. In the figure, F and M mark the fixed and

the moving frames, respectively. The fixed pivot is located at (x, y), while the

moving frame is located at a distance of h from the end of link b. The moving
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frame is assumed to be tilted by angle of α from the line joining the end pivot

and the origin of the moving frame. When the fixed and moving frames are

located at A and B respectively the parametrized equation of the constraint

manifold Z(θ, φ, b) of a RRP open chain is obtained as follows:

Z(θ, b, φ) = Z(θ)X(a)Z(φ)X(b). (2.52)

The coordinates of Z(θ, φ, b) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 = b/2 cos (θ + φ)/2 + a/2 cos (θ − φ)/2, (2.53)

Z2 = b/2 sin (θ + φ)/2 + a/2 sin (θ − φ)/2,

Z3 = sin (θ + φ)/2,

Z4 = cos (θ + φ)/2.

From Eq.(2.53), it can be seen that the coordinates, Zi, satisfy the following

equations:

Z1Z4 + Z2Z3 = (b/2) + (a/2) cos(φ) ∈ [ b1−a
2
, b2+a

2
] (2.54)

Z2
3 + Z2

4 = 1. (2.55)

From Eq.(2.54) we get the quadratic form as:

b1 − a
2
≤ xT [Q]x ≤ b2 + a

2
. (2.56)
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with the coefficient matrix as:

Q =



0 0 0 1/2

0 0 1/2 0

0 1/2 0 0

1/2 0 0 0


(2.57)

As shown in the Fig. (2.8) a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.58)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (x/2, y/2, 0, 1), (2.59)

[H] = (h/2 cos (α)/2,−h/2 sin (α)/2, sin (α)/2, cos (α)/2)

Z′(θ, φ, b)[Q′]Z(θ, φ, b) ∈ [
b1 − a

2
,
b2 + a

2
] (2.60)

Simplifying the above equation we get:

F (Z1, Z2, Z3, Z4) = (Z1− σ1Z3− τ1Z4)Z4 + (Z2− σ2Z3− τ2Z4)Z3, and (2.61)
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σ1 = (y + h sinα)/2, τ1 = (x+ h cosα)/2,

σ2 = (−x+ h cosα)/2, τ2 = (y − h sinα)/2.
(2.62)

b1 − a
2
≤ F (Z1, Z2, Z3, Z4) ≤

b2 + a

2
, (2.63)

Eq.(2.63) characterize the kinematic constraints of a planar RRP open

chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar RRP closed chains is given

by a pair of hyperbolic paraboloids and for the a mechanism to pass through

a given motion, the image curve would have to be contained in the volume

between the constraint manifolds.

Using the projective property of the planar quaternion, to visualize the

hyper-geometric shape described by Eq.(2.63), we observe its intersection with

the hyperplane Z4 = 1; in the other words, we project Eq.(2.63) onto hyper-

plane Z4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) = (Z1 − σ1Z3 − τ1) + (Z2 − σ2Z3 − τ2)Z3 (2.64)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.62).

The volume field described by Eq.(2.64) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [Lmin, Lmax], (Lmin = b−a
2

and Lmax = 2b+a
2

), and

to be standard, we also reorganize Eq.(2.64);

33



Z1 + (Z2 − σ2Z3 − τ2 − σ1)Z3 − τ1 = c (2.65)

Reformulating the above equation we get the standard form as:

σ2(Z
2
3 −

Z3

σ2
(Z2 − (τ2 + σ1))) = Z1 − (τ1 + c) (2.66)

This is a typical hyperbolic paraboloid in the projective (z1, z2, z3) space.

See Table (2.4). The saddle point of the hyperbolic paraboloid is located at

(τ1, τ2 + σ1, 0). The central axis is (1, 0, 0), so that the hyperbolic paraboloid

orients along the x− direction. It is evident to tell that the location of the sad-

dle point and the mean curvature are decided by the location of the fixed pivot,

the length of the floating link and the relative angle of M to the floating link.

A representation of the pair of sheared hyperbolic paraboloids implemented in

Mathematica are shown in Fig. (2.9).

As it can be referred from the parameters extracted from the standard

equation of a hyperbolic paraboloid, it does not yield all the geometric param-

eters independently. Hence, in addition to the existing geometric parameters

of location of the saddle point and the orientation, we need to define an addi-

tion geometric parameter. For a hyperbolic paraboloid the mean curvature of

the surfaces at the saddle point yields σ2. The mean curvature (H) is derived

as follows:

H(u, v) =
K1(u, v) +K2(u, v)

2
, (2.67)
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where K1(u, v) and K2(u, v) are defined as principal curvatures of the surface

at parameters (u,v). From the above Eq.(2.67), the differential form is;

H =
1

2
(
EN − 2MF +GL

EG− F 2
), (2.68)

where E,F,G are the coefficients of the first fundamental form and L,M,N

are the coefficients of the second fundamental form.

From the above differential Eq.(2.68), we get:

H = σ2. (2.69)

Table 2.4: Parameters for the projective sheared hyperbolic paraboloid pre-
sented by Eq.(2.66)

Geometric Features Constraint Parameters
Saddle point (τ1, τ2 + σ1, 0)
Orientation (1, 0, 0)

Mean curvature σ2
Distance between surfaces Lmin ≤ c ≤ Lmax

2.4.3.1 Inverse Kinematics for Planar RRP Open Chain

The inverse kinematics problem is stated: Given the end-effector pose {X, Y, δ}T ,

calculate the three actuated joint (R or P) values [71]. In the case of an RRP

open chain, the joint variables to be calculated are θ, b and φ. The notations

used in the inverse kinematic relations are the same as used for the RRR open
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Figure 2.9: A pair of hyperbolic paraboloids representing a pair of constraint
manifolds for a RRP open chain.

chain. The joint angles can be calculated using the following relations:

θ = 2 tan−1
(
−F ±

√
E2 + F 2 −G2

G− E

)
(2.70)

b =
Bx − Ax − a cos(θ)

cos(δ − α)
(2.71)
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φ = δ − α− θ (2.72)

Where, the values of E,F,and G are given by the following relations:

E = a sin(δ − α),

F = −a cos(δ − α),

G = (Bx − Ay) cos(δ − α) + Ax −Bx.

(2.73)

2.4.4 Planar PRR Open Chain
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Figure 2.10: A planar PRR open chain

Consider a planar PRR open chain as shown in Fig. (2.10). The length of

the first link is a, length of the second link is b and θ and φ are joint angles for

two revolute joints respectively. In the figure, F and M mark the fixed and
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the moving frames, respectively. The fixed pivot is located at (x, y), while the

moving frame is located at a distance of h from the end revolute joint. The

moving frame is assumed to be tilted by angle of α from the line joining the

end pivot and the origin of the moving frame. When the fixed and moving

frames are located at A and B respectively the parametrized equation of the

constraint manifold Z(a, θ, φ) of a PRR open chain is obtained as follows:

Z(a, θ, φ) = X(a)Z(θ)X(b)Z(φ). (2.74)

The coordinates of Z(a, θ, φ) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 = a/2 cos (θ + φ)/2 + b/2 cos (θ − φ)/2, (2.75)

Z2 = a/2 sin (θ + φ)/2 + b/2 sin (θ − φ)/2,

Z3 = sin (θ + φ)/2,

Z4 = cos (θ + φ)/2.

From Eq.(2.75), it can be seen that the coordinates, Zi, satisfy the following

equations:

Z1Z4 − Z2Z3 = (a/2) + (b/2) cos(φ) ∈ [a1−b
2
, a2+b

2
] (2.76)

Z2
3 + Z2

4 = 1. (2.77)

From Eq.( 2.76) we can see that the equation is very similar to that for
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RRP configuration, also we get the quadratic form as:

a1 − b
2
≤ xT [Q]x ≤ a1 + b

2
. (2.78)

with the coefficient matrix as:

Q =



0 0 0 1/2

0 0 −1/2 0

0 −1/2 0 0

1/2 0 0 0


(2.79)

As shown in the Fig. (2.10) a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.80)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (x/2, y/2, 0, 1), (2.81)

[H] = (h/2 cos (α)/2,−h/2 sin (α)/2, sin (α)/2, cos (α)/2)

Z′(a, θ, φ)[Q′]Z(a, θ, φ) ∈ [
a1 − b

2
,
a2 + b

2
] (2.82)
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Simplifying the above equation we get:

F (Z1, Z2, Z3, Z4) = (Z1− σ1Z3− τ1Z4)Z4− (Z2− σ2Z3− τ2Z4)Z3, and (2.83)

σ1 = (y + h sinα)/2, τ1 = (x+ h cosα)/2,

σ2 = (−x+ h cosα)/2, τ2 = (y − h sinα)/2.
(2.84)

a1 − b
2
≤ F (Z1, Z2, Z3, Z4) ≤

a2 + b

2
, (2.85)

Eq.(2.85) characterize the kinematic constraints of a planar PRR open

chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar PRR closed chains is given

by a pair of hyperbolic paraboloids and for the a mechanism to pass through

a given motion, the image curve would have to be contained in the volume

between the constraint manifolds.

Using the projective property of the planar quaternion, to visualize the

hyper-geometric shape described by Eq.(2.85), we observe its intersection with

the hyperplane Z4 = 1; in the other words, we project Eq.(2.85) onto hyper-

plane Z4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) = (Z1 − σ1Z3 − τ1)− (Z2 − σ2Z3 − τ2)Z3 (2.86)
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where σ1, σ2, τ1 and τ2 are the same as Eq.(2.84).

The volume field described by Eq.(2.86) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [Lmin, Lmax], (Lmin = a−b
2

and Lmax = 2a+b
2

), and

to be standard, we also reorganize Eq.(2.86);

Z1 − (Z2 − σ2Z3 − τ2 − σ1)Z3 − τ1 = c (2.87)

Reformulating the above equation we get the standard form as:

−σ2(Z2
3 −

Z3

σ2
(Z2 − (τ2 − σ1))) = Z1 − (τ1 + c) (2.88)

This is a typical hyperbolic paraboloid in the projective (z1, z2, z3) space.

See Table (2.5). The saddle point of the hyperbolic paraboloid is located at

(τ1, τ2 − σ1, 0). The central axis is (1, 0, 0), so that the hyperbolic paraboloid

orients along the x− direction. It is evident to tell that the location of the sad-

dle point and the mean curvature are decided by the location of the fixed pivot,

the length of the floating link and the relative angle of M to the floating link.

A representation of the pair of sheared hyperbolic paraboloids implemented in

Mathematica are shown in Fig. (2.11).

As it can be referred from the parameters extracted from the standard

equation of a hyperbolic paraboloid, it does not yield all the geometric param-

eters independently. Hence, in addition to the existing geometric parameters

of location of the saddle point and the orientation, we need to define an addi-
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tion geometric parameter. For a hyperbolic paraboloid the mean curvature of

the surfaces at the saddle point yields σ2. The mean curvature (H) is derived

using the equations (2.67 and 2.68), and we get

H = −σ2. (2.89)

Table 2.5: Parameters for the projective sheared hyperbolic paraboloid pre-
sented by Eq.(2.88)

Geometric Features Constraint Parameters
Saddle point (τ1, τ2 − σ1, 0)
Orientation (1, 0, 0)

Mean curvature −σ2
Distance between surfaces Lmin ≤ c ≤ Lmax

2.4.4.1 Inverse Kinematics for Planar PRR Open Chain

The inverse kinematics problem is stated: Given the end-effector pose {X, Y, δ}T ,

calculate the three actuated joint (R or P) values [71]. In the case of an PRR

open chain, the joint variables to be calculated are a, θ and φ. The notations

used in the inverse kinematic relations are the same as used for the RRR open

chain. The joint angles can be calculated using the following relations:

θ = sin−1
(
By − Ay

b

)
(2.90)
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Figure 2.11: A pair of hyperbolic paraboloids representing a pair of constraint
manifolds for a PRR open chain.

a = Bx − Ax − b cos(θ) (2.91)

φ = δ − α− θ (2.92)
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Figure 2.12: A planar PRP open chain

2.4.5 Planar PRP Open Chain

Consider a planar PRP open chain as shown in Fig. 2.12. The length of the

first link is a, length of the second link is b and θ is the joint angle for the

revolute joint. In the figure, F and M mark the fixed and the moving frames,

respectively. The fixed pivot is located at (x, y), while the moving frame is

located at a distance of h from the end of link b. The moving frame is assumed

to be tilted by angle of α from the line joining the end pivot and the origin of

the moving frame. When the fixed and moving frames are located at A and B

respectively the parametrized equation of the constraint manifold Z(a, θ, b) of

a PRP open chain is obtained as follows:

Z(a, θ, b) = X(a)Z(θ)X(b). (2.93)
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The coordinates of Z(a, θ, b) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 = (a+ b)/2 cos (θ)/2, (2.94)

Z2 = (b− a)/2 sin (θ)/2,

Z3 = sin (θ)/2,

Z4 = cos (θ)/2.

From Eq.(2.94), it can be seen that the coordinates, Zi, satisfy the following

equations:

Z1Z4 − Z2Z3 = (a/2)− (b/2) cos(φ) ∈ [a1−b2
2
, a2+b2

2
] (2.95)

Z2
3 + Z2

4 = 1. (2.96)

From Eq.(2.95) we can see that the equation is very similar to that for

RRP configuration, also we get the quadratic form as:

a1 − b2
2

≤ xT [Q]x ≤ a2 + b2
2

. (2.97)

with the coefficient matrix as:
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Q =



0 0 0 1/2

0 0 −1/2 0

0 −1/2 0 0

1/2 0 0 0


(2.98)

As shown in the Fig. (2.12) a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.99)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (x/2, y/2, 0, 1), (2.100)

[H] = (h/2 cos (α)/2,−h/2 sin (α)/2, sin (α)/2, cos (α)/2)

Z′(a, θ, b)[Q′]Z(a, θ, b) ∈ [
a1 − b2

2
,
a2 + b2

2
] (2.101)

Simplifying the above equation we get:

F (Z1, Z2, Z3, Z4) = (Z1−σ1Z3−τ1Z4)Z4− (Z2−σ2Z3−τ2Z4)Z3, and (2.102)
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σ1 = (y + h sinα)/2, τ1 = (x+ h cosα)/2,

σ2 = (−x+ h cosα)/2, τ2 = (y − h sinα)/2.
(2.103)

a1 − b2
2

≤ F (Z1, Z2, Z3, Z4) ≤
a2 + b2

2
, (2.104)

Eq.(2.104) characterize the kinematic constraints of a planar PRP open

chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar PRP closed chains is given

by a pair of hyperbolic paraboloids and for the a mechanism to pass through

a given motion, the image curve would have to be contained in the volume

between the constraint manifolds.

Using the projective property of the planar quaternion, to visualize the

hyper-geometric shape described by Eq.(2.104), we observe its intersection

with the hyperplane Z4 = 1; in the other words, we project Eq.(2.104) onto hy-

perplane Z4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) = (Z1 − σ1Z3 − τ1)− (Z2 − σ2Z3 − τ2)Z3 (2.105)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.103).

The volume field described by Eq.(2.105) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set
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F (z1, z2, z3, 1) = c, c ∈ [Lmin, Lmax], (Lmin = a−2b
2

and Lmax = 2a+2b
2

), and

to be standard, we also reorganize Eq.(2.105);

Z1 − (Z2 − σ2Z3 − τ2 − σ1)Z3 − τ1 = c (2.106)

Reformulating the above equation we get the standard form as:

−σ2(Z2
3 −

Z3

σ2
(Z2 − (τ2 − σ1))) = Z1 − (τ1 + c) (2.107)

This is a typical hyperbolic paraboloid in the projective (z1, z2, z3) space.

See Table (2.6). The saddle point of the hyperbolic paraboloid is located at

(τ1, τ2 − σ1, 0). The central axis is (1, 0, 0), so that the hyperbolic paraboloid

orients along the x− direction. It is evident to tell that the location of the sad-

dle point and the mean curvature are decided by the location of the fixed pivot,

the length of the floating link and the relative angle of M to the floating link.

A representation of the pair of sheared hyperbolic paraboloids implemented in

Mathematica are shown in Fig. (2.13).

As it can be referred from the parameters extracted from the standard

equation of a hyperbolic paraboloid, it does not yield all the geometric param-

eters independently. Hence, in addition to the existing geometric parameters

of location of the saddle point and the orientation, we need to define an addi-

tion geometric parameter. For a hyperbolic paraboloid the mean curvature of

the surfaces at the saddle point yields σ2. The mean curvature (H) is derived

using the equations (2.67 and 2.68), and we get
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H = −σ2. (2.108)

Table 2.6: Parameters for the projective sheared hyperbolic paraboloid pre-
sented by Eq.(2.107)

Geometric Features Constraint Parameters
Saddle point (τ1, τ2 − σ1, 0)
Orientation (1, 0, 0)

Mean curvature −σ2
Distance between surfaces Lmin ≤ c ≤ Lmax

2.4.5.1 Inverse Kinematics for Planar PRP Open Chain

The inverse kinematics problem is stated: Given the end-effector pose {X, Y, δ}T ,

calculate the three actuated joint (R or P) values [71]. In the case of an PRP

open chain, the joint variables to be calculated are θ, a and b. The notations

used in the inverse kinematic relations are the same as used for the RRR open

chain. The joint angles can be calculated using the following relations:

a =
(Bx − Ax) sin(θ)− (By − Ay) cos(θ)

sin(θ)
(2.109)

b =
(By − Ay) cos(θ)

sin(θ)
(2.110)

θ = δ − α (2.111)
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Figure 2.13: A pair of hyperbolic paraboloids representing a pair of constraint
manifolds for a PRP open chain.

2.4.6 Planar PPR Open Chain

Consider a planar PPR open chain as shown in Fig. (2.14). The length of the

first link is a, length of the second link is b, and their inclination angles are γa

and γb respectively and θ is the joint angle for the revolute joint. In the figure,

F and M mark the fixed and the moving frames, respectively. The fixed pivot

is located at (x, y), while the moving frame is located at a distance of h from

the end pivot. The moving frame is assumed to be tilted by angle of α from
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Figure 2.14: A planar PPR open chain

the line joining the end pivot and the origin of the moving frame. When the

fixed and moving frames are located at A and B respectively the parametrized

equation of the constraint manifold Z(a, b, θ) of a PPR open chain is obtained

as follows:

Z(a, b, θ) = Z(γa)X(a)Z(γb)X(b)Z(θ). (2.112)

The coordinates of Z(a, b, θ) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 = a/2 cos (γa − γb − θ)/2 + b/2 cos (γa + γb − θ)/2, (2.113)

Z2 = a/2 sin (γa − γb − θ)/2 + b/2 sin (γa + γb − θ)/2,
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Z3 = sin (γa + γb + θ)/2,

Z4 = cos (γa + γb + θ)/2.

From Eq.(2.113), it can be seen that the coordinates, Zi, satisfy the fol-

lowing equations:

Z1Z4 − Z2Z3 = (a/2) cos(γa)− (b/2) cos(γa + γb) ∈ [a1 cos(γa)+b1 cos(γa+γb)
2

, a2 cos(γa)+b2 cos(γa+γb)
2

]

(2.114)

Z2
3 + Z2

4 = 1. (2.115)

From Eq.(2.114) we can see that the equation is very similar to that for

RRP configuration, also we get the quadratic form as:

a1 cos(γa) + b1 cos(γa + γb)

2
≤ xT [Q]x ≤ a2 cos(γa) + b2 cos(γa + γb)

2
. (2.116)

with the coefficient matrix as:

Q =



0 0 0 1/2

0 0 −1/2 0

0 −1/2 0 0

1/2 0 0 0


(2.117)

52



As shown in the Fig. (2.14) a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.118)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (x/2, y/2, 0, 1), (2.119)

[H] = (h/2 cos (α)/2,−h/2 sin (α)/2, sin (α)/2, cos (α)/2)

Z′(a, b, θ)[Q′]Z(a, b, θ) ∈ [
a1 cos(γa) + b1 cos(γa + γb)

2
,
a2 cos(γa) + b2 cos(γa + γb)

2
]

(2.120)

Simplifying the above equation we get:

F (Z1, Z2, Z3, Z4) = (Z1−σ1Z3−τ1Z4)Z4− (Z2−σ2Z3−τ2Z4)Z3, and (2.121)

σ1 = (y + h sinα)/2, τ1 = (x+ h cosα)/2,

σ2 = (−x+ h cosα)/2, τ2 = (y − h sinα)/2.
(2.122)
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a1 cos(γa) + b1 cos(γa + γb)

2
≤ F (Z1, Z2, Z3, Z4) ≤

a2 cos(γa) + b2 cos(γa + γb)

2
,

(2.123)

Eq.(2.123) characterize the kinematic constraints of a planar PPR open

chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar PPR closed chains is given

by a pair of hyperbolic paraboloids and for the a mechanism to pass through

a given motion, the image curve would have to be contained in the volume

between the constraint manifolds.

Using the projective property of the planar quaternion, to visualize the

hyper-geometric shape described by Eq.(2.123), we observe its intersection

with the hyperplane Z4 = 1; in the other words, we project Eq.(2.123) onto hy-

perplane Z4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) = (Z1 − σ1Z3 − τ1)− (Z2 − σ2Z3 − τ2)Z3 (2.124)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.122).

The volume field described by Eq.(2.124) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [Lmin, Lmax], (Lmin = a cos(γa)+b cos(γa+γb)
2

and Lmax =

2a cos(γa)+2b cos(γa+γb)
2

), and to be standard, we also reorganize Eq.(2.124);
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Z1 − (Z2 − σ2Z3 − τ2 − σ1)Z3 − τ1 = c (2.125)

Reformulating the above equation we get the standard form as:

−σ2(Z2
3 −

Z3

σ2
(Z2 − (τ2 − σ1))) = Z1 − (τ1 + c) (2.126)

This is a typical hyperbolic paraboloid in the projective (z1, z2, z3) space.

See Table (2.7). The saddle point of the hyperbolic paraboloid is located at

(τ1, τ2 − σ1, 0). The central axis is (1, 0, 0), so that the hyperbolic paraboloid

orients along the x− direction. It is evident to tell that the location of the sad-

dle point and the mean curvature are decided by the location of the fixed pivot,

the length of the floating link and the relative angle of M to the floating link.

A representation of the pair of sheared hyperbolic paraboloids implemented in

Mathematica are shown in Fig. (2.15).

As it can be referred from the parameters extracted from the standard

equation of a hyperbolic paraboloid, it does not yield all the geometric param-

eters independently. Hence, in addition to the existing geometric parameters

of center point (saddle point) and the orientation, we need to define an addi-

tion geometric parameter. For a hyperbolic paraboloid the mean curvature of

the surfaces at the saddle point yields σ2. The mean curvature (H) is derived

using the equations (2.67 and 2.68), and we get

H = −σ2. (2.127)
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Table 2.7: Parameters for the projective sheared hyperbolic paraboloid pre-
sented by Eq.(2.126)

Geometric Features Constraint Parameters
Saddle point (τ1, τ2 − σ1, 0)
Orientation (1, 0, 0)

Mean curvature −σ2
Distance between surfaces Lmin ≤ c ≤ Lmax
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Figure 2.15: A pair of hyperbolic paraboloids representing a pair of constraint
manifolds for a PPR open chain.
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2.4.6.1 Inverse Kinematics for Planar PPR Open Chain

The inverse kinematics problem is stated: Given the end-effector pose {X, Y, δ}T ,

calculate the three actuated joint (R or P) values [71]. In the case of an PPR

open chain, the joint variables to be calculated are θ, a and b. The notations

used in the inverse kinematic relations are the same as used for the RRR open

chain. The joint angles can be calculated using the following relations:

a =
(Bx − Ax) sin(γa + γb)− (By − Ay) cos(γa + γb)

sin(γb)
(2.128)

b =
−(Bx − Ax) sin(γa) + (By − Ay) cos(γa)

sin(γb)
(2.129)

θ = δ − α (2.130)

2.4.7 Planar RPP Open Chain

Consider a planar RPP open chain as shown in Fig. (2.16). The length of

the first link is a, length of the second link is b, the inclination angle of the

second link is γb and θ is the joint angle for the revolute joint. In the figure,

F and M mark the fixed and the moving frames, respectively. The fixed pivot

is located at (x, y), while the moving frame is located at a distance of h from

the end of link b. The moving frame is assumed to be tilted by angle of α from

the line joining the end pivot and the origin of the moving frame. When the

fixed and moving frames are located at A and B respectively the parametrized
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Figure 2.16: A planar RPP open chain

equation of the constraint manifold Z(θ, a, b) of a RPP open chain is obtained

as follows:

Z(θ, a, b) = Z(θ)X(a)Z(γb)X(b). (2.131)

The coordinates of Z(θ, a, b) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 = a/2 cos (θ − γb)/2 + b/2 cos (θ + γb)/2, (2.132)

Z2 = a/2 sin (θ − γb)/2 + b/2 sin (θ + γb)/2,

Z3 = sin (θ + γb)/2,

Z4 = cos (θ + γb)/2.
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From Eq.(2.132), it can be seen that the coordinates, Zi, satisfy the fol-

lowing equations:

Z1Z4 + Z2Z3 = (a/2) cos(γb)− (b/2) ∈ [a1 cos(γb)+b1
2

, a2 cos(γb)+b2
2

] (2.133)

Z2
3 + Z2

4 = 1. (2.134)

From Eq.(2.133) we can see that the equation is very similar to that for

RRP configuration, also we get the quadratic form as:

a1 cos(γb) + b1
2

≤ xT [Q]x ≤ a2 cos(γb) + b2
2

. (2.135)

with the coefficient matrix as:

Q =



0 0 0 1/2

0 0 1/2 0

0 1/2 0 0

1/2 0 0 0


(2.136)

As shown in the Fig. (2.16) a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.137)
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where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (x/2, y/2, 0, 1), (2.138)

[H] = (h/2 cos (α)/2,−h/2 sin (α)/2, sin (α)/2, cos (α)/2)

Z′(θ, a, b)[Q′]Z(θ, a, b) ∈ [
a1 cos(γb) + b1

2
,
a2 cos(γb) + b2

2
] (2.139)

Simplifying the above equation we get:

F (Z1, Z2, Z3, Z4) = (Z1−σ1Z3−τ1Z4)Z4 +(Z2−σ2Z3−τ2Z4)Z3, and (2.140)

σ1 = (y + h sinα)/2, τ1 = (x+ h cosα)/2,

σ2 = (−x+ h cosα)/2, τ2 = (y − h sinα)/2.
(2.141)

a1 cos(γb) + b1
2

≤ F (Z1, Z2, Z3, Z4) ≤
a2 cos(γb) + b2

2
, (2.142)

Eq.(2.142) characterize the kinematic constraints of a planar RPP open

chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar RPP closed chains is given
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by a pair of hyperbolic paraboloids and for the a mechanism to pass through

a given motion, the image curve would have to be contained in the volume

between the constraint manifolds.

Using the projective property of the planar quaternion, to visualize the

hyper-geometric shape described by Eq.(2.142), we observe its intersection

with the hyperplane Z4 = 1; in the other words, we project Eq.(2.142) onto hy-

perplane Z4 = 1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4),

both of which represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) = (Z1 − σ1Z3 − τ1) + (Z2 − σ2Z3 − τ2)Z3 (2.143)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.141).

The volume field described by Eq.(2.143) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [Lmin, Lmax], (Lmin = a cos(γb)+b
2

and Lmax = 2a cos(γb)+2b
2

),

and to be standard, we also reorganize Eq.(2.143);

Z1 + (Z2 − σ2Z3 − τ2 − σ1)− τ1 = c (2.144)

Reformulating the above equation we get the standard form as:

σ2(Z
2
3 −

Z3

σ2
(Z2 − (τ2 + σ1))) = Z1 − (τ1 + c) (2.145)

This is a typical hyperbolic paraboloid in the projective (z1, z2, z3) space.
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See Table (2.8). The saddle point of the hyperbolic paraboloid is located at

(τ1, τ2 + σ1, 0). The central axis is (1, 0, 0), so that the hyperbolic paraboloid

orients along the x− direction. It is evident to tell that the location of the sad-

dle point and the mean curvature are decided by the location of the fixed pivot,

the length of the floating link and the relative angle of M to the floating link.

A representation of the pair of sheared hyperbolic paraboloids implemented in

Mathematica are shown in Fig. (2.17).

As it can be referred from the parameters extracted from the standard

equation of a hyperbolic paraboloid, it does not yield all the geometric param-

eters independently. Hence, in addition to the existing geometric parameters

of center point (saddle point) and the orientation, we need to define an addi-

tion geometric parameter. For a hyperbolic paraboloid the mean curvature of

the surfaces at the saddle point yields σ2. The mean curvature (H) is derived

using the equations (2.67 and 2.68), and we get

H = σ2. (2.146)

Table 2.8: Parameters for the projective sheared hyperbolic paraboloid pre-
sented by Eq.(2.145)

Geometric Features Constraint Parameters
Saddle point (τ1, τ2 + σ1, 0)
Orientation (1, 0, 0)

Mean curvature σ2
Distance between surfaces Lmin ≤ c ≤ Lmax
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Figure 2.17: A pair of hyperbolic paraboloids representing a pair of constraint
manifolds for a RPP open chain.

2.4.7.1 Inverse Kinematics for Planar RPP Open Chain

The inverse kinematics problem is stated: Given the end-effector pose {X, Y, δ}T ,

calculate the three actuated joint (R or P) values [71]. In the case of an RPP

open chain, the joint variables to be calculated are θ, a and b. The notations

used in the inverse kinematic relations are the same as used for the RRR open

chain. The joint angles can be calculated using the following relations:
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a =
(Bx − Ax) sin(γa + γb)− (By − Ay) cos(γa + γb)

sin(γb)
(2.147)

b =
−(Bx − Ax) sin(γa) + (By − Ay) cos(γa)

sin(γb)
(2.148)

θ = δ − α (2.149)

Summarizing all the above kinematic constraint equations and the respec-

tive constraint manifolds. The constraint manifold for a planar parallel ma-

nipulator is the common volume between all the three pairs of surfaces. When

the image curve lies inside this common volume, a planar parallel manipulator

is designed. A figure portraying the constraint manifold for a planar parallel

manipulator is shown below.
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Chapter 3

Interactive Dimensional

Synthesis and Motion Design

3.1 Interactive Dimensional Synthesis

The design method treats a three legged planar parallel manipulator as three

independent 3-DOF open chains assembled together at the end. The con-

straint manifold of all the chains are geometric objects in the image space, the

size, shape and position of which are a function of the mechanism parameters.

A given rational motion maps to an image curve that needs to be contained in-

side the volume between these constraint manifolds. This section, describes the

procedure required to design a planar parallel manipulator. It also describes

the user interface with which the designer needs to be familiar with. The basic

idea is that the designers are provided with a set of controls via the graphical
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Figure 3.1: A screenshot of the motion design panel and the window spaces

Figure 3.2: A screenshot of the manifold design panel and the window spaces
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Figure 3.3: A screenshot of the mechanism design panel and the window spaces

user interface (GUI) of the tool that will allow them to interactively manipu-

late the constraint manifold with the objective to contain the image curve in

volume between the pair of constraint manifold. Upon being satisfied visually,

the designer will be allowed to instruct the program to check if there are any vi-

olations of the kinematic constraints. A windows binary of the tool for x86 ar-

chitecture can be downloaded at http://cadcam.eng.sunysb.edu/software.

3.1.1 User Interface Functionalities

In terms of functionalities, the GUI has five parts, as shown in Figs. (3.1),

(3.2), and (3.3).

1. The Cartesian Space Window (CSW): This window is used to display

the given positions, the animation of the mechanism and the open chains
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in the Cartesian space.

2. The Image Space Window (ISW): In this window, the constraint mani-

fold as well as the image curve projected on the hyperplane are shown.

3. Motion Design Panel (MoDP): This panel supports operations like posi-

tion insertion, deletion and modification, and comprises of functions to

animate the motion and to test for constraint violation. The constraint

violation test is done and the test results are visualized through the user

interface. This operation updates both the Cartesian Space Window and

the Image space Window.

4. Constraint Manifold Panel (CoMP): There are two ways to edit the

mechanism: 1) directly manipulate mechanism parameters in the Carte-

sian space, like the location, the link lengths and the relative angle, and

as a consequence, constraint manifolds change in the image space, or 2)

Edit the geometric parameters that change the size, position, and the

orientation of the manifolds.

This panel allows the user to manipulate the geometric parameters asso-

ciated with the constraint manifold so as to contain the image curve.This

approach is more intuitive.

5. Mechanism Design Panel (MeDP): This panel allows the user to ma-

nipulate the mechanism parameters such as location of fixed pivot, link

lengths, and relative angles associated with the open chain.
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3.2 Design Procedure

1. Use the Motion Design panel to input given positions, associated time

parameter, and interpolate them using a NURBS motion.

The given planar positions can be input with the time parameter t, ei-

ther using planar quaternion coordinates (Z1, Z2, Z3, Z4), or Cartesian

coordinate directly (x, y, δ). Once all given positions are input, a cubic

C2 B-Spline motion that interpolates the given positions is generated.

Consequently, the ISW shows the image points of the prescribed po-

sitions, and renders a continuous NURBS curve which passes through

all the image points; while the CSW shows the given positions and the

rational motion.

2. Switch to the Constraint Manifold panel. Dimensional synthesis starts

with the choice of RRR, RPR, RRP, PRR, PRP, PPR, RPP open chains.

The procedure for all the chains is very similar, hence only one open chain

is discussed below, exceptions are described:

In the CSW, initially, the fixed pivots are located at (x1, y1) = (0, 0);

the three links have unit length a1 = b1 = h1 = 1, and the relative

angle of M to the floating link is α1 = 0. In the ISW, a pair of surfaces

appear (For RRR and RPR the surface is a hyperboloid, for the rest it

is a hyperbolic paraboloid). The default surface pair will be visualized

initially. At this point, it will be apparent that the image curve is not

completely contained between the pair of surfaces, which means that the
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constraints are being violated.

3. Modify the constraint manifold visually (for cases PPR and RPP set the

orientation of the prismatic joints from MeDP initially, then modify con-

straint manifold) using the spinner controls (up and down arrows next

to parameters) provided in the CoMP until the curve seems completely

contained between the two pairs of surfaces. Dragging the slider in ei-

ther ISW or CSW verifies if the constraints are actually satisfied or not.

Using the current value of the mechanism parameters, the program au-

tomatically checks the constraint equations if they are satisfied. When

they are satisfied, the program outputs links’ length, fixed and moving

pivot locations, and the orientation of the moving frame.

4. Repeat steps 2, 3 and 4, and synthesize the other two open chain.

5. Also note there can be several combinations to have a three legged planar

parallel manipulator. Each leg can be chosen from the given configura-

tions, RRR, RPR, RRP, PRR, PRP, PPR, RPP.

3.3 Example 1 for Planar Parallel Manipula-

tor

In this section, an example is shown that demonstrates the dimensional synthe-

sis of a planar parallel manipulator (RRR, RPR and RRP) using the constraint

manifold modification for a given degree six rational motion.
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Table 3.1: Cartesian coordinates of four prescribed positions along with their
time parameter values

i x, y, δ(◦) ui
0 0.0448 0.1940 0 0.0
1 1.2067 1.5029 30 0.3
2 2.894 1.4852 15 0.6
3 2.045 2.8478 9 1.0

In this example, we use four positions as given in Table 3.1. The positions

are given in Cartesian coordinate (x, y, δ), which specify the location of origin

of moving frame M and the relative angle of M to horizontal axis of the fixed

frame. Also given are the time parameter values (ui) associated with each

position. First, the given positions are converted to planar quaternion rep-

resentation (Z1, Z2, Z3, Z4) and then they are interpolated using a degree six

NURBS motion. The image curve is visualized using Rodrigues parameters

(see Bottema and Roth [6]) given by (Z1/Z4, Z2/Z4, Z3/Z4). Hereafter, one

RRR open chains called A, one RPR open chain called B and one RRP open

chain called C and their constraint manifolds are initialized. However, navi-

gating through the motion, it is found that the constraints are violated – this

shows up as the image curve being outside the manifold. The designer next

modifies the constraint manifolds by varying various geometric parameters in-

teractively. Different parameters have different effect on the size, position, and

orientation of the manifold and the process is intuitive. Once the synthesis

of three individual open chains A,B and C is completed (see Figs.(3.4), (3.5)
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and (3.6)), the assembly of A, B and C yields a planar parallel manipulator

(see Fig. 3.7) that passes through the given four positions with a continuous

motion. Table 3.2 lists the design results.

Table 3.2: Synthesis parameters planar parallel manipulator, example 1

x1 y1 a1 b1 h1 α1

Open Chain A (RRR) 0.5 3.0 4.5 2.5 3.354 -1.107

x2 y2 b1 b2 h2 α2

Open Chain B (RPR) 2.0 0.0 3.5 2.5 3.0 0.0

x3 y3 a3 b3 h3 α3

Open Chain C(RRP) -1.5 0.0 2.67 2.67 1.118 2.034

Figure 3.4: Constraint manifold of the RRR Open Chain A and image curve;
in this figure, the image curve is completely contained inside the manifold.
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Figure 3.5: Constraint manifold of the RPR Open Chain B and image curve;
in this figure, the image curve is completely contained inside the manifold.

Figure 3.6: Constraint manifold of the RRP Open Chain C and image curve;
in this figure, the image curve is completely contained inside the manifold.

Figure 3.7: Planar parallel manipulator consisting of RRR, RPR, and RRP
type legs.
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3.4 Example 2 for Planar Parallel Manipula-

tor

In this section, an example is shown that demonstrates the dimensional synthe-

sis of a planar parallel manipulator (PRR, PRP and PPR) using the constraint

manifold modification for a given degree six rational motion. In this example,

for all the chains the inclination of the first ’P’ joint is considered to be 0 ◦,

and for chain PPR the inclination of the second ’P’ joint with respect to the

first ’P’ joint is considered to be 30 ◦.

Table 3.3: Cartesian coordinates of four prescribed positions along with their
time parameter values

i x, y, δ(◦) ui
0 0.0448 0.1940 0 0.0
1 1.2067 1.5029 30 0.3
2 2.894 1.4852 15 0.6
3 2.045 2.8478 9 1.0

In this example, we use four positions as given in Table 3.3. The positions

are given in Cartesian coordinate (x, y, δ), which specify the location of origin

of moving frame M and the relative angle of M to horizontal axis of the

fixed frame. Also given are the time parameter values (ui) associated with

each position. Hereafter, one PRR open chains called D, one PRP open chain

called E and one PPR open chain called F and their constraint manifolds

are initialized. However, navigating through the motion, it is found that the
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constraints are violated – this shows up as the image curve being outside

the manifold. The designer next modifies the constraint manifolds by varying

various geometric parameters interactively. Different parameters have different

effect on the size, position, and orientation of the manifold and the process is

intuitive. Once the synthesis of three individual open chains D, E and F is

completed (see Figs. (3.8), (3.9) and (3.10)), the assembly of D, E and F yields

a planar parallel manipulator that passes through the given four positions with

a continuous motion. Table 3.4 lists the design results.

Table 3.4: Synthesis parameters planar parallel manipulator, example 2

x1 y1 a1 b1 h1 α1

Open Chain D (PRR) -2.0 3.0 3.33 3.33 1.0 3.1416

x2 y2 a2 b2 h2 α2

Open Chain E (PRP) -2.0 1.0 4.0 1.0 3.0 3.1416

x3 y3 a3 b3 h3 α3

Open Chain F (PPR) -4.0 0.0 3.75 3.75 3.0 3.1416

Figure 3.8: Constraint manifold of the PRR Open Chain D and image curve;
in this figure, the image curve is completely contained inside the manifold.
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Figure 3.9: Constraint manifold of the PRP Open Chain E and image curve;
in this figure, the image curve is completely contained inside the manifold.

Figure 3.10: Constraint manifold of the PPR Open Chain F and image curve;
in this figure, the image curve is completely contained inside the manifold.
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Chapter 4

Conclusion

Planar parallel manipulator’s have been successfully studied and implemented

and their kinematic constraints have been discussed. Chapter 3 shows the

implementation of these types of mechanism’s. With the current approach the

user is provided with the facility to design motions and mechanisms as well as

for trajectory verification.

1. For designing of motion and mechanisms, a detailed procedure has been

discussed in Chapter 3.

2. For the purposes of trajectory verification. The user can quickly verify

whether the available mechanism will be able to perform the required

task, by inputting the various mechanism parameters and verifying if

the geometric constrains are being violated.

Although the research implemented will serve as a good tool for designers and

for further researchers, it faces some limitations in its functionality and usage.
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The current approach undertaken does not account for the singularity spaces

associated with the mechanisms. This area can be further researched on, and

the approach can be modified to account for these singularity spaces.

I see my work as an extension to the 6R planar closed chain and the RRR

and RPR planar parallel manipulator software. There is a lot of scope for

the expansion of this software to account for the singularities faced by the

mechanisms, providing enhanced features for trajectory verification, selection

of best suited chain for a given motion, and providing optimized mechanism

parameters.

It is hoped that this software aids researchers, students, professors as well

as other professionals working in CAGD, Computational Kinematics, Motion

Design and other related fields.
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