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Abstract of the Dissertation

Application and Development of Computational Toolsn Drug Discovery
by
Trent Erik Balius
Doctor of Philosophy
in
Applied Mathematics and Statistics
(Computational Biology)
Stony Brook University

2012

In this dissertation, | will discuss several intarnected projects motivated by drug
development. These projects employ computaticg@irtiques to study molecular recognition
of a ligand (drug) by a receptor (protein) chamzésl through use of structural and energetic
analysis.

In Chapter 1, an introduction to computational ddiggovery is presented, and methods
used here are discussed. Epidermal Growth FadoefRor (EGFR) is an important drug target
for the treatment of cancer. In Chapter 2, we qreteéd all atom molecular dynamics
simulations of clinically relevant mutations of EBFEomplexed with erlotinib (Tarceva) and
other inhibitors. The per-residue decomposition iofermolecular van der Waals and
electrostatic energies — termed here molecularpfous — are useful in characterizing
mechanisms of drug resistance. For instance, ébistance to erlotinib and other inhibitors
observed for the T790M mutation does not emplotedcsclash mechanism as was discussed in
the literature. In fact, our results show thatiable van der Waals interactions are increased at
this position. Notably, water-mediated interactiomere revealed to be highly important for
explaining the resistance profiles.

Footprints are useful in understanding binding. dWserved that a molecular footprint
can be computed for any pose including conformeremated by docking. Thus, we developed
a footprint-based rescoring function in DOCK 6&rnted footprint similarity (FPS) score. The
FPS scoring method is discussed in Chapter 3 andrdis tool uses comparison methods
(Euclidean distance and Pearson correlation) tontiffyafootprint similarities between a
reference molecule and docked molecules. The EB& €nables users to rank-order virtual



screening results where the top scoring molecubage tsimilar interactions as those of a
reference. References may include known drugsyralasubstrates, and low energy transition
states, among other possibilities. This method vwaglated using pose reproduction, cross-
docking, and enrichment studies. In addition, expental collaborators have identify
promising lead compounds from our virtual screempngects (using FPS re-ranking) including
those targeting BotNT/A and HIV-gp4l. The FPS oeisig method was generalized to use grids
enabling footprint-guided docking. This grid-baseBS scoring method has been validated
using pose reproduction experiments. Future daestand ongoing projects are also discussed
including de novo design.

In Chapter 5, we conclude with a description of @ng projects and ideas for future
directions. Finally, we discuss two collaboratprejects which are presented in the appendixes.
The role of point mutations in resistance of th& Ilflsion protein glycoprotein 41 (HIVgp41) to
the binding of T20, an FDA approved therapeutic wiaracterized. Energetic error analysis
and membrane contributions were also examined. HPdgp41 application studies, molecular
footprints were shown to be useful in understandingy-target molecular recognition as well as
drug resistance mutations. Motivated in part bgtip@ating in a docking symposium entitled
“Docking and Scoring: A Review of Docking Progranteld at the American Chemical Society
meeting (spring, 2011), DOCK 6.6 was evaluatednasrasichment tool using Receiver operating
characteristic (ROC) curves and area under theec(®JC) analysis on validation databases
DUD and Wombat. Enrichment studies demonstrateeabandom global enrichment, as well as
good early enrichments, revealing DOCK as a ugdehllfor virtual screening applications. All
of the projects discussed here demonstrate thagstreof computational techniques in drug
discovery.



Table of Contents

LISt Of FIQUIES ... Vil
LISt Of TADIES ...t e e e e e e e Xiv
LiSt Of ADDIEVIALIONS .....cooeiiiiiiie it e XVi
ACKNOWIEAGMENTS. ..ot Xviii
Chapter 1. Introduction to Computational Strudt@&ialogy and Drug Discovery. ................ 1.
1.1 Importance of Computational Techniques for DRUSLOVETY. .....ocoeeveieieeeeeeeeeeeeeeeeeeee. 1
1.2 StruCtures iN DruQ DISCOVEIY........uuuuuuuieuueeeeiietietieiieteeereseesnesensnsnesssinreneee e 5
1.3 Molecular Mechanics, Force Fields, and the R@teEnergy Function. ....................... 6...
1.4 MOIECUIAr DYNAMICS. ..eeevviiieiieeieeeesmmmmmnesssesessnensssssnsssssnsssssnsss s nannnssssssssssnsssnsssssnsnes 9
IR T B 1 104 4] 1 o TR PRSPPI 13
1.6 RESEAICH PrOJECES. ..uuuiiiiiiiiiiiiitimmmmmmn s s se e e e sn b aeaaensannssnnnnsnnnns 16
Chapter 2. Quantitative Prediction of Fold Resistafor Inhibitors of EGFR. ...................... 17
Y 0111 - o USSP 17
P20 R | 11 o o 11 T 10 o AU 18
pZ A\ =11 0T 3OO USSPPPPRR 25
2.2.1 BINAING Fre@ ENEIQIES. . .iiiiiii oo s s et eeeeeeeaeeaeeaeeaestaeseesssssssssneanneseeeeeeeeeeeeeeees 25
2.2.2 Interaction Signatures: Molecular FOOIPIINLS.......ccoooeiiiiiiiiiiiiieneies e 27
2.2.3 SIMulation ProtOCOIS. ........coeeiiiiiiieeeee e e 28
2.2.84 ANAIYSIS. .o 29
2.3 RESUILS AN DISCUSSION. ...eeeiiiiiiiiiieeeeeee e ettt e e e s e e e e st eeeeeaeaeanannes 30
2.3.1 Simulation Stability. .......ccoooiieee e 30
2.3.2 Comparison with Crystallographic Structures............cccccciiiiiiiiiiiiiiiiiieeeeeee. 32
2.3.3 Correlation with Experimental Fold ReSIStance..........cooovviiiiiiiiiiiin e 34
2.3.4 Energetics of Binding: What Drives ASSOCIAHQ................uevveviiviiiineenennnsss 39
2.3.5 OrigiNS Of RESISIANCE. ........eeutiitimr oot e e e e e e aaaa e 43
2.3.6 Water Mediated INtEraCliONS. .........cewmmeeeeseiiiiiriiieiee e e e ss s ee e e s eeeeeees 48
P2 N o [ 111 [0 7 PSSR 52
Chapter 3. Implementation and Evaluation of a DrggiiRescoring Method using Molecular
[oTo 11 o1 0 A OTo]ap] o =T g {0 ] LS 56
Y 0111 - o OSSP 56
10 200 I |11 o o 11 T 10 o USSR UURPPPPRRT 57
3.2 TheoretiCal MethOdsS. ..........oouiiiiiieee e 61
3.2.1 FOOLPrNt COMPAIISONS. .....cceiiiiiie e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaas e e e e aaaaaaaaaaeas 61
3.2.2 P0OSE 1deNtifiCALION. ......uviiiiiiiie e eeeeee e 64
3.2.3 Database ENfiChMENt. ..........ooiiii e e eaaees 66
3.3 Computational DetallS. ..........uuueeeiieee e 67
3.3.2 Pose Identification DAtaSets. ........cccueueiiiiiiiiiiiiiieeee e 67



3.3.2 Database ENriChmMENt DAtaSELS. ...... .o eeeereeeaeenaeeeeeeeaeesasesnresseenaeereasenarennns 69

3.3.3 Footprint Reference Preparation. ...t 70
3.3.4 Footprint RESCOrNG ProtOCOIS. ....... e eeeeeeeeeeee e 70
3.4 ReSUItS @and DiSCUSSION. ......coiiiiiiiieeeees e e e eee et res e e e e e et s e e e e aeeeeeeeaeaaananeeeaeaenens 71
3.4.1 Footprint Similarity (FPS) vs DOCK Carteskmergy (DCE) Scores for Pose
(o=t 1) {Tor=1 i o] o FO TP PP PP PPPUPPPPPPPPN 71
3.4.2 Functional Relationships between Methods ts€&bmpute FPS Scores. ................ 75
3.4.3 Approximate Mathematical RelatioNSNIP. ceceaeeveiiiiiiiiiiiiiiie e 77
3.4.4 Predicted Positive and Predicted NegatiVes.........ccooooriiiiiiriieeee e 79
3.4.5 False Positive EXaMPIES. ......oooiiiiiieieeeie e 82
3.4.6 False Negative EXAMPIES. .........uutimmmmmmmeriiiiianssssssssssessssses e s sesssssnsnsnnnsnnnns 85
3.4.7 Database ENFICNMENT. .........oooii e 91
G T O [ 111 [0 PSSR 96
Chapter 4. Grid-based Molecular Footprint Compmarisiethod for Docking. ....................... 100
v I [ a1 o To [ BTt i (o] o PP PP PTTPPPPP 100
4.2. TheoretiCal MEthOdS ..........coeiiiiiieee e 101
4.3 Computational DetailS. .........coouiiiiieiieeii e 103
4.4 RESUILS Nd DISCUSSION .....uviiiiiiiie et e e e ettt e e e e s e st e e e e e beereeeaeeeeaas 105
N R €1 ol CT=T =T = 11 0] o P 105
4.4.2 Docking and Rescoring in Pose ReproducCtion..........cooooveieiieinieiieneeeeeeeeeees 109
4.4.2 FPS Behavior DUNNG GroWLEh. ...........ceeueeiiiiiiiiiiiiiiiiieiieiieiieveeieeseeeesieeeeeeeeeeeeens 111
4.4.3 CONCIUSIONS. ...utiiiiiiiieeeee ettt e e e e ettt e e e e e e s sttt e et e e e e e e s amnnee e e e e e e e annnbbeeeeeeeas 114
Chapter 5. Dissertation Summary: Scientific Imp&etlated Work, and Future Direction..... 115
5.1 Structural and energetic analysis of EGFR SMMAS. ..........ccovviiviiiiiiiiiieieereess o 115
5.2 Development of docking methods and virtual esaireg protocols. .............ccooeeeeenenn. 118
5.3 SUMIMAIY. .ttt ettt e e e e ettt e e e e e e et e e te s e e e e e e e eennn e e eeees 120
BIDIOGIaPNY .. 121
Appendix A. Origins of Resistance to the HIVgp4itaVEntry Inhibitor T20............cccee.e. 34
A.1 Collaborative ProjeCt SUMMAIY. ......ccooaiiiiiiiiiiiie e 134
A.2 Binding Free Energy Convergence: Autocorrefatod Block Averaging. .................. 135
A.3 Per-Residue Energetic ANAIYSIS. ........ccceeeeurrrrrmmimiiiiiniienininenrnnnenennnenrennnneeeeeeeeeree. 138
A.4 Membrane Interactions: The Importance of theWNMotif. ..............ooeeeeeeee. 93
Appendix B. Evaluation of DOCK 6 as a Databasadinnent Tool. ..., 144
B.1 Collaborative ProjeCt SUMMAIY ..........cceeeeeiiiiieiiiiiiiieieiireieenrerneereenenrnereree e 144
B.2 TheoretiCal MEthOUS..........oouiii e erer e 145
B.3 RESUILS ...t e e a e e e e e e e 151
B.4 Enrichment Study CONCIUSIONS. .......... o eeeeeeeeeeiiiiis e e e e eeeeetiis e e e e eeeeeeeeeesnnns 168

Vi



List of Figures

Chapter 1.

Figure 1-1. The drug discovery pathway shown ackl Techniques used at various stages of
the pathway are SNOWN IN QIay........oooiiiiiiieiee ettt e e e e e e e e e e e e e e eeeeeeeeas 2

Figure 1-2. Molecular recognition and the bindawgnt. The ligand and protein are shown in
their free state on the left and then they assetagether (represented by the arrow) to form the
complex SHOWN 0N the gD, ..ot e e b enensbenennnes 3

Figure 1-3. Virtual screening schematic for DOCK crystallographic protein structure is
prepared for docking by creation of a sphere setgaia. Virtual screening is performed by
docking ca. 1,000,000 molecules. On the ordei06fdompounds are chosen for purchase and
experimental testing. Preform Experimental testingelected molecules. Feed-back loop
demonstrates the relationship between computatidreaperimentation...............c.ccccceeeeeeen. 5

Figure 1-4. Molecular mechanics terms, divided inbnded and through-space interactions are
presented. Each interaction type is labeled,tiisd and its equation is reported............... 7

Figure 1-5. Two-dimension depiction of moleculgndmics. The iterative schema for
propagating motion is outlined whardenotes the atom and t, the time step. The {usiag
energy function), the acceleration, velocities, #rh new positions are obtained, consecutively.
Dark gray circles are the initial positions of #items, and light gray are the new positionsiO...

Figure 1-6. (a) Matrix interaction of all atom maiblue is the internal energy of the receptor,
red is the internal energy of the ligand and puipkie through-space interactions. (b) Per-
residue decomposition of the through-space INRMEEL. .............covvvriiiiiiiiiiiiiiiieiieeeeneeenenes 13

Figure 1-7. (a) Structure of Erlotinib is showrttwiabeled rotatable bonds. (b) The molecule is
broken up in to rigid segments. The definitionayfers is defined: (c) for the first anchor (Al);
or (d) for the second anchor (A2). (e) Cartoothefgrowth tree is shown. ..............ccccoeeeee. 15

Chapter 2.

Figure 2-1. Ribbon diagram showing EGFR complexét the ATP-competitive inhibitor
erlotinib. Regions which change conformation (lHddelix and activation loop) upon receptor
activation are shown in green. Locations of careeising mutations (deletion or point) which
cause receptor activation are in red. The secgndé®OM drug resistance mutation is shown in
blue. Coordinates from pdb COde LML7. ... e eeeaeees 20

Figure 2-2. Schematic representation of the thegmamic cycle used to calculate free energies
of binding AG, calcd) for comparison with experimediG, exptl). The cycle highlights the
relationship betweeAG, exptl occurring in condensed phase with the frergy of interaction

vii



in the gas-phasé&\Gya9 modulated by three terms representing the freeggmof hydration
(AGnyg) for the transfer from vacuum to water for eaghesate species (com=complex,
rec=receptor, Ig=lgand). ..........oou et 26

Figure 2-3. Fluctuations in computed free energfdsinding AG,, calcd) and root-mean-
square-deviation (rmsd) for erlotinib with wild g/ EGFR (panels a and d), L858R (panels b and
e) and L858R&T790M (panels ¢ and f) vs time. lphels show instantaneous energies (gray
dots) and block-running averages over 100 framlasKbine). Right panels show rmsds for
receptor backbone (blue line), ligand (green limey ligand quinazoline scaffold atoms (red
[I1B) . e oot e oo oo oo oo oo e e e e oo et e e e e e e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaas 32

Figure 2-4. Representative snapshots from MD straris of ligands with EGFR showing side-
chain sampling of key residues (thin lines, N=16hga's crystallographic conformations (bold
lines) for erlotinib (panel 4a), gefitinib (pandd4 and AEE788 (panel 4c). Pdbcodes for 4a:
red=1M17 (erlotinib with wildtype), blue=2ITY (g¢ifnib with wildtype), green=2J6M (AEE788
with wildtype). Pdbcodes for 4b: blue=2ITZ (geiit with L858R), green=2JIU (AEE with
T790M). Pdbcodes for 4c: blue=2ITO (gefitinib wi#¥19S), green=2ITP (AEE788 with
LR 1) RSO PTPPRR 34

Figure 2-5. Predicted FR energidd\(Ger calcd) vs experimental FR energi@Ger exptl) for
inhibitors with EGFR. Each point is the differermetween results from two independent MD
simulations (16 simulations total) from 5000 MD gshots each. Data point for erlotinib with
double mutant (>3.96) excluded frofncalculations given ambiguity in the experimeMAGk
RISt T =T 0 1T o | P PPP 37

Figure 2-6. Predicted changes in CoulomBiE.,, panel a) and van der Waals\Eq panel
b) energy components versus experimental foldteesie energyNAGgr exptl) for inhibitors
with EGFR. Data point for erlotinib with double rant (>3.96) excluded fronf calculations
given ambiguity in the experimentAAGEr MEASUIEMENL. .........uuuuuriiriiiiiiiiiiiieereeee e eeeeeeeeens 39

Figure 2-7. Correlation of the van der Waals epéfdr,qw) cOmponent witlAG, exptl.
Energies in KCal/MOL. ... 41

Figure 2-8. Primary H-bonding (dashed lines) iat&ons for inhibitors with EGFR. .............. 42

Figure 2-9. Comparison of per-residue H-bond faotp for erlotinib (red), gefitinib (blue), and
AEE788 (green) with wildtype (panel a), L858R (plame L858R&T790M (panel c¢), and
G719S (panel d) EGFR variants (N = 5000 MD snasghot............ccoooiiiiiiiiiiiiiiiiiiiiieeeeenns 42

Figure 2-10. Comparison of erlotinib binding pofegs100) from EGFR simulations for L858R
(left, red), LB58R&T790M (middle, green), and od (red vs green). Intermolecular H-bonds
at position C797 shown in purple (N=5000). ..ccceeciiiiiiiiiiiiiiiiiiiieiieiee e eeeeeeeees 44

Figure 2-11. Per-residue footprints for inhibitarith EGFR for cancer causing (L858R, panels
a-b) and drug resistance (L858R&T790M, panels eadijants from a reduced set of amino acids
in the contiguous range Q787-N808 (shaded regiofgravhich any ligand showsE > 1

o> 1 2T | PP 45

viii



Figure 2-12. Water-mediate H-bonds for inhibiteith EGFR for L858R (left) and
L858R&T790M (right). 12a visually shows populatiohwaters at site 1 (S1 orange) and site 2
(S2 blue) over all 5000 simulation frames for resereative erlotinib simulations. Site waters
defined if water hydrogens are within 2.5 angstrafnsach ligand at N* (S1) or residue Q791 at
O (S2). 12b shows for all three inhibitors therage number (count/5000) of waters at S1 and
S2. 12c shows for all three inhibitors the avenagewise Coulombic interaction energies
between the two waters closest to each ligand atift residues T790 (or M790), Q791, T854,
AN the IJANGAS. ...ttt e e e e e e e e e e e e e aeeeeeaeeeaeaeeeeaaeeaeees 49

Chapter 3.

Figure 3-1. Representative molecular footprintg&) a single ligand, (b) a single ligand with
two conformations, and (c) two different ligandsided from per-residue decomposition of the
intermolecular van der Waals interactions as atfanof primary sequence. For two footprints,
similarity may be quantified using Pearson coriefatoefficient ¢), Euclidean distancel), or
related measures. For clarity only a portion effibotprints are shown. ..................ce e 59

Figure 3-2. Flow chart outlining footprint simiigy calculation protocol. ...............ceevveeeeeee. 62

Figure 3-3. Schematic depiction of standard (tkiersus normalized (thick) footprint vectors (X,
y). The maximum distance between normalized veatarthe unit circle is 2 while the distance
between standard vectors can be INfINITE. . omeweeeerviiiiiiiii e 63

Figure 3-4. Partitioning of outcome space (positiv negative results, red region) as a function
of prediction (predicted positive or predicted nigg green region) into four quadrants (blue
region) representing (l) true positives, (ll) fafsesitives, (lll) true negatives, and (V) false
negatives for (a) pose identification and (b) das&benrichment definitions of success. Gray
colored lines represent hypothetiCal data. . .coooeeeriiiiiiii e 65

Figure 3-5. Database preparation histogramsPdgallation of systems with a given number of
clusterheads (max=50) derived from Cartesian spacenizations of grid-based results
reported by Mukherjee et &l. (b) Population of systems with a given rmsd usinly the single
lowest-rmsd pose found among the ensemble of petaged. The portion to the left of the
dashed line at 2 A rmsd constitutes perfect samibsets for (RGD=775), fixed-anchor
(FAD=748), and flexible (FLX=680) ligand samplin¢c) Population of ligand rmsds for
reference poses after polar hydrogen optimizatimsirsg the energy grids (black line) and
subsequent energy minimizations in Cartesian s(maogle line) using a harmonic tether. ...... 69

Figure 3-6. Functional relationships between faatsimilarity (FPS) scores computed for van
der Waals (VDW, top) and electrostatic (ES, bottamgractions using (a, b) standard Pearson
vs threshold Pearson, (c, d) standard Euclidearorsalized Euclidean, and (e, f) standard
Pearson vs normalized Euclidean. Population qaloges for green = [1, 50], blue = [51, 250],
and red = [251, 500+] are derived from the totaKFdnsemble of N = 26,830 footprints. ........ 76



Figure 3-7. Two dimensional histograms of rmsdsusr=P $ow-es score for (a) the best scored
poses (N=680) and (b) the entire ensemble dernaed &ll poses (N=26,830). Population color
ranges for green = [1, 5], blue = [6, 20], and+g@1, 30+]......ccceeviiiiiiiiiiiiiiiieeeeeeens 80

Figure 3-8. False positive examples type |I. Heoglsimilarity scores (FRSw-es < 0.3) but
classified as failures due to a close-to-mediunmgedc match (rmsd > 2 A and <5 A). The
associated PDB code, rmsd in A, FPS score, andayvei the predicted (green) versus
crystallographic (red) pose are Shown fOr @aChEBYSL..........cuviviiiiiiiiiiiiiiiiriieeees e eeeeees 83

Figure 3-9. False positive examples type Il. Gsiodilarity scores (FR®w-+es < 0.6) but
classified as failures due to a poor geometric matmsd > 5 A). The associated PDB code,
rmsd in A, FPS score, and overlay of the predi¢teen) versus crystallographic (red) pose are
SHOWN fOr @ACKN SYSTEM. ..o et bs bt e e benannnnee 83

Figure 3-10. Pose and footprint comparisons fpR@E4 and (b) 9AAT showing results for the
reference pose in red, the docked pose in greeinpamnresidue differences as black bars. ....... 87

Figure 3-11. Pose identification results for taebonic anhydrase family using crossdocking
ensembles from Mukherjee et'al Blue, green, red, and white elements indicateesses,
scoring failures, sampling failures, and incomplgtawth, respectively. Three scoring methods
were evaluated: (a) standard Df-es, (b) FPSpw-+es in which cognate ligands (diagonals)
were used as the footprint-reference corresportdimgch receptor, (¢) FRsw+es in which
footprint-references were derived by minimizingle&igand in each receptor and every matrix
element used a unique reference. Note that itegks the rmsd references employed the set of
ligands minimized iN @aCh FECEPLON. ........ e 89

Figure 3-12. Cognate protein-ligand footprintstfoe aligned carbonic anhydrase family.
Residue X indicates a given residue is not conseaeeoss all crystal structures from the PDB
entries in terms of amino acid sequence or signdisubstitution or deletion................ccc... 91

Figure 3-13. ROC enrichment curves for (a) neunahase, (b) trypsin, and (c) EGFR using
different ranking MEthOAS. .........uuiiii e 92

Figure 3-14. Graphical representation of the f0aiod 50 bottom ranked poses obtained from
docking the 475 active ligands from the DUD EGFRatlase and using (a) DGhw-es and (b)

FPS/pw-+es scoring functions. The reference (erlotinib)hewn in red surface with top ligands
in green and bottom ligands in gray. On the botawencorresponding histograms of molecular
weight (MW) for the 100 top (best) and 100 bottamoKst) ranked molecules. Note that the

large MW peak at ca. 340 for the 100 best scorintpaules using FR8w-es corresponds ca. to
the MW of the erlotinib reference (393.44 g/MOD) ... 95

Figure 3-15. Number of molecules retained fronraual screen of 906,914 molecules to EGFR
using various FRpw-esscore cutoff values. The graphic shows the 25 ouiés identified
(green) using a cutoff of 0.8 in comparison with Bmown drug erlotinib (red) which was used
as the fOOtPrINt FEFEIENCE. ... ..o e bbb nnnea 96



Chapter 4.

Figure 4-1. Comparisons between grid-based (greg)Cartesian (black) footprints. The van
der Waals (a and b) and electrostatics (c andldgsidues footprints (a and c), and the
threshold-based residues plus remainder footpfingsd d) are shown for pdb code 2PKA4.... 106

Figure 4-2. (a) comparison of Grid (DGE) scoreCastesian (DCE) Score. (b) Comparison of
Sum of the footprint grid-values vs standard gadrs. (c) Comparison of the Grid-based
footprint values vs (d) Histogram of the numbegoéls used for footprint-guided docking (#
grids = # residues + 1 ). For panel A-C, blue @o&sES and red are VDW. ............uuuueeee 107

Figure 4-3. Shows six docking experiments using@®. Five random seeds were used to
gage variability. Success (blue), scoring fail{geeen) and sampling failure (red) add up to
LO0DD. .ttt ee ettt ettt £+t 4 4R et e e 4R R bttt e nne e e e b e et e e e n Rt bee e e e e nbreaeeeannes 111

Figure 4-4. FPS score for growth step for thedt@table bond subset of SB2010 (N= 59) are
shown. Left panels show FPS guided docking resitight panels show rescoring results from
a standard grid score docKing eXPeriMENt. . oot e e 112

Figure 4-5. Fixed anchor docking branch convetgeslow RMSD and low FPS score. Both
structures before and after minimization are ShOWN..........ccooooiiiiiii e, 113

Chapter 5.

Figure 5- 1. Active vs inactive conformations.helgrey ribbon indicates the backbone of
EGFR. The colored regions represent the mainréifiees between the two structures. An
overlay of the N-lobe helix and the activation las@lso shown. ...............ccvvvviiviiiiivinnnee. 118

Appendix A.

Figure A-1. (a) Autocorrelation functions (ACF) @dlculated binding energieAG®ying calcd)

for T20 with wild HIVgp41 and seven mutants. (Hp&k average standard error of the mean
(BASEM) in kcal/mol as a function of block size findl to 5000. Solid arrows indicate initial
137K results while dashed arrows indicate 137K hssabtained using a different random seed.
........................................................................................................................................... 137

Figure A-2. Intermolecular van der Waals interactenergy matrix (heat map) for all gp41 with
T20 residues from the wildtype simulation. Foatppeak magnitudes represent summation
AEvdw (kcal/mol) along each row (T20) or column (&jp4Gray shaded regions indicate
mapping of the gp41 mutation region(L33-L45) tcharged/polar patch (E136-E148) on T20
defined by the black box in the ca. center of ttarin. Heat map gradient colors indicate the
magnitude of unfavorable (blue) or favorable (nedgractions with dark red being most
121V 0] =1 o] =TT PP PPPPPPRPPP 138

Xi



Figure A-3. Comparison of the per-residue vanWaals (a) and Coulombic (b) interaction
energies between gp41 (dashed line, small squanedjpid membrane (solid line, filled circles)
for each T20 residue from wildtype simulations.clEdatapoint represents the average value
obtained from 10,000 MD snapshots saved every L.pS.......ccccccvviiiiiiiiiiiiiiiiiiieiieeeneeeenn. 140

Figure A-4. Interactions of the T20 WNWF motif wimembrane. 3-4a shows radial
distribution functions (rdfs) for the average digtas (N=10,000 snapshots) between all lipid
headgroup N atoms and (d1) the center of ring aeirg159, (d2) the backbone O at N160,
(d3) the center of ring atoms at W161, and (d4)otekbone O at F162 (d4). Summation of
bins (panel a gray vertical lines) out to a distané A approximates the number of interactions
occurring in the first T20-lipid solvation shellpresented by the first peaks in the rdfs. 3-4b
graphically illustrates representative favorableiiactions (distances5 A) for the T20-lipid
interaction pairs defined as d2-d4 (magenta dakhesl). The graphic shows a single simulation
snapshot of T20 (orange sticks) complexed with gjoddy surface) interacting with ten
representative conformations of two nearby lipgi®én sticks). Lipid head group carbons
OMIttEd FOI CIANTLY. ..o e 142

Appendix B.

Figure B-1. Representative examples of ROC custiesving good (a), random (b), and poor (c)
global ENFICNMENTS. ..ottt e et e e e e e et e e e e e e e e e e e e e e eaeaea e 146

Figure B-2. (a) Schematic showing possible enrighis at 0.1%, 1.0%, and 2.0% of the
database scanned and (b)-(d) maximum Fold Enrich(r€&) values at each of these points. FE
N O B U L ORI PPPRR 147

Figure B-3. (@) Hypothetical ROC curves computsithg two different values for the total
number of molecules classified as active (P, pasitor decoy (N, negative). The gray curve
was computed usingqiga and Nhiiar and the black curve was computed usiggkEsand Niocked

(b) Missing data can be assumed as yielding pegef@achment (blue upper line), no enrichment
(lower red line), or random enrichment (purple ntedthe) to ensure the ROC curve will reach
TPR=1, FPR=1. The dashed line is the random ROECU............ccevrrrrrriiireeerrrererirmenae 151

Figure B-4. Bar plots showing AUC values sortearfrhigh to low using SB/DUD PDB naive
PAIriNG reSUILS IN PANEIL A. ..coeiiiiiie e 155

Figure B-5. Heatmaps showing enrichment study weimploy SB/DUD PDB results and DUD
actives and decoys. Receptors are labeled bydiheg@de and family on the y-axis. Ligands are
labeled by the DUD system name on the x-axis. Rearse than random (AUC < 0.5), green =
greater than or equal to random (AG®.5), and white = non-paired systems. ................ 157

Figure B-6. Heatmaps showing enrichment study wkimploy the DUD SUP receptor and
DUD actives and decoys. Receptors are labeletddpdb code and family on the y-axis.
Ligands are labeled by the DUD system name on #we The area under the ROC curve for
each receptor-ligand pairing is used as a meagwerichment. No data available (white),

Xii



better than random enrichment (green), or worse thadom enrichment red is indicated by the
(o0] (o] =To o =1 | TR 159

Figure B-7. Differences between DUD PDB (red) &wD SUP (green) structure preps for (a)
1a8i and (b) 1hw8. Native ligands are shown imcyBinding site waters in the DUD SUP prep
for 1a8i indicated by DIUE CIrCIES. ... 161

Figure B-8. (a) ROC curves for the 40 DUD famili€b) ROC curves for the 10 Wombat
families (Wombat ligands + DUD decoys). ROC curseded from high to low according to
total AUC using SB/DUD PDB data with SB/DUD PDBbfack and SB/DUD SUP in gray. 164

Figure B-9. Semi-random pairings run with DOCK6(&) ROC curves for the 40 DUD
families. (b) ROC curves for the 10 WOMBAT famgi@VOMBAT ligands DUD decoys).
Results are sorted by Stony Brook structures regulbblack and gray is the provided organizer
structures. Receptors are labeled by the pdb anddamily on the y-axis. Ligands are labeled
by the DUD system Name 0N the X-8XIS........ccueeerriririiiiiiiniaieiseaseisee e esee e e e s s ssesesennnnns 165

Figure B-10. ROC curves for 3 pairs of DUD fansli@) egfr and hsp90, (b) fxa and thrombin,
(c) trypsin and hivpr. Top panels show the napig&ing. Bottom panels show the semi-random
[SF= 11 11 o TR TP P PP PPPPPPPPPPRPPPI 166

Xiii



List of Tables

Chapter 2.

Table 2-1. Experimental fold resistance (FR) valoeATP-competitive inhibitors with EGFR.

Table 2-2. Experimental versus calculated Fold asce (FR) energieAAGrr) and energy
components for ligands With EGFR. ... 36

Table 2-3. Absolute free energies and componerdgrdposition for inhibitors with EGFR...... 40

Chapter 3.
Table 3-1. Examples of possible reference typeetve molecular footprints................... 60

Table 3-2. Comparison methods and correspondmggesafor footprint similarity (FPS) scores.

Table 3-3. Pose identification success using Fodtpimilarity (FPS) vs DOCK Cartesian
energy (DCE) methods to rescore rigid (RGD), fisedhor (FAD) and flexible ligand (FLX)
(L0 EYS =T RS =T o] o] 1= PP 73

Table 3-4. FLX results scored with RR&®-es for three differing footprint similarity score
cutoffs using a 2 A rmsd to separate positive frErgative regions. ...........cccocveeveeersvvemeennee. 80

Table 3-5. False negative examples for the raefjeet by the range rmsd < 1.0 A and

FP S/DWAES™ 1.0 1ttt e en bbb 86
Table 3-6. Area under the curve (AUC) and accomipanfold enrichment (FE) statistics from
receiver operator characteristic (ROC) plots foe¢hprotein-ligand systems. .................... 92
Chapter 4.

Table 4-1. Footprint Similarity Score docking doménts...............ccooeiiiiiiiiiienes 105
Table 4-2. Standard docking and rescoring. FB8reguses normalized Euclidian.............. 108

Xiv



Appendix A.

Table A- 1. Autocorrelation function percent unetaeited data (ACF %)and block average
standard error of the mean (BASEM) f&Ging calc results from simulations of T20 with

wildtype HIVgp41 and seven mutants for various RIBNGLNS. ..o 137
Appendix B.

Table B- 1. DUD systems and semi-random matchif@rmation. ..............ccccccvvvvivinnninnns 149
Table B-2. Enrichment completion statistics udigD PDB preparation................c........ 152
Table B-3. Enrichment completion statistics udidgD SUP preparation. ........................ 153
Table B-4. Global enrichment (total AUC) for naignd semi-random pairings. ................... 155

Table B-5. Global breakdown of DUD systems int@éhsets (better, equal or worse than
random) using the AUC to define enrichment. ..., 160

Table B-6. Averaged early enrichment at 0.1%, 1.886 2.0% of the databases examined. . 168

XV



List of Abbreviations

ACF, autocorrelation function

BASEM, block averaged standard errors of the mean
d, Euclidian distance

DCE, DOCK Cartesian Energy

DGE, DOCK Grid Energy

dnorm, NOrmalized Euclidian distance

DOPC, dioleoylphosphatidylcholine

EGFR, epidermal growth factor receptor

EM, electron microscopy

ES, electrostatics

FP, fusion peptide

FPS, Footprint Similarity

FR, fold resistance

GB, Generalized Born

HIVgp41, human immunodeficiency virus glycoprotdih
PB, Poisson-Boltzmann

PDB, Protein Data Bank

MD, Molecular Dynamics

MM-GBSA, Molecular Mechanics Generalized Born Soef#rea
NMR, nuclear magnetic resonance

NSCLC, Non-small cell lung cancer

XVi



r, Pearson correlation

rmsd, root-mean-square-deviation
Inresh threshold Pearson correlation
TKD, tyrosine kinase domain

TLI, Trilinear interpolation

TI, Thermodynamic Integration

VDW, van der Waals

XVii



Acknowledgments

Foremost, | am grateful to my advisor Robert C.zRifor accepting me in his group,
aiding me in writing and obtaining a NIH fellowshgiving me good advice and suggestions and
being there for me during my time in his lab. Tigb his guidance | have become a better
scientist. | feel great gratitude to my parentseJu. Eiseman and Fredrick A. Balius, Jr. who
have given me love, support and guidance throughoulife and academic career. Without
their persistence and dedication my path throufghriay have been very different. Marie C.
Gelato has given her love, and support especiallyjnd my graduate work and | am very
indebted to her. My fiancée Natalie St. Fleur, wHove, has been a great support and | am
grateful to her for sharing her life with me. Msyother Stuart A. Balius and my extended family
continue to be a source of personal strength. bk, grateful to Pauline Wetzel and Ruthie
Wetzel for treating me like family.

From my time at Stony Brook University, | am grategb my other committee members,
Drs. David F. Green, Carlos Simmerling, and W. Tddidler, all of whom have given me a
great deal of guidance throughout my graduate carek have valued working in the
collaborative environment of the Rizzo Group. Inivéo recognize the support of the past and
present members who | have enjoyed getting to kn@udipto Mukherjee worked with me
closely on DOCK development and code writing. kisrk on SB2010, and SB2012 testset
construction has greatly aided the work on DOCke isla great colleague and | am grateful to
have worked with him. For the HIVgp41 project, 8riMcGillick did good work and | enjoyed
collaborating with him. Rashi Goyal and Patrickldm developed and validated the docking

protocol used in this work. Yulin Huang is a hardrker and | am glad that | was able to work

XViii



closely with her on the Kinase projects. | expregatitude to Jie Wu for help in code
development during the beginning stages of footgmimilarity-scoring work, to Kenneth
Ascher, William Berger, Rashi Goyal, Patrick Holdeand Yulin Huang for computational
assistance in testing the footprint similarity coded Kenneth Foreman for helpful discussions.
| thank William J. Allen for giving me much advi@nd guidance with the writing of this
dissertation and my postdoc job search during mwlfiyear of graduate school. | thank
Disability Support Services at Stony Brook Univerdor their assistance in test-taking. The
Green lab and Simmerling lab, both former and preseembers, have also been great
colleagues whom 1 feel privilege to know. | thatle DOCK development team, especially
Scott Brozell, Demetri Moustakas and P. TheresggLan

From my time at the University of Pittsburgh at &rsburg, | would like to thank and
acknowledge the following people. | am very gralteb Dr. Mary Grace O'Donnell for her
advice and support. It is because of her that lored) in mathematics. Dr. Lou Ann Sears
helped organize my academic accommodations andigasrce of support. Dr. Nancy Estrada
is a wonderful person and teacher who encouragettangls and personal growth.

At University of Pittsburgh, the late Dr. Merrill Egorin supported me and gave me the
opportunity to perform summer research during mglemgraduate career. Dr. Robert S. Parker
co-advised me and | learned much during my timéigngroup interacting with Drs. John M.
Harrold, Abhishek S. Soni and Jeffry A Florian Jr.

From my time in the Frederick County Public SchBgstem, many educators helped me
along the way and | am especially grateful to MatdCForman, Mr. Frederick Brainerd, and Ms.

JayH. Heidel.

XiX



| thank all those who have come before me, inclgdhe first Homo sapiens and their
descendants; but especially the developers of @€ AMBER, CHIMERA, NAMD, and
VMD programs. How did we function without GoogledaWikipedia? Both of these resources
made my work much easier. The Protein DatabankPained were indispensable.

Finally, 1 would like to thank the funding agenciesolved including the Stony Brook
University Office of the Vice President for Resdgrihe School of Medicine (Carol M. Baldwin
Breast Cancer Research Award), the New York StafeceDof Science Technology and

Academic Research (NYSTAR), and NIH grants RO1GM®&33(to RCR) and F31CA134201

(to TEB).

XX



Chapter 1. Introduction to Computational Structural

Biology and Drug Discovery.

This chapter provides background and introductmorthie theory and computational methods

used in this dissertation.

1.1 Importance of Computational Techniques for DrugDiscovery.

The maintenance and further development of a stamagrobust drug discovery pipeline
is important for combating disease in a timely neanas new threats emerge. As is shown in
Figure 1-1, there are many stages in the drug dsgopathway from target identification to
FDA approval. Traversal of a molecule through thragddiscovery pathway is a long, (on
average 9-12 years) and expensive (upwards of 86mollars) process.

Increasingly, computational methods are being usedid drug discovery and overall
have made considerable impact on molecular medféinghe ability to model molecules
silico at various levels of theory, isolating the reastrsbinding affinity and specificity of
drugs to their respective targets, is a powerfal.tdmportantly, computational techniques are
designed to complement experimental techniquesadttition, they are proven time and money

saving methods. In particular, they are usedddath the discovery and optimization stages of



the pipeline€® The primary computational techniques describetthim dissertation are molecular
dynamics and docking and their associated analySdse goal is to increase our ability to

capture the energetic and structural changes tiscahgany protein ligand binding.

Basic Science: Physiology
Target identification Cellular Biology
Virology

v

High Throughput Screening (Robots)
Lead discovery Virtual Screening (docking)
De novo Design

v

Structural Activity Relationship
Lead refinement Medicinal Chemistry

bloav_allablllty Molecular Modeling
duration of
action
toxicity In vitro (Protein, Affinity, kinetics)
Development In vivo (Cell assays)
Animal Studies
v
Pharmacokinetics/Pharmacodynamics
Clinical Trials Side-effects
efficacy
v
FDA approval

Figure 1-1. The drug discovery pathway shown in black. Techegjused at various stages of the pathway are
shown in gray.

Molecular-targeted therapeutics are showing pronmseombating disease including
HIV/AIDS,®" influenza® and cancet. To focus on cancer, a leading cause of d€atie very
successful drug imatinib (Gleevec) used tools fretructure-based drug design during
development. Furthermore, imatinib was the firstleoular-targeted therapeutic designed
against a cancer target (the Bcr-Abl kinase in micranyelogenous leukemid). In addition,
structure-based drug design including computatite@iniques have been highly useful in other
kinase drug discovery projects.In this work, the kinase Epidermal Growth Fad®erceptor is

studied in Chapter 2. It is important to note tb@tnputational techniques have also contributed



to the significant inroads made in combating HI\Wdts manifestation AID$. Specifically,
HIVgp41, an anti-fusion target, is studied in tlissertation also and is discussed in Appendix A.
An important goal is to understand the process ofeoular recognition (Figure 1-2).

For example, by calculatingnh silico the interactions of a small molecule (drug) with a
biomolecule (protein) insights into binding maydigained. By linking structural and energetic
properties using physics-based energy functions gssection on molecular mechanics), it is
possible to view the behavior of molecules at amat level of detail that is much more difficult
experimentally, for example, the importance of #pednteractions on an energetic basis,
hydrogen-bonds, desolvation penalties, etc. Dedpe approximations of classical molecular
mechanics models, biological binding events carcdqgured remarkably well. For example,
molecular dynamics simulations of small moleculesrid with proteins (as described in Chapter
2) often show strong agreement between calculated experimental values. Furthermore,
docking calculations are often (ca. 70% of the tumgng DOCK) able to predicted a native-like
binding geometry (within 2A of a crystallographioge) for a molecule in its active site.By
comparing computational prediction with experimémsults, confidence is gained that the

underlying simulations are robust.

protein ligand complex

binding

—

Figure 1-2. Molecular recognition and the binding event. Tigamd and protein are shown in their free state on
the left and then they associate together (reptedday the arrow) to form the complex shown onrtgbt.



Increasingly, an important drug discovery tooliigual screening, the process of taking a
large database of commercially available small sk compounds and evaluating them in the
computer to predict if they have activity. A wditkw for virtual screening (using DOCK) is
shown in Figure 1-3. A docking program (like DOCK}ing a fast scoring method, is used to
generate a rank ordered library for prioritizatiorarge vendor collections, such as those
provided by the UCSF ZINC databa8eéhave made virtual screening easier for both academ
and commercial labs. Often, compounds are resoeitdmore sophisticated functions. Top
scoring compounds are then visually inspected ansulaset is chosen for purchase and
experimental testing for activity. As noted by tk& Kuntz a founder of the docking fiefdthe
synergy between computation and experimentatioruldhbe emphasized (feedback loop in
Figure 1-3). Current first line scoring functioms docking applications are very effective at
enriching databases by discarding molecules tkelylido not bind the targét. However, first
line scoring functions are often less effectiveratk ordering, which highlights the need for
more development. More accurate (expensive) methgpgally use molecular dynamics
simulations to generate ensemble-averaged energieNevertheless, even with their
approximations, docking and virtual screening haveroven track recorth:*® See Chapter 3

and Appendix B for enrichment evaluation studies.
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Figure 1-3. Virtual screening schematic for DOCK. A crystallaghic protein structure is prepared for docking by
creation of a sphere set and grid. Virtual scregisrnperformed by docking ca. 1,000,000 molecul@s. the order

of 100 compounds are chosen for purchase and expetal testing. Preform Experimental testing olecied
molecules. Feed-back loop demonstrates the retdtipibetween computation and experimentation.

1.2 Structures in Drug Discovery

The study of biomolecules and their structure isiraportant aspect to understanding
biology. For example, the mechanisms governingniigbinding, protein-protein interaction and
enzymatic functions all may be elucidated throudtucsural information. Although the
experimental technique of X-ray crystallographyvles static structures and the process of
obtaining crystals may result in artifacts (e.gstal packing’), crystallography is an extremely
powerful and important method to determine striegur More importantly, computational
techniques, such as molecular modeling, link tledaestures with energy. Other techniques like
molecular dynamics use the molecular mechanicggrfanction to simulate the motions of the

molecule. To perform such calculations, a modelthedf molecules in the Cartesian (3-D)



coordinates with atom type and connectivity is mekdFor proteins, the connectivity is known
implicitly; however, for small molecules determigirconnectivity is more complicated and
sometimes requires user input.

Often the initial structures are available fromatetse repositories like the Protein Data
Bank (PDB)* which stores structures derived from experimetgahniques such as X-ray
crystallography and nuclear magnetic resonance (NMR well as electron microscopy (EM).
Structural biology is very important to drug diseoy and the pharmaceutical industfy.
Highlighting the continued relevance of structurlogy, the PDB, since its founding in 1971,
has grown rapidly and currently has over 78,000cstires'®*° Among their many uses, these
structures may serve as a starting point for hogwlmodeling and molecular dynamics
simulations. In addition they are used for targebhformations in virtual screens, especially
proteins crystalized with substrates. Furthermpretein-ligand complexes are used in test set

construction to evaluate docking protocols and aoTs.

1.3 Molecular Mechanics, Force Fields, and the Pat&al Energy Function.

The wealth of structural information can be usedcwombination with molecular
mechanics to energetically describe the systemmdlecular mechanics, a classical view of the
world at the atomic level is imposed, and setsavhmeters are applied to simple equatfSifé.
Figure 1-4 illustrates the 4 bonded terms and BAujin-space interactions. The total energy
function is defined as follows:

E (r) = Ebonded+ E

ff , top nonbonded

The potential energi is dependent on the force fielffl) (parameters and the topolodgp), or

connectivity, of the system and is a function débélthe coordinates.
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Figure 1-4. Molecular mechanics terms, divided into bonded #hmdugh-space interactions are presented. Each
interaction type is labeled, illustrated and itsi@ipn is reported.

The bonded term equation is as follows:

Eponded = Zkr(ri _ro)2 + Zke(gi _90)2 + ZkX(1+COE(n)(i _5)) + zk¢(¢i _¢o)2

icbonds iCangles iridihed iCimproper
Bond () is a distance between two atoms; andglei$ calculated between 3 atoms; and the
improper dihedral g) and dihedral anglegy), are the angle between the two planes defined by
four atoms in which two atoms are shared. Theditddeangle is defined by four consecutively
bonded atoms; otherwise, it is an improper dihedrgle (Figure 1-4). In the AMBER force
field (which is employed in this work};*>*improper dihedral angles are treated the same as
dihedral angles; however, other force fields madein differently as in the bonded equation
above. This energy function consists of bondedhsewhere bonds, angles, and improper
dihedral angles are modeled with Hooke’s law #ed$ an ideal values &, andgo) and a force

constant i, kg, andky). The dihedral angles follow a truncated Fouseries which allow for



multiple minima. The truncated Fourier series wetgris the height between maximum (top of
peak) and minimum (bottom of well) points. Thegraetem is used to define the period that is
the length between the wells or peaks, by adjustiren, more or fewer dihedral angles will be
minima. The paramete¥is the offset this allows the shifting of ideahddral angles.
Non-bonded, or through-space, interactions areutakd with the following equation:

Enonbonded: Z[ Z{ qi qi + Allz - BI:}J-'- Z Se(&J-Fs/{ Aljz _iéJJ

ioal oa | MTEoliy T i At e, \ ATE; | i | i |

To account for through-space interactions, eveoynais represented as a sphere with a radius
and partial charge. In the above equatisthjs the set of atom indices associated with atom
such thatAt; does not contain atomor the 1-2 (atoms one bond away atoni-3 (atoms two
bonds away) or 1-4 (atoms three bonds away) atdexgs. These parings are neglected due to
proximity of the atoms. The 1-4 interactions ataled (e.g. in AMBERs=1/1.2;5,=1/
2.0)?* Often atoms beyond a cutoff are not includechi ¢alculations to speed up the energy
calculation. The variable is the charge at atoimthe variable;; is the distance between atom
and atom, A;;, B;j are the van der Waals parameters which are debgetie well depth and
radii of two atoms.

Next, we focus on sampling the conformational speEfceolecules, specifically protein-
ligand complexes. In this dissertation, we prifyatise molecular dynamics and docking
(anchor-and-grow); other sampling approaches rextudsed in this dissertation include Monte

Carlo, and genetic algorithms?’



1.4 Molecular Dynamics.

Sampling. Molecular dynamics, employing a molecular mechararce field, can be
used to study the motion of molecules given a gatittal coordinates often obtained from the
PDB. At room temperature molecules are in constatton and therefore it is critical to look at
an ensemble of structures in order to truly undesthe energetics of binding. Let the vector
F=(F,.F,,---,F,) whereF, =(x,Y,,z) specify the position of the atonin Cartesian space. The

forces on atonn can be calculated as follows:

F =-0.Eq ,(F)

i i —ff,top

a = 'Ei/mi
éﬁ = (ax,i ’ay,i 1az,i)
Vector r contains all atoms and has a lengti8Nf The force calculated here is only

concerned with atorn However, one can easily calculate the forées; (Ifl,lfz,--',lfN), and

accelerationsa = (a,,a,,---,d, ), on all atoms simultaneously.
Vi (t) = J.; & (t') dt’

x (t)= _[;Vx,i (t) at
The othery andz coordinates can likewise be calculated. The postfor all atoms are also
calculated similarly. To illustrate the atom mowerh at each time step, we show a 2-D
depiction (Figure 1-5). The dark gray circles mdwelight gray using the forces which are
calculated for each atom based on the initial pwwst(dark gray circles) of all atoms. The light

gray positions are then used as the initial passtior the next iteration.
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Figure 1-5. Two-dimension depiction of molecular dynamics. Titezative schema for propagating motion is
outlined where denotes the atom and t, the time step. The farsiag energy function), the acceleration, velesiti
and then new positions are obtained, consecutiviebrk gray circles are the initial positions oé tatoms, and light
gray are the new positions.

Velocity Verlet is a commonly-used numerical intggrn scheme for molecular
dynamics?® In the AMBER software (in the sander module)hbcity Verlet leap frog
implementation is uset:

r(t+At) =r(t)+ At vit +1/2At)
vt +1/2At) = vt - 1/2At) + Y24t aft)
Here,At is the change in time or the time step. Typicallyme step of 1-2 fs is used which is
the vibration period of a bond. The velocity Veérietegration method has the property of
conservation of enerdy, which is very important for molecular dynamics ammblecular
modeling where researchers care about energepegies .
In this dissertation, molecular dynamics is usedenerate an ensemble of structures of a

protein-ligand complex. The simulations are noanido sample large conformational changes
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but just sample about the starting coordinatescaly initiated from X-ray structures to be able
to better understand small-molecule protein int@vas.

There are many post-processing methods which atekimnalysis of molecular dynamics
trajectories including structural and energeticlggisa. In this dissertation, root-mean squared
deviation, block averaging standard errors of tie@m and autocorrelation functions are used to
evaluate simulation stability and noise (Appendix AWhen free energy calculations and
experimental affinity data show agreement (Chagteand Appendix A), decompositions of
energies (including per-residue footprint analysigly be used to explain the observed trends.

Calculating Binding Free Energies. Hydration (or solvation) is an incredibly impanta
part of binding energy due to two important factgl) biology happens in an aqueous
environment and (2) before something can bind diveasite it must displace waters. One
popular method for calculating free energy of bmgdis the Molecular Mechanics Generalized
Born Solvent Accessible Surface Area (MM-GBSA) Meth’*° Although an approximate
method, MM-GBSA has many strengths. It is a re&dyi inexpensive method, topologically
different structures can readily be compared awrdstmulations are easy to set up and run. As
discussed below (Chapter 2 and Appendix A), mobrcdlynamics simulations are often run
fully solvated in water and then the water are rnemdoand the simulation is rescored with
Generalized Born (GB) or alternatively Poisson-Bolann (PB) model¥® Both GB and PB
account for the desolvation effects and are bottligih water models. GB is an approximation
of PB and is faster to calculate and is used inkwbscussed in Chapter 2. Both methods,
however, are continuous, thus they can reprodudevirater interactions, but are not able to
account for the discrete nature of water (See @ndbtfor further discussion of MM-GBSA).

Both GB and PB account for the entropy of solvent, do not for solutes (protein and ligand).

11



The entropy of the solute is often ignored as isedm Chapters 2 and Appendix A, but the
entropy term may be calculated using normal modalyais or quasi-harmonic analysfs.
Alternative methods for calculating free energiédioding such as thermodynamic integration
or free energy perturbation use an alchemical pattalculate free energy differences between
two states. Although these alchemical methodswaak grounded in theory and are proven
accurate”>*they are more expensive, are difficult to set ng may only compare systems with
small changes.

Per-residue energy decompositionMolecular footprints are useful in gauging which
residues are most important for binding (Chaptem@ Appendix A). A footprint is the per-
residue decomposition of the through space interactnergies between receptor and ligand.
Decomposing the energetics in this way is possiille additive force fields used in this work.
Footprints are used in all of the chapters beléigure 1-6a shows a cartoon matrix of per-atom
through-space interactions: The blue square,qadre and the purple rectangles are the internal
receptor interactions, internal ligand interactiansl the intermolecular interactions respectively.
The equation representing the summed energy avecalsr-coded. The matrix illustrates the
ability to look at the decomposition of the intdrans, one can look at interactions of pairs of
atoms, or interaction of groups of atoms as is shmwthe molecular-footprint cartoon in Figure
1-6b. One may also wish to look at an interactiwatrix, the interaction of every residue with
every residue as in Appendix A. In addition, footfs can be useful for identifying like binding
ligands (Chapters 3 and 4). In the equation gufé 1-4]ig, rec, andcomp stand for the sets of
ligand, receptor, and complex atoms, respectivelgewise,Ejig, Erec, aNdEcony is the energy of
the ligand, receptor and complex, respectiveligr iS the through space or non-bonded

interactions. 4E approximates the change in energy from free gkageire 1-2, left of arrow) to

12



bound state (Figure 1-2, right of arrow). Thisrgyecan be further decomposed into per residue
components represented by vecky. resid(i) represents the set of atoms in residue i of the
protein. See the method sections in Chapters&)®4 for applications and more description of

footprints.
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Figure 1-6. (a) Matrix interaction of all atom pairs, blue fgetinternal energy of the receptor, red is therirate
energy of the ligand and purple is the through-spateractions. (b) Per-residue decompositionhef through-
space interactions.

1.5 DOCKIing.
Docking programs perform two tasks: (1) sampledibreect pose and (2) score the poses
correctly. Docking algorithms are used to placeall molecule in a protein pocket. Docking

has been described using the lock-and-key metapbearever, docking is more complicated due
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to ligand and receptor flexibility. The program D&?®**?'is the first widely used docking

program and was developed in the group of IrwirKDntz. Work described in Chapter 3 was
released as DOCK v6.5, and work in Chapter 4 angeAgdix B will be incorporated in a future
release of DOCK.

Sampling. The DOCK 4° program introduced an algorithm called anchor-gra
(A&G) for on-the-fly ligand growth in the contexf a grid (calculated from a rigid receptor).
DOCK 52 and its descendent DOCK?36oth continue to use A&G as their main ligand
sampling tool. There are alternative sampling methsuch as the hierarchical database
approact?®*® where ligand growth is pre-generated (i.e. justegated once) and can be docked
rigidly to many different targets. The conformatd pre-generation is preferred
computationally if one docks to multiple targetbatvise there is no benefit over on-the-fly
growth. On-the-fly growth is more convenient andynallow for sampling to be guided by the
scoring functions, which may result in the abilityfocus the sampling method at all levels of
growth.

The A&G algorithm is as follows: first, rigid segmis are identified (Figure 1-7a) and
the molecule is broken up in to these segmenta(€ig-7b). Then, an anchor is chosen (Figure
1-7c¢). More than one anchor can be chosen (Fityii@); the anchor list is sorted by number of
heavy atoms and number of attachment points. Aeagmay be assigned to a different layer
when an alternative anchor is chosen. For exampte different anchors are chosen in Figure
1-7 c and d, and the segments are arranged ingoslalfferently for the most part. The anchor
is then oriented into the pocket by using recepfiireres, which define a reverse image to the
pocket to limit the search space. Growth from Madénchor orients then occurs. The A&G

algorithm is a breadth-first methdd. Growth proceeds by sampling torsions of each segm
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one at a time. All nodes of the growth tree shawhRigure 1-7e placed within a grey stripe are
enumerated before proceeding to the next ste@ddiition, segments are divided into layers, all
segments in the layer are sampled before movitigetmext layer. An exponential explosion of
conformers is limited during growth by pruning addstering as indicated by the red circle

marked by an X in Figure 1-7e.

Figure 1-7. (a) Structure of Erlotinib is shown with labeledatable bonds. (b) The molecule is broken up in to
rigid segments. The definition of layers is defin€c) for the first anchor (Al); or (d) for thecemd anchor (A2).
(e) Cartoon of the growth tree is shown.

Scoring. DOCK uses a simplified molecular mechanics fdiekl as the main scoring
function, but only the intermolecular interactioneegy is calculate® DOCK does not
calculate the bond, angle or dihedral terms; howdY®CK calculates an internal energy of the
ligand, which consists of only the repulsive vam Wéaals term for DOCK 6.% in order to
prevent ligand internal clashes. The grid enesgysed during standard docking to speed up the

energy calculation®. The grid is generated by pre-computing interactias is discussed in
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more detail in Chapter 4. DOCK also has sevetalr@dtive scoring and rescoring methods.
Often it is useful to rescore docked results usimge computationally expensive methods as is
discussed in Chapter 3. Docking runs, like molacualynamics, may also be post-processed.
For example docking results might be rescored usibgrnative scoring functions to more

accurately predict binding affinities of poses alecules. An alternative rescoring method used
to identify ligands that bind similarly to a reface molecule is described in Chapter 3. In
addition chemical informatics techniques such agdiprinting may be employed for clustering

to identify chemically similar moleculé$.

1.6 Research Projects.

This dissertation describes several research psojecvolving application and
development of computational techniques with theppse of aiding in the design of improved
inhibitors for medically relevant targets (protging he project described in Chapter 2 involved
simulations of the anti-cancer target Epidermalv@noFactor Receptor (EGFR) variants bound
with three inhibitors. The purpose of the studyasunderstand origins of resistarféeln the
next project shown in Chapter 3, the Footprint &nty (FPS) rescoring function was
developed in DOCK and evaluated using pose reptayccross docking and enrichment
experimentd® An extension of the FPS method to a Grid-basedirsg function is shown in
Chapter 4. In the final chapter (Chapter 5), impddhese studies, current and related work, and
future directions are discussed. Appendixes A Bnékature work from two collaborative
projects: (A) analysis of binding of antifusionppieles targeting HIVgp41* and (B) evaluation

of DOCK®6 as an enrichment tool for virtual screeyiih
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Chapter 2. Quantitative Prediction of Fold Resistage for

Inhibitors of EGFR.

This chapter has been publishedBadius, T. E; Rizzo, R. C. Quantitative Prediction of Fold
Resistance for Inhibitors of EGFBiochemistry, 2009 48 (35), 8435-8448. Copyright © 2009

American Chemical Society. doi:10.1021/bi9007XFdID: 19627157

Author contributions. TEB and RCR designed redeaf&B performed research, analyzed data,

and wrote initial draft; TEB and RCR wrote the pape

Abstract.

Clinical use of ATP-competitive inhibitors of thepidermal growth factor receptor
(EGFR) kinase domain can lead to an acquired deggstant mutant L858R&T790M which
dramatically reduces binding affinity relative tgeevalent cancer causing mutation L858R. In
this study, we have used molecular dynamics (MDjnmater simulations, free energy
calculations (MM-GBSA method), and per-residue foioit analysis to characterize binding of
three inhibitors (erlotinib, gefitinib, and AEE78&jth wildtype EGFR and three mutants. The

goal is to characterize how variation in structwed energy correlate with changes in
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experimental activities and to deduce origins afgdresistance. For seven fold resistance
values, each computed from the difference of twdependent computer simulations, excellent
agreement was obtained with available experimedugd (f = 0.84). Importantly, the results
correctly predict that affinity will increase as rasult of L858R and decrease due to
L858R&T790M. Per-residue analysis shows an in@eadavorable packing at the site of the
methionine mutation reaffirming a steric clash hyy@sis is unlikely, however, large losses in
van der Waals, Coulombic, and H-bond interactidnsngly suggest that resistance is not due
solely to changes in affinity for the native subttr ATP as recently proposed. Instead, the
present results indicate that drug resistance ntikedy involves disruption of favorable
interactions, including a water-mediated H-bonduwoek between the ligands and residues T854,
T790, and Q791, which could have important impiaratfor guiding rational design of

inhibitors with improved resistance profiles.

2.1 Introduction.

Cancer is the second highest cause of death witi@nUnited States led by lung and
bronchial cancers for which an estimated 215,000 ¢ases and 161,000 deaths were reported in
2008° Non-small cell lung cancer (NSCLC) comprises lrgest subset of lung cancé?fsA
major oncogene that drives tumorigenesis in NSCa€well as other types of cancer, is the
membrane receptor tyrosine kinase Epidermal Gréattior Receptor (EGFR). Overexpression
of EGFR is observed in 62% of NSCLC tumdmnd its role in mediating tumor cell growth and
survival for NSCLC, as well as many other typescaficer, has been well descrif&a® The

importance of EFGR has been clinically validated within the past several years, inhibitors of
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EGFR have been approved for treatment of NSCLCcneatic, colorectal, head and neck, and
breast cancer$:>*>!

Structurally, EGFR can be divided into five distimegions: an extra-cellular ligand
binding domain, a trans-membrane domain, an irlitdae juxtamembrane domain, an
intracellular tyrosine kinase domain (TKD), and ata@ region where phosphorylation

occurs>?>?

Normally, EGFR is a monomer. However, extratdal ligand binding of
endogenous EGF (epidermal growth factor) promoiteeiiization with another protein from the
ErbB family such as EGFR (ErbB1 or HER1), ErbB2 R#E, ErbB3 (HER3), or ErbB4
(HER4)*>* The homo- or heterodimerization event inducesrgarmational shift in the TKD
from an inactive to active forff.>>°® Activation results in binding of ATP, phosphoryten,
and signal transduction through a number of dowastr pathway&>*°® Normally, signaling
activity is under tight regulatory control. Howeye&ancer causing mutations can result in
constitutive activation of EGFR. ATP-competitive inhibitors have been describedt th
preferentially bind the active or inactive confotina.>’*® The primary structural differences

between the active and inactive forms is a conftional shift in the TKD activation loop and

movement of the N-lobe helix, both of which aredtad near the ATP binding site (Figure 2-1).
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Del E746-A750

W Cancer Causing M Drug Resistance

Figure 2-1. Ribbon diagram showing EGFR complexed with the ADBRpetitive inhibitor erlotinib.
Regions which change conformation (N-lobe helix autivation loop) upon receptor activation are
shown in green. Locations of cancer causing nanati(deletion or point) which cause receptor
activation are in red. The secondary T790M drgistance mutation is shown in blue. Coordinatesfr
pdb code 1M17.

There are two classes of inhibitors of EGFR: (i) nodonal antibodies such as
Cetuximab (IMC-C225) which target the extracelluliamain and block binding of native EGF
ligand to the receptor, and (ii) small moleculestttompete with ATP in the intracellular TKD
and block activity, regardless of endogenous ligainding (Table 2-1§4°°*° Focusing on ATP
competitive inhibitors, approved small moleculeshef TKD domain include erlotinib (Tarceva,
OSI Pharmaceuticals), gefitinib (Iressa, AstraZehec and Ilapatinib (Tykerb,
GlaxoSmithKline)>* A fourth compound called AEE788 (Novartis) is itevelopment?

Although erlotinib and gefitinib primarily target@R, multi-receptor inhibition is possible
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given the high structural homology of the TKER"%%® Lapatinib is a dual inhibitor of EGFR
and ErbB2"*° and AEE788 binds EGFR, ErbB2, and the related VE&Eptor®®® Erlotinib

is label-approved for use against NSCLC and paticreancer while lapatinib is approved to
treat patients with advanced or metastatic bremster whose tumors also overexpress HER2.
Gefitinib was originally approved to treat NSCLCwWever the FDA has limited its usage given
that no significant effect on patient survival ieand>* AEE788 is being evaluated as therapy

for brain and central nervous system can8®rs.
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Table 2-1.Experimental fold resistance (FR) values for ATPapetitive inhibitors with EGFR.

Experimental Fold Resistancé

Inhibitor Structure
L858R / WT L858R&T790M / L858R G719S / WT
~N /\/O N.
° N 6.25/17.5nM >10000/ 12.5 ni¥1
/N
erlotinib “"o P 0.36 FR >800 FR -
HN
\©/ ~0.61AAGr >3.96AAGrr
O N
o~ j 2.4/35.3nM 10.9/ 2.4 nM 123.6/53.5 nM
gefitinib O(\” © A . 0.068 FR 4.54 FR 2.31FR
\©i -1.59AAGer 0.90AAGer 0.50AAGer
F
N= y 1.1/53nM 18.6 /1.1 nM 11.3/10.9nM
NH
AEE788 P - \ ¢ 0.21 FR 16.9 FR 1.04 FR
N NH
ON -0.92AAGeg 1.68AAGer 0.02AAGrg

¥ old Resistance (FR) = ratio of experimental atiisi AAGr exptl= RTIn(FR) at 298.15 K in kcal/mol’Ki values (nM) from Carey et &f. ¢ ICs, values
(nM) from Ji et af® ¢ Kd values (nM) from Yun et &f. °*Kd values (nM) from Yun et &P
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Several cancer causing mutations in EGFR have tmwmrted which map to either the

extracellular ligand binding domain (e.g. in gliasiomay*®°

or the TKD region (e.g. in
NSCLC)®"" which cause activation of EGFR independent of HiG&hd binding. For the
TKD domain, such cancer causing mutations can oatyositions L858R or G719S (point
mutations), and E746-A750 or E746-S752 (referredgcexon 19 deletion8)”* L858R and
exon 19 deletions are the most frequent mutatinnSSCLC’*"® Figure 2-1 shows the TKD
domain cancer causing mutations mapped to EGFRdn Although patients with wild type
EGFR benefit from low molecular weight inhibitogsatients whose tumors harbor activating
L858R or deletion mutations are especially resp@nso erlotinib and gefitinib treatmefit.
Interestingly, in contrast to most systems in whiohtations lead to a decrease in binding,
studies have shown that affinity is enhanced foDTigands for L858R over wild type (Table 2-
1). As these ligands bind preferentially to théivec conformation this could explain their
enhanced binding affinity toward the mutants. dmtcast, decreases in affinity for gefitinib and
AEE788 have been reported relative to wildtypetligr G719S point mutant (Table 2-1).

As with many chemotherapeutics, acquired resistaaceurrent EGFR inhibitors can
occur with continued usé. A T790M resistance-mutation is commonly obserireghatients
treated with erlotinib and gefitinib for those tureavhich also harbor the primary cancer causing
point mutation at position L858R or exon 19 delesi6' The location of T790M is shown
mapped in blue to the TKD site on EGFR in Figurg. 2As shown in Table 2-1, the double
mutant L858R&T790M shows marked decrease in inlibitwvhen compared to the active
L858R mutant alone for all three ligands. Erldtinn particular shows a large >800 fold
resistance (FR = ratio of activities). Similar @edary drug resistance mutations have been

described previously for other molecular targetextdpeutics such as Gleevec. The well-known
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BCR-ADI kinase resistance mutation at position T3i&ferred to as the "gate keeper", arises
from treatment with Gleeveé@’® The gate keeper is important in modulating saligtand
affinity for BCR-AbI inhibitors and analogous hete the point mutant in EGFR at position
T790M.

An improved understanding of the molecular deteat@s that drive ligand binding for
EGFR is critical for development of improved inthdys. Prior computational studies of this
system have included use of homology and molecutadeling’’ comparative molecular field
analysis (CoMFAY? virtual screening® and molecular dynamid$.’#88! Use of MM-PBSA
methods, similar in principle to the calculatiomsptoyed in the present chapter, were reported

I® for refinement of docked ligand poses, and by éfial®® to study the impact of

by Hou et a
point mutations on binding for gefitinib. Surpngly, there have been few all-atom molecular
dynamics studies reporting quantitative binding rgmecomparisons between theory and
experiment for ligands with EGFR. In this repavg have carried out simulations of the TKD of
EGFR in complex with three ATP-competitive inhibgao investigate the effects of clinically

relevant point mutations on ligand binding. Stgdi® address deletion mutations are in
progress. Specifically, goals of the present mtogge threefold: (i) Development of robust
guantitative computational models to study EGFR#d binding for wildtype, L858R, G719S,

and the drug resistant double mutant L858R&T790N). Determine how variation in structural

and energetic results correlate with variationeparted experimental activities. (iii) Deduce the

origins of drug resistance. Characterization of&Rhe molecular level will ultimately enable

development of next generation compounds with imgdaresistance profiles.
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2.2 Methods.
2.2.1 Binding Free Energies.

Accurate calculation of protein-ligand binding egies remains an important and
challenging problem. In this report, we employ thelecular mechanics Generalized Born
solvent accessible surface area (MM-GBSA) methfoto computationally estimate binding
free energies/Gy) for inhibitors with EGFR. Although considered lte an approximate free
energy theory, the benefits of MM-GBSA include tiela ease of set up, low computational
overhead, and systems with dissimilar topologiestimmore readily examined in comparison to
other methods such as free energy perturbatiomjeds in our laboratory employing similar
protocols to that reported here, which successfuigd MM-GBSA to study protein-ligand
binding, include HIVgp4£? neuraminidasé® and MMP-13

The method relies on the thermodynamic relationshigown in Figure 2-2 to estimate the
free energy of bindingAGy, calcd/exptl) which occurs in the condensed phaBee computed
free energy of binding is estimated as the sum afbonded gas-phasé(g.y interactions
modulated by the overall change in hydration freergy QAGy, for the complexation
event?®*® The hydration term accounts for important desidvapenalties, which include
changes in entropy due to the hydrophobic efféwt bccur as a result of unbound solvated
species coming together to form a complex. Addélderms to include estimates for changes in
solute entropy were not included in the preserdystu

A molecular dynamics trajectory of each proteiratig complex is performed in explicit
solvent with system energies, as well as root-nssprare-deviations (rmsd), being monitored
for stability and convergence. For MM-GBSA anadyshe explicit solvent is stripped off and

coordinates are separated into three individuatispgcomplex, receptor, and ligand) with eqs
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2-1 to 2-3 being used to compute the total bindiffmity.>*° The relevant individual energy
terms include van der Waalf\H.u), Coulombic QEcou), polar QGpoa), and non-polar
(AGnonpola)  conNtributions.  Generalized Borm\Gpoa) and solvent accessible surface area

(AGnonpolay Calculations are used to estimateyq for each individual specids.

—

L AG,,

¢ AG hyd-rec ¢ AG hyd-lig

""{ AG calcd/exptl
+ g -

Figure 2-2. Schematic representation of the thermodynamic aystxl to calculate free energies of bindiaG{
calcd) for comparison with experimem@, exptl). The cycle highlights the relationship wetn AG, exptl
occurring in condensed phase with the free enefgyteraction in the gas-phas&Gg,9 modulated by three terms
representing the free energy of hydratidG(,q) for the transfer from vacuum to water for eachasate species
(com=complex, rec=receptor, lig=ligand).

AGb exptl = AGb CalCd = AGgas + AG hyd-com - (AG hyd-rec + AGhyd—lig ) (2'1)
AGgas = AEvdw + AEcouI (2-2)
AGhyd-species: AGpolar + AGnonpolar (2'3)
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2.2.2 Interaction Signatures: Molecular Footprints.

To identify important binding site residues andreleterize how interactions may change
as a result of mutation, structural and energetitenular "footprints” were computed for each
MD trajectory. Footprints represent the per-residacomposition of interactions, averaged over
the production simulations, between each EGFR uwesahd the inhibitors. Our laboratory has
successfully used such footprints to deduce origfresistance conferred by a R292K mutation
for sialic acid-based inhibitors of neuraminid&$@nd to show that the hydrophobic pocket
region on HIVgp41l is an important drug target $itemodulating binding affinity? Separate
footprints for Coulombic and van der Waals eneag/well as hydrogen bonds were computed.
Difference footprints were also computed, usinguitssfrom the L858R&T790M- L858R
simulations, and represent the change in energyl@onds) at each residue due to mutation.

System Setups: A single set of receptor coordinates (pdb code IW3of EGFR in the
active form, was used as the basis for construatioall simulation setups. All solvent was
removed from the 1M17 structure and only the TKIEGFR (defined as a.a. numbers 710-983)
were retained. Initial geometries for ligands ®nid, gefitinib, and AEE788, were obtained
from 1M17>8 2ITY,® and 2J6M° pdb codes, respectively and placed into the madit7
reference frame through alignment of receptor backbatoms in common with each pdb.
Mutant forms of EGFR (L858R, L858R&T790M, and G7)19%ere obtained through manual
modification of 1M17 to the desired residue(s).arfng rotameric states for modified side
chains were made using energetic packing consideratibject to visual inspection to ensure
there were no intermolecular clashes as a resuttafel building. The MO¥ program was
used for initial preparation of ligand (mol2 formand receptor (pdb format) files for subsequent

processing. The AMBERS program moduleseap and antechamber were used to assemble,
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solvate (10 A buffer), and assign force-field pagtens for each complex consisting of
FF99SB?® (protein), TIP3 (solvent), and GAFE (ligand). For the ligands, partial atomic
charges were obtained at the HF/6-31G*//HF/6-31&l of theory via the Chelp&method
using Gaussian98. All ligands were modeled as having a net zeragga Unless otherwise
stated system setups employed default input paesmédr each program. The size of the
complete model was 274 receptor residues plusigaed residue solvated in a TIP3P periodic
solvent box of ca. size 77 x 89 x 78 dontaining ca. 14,050 waters.

2.2.3 Simulation Protocols.

A nine step equilibration protocol, consisting dfiod energy minimizations and
molecular dynamics (MD), was used to eliminate anfavorable interactions which may have
occurred as a result of model building and to geadljust the starting structure to the molecular
mechanics force field prior to production MD. Hgaatoms of the complex were initially
restrained to the crystallographic coordinates gisinharmonic restraint force constant of 5
kcal/mol A2 with water molecules and hydrogen atoms free tovamduring 1000 steps of
steepest decent energy minimization (step 1). Babtlsequent equilibration step used the last
set of coordinates from the previous step as tewaiat reference structure. Next, the same
restraint mask and coefficient were used for 50psID in which waters and hydrogens were
further able to adjust (step 2). This was followgdthree minimizations of 1000 steps each in
which the restraints were reduced from 2, to 010.05 kcal/mol A respectively (steps 3-5).
Three additional MD runs of 50ps were run whereghts were reduced from 1 to 0.5 (steps 6-
7) followed by 0.1 kcal/mol A(step 8) with only backbone receptor atoms at C, and N
being restrained in the latter step. The finalsSBID equilibration step used the 0.1 kcal/mél A

receptor backbone weight, but only the last theesdues on each N- and C-terminus were
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restrained (step 9). Production MD employed threesaveak restraints as the final equilibration
step and was extended to 5ns with the restraieteete updated every ns. A time step of 1fs
was used for equilibration and increased to 2fspfoduction MD which concurrently required
use of the SHAKE? algorithm. Coordinates for post processing weneed every 1ps. Long
range electrostatics were computed using the pariesh Ewald (PMES with a real-space cut
off of 8 A. A constant temperature of 298.15 K amdssure of 1 bar was maintained during the
simulations through Berendsen schethesith heat bath coupling and pressure relaxatiome i

constants of 1.0 ps. These calculations empldyed\MBER8sander module.

2.2.4 Analysis.

Binding free energies, fold resistance, and mokacidotprints were obtained from post-
processing of each protein-ligand complex MD trigec  All waters were removed unless
otherwise stated. Individual snapshots (N=5000yewsplit into coordinates representing
separate ligand, receptor and complex and singhe palculations usingander were performed
to obtain the energy termaKcou, AEvaw, AGpolan AGnonpola) Used to compute free energies of
binding (Figure 2-2, egs 2-1 to 2-3). As in preisly reported studies from our laborat8fy*,
the GB model implemented into AMBERS described byffiev et al® (type igh=5) was used
to estimate polar energieAGpoa) With mbondi2 radii and dielectric constants oadd 78.5.
Nonpolar energiesAGnonpola) Were obtained from solvent accessible surfaca aedculations
via AGnonpolar= Y SASA + 3 using standard constantsyof 0.00542 kcal/mol Aandp = 0.92
kcal/mol*®®® GBSA calculations for molecules containing flueriand chlorine employed radii
of 1.50 A (F) and 1.70 A (CI) which required modéition to the AMBERS distribution file

src/sander/mdread.f. In-house scripts were usedotopute the per-residue decomposition
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(molecular footprints) for intermolecular H-bond3pulombic, and van der Waals interactions
for which the sum over all the EGFR residues isieient to the total value (i.AEcou, AEyqw,
H-bond). Hydrogen bonds were defined as a strakinteraction between three atomg-Mp--
--Xa With a distance less than or equal to 2.5 A argleahetween 120 and 180 degrees. The
NAMD program?’ was used to compute and gauge the importance ofhighly populated
waters involved in a network of water-mediated tigaH-bonds through calculation of the
pairwise Coulombic and van der Waals energies lmtviee waters (2} = species 1) and the
interactions partners (T790/M790, Q791, T854, gaid = species 2).

For the analysis of fold resistance (FR), the expental free energies are estimated as
AAGerexptl= RT In(FR) at 298.15 K using FR ratios in Table.2{lshould be emphasized that
FR is defined as the ratio of two activities (mutaridtype) thus it is important that both
measurements be made under the same conditions whimlly implies that data be obtained
from the same laboratory to minimize artifacts hsg from different experimental protocols
(i.e. assay conditions). Computationally, foldisence energieMAGer calcd) are defined as
the difference in predicted free energies of bigdfrom two independent simulations (e.g.

AG,gssr — AGwr) as obtained in each case via eqs 2-1 to 2-3.

2.3 Results and Discussion.
2.3.1 Simulation Stability.

To assess the behavior of the MD simulations, and gdhg robustness of results,
structural root-mean-square-deviations (rmsds)system energies were examined as a function
of time. As demonstrated in Figure 2-3 which ipresentative, simulations of erlotinib

complexed with EGFR for wild type, L858R, and L8B3R/'90M show reasonable stability in
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plots for the estimated free energies of bindiAGy calcd) and for rmsds. Block-smoothed
energies (black line) indicate good behavior whemputed from the running average of the
previous 100 instantaneous snapshot energies fgiays) as shown in Figure 2-3 left. On the
right in Figure 2-3 are shown instantaneous rmsdges for the EGFR backbone at,(C, N,
and O (blue line), erlotinib heavy atoms (greem)ijrand erlotinib quinazoline ring atoms (red
line). Here, the reported rmsd values are obtaaftmt each individual snapshot is fit to the first
frame of the production MD runs using receptor Iiackbone atoms as the match criteria. Thus,
rmsd values for the ligands reflect variation inthbanternal geometry as well as rigid body
movement relative to the protein. At some pointthie trajectories, erlotinib reveals larger than
expected rmsd values (> 2 A) which could be of eondFigure 2-3, green lines). However,
examination of rmsds for only the central fusedruinazoline scaffold (see Table 2-1) shows
much lower values (Figure 2-3, red lines) whichigatks erlotinib remains anchored in the
binding pocket and it is only the solvent expodedilble r-groups extending off the quinazoline
ring which fluctuate significantly. Other simulatis behave similarly, with gefitinib (4-
aminoquinazoline) and AEE788 (pyrrolopyrimidinepBolds showing less movement than the
overall ligand. In all cases, rmsds results fer iaceptor backbone are well behaved and low (<

2 A) which additionally indicate robust simulatibehavior (Figure 2-3, blue lines).
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Figure 2-3. Fluctuations in computed free energies of bindifi@,calcd) and root-mean-square-deviation (rmsd)
for erlotinib with wild type EGFR (panels a and O858R (panels b and e) and L858R&T790M (paneladfavs
time. Left panels show instantaneous energiey @pés) and block-running averages over 100 fratbkesk line).
Right panels show rmsds for receptor backbone (bhed, ligand (green line), and ligand quinazoliseaffold
atoms (red line).

2.3.2 Comparison with Crystallographic Structures.

Only a single crystallographic structtftef active form EGFR (pdb code 1M17) was
available at the time of our initial mutant setups erlotinib. All subsequent simulations
employed the same set of protein coordinates @ilyimerived for this ligand. However, other
EGFR structures, including those with several o tmutations studied here, have been
reported®*®® To structurally compare the theoretical and expental results, as well as assess
computer sampling during the simulations, evenlgcg MD snapshots were individually fit to
available crystallographic structures again usimgb@ckbone atoms as the match criteria. As
shown in Figure 2-4 for three representative sitiuta, sampling of ligand positions is

consistent with the experimentally observed confdroms. And as expected, solvent exposed
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regions of the ligands visually show greater moveintiean for scaffolds which is in agreement
with the rmsd results plotted in Figure 2-3 (parcel® f). Notably, Figure 2-4 highlights how
key crystallographic positions of important sidaosancluding G719 (or S719 mutant), T854,
L858, T790 (or M790 mutant), and M793 are well-sledpuring the simulations and consistent
with experiment. An anomaly is a difference in théameric states sampled for L858R vs the
crystal structure (Figure 2-4b, blue line). Hdiee MD simulations sample a solvent exposed
Arg conformation as opposed to an intramoleculabaded as seen in the crystal structure.
Although longer MD simulations might be requiredsample the experimental L858R rotamer,
since both conformations appear to be physicalygoaable, an alternative would be to begin
simulations using crystallographic coordinates 8b68R instead of those based on the 1M17
models. However, available EGFR structures of IEB38utants show disorder in the residue
range spanning 867-875. Additionally, the actmatioop region in these structures (defined as
855 to 876)° adopts a unique conformation which is dependertherchoice of crystallographic
buffer conditions® Thus, given the considerable ambiguity in howntodel nine missing
residues (a.a. 867-875) into an unknown activabop conformation, we have elected to retain
the models originally constructed using 1M17 camtag the complete loop. As described
below, the good agreement between computationaégperimental activities obtained using the
1M17-derived coordinates suggests these are relsisomdels to study EGFR-ligand binding

in the kinase active form.
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¥ Gr19 L858

Figure 2-4. Representative snapshots from MD simulations a@filds with EGFR showing side-chain sampling of
key residues (thin lines, N=10 each) vs crystalipgic conformations (bold lines) for erlotinib (ghda), gefitinib
(panel 4b), and AEE788 (panel 4c). Pdbcodes fored=1M17 (erlotinib with wildtype), blue=2ITY (§j&nib
with wildtype), green=2J6M (AEE788 with wildtype).Pdbcodes for 4b: blue=2ITZ (gefitinib with L858R),
green=2JIU (AEE with T790M). Pdbcodes for 4c: BIRE O (gefitinib with G719S), green=2ITP (AEE788tvi
G719S).

2.3.3 Correlation with Experimental Fold Resistance

Overall, the computational results are stronglyrelated with the experimental fold
resistance values as shown in Table 2-2 and gralphotted in Figure 2-5. Calculated values
represent average quantities obtained over 500GMIpshots. Low standard errors of the mean
(sem) indicate the energetic results are converdéatably, the computational results correctly
predict that affinity is always enhanced (negatVGer values) for all three ligands with the
cancer causing L858R EGFR mutation relative to tyild (Table 2-2 columns E vs F). Further,
results for the drug resistant double mutant (L&&BROOM) correctly predict that decreases
(positive AAGer values) will occur in binding relative to L858Roak (Table 2-2 columns E vs
F). Compellingly, the magnitudes for the energeti@nges which occur across the inhibitor
series in Table 2-2 are in excellent agreement aufteriment. For example, results for erlotinib
(AAGpr calcd = 3.30 VRAAGkr exptl > 3.96 kcal/mol) and AEE78&AGkr calcd = 2.40 vs
AAGer exptl = 1.68 kcal/mol) both show much larger cotagional and experimental FR values
for the double mutant relative to gefitinibnXGgr calcd = 0.27 VAAGgr exptl = 0.90 kcal/mol)

which is less affected. Despite the fact that gtmeulations correctly predict AEE788 to bind
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more tightly to L858R, a minor discrepancy is timeproper rank ordering for L858RVT
relative to gefitinib. In terms of sign, the salatlier in Table 2-2 is for AEE788 for which the
G719S/WT fold resistance yields essentially no gekc change experimentally but our
calculations show enhanced affinity. Interestinglyprediction for the effect of G719S on
binding of erlotinib also shows enhanced affinitalle 2-2). FR calculations for gefitinib with
G719S yield the correct experimental trend. Desphe one outlier, there is excellent accord
overall, and a linear fit between the data poihtsis a strong correlation coefficient &f 0.84
(Figure 2-5, Table 2-2) which indicates the simolag well reproduce trends in the experimental

FR energies.
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Table 2-2.

Experimental versus calculated Fold ftasce (FR) energieA4Grr) and energy components for ligands with

EGFR.
inhibitor AAEvdw AAEcoul AAGpolar AAGnonpolar AAGFR calcd AAGFR EXpﬂ
A B C D E =(A+B+C+D) F

L858R - WT

erlotinib  -0.86 +0.06 -0.34 +0.13 0.21+0.11 0.06 = 0.003 -0.97 £ 0.07 -0.61

gefitinib  -0.99+0.06 -0.72+0.07 —0.58 + 0.06 -0.01 +0.004 -2.30 + 0.07 -1.59

AEE788 -2.41+0.06 -0.48+0.07 0.36 £ 0.06 -0.30 £ 0.005 -2.84 £ 0.06 -0.92

L858R&T790M - L858R

erlotinib 2.30+£0.06 7.42+0.11 -6.56+0.10 0.09 £ 0.003 3.30£0.06 >3.96

gefitinib  -0.10 £+0.05 -0.06 + 0.07 0.49 + 0.06 -0.06 + 0.004 0.27 £ 0.06 0.90

AEE788 3.39+0.07 3.15+0.09 -4.33+0.07 0.20 £ 0.004 2.40+0.08 1.68
G719S-WT

erlotinib  -2.08+0.06 -0.05+0.12 -0.24+0.11 0.04 £ 0.003 -2.38 £0.07 not reported

gefitinib 0.74+£0.07 -0.85+0.07 1.59 +0.07 0.04 +£0.004 1.50 +0.08 0.50

AEE788 -0.65+0.06 -0.78+0.06 0.55+0.05 0.08 +0.005 -0.81 £ 0.07 0.02

r?= 0.70 0.47 0.19 0.30 0.84 7 data pdints

®AAGe calcd derived from the difference of two indepartdgimulations (eg L858R WT) computed using egs 2-1 to 2-
3. PAAGk exptl values from Table 2-1. Correlations coédiits (f values) obtained from fitting the change in each
energy component 8AGgr exptl. All energies in kcal/mol + standard esrof the mean from 5000 MD snapshots.
°Data point for erlotinib with double mutant (>3.98)cluded from?¥calculations given ambiguity in the experimental
ANAGrr measurement.
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Figure 2-5. Predicted FR energied4Grr calcd) vs experimental FR energidgd\Grr exptl) for inhibitors with
EGFR. Each point is the difference between reduis two independent MD simulations (16 simulatidotal)
from 5000 MD snapshots each. Data point for eribtivith double mutant (>3.96) excluded frofncalculations
given ambiguity in the experimentAhAGrr measurement.

Examination of the individual terms which compris&Ggr calcd along with calculation
of correlation coefficients fivalues) for each term withAGer exptl was done to pinpoint which
term(s) best explain experimental variation andsthesistance. It should be noted that due to
ambiguities in the experimental FR measurementeftatinib with the double mutant (>3.96
kcal/mol, Table 2-2) all fittings excluded this datoint. For L858R relative to wildtype EGFR,
all three inhibitors show more favorable van deraand Coulombic interactions which lead to
an overall stronger computé&lGer in agreement with experiment (Table 2-2 columnanil
B). For the drug resistant mutant (L858R&T796NL858R), the most dramatic losses observed
experimentally correlate with the large computessés in van der Waals and Coulombic energy
for erlotinib AAGrr > 3.96,AAE,qy = 2.30,AAE¢, = 7.42 kcal/mol) and AEE78@\\Grr =
1.68, AAE, g = 3.39,AAEq, = 3.15 kcal/mol). For gefitinib with the doubleutant the less

deleterious effect on bindind\MGrr = 0.90 kcal/mol) appears to be solely from chaniges
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desolvation fAGy.ar = 0.49 kcal/mol) given the minor changes computethe other terms
(AAEcoy= —0.06,AAE 4w —0.10 kcal/mol). For the G719S mutation relativevitultype, binding
losses for gefitinib again appear to be a resulharieased desolvatioAGyor = 1.59 kcal/mol)
as any gains computed in Coulombic energy are toffgeeduction in steric packinfEcou =
—0.85 VSAAE, 4w = 0.74 kcal/mol). For AEE788 with G719S, the poesly noted disagreement
between computed and experimental affinities fag thata point renders component analysis
here indeterminate. Affinity for erlotinib with G®S is predicted to be enhanced primarily as a
result of increased van der Waals interactions.

Notably, the most correlated term in Table 2-2 veiperiment is foAAGeg calcd (F =
0.84) indicating that for these systems a balarfcenergetic terms is most important for
describing changes in FR. Of the individual congus, changes in van der Waals energy
(AAE g4y I* = 0.70) show the largestvalue followed by CoulombidMAE.y I* = 0.47), nonpolar
AAGnonpolar(F° = 0.30), and polar desolvation energi®AGposr = 0.19). The lowTvalue of 0.04
obtained for the sum &AE.,, andAAGr VS experiment suggests that steric packing prgbabl
contributes more to variation in FR as opposedhanges in solvent mediated electrostatics.
Interestingly, visually plotting changes in energymponents VAAGgr exptl reveals grouped
data in theAAE.,, plot which do not appear to lie on the trend ling fit of this cluster alone
leads to an even poorer correlation (Figure 2-Geheld line). In contrast, Figure 2-6b shows
how changes IMMAE,q, are more closely associated with changeAAGerr across the entire

dataset.
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Figure 2-6. Predicted changes in CoulombiAAE.., panel a) and van der WaalAAE.q, panel b) energy
components versus experimental fold resistanceggn@&N\Ggr exptl) for inhibitors with EGFR. Data point for

erlotinib with double mutant (>3.96) excluded framcalculations given ambiguity in the experimemGgr
measurement.

2.3.4 Energetics of Binding: What Drives Associatiu?

To further characterize how terms contribute toeuolar recognition, results from the
underlying free energy of bindind\G,) used to determinAAGrr were examined (Table 2-3).
Overall, inhibitor binding appears to be most sglgndriven by van der Waals interactions.
Values for AE.y, are always less favorable th&t,q, and not sufficient to overcome the
competing unfavorable polar desolvation termSGg.) Which suggests steric packing
dominates association. For the EGFR variants etijdgefitinib shows strongeAE, g
interactions relative to either erlotinib or AEE788 plot of AE,qw VS AG, exptl highlights the
separation between gefitinib and AEE788 and aduhlly shows how changes in van der Waals
interactions may track for individual ligands (Figw2-7). Although the combined correlation
with AGy exptl is poor AE,q I = 0.004), van der Waals energies for gefitind=r0.83) or

AEE788 (f = 0.82) when plotted separately show strong caiicel with experiment (Figure 2-

7).
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Table 2-3. Absolute free energies and componerdrdposition for inhibitors with EGFR.

system AE,qw AE oy AGpoiar AG onpolar AG,, calcd AG, exptlf Hbond
A B C D E=A+B+C+D F G
erlotinib
wildtype -49.01 £ 0.04 -24.71+0.09 39.73+0.08 -6.05+0.002 -39.69+0.05 -10.58 1.82
L858R -49.86 + 0.04 -25.04 +0.09 39.94 +0.07 -5.99 +0.002 -40.66+0.05 -11.19 2.17
L858R&T790M -47.57 +0.05 -17.62 +0.07 33.38+0.06 -5.89 +0.002 -37.36+0.04 >-6.87 0.99
G719S -51.09 + 0.04 -24.76 +0.08 39.49 £0.07 -6.01 +0.003 -42.07 +0.05 not reported 1.95
gefitinib
wildtype -53.50 +0.05 -14.02+0.05 28.80+0.04 -6.30 +0.003 -45.01+0.06 -10.17 1.16
L858R -54.49 +0.04 -14.74+0.04 28.22+0.04 -6.31+0.003 -47.32+0.05 -11.76 1.24
L858R&T790M -54.59 + 0.04 -14.80 +0.05 28.71+0.05 -6.37 +0.003 -47.05+0.05 -10.86 1.05
G719S -52.76 +0.04 -14.87 +0.06 30.39+0.05 -6.26 +0.002 -43.51 +0.05 -9.4% 1.08
AEE788
wildtype -50.08 £ 0.05 -21.77 +0.04 31.97+0.03 -5.93+0.004 -45.81+0.05 -11.29 2.02
L858R -52.49+0.04 -22.26 +0.06 32.33+0.05 -6.24 +0.003 -48.65+0.04 -12.22 2.19
L858R&T790M -49.10 + 0.06 -19.11 +0.07 28.00+0.05 -6.03 + 0.003 -46.25 +0.07 -10.5% 2.48
G719S -50.73+0.04 -22.56+0.04 32.52+0.03 -5.85+0.003 -46.62+0.04 -10.86 1.99

NG, exptl= RTIn(activities) at 298.15 K in kcal/mol’Ki values (nM) from Carey et &f. ©ICs, values (nM) from Ji et &°
9Kd values (nM) from Yun et & °Kd values (nM) from Yun et &
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Figure 2-7. Correlation of the van der Waals energ¥ ) component witlAG, exptl. Energies in kcal/mol.

Despite the importance of steric packing, elecaticst in this system appear to play
critical roles in mediating affinity. For exampldifferences in intermolecular H-bonding, as
illustrated graphically in Figure 2-8, likely coittute to enhanced Coulombic interactions for
AEE788 and erlotinib relative to gefitinib (Table32column B). Average number of H-bonds
(Table 2-3 column G) shows 2.02 interactions forEXB8 with wildtype EGFR followed by
erlotinib at 1.82 and gefitinib at 1.16. All thehibitors show highly populated and significant
H-bonding with the backbone amide hydrogen at mosiM793. A second interaction at M793
for AEE788 largely accounts for the greater numifeH-bond relative to the other inhibitors
(Figure 2-8). For erlotinib, an additional signdnt H-bond is observed between the backbone at
C797 and a terminal O atom for which the otherbitbrs have no spatial equivalent (Figure 2-
8). A less populated yet quantifiable interactionerlotinib includes a unique pi-type H-bond
made between the ligand’s para-alkyne and T790@®HRtype interactions for erlotinib were
counted by simply defining the centroid of the alkyC= C bond as an H-bond acceptor.
Interestingly, the unique H-bond acceptor in enlitstiis replaced by a spatially analogous

interaction in gefitinib between the meta-chlorare T790@OH. AEE788 also shows a weak
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H-bond at position T790 although this was only obse in the simulation of L858R. Here, a
slightly different positioning of AEE788 in the loiimg pocket relative to the other inhibitors

allows for a third H-bond with the pyrrolopyrimidirscaffold (Figure 2-8).

erlotinib
C797

gefitinib AEE788

T790
T790

M793

Figure 2-8. Primary H-bonding (dashed lines) interactions fdnibitors with EGFR.
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Figure 2-9. Comparison of per-residue H-bond footprints footnib (red), gefitinib (blue), and AEE788 (green)
with wildtype (panel a), L858R (panel b), LB58R&TOM (panel c), and G719S (panel d) EGFR variants G000
MD shapshots).
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2.3.5 Origins of Resistance.

In order to gauge the relative importance that i§jgpeamino acids may contribute to
binding, the number of intermolecular H-bonds, den Waals energy, and Coulombic energy
were computed on a per-residue basis. Examinatbrid-bond footprint plots (Figure 2-9)
show consistency in overall shape from simulationsimulation which provides additional
support that results obtained from averaging 50@ fkdmes are converged and well-behaved.
As an example, greater number of H-bonds are demsig obtained for AEE788 (2 key scaffold
H-bonds) versus other inhibitors (1 key scaffoldétid) across the various simulations (Figures
2-8 and 2-9). Although L858R&T790 does not appeaaffect the number of H-bonds at this
key backbone position, the resistant mutant cleegbults in abolishment of weaker H-bond
interactions for all inhibitors at the site of thé90 mutation relative to L858R or wildtype alone
(Figure 2-9c vs 2-9a,b). In addition, for erlobinthe more significant H-bond at position C797
is also lost as a result of the double mutant (fed49c vs 2-9b, red line). Here, the loss at C797
is the result of only a slight shift in the bindimpcket, otherwise, erlotinib appears well
accommodated in the double mutant (Figure 2-10he Similarity in binding obtained here
between L858R&T790M vs L858R suggests a sterichctaechanism of resistance is unlikely
and consistent with recent crystallographic evigefrom Yun et af’ (see discussion below).
Although no clear reason was identified, the sligisteases in H-bonding computed at position
C797 for erlotinib with the single mutants in Figu2-9 relative to wildtype may contribute to
both the experimental (L858R) and predicted (G71l@8)ease in affinity for this compound

(Table 2-2).
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L858R L858R&T790M overlay
simulations simulations

Figure 2-10. Comparison of erlotinib binding poses (N=100) fr&fGFR simulations for L858R (left, red),
L858R&T790M (middle, green), and overlaid (red vean). Intermolecular H-bonds at position C797vahdn
purple (N=5000).

Energetic footprints representing van der Waals@odlombic per-residue contributions
were also plotted to quantify changes as a reduttreg resistant EGFR relative to L858R.
Focusing in on the key residues, Figure 2-11 shitvescontiguous region between Q787 and
N808 (shaded) and residues for which favorableracteons are computed to be ca. > 1
kcal/mol. Again, the strong similarity in the geamleshape of the footprints, as well as the
similar magnitudes imME,qy at specific positions (i.e. L718, A743, K745, T790°92, L845
(Figure 2-11a) suggest that the computational tesale sensitive enough to highlight both

regions with conserved interaction as well as ceftifferences which may proves useful in

understanding affinity.
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Figure 2-11. Per-residue footprints for inhibitors with EGFR foancer causing (L858R, panels a-b) and drug
resistance (L858R&T790M, panels c-d) variants frameduced set of amino acids in the contiguouser&g87-
N808 (shaded region) or for which any ligand shas> 1 kcal/mol.

Consistent with the H-bond patterns described guigs 2-8 and 2-9, in which ligands
show high population of H-bonds between M793 areddéntral scaffolds, the most favorable
AE¢,, interactions for all ligands occur with residue 987 (Figure 2-11b). As before, the
strongest interactions are computed for AEE78BL(5 kcal/mol, green line) versus gefitinib
(-5.1 kcal/mol, blue line) or erlotinib—8.9 kcal/mol, red line) which mirrors the fact that

AEE788's scaffold makes two H-bonds versus ondhferother inhibitors (Figure 2-8). Less

45



populated, but "standard" H-bonds between T790AHE788, and C797 and erlotinib are also
visible in theAE.q footprints but as expected are weaker than thakeM793 (ca.-1 to-1.5
kcal/mol). The more unique erlotinib (pi-type), gefitinib (chlorine-type) interactions with
T790 depicted in Figure 8 are not readily appatanthe AE.o, footprints but instead are
presumably reflected in the favoraldl&,q,, energies which occur at this position (Figure 2-11
vs 2-11b).

Examination of difference footprintsAQAE,qw and AAE.,) computed from the
L858R&T790M — L858R breakdowns show that erlotinib and AEE788elcsignificant
interactions, on a residue-by-residue basis, assaltrof the deleterious mutation relative to
L858R (Figure 2-11c-d). In contrast, and in agreemwith the fact that gefitinib is
experimentally the least affected by the resistangtation, theAAE.,, footprint is flatter, shows
no overall reduction in total Coulombic energy (IeaB-2), and changes on a per-residue basis
show negligible losses at all positions (Figure 1&1blue line). A prior study from our
laboratory of neuraminidase inhibitors also reveadleat the most robust compound had an
overall flatterAAEo, and AH-bond profile®® The most significanAAE., energy losses (ca >
+1kcal/mol) occur for erlotinib (Figure 2-11d, réde) at positions C797 and D800, and for
AEE788 at positions T790M and D800 (Figure 2-1lckeg line). Losses iAAEg, for
erlotinib at position C797 are expected to be ailtesf the previously described H-bond
disruption (Figures 2-8 to 2-10). For AEE788, fignificant loss iMAE.q, at T790M is likely
due in part to disruption of the third H-bond wilie pyrrolopyrimidine scaffold as a result of the
resistance mutation (Figures 2-8 and 2-9). Nagttborward structural explanation was found
to explain reductions iAAE.,, at position D800 for erlotinib or AEE788 but asclaarged

residue this could be a long-range and nonspegifect. For AEE788 with the double mutant,
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increases IMAE.,, at position H805 (Figure 2-11c) are traceablyhe formation of a new
piperazine ring H-bond (Figure 2-8, 2-9c). Howewdespite the fact that gains in interaction
energy occur at this position, changes overalAE.,, and AAE,q, for AEE788 are still
unfavorable (Table 2-2).

Prior studies by Daub et &.and Kobayashi et af.hypothesized that a steric clash was
the likely mechanism of drug resistance for T790Mnd Liu et al*® reported MD simulation
results of gefitinib with either T790M or L858R&TEM which led to "ligand escape from the
binding pocket" which could also be consistent vatlsteric clash. However, a recent study
reported by Yun et & suggests this is not a likely mechanism as a gstair structure of
AEE788 with a T790M single mutant shows essentitllly same binding pose as wildtype.
Results from the present study similarly suggest #hthreonine / methionine swap in the double
mutant will not result in a steric clash given thatidtype, L858R, and L858R&T790M
simulations show an overall consistent binding p@$gure 2-10). In addition, an examination
of the van der Waals difference footprindg\E,q,) shows that for all inhibitors a methionine at
position 790 is energetically accommodated in tloekpt and steric packing interactions
localized to this position in fact become more falde as a result of the double mutation
(Figure 2-11c). Increased packing as a result7®0M is physically reasonable and occurs as a
result of the hydrophilic to hydrophobic substituti Although other van der Waals changes are
less readily explained, the H805 increase with ABE€oincides with the previously noted
piperazine H-bond. Compellingly, erlotinib (posits F795, G796, D800) and AEE788
(positions K745, 1789, D800) show significant losse AAE,q, in contrast to gefitinib, which

likely contributes to these compounds being mofecédd by the double mutations (Figure 2-

11c).
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2.3.6 Water Mediated Interactions.

Examination of the underlying explicit solvent THRRBID trajectories, used subsequently
for continuum-based free energy calculations, regeavater molecules which appear to be
important for positioning of ligands in the bindipgcket. High water occupancy is observed at
two primary positions, termed site 1 (S1) and 2i{&2), as shown in Figure 2-12a for erlotinib
with L858R and the double mutant, which are repregere. Figure 2-12b quantifies S1 and S2
populations for all six inhibitor simulations witlverages = total count/5000 frames. Site waters
were defined as present if a water hydrogen walsinvi2.5 A of each ligand's relevant nitrogen
acceptor (S1) or residue Q791 at O (S2). Impdstathe MD simulations reproduce the
crystallographically observed water at S1 forigkhds>®®> The water at both sites are observed
in the crystal structure of AEE788 with EGFR (2J6M)For all ligands with L858R (Figure 2-
12b left), waters are present 50-90% at S1 and >80%2 which indicates these are long lived
significant interactions. As shown in Figure 2-12eese waters are involved in a quadrifurcated
H-bonding network involving the ligands with thraearby residues (T790, Q791, and T854),
including the site of the known drug resistance atioh T790M. Notably, in all cases,

occupancy at S1 and S2 is reduced as a results8R&T790 (Figure 2-12b right).
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Figure 2-12. Water-mediate H-bonds for inhibitors with EGFR {@58R (left) and L858R&T790M (right). 12a
visually shows population of waters at site 1 ($dnge) and site 2 (S2 blue) over all 5000 simutaframes for
representative erlotinib simulations. Site watgfined if water hydrogens are within 2.5 angstrahsach ligand
at N* (S1) or residue Q791 at O (S2). 12b showsfiothree inhibitors the average number (cour@§tof waters
at S1 and S2. 12c shows for all three inhibitbes average pairwise Coulombic interaction enerpetgveen the
two waters closest to each ligand at N* with resglli790 (or M790), Q791, T854, and the ligands.

As an alternative metric, energy calculations réeaorable Coulombic interactions

between pocket waters and amino acids in the H-lb@tdork including the ligands (Figure 2-

12c left). Here, the two waters closest to eagand at N* (Figure 2-12a left) were used define

key pocket waters. Interestingly the L858R&T790Mtamt leads to changes in bridging water

interactions with each ligand that roughly mirreends in the experimental FR data with

erlotinib AAE.ou = +1.7 kcal/mol) and AEE78&\AE.. = +1.5 kcal/mol) both being adversely

affected compared to gefitinidAE.,, = —1.1 kcal/mol).
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between these waters and residue 790 (Figure 2idl&¢ are similarly reduced as a result of the
double mutant, particularly for erlotinib (red haand thus expected to lead to weaker protein-
ligand binding. Further, despite the fact that sowater-mediated H-bonding with M790 is
observed, an overall weaker network would be exgaedtie to the fact that sulfur is a weaker H-
bond acceptor than oxygé®. Overall, the energetic description (Figure 2-1Bckonsistent
with the reduced population counts (Figure 2-12lmgesting weaker interactions in the drug
resistant mutant.

H-bonding between quinazoline-based inhibitors lainding site waters were previously
predicted by Wissner et &l.and Hou et af® although interestingly the two studies came to
different conclusions as to whether residue T854T'680 was involved. Here, calculations
indicate that both T854 and T790 residues makefgignt water-mediated ligand interactions.
Stamos et a® noted the T790 bridging water in the erlotinib-BGErystal structure, but
suggested it was not significant citing data regpoity Rewcastle et & in which only a minor
effect on affinity was seen for related ligands whthe H-bond acceptor was substituted for
carbon. However, examination of the original ati¢ (see Rewcastle et al., Table 2-1,
compounds 15 vs 20 ) show > 5000 fold loss betvesampounds that differ only by a nitrogen
at the T790 acceptor position which suggests themia in fact important”* And, a recent
docking study by Cavasotto et’alnotes that inclusion of this bridging water wasessary to
correctly reproduce the binding pose of the EGHibitor AG1478.

In conjunction with their proposed steric clash haism, Kobayashi et &.also
hypothesized that disruption of water-mediated inigdvould be a factor in resistance. For the
water-mediated interactions at Q791 (Figure 2-it®),H-bonds primarily involve the backbone

carbonyl oxygen thus any alteration of sidechainshes site would be expected to be less
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detrimental, particularly since there is littleatit van der Waals contact or favorable Coulombic
interactions with the ligand at Q791. However, fiulation results strongly suggest that a
mutation at position T854 would disrupt the quadcated network and, in a manner analogous
to T790, disrupt water-mediated ligand binding. isThypothesis is consistent with results
recently reported by Bean et'8f.in which a novel T854A resistance mutation washiified
from a patient with reduced affinity for erlotinibA combination of mutations involving T790
and T854, if biologically viable, would likely leaw further disruption of the H-bond network
involving inhibitors and an increase in unfavoraféd resistance. While our current studies
cannot rule out the recent hypothesis by Yun &t #lat T790M resistance is caused primarily
by increased affinity for ATP, based on the presamiulations, it is reasonable to propose that
disruption of water-mediated H-bond networks inwadv the inhibitors (Figure 2-12) is a
contributing factor. Additionally, given the fatttat our calculations yield quantitative energetic
agreement with experiment, yet involve only intobst and EGFR (and not ATP), strongly
suggests that differences in affinity for ATP a the sole cause of experimentally observed
drug resistance. Additional studies are neededdie fully address this issue.

An examination of the network shown in Figure 2-@licates the possibility of
designing alternative H-bonding involving residue&54, T790, and Q791. EGFR inhibitors
based on a 4,6-dianilinopyrimidine scaffold haverbeeported® which are proposed to make
direct H-bonds with both M793 and T790. However,eapected, the T790M mutant showed
resistance against a representative compound isetties presumably due to the loss of a direct
H-bond between the pyrimidine N3 and the OH attpmsi790. Wissner et &l.has reported an
inhibitor in which the bridging nitrogen atom waeplaced by a cyano group and proposed to

displace the site 1 water. However, the cyano @amg was also proposed to make a direct H-
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bond with T854 thus the recently reported T854A atiah would likely lead to a loss in

binding. An alternative strategy to address rasist, provided that sufficient specificity could
be achieved, would be the design of inhibitors vaitlditional protein backbone H-bonds (direct
or water mediated). In any event, due to the @itedly favorable process of displacing bound

waters®

analogs which replace the water-mediated intevastseen here may show enhanced
affinity. Alternative binding patterns are likellg result in unique resistance profiles which may

prove useful.

2.4 Conclusions.

In this study, all-atom explicit solvent moleculdynamics followed by free energy
calculations were employed to compute fold resttaenergies for three ATP-competitive
inhibitors (erlotinib, gefitinib, and AEE788) witbpidermal growth factor receptor (EGFR) for
wildtype, and L858R, G719S, and L858R&T790M mutantdie primary purpose of this study
was development of robust quantitative computatior@dels to compute EGFR-ligand binding,
characterize how variation in structural and engcgesults correlate with variation in reported
experimental activities, and determine origins nfgdresistance. System stability and overall
convergence of results was carefully monitored ugho comparisons with crystallographic
structures (Figure 2-4), and by plotting instantarse and running block averages for free
energies of binding and root-mean-square deviat{eigure 2-3). Fluctuations in energy and
structure show the simulations are well-behavednparable with other studies from our
laboratory??®* and low standard errors of the mean (Tables 2e22aB) indicate the results are

reasonably converged.
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Notably, computed fold resistance energies, whagrasent a ratio of activities and are
obtained from the difference in results of two ipdedent MD simulations, show excellent
agreement with available experimental dafa=r0.84). Importantly, the magnitudes of the
experimental and theoretical FR results are sinfilable 2-2, Figure 2-5). For all inhibitors, the
simulations correctly predict that affinity for EQFwill increase as a result of the cancer causing
L858R mutation relative to wildtype and decreasa assult of a drug resistant double mutant
(L858R&T790M) relative to L858R (Table 2-2 columiisvs F). Affinity predictions for
gefitinib with a second cancer causing mutationpasition G719S also yield the correct
experimental trend. The sole outlier in the stuslyffor AEE788 with G719S in which the
computational results incorrectly predict the miotato be slightly favorable (Table 2-2).

Decomposition of the contributing componentsAGrg, and the underlying absolute
AGy, values used to compute FR, reveal modest gaifes/orable van der Waals and Coulombic
energies for all three inhibitors as a result & ¢ncer causing mutation L858R and large losses
for erlotinib and AEE788 for the drug resistancaildle mutant L858R&T790M (Table 2-2).
Losses for gefitinib appear to be a result of iasezl desolvation penalties. Values&&q. are
computed to be more favorable than oth&, calcd terms (Table 2-3), which suggest that steric
packing is the dominant driving force for assooiati In general, van der Waals interactions are
stronger for gefitinib relative to other compourasd changes iAE,q, track especially well
with AG, exptl for gefitinib and AEE788 (Figure 2-7). R&a AAE,q, energies are modestly
correlated witlAAGgr across the series (Figure 2-6b).

Despite the obvious importance of van der Waalsigeithe simulation results indicate
that electrostatic interactions are critical foegficity and correct positioning of ligands in the

ATP binding pocket (Figures 2-8, 2-9, and 2-11)xamination of per-residue H-bonding and

53



Coulombic energy reveal changes at key amino aetiish are important for understanding
origins of fold resistance (Figures 2-9 to 2-1Two highly populated H-bonds for AEE788, and
one for erlotinib and gefitinib, are observed betwenhibitors and the EGFR backbone at
position M793 (Figures 2-8 and 2-9). Coulombicrggeootprints (Figures 2-11) mirror the H-
bond trends with M793 showing stronger interactemmergies formed with AEE788-11.5
kcal/mol) versus gefitinib<5.1 kcal/mol) or erlotinib+<3.9 kcal/mol). The resistance mutation
L858R&T790 does not change interactions localizet793, however, all inhibitors lose a less
populated H-bond at the site of the T790 mutatieigure 2-9 panels b vs ¢). Losses at 790 are
traced to unique H-bonds (Figures 2-8 and 2-9) linng the acetylene group of erlotinib (pi-
type), and a chlorine atom in the case of gefitif@blorine-type). For erlotinib, the loss of an
additional H-bond at position C797 leads to an aWeeduction £1.18 H-bonds) which likely
contributes to the larger FR energy compared vhighdther inhibitors (gefininb0.19 H-bonds,
AEEG688 +0.29 H-bonds).

The simulations additionally reveal a significardtwiork of water-mediated H-bonds
involving a spatially equivalent nitrogen atom @ctle inhibitor, residues T854, T790, Q791, and
two bridging waters which become disrupted as alredg the L858R&T790M drug resistance
mutation (Figure 2-12a,b). The bridging water®iactt favorably with residues in the binding
pocket and the double mutation leads to reducedo@taic energies, especially for erlotinib and
gefitinib (Figure 2-12c), and reduced overall ocaugy (Figure 2-12b). The calculations
suggest that resistance likely involves changesater-mediated H-bonds, in contrast to prior
reports, which hypothesize that EGFR resistancerisarily a function of either a steric
clasi®*involving methionine 790 or due to increased éffifor the native substrate ATP. In

agreement with recent crystallographic evidetigeer-residue footprint calculations (Figure 2-
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11c) and structural analysis (Figure 2-10) revaabfable van der Waals energies with T790M
which indicates a steric clash mechanism of rastgtdas unlikely. Finally, while increased
affinity for ATP** may be a contributor to resistance, the presenitsesuggest that disruption
of favorable interactions, including changes in ¢tbing, are likely to be as important and thus
should be considered when designing next-generatiorpounds.

The growing problem of drug resistance, arisingrfrdinical use of EGFR molecular
targeted therapeutics, highlights the need forinaetl studies to elucidate how binding affinity
is modulated by mutations and how ligands couldnbedified to circumvent deleterious
changes. The present study has participated gethiens through calculation of fold resistance
energies for inhibitors of EGFR which show quatitita agreement with experiment thereby
providing a framework to probe origins of resisencThe simulations correctly predict the
effects of the L858R cancer causing mutation aedl868R&T790 drug resistance mutant for
three inhibitors. Residue-based structural andgatie analysis was used to identify how key
sidechains are involved in binding, how water moles mediate affinity through an intricate
network of H-bonding, and how interactions change aesult of the mutations. Similar to the
growing arsenal of antivirals required to effeclyveombat HIV, design of multiple kinase

inhibitors is likely to be an important long tertnagegy to address issues of drug resistance.
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Chapter 3. Implementation and Evaluation of a Dockg-

Rescoring Method using Molecular Footprint Compari®ns.

This chapter has been publishedBadius, T. E, Mukherjee, S.; Rizzo, R. C. Implementation
and Evaluation of a Docking-Rescoring Method usMglecular Footprint Comparisons,
Comput. Chem., 2011 32 (10), 2273-2289. Copyright © 2011, Wiley Peri@ds; Inc. doi:

10.1002/jcc.21814 PMID: 21541962

Author contributions. TEB, SM, and RCR designedesrch; TEB contributed new
computational tool, analyzed data and wrote initiedft; TEB and RCR wrote the paper with

assistance from SM.

Abstract.

A docking-rescoring method, based on per-residueder Waals (VDW), electrostatic (ES),
or hydrogen bond (HB) energies has been developedid discovery of ligands that have
interaction signatures with a target (footprintgyikar to that of a reference. Biologically useful
references could include known drugs, inhibitotdstrates, transition states, or side-chains that

mediate protein-protein interactions. Termed faatpsimilarity (FPS) score, the method, as
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implemented in the program DOCK, was validated afdhracterized using: (1) pose
identification, (2) crossdocking, (3) enrichmenidg4) virtual screening. Improvements in pose
identification (6-12%) were obtained using footptrased (FP@w+es) Vs standard DOCK
(DCEpw+es) scoring as evaluated on three large datasets{68Gystems) from the SB2010
database. Enhanced pose identification was alsereéd using FPS (45.4% or 70.9%)
compared with DCE (17.8%) methods to rank challeggcrossdocking ensembles from
carbonic anhydrase. Enrichment tests, for threeesentative systems, revealed filRGes
scoring Yyields significant early fold enrichmenttire top 10% of ranked databases. For EGFR,
top FPS poses are nicely accommodated in the nlateenvelope defined by the reference in
comparison with DCE which yields distinct moleculaeight bias towards larger molecules.
Results from a representative virtual screen oflcaiillion compounds additionally illustrate
how ligands with footprints similar to a known ibkior can readily be identified from within
large commercially available databases. By prongjdin alternative way to rank ligand poses in
a simple yet directed manner we anticipate that $&8ng will be a useful tool for docking and

structure-based design.

3.1 Introduction.

A primary role of a docking program is as a virtsgreening tool to help identify
biologically active compounds’ Binding geometries (termed poses) are predicieddndidate
ligands with a target and metrics such as interoudée interaction energy are used to identify
(via rank-ordering) the best scoring molecules.usltdocking programs can be thought of as
filters, through which large databases (on the rofemillions) may be passed, to isolate

property-enriched subsets for further evaluatfBri® To evaluate the accuracy of programs and
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protocolst®’ two main experiments termed pose identificdfieand database enrichm&fitare
used. To assess pose identification accuracytatiygraphic ligand-receptor complexes are
used as controls to determine if the docking pnmgean reproduce the correct ligand geometry
(typically < 2 A rmsd) and whether that pose is ranked Besto assess database enrichment
(Appendix B), a group of active ligands (affinity the target has been confirmed) is seeded into
a large group of decoy molecules (no affinity te target is presumed) to determine if the rank-
ordered list of molecules (active and inactives) wontain, with high probability, the known
binders among the more favorably scored list elesigh

Programs such as DOCR? often use a physics-based energy function congisif
electrostatic (Coulombic) and steric (van der Waasms with the total sum of pairwise
intermolecular interactions being used as the b#sisrank-ordering. Alternatively, rank-
ordering methods could employ known binding deteates (i.e. pharmacophores) to help
identify compounds that interact with a target isp&cific way which is not solely based on an
energetic sum. This study explores the utility using residue-based decompositions of
electrostatic, steric, and hydrogen bonding intiewas to derive 2-D pharmacophores (termed
here as molecular footprints) as shown schematigalFigure 3-1. In general, a footprint may
be thought of as a unique interaction signaturevéen any two species. Further, as the sum of
the residue-based contributions is equal to theativeotal interaction energy, the breakdown
enables identification of the amino acids which kkely to be most important for molecular

recognition.
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Figure 3-1. Representative molecular footprints for (a) ayrigand, (b) a single ligand with two confornoats,
and (c) two different ligands derived from per-dem decomposition of the intermolecular van der M/aa
interactions as a function of primary sequence.r ta@ footprints, similarity may be quantified ugifPearson
correlation coefficientr), Euclidean distancel), or related measures. For clarity only a poridrihe footprints
are shown.

Footprints consist of a string of residue numbe&msch with an associated intensity
(Figure 3-1a), thus the correspondence betweernvamgtrings can easily be quantified (Figure
3-1b-c) using familiar metrics such as Pearsonetation or Euclidean distance. Comparisons
can be between two conformations of the same miglé€igure 3-1b) or between two different
ligands (Figure 3-1c). Termed here footprint samily (FPS) score, several potentially useful
applications for virtual screening are envisionethwhe general focus being identification of
small organic molecules that score highly in corgmer to a known reference compound. The
footprint comparison shown in Figure 3-1c is betwalee FDA approved drug erlotinib (red
pose) and an experimental kinase inhibitor (greesep Table 3-1 lists possible sources of
reference footprints including those derived froknawn drug or inhibitor, a native substrate or
cofactor, a transition state, or key side chaindciwhmediate protein-protein interactions.
Footprints can be manually modified, to decreaseitportance a given side-chain prone to
mutate may have in molecular recognition, whichldassist identification of compounds with

enhanced resistance profiles. Finally, use of mbse or average-weighted footprints, derived
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from multiple crystal structures or molecular dynesfMonte Carlo simulations, could be used

to account for receptor flexibility.

Table 3-1. Examples of possible reference types to derive oubde footprints.

Reference Types Description
Known inhibitor FDA-approved drug or experimentathibitor validated to bind
Natural substrate Native peptide or cofactor
Transition state Predicted transition state geonfetra chemical reaction
Key functionality/substructure (side-chain medigtprotein-protein
Modified structure interactions)
Modified entries to increase/decrease importanczlgfct residues (resistance
Text file footprint mutations)
Ensemble-weighted Averaged footprints derived fidBYMC simulations

Our laborator§? 448283

and other$°*?have successfully used footprint-like methods in
the context of molecular dynamics and Monte Canmoutations to help identify key residues
involved in molecular recognition (also discussadGhapters 2 and Appendix A). Related
approaches have also been reported for use in mpackith the distinction that these have
typically employed binary bit-string representasioftermed interaction fingerprintsj*?3
instead of energy-based decompositions as used Bgecifically, Deng et &f= introduced the
SIFt method which employs a Tanimoto metric to cataghe similarity between two bit strings
derived from the presence or absence of sevemastien types occurring at a given residue.
The SIFt method and various extensiohs®***have been shown to be useful for identifying
native ligand poses, protein-family clustering,atitse enrichment, and library design. Other
bit-string related procedures have also been regbt*'’ 12122 For example, Pfeffer et &°
has recently reported a method based on a per-giantitioning of the scoring function
DrugScor&®P, which was shown to yield improved results forgaentification and enrichment

compared with several other methods tested.
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A long term goal of our laboratory is the developmef method and protocols to
increase the accuracy of docking methods usedrinaViscreening. The primary objectives of
this work are to: (i) introduce and test methodsdmpute footprint similarity (FPS) scores as
implemented into the program DOGCK(ii) evaluatepose identification accuracyusing the
recently reported SB2010database developed in our laboratory, (i) anaratterizedatabase
enrichment properties using representative systems from th®¥ database. It should be
emphasized that this is a post-processing techrfmumolecules already docked and is simply
an alternative method which facilitates re-rankygfootprint similarity. It is also important to
note that FPS scoring makes use of the underlyrygips-based energy function in DOCK and
involves no additional parameterization beyond tised in any standard molecular mechanics

force field.

3.2 Theoretical Methods.
3.2.1 Footprint Comparisons.

Footprint similarity (FPS) scores in this work #&walt from three scoring descriptors: van
der Waals energies (VDW), Coulombic energies scdlgda distance dependent dielectric
constant (ES), and hydrogen bond energies (HBns@usus scores based on two (fgRSes =
FPSpw + FPSs) or three (FP®w:es+is = FPSpw + FPSs + FPS$i) terms were also
evaluated. The general schematic for computing B&8es is shown in Figure 3-2. The
procedure involves setting up the system for DOGH#cdations, preparation of a reference
molecule, and generation of candidate poses (seg@ational Details section). It is important
to note footprints are decompositions in Cartespace, thus Cartesian energy minimizations

are recommended for both the crystallographic esfeg and candidate poses. A footprint is
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defined as a vectox = [xl,---,xN] whereN is the number of residues in the receptoransi the

interaction energy between tHeresidue and the ligand. To quantify the likenessveen two
footprint vectorsx and y, four different methods for computing similarityere evaluated:
standard Euclidean Distance, normalized Euclidestabce, standard Pearson Correlation, and
threshold Pearson Correlation. It should be empédghat the different comparison methods
and combinations produce FPS scores with differanges as summarized in Table 3-2 and

described further below.

Target + reference + ligand library

______ L

i reference prep i{_““a&ki_n_g"““i

| e M R
S S
| Cartesian energy | | Cartesian energy |
| minimizationof | | minimization of |
! reference | 1 docked pose(s) |

Footprint similarity (FPS) scores

Figure 3-2. Flow chart outlining footprint similarity calculatn protocol.

Table 2-2. Comparison methods and corresponding ranges fgprfiabsimilarity (FPS) scores.

Range$
Comparison Method FPS,ow, FPSs, FPSs FPS/bw-es FPS/pw+es+HB
Standard Euclideand) [ 0,0) [ 0,0) [ 0,0)
Normalized Euclidean d{q) [ 0,2] [ 0,4] [ 0,6]
Standard Pearsorr)( [-1,1] [-2,2] [-3,3]
Threshold Pearsor yes) [-1,1] [-2,2] [-3,3]

*The most favorable score possible for each methodderlined.
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Standard Euclidean distana#) (nakes use of the distance formuth<{,/> (x -v,)?)

to quantify differences between two footprint vesto The metric compares interaction
signatures in terms of the absolute magnitudesraoguat each residue position. Alternatively,

a normalized Euclidean distana®{m) may be computed by using normalized footprintteesc
(X=%/|x|, Y=9/|¥|). Here, the normalization procedure yields umbtprint vectors

resulting in relative, as opposed to absolute, mages being compared. Thus, normalized
Euclidean distance may be thought of as a genesakure of shape overlap. As illustrated in
Figure 3-3, for a single type of footprint (VDW, E& HB), standard Euclidean distance maps

from O to infinity while normalized Euclidean distze maps from 0 to 2 (Table 3-2).

Figure 3-3. Schematic depiction of standard (thin) versusmadized (thick) footprint vectors (X, y). The
maximum distance between normalized vectors oruttiecircle is 2 while the distance between staddasctors
can be infinite.
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Similarity measures based on the standard Pearsomrelation -coefficient
(r =cov(X, y)/,/var(i) var(y) ) were also evaluated. Somewhat similar to nozedlEuclidean

distance, the standard Pearson metric quantifiregasity based on the relative magnitudes of
each interaction. As a fourth alternative, thrédhmased Pearson correlation coefficiemige,)
were also computed using a reduced set of residoesisting of only the most significant
interactions. In this case, a user-defined thresi® employed and the union of the two
footprints (reference and candidate pose) is useehforce that an identical set of residues is
used in the calculation. Interactions here werdughed when the absolute valgethreshold
which for VDW, ES, and HB footprints was set t0,100L, and 0.5 kcal/mol, respectively. For a
single type of footprint, both standard and thrégtiearson coefficients map from -1 to 1 (Table
3-2). It is important to note the distinction inmenclature between "threshold" which may be
used to determine which residues are most imporagak therefore to be included in a threshold-
based footprint, from a "score cutoff’ (as desdileelow) which may be used to identify

footprint(s) with strong similarity.

3.2.2 Pose Identification.

As illustrated in Figure 3-4, two key tests werepéoyed to characterize the utility of
using footprint-based methods for structure-based) dlesign. The first test (Figure 3-4a)
involves examining the ability of footprint methotts correctly identify crystallographically
determined binding geometries out of a set of decoylere, a score cutoff (i.e. correlation or
distance value) is employed to classify whetheriveerg pose will be predicted positive or
predicted negative (Figure 3-4a, green region).d&®rmine if predictions are actually positive

or negative (Figure 3-4a, red region) the commamhployed< 2.0 A rmsd criteria is used to
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assess if the pose is similar to that in the erpemial complex. The results can also be
classified into four quadrants (Figure 3-4a, blegion) representing (I) true positives (predicted
positive && positive), (Il) false positives (preded positive && negative), (lll) true negatives
(predicted negative && negative), and (IV) falsegaBves (predicted negative && positive).
The sum of the components in each of the diffecemdred regions will be equal (positive +
negative results = predicted positive + predictedative results = true positive + false positive +

true negative + false negative results).

population <

population <
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T T
Negative I : 111 Negative I : 111
5 high False 1 True o E inactive False 1 True
o & T rmsd Positive : Negative a g decoys Positive : Negative
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e low True : False ° active True : False
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Figure 3-4. Partitioning of outcome space (positive or negatiesults, red region) as a function of prediction
(predicted positive or predicted negative, greegiom® into four quadrants (blue region) represent{(h) true
positives, (Il) false positives, (lll) true negas; and (1V) false negatives for (a) pose ideratfan and (b) database
enrichment definitions of success. Gray coloraddirepresent hypothetical data.

As a specific example, if a Euclidean-based foatmcore cutoff ok 0.3 was employed
to make a classification, a molecule with a sinitjascore which equals 0.2 would be predicted
as positive. Although the choice of score cuts#d to make prediction is somewhat arbitrary it
should also be chosen with care. For examplepadfih a more generous cutoff could be used to

improve the number of true positives, as descriether below, there is the risk that the
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number of false positives may also increase. Agemeral rule the goal is to maximize the
number of true positives and true negatives whiiaimmzing the false positives and false

negatives as is illustrated by the hypotheticah dgathe graphic (Figure 3-4a, gray data).

3.2.3 Database Enrichment.

The second key test (Figure 3-4b) involves assgstie ability of footprint-based
scoring to predict whether a given compound wiltdaiological activity (yes or no definition).
From a virtual screening standpoint, if active iida can be statistically scored better than
inactive ligands (termed database enrichment), thek-ordering of candidate ligands based on
score provides a mechanism for focusing on only iest promising compounds. Using
databases such as DU;'°® consisting of known active ligands seeded intargd group of
decoys, scoring accuracy (Figure 3-4b, red reg@gauged by comparing the number of active
and inactive compounds (Figure 3-4b green regioadlipted to be in a given percentage of the
database. As illustrated by the hypothetical datéhe graphic, (Figure 3-4b gray lines) the
scoring function should ideally separate activénastive molecules when viewed as histograms.
As before, if a score cutoff is applied, the resgtin be classified into four quadrants (Figure 3-
4b, blue region). However, as the actual positind negative regions (Figure 3-3b, red region)
are binary (yes/no activity); each sub-region cmsteonly a single value representing the
number of actual actives or decoys.

The amount of enrichment a given method providesugerandom prediction is often
gauged through use of receiver operator charatite(ROC) curve¥* which plot the true
positive rate (true positives / positives) verdus false positive rate (false positives / negajives

In conjunction with calculation of the area undss turves (AUC), both ROC and AUC metrics
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can be used to identify which classifiers are sigaitly better than random. For example, a
truly random classifier will have an ROC with slopel and an AUC of 0.5 while a scoring
function which is good at separating positives froegatives will yield a steep early rise in the
ROC curve with a corresponding AUC much closer.@ IThe amount of fold enrichment (FE)
in any given region of the database (typically fingt 1-10%) may also be of interest and is
defined here by taking the AUC for the range oéiast normalized by the area expected from a
random classifier (FE = AUC / AUGuon. See Appendix B for additional discussion of

enrichment studies as an evaluation tool.

3.3 Computational Details.
3.3.2 Pose Identification Datasets.

Candidate binding geometries to quantify pose ifleation success rates were derived
from the SB2010 database recently reported by Migé@et al** and interested readers should
consult the manuscript for specifics regarding pgmeand ligand structure preparation steps and
docking protocols. Briefly, three distinct sampglimethods were used to generate ensembles of
poses, for each of the 780 protein-ligand complereSB2010, containing potentially correct
ligand binding geometries as well as numerous loergy decoys. The rigid (RGD) protocol
attempts to rigidly place and optimize the knowmpermental pose back into the binding site
through sampling the six degrees of rigid bodygfation and rotation. The fixed anchor (FAD)
protocol tests re-growth of a molecule startingrfrorystallographic ligand scaffold positions.
The flexible (FLX) protocol employs the DOCK anckard-grow algorithn?®*® which involves
orienting of ligand scaffolds (anchors) into thending site followed by flexible conformer

growth. A top-first clustering proceddfé® was used to prune away redundant structures
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during orientation and growth (FAD, FLX) and at fireal stage of ranking (RGD, FAD, FLX).
The retained group, termed clusterheads, eachseqréhe lowest energy pose identified among
geometrically related structures (< 2 A) sampledrduthe docking. Use of clusterheads helps
to ensure diversity in the ensemble when retaiaingduced set of top-scoring poses.

For the three datasets (RGD, FAD, FLX) the 50 tpked clusterheads for each system
were energy minimized and rank-ordered on the pro€artesian coordinates using 1000
iterations of simplex optimization with DOCK®6.4.0help enforce that the original grid-based
and subsequent Cartesian space poses would remalar safter an energy minimization, an
rmsd-based harmonic tether was used to restrain pase to the original input coordinates
(force constant k = 10 kcal / mol®A As shown in Figure 3-5a, most, but not all SB20
systems have at least 50 clusterheads. Figureebbthe lowest-rmsd pose identified, relative
to the experimental ligand geometry, after energwimization of the original grid-based
ensembles (clusterheads). The number of systeffgime 3-5b to the left of the 2 A rmsd line
for each sampling protocol (RGD=775, FAD=748, FL®8% constitutes perfect sampling
subsets, with associated ensembles (RGD = 38,58D, # 19,073, and FLX = 26,830), and
these subsets were employed in the pose ideniifiicagxperiments described below.
Importantly, use of perfect sampling subsets erssthat at least one pose for each system is
close to the experimental pose which is an appatgrata group to use for tests designed to

evaluate scoring (not sampling) accuracy.
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(a) Ligand pose ensembles (b) Best rmsd clusterhead (c) Reference optimization
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Figure 3-5. Database preparation histograms. (a) Populaifosystems with a given number of clusterheads
(max=50) derived from Cartesian space minimizatiohgrid-based results reported by Mukherjee €f a(b)
Population of systems with a given rmsd using ahéysingle lowest-rmsd pose found among the ensedailjoses
retained. The portion to the left of the dashaed kt 2 A rmsd constitutes perfect sampling sudsetRGD=775),
fixed-anchor (FAD=748), and flexible (FLX=680) ligd sampling. (c) Population of ligand rmsds fdierence
poses after polar hydrogen optimizations usingetinergy grids (black line) and subsequent energymizations in
Cartesian space (purple line) using a harmonieteth

3.3.2 Database Enrichment Datasets.

For the enrichment testsystems were taken from the directory of usefubgieDUD)
databasé®'®® Three systems were evaluated, (i) neuraminiffadie code 1A4G¥° consisting
of 1,874 decoys and 49 actives, (i) trypsin (pdbe 1BJUY*® consisting of 1,664 decoys and
49 actives, and (i) EGFR (pdb code 1M¥7gonsisting of 15,996 decoys and 475 actives.
Decoy and active ligands were used as originallwyrdoaded from DUD (default protonation
states and partial atomic charges). Docking seftgzeptor preparation, energy grids, docking
spheres, etc) were taken from SB21@ith the native cognate ligands from each pdbyentr
used as the footprint reference (zanamivir from GAbenzamidine derivative from 1BJU, and
erlotinib from 1M17). Docking calculations emplayedentical grid-based FLX protocols
described by Mukherjee et &lwith the exception that the single best scoringepwas retained
for subsequent Cartesian-based energy minimizgtisrdescribed above) followed by footprint

rescoring. Enrichment was evaluated by plottimgaard ROC curves.

69



3.3.3 Footprint Reference Preparation.

Initial testing revealed that in some cases foatpriand thus FPS scores, could be
sensitive to placement of hydrogen atoms. Perhapsurprisingly, sensitivity appeared to be
most pronounced for electrostatic (ES) and hydrdgerd (HB) interactions involving charged
moieties. To reduce variability as a result of-sptimal hydrogen rotamers in molecules used
as the reference, an optimization procedure wa®ldped in which growth routines in the
DOCK®6.4 program were co-opted for sampling pel@H, -SH and-NH groups deemed most
susceptible. The procedure uses a modified DOEKildle definition file (flex.defn) with six
angle steps sampled for each torsion at 0°, 6007,1280°, 240°, and 300° followed by
minimization. Sampling is performed using stand®@CK energy grids to achieve quick
optimization and a stiff harmonic restraint (k =000kcal / mol &) is used on ligand heavy
atoms to insure only hydrogen atoms move. Follgwsampling the most favorable pose is
minimized on the Cartesian coordinates (restramtl0 kcal / mol &) so that footprints may be
computed. It should be noted that additional hgdrooptimization is not generally necessary
for poses generated using FAD or FLX protocolsh&es—-OH, —-SH and-NH polar groups are
sampled during ligand growth procedures. Thus,rdyen optimization was only done for
molecules used as a reference. As shown in Fi§dbe the hydrogen optimization and
subsequent minimization process minimally alters #xperimental binding poses (rmsds

typically < 0.2 A) yet these structures result in better betaeference footprints.
3.3.4 Footprint Rescoring Protocols.

The modular nature of the DOCK program lends itselbe easily extended with new

scoring function§®?®’ The ability to compute footprints and footprim#arity scores was
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implemented into an inhouse version of DOCK®6.4 agwa scoring function termed "descriptor
score". Code modifications will be made availatderegistered users of DOCK through the
official UCSF distribution site (http://dock.comphicsf.edu) in the near future. FPS scores
(FPSpw, FPSs, FPSis or any combination thereof) may be calculated vaitty of the four
comparison methods described above (standard Pedinseshold Pearson, standard Euclidean,
normalized Euclidean) using a user supplied refsgenlIf desired, users can also output a
comma separated text file consisting of a listasidue numbers with associated energies for the
reference and candidate poses which facilitatgshieal plotting of the footprints. Importantly,
the FPS rescoring procedure is relatively fast. aAsexample, grid-based docking of 15,996
molecules to EGFR using the DUD subset with FLXt@crols takes ca 159 seconds per
molecule on single 3.2Mhz Pentium IV cpu. Energpimization in Cartesian space takes an
additional ca 17 seconds per molecule followed B Bcoring which takes ca 0.13 seconds per
molecule. Thus, compared to the time requirediéxible docking the additional costs to obtain

FPS scores are minimal.

3.4 Results and Discussion.
3.4.1 Footprint Similarity (FPS) vs DOCK CartesianEnergy (DCE) Scores for Pose
Identification.

Table 3-3 shows pose identification results usiR& Br DCE scoring criteria to choose a
"top pose" from among the RGD (N =775), FAD (N=74&)d FLX (N=680) perfect sampling
subsets (Figure 3-5b) from the SB2010 datagsee Methods). Ideally this top pose should
match the crystal structure with a low heavy atonsd. Here, use of perfect sampling subsets

ensure that at least one pose for each systemfétiwithin 2 A rmsd of the crystal structure.
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Other poses (> 2 A rmsd) in each system ensemigerg=3-5b) may be thought of as decoys.
For a given protocol, percent success is the tmtaveen the number of systems with top poses
correctly identified and the total number in thefpet sampling subset (e.g. in Table 3-3 the top
right most entry is 80.9% = 627 identified / 775gble x 100). For each of the three subsets
(RGD, FAD, and FLX) the standard Pearson, stan@ardidean, normalized Euclidean, and
threshold Pearson methods were used to computgriitiosimilarities (FPS) scores using
footprints representing VDW, ES, VDW+ES, or VDW+HS- terms. It is important to note
that no scoring cutoff (i.e. above/below a certBPS value) was employed in choosing top
scoring poses for the results presented in Talde Bor each system, the best scoring pose was

always retained even if the FPS score relativleéa¢ference was poor.
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Table 3-3. Pose identification success using Footprint siritif (FPS) vs DOCK Cartesian energy (DCE) methimds

rescore rigid (RGD), fixed anchor (FAD) and flexaligand (FLX) pose ensembles.

Li FPS Standard FPS Standard FPS Threshold FPS Normalized DCE
Row igand Pearson Euclidean Pearson Euclidean
Ensemble
A B () D E
VDW+ES
1 RGD 691 (89.29%) 718 (92.6%) 683 (88.1%) 707 (91.2%) 627 (80.9%)
2 FAD 642 (85.8%) 638 (85.3%) 644 (86.1%) 652 (80).2 606 (81.0%)
3 FLX 563 (82.8%) 565 (83.1%) 556 (81.8%) 574 (844 489 (71.9%)
VDW
4 RGD 687 (88.6%) 684 (88.3%) 662 (85.4%) 687 (89.6 445 (57.4%)
5 FAD 638 (85.3%) 630 (84.2%) 621 (83.0%) 638 (89.3 464 (62.0%)
6 FLX 545 (80.1%) 539 (79.3%) 525 (77.2%) 545 (86)1 309 (45.4%)
7 RGD 579 (74.7%) 583 (75.2%) 576 (74.3%) 579 (79).7 398 (51.4%)
8 FAD 601 (80.3%) 573 (76.6%) 598 (79.9%) 603 (80).6 460 (61.5%)
9 FLX 521 (76.6%) 505 (74.3%) 513 (75.4%) 522 (76)8 314 (46.2%)
VDW+ES+HB
10 RGD 670 (86.5%) 726 (93.7%) 590 (76.1%) 6854%8. 633 (81.7%)
11 FAD 621 (83.0%) 643 (86.0%) 590 (78.9%) 63253%4). 606 (81.0%)
12 FLX 557 (81.9%) 564 (82.9%) 501 (73.7%) 561 %8R2) 492 (72.4%)

2Number of molecules in which the pose identifiecswa A from the x-tal structure pose followed by segs rates in
parenthesis. Pose ensembles (RGD = 775, FAD =F48; 680) derived from docking runs reported byk¥erjee et

al®
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It should be emphasized that the results in Tat8eoBly test scoring and not sampling.
Thus, the VDW+ES values (rows 1 to 3 column E)D&E,pw+es (RGD=80.9%, FAD=81.0%,
FLX=71.9%) are representative of the accuracy & #tandard DOCK scoring function.
Importantly, these results are similar to thoseorel by Mukherjee et &f. (RGD=83.5%,
FAD=81.6%, FLX=72.6%) for the analogous perfect-glng subsets suggesting excellent
correspondence between grid-based and Cartesiad-besults. With one exception (threshold
Pearson with FRBw:es++s, rows 10-12 column C) all methods and protocol3able 3-3 for
computing footprint similarity scores yield highsrccess rates than the comparable DCE scores.
Although the values for many of the tests in Tabi@ yield similar results, overall, use of the
FPSpw-+es footprint classifier with normalized Euclidean tdisce (rows 1 to 3 column D)
appears best at identifying correct poses fromiwite various ligand ensembles (RGD=91.2%,
FAD=87.2%, and FLX=84.4%). Specifically, Rp®+es increases success over comparable
DCEpw-+es scores by 10.3 %, 6.2 %, and 12.5 % for RGD, FADJ FLX respectively.
Although not directly comparable, due to differemae dataset size and/or analysis, prior studies
have also reported improvements in identificatidnnative-like poses, relative to using a
standard scoring function, using bit-string repmésgons and related methods. Interested
readers should consult studies by Singh and cowmtke'*>1*1?Kelly et al.'** Marcou et
al.**” Mpamhanga et at!® Pfeffer et al}*® Renner et al?* and Pérez-Nueno et &

Interestingly, use of a single energetic descriptddCE scores yields severely degraded
results compared to using the corresponding fautpor FPS scores (Table 3-3 columns D vs E
rows 4 to 9). For example, normalized Euclidea®s /R (80-89%) and FRS (75-81%) show
much higher success rates versus analogous,B{c #5-62%) and DCEs (46-62%) methods.

Thus, the information encoded by a single VDW orf&&print vector appears to be sufficient
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to identify native-like poses. However, tests gsinsingle HB footprint revealed that there is
insufficient information encoded due to the disereature of hydrogen bonds employed in the
present implementation (yes or no geometric dédimitvith one hydrogen bond =1 kcal/mol).

In addition, the fact that numerous poses (realemoy) make only a few, or even no hydrogen
bond interactions with a target, precludes ranleond using HB footprints alone. In any event,
use of HB in conjunction with VDW and ES footpringsnot problematic however the addition
generally decreases the success rates (Table 3\WW+H3 vs VDW+ES+HB). Surprisingly,
modifying the standard DCE scoring function to eegically account for intermolecular
hydrogen bonds yields no degradation and in facwsha slight improvement (Table 3-3

DCEvpw:+es+Hs VS DCE/pw:Ees).

3.4.2 Functional Relationships between Methods uséd Compute FPS Scores.

To more closely examine how results using two d#ifé comparison methods may be
related, Figure 3-6 shows three functional relafops (standard vs threshold Pearson, standard
vs normalized Euclidean, and standard Pearson neafiged Euclidean) derived from plotting
clusterhead ensembles for all FLX systems (N = &8Qctures x ca. 39.445 average # of
clusterheads each = 26,830 footprints). Data ddritom both ES and VDW footprint similarity
scores are shown and the results are colored bylgtam. Across all datapoints, both Pearson
methods yield results which are quantitatively famespecially when FPS scores are highly
correlated (r-values near 1) or fall within the ® 1 range (Figure 3-6a,b blue and red
populations). Interestingly, when the RB®% scores themselves become anti-correlated (r-
values< 0) there is significantly less agreement betwéwmentivo comparison methods but only

for the VDW results. In contrast, results usinghb&uclidean methods also show a strong linear
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relationship when FPS scores are nearest 0 anefohemost correlated (Figure 3-6¢,d blue and
red populations) but as the scores themselves ketEsa-correlated (values >> 0) the ca linear

relationship is lost for both VDW and ES resultsFinally, the strong relationship
(dno,mz,/zil—ri , see derivation in section 4.4.3) between stah&arson and normalized

Euclidean methods (Figure 3-6e,f) suggests bothpeoison metrics will yield very similar
results across the entire range. As noted aboR&pfy.es scoring in combination with
normalized Euclidean distance appears marginally &iepose identification. Therefore, unless
otherwise stated, and to simplify discussion inrgainder of the text, normalized Euclidean

methods in combination with FLX results will be dmagized.

VDW VDW VDW
1 2 2 500
(a) c (C) c - (e)
g 5 ® b 450
2 = 2
5 E 3
o
= T o 1 5 1 400
S max bin = 461 = g ﬁ
2 r g £ 350
= ! = . = :
" 2 max bin = 391 g max bin = 947
-1 0 0 300
-1 0 1 0 50 100 -1 0 1
standard Pearson standard Euclidean standard Pearson 250
ES ES ES
1 2 2 200
(b) c d| - . (f)
s 3 3
2 §e) s, 150
3 g g
& m i
- O o 1 o 1 100
= [0} [0}
2 N XN
[%] © ©
2 £ £ 50
max bin = 1740 max bin = 237 max bin = 840
_ 0
1 0 0
-1 0 1 0 50 100 -1 0 1
standard Pearson standard Euclidean standard Pearson

Figure 3-6. Functional relationships between footprint simtlafFPS) scores computed for van der Waals (VDW,
top) and electrostatic (ES, bottom) interactionsigiga, b) standard Pearson vs threshold Pearspd) ctandard
Euclidean vs normalized Euclidean, and (e, f) stathdPearson vs normalized Euclidean. Populatidor canges
for green = [1, 50], blue = [51, 250], and red £12500+] are derived from the total FLX ensemtl&le= 26,830
footprints.
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3.4.3 Approximate Mathematical Relationship.

The following corollary and theorem prove the apimate relationship that exists
between normalized Euclidean distance and Pearsmrel@tion Coefficient (two methods
employed to calculate the similarity for interactifmotprint vectors). The strong relationship is
demonstrated in Figure 3-6 panels e-f. This reteip is strong because the mean of the
footprint vectors is usually close to zero; howevkethe mean is not then this relationship will
be much weaker. For example for threshold basetprfimts the mean will likely not be close to

zero.
Corollary 1: if G andVv are unit vectors, thefi -V =/2{1-cod#)), wheredis the angle

betweeni and v .
Proof:

Let G4 and V be unit vectors. Then,

Therefore, |t -] = 21-cod@
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Theorem: d,, =+ 201-r) for two vector andy, whose means are close to zero, whekre,

is the normalized Euclidean distance ands the Pearson Correlation Coefficient (both
calculated between the two vectors).
Proof:

cov(X, y)

JJvar(X)+/var(y)

The correlation coefficient can also be thoughasthe cosine of the angle formed between the

mean-modulated vectosd andy” where X* :[xi —,ux] and y¥ = [yi —,uyJ, and i represents

the mean of each vector.

Xt [y# = cod6)

Note that

- codg) e X T X o
"= codO)= oo “ TR - <)

The mean of a footprint is normally close to zérwe most footprint entries are close to zero so

this is a reasonable approximation. The normalizedidian distancedqom) is defined as:

dnorm = ||)? - 17"

y

191

where y =—,andy =

Oy = AL-COSEY) ) = 21-T)
There is a relationship between the é3¥@nd normalized Euclidead.(m) by Corollary 1 and
because the angle between two vectors is the sautimatabetween their unit vectors. Therefore,

the approximate relationship is demonstrated.
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3.4.4 Predicted Positive and Predicted Negatives.

Figure 3-7 and Table 3-4 show normalized Euclidessults using the FLX-derived
dataset in terms of the three areas of partitiordegcribed in Methods (see Figure 3-4a)
comprised of (1) positive and negative regions, gdicted positive and predicted negative
regions, and (3) true positive, false positivegtnegative, and false negative quadrants. Positive
and negative regions in Figure 3-7 are shown bedow@ above, respectively, the horizontal
dashed line at 2 A in the rmsd histograms (lefath panel). From a prediction standpoint, the
predicted positives and predicted negatives infei@47 are to the left and right, respectively, of
the vertical dashed line representing a 0.6 scoteffcin the FPS score histograms (bottom of
each panel). It is important to note that the chaf a specific FPS score cutoff choice for
prediction is user defined. Table 3-4 lists resuking a 0.3, 0.6, or 0.9 score cutoff which under
these conditions appear to be reasonable choResults in each of the four quadrants in Figure
3-7a,b indicate populations which follow the calanges for green = [1, 5], blue = [6, 20], and
red = [21, 30+]. For completeness, Figure 3-7 @adle 3-4 show results both when keeping
only thebest scored pose identified for each of the 680 FLX systemsval as forall poses in

the total ensemble of FLX-derived clusterheads @8320).
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Figure 3-7. Two dimensional histograms of rmsd versus {gg$:s score for (a) the best scored poses (N=680) anthéentire ensemble derived from all
poses (N=26,830). Population color ranges formgrefl, 5], blue = [6, 20], and red = [21, 30+].

Table 2-4. FLX results scored with FRSw.es for three differing footprint similarity score affs using a 2 A rmsd to
separate positive from negative regions.

Predicted Predicted True False True False

Set Cutoff | Positive Negative | Positive Negative | Positive Positive Negative Negative
best 0.3 251 429 240 11 95 334
scored 0.6 574 106 507 173 458 49 57 116
0.9 618 62 537 81 25 37

all 0.3 295 26,535 261 34 25,831 704
posel 0.6 965 25,865 1,185 25,645 577 608 25,257 388
0.9 3,026 23,804 759 2267 23,598 206

N = 680. °N = 26,830.

80



Generally good separation is observed in Figuren8t7 higher populations appearing in
true positive and true negative quadrants relativialse positive and false negative quadrants
(population legend follows red > blue > green)edllly, the number of true positives and true
negatives should be near 100% while the numbealsé fpositives and false negatives should be
near 0%. Quantitatively, the percent values ohep@adrant, computed from the raw numbers in
Table 3-4, suggest useful predictive ability. Eaample, the best scored poses dataset using a
FPS cutoff of 0.6 yields a strong true positiveerat79.8% (458 / 574 x 100) and a relatively
strong true negative rate = 53.8%. The correspuonftiilse positive (46.2%) and false negative
(20.2%) rates are smaller as desired. At the fod$ecutoff the true positive rate substantially
increases to 93.6% however the corresponding fadsiive rate also increases (76.4%) which is
not desirable. As expected, the true negative6f@p.and false negative (6.4%) rates show a
corresponding decrease. Importantly, as disculss#ter below, a substantial number of poses
labeled here as false positive appear to be migoared. Roughly similar trends (true positive
and true negative quadrants > false positive afs® faegative quadrants) are seen using the
dataset derived from all ligand poses (Figure 3-7A) the 0.6 cutoff the true positive rate =
59.8%, the true negative rate = 97.6%, the falsatige rate = 2.3%, and the false negative rate
= 40.2%. Here, the large numbers of decoys (neggtipresent in the all poses dataset (N =
25,865) yields excellent statistics for both tregative and false positive rates. For comparison,
similar analysis based on a quadrant partitioningnsd vs score was reported by Marco €t-al.

using binary fingerprinting.

81



3.4.5 False Positive Examples.

Focusing on the best scored dataset, although olgatige FPS score cutoff from 0-6
0.9 increases the number of true positives (79-8993.6%) the number of false positives also
increases (46.2%~ 76.4%). In general, as the vertical dashed li@grasenting footprint
similarity in Figure 3-7 is shifted from left toght, greater numbers of false positives will occur.
However, while it may be acceptable in a virtualeso to discard molecules that could bind
(false negatives) as long as a sufficient numbetrug positives are retained, it is extremely
undesirable to retain non-active molecules (falgsitiyes) because molecules without activity
may be passed onto more costly testing (i.e. pgebasynthesis).

Figures 3-8 and 3-9 graphically illustrates howgsoslassified as false positive may in
fact be geometrically and chemically correct imrterof binding. Overlays of predicted (green)
versus crystallographic (red) poses are shown aldtiycorresponding FPS score, rmsd in A,
and potential sources of misclassification whichmarily involves: (i) symmetry issues with
rmsd calculations, and (ii) solvent-exposed mogetidnich do not interact with the binding site.
False positives not belonging to either of these ¢ategories appear to arise from the potentially
useful phenomena (i.e. in virtual screening) thaggs can yield similar footprints despite poor
geometric overlap and are here labeled promiscuduee group in Figure 3-8, termed type |
false positives, represents those from the best pladaset with excellent footprint overlap
(FPSpw+es< 0.3) but were classified as failures in terma @lose-to-medium geometric match
(rmsd > 2 A and < 5 A). The group in Figure 3-@nted type Il false positives, shows more
extreme cases in which ligand poses have reasofatilerint overlap ( FP@w+es < 0.6 ) but

very poor geometric matches (rmsd > 5 A). It ipdmant to note the categories used here in
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Figures 3-8 and 3-9 defining systems as solvenbsagh, promiscuous, and to a lesser extent

symmetry-related, are subject to interpretation.

11IF8 1BJU 20TY 1G53 1G48
2.22,0.15 2.04,0.17 2.34,0.20 2.36, 0.20 2.11,0.21
exposed exposed symmetry exposed symmetry,
exposed
1KTS 1RGL 1vaJ 102U 1vV2Q
2.07,0.22 2.27,0.23 2.01,0.26 3.51,0.28 4.83,0.29
exposed promiscuous symmetry exposed exposed

Aot o O

Figure 3-8. False positive examples type I. Excellent simijesicores (FPgw-es < 0.3) but classified as failures
due to a close-to-medium geometric match (rmsd& @hd < 5 A). The associated PDB code, rmsd iFRS
score, and overlay of the predicted (green) vecsystallographic (red) pose are shown for eachesyst

1H22 1HWR 3ERD 1MER 2CKM
12.32, 0.27 7.28, 0.30 7.01, 0.31 8.56, 0.32 13.08, 0.32
symmetry symmetry symmetry symmetry symmetry
1L2J 1RBO 1QB6 1EB2 1J07
6.85, 0.37 6.79, 0.40 7.48,0.42 6.01, 0.46 5.15, 0.46
symmetry partial sym. partial sym. promiscuous partial sym.
1ROB 3H1X 1HFC 1TUF 10S0
5.03, 0.49 6.66, 0.49 6.35, 0.51 7.43, 0.53 6.69, 0.56
promiscuous promiscuous promiscuous symmetry promiscuous

Yo ke v 35

Figure 3-9. False positive examples type Il. Good similaritgres (FP&w.es < 0.6) but classified as failures due
to a poor geometric match (rmsd > 5 A). The asgedi PDB code, rmsd in A, FPS score, and overlathef
predicted (green) versus crystallographic (redepoe shown for each system.
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Symmetry: Symmetric molecules or molecules containing megtvith symmetry often
produce docked candidates in which poses or fumatigroups (i.e. aromatic rings) are flipped
about an axis of symmetry. At this time, DOCK does correct for symmetry and several of
the best scored poses in Figures 3-8 and 3-9, basedsual examination, have higher than
expected rmsd values. Particularly dramatic examp@lre the two symmetric HIV protease
inhibitors IHWR (7.28 A) and 1MER (8.56 A) shown Figure 3-9 which have essentially
perfect overlap with the reference but high rmsddore extreme examples include the long
symmetric inhibitors 2CKM (13.08 A) and 1H22 (128 for which the lowest energy docked
poses are flipped by ca 180 degrees resultinggh timsd. Marcou et at” similarly found that
many false positives also turned out to be molecwentaining symmetry. As a possible
alternative to traditional rmsd-based methods, Kreeet af*’ has described the interaction-
based accuracy classification (IBAC) method whiatiges the correctness of a docked pose by
manually comparing key receptor-ligand interactiahentified in the crystal structure. IBAC
however, as the authors note, is not easily autesnaMore recently, Trott and OIsGhhave
introduced an alternative definition for computimgsd in the program AutoDock Vina which
the authors indicate accounts for symmetry, pagyahmetry, and near symmetry. Efforts to
incorporate symmetry-corrected rmsd calculations DOCK are under evaluation. It should be
emphasized however that although accounting fornsgtry may affect pose identification
accuracy it will not directly impact virtual scraeg.

Solvent-exposed: Solvent exposed moieties of a bound ligand mayimtetact strongly
with the receptor. In such cases, it is not unetquethat exposed groups could adopt multiple
conformations while the bulk of the molecule, ahdrefore the footprint, remains unchanged.

As the rmsd metric takes into account all liganahet such systems could be unfairly penalized
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by using rmsd to evaluate potential FPS scoringiraoy. Interestingly, mosif the false
positive errors in the type | classification (cloge medium rmsds) appear to fall into the
"exposed" category. 1KT& provides a clear example. Here, only the solexmposed ethyl
ester substituent is not well overlaid (Figure 3aBBhough the rest of the molecule shows almost
perfect overlap. Perhaps not surprisingly, asugised by Nar et af° for the same ligand bound
to Factor Xa, the electron density is not as weflreed in this region.

Promiscuous: Importantly, the available conformational space dogiven ligand, even
for ligands with no (or imperfect) symmetry, carelgi reasonable FPS scores despite poor
geometric and/or chemical overlap as shown in EgwWB-8 and 3-9 for 1RGL, 1ROB, 3H1K,
1HFC, and 10S0. Labeled here as promiscuous, eothiee categories (symmetry, solvent
exposed, or promiscuous), these could be considasdona fide failures of the pose
identification tests. On the other hand, the nasidied conformations also suggest,
conceptually, that compounds with high footprinedap can be structurally diverse. Additional
crossdocking and database enrichment studies peelskelow strongly suggests this hypothesis
to be true. From a virtual screening standpoirdnpscuity may in fact be desirable by allowing
for identification of new molecules with chemotypeasaffolds, and/or functionality different

from known inhibitors.

3.4.6 False Negative Examples.

Although false negatives are generally consideged problematic than false positives an
examination of systems which fall into this catggaas undertaken to more fully characterize
the method. Table 3-5 shows representative examplevhich good geometric overlap (low

rmsds) is observed for correspondingly poor foatpsicores (high FPS) defined by the ranges
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rmsd < 1.0A and FPGow:es> 1.0. Interestingly, the poor FRSw+es scores in these false
negative examples arise because only one of thetawas, FPRpw or FPS$s is sub-optimal

(Table 3-5 underline entries).

Table 3-5. False negative examples for the range defined d&y th
range rmsd < 1.0 A and FRS/.es> 1.0.

Code rmsd(A) FPSpw.es FPSow” FPSs

20QE4 0.35 1.34 0.14 _1.20
1HSKH 0.71 1.31 0.1¢ 1.1¢
2F8( 0.7C 1.4y 0.47 0.9¢
1CP 0.5¢ 1.0t 0.1z 0.92
1ITNL 0.6¢ 1.11 0.92 0.1¢
2J3 0.44 1.1¢ 0.81 0.37
9AAT 1.0C 1.01 0.7¢ 0.22

®Poor scores for individual terms are underlined.

In many instances, close inspection reveals thecsoaf the poor footprint term as
illustrated in Figure 3-10 for two representatiystems, 2QE4 (estrogen receptor) and 9AAT
(aspartate aminotransferase). As before, resuitthé reference and candidate poses are shown
in red and green respectively. Only the most Sicamt footprint interactions are shown with
energetic differences indicated in black. Figur@0a dramatically highlights how a poor
electrostatic footprint overlap may be a resulvafiation in intermolecular hydrogen bonding.
Specifically, the positioning of a key ligand hydem atom (indicated as spheres), on the left
side of the reference molecule (red) in Figure &;l@sults in favorable ES interactions with
Glu43 but unfavorable ES interactions with Arg8Klowever, for the candidate pose (green)
with an alternate polar hydrogen rotamer, both radgons are reduced significantly in
magnitude and a new favorable ES interaction iseesl with the backbone carbonyl at
position Leu77. In contrast, both poses show Hraesrotameric state for hydrogen bonding

with His203 (overlapping spheres on the right safemolecules) and the accompanying
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energetic difference at this position is zero. Klilethe observed correspondence between

changes in geometry with energy is physically reabte.
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Figure 3-10. Pose and footprint comparisons for (a) 2QE4 an®MAT showing results for the reference pose in
red, the docked pose in green, and per-residuerdiftes as black bars.

The second example (Figure 3-10b) is representativeases in Table 3-5 in which
VDW footprints are dissimilar despite well-overlagpFP$s profiles. Here, the significant ES
attraction between the ligand sulfonate and Arge520 kcal/mol), in concert with interactions
at Tyr67 (favorable) and Asp615 (unfavorable) whick in general greater in magnitude than
any individual VDW energy, likely impacts the fasteric packing differences show greater
variation. Interestingly, the candidate pose iguFeé 3-10b (green line), in comparison to the
reference (red line), yields a somewhat more satigfVDW footprint in that most active site
per-residue terms become favorable while at theesdame the ES footprint remains unchanged.

In contrast, the reference pose (red line), shomfavorable energies (e.g. at Ser205, Asn587,

Asp615, and Lys651) which could indicate sub-optidaay refinement of the ligand. In any
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event, the strong interaction with Trp534 is walkégerved by both poses. Importantly, both
examples in Figure 3-10 provide evidence that mécfootprints capture interactions which
make physical sense but additionally highlight leed for care when preparing reference poses,
especially for ligands containing polar hydrogens a more general sense, the results also
indicate the importance of using intermolecularrggeninimization, prior to computing FPS
scores, for all binding geometries being considemeduding references. Although for 9AAT,
energy minimization alone was not sufficient tcewiate all unfavorable steric packing in the
original crystallographic pose (Figure 3-10b redWD@ootprints).

Crossdocking Rescoring: As recently reported by Mukherjee et '&lcarbonic
anhydrase provides a good system on which to test mcoring functions given that
crossdocking experiments, despite high scoringured, yield few sampling failures.
Crossdocking employs a related family of proteaiggned into a common "master” coordinate
frame, thus enabling docking of all ligands intd @ceptors. Importantly, the alignments
provide, in addition to cognate protein-ligand pdinat lie on the diagonal matrix entries, off-
diagonal elements for which a hypothetical refeeepose can be established for all possible
combinations. Figure 3-11 shows results usingatfgned carbonic anhydrase family from the
SB2010 testséf Here, pose identification accuracy was determmeoss the 29 x 29 matrix
using two FP$&w-es scoring schemes (Figure 3-11b,c), to rerank enksmdd poses generated
by docking each ligand into each receptor, for cangon with the standard DGEw+es method
(Figure 3-11a). It is important to note that iregh experiments only the number of scoring
failures (green), and thus actual success rateg)blill be affected. Sampling failures and/or

incomplete growth (red and white elements) do imainge depending on which function is used
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as these experiments only involve rescoring. @imib the pose identification experiments

(Table 3-3) the crossdocking studies employed r® §ddre cutoff.

(a) DCEVDW+ES (b) I:I:>SVDW+ES dlag (C) I:PSVDW+ES all

ligands

B8EHSEE38899388083H55890838588 B8 8H38323884¢8%

receptors

Figure 3-11. Pose identification results for the carbonic anhgér family using crossdocking ensembles from
Mukherjee et at® Blue, green, red, and white elements indicateasses, scoring failures, sampling failures, and
incomplete growth, respectively. Three scoringhmds were evaluated: (a) standard RgqaEes, (b) FPSpw+es in
which cognate ligands (diagonals) were used as fologprint-reference corresponding to each recepfoy,
FPSpw-es in which footprint-references were derived by miiding each ligand in each receptor and every matri
element used a unique reference. Note that inagks the rmsd references employed the set ofdbgauinimized

in each receptor.

Marked improvement in pose identification succassréased number of blue matrix
entries), in comparison with the DGhw:es Sstandard method (Figure 3-11a vs 3-11b), is
observed using FPS scoring which employs referéagrints derived from diagonal entries in
the matrix. Notably, the results in Figure 3-1Hmw nearly perfect diagonal success rates
(24/29), for the experimentally verifiable cognatetein-ligand systems, compared with Figure
3-11a for which only a few successes (9/29) arainbtl. Importantly, the Figure 3-11b
protocol mimics that which might be applied to pitgl virtual screening scenario, in which one
reference per-receptor (i.e. the native ligand andubstrate) would be used to help identify
related ligands. Figure 3-11c provides an addiioexperiment, in which references were

derived by minimizing each ligand in each recejiiod using the resultant structures from each
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corresponding element for footprint-based scormthe receptor contained within that element.
Not surprisingly, this protocol yields the higheserall success rates (Figure 3-11c, blue entries),
which serves to confirm the overall robustnesshef footprint procedure, although in practice
using a unique reference for each ligand is somewatidicial. Nevertheless, the progressive
increase in total matrix success (% coverage af bjuares) in going from DGEw-es, (17.8%),

to FPSpw+esusing diagonal references (45.4%), to flsaesusing unique references (70.9%),
demonstrates utility of the method for identificetiof specific binding patterns. Additional
virtual screening tests as described below proftidéer support.

As an additional visual point of reference, Fig8r22 shows the molecular footprints for
the cognate diagonal entries of the carbonic arasgdfamily which for clarity consist of only
the most significant (favorable or unfavorable)emrctions. Notably, the significant
commonalities in the overlaid cognate footprintspbasize the similar types of interactions
made by this group of inhibitors (sulfonamides amtited compounds) in the carbonic
anhydrase binding site. In particular, the stromigractions between zinc (residue Z), both
positive (VDW) or negative (ES), are well-consenaaoss all inhibitors. Importantly, the plot
derived from these crystallographic references ipess strong evidence that FPS
pharmacophoric patterns are a reproducible propamty are thus encoding potentially useful
information. Deng et df** came to a similar conclusion that bit-strings getesl with the SIFt
method encode useful patterns based on an anafy8&kinase-inhibitor complexes. In Figure
3-12, it should also be emphasized that each d&goatrix entry represents a separate structure
deposited with the PDB thus the receptor length/andequences may not be identical
(insertions, deletions, missing residues, etc) iteshe fact they are all the same protein. To

facilitate visualization of multiple receptors tdlger, a protocol incorporating Clustalf¥multi-
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sequence alignments was developed and the posiéibaked X in Figure 3-12 represent amino
acids not conserved across the 29 PDB entries.id8evisualization, the alignment protocol
also provides a convenient way to generate muteépeor (i.e. average) footprints which could

also be used for FPS scoring.
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Figure 3-12. Cognate protein-ligand footprints for the alignedbonic anhydrase family. Residue X indicates a
given residue is not conserved across all crystattures from the PDB entries in terms of aminial aequence or
signifies a substitution or deletion.

3.4.7 Database Enrichment.

The last group of experiments to characterize FF®8rg involves database enrichment.
Figure 3-13a-c and Table 3-6 shows enrichment tediar three representative systems,
neuraminidase, trypsin, and EGFR, taken from th®Didtabase’®*® Here, docking was first
performed using the grid-based DOCK protocol désctiin Methods prior to rank-ordering
using DCEpw+es, FPSpw+es, FPSpw, and FP§&s functions. In the present studies, 100% of
actives and >96% of decoys produced a viable dogesk. Figure 3-13 shows standard

receiver operator characteristic (ROC) enrichmemves while Table 3-6 lists corresponding
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area under the curve (AUC) results along with fetdichment (FE) values computed from the
total (FEo), top 10% (Flep), and bottom 10% (Rfs) of the ROC curves. It is important to note
that unlike other analysis, ROC curves inherenilyiude use of the entire range of FPS score
cutoffs. A rank-ordered list (FPS scores with asgied molecules) is analyzed by continuously
varying the score cutoff from best (zero or few ewolles retained) to worst (all molecules

retained) score.

***'random = DCE,pw,es ™ FPSypw.es FPS\pw =™ FPSgg

(a) Neuraminidase (b) Trypsin (c) EGFR

1 1

0.8¢ 0.87 0.8¢

0.67 0.67 0.6

True positive rate

0.4 0.4 0.4
02l decoys = 1854 02l J_/_r/_/ decoys = 1609 0.2l decoys = 15978
ligands = 49 ligands = 49 ligands = 475
0 & . A . _ ot . .
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
False positive rate False positive rate False positive rate

Figure 3-13. ROC enrichment curves for (a) neuraminidase, §psin, and (c) EGFR using different ranking
methods.

Table 3-6. Area under the curve (AUC) and accompanying foldobment (FE) statistics from receiver
operator characteristic (ROC) plots for three protigand systems.
FEit = AUCo / FEiwp = AUCop / FEpot = AUCq /

AUClola AUCtot, rand AUCtop, rand AUCbot, rand
Random 0.50 1.00 1.00 1.00
Neura- DCEypw:es 0.84 1.68 11.88 1.05
e FPS/pow-+ 0.85 1.69 6.32 1.06
minidase DW+ES
1A4G FPSpow 0.56 1.12 0.64 1.04
FPS< 0.86 1.71 9.04 1.06
. DCE pwEs 0.55 1.09 3.18 1.01
Trypsin  FPSpwses 0.86 1.71 . 9.65 1.04
1BJU FPSow 0.61 1.22 3.50 0.96
FPS< 0.87 1.73 8.23 1.03
DCE pwEs 0.59 1.18 6.29 0.97
EGFR FPSpw-es 0.79 1.59 9.21 1.03
1M17 FPSow 0.67 1.35 4.89 1.03
FPS< 0.78 1.57 8.20 1.03

®AUC,y is 100% of the database, Alds the top 10%, and AU, is the bottom 10%
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Visually, the standard DGlw-es (Figure 3-13 red lines) and FRp+es (Figure 3-13
black lines) rankings yield initial steep upwardlgping ROC curves for all systems which is an
indication of "early enrichment" compared to rand@figure 3-13a, dashed line). The original
DUD paper employing DOCK3'® similarly obtained early strong enrichments for
neuraminidase and trypsin although differencesamming and scoring protocols between the
two studies make a direct comparison here difficdtiterestingly, the FRgw+es ROC curves
show enrichment is maintained throughout the emtabase ranking (Figure 3-13 black lines)
in contrast to DCEpw+es Which show degradation, in the case of trypsin &@FR, as
increasingly larger percentages of each databasexamined (Figure 3-13 red lines). ROC
curves derived using FRS&yv or FP$s methods suggest in some systems better enrichmmnt
be obtained using only a single descriptor. Fangpe, ES-based rankings alone show strong
enrichment for neuraminidase in comparison to VDWoakh is essentially random (Figure 3-13a
blue vs green lines). This finding is physicallgasonable considering the highly-charged
neuraminidase binding site and consistent withaheg study from our laboratory in which the
best correlation with experimental binding free rgiess was obtained using the electrostatic
component from MM-GBSA calculatiofis.

From a more quantitative standpoint, fold enrichtretatistics using FRSw-es rankings
reveal > 9-fold enrichment over random for tryp@ti,, = 9.65) and EGFR (k& = 9.21) in the
critically important top 10% region of the ROC cerspace (Table 3-6 underlined entries). For
neuraminidase in this region, DGiw.es performs best (RE = 11.88) followed by the
previously mentioned electrostatic term ERP$Eq, = 9.04) and finally FR®w:es (FEop =
6.32). With one exception, FR® for neuraminidase (k& = 0.64), footprint similarity

rankings always lead to significant early fold ehment versus random (1.00). Good
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enrichment has also been reported by the groupg) usiated computational methods which
encode binding interaction patterid!>117 18122 Eqr example, Deng et Hf (see Table 1 in
the reference) reported use of the SIFt methodddaetter enrichment, than two other scoring
methods considered, for the identification of 1&Wkn p38 inhibitors out of a database of 1000
decoys. Likewise, ROC curves reported by Marcoalét’ (see Figure 8 in the reference)
revealed that use of interaction fingerprints ledgtronger enrichment, than other tested scoring
functions, using a database of 19 actives and D2j28oys.

Focusing on the EGFR system, Figure 3-14 showsrdifices in the ensemble of docked
compounds chosen using either D:es (14a) or FP&w:es (14b) scoring. The top panel in
Figure 3-14 shows overlaid poses representingdpeb0 (green = best) or bottom 50 (gray =
worst) ranked compounds in relationship to the ek surface envelope derived from the
crystallographic pose of the known drug erlotiméd(surface). The bottom panel in Figure 3-14
shows corresponding molecular weight (MW) histoggafar top (green) and bottom (red)
ranked ensembles with the number of compoundsasereto 100. It is immediately apparent
that DCEpw+es scoring leads to MW bias due to the fact thatrti@ecular mechanics-based
additive function increases proportionally withdigl sizé*> The ensemble of top-ranked
compounds in Figure 3-14a yield significantly largigands (green molecules and MW curve)
which, in this example, do not appear to fit aslwethe molecular surface envelope of erlotinib
as bottom ranked compounds which are smaller (gmalecules and MW curve). In sharp
contrast, when FPS score rankings are employed esiotinib as a reference, the 50 top ligands
fit the molecular surface envelope almost perfe(figure 3-14b top panel). Further, MW bias
of top-ranked ligands here does not favor sizeibstead favors MW similar to that of the

reference (erlotinib = 393.44 g/mol) as shown by lwrge green MW peak in Figure 3-14b
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(bottom panel). Interestingly, the top-ranked rooles using FPS are somewhat smaller on
average than erlotinib (ca 340 vs 393 g/mol) whfoh this example, is likely a function of the
composition of the DUD database. Bottom rankednds show no particular bias and are
spread throughout the entire MW range (Figure 3-@#y line). Overall, the current FPS

implementation appears to yield targeted, undedsiale, and robust enrichments.

(a) DCEypw.es (b) FPSyow.es
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Figure 3-14. Graphical representation of the 50 top and 50 bottanked poses obtained from docking the 475
active ligands from the DUD EGFR database and u@hdPCEpw-es and (b) FP&w.:es scoring functions. The
reference (erlotinib) is shown in red surface with ligands in green and bottom ligands in gray tke bottom are
corresponding histograms of molecular weight (M) the 100 top (best) and 100 bottom (worst) ranked
molecules. Note that the large MW peak at ca.f8dthe 100 best scoring molecules using §fgS:s corresponds
ca. to the MW of the erlotinib reference (393.4¢hgl).

As a final example of the potential utility of FP&oring, Figure 3-15 shows
representative virtual screening results for EGERrived from docking and rescoring of

906,914 commercially available compounds from thQ@ databas¥é (Chemdiv vendor), to
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ascertain how many compounds would be identifietciwimake interactions similar to that of
erlotinib at a given FPS score cutoff. Although ttumber of compounds identified at any score
cutoff is likely to be system dependent, and a fimncof which database is screened and which
reference molecule is employed, the results in féig8+15 suggest a reasonable number of
molecules (i.e. 25 to 201 molecules) can readilydaemtified out of ca. 1 million compounds
using a score cutoff range of 0.8-0.9. Similathte results obtained in the DUD example above
(Figure 3-14b), the graphic in Figure 3-15 hightgsignificant pose overlap in docked
geometries for the 25 compounds obtained usin@ aoff from the virtual screen, which fit

well into the molecular surface envelope definedh®yreference erlotinib (red).

FPSvpw.xks Number retained $ 0.8 score cutoff
score cutoff out of 906,914 25 molecules
0.6 0 C
0.7 2
0.8 25
0.9 201
1.0 1158

Figure 3-15. Number of molecules retained from a virtual scre€m®06,914 molecules to EGFR using various
FPSpw+es score cutoff values. The graphic shows the 25 cubds identified (green) using a cutoff of 0.8 in
comparison with the known drug erlotinib (red) whisas used as the footprint reference.

3.5 Conclusions

The primary goal of this study was to introduce awhluate a new DOCK scoring
function, termed footprint similarity (FPS) scordish employs per-residue interaction maps
(footprints) to derive a binding site comparisontmicebetween any two molecules. From a
practical standpoint, FPS scoring facilitates rapéntification of ligands whose binding
interaction patterns resemble that of a referenotecule used as an input query. Thus, the

method may find utility in a variety of structureded drug design scenarios. Potentially useful
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outcomes include identification of ligands which kaafootprints similar to known drugs or
inhibitors, native substrates or cofactors, tramsistates, or side-chains which mediate protein-
protein interactions (Table 3-1). Identificatioh lmands with footprints similar to a known
reference but based on novel chemotypes couldtédeilscaffold hopping. And, identification
of ligands having footprints which do not rely oesidues that are prone to mutation could
enable development of inhibitors with enhancedstasice profiles.

Several FPS score types were evaluated in thisy sflidble 3-2) which employed
footprints based on intermolecular van der Waatsgies (FP&w), Coulombic energies scaled
by a distance dependent dielectric constant €gP&nd hydrogen bond energies (RB)S
Combination scores constructed from two (flyaes) or three (FP&w-+es+np) footprint types
were also evaluated. Footprint similarities wevamgified using standard Euclidean Distance,
normalized Euclidean Distance, standard Pearsorel@aaon, and threshold Pearson Correlation
metrics (Tables 3-2 and 3-3) and functional relalops between these methods were examined
(Figure 3-6). Results using the different FPS gols were compared with those obtained using
the standard DOCK Cartesian energy scoring funclib@E,pw+es) on tests designed to
primarily assess accuracy of (1) pose identificatmd (2) database enrichment using cognate
ligands from crystallographic complexes depositedthe PDB as references. To facilitate
comparison with the work presented here, shouldraghoups wish to evaluate their interaction-
based functions and/or docking codes, the datésefsose identification and crossdocking are
available from the SB201®website (http://rizzolab.org) and for enrichmerunfi the DUB
website (http://dud.docking.org).

With one exception, all FPS protocols yielded inyaw pose identification success,

using three large datasets (680-775 systems) s&ssccuracy, relative to using comparable
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DCE methods (Table 3-3). Overall, the FR$.esfunction in combination with normalized
Euclidian distance yielded the best results (T@8). Success using Fiy+es, defined as the
pose being 2.0 A from experiment, showed increases over goai® DCEpw-es Scores by ca
10%, 6%, and 12% using rigid (RGD = 775), fixedlarc(FAD = 748), and flexible (FLX=680)
perfect sampling subsets derived from the SBZbdatabase. Additional tests, using ensembles
derived from crossdocking (29 ligands to 29 receg)tehowed significantly greater success
(matrix coverage) using two different FPS protodds.4% and 70.9%) compared with DCE
(17.8%) for a challenging carbonic anhydrase faifiiigure 3-11).

A close examination of results (Table 3-4, Figuré) Zlassified as false positive (good
FPS score and bad rmsd) revealed in many casess that were both geometrically and
chemically correct (Figures 3-8 and 3-9) and thisctassifications can result due to deficiencies
with how current DOCK pair-wise rmsd routines handymmetry. The results indicate the
reported success rates for pose identificatiorirafact a lower bound on the potential accuracy
of the calculations. A related issue, in whicheoitise well-overlaid ligands showed rmsds >
2.0 A rmsd was traced to differences only in salvexposed moieties (Figure 3-8) which for
many cases would not reasonably be considereduasefaiExamination of false negatives (bad
FPS score and good rmsd, Table 3-5) revealed ireswases that small variations in pose
geometry can yield larger than expected differencesnergy (Figure 3-10), especially for
interactions involving charged groups and/or pblgdrogens, which highlights the need for care
when preparing a reference.

Area under the curve (AUC) and fold enrichment (B}istics (Table 3-6) derived from
receiver operator characteristic (ROC) curves (fg8-13), for three representative systems

from the DUD databas®® reveal significant fold enrichment using FB&:es (neuraminidase =
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6.32, trypsin = 9.65, and EGFR = 9.21) comparedat@lom (1.00) in the most critical early
regime (top 10%) of the ranked databases. In mt@mbthree cases, the Rid%es enrichment
exceed those obtained using the standard DOCK \p&kEs scores (Table 3-6). Close
inspection of EGFR results reveals Dgl.es scoring leads to top-ranked molecules not well-
accommodated in the molecular surface envelopael®fby the cognate ligand erlotinib and
have a distinct MW bias towards larger moleculagufe 3-14a). In sharp contrast, top-ranked
molecules using FRSw-es using erlotinib as the footprint reference leagdses which nicely
fit within the binding envelope and have a MW bidewards the reference (Figure 3-14b).
Finally, the potential utility of the method for adtification of novel compounds was
demonstrated by a representative virtual scredfGBR. On-the-fly flexible ligand docking of
ca 1 million compounds obtained from ZINE, followed by FP$pw:es re-ranking using
erlotinib as a reference (Figure 3-15), yielde@a@spnable number of compounds (25-201) with
good FPS scores (0.8-0.9) available for purchasBaken together, the results of this
comprehensive study strongly suggest the implertientaof footprint-based comparison
methods into DOCK will have utility for structureed design. A future goal, based on studies
in progress, is to incorporate molecular footprimigh de novo design methods to bias

construction of new ligands from scratch towards tof a reference.
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Chapter 4. Grid-based Molecular Footprint Comparison

Method for Docking.

This chapter contains results which are to be pm@ted in a manuscript currently in

preparation.

TEB, SM and RCR designed research plan. TEB peddrresearch, analysis and is writing the

initial draft.

4.1. Introduction

In drug design, it is often convenient to emplopknowledge such as using a known
drug or substrate as a reference. In Chapter 3howed that Footprint Similarity (FPS) score,
when used as a post-docking rescoring tool, isveedol approach to identify ligands that bind
similarly to a reference molecule. However, applyiFPS score, which was previously
calculated using Cartesian space receptorde twvo design techniques or to standard docking
was computationally restrictive due to the timetcddany docking programs, including DOCK,
use grids to speed up energy calculation from O(Mfie depending on the size of the receptor

(M) and the ligand(N) to O(N) time which only depsron the size of ligarfd:**?

100



We envision that footprint-guided sampling, usingeéerence, can be used in at least
three important ways: (1) pose identification; y@jual screening and (3Je novo design. For
pose identification, chemically similar ligands mlg docked to determine the binding mode
using a reference molecule with a known pose. vittual screening (molecule libraries) adel
novo design (fragment libraries) the objective is teritify new molecules that bind to a receptor
like known molecules, but are chemically differefr. this work, we demonstrate that grids can
be used to speed up footprint calculations, we rdes@ generalization of the FPS scoring
method that utilizes grids, and we show a prootarficept that grid-based footprints can be used

to guide docking using the SB2010 pose identifaratest set®

4.2. Theoretical Methods

Grid-based Footprints. Here we show that we can extend Cartesian-fautpri
described in Chapter 3 to grid-based footprintshe Btandard molecular mechanics energy
function is pair-wise additive. Therefore, we cs@parate the non-bonded interaction energy
into per-residue components. Grids for each resihe calculated using the standard energy

function. The through space interactions betweenptor and ligand can be written as follows:

S RCIRGRNE ALREC S @

il ioR N ioR T ; JDR

Here,i andj are indexes for the ligariddand receptoR, respectivelyE; is the Cartesian energy,
D is the dielectric function (often a distance dej®et function is used) = 4r), r;; is the

distance between atomsandj, andgq; is the charge at atom The value 332.0 converts the
electrostatic (ES) energy into kcal/mol. The vam Waals (VDW) terms are generalized to

work with any VDW exponentsa(andb):
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a- a-

A andB; are the VDW parameters whewe is well depth and R is the minimum distance mia t
well. Fast implementation of energy calculationginy docking can be achieved by pre-
computing the interactions and storing the potéeti@rgy on a grid. Every poipton the grid

(gd) has three values: attractive VD34 vaw), repulsive VDW @d; vaw) and ES energiegdes):

A B. of
gda_vdw(p) = Z \/7; ’ gdr_vdw(p) = Z \/7; ’ and gdes(p) = 3322—J
iR Ty | ORIy ior Dry

Grids are energy potentials; one can think of egah point ) as the interaction of the
receptor with a dummy atom (whefe= 1, Bi= 1 andqg; = 1). The through-space interactions
can be approximated by interpolating grid valuet® dine ligand atomsa() located at some point
between grid points. The grid enerdy)( calculated by Eq. 2 is an approximation of the
Cartesian energyE() shown in Eq. 1K = Eg). The finer the grid spacing, the better the

approximation of the Cartesian energy.

Eg = Z (\/K TLI (ga_vdW!ai )_ \/EI TLI (gr _vdw’ai )+ 332q| TLI (g.esiai )) (4'2)

inL
Here, the functioLI performs a tri-linear interpolation of each of tas:

Gavaw =190, v (P1) 190, e (Po)]

G v =199, (P1): 100, (Po)]

Gee =[90(p.) 9Py )]
TheTLI is a linear function of the form:
TLI(g,a) =TLI(g, + d,,a) = TLI(g,,a)+TLI(g,,a) (4-3)

The TLI combines the potentials stored using the eigtgesibgrid points [y, . . . ,ps) and the

position of atom to approximate the Cartesian-based energy at atom
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We can obtain a per-residue decomposition of tie @alculation by generating a grid

for each residue as is shown for a single gridtp@nhere:

gd(p)=> E.(p.) = ; S E.(p)= Y gds (p) (4-4)

IOR ifLm]10s ioLM]
HereR is the set of receptor atoms afds the set of atoms in residile The receptor has N

atoms and M residues. The union of the residum atts is the set of receptor atoms:

And the sum of the size (number of atoms) of tis&drees is the size of the receptor:

Ss|=n

We calculate the per-residue componefgsy()) by using the grids generated for each receptor
residue (Ggj) ). Moreover, by Equations 4-2 to 4-4, the suntheSe components add up to the

standard grid energy (Eqg. 4-5).
E, = ; E, < (4-5)
idfLm]

4.3 Computational Details.

Residue selection and grid generationA threshold based criteria was used to identify
important residues, based on their standard DOCHe€lan energy (DCE) with the optimized
(H-opt) ligand crystallographic pose, unless otheewstated. H-opt structure generation is
described in Chapter 3. Residues with absolutrantion energies exceeding 1.0 kcal/mol for
VDW or 0.5 kcal/mol for ES were selected for regidyrid generation. All other residues were
grouped together to create a remainder grid. Boh e@eceptor, grids were generated for the

selected residues and for the remainder. An irsé@quwthon script iteratively calls the grid
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program for each selected residue and the remainiéer this study, all grids are generated at
0.4 A resolution. The grids were calculated usr@ VDW exponents for a softer receptor to
somewhat mimic receptor flexibilit?*

Pose reproduction experiments. The SB2010 dataset was usgdSix docking runs
were performed using different random seeds. Tieess rates were calculated for each run
and the averages were used as a means to bettge gmeking success. As previously
discussed?® docking experiments may have one of three outcofd¢siocking success is when
the program selected a correct posed (within 2 Aative pose), (2) scoring failure occurs when
the correct pose was sampled but it was not saréte top of the list, and (3) sampling failure
is when docking did not sample the correct pose.

Standard Docking and Rescoring.Docking here uses the same protocol as discussed
Mukherjee et at® One modification was that final clustering paréeneised was changed from
2.0 A to 0.5 A; this affects sampling and rescorifOCK uses a best-first clustering method.
The rescoring with DOCK Cartesian energy (DCE) &R$b used the 6-9 VDW exponents as
were used for the grid calculations. This makes gammsons easier between the DOCK grid
energy (DGE) and DCE scores.

Grid-based Footprint Similarity Score docking. As described in Chapter 3, standard
Euclidean, normalized Euclidean, and Pearson @tioel are three methods employed to
calculate Grid-based FPS scorEootprint-guided docking experimentsemploys solely Grid-
based FPS score (using the three footprint congarnsethods) to “guide” growth, meaning that
anchor-and-grow prunes, clusters, and minimizesviiraising FPS scoreFootprint-nudged
docking experiments use the standard grid score “nudggdthk FPS score, meaning that

anchor-and-grow prunes, clusters, and minimizesvifraising FPS score combined with grid
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score. Both “guide” (coefficients C1 and C2 areoz@nd “nudged” (coefficients C1 and C2 are

equal to one) uses eq 4-6.

Total Score = C1 * DGEs + C2 * DGEpw + C3 * FP$s + C4 * FPSpw (4-6)

The coefficients used by the score (eq 4-6) ateniFable 4-1 for the different Grid-based FPS

methods.

Table 4-1. Footprint Similarity Score docking coefficients.

Footprint-guided docking Footprint-nudged docking
Standard Euclidedn Cl1=C2=0 Cil=C2=1

C3=C4=1 C3=C4=1
Normalized Euclidean Cl=C2=0 Ci=C2=1

C3=C4=1 C3=C4=20
Pearson correlation Cl=C2=0 Ci=C2=1

C3=C4=-1 C3=C4=-20

& for equations 4-6

4.4 Results and Discussion
4.4.1 Grid Generation.

Grid vs Cartesian energies. As discussed above, Cartesian per-residue energy
decomposition can be approximated by using multipteergy grids. Per-residue energy
decomposition is accomplished by the creation gfid for each protein residue. For example
the smallest receptor in SB2010, consisting of &ldues, is pdb code 2PK4, plasminogen
kringle-4 protein which is an important proteinbtood clotting'®®> and a comparison of grid-
based (grey filled circles) and Cartesian (bladkasgs) footprints are shown in Figure 4-1. We
see that the two energy footprints are very similwever, for the grid-based method, for most

systems, it is infeasible to consider all residinethe FPS comparison calculation; the grids take

up a large amount of memory during runs. In addijtthe time needed to perform the docking
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calculations increases as more grids are usedis 8lsown in Figure 4-2a, the 0.4A resolution
grids well approximate the electrostatic interatsi¢g = 1.000 ) but does a slightly poorer job for
the VDW footprint ¢ = 0.994) . Interestingly, preliminary studies wled that finer grids do not

in fact result in better docking success. Thiseobstion may be a consequence of the fact that

coarser grids smooth the underlying energy landsefipwing better sampling.

All Residues Threshold-based
Subset
1 — T T T— R R g ;
: : : : : X b: cart
= A VRAEER or ; —8—grid ||
o . ) X . . . . . . . .
E : : : : : : 1 -1 : : : : : :
8 o w o Ny
X SR -2 L R N
z -3 SRS I -3 . A\ N
g . X X . . . . X . X X : .
ur -4t oo 2l 4 SR S
_5 N N N N N N N _5 N N N N N N N
o o o o o o o o r~ (Vo) [o0) N < — N
- - N (32] < n (0] ~ [o0) ™ n n o o r~ r~
RE S 5352549 ¢ 2B B pHEE Y3
v n H § U € U > 0O H & & BH m ﬁ ] E

Egs (kcal/mol)

Residues Residues + Remainder

Figure 4-1. Comparisons between grid-based (grey) and Cartélsiack) footprints. The van der Waals

(a and b) and electrostatics (c and d), all-residoetprints (a and c), and the threshold-baseidues
plus remainder footprints (b and d) are shown ftiy pode 2PKA4.
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Figure 4-2. (a) comparison of Grid (DGE) score vs CartesianEPScore. (b) Comparison of Sum of the footprint
grid-values vs standard grid score. (c) Comparigbtthe Grid-based footprint values vs (d) Histograithe
number of grids used for footprint-guided dockiggfids = # residues + 1 ). For panel A-C, blussdoe ES and
red are VDW.

Remainder vs no remainder. In Chapter 3, we described a threshold-based method
footprint correlation comparison which used no ramer where we used the union of the two
sets (pose and reference) and the residues selestaalculated for every pose on the fly. For
the grid-based footprint method, we must pre-comhe grids used to describe the footprint
using only the residue selection for the referesinee the candidate pose interactions will only
be for those residues originally deemed importanttie reference. A problem could arise if
neglected residues would interact strongly with¢hadidate pose. For example, if a reference

makes strong interactions with 12 residues and reergéed pose interacts with 11 and the
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intersection between these sets is 9 residuestktieedocked pose makes interactions with two
residues not considered in the FPS calculation. alleviate this drawback, we will include a
"remainder-grid" consisting of all the remainingsickies (those without their own grids).
Although these could be considered non-importasidtees, their inclusion ensures that their
sum adds up to the total grid energy of the proteihis is demonstrated by the essentially
perfect correlation shown in Figure 4-2b, a poa@trelation would be expected if remainders
were not included. Importantly, excellent agreemisnseen between the DGE and DCE
footprints (r = 1.000, r = 0.988) as is shown igufe 4-2c. As is the case in the DGE and DCE
scores, there is also poorer agreement betweeviDli¢ footprints compared with ES footprints.

On average 20 grids per receptor are used Figack 4-

Table 4-2. Standard docking and rescoring. FPS scoring usesatized Euclidian.

docking  function residues FPS sucéess failures (%) time
type (%) scoring  sampling (min)
a Stand. Grid all -- 63.6 25.9 10.5 9.97
b rescor®  Grid-FPS sel+rem  Eucl 79.4 10.1 10.5 0.23
¢ rescorB  Grid-FPS sel+rem  Norm 79.0 10.4 10.5 0.21
d rescor®  Grid-FPS sel+rem  Corr 78.5 11.0 10.5 0.18
e mif Cart all -- 63.4 215 15.2 15.22
f rescoré  Cart-FPS allresid  Norm 79.0 5.9 15.2 0.09
g rescorgé Cart-FPS thres Norm 77.9 7.0 15.2 0.11
h rescoré Cart-FPS sel Norm 78.5 6.3 15.2 0.10
i rescoré  Cart-FPS sel+rem  Norm 78.8 6.0 15.2 0.10
i Stand. Grid-Sum sel+rem 64.3 25.6 10.1 41.16
k  Guided Grid-FPS sel+rem Eucl 77.5 9.4 13.1 38.72
I Guided Grid-FPS sel+rem  Norm 30.2 135 56.3 38.1
m Guided Grid-FPS sel+rem  Corr 20.5 12.2 67.3 BT1.7
n  Nudged Grid-FPS sel+rem  Eucl 81.0 11.1 7.9 41.49
0 Nudged Grid-FPS sel+rem  Norm 79.8 11.0 9.3 43.18
p  Nudged Grid-FPS sel+rem  Corr 72.2 17.5 10.3 42.25

®N = 780, average of 5 run$standard docking results (row a) results rescoredinimized with
alternative scoring functior' rescoring the Cartesian minimization results (gw
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4.4.2 Docking and Rescoring in Pose Reproduction.

Table 4-2 shows statistics (docking success, sgdailure, and sampling failure) for
numerous experiments (SB2010, N = 780) comparinig-BEPS results with their Cartesian
counterparts (Cart-FPS). Comparisons with thedstah docking scoring function are also
reported. The average outcome of six docking ramesreported for standard DGE docking
(Table 4-2, rows a, j); rescoring the standard darkuns with Grid-FPS (Table 4-2, rows b to
d), standard DCE (Table 4-2, row e), and Cart-FPP&ble 4-2, rows f to i); and docking
calculations in which their sampling is influencleg Grid-FPS scores (row k to p). The grid-
FPS is a decomposition of DGE score which is tloeisg function used during docking, thus no
sampling failures were added (rows b to d). Doglsnccess is comparable between Cartesian
minimization, 63.4% (row e) and grid docking to @3. (row a), however, a decrease in
sampling success (4.7%) occurs upon minimizatioth wampling failures going from 10.5%
(grid, row a) to 15.2% (Cartesian, row e). The FlSesidues method does the best with an
average success of 79.0% (row f). Interestinglhenvcomparing FPS threshold and FPS
selection with no remainder, the success increfases77.9% (row g) to 78.5% (row h), this is
most likely due to the inclusion of more electrtistaesidues for consideration. There is a
further increase in success when using the FPSteeleemainder 78.8% (row i); however, FPS
selection remainder is still not as good as the féP&ll residues. The sampling failures are the
same among the Cartesian results. The “Grid FR&ts® remainder” does as well as the
Cartesian best method (FPS all residues), withck daccess of 79.0% (row c, f). Because we
can use the grid based dock results without mirdtion the grid based rescoring has no

additional sampling failures.
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Overall in Table 4-2 the combination of FPS witidgscore (termed FPS-nudged) does a
better job at pose identification than the standadodking scoring function, or FPS-guided
method alone across 3 different footprint comparistethods: Euclidian (row n), normalized
Euclidean (row 0), Pearson correlation (row p)gufé 4-3 shows the results graphically with
each vertical bar representing a result using feréit random seed. Importantly, the nudged
methods appear to be most accurate in combinatitm thve Euclidian comparison metric
(81.0% success rate, row n). Furthermore, Eudid@mparison metric also does very well for
Guided docking (77.5% row k) which is due to botagmitude and shape matching. For the
FPS-guided results, the poor performance of nomadlEuclidean (30.2%, row I) and Pearson
correlation (20.5%, row m) is most likely due te tfact that magnitudes are not matched. A
lack of magnitude information may be acceptablerwbrely used for rescoring because only the
best solutions (lowest energy) would be consideredwever, since the FPS scoring function
affects sampling during growth (FPS-guided), withozonsideration of the magnitude,
energetically unfavorable poses may be scored &pin FPS space which can be problematic.
However, when grid energy is used in combinatiothwhe normalized Euclidean (79.8%) and
Pearson correlation (72.2%) both methods do vetlyame thus the combination methods would
be recommended. Importantly, there are only orramee 5.84 systems (or 0.7%) that differ
between the standard grid (row a) vs standard Suiak (row j) results showing the robustness
of a multi-grid energy decompositions strategy. widaer, since the footprint-guided and
footprint-nudged docking methods are for exampléirés slower than standard docking (when

comparing rows j-p with row a, Table 4-2) care mastused in their application.
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Figure 4-3. Shows six docking experiments using SB2010. Faredom seeds were used to gage variability.
Success (blue), scoring failure (green) and samféidure (red) add up to 100%.

Finally, It should be noted that the approximatenctional relationship between
normalized Euclidean and Pearson correlation deesdrin Chapter 3 will break down because
the mean of the footprints will not be expectedo®close to zero since only the peaks that
should make strong interactions are included. thisrreason normalized Euclidean and Pearson

correlation will likely give users different rankdzrings.

4.4.2 FPS Behavior During Growth.

To evaluate behavior of FPS (using Euclidian comgpar method) as a function of
growth step, fixed anchor docking (which beginswgto starting from an anchor in the
crystallographic position) using a restraint [k & kcal/(mol &)] was performed on the 10
rotatable bond subset (N = 59) of the SB2010 testSigure 4-4 shows box plots for the 10 RB
subset (top) and for a single system, pdb code 1(vilddle). Both FPS-guided docking (Figure

4-4, left) and rescored standard docking (Figure dght) was performed. In general, the FPS-
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guided results, overall yield better footprint veduat the end of the runs than the corresponding
rescoring results. Although many of the branctesat converge to a good FPS score, there is a
clear downward trend of the median values (Figude #p panel). In fact, this shows that on
average the FPS scoring method is guiding growitartd better footprint similarities. The
bottom panel of Figure 4-4 and Figure 4-5 show bwrach in which structures and energetics
converges to a reasonable native-like answer. répessentative 1M17 example shows the
system converges to a lower FPS value than theyslem set (N=59). In Figure 4-5, one branch

of the growth tree is shown for erlotinib, the stuues and the corresponding footprints.
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Figure 4-4. FPS score for growth step for the 10 rotatable tmraset of SB2010 (N= 59) are shown. Left panels
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113



Here, growth steps before and after minimizatioe ahown. We observe that after-
minimization values converge to a favorable FPSes¢Bigure 4-4, bottom panel) which is also

evident by the final well-overlaid footprint at thettom left panel of Figure 4-5 (step 10).

4.4.3 Conclusions.

This chapter describes work in progress to impldéraed validate a grid-based footprint
comparison method into the program DOCK. Our teduhve shown that a grid-based method
produces footprints similar to those for Cartesimeompositions (Figures 4-1 and 4-2). The
method does about 1% better than standard dockithgrescoring but is on average about ca. 4
times slower (Table 4-2). Nevertheless, this mayb acceptable tradeoff for specific docking
scenarios. FPS-guided docking, which uses only §¢fe to drive sampling, does very well
using standard Euclidean but very poorly for noreesl Euclidean and standard Pearson which
is most likely do to the need to account for thegmtude of the interactions (Figure 4-3 and
Table 4-2). Standard Euclidean matches both thgnimale and the shape of the footprint
spectra while normalized Euclidean and standardsBaaonly match the shape. All comparison
methods perform well in the FPS-nudged docking expnts (Figure 4-3 and Table 4-2).
However, for virtual screening adle novo design application it may be better to use FPSyadd
docking with a shape matching method to find mdiexthat may have larger magnitudes than
the reference. The FPS-guided results clearly stitaw use of FPS during growth yields
molecular interactions which are more similar te teference than standard grid sampling. The
FPS scores are lower for the guided results thathiorescoring results (Figure 4-4 and Figure
4-5). These results indicate that the grid-basedpfint may be a useful scoring function to

drive sampling fode novo design applications.
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Chapter 5. Dissertation Summary: Scientific Impact

Related Work, and Future Direction.

As discussed in the introduction (Chapter 1) compomal modeling is an increasingly
important part of the overall drug discovery prace3he studies presented in this dissertation
provide additional examples of well validated cotapional work in which discoveries and
advances have been made regarding the anticamget BEGFR and progress towards improved
virtual screening protocols. This final chaptemsoarizes key findings of the projects in

Chapters 2, 3, and 4 in termssofentific impact, andrelated work and future direction.

5.1 Structural and energetic analysis of EGFR simaltions.

Scientific impact.

As described in Chapter 2, through all-atom simoihet, we obtained structural and
energetic data which allowed us to characterize tleehanisms of resistance of EGFR to
inhibitors. A key finding was the reduction of thater mediated interactions when comparing a
baseline system (L858R) to a drug resistant mytsB&88R&T790M). The impact of this study
is a better understanding of (1) the binding ofent inhibitors to EGFR variants and (2) the role

mutations in the receptor play in ligand bindingpart by perturbing hydration patterns. Further
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motivations of the work are to develop new and nrotmust inhibitors of EGFR and/or IGF-1R

to combat cancer.

Related work and future direction.

Building on our understanding of the role of keytevanolecules to binding, Huang and
Rizzo have examined the role of selectivity and atiah in the binding of lapatinib to the
inactive conformation of HER family members incligiEGFR!*® Ligand changes were also
proposed by the group to probe the importance efip water mediated interactions.

A future direction might be to use the data fronwRastle et at’* to probe the structure
activity relationship of molecules similar to erfob and gefitinib (Chapter 2), using
Thermodynamic Integration (TI) of ligands with thetive conformation of wild-type EGFR.
Simulations could be used to predict effects of Isdifferences in ligands on binding to the
mutant receptor. By probing the relationships leevactivity and structure, we can understand
which interactions are desirable for the designnekxt generation inhibitors that will target
resistant receptors. Extending footprint-like gae to T calculations (as briefly outlined in egs

5-1 to 5-4) would also be worthwhile.
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Here, the solvated complex system eneMys) may be broken down into internal and multi-
species components egs. 5-1 and 5-2. In the chseevonly part of the ligand is contained in
the lambda mask, only three of the componentschiéinge with lambda, the rest will be zero.
Since summation, integration and partial derivatigee all linear operators, we may decompose
the 0V, /04 into per-residue components and then integrate tnese components (egs. 5-3
and 5-4).

As discussed in the literature, the L858R&T790M ation increases binding towards
ATP®* Part of the reason for resistance may not bethestweakening of interactions with
inhibitors but also the strengthening of the bimdisf ATP®* Interestingly, our preliminary
unpublished simulations, using the same protocstialeed in Chapter 2, indicate that the ligand
AMPPNP (an ATP analog) may preferentially bind be tmutant, as hypothesized by Yun et
al®* Future computational studies may be undertakenaie completely explore this result.

Identification of alternative binding sites on EGHR an important strategy for
development of new inhibitors. It would be intémeg to construct and validate how the
carboxyl tail of EGFR docks into the kinase domairallow phosphorylation of its tyrosine and
identify or design small molecules to block thiseetr Since MIG6 is a naturally produced
peptide that inhibits the dimerization of EGER;it could be advantageous to discover small
molecule inhibitors that will disrupt the dimeriat event by mimicking MIG6 interactions.

Additional studies using molecular dynamics, umarsampling and nudged elastic band
methods could be performed to probe how ligandib@pdnutations and dimerization shift the
equilibrium of EGFR from inactive to active confations. In addition, an allosteric pocket
may be identified by examining the pathway EGFRvdraes from active to inactive states.

There are two main areas of differences betweemadtiee and inactive conformations in the N-
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lobe helix and the activation-loop as shown in Fégh-1. Through a preliminary study, a path
using structural linear interpolation with 20 wivd® between active and inactive conformations
was identified. A cavity near the N-lobe helix e targeted to possibly trap the receptor in
an intermediate state. Another observation is thatresidue K860 appears to impede the
conformational change between active and inactieefazmations.  Additional studies

employing umbrella sampling and/or nudged elasticdbare warranted to better determine the

transition path between these two conformations.

Active Inactive

N-lobe Helix

) « N-obe Helix | ‘ 1)) @‘@

Activation Loop

Activation
loop

Figure 5- 1. Active vs inactive conformations. The grey ribbiadicates the backbone of EGFR. The colored
regions represent the main differences betweetwbestructures. An overlay of the N-lobe helix ahd activation
loop is also shown.

5.2 Development of docking methods and virtual sceming protocols.

Scientific impact.

A major component of this work has involved DOCKvelpment to aid the drug
discovery efforts in our laboratory and also thenomunity. Key improvements both to sampling
and scoring routines have been made as discus$ed. bémportantly, compounds targeting

HIV gp41'* and botulinum neurotoxin, identified in computati virtual screens using DOCK
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with the new footprint-based scoring function (Cleap3), provided leads with experimental
activity. Such leads form the basis for additiostaidies and development for these therapeutic
targets. All of the work on DOCK has been releasethe community in DOCK v6.4 and v6.5
or will soon be made available in future releas&ientific contributions have included: (1)
assistance with modifying growth routines to in@uidternal energy, (2) adding growth tree
protocol analysis feature, (3) adding RMSD tetl§éy,implementing of Descriptor Score (FPS
scoring function and hydrogen bonding code, Chaer(5) adding anchor selection, (6)
implementing Multi Grid code (Grid-based footprinShapter 4), and (7) assistance in the
implementation of a SASA-based scoring functioestmate ligand burial. Collaborative work

also involved assisting with the construction @& 882010 pose reproduction databdse.

Related work and future direction.

Accounting for receptor flexibility during dockinghay be useful in drug discovery
applications****° To incorporate a method into DOCK, we have dgwetba preliminary
implementation of a Multi-Grid scoring function &adition to the scoring functions discussed in
Chapter 3 and 4. There are two schemes for contpitiie grids: One is termed Multiple
Average Receptor (MAR) and the other is Multiplelédpendent Receptors (MIR). Ongoing
work in the lab is focused on further developmend eobust validation using crossdocking and
enrichment studies.

The grid-based footprint scoring function descrilbedChapter 4 is hypothesized to be
useful in de novo design by facilitating construction of moleculesthwsimilar per-residue
interactions as those of a known reference. A dewovo design method is being implemented

into DOCK using the anchor-and-grow infrastructtoeconstruct new molecules from a library
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of scaffolds, linkers, and side-chains. An impottéeature of thede novo protocol is that
fragment libraries will be generated from synthakle molecules contained in databases such as
ZINC.

Finally, the DOCK development work discussed abwas in part motivated to apply the
improved methods to lead discovery applicationgeiing EGFR and other kinases. Virtual
screens to target IGF-1R are planned for the ngard. An additional goal is to identify leads
that will target both T790M EGFR and IGF-1R usingltirgrid docking methods. Since IGF-
1R has a methionine at the gate keeper residuéiqst is hypothesized virtual screening can

identify lead compounds with reasonable affinityptiih proteins.

5.3 Summary.

As demonstrated in this dissertation, computaticwals are useful in aiding drug
discovery efforts with the long term goal of tregtihuman disease. The most striking results of
the studies described in this dissertation areoewis. (1) The role of the reduction in water
mediated interactions between EGFR resistance inataoh erlotinib was identified. (2) The
development of a new footprint-based scoring methas validated. And (3) third-party virtual
screening applications which employed the footpoeéed methods have resulted in

identification of new lead compounds for biologlgaklevant targets.
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Appendix A. Origins of Resistance to the HIVgp41 Val

Entry Inhibitor T20.

Collaborative work described in this chapter hasnbpublished in McGillick, B. EBalius, T.
E.; Mukherjee, S.; Rizzo, R. C. Origins of Resistataéhe HIVgp41l Viral Entry Inhibitor T20.
Biochemistry, 201Q 49 (17), 3575-3592. Copyright © 2010 American ChemniSaciety.

doi:10.1021/pbi901915g PMID: 20230061

Author contributions: BEM, TEB, SM, and RCR desdrresearch; BEM, TEB, SM performed

research; BEM, TEB, and RCR wrote paper with aasc& from SM.

A.1 Collaborative Project Summary.

Fuzeon (T20), which targets HIVgp41, is the fir@A-approved drug for inhibition of
viral-host membrane fusion. In this work, a modell20 bound to HIVgp41 was constructed
and solvated in explicit water and lipid to elud&léhe molecular reasons for clinically relevant
drug resistance. Molecular dynamics simulations @or 10 ns) were post-processed to yield
detailed structural and energetic results. Goorkagent was observed between residues

involved in resistance and those shown to be etieallg important through per-residue energy
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decomposition (footprint analysis). Six out of eevHIVgp41 point mutations (L33Q, G36V,
137K, V38E, Q40H, Q40K and outlier L33S) which del®ously affect binding of T20 showed
good overall agreement with experimeit<10.72, N=6).

My main contributions to this work include: (1) diéd convergence evaluation; (2)
energy decomposition heatmap calculations; andpéptide-lipid interaction analysis. These
three key points, are discussed in the followinigssgtions which are taken from the published

work 4

A.2 Binding Free Energy Convergence: Autocorrelatio and Block Averaging.

An important part of any computer simulation anelys estimation of uncertainty. In
this work, simulation convergence was assessedul@igh-1) by plotting autocorrelation
functions (ACF) and block averaged standard embithe mean (BASEM) for thAGy;ng calcd
time-series from T20 with wildtype gp41, as wellseven gp41l mutants (L33Q, L33S, G36V,
137K, V38E, Q40H, Q40K). For a given time seri@§F functions provide a means to assess
how data are correlated and BASEM analysis allowsreconvergence to be estimated by
allowing block length to vary. Ideally, reasonabiycorrelated data should be used for block
averaging. Figure A-la reveals that all ACF curees\Gying calcd drop quickly from 1 (100%
correlated) at lag time = 0 ps, to less than c&b 2rrelated at 250 ps, before showing
fluctuations which oscillate about 0% which is icattive of largely uncorrelated data.

Interestingly, the ACF results for T20 with 137Kast a distinctly different trend (green
solid arrow), in comparison to other trajectormbjch is an indication this one simulation is not
in reasonable equilibrium or as well-behaved. BMSE&urves for similarly reveal 137K as an
outlier in terms of poorly converged error estinsatéAn additional MD simulation was run for

137K which employed a different random seed numbeain attempt to yield a trajectory with
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improved equilibrium/convergence statistics. Aswh in Figure A-1 (dashed green arrows),
ACS and BASEM curves for the new MD run yieldedults more consistent with the other
converged simulations and this latter trajectorg wsed for all further analysis.

Error estimates foAGpi,g calcd were obtained using the BASEM plots in Fegée1b.
Here, block averaged standard errors of the medeatimol were computed as a function of
block size which ranges from 1 ps to 5000 ps (200 snapshots). The BASEM results show
the expected exponential increase as block aveyasie becomes larger that begins to reach a
plateau which is indicative of reasonable equiliboti BASEM errors computed at N=1 likely
underestimate the true error in the simulationslevat N=5000 (1/2 the simulation length) the
errors may not be reliable due to the fact thay ewb blocks are used. For the present 10 ns
trajectories, Table A-1 plots BASEM errors, alonghwthe % of uncorrelated data from ACF
curves, for the eight simulations at block sizeslgfs, 100 ps, 250 ps, 500 ps, and 1000 ps.
Individual system results and the overall averagetliese five block sizes are both reported.
The regime between 250 and 500 ps yields data whilgngely uncorrelated (ca 75 - 85%), and
having a sufficiently large numbers of independaotks (250 ps = 40 blocks and 500 ps = 20
blocks), thus the errors of 0.68 - 0.91 kcal/molynh& taken as a reasonable estimate of the
statistical noise foAGyng calcd for these simulations. Although the ovesallictural, energetic,
and convergence metrics monitored over the courgeedViD trajectories (Figure A-1 and Table
A-1) indicate the T20-gp41 models are physicallgsanable and well-behaved, ideally, longer

time-series for each simulation would be desirable.
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Figure A-1. (a) Autocorrelation functions (ACF) of calculateiddiing energiesGeing calcd) for T20 with wild HIVgp41 and seven mutan{b)
Block average standard error of the mean (BASEMcaI/mol as a function of block size from 1 to 80(olid arrows indicate initial 137K
results while dashed arrows indicate 137K resultsimed using a different random seed.

Table A- 1. Autocorrelation function percent uncorrelatedad@dCF %)and block average standard error of thanme
(BASEM) for AGyig calc results from simulations of T20 with wildtyp#Vgp41l and seven mutants for various block

lengths.

N=1ps N = 100 ps N = 250 ps N = 500 ps N = 1000 ps
mutation ACF9% BASEM’ ACF% BASEM ACF% BASEM ACF% BASEM ACF% BASEM
WT 46.13 0.06 79.44 0.38 82.93 0.56 87.91 0.73 ®5.1 1.01
L33Q 41.45 0.07 65.54 0.44 75.20 0.65 84.34 0.88 .488 1.13
L33S 39.96 0.07 69.46 0.45 81.34 0.67 88.43 0.88 .80 1.15
G36V 34.54 0.08 64.29 0.52 71.87 0.76 78.96 1.03 186 1.34
137K 33.64 0.08 59.43 0.54 69.77 0.80 85.24 1.07 039 1.09
V38E 44.79 0.07 74.14 0.39 79.68 0.56 86.96 0.78 .13®5 0.97
Q40H 36.55 0.07 66.64 0.48 70.09 0.68 81.25 091 8194 1.27
Q40K 32.04 0.07 61.20 0.53 75.26 0.79 83.38 099 686 1.24
avergage 38.64 0.07 67.52 0.47 75.77 0.68 8456 1 0.9 93.44 1.15

2ACF in % of uncorrelated datdBASEM energies in kcal/mol.
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Figure A-2. Intermolecular van der Waals interaction energyrixgheat map) for all gp41 with T20
residues from the wildtype simulation. Footprintkag magnitudes represent summatibBvdw
(kcal/mol) along each row (T20) or column (gp4Bray shaded regions indicate mapping of the gp41
mutation region(L33-L45) to a charged/polar pateh36-E148) on T20 defined by the black box in the
ca. center of the matrix. Heat map gradient colodicate the magnitude of unfavorable (blue) or
favorable (red) interactions with dark red beingstrfavorable.

A.3 Per-Residue Energetic Analysis.

As discussed in Chapter 1, per-residue energy deecsitions are very useful at
identifying important interactions. For exampleydeable Coulombic attractions in the T20
system were observed to lead in some cases toamafae van der Waals energies at the site of
the interaction as shown by the two matrix entdelered blue in Figure A-2 which represent a
intermolecular R31-D153 salt bridge and a R46-Qi3Bond between gp4l and T20. For

V38E, intermolecular repulsions which occurs agsult of the change to a negative residue
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leads to large losses in favoralfl&E.., and a corresponding unfavorable solvent-mediated
electrostatic energfAGee,™* Overall, the simulation results suggest thAGgx is dominated

by losses in favorable steric packing for 137K a@dOK vs losses in favorable electrostatic

energy for V38E as a result of large changes inl@ohic attraction or repulsion. This analysis

is consistent with a recent study by Eggink et*aivho grouped charged gp41 mutations into
similar mechanistic classes. In a related studych et af**? found long-range electrostatic

forces to be important for C-peptide peptide bigdin

A.4 Membrane Interactions: The Importance of the WNNF Motif.

A growing body of experimental evidert¢&'*®

suggests that T20 activity requires both N-
helical binding and membrane binding. In particutiae four C-terminal residues on T20 termed
the WNWF motif (residues 159-162, Figure 1 in p&peare thought to interact with the host
cell membrane during fusidii®**” A side-by-side comparison of van der Waals andl@ubic
energy footprints (Figure A-3) clearly indicate ttha addition to gp41 (dashed lines), the C-
terminal end of T20 also makes significant intaoa® with the lipid bilayer (black lines). T20
packing interactions with membrane first appedsg¢omportant starting around W155, followed
by L158, W159, W161, and F162. Importantly, the tterminal T20 residues (Trp161, and
Phel162) show strikingly enhanced lipid-packing cared with other residues and in a relative
sense the interactions are much stronger than thbsd occur with gp41 (Figure A-3a solid vs
dashed lines). L158 also makes stronger van daldNateractions with the membrane than
with gp41. Interestingly, the side-by-side comgpani reveals that when C-terminal T20 residues

make strong packing interactions with gp41, weakiractions are observed with the lipid and

vice versa.
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Figure A-3. Comparison of the per-residue van der Waals (a) @maombic (b) interaction energies
between gp4l (dashed line, small squares) and tigichbrane (solid line, filled circles) for each T20
residue from wildtype simulations. Each datapeégresents the average value obtained from 10,000
MD snapshots saved every 1 ps.

The Coulombic plot reveals that the seven charg#l résidues interact with gp41 and
the membrane (Figure A-3b dashed vs black linesarninoverall similar manner (i.e. peak
location) which results in a net favorable intei@ttenergy with the membrane. Interestingly,
despite the fact that the T20 is bound along tHe l&mgth of the inner coiled-coil, more
favorable Coulombic energies are observed to omtthrthe membrane, as opposed to gp41, for
three out of the four residues in the C-terminal WN motif (Figure A-3b dashed vs black
lines). The regularly repeating pattern in the \wim Waals footprint indicates which T20
residues are in close contact with gp41 (FigureaAd8shed lines) and include W159, N160, and

F162 in the WNWF motif. In contrast, prior expeeintal studie¥®'*®have suggested T20 C-
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terminal residues may not interact with gp41. Cpagme et al’® recently reported that the
mutation WNWF->ANAA led to no change in T20 binding affinity usirgy gp41 construct
termed 5H-ex (N-helix a.a. 19-71). And, Wexler-€ohet al**® has reported that D-
configuration substitutions on T20 at positions 81&nd W159 did not significantly change
binding to a construct termed N54 (N-helix a.a.70J- However, the van der Waals heat map
results (Figure A-2 x-axis) clearly indicate th&0Talso makes favorable contacts with the gp41
inner coiled-coil down to residues 16, 15, and Ithus, the shorter truncated N-helical sites
employed in these prior experimental stutfi®¥'® may not have provided a complete binding
interface for T20. Consistent with this explanafi€hampagne et &1° noted that, compared to
the peptide C37, substantial differences in affiridr 5H-ex were observed with T20 which
might suggest the construct does not fully mimeoenplete gp41 binding site.

From a structural perspective, several types adrasting interactions were identified
with the aid of stereo 3-D visualization betweesidges in the WNWF motif and the membrane
which could contribute to stability of the overaimplex (Figure A-4). Specifically, lipid head
groups appeared to be interacting favorably withraatic rings and with the T20 backbone. In
an effort to quantify such interactions, radialtdmtion functions (rdfs) were computed for
several types of interactions identified visuallg being potentially long-lived. Distinct
structural features, representative of a "firsvatbn shell” for T20 with lipid were observed in
several rdfs as shown in Figure A-4a. Represemtatkamples of favorable interactions (d2-d4

distances 5 A) are visually illustrated in the accompanyaraphic (Figure A-4b).
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Figure A-4. Interactions of the T20 WNWF motif with membran&-4a shows radial distribution
functions (rdfs) for the average distances (N=10,8apshots) between all lipid headgroup N atords an
(d1) the center of ring atoms at W159, (d2) thekbane O at N160, (d3) the center of ring atoms at
W161, and (d4) the backbone O at F162 (d4). Suiomaff bins (panel a gray vertical lines) out to a
distance< 5 A approximates the number of interactions odogrin the first T20-lipid solvation shell
represented by the first peaks in the rdfs. 3+éplgcally illustrates representative favorableiattions
(distances 5 A) for the T20-lipid interaction pairs defined @2-d4 (magenta dashed lines). The graphic
shows a single simulation snapshot of T20 (oratigks3 complexed with gp41 (gray surface) intenagti
with ten representative conformations of two nedipids (green sticks). Lipid head group carbons
omitted for clarity.

Plots in Figure A-4a show the rdf which yielded taegest number of interactions
(distance< 5 A) out of several atom selections evaluatecefmh WNWF residue with the lipid
head groups. Although numerous distance defirsti@md thus rdfs) are possible, summations
up to the peaks at around 5 A strongly suggesttitteairomatic ring of W161 is particularly well
solvated by lipid head groups with 0.85 interactidollowed by the backbone O of N160 with
0.58 interactions (Figure A-4a). For W161, thighly populated pi-type interaction likely

corresponds with the distinct Coulombic energy psadén at this position in the membrane vs
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gp41 footprint plots for T20 shown in Figure A-B sharp contrast, the rdf for the aromatic ring
of W159 shows essentially no first solvation skpelak (Figure A-4a top) indicating an absence
of specific interactions with the polar lipid hegtbups. This result is consistent with W159
being particularly well packed on the gp4l surfatecomparison with other residues in the
WNWF region (Figure A-3 dashed vs solid lines). r F462, although the backbone O does
show weak lipid interactions (Figure A-4, d4), sisimgly, the side chain is not solvated by head
groups as seen with W161, despite the fact thaatbmatic ring might also have participated in
pi-type bonding. Examination of the MD trajectarieeveals that the phenyl group on F162 is
too well buried in the lipid bilayer to make diremintact with polar head groups. Supporting
this explanation, results in Figure A-4a show tR&62, the terminal residue on T20, makes
stronger more favorable van der Waals interactwitis the membrane than any other residue in

the WNWF motif.
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Appendix B. Evaluation of DOCK 6 as a Database

Enrichment Tool.

Collaborative work described in this chapter hasnbgublished in Brozell, S. R.; Mukherjee, S.;
Balius, T. E; Roe, D. R.; Case, D. A.; Rizzo, R. C., Evaluattd®dOCK 6 as a Pose Generation
and Database Enrichment Toal. Comput. Aided Mol. Des. 2012, in press. Copyright © 2012

Springer Science+Business Media B.V. doi:10.10M882-012-9565-y

Author contributions. SRB, SM, TEB, DRR, DAC, aRCR designed research; SRB, SM,

TEB, DRR preformed research; SRB, SM, TEB, DRR, DAfd RCR wrote the paper.

B.1 Collaborative Project Summary

We participated in a special symposium titled "Dogkand Scoring: A Review of
Docking Programs" which took place at the ®4Imerican Chemical Society National Meeting
held in Anaheim, CA (2011). The meeting led to garticipation in a special issue in the
Journal of Computer-Aided Molecular Design as alatmration between two DOCK
development groups Stony Brook University (Rizzogl &kutgers University (Case) groups. As

a requirement we were asked to evaluate DOCK6 usumgmain evaluation methods: pose
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reproduction using the ASTEX Datab&Send enrichment experiments using the DUD database.
My contributions, which focuses on docking enriciingtudies, is described below and is taken

from our manuscript which has been accefted.

B.2 Theoretical Methods

Enrichment Metrics. For accessing the accuracy of docking programsvidual
screening, Receiver Operating Characteristic (RO@yes are used to evaluate how well
methods favorably rank known active molecules caetpavith a large number of decays. In
ROC curves, the True Positive RatéPR=TP/P) is plotted vs the False Positive Rate
(FPR=FP/N), where TP is the number of True PostiV is the total number of Positives
(actives), FP is the number of False Positives, Mgl the total number of Negatives (decoys).
Figure B-1 shows ROC curve examples representafivgood enrichment (panel a), random
enrichment (panel b), and poor enrichment (panel Quantitatively, the total area under the
curve (AUC) of a ROC plot provides a measure ofbgloenrichment. In a practical sense
however, good early enrichment is reasonably exgetd be more important for prioritizing
compounds identified by virtual screening of laligand libraries. The example in Figure B-1c
illustrates ROC curve behavior with poor total ehment but strong early enrichment. Several
methods for assessing early enrichments have lepented'®’ In this report, we use four very
specific definitions (%TPR, %FPR, %AUC, and FE)dssess early enrichment as outlined

below.
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Figure B-1. Representative examples of ROC curves showing daddrandom (b), and poor (c) global
enrichments.

For early enrichment, we report %TPR, and %FPRdfierent percentages (0.1, 1.0,
2.0) of the ranked database. Transforming to peages yield scaled values which are much
more readable for very early enrichments (i.e. near zero). Percentages yield %FPR
and %TPR in the range [0, 100]. We also report %AI0r early enrichment which is in the
range [0, 10000]. We feel %AUC is a more meanihgfatric to gauge early enrichment since
the values involve the area and not a single pminthe ROC curve. When reporting total AUC
we report unscaled values. The panel in FigureaBli@strates the relationship between %FPR
(Xe), %TPR (%), and the % of database ranked=(0.1, 1.0, 2.pfor three different values. It
should be noted that, the %FPR and the % of databaseened are not necessarily equal.

However, under most conditions, when P < < N thimifact a reasonable assumptioR £¢).
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Figure B-2. (a) Schematic showing possible enrichments at 011985, and 2.0% of the database scanned and (b)-
(d) maximum Fold Enrichment (FE) values at eacthe$e points. FE = AUC / AUgG.

The fourth early enrichment metric used here isnésr fold enrichment, recently
employed to assess the footprint-based scoringitm® and defined a§E = AUC / AUCan.
This quantity facilitates comparison with randomh&eor and is a very intuitive measure.
Using the approximation & € when 0.1%, 1.0%, and 2.0% of the database aretlkept2000,
200, and 100 are the best possible{fEfold enrichment values (Figure B-2b to d). 1t is
important to note that for FE it is only meaningfal compare values calculated at the same
percentage of the database but not between ditfpernentages.

Enrichment Datasets. DUD® consists of forty protein structures (39 from B2B and
one homology model, denoted here with the name MQided into six families as shown in
Table B-1: Metalloenzyme (N=4), Nuclear Hormonec&#or (N=8), Kinase (N=9), Folate
Enzyme (N=2), Serine Protease (N=2), and finallynascellaneous family called “Other
Enzymes” (N=14) the same breakdown as in the DURepd® Table B-1 lists for each entry,
the associated pdb code, the DUD system name, nuoflzetive ligands, number of decoys,
number of WOMBAT active ligands (if applicable),cathe so-called semi-random pairings for

which the DUD receptors were combined with actiaesl decoys developed for a different
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system. The WOMBAT s&¥ consists of active small molecules for 13 of tHdDsystems.
Two WOMBAT sets did not correspond to any DUD regoe@and were not used. For another
set, active ligands for Estrogen Receptor alphaeveemix of both agonist and antagonists.
However, DUD distinguishes between agonist andgamtiat receptors thus WOMBAT runs for
Estrogen Receptor are not included. In summagyDiD SUP datasets consist of 40 DUD and
10 WOMBAT sets of active compounds which were us#th the 40 supplied receptors. For
DUD PDB, two receptors 1L2I and 1AH3 were excludedng to structural problems in the
PDB coordinates. Therefore, the DUD PDB datasetsist of 38 DUD and 9 WOMBAT sets
of active compounds, with corresponding DUD decmard sets, with 38 corresponding

receptors.
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Table B- 1. DUD systems and semi-random matching information.

Protein PDB DUD No. No. No. Sedml- Pairing
Family name name ligands decoys WOMBAT rlglgiri?]rg Description
Metallo- 1086 ace 49 1797 ada
enzymé INDW ada 39 927 ace
(N=4) 1H1D comt 11 468 pde5
1XPO pde5 88 1978 101 comt
2A06 ar 79 2854 56 rxr
121 er_agon 67 2570 83 mr
Nuclear 3ERT er_antag 39 1448 83 ppar
Hormone M2z ar 78 2947 pr
Receptor 2AA2 mr° 15 636 er_agon
(N=8) 1FM9 ppar 85 3127 43 er_antag
1SR7 pr 27 1041 ar
1MVC rxr 20 750 ar
1CKP cdk2 72 2074 190 pdgfrb
1mM17 egfr 475 15996 81 hsp90
1AGW fgfrl 120 4550 src
Kinase 1UY6 hsp90 37 979 egfr
(N = 9) 1KV2 p38 454 9141 60 vegfr2
MODL pdgfrb 170 5980 cdk2
2SRC src 159 6319 fgfrl
1KIM tk® 22 891 pnp unrelated
1VR2 vegfr2 88 2906 p38
Folate 3DFR dhfr 410 8367 gart
Enzyme 1C2T gart dhfr
(N=2) 40 879
Serine 1FOR fxa 146 5745 125 thrombin
Protease 1BA8 thrombin 72 2456 fxa
(N=23) 1BJU trypsin 49 1664 hivpr unrelated
1EVE ache 107 3892 hmga
1AH3 alr2 26 995 42 ampc
1XGJ ampc 21 786 alr2
1Q4G coxl 25 911 sahh
1CX2 cox2 426 13289 88 na
Other 1A8I gpb 52 2140 hivrt_
Enzymes 1HPX h|ypr 62 2038 trypsin unrelated
(N = 14) 1RT1 hivrt 43 1519 120 gpb
1HW8 hmga 35 1480 ache
1P44 inha 86 3266 parp
1A4G na 49 1874 cox2
1EFY parp 35 1351 inha
1B8O pnp 50 1036 tk unrelated
1A7A sahh 33 1346 cox1

®Proteins in these groups are unrelated, and natotep to cross-enrich’The very small number of
ligands makes evaluating enrichment statistics. HOproblematic (< 1 ligand)’ERa ligands not used
for WOMBAT studies.DUD systems not used in DUD PDB prep.

For each PDB code in DUD, the organizers also pegpalternative non-native pairings

(termed semi-random pairings) which was describedh avay to perform "null hypothesis”
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testing. Unrelated proteins would be expectedi¢tdyenrichments no better than random (null
hypothesis). However, due to the fact that theisandom pairings actually involve structurally
related proteins (Table B-1), good enrichment may lbe unexpected for certain pairings.
Metalloenzyme and Other Enzymes groups represdiettions of unrelated proteins.

Enrichment Calculations. For a given molecule (active or decoy) that is @éacko a
target it is important to note that a final answeay not always be obtainéd:**?> Such
occurrences necessitate a decision as to how sudrgedROC curve analysis should be
performed. For the current study, this was gehenralt problematic as on average a viable 3-D
pose was returned for 99% of the molecules (TaBt@sand B-3). From a practical standpoint,
there are at least three possible ways of gengr&MC curves (see Figure B-3 for a graphical
representation) when not all molecules yield a eanknswer: (1) Generate ROC curves by
ignoring molecules for which an answer was not ioleth (Figure B-3 a black line). In this case
the number of actives (P, positives) and decoysn@gatives) employed becomeg.&.q and
Naocked (2) Generate ROC curves by using the initial benof actives and decoysi{ and
Niniiat). In this instance ROC curves may not alwaysheBeR=1, FPR=1 (Figure B-3a gray
line). (3) Generate ROC curves by assuming perfeahe, or random enrichment for the
molecules which do not yield a final answer (FigBr8b gray and purple lines). In this scenario
ROC curves always reach TPR=1, FPR=1. In the ourmeanuscript, ROC curves (and
accompanying AUC values) were generated using rde2hend using the reasonable assumption

of random enrichment for missing molecules.
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Figure B-3. (a) Hypothetical ROC curves computed using twoedéht values for the total number of molecules
classified as active (P, positive) or decoy (N,ate@). The gray curve was computed using.Pand Nyiia @and the
black curve was computed usingdeqand Nockea (B) Missing data can be assumed as yieldinfppieenrichment
(blue upper line), no enrichment (lower red line),random enrichment (purple middle line) to ensiinee ROC
curve will reach TPR=1, FPR=1. The dashed linthégsrandom ROC curve.

B.3 Results

DOCK Completion Rates for DUD Enrichment Experimens. DOCK completion statistics
are presented below for both the DUD PDB (Table) Bl DUD SUP (Table B-3) experiments.
In cases where a DOCK answer was not generatedf@ssasons include an exceedingly high
energy score (i.e. > +1000 kcal/mol), incompatipiWwith the binding site (i.e. large molecule in
a small cavity), or insufficient torsion samplin@n average, a DOCK pose was returned in 99%
of the runs. Shaded entries indicate the casesevibgs than 90% of the initial (total) molecules

yielded a final (dockd) pose. On the average, @%olecules yielded a final answer.
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Table B-2. Enrichment completion statistics using DUD PDB pargpion.

Normal Semi-random

DUD pairing decoys actives decoys actives

PDB Normal Semi- initial dockd initial dockd |initial dockd initial d ockd
rand

1086 ace ada 1797 1787 49 49 927 925 39 39
INDW ada ace 927 925 39 39 1797 1787 49 49
1H1D comt pde5 468 467 11 11 1978 1970 88 88
1XPO  pde5 comt 1978 1970 88 88 468 467 11 11
2A06 ar rXr 2854 2812 79 74 750 714 20 20
1L2] er_agon mr NA NA NA NA NA NA NA NA
3ERT er_antag ppar 1448 1437 39 38 3127 3116 85 85
1IM2Z  gr pr 2947 2694 78 58 1041 1015, 27 22
2AA2  mr er_agon 636 601 15 8 2570 2560 67 65
1FM9  ppar er_antag 3127 3116 85 8b 1448 1437 39 38
1SR7 pr ar 1041 1023, 27 23 2947 2845| 178 64
IMVC  rxr ar 750 714 20 20 2854 2815 79 72
1CKP  cdk2 pdgfrb 2074 2074 72 71 5980 5977 170 170
1M17  egfr hsp90 15996 15990 475 475 979 978 37 37
1AGW fgfrl src 4550 4537 120 120 6319 6311 159 159
1UY6  hsp90 egfr 979 978 37 37 15996 15990 475 475
1KV2  p38 vegfr2 9141 9127 454 454 2906 2903 88 88
MODL pdgfrb cdk2 5980 5977 170 170 2074 2074 72 71
2SRC  src fgfrl 6319 6311 159 159 4550 4537 120 120
1KIM  tk pnp 891 889 22 22 1036 1033 50 50
1VR2  vegfr2 p38 2906 2903 88 88 9141 9128 454 454
3DFR  dhfr gart 8367 8354 410 410 879 877 40 40
1C2T  gart dhfr 879 877 40 40 8367 8354 410 409
1FOR fxa thrombin| 5745 5728 146 146 2456 2404 72 72
1BA8 thrombin fxa 2456 2404 72 72 5745 5728 146 146
1BJU  trypsin hivpr 1664 1615 49 49 2038 2029 62 62
1EVE ache hmga 3892 3868 107 10y 1480 14 35 23
1AH3  alr2 ampc NA NA NA NA NA NA NA NA
1IXGJ ampc alr2 786 786 21 21 995 992 26 26
104G  coxl sahh 911 910 25 25 1346 1345 33 33
1CX2  cox2 na 13289 13259 426 423 1874 1862 49 49
1A8I gpb hivrt 2140 2136 52 52 1519 1513 43 42
1HPX  hivpr trypsin 2038 2029 62 62 1664 1615 49 49
1RT1 hivrt gpb 1519 1513 43 43 2140 2136 52 52
1HW8 hmga ache 1480 1475 35 23 3892 3867 107 107
1P44 inha parp 3266 3255 86 86 1351 1350 35 35
1A4G na cox2 1874 1862 49 49 13289 13265 426 423
1EFY  parp inha 1351 1350 35 35 3266 3256 86 86
1B80O pnp tk 1036 1035 50 50 891 890 22 22
1A7A  sahh coxl 1346 1345 33 33 911 908 25 25

®Shaded entries indicate DUD sets in which less 8G# of the initial (total) ligands yielded a final
(dockd) pose.
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Table B-3. Enrichment completion statistics using DUD SUP pragion.

Normal Semi-random

DUD pairing decoys actives decoys actives

PDB Normal Semi- initial dockd initial dockd |initial dockd initial d ockd
rand

1086 ace ada 1797 1787 49 49 927 925 39 39
INDW ada ace 927 925 39 39 1797 1787 49 49
1H1ID comt pde5 468 467 11 11 1978 1970 88 88
1XPO  pde5 comt 1978 1969 88 88 468 467 11 11
2A06  ar rXr 2854 2807 19 71 750 677 20 16
1L21 er_agon mr 2570 2560 67 65| 636 6( 15 10
3ERT er_antag ppar 1448 1437 39 39 3127 3116 85 85
1M2Z  gr pr 2947 2663, 78 56 1041 1017| 27 22
2AA2 mr er_agon 636 599 15 9 2570 2561 67 65
1FM9  ppar er_antag 3127 3116 85 8% 1448 1437 39 38
1SR7 pr ar 1041 1014] 27 24 2947 2839, 78 65
IMVC  rxr ar 750 708 20 20 2854 2813 79 73
1CKP  cdk2 pdgfrb 2074 2074 72 71 5980 5977 170 170
1M17  egfr hsp90 15996 15990 475 475 979 978 37 37
1AGW fgfrl src 4550 4537 120 120 6319 6311 159 159
1UY6  hsp90 egfr 979 978 37 37 15996 15990 475 475
1KV2  p38 vegfr2 9141 9127 454 454 2906 2903 88 88
MODL pdgfrb cdk2 5980 5977 170 170 2074 2074 72 71
2SRC  src fgfrl 6319 6311 159 159 4550 4537 120 120
1KIM  tk pnp 891 890 22 22 1036 1035 50 50
1VR2  vegfr2 p38 2906 2903 88 88 9141 9128 454 454
3DFR  dhfr gart 8367 8354 410 410 879 878 40 40
1C2T  gart dhfr 879 878 40 40 8367 8354 410 410
1FOR fxa thrombin| 5745 5728 146 146 2456 2404 72 72
1BA8 thrombin fxa 2456 2404 72 72 5745 5728 146 146
1BJU trypsin hivpr 1664 1615 49 49 2038 2029 62 62
1EVE ache hmga 3892 3868 107 107 1480 12 35 23
1AH3  alr2 ampc 995 992 26 26 786 786 21 21
1XGJ ampc alr2 786 786 21 21 995 991 26 26
1Q4G  coxl sahh 911 910 25 25 1346 1344 33 33
1CX2  cox2 na 13289 13259 426 423 1874 1862 49 49
1A8I gpb hivrt 2140 2135 52 50 1519 15¢ 43 38
1HPX  hivpr trypsin 2038 2029 62 62 1664 1615 49 49
1RT1  hivrt gpb 1519 1513 43 42 2140 2136 52 52
1HW8 hmga ache 1480 1475 35 23 3892 3868 107 107
1P44 inha parp 3266 3256 86 86 1351 1350 35 35
1A4G na cox2 1874 1862 49 49 13289 13263 426 423
1EFY  parp inha 1351 1350 35 35 3266 3256 86 86
1B8O  pnp tk 1036 1017 50 48 891 887 22 21
1A7A  sahh coxl 1346 1329 33 33 911 787 25 23

®Shaded entries indicate DUD sets in which less 9@# of the initial (total) ligands yielded a final
(dockd) pose.
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Global Enrichment Statistics (Total AUC). Table B-4 shows the overall global
enrichment results (AUC values) for both the natwel semi-random pairing using receptor
structure derived from the protein databank (PDB}upplied by the organizers (SUP) using
actives and decoys from DUD or actives from WOMBAAUC values for individual systems
are shown as bar plots in Figure B-4. The redaltshe native pairings yield, in the case of the
DUD PDB runs (Figure B-4a, Table B-4), individuaU& values which range from 0.29 (bad
enrichment) to 0.96 (good enrichment). For the DSWIP results the max AUC value at 0.90 is
not as high (Figure B-4b, Table B-4). Interestyndioth receptor preps using DUD actives and
decoys yield nearly identical average AUC valuesO@0 and 0.59. This is a somewhat
surprising result as the different preps use difierpartial charge assignments (FFO§S&
Gasteiger®®), hydrogen orientation, and protonation statethefreceptor (as discussed further
below). For the WOMBAT results, average enrichmiantthe native pairings is worse than
random (DUD SUP = 0.42, DUD PDB = 0.45). And, mitkC values for are significantly
lower (0.13 and 0.16) than the corresponding DUie& (0.29 and 0.21). This is likely a
function of the fact that two of the WOMBAT ROC wes (pde5 and ppar) perform significantly
worse than random, a phenomenon not generallyisgbe other ROC curves, as is discussed in
more detail in the subsequent subsection (see RO@eCAnalysis). In addition, the much

smaller WOMBAT dataset size (~10) vs DUD (~40) ethates this difference.
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Table B-4. Global enrichment (total AUC) for native and semidom pairings.
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Figure B-4. Bar plots showing AUC values sorted from high tevlosing SB/DUD PDB naive pairing results in
155

panel a.



As expected, results from semi-random experimen&blé B-4, Figure B-4c-d) show
average AUC values which are consistently worse thadom (avg AUC < 0.50). However, as
discussed further below, for many semi-random pg#igood cross-enrichment is observed,
especially for receptors within the same protemifa This is reflected in the relatively high
max AUC values which are in the range 0.84-0.8%I@&-4) although they are lower than the
native pairing (0.90-0.96). For DUD actives, agera®UC drops from the higher 0.59-0.60 for
the native pairing to 0.46-0.48 for the semi-randumairing. However, for WOMBAT actives,
average AUCs are only marginally higher for theiveapairing (0.42-0.45), compared to the
semi-random pairing (0.39-0.40). This could be ttu¢he fact that 7/10 of WOMBAT semi-
random pairings are between proteins in the saméyfa As with the native pairings, there is
striking agreement for the semi-random set, betw2dd PDB and DUD SUP results, despite
differences in the two different structure prepiarat.

Individual AUC Values and Group-based Analysis (Hetmaps). Figure B-4 shows
bar plots of individual AUC values, comprising tte¢al values in Table B-4, for all pairings for
both structure preparations. Here, the plots areed by descending total AUC using the DUD
PDB native pairing results. Figure B-5 shows arixatpresentation of the data (heatmap) for
the DUD PDB results which facilitates, for exampletermining if a related group (or family)
yields good or poor enrichment. Similar results se&en for the DUD SUP runs (Figure B-6). In
Figure B-5, receptors are labeled according tgtiecode (and group) on the y-axis and ligands
are labeled according to the DUD system name om-dpds. The entries in Figure B-5 indicate
native pairings (diagonal elements) and semi-rang@airings (off diagonal elements). Red =
worse than random (AUC < 0.5), green = greater tiarqual to random (AUG 0.5), and

white = non-paired systems. See Table B-5 fortailee breakdown of systems which fall into
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the different categories (better, equal, or wolsntrandom). Figure B-5 groupings highlight
the fact that many of the so called semi-randomirggs are in fact not random but are pairings
between related protein structures. Thus, for ms@yi-random pairings, good enrichment
would not be unexpected. Exceptions would likelglude the "other enzyme" group, and to a

lesser extent the metalloenzyme group. Ideallpedarments using all receptors paired with all

active-decoys sets should be performed (entireixyatr derive better statistics.
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Figure B-5. Heatmaps showing enrichment study which employ SEIDPDB results and DUD actives and
decoys. Receptors are labeled by the pdb coddaanity on the y-axis. Ligands are labeled by thdDsystem
name on the x-axis. Red = worse than random (AUIC5%, green = greater than or equal to random (A&UICS),
and white = non-paired systems.

As evident by the median value of 0.56 (27/38 hAWC > 0.5) for the DUD PDB

results in Table B-4, most systems yield bettentrendom enrichment (green squares) for the
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native pairings occurring on the diagonal: metailnymes = 3/4, nuclear hormone receptor =
4/7, kinase = 4/9, folate enzyme = 2/2, serineqas¢ = 3/3, other enzymes = 11/13. For the
analogous off-diagonal experiments the median Alluer 0.48 (15/38 have AUG 0.5)
indicates a roughly even split between good anddmaithment: metalloenzymes = 3/4, nuclear
hormone receptor = 3/7, kinase = 2/8, folate enzymé?, serine protease = 2/2, other enzymes
= 1/11, misc pairings = 3/4. Importantly, off-daml elements for the "other enzymes" group,
consisting of mostly unrelated proteins, yields peorichment which is to be expected. This
group is probably the most useful overall as amalchull hypothesis test set for evaluating
virtual screening.

Of all the groups evaluated, the serine proteasepgyields the best overall enrichment
(5/5) for the five pairings evaluated (3 diagoraloff-diagonal). Cross-enrichment was also
observed for serine proteases in the original DUahuscript (Table 2 in Réf. This is not
surprising given that trypsin, factor Xa and threamare very similar proteins. In fact, trypsin
has been successfully used as a template for dEmglthrombin and factor Xa inhibitof&>>*
Interestingly, while the trypsin receptor (1bju)tviHIV protease actives (hivpr) shows no
enrichment (1bju-hivpr pairing, Figures B-4 ¢ andBds) the use of the HIV protease receptor
(Lhpx) with trypsin actives (trypsin) does showiemment (1Lhpx-trypsin pairing, Figures B-4 ¢
and d, B-5).

Global Enrichment for DUD SUP set.Figure B-6 shows enrichment results for the
native and semi-random pairing for the DUD SUP sHhis figure corresponds with the Figure
B-5 showing the same data for the DUD PDB set. pideslifferences between the two setups,
the heatmaps yield remarkably similar results fathipreps. Table B-5 shows the three counts

(better, equal or worse than random) for resultsaiobd using DUD PDB and DUD SUP
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preparations. As is noted in the heatmaps dissas®ction, the native results yield more better

than random results (27/38, 29/40) compared to-santdom (13/38, 12/40).
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Table B-5. Global breakdown of DUD systems into three sets
(better, equal or worse than random) using the AbGlefine

enrichment.

type better equal  worse
DUD PDB, Nativt 27 0 11
DUD PDB, Sen-ranc 13 2 23
DUD SUP, Nativ 29 1 10
DUD SUP, Sen-ranc 12 2 26

In contrast to serine protease, the kinase growwshpoor native and semi-random
enrichment. An interesting observation is thadepnal growth factor receptor (egfr) ligands
show enrichment with the heat shock protein (1ug8eptor while the converse pairing (1m17-
hsp90) is worse than random enrichment for bothpgrations (Figure B-4a-d, B-5, B-6).
However, since the 1uy6-hsp90 native pairing ab® $ub-random enrichment (Figures B-4a-b,
B-5) this result may not be unexpected if the deaatives and decoys dominate enrichment
behavior as discussed below. Surprisingly, wheymttline kinase is paired with purine
nucleoside phosphorylase actives, and vice vetgan{pnp and 1b8o-tk pairings, Figure B-4c-d,
B-5), these two unrelated systems enrich one anotlike authors of the original DUD paper
also noted that these two enzymes yielded crosskenent (Table 2 in DUD pap®f) in
addition to thymidine kinase being a promiscuouget

System-Specific Analysis: DUD PDB vs DUD SUP Prepations. Although the
overall average AUC (0.59, 0.60) for native paigng essentially the same, examination of the
individual results in Figure B-4a-b reveals tharthcan be differences in enrichment depending
on which structure preparation (DUD PDB vs DUD SWsused. The DUD PDB prep starts
with raw pdb files from scratch (see Methods) wiile DUD SUP structures, with the exception
of hydrogens added by the organizers, were fromotfiginal DUD databas€® Examples

include the good enrichment seen for system laBobly when using the DUD SUP receptor
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prep (Figure B-4a vs B-4b, 0.43 vs 0.75). Examamaof the glycogen phosphorylase receptor
in this system show that the DUD SUP prep contagtive site waters in the binding site (Figure
B-7b) which are absent in the DUD PDB prep. Thevkmactives may use the water-mediated
interactions to their advantage although a morailéet study should be performed to determine
the actual importance. For certain systems, bgdiite water is known to play critically

important roles. Another, more subtle examplehisveh in FigureB-7a for 1hw8. Here, the

native pairings appear to favor the DUD PDB receptep (Figure B-4a vs B-4b, 0.42 vs 0.21)
although the average AUC values are both belowaemndThe hmg coa reductase receptor in
this system has four chains, labeled A-D in thgioal pdb structure, with four occupied binding
sites. For the DUD PDB prep, the binding site used at the interface of chains A-B in

contrast to the DUD SUP prep which was at the fater of chains C-D. Differences between
the two sites (see Figure B-7a) involve a conforoma change of methionine and alternate
orientations of two cysteine thiol hydrogens whagpear to favor the DUD PDB prep. These

structural differences are likely a result of anbgaco-factor originally present in the C-D site.

(b) #’ CYS

Figure B-7. Differences between DUD PDB (red) and DUD SUP (gjestructure preps for (a) 1a8i and (b) 1hw8.
Native ligands are shown in cyan. Binding siteesgsin the DUD SUP prep for 1a8i indicated by htireles.
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Differences are also observed for systems 1fOr dadlg. For factor Xa (1fOr),
protonation state differences of a histidine néar binding site could influence the computed
enrichments (DUD SUP = 0.78, DUD PDB = 0.62). Reuraminidase (1a4g), electrostatics are
known to be especially importaf# thus the use of dramatically different charge et®dF99SB
23 ys Gasteiget®) would likely influence the results (DUD PDB = 8,8DUD = SUP = 0.59).
Finally, although differences in a binding site omment would normally be expected to affect
enrichment, for some systems this is not alway®moesl. For example, for catechol o-methyl
transferase in 1h1d, high enrichment is observatjusoth preps (AUC 0.85, 0.87) despite the
fact the DUD SUP prep is missing part of the cada¢S-adenyl methionine, SAM) included in
the DUD PDB prep. Overall, the results highligbtahuse of different receptor sites or structure
preparations, and by analogy alternative crystadlplgic coordinates of the same receptor can
influence enrichment.

ROC Curve Analysis. Figure B-8a shows standard ROC curves for theven&@UD
pairings (see Figures B-9 and B-10 for semi-rang@imings). The curves are sorted from high
to low according to total AUC using SB/DUD PDB datgh SB/DUD PDB shown in black and
SB/DUD SUP shown in gray. These comparisons al&wa, glance, which systems yield overall
good, reasonable, poor, or early enrichments. Mb#he curves have strikingly similar shapes
despite the fact that two different structure pregse evaluated. In contrast, 1hw8 and 1a8i
show dramatically different shaped ROC plots whittimately lead to the larger differences
discussed above. Systems with poor overall engectirmay still have good early enrichment
which is characterized by relatively steep upwdogiag curves starting on the left right hand
corner of the ROC plots which then decrease as randemore of the database is covered.

Although the left part of the curve will be abovetrandom line the right part of the curve may
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approach the random (1m17, 1kv2) or even dip be(étwx, 1086). This phenomena,
interestingly, seems especially true for kinases,2%vr2, 1xp0, and lagw. Indirectly, the
inherent plasticity of kinase binding sites couldversely affect enrichment due to known
induced fit effects which can be ligand dependelrbr example, the few actives which might
favor a particular kinase conformation could bersdofavorably but in absence of receptor
flexibility the remaining pool of actives might ngield favorable scores thus accounting for the
observed early, but not global, enrichment. O#hyastems with short lasting early enrichment
include MODL (based on a homology model) and 19f@r DUD vs WOMBAT native pairings
two systems in particular, 1xp0 and 1fm9, standasubaving significantly different ROC curves
(Figure B-8b). The ROC curve for 1fm9 shows goondaament behavior when using DUD but
a sub-random curve with WOMBAT. For 1xp0, although overall DUD results are not much
better than random the WOMBAT results are alwaysrsindom. Additional analysis would be

required to determine the cause of these enrichdiffatences.
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a. DUD Native Pairing
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Figure B-8. (a) ROC curves for the 40 DUD families. (b) ROC curfesthe 10 Wombat families (Wombat
ligands + DUD decoys). ROC curves sorted from higthow according to total AUC using SB/DUD PDB dat
with SB/DUD PDB in black and SB/DUD SUP in gray.

ROC Curves for Semi-Random Pairing. Overall, much poorer enrichment is observed,
as expected for the semi-random pairing (Figure ,B:@mpared to Figure B-8. For each curve,
the results for both DUD SUP and DUD PDB are showsood enrichment is observed for
pairings between related enzyme families (serir#epises, nuclear hormone receptors, and

folate enzymes).
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a. DUD Semi-random
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Figure B-9. Semi-random pairings run with DOCK®6.6. (a) ROCvesrfor the 40 DUD families. (b) ROC curves
for the 10 WOMBAT families (WOMBAT ligands DUD degs). Results are sorted by Stony Brook structures
results in black and gray is the provided organstarctures. Receptors are labeled by the pdb anddamily on

the y-axis. Ligands are labeled by the DUD systemme on the x-axis.

Comparing Native vs Semi-random. An interesting observation is that a given ligand
set (actives + decoys) can yield similarly shap&ICRcurves in two receptors suggesting that
shape, in some instances, can be driven by prepartherent in the ligand set. Two examples
of this phenomenon are the kinase pair egfr an@g¢pigure B-10a) and the serine proteases

pair fxa and thrombin (Figure B-10b). The egfralg set shows strong early enrichment with
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both receptors. Conversely, the hsp90 ligand btls/ curves that are slightly below random.
As previously mentioned, fxa and thrombin have rgfreenrichment with the DUD SUP

performing better than DUD PDB for all four comtimas. On the other hand, this observation
does not appear to hold when the receptors ardatenle As an example, hivpr (1hpx) more
strongly enriches the trypsin ligands than its @grigands (Figure B-10c). Conversely, the
trypsin receptor (1bju) performs worse than randonthe hivpr ligands as noted above in the
heatmap discussion. More studies are needed tlorexfhese issues in greater detail. For
completeness, Figure B-9 contains ROC curves fareahi-random pairings and may be used to

aid in making additional comparisons.
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Figure B-10. ROC curves for 3 pairs of DUD families (a) egfr drgp90, (b) fxa and thrombin, (c) trypsin and
hivpr. Top panels show the native pairing. Botjoamels show the semi-random pairing.

Early Enrichment. Table B-6 lists average early enrichment staisin terms of 0.1%,
1.0%, and 20% of the database examined, using radeve metrics
including %TPR, %FPR, %AUC, and FE (see Methodsl&initions). Which is the best metric
for quantifying early enrichment is still an actiseea of research. Here, to help gauge
enrichment, values for the expected random and faesstible cases are also reported. Results

from the 0.1% bracket are reported at the requesteoorganizers but in some cases may be too
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small to be meaningful considering the small numbtiemolecules contained in some DUD
datasets. Analysis presented below is focuseesuits obtained using DUD at 1.0% and 2.0%
of the database. WOMBAT data is provided for catgness.

Importantly, average early enrichment is alwaysi§icantly better than the hypothetical
random results. For example, comparison of FEeglising DUD PDB native pairings (Table
B-6) yields: 9.99 (1.0%), and 10.09 (2.0%). Tlisan order of magnitude improvement over
random FE (1.0) regardless of the theoretical mawmimwhich will decrease as larger
percentages of the database are examined (Fig@rd Bble B-6). The much better than random
FE results in these early regions mirror the viguahds seen in the ROC curves shown above
(Figure B-8) and should favorably benefit virtuareening efforts. The same trends are
observed for the other three metrics (% TPR, %FPRU@) with the computed enrichments
being consistently better than random.

A comparison of results using the two differentusture preps similarly shows
consistently improved early enrichments for the DRBDB prep. For example, %TPR values for
DUD PDB vs DUD SUP yield: 15.14 vs 13.02 (1.0%) @0d40 vs 17.33 (2.0%). Similar trends
are observed for %AUC: 4.99 vs 4.17 (1.0%) and 204.17.45 (2.0%) as well as FE: 9.99 vs
8.34 (1.0%) and 10.09 vs 8.72 (2.0%). In additBa®kPR values are lower, which is desirable:
0.56 vs 0.62 (1.0%), and 1.43 vs 1.52 (2.0%). @l\,euse of the DUD PDB prep appears to
yield better early enrichment results despite terall average AUCs being the same at 0.60 and
0.59 (Table B-4). Finally, the native pairingslgidigher early enrichment values compared to
the semi-random pairings which is to be expectBdr example, native vs semi-random DUD
PDB %AUC results yield 4.99 vs 3.53 (1.0%) and 90«4 12.49 (2.0%). The %TPR results for

these runs yield the same trend: 15.14 vs 8.584)lahd 20.40 vs 11.47 (2.0%).
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Table B-6. Averaged early enrichment at 0.1%, 1.0%, and 2.0%edatabases examined.

% Native pairing Semi-random pairing
Data- DUD WOMBAT DUD WOMBAT
base Metric® Besf Ran® PDB SUP PDB SUP PDB SUP PDB SUP
0.1% %TPR 100 0.1 2.57 2.34 2.59 229 190 140 2.90 2.36
0.1% %FPR 0 0.1 0.03 0.03  0.06 0.06 0.04 0.06 0.05 0.06
0.1% %AUC 10 0.005 0.01 0.01 0.10 0.07 0.01 0.00 0.07 0.06
0.1% FE 2000 1.0 200 288 1951 1350 1.73 0.83 13.00 11.79
1.0% %TPR 100 1.0 15.1413.02  9.69 929 858 7.71 8.43 7.65
1.0% %FPR 0 1.0 0.56 0.62 0.78 0.75 0.77 0.79 0.76 0.82
1.0% %AUC 100 0.5 499 417 5.14 449 353 317 4.10 3.91
1.0% FE 200 1.0 9.99 8.34 10.29 897 7.06 6.35 8.20 7.83
2.0% %TPR 100 2.0 20.4007.33 11.86 12.38 11.47 10.68 10.65 9.98
2.0% %FPR 0 2.0 1.43 1.52 1.67 166 171 171 1.69 1.77
2.0% %AUC 200 2.0 20.1917.45 14.26 13.74 12.49 11.63 13.12 12.46
2.0% FE 100 1.0 10.09 8.72 7.13 6.87 6.24 5182 6.56 6.23
aMetrics for %TPR and %FPR indicate percentage®d0p] while %AUC is on [0, 10000] calculated
using %FPR and %TPR, FE is unitle§Best = best possible enrichmefiRan = random enrichment.
Best and Ran values are estimations used for cosopgpurposes.

B.4 Enrichment Study Conclusions.

To evaluate the ability of DOCK6 to enrich actives decoy molecules, the standard
DOCK grid scoring function was used to screen 3&ysiems (Table B-4, Figure B-4 and B-5)
contained in the DUD database using either orgasizgplied receptor coordinates (DUD SUP)
or the protein data bank (DUD PDB). In additionthe standard DUD sets a subset of 10
systems employing WOMBAT actives was performed. DPDB results (Figure B-4a, Table
B-4) using native pairings yield AUC values obtainfeom ROC curve analysis (Figure B-8)
ranging from 0.29 (bad enrichment) to 0.96 (goodceément) with an average AUC of 0.60
(27/38 have AUCG 0.5). ROC curve analysis visually indicates geady enrichment for most
systems which was quantified using several meinidsiding, %TPR, %FPR, %AUC, and FE, at
0.1%, 1.0%, and 2.0% of the database examined€Ex6l). In particular, at 1.0%, and 2.0% an
order of magnitude improvement over random FE (IksQbserved for the DUD PDB native

pairing results. Overall, the early enrichmenindi® are encouraging and consistent with
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in which DOCK was used to successfully identifytiae lead
molecules through virtual screening.

As expected, analogous DUD PDB results for semiloam pairings show a lower
average AUC (0.48). However, appreciable enrictinerobserved among groups of related
receptors (Figure B-5). In contrast, the miscatars other enzyme group, comprised of
unrelated receptors, shows only 1/11 systems witlc A~ 0.5. Some system specific analysis
revealed possible contributors to differential enments according to which of the two receptor
preparation protocols was used (DUD PDB vs DUD Si&tocols). Observed differences

include alternate side chain conformations, numhsrdinding site waters, partial atomic

charges, and protonation states.
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