

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Energy-Efficient Wide Datapath
Integer Arithmetic Logic Units Using

Superconductor Logic

A Dissertation Presented

by

Christopher Lawrence Ayala

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

December 2012

Copyright by
Christopher Lawrence Ayala

2012

Stony Brook University

The Graduate School

Christopher Lawrence Ayala

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Mikhail Dorojevets – Dissertation Advisor
Associate Professor, Department of Electrical and Computer Engineering

Sangjin Hong – Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

Emre Salman
Assistant Professor, Department of Electrical and Computer Engineering

Jennifer L. Wong
Assistant Professor, Department of Computer Science

Stony Brook University

This dissertation is accepted by the Graduate School.

Charles Taber
Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Energy-Efficient Wide Datapath
Integer Arithmetic Logic Units Using

Superconductor Logic
by

Christopher Lawrence Ayala

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

2012

Complementary Metal-Oxide-Semiconductor (CMOS) technology
is currently the most widely used integrated circuit technology to-
day. As CMOS approaches the physical limitations of scaling, it
is unclear whether or not it can provide long-term support for
niche areas such as high-performance computing and telecommu-
nication infrastructure, particularly with the emergence of cloud
computing. Alternatively, superconductor technologies based on
Josephson junction (JJ) switching elements such as Rapid Sin-
gle Flux Quantum (RSFQ) logic and especially its new variant,
Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have
the capability to provide an ultra-high-speed, low power platform
for digital systems.
The objective of this research is to design and evaluate energy-
efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs)

iii

implemented using RSFQ and ERSFQ logic as the first steps to-
wards achieving practical Very-Large-Scale-Integration (VLSI) com-
plexity in digital superconductor electronics. First, a tunable VHDL
superconductor cell library is created to provide a mechanism to
conduct design exploration and evaluation of superconductor digi-
tal circuits from the perspectives of functionality, complexity, per-
formance, and energy efficiency. Second, hybrid wave-pipelining
techniques developed earlier for wide datapath RSFQ designs have
been used for efficient arithmetic and logic circuit implementa-
tions. To develop the core foundation of the ALU, the ripple-carry
adder and the Kogge-Stone parallel prefix carry look-ahead adder
are studied as representative candidates on opposite ends of the
design spectrum. By combining the high-performance features of
the Kogge-Stone structure and the low complexity of the ripple-
carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-
tree ALU has been designed and evaluated using the VHDL cell
library tuned to HYPRES’ gate-level characteristics.
The designs and techniques from this research have been imple-
mented using RSFQ logic and prototype chips have been fabri-
cated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-
Stone ALU consisting of 7,950 JJs total has been fabricated using
a 1.5 µm 4.5 kA/cm2 process and fully demonstrated. An 8-bit
sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder
(12,785 JJs total) have also been fabricated using a 1.0 µm 10
kA/cm2 process and demonstrated under collaboration with Yoko-
hama National University and Nagoya University (Japan).

iv

Sa aking mga magulang.
To my parents.

v

Watch out guys...

vi

Contents

Abstract iii

Contents vii

List of Figures x

List of Tables xiv

Acknowledgments xvi

Vita xxi

Publications xxii

1 Introduction 1
1.1 Motivation . 1

1.1.1 CMOS Scaling Limits 1
1.1.2 Significance of Arithmetic Logic Units 3
1.1.3 Benefits and Opportunities in Superconductor Technology 4

1.2 Research Outline and Goals 6
1.3 Superconductor Logic . 7

1.3.1 Latching Logic . 7
1.3.2 Rapid Single Flux Quantum Logic 8
1.3.3 Energy-Efficient Rapid Single Flux Quantum Logic . . 12
1.3.4 General Challenges for Superconductor Technology . . 12

1.4 Overview of Prior Work in Superconductor Electronics 14
1.4.1 Adders and ALUs . 14

1.4.1.1 “Push-Forward” RSFQ Carry-Save Serial Adders 14
1.4.1.2 Case Study of Fast Pipelined Parallel Adders

in RSFQ . 15
1.4.1.3 1-bit RSFQ ALU with a 3-Input XOR Gate . 15
1.4.1.4 4-bit RSFQ ALU with Half Adder Cells . . . 16

vii

1.4.1.5 4-bit RSFQ Digit-Serial Adder 16
1.4.1.6 100 GHz RSFQ Bit-Serial Adder 17

1.4.2 Microprocessors . 18
1.4.2.1 Fujitsu’s 8-bit DSP Microprocessor 18
1.4.2.2 FLUX-1 Microprocessor 19
1.4.2.3 CORE1 Microprocessor 21
1.4.2.4 20 GHz 8-bit RSFQ Frontier Datapath 22

2 Development of Efficient Techniques for VLSI Superconductor
Design 23
2.1 Superconductor Cell Library and Design Tools 23

2.1.1 SBU Tunable VHDL Cell Library 23
2.1.1.1 Purpose and Overview 23
2.1.1.2 Acknowledgments 27

2.1.2 CONNECT Cell Library 28
2.1.2.1 Purpose and Overview 28
2.1.2.2 Acknowledgments 30

2.1.3 Summary of RSFQ Logic Cells 32
2.2 Asynchronous Hybrid Wave-Pipelining 35

3 Superconductor Ripple-Carry Adder 41
3.1 Goals and Challenges . 41
3.2 Ripple-Carry Adder Concept 42
3.3 RSFQ Study . 43

3.3.1 Design Overview . 43
3.3.2 Simulation Results and Discussion 46

4 Superconductor Kogge-Stone Adder and ALU 53
4.1 Goals and Challenges . 53
4.2 General Kogge-Stone Adder Structure 54
4.3 RSFQ Study . 58

4.3.1 Design Overview . 58
4.3.2 Simulation Results and Discussion 65

4.4 Joint SBU-HYPRES Project: An 8-bit Kogge-Stone ALU Im-
plementation Using the 1.5 µm 4.5 kA/cm2 HYPRES Process 73
4.4.1 Design Flow . 73
4.4.2 Simulation Results . 75
4.4.3 Low-Frequency Testing 77
4.4.4 High-Frequency Testing 81

4.4.4.1 High-Speed Input/Output Interfaces 81
4.4.4.2 High-Speed Testing Results 84

viii

5 Superconductor Hybrid Sparse-Tree Adder and ALU 87
5.1 Goals and Challenges . 87
5.2 Sparse-Tree Structure . 88
5.3 RSFQ Study . 90

5.3.1 Design Overview . 90
5.3.2 Simulation Results . 94
5.3.3 Discussion . 101

5.4 Adder and ALU Design Implemented Using the CONNECT
Cell Library for the 1.0 µm 10 kA/cm2 Process 105
5.4.1 Goals and Challenges 105
5.4.2 Simulation Results . 114

5.4.2.1 16-bit HSTA Results 114
5.4.2.2 8-bit HSTALU Results 116

5.4.3 Experimental Testing 117
5.4.4 Chip Testing Results 122

5.4.4.1 16-bit HSTA 122
5.4.4.2 8-bit HSTALU 129

6 Conclusions 132
6.1 Completed Work . 132
6.2 Future Work . 134

Bibliography 135

ix

List of Figures

1.1 Clock rate and power for various Intel microprocessors. 2
1.2 Predicted US electricity use for data centers. 3
1.3 Thermal temperature maps of the execution cores in Intel mi-

croprocessors. 4
1.4 Views of the Josephson junction (JJ) superconductive device. . 5
1.5 DC I-V characteristics of JJs. 8
1.6 JTL and PTL connections used in superconductor logic. . . . 9
1.7 RSFQ D flip-flop. 11
1.8 Microphotographs of the CSSA. 14
1.9 Schematic of the 1-bit ALU slice based on a 3-input XOR. . . 15
1.10 4-bit RSFQ ALU built with half adder cells. 16
1.11 4-bit digit-serial adder. 17
1.12 100 GHz bit-serial adder. 18
1.13 Microphotograph of Fujitsu’s 8-bit DSP based on latching logic. 19
1.14 The FLUX-1 8-bit RSFQ microprocessor 20
1.15 Microphotograph of CORE1γ 8 mm2 chip. 22

2.1 Normal distribution of delays obtained from a DFF cell simulation. 24
2.2 DFF symbol used in schematics. 25
2.3 FSM of the DFF cell. 26
2.4 Logic simulation waveform of the DFF cell. 26
2.5 Cross section of the HYPRES standard Niobium process. . . . 27
2.6 Cross section of the Japanese ISTEC Advanced Process (ADP

2.2). 29
2.7 Logic simulation in Cadence NC-Verilog. 29
2.8 Grid-based approach used in the CONNECT cell library. . . . 30
2.9 Example of how the schematic and physical layout correspond

to each other when designed using the CONNECT cell library.
Note that PTL and via cells (pink and purple lines) are also
placed at the schematic level as well. 31

2.10 CFF symbol used in schematics. 36

x

2.11 FSM of the CFF cell used in asynchronous wave-pipelining. . . 36
2.12 Logic simulation waveform of a CFF cell. 36
2.13 An example of asynchronous wave-pipelining with trailing reset

waves. 38
2.14 Co-flow clocking versus wave-pipelining. 40

3.1 Example of a 4-bit RCA structure composed of 4 FA cells. The
inset shows how one would implement an FA cell using CMOS
logic gates. 43

3.2 Schematic of an RSFQ RCA adder. 44
3.3 T1 symbol used in schematics. 44
3.4 FSM of the T1 cell used in the RCA structure. 45
3.5 Logic simulation waveform of the T1 cell. 45
3.6 Latency distribution of the 32-bit RCA. The least significant

bit is bit index 0. The latency is measured from the assertion
of input signals to the arrival of outputs at the “sum” port. . . 47

3.7 Cell-wise breakdown of the 32-bit RCA for both the complexity
and bias current of the logical design. The results do not include
additional JJs to distribute bias current in ERSFQ logic. . . . 49

3.8 Categorical breakdown of the 32-bit RCA for both the complex-
ity and bias current of the logical design. 50

3.9 Breakdown comparison of both raw and adjusted bias JJ counts
with respect to the total design complexity of the 32-bit RCA
implemented in ERSFQ logic. 51

4.1 Example of a 16-bit KSA structure. 57
4.2 INIT blocks which can be logically interchanged to obtain either

an ALU (a) or an adder (b). These are the Red cells that reside
in the Initialization stage. 62

4.3 Logical schematics for the prefix tree and summation blocks.
The Green and Black cells of the Prefix Tree are built using CM
blocks (a). The Gray and Blue cells are built using CM_BUFF
blocks (b). The Orange cells in the Summation stage are built
using SUM blocks (c). 63

4.4 Latency distribution of the 32-bit KSALU. The least significant
bit is bit index 0. The latency is measured from the assertion
of the “ready” signal to the arrival of outputs at the “sum” port. 68

4.5 Cell-wise breakdown of the 32-bit KSALU for both the com-
plexity and bias current of the logical design. The results do
not include additional JJs to distribute bias current in ERSFQ
logic. 69

xi

4.6 Categorical breakdown of the 32-bit KSALU for both the com-
plexity and bias current of the logical design. 70

4.7 Breakdown comparison of both raw and adjusted bias JJ counts
with respect to the total design complexity of the 32-bit KSALU
implemented in ERSFQ logic. 71

4.8 ALU_INIT for the 8-bit ALU with HYPRES. 74
4.9 Simulated latency results of the 8-bit ALU design after post-

layout verification. 76
4.10 Simulated processing rate results of the 8-bit ALU design after

post-layout verification. 77
4.11 Microphotograph of the 8-bit ALU chip for low-frequency test-

ing using the HYPRES 1.5 µm 4.5 kA/cm2 technology. 78
4.12 ADD operation during functional low-frequency testing. 79
4.13 Low-frequency functional testing of logical operations. 80
4.14 Block diagram of the ALU for high-speed testing and the I/O

interfaces. 82
4.15 8-bit ALU chip with high-speed testing circuits. 83
4.16 Correct logical operations at 20 GHz when A is fixed to 255 and

B is toggled at low-speed between 255 and 0. 84
4.17 20 GHz operation of two critical cases of the ADD operation

where A is a fixed value and B is modulated between 1 and 0. 85
4.18 20 GHz operation showing correct functionality of ADD, AND,

XOR and ADD for fixed values of A=101 and B=45. 86

5.1 The structure of a 16-bit sparse-tree adder. 89
5.2 The structure of a RSFQ 16-bit hybrid sparse-tree adder. . . . 92
5.3 Logic schematic blocks that are unique to the sparse-tree struc-

ture. 93
5.4 Latency distribution of the 32-bit HSTALU. The least signifi-

cant bit is bit index 0. The latency is measured from the asser-
tion of the “ready” signal to the arrival of outputs at the “sum”
port. 95

5.5 Cell-wise breakdown of the 32-bit HSTALU for both the com-
plexity and bias current of the logical design. The results do
not include additional JJs to distribute bias current in ERSFQ
logic. 97

5.6 Categorical breakdown of the 32-bit HSTALU for both the com-
plexity and bias current of the logical design. 98

5.7 Breakdown comparison of both raw and adjusted bias JJ counts
with respect to the total design complexity of the 32-bit HSTALU
implemented in ERSFQ logic. 99

xii

5.8 Latency breakdown of the KSALU and HSTALU. 103
5.9 Processing rate and power consumption comparison. 103
5.10 HSTA/HSTALU sub-blocks re-designed using the CONNECT

cell library. 106
5.11 Simulation of the clock generator at different bias voltages. . . 109
5.12 Schematics of the supplemental circuits to facilitate high-speed

testing of the 16-bit HSTA. 110
5.13 Layout and microphotograph of the 16-bit HSTA chip for low-

frequency testing. 111
5.14 Layout and microphotograph of the 8-bit HSTALU chip for low-

frequency testing (Delta chip). 112
5.15 Layout and microphotograph of the 16-bit HSTA with on-chip

high-frequency test circuits (Eagle chip). 113
5.16 DC bias margins for the 16-bit HSTA (Eagle chip). 114
5.17 DC bias margins for the 8-bit HSTALU (Delta chip). 116
5.18 Block diagram of the testing environment. 120
5.19 Equipment used for experimental testing. 121
5.20 16-bit HSTA chip for low-frequency testing wire-bonded to a

chip holder. 122
5.21 Low-frequency random test #1, A = 56811, B = 14643, and

Sum = 71454. 124
5.22 Low-frequency random test #2, A = 8724, B = 50892, and Sum

= 59616. 125
5.23 Low-frequency random test #3, A = 13982, B = 64973, and

Sum = 78955. 126
5.24 Low-frequency random test #4, A = 44636, B = 9199, and Sum

= 53835. 127
5.25 Low-frequency serial output of the shifter for input A (blue

trace) and B (yellow trace) on the 16-bit HSTA chip designed
for high-speed testing. Both input shifters were initialized to
all logical 1’s (16-bit) so we expected to see 16 transitions each
yet we only observed 13 for input A and none for input B. . . 128

5.26 Waveforms demonstrating various operations of the 8-bit ALU. 130

xiii

List of Tables

2.1 Key characteristics of the HYPRES standard Niobium process. 26
2.2 Key characteristics of the Japanese ISTEC Advanced Process

(ADP 2.2). 28
2.3 Listing of RSFQ logic cells used through out the design of the

adder and ALU. 32

3.1 Comparing T1’s counting behavior with the full adder cell. . . 46
3.2 Latency distribution of the 32-bit RCA with the average laten-

cies calculated across all bits. 48
3.3 Breakdown of bias JJs for the 32-bit RCA for ERSFQ logic. . 51
3.4 Summary of the key simulation results for the 32-bit RCA. . . 52

4.1 The Boolean equations for the Kogge-Stone adder using triple-
rail encoding. 56

4.2 Full adder decomposition into logical functions using Cin as a
control signal. 58

4.3 Instructions decoded into the control signals for the ALU. . . 64
4.4 Listing of PTL interconnect lengths for the 32-bit KSALU. . . 65
4.5 Processing rate of the 32-bit KSALU. 66
4.6 Latency distribution of the 32-bit KSALU with the average la-

tencies calculated across all bits. 67
4.7 Breakdown of bias JJs for 32-bit KSALU for ERSFQ logic. . . 71
4.8 Summary of the key simulation results for the 32-bit KSALU. 72
4.10 PTL length and delay breakdown for each stage of the 8-bit ALU. 73
4.9 Instructions decoded into direct control signals for the ALU. . 75
4.11 Josephson junction complexity of the 8-bit ALU design. 76
4.12 Categorical complexity of the 8-bit ALU design. 77

5.1 Listing of PTL interconnect lengths for the 32-bit HSTALU. . 91
5.2 Processing rate of the 32-bit HSTALU. 94
5.3 Latency distribution of the 32-bit HSTALU with the average

latencies calculated across all bits. 96

xiv

5.4 Breakdown of bias JJs for 32-bit HSTALU for ERSFQ logic. . 99
5.5 Summary of the key simulation results for the 32-bit HSTALU. 100
5.6 Summary of the 3 design studies. 102
5.7 Stage-by-stage latency breakdown analysis of the KSALU and

HSTALU. 104
5.8 Comparison of power and rate of the KSALU, HSTALU and an

Intel Pentium 4 ALU . 105
5.9 Clock generator high-frequency characteristics obtained from

numerical simulation. 108
5.10 Breakdown of complexity for the 16-bit HSTA with on-chip

high-speed testing circuits. 115
5.11 Summary of the 16-bit HSTA. 115
5.12 Breakdown of complexity for the 8-bit HSTALU. 116
5.13 Summary of the 8-bit HSTALU. 117
5.14 List of testing equipment. 118
5.15 Test vectors supplied to the 8-bit HSTALU with waveform out-

puts shown on Figure 5.26 on page 130. 131

xv

Acknowledgments

Quite possibly the most difficult section I need to write for this dissertation
is this one. To even fathom the countless people who have helped me in one
way or another throughout this long journey is overwhelming. Sitting down
at this very moment and reflecting on the many memories of joy, frustration,
and success I have shared with the people I have encountered over the past
several years has left me emotionally exhausted. My only hope is that I do not
leave anyone out as I finish writing what is my way of expressing my utmost
gratitude. But to anyone I may have overlooked, I truly appreciate our time
together, whether it was ephemeral or lasting.

During the start of the Fall 2007 semester as an undergraduate senior in
the Computer Engineering program, my goal was to complete my combined
Master of Science and Bachelor of Engineering degree as fast as possible and
find a job. Being in close proximity to New York City, the hub of international
finance, it made the most sense to me to leverage my broad background in
software engineering to pursue a career most likely as a technology analyst for
a reputable banking firm, rather than use my hardware engineering skills for
the handful of small defense companies on Long Island and the Tri-State area.
I had absolutely no intention to earn a Ph.D.

It was during this semester when I met my advisor, Mikhail Dorojevets, for
the first time during his undergraduate course in Computer Architecture. He
immediately caught my attention during his introductory lectures, a historical
perspective on the different computers built over the past century. He briefly
showed a photograph of a prototype 20 GHz 8-bit FLUX-1 microprocessor he
designed, certainly an impressive sight but I quickly dismissed it as something
that is far too complex for a mere student, such as myself, to comprehend.
As a senior, it was time to choose a capstone design project as part of the
graduation requirement. Looking at the list of available projects, I narrowed
it down to two: (1) a small scale GPU implemented on an FPGA or (2)
gate-level design of ultra-fast asynchronous processor units using Rapid Single
Flux Quantum (RSFQ) logic, Mikhail’s project. I was always very interested in
GPUs but being the naïve undergraduate student I was, the words “ultra-fast,”

xvi

“asynchronous,” “processor,” and most especially “Quantum” easily captivated
me. I approached Mikhail during his office hours to discuss his senior design
project. I recall going over concepts such as passive transmission lines, CFFs,
and wave-pipelining. Then right on the spot, he started testing my knowledge
of the carry look-ahead adder, a topic which at the time I had not looked at
since my Digital Systems Design class over 2 years ago. Struggling mightily
at first, I was able to convince him that I was a student capable of doing the
project. Little did I know it was these first steps that propelled me into the
path for this Ph.D.

The immense knowledge, creative intuition and unorthodox approaches are
all valuable gifts that Mikhail has given me. I can say with great confidence
that if I did not pursue his senior design project, I most likely would not
have had the challenging yet stimulating research experience that I cherish
today. His hands-on guidance, unrelenting conviction and strive for perfection
has sharpened my skills over the years. As a friend, I have always taken his
insightful advice to heart and I tremendously appreciate his outlook for my
professional career. For going above and beyond what an advisor does for his
students, I am extremely grateful.

Of course this dissertation would not be possible without the help of the
other members of my defense committee: Sangjin Hong, Emre Salman and
Jennifer Wong. I also thank Alex Doboli who was on my preliminary de-
fense committee. Their feedback, patience and encouragement are all greatly
appreciated. And for her punctuality, attention to detail, and for guiding me
through the labyrinth of paperwork and graduation formalities, I thank Rachel
Ingrassia of the Electrical and Computer Engineering department.

No research experience is complete without sharing the trials, tribulations
and triumphs with your fellow colleagues, and at the Ultra High Speed Com-
puting Laboratory, your colleagues are also among your friends. First and
foremost, a special thanks to (now Dr.) Artur Kasperek with whom I have
journeyed with from the very beginning of my graduate study. His cordial
personality, helpfulness and his uncanny ability to navigate effortlessly within
the Linux environment has truly made my time at the laboratory a lively one.
How he managed to complete his Ph.D. while working full-time at Motorola
and looking after his growing family is probably another dissertation he can
write about. Artur, I am sorry I was not available to support you during your
defense but I am so happy you came through. I am sure you are having a
wonderful time back in your home country of Poland with your family and I
wish you nothing but the best going forward. Thanks to Kruti Shah, Prachi
Bemalkhedkar, Subramaniyan Venkatachalam, Swati Shah and Surabhi Garg
for the harmonious team work that allowed us to successfully complete the
numerous design studies we were set out to achieve. I hope your newly estab-

xvii

lished careers lead you all to lives of great fulfillment ahead of you. To Zuoting
Chen and Hao Chen, our time has been relatively brief together but as the
laboratory’s next generation of students, I want to wish you both the best of
luck and I have no doubt that the two of you will have the same rewarding
research experience as I had.

Collaboration is an important and necessary aspect in doing worthwhile
research. I thank the designers, testers, the fabrication team and all the other
members at HYPRES, particularly Timur Filippov who worked closely with
us on the 20 GHz 8-bit KSALU. His timely feedback and thoroughness con-
tributed to the overall success of the chip development and demonstration.

Japan, the “Land of the Rising Sun,” is a very fascinating country that
I had admired from afar. I have always thought I would only get a chance
to visit there maybe once in my lifetime. I ended up traveling there 4 times
now. I first want to thank Nobuyuki Yoshikawa of the Yoshikawa Laboratory
at Yokohama National University for always welcoming me in open arms.
His everlasting enthusiasm and conviviality are traits that even his students
inherit, both past and present. I thank Yuki Yamanashi for his amicable help,
useful suggestions and his strong appetite for a good drink, always leaving me
to wonder if I will wake up on time for my departure flight back to the US
the next morning. From Nagoya University, I express my gratitude to Akira
Fujimaki and particularly Masamitsu Tanaka for his extensive help on the
CONNECT cell library, his fully comprehensive replies to e-mails, and the bar
hopping memories we share after the conference sessions of the day.

Nothing will ever make me forget the friends I have made throughout my
multiple stays in Japan. I deeply appreciate the valuable assistance of Kohei
Ehara, Taiichi Kato, Yasuhiro Shimamura and Yoshihiro Takahashi in testing
the 8-bit HSTALU and 16-bit HSTA. It was a tremendous joy conversing with
them while going through the torturous wait of cooling the test chips down
to 4.2 K. I relish the interesting interactions I had with Kazuki Aoki who
has demonstrated an astounding knowledge of American pop culture. Please
do not be ashamed of your English, it is actually very good! In 2009, I at-
tended the 12th International Superconductive Electronics Conference (ISEC)
in Fukuoka, Japan where I first met Naoki Takeuchi. At that time, both of
us were finishing up our M.S. degrees but Naoki already secured a position in
industry. While I really cherished our time together during the conference, I
was almost sure there would not be an opportunity to meet him again after
he starts his career. And yet, almost 3 years later, we met again as Ph.D. stu-
dents. I sincerely thank him for his remarkable friendship and his illuminating
explanations of Japanese culture, in addition to sharing his own experiences in
industry and his underlying reasons for returning to graduate school. Naoki, I
hope you will have a fruitful experience during your visit to UC Berkeley and

xviii

I wish you the best of luck in completing your Doctoral degree. It was also
an incredible pleasure befriending Qiuyun Xu whose passionate interest in a
plethora of subjects, profoundly deep conversations, and an understanding ear
has left a lasting impression on me. I am sure whatever path you decide to
embark on will aid you in your search for self-realization and contentedness.
And to all the other current and former members of the Yoshikawa, Yamanashi
and Fujimaki Laboratories, I thank you for the amiable atmosphere and I send
you my kind regards.

I have always felt obtaining experience in industry while still in school is
key to establishing a promising career upon graduation. My time at NVIDIA
has done just that. I thank my manager and computer arithmetic expert,
Stuart Oberman, as well as my mentor Michael Siu for trusting my abilities to
do research, RTL design and a little software engineering on projects that were
vital to obtaining the “SoL” goals of the Streaming Multiprocessor ASIC team.
The entire experience of working and learning with the very best engineers in
industry on next generation GPU products was a dream fulfilled.

It was only a few years ago when I never really considered going into
academia to do research and teach as a career. While I still slightly hold that
same notion, it was my role as a teaching assistant for Mikhail’s undergrad-
uate Computer Architecture course that has softened my once firm belief. I
thank all the students with whom I had a wonderful opportunity interacting
and sharing my own undergraduate experiences with. They have all certainly
opened my eyes to the joys of teaching and have made me at least consider
the possibility of going into academia.

An honorable mention goes to astrophysicist Neil deGrasse Tyson whose
illustrated liking from a popular “meme” is the frontispiece of this dissertation.
His gesture of astonishment comes from an interview where he explains how
Sir Isaac Newton invented calculus before turning 26 years old. Selecting
this “meme” as my frontispiece is my way of poking fun at myself for finally
finishing this dissertation. At moments when I find myself frustrated and
discouraged, I can always Google one of Neil’s many inspiring talks to remind
myself of why I decided to pursue a STEM field degree and career path.

The friendships that I have forged during my undergraduate and grad-
uate studies at Stony Brook, including those already mentioned above, are
very dear to me. I treasure the famous bull sessions I had with both past
and present fellow Ph.D. students, particularly Shung Han Cho, Cristian Fer-
ent, Dongsoo Kim, Varun Subramanian and Anurag Umbarkar. Standing
outside of CEWIT or the Light Engineering building, discussing our crazy
decision to do a Doctorate degree and our tentative plans for the future has
brought much needed catharsis for all of us. I also value the friendships of
John Cheng, Travis Choberka, Michael Co, Alba Escobar, Kailash Ganapathi,

xix

Anna Gromadzka, Munirah Hasan, Huy Huynh, Vaibhav Laghane, Jun Lin,
Ikechukwu Okoligwe Jr., Glenn Roach, Frederick Rubino, Aditya Tagat and
Hirdeepsinh Vansia, all of whom I have shared memorable experiences with at
Stony Brook. Outside of Stony Brook, I am deeply grateful for the friendships
of Angelo “Jello” Andrada, Clarissa “Cl@rissa and BFFEVAR!” Baquiran,
Matthew “UnknownUser1486” Butcher, Maria DeVera, Carlavee Ervas, Jack
“Jack Fury” Fiore, Matthew Miller, Lenima Wright, the Hopkins sisters –
Jessica, C.J. and Cathy, and the Reyes brothers – Chris “BlueberryAttack”,
Dustin and Chuckie. I thank each and every one of them for their outpouring
support and wonderful memories.

And finally, I am forever indebted to those who have been there for me
since day one: my dearest family. To my parents Noel Ayala and Angeles Ar-
mada Ayala, it is your unending, nurturing love that has made me the person
that I am today. The elusive balance of discipline and parental affection must
have been very difficult to find but nonetheless you have succeeded. You have
instilled in me a hard working attitude while always encouraging me to pursue
my interests and ambitions. I will never take for granted the extraordinary
parents I have. Mom and dad, thank you so much for everything. A “flesh-
pound” thank you goes out to my brother Michael “MastaShakes” with whom
I have shared countless memories with from completing mundane errands to-
gether, shooting “hoop dreams” in the pool on those humid NY summer days,
to holding down the barricade against a massive horde of zombies during our
gaming sessions. Your companionship, camaraderie and support throughout
all these years have been immeasurable. I also thank my grandparents Efren
Ayala, Luisa Ayala and Natividad Armada. They were all influential figures
during my formative years and I truly appreciate their love and boundless
support. Lolo Efren, we all miss you so much and it pains me that you are
no longer here to see me finally finish but I know you are very proud of me.
And warm regards to all my extended family members, thank you for your
support as well, and after completing this dissertation I hope to visit you all
again back in the Philippines.

Christopher Lawrence Ayala
East Setauket, New York USA
December 2012

xx

Vita

Christopher Lawrence Ayala was born in Brooklyn, New York, USA on July
20, 1986 to Noel Ayala and Angeles Armada Ayala. He began his Bachelor of
Engineering degree in Computer Engineering with a minor in Computer Sci-
ence at Stony Brook University in August 2004. In May 2007, he was admitted
into the combined Master of Science and Bachelor of Engineering program in
Electrical & Computer Engineering. He graduated Magna Cum Laude from
the combined program in May 2009 and in the same year he was admitted into
the Ph.D. program in Computer Engineering with a minor area in Circuits and
VLSI. Since June 2008, he has been working as a research assistant under Dr.
Mikhail Dorojevets, conducting studies on digital systems and architectures
implemented in various families of superconductor logic. He passed the Com-
puter Engineering Qualifying Exam in April 2010 and successfully defended
his research proposal in May 2011. During the summer of 2012, he interned
at NVIDIA for the GPU ASIC group where he researched and implemented
architectural power optimization techniques for the floating-point datapaths
of the next generation Streaming Multiprocessor. He is a Student Member of
IEEE (S’07), Eta Kappa Nu and Tau Beta Pi Honor Societies, the latter of
which he was the President for two terms from 2006-2008 and an advisor from
2008-2009.

xxi

Publications

The following is a list of publications that are a result of the research conducted
for this dissertation:

1. M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki, “16-bit
wave-pipelined sparse-tree RSFQ adder,” IEEE Transactions on Applied
Superconductivity, vol. 23, Jun. 2013, (accepted).

2. M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki, “8-bit
asynchronous sparse-tree superconductor RSFQ arithmetic logic unit
with a rich set of operations,” IEEE Transactions on Applied Super-
conductivity, vol. 23, Jun. 2013, (accepted).

3. T. V. Filippov, A. Sahu, A. F. Kirichenko, I. V. Vernik, M. Dorojevets,
C. L. Ayala, and O. A. Mukhanov, “20 GHz operation of an asyn-
chronous wave-pipelined RSFQ arithmetic-logic unit,” Physics Procedia,
vol. 36, pp. 59-65, 2012.

4. M. Dorojevets, C. L. Ayala, and A. K. Kasperek, “Data-flow microar-
chitecture for wide datapath RSFQ processors: design study,” IEEE
Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 787-791,
June 2011.

5. T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala, and O.
Mukhanov, “8-bit asynchronous wave-pipelined RSFQ arithmetic-logic
unit,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3,
pp. 847-851, June 2011.

6. M. Dorojevets, C. Ayala, and A. Kasperek, “Development and evalua-
tion of design techniques for high-performance wave-pipelined wide dat-
apath RSFQ processors,” in Proc. 12th Int. Superconductive Electronics
Conf., Fukuoka, Japan, 2009, SP-P46.

7. M. Dorojevets and C. Ayala, “Logical design and analysis of a 32/64-bit
wave-pipelined RSFQ adder,” in Proc. 2nd Superconducting SFQ VLSI
Workshop, Fukuoka, Japan, 2009, pp. 15-16, 06.

xxii

Chapter 1

Introduction

Outline
1.1 Motivation . 1

1.1.1 CMOS Scaling Limits 1
1.1.2 Significance of Arithmetic Logic Units 3
1.1.3 Benefits and Opportunities in Superconductor Technology 4

1.2 Research Outline and Goals 6
1.3 Superconductor Logic 7

1.3.1 Latching Logic . 7
1.3.2 Rapid Single Flux Quantum Logic 8
1.3.3 Energy-Efficient Rapid Single Flux Quantum Logic . . . 12
1.3.4 General Challenges for Superconductor Technology . . . 12

1.4 Overview of Prior Work in Superconductor Electronics 14
1.4.1 Adders and ALUs . 14
1.4.2 Microprocessors . 18

1.1 Motivation

1.1.1 CMOS Scaling Limits
CMOS has been the predominant technology for digital integrated circuits
since the semiconductor industry transitioned from NMOS technology in the
early 1980s. Present day microprocessors are now manufactured using a 22 nm
CMOS process and the International Technology Roadmap for Semiconductors

1

Figure 1.1: Clock rate and power for various Intel microprocessors [1].

(ITRS) 2011 expects the technology to scale down to 18 nm in 2014 and 15
nm in 2016 [2]. Intel has a more optimistic outlook, expecting to release
products manufactured using the 14 nm process in 2014 and 10 nm in 2016 as
they attempt to stay true to their “Tick-Tock” model [3]. However, the ITRS
has forecasted that by 2020, it would be necessary to integrate multiple novel
devices with CMOS to achieve properties beyond the ones of which scaling can
provide. Furthermore, CMOS has also reached what is called the “power wall”
[1, 4]. Figure 1.1 shows how power dissipation has leveled off in recent years.
Increasing the power further would lead to expensive cooling solutions and
circuit reliability issues. In the past, the primary source of power dissipation
is dynamic power which is consumed during switching events in the circuit.
Dynamic power is described in Equation 1.1, where P is the dynamic power,
C is the capacitive load per transistor, V is the supply voltage and f is the
switching frequency.

P = CV 2f (1.1)

Engineers were able to improve clock rates while keeping power consump-
tion under control by lowering the supply voltage, which was made possible
with each incremental improvement in technology. The effect was especially
significant as power is a function of the voltage squared. But today, fur-
ther lowering of the voltage has now increased static power consumption due
to leakage. One type of leakage, known as subthreshold leakage, has been
reduced by scaling down gate oxide thickness which in turn, also improved
device performance and reduced short channel effects. However, this scaling
also increased another type of leakage known as gate leakage. To overcome
gate leakage, the CMOS process has recently been modified to use a higher

2

Figure 1.2: Predicted US electricity use for data centers and the range esti-
mated in the study from [5].

permittivity (high K) gate dielectric material such as hafnium dioxide instead
of silicon dioxide [6, 7, 8]. Combined with the transition from polysilicon gates
to metal gates in the 45 nm process, the gate leakage has been substantially
reduced [9]. Even more so, the emergence of multigate devices such as fin
field-effect transistors (FinFETs) [10, 11, 12] and Intel’s tri-gate, high K tran-
sistors [13, 14, 15] have enabled the production of the current 22 nm process
and opened a path for scaling further to smaller feature sizes. However, it
has become increasingly difficult to reach each new technology node and it is
unclear just how much further CMOS can scale over the next decade.

In niche markets such as data centers and supercomputers, CMOS has an
ambitious task of providing long term support for these applications [16, 17].
With cloud computing, social networking, and full-fledged software applica-
tions making the transition to web-based thin client paradigms, there is an
ever growing demand for data centers [18, 19, 20]. Figure 1.2 on page 3 shows
that the electricity use of data centers will continue to increase beyond 100
billion kWh/year at its current rate [5, 21, 22]. In an effort to reduce power
consumption while maintaining the high-performance needs of today’s data-
centric world, alternative computing technologies should be considered.

1.1.2 Significance of Arithmetic Logic Units
The Arithmetic Logic Unit (ALU) is one of the most important components of
a microprocessor as it is responsible for performing the actual execution of most

3

(a) Pentium 4. (b) Itanium 2.

Figure 1.3: Thermal temperature maps of the execution cores in Intel mi-
croprocessors [23]. © 2003 IEEE.

instructions in a computer program. It is also one of the most performance-
limiting units [24]. Being able to generate the lower-order 32-bits of the ALU
output is essential in early address generation and executing consecutive oper-
ations. Furthermore, ALUs are also responsible for the thermal hotspots and
sharp temperature changes within the execution core, making it one of the
highest power-density locations on the processor as seen in Figure 1.3 on page
4. It is common for modern processors today to feature multiple ALUs to exe-
cute operations in parallel which exacerbates the power problem even further,
impacting circuit reliability and increasing cooling costs. Thus it is important
to seek energy-efficient ALU designs that can satisfy both high-performance
requirements and low power dissipation.

1.1.3 Benefits and Opportunities in Superconductor Tech-
nology

With CMOS technology reaching its scaling limit, researchers have been look-
ing for the next device which can be used to design digital circuits for high-
performance and low power consumption. One candidate is the Josephson
junction (JJ). The Josephson effect was predicted in 1962 [27, 28, 29], which
is the phenomenon of electric current across two weakly coupled superconduc-
tors separated by a thin insulating barrier known as the Josephson junction
in Figure 1.4 on page 5. For the effect to take place, the JJ must be cooled
sufficiently to its critical temperature to reach the superconductive state. Nio-
bium is usually the superconductor material of choice for JJs and it has a

4

(a) Structure diagram and circuit symbol. (b) Equivalent circuit.

Figure 1.4: Views of the Josephson junction (JJ) superconductive device
[25, 26].

critical temperature of approximately 9.2 K. The barrier is typically made of
Aluminum-oxide. The thickness of the barrier must be approximately 1 nm or
less, so that both normal electrons and Cooper pairs (superconducting electron
pairs) can tunnel through the barrier [30, 31, 32].

A tunnel junction between normal metals (non-superconducting) is equiv-
alent to a resistor shunted by a capacitor. However, if the metals are super-
conductors then Cooper pairs can tunnel at the same rate as normal electrons.
When zero voltage is applied to the JJ, only Cooper pairs can tunnel whereas
when a voltage is applied across the junction, both Cooper pairs and nor-
mal electrons can tunnel. This creates a third parallel channel to the normal
tunnel junction circuit model as shown in Figure 1.4b on page 5, where Ic is
the critical current (maximum current at zero voltage) of the junction, C is
capacitance of the junction and Rd is the resistance of the junction.

In the late 1960s, it has become evident that JJs are suitable for extremely
fast processing of digital signals. Furthermore, the fabrication technology for
JJ integrated circuits is simpler than present day semiconductor fabrication,
as there is no need to dope materials [33]. The speed of superconductor logic is
extremely fast with gates operating as fast as 770 GHz [34], coupled with low
power consumption. Additionally, there are some levels of interoperability with
CMOS circuitry, a technique used in hybrid JJ-CMOS memory [26, 35, 36].

5

Because JJs are based on superconductivity, it is necessary to have a cryogenic
environment in order to have the superconductive effect take place. Even with
the cryostat devices used to reach temperatures of around 4.2 K, the total
power of a complete system (circuit and cryostat) is still low enough to be an
attractive alternative to CMOS.

With the development of superconductor logic, research is necessary to
review design techniques and microarchitectures. What may have worked for
CMOS may not be easily transferable in superconductor logic and that new
systematic approaches may be necessary to provide both a scalable and energy-
efficient logic design.

1.2 Research Outline and Goals
The overall goal of this research is to push the limits of the current state-of-
the-art in superconductor technology through the design study of ALUs. We
want to explore the design space of using this technology and find out what
really can be achieved. There are three aspects we wish to accomplish at the
bleeding edge:

1. Functional complexity - Move away from the simpler bit-serial designs
currently popular in this field, and move towards wide datapath 32-bit
designs similar in complexity of CMOS VLSI.

2. Clock rate & throughput - Achieve clock rates never demonstrated before
in wide datapath design in the range of 20-30 GHz, resulting in larger
throughput than ultra-fast bit-serial designs.

3. Latency - Keep latency below 600 ps, aiming for around 500 ps overall
for 32-bit designs.

4. Fabrication technology - Use the most advanced superconducting circuit
foundries in the world.

The remainder of this chapter provides an introduction of the different super-
conductor logic families and the various design challenges one must overcome
in this technology. A brief overview of past work in the realm of adders, ALUs
and microprocessors are also surveyed.

In Chapter 2, methodologies on how to conduct design studies on wide dat-
apath circuits implemented using superconductor logic are discussed. Specifi-
cally, the development of a tunable VHDL cell library provides the capability
for logical simulation of circuits and the gathering of statistics such as latency,
processing rate, complexity, bias current, and power. Also in this chapter, we

6

briefly go over the asynchronous hybrid wave-pipelined approaches to achieve
scalable wide datapath designs.

Three 32-bit wide adder cores are studied as the foundation for our ALU:
the ripple-carry adder in Chapter 3, the Kogge-Stone adder in Chapter 4 and
the hybrid sparse-tree adder in Chapter 5. The ripple-carry adder provides a
starting point in the study to grasp how the simplest adder structure in CMOS
can be designed in superconductor logic. In contrast to the ripple-carry adder,
the Kogge-Stone adder is then studied as a complex, high-performance alter-
native. By combining techniques from the ripple-carry adder and the Kogge-
Stone adder, a hybrid sparse-tree adder is developed to create an energy-
efficient, high-performance core for an ALU design. In all three studies, we
compare their characteristics in both RSFQ and ERSFQ logic with a focus on
ALU development for the Kogge-Stone and hybrid sparse-tree structures.

In addition to the design studies carried out in this research, physical imple-
mentations and prototype chip demonstrations have been completed, specifi-
cally:

1. An 8-bit implementation of the Kogge-Stone ALU as a joint effort be-
tween SBU and HYPRES using 1.5 µm 4.5 kA/cm2 technology.

2. A 16-bit hybrid sparse-tree adder and an 8-bit hybrid sparse-tree ALU
as a collaborative effort with Yokohama National University and Nagoya
University using 1.0 µm 10 kA/cm2 technology.

Finally, Chapter 6 makes some final conclusions of the results obtained from
this research, followed by a brief outlook on further research directions in
superconductor electronics.

1.3 Superconductor Logic

1.3.1 Latching Logic
The first family of superconductor logic involved JJs in the voltage-state or
latching mode whose I-V characteristics are illustrated in Figure 1.5a on page
8 [26, 37, 38]. It has a multivalued and hysteretic behavior such that the
junction switches from V = 0 mV to V = Vg at I = Ic, where Vg is the energy
gap of the material (~2.7 mV for Niobium). The junction can be reset back to
the zero-voltage state when current is reduced to almost zero. This behavior
provides a two-state voltage logic similar to CMOS. This approach was very
popular during the 1970s and 1980s for superconductor computing projects at
IBM and Japan. However, it required an AC power system in order to reset
the junction back to the zero-state. Eventually this technology was dropped

7

(a) Voltage-state latching JJs. (b) SFQ-based non-latching JJs.

Figure 1.5: DC I-V characteristics of JJs [26].

as demonstrations showed operating rates close to 1 GHz, which was relatively
fast at that time when compared to CMOS, but was very difficult to go any
higher [39].

1.3.2 Rapid Single Flux Quantum Logic
Rapid Single Flux Quantum (RSFQ) logic has been developed since 1985 as
a step towards a drastic increase in the operation speed of JJ digital circuits
[27, 40] in contrast to the slower latching logic. It is based on JJs shunted
by a resistor. The I-V curve of this approach is illustrated on Figure 1.5b on
page 8 and it shows that its operation is non-hysteretic and single-valued. Fur-
thermore, these devices are DC powered instead of AC powered as in latching
logic. In RSFQ, digital logic is represented in the form of single flux quantum
(SFQ) pulses which are very short (picosecond) voltage pulses V (t) of a quan-
tized area (Equation 1.2, where Φ0 is the magnetic flux quantum, h is Planck’s
constant and e is the charge of the electron [27]). These SFQ pulses, compared
to voltage levels in latching logic, are more naturally generated through JJs.
They can also be reproduced, amplified, memorized and processed by JJ-based
logic circuits.

ˆ
V (t)dt = Φ0 = h

2e ≈ 2.07 mV× ps (1.2)

SFQ pulses can be transferred between logic gates through two types of
connections: (1) passive transmission lines (PTLs, Figure 1.6c on page 9) or
(2) active Josephson transmission lines (JTLs, Figure 1.6a on page 9). PTLs
provide fast connections for long distance ballistic propagation of SFQ pulses
at a velocity of ~100 µm/ps [41, 43, 44]. Active JJ-based drivers (TX) and re-
ceivers (RX) are required to enter and leave the PTLs respectively, introducing

8

(a) JTL schematic and cell layout. (b) PTL via connection.

(c) Driver-PTL-Receiver schematic.

Figure 1.6: JTL and PTL connections used in superconductor logic [41, 42].
© 2009 IEEE.

9

a propagation delay overhead before benefiting from the high-speed, low-loss
transmission of PTLs. Since PTLs are usually on a different layer than the
active JJs, they can be treated as an additional interconnect metal layer that
is analogous to the multi-metal process of CMOS. Some processes, such as the
ISTEC 10 kA/cm2 advanced process, support two PTL layers with via con-
nections as shown in Figure 1.6b on page 9 [41]. JTLs, on the other hand, are
typically used for local connections between cells or as delay elements. They
use the same plane as gates so they also compete for area, and as active circuit
elements with a propagation delay, short distances should only be covered (i.e.
short enough to have a propagation delay less than the TX/RX pair for PTLs)
if the goal is to achieve the fastest connection.

RSFQ is generally a positive-type logic in the sense that data is easier to
process if it is a logical ‘1’ determined by the arrival of an SFQ data pulse. In
this regard, RSFQ has a harder time dealing with logical ‘0’ or the absence
of an SFQ pulse. This absence must be taken with reference to some clock
pulse. All gates that must perform some type of inversion such as an inverter
or an XOR gate, requires a clock input to differentiate whether data is truly
a logical ‘0’, or data still has yet to arrive. Ensuring data is sent before the
clock pulse arrives at a gate solves this problem.

At the circuit level, RSFQ gates are built with multiple JJs, inductors and
bias resistors. A simplified schematic of a D flip-flop (DFF) gate is shown
in Figure 1.7a on page 11. It includes an input junction J1, an inductor to
store an SFQ pulse, and a decision-making comparator composed of J2 and
J3. When an SFQ pulse appears at the data input, J1 will switch and store
one flux quantum in the inductor between J1 and the J2/J3 pair. This stored
flux quantum adds Φ0

L
amount of current in J3. Should a clock pulse arrive

in this state, then an SFQ pulse is transmitted to the output and the DFF is
set back to the zero-state. If there was no flux quantum stored in the DFF
when a clock pulse arrives, then the current in J3 is insufficient to switch and
thus no SFQ pulse is transmitted [26]. Figure 1.7b on page 11 shows the logic
coding and timing diagram of SFQ pulses as they arrive into a DFF gate.

Bias resistors are used as current distributing elements to supply current
to the JJs in RSFQ gates. A majority of the power dissipated in RSFQ comes
from these bias resistors in the form of static power. Dynamic switching power
contributes only ~1% of the total power consumption of circuits, particularly
in large scale designs [45]. Total power of the circuit, assuming it is already at
4.2 K without any additional cooling equipment (Pcryo), can be estimated by
Equation 1.3, where Ibias is the total bias current of the circuit and Vbias is the
bias voltage fixed at 2.6 mV for the HYPRES 4.5 kA/cm2 process, and 2.5 mV
for the ISTEC 10 kA/cm2 process. To determine the total “plug-in” power
at room temperature (Proom) by taking into account the power to cool the

10

(a) Circuit schematic.

Clock

Data Logic ‘1’Logic ‘0’

Output Logic ‘1’

Time

Hold Time Setup Time

CLK-to-Q

Logic ‘0’

(b) Logic coding and timing.

Figure 1.7: RSFQ D flip-flop [27, 25, 26].

11

circuit down to 4.2 K, we simply multiply the power at 4.2 K by the cryostat
efficiency of 1000 Wroom/Wcryo as shown in Equation 1.4.

Pcryo = IbiasVbias (1.3)

Proom = Pcryo

(
1000Wroom

Wcryo

)
(1.4)

1.3.3 Energy-Efficient Rapid Single Flux Quantum Logic
Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic aims to elimi-
nate static power consumption altogether [46, 45]. The bias resistors used to
distribute current to the logic gates are now replaced with JJs to take ad-
vantage of the critical current Ic as a natural current limiter. To use this
biasing scheme, the voltage on the power line must be equal or greater than
the maximum possible DC voltage used to power the circuit. This maximum
DC voltage (Vbias) is determined by its clock frequency as shown in Equation
1.5, where fc is the clock frequency that the circuit is designed to run at and
Φ0 ≈ 2.07 mV×ps [46]. The ERSFQ bias voltage is in the range of 20-100 µV
for clock frequencies in the range of 10-50 GHz, as opposed to the fixed 2.5-2.6
mV bias voltages used in RSFQ. If we substitute Equation 1.5 into Equation
1.3, we obtain the power consumption of ERSFQ at 4.2 K (Equation 1.6). To
determine the power at room temperature, we can use Equation 1.4 in the
same way as we did for RSFQ.

Vbias = Φ0fc (1.5)

Pcryo = IbiasΦ0fc (1.6)

1.3.4 General Challenges for Superconductor Technol-
ogy

There are several challenges that designers must deal with when working with
superconductor technology for digital circuits:

• Temperature induced fluctuations: The logic gates in superconductor
logic do not have fixed propagation delays [47, 48, 49]. They are in-
fluenced by thermal fluctuations resulting in delay jitter. Thus it is
necessary to provide reliable synchronization techniques for designs, par-
ticularly for ultra-high-speed, wide datapath RSFQ processors of which
are more prone to these fluctuations [26, 50].

12

• Flux trapping: Trapped magnetic flux or frozen flux can degrade circuit
performance and cause operation to malfunction [51, 52]. This typi-
cally occurs during the temperature transition into the superconducting
state. The first step in minimizing this effect is to shield the circuit
from the Earth magnetic field with Mu-metal shielding. The second,
and most effective step, is to provide areas on superconductor chips to
create special traps or moat structures in the ground planes and other
large superconducting films to keep frozen flux far from the operating
circuits [53, 54, 55].

• Overcoming large latencies and delay overhead: Much of the latency in a
large circuit is typically due to splitting signals, especially asynchronous
“ready” signals and broadcasted control signals. In RSFQ, splitting a
signal into two requires at least an active splitting element. In HYPRES
technology, it is necessary to add an additional JTL to re-amplify the
signal after two levels of splitting, thus compounding the delay overhead
even further. Minimizing splitting and overlapping operations to hide
large latencies are important [50, 26].

• Static power: A majority of power is dissipated through bias resistors in
RSFQ. For high-complexity circuits, static power has become a problem.
The zero static power dissipation biasing network in ERSFQ logic [46],
described in Section 1.3.3, aims to eliminate this challenge.

• Development of CAD tools for VLSI superconductor circuit design: While
there are numerous tools available to simulate and evaluate superconduc-
tor circuits at the junction-level [56, 57, 58, 59, 60], there are very few
CAD tools which abstracts the physics behind superconductor logic and
focuses on logic level design such as [61, 62, 63]. These tools are necessary
to evaluate VLSI-level complexity circuits. The SBU tunable VHDL cell
library described in Chapter 2 as well as the CONNECT cell library in
Japan [64] are among the latest academic efforts in this domain. With
respect to commercial tools, NioPulse [65, 66] aims to provide a unified
Cadence-like environment for VLSI superconductor circuit design similar
to that of [62] and [64].

• Memory: Perhaps the biggest challenge in superconductor technology is
memory. It is the performance limiting component in RSFQ processors.
Solutions for on-chip or off-chip memory structures that can provide low-
latency, high-throughput access is an on-going effort [67, 68, 69, 70, 71].
There have been recent proposals in developing Josephson magnetoresis-
tive random-access memory (JMRAM) as a possible memory structure
to couple with superconductor technology [26, 72] and a re-emergence of

13

vortex transition memory cells [73] based on previous work from [74, 75].

1.4 Overview of Prior Work in Superconduc-
tor Electronics

1.4.1 Adders and ALUs
1.4.1.1 “Push-Forward” RSFQ Carry-Save Serial Adders

In 1995, the research group at HYPRES developed a novel “push-forward”
design of an RSFQ carry-save serial adder (CSSA) [76]. Two versions were
designed, fabricated and successfully tested. The first version (CSSA1) uses
traditional RSFQ, whereas the second version (CSSA2) uses a new design
approach based on shifting or pushing forward stored data along the storage
loops within the RSFQ gate by each incoming SFQ data pulse. Simulations
showed a 30 GHz clock frequency for CSSA1 and a 40 GHz clock frequency
for CSSA2. Both versions were successfully tested at low frequency with a
measured DC bias margin of ±20% for CSSA1 and ±14% for CSSA2.

(a) CSSA1. (b) CSSA2.

Figure 1.8: Microphotographs of the CSSA [76]. © 1995 IEEE.

14

1.4.1.2 Case Study of Fast Pipelined Parallel Adders in RSFQ

In 1999, the RSFQ research group at Stony Brook University conducted a
design study of Kogge-Stone 32-/64-bit integer adders using concurrent flow
sequencing [77]. The results from their study showed a 32-bit and a 64-bit
adder having a design complexity of 28820 JJs and 66444 JJs respectively,
and a maximum clock rate of 152 GHz for both designs. Their simulation
results were obtained for a future 0.8 µm Nb-trilayer technology with plans to
layout the critical path of the adders in 3.5 µm technology but unfortunately
no further results were published.

1.4.1.3 1-bit RSFQ ALU with a 3-Input XOR Gate

In 2003, a 1-bit slice of an ALU has been demonstrated by the Superconductiv-
ity Research Laboratory, International Superconductivity Technology Center
in Tokyo, Japan [78]. Its design is based on a 3-input XOR gate with addi-
tional logical gates to perform other functions in parallel, namely: AND, OR,
ADD and SUB. These functions are then multiplexed based on the desired
function. It consists of 560 JJs in a 1200 µm x 2600 µm area. Simulation
showed it can operate up to 50 GHz and experimental measurement of the
fabricated chip showed bias margins of ±37% at low speed.

Figure 1.9: Schematic of the 1-bit ALU slice based on a 3-input XOR [78].
© 2003 IEEE.

15

(a) Block diagram. (b) Chip layout.

Figure 1.10: 4-bit RSFQ ALU built with half adder cells [79]. © 2005 IEEE.

1.4.1.4 4-bit RSFQ ALU with Half Adder Cells

In 2005, a 4-bit ALU has been reported by a group from the University of
Incheon, Incheon, Korea [79]. It was designed as part of an effort to develop a
superconductive microprocessor. It consists of ten RSFQ half adder cells, four
2 x 2 switches, and several D flip-flops. The ALU featured four operations:
AND, OR, XOR and ADD. The size of the circuit is 3.0 mm x 1.5 mm which
is placed in a 5 mm x 5 mm chip. A 1-bit ALU block has been fabricated and
successfully tested up to 40 GHz. The 4-bit ALU design was also successfully
demonstrated but only at 5 GHz.

1.4.1.5 4-bit RSFQ Digit-Serial Adder

In 2009, a group from Yokohama National University and Nagoya University
developed a digit-serial adder architecture [80]. It adopts a carry look-ahead
structure to generate carry signals from the digit-serial data and are fed back
internally to the next digit-serial data. A 4-bit digit-serial adder has been
implemented using a 2.5 kA/cm2 standard fabrication process. It consists
of 2316 JJs and has a bias margin of ±15% at 25 GHz. It showed correct
functionality up to 30 GHz.

16

(a) Digit-serial schematic.

(b) Microphotograph of the chip.

Figure 1.11: 4-bit digit-serial adder [80].

1.4.1.6 100 GHz RSFQ Bit-Serial Adder

In 2011, a collaboration of groups at Nagoya University, Yokohama National
University, the Superconductivity Research Laboratory-ISTEC, and Kyoto
University developed a bit-serial RSFQ adder with a target clock rate of 100
GHz [81]. The serial adder is designed around the concept of state transitions
through the use of an NDRO (non-destructive read-out) cell. The concept was
then implemented for serial addition of two 8-bit integers using the ISTEC 10
kA/cm2 fabrication process and it has shown sufficient DC bias margins of
±18% at frequencies of up to 60 GHz. Correct operation has been verified up
to 93 GHz.

17

(a) Bit-serial schematic.

(b) 8-bit bit-serial adder chip.

Figure 1.12: 100 GHz bit-serial adder [81]. © 2011 IEEE.

1.4.2 Microprocessors
1.4.2.1 Fujitsu’s 8-bit DSP Microprocessor

In 1990, Fujitsu Laboratories designed an 8-bit DSP microprocessor as one of
the early attempts to harness JJ technology to build practical chips [39, 82]. It
is based on latching logic and uses a total of 23,000 JJs within a 5 mm x 5 mm
chip. It has a 64 word x 24-bit instruction ROM, 16 word x 8-bit coefficient
ROM, 16 word x 8-bit x 2 data RAM, a 13-bit 16-function ALU [83] and an 8-
bit x 8-bit multiplier. It has an estimated maximum clock frequency of 1 GHz
and a power consumption of 12 mW which at the time was about 100 times
faster and one-tenth the power of conventional CMOS DSPs. All functions
have been successfully demonstrated.

18

Figure 1.13: Microphotograph of Fujitsu’s 8-bit DSP based on latching logic
[39]. © 1992 IEEE.

1.4.2.2 FLUX-1 Microprocessor

The FLUX-1 microprocessor is a 20 GHz RSFQ 8-bit processor developed
under the collaboration between Stony Brook University (SBU) and TRW
(now Northrop Grumman) [26, 84, 85, 86, 87]. The goal was to gain first
hand understanding of the architectural and design challenges that must be
surmounted for 20+ GHz RSFQ processors. It features the following:

• Ultra-pipelined, 2-3 Boolean operations per stage.
• Two operations per cycle (40 GOPS peak for 8-bit data).
• “Processing in register” - interleaved ALUs and registers.
• Bit-streaming - allowing any operation dependent on another to start

as soon as the first bit is available from the preceding, still-in-progress
operation.

• Wave pipelining in instruction memory.
• Modular design.
• ~25 control, integer arithmetic, and logical operations (no load/store).

The final chip, FLUX-1R, had 63,107 JJs on a 10.35 x 10.65 mm2 die with a
power consumption of ~9.5 mW at 4.2 K. The group was able to demonstrate a

19

1-bit ALU-register block but there were no FLUX-1R chips fully demonstrated
before the project ended in 2002.

(a) Block diagram.

(b) Microphotograph of the second chip.

Figure 1.14: The FLUX-1 8-bit RSFQ microprocessor [84]. © 2003 IEEE.

20

1.4.2.3 CORE1 Microprocessor

The CORE1 project was conducted by Japanese teams from Nagoya, Yoko-
hama, and Hokkaido Universities, the National Institute of Information and
Communications Technology at Kobe, and the International Superconduc-
tivity Technology Center (ISTEC) Superconductor Research Lab (SRL) at
Tsukuba, Japan. It began as a simple processor known as CORE1α with the
following modest features [88]:

• Two 8-bit data registers and a bit-serial ALU.
• 32 byte shift register memory for instructions and data.
• Instruction set of seven 8-bit instructions.
• Non-pipelined processing and control logic.

– Used 1 GHz system clock and 16-21 GHz local clocks.
– 1 GHz clock for advancing instructions.
– Fast local clocks used for bit-serial transfer and processing.

• ~7,220 JJs on a 3.4 x 3.2 mm2 die.
• Power consumption rated at 2.3 mW.
• In 2003, it was fully demonstrated.

After demonstration of CORE1α, a more advanced version was developed:
CORE1β [89]. It features the following:

• Total of 14 instructions in the instruction set.
• Four 8-bit registers.
• 2 cascaded bit-serial ALUs.
• 1 GHz system clock and 21 GHz local clock.
• ~9,498 JJs and power consumption rated at 3.0 mW.
• In 2007, all operations have been completely demonstrated for CORE1β,

final version 9e [90].

Finally, CORE1γ was developed which integrated pipelining techniques and
cache memories [91]:

• 16 byte and 8 byte shift-register-based cache memories for instruction
and data.

• Overlaps 4 executed instructions in the pipeline.

21

• 22,302 JJs on 6.36 mm2 area on an 8 mm2 die.
• Power consumption estimated at 6.56 mW.
• From 2007–2008, testing has been conducted and functionality of the

new System Clock Manager (SCM) and Instruction Cache has been con-
firmed, but no other results have been published.

Figure 1.15: Microphotograph of the CORE1γ 8 mm2 chip [91].

1.4.2.4 20 GHz 8-bit RSFQ Frontier Datapath

From 2009–2012, work on an 8-bit RSFQ datapath has been carried out as a
joint project between SBU and HYPRES. The datapath adopts an 8-bit version
of the 32-bit Frontier data-flow microarchitecture developed at SBU [50]. Using
a VHDL cell library tuned to the HYPRES 1.5 µm 4.5 kA/cm2 fabrication
process, the SBU team completed the cell-level design and verification of the
8-bit datapath. The team at HYPRES completed the physical layout design,
fabrication and testing of two key units: an asynchronous wave-pipelined ALU
[92, 93] and a multi-port register file [94]. The ALU has been successfully
demonstrated to operate at the target clock rate of 20 GHz with ±5% DC
bias margins. The register file has been successfully tested at low-frequency
with ±4% DC bias margins. Work is still on-going for this project.

22

Chapter 2

Development of Efficient
Techniques for VLSI
Superconductor Design

Outline
2.1 Superconductor Cell Library and Design Tools . . . 23

2.1.1 SBU Tunable VHDL Cell Library 23
2.1.2 CONNECT Cell Library 28
2.1.3 Summary of RSFQ Logic Cells 32

2.2 Asynchronous Hybrid Wave-Pipelining 35

2.1 Superconductor Cell Library and Design
Tools

2.1.1 SBU Tunable VHDL Cell Library
2.1.1.1 Purpose and Overview

In order to evaluate large-scale designs implemented in new technology, a
simulation model needs to be developed. At Stony Brook University (SBU),
the Ultra High Speed Computing (UHSC) Laboratory developed a tunable
VHDL cell library that logically models superconductor circuits, and allows
researchers to design, verify and profile large-scale architectures.

Each cell is described using a behavioral model based on FSMs (finite state
machines) and/or logical truth tables when applicable. Parameters such as

23

Figure 2.1: Normal distribution of delays obtained from a DFF cell simula-
tion.

timing constraints, delay jitter, bias current, switching energy and complexity
are provided by circuit level designers. This information is used by the logic
level designers to develop and simulate processor units. These tools not only
allow for the simulation and collection of all kinds of statistics for fabrication-
ready designs but also provide insight on the technological hurdles that must
be overcome for future wide datapath processor designs.

All propagation delays for each cell are modeled using a stochastic ap-
proach. Given the average and variance of each propagation delay, a normal
distribution of the delays is created to provide a Monte Carlo simulation of
the thermal-induced delay fluctuations a circuit would experience (Figure 2.1).
The cells also check for any timing violations during simulation and report
these violations as a failure. This methodology allows designers to identify
weak areas where timing margins are very small. A failure report consists of
important information such as what kind of timing constraint has been vio-
lated (setup or hold time), where the failure occurred and which inputs caused
it. With this information, a logic level designer can identify the source of the
failure and what measures should be taken to resolve it. Furthermore, all pos-
sible ways a cell can consume dynamic energy are stored in a switching table
so that for a given switching event there is a corresponding amount of energy
consumption accumulated locally in each cell instance during simulation. Af-
ter the simulation is over, all cells report their switching energy totals and

24

d

t

q

D

Figure 2.2: DFF symbol used in schematics.

are accumulated to produce the overall switching energy total for the entire
simulation. Finally, the cell library provides a set of procedures/functions for
the logic level designer to easily obtain the design complexity (i.e. number of
JJs, bias current) and estimate the maximum clock rate that the design under
test can support.

The simulation waveforms generated from our library look a bit unusual
at first. This is because we represent SFQ pulses as logic events, a ‘0’ to ‘1’
transition or a ‘1’ to ‘0’ transition. Any transition represents a pulse, it does
not matter whether it was on the rising edge or on the falling edge. This
concept can be better explained by examining the RSFQ D flip-flop (DFF).
It generally behaves the same way as its CMOS counterpart. The DFF has
two inputs, the data input d and the clock input t. Starting from its initial
state S0 as shown in Figure 2.3, if a pulse arrives in input d and afterwards
a pulse is applied to clock input t after setup time is satisfied, then a pulse is
generated from output q with a clock-to-q delay. If no pulse arrived in input d
before the clock pulse, then no output is generated. The simulation waveform
for the DFF is shown in Figure 2.4. Notice that in Figure 2.4a it completely
disregards the logic level and that it responds to only logic events (rising edge
or falling edge transitions) as the representation of SFQ pulses. A cleaner
representation is shown in Figure 2.4b which shows only the logic events.

Currently, the SBU VHDL cell library is tuned to the parameters of the
HYPRES 1.5 µm 4.5 kA/cm2 standard Niobium process whose key character-
istics are outlined in Table 2.1 on page 26 and a cross section of the process is
illustrated in Figure 2.5 on page 27. Parameters for each logic gate is described
through a custom made Standard Parameters File (SPF) which is read by the
cell library upon elaboration of a design for simulation. This is an easy way to
evaluate designs for different fabrication processes. In fact, an SPF made for
a future 20 kA/cm2 process was used to evaluate the potential performance of
a wide datapath data-flow microarchitecture [50].

25

t
S1 S0

t/q

d

d *

Warning

Error Illegal Inputs

d&t

Figure 2.3: FSM of the DFF cell.

(a) Typical waveform view.

(b) Event waveform view.

Figure 2.4: Logic simulation waveform of the DFF cell.

Table 2.1: Key characteristics of the HYPRES standard Niobium process
[95].

Minimum Feature Size 1.5 µm
Critical Current Density 4.5 kA/cm2

Nominal Bias Voltage (for RSFQ) 2.6 mV
Number of Superconducting Layers 4

26

Figure 2.5: Cross section of the HYPRES standard Niobium process [95].

While our approach has delivered fully functional chips [92, 93, 94], it
admittedly has some limitations. First, all design descriptions are completed
using structural VHDL code (as opposed to dataflow or behavioral code).
Logic is designed by hand since no synthesis tools are available, therefore the
designer must describe their circuit as structural gates connected to other
gates. This is extremely cumbersome for complex blocks as a designer must
instantiate each gate and connect all necessary signals by hand. Currently,
schematics are drawn without automatic back annotation of VHDL code. It
is only used as a visual aid to help code the VHDL description and it must
be checked by hand to ensure consistency between the code and schematic.
Second, it does not integrate analog circuit level models of cells. This is fine
for our purposes but it does not lend itself to becoming a unified simulation
suite that can be used at different levels of design abstraction. Lastly, layout
views are not incorporated so a physical designer must rely on, interpret, and
check for consistency with the manually made logic schematics themselves.

Ultimately, the VHDL cell library is best suited to conduct design studies
to profile performance, complexity and power. Combined with powerful VHDL
generate statements and configuration packages, different architectures can be
quickly explored by changing generic settings and configuration parameters
without having to create separate designs by hand.

2.1.1.2 Acknowledgments

The SBU tunable VHDL cell library is a culmination of work from past and
present members of the UHSC laboratory under the direction and supervision
of Dr. Mikhail Dorojevets. The notable contributors are the following:

• Christopher Ayala (dissertation author): Involved in all aspects of li-
brary development, implementation, testing, documentation, and main-
tenance.

• Artur Kasperek: Implemented some of the gate-level FSMs and added
additional helper functions.

• Kruti Shah and Prachi Bemalkhedkar: Contributed to the library docu-
mentation.

27

• Zuoting Chen: Implemented additional features for a new superconduc-
tor logic and will take over future development of the library.

2.1.2 CONNECT Cell Library
2.1.2.1 Purpose and Overview

The SFQ CONNECT cell library has been developed by Yokohama National
University and Nagoya University in an effort to tremendously speed up the
design process of taking a set of functional specifications and performance
requirements all the way to chip tape-out [42, 64]. It provides a unified sim-
ulation environment in Cadence where analog JJ circuit level simulation of
individual cells can be performed through JSIM (SPICE-like simulator for JJ-
based circuits) [58, 96]. Layout views are integrated into each cell from which
parameters can be extracted and back annotated into the analog model. And
most importantly for our purposes, logical Verilog models are also incorpo-
rated to facilitate fast logic level simulation of circuits with timing delays and
constraints dependent on a globally defined bias voltage. A portion of this
research is based on using the CONNECT cell library for the ISTEC 1.0 µm
10 kA/cm2 Advanced Process (ADP) whose key characteristics are listed in
Table 2.2 on page 28 with a cross section shown in Figure 2.6 on page 29.

The design flow of the CONNECT cell library starts with the schematic
capture of the circuit at the gate-level. In the schematic view, cells are placed
and oriented next to each other to create logical connections. As shown in
Figure 2.9 on page 31, the placement and orientation on the schematic directly
correlate with the physical layout view so there is no need to perform a Layout
Versus Schematic (LVS) check. PTLs are also placed on the schematic under
the cells along two central tracks of a 30x30 µm2 grid that the gate placements
are based on as shown in Figure 2.8 on page 30. Schematics can also be
designed modularly through the use of hierarchical blocks. Moat cells should
be placed so that they surround the logic circuit to aid in flux trapping and
prevent the logic gates from being disturbed. Two to four JTLs should also be
placed after DC-to-SFQ converters and before SFQ-to-DC converters which

Table 2.2: Key characteristics of the Japanese ISTEC Advanced Process
(ADP 2.2) [97].

Minimum Feature Size 1.0 µm
Critical Current Density 10 kA/cm2

Nominal Bias Voltage 2.5 mV
Number of Superconducting Layers 9

28

Figure 2.6: Cross section of the Japanese ISTEC Advanced Process (ADP
2.2) [97].

Figure 2.7: Logic simulation in Cadence NC-Verilog.

29

(a) Grid layout (b) PTL tracks

Figure 2.8: Grid-based approach used in the CONNECT cell library [64].

are used to communicate outside the chip.
After the schematic is complete, simulation is conducted through Verilog.

Each cell has its own Verilog model with a table of propagation delays de-
pending on the bias voltage. It also includes timing checks for setup and
hold violations. The schematic is transformed into a Verilog structural netlist
and is brought into the NC-Verilog simulator where a testbench can perform
functionality tests. Timings can be observed directly through the waveform
viewer as shown in Figure 2.7 on page 29. One of the most important steps
in this design-flow is to simulate frequency dependent bias margins, which
encompasses testing the design over a range of clock frequencies, varying the
bias voltage at each clock frequency and observing whether or not the design
works (i.e. no timing violations and is functionally correct) for the given clock
frequency and bias voltage.

Once simulated testing and verification are complete, the schematic can be
directly converted into a layout and placed on a chip frame. Within the chip
frame, I/O and bias pads are placed and wired to the circuit. When the chip
layout is complete, a Design Rules Check (DRC) is performed to ensure the
circuit did not violate any design rules, particularly spacing. With this final
check, a GDSII layout file is generated and submitted to our collaborators in
Japan for fabrication.

2.1.2.2 Acknowledgments

The CONNECT cell library was entirely developed by the SFQ research groups
at Yokohama National University and Nagoya University. We are grateful they
had allowed us to use their library to implement the designs in this research.

30

(a
)
Sc
he
m
at
ic

vi
ew

.
(b

)
La

yo
ut

vi
ew

.

F
ig
ur
e
2.
9:

Ex
am

pl
e
of

ho
w

th
e
sc
he
m
at
ic

an
d
ph

ys
ic
al

la
yo

ut
co
rr
es
po

nd
to

ea
ch

ot
he
r
w
he
n
de
sig

ne
d
us
in
g
th
e

C
O
N
N
EC

T
ce
ll
lib

ra
ry
.
N
ot
e
th
at

PT
L
an

d
vi
a
ce
lls

(p
in
k
an

d
pu

rp
le

lin
es
)
ar
e
al
so

pl
ac
ed

at
th
e
sc
he
m
at
ic

le
ve
l

as
we

ll.

31

2.1.3 Summary of RSFQ Logic Cells
The adder and ALU designs use numerous RSFQ logic cells of which some are
quite different from the typical gates found in CMOS technology. Table 2.3 on
page 32 lists the major RSFQ cells used throughout this research. A diagram
of the SFQ operation and a brief description are provided to help the reader
become familiar with the logic cells.

Table 2.3: Listing of RSFQ logic cells used through out the design of the
adder and ALU.

Cell
Name

Symbol and SFQ
Operation Description

JTL/JL

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Josephson transmission line (JTL or JL):
Primarily used to connect one logic cell to
another. Multiple JTLs can be used to in-
sert additional timing delay or to amplify
weak SFQ pulses (e.g. pulses after two lev-
els of splitting).

SPL

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Splitter (SPL): Connections in RSFQ are
point-to-point so there is no passive way
to create a fan-out. Instead, an SPL com-
posed of active JJs is used to create a fan-
out of 2. It is an active circuit element
that approximately has the same delay as
a single-stage JTL. Multiple SPLs can be
used to create multiple fan-outs, keeping in
mind that two SPLs in series require a JTL
to amplify the output (only in HYPRES).
A designer must be very careful with tim-
ing when SPLs are used.

32

Cell
Name

Symbol and SFQ
Operation Description

MRG

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Merger (MRG): Also called confluence
buffer (CB) in the CONNECT cell library.
It is used to channel two different SFQ
paths into a single path. It has a timing re-
quirement such that two SFQ pulses must
be separated by TMINGAP . This separation
can be realized through multiple JTLs in-
serted before one of the inputs. MRGs are
often used to route multiple SFQ pulses
into a T1 or TRS gate.

CXOR

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Clocked eXclusive OR (CXOR): A syn-
chronous XOR gate. If, and only if, one
SFQ pulse arrives in either input, but not
both, before the arrival of clock, then an
output is produced after clock arrives.

AAND A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Asynchronous AND (AAND): An asyn-
chronous AND gate that requires an
SFQ pulse in each of the two inputs to
arrive within a certain timing window
(TMAXGAP) relative to each other in order
to produce an output SFQ pulse.

CFF

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Resettable Muller C-flip-flop (CFF): An
asynchronous resettable AND gate which
will indefinitely wait for an SFQ pulse to
arrive in each of the two input ports before
it will produce an output pulse. A reset in-
put is available to clear the CFF (throws
away the waiting SFQ pulse). We have
specifically requested our collaborators to
implement this unique gate with a reset-
ting capability as it is a key mechanism for
asynchronous wave-pipelined circuits.

33

Cell
Name

Symbol and SFQ
Operation Description

CAND

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Clocked AND (CAND): An AND gate
whose state is evaluated when a clock in-
put arrives. If an SFQ input pulse arrived
in each of the input ports before the clock,
then an SFQ pulse is created at the output
after the clock pulse arrives. Only available
in the CONNECT cell library.

DFF

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Delay/data flip-flop (DFF): A flip-flop sim-
ilar to its CMOS equivalent where a data
SFQ pulse is received at input d and then
stored until it is read out by the clock
pulse.

DFFC

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

DFF with complementary output (DFFC):
A DFF which has both direct and comple-
mentary outputs.

D2FF

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

DFF with 2 clock inputs and 2 outputs
(D2FF): It stores a single SFQ pulse from
input d and then routes it to either q0 or
q1 if a clock pulse arrives at t0 or t1 respec-
tively. It is effectively a demultiplexer.

T1

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Toggle flip-flop with asynchronous carry
and synchronous sum (T1): A gate which
can be used as a half adder, full adder,
counter/compressor or frequency divider.
It asynchronously generates an SFQ out-
put on q0 for every even number of pulses
that arrive at input t since the last clock c
was applied. It synchronously generates an
SFQ output on q1 after clock c was applied
and if only an odd number SFQ pulses have
arrived at t since the last clock.

34

Cell
Name

Symbol and SFQ
Operation Description

TRS

A

C

d

t

qD

q0

q1

t

d DC

q0

q1

d

t0

t1

D2

q0

q1

t

r

s

TRS

q0

q1

t

c

T1

S

Reset

Reset to q0

Set to q1

Toggle flip-flop with reset and set (TRS):
A gate similar to T1 except both outputs
are asynchronous. A pulse in the r input
will initialize the gate to the 0-state so that
the arrival of the next data pulse at t will
produce an output at q0. A pulse in the s
input will initialize it to the 1-state so that
the arrival of the next data pulse at t will
produce an output at q1.

2.2 Asynchronous Hybrid Wave-Pipelining
Traditional synchronous pipelining incorporates the use of latches between
stages to separate data moving through the pipeline. Only one set of data
can exist for a given pipeline stage. The worst-case path of the longest stage
plus some additional overhead from synchronization (clock-to-q, setup time,
and clock skew) determines the cycle time, and thus the maximum clock fre-
quency. Synchronous pipelining is very popular in CMOS as clock distribution
networks are relatively easy to design when compared to RSFQ. In RSFQ, syn-
chronization overhead can be much larger than the latency of logic between
stages for two reasons:

1. Small amount of logic per stage as a result of high clock rates or short
cycle times.

2. Large clock skew because splitting SFQ pulses requires active splitting
elements with each one introducing significant propagation delay.

Furthermore, there is timing uncertainty in RSFQ circuits due to temperature
induced fluctuations mentioned in Section 1.3.4.

Wave-pipelining is a technique in which the intermediate latches are re-
moved [98, 99, 100, 101, 102, 103, 104, 105]. This reduces area, power and
overhead from the clock distribution network. The clock rate increases as
multiple data waves can exist in any stage (Figure 2.13). There are two main
requirements in wave-pipelining [102]:

1. Prevent collisions of unrelated data waves.
2. Equalize delay paths to reduce differences between the shortest and

longest delays in the combinational logic.

35

C
r

a b

Figure 2.10: CFF symbol used in schematics.

a

b

rr

r&a&b

r&a
r&b

S1 S2S0S1 S2S0

b

r

a

a&&b/q

b/q a/q

Warning

Error Illegal Inputs

r&b r&a

Figure 2.11: FSM of the CFF cell used in asynchronous wave-pipelining.

Figure 2.12: Logic simulation waveform of a CFF cell.

36

Even if we were able to equalize all delay paths, most likely they will not be
perfect. There would still be very small differences between the delay paths
since gates do not have propagation times that can be divided evenly with
JTLs. These differences can accumulate from stage-to-stage, and thus it is
also necessary to hold signals before proceeding to the next stage. In RSFQ
logic, this is achieved by using a resettable asynchronous Muller C-flip-flop
(CFF) [106, 107, 108, 50]. A CFF gate can be thought of as an AND gate in
CMOS, with some internal memory. It has two data inputs labeled a and b,
as well as one more input named r for reset. CFF will only produce a pulse
on output q if it has received one pulse in each of the two data inputs (Figure
2.11). It does not matter when they arrived, they can arrive with a large time
separation or at the same time but as soon as the 2nd of the two data pulses
arrive, an output pulse from q will be generated after some propagation delay.
Since the CFF gate can indefinitely wait for that 2nd pulse to arrive at its
other input, it might be possible to receive another pulse in the same input
that just received one. It is illegal for multiple pulses to arrive at a single
data input and so it is necessary to “clean” or reset the CFF by providing
a pulse on the r input before the next data pulse arrives. Figure 2.12 shows
the waveform simulation of the CFF. Notice that if an output is generated, it
is not necessary to provide a reset before the next data pulses. This is also
reflected in the FSM (Figure 2.11). With CFFs, data waves have some level
of synchronization which ensures that parts of the wave will not get too far
ahead or lag behind. This is especially effective when the encoding of the
data wave allows asynchronous propagation and a trailing reset wave is used
to clean the CFFs as data passes through, creating a truly data-driven design
(Figure 2.13).

Ideally, the maximum processing rate of wave-pipelining ultimately de-
pends on the sum of two timing constraints of the CFF: (1) timing separation
between the arrival of data and the trailing reset (setup time) and (2) timing
separation of the arrival of reset and the next incoming data (hold time) (Fig-
ure 2.14c on page 40). Because we cannot achieve perfect equalization of all
combinational paths and the thermal fluctuations influence the gate delays,
timing margins must also be added to the timing constraints.

Another popular asynchronous RSFQ sequencing technique is co-flow clock-
ing (Figure 2.14) [109]. In this case, the same clock that is used to move data
at the first stage is also used at all subsequent stages to the move the same
set of data [77, 109]. In other words, only one clock pulse is necessary to move
one data wave through all stages of the pipeline. In co-flow clocked designs, it
is necessary to have distribution trees at each stage with matching delays to
slow down the propagation of the clock pulse as it travels to the next stage.
Safety delays are also inserted to provide margins for setup time. And simi-

37

Input Data Ready

Output Data

Data Wave [1]

Reset Wave [1]

Data Wave [N-1]

Reset Wave [N-1]

Data Wave [0]

Reset Wave [0]

...

...

Data Wave [2]

Reset Wave [2]

Figure 2.13: An example of asynchronous wave-pipelining with trailing reset
waves.

38

lar to how it is necessary to equalize all data delay paths in wave-pipelining,
delays should be inserted on data propagation paths where hold time is a
concern. The addition of distribution trees, matching delays, safety delays,
and data delays contribute to a substantial amount of complexity and power.
The maximum processing rate also depends on setup and hold time but with
respect to data and clock as opposed to data and reset in wave-pipelining.
Assuming that clock based elements have similar timing constraints to that of
CFFs, both co-flow clocking and wave-pipelining should have nearly identical
maximum processing rates. The key difference is that wave-pipelining reduces
latency by not having to wait for the arrival of the clock to produce an output
as shown in Figures 2.14b and 2.14c.

In RSFQ microprocessors, it may be necessary to integrate the two tech-
niques in the form of asynchronous hybrid wave-pipelining, especially in irreg-
ular structures where it may not be viable to use pure wave-pipelining tech-
niques. This hybrid approach can be accomplished by using wave-pipelining
for the most time critical operations of a circuit and using co-flow clocking
for non-critical areas. Furthermore, co-flow clocking can be used sparingly
where logic is complex and requires the used of clock-based gates when an
asynchronous equivalent is not available.

39

Data out Clock out

Data in Data inClock in
Data ready

 in

Data out

Distribution

tree

Safety delays

Matching delays

Clock co-flow Wave-pipelining

(a) Structural differences between co-flow clocking and wave-pipelining.

Clock

Data

Output

Time

Setup Time

CLK-to-Q CLK-to-Q

Hold Time Setup Time

(b) Timing in co-flow clocking.

Reset

Data

Output

Time

DATA-to-Q DATA-to-Q

Setup Time Hold Time Setup Time

(c) Timing in wave-pipelining.

Figure 2.14: Co-flow clocking versus wave-pipelining.

40

Chapter 3

Superconductor Ripple-Carry
Adder

Outline
3.1 Goals and Challenges 41
3.2 Ripple-Carry Adder Concept 42
3.3 RSFQ Study . 43

3.3.1 Design Overview . 43
3.3.2 Simulation Results and Discussion 46

3.1 Goals and Challenges
To gain insight on the design spectrum of adder structures implemented in
superconductor logic, we first looked at the simplest case of a 32-bit ripple-
carry adder (RCA). This study focuses on a single-cycle, non-pipelined, low-
latency adder assuming the structure is constrained to that of an RCA using
the HYPRES 1.5 µm 4.5 kA/cm2 process. The bit-slice element of the RCA is
the full adder which was built using T1 gates to obtain a low-complexity, low-
latency structure. Because we decided to eliminate pipelining for this study,
only a single binary clocking tree is required without the need to implement
additional timing or buffering techniques, thus simplifying the overall design.

The work on the RCA would later on help us make important design trade-
off analyses when we explore much more complex structures later on.

41

3.2 Ripple-Carry Adder Concept
The RCA is the simplest multi-bit adder structure yielding a fast design
turnaround time. An N-bit RCA can be constructed using N simple circuit
elements known as full adders (FAs), as shown in Figure 3.1 as a 4-bit exam-
ple. An FA cell adds three one-bit numbers which are typically labeled as A,
B, and Cin. A and B are the operands, and Cin is the carry-in bit, usually
from the addition of the preceding bit. With these three inputs, two outputs
are generated from the FA cell: S and Cout, where S is the sum of the three
inputs and Cout is the carry-out. Logic equations (3.1) and (3.2) describe how
S and Cout are generated respectively.

S = A⊕B ⊕ Cin (3.1)

Cout = (A ∧B) ∨ (A ∧ Cin) ∨ (B ∧ Cin) (3.2)

By serially connecting FA cells from the Cout of one bit to the Cin of the next
bit, an RCA structure is generated. The worst-case delay for this structure
can be demonstrated by setting operand A to all logical 1’s, operand B to all
logical 0’s and the Cin of bit 0 to logical 1. This creates a scenario where the
carry must propagate from bit 0 to bit N-1, before the final result is produced.
Because of the serial dependence on the carries, it is necessary to wait up to
N-carry delays which makes the design relatively slow for a large number of
bits. Furthermore, this delay is also roughly equivalent to the cycle time the
adder can run at, if no modifications, such as the introduction of pipelining
DFFs, are made. Thus, this particular design alone is not scalable for wide
datapath, high-performance designs.

42

FA

A(0) B(0)

C(0)

S(0)

FA

A(1) B(1)

C(1)

S(1)

FA

A(2) B(2)

C(2)

S(2)

FA

A(3) B(3)

C(3)

S(3)

C(4)

A B

CinCout

S

A B

CinCout

S

A B

CinCout

S

A B

CinCout

S

A
B S

Cout

Cin

Figure 3.1: Example of a 4-bit RCA structure composed of 4 FA cells. The
inset shows how one would implement an FA cell using CMOS logic gates.

3.3 RSFQ Study

3.3.1 Design Overview
Using RSFQ logic to design an RCA, we can exploit the high-speed capabilities
of the logic to perform time-multiplexing on the inputs and achieve the same
exact behavior of the adder. Instead of a traditional full adder as discussed in
Section 3.2, we used a special gate named T1 as a counting circuit to count
input pulses. This particular gate is based on one of the fastest digital circuits
ever demonstrated using RSFQ technology [34]. The T1 gate has two inputs:
t which is the data input, and c which is the clock input used to read-out its
current state. It also has two outputs: q0 which is generated asynchronously,
and q1 which is generated synchronously.

43

q0 q1

t

c T1

q0 q1

t

c T1

(. . .)

q0 q1

t

c T1
q0 q1

t

c T1

clk

a b

c

c_o

s_o

a(N-1) b(N-1) a(N-2) b(N-2) a(0) b(0)

c_o s_o(N-1) s_o(N-2) s_o(0)

c

SPLN(N)

(. . .)

SPLN(32) – 32-bit Splitter Tree

BIT_PITCH=0.12 mm

Level 1 = PTL, Len=BIT_PITCH x 8.0=0.96 mm

Level 2 = PTL, Len=BIT_PITCH x 4.0=0.48 mm

Level 3 = PTL, Len=BIT_PITCH x 2.0=0.24 mm

Level 4 = JTL, Len=2.0 JJ

Level 5 = JTL, Len=1.0 JJ
clk

Figure 3.2: Schematic of an RSFQ RCA adder. Inset shows a single RSFQ
FA composed of two Merger gates and a T1 gate.

q0q1

t

c T1

Figure 3.3: T1 symbol used in schematics.

44

c&t
c&t

c
S1 S0

t/q0

t

c/q1

Warning

Error Illegal Inputs

Figure 3.4: FSM of the T1 cell used in the RCA structure.

Figure 3.5: Logic simulation waveform of the T1 cell.

The behavior of the T1 gate can be followed on the FSM diagram shown
in Figure 3.4 on page 45. Assuming that T1 starts at state S0, if no data
pulse arrived at input t and then we apply a pulse on input c some time later
(sufficiently far enough to satisfy setup time), no output pulse is generated. If
a single data pulse arrived at input t and then we apply a pulse on input c, an
output pulse is generated from q1. Now if two data pulses arrived with each
pulse separated by the minimum time that T1 can process consecutive data
pulses, an output pulse is generated asynchronously from q0 without any need
for clock. T1 can be generalized in the following way:

1. Send N pulses to T1’s t input, with each pulse sufficiently separated by
the timing constraint of T1.

2. As T1 is processing these N pulses, it will asynchronously generate an
output pulse from q0 on every even pulse arriving at input t (e.g. 2nd,
4th, 6th, etc. pulse).

45

Table 3.1: Comparing T1’s counting behavior with the full adder cell.

of
Data
Pulses

Full Adder Input
Equivalent

Carry-out:
Output of q0

(asyn-
chronous)

Sum: Output
of q1 (after
clock is
applied)

0 A, B, and Cin are all
zeroes

‘0’ ‘0’

1 Only one of the
three inputs is

logical 1

‘0’ ‘1’

2 Two of the three
inputs are logical 1

‘1’ ‘0’

3 All three inputs are
logical 1

‘1’ ‘1’

3. After N pulses have been processed, a pulse on clock input c can be
applied. If N is odd, then an output pulse from q1 will be synchronously
generated, otherwise no output is generated.

The simulation waveform shown in Figure 3.5 on page 45 shows the behavior
of T1 when 0, 1, 2, 3, and 4 data pulses are processed.

In the FA case, the data pulses being processed by T1 are the time-
multiplexed arrivals of A, B, and Cin. These three inputs are merged together
using a Merger gate while still maintaining their time separations along a sin-
gle stream, and are sent into the t input of T1. For a given clock cycle, only 3
data pulses at most can be processed by T1 when used as a full adder. Table
3.1 on page 46 shows how T1’s counting behavior is equivalent to that of a tra-
ditional full adder. These T1 cells as well as appropriate merging circuits and
delay elements can be serially connected together in the same way full adders
are connected to construct an RCA. This design still deals with the problem of
long delays as carry must propagate through N T1-based full adder elements.
It also differs from the traditional RCA in that the sum result is read-out by
applying a pulse to all of the T1 clock inputs.

3.3.2 Simulation Results and Discussion
Using our VHDL cell library tuned to the HYPRES 1.5 µm 4.5 kA/cm2 pro-
cess, we designed and simulated a 32-bit RSFQ RCA. The results of the sim-

46

ulation are summarized in Table 3.4 on page 52. Its main advantage is that
its complexity is very small which results in a small amount of bias current
used to power the circuit. However, these results confirm that RCAs, even
when implemented using superconductor technology, do not provide the 20+
GHz processing rate we are aiming to achieve and scaling to higher data widths
would decrease the rate even further. Fortunately, some concepts can be taken
from this study:

• The counting T1 circuit is applicable in high-speed multipliers as a form
of compressors [110].

• Small RCA chains can be used in non-critical paths of a hybrid sparse-
tree adder (Chapter 5).

515.00

516.00

517.00

518.00

519.00

520.00

521.00

522.00

523.00

524.00

525.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

La
te

n
cy

 (
p

s)

Bit Index

Sum Max(ps)

Sum Avg(ps)

Sum Min(ps)

Figure 3.6: Latency distribution of the 32-bit RCA. The least significant bit
is bit index 0. The latency is measured from the assertion of input signals to
the arrival of outputs at the “sum” port.

47

Table 3.2: Latency distribution of the 32-bit RCA with the average latencies
calculated across all bits.

Bit Sum Max. (ps) Sum Avg. (ps) Sum Min. (ps)
31 521.67 520.20 518.88
30 521.56 520.21 518.94
29 521.45 520.20 518.89
28 521.46 520.21 518.77
27 521.64 520.20 518.83
26 521.64 520.20 518.65
25 521.51 520.21 518.76
24 521.59 520.20 518.81
23 521.64 520.19 518.77
22 521.95 520.18 518.79
21 521.62 520.20 518.79
20 521.59 520.19 518.73
19 521.67 520.21 518.92
18 521.54 520.21 518.89
17 521.64 520.21 518.64
16 521.57 520.19 518.70
15 521.51 520.20 518.84
14 521.54 520.19 518.91
13 521.44 520.20 518.60
12 521.62 520.20 518.87
11 521.50 520.20 518.84
10 521.66 520.20 518.68
9 521.63 520.20 518.95
8 521.48 520.20 518.83
7 521.54 520.19 518.46
6 521.50 520.21 518.83
5 521.47 520.20 518.88
4 521.60 520.20 518.33
3 521.55 520.19 518.68
2 521.62 520.20 518.76
1 521.53 520.19 518.51
0 521.48 520.19 518.65

Average 521.57 520.20 518.76

48

JL
257
27%

MRG
320
34%

RX
42
4%

SPL
31
3%

T1
288
30%

TX
14
2%

Total Design Complexity: 952 JJs

(a) JJ design complexity breakdown of the 32-bit RCA.

JL
44.975
41.18%

MRG
32.557
29.81%

RX
4.323
3.96%

SPL
8.215
7.52%

T1
16.000
14.65%

TX
3.150
2.88%

Total Design Bias Current: 109.22 mA

(b) Design bias current breakdown of the 32-bit RCA.

Figure 3.7: Cell-wise breakdown of the 32-bit RCA for both the complexity
and bias current of the logical design. The results do not include additional
JJs to distribute bias current in ERSFQ logic.

49

Logic and DFFs
608
64%

Fanout
31
3%

PTL Drivers and
Receivers

56
6%

Misc. (Cell
separation and

delay lines)
257
27%

Total Design Complexity: 952 JJs

(a) Categorical JJ design complexity breakdown of the 32-bit RCA.

Logic and DFFs
48.557

44%

Fanout
8.215

8% PTL Drivers and
Receivers

7.473
7%

Misc. (Cell
separation and

delay lines)
44.975

41%
Total Design Bias Current: 109.22 mA

(b) Categorical design bias current breakdown of the 32-bit RCA.

Figure 3.8: Categorical breakdown of the 32-bit RCA for both the complexity
and bias current of the logical design.

50

Table 3.3: Breakdown of bias JJs for the 32-bit RCA for ERSFQ logic.
The raw bias JJ count assumes all cells are using non-sharing bias JJs. The
adjusted (adj.) bias JJ count assumes that 20% of all Josephson transmission
lines (JL cells) are connected to non-sharing bias JJs and the remaining 80%
of JL cells share 1 bias JJ for every 2 JL cells.

Cell Cell
Count

Bias
JJs/Cell

Total
Raw
Bias

JJs/Cell

Total
Adj.
Bias

JJs/Cell

% Raw
Bias

JJs/Cell

% Adj.
Bias

JJs/Cell

JL 257 20%=1,
80%=1/2

257 154 56.11% 43.38%

MRG 64 1 64 64 13.97% 18.03%
RX 14 2 28 28 6.11% 7.89%
SPL 31 1 31 31 6.77% 8.73%
T1 32 2 64 64 13.97% 18.03%
TX 14 1 14 14 3.06% 3.94%

Total: 412 458 355 100.00% 100.00%

Total Bias
JJs

458
32%

Total
Design JJs

952
68%

Total Complexity with Raw Bias JJs: 1410 JJs

(a) Raw bias JJs breakdown.

Total Bias
JJs

355
27%

Total
Design JJs

952
73%

Total Complexity with Adj. Bias JJs: 1307 JJs

(b) Adjusted bias JJs breakdown.

Figure 3.9: Breakdown comparison of both raw and adjusted bias JJ counts
with respect to the total design complexity of the 32-bit RCA implemented in
ERSFQ logic.

51

Table 3.4: Summary of the key simulation results for the 32-bit RCA.

(a) Overall summary of the 32-bit RCA.

Data Width 32-bit
Bit Pitch 0.120 mm

Design Complexity 952 JJs
Overall Avg. Latency 520 ps
Max. Processing Rate 2.0 GHz
Total Bias Current 0.109 A

(b) Power related metrics for both RSFQ and ERSFQ implementa-
tions of the 32-bit RCA at 4.2 K temperature.

Logic RSFQ ERSFQ
Bias Voltage 2.6 mV 4.0 µV
Total Power 0.284 mW 0.827 µW
Ops./Watt 7.046 TOPS/W 2418.380 TOPS/W
Energy/Op. 0.142 pJ/op. 0.414 fJ/op.

52

Chapter 4

Superconductor Kogge-Stone
Adder and ALU

Outline
4.1 Goals and Challenges 53
4.2 General Kogge-Stone Adder Structure 54
4.3 RSFQ Study . 58

4.3.1 Design Overview . 58
4.3.2 Simulation Results and Discussion 65

4.4 Joint SBU-HYPRES Project: An 8-bit Kogge-Stone
ALU Implementation Using the 1.5 µm 4.5 kA/cm2

HYPRES Process . 73
4.4.1 Design Flow . 73
4.4.2 Simulation Results . 75
4.4.3 Low-Frequency Testing 77
4.4.4 High-Frequency Testing 81

4.1 Goals and Challenges
In the previous chapter, we explored the performance, power and design com-
plexity of the simplest adder structure in superconductor logic. In this chapter,
our study is focused on achieving a high-performance (20+ GHz processing
rate), pipelined, wide datapath adder that is easy to extend into an ALU.
To this end, we have chosen the Kogge-Stone adder (KSA), a parallel prefix
carry look-ahead adder. To achieve high-performance, we combined the KSA’s

53

parallel algorithm with a foundation that was designed from the ground up
to use wave-pipelining as the vehicle for propagating data signals along the
stages of the adder. Using a modular, hierarchical design flow, we developed
a Kogge-Stone ALU (KSALU) design that kept internal interfaces exactly
the same while only introducing new control signals at the very first stage of
the structure. Because the ALU block is intrinsically not suitable for wave-
pipelining, we used co-flow clocking strictly within the ALU and relied on
wave-pipelining to propagate the signals through the remaining stages to give
us an asynchronous hybrid wave-pipelined design.

The aforementioned techniques we used to achieve our design goals were
then put to the test in a joint project between SBU and HYPRES where a
scaled down implementation of a 20 GHz 8-bit KSALU was completed and
demonstrated successfully.

The study of the KSALU allowed us to quantify the characteristics of a
high-performance, high-complexity design in contrast to the low-performance,
low-complexity RCA.

4.2 General Kogge-Stone Adder Structure
The KSA is a parallel prefix carry look-ahead adder whose concept was devel-
oped by Peter Kogge and Harold Stone in 1973 [111]. Today, its structure and
its variants are commonly found in high-performance adders in the industry
[24, 23]. The primary advantage of this adder is that it can generate carry
signals in O (log(N)) time, unlike the RCA which generates them in O (N)
time. The adder can be broken down into 3 types of stages:

1. Initialization - Generates bitwise prefix signals. It is the first stage of
the KSA.

2. Prefix Tree - Merges prefix signals in a logarithmic fashion to produce
group carries. There are dlog2(N)e number of stages of this type, where
N is total number of bits in the adder.

3. Summation - Produces the final sum result. It is the final stage of the
KSA.

Table 4.1 on page 56 shows the Boolean equations used to generate the various
signals in the KSA using triple-rail encoding. Subscript j refers to the stage
index starting with j = 0 for the Initialization stage down to the Summation
stage where j = (dlog2(N)e+ 2)−1. Subscript i refers to the bit column index
where the most significant bit (MSB) is designated as i = N − 1 and the least
significant bit (LSB) is designated as i = 0. The equations use the convention

54

in which lower-case names refer to bitwise signals and upper-case names refer
to group signals. Figure 4.1 on page 57 is a general diagram of a 16-bit KSA.
The different cells in the diagram are defined as the following:

• Red Cells - They form the Initialization stage and produce prefix signals
for each bit.

• Green Cells - They merge group prefix signals but they no longer have
to send their outputs horizontally, only vertically downward to the next
stage.

• Black Cells - They merge group prefix signals and they send their outputs
in both vertical and horizontal directions.

• Gray Cells - They do not merge group prefix signals but rather pipeline
group prefix signals that do not need to be merged anymore. They send
their outputs in both vertical and horizontal directions.

• Blue Cells - They are almost the same as Gray Cells except they only
transmit the group carry signal to the i+ 1 bit, while transmitting its pi

signal vertically downward.
• Orange Cells - They form the Summation stage and they calculate the

sum for each bit.

While the KSA is synonymous with high performance, it also requires a lot of
carry-merge logic (Green and Black Cells) and it has heavy wiring congestion,
making it very difficult to implement on an actual chip. Chapter 5 will discuss
a variant of the Kogge-Stone structure which ameliorates these shortcomings.

55

Table 4.1: The Boolean equations for the Kogge-Stone adder using triple-rail
encoding.

Initialization Signals

Carry generate gi = ai ∧ bi

Carry propagate pi = ai ⊕ bi

Carry kill ki =q(ai ∨ bi)

Prefix Tree Signals

Group carry generate Gj,i = Gj−1,i ∨ (Pj−1,i ∧Gj−1,i−2j−1)
Group carry propagate Pj,i = Pj−1,i ∧ Pj−1,i−2j−1

Group carry kill Kj,i = Kj−1,i ∨ (Pj−1,i ∧Kj−1,i−2j−1)

Summation Signals

Sum (non-LSB) si = pi ⊕Gj−1,i−1

Sum (LSB) si = pi

56

sum15

a
1

5
a

1
4

a
1

3
a

1
2

a
1

1
a

1
0

a
9

a
8

a
7

a
6

a
5

a
4

a
3

a
2

a
1

a
0

b
1

5
b

1
4

b
1

3
b

1
2

b
1

1
b

1
0

b
9

b
8

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

ready15

ready14

ready13

ready12

ready11

ready10

ready9

ready8

ready7

ready6

ready5

ready4

ready3

ready2

ready1

ready0

sum14

sum13

sum12

sum11

sum10

sum9

sum8

sum7

sum6

sum5

sum4

sum3

sum2

sum1

sum0

P
re

fi
x

 T
re

e
 (

4
 s

ta
g

e
s

)

In
it

ia
li
z
a

ti
o

n

S
u

m
m

a
ti

o
n

F
ig
ur
e
4.
1:

Ex
am

pl
e
of

a
16
-b
it
K
SA

st
ru
ct
ur
e.

57

4.3 RSFQ Study

4.3.1 Design Overview
The RSFQ implementation of the KSA fully exploits the benefits of using asyn-
chronous hybrid wave-pipelining techniques. As a multi-stage design, it would
have been necessary to provide a complex clock distribution network at each
stage of the pipeline if we did not use wave-pipelining. Instead, only the first
stage of the adder needs to be clocked and then the data will asynchronously
propagate through the remaining stages. Using the CFF gate discussed in
Section 2.2, we have an element that can act as both a logic operation (logi-
cal AND in the Boolean equations) and a synchronization mechanism to help
ensure parts of the wave will not get too far ahead or lag behind. The prefix
tree structure features a maximum fan-out of only 2, which is a property very
beneficial to RSFQ as splitting requires active circuit elements (pulse splitters)
which contribute to the overall delay.

Originally, the RSFQ design of the KSA made full use of all the types of
signals listed in Table 4.1 on page 56. However, the design can be simplified
further by eliminating the “Kill” signal and instead replace it with a reset wave
that is always generated for each data wave. This reset signal trails behind
the data wave as the pair propagates through the stages of the adder. As data
signals travel through the CFFs, the reset signal that follows them would clean
or reset the CFFs for the next data wave. Finally, the reset wave acts as a clock
pulse at the Summation stage to read out the sum result from synchronous
XOR gates. The logic schematics for the different blocks are shown in Figure
4.2 on page 62 and Figure 4.3 on page 63.

The Kogge-Stone core can also be re-used to design an ALU. By performing

Table 4.2: Full adder decomposition into logical functions using Cin as a
control signal.

Cin A B G P Logic of G Logic of P
0 0 0 0 0

A ∧B (AND) A⊕B (XOR)0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1

A ∨B (OR) A⊕B (XNOR)1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

58

conditional in-place inversions of the two operands via Inv_a or Inv_b signals,
and using a TRS gate (a gate similar to T1 except it can be preset to the state
of S0 or S1, and both outputs are asynchronous) to count pulses like an FA
(Figure 4.2a on page 62), we can execute a full set of logical operations as
well as both addition and subtraction. The logical operations are obtained by
decomposing the outputs of the TRS-based pulse counter as shown in Table
4.2 on page 58. The counter produces preliminary G and P signals from which
we can obtain AND and XOR core functions if we set the Cin to logical ‘0’ or
OR and XNOR core functions if we set the Cin to logical ‘1’. We preset the
TRS gate if we want Cin = ‘1’, or we reset it if we want Cin = ‘0’ through the
dual-rail Ctrl_sub/Ctrl_sub_bar control signals. These logic operators are
called core functions because from this set, we can obtain additional logical
operations such as NOR and NAND by controlling the inversion of operands.
Assuming the TRS is initialized to some Cin value, we must select which
logical operator to use from the pair of core functions. We achieve this by
multiplexing the preliminary G and P signals with the Ctrl_xor signal. If
Ctrl_xor = ‘1’, then we use the logic operator provided by the preliminary
P signal, otherwise we use the logic operator provided by the preliminary G
signal. Finally, we must route the logical function to the top-level P_o port
of the ALU_INIT block by setting the Ctrl_add signal to ‘0’. Through the
P_o port, the result will propagate straight down the remaining stages of the
ALU instead of going into the Prefix Tree.

In the case of arithmetic, we must route the preliminary G and P signals
directly to the G_o and P_o ports respectively by setting the Ctrl_add signal
to ‘1’. All arithmetic operations are based on addition. In the case of subtrac-
tion, we perform 2’s complement addition by inverting one of the operands,
add +1, and add the other operand in one step as outlined in Equations 4.1
and 4.2.

A−B ⇔ A+B + 1 (4.1)

B − A⇔ B + A+ 1 (4.2)

To invert the appropriate operand, we simply set Ctrl_inv_a or Ctrl_inv_b
as necessary. To add +1, we have a special set of control signals reserved for
the least significant bit of the ALU to set/reset the TRS called Lsb_ctrl_sub
/ Lsb_ctrl_sub_bar. With the freedom to invert operands and add +1, we
obtain the following list of arithmetic operations:

1. ADD A, B ⇔ A + B
2. ADD qA, B ⇔ B – A – 1

59

3. ADD A, qB⇔ A – B –1
4. ADD qA, qB ⇔ –(A + B + 2)
5. INC_ADD A, B ⇔ A + B + 1
6. SUB A, B ⇔ A – B
7. SUB B, A ⇔ B – A
8. INC_ADD qA, qB ⇔ –(A + B +1)

All these steps occur within the ALU_INIT block that resides in the Initial-
ization stage. Since the output interface of ALU_INIT is exactly the same as
the GPR_INIT block used for a standalone adder, the Prefix Tree does not
need to be modified. We only need to supply the additional control signals
that the ALU_INIT blocks require.

Table 4.3 on page 64 shows the full list of ALU operations and their asso-
ciated control signals. The ALU control signals are summarized below:

• Inv_A - If there is a pulse on this signal, it inverts operand A.
• Inv_B - If there is a pulse on this signal, it inverts operand B.
• Ctrl_add - If there is a pulse on this signal, bitwise prefix signals are

routed into the Prefix Tree logic.
• Ctrl_xor - If there is a pulse on this signal, XOR-based logic is applied

to the operands and sent as pi. Otherwise, AND-based logic is performed
and sent as pi.

• Ctrl_sub - If there is a pulse on this signal, subtraction-based logic is
applied (presetting the TRS gate, or in other words performing “+1” in
2’s complement). For the least significant bit, a Lsb_ctrl_sub signal is
used.

• Ctrl_sub_bar - The complement of Ctrl_sub. Also has a corresponding
Lsb_ctrl_sub_bar for the least significant bit.

Definition of ports:

• Rdy - The ‘ready’ signal that starts the asynchronous operation of the
unit.

• A - Operand input A.
• B - Operand input B.
• Gv/Pv/Rv - Vertical group signals for carry generate, carry propagate

and reset, respectively. They form the vertical lines as shown in Figure
4.1 on page 57.

60

• Gh/Ph/Rh - Horizontal group signals for carry generate, carry propagate
and reset, respectively. They form the diagonal lines as shown in Figure
4.1 on page 57.

• pi - Bitwise carry propagate signal. It is calculated during the Initializa-
tion stage and is buffered through the remaining stages of the unit until
the Summation stage where it is used to calculate the final sum.

61

d

t

q

D
d

t

q

D

q0q1

t

rsTRS
q0 q1

t

d

DC

d

t

q

D
q0q1

d

t0t1 D2

q0q1

d

t0t1 D2
q0q1

d

t0t1 D2

q0q1

t

d

DC

C
tr

l_
x

o
r

C
tr

l_
a

d
d

R
d

y

C
tr

l_
s

u
b

C
tr

l_
s

u
b

_
b

a
r

In
v

_
a

A In
v

_
b

B

G_o P_o R_o

D
a

ta
 p

u
ls

e
 c

o
u

n
te

r

A A

(a) ALU_INIT

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

A B

Rdy

Rdy_o

P_o R_oG_o

C

d

t

q

D

A B Rdy

Rdy_o

P_o R_oG_o

(b) GPR_INIT

Figure 4.2: INIT blocks which can be logically interchanged to obtain either
an ALU (a) or an adder (b). These are the Red cells that reside in the
Initialization stage.

62

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C

(a) Carry-Merge (CM) block.

d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

(b) Carry-Merge Buffer (CM_BUFF) block.

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

(c) SUM block.

Figure 4.3: Logical schematics for the prefix tree and summation blocks.
The Green and Black cells of the Prefix Tree are built using CM blocks (a).
The Gray and Blue cells are built using CM_BUFF blocks (b). The Orange
cells in the Summation stage are built using SUM blocks (c).

63

T
ab

le
4.
3:

In
st
ru
ct
io
ns

de
co
de
d
in
to

th
e
co
nt
ro
ls

ig
na

ls
fo
r
th
e
A
LU

.

A
LU

O
pe

ra
tio

n
C
tr
l_

su
b

C
tr
l_

su
b_

ba
r

C
tr
l_

ad
d

C
tr
l_

xo
r

In
v_

a
In
v_

b
Ls

b_
ct
rl_ su
b

Ls
b_

ct
rl_

su
b_

ba
r

N
O
P

0
1

0
0

0
0

0
1

SE
T
1S

0
1

0
0

1
1

0
1

X
O
R

A
,B

0
1

0
1

0/
1

0/
1

0
1

X
N
O
R

A
,B

0
1

0
1

0/
1

1/
0

0
1

A
N
D

A
,B

0
1

0
0

0
0

0
1

A
N
D

A
,q

B
0

1
0

0
0

1
0

1
A
N
D

qA
,B

0
1

0
0

1
0

0
1

N
O
R

A
,B

0
1

0
0

1
1

0
1

O
R

A
,B

1
0

0
0

0
0

1
0

O
R

A
,q

B
1

0
0

0
0

1
1

0
O
R

qA
,B

1
0

0
0

1
0

1
0

N
A
N
D

A
,B

1
0

0
0

1
1

1
0

A
D
D

A
,B

0
1

1
X

0
0

0
1

A
D
D

A
,q

B
0

1
1

X
0

1
0

1
A
D
D

qA
,B

0
1

1
X

1
0

0
1

A
D
D

qA
,q

B
0

1
1

X
1

1
0

1
IN

C
_
A
D
D

A
,B

0
1

1
X

0
0

1
0

SU
B

A
,B

0
1

1
X

0
1

1
0

SU
B

B,
A

0
1

1
X

1
0

1
0

IN
C
_
A
D
D

qA
,q

B
0

1
1

X
1

1
1

0

64

Table 4.4: Listing of PTL interconnect lengths for the 32-bit KSALU.

Stage-to-
Stage

Horizontal
PTL Length

(mm)

Vertical PTL
Length (mm)

Total PTL
Length (mm)

0 to 1 0.280 0.220 0.5
1 to 2 0.560 0.190 0.75
2 to 3 1.120 0.130 1.25
3 to 4 2.240 0.130 2.37
4 to 5 4.480 0.130 4.61
5 to 6 0.000 0.080 0.08
Total
Length
(mm)

8.680 0.880 9.56

Total Delay
(ps)

86.800 8.800 95.6

4.3.2 Simulation Results and Discussion
Using our VHDL cell library tuned to the HYPRES 1.5 µm 4.5 kA/cm2 pro-
cess, we designed and simulated a 32-bit KSALU. The key results of the sim-
ulation are summarized in Table 4.8 on page 72. While latency is comparable
to that of the RCA, its main advantage is its high-throughput clock rate due
to the Kogge-Stone structure and utilization of asynchronous hybrid wave-
pipelining methodologies. Its complexity and bias current is quite large how-
ever, and with its dense tree structure, it is difficult to layout for wide data
widths. Chapter 5 will discuss a variation of the Kogge-Stone structure and
how it is able to improve upon these challenges.

65

Table 4.5: Processing rate of the 32-bit KSALU. At each processing rate,
an initial set of 2000 randomized vectors mixed with worst-case tests is sent
into the KSALU to obtain a first-pass sweep of the processing rate. At the
maximum passing rate, a second set of 10,000 vectors is sent to exercise the
circuit further.

Processing Rate (GHz) Number Failed Waves Total Number of Waves
20.0 0 2000
20.4 0 2000
20.8 0 2000
21.3 0 2000
21.7 0 2000
22.2 0 2000
22.7 0 2000
23.3 0 10000
23.8 2 2000
24.4 627 2000
25.0 1997 2000
25.6 2000 2000
26.3 2000 2000

66

Table 4.6: Latency distribution of the 32-bit KSALU with the average laten-
cies calculated across all bits.

Bit Sum Max. (ps) Sum Avg. (ps) Sum Min. (ps)
31 475.48 471.97 469.00
30 475.05 471.75 469.11
29 475.00 471.55 468.84
28 474.74 471.40 468.45
27 474.44 471.28 468.45
26 474.62 471.26 468.05
25 474.52 471.24 468.02
24 475.40 471.22 467.96
23 474.81 471.22 468.49
22 474.79 471.02 467.97
21 474.46 470.78 467.77
20 474.74 470.63 467.52
19 474.58 470.48 467.44
18 473.97 470.41 467.27
17 473.88 470.38 467.34
16 474.16 470.35 467.02
15 474.00 470.37 467.02
14 473.79 470.13 466.97
13 473.36 469.90 466.58
12 473.34 469.72 465.94
11 473.18 469.56 466.38
10 473.14 469.50 465.64
9 472.96 469.44 466.06
8 473.09 469.41 464.98
7 473.46 469.45 465.53
6 473.27 469.12 465.70
5 472.20 468.68 464.94
4 472.70 468.36 464.70
3 472.07 467.90 463.87
2 471.98 467.52 463.64
1 471.18 467.02 463.24
0 470.70 466.48 462.64

Average 473.72 469.98 466.64

67

450.00

455.00

460.00

465.00

470.00

475.00

480.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

La
te

n
cy

 (
p

s)

Bit Index

Sum Max(ps)

Sum Avg(ps)

Sum Min(ps)

Figure 4.4: Latency distribution of the 32-bit KSALU. The least significant
bit is bit index 0. The latency is measured from the assertion of the “ready”
signal to the arrival of outputs at the “sum” port.

68

AAND
384
1%

CFF
8752
24%

CXOR
864
2%

D2FF
672
2%

DFF
1272
4%

DFFC
640
2%

JL
13773
38%

MRG
1285
4%

RX
4575
13%

SPL
1947
5%

TRS
384
1%

TX
1525
4%

Total Design Complexity: 36073 JJs

(a) JJ design complexity breakdown of the 32-bit KSALU.

AAND
54.400
1.14%

CFF
625.604
13.12%

CXOR
16.800
0.35%

D2FF
20.400
0.43%

DFF
111.300
2.33%

DFFC
58.400
1.23%

JL
2410.275
50.56%

MRG
130.736
2.74%

RX
470.920
9.88%

SPL
515.955
10.82%

TRS
8.800
0.18%

TX
343.125
7.20%

Total Design Bias Current: 4766.7148 mA

(b) Design bias current breakdown of the 32-bit KSALU.

Figure 4.5: Cell-wise breakdown of the 32-bit KSALU for both the complex-
ity and bias current of the logical design. The results do not include additional
JJs to distribute bias current in ERSFQ logic.

69

Logic and DFFs
14253
40%

Fanout
1947
5%

PTL Drivers and
Receivers

6100
17%

Misc. (Cell
separation and

delay lines)
13773
38%

Total Design Complexity: 36073 JJs

(a) Categorical JJ design complexity breakdown of the 32-bit KSALU.

Logic and DFFs
1026.440

21%

Fanout
515.955

11%
PTL Drivers and

Receivers
814.045

17%

Misc. (Cell
separation and

delay lines)
2410.275

51%

Total Design Bias Current: 4766.7148 mA

(b) Categorical design bias current breakdown of the 32-bit KSALU.

Figure 4.6: Categorical breakdown of the 32-bit KSALU for both the com-
plexity and bias current of the logical design.

70

Table 4.7: Breakdown of bias JJs for the 32-bit KSALU for ERSFQ logic.
The raw bias JJ count assumes all cells are using non-sharing bias JJs. The
adjusted (adj.) bias JJ count assumes that 20% of all Josephson transmission
lines (JL cells) are connected to non-sharing bias JJs and the remaining 80%
of JL cells share 1 bias JJ for every 2 JL cells.

Cell Cell
Count

Bias
JJs/Cell

Total
Raw
Bias

JJs/Cell

Total
Adj.
Bias

JJs/Cell

% Raw
Bias

JJs/Cell

% Adj.
Bias

JJs/Cell

AAND 64 1 64 64 0.26% 0.33%
CFF 547 6 3282 3282 13.10% 16.80%
CXOR 96 2 192 192 0.77% 0.98%
D2FF 96 1 96 96 0.38% 0.49%
DFF 318 2 636 636 2.54% 3.26%
DFFC 64 3 192 192 0.77% 0.98%
JL 13773 20%=1,

80%=1/2
13773 8264 54.99% 42.30%

MRG 257 1 257 257 1.03% 1.32%
RX 1525 2 3050 3050 12.18% 15.61%
SPL 1947 1 1947 1947 7.77% 9.97%
TRS 32 1 32 32 0.13% 0.16%
TX 1525 1 1525 1525 6.09% 7.81%

Total: 20244 25046 19537 100.00% 100.00%

Total Bias
JJs

25046
41%

Total
Design JJs

36073
59%

Total Complexity with Raw Bias JJs: 61119 JJs

(a) Raw bias JJs breakdown.

Total Bias
JJs

19537
35%

Total
Design JJs

36073
65%

Total Complexity with Adj. Bias JJs: 55610 JJs

(b) Adjusted bias JJs breakdown.

Figure 4.7: Breakdown comparison of both raw and adjusted bias JJ counts
with respect to the total design complexity of the 32-bit KSALU implemented
in ERSFQ logic.

71

Table 4.8: Summary of the key simulation results for the 32-bit KSALU.

(a) Overall summary of the 32-bit KSALU.

Data Width 32-bit
Bit Pitch 0.280 mm

Design Complexity 36,073 JJs
Overall Avg. Latency 470 ps
Max. Processing Rate 23.3 GHz
Total Bias Current 4.767 A

(b) Power related metrics for both RSFQ and ERSFQ implementa-
tions of the 32-bit KSALU at 4.2 K temperature.

Logic RSFQ ERSFQ
Bias Voltage 2.6 mV 46.6 µV
Total Power 12.507 mW 224.895 µW
Ops./Watt 1.8463 TOPS/W 103.604 TOPS/W
Energy/Op. 0.537 pJ/op. 9.652 fJ/op.

72

4.4 Joint SBU-HYPRES Project: An 8-bit Kogge-
Stone ALU Implementation Using the 1.5
µm 4.5 kA/cm2 HYPRES Process

4.4.1 Design Flow
As part of the joint SBU-HYPRES project, a scaled down version of the RSFQ
KSALU study is to be physically implemented and demonstrated using the
HYPRES 1.5 µm 4.5 kA/cm2 fabrication process (Table 2.1 and Figure 2.5). A
simpler ALU design (Figure 4.8 on page 74) was chosen to reduce the number
of ALU opcode bits from 5 to 4, which reduced the number of signal lines
per bit. Table 4.9 lists the control signals for the ALU operations. Working
closely with HYPRES circuit designers, feedback was provided to ensure that
the physical implementation was consistent with our VHDL models. This
typically involved adjusting JTL lengths as needed in the design and making
sure PTL wire lengths were chosen correctly (Table 4.10).

Table 4.10: PTL length and delay breakdown for each stage of the 8-bit
ALU.

Stage-to-
Stage

Horizontal
PTL Length

(mm)

Vertical PTL
Length (mm)

Total PTL
Length (mm)

0 to 1 0.560 0.440 1.000
1 to 2 1.120 0.380 1.500
2 to 3 2.240 0.260 2.500
3 to 4 0.000 0.080 0.080
Total
Length
(mm)

3.920 1.160 5.080

Total Delay
(ps)

39.20 11.60 50.80

73

d

t

q

D
d

t

q

D

q0 q1

t

d

DC

q0q1

d

t0t1 D2
q0q1

d

t0t1 D2

q0q1

t

d

DC

C
tr

l_
x

o
r

C
tr

l_
a

d
d

R
d

y

In
v

_
a

A In
v

_
b

B

G_o P_o R_o

A

A A

Figure 4.8: ALU_INIT for the 8-bit ALU with HYPRES.

74

Table 4.9: Instructions decoded into direct control signals for the ALU.

ALU Operation Ctrl_add Ctrl_xor Inv_A Inv_B
ADD 1 x 0 0

ADD INVERT-A 1 x 1 0
ADD INVERT-B 1 x 0 1
ADD INVERT-AB 1 x 1 1

AND 0 0 0 0
NOR 0 0 1 1
SET1S 0 0 1 1

AND INVERT-A 0 0 1 0
AND INVERT-B 0 0 0 1

XOR 0 1 0 0
XNOR 0 1 0 1
NOP 0 0 0 0

4.4.2 Simulation Results
All results have been obtained through our simulations of the 8-bit ALU design
after post-layout verification with HYPRES.

75

0 1 2 3 4 5 6 7
380

382

384

386

388

390

392

394

396

398

400

Total Latency (ready to output)

To
tal

 La
ten

cy
 (p

s)

Bit Index

 8-bit Max. Latency
 8-bit Avg. Latency
 8-bit Min. Latency

Figure 4.9: Simulated latency results of the 8-bit ALU design after post-
layout verification.

Table 4.11: Josephson junction complexity of the 8-bit ALU design.

Cell Cell Count JJs/Cell Total JJs/Cell %Cells %JJs

AAND 24 6 144 0.50% 1.97%
CFF 75 16 1200 1.57% 16.40%
CXOR 32 9 288 0.67% 3.93%
D2FF 16 7 112 0.34% 1.53%
DFF 54 4 216 1.13% 2.95%
DFFC 16 10 160 0.34% 2.19%
JL 3651 1 3651 76.67% 49.88%

MRG 33 5 165 0.69% 2.25%
RX 261 3 783 5.48% 10.70%
SPL 339 1 339 7.12% 4.63%
TX 261 1 261 5.48% 3.57%

Total Cells: 4762 Total JJs: 7319 100.00% 100.00%

76

1/40 1/39 1/38 1/37 1/36 1/35 1/34 1/33 1/32 1/31 1/30

0.0

0.2

0.4

0.6

0.8

1.0

Max. Rate: ~29 GHz (34 ps cycle time)

 8-bit

 Failure Rate vs. Processing Rate

Fa
ilu

re
 R

ate
 (f

ra
cti

on
)

Processing Rate (1/ps)

Figure 4.10: Simulated processing rate results of the 8-bit ALU design after
post-layout verification.

Table 4.12: Categorical complexity of the 8-bit ALU design.

Category JJ Count %JJs

Logic and DFFs 2285 31.22%
Fan-out 339 4.63%

PTL Drivers and Receivers 1044 14.26%
Misc. (Cell separation and delay lines) 3651 49.88%

Total JJs: 7319 100.00%

4.4.3 Low-Frequency Testing
Our colleagues at HYPRES implemented the physical design and testing of
two prototype chips of the 8-bit ALU. The first chip consisted of only the 8-
bit ALU without any additional circuits for high-speed testing therefore only
low-frequency, functional testing was demonstrated for this chip (Figure 4.11
on page 78). This section summarizes the low-frequency results from [92].

Numerous low-frequency functionality tests were performed on the ALU

77

using the Octopux testing system [112]. The most critical operation to demon-
strate is the ADD operation. Figure 4.12 on page 79 shows the ALU correctly
adding two 8-bit numbers. A logical ‘1’ appears as a small rectangular pulse
whereas a logical ‘0’ shows an absence of this pulse. A dotted blue trace is
overlaid to represent a sampled estimation of how the output would actually
appear on an oscilloscope (logical ‘1’ represented by a rising or falling edge, a
logical ‘0’ represented by no change). Data inputs are first sent into ALU and
then a Ready pulse is supplied after some delay. The outputs are aligned with
their associated Ready pulse on the figures.

Further testing included the demonstration of logical operations as shown
in Figure 4.13 on page 80. All arithmetic and logical operations show correct
functionality at low-frequency.

Figure 4.11: Microphotograph of the 8-bit ALU chip for low-frequency test-
ing using the HYPRES 1.5 µm 4.5 kA/cm2 technology.

78

(a) ADD operation. (b) ADD INVERT-AB operation.

Figure 4.12: ADD operation during functional low-frequency testing [92]. ©
2011 IEEE.

79

(a) AND. (b) NOR.

(c) XOR. (d) XNOR.

Figure 4.13: Low-frequency functional testing of logical operations [92]. ©
2011 IEEE.

80

4.4.4 High-Frequency Testing
Our colleagues at HYPRES have also completed the physical design and testing
of a second chip which includes the same 8-bit ALU integrated with additional
circuits to conduct high-speed testing (Figure 4.14 on page 82). This section
summarizes the high-frequency testing circuits and results from [93].

4.4.4.1 High-Speed Input/Output Interfaces

To provide data operand and control signals at high frequency, a high-speed
input interface consisting of SFQ relays was designed. These SFQ relays were
controlled by DC or low-frequency bias currents to toggle them on or off. If
toggled on, the relay will allow an SFQ pulse to pass through. If toggled off,
it will reject any incoming SFQ pulse. Each ALU_INIT bit slice has a total
of 6 relays: 2 for data operands A and B, and 4 for control signals. Any set
of test vectors and ALU function can be tested by programming the relays.
By manipulating the relays at the kHz regime, the changes in outputs can be
observed using a low-frequency oscilloscope. A total of 20 pads were needed
to control the input interface consisting of 2 x 8-bit inputs and a 4-bit control
signal. The high-frequency clock coming from a single pad was distributed to
each of the bit slices using a PTL-based splitter tree.

The output interface of the ALU was designed for bit-error rate (BER)
measurement at high-frequency. The outputs of the ALU were converted to
a dual-rail format so that both direct and complementary signals were avail-
able. These signals are transmitted to toggling-type SFQ-to-DC converters
[40]. These SFQ-to-DC converters will toggle between 0.0 mV steady-state to
0.5 mV steady-state every time an SFQ pulse is received. When an output is
producing a logical ‘1’ at 20 GHz, a low-speed oscilloscope will display that
output as the average voltage of the high-speed switching between 0.0 mV and
0.5 mV, resulting in a steady-state 0.25 mV line. When an output is producing
a logical ‘0’, the output signal appears as either a 0.0 mV or a 0.5 mV line.
To measure BER, a fixed combination of control signals and data vectors were
chosen so that the direct and complementary outputs were all stable lines. An
error would appear as a sudden transition between the DC voltage states of
the SFQ-to-DC converter.

A total of 16 pads were used to provide both direct and complementary
8-bit outputs and an additional two pads were used to monitor the clock and
decimated clock. The entire 8-bit ALU and the associated I/O interfaces were
integrated onto a 1 x 1 cm2 chip (Figure 4.15 on page 83). The ALU without
I/O interfaces occupied an area of 4480 µm x 5245 µm.

81

(a) Block diagram. (b) SFQ relay. (c) Output inter-
face.

(d) Input interface composed of SFQ relays.

Figure 4.14: Block diagram of the ALU for high-speed testing and the I/O
interfaces [93].

82

Figure 4.15: 8-bit ALU chip with high-speed testing circuits [93].

83

4.4.4.2 High-Speed Testing Results

As previously discussed, the oscilloscope waveforms display a steady 0.25 mV
line in the case of a logical ‘1’, while a logical ‘0’ displays a randomly selected
0.0 mV or 0.5 mV line depending on the previous state of the SFQ-to-DC
converter, rendering an “eye-diagram”.

Figure 4.16 on page 84 shows the demonstration of the logical AND opera-
tion functioning correctly when operand A is fixed to 255 and B is modulated
between the two values of 255 and 0 at low-frequency. The operation of logical
functions solely test the correctness of the ALU block residing in the Initial-
ization stage. Logical results are routed and propagated along the vertical
bitwise lines instead of the Prefix Tree thus the Carry-Merge blocks are not
exercised for this case.

(a) AND operation (b) AND Invert B operation

Figure 4.16: Correct logical operations at 20 GHz when A is fixed to 255
and B is toggled at low-speed between 255 and 0 [93].

To demonstrate operation of the Prefix Tree, two critical cases were cov-
ered for the ADD operation (Figure 4.17 on page 85). In each case, a carry
is generated from the least significant bit and is propagated through all bits
except the most significant (Figure 4.17a on page 85) or through all bits com-
pletely (Figure 4.17b on page 85). When a carry has to propagate through
a bit, it must travel through the horizontal path associated by the stage it is
currently at. Having a carry propagate through all bits requires it to travel
through what is theoretically the critical path of the Prefix tree. In reality, all
propagation paths are matched to the critical path to increase the processing

84

(a) A=127, B=127/0. (b) A=255, B=1/0.

Figure 4.17: 20 GHz operation of two critical cases of the ADD operation
where A is a fixed value and B is modulated between 1 and 0. It demonstrates
how the carry generated from the least significant bit propagates through most
or all bits of the ALU [93].

rate of wave-pipelining. By demonstrating these cases at high-speed, we have
shown that wave-pipelining has been correctly implemented.

In the previous waveforms we show the high-frequency operation of the
ALU with a fixed function but with changing data values. Figure 4.18 on page
86 shows changing ALU functions but with fixed data values. All cases show
correct functionality.

All logic and arithmetic operations have been confirmed to work correctly
at the processing rate of 20 GHz. The measured operating margins for the DC
bias currents is ±5% and the bit-error rate is estimated to be ~10−14.

85

Figure 4.18: 20 GHz operation showing correct functionality of ADD, AND,
XOR and ADD for fixed values of A=101 and B=45 [93].

86

Chapter 5

Superconductor Hybrid
Sparse-Tree Adder and ALU

Outline
5.1 Goals and Challenges 87
5.2 Sparse-Tree Structure 88
5.3 RSFQ Study . 90

5.3.1 Design Overview . 90
5.3.2 Simulation Results . 94
5.3.3 Discussion . 101

5.4 Adder and ALU Design Implemented Using the CON-
NECT Cell Library for the 1.0 µm 10 kA/cm2 Process105

5.4.1 Goals and Challenges 105
5.4.2 Simulation Results . 114
5.4.3 Experimental Testing 117
5.4.4 Chip Testing Results . 122

5.1 Goals and Challenges
In Chapter 3, we studied the RCA structure as a design candidate for low-
complexity at the expense of sacrificing performance. In contrast, we studied
the KSALU as a design candidate for high-performance at the expense of high-
complexity and power in Chapter 4. In this chapter, our study is now focused
on combining the benefits of the RCA and KSALU to develop a 20+ GHz

87

design but at reduced complexity and power compared to the KSALU. We
achieve this by adopting a parallel prefix carry look-ahead hybrid sparse-tree
adder (HSTA). All of the design techniques from the KSALU study are still
utilized but in the HSTA, a lot of logic has been eliminated. A sparsity-4
arrangement is used to give us a reasonable reduction in complexity without
impacting performance significantly. This arrangement also required us to
integrate new sub-blocks such as an in-step RCA to pre-calculate the sum for
each 4-bit group and a 4-bit carry-skip adder to calculate the final summation.
Since the HSTA is also a prefix carry look-ahead structure, it can use the same
ALU block from the KSALU to create a hybrid sparse-tree ALU (HSTALU).

Under collaboration with our colleagues in Yokohama National University
and Nagoya University, these concepts were then implemented and demon-
strated using the SFQ CONNECT cell library for the ISTEC 1.0 µm 10
kA/cm2 ADP process in two forms: (1) an 8-bit HSTALU and (2) a 16-bit
HSTA.

5.2 Sparse-Tree Structure
The sparse-tree structure is somewhat similar to the Kogge-Stone structure
described in Chapter 4. The prefix equations generally remain the same, the
only difference is how the carries are merged from stage-to-stage. The Kogge-
Stone adder is a sparsity-1 structure, meaning that every carry bit is generated
resulting in a simple XOR operation at the final Summation stage. In the
sparse-tree adder, it is common to use a sparsity-4 structure [24, 23, 113], which
generates a carry for every fourth bit. This sparsity substantially reduces the
number of carry merge logic cells in the adder and at the same time also reduces
the wiring traffic from stage-to-stage, making it simpler to layout. Figure 5.1
on page 89 shows the typical structure of a 16-bit sparse-tree adder.

The logic cells are the same as the Kogge-Stone cells except the orange
blocks are no longer a single two-input XOR but rather a 4-bit carry-select
adder. While the sparse-tree is merging carries, two sums are being simultane-
ously calculated for each 4-bit group: a 4-bit sum assuming there is a carry-in,
and a 4-bit sum assuming there is no carry-in. With these two pre-calculated
sums arriving at the Summation stage, the true carry-in from the Prefix Tree
stage chooses which 4-bit sum to use in each 4-bit group.

88

sum15

a
1

5
a

1
4

a
1

3
a

1
2

a
1

1
a

1
0

a
9

a
8

a
7

a
6

a
5

a
4

a
3

a
2

a
1

a
0

b
1

5
b

1
4

b
1

3
b

1
2

b
1

1
b

1
0

b
9

b
8

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

ready15

ready14

ready13

ready12

ready11

ready10

ready9

ready8

ready7

ready6

ready5

ready4

ready3

ready2

ready1

ready0

sum14

sum13

sum12

sum11

sum10

sum9

sum8

sum7

sum6

sum5

sum4

sum3

sum2

sum1

sum0

P
re

fi
x

 T
re

e
 (

4
 s

ta
g

e
s

)

In
it

ia
li
z
a

ti
o

n

S
u

m
m

a
ti

o
n

F
ig
ur
e
5.
1:

T
he

st
ru
ct
ur
e
of

a
16
-b
it

sp
ar
se
-t
re
e
ad

de
r.

89

5.3 RSFQ Study

5.3.1 Design Overview
The implementation of carry select adders in traditional sparse-tree structures
works fine in CMOS technology because they are typically designed to perform
in a single cycle without the need for pipelining. This approach does not work
very well for a high clock rate RSFQ design. It is actually quite expensive to
calculate two different 4-bit sums and wave-pipeline them. It requires more
vertical stage-to-stage interconnect to transfer these two groups and more JTLs
to balance delays across each stage.

Instead, a hybrid sparse-tree adder was developed which involved some
modifications with the original sparse-tree adder. In Figure 5.2 on page 92,
the bold lines represent prefix carry look-ahead signals, dotted lines represent
a ripple carry addition within each 4-bit group, and thin lines represent bitwise
signals. Note that the Summation stage is not necessarily the last stage of the
adder as lower order bits can be calculated ahead of time and then buffered
through the remaining stages. This implementation also reduces the worst-
case horizontal PTL length by relying on the Summation block to calculate
the final carry-out.

During the first four stages of the adder, we are performing 4-bit ripple-
carry addition (1-bit per stage) as shown with logic cells colored with a gray-
half. This pre-calculation is akin to calculating the 4-bit sum assuming there
is no carry into the 4-bit group and is done by integrating a CXOR gate in the
gray-half cells (Figure 5.3a and Figure 5.3b on page 93). These CXORs will
calculate the sum for a particular bit using only the bitwise prefix P signal
and the carries generated within the group it resides in. The final summation
is done as soon as a particular 4-bit group carry-in is calculated (e.g. bits 7
through 4 are calculated one stage earlier because the carry into this group is
available one stage earlier) and is completed using carry-skip adders. In each
4-bit group, the second least significant bit produces a group signal called
PP. The pipelining of this signal is shown as a Blue Cell with two inputs and
outputs. When this PP signal is a logical ‘1’, it means the carry into this
4-bit group will propagate through the lower-order 2-bit half and will be used
as a carry into the higher-order 2-bit half. This speeds up calculation of the
4-bit sum as we do not need to wait for carry to truly propagate through the
lower-order half, since the ANDing of PP and the carry-in will immediately
determine the carry that goes into the higher-order half.

The vertical PTLs have been reduced compared to the KSALU because
of less interconnect traffic and channels needed between the stages. The new
PTL lengths are shown in Table 5.1 on page 91.

90

Table 5.1: Listing of PTL interconnect lengths for the 32-bit HSTALU.

Stage-to-
Stage

Horizontal
PTL Length

(mm)

Vertical PTL
Length (mm)

Total PTL
Length (mm)

0 to 1 0.280 0.060 0.340
1 to 2 0.560 0.060 0.620
2 to 3 1.120 0.060 1.180
3 to 4 2.240 0.060 2.300
4 to 5 3.360 0.060 3.420
5 to 6 0.000 0.280 0.280
Total
Length
(mm)

7.560 0.580 8.140

Total Delay
(ps)

75.60 5.80 81.40

The same ALU implementation discussed in Chapter 4 is re-used in this
modified hybrid sparse-tree core.

91

sum15

a
1

5
a

1
4

a
1

3
a

1
2

a
1

1
a

1
0

a
9

a
8

a
7

a
6

a
5

a
4

a
3

a
2

a
1

a
0

b
1

5
b

1
4

b
1

3
b

1
2

b
1

1
b

1
0

b
9

b
8

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

ready15

ready14

ready13

ready12

ready11

ready10

ready9

ready8

ready7

ready6

ready5

ready4

ready3

ready2

ready1

ready0

sum14

sum13

sum12

sum11

sum10

sum9

sum8

sum7

sum6

sum5

sum4

sum3

sum2

sum1

sum0

P
re

fi
x

 T
re

e
 (

4
 s

ta
g

e
s

)

In
it

ia
li
z
a

ti
o

n

S
u

m
m

a
ti

o
n

F
ig
ur
e
5.
2:

T
he

st
ru
ct
ur
e
of

th
e
R
SF

Q
16
-b
it

hy
br
id

sp
ar
se
-t
re
e
ad

de
r.

92

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C

pi cin

pi_o

(a) CM with CXOR (Black/Gray).

d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

cin

(b) CM_BUFF with CXOR (Blue/Gray).

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

(c) Buffer (REG_BUFF, Blue).

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

(d) 4-bit carry-skip adder (SUM, Or-
ange).

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

(e) SUM with a prefix buffer (Orange).

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

(f) SUM with carry-out logic (Orange).

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

(g) 4-bit result buffer (RES_BUFF,
Blue cells below Orange cells).

Figure 5.3: Logic schematic blocks that are unique to the sparse-tree struc-
ture.

93

5.3.2 Simulation Results
Using our VHDL cell library tuned to the HYPRES 1.5 µm 4.5 kA/cm2process,
we designed and simulated a 32-bit HSTALU. The results of the simulation are
summarized in Table 5.5 on page 100. A detailed discussion and comparison
of the HSTALU, KSALU and RCA is examined in Section 5.3.3.

Table 5.2: Processing rate of the 32-bit HSTALU. At each processing rate,
an initial set of 2000 randomized vectors mixed with worst-case tests is sent
into the HSTALU to obtain a first-pass sweep of the processing rate. At the
maximum passing rate, a second set of 10,000 vectors is sent to exercise the
circuit further.

Processing Rate (GHz) Number Failed Waves Total Number of Waves
20.0 0 2000
20.4 0 2000
20.8 0 2000
21.3 0 2000
21.7 0 2000
22.2 0 2000
22.7 0 10000
23.3 3 2000
23.8 15 2000
24.4 713 2000
25.0 1999 2000
25.6 2000 2000
26.3 2000 2000

94

490.00

492.00

494.00

496.00

498.00

500.00

502.00

504.00

506.00

508.00

510.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

La
te

n
cy

 (
p

s)

Bit Index

Sum Max(ps)

Sum Avg(ps)

Sum Min(ps)

Figure 5.4: Latency distribution of the 32-bit HSTALU. The least significant
bit is bit index 0. The latency is measured from the assertion of the “ready”
signal to the arrival of outputs at the “sum” port.

95

Table 5.3: Latency distribution of the 32-bit HSTALU with the average
latencies calculated across all bits.

Bit Sum Max. (ps) Sum Avg. (ps) Sum Min. (ps)
31 505.82 500.89 496.26
30 506.12 500.91 496.79
29 505.07 500.90 497.17
28 505.72 500.90 495.95
27 504.93 500.76 497.28
26 504.81 500.80 497.60
25 504.89 500.77 497.33
24 504.98 500.77 497.32
23 506.22 501.55 498.45
22 505.62 501.57 498.27
21 505.59 501.57 498.16
20 505.72 501.57 498.35
19 506.02 502.39 498.03
18 506.06 502.38 498.60
17 506.28 502.38 498.58
16 506.01 502.39 498.75
15 507.15 502.89 499.26
14 507.50 502.91 499.20
13 507.09 502.90 499.08
12 507.48 502.91 498.80
11 506.65 501.99 498.50
10 506.30 501.99 498.32
9 506.39 501.98 498.26
8 506.64 502.00 498.24
7 505.52 501.43 497.12
6 505.86 501.43 497.38
5 505.45 501.42 497.90
4 505.60 501.40 497.75
3 507.39 502.73 498.70
2 507.11 502.72 498.40
1 507.15 502.73 498.57
0 507.35 502.72 498.19

Average 506.14 501.83 498.02

96

AAND
384
2%

CFF
2064
9% CXOR

1062
5%

D2FF
672
3%

DFF
1128
5%

DFFC
640
3%

JL
10347
47%

MRG
850
4%

RX
2454
11%

SPL
1188
5%

TRS
384
2%

TX
818
4%

Total Design Complexity: 21991 JJs

(a) JJ design complexity breakdown of the 32-bit HSTALU.

AAND
54.400
1.78%

CFF
147.537
4.83%

CXOR
20.650
0.68%

D2FF
20.400
0.67%

DFF
98.700
3.23%

DFFC
58.400
1.91%

JL
1810.725
59.22%

MRG
86.479
2.83%

RX
252.598
8.26%

SPL
314.820
10.30%

TRS
8.800
0.29%

TX
184.050
6.02%

Total Design Bias Current: 3057.5597 mA

(b) Design bias current breakdown of the 32-bit HSTALU.

Figure 5.5: Cell-wise breakdown of the 32-bit HSTALU for both the com-
plexity and bias current of the logical design. The results do not include
additional JJs to distribute bias current in ERSFQ logic.

97

Logic and DFFs
7184
33%

Fanout
1188
5%

PTL Drivers and
Receivers

3272
15%

Misc. (Cell
separation and

delay lines)
10347
47%

Total Design Complexity: 21991 JJs

(a) Categorical JJ design complexity breakdown of the 32-bit HSTALU.

Logic and DFFs
495.366

16%

Fanout
314.820

11%

PTL Drivers and
Receivers
436.648

14%

Misc. (Cell
separation and

delay lines)
1810.725

59%

Total Design Bias Current: 3057.5597 mA

(b) Categorical design bias current breakdown of the 32-bit HSTALU.

Figure 5.6: Categorical breakdown of the 32-bit HSTALU for both the com-
plexity and bias current of the logical design.

98

Table 5.4: Breakdown of bias JJs for the 32-bit HSTALU for ERSFQ logic.
The raw bias JJ count assumes all cells are using non-sharing bias JJs. The
adjusted (adj.) bias JJ count assumes that 20% of all Josephson transmission
lines (JL cells) are connected to non-sharing bias JJs and the remaining 80%
of JL cells share 1 bias JJ for every 2 JL cells.

Cell Cell
Count

Bias
JJs/Cell

Total
Raw
Bias

JJs/Cell

Total
Adj.
Bias

JJs/Cell

% Raw
Bias

JJs/Cell

% Adj.
Bias

JJs/Cell

AAND 64 1 64 64 0.40% 0.53%
CFF 129 6 774 774 4.80% 6.46%
CXOR 118 2 236 236 1.46% 1.97%
D2FF 96 1 96 96 0.60% 0.80%
DFF 282 2 564 564 3.50% 4.71%
DFFC 64 3 192 192 1.19% 1.60%
JL 10347 20%=1,

80%=1/2
10347 6208 64.20% 51.83%

MRG 170 1 170 170 1.05% 1.42%
RX 818 2 1636 1636 10.15% 13.66%
SPL 1188 1 1188 1188 7.37% 9.92%
TRS 32 1 32 32 0.20% 0.27%
TX 818 1 818 818 5.08% 6.83%

Total: 14126 16117 11978 100.00% 100.00%

Total
Bias JJs
16117
42%

Total
Design JJs

21991
58%

Total Complexity with Raw Bias JJs: 38108 JJs

(a) Raw bias JJs breakdown.

Total Bias
JJs

11978
35%

Total
Design JJs

21991
65%

Total Complexity with Adj. Bias JJs: 33969 JJs

(b) Adjusted bias JJs breakdown.

Figure 5.7: Breakdown comparison of both raw and adjusted bias JJ counts
with respect to the total design complexity of the 32-bit HSTALU implemented
in ERSFQ logic.

99

Table 5.5: Summary of the key simulation results for the 32-bit HSTALU.

(a) Overall summary of the 32-bit HSTALU.

Data Width 32-bit
Bit Pitch 0.280 mm

Design Complexity 21,991 JJs
Overall Avg. Latency 502 ps
Max. Processing Rate 22.7 GHz
Total Bias Current 3.058 A

(b) Power related metrics for both RSFQ and ERSFQ implemen-
tations of the 32-bit HSTALU at 4.2 K temperature.

Logic RSFQ ERSFQ
Bias Voltage 2.6 mV 45.4 µV
Total Power 8.033 mW 141.508 µW
Ops./Watt 2.826 TOPS/W 160.415 TOPS/W
Energy/Op. 0.354 pJ/op. 6.234 fJ/op.

100

5.3.3 Discussion
We have conducted design studies for an RCA, KSALU and HSTALU designed
for a data width of 32-bits using RSFQ/ERSFQ logic. Table 5.6 on page
102 summarizes the key results of the three design studies conducted in this
research. The extremely simple design of the RCA gives it a tremendous
advantage in energy efficiency resulting in 2418 TOPS/W, roughly 15–23 times
better than the HSTALU and KSALU respectively. However, its processing
rate of only 2 GHz is not sufficient for high-performance computing.

The KSALU and HSTALU both have 20+ GHz processing rates due to the
use of a high-speed prefix carry look-ahead structure. However, the HSTALU
takes on a hybrid approach of combining RCA-like structures within a sparse-
tree design resulting in a ~55% improvement in energy efficiency over the
KSALU, while only seeing a ~2.6% decrease in processing rate and a ~6.3%
increase in latency. In terms of latency, a breakdown of where the KSALU
gained advantages is shown in Figure 5.8 on page 103. Table 5.7 on page 104
shows a more detailed analysis of the latency breakdown between these two
designs with the corresponding comments below:

1. KSALU gained an additional 2 ps delay because its vertical length is
0.220 mm versus the 0.060 mm in the HSTALU.

2. KSALU gained an additional 2 ps delay because its vertical length is
0.190 mm versus the 0.060 mm in the HSTALU.

3. KSALU lost 2 ps of delay because it lacks the additional splitter that
HSTALU needs.

4. KSALU has an additional horizontal PTL length of 1.12 mm (11.2 ps de-
lay) because HSTALU’s horizontal interconnect does not need to cross an
additional 4-bits. However, HSTALU still requires an additional splitter
resulting in a net ~9 ps increase in delay for the KSALU.

5. KSALU does not need the extra 7 ps delay to improve timing and pro-
cessing rate of the more complex Summation blocks of the HSTALU.

6. KSALU has a much simpler Summation block compared to the 4-bit
carry-skip block of the HSTALU resulting in a net loss of 36 ps in delay
for the KSALU.

In Figure 5.9 on page 103, we compare the KSALU and HSTALU to a high-
performance 9 GHz 65 nm CMOS ALU developed by Intel [114]. Because
Intel’s ALU contains two 32-bit cores and other peripheral circuits, only 20%
of the reported power is compared. Furthermore, the power consumption of the
KSALU and HSTALU are multiplied by a factor of 1000 to take into account

101

Table 5.6: Summary of the 3 design studies.

Units RCA KSALU HSTALU
Data Width 32 32 32

Bit Pitch (mm) 0.12 0.28 0.28
Design Complexity (JJs) 952 36073 21991
Overall Avg. Latency (ps) 520 470 502
Max. Processing Rate

(GHz)
2.0 23.3 22.7

Total Bias Current (A) 0.109 4.767 3.058
ERSFQ Power at 4.2 K

(µW)
0.827 224.895 141.508

ERSFQ Energy Efficiency
at 4.2 K (TOPS/W)

2418.380 103.604 160.415

a cryostat efficiency of 1000 W/W to cool the circuits to 4.2 K. Taking all
this into consideration, the KSALU and HSTALU are both ~2.5 times faster
than Intel’s ALU while still consuming 9 to 14.5 times less power respectively
(Table 5.8 on page 105).

102

254
290

59 59

157
153

0

100

200

300

400

500

600

KSALU HSTALU

La
te

n
cy

 (
p

s)

Splitter Tree Delay Total Logic Delay Total Interconnect Delay

Figure 5.8: Latency breakdown of the KSALU and HSTALU.

0

500

1000

1500

2000

2500

0

5

10

15

20

25

KSALU HSTALU Intel Pentium 4
Integer ALU

"P
lu

g-
in

"
P

o
w

e
r

(m
W

)

M
ax

. P
ro

ce
ss

in
g

R
at

e
 (

G
H

z)

Processing Rate Power

Figure 5.9: Processing rate and power consumption comparison.

103

T
ab

le
5.
7:

St
ag
e-
by

-s
ta
ge

la
te
nc
y
br
ea
kd

ow
n
an

al
ys
is

of
th
e
K
SA

LU
an

d
H
ST

A
LU

.

St
ag
e

Su
bs
ta
ge

K
SA

LU
D
el
ay

(p
s)

H
ST

A
LU

D
el
ay

(p
s)

%
K
SA

LU
D
el
ay

%
H
ST

A
LU

D
el
ay

D
iff

(K
SA

LU
-H

ST
A
LU

,
ps
)

C
om

m
en
t

N
/A

Sp
lit
te
r
Tr

ee
59

59
12
.5
5%

11
.7
5%

0

0
-I

ni
tia

liz
at
io
n

Lo
gi
c

11
5

11
5

24
.4
7%

22
.9
1%

0
In
te
rc
on

ne
ct

16
14

3.
40
%

2.
79
%

2
1

1
-P

re
fix

Lo
gi
c

23
23

4.
89
%

4.
58
%

0
In
te
rc
on

ne
ct

18
16

3.
83
%

3.
19
%

2
2

2
-P

re
fix

Lo
gi
c

23
23

4.
89
%

4.
58
%

0
In
te
rc
on

ne
ct

23
23

4.
89
%

4.
58
%

0

3
-P

re
fix

Lo
gi
c

23
23

4.
89
%

4.
58
%

0
In
te
rc
on

ne
ct

34
36

7.
23
%

7.
17
%

-2
3

4
-P

re
fix

Lo
gi
c

23
23

4.
89
%

4.
58
%

0
In
te
rc
on

ne
ct

57
48

12
.1
3%

9.
56
%

9

5
-P

re
fix

Lo
gi
c

23
23

4.
89
%

4.
58
%

0
In
te
rc
on

ne
ct

9
16

1.
91
%

3.
19
%

-7
4

6
-S

um
m
at
io
n

Lo
gi
c

24
60

5.
11
%

11
.9
5%

-3
6

5
To

ta
l

47
0

50
2

10
0.
00
%

10
0.
00
%

-3
2

104

Table 5.8: Comparison of power and rate of the KSALU, HSTALU and an
Intel Pentium 4 ALU [114]. For the KSALU and HSTALU, a cryostat efficiency
of 1000 W/W is assumed. The total power consumption of the Intel Pentium
4 ALU is actually 10.36 W but it contains 2 x 32-bit cores and additional
circuitry so 20% of the total power is compared.

Unit KSALU HSTALU Intel Pentium 4 Integer ALU [114]
Technology ERSFQ ERSFQ 65 nm CMOS
Data Width 32-bit 32-bit 32-bit
Clock Rate 23.3 GHz 22.7 GHz 9 GHz

Power 225 mW 142 mW 2.07 W

5.4 Adder and ALU Design Implemented Us-
ing the CONNECT Cell Library for the
1.0 µm 10 kA/cm2 Process

5.4.1 Goals and Challenges
Using the CONNECT cell library developed by our colleagues at Yokohama
National University and Nagoya University, we designed the following units:

1. 16-bit HSTA

(a) Chip for functional, low-frequency testing (August 2011)
(b) Chip for high-frequency testing (Eagle chip, August 2012)

2. 8-bit HSTALU for functional, low-frequency testing (Delta chip, March
2012)

Both designs were implemented for the ISTEC 1.0 µm 10 kA/cm2 ADP pro-
cess. The goal is to achieve a 30 GHz processing rate for these units and
to gain first hand experience in the full flow of taking a design concept from
implementation all the way to tape-out and testing. With respect to the 16-
bit HSTA, we wanted to achieve a new milestone for SFQ circuits by being
the first to demonstrate the largest datapath width for parallel adders in this
technology. A total of 5 tape-outs were completed for this research but for
this dissertation we will only focus on the 3 chip designs mentioned above.

105

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

A B

Rdy

Rdy_o

P_o R_oG_o

C

d

t

q

D

A B Rdy

Rdy_o

P_o R_oG_o

(a) GPR_INIT

Gv Gh Pv Ph Rv Rh

G_o P_o R_o

Rdy_o

CC C d

t

q

D
d

t

q

D
d

t

q

D

G_o P_o R_o

Gv Pv Rv pi

Rdy_o

pi_o

Rv pi Gvi-1

Sum_oR_o

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

Rdy

d(4) d(3) d(2) d(1) d(0)

d_o(4) d_o(3) d_o(2) d_o(1) d_o(0)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

d(3) d(2) d(1) d(0)

d_o(3) d_o(2) d_o(1) d_o(0)R_o

Rv

C

CC C

Rv

R_o C_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

Gv p(3) p(2) PP p(1) p(0) cin

Rv p(3) p(2) PP p(1) p(0) cin

R_o Sum(3) Sum(2) Sum(1) Sum(0)

q0q1

t

c T1
q0q1

t

c T1

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

C

C C

Rv

R_o Sum_o(3) Sum_o(2) Sum_o(1) Sum_o(0)

p(3) p(2) PP p(1) p(0) cin

d

t

q

D

Gv

G_o

(b) 4-bit SUM block

Figure 5.10: HSTA/HSTALU sub-blocks re-designed using the CONNECT
cell library.

The microarchitecture of the 16-bit HSTA is exactly as described in Section
5.3 with three major differences. First, the GPR_INIT block (Figure 5.10a
on page 106) that creates the bitwise prefix signals at the Initialization stage
is simplified slightly as the CONNECT cell library has a convenient CAND
(clocked AND) gate. This eliminates the need to generate the prefix G signal
using a CFF gate connected to a DFF as it was done in the design study as
shown in Figure 4.2b on page 62.

Second, the SUM blocks residing in the Summation stage had to be re-
designed. The original 4-bit carry-skip block (Figure 5.3d on page 93) was
too slow for a 30+ GHz design and the large amount of logic, particularly the
CFFs, made the layout too difficult. Instead, we opted to use a hybrid design
of CXORs and T1s (Figure 5.10b on page 106) in a similar arrangement used
for the RCA design study in Chapter 3. In the CONNECT cell library, the
T1 layout is optimized to connect its carry output to an adjacent CXOR gate
resulting in a compact structure. It eliminates the use of multiple CFF gates
and required only a single CAND gate to facilitate the carry-skip function. To
improve the processing rate of this block, we split the calculation of the 4-bit
sum into two stages. The first stage calculates the sum of the lower two bits
while preparing the carry going into the upper two bits. The second stage
completes the calculation of the upper two bits.

Lastly, the 16-bit HSTA uses a bit pitch of 150 µm since it was designed
to be a standalone adder, allowing its pitch to be kept to a minimum without
having to match any other units’ bit pitch.

106

To perform high-frequency testing of the 16-bit HSTA, a second chip was
developed to include the following 3 supplemental circuits:

1. Clock Generator: To run the adder at high speed, an on-chip clock source
was designed. It is a straightforward 16 pulse-train design where a single
SFQ pulse is sequentially split 16 times and are all merged together
through a sequential chain of MRG gates as shown in Figure 5.12a on
page 110. In other words, a single SFQ input pulse will provide a high
speed train consisting of 16 SFQ pulses at the output (16 cycles). Each
pulse is separated by the same designed delay to obtain the desired clock
frequency. The clock generator has 3 modes:

(a) Low frequency 1-input pulse, 1-output pulse mode which is espe-
cially useful for checking results one at a time on the oscilloscope.

(b) 15 GHz to 25.5 GHz mode (Clk<1>) depending on the supplied
bias voltage (Figure 5.11 on page 109).

(c) 23.5 GHz to 41 GHz mode (Clk<2>) depending on the supplied
bias voltage (Figure 5.11 on page 109).

2. High-Speed Input Shift Register: To supply changing input operands at
high-frequency, a fast input shifter register was designed for inputs A and
B (Figure 5.12b on page 110). It is a 16-bit parallel-load/parallel-output
shift register which on each cycle will supply two 16-bit parallel inputs
into the adder using the present contents of the register while shifting
the contents to the right by 1-bit. The shift register will provide a pair
of 16 different 16-bit inputs before it needs to be initialized again with
new data.

3. Output Compressor: In order to capture the high-speed waves of the 16-
bit outputs, we designed an output compressor which creates an XOR
signature of the output (Figure 5.12c on page 110). It is simply a T1
gate for each bit. If an odd number of pulses arrived at a given bit then
its corresponding T1 gate will have a logical ‘1’ state, otherwise it will
have a logical ‘0’ state. Based on the initial inputs of the input shift
register, we can determine the expected XOR signature of the output
and compare it with the XOR signature read out from the chip. This
simplified the design and testing substantially because we did not need
to design a set of output registers to capture each of the 16 waves.

The 8-bit HSTALU also adopted the new SUM sub-block design but the
remainder of the microarchitecture is largely the same as it was developed in
Section 5.3. The primary difference is that it uses a bit pitch of 300 µm to

107

Table 5.9: Clock generator high-frequency characteristics obtained from nu-
merical simulation.

Margin Bias
Voltage
(mV)

Clk<2>
Cycle
Time
(ps)

Clk<1>
Cycle
Time
(ps)

Clk<2>
(GHz)

Clk<1>
(GHz)

20.00% 3.00 24.2 39.2 41.32 25.51
18.00% 2.95 24.7 40.0 40.49 25.00
16.00% 2.90 25.0 40.7 40.00 24.57
14.00% 2.85 25.9 41.7 38.61 23.98
12.00% 2.80 26.7 42.9 37.45 23.31
10.00% 2.75 27.5 44.1 36.36 22.68
8.00% 2.70 28.3 45.3 35.34 22.08
6.00% 2.65 29.0 46.4 34.48 21.55
4.00% 2.60 29.7 47.5 33.67 21.05
2.00% 2.55 30.5 48.5 32.79 20.62
0.00% 2.50 31.1 49.5 32.15 20.20
-2.00% 2.45 32.2 51.1 31.06 19.57
-4.00% 2.40 33.2 52.7 30.12 18.98
-6.00% 2.35 34.1 54.2 29.33 18.45
-8.00% 2.30 35.1 55.5 28.49 18.02
-10.00% 2.25 36.1 56.9 27.70 17.57
-12.00% 2.20 37.5 58.9 26.67 16.98
-14.00% 2.15 38.9 60.9 25.71 16.42
-16.00% 2.10 40.1 62.8 24.94 15.92
-18.00% 2.05 41.3 64.6 24.21 15.48
-20.00% 2.00 42.6 66.4 23.47 15.06

108

0

5

10

15

20

25

30

35

40

45

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

C
lo

ck
 R

at
e

 (
G

H
z)

Bias Voltage (mV)

Clk<2>

Clk<1>

Figure 5.11: Simulation of the clock generator at different bias voltages.

accommodate the logical complexity of the ALU_INIT blocks in the Initial-
ization stage. The larger bit pitch also allowed us to reserve a channel for a
return line to propagate the result into a register file unit if the HSTALU was
to be integrated into a datapath.

109

(…)

(…)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

q0 q1

t

cT1
q0 q1

t

cT1
q0 q1

t

cT1
q0 q1

t

cT1

Clk_in

Clk_o

p
_
in
(3
)

p
_
in
(2
)

p
_
in
(1
)

p
_
in
(0
)

rd
y

ser_o

p
_
o
(3
)

p
_
o
(2
)

p
_
o
(1
)

p
_
o
(0
)

re
s
(3
)

re
s
(2
)

re
s
(1
)

re
s
(0
)

x
o
r_
s
ig
_
o
(3
)

x
o
r_
s
ig
_
o
(2
)

x
o
r_
s
ig
_
o
(1
)

x
o
r_
s
ig
_
o
(0
)

read

(a) Concept of the clock generator.

(…)

(…)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

q0 q1

t

cT1
q0 q1

t

cT1
q0 q1

t

cT1
q0 q1

t

cT1

Clk_in

Clk_o

p
_
in
(3
)

p
_
in
(2
)

p
_
in
(1
)

p
_
in
(0
)

rd
y

ser_o

p
_
o
(3
)

p
_
o
(2
)

p
_
o
(1
)

p
_
o
(0
)

re
s
(3
)

re
s
(2
)

re
s
(1
)

re
s
(0
)

x
o
r_
s
ig
_
o
(3
)

x
o
r_
s
ig
_
o
(2
)

x
o
r_
s
ig
_
o
(1
)

x
o
r_
s
ig
_
o
(0
)

read

(b) 4-bit example of the input shift register.

(…)

(…)

d

t

q

D
d

t

q

D
d

t

q

D
d

t

q

D

q0 q1

t

cT1
q0 q1

t

cT1
q0 q1

t

cT1
q0 q1

t

cT1

Clk_in

Clk_o

p
_
in
(3
)

p
_
in
(2
)

p
_
in
(1
)

p
_
in
(0
)

rd
y

ser_o

p
_
o
(3
)

p
_
o
(2
)

p
_
o
(1
)

p
_
o
(0
)

re
s
(3
)

re
s
(2
)

re
s
(1
)

re
s
(0
)

x
o
r_
s
ig
_
o
(3
)

x
o
r_
s
ig
_
o
(2
)

x
o
r_
s
ig
_
o
(1
)

x
o
r_
s
ig
_
o
(0
)

read

(c) 4-bit example of the output compressor.

Figure 5.12: Schematics of the supplemental circuits to facilitate high-speed
testing of the 16-bit HSTA.

110

D
C

-t
o

-S
F

Q

S
p

li
tt

e
r

T
re

e

In
it

ia
li
z
a

ti
o

n
 (

G
P

R
_
IN

IT
)

S
F

Q
-t

o
-D

C

S
u

m
m

a
ti

o
n

P
re

fi
x

 T
re

e R
e

s
u

lt
 B

u
ff

e
r

(a
)
La

yo
ut

4
.2

5
 m

m

5.00 mm

(b
)
M
ic
ro
ph

ot
og
ra
ph

F
ig
ur
e
5.
13
:
La

yo
ut

an
d
m
ic
ro
ph

ot
og
ra
ph

of
th
e
16
-b
it
H
ST

A
ch
ip

fo
r
lo
w
-fr

eq
ue
nc
y
te
st
in
g.

111

S
p

li
tt

e
r

T
re

e
 &

 S
e

q
u

e
n

ti
a

l
S

p
li
tt

in
g

In
it

ia
li
z
a

ti
o

n
 (

A
L

U
_
IN

IT
)

P
re

fi
x

 T
re

e

S
u

m
m

a
ti

o
n

R
e

s
u

lt
 B

u
ff

e
r

S
F

Q
-t

o
-D

C

D
C

-t
o

-S
F

Q

(a
)
La

yo
ut

4
.0

 m
m

4.25 mm

(b
)
M
ic
ro
ph

ot
og
ra
ph

F
ig
ur
e
5.
14
:
La

yo
ut

an
d
m
ic
ro
ph

ot
og
ra
ph

of
th
e
8-
bi
t
H
ST

A
LU

ch
ip

fo
r
lo
w
-fr

eq
ue
nc
y
te
st
in
g
(D

el
ta

ch
ip
).

112

D
C

-t
o

-S
F

Q

C
lo

c
k

 G
e

n
e

ra
to

r

In
p

u
t

S
h

if
t

R
e

g
is

te
rs

S
p

li
tt

e
r

T
re

e

1
6

-b
it

 H
S

T
A

O
u

tp
u

t
C

o
m

p
re

s
s

o
r

S
F

Q
-t

o
-D

C

(a
)
La

yo
ut

4
.2

5
 m

m

7.00 mm

(b
)
M
ic
ro
ph

ot
og
ra
ph

F
ig
ur
e
5.
15
:

La
yo

ut
an

d
m
ic
ro
ph

ot
og
ra
ph

of
th
e
16
-b
it

H
ST

A
w
ith

on
-c
hi
p
hi
gh

-fr
eq
ue
nc
y
te
st

ci
rc
ui
ts

(E
ag
le

ch
ip
).

113

5.4.2 Simulation Results
The CONNECT cell library allowed us to easily evaluate our designs with
respect to complexity, bias current, area, latency and performance. An impor-
tant benchmark for our circuits is the frequency dependent DC bias margins
which reveal how robust our designs are to changing bias voltages at different
clock rates, a capability that is also provided by the CONNECT cell library.
This section summarizes the simulation results of the 16-bit HSTA and 8-bit
HSTALU.

5.4.2.1 16-bit HSTA Results

Since the core of the 16-bit HSTA is the same for both the low- and high-
frequency test chips, only the results of the latter are summarized here. The
breakdown of complexity is detailed in Table 5.10 on page 115 and an overall
summary of the design is shown in Table 5.11 on page 115. Figure 5.16 on
page 114 illustrates the DC bias margins at different clock rates. At the target
clock rate of 30 GHz, we have +20% / -16% margins which is relatively wide
for a circuit of this scale.

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

2.05

2.10 2.10

2.15

2.20

2.30

2.50

-24

-20

-16

-12

-8

-4

0

4

8

12

16

20

24

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

2.70

2.80

2.90

3.00

3.10

19.2 20.0 20.8 21.7 22.7 23.8 25.0 26.3 27.8 29.4 30.3 31.3 33.3 35.7 38.5 40.0 41.7

D
C

 B
ias (%

) D
C

 B
ia

s
(m

V
)

Clock Rate (GHz)

DC Bias Margins for a 16-bit Adder with High-Speed Testing Circuits

Design was not tested
beyond ±20% DC Bias

Figure 5.16: DC bias margins for the 16-bit HSTA (Eagle chip).

114

Table 5.10: Breakdown of complexity for the 16-bit HSTA with on-chip
high-speed testing circuits.

Component Complexity (JJs) Bias Current (mA)
Clock Generator 828 113.718

Input Shift Register 1072 131.365
Adder - Island 0 3679 430.279
Adder - Island 1 3176 410.307
Adder - Island 2 3086 419.967

Output Compression 584 60.195
DC-to-SFQ 180 14.625
SFQ-to-DC 180 29.622

Total 12785 1610.078

Table 5.11: Summary of the 16-bit HSTA.

Adder Datapath Width 16 bits
Peak Processing Rate 38.5 GHz (simulated)
Latency (2.5 mV bias) 352 ps (simulated)
Complexity (core) 9941 JJs
Complexity (total) 12785 JJs
Bias Current (total) 1.61 A

Area (core) 8.5 mm2

115

5.4.2.2 8-bit HSTALU Results

The breakdown of complexity is detailed in Table 5.10 on page 115 and an
overall summary of the design is shown in Table 5.11 on page 115. Figure 5.16
on page 114 shows the DC bias margins at different clock rates. At the target
clock rate of 30 GHz, we have +20% / -16% margins.

2.00 2.00 2.00 2.00 2.00

2.05 2.05 2.05

2.10 2.10 2.10

2.15

2.20

2.30

2.65

2.75

2.85

-24

-20

-16

-12

-8

-4

0

4

8

12

16

20

24

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

2.70

2.80

2.90

3.00

3.10

19.2 20.0 20.8 21.7 22.7 23.8 25.0 26.3 27.8 29.4 30.3 31.3 33.3 35.7 38.5 40.0 41.7

D
C

 B
ias (%

)
D

C
 B

ia
s

(m
V

)

Clock Rate (GHz)

DC Bias Margins for an 8-bit ALU

Design was not tested
beyond ±20% DC Bias

Figure 5.17: DC bias margins for the 8-bit HSTALU (Delta chip).

Table 5.12: Breakdown of complexity for the 8-bit HSTALU.

Component Complexity (JJs) Bias Current (mA)
DC-to-SFQ 125 10.16
Main circuit 8832 1098.48
SFQ-to-DC 99 16.29

Total 9056 1124.93

116

Table 5.13: Summary of the 8-bit HSTALU.

ALU Datapath Width 8 bits
of Arithmetic Operations 8

of Logical Operations 12
Peak Processing Rate 42 GHz (simulated)
Latency (2.5 mV bias) 374 ps (simulated)
Complexity (core) 8832 JJs

Bias Current 1.13 A
Area (core) 7.2 mm2

5.4.3 Experimental Testing

We conducted testing at Yokohama National University in Japan where
the Yoshikawa Laboratory provided an assortment of equipment to verify the
functionality of superconducting chips and measure the operating margins
(Table 5.14 on page 118). Chips are wire-bonded onto a chip holder where
it will be seated inside the chamber of a chip probe. A multimeter is used to
check for wire continuity to ensure that all pads have a connection through
the probe. To screen out the external magnetic field, two layers of Mu-metal
magnetic shields surround the chamber of the chip probe. Next, the probe
is pre-cooled to T = 77 K using liquid Nitrogen. This process is necessary
to avoid the rapid temperature change it would experience if the chip was
to go directly to T = 4.2 K in liquid Helium, which may create unwanted
flux trapping and disturb the operation of the circuit. After pre-cooling, the
chip probe is once again tested for wire continuity before it is slowly lowered
into the Helium Dewar, a process that can take 20-30 minutes to gradually
bring the circuit to 4.2 K where the temperature is low enough to enter the
superconductive critical temperature of Niobium (T = 9.2 K) [115]. Once the
chip is sufficiently cooled, the wire connections are checked one last time and
then the probe is connected to the testing equipment as shown on Figure 5.18
on page 120.

The circuit is powered on in a specific order. First the SFQ-to-DC circuits
are slowly biased up to their expected nominal currents, followed by the main
circuit and finally the DC-to-SFQ circuits. Test patterns prepared on the data
generator beforehand are transmitted to the circuit and a resulting waveform
of the outputs are displayed on oscilloscopes. Due to parameter variations in
fabrication, samples of the same chip will most likely not behave the same
way. It is sometimes necessary to fine tune the bias supplies to get a stable

117

Table 5.14: List of testing equipment.

Equipment Manufacturer and
Model Description

Data
generator Tektronix DG2020A Generates input data into the test

chip.

Input
attenuator

Tamagawa
Electronics
VBA-641A

Lowers the voltage of the incom-
ing input from the data generator
to mV levels for superconductor cir-
cuits.

Power supply Kikusui
PMR18-2.5DU

Provides DC bias current to the
chip.

Low-pass
filter Custom made Minimizes noise across the DC bias

current supplies.

Differential
amplifier

Stanford Research
Systems SR560

Amplifies output of the supercon-
ductor circuit for viewing on oscil-
loscopes.

Oscilloscope
Agilent Technologies
DSO5014A, and

others
Displays the output of the chip.

Probe
connection

box
Custom made

Connects all inputs, outputs, power
and ground lines between testing
equipment and the chip probe.

Chip probe Custom made
Links the connection box with the
chip to be placed at superconduct-
ing temperatures.

Helium
Dewar

Cryofab Inc. CMSH
88

Cools down the test chip to T = 4.2
K

Magnetic
shield

Standard Mu-metal
shield

Shields the test chip from external
magnetic fields which can disturb
the circuit’s operation.

118

output waveform. Too much bias will create an oscillating waveform whereas
too little bias will create either no output or an unstable waveform. A logical
‘1’ is represented by a rising or falling edge on the waveforms and a logical ‘0’
is a steady voltage level.

Once a stable output waveform is achieved for a particular test pattern, the
DC bias margins can be measured. It is the process of adjusting the bias supply
to the absolute maximum and minimum before the stable waveform becomes
disturbed either through oscillation or dropped outputs. The maximum and
minimum bias current values are then recorded for the present test pattern. We
repeat this process for each test case prepared on the data generator and find
what are the overlapped margins across all test cases. Where these margins
intersect is ultimately the operating margins of the circuit.

It is not always possible to get a stable output waveform on the very first
try. Flux trapping is a common problem with superconductor circuits and it
is often necessary to deflux or warm-up the chip out of the superconductive
state to remove the trapped flux that is hindering operation of the circuit. If
a chip is not operating as expected, we try to deflux the chip, slowly cool it
again and repeat the test. As a general rule of thumb, we would repeat this
cycle at least 2 to 3 times before we deem a chip sample as non-functional and
move on to the next one.

119

Power Supply

Low-Pass Filters

Data Generator

Input Attenuators

Oscilloscope

Differential

Amplifiers

Probe Connection Box

DC-to-SFQ Bias

Power Supply

Low-Pass Filters

Main Circuit Bias

Power Supply

Low-Pass Filters

SFQ-to-DC Bias

Chip Probe

Dewar

Liquid Helium
Double Magnetic

Shielding

Chip Holder

Chip

Figure 5.18: Block diagram of the testing environment.

120

A B

E

F

C

D

I

G
H

J
K

Figure 5.19: Equipment used for experimental testing: (A) data generator,
(B) input attenuators, (C) power supplies, (D) low-pass filters, (E) probe
connection box, (F) oscilloscopes, (G) differential amplifiers, (H) chip probe,
(I) Helium Dewar with chip probe inserted, (J) magnetic shields, and (K)
magnetic shields attached to chip probe.

121

5.4.4 Chip Testing Results
5.4.4.1 16-bit HSTA

Figure 5.20: 16-bit HSTA chip for low-frequency testing wire-bonded to a
chip holder.

As previously mentioned the 16-bit HSTA design underwent two chip de-
signs, the first for low-frequency functional testing (August 2011) and the
second for high-speed testing (August 2012). To test the first chip, each data
pattern was set with 16-bit input data for both operands A and B followed by
Ready after some time delay. The test is sent twice to produce an even number
of transitions on the waveform so the oscilloscope can lock onto the output
signal. This chip showed excellent results, passing all test cases including the
critical case of carry propagating through all bits (all 1’s plus 1). Four random
cases are shown on Figures 5.21 thru 5.24. The measured DC bias margins
intersecting across all cases were +9.81% / -10.68%.

To test the second chip containing additional circuits for high-speed testing,
we loaded 16-bit data in parallel to each of the input shifter registers. After
sufficient delay, we supply a trigger pulse into the clock generator to start the
16-pulse high-frequency clock, sending 16 waves of data into the adder with
each subsequent wave being the same as the previous but shifted to the right
by 1 bit. The output compression circuits create an XOR signature of the 16
outputs generated from the adder. Afterwards, we supply a pulse to read out
the states for each compressed output bit. Using a Perl program, we calculate
the expected states for each bit and compare them to the output waveform.

122

Unfortunately, the second chip did not fare so well. In the low frequency
operation of this chip, the input shift register for operand A showed a few
missing bits in the serial output after supplying all 1’s to the register (Figure
5.25 on page 128). The same test for operand B showed no output at all.
Running a single-stepping test through each of the 16 test vectors revealed
mostly incorrect or unstable output and when running at high-frequency, we
observed similar results as expected from our initial low-frequency experiments
of this chip.

Based on data and measurements of the fabrication run (named ADP627)
for this chip by our colleagues, almost all other circuits also showed malfunction
and it was generally agreed that the quality of this fabrication run was at a
lower standard of quality than usual [116].

123

S
u
m
[0
]

S
u
m
[1
]

S
u
m
[2
]

S
u
m
[3
]

S
u
m
[4
]

S
u
m
[5
]

S
u
m
[6
]

S
u
m
[7
]

S
u
m
[8
]

S
u
m
[1
1
]

S
u
m
[1
2
]

S
u
m
[1
3
]

S
u
m
[1
4
]

S
u
m
[9
]

S
u
m
[1
0
]

S
u
m
[1
5
]

C
o
u
t

R
o
u
t

U
n
u
s
e
d

0 1 1 1 1 0 0 0

1 1 1 1 0 0 0 1 10

F
ig
ur
e
5.
21
:
Lo

w
-fr

eq
ue
nc
y
ra
nd

om
te
st

#
1,

A
=

56
81
1,

B
=

14
64
3,

an
d
Su

m
=

71
45
4.

124

S
u
m
[0
]

S
u
m
[1
]

S
u
m
[2
]

S
u
m
[3
]

S
u
m
[4
]

S
u
m
[5
]

S
u
m
[6
]

S
u
m
[7
]

S
u
m
[8
]

S
u
m
[1
1
]

S
u
m
[1
2
]

S
u
m
[1
3
]

S
u
m
[1
4
]

S
u
m
[9
]

S
u
m
[1
0
]

S
u
m
[1
5
]

C
o
u
t

R
o
u
t

U
n
u
s
e
d

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 0 11

F
ig
ur
e
5.
22
:
Lo

w
-fr

eq
ue
nc
y
ra
nd

om
te
st

#
2,

A
=

87
24
,B

=
50
89
2,

an
d
Su

m
=

59
61
6.

125

S
u
m
[0
]

S
u
m
[1
]

S
u
m
[2
]

S
u
m
[3
]

S
u
m
[4
]

S
u
m
[5
]

S
u
m
[6
]

S
u
m
[7
]

S
u
m
[8
]

S
u
m
[1
1
]

S
u
m
[1
2
]

S
u
m
[1
3
]

S
u
m
[1
4
]

S
u
m
[9
]

S
u
m
[1
0
]

S
u
m
[1
5
]

C
o
u
t

R
o
u
t

U
n
u
s
e
d

1 1 0 1 0 1 1 0

0 0 1 1 1 0 0 1 10

F
ig
ur
e
5.
23
:
Lo

w
-fr

eq
ue
nc
y
ra
nd

om
te
st

#
3,

A
=

13
98
2,

B
=

64
97
3,

an
d
Su

m
=

78
95
5.

126

S
u
m
[0
]

S
u
m
[1
]

S
u
m
[2
]

S
u
m
[3
]

S
u
m
[4
]

S
u
m
[5
]

S
u
m
[6
]

S
u
m
[7
]

S
u
m
[8
]

S
u
m
[1
1
]

S
u
m
[1
2
]

S
u
m
[1
3
]

S
u
m
[1
4
]

S
u
m
[9
]

S
u
m
[1
0
]

S
u
m
[1
5
]

C
o
u
t

R
o
u
t

U
n
u
s
e
d

1 1 0 1 0 0 1 0

0 1 0 1 0 1 1 0 10

F
ig
ur
e
5.
24
:
Lo

w
-fr

eq
ue
nc
y
ra
nd

om
te
st

#
4,

A
=

44
63
6,

B
=

91
99
,a

nd
Su

m
=

53
83
5.

127

E
x

p
e

c
te

d
 1

6
 t

ra
n

s
it

io
n

s

M
is

s
in

g
 t

ra
n

s
it

io
n

s

F
ig
ur
e
5.
25
:
Lo

w
-fr

eq
ue
nc
y
se
ria

lo
ut
pu

to
ft

he
sh
ift
er

fo
ri
np

ut
A

(b
lu
e
tr
ac
e)

an
d
B

(y
el
lo
w

tr
ac
e)

on
th
e
16
-b
it

H
ST

A
ch
ip

de
sig

ne
d

fo
r
hi
gh

-s
pe

ed
te
st
in
g.

Bo
th

in
pu

t
sh
ift
er
s
we

re
in
iti
al
iz
ed

to
al
l
lo
gi
ca
l
1’
s
(1
6-
bi
t)

so
we

ex
pe

ct
ed

to
se
e
16

tr
an

sit
io
ns

ea
ch

ye
t
we

on
ly

ob
se
rv
ed

13
fo
r
in
pu

t
A

an
d
no

ne
fo
r
in
pu

t
B.

128

5.4.4.2 8-bit HSTALU

The 8-bit HSTALU had one chip design capable of only low-frequency func-
tional testing. To test this chip, two 8-bit input operands A and B, along
with a 6-bit control signal and an additional 2-bit control signal for the least
significant bit were sent by the data pattern generator followed by the Ready
signal to start the operation. Table 5.15 on page 131 shows a list of test vec-
tors supplied by the data generator and Figure 5.26 on page 130 shows the
resulting output on the oscilloscope.

All operations in the table produced correct results except for XNOR which
had difficulty in demonstrating correctness across the 8-bit output simultane-
ously. We traced the problem to the unstable operation of the XOR gate used
to selectively invert operands (Figure 4.2a on page 62). When it receives a
pulse in both inputs (i.e. the operand is ‘1’ and the control signal to invert
is also ‘1’), the output incorrectly shows as ‘1’ for most bits. Therefore, we
decided to demonstrate the XNOR operation on bit 3 which was the only bit
that did not exhibit this problem.

Another malfunction we encountered in this chip is the lack of generating
the prefix signal G, a vital signal for arithmetic operations as well as logical
operations based on AND and OR. We were able to determine this problem
when none of the AND/OR-based logical functions worked and when hand-
picked vectors for ADD did not flip bits where a carry was expected. The
test vectors on Table 5.15 were selected to avoid the generation of G. We
attribute this malfunction to the small operating margins of the TRS gate
and combined with the low overall yield of the wafers containing the HSTALU
chip samples, the probability of confirming full functionality was low. Despite
this, we still showed several operations functioning correctly and we measured
the overlapped DC bias margins across these working cases to be ±1.8%.

129

0 1 2 3 4 5 6 7

Bit Index

0 1 1 0 0 1 1 0

1 1 1 1 1 1 1 1

1 0 0 0 0 0 00

1
0

0
1

X
O

R
A

D
D

IN
C

_
A

D
D

X
N

O
R

O
p

e
ra

ti
o

n

X
N

O
R

X
N

O
R

X
N

O
R

(a
)
M
ix
in
g
of

ar
ith

m
et
ic

an
d
lo
gi
c
op

er
at
io
ns
.

0 1 2 3 4 5 6 7
Bit Index

1

1
0

1

1
0

1

1

1

1

1
0

1
1

0
1

1
1

1
1

1

1
0

1

1
0

1

1

1

1

1
0

1
1

1
0

1
1

1
1

1
1

0
1

1
0

1
1

1
1

1
0

1
1

0
1

1
1

1
1

1

1
0

1

1

1

0
1

1
1

1
0

1

1
0

1

1
1

1
1

(b
)
M
ix
in
g
ve
ct
or
s
fo
r
a
fix

ed
A
D
D

op
er
at
io
n.

F
ig
ur
e
5.
26
:
W
av
ef
or
m
s
de
m
on

st
ra
tin

g
va
rio

us
op

er
at
io
ns

of
th
e
8-
bi
t
A
LU

.R
ef
er

to
th
e
up

pe
r
se
ct
io
n
of

Ta
bl
e

5.
15

on
pa

ge
13
1
to

se
e
th
e
te
st

ve
ct
or
s
fo
r
(a
)
an

d
th
e
lo
we

r
se
ct
io
n
fo
r
(b
).

130

Table 5.15: Test vectors supplied to the 8-bit HSTALU with waveform out-
puts shown on Figure 5.26 on page 130.

Operation Operand A Operand B Output
XOR 0b11001100 0b10101010 0b01100110
ADD 0b00000000 0b11111111 0b11111111

INC_ADD 0b00000000 0b00000000 0b00000001
XNOR 0b00000000 0b00000000 0b11111111
XNOR 0b00000000 0b00001000 0b11110111
XNOR 0b00001000 0b00000000 0b11110111
XNOR 0b00001000 0b00001000 0b11111111
ADD 0b11111111 0b00000000 0b11111111
ADD 0b01010101 0b00000000 0b01010101
ADD 0b10101010 0b00000000 0b10101010
ADD 0b00000000 0b11111111 0b11111111
ADD 0b00000000 0b01010101 0b01010101
ADD 0b00000000 0b10101010 0b10101010
ADD 0b01010101 0b10101010 0b11111111
ADD 0b10101010 0b01010101 0b11111111
ADD 0b00001111 0b11110000 0b11111111
ADD 0b11110000 0b00001111 0b11111111

131

Chapter 6

Conclusions

Outline
6.1 Completed Work . 132
6.2 Future Work . 134

6.1 Completed Work
The goal of this research is to establish a new frontier in the development
of high-complexity, high-performance designs using energy-efficient supercon-
ductor logic. To this end, we have conducted superconductor design studies
on three different types of structures, namely: a ripple-carry adder, a Kogge-
Stone ALU and a hybrid sparse-tree ALU. All three candidates were designed
for a 32-bit data width and simulated using our VHDL cell library tuned to the
HYPRES 1.5 µm 4.5 kA/cm2 technology for both RSFQ and ERSFQ supercon-
ductor logic. Metrics such as latency, maximum processing rate, complexity,
bias current and total power were obtained for each design.

The 32-bit superconductor ripple-carry adder has a design complexity of
952 JJs and an average latency of 520 ps. Its maximum processing rate is
only 2 GHz but it is a very energy efficient design as it is capable of producing
2,418 TOPS/W at 4.2 K temperature in ERSFQ logic, consuming only 827 nW.
Unfortunately, the ripple-carry adder is not very scalable for wide datapath,
high-performance architectures. Its concept, however, would prove to be very
useful in small ripple-carry adder chains found in the hybrid sparse-tree adder.
Furthermore, its use of the T1 gate as a fast counting circuit is applicable for
high-speed compressors used in multipliers [110].

On the other end of the design spectrum, a 32-bit Kogge-Stone ALU
presents a structure that can easily exploit the advantages of asynchronous

132

hybrid wave-pipelining techniques for a scalable, high-performance unit. It
has a design complexity of 36,073 JJs and an average latency of 470 ps. Its
maximum processing rate is 23.3 GHz. The large complexity resulted in a
power consumption of 225 µW yielding an energy efficiency of 104 TOPS/W
at 4.2 K in ERSFQ logic.

A scaled down 8-bit version of the Kogge-Stone ALU has been physically
implemented in RSFQ using the HYPRES 1.5 µm 4.5 kA/cm2 technology,
as a joint effort between SBU and HYPRES. The chip fully operates at the
processing rate of 20 GHz, demonstrating that our asynchronous hybrid wave-
pipelining techniques is a suitable approach for designing high-performance
circuits.

The Kogge-Stone structure required a very dense tree of carry-merge logic
cells and it has a complex stage-to-stage interconnect that is difficult to lay-
out at higher data widths. The 32-bit hybrid sparse-tree ALU resolved these
two challenges by incorporating a sparse-tree to generate carries into each
4-bit group while integrating some of the low-complexity techniques of the
ripple-carry adder. With this approach, there is an increase in complexity in
calculating the final sum as it is necessary to serially pre-calculate the 4-bit
sum of each group during the first four stages of the adder and use 4-bit carry-
skip adders to produce the final result. Despite these complications, the hybrid
structure still resulted in a ~55% improvement in energy efficiency over the
Kogge-Stone ALU, while sacrificing only ~2.6% in processing rate and ~6.3%
in latency. Overall, the ERSFQ hybrid sparse-tree ALU has a design complex-
ity of 21,991 JJs, an average latency of 502 ps, a maximum processing rate of
22.7 GHz while consuming 142 µW of power resulting in an energy efficiency
of 160 TOPS/W at 4.2 K. When compared to a 9 GHz Intel ALU [114], the
hybrid sparse-tree ALU is ~2.5 times faster and consumes ~14.5 times less
power after taking into account the additional power to cool the circuit to 4.2
K.

Using SFQ CAD tools developed by our colleagues in Yokohama National
University and Nagoya University, we implemented and tested an 8-bit ALU
and a 16-bit adder based on the hybrid sparse-tree structure using RSFQ logic
in the ISTEC 1.0 µm 10 kA/cm2 technology. The target clock rate for both
designs is 30 GHz. The 16-bit adder passed all low-frequency tests with a DC
bias margin of +9.81% / -10.68% whereas the 8-bit ALU demonstrated several
operations at low-frequency with a DC bias margin of ±1.8%.

133

6.2 Future Work
Due to the recently volatile foundry conditions in Japan, it would be worth-
while to have a second fabrication run of the hybrid sparse-tree 8-bit ALU and
16-bit adder. Since the TRS gate of the CONNECT cell library had relatively
low margins, it would be interesting to re-design the ALU_INIT block of the
8-bit ALU so that the TRS-based data pulse counter is replaced with a T1-
based counter. To preset the T1, we simply include an additional MRG gate
at the input to create an extra port to preset. This can also eliminate the
Ctrl_sub_bar signal since there would be no need to reset the T1 counter; it
is in fact naturally reset when the gate is read out. It also eliminates a D2FF
gate to store the preliminary P signal because of the built-in storage of T1.
Since the T1 gate has been successfully demonstrated in the Summation blocks
of the adder as well as an 8x8 carry-save multiplier [110], this modification will
most likely improve the chances of fully demonstrating the ALU, at least for
low-frequency testing. The only difficulty is integrating the extra MRG within
the already compact ALU_INIT block, but with the elimination of the D2FF
gate, extra room in the layout should be available.

In this research, all of the ERSFQ work was only done as a design study to
estimate the energy efficiency of our units, and scaled down physical implemen-
tations were done in RSFQ. It would be beneficial to see the work physically
implemented and tested in ERSFQ to see how well the measured power con-
sumption aligns with our simulations. Also fascinating are the other emerg-
ing energy-efficient superconductor logic families such as Reciprocal Quan-
tum Logic (RQL) [117, 118, 119] and Adiabatic Quantum-Flux Parametron
(AQFP) logic [120, 121]. Both families have very limited CAD support and it
would be interesting to research new approaches on how to efficiently imple-
ment large-scale designs in these logic families and perhaps set new benchmarks
in low-power computing.

134

Bibliography

[1] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, 4th ed. Morgan Kaufmann, 2008.
(Cited on page 2).

[2] (2011) International Technology Roadmap for Semiconductors. Inter-
national Technology Roadmap for Semiconductors. [Online]. Available:
http://www.itrs.net/ (Cited on page 2).

[3] M. Bohr and K. Mistry. (2011, May) Intel’s Revolution-
ary 22 nm Transistor Technology. Intel Newsroom. Intel. [On-
line]. Available: http://download.intel.com/newsroom/kits/22nm/pdfs/
22nm-Details_Presentation.pdf (Cited on page 2).

[4] T. Kuroda, “Low-power, high-speed CMOS VLSI design,” in Computer
Design: VLSI in Computers and Processors, 2002. Proceedings. 2002
IEEE International Conference on, 2002, pp. 310 – 315. (Cited on page
2).

[5] J. G. Koomey, “Growth in data center electricity use 2005
to 2010,” Stanford University, Tech. Rep., Aug. 2011. [On-
line]. Available: http://www.mediafire.com/file/zzqna34282frr2f/
koomeydatacenterelectuse2011finalversion.pdf (Cited on page 3).

[6] W. Chen, J. Xu, P. Lai, Y. Li, and S. Xu, “Gate Leakage Properties
of MOS Devices with Tri-Layer High-k Gate Dielectric,” in Electron
Devices and Solid-State Circuits, 2005 IEEE Conference on, Dec. 2005,
pp. 695 – 698. (Cited on page 3).

[7] J. Huang, P. Kirsch, J. Oh, S. H. Lee, P. Majhi, H. Harris, D. Gilmer,
G. Bersuker, D. Heh, C. S. Park, C. Park, H.-H. Tseng, and R. Jammy,
“Mechanisms Limiting EOT Scaling and Gate Leakage Currents of High-
/Metal Gate Stacks Directly on SiGe,” Electron Device Letters, IEEE,
vol. 30, no. 3, pp. 285 –287, Mar. 2009. (Cited on page 3).

135

http://www.itrs.net/
http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf
http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf
http://www.mediafire.com/file/zzqna34282frr2f/koomeydatacenterelectuse2011finalversion.pdf
http://www.mediafire.com/file/zzqna34282frr2f/koomeydatacenterelectuse2011finalversion.pdf

[8] C.-C. Lu, K.-S. Chang-Liao, C.-Y. Lu, S.-C. Chang, and T.-K. Wang,
“Leakage effect suppression in charge pumping measurement and stress-
induced traps in high-k Gated MOSFETs,” in Semiconductor Device
Research Symposium, 2007 International, Dec. 2007, pp. 1 –2. (Cited on
page 3).

[9] R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle,
J. Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Ra-
dosavljevic, “Application of high-[kappa] gate dielectrics and metal
gate electrodes to enable silicon and non-silicon logic nanotech-
nology,” Microelectronic Engineering, vol. 80, pp. 1 – 6, 2005,
14th biennial Conference on Insulating Films on Semiconduc-
tors. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V0W-4GB2584-7/2/e84d38f9af611851a6a00d2e169a4815 (Cited on
page 3).

[10] A. Bhoj and N. Jha, “Design of ultra-low-leakage logic gates and flip-
flops in high-performance FinFET technology,” in Quality Electronic De-
sign (ISQED), 2011 12th International Symposium on, Mar. 2011, pp. 1
–8. (Cited on page 3).

[11] P. Mishra, A. Bhoj, and N. Jha, “Die-level leakage power analysis of
FinFET circuits considering process variations,” in Quality Electronic
Design (ISQED), 2010 11th International Symposium on, Mar. 2010,
pp. 347 –355. (Cited on page 3).

[12] S. Tawfik and V. Kursun, “Compact FinFET Memory Circuits with P-
Type Data Access Transistors for Low Leakage and Robust Operation,”
in Quality Electronic Design, 2008. ISQED 2008. 9th International Sym-
posium on, Mar. 2008, pp. 855 –860. (Cited on page 3).

[13] D. James, “Intel Ivy Bridge unveiled - The first commercial tri-gate,
high-k, metal-gate CPU,” in Custom Integrated Circuits Conference
(CICC), 2012 IEEE, Sep. 2012, pp. 1 –4. (Cited on page 3).

[14] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost,
M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han,
D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly,
P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon,
H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes,
I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler,
J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger,

136

http://www.sciencedirect.com/science/article/B6V0W-4GB2584-7/2/e84d38f9af611851a6a00d2e169a4815
http://www.sciencedirect.com/science/article/B6V0W-4GB2584-7/2/e84d38f9af611851a6a00d2e169a4815

C. Weber, P. Yashar, K. Zawadzki, and K. Mistry, “A 22nm high perfor-
mance and low-power CMOS technology featuring fully-depleted tri-gate
transistors, self-aligned contacts and high density MIM capacitors,” in
VLSI Technology (VLSIT), 2012 Symposium on, Jun. 2012, pp. 131 –
132. (Cited on page 3).

[15] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya,
K. Zhang, K. Mistry, and M. Bohr, “A 4.6GHz 162Mb SRAM design in
22nm tri-gate CMOS technology with integrated active VMIN-enhancing
assist circuitry,” in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2012 IEEE International, Feb. 2012, pp. 230 –232.
(Cited on page 3).

[16] C. Belady and C. Malone, “Data center power projections to 2014,”
in Thermal and Thermomechanical Phenomena in Electronics Systems,
2006. ITHERM ’06. The Tenth Intersociety Conference on, 30 2006-June
2 2006, pp. 439 –444. (Cited on page 3).

[17] P. Krein, “A discussion of data center power challenges across the sys-
tem,” in Energy Aware Computing (ICEAC), 2010 International Con-
ference on, dec. 2010, pp. 1 –3. (Cited on page 3).

[18] H. Qi and A. Gani, “Research on mobile cloud computing: Review, trend
and perspectives,” in Digital Information and Communication Technol-
ogy and it’s Applications (DICTAP), 2012 Second International Confer-
ence on, May 2012, pp. 195 –202. (Cited on page 3).

[19] R.-H. Di, H. Lv, T. Wang, X.-H. Zhang, and D.-M. Xiao, “Research on
the impact of cloud computing trend on E-government framework,” in E
-Business and E -Government (ICEE), 2011 International Conference
on, May 2011, pp. 1 –4. (Cited on page 3).

[20] Y. Jadeja and K. Modi, “Cloud computing - concepts, architecture and
challenges,” in Computing, Electronics and Electrical Technologies (IC-
CEET), 2012 International Conference on, Mar. 2012, pp. 877 –880.
(Cited on page 3).

[21] S. Sengupta, V. Kaulgud, and V. Sharma, “Cloud Computing Security–
Trends and Research Directions,” in Services (SERVICES), 2011 IEEE
World Congress on, Jul. 2011, pp. 524 –531. (Cited on page 3).

[22] S. Zhang, S. Zhang, X. Chen, and X. Huo, “Cloud Computing Research
and Development Trend,” in Future Networks, 2010. ICFN ’10. Second
International Conference on, Jan. 2010, pp. 93 –97. (Cited on page 3).

137

[23] S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar, “A 4-GHz 130-
nm address generation unit with 32-bit sparse-tree adder core,” Solid-
State Circuits, IEEE Journal of, vol. 38, no. 5, pp. 689 – 695, May 2003.
(Cited on pages 4, 54, and 88).

[24] S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R. Krishnamurthy, and
S. Borkar, “A 4-GHz 300-mW 64-bit integer execution ALU with dual
supply voltages in 90-nm CMOS,” Solid-State Circuits, IEEE Journal
of, vol. 40, no. 1, pp. 44 – 51, Jan. 2005. (Cited on pages 4, 54, and 88).

[25] V. Michal, E. Baggetta, M. Aurino, S. Bouat, and J. Villegier, “Super-
conducting RSFQ logic: Towards 100GHz digital electronics,” in Ra-
dioelektronika (RADIOELEKTRONIKA), 2011 21st International Con-
ference, Apr. 2011, pp. 1 –8. (Cited on pages 5 and 11).

[26] (2005, Aug.) Superconducting Technology Assessment (STA). National
Security Agency. [Online]. Available: http://www.nitrd.gov/pubs/nsa/
sta.pdf (Cited on pages 5, 7, 8, 10, 11, 12, 13, and 19).

[27] K. Likharev and V. Semenov, “RSFQ logic/memory family: a new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” Applied Superconductivity, IEEE Transactions on, vol. 1, no. 1,
pp. 3 –28, Mar. 1991. (Cited on pages 4, 8, and 11).

[28] B. Josephson, “Possible new effects in superconductive tun-
nelling,” Physics Letters, vol. 1, no. 7, pp. 251 – 253, 1962.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
0031916362913690 (Cited on page 4).

[29] B. D. Josephson, “The discovery of tunnelling supercurrents,” Rev.
Mod. Phys., vol. 46, pp. 251–254, Apr 1974. [Online]. Available:
http://link.aps.org/doi/10.1103/RevModPhys.46.251 (Cited on page
4).

[30] Z. Bao, M. Bhushan, S. Ran, and J. Lukens, “Fabrication of high quality,
deep-submicron Nb/AlOx/Nb Josephson junctions using chemical me-
chanical polishing,” Applied Superconductivity, IEEE Transactions on,
vol. 5, no. 2, pp. 2731 – 2734, Jun. 1995. (Cited on page 5).

[31] L. Lee, E. Arambula, G. Hanaya, C. Dang, R. Sandell, and H. Chan,
“RHEA (resist-hardened etch and anodization) process for fine-geometry
Josephson junction fabrication,” Magnetics, IEEE Transactions on,
vol. 27, no. 2, pp. 3133 –3136, Mar. 1991. (Cited on page 5).

138

http://www.nitrd.gov/pubs/nsa/sta.pdf
http://www.nitrd.gov/pubs/nsa/sta.pdf
http://www.sciencedirect.com/science/article/pii/0031916362913690
http://www.sciencedirect.com/science/article/pii/0031916362913690
http://link.aps.org/doi/10.1103/RevModPhys.46.251

[32] Q. Zhong, W. Cao, J. Li, Y. Zhong, and X. Wang, “Study of dry etching
process using SF6 and CF4/O2 for Nb/NbxSi1 /Nb Josephson-junction
fabrication,” in Precision Electromagnetic Measurements (CPEM), 2012
Conference on, Jul. 2012, pp. 46 –47. (Cited on page 5).

[33] D. K. Brock, “RSFQ Technology: Circuits and Systems,” Int. J. High
Speed ELectron. Syst.,, vol. 11, pp. 307–362, 2001. (Cited on page 5).

[34] W. Chen, A. Rylyakov, V. Patel, J. Lukens, and K. Likharev, “Rapid
single flux quantum T-flip flop operating up to 770 GHz,” Applied Su-
perconductivity, IEEE Transactions on, vol. 9, no. 2, pp. 3212 –3215,
Jun. 1999. (Cited on pages 5 and 43).

[35] K. Fujiwara, Q. Liu, T. Van Duzer, X. Meng, and N. Yoshikawa, “New
Delay-Time Measurements on a 64-kb Josephson-CMOS Hybrid Memory
With a 600-ps Access Time,” Applied Superconductivity, IEEE Transac-
tions on, vol. 20, no. 1, pp. 14 –20, Feb. 2010. (Cited on page 5).

[36] Q. Liu, K. Fujiwara, X. Meng, S. Whiteley, T. Van Duzer, N. Yoshikawa,
Y. Thakahashi, T. Hikida, and N. Kawai, “Latency and Power Measure-
ments on a 64-kb Hybrid Josephson-CMOS Memory,” Applied Supercon-
ductivity, IEEE Transactions on, vol. 17, no. 2, pp. 526 –529, Jun. 2007.
(Cited on page 5).

[37] Y. Akahori and K. Hohkawa, “A Josephson dual-phase ac-powered logic
network using special latch circuits,” Electron Devices, IEEE Transac-
tions on, vol. 32, no. 11, pp. 2339 – 2344, Nov. 1985. (Cited on page
7).

[38] P. Arnett and D. Herrell, “Regulated AC power for Josephson inter-
ferometer latching logic circuits,” Magnetics, IEEE Transactions on,
vol. 15, no. 1, pp. 554 – 557, Jan. 1979. (Cited on page 7).

[39] S. Hasuo, “High-speed digital circuits for a Josephson computer,” in
Multiple-Valued Logic, 1992. Proceedings., Twenty-Second International
Symposium on, May 1992, pp. 2 –8. (Cited on pages 8, 18, and 19).

[40] V. Kaplunenko, M. Khabipov, V. Koshelets, K. Likharev, O. Mukhanov,
V. Semenov, I. Serpuchenko, and A. Vystavkin, “Experimental study of
the RSFQ logic elements,” Magnetics, IEEE Transactions on, vol. 25,
no. 2, pp. 861 –864, Mar. 1989. (Cited on pages 8 and 81).

[41] K. Takagi, M. Tanaka, S. Iwasaki, R. Kasagi, I. Kataeva, S. Nagasawa,
T. Satoh, H. Akaike, and A. Fujimaki, “SFQ Propagation Properties in

139

Passive Transmission Lines Based on a 10-Nb-Layer Structure,” Applied
Superconductivity, IEEE Transactions on, vol. 19, no. 3, pp. 617 –620,
Jun 2009. (Cited on pages 8, 9, and 10).

[42] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and
S. Tahara, “A single flux quantum standard logic cell library,” Physica
C: Superconductivity, vol. 378-381, Part 2, no. 0, pp. 1471 – 1474, 2002.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0921453402017598 (Cited on pages 9 and 28).

[43] H. Suzuki, S. Nagasawa, K. Miyahara, and Y. Enomoto, “Character-
istics of driver and receiver circuits with a passive transmission line
in RSFQ circuits,” Applied Superconductivity, IEEE Transactions on,
vol. 10, no. 3, pp. 1637 –1641, Sep 2000. (Cited on page 8).

[44] D. Gupta, W. Li, S. Kaplan, and I. Vernik, “High-speed interchip data
transmission technology for superconducting multi-chip modules,” Ap-
plied Superconductivity, IEEE Transactions on, vol. 11, no. 1, pp. 731
–734, Mar 2001. (Cited on page 8).

[45] O. Mukhanov, “Energy-Efficient Single Flux Quantum Technology,” Ap-
plied Superconductivity, IEEE Transactions on, vol. 21, no. 3, pp. 760
–769, Jun. 2011. (Cited on pages 10 and 12).

[46] D. Kirichenko, S. Sarwana, and A. Kirichenko, “Zero Static Power Dis-
sipation Biasing of RSFQ Circuits,” Applied Superconductivity, IEEE
Transactions on, vol. 21, no. 3, pp. 776 –779, Jun. 2011. (Cited on pages
12 and 13).

[47] K. Fujiwara, N. Nakajima, T. Nishigai, M. Ito, N. Yoshikawa, A. Fu-
jimaki, H. Terai, and S. Yorozu, “Error rate test of large-scale SFQ
digital circuit systems,” Applied Superconductivity, IEEE Transactions
on, vol. 15, no. 2, pp. 427 – 430, Jun. 2005. (Cited on page 12).

[48] H. Terai, Y. Hashimoto, S. Yorozu, A. Fujimaki, N. Yoshikawa, and
Z. Wang, “The relationship between bit-error rate, operating speed and
circuit scale of SFQ circuits,” Applied Superconductivity, IEEE Trans-
actions on, vol. 15, no. 2, pp. 364 – 367, Jun. 2005. (Cited on page
12).

[49] I. Kataeva, H. Akaike, A. Fujimaki, N. Yoshikawa, S. Nagasawa, and
N. Takagi, “Clock Line Considerations for an SFQ Large Scale Reconfig-
urable Data Paths Processor,” Applied Superconductivity, IEEE Trans-

140

http://www.sciencedirect.com/science/article/pii/S0921453402017598
http://www.sciencedirect.com/science/article/pii/S0921453402017598

actions on, vol. 21, no. 3, pp. 809 –813, Jun. 2011. (Cited on page
12).

[50] M. Dorojevets, C. Ayala, and A. Kasperek, “Data-Flow Microarchitec-
ture for Wide Datapath RSFQ Processors: Design Study,” Applied Su-
perconductivity, IEEE Transactions on, vol. 21, no. 3, pp. 787 –791, Jun.
2011. (Cited on pages 12, 13, 22, 25, and 37).

[51] S. Narayana, Y. Polyakov, and V. Semenov, “Evaluation of Flux Trap-
ping in Superconducting Circuits,” Applied Superconductivity, IEEE
Transactions on, vol. 19, no. 3, pp. 640 –643, Jun 2009. (Cited on
page 13).

[52] K. Tanaka, T. Morooka, A. Odawara, Y. Mawatari, S. Nakayama, A. Na-
gata, K. Ikeda, K. Chinone, and M. Koyanagi, “Study of trapped flux
in a superconducting thin film-observation by scanning SQUID micro-
scope and simulation,” Applied Superconductivity, IEEE Transactions
on, vol. 11, no. 1, pp. 230 –233, Mar 2001. (Cited on page 13).

[53] S. Bermon and T. Gheewala, “Moat-guarded Josephson SQUIDs,” Mag-
netics, IEEE Transactions on, vol. 19, no. 3, pp. 1160 – 1164, may 1983.
(Cited on page 13).

[54] M. Jeffery, T. Van Duzer, J. R. Kirtley, and M. B. Ketchen, “Magnetic
imaging of moat-guarded superconducting electronic circuits,” Applied
Physics Letters, vol. 67, no. 12, pp. 1769 –1771, Sep 1995. (Cited on
page 13).

[55] K. Fujiwara, S. Nagasawa, Y. Hashimoto, M. Hidaka, N. Yoshikawa,
M. Tanaka, H. Akaike, A. Fujimaki, K. Takagi, and N. Takagi, “Research
on Effective Moat Configuration for Nb Multi-Layer Device Structure,”
Applied Superconductivity, IEEE Transactions on, vol. 19, no. 3, pp. 603
–606, Jun 2009. (Cited on page 13).

[56] S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, and
A. Rylyakov, “PSCAN’96: new software for simulation and optimization
of complex RSFQ circuits,” Applied Superconductivity, IEEE Transac-
tions on, vol. 7, no. 2, pp. 2685 –2689, Jun 1997. (Cited on page 13).

[57] S. Whiteley, “Josephson junctions in SPICE3,” Magnetics, IEEE Trans-
actions on, vol. 27, no. 2, pp. 2902 –2905, Mar 1991. (Cited on page
13).

141

[58] E. Fang and T. V. Duzer, “A Josephson integrated circuit simulator
(JSIM) for superconductive electronics applications,” in Extended ab-
stracts of 1989 International Superconductivity Electronics Conference,
Tokyo, Jun. 1989, pp. 407–410. (Cited on pages 13 and 28).

[59] H. Topfer, H. Uhlmann, M. Knoll, H. Thiele, and M. Selent, “De-
sign tools for parameter determination and simulation of integrated
Josephson structures,” Applied Superconductivity, IEEE Transactions
on, vol. 5, no. 2, pp. 3345 – 3348, Jun 1995. (Cited on page 13).

[60] J. Satchell, “Stochastic simulation of SFQ logic,” Applied Superconduc-
tivity, IEEE Transactions on, vol. 7, no. 2, pp. 3315 –3318, Jun 1997.
(Cited on page 13).

[61] A. Krasniewski, “Logic simulation of RSFQ circuits,” Applied Supercon-
ductivity, IEEE Transactions on, vol. 3, no. 1, pp. 33 –38, Mar 1993.
(Cited on page 13).

[62] V. Adler, C.-H. Cheah, K. Gaj, D. Brock, and E. Friedman, “A Cadence-
based design environment for single flux quantum circuits,” Applied Su-
perconductivity, IEEE Transactions on, vol. 7, no. 2, pp. 3294 –3297,
Jun 1997. (Cited on page 13).

[63] K. Gaj, C.-H. Cheah, E. Friedman, and M. Feldman, “Functional mod-
eling of RSFQ circuits using Verilog HDL,” Applied Superconductivity,
IEEE Transactions on, vol. 7, no. 2, pp. 3151 –3154, Jun 1997. (Cited
on page 13).

[64] H. Akaike, M. Tanaka, K. Takagi, I. Kataeva, R. Kasagi, A. Fujimaki,
K. Takagi, M. Igarashi, H. Park, Y. Yamanashi, N. Yoshikawa, K. Fuji-
wara, S. Nagasawa, M. Hidaka, and N. Takagi, “Design of single flux
quantum cells for a 10-Nb-layer process,” Physica C: Superconductivity,
vol. 469, no. 15-20, pp. 1670 – 1673, 2009, proceedings of the 21st
International Symposium on Superconductivity (ISS 2008), Proceedings
of the 21st International Symposium on Superconductivity (ISS 2008).
[Online]. Available: http://www.sciencedirect.com/science/article/
B6TVJ-4WDNKSR-28/2/cd4f343102a2c6d5b73e16d46dd31b0d (Cited
on pages 13, 28, and 30).

[65] NioPulse. NioCAD. [Online]. Available: http://niocad.com/ (Cited on
page 13).

[66] S. Anders, M. Blamire, F.-I. Buchholz, D.-G. Crete, R. Cristiano,
P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert,

142

http://www.sciencedirect.com/science/article/B6TVJ-4WDNKSR-28/2/cd4f343102a2c6d5b73e16d46dd31b0d
http://www.sciencedirect.com/science/article/B6TVJ-4WDNKSR-28/2/cd4f343102a2c6d5b73e16d46dd31b0d
http://niocad.com/

H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig,
M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier,
A. Zagoskin, and A. Zorin, “European roadmap on superconductive
electronics - status and perspectives,” Physica C: Superconductivity, vol.
470, no. 23-24, pp. 2079 – 2126, 2010, <ce:title>European Roadmap
on Superconductor Electronics - Status and Perspectives</ce:title>.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0921453410005332 (Cited on page 13).

[67] H. Jin, K. Kuwabara, Y. Yamanashi, and N. Yoshikaw, “Inves-
tigation of Robust CMOS Amplifiers for Josephson-CMOS Hybrid
Memories,” Physics Procedia, vol. 36, no. 0, pp. 229 – 234,
2012, <ce:title>SUPERCONDUCTIVITY CENTENNIAL Conference
2011</ce:title>. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1875389212020883 (Cited on page 13).

[68] O. Mukhanov, A. Kirichenko, T. Filippov, and S. Sarwana, “Hybrid
Semiconductor-Superconductor Fast-Readout Memory for Digital RF
Receivers,” Applied Superconductivity, IEEE Transactions on, vol. 21,
no. 3, pp. 797 –800, Jun. 2011. (Cited on page 13).

[69] T. I. Larkin, V. V. Bolginov, V. S. Stolyarov, V. V. Ryazanov, I. V.
Vernik, S. K. Tolpygo, and O. A. Mukhanov, “Ferromagnetic Josephson
switching device with high characteristic voltage,” Applied Physics Let-
ters, vol. 100, no. 22, pp. 222 601 –222 601–5, may 2012. (Cited on page
13).

[70] V. V. Ryazanov, V. V. Bol’ginov, D. S. Sobanin, I. V. Vernik,
S. K. Tolpygo, A. M. Kadin, and O. A. Mukhanov, “Mag-
netic Josephson Junction Technology for Digital and Memory
Applications,” Physics Procedia, vol. 36, no. 0, pp. 35 – 41,
2012, <ce:title>SUPERCONDUCTIVITY CENTENNIAL Conference
2011</ce:title>. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1875389212020639 (Cited on page 13).

[71] K. K. Likharev, “Superconductor digital electronics,” Physica C:
Superconductivity, vol. 482, no. 0, pp. 6 – 18, 2012, <ce:title>2011 Cen-
tennial superconductivity conference EUCAS-ISEC-ICMC</ce:title>.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0921453412002481 (Cited on page 13).

[72] A. Herr, O. Naaman, D. Miller, and Q. Herr, “Josephson Magnetic
Random Access Memory (JMRAM),” Applied Superconductivity, IEEE

143

http://www.sciencedirect.com/science/article/pii/S0921453410005332
http://www.sciencedirect.com/science/article/pii/S0921453410005332
http://www.sciencedirect.com/science/article/pii/S1875389212020883
http://www.sciencedirect.com/science/article/pii/S1875389212020883
http://www.sciencedirect.com/science/article/pii/S1875389212020639
http://www.sciencedirect.com/science/article/pii/S1875389212020639
http://www.sciencedirect.com/science/article/pii/S0921453412002481
http://www.sciencedirect.com/science/article/pii/S0921453412002481

Transactions on, vol. xx, p. xx, Oct. 2012, submitted. (Cited on page
13).

[73] K. Hinago, Y. Yamanashi, and N. Yoshikawa, “Design and component
development of DC-powered single-flux-quantum random-access mem-
ories using vortex transition memory cells,” Applied Superconductivity,
IEEE Transactions on, vol. xx, p. xx, Oct. 2012, submitted. (Cited on
page 14).

[74] S. Nagasawa, H. Hasegawa, T. Hashimoto, H. Suzuki, K. Miyahara, and
Y. Enomoto, “Superconducting latching/SFQ hybrid RAM,” Applied Su-
perconductivity, IEEE Transactions on, vol. 11, no. 1, pp. 533 –536, Mar.
2001. (Cited on page 14).

[75] H. Numata, S. Nagasawa, and S. Tahara, “A vortex transitional memory
cell for 1-Mbit/cm2 density Josephson RAMs,” Applied Superconductiv-
ity, IEEE Transactions on, vol. 7, no. 2, pp. 2282 –2287, Jun. 1997.
(Cited on page 14).

[76] A. Kirichenko and O. Mukhanov, “Implementation of novel "push-
forward" RSFQ Carry-Save Serial Adders,” Applied Superconductivity,
IEEE Transactions on, vol. 5, no. 2, pp. 3010 – 3013, Jun. 1995. (Cited
on page 14).

[77] P. Bunyk and P. Litskevitch, “Case study in RSFQ design: fast pipelined
parallel adder,” Applied Superconductivity, IEEE Transactions on, vol. 9,
no. 2, pp. 3714 –3720, Jun. 1999. (Cited on pages 15 and 37).

[78] K. Takahashi, S. Nagasawa, H. Hasegawa, K. Miyahara, H. Takai, and
Y. Enomoto, “Design of a superconducting ALU with a 3-input XOR
gate,” Applied Superconductivity, IEEE Transactions on, vol. 13, no. 2,
pp. 551 – 554, Jun. 2003. (Cited on page 15).

[79] J.-Y. Kim, S. Kim, and J. Kang, “Construction of an RSFQ 4-bit ALU
with half adder cells,” Applied Superconductivity, IEEE Transactions on,
vol. 15, no. 2, pp. 308 – 311, Jun. 2005. (Cited on page 16).

[80] H. Park, Y. Yamanashi, N. Yoshikawa, M. Tanaka, and A. Fujimaki,
“Design of fast digit-serial adders using SFQ logic circuits,” IEICE Elec-
tronics Express, vol. 6, no. 19, pp. 1408–1413, 2009. (Cited on pages 16
and 17).

144

[81] M. Tanaka, H. Akaike, A. Fujimaki, Y. Yamanashi, N. Yoshikawa, S. Na-
gasawa, K. Takagi, and N. Takagi, “100-GHz Single-Flux-Quantum Bit-
Serial Adder Based on 10- Niobium Process,” Applied Superconductivity,
IEEE Transactions on, vol. 21, no. 3, pp. 792 –796, Jun. 2011. (Cited
on pages 17 and 18).

[82] S. Kotani, A. Inoue, T. Imamura, and S. Hasuo, “An 8-b Josephson
digital signal processor,” Solid-State Circuits, IEEE Journal of, vol. 25,
no. 6, pp. 1518 –1525, Dec. 1990. (Cited on page 18).

[83] S. Kotani, N. Fujimaki, T. Imamura, and S. Hasuo, “A subnanosecond
Josephson 16-bit ALU,” Solid-State Circuits, IEEE Journal of, vol. 23,
no. 2, pp. 591 –596, Apr. 1988. (Cited on page 18).

[84] M. Dorojevets and P. Bunyk, “Architectural and implementation chal-
lenges in designing high-performance RSFQ processors: a FLUX-1 mi-
croprocessor and beyond,” Applied Superconductivity, IEEE Transac-
tions on, vol. 13, no. 2, pp. 446 – 449, Jun. 2003. (Cited on pages 19
and 20).

[85] P. Bunyk, M. Leung, J. Spargo, and M. Dorojevets, “Flux-1 RSFQ mi-
croprocessor: physical design and test results,” Applied Superconductiv-
ity, IEEE Transactions on, vol. 13, no. 2, pp. 433 – 436, Jun. 2003.
(Cited on page 19).

[86] M. Dorojevets, P. Bunyk, and D. Zinoviev, “FLUX chip: design of a
20-GHz 16-bit ultrapipelined RSFQ processor prototype based on 1.75-
mu;m LTS technology,” Applied Superconductivity, IEEE Transactions
on, vol. 11, no. 1, pp. 326 –332, Mar. 2001. (Cited on page 19).

[87] M. Dorojevets, “A 20-GHz FLUX-1 superconductor RSFQ micropro-
cessor,” in Low Temperature Electronics, 2002. Proceedings of the 5th
European Workshop on, 2002, pp. 157 – 160. (Cited on page 19).

[88] M. Tanaka, F. Matsuzaki, T. Kondo, N. Nakajima, Y. Yamanashi, A. Fu-
jimaki, H. Hayakawa, N. Yoshikawa, H. Terai, and S. Yorozu, “A single-
flux-quantum logic prototype microprocessor,” in Solid-State Circuits
Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE In-
ternational, Feb. 2004, pp. 298 – 529 Vol.1. (Cited on page 21).

[89] Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie,
N. Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto, “Design
and Implementation of a Pipelined Bit-Serial SFQ Microprocessor,

145

CORE1B,” Applied Superconductivity, IEEE Transactions on, vol. 17,
no. 2, pp. 474 –477, Jun. 2007. (Cited on page 21).

[90] A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, and
N. Yoshikawa, “Bit-Serial Single Flux Quantum Microprocessor CORE,”
IEICE Transactions on Electronics, vol. E91-C, pp. 342–349, Mar. 2008.
(Cited on page 21).

[91] M. Tanaka, Y. Yamanashi, N. Irie, H.-J. Park, S. Iwasaki, K. Takagi,
K. Taketomi, A. Fujimaki, N. Yoshikawa, H. Terai, and S. Yorozu,
“Design and implementation of a pipelined 8 bit-serial single-
flux-quantum microprocessor with cache memories,” Superconductor
Science and Technology, vol. 20, no. 11, p. S305, 2007. [Online].
Available: http://stacks.iop.org/0953-2048/20/i=11/a=S01 (Cited on
pages 21 and 22).

[92] T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala, and
O. Mukhanov, “8-Bit Asynchronous Wave-Pipelined RSFQ Arithmetic-
Logic Unit,” Applied Superconductivity, IEEE Transactions on, vol. 21,
no. 3, pp. 847 –851, Jun. 2011. (Cited on pages 22, 27, 77, 79, and 80).

[93] T. V. Filippov, A. Sahu, A. F. Kirichenko, I. V. Vernik,
M. Dorojevets, C. L. Ayala, and O. A. Mukhanov, “20 GHz
Operation of an Asynchronous Wave-Pipelined RSFQ Arithmetic-
Logic Unit,” Physics Procedia, vol. 36, no. 0, pp. 59 – 65,
2012, <ce:title>SUPERCONDUCTIVITY CENTENNIAL Conference
2011</ce:title>. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1875389212020676 (Cited on pages 22, 27, 81, 82,
83, 84, 85, and 86).

[94] A. F. Kirichenko, T. V. Filippov, A. Sahu, O. A. Mukhanov, M. Doro-
jevets, and A. K. Kasperek, “Demonstration of RSFQ 8-bit multi-port
register file.” in Proceedings of Applied Superconductivity Conference
2012 (ASC ’12), Portland, OR., Oct. 2012. (Cited on pages 22 and 27).

[95] (2008, Jan.) Hypres Niobium Integrated Circuit Fabrication -
Design Rules. 175 Clearbrook Road, Elmsford, NY 10523, USA.
[Online]. Available: http://hypres.accountsupport.com/wp-content/
uploads/2010/11/DesignRules.pdf (Cited on pages 26 and 27).

[96] E. Fang and T. Van Duzer, “An efficient method for finding DC solutions
for Josephson circuits,” Applied Superconductivity, IEEE Transactions
on, vol. 1, no. 3, pp. 126 –133, Sep. 1991. (Cited on page 28).

146

http://stacks.iop.org/0953-2048/20/i=11/a=S01
http://www.sciencedirect.com/science/article/pii/S1875389212020676
http://www.sciencedirect.com/science/article/pii/S1875389212020676
http://hypres.accountsupport.com/wp-content/uploads/2010/11/DesignRules.pdf
http://hypres.accountsupport.com/wp-content/uploads/2010/11/DesignRules.pdf

[97] T. Satoh, K. Hinode, S. Nagasawa, Y. Kitagawa, M. Hidaka,
N. Yoshikawa, H. Akaike, A. Fujimaki, K. Takagi, and N. Takagi,
“Planarization Process for Fabricating Multi-Layer Nb Integrated Cir-
cuits Incorporating Top Active Layer,” Applied Superconductivity, IEEE
Transactions on, vol. 19, no. 3, pp. 167 –170, Jun. 2009. (Cited on pages
28 and 29).

[98] M. Anbuselvi, S. Salivahanan, and P. Saravanan, “Design and Analysis
of Floating Point and Galois Field Multipliers Using Wave-Pipelining,”
in Advances in Computing, Control, Telecommunication Technologies,
2009. ACT ’09. International Conference on, Dec. 2009, pp. 602 –604.
(Cited on page 35).

[99] W. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining:
a tutorial and research survey,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 6, no. 3, pp. 464 –474, Sep. 1998.
(Cited on page 35).

[100] W. Burleston, L. Cotton, F. Klaus, and M. Ciesielski, “Wave-pipelining:
is it practical?” in Circuits and Systems, 1994. ISCAS ’94., 1994 IEEE
International Symposium on, vol. 4, Jun. 1994, pp. 163 –166 vol.4. (Cited
on page 35).

[101] G. Enrique Fernandez and R. Sridhar, “Dual rail static CMOS archi-
tecture for wave pipelining,” in VLSI Design, 1996. Proceedings., Ninth
International Conference on, Jan. 1996, pp. 335 –336. (Cited on page
35).

[102] J. Levy, J. Nyathi, and J. Delgado-Frias, “High-performance parallel
addition using hybrid wave-pipelining,” in Circuits and Systems, 2005.
48th Midwest Symposium on, Aug. 2005, pp. 555 –558 Vol. 1. (Cited on
page 35).

[103] M. Litvin, S. Mourad, W. Terry, and J. Terry, “Wave Pipelining using
Self Reset Logic,” in Electronics, Circuits and Systems, 2006. ICECS
’06. 13th IEEE International Conference on, Dec. 2006, pp. 1280 –1283.
(Cited on page 35).

[104] R. Sever and M. Askar, “8x8-Bit multiplier designed with a new wave-
pipelining scheme,” in Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, Jun. 2010, pp. 2095 –2098.
(Cited on page 35).

147

[105] D. Wong, G. De Micheli, and M. Flynn, “Inserting active delay elements
to achieve wave pipelining,” in Computer-Aided Design, 1989. ICCAD-
89. Digest of Technical Papers., 1989 IEEE International Conference
on, Nov. 1989, pp. 270 –273. (Cited on page 35).

[106] D. E. Muller and W. S. Bartky, “A Theory of Asynchronous Circuits,”
in Proc. Int’l Symp. Theory of Switching, Part 1. Harvard Univ. Press,
1959, pp. 204–243. (Cited on page 37).

[107] M. Dorojevets and C. Ayala, “Logical design and analysis of a 32/64-
bit wave-pipelined RSFQ adder,” in Proceedings of 2nd Superconducting
SFQ VLSI Workshop, ser. O6, Fukuoka, Japan, Aug. 2009, pp. 15–16.
(Cited on page 37).

[108] M. Dorojevets, C. Ayala, and A. Kasperek, “Development and evaluation
of design techniques for high-performance wave-pipelined wide datapath
RSFQ processors,” in Proceedings of 12th International Superconductive
Electronics Conference, Fukuoka, Japan, Aug. 2009, pp. SP–P46. (Cited
on page 37).

[109] K. Gaj, E. G. Friedman, and M. J. Feldman, “Timing of Multi-Gigahertz
Rapid Single Flux Quantum Digital Circuits,” J. VLSI Signal Process.
Syst., vol. 16, no. 2/3, pp. 247–276, Jul. 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1007903527533 (Cited on page 37).

[110] M. Dorojevets, A. K. Kasperek, N. Yoshikawa, and A. Fujimaki, “8x8-bit
parallel carry-save superconductor RSFQ multiplier,” Applied Supercon-
ductivity, IEEE Transactions on, vol. 23, p. xx, Jun. 2013, accepted.
(Cited on pages 47, 132, and 134).

[111] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” Computers, IEEE
Transactions on, vol. C-22, no. 8, pp. 786 –793, Aug. 1973. (Cited on
page 54).

[112] D. Zinoviev and Y. Polyakov, “Octopux: an advanced automated setup
for testing superconductor circuits,” Applied Superconductivity, IEEE
Transactions on, vol. 7, no. 2, pp. 3240 –3243, Jun. 1997. (Cited on
page 78).

[113] S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar, “A 6.5GHz
54mW 64-bit Parity-Checking Adder for 65nm Fault-Tolerant Micro-
processor Execution Cores,” in VLSI Circuits, 2007 IEEE Symposium
on, Jun. 2007, pp. 46 –47. (Cited on page 88).

148

http://dx.doi.org/10.1023/A:1007903527533

[114] S. Wijeratne, N. Siddaiah, S. Mathew, M. Anders, R. Krishnamurthy,
J. Anderson, S. Hwang, M. Ernest, and M. Nardin, “A 9GHz 65nm In-
tel Pentium 4 Processor Integer Execution Core,” in Solid-State Circuits
Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE Inter-
national, Feb. 2006, pp. 353 –365. (Cited on pages 101, 105, and 133).

[115] M. Peiniger and H. Piel, “A Superconducting Nb3Sn Coated Multicell
Accelerating Cavity,” Nuclear Science, IEEE Transactions on, vol. 32,
no. 5, pp. 3610 –3612, Oct. 1985. (Cited on page 117).

[116] M. Hidaka, S. Nagasawa, K. Hinode, and T. Satoh, “Device yield in Nb-
nine-layer circuit fabrication process,” Applied Superconductivity, IEEE
Transactions on, vol. xx, no. xx, p. xx, Oct. 2012, submitted. (Cited on
page 123).

[117] Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis,
“Ultra-Low-Power Superconductor Logic,” arXiv.org, vol. 21240, p. 7,
Mar. 2011. [Online]. Available: http://arxiv.org/abs/1103.4269 (Cited
on page 134).

[118] Q. Herr, “Carry look-ahead adder implemented in Reciprocal Quantum
Logic,” Applied Superconductivity, IEEE Transactions on, vol. xx, p. xx,
Oct. 2012, submitted. (Cited on page 134).

[119] O. Oberg, Q. Herr, A. Ioannidis, and A. Herr, “Integrated Power Divider
for Superconducting Digital Circuits,” Applied Superconductivity, IEEE
Transactions on, vol. 21, no. 3, pp. 571 –574, Jun. 2011. (Cited on page
134).

[120] N. Takeuchi, K. Ehara, K. Inoue, Y. Yamanashi, and N. Yoshikawa,
“Margins and energy dissipation of adiabatic quantum-flux parametron
logic at finite temperature,” Applied Superconductivity, IEEE Transac-
tions on, vol. xx, p. xx, Oct. 2012, submitted. (Cited on page 134).

[121] K. Inoue, K. Ehara, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa,
“Simulation and experimental demonstration of logic circuits using ultra-
low-power adiabatic quantum-flux-parametron,” Applied Superconduc-
tivity, IEEE Transactions on, vol. xx, p. xx, Oct. 2012, submitted. (Cited
on page 134).

149

http://arxiv.org/abs/1103.4269

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita
	Publications
	1 Introduction
	1.1 Motivation
	1.1.1 CMOS Scaling Limits
	1.1.2 Significance of Arithmetic Logic Units
	1.1.3 Benefits and Opportunities in Superconductor Technology

	1.2 Research Outline and Goals
	1.3 Superconductor Logic
	1.3.1 Latching Logic
	1.3.2 Rapid Single Flux Quantum Logic
	1.3.3 Energy-Efficient Rapid Single Flux Quantum Logic
	1.3.4 General Challenges for Superconductor Technology

	1.4 Overview of Prior Work in Superconductor Electronics
	1.4.1 Adders and ALUs
	1.4.1.1 ``Push-Forward'' RSFQ Carry-Save Serial Adders
	1.4.1.2 Case Study of Fast Pipelined Parallel Adders in RSFQ
	1.4.1.3 1-bit RSFQ ALU with a 3-Input XOR Gate
	1.4.1.4 4-bit RSFQ ALU with Half Adder Cells
	1.4.1.5 4-bit RSFQ Digit-Serial Adder
	1.4.1.6 100 GHz RSFQ Bit-Serial Adder

	1.4.2 Microprocessors
	1.4.2.1 Fujitsu's 8-bit DSP Microprocessor
	1.4.2.2 FLUX-1 Microprocessor
	1.4.2.3 CORE1 Microprocessor
	1.4.2.4 20 GHz 8-bit RSFQ Frontier Datapath

	2 Development of Efficient Techniques for VLSI Superconductor Design
	2.1 Superconductor Cell Library and Design Tools
	2.1.1 SBU Tunable VHDL Cell Library
	2.1.1.1 Purpose and Overview
	2.1.1.2 Acknowledgments

	2.1.2 CONNECT Cell Library
	2.1.2.1 Purpose and Overview
	2.1.2.2 Acknowledgments

	2.1.3 Summary of RSFQ Logic Cells

	2.2 Asynchronous Hybrid Wave-Pipelining

	3 Superconductor Ripple-Carry Adder
	3.1 Goals and Challenges
	3.2 Ripple-Carry Adder Concept
	3.3 RSFQ Study
	3.3.1 Design Overview
	3.3.2 Simulation Results and Discussion

	4 Superconductor Kogge-Stone Adder and ALU
	4.1 Goals and Challenges
	4.2 General Kogge-Stone Adder Structure
	4.3 RSFQ Study
	4.3.1 Design Overview
	4.3.2 Simulation Results and Discussion

	4.4 Joint SBU-HYPRES Project: An 8-bit Kogge-Stone ALU Implementation Using the 1.5 m 4.5 kA/cm2 HYPRES Process
	4.4.1 Design Flow
	4.4.2 Simulation Results
	4.4.3 Low-Frequency Testing
	4.4.4 High-Frequency Testing
	4.4.4.1 High-Speed Input/Output Interfaces
	4.4.4.2 High-Speed Testing Results

	5 Superconductor Hybrid Sparse-Tree Adder and ALU
	5.1 Goals and Challenges
	5.2 Sparse-Tree Structure
	5.3 RSFQ Study
	5.3.1 Design Overview
	5.3.2 Simulation Results
	5.3.3 Discussion

	5.4 Adder and ALU Design Implemented Using the CONNECT Cell Library for the 1.0 m 10 kA/cm2 Process
	5.4.1 Goals and Challenges
	5.4.2 Simulation Results
	5.4.2.1 16-bit HSTA Results
	5.4.2.2 8-bit HSTALU Results

	5.4.3 Experimental Testing
	5.4.4 Chip Testing Results
	5.4.4.1 16-bit HSTA
	5.4.4.2 8-bit HSTALU

	6 Conclusions
	6.1 Completed Work
	6.2 Future Work

	Bibliography

