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Application and Development of Computational Tools in Drug Discovery  

by 

Trent Erik Balius  

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Computational Biology) 

Stony Brook University 

2012 

 

 

In this dissertation, I will discuss several interconnected projects motivated by drug 
development.  These projects employ computational techniques to study molecular recognition 
of a ligand (drug) by a receptor (protein) characterized through use of structural and energetic 
analysis.   

In Chapter 1, an introduction to computational drug discovery is presented, and methods 
used here are discussed.  Epidermal Growth Factor Receptor (EGFR) is an important drug target 
for the treatment of cancer.  In Chapter 2, we performed all atom molecular dynamics 
simulations of clinically relevant mutations of EGFR complexed with erlotinib (Tarceva) and 
other inhibitors.  The per-residue decomposition of intermolecular van der Waals and 
electrostatic energies – termed here molecular footprints – are useful in characterizing 
mechanisms of drug resistance.  For instance, the resistance to erlotinib and other inhibitors 
observed for the T790M mutation does not employ a steric clash mechanism as was discussed in 
the literature.  In fact, our results show that favorable van der Waals interactions are increased at 
this position.  Notably, water-mediated interactions were revealed to be highly important for 
explaining the resistance profiles.   

Footprints are useful in understanding binding.  We observed that a molecular footprint 
can be computed for any pose including conformers generated by docking.  Thus, we developed 
a footprint-based rescoring function in DOCK 6.5, termed footprint similarity (FPS) score.  The 
FPS scoring method is discussed in Chapter 3 and 4.  This tool uses comparison methods 
(Euclidean distance and Pearson correlation) to quantify footprint similarities between a 
reference molecule and docked molecules.  The FPS score enables users to rank-order virtual 
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screening results where the top scoring molecules have similar interactions as those of a 
reference.  References may include known drugs, natural substrates, and low energy transition 
states, among other possibilities.  This method was validated using pose reproduction, cross-
docking, and enrichment studies.  In addition, experimental collaborators have identify 
promising lead compounds from our virtual screening projects (using FPS re-ranking) including 
those targeting BotNT/A and HIV-gp41.  The FPS rescoring method was generalized to use grids 
enabling footprint-guided docking.  This grid-based FPS scoring method has been validated 
using pose reproduction experiments.  Future directions and ongoing projects are also discussed 
including de novo design. 

In Chapter 5, we conclude with a description of ongoing projects and ideas for future 
directions.  Finally, we discuss two collaborative projects which are presented in the appendixes. 
The role of point mutations in resistance of the HIV fusion protein glycoprotein 41 (HIVgp41) to 
the binding of T20, an FDA approved therapeutic was characterized.  Energetic error analysis 
and membrane contributions were also examined.  For HIVgp41 application studies, molecular 
footprints were shown to be useful in understanding drug-target molecular recognition as well as 
drug resistance mutations.  Motivated in part by participating in a docking symposium entitled 
“Docking and Scoring: A Review of Docking Programs” held at the American Chemical Society 
meeting (spring, 2011), DOCK 6.6 was evaluated as an enrichment tool using Receiver operating 
characteristic (ROC) curves and area under the curve (AUC) analysis on validation databases 
DUD and Wombat.  Enrichment studies demonstrate above random global enrichment, as well as 
good early enrichments, revealing DOCK as a useful tool for virtual screening applications.  All 
of the projects discussed here demonstrate the strength of computational techniques in drug 
discovery.   
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Chapter 1.  Introduction to Computational Structural 

Biology and Drug Discovery.   

 
 
 
 
This chapter provides background and introduction to the theory and computational methods 

used in this dissertation.   

 

1.1 Importance of Computational Techniques for Drug Discovery.  

The maintenance and further development of a strong and robust drug discovery pipeline 

is important for combating disease in a timely manner as new threats emerge.  As is shown in 

Figure 1-1, there are many stages in the drug discovery pathway from target identification to 

FDA approval. Traversal of a molecule through the drug discovery pathway is a long, (on 

average 9-12 years) and expensive (upwards of 800 million dollars) process.1   

Increasingly, computational methods are being used to aid drug discovery and overall 

have made considerable impact on molecular medicine.2-5  The ability to model molecules in 

silico at various levels of theory, isolating the reasons for binding affinity and specificity of 

drugs to their respective targets, is a powerful tool.  Importantly, computational techniques are 

designed to complement experimental techniques.  In addition, they are proven time and money 

saving methods.  In particular, they are used to aid both the discovery and optimization stages of 
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the pipeline.3  The primary computational techniques described in this dissertation are molecular 

dynamics and docking and their associated analyses.  The goal is to increase our ability to 

capture the energetic and structural changes that accompany protein ligand binding.  

 

 

Figure 1-1.  The drug discovery pathway shown in black.  Techniques used at various stages of the pathway are 
shown in gray.   

 

Molecular-targeted therapeutics are showing promise in combating disease including 

HIV/AIDS,6,7 influenza,8 and cancer.9  To focus on cancer, a leading cause of death,10 the very 

successful drug imatinib (Gleevec) used tools from structure-based drug design during 

development.  Furthermore, imatinib was the first molecular-targeted therapeutic designed 

against a cancer target (the Bcr-Abl kinase in chronic myelogenous leukemia).11  In addition, 

structure-based drug design including computational techniques have been highly useful in other 

kinase drug discovery projects.12  In this work, the kinase Epidermal Growth Factor Receptor is 

studied in Chapter 2.  It is important to note that computational techniques have also contributed 
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to the significant inroads made in combating HIV and its manifestation AIDS.6  Specifically, 

HIVgp41, an anti-fusion target, is studied in this dissertation also and is discussed in Appendix A.   

An important goal is to understand the process of molecular recognition (Figure 1-2).  

For example, by calculating in silico the interactions of a small molecule (drug) with a 

biomolecule (protein) insights into binding may be obtained.  By linking structural and energetic 

properties using physics-based energy functions (see subsection on molecular mechanics), it is 

possible to view the behavior of molecules at an atomic level of detail that is much more difficult 

experimentally, for example, the importance of specific interactions on an energetic basis, 

hydrogen-bonds, desolvation penalties, etc.  Despite the approximations of classical molecular 

mechanics models, biological binding events can be captured remarkably well.  For example, 

molecular dynamics simulations of small molecules bound with proteins (as described in Chapter 

2) often show strong agreement between calculated and experimental values.  Furthermore, 

docking calculations are often (ca. 70% of the time using DOCK) able to predicted a native-like 

binding geometry (within 2Å of a crystallographic pose) for a molecule in its active site.13  By 

comparing computational prediction with experimental results, confidence is gained that the 

underlying simulations are robust.   

 

 

Figure 1-2.  Molecular recognition and the binding event.  The ligand and protein are shown in their free state on 
the left and then they associate together (represented by the arrow) to form the complex shown on the right.   
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Increasingly, an important drug discovery tool is virtual screening, the process of taking a 

large database of commercially available small molecule compounds and evaluating them in the 

computer to predict if they have activity.  A work flow for virtual screening (using DOCK) is 

shown in Figure 1-3.  A docking program (like DOCK), using a fast scoring method, is used to 

generate a rank ordered library for prioritization.  Large vendor collections, such as those 

provided by the UCSF ZINC database,14 have made virtual screening easier for both academic 

and commercial labs.  Often, compounds are rescored with more sophisticated functions.  Top 

scoring compounds are then visually inspected and a subset is chosen for purchase and 

experimental testing for activity.  As noted by “Tack” Kuntz a founder of the docking field,2 the 

synergy between computation and experimentation should be emphasized (feedback loop in 

Figure 1-3).  Current first line scoring functions in docking applications are very effective at 

enriching databases by discarding molecules that likely do not bind the target.15  However, first 

line scoring functions are often less effective at rank ordering, which highlights the need for 

more development. More accurate (expensive) methods typically use molecular dynamics 

simulations to generate ensemble-averaged energies.  Nevertheless, even with their 

approximations, docking and virtual screening have a proven track record.15,16  See Chapter 3 

and Appendix B for enrichment evaluation studies.   
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Figure 1-3.  Virtual screening schematic for DOCK.  A crystallographic protein structure is prepared for docking by 
creation of a sphere set and grid. Virtual screening is performed by docking ca. 1,000,000 molecules.  On the order 
of 100 compounds are chosen for purchase and experimental testing.  Preform Experimental testing on selected 
molecules. Feed-back loop demonstrates the relationship between computation and experimentation.   
 

1.2 Structures in Drug Discovery  

The study of biomolecules and their structure is an important aspect to understanding 

biology.  For example, the mechanisms governing ligand binding, protein-protein interaction and 

enzymatic functions all may be elucidated through structural information.  Although the 

experimental technique of X-ray crystallography provides static structures and the process of 

obtaining crystals may result in artifacts (e.g. crystal packing17), crystallography is an extremely 

powerful and important method to determine structures.  More importantly, computational 

techniques, such as molecular modeling, link these structures with energy.  Other techniques like 

molecular dynamics use the molecular mechanics energy function to simulate the motions of the 

molecule.  To perform such calculations, a model of the molecules in the Cartesian (3-D) 
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coordinates with atom type and connectivity is needed.  For proteins, the connectivity is known 

implicitly; however, for small molecules determining connectivity is more complicated and 

sometimes requires user input.   

Often the initial structures are available from database repositories like the Protein Data 

Bank (PDB),18 which stores structures derived from experimental techniques such as X-ray 

crystallography and nuclear magnetic resonance (NMR), as well as electron microscopy (EM).  

Structural biology is very important to drug discovery and the pharmaceutical industry.18  

Highlighting the continued relevance of structural biology, the PDB, since its founding in 1971,18 

has grown rapidly and currently has over 78,000 structures.18,19  Among their many uses, these 

structures may serve as a starting point for homology modeling and molecular dynamics 

simulations.  In addition they are used for target conformations in virtual screens, especially 

proteins crystalized with substrates.  Furthermore, protein-ligand complexes are used in test set 

construction to evaluate docking protocols and programs.   

 

1.3 Molecular Mechanics, Force Fields, and the Potential Energy Function.  

The wealth of structural information can be used in combination with molecular 

mechanics to energetically describe the system.  In molecular mechanics, a classical view of the 

world at the atomic level is imposed, and sets of parameters are applied to simple equations.20-22  

Figure 1-4 illustrates the 4 bonded terms and 2 through-space interactions. The total energy 

function is defined as follows:   

( ) nonbondedbonded, EErE topff +=r
 

The potential energy E is dependent on the force field (ff) parameters and the topology (top), or 

connectivity, of the system and is a function of all of the coordinates.   
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Figure 1-4.  Molecular mechanics terms, divided into bonded and through-space interactions are presented.  Each 
interaction type is labeled, illustrated and its equation is reported.   
 

The bonded term equation is as follows: 

( ) ( ) ( )( ) ( )∑∑∑∑
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Bond (r) is a distance between two atoms; angle (θ) is calculated between 3 atoms; and the 

improper dihedral (ϕ) and dihedral angles (χ), are the angle between the two planes defined by 

four atoms in which two atoms are shared.  The dihedral angle is defined by four consecutively 

bonded atoms; otherwise, it is an improper dihedral angle (Figure 1-4).  In the AMBER force 

field (which is employed in this work),21,23,24 improper dihedral angles are treated the same as 

dihedral angles; however, other force fields model them differently as in the bonded equation 

above.  This energy function consists of bonded terms where bonds, angles, and improper 

dihedral angles  are modeled with Hooke’s law that sets an ideal value (r0, θ0, and ϕ0) and a force 

constant (kr, kθ, and kϕ).  The dihedral angles follow a truncated Fourier series which allow for 
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multiple minima.  The truncated Fourier series where kχ is the height between maximum (top of 

peak) and minimum (bottom of well) points.  The parameter n is used to define the period that is 

the length between the wells or peaks, by adjusting this n, more or fewer dihedral angles will be 

minima.  The parameter δ is the offset this allows the shifting of ideal dihedral angles.   

Non-bonded, or through-space, interactions are calculated with the following equation: 

∑ ∑∑
∈ ∈∈ 
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To account for through-space interactions, every atom is represented as a sphere with a radius 

and partial charge.  In the above equation, Ati is the set of atom indices associated with atom i, 

such that Ati does not contain atom i or the 1-2 (atoms one bond away atom i), 1-3 (atoms two 

bonds away) or 1-4 (atoms three bonds away) atom indexes.  These parings are neglected due to 

proximity of the atoms.  The 1-4 interactions are scaled (e.g. in AMBER: se = 1 / 1.2 ; sv = 1 / 

2.0).21  Often atoms beyond a cutoff are not included in the calculations to speed up the energy 

calculation.  The variable qi is the charge at atom i, the variable ri,j is the distance between atom i 

and atom j, Ai,j, Bi,j  are the van der Waals parameters which are defined by the well depth and  

radii of two atoms.   

Next, we focus on sampling the conformational space of molecules, specifically protein-

ligand complexes.  In this dissertation, we primarily use molecular dynamics and docking 

(anchor-and-grow); other sampling approaches not discussed in this dissertation include Monte 

Carlo, and genetic algorithms.25-27   
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1.4 Molecular Dynamics. 

Sampling. Molecular dynamics, employing a molecular mechanics force field, can be 

used to study the motion of molecules given a set of initial coordinates often obtained from the 

PDB.  At room temperature molecules are in constant motion and therefore it is critical to look at 

an ensemble of structures in order to truly understand the energetics of binding.  Let the vector 

( )Nrrrr
r

L
rrr

,,, 21=  where ( )iiii zyxr ,,=r
 specify the position of the atom i in Cartesian space.  The 

forces on atom i can be calculated as follows: 

( )rEF topffii

rr

,−∇=  

iii mFa
rr =  

( )iziyixi aaaa ,,, ,,=r
 

Vector r
r

 contains all atoms and has a length of 3N.  The force calculated here is only 

concerned with atom i.  However, one can easily calculate the forces, ( )NFFFF
r

L
rrr

,,, 21= , and 

accelerations, ( )Naaaa
r

L
rrr

,,, 21= , on all atoms simultaneously.   

( ) ( )∫=
t

ixix dttatv
0 ,, ''  

( ) ( )∫=
t

ixi dttvtx
0 , ''  

The other y and z coordinates can likewise be calculated.  The positions for all atoms are also 

calculated similarly.  To illustrate the atom movement at each time step, we show a 2-D 

depiction (Figure 1-5).  The dark gray circles move to light gray using the forces which are 

calculated for each atom based on the initial positions (dark gray circles) of all atoms.  The light 

gray positions are then used as the initial positions for the next iteration.   
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Figure 1-5.  Two-dimension depiction of molecular dynamics.  The iterative schema for propagating motion is 
outlined where i denotes the atom and t, the time step.  The force (using energy function), the acceleration, velocities, 
and then new positions are obtained, consecutively.  Dark gray circles are the initial positions of the atoms, and light 
gray are the new positions.   

 

Velocity Verlet is a commonly-used numerical integration scheme for molecular 

dynamics.28  In the AMBER software (in the sander module) the velocity Verlet leap frog 

implementation is used:24   

( ) ( ) ( )ttvttrttr ∆+∆+=∆+ 21  

( ) ( ) ( )tatttvttv ∆+∆−=∆+ 212121  

Here, ∆ t is the change in time or the time step.  Typically a time step of 1-2 fs is used which is 

the vibration period of a bond.  The velocity Verlet integration method has the property of 

conservation of energy,28 which is very important for molecular dynamics and molecular 

modeling where researchers care about energetic properties .   

In this dissertation, molecular dynamics is used to generate an ensemble of structures of a 

protein-ligand complex.  The simulations are not meant to sample large conformational changes 
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but just sample about the starting coordinates typically initiated from X-ray structures to be able 

to better understand small-molecule protein interactions.   

There are many post-processing methods which aid in the analysis of molecular dynamics 

trajectories including structural and energetic analysis.  In this dissertation, root-mean squared 

deviation, block averaging standard errors of the mean, and autocorrelation functions are used to 

evaluate simulation stability and noise (Appendix A).  When free energy calculations and 

experimental affinity data show agreement (Chapter 2 and Appendix A), decompositions of 

energies (including per-residue footprint analysis) may be used to explain the observed trends.   

Calculating Binding Free Energies.  Hydration (or solvation) is an incredibly important 

part of binding energy due to two important facts:  (1) biology happens in an aqueous 

environment and (2) before something can bind an active site it must displace waters.  One 

popular method for calculating free energy of binding is the Molecular Mechanics Generalized 

Born Solvent Accessible Surface Area (MM-GBSA) Method.29,30  Although an approximate 

method, MM-GBSA has many strengths.  It is a relatively inexpensive method, topologically 

different structures can readily be compared and the simulations are easy to set up and run.  As 

discussed below (Chapter 2 and Appendix A), molecular dynamics simulations are often run 

fully solvated in water and then the water are removed and the simulation is rescored with 

Generalized Born (GB) or alternatively Poisson-Boltzmann (PB) models.30  Both GB and PB 

account for the desolvation effects and are both implicit water models.  GB is an approximation 

of PB and is faster to calculate and is used in work discussed in Chapter 2.  Both methods, 

however, are continuous, thus they can reproduce bulk-water interactions, but are not able to 

account for the discrete nature of water (See Chapter 2 for further discussion of MM-GBSA).  

Both GB and PB account for the entropy of solvent, but do not for solutes (protein and ligand).  
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The entropy of the solute is often ignored as is done in Chapters 2 and Appendix A, but the 

entropy term may be calculated using normal mode analysis or quasi-harmonic analysis.31  

Alternative methods for calculating free energies of binding such as thermodynamic integration 

or free energy perturbation use an alchemical path to calculate free energy differences between 

two states.  Although these alchemical methods are well grounded in theory and are proven 

accurate;32-34 they are more expensive, are difficult to set up and may only compare systems with 

small changes.   

Per-residue energy decomposition. Molecular footprints are useful in gauging which 

residues are most important for binding (Chapter 2 and Appendix A).  A footprint is the per-

residue decomposition of the through space interaction energies between receptor and ligand.  

Decomposing the energetics in this way is possible with additive force fields used in this work.  

Footprints are used in all of the chapters below.  Figure 1-6a shows a cartoon matrix of per-atom 

through-space interactions:  The blue square, red square and the purple rectangles are the internal 

receptor interactions, internal ligand interactions and the intermolecular interactions respectively. 

The equation representing the summed energy are also color-coded.  The matrix illustrates the 

ability to look at the decomposition of the interactions, one can look at interactions of pairs of 

atoms, or interaction of groups of atoms as is shown in the molecular-footprint cartoon in Figure 

1-6b.  One may also wish to look at an interaction matrix, the interaction of every residue with 

every residue as in Appendix A.  In addition, footprints can be useful for identifying like binding 

ligands (Chapters 3 and 4).   In the equation in Figure 1-4, lig, rec, and comp stand for the sets of 

ligand, receptor, and complex atoms, respectively.  Likewise, Elig, Erec, and Ecomp is the energy of 

the ligand, receptor and complex, respectively.  Elig,rec is the through space or non-bonded 

interactions.  ∆E approximates the change in energy from free state (Figure 1-2, left of arrow) to 
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bound state (Figure 1-2, right of arrow).  This energy can be further decomposed into per residue 

components represented by vector Efp. resid(i) represents the set of atoms in residue i of the 

protein.  See the method sections in Chapters 2, 3, and 4 for applications and more description of 

footprints.   

 

 

Figure 1-6.  (a) Matrix interaction of all atom pairs, blue is the internal energy of the receptor, red is the internal 
energy of the ligand and purple is the through-space interactions.  (b) Per-residue decomposition of the through-
space interactions. 

 

1.5 DOCKing. 

Docking programs perform two tasks: (1) sample the correct pose and (2) score the poses 

correctly.  Docking algorithms are used to place a small molecule in a protein pocket.  Docking 

has been described using the lock-and-key metaphor; however, docking is more complicated due 
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to ligand and receptor flexibility.  The program DOCK26,35-37 is the first widely used docking 

program and was developed in the group of Irwin D. Kuntz.  Work described in Chapter 3 was 

released as DOCK v6.5, and work in Chapter 4 and Appendix B will be incorporated in a future 

release of DOCK.   

Sampling. The DOCK 426 program introduced an algorithm called anchor-and-grow 

(A&G) for on-the-fly ligand growth in the context of a grid (calculated from a rigid receptor).  

DOCK 5,36 and its descendent DOCK 6,37 both continue to use A&G as their main ligand 

sampling tool.  There are alternative sampling methods such as the hierarchical database 

approach,38,39 where ligand growth is pre-generated (i.e. just generated once) and can be docked 

rigidly to many different targets.  The conformational pre-generation is preferred 

computationally if one docks to multiple targets otherwise there is no benefit over on-the-fly 

growth.  On-the-fly growth is more convenient and may allow for sampling to be guided by the 

scoring functions, which may result in the ability to focus the sampling method at all levels of 

growth.   

The A&G algorithm is as follows:  first, rigid segments are identified (Figure 1-7a) and 

the molecule is broken up in to these segments (Figure 1-7b).  Then, an anchor is chosen (Figure 

1-7c).  More than one anchor can be chosen (Figure 1-7d); the anchor list is sorted by number of 

heavy atoms and number of attachment points.  A segment may be assigned to a different layer 

when an alternative anchor is chosen.  For example, two different anchors are chosen in Figure 

1-7 c and d, and the segments are arranged into layers differently for the most part.  The anchor 

is then oriented into the pocket by using receptor spheres, which define a reverse image to the 

pocket to limit the search space.  Growth from viable anchor orients then occurs.  The A&G 

algorithm is a breadth-first method.26  Growth proceeds by sampling torsions of each segment 
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one at a time.  All nodes of the growth tree shown in Figure 1-7e placed within a grey stripe are 

enumerated before proceeding to the next step.  In addition, segments are divided into layers, all 

segments in the layer are sampled before moving to the next layer.  An exponential explosion of 

conformers is limited during growth by pruning and clustering as indicated by the red circle 

marked by an X in Figure 1-7e.   

 

 

Figure 1-7.  (a) Structure of Erlotinib is shown with labeled rotatable bonds.  (b) The molecule is broken up in to 
rigid segments.  The definition of layers is defined: (c) for the first anchor (A1); or (d) for the second anchor (A2).  
(e) Cartoon of the growth tree is shown. 

 

Scoring. DOCK uses a simplified molecular mechanics force field as the main scoring 

function, but only the intermolecular interaction energy is calculated.40  DOCK does not 

calculate the bond, angle or dihedral terms; however, DOCK calculates an internal energy of the 

ligand, which consists of only the repulsive van der Waals term for DOCK 6.4,13 in order to 

prevent ligand internal clashes.  The grid energy is used during standard docking to speed up the 

energy calculations.40  The grid is generated by pre-computing interactions as is discussed in 



16 

more detail in Chapter 4.  DOCK also has several alternative scoring and rescoring methods.  

Often it is useful to rescore docked results using more computationally expensive methods as is 

discussed in Chapter 3.  Docking runs, like molecular dynamics, may also be post-processed.  

For example docking results might be rescored using alternative scoring functions to more 

accurately predict binding affinities of poses or molecules.  An alternative rescoring method used 

to identify ligands that bind similarly to a reference molecule is described in Chapter 3.  In 

addition chemical informatics techniques such as fingerprinting may be employed for clustering 

to identify chemically similar molecules.41   

 

1.6 Research Projects.   

This dissertation describes several research projects involving application and 

development of computational techniques with the purpose of aiding in the design of improved 

inhibitors for medically relevant targets (proteins).  The project described in Chapter 2 involved 

simulations of the anti-cancer target Epidermal Growth Factor Receptor (EGFR) variants bound 

with three inhibitors.  The purpose of the study is to understand origins of resistance.42  In the 

next project shown in Chapter 3, the Footprint Similarity (FPS) rescoring function was 

developed in DOCK and evaluated using pose reproduction, cross docking and enrichment 

experiments.43  An extension of the FPS method to a Grid-based scoring function is shown in 

Chapter 4. In the final chapter (Chapter 5), impact of these studies, current and related work, and 

future directions are discussed.  Appendixes A and B feature work from two collaborative 

projects:  (A) analysis of binding of antifusion peptides targeting HIVgp41,44 and (B) evaluation 

of DOCK6 as an enrichment tool for virtual screening.45   
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Abstract. 

Clinical use of ATP-competitive inhibitors of the epidermal growth factor receptor 

(EGFR) kinase domain can lead to an acquired drug resistant mutant L858R&T790M which 

dramatically reduces binding affinity relative to a prevalent cancer causing mutation L858R.  In 

this study, we have used molecular dynamics (MD) computer simulations, free energy 

calculations (MM-GBSA method), and per-residue footprint analysis to characterize binding of 

three inhibitors (erlotinib, gefitinib, and AEE788) with wildtype EGFR and three mutants.  The 

goal is to characterize how variation in structure and energy correlate with changes in 
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experimental activities and to deduce origins of drug resistance.  For seven fold resistance 

values, each computed from the difference of two independent computer simulations, excellent 

agreement was obtained with available experimental data (r2 = 0.84).  Importantly, the results 

correctly predict that affinity will increase as a result of L858R and decrease due to 

L858R&T790M.  Per-residue analysis shows an increase in favorable packing at the site of the 

methionine mutation reaffirming a steric clash hypothesis is unlikely, however, large losses in 

van der Waals, Coulombic, and H-bond interactions strongly suggest that resistance is not due 

solely to changes in affinity for the native substrate ATP as recently proposed.  Instead, the 

present results indicate that drug resistance more likely involves disruption of favorable 

interactions, including a water-mediated H-bond network between the ligands and residues T854, 

T790, and Q791, which could have important implication for guiding rational design of 

inhibitors with improved resistance profiles.   

 

2.1 Introduction. 

Cancer is the second highest cause of death within the United States led by lung and 

bronchial cancers for which an estimated 215,000 new cases and 161,000 deaths were reported in 

2008.10  Non-small cell lung cancer (NSCLC) comprises the largest subset of lung cancers.46  A 

major oncogene that drives tumorigenesis in NSCLC, as well as other types of cancer, is the 

membrane receptor tyrosine kinase Epidermal Growth Factor Receptor (EGFR).  Overexpression 

of EGFR is observed in 62% of NSCLC tumors47 and its role in mediating tumor cell growth and 

survival for NSCLC, as well as many other types of cancer, has been well described.48-50  The 

importance of EFGR has been clinically validated, and within the past several years, inhibitors of 
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EGFR have been approved for treatment of NSCLC, pancreatic, colorectal, head and neck, and 

breast cancers.48,50,51   

Structurally, EGFR can be divided into five distinct regions: an extra-cellular ligand 

binding domain, a trans-membrane domain, an intracellular juxtamembrane domain, an 

intracellular tyrosine kinase domain (TKD), and a C-tail region where phosphorylation 

occurs.52,53  Normally, EGFR is a monomer.  However, extra-cellular ligand binding of 

endogenous EGF (epidermal growth factor) promotes dimerization with another protein from the 

ErbB family such as EGFR (ErbB1 or HER1), ErbB2 (HER2), ErbB3 (HER3), or ErbB4 

(HER4).48,54  The homo- or heterodimerization event induces a conformational shift in the TKD 

from an inactive to active form.52,53,55  Activation results in binding of ATP, phosphorylation, 

and signal transduction through a number of downstream pathways.48,54,56  Normally, signaling 

activity is under tight regulatory control.  However, cancer causing mutations can result in 

constitutive activation of EGFR.53  ATP-competitive inhibitors have been described that 

preferentially bind the active or inactive conformation.57,58  The primary structural differences 

between the active and inactive forms is a conformational shift in the TKD activation loop and 

movement of the N-lobe helix, both of which are located near the ATP binding site (Figure 2-1).   
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Figure 2-1. Ribbon diagram showing EGFR complexed with the ATP-competitive inhibitor erlotinib.  
Regions which change conformation (N-lobe helix and activation loop) upon receptor activation are 
shown in green.  Locations of cancer causing mutations (deletion or point) which cause receptor 
activation are in red.  The secondary T790M drug resistance mutation is shown in blue.  Coordinates from 
pdb code 1M17.   
 

There are two classes of inhibitors of EGFR: (i) monoclonal antibodies such as 

Cetuximab (IMC-C225) which target the extracellular domain and block binding of native EGF 

ligand to the receptor, and (ii) small molecules that compete with ATP in the intracellular TKD 

and block activity, regardless of endogenous ligand binding (Table 2-1).48-50,59  Focusing on ATP 

competitive inhibitors, approved small molecules of the TKD domain include erlotinib (Tarceva, 

OSI Pharmaceuticals), gefitinib (Iressa, AstraZeneca), and lapatinib (Tykerb, 

GlaxoSmithKline).51  A fourth compound called AEE788 (Novartis) is in development.60  

Although erlotinib and gefitinib primarily target EGFR, multi-receptor inhibition is possible 
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given the high structural homology of the TKD.48,57,60,61  Lapatinib is a dual inhibitor of EGFR 

and ErbB257,59 and AEE788 binds EGFR, ErbB2, and the related VEGF receptor.48,60  Erlotinib 

is label-approved for use against NSCLC and pancreatic cancer while lapatinib is approved to 

treat patients with advanced or metastatic breast cancer whose tumors also overexpress HER2.51  

Gefitinib was originally approved to treat NSCLC however the FDA has limited its usage given 

that no significant effect on patient survival was found.51  AEE788 is being evaluated as therapy 

for brain and central nervous system cancers.60   
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Table 2-1. Experimental fold resistance (FR) values for ATP-competitive inhibitors with EGFR.   

Inhibitor Structure 
Experimental Fold Resistancea 

L858R / WT L858R&T790M / L858R G719S / WT 

erlotinib 
N

N

NH

O
O

O
O

 

6.25 / 17.5 nMb 

0.36 FR 

−0.61 ∆∆GFR 

>10000 / 12.5 nMc 

>800 FR 

>3.96 ∆∆GFR 

− 

gefitinib 
N

N

NH

F

Cl

O

ON

O

 

2.4 / 35.3 nMd 

0.068 FR 

−1.59 ∆∆GFR 

10.9 / 2.4 nMd 

4.54 FR 

0.90 ∆∆GFR 

123.6 / 53.5 nMe 

2.31 FR 

0.50 ∆∆GFR 

AEE788 
N

N

NH

NH

N

N

 

1.1 / 5.3 nMd 

0.21 FR 

−0.92 ∆∆GFR 

18.6 / 1.1 nMd 

16.9 FR 

1.68 ∆∆GFR 

11.3 / 10.9 nMe 

1.04 FR 

0.02 ∆∆GFR 

aFold Resistance (FR) = ratio of experimental activities.  ∆∆GFR exptl ≈ RTln(FR) at 298.15 K in kcal/mol.   bKi values (nM) from Carey et al.62  c IC50 values 
(nM) from Ji et al.63  d Kd values (nM) from Yun et al.64  eKd values (nM) from Yun et al.65   
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Several cancer causing mutations in EGFR have been reported which map to either the 

extracellular ligand binding domain (e.g. in glioblastoma)63,66 or the TKD region (e.g. in 

NSCLC),67-71 which cause activation of EGFR independent of EGF-ligand binding.  For the 

TKD domain, such cancer causing mutations can occur at positions L858R or G719S (point 

mutations), and E746-A750 or E746-S752 (referred to as exon 19 deletions).67-71  L858R and 

exon 19 deletions are the most frequent mutations in NSCLC.72,73  Figure 2-1 shows the TKD 

domain cancer causing mutations mapped to EGFR in red.  Although patients with wild type 

EGFR benefit from low molecular weight inhibitors, patients whose tumors harbor activating 

L858R or deletion mutations are especially responsive to erlotinib and gefitinib treatment.69  

Interestingly, in contrast to most systems in which mutations lead to a decrease in binding, 

studies have shown that affinity is enhanced for TKD ligands for L858R over wild type (Table 2-

1).  As these ligands bind preferentially to the active conformation this could explain their 

enhanced binding affinity toward the mutants.  In contrast, decreases in affinity for gefitinib and 

AEE788 have been reported relative to wildtype for the G719S point mutant (Table 2-1).   

As with many chemotherapeutics, acquired resistance to current EGFR inhibitors can 

occur with continued use.74  A T790M resistance-mutation is commonly observed in patients 

treated with erlotinib and gefitinib for those tumors which also harbor the primary cancer causing 

point mutation at position L858R or exon 19 deletions.74  The location of T790M is shown 

mapped in blue to the TKD site on EGFR in Figure 2-1.  As shown in Table 2-1, the double 

mutant L858R&T790M shows marked decrease in inhibition when compared to the active 

L858R mutant alone for all three ligands.  Erlotinib in particular shows a large >800 fold 

resistance (FR = ratio of activities).  Similar secondary drug resistance mutations have been 

described previously for other molecular targeted therapeutics such as Gleevec.  The well-known 
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BCR-Abl kinase resistance mutation at position T315I, referred to as the "gate keeper", arises 

from treatment with Gleevec.75,76  The gate keeper is important in modulating selectivity and 

affinity for BCR-Abl inhibitors and analogous here to the point mutant in EGFR at position 

T790M.   

An improved understanding of the molecular determinates that drive ligand binding for 

EGFR is critical for development of improved inhibitors.  Prior computational studies of this 

system have included use of homology and molecular modeling,77 comparative molecular field 

analysis (CoMFA),78 virtual screening,79 and molecular dynamics.77,78,80,81  Use of MM-PBSA 

methods, similar in principle to the calculations employed in the present chapter, were reported 

by Hou et al.78 for refinement of docked ligand poses, and by Liu et al.80 to study the impact of 

point mutations on binding for gefitinib.  Surprisingly, there have been few all-atom molecular 

dynamics studies reporting quantitative binding energy comparisons between theory and 

experiment for ligands with EGFR.  In this report, we have carried out simulations of the TKD of 

EGFR in complex with three ATP-competitive inhibitors to investigate the effects of clinically 

relevant point mutations on ligand binding.  Studies to address deletion mutations are in 

progress.  Specifically, goals of the present project are threefold:  (i) Development of robust 

quantitative computational models to study EGFR-ligand binding for wildtype, L858R, G719S, 

and the drug resistant double mutant L858R&T790M.  (ii) Determine how variation in structural 

and energetic results correlate with variation in reported experimental activities.  (iii) Deduce the 

origins of drug resistance.  Characterization of FR at the molecular level will ultimately enable 

development of next generation compounds with improved resistance profiles.   
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2.2 Methods. 

2.2.1 Binding Free Energies.   

Accurate calculation of protein-ligand binding energies remains an important and 

challenging problem.  In this report, we employ the molecular mechanics Generalized Born 

solvent accessible surface area (MM-GBSA) method29,30 to computationally estimate binding 

free energies (∆Gb) for inhibitors with EGFR.  Although considered to be an approximate free 

energy theory, the benefits of MM-GBSA include relative ease of set up, low computational 

overhead, and systems with dissimilar topologies can be more readily examined in comparison to 

other methods such as free energy perturbation.  Projects in our laboratory employing similar 

protocols to that reported here, which successfully used MM-GBSA to study protein-ligand 

binding, include HIVgp41,82 neuraminidase,83 and MMP-13.84   

The method relies on the thermodynamic relationship shown in Figure 2-2 to estimate the 

free energy of binding (∆Gb calcd/exptl) which occurs in the condensed phase.  The computed 

free energy of binding is estimated as the sum of nonbonded gas-phase (∆Ggas) interactions 

modulated by the overall change in hydration free energy (∆∆Ghyd) for the complexation 

event.29,30  The hydration term accounts for important desolvation penalties, which include 

changes in entropy due to the hydrophobic effect, that occur as a result of unbound solvated 

species coming together to form a complex.  Additional terms to include estimates for changes in 

solute entropy were not included in the present study.   

A molecular dynamics trajectory of each protein-ligand complex is performed in explicit 

solvent with system energies, as well as root-mean-square-deviations (rmsd), being monitored 

for stability and convergence.  For MM-GBSA analysis, the explicit solvent is stripped off and 

coordinates are separated into three individual species (complex, receptor, and ligand) with eqs 
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2-1 to 2-3 being used to compute the total binding affinity.29,30  The relevant individual energy 

terms include van der Waals (∆Evdw), Coulombic (∆Ecoul), polar (∆Gpolar), and non-polar 

(∆Gnonpolar) contributions.  Generalized Born (∆Gpolar) and solvent accessible surface area 

(∆Gnonpolar) calculations are used to estimate ∆Ghyd for each individual species.85   

 

 

Figure 2-2.  Schematic representation of the thermodynamic cycle used to calculate free energies of binding (∆Gb 
calcd) for comparison with experiment (∆Gb exptl).  The cycle highlights the relationship between ∆Gb exptl 
occurring in condensed phase with the free energy of interaction in the gas-phase (∆Ggas) modulated by three terms 
representing the free energy of hydration (∆Ghyd) for the transfer from vacuum to water for each separate species 
(com=complex, rec=receptor, lig=ligand).   

 

)( lig-hydrec-hydcom-hydgasbb ∆G∆G∆G∆Gcalcd ∆Gexptl ∆G +−+=≈   (2-1) 

coulvdwgas ∆E∆E∆G +=     (2-2) 

nonpolarpolarspecies-hyd ∆G∆G∆G +=    (2-3) 
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2.2.2 Interaction Signatures: Molecular Footprints.   

To identify important binding site residues and characterize how interactions may change 

as a result of mutation, structural and energetic molecular "footprints" were computed for each 

MD trajectory.  Footprints represent the per-residue decomposition of interactions, averaged over 

the production simulations, between each EGFR residue and the inhibitors.  Our laboratory has 

successfully used such footprints to deduce origins of resistance conferred by a R292K mutation 

for sialic acid-based inhibitors of neuraminidase,83 and to show that the hydrophobic pocket 

region on HIVgp41 is an important drug target site for modulating binding affinity.82  Separate 

footprints for Coulombic and van der Waals energy, as well as hydrogen bonds were computed.  

Difference footprints were also computed, using results from the L858R&T790M − L858R 

simulations, and represent the change in energy (or H-bonds) at each residue due to mutation.    

System Setups: A single set of receptor coordinates (pdb code 1M17),58 of EGFR in the 

active form, was used as the basis for construction of all simulation setups.  All solvent was 

removed from the 1M17 structure and only the TKD of EGFR (defined as a.a. numbers 710-983) 

were retained.  Initial geometries for ligands erlotinib, gefitinib, and AEE788, were obtained 

from 1M17,58 2ITY,65 and 2J6M65 pdb codes, respectively and placed into the master 1M17 

reference frame through alignment of receptor backbone atoms in common with each pdb.  

Mutant forms of EGFR (L858R, L858R&T790M, and G719S) were obtained through manual 

modification of 1M17 to the desired residue(s).  Starting rotameric states for modified side 

chains were made using energetic packing consideration subject to visual inspection to ensure 

there were no intermolecular clashes as a result of model building.  The MOE86 program was 

used for initial preparation of ligand (mol2 format) and receptor (pdb format) files for subsequent 

processing.  The AMBER887 program modules leap and antechamber were used to assemble, 
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solvate (10 Å buffer), and assign force-field parameters for each complex consisting of 

FF99SB23 (protein), TIP3P88 (solvent), and GAFF89 (ligand).  For the ligands, partial atomic 

charges were obtained at the HF/6-31G*//HF/6-31G* level of theory via the ChelpG90 method 

using Gaussian98.91  All ligands were modeled as having a net zero charge.  Unless otherwise 

stated system setups employed default input parameters for each program.  The size of the 

complete model was 274 receptor residues plus one ligand residue solvated in a TIP3P periodic 

solvent box of ca. size 77 × 89 × 75 Å3 containing ca. 14,050 waters.   

2.2.3 Simulation Protocols.   

A nine step equilibration protocol, consisting of short energy minimizations and 

molecular dynamics (MD), was used to eliminate any unfavorable interactions which may have 

occurred as a result of model building and to gently adjust the starting structure to the molecular 

mechanics force field prior to production MD.  Heavy atoms of the complex were initially 

restrained to the crystallographic coordinates using a harmonic restraint force constant of 5 

kcal/mol Å2 with water molecules and hydrogen atoms free to move during 1000 steps of 

steepest decent energy minimization (step 1).  Each subsequent equilibration step used the last 

set of coordinates from the previous step as the restraint reference structure.  Next, the same 

restraint mask and coefficient were used for 50ps of MD in which waters and hydrogens were 

further able to adjust (step 2).  This was followed by three minimizations of 1000 steps each in 

which the restraints were reduced from 2, to 0.1, to 0.05 kcal/mol Å2 respectively (steps 3-5).  

Three additional MD runs of 50ps were run where weights were reduced from 1 to 0.5 (steps 6-

7) followed by 0.1 kcal/mol Å2 (step 8) with only backbone receptor atoms at Cα, C, and N 

being restrained in the latter step.  The final 50ps MD equilibration step used the 0.1 kcal/mol Å2 

receptor backbone weight, but only the last three residues on each N- and C-terminus were 
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restrained (step 9).  Production MD employed the same weak restraints as the final equilibration 

step and was extended to 5ns with the restraint reference updated every ns.  A time step of 1fs 

was used for equilibration and increased to 2fs for production MD which concurrently required 

use of the SHAKE92 algorithm.  Coordinates for post processing were saved every 1ps.  Long 

range electrostatics were computed using the particle mesh Ewald (PME)93 with a real-space cut 

off of 8 Å.  A constant temperature of 298.15 K and pressure of 1 bar was maintained during the 

simulations through Berendsen schemes94 with heat bath coupling and pressure relaxation time 

constants of 1.0 ps.  These calculations employed the AMBER8 sander module.   

 

2.2.4 Analysis.   

Binding free energies, fold resistance, and molecular footprints were obtained from post-

processing of each protein-ligand complex MD trajectory.  All waters were removed unless 

otherwise stated.  Individual snapshots (N=5000) were split into coordinates representing 

separate ligand, receptor and complex and single point calculations using sander were performed 

to obtain the energy terms (∆Ecoul, ∆Evdw, ∆Gpolar, ∆Gnonpolar) used to compute free energies of 

binding (Figure 2-2, eqs 2-1 to 2-3).  As in previously reported studies from our laboratory 82-84, 

the GB model implemented into AMBER8 described by Onufriev et al.95 (type igb=5) was used 

to estimate polar energies (∆Gpolar) with mbondi2 radii and dielectric constants of 1 and 78.5.  

Nonpolar energies (∆Gnonpolar) were obtained from solvent accessible surface area calculations 

via ∆Gnonpolar = γ SASA + β using standard constants of γ = 0.00542 kcal/mol Å2 and β = 0.92 

kcal/mol.30,96  GBSA calculations for molecules containing fluorine and chlorine employed radii 

of 1.50 Å (F) and 1.70 Å (Cl) which required modification to the AMBER8 distribution file 

src/sander/mdread.f.  In-house scripts were used to compute the per-residue decomposition 
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(molecular footprints) for intermolecular H-bonds, Coulombic, and van der Waals interactions 

for which the sum over all the EGFR residues is equivalent to the total value (i.e. ∆Ecoul, ∆Evdw, 

H-bond).  Hydrogen bonds were defined as a structural interaction between three atoms XD-HD--

--XA with a distance less than or equal to 2.5 Å and angle between 120 and 180 degrees.  The 

NAMD program97 was used to compute and gauge the importance of two highly populated 

waters involved in a network of water-mediated ligand H-bonds through calculation of the 

pairwise Coulombic and van der Waals energies between the waters (2H20 = species 1) and the 

interactions partners (T790/M790, Q791, T854, or ligand = species 2).   

For the analysis of fold resistance (FR), the experimental free energies are estimated as 

∆∆GFR exptl ≈ RT ln(FR) at 298.15 K using FR ratios in Table 2-1.  It should be emphasized that 

FR is defined as the ratio of two activities (mutant/wildtype) thus it is important that both 

measurements be made under the same conditions which usually implies that data be obtained 

from the same laboratory to minimize artifacts resulting from different experimental protocols 

(i.e. assay conditions).  Computationally, fold resistance energies (∆∆GFR calcd) are defined as 

the difference in predicted free energies of binding from two independent simulations (e.g. 

∆GL858R − ∆GWT) as obtained in each case via eqs 2-1 to 2-3.   

 

2.3 Results and Discussion. 

2.3.1 Simulation Stability.   

To assess the behavior of the MD simulations, and gauge the robustness of results, 

structural root-mean-square-deviations (rmsds) and system energies were examined as a function 

of time.  As demonstrated in Figure 2-3 which is representative, simulations of erlotinib 

complexed with EGFR for wild type, L858R, and L858R&T790M show reasonable stability in 
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plots for the estimated free energies of binding (∆Gb calcd) and for rmsds.  Block-smoothed 

energies (black line) indicate good behavior when computed from the running average of the 

previous 100 instantaneous snapshot energies (gray points) as shown in Figure 2-3 left.  On the 

right in Figure 2-3 are shown instantaneous rmsds values for the EGFR backbone at Cα, C, N, 

and O (blue line), erlotinib heavy atoms (green line), and erlotinib quinazoline ring atoms (red 

line).  Here, the reported rmsd values are obtained after each individual snapshot is fit to the first 

frame of the production MD runs using receptor Cα backbone atoms as the match criteria.  Thus, 

rmsd values for the ligands reflect variation in both internal geometry as well as rigid body 

movement relative to the protein.  At some points in the trajectories, erlotinib reveals larger than 

expected rmsd values (> 2 Å) which could be of concern (Figure 2-3, green lines).  However, 

examination of rmsds for only the central fused-ring quinazoline scaffold (see Table 2-1) shows 

much lower values (Figure 2-3, red lines) which indicates erlotinib remains anchored in the 

binding pocket and it is only the solvent exposed flexible r-groups extending off the quinazoline 

ring which fluctuate significantly.  Other simulations behave similarly, with gefitinib (4-

aminoquinazoline) and AEE788 (pyrrolopyrimidine) scaffolds showing less movement than the 

overall ligand.  In all cases, rmsds results for the receptor backbone are well behaved and low (< 

2 Å) which additionally indicate robust simulation behavior (Figure 2-3, blue lines).   
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Figure 2-3.  Fluctuations in computed free energies of binding (∆Gb calcd) and root-mean-square-deviation (rmsd) 
for erlotinib with wild type EGFR (panels a and d), L858R (panels b and e) and L858R&T790M (panels c and f) vs 
time.  Left panels show instantaneous energies (gray dots) and block-running averages over 100 frames (black line).  
Right panels show rmsds for receptor backbone (blue line), ligand (green line), and ligand quinazoline scaffold 
atoms (red line).   
 

2.3.2 Comparison with Crystallographic Structures.   

Only a single crystallographic structure58 of active form EGFR (pdb code 1M17) was 

available at the time of our initial mutant setups for erlotinib.  All subsequent simulations 

employed the same set of protein coordinates originally derived for this ligand.  However, other 

EGFR structures, including those with several of the mutations studied here, have been 

reported.64,65  To structurally compare the theoretical and experimental results, as well as assess 

computer sampling during the simulations, evenly spaced MD snapshots were individually fit to 

available crystallographic structures again using Cα backbone atoms as the match criteria.  As 

shown in Figure 2-4 for three representative simulations, sampling of ligand positions is 

consistent with the experimentally observed conformations.  And as expected, solvent exposed 
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regions of the ligands visually show greater movement than for scaffolds which is in agreement 

with the rmsd results plotted in Figure 2-3 (panels d to f).  Notably, Figure 2-4 highlights how 

key crystallographic positions of important sidechains including G719 (or S719 mutant), T854, 

L858, T790 (or M790 mutant), and M793 are well-sampled during the simulations and consistent 

with experiment.  An anomaly is a difference in the rotameric states sampled for L858R vs the 

crystal structure (Figure 2-4b, blue line).  Here, the MD simulations sample a solvent exposed 

Arg conformation as opposed to an intramolecular H-bond as seen in the crystal structure.  

Although longer MD simulations might be required to sample the experimental L858R rotamer, 

since both conformations appear to be physically reasonable, an alternative would be to begin 

simulations using crystallographic coordinates of L858R instead of those based on the 1M17 

models.  However, available EGFR structures of L858R mutants show disorder in the residue 

range spanning 867-875.  Additionally, the activation loop region in these structures (defined as 

855 to 876)58 adopts a unique conformation which is dependent on the choice of crystallographic 

buffer conditions.65  Thus, given the considerable ambiguity in how to model nine missing 

residues (a.a. 867-875) into an unknown activation loop conformation, we have elected to retain 

the models originally constructed using 1M17 containing the complete loop.  As described 

below, the good agreement between computational and experimental activities obtained using the 

1M17-derived coordinates suggests these are reasonable models to study EGFR-ligand binding 

in the kinase active form.   
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Figure 2-4.  Representative snapshots from MD simulations of ligands with EGFR showing side-chain sampling of 
key residues (thin lines, N=10 each) vs crystallographic conformations (bold lines) for erlotinib (panel 4a), gefitinib 
(panel 4b), and AEE788 (panel 4c).  Pdbcodes for 4a: red=1M17 (erlotinib with wildtype), blue=2ITY (gefitinib 
with wildtype), green=2J6M (AEE788 with wildtype).  Pdbcodes for 4b: blue=2ITZ (gefitinib with L858R), 
green=2JIU (AEE with T790M).  Pdbcodes for 4c: blue=2ITO (gefitinib with G719S), green=2ITP (AEE788 with 
G719S).   

 

2.3.3 Correlation with Experimental Fold Resistance.   

Overall, the computational results are strongly correlated with the experimental fold 

resistance values as shown in Table 2-2 and graphically plotted in Figure 2-5.  Calculated values 

represent average quantities obtained over 5000 MD snapshots.  Low standard errors of the mean 

(sem) indicate the energetic results are converged.  Notably, the computational results correctly 

predict that affinity is always enhanced (negative ∆∆GFR values) for all three ligands with the 

cancer causing L858R EGFR mutation relative to wildtype (Table 2-2 columns E vs F).  Further, 

results for the drug resistant double mutant (L858R&T790M) correctly predict that decreases 

(positive ∆∆GFR values) will occur in binding relative to L858R alone (Table 2-2 columns E vs 

F).  Compellingly, the magnitudes for the energetic changes which occur across the inhibitor 

series in Table 2-2 are in excellent agreement with experiment.  For example, results for erlotinib 

(∆∆GFR calcd = 3.30 vs ∆∆GFR exptl > 3.96 kcal/mol) and AEE788 (∆∆GFR calcd = 2.40 vs 

∆∆GFR exptl = 1.68 kcal/mol) both show much larger computational and experimental FR values 

for the double mutant relative to gefitinib (∆∆GFR calcd = 0.27 vs ∆∆GFR exptl = 0.90 kcal/mol) 

which is less affected.  Despite the fact that the simulations correctly predict AEE788 to bind 
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more tightly to L858R, a minor discrepancy is the improper rank ordering for L858R−WT 

relative to gefitinib.  In terms of sign, the sole outlier in Table 2-2 is for AEE788 for which the 

G719S/WT fold resistance yields essentially no energetic change experimentally but our 

calculations show enhanced affinity.  Interestingly, a prediction for the effect of G719S on 

binding of erlotinib also shows enhanced affinity (Table 2-2).  FR calculations for gefitinib with 

G719S yield the correct experimental trend.  Despite the one outlier, there is excellent accord 

overall, and a linear fit between the data points shows a strong correlation coefficient of r2 = 0.84 

(Figure 2-5, Table 2-2) which indicates the simulations well reproduce trends in the experimental 

FR energies.   
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Table 2-2. Experimental versus calculated Fold Resistance (FR) energies (∆∆GFR) and energy components for ligands with 

EGFR.  

inhibitor 
∆∆∆∆∆∆∆∆Evdw 

A 

∆∆∆∆∆∆∆∆Ecoul 

B 

∆∆∆∆∆∆∆∆Gpolar 

C 

∆∆∆∆∆∆∆∆Gnonpolar 

D 

∆∆∆∆∆∆∆∆GFR calcd 

E =(A+B+C+D) 

∆∆∆∆∆∆∆∆GFR exptl 

F 

L858R −  −  −  − WT 

erlotinib −0.86 ± 0.06 −0.34 ± 0.13 0.21 ± 0.11 0.06 ± 0.003 −0.97 ± 0.07 −0.61 

gefitinib −0.99 ± 0.06 −0.72 ± 0.07 −0.58 ± 0.06 −0.01 ± 0.004 −2.30 ± 0.07 −1.59 

AEE788 −2.41 ± 0.06 −0.48 ± 0.07 0.36 ± 0.06 −0.30 ± 0.005 −2.84 ± 0.06 −0.92 

L858R&T790M  −  −  −  − L858R 

erlotinib 2.30 ± 0.06 7.42 ± 0.11 −6.56 ± 0.10 0.09 ± 0.003 3.30 ± 0.06 >3.96 

gefitinib −0.10 ± 0.05 −0.06 ± 0.07 0.49 ± 0.06 −0.06 ± 0.004 0.27 ± 0.06 0.90 

AEE788 3.39 ± 0.07 3.15 ± 0.09 −4.33 ± 0.07 0.20 ± 0.004 2.40 ± 0.08 1.68 

G719S −  −  −  − WT 

erlotinib −2.08 ± 0.06 −0.05 ± 0.12 −0.24 ± 0.11 0.04 ± 0.003 −2.38 ± 0.07 not reported 

gefitinib 0.74 ± 0.07 −0.85 ± 0.07 1.59 ± 0.07 0.04 ± 0.004 1.50 ± 0.08 0.50 

AEE788 −0.65 ± 0.06 −0.78 ± 0.06 0.55 ± 0.05 0.08 ± 0.005 −0.81 ± 0.07 0.02 

r2 = 0.70 0.47 0.19 0.30 0.84 7 data pointsc 

a∆∆GFR calcd derived from the difference of two independent simulations (eg L858R − WT) computed using eqs 2-1 to 2-
3.  b∆∆GFR exptl values from Table 2-1.  Correlations coefficients (r2 values) obtained from fitting the change in each 
energy component to ∆∆GFR exptl.   All energies in kcal/mol ± standard errors of the mean from 5000 MD snapshots.   

cData point for erlotinib with double mutant (>3.96) excluded from r2 calculations given ambiguity in the experimental 
∆∆GFR measurement.   
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Figure 2-5.  Predicted FR energies (∆∆GFR calcd) vs experimental FR energies (∆∆GFR exptl) for inhibitors with 
EGFR.  Each point is the difference between results from two independent MD simulations (16 simulations total) 
from 5000 MD snapshots each.  Data point for erlotinib with double mutant (>3.96) excluded from r2 calculations 
given ambiguity in the experimental ∆∆GFR measurement.   

 

Examination of the individual terms which comprise ∆∆GFR calcd along with calculation 

of correlation coefficients (r2 values) for each term with ∆∆GFR exptl was done to pinpoint which 

term(s) best explain experimental variation and thus resistance.  It should be noted that due to 

ambiguities in the experimental FR measurement for erlotinib with the double mutant (>3.96 

kcal/mol, Table 2-2) all fittings excluded this data point.  For L858R relative to wildtype EGFR, 

all three inhibitors show more favorable van der Waals and Coulombic interactions which lead to 

an overall stronger computed ∆∆GFR in agreement with experiment (Table 2-2 columns A and 

B).  For the drug resistant mutant (L858R&T790M − L858R), the most dramatic losses observed 

experimentally correlate with the large computed losses in van der Waals and Coulombic energy 

for erlotinib (∆∆GFR > 3.96, ∆∆Evdw = 2.30, ∆∆Ecoul = 7.42 kcal/mol) and AEE788 (∆∆GFR = 

1.68, ∆∆Evdw = 3.39, ∆∆Ecoul = 3.15 kcal/mol).  For gefitinib with the double mutant the less 

deleterious effect on binding (∆∆GFR = 0.90 kcal/mol) appears to be solely from changes in 
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desolvation (∆∆Gpolar = 0.49 kcal/mol) given the minor changes computed in the other terms 

(∆∆Ecoul = −0.06, ∆∆Evdw −0.10 kcal/mol).  For the G719S mutation relative to wildtype, binding 

losses for gefitinib again appear to be a result of increased desolvation (∆∆Gpolar = 1.59 kcal/mol) 

as any gains computed in Coulombic energy are offset by reduction in steric packing (∆∆Ecoul = 

−0.85 vs ∆∆Evdw = 0.74 kcal/mol).  For AEE788 with G719S, the previously noted disagreement 

between computed and experimental affinities for this data point renders component analysis 

here indeterminate.  Affinity for erlotinib with G719S is predicted to be enhanced primarily as a 

result of increased van der Waals interactions.   

Notably, the most correlated term in Table 2-2 with experiment is for ∆∆GFR calcd (r2 = 

0.84) indicating that for these systems a balance of energetic terms is most important for 

describing changes in FR.  Of the individual components, changes in van der Waals energy 

(∆∆Evdw r2 = 0.70) show the largest r2 value followed by Coulombic (∆∆Ecoul r
2 = 0.47), nonpolar 

∆∆Gnonpolar (r
2 = 0.30), and polar desolvation energies (∆∆Gpolar = 0.19).  The low r2 value of 0.04 

obtained for the sum of ∆∆Ecoul and ∆∆Gpolar vs experiment suggests that steric packing probably 

contributes more to variation in FR as opposed to changes in solvent mediated electrostatics.  

Interestingly, visually plotting changes in energy components vs ∆∆GFR exptl reveals grouped 

data in the ∆∆Ecoul plot which do not appear to lie on the trend line.  A fit of this cluster alone 

leads to an even poorer correlation (Figure 2-6a dashed line).  In contrast, Figure 2-6b shows 

how changes in ∆∆Evdw are more closely associated with changes in ∆∆GFR across the entire 

dataset.   
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Figure 2-6.  Predicted changes in Coulombic (∆∆Ecou panel a) and van der Waals (∆∆Evdw panel b) energy 
components versus experimental fold resistance energy (∆∆GFR exptl) for inhibitors with EGFR.  Data point for 
erlotinib with double mutant (>3.96) excluded from r2 calculations given ambiguity in the experimental ∆∆GFR 
measurement.   

 

2.3.4 Energetics of Binding: What Drives Association?   

To further characterize how terms contribute to molecular recognition, results from the 

underlying free energy of binding (∆Gb) used to determine ∆∆GFR were examined (Table 2-3).  

Overall, inhibitor binding appears to be most strongly driven by van der Waals interactions.  

Values for ∆Ecoul are always less favorable than ∆Evdw and not sufficient to overcome the 

competing unfavorable polar desolvation terms (∆Gpolar) which suggests steric packing 

dominates association.  For the EGFR variants studied, gefitinib shows stronger ∆Evdw 

interactions relative to either erlotinib or AEE788.  A plot of ∆Evdw vs ∆Gb exptl highlights the 

separation between gefitinib and AEE788 and additionally shows how changes in van der Waals 

interactions may track for individual ligands (Figure 2-7).  Although the combined correlation 

with ∆Gb exptl is poor (∆Evdw r2 = 0.004), van der Waals energies for gefitinib (r2 = 0.83) or 

AEE788 (r2 = 0.82) when plotted separately show strong correlation with experiment (Figure 2-

7).   
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Table 2-3. Absolute free energies and component decomposition for inhibitors with EGFR. 

system ∆∆∆∆Evdw
 

A 

∆∆∆∆Ecoul
 

B 

∆∆∆∆Gpolar
 

C 

∆∆∆∆Gnonpolar
 

D 

∆∆∆∆Gb calcd 

E=A+B+C+D 

∆∆∆∆Gb exptla 

F 

Hbond 

G 

erlotinib 

wildtype −49.01 ± 0.04 −24.71 ± 0.09 39.73 ± 0.08 −6.05 ± 0.002 −39.69 ± 0.05 −10.58b 1.82 

L858R −49.86 ± 0.04 −25.04 ± 0.09 39.94 ± 0.07 −5.99 ± 0.002 −40.66 ± 0.05 −11.19b 2.17 

L858R&T790M −47.57 ± 0.05 −17.62 ± 0.07 33.38 ± 0.06 −5.89 ± 0.002 −37.36 ± 0.04 > −6.82c 0.99 

G719S −51.09 ± 0.04 −24.76 ± 0.08 39.49 ± 0.07 −6.01 ± 0.003 −42.07 ± 0.05 not reported 1.95 

gefitinib 

wildtype −53.50 ± 0.05 −14.02 ± 0.05 28.80 ± 0.04 −6.30 ± 0.003 −45.01 ± 0.06 −10.17d 1.16 

L858R −54.49 ± 0.04 −14.74 ± 0.04 28.22 ± 0.04 −6.31 ± 0.003 −47.32 ± 0.05 −11.76d 1.24 

L858R&T790M −54.59 ± 0.04 −14.80 ± 0.05 28.71 ± 0.05 −6.37 ± 0.003 −47.05 ± 0.05 −10.86d 1.05 

G719S −52.76 ± 0.04 −14.87 ± 0.06 30.39 ± 0.05 −6.26 ± 0.002 −43.51 ± 0.05 −9.42e 1.08 

AEE788 

wildtype −50.08 ± 0.05  −21.77 ± 0.04  31.97 ± 0.03  −5.93 ± 0.004  −45.81 ± 0.05 −11.29d 2.02 

L858R −52.49 ± 0.04  −22.26 ± 0.06  32.33 ± 0.05  −6.24 ± 0.003  −48.65 ± 0.04 −12.22d 2.19 

L858R&T790M −49.10 ± 0.06  −19.11 ± 0.07  28.00 ± 0.05  −6.03 ± 0.003  −46.25 ± 0.07 −10.55d 2.48 

G719S −50.73 ± 0.04  −22.56 ± 0.04  32.52 ± 0.03  −5.85 ± 0.003  −46.62 ± 0.04 −10.86e 1.99 

a∆Gb exptl ≈ RTln(activities) at 298.15 K in kcal/mol.   bKi values (nM) from Carey et al.62  cIC50 values (nM) from Ji et al.63  
dKd values (nM) from Yun et al.64  eKd values (nM) from Yun et al.65   
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Figure 2-7.  Correlation of the van der Waals energy (∆Evdw) component with ∆Gb exptl.  Energies in kcal/mol.   
 

Despite the importance of steric packing, electrostatics in this system appear to play 

critical roles in mediating affinity.  For example, differences in intermolecular H-bonding, as 

illustrated graphically in Figure 2-8, likely contribute to enhanced Coulombic interactions for 

AEE788 and erlotinib relative to gefitinib (Table 2-3 column B).  Average number of H-bonds 

(Table 2-3 column G) shows 2.02 interactions for AEE788 with wildtype EGFR followed by 

erlotinib at 1.82 and gefitinib at 1.16.  All the inhibitors show highly populated and significant 

H-bonding with the backbone amide hydrogen at position M793.  A second interaction at M793 

for AEE788 largely accounts for the greater number of H-bond relative to the other inhibitors 

(Figure 2-8).  For erlotinib, an additional significant H-bond is observed between the backbone at 

C797 and a terminal O atom for which the other inhibitors have no spatial equivalent (Figure 2-

8).  A less populated yet quantifiable interaction for erlotinib includes a unique pi-type H-bond 

made between the ligand’s para-alkyne and T790@OH.  Pi-type interactions for erlotinib were 

counted by simply defining the centroid of the alkyne C ≡ C bond as an H-bond acceptor.  

Interestingly, the unique H-bond acceptor in erlotinib is replaced by a spatially analogous 

interaction in gefitinib between the meta-chlorine and T790@OH.  AEE788 also shows a weak 
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H-bond at position T790 although this was only observed in the simulation of L858R.  Here, a 

slightly different positioning of AEE788 in the binding pocket relative to the other inhibitors 

allows for a third H-bond with the pyrrolopyrimidine scaffold (Figure 2-8).   

 

Figure 2-8.  Primary H-bonding (dashed lines) interactions for inhibitors with EGFR.   
 

 

Figure 2-9.  Comparison of per-residue H-bond footprints for erlotinib (red), gefitinib (blue), and AEE788 (green) 
with wildtype (panel a), L858R (panel b), L858R&T790M (panel c), and G719S (panel d) EGFR variants (N = 5000 
MD snapshots).   
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2.3.5 Origins of Resistance.   

In order to gauge the relative importance that specific amino acids may contribute to 

binding, the number of intermolecular H-bonds, van der Waals energy, and Coulombic energy 

were computed on a per-residue basis.  Examinations of H-bond footprint plots (Figure 2-9) 

show consistency in overall shape from simulation to simulation which provides additional 

support that results obtained from averaging 5000 MD frames are converged and well-behaved.  

As an example, greater number of H-bonds are consistently obtained for AEE788 (2 key scaffold 

H-bonds) versus other inhibitors (1 key scaffold H-bond) across the various simulations (Figures 

2-8 and 2-9).  Although L858R&T790 does not appear to affect the number of H-bonds at this 

key backbone position, the resistant mutant clearly results in abolishment of weaker H-bond 

interactions for all inhibitors at the site of the T790 mutation relative to L858R or wildtype alone 

(Figure 2-9c vs 2-9a,b).  In addition, for erlotinib, the more significant H-bond at position C797 

is also lost as a result of the double mutant (Figure 2-9c vs 2-9b, red line).  Here, the loss at C797 

is the result of only a slight shift in the binding pocket, otherwise, erlotinib appears well 

accommodated in the double mutant (Figure 2-10).  The similarity in binding obtained here 

between L858R&T790M vs L858R suggests a steric clash mechanism of resistance is unlikely 

and consistent with recent crystallographic evidence from Yun et al.64 (see discussion below).  

Although no clear reason was identified, the slight increases in H-bonding computed at position 

C797 for erlotinib with the single mutants in Figure 2-9 relative to wildtype may contribute to 

both the experimental (L858R) and predicted (G719S) increase in affinity for this compound 

(Table 2-2).   
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Figure 2-10.  Comparison of erlotinib binding poses (N=100) from EGFR simulations for L858R (left, red), 
L858R&T790M (middle, green), and overlaid (red vs green).  Intermolecular H-bonds at position C797 shown in 
purple (N=5000).   

 

Energetic footprints representing van der Waals and Coulombic per-residue contributions 

were also plotted to quantify changes as a result of drug resistant EGFR relative to L858R.  

Focusing in on the key residues, Figure 2-11 shows the contiguous region between Q787 and 

N808 (shaded) and residues for which favorable interactions are computed to be ca. > 1 

kcal/mol.  Again, the strong similarity in the general shape of the footprints, as well as the 

similar magnitudes in ∆Evdw at specific positions (i.e. L718, A743, K745, T790, L792, L845 

(Figure 2-11a) suggest that the computational results are sensitive enough to highlight both 

regions with conserved interaction as well as reflect differences which may proves useful in 

understanding affinity.   
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Figure 2-11.  Per-residue footprints for inhibitors with EGFR for cancer causing (L858R, panels a-b) and drug 
resistance (L858R&T790M, panels c-d) variants from a reduced set of amino acids in the contiguous range Q787-
N808 (shaded region) or for which any ligand shows ∆E > 1 kcal/mol.   

 

Consistent with the H-bond patterns described in Figures 2-8 and 2-9, in which ligands 

show high population of H-bonds between M793 and the central scaffolds, the most favorable 

∆Ecoul interactions for all ligands occur with residue M793 (Figure 2-11b).  As before, the 

strongest interactions are computed for AEE788 (−11.5 kcal/mol, green line) versus gefitinib 

(−5.1 kcal/mol, blue line) or erlotinib (−3.9 kcal/mol, red line) which mirrors the fact that 

AEE788's scaffold makes two H-bonds versus one for the other inhibitors (Figure 2-8).  Less 
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populated, but "standard" H-bonds between T790 and AEE788, and C797 and erlotinib are also 

visible in the ∆Ecoul footprints but as expected are weaker than those with M793 (ca. −1 to −1.5 

kcal/mol).  The more unique erlotinib (pi-type), or gefitinib (chlorine-type) interactions with 

T790 depicted in Figure 8 are not readily apparent in the ∆Ecoul footprints but instead are 

presumably reflected in the favorable ∆Evdw energies which occur at this position (Figure 2-11a 

vs 2-11b).   

Examination of difference footprints (∆∆Evdw and ∆∆Ecoul) computed from the 

L858R&T790M − L858R breakdowns show that erlotinib and AEE788 lose significant 

interactions, on a residue-by-residue basis, as a result of the deleterious mutation relative to 

L858R (Figure 2-11c-d).  In contrast, and in agreement with the fact that gefitinib is 

experimentally the least affected by the resistance mutation, the ∆∆Ecoul footprint is flatter, shows 

no overall reduction in total Coulombic energy (Table 2-2), and changes on a per-residue basis 

show negligible losses at all positions (Figure 2-11d, blue line).  A prior study from our 

laboratory of neuraminidase inhibitors also revealed that the most robust compound had an 

overall flatter ∆∆Ecoul and ∆H-bond profile.83  The most significant ∆∆Ecoul energy losses (ca > 

+1kcal/mol) occur for erlotinib (Figure 2-11d, red line) at positions C797 and D800, and for 

AEE788 at positions T790M and D800 (Figure 2-11d, green line).  Losses in ∆∆Ecoul for 

erlotinib at position C797 are expected to be a result of the previously described H-bond 

disruption (Figures 2-8 to 2-10).  For AEE788, the significant loss in ∆∆Ecoul at T790M is likely 

due in part to disruption of the third H-bond with the pyrrolopyrimidine scaffold as a result of the 

resistance mutation (Figures 2-8 and 2-9).  No straightforward structural explanation was found 

to explain reductions in ∆∆Ecoul at position D800 for erlotinib or AEE788 but as a charged 

residue this could be a long-range and nonspecific effect.  For AEE788 with the double mutant, 
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increases in ∆∆Ecoul at position H805 (Figure 2-11c) are traceably to the formation of a new 

piperazine ring H-bond (Figure 2-8, 2-9c).  However, despite the fact that gains in interaction 

energy occur at this position, changes overall in ∆∆Ecoul and ∆∆Evdw for AEE788 are still 

unfavorable (Table 2-2).   

Prior studies by Daub et al.98 and Kobayashi et al.99 hypothesized that a steric clash was 

the likely mechanism of drug resistance for T790M.  And Liu et al.80 reported MD simulation 

results of gefitinib with either T790M or L858R&T790M which led to "ligand escape from the 

binding pocket" which could also be consistent with a steric clash.  However, a recent study 

reported by Yun et al.64 suggests this is not a likely mechanism as a co-crystal structure of 

AEE788 with a T790M single mutant shows essentially the same binding pose as wildtype.  

Results from the present study similarly suggest that a threonine / methionine swap in the double 

mutant will not result in a steric clash given that wildtype, L858R, and L858R&T790M 

simulations show an overall consistent binding pose (Figure 2-10).  In addition, an examination 

of the van der Waals difference footprints (∆∆Evdw) shows that for all inhibitors a methionine at 

position 790 is energetically accommodated in the pocket and steric packing interactions 

localized to this position in fact become more favorable as a result of the double mutation 

(Figure 2-11c).  Increased packing as a result of T790M is physically reasonable and occurs as a 

result of the hydrophilic to hydrophobic substitution.  Although other van der Waals changes are 

less readily explained, the H805 increase with AEE788 coincides with the previously noted 

piperazine H-bond.  Compellingly, erlotinib (positions F795, G796, D800) and AEE788 

(positions K745, I789, D800) show significant losses in ∆∆Evdw in contrast to gefitinib, which 

likely contributes to these compounds being more affected by the double mutations (Figure 2-

11c).   
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2.3.6 Water Mediated Interactions.   

Examination of the underlying explicit solvent TIP3P-MD trajectories, used subsequently 

for continuum-based free energy calculations, revealed water molecules which appear to be 

important for positioning of ligands in the binding pocket.  High water occupancy is observed at 

two primary positions, termed site 1 (S1) and site 2 (S2), as shown in Figure 2-12a for erlotinib 

with L858R and the double mutant, which are representative.  Figure 2-12b quantifies S1 and S2 

populations for all six inhibitor simulations with averages = total count/5000 frames.  Site waters 

were defined as present if a water hydrogen was within 2.5 Å of each ligand's relevant nitrogen 

acceptor (S1) or residue Q791 at O (S2).  Importantly, the MD simulations reproduce the 

crystallographically observed water at S1 for all ligands.58,65  The water at both sites are observed 

in the crystal structure of AEE788 with EGFR (2J6M).65  For all ligands with L858R (Figure 2-

12b left), waters are present 50-90% at S1 and >80% at S2 which indicates these are long lived 

significant interactions.  As shown in Figure 2-12a, these waters are involved in a quadrifurcated 

H-bonding network involving the ligands with three nearby residues (T790, Q791, and T854), 

including the site of the known drug resistance mutation T790M.  Notably, in all cases, 

occupancy at S1 and S2 is reduced as a result of L858R&T790 (Figure 2-12b right).   



49 

 

Figure 2-12.  Water-mediate H-bonds for inhibitors with EGFR for L858R (left) and L858R&T790M (right).  12a 
visually shows population of waters at site 1 (S1 orange) and site 2 (S2 blue) over all 5000 simulation frames for 
representative erlotinib simulations.  Site waters defined if water hydrogens are within 2.5 angstroms of each ligand 
at N* (S1) or residue Q791 at O (S2).  12b shows for all three inhibitors the average number (count/5000) of waters 
at S1 and S2.  12c shows for all three inhibitors the average pairwise Coulombic interaction energies between the 
two waters closest to each ligand at N* with residues T790 (or M790), Q791, T854, and the ligands.   

 

As an alternative metric, energy calculations reveal favorable Coulombic interactions 

between pocket waters and amino acids in the H-bond network including the ligands (Figure 2-

12c left).  Here, the two waters closest to each ligand at N* (Figure 2-12a left) were used define 

key pocket waters.  Interestingly the L858R&T790M mutant leads to changes in bridging water 

interactions with each ligand that roughly mirror trends in the experimental FR data with 

erlotinib (∆∆Ecoul = +1.7 kcal/mol) and AEE788 (∆∆Ecoul = +1.5 kcal/mol) both being adversely 

affected compared to gefitinib (∆∆Ecoul = −1.1 kcal/mol).  Favorable electrostatic interactions 
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between these waters and residue 790 (Figure 2-12c right) are similarly reduced as a result of the 

double mutant, particularly for erlotinib (red bar), and thus expected to lead to weaker protein-

ligand binding.  Further, despite the fact that some water-mediated H-bonding with M790 is 

observed, an overall weaker network would be expected due to the fact that sulfur is a weaker H-

bond acceptor than oxygen.100  Overall, the energetic description (Figure 2-12c) is consistent 

with the reduced population counts (Figure 2-12b) suggesting weaker interactions in the drug 

resistant mutant.   

H-bonding between quinazoline-based inhibitors and binding site waters were previously 

predicted by Wissner et al.77 and Hou et al.78 although interestingly the two studies came to 

different conclusions as to whether residue T854 or T790 was involved.  Here, calculations 

indicate that both T854 and T790 residues make significant water-mediated ligand interactions.  

Stamos et al.58 noted the T790 bridging water in the erlotinib-EGFR crystal structure, but 

suggested it was not significant citing data reported by Rewcastle et al.101 in which only a minor 

effect on affinity was seen for related ligands where the H-bond acceptor was substituted for 

carbon.  However, examination of the original activities (see Rewcastle et al., Table 2-1, 

compounds 15 vs 20 ) show > 5000 fold loss between compounds that differ only by a nitrogen 

at the T790 acceptor position which suggests the water is in fact important.101  And, a recent 

docking study by Cavasotto et al.79 notes that inclusion of this bridging water was necessary to 

correctly reproduce the binding pose of the EGFR inhibitor AG1478.   

In conjunction with their proposed steric clash mechanism, Kobayashi et al.99 also 

hypothesized that disruption of water-mediated binding would be a factor in resistance.  For the 

water-mediated interactions at Q791 (Figure 2-12), the H-bonds primarily involve the backbone 

carbonyl oxygen thus any alteration of sidechains at this site would be expected to be less 
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detrimental, particularly since there is little direct van der Waals contact or favorable Coulombic 

interactions with the ligand at Q791.  However, the simulation results strongly suggest that a 

mutation at position T854 would disrupt the quadrifurcated network and, in a manner analogous 

to T790, disrupt water-mediated ligand binding.  This hypothesis is consistent with results 

recently reported by Bean et al.102 in which a novel T854A resistance mutation was identified 

from a patient with reduced affinity for erlotinib.  A combination of mutations involving T790 

and T854, if biologically viable, would likely lead to further disruption of the H-bond network 

involving inhibitors and an increase in unfavorable fold resistance.  While our current studies 

cannot rule out the recent hypothesis by Yun et al.64 that T790M resistance is caused primarily 

by increased affinity for ATP, based on the present simulations, it is reasonable to propose that 

disruption of water-mediated H-bond networks involving the inhibitors (Figure 2-12) is a 

contributing factor.  Additionally, given the fact that our calculations yield quantitative energetic 

agreement with experiment, yet involve only inhibitors and EGFR (and not ATP), strongly 

suggests that differences in affinity for ATP are not the sole cause of experimentally observed 

drug resistance.  Additional studies are needed to more fully address this issue.   

An examination of the network shown in Figure 2-12 indicates the possibility of 

designing alternative H-bonding involving residues T854, T790, and Q791.  EGFR inhibitors 

based on a 4,6-dianilinopyrimidine scaffold have been reported 103 which are proposed to make 

direct H-bonds with both M793 and T790.  However, as expected, the T790M mutant showed 

resistance against a representative compound in the series presumably due to the loss of a direct 

H-bond between the pyrimidine N3 and the OH at position 790.  Wissner et al.77 has reported an 

inhibitor in which the bridging nitrogen atom was replaced by a cyano group and proposed to 

displace the site 1 water.  However, the cyano compound was also proposed to make a direct H-
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bond with T854 thus the recently reported T854A mutation would likely lead to a loss in 

binding.  An alternative strategy to address resistance, provided that sufficient specificity could 

be achieved, would be the design of inhibitors with additional protein backbone H-bonds (direct 

or water mediated).  In any event, due to the entropically favorable process of displacing bound 

waters,104 analogs which replace the water-mediated interactions seen here may show enhanced 

affinity.  Alternative binding patterns are likely to result in unique resistance profiles which may 

prove useful.   

 

2.4 Conclusions.  

In this study, all-atom explicit solvent molecular dynamics followed by free energy 

calculations were employed to compute fold resistance energies for three ATP-competitive 

inhibitors (erlotinib, gefitinib, and AEE788) with epidermal growth factor receptor (EGFR) for 

wildtype, and L858R, G719S, and L858R&T790M mutants.  The primary purpose of this study 

was development of robust quantitative computational models to compute EGFR-ligand binding, 

characterize how variation in structural and energetic results correlate with variation in reported 

experimental activities, and determine origins of drug resistance.  System stability and overall 

convergence of results was carefully monitored through comparisons with crystallographic 

structures (Figure 2-4), and by plotting instantaneous and running block averages for free 

energies of binding and root-mean-square deviations (Figure 2-3).  Fluctuations in energy and 

structure show the simulations are well-behaved, comparable with other studies from our 

laboratory,82-84 and low standard errors of the mean (Tables 2-2 and 2-3) indicate the results are 

reasonably converged.   
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Notably, computed fold resistance energies, which represent a ratio of activities and are 

obtained from the difference in results of two independent MD simulations, show excellent 

agreement with available experimental data (r2 = 0.84).  Importantly, the magnitudes of the 

experimental and theoretical FR results are similar (Table 2-2, Figure 2-5).  For all inhibitors, the 

simulations correctly predict that affinity for EGFR will increase as a result of the cancer causing 

L858R mutation relative to wildtype and decrease as a result of a drug resistant double mutant 

(L858R&T790M) relative to L858R (Table 2-2 columns E vs F).  Affinity predictions for 

gefitinib with a second cancer causing mutation at position G719S also yield the correct 

experimental trend.  The sole outlier in the study is for AEE788 with G719S in which the 

computational results incorrectly predict the mutation to be slightly favorable (Table 2-2).   

Decomposition of the contributing components to ∆∆GFR, and the underlying absolute 

∆Gb values used to compute FR, reveal modest gains in favorable van der Waals and Coulombic 

energies for all three inhibitors as a result of the cancer causing mutation L858R and large losses 

for erlotinib and AEE788 for the drug resistance double mutant L858R&T790M (Table 2-2).  

Losses for gefitinib appear to be a result of increased desolvation penalties.  Values for ∆Evdw are 

computed to be more favorable than other ∆Gb calcd terms (Table 2-3), which suggest that steric 

packing is the dominant driving force for association.  In general, van der Waals interactions are 

stronger for gefitinib relative to other compounds and changes in ∆Evdw track especially well 

with ∆Gb exptl for gefitinib and AEE788 (Figure 2-7).  Relative ∆∆Evdw energies are modestly 

correlated with ∆∆GFR across the series (Figure 2-6b).   

Despite the obvious importance of van der Waals terms, the simulation results indicate 

that electrostatic interactions are critical for specificity and correct positioning of ligands in the 

ATP binding pocket (Figures 2-8, 2-9, and 2-11).  Examination of per-residue H-bonding and 
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Coulombic energy reveal changes at key amino acids which are important for understanding 

origins of fold resistance (Figures 2-9 to 2-11).  Two highly populated H-bonds for AEE788, and 

one for erlotinib and gefitinib, are observed between inhibitors and the EGFR backbone at 

position M793 (Figures 2-8 and 2-9).  Coulombic energy footprints (Figures 2-11) mirror the H-

bond trends with M793 showing stronger interaction energies formed with AEE788 (−11.5 

kcal/mol) versus gefitinib (−5.1 kcal/mol) or erlotinib (−3.9 kcal/mol).  The resistance mutation 

L858R&T790 does not change interactions localized to M793, however, all inhibitors lose a less 

populated H-bond at the site of the T790 mutation (Figure 2-9 panels b vs c).  Losses at 790 are 

traced to unique H-bonds (Figures 2-8 and 2-9) involving the acetylene group of erlotinib (pi-

type), and a chlorine atom in the case of gefitinib (chlorine-type).  For erlotinib, the loss of an 

additional H-bond at position C797 leads to an overall reduction (−1.18 H-bonds) which likely 

contributes to the larger FR energy compared with the other inhibitors (gefininb −0.19 H-bonds, 

AEE688 +0.29 H-bonds).   

The simulations additionally reveal a significant network of water-mediated H-bonds 

involving a spatially equivalent nitrogen atom on each inhibitor, residues T854, T790, Q791, and 

two bridging waters which become disrupted as a result of the L858R&T790M drug resistance 

mutation (Figure 2-12a,b).  The bridging waters interact favorably with residues in the binding 

pocket and the double mutation leads to reduced Coulombic energies, especially for erlotinib and 

gefitinib (Figure 2-12c), and reduced overall occupancy (Figure 2-12b).  The calculations 

suggest that resistance likely involves changes in water-mediated H-bonds, in contrast to prior 

reports, which hypothesize that EGFR resistance is primarily a function of either a steric 

clash98,99 involving methionine 790 or due to increased affinity for the native substrate ATP.64  In 

agreement with recent crystallographic evidence,64 per-residue footprint calculations (Figure 2-
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11c) and structural analysis (Figure 2-10) reveal favorable van der Waals energies with T790M 

which indicates a steric clash mechanism of resistance is unlikely.  Finally, while increased 

affinity for ATP64 may be a contributor to resistance, the present results suggest that disruption 

of favorable interactions, including changes in H-bonding, are likely to be as important and thus 

should be considered when designing next-generation compounds.   

The growing problem of drug resistance, arising from clinical use of EGFR molecular 

targeted therapeutics, highlights the need for continued studies to elucidate how binding affinity 

is modulated by mutations and how ligands could be modified to circumvent deleterious 

changes.  The present study has participated in these aims through calculation of fold resistance 

energies for inhibitors of EGFR which show quantitative agreement with experiment thereby 

providing a framework to probe origins of resistance.  The simulations correctly predict the 

effects of the L858R cancer causing mutation and the L858R&T790 drug resistance mutant for 

three inhibitors.  Residue-based structural and energetic analysis was used to identify how key 

sidechains are involved in binding, how water molecules mediate affinity through an intricate 

network of H-bonding, and how interactions change as a result of the mutations.  Similar to the 

growing arsenal of antivirals required to effectively combat HIV, design of multiple kinase 

inhibitors is likely to be an important long term strategy to address issues of drug resistance.   
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Abstract. 

A docking-rescoring method, based on per-residue van der Waals (VDW), electrostatic (ES), 

or hydrogen bond (HB) energies has been developed to aid discovery of ligands that have 

interaction signatures with a target (footprints) similar to that of a reference.  Biologically useful 

references could include known drugs, inhibitors, substrates, transition states, or side-chains that 

mediate protein-protein interactions.  Termed footprint similarity (FPS) score, the method, as 
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implemented in the program DOCK, was validated and characterized using: (1) pose 

identification, (2) crossdocking, (3) enrichment, and (4) virtual screening.  Improvements in pose 

identification (6-12%) were obtained using footprint-based (FPSVDW+ES) vs standard DOCK 

(DCEVDW+ES) scoring as evaluated on three large datasets (680-775 systems) from the SB2010 

database.  Enhanced pose identification was also observed using FPS (45.4% or 70.9%) 

compared with DCE (17.8%) methods to rank challenging crossdocking ensembles from 

carbonic anhydrase.  Enrichment tests, for three representative systems, revealed FPSVDW+ES 

scoring yields significant early fold enrichment in the top 10% of ranked databases.  For EGFR, 

top FPS poses are nicely accommodated in the molecular envelope defined by the reference in 

comparison with DCE which yields distinct molecular weight bias towards larger molecules.  

Results from a representative virtual screen of ca. 1 million compounds additionally illustrate 

how ligands with footprints similar to a known inhibitor can readily be identified from within 

large commercially available databases.  By providing an alternative way to rank ligand poses in 

a simple yet directed manner we anticipate that FPS scoring will be a useful tool for docking and 

structure-based design.   

 

3.1 Introduction. 

A primary role of a docking program is as a virtual screening tool to help identify 

biologically active compounds.2-4  Binding geometries (termed poses) are predicted for candidate 

ligands with a target and metrics such as intermolecular interaction energy are used to identify 

(via rank-ordering) the best scoring molecules.  Thus, docking programs can be thought of as 

filters, through which large databases (on the order of millions) may be passed, to isolate 

property-enriched subsets for further evaluation.105,106  To evaluate the accuracy of programs and 
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protocols,107 two main experiments termed pose identification13 and database enrichment108 are 

used.  To assess pose identification accuracy, crystallographic ligand-receptor complexes are 

used as controls to determine if the docking program can reproduce the correct ligand geometry 

(typically ≤ 2 Å rmsd) and whether that pose is ranked best.13  To assess database enrichment 

(Appendix B), a group of active ligands (affinity to the target has been confirmed) is seeded into 

a large group of decoy molecules (no affinity to the target is presumed) to determine if the rank-

ordered list of molecules (active and inactives) will contain, with high probability, the known 

binders among the more favorably scored list elements.108   

Programs such as DOCK,35,37 often use a physics-based energy function consisting of 

electrostatic (Coulombic) and steric (van der Waals) terms with the total sum of pairwise 

intermolecular interactions being used as the basis for rank-ordering.  Alternatively, rank-

ordering methods could employ known binding determinates (i.e. pharmacophores) to help 

identify compounds that interact with a target in a specific way which is not solely based on an 

energetic sum.  This study explores the utility of using residue-based decompositions of 

electrostatic, steric, and hydrogen bonding interactions to derive 2-D pharmacophores (termed 

here as molecular footprints) as shown schematically in Figure 3-1.  In general, a footprint may 

be thought of as a unique interaction signature between any two species.  Further, as the sum of 

the residue-based contributions is equal to the overall total interaction energy, the breakdown 

enables identification of the amino acids which are likely to be most important for molecular 

recognition.   
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Figure 3-1.  Representative molecular footprints for (a) a single ligand, (b) a single ligand with two conformations, 
and (c) two different ligands derived from per-residue decomposition of the intermolecular van der Waals 
interactions as a function of primary sequence.  For two footprints, similarity may be quantified using Pearson 
correlation coefficient (r), Euclidean distance (d), or related measures.  For clarity only a portion of the footprints 
are shown.   

 

Footprints consist of a string of residue numbers, each with an associated intensity 

(Figure 3-1a), thus the correspondence between any two strings can easily be quantified (Figure 

3-1b-c) using familiar metrics such as Pearson correlation or Euclidean distance.  Comparisons 

can be between two conformations of the same molecule (Figure 3-1b) or between two different 

ligands (Figure 3-1c).  Termed here footprint similarity (FPS) score, several potentially useful 

applications for virtual screening are envisioned with the general focus being identification of 

small organic molecules that score highly in comparison to a known reference compound.  The 

footprint comparison shown in Figure 3-1c is between the FDA approved drug erlotinib (red 

pose) and an experimental kinase inhibitor (green pose).  Table 3-1 lists possible sources of 

reference footprints including those derived from a known drug or inhibitor, a native substrate or 

cofactor, a transition state, or key side chains which mediate protein-protein interactions.  

Footprints can be manually modified, to decrease the importance a given side-chain prone to 

mutate may have in molecular recognition, which could assist identification of compounds with 

enhanced resistance profiles.  Finally, use of ensemble or average-weighted footprints, derived 
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from multiple crystal structures or molecular dynamics/Monte Carlo simulations, could be used 

to account for receptor flexibility.   

 

Table 3-1.  Examples of possible reference types to derive molecular footprints.   

Reference Types Description 
Known inhibitor FDA-approved drug or experimental inhibitor validated to bind 
Natural substrate  Native peptide or cofactor 
Transition state Predicted transition state geometry for a chemical reaction 

Modified structure  
Key functionality/substructure (side-chain mediating protein-protein 
interactions) 

Text file footprint 
Modified entries to increase/decrease importance of select residues (resistance 
mutations) 

Ensemble-weighted  Averaged footprints derived from MD/MC simulations 
 

Our laboratory42,44,82,83 and others109-112 have successfully used footprint-like methods in 

the context of molecular dynamics and Monte Carlo simulations to help identify key residues 

involved in molecular recognition (also discussed in Chapters 2 and Appendix A).  Related 

approaches have also been reported for use in docking with the distinction that these have 

typically employed binary bit-string representations (termed interaction fingerprints)113-123 

instead of energy-based decompositions as used here.  Specifically, Deng et al.113 introduced the 

SIFt method which employs a Tanimoto metric to compute the similarity between two bit strings 

derived from the presence or absence of seven interaction types occurring at a given residue.  

The SIFt method and various extensions115,116,121 have been shown to be useful for identifying 

native ligand poses, protein-family clustering, database enrichment, and library design.  Other 

bit-string related procedures have also been reported.114,117-120,122  For example, Pfeffer et al.119 

has recently reported a method based on a per-atom partitioning of the scoring function 

DrugScoreCSD, which was shown to yield improved results for pose identification and enrichment 

compared with several other methods tested.   
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A long term goal of our laboratory is the development of method and protocols to 

increase the accuracy of docking methods used in virtual screening.  The primary objectives of 

this work are to: (i) introduce and test methods to compute footprint similarity (FPS) scores as 

implemented into the program DOCK,37 (ii) evaluate pose identification accuracy using the 

recently reported SB201013 database developed in our laboratory, (iii) and characterize database 

enrichment properties using representative systems from the DUD108 database.  It should be 

emphasized that this is a post-processing technique for molecules already docked and is simply 

an alternative method which facilitates re-ranking by footprint similarity.  It is also important to 

note that FPS scoring makes use of the underlying physics-based energy function in DOCK and 

involves no additional parameterization beyond that used in any standard molecular mechanics 

force field.   

 

3.2 Theoretical Methods. 

3.2.1 Footprint Comparisons.   

Footprint similarity (FPS) scores in this work are built from three scoring descriptors: van 

der Waals energies (VDW), Coulombic energies scaled by a distance dependent dielectric 

constant (ES), and hydrogen bond energies (HB).  Consensus scores based on two (FPSVDW+ES = 

FPSVDW + FPSES) or three (FPSVDW+ES+HB = FPSVDW + FPSES + FPSHB) terms were also 

evaluated.  The general schematic for computing FPS scores is shown in Figure 3-2.  The 

procedure involves setting up the system for DOCK calculations, preparation of a reference 

molecule, and generation of candidate poses (see Computational Details section).  It is important 

to note footprints are decompositions in Cartesian space, thus Cartesian energy minimizations 

are recommended for both the crystallographic reference and candidate poses.  A footprint is 
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defined as a vector [ ]Nxxx ,,1 L
r =  where N is the number of residues in the receptor and xi is the 

interaction energy between the ith residue and the ligand.  To quantify the likeness between two 

footprint vectors x
r

 and y
r

, four different methods for computing similarity were evaluated: 

standard Euclidean Distance, normalized Euclidean Distance, standard Pearson Correlation, and 

threshold Pearson Correlation.  It should be emphasized that the different comparison methods 

and combinations produce FPS scores with different ranges as summarized in Table 3-2 and 

described further below.   

 

 

Figure 3-2.  Flow chart outlining footprint similarity calculation protocol.   
 

Table 3-2.  Comparison methods and corresponding ranges for footprint similarity (FPS) scores.   

Comparison Method  
Rangesa 

FPSVDW, FPSES, FPSHB FPSVDW+ES FPSVDW+ES+HB 

Standard Euclidean  (d) [  0, ∞ ) [  0, ∞ ) [  0, ∞ ) 
Normalized Euclidean  (dnorm) [  0, 2 ] [  0, 4 ] [  0, 6 ] 
Standard Pearson  (r) [ -1, 1 ] [ -2, 2 ] [ -3, 3 ] 
Threshold Pearson  (rthresh) [ -1, 1 ] [ -2, 2 ] [ -3, 3 ] 
aThe most favorable score possible for each method is underlined.   
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Standard Euclidean distance (d) makes use of the distance formula ( ∑ −= 2)( ii yxd ) 

to quantify differences between two footprint vectors.  The metric compares interaction 

signatures in terms of the absolute magnitudes occurring at each residue position.  Alternatively, 

a normalized Euclidean distance (dnorm) may be computed by using normalized footprint vectors 

( xxX
rrr

= , yyY
rrr

= ).  Here, the normalization procedure yields unit footprint vectors 

resulting in relative, as opposed to absolute, magnitudes being compared.  Thus, normalized 

Euclidean distance may be thought of as a general measure of shape overlap.  As illustrated in 

Figure 3-3, for a single type of footprint (VDW, ES, or HB), standard Euclidean distance maps 

from 0 to infinity while normalized Euclidean distance maps from 0 to 2 (Table 3-2).   

 

 

 

Figure 3-3.  Schematic depiction of standard (thin) versus normalized (thick) footprint vectors (x, y).  The 
maximum distance between normalized vectors on the unit circle is 2 while the distance between standard vectors 
can be infinite.   
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Similarity measures based on the standard Pearson correlation coefficient 

( )var()var(),cov( yxyxr
rrrr= ) were also evaluated.  Somewhat similar to normalized Euclidean 

distance, the standard Pearson metric quantifies similarity based on the relative magnitudes of 

each interaction.  As a fourth alternative, threshold-based Pearson correlation coefficients (rthresh) 

were also computed using a reduced set of residues consisting of only the most significant 

interactions.  In this case, a user-defined threshold is employed and the union of the two 

footprints (reference and candidate pose) is used to enforce that an identical set of residues is 

used in the calculation.  Interactions here were included when the absolute value ≥ threshold 

which for VDW, ES, and HB footprints was set to 1.0, 0.1, and 0.5 kcal/mol, respectively.  For a 

single type of footprint, both standard and threshold Pearson coefficients map from -1 to 1 (Table 

3-2).  It is important to note the distinction in nomenclature between "threshold" which may be 

used to determine which residues are most important, and therefore to be included in a threshold-

based footprint, from a "score cutoff" (as described below) which may be used to identify 

footprint(s) with strong similarity.   

 

3.2.2 Pose Identification.   

As illustrated in Figure 3-4, two key tests were employed to characterize the utility of 

using footprint-based methods for structure-based drug design.  The first test (Figure 3-4a) 

involves examining the ability of footprint methods to correctly identify crystallographically 

determined binding geometries out of a set of decoys.  Here, a score cutoff (i.e. correlation or 

distance value) is employed to classify whether a given pose will be predicted positive or 

predicted negative (Figure 3-4a, green region).  To determine if predictions are actually positive 

or negative (Figure 3-4a, red region) the commonly employed ≤ 2.0 Å rmsd criteria is used to 
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assess if the pose is similar to that in the experimental complex.  The results can also be 

classified into four quadrants (Figure 3-4a, blue region) representing (I) true positives (predicted 

positive && positive), (II) false positives (predicted positive && negative), (III) true negatives 

(predicted negative && negative), and (IV) false negatives (predicted negative && positive).  

The sum of the components in each of the different colored regions will be equal (positive + 

negative results = predicted positive + predicted negative results = true positive + false positive + 

true negative + false negative results).   

 

 

Figure 3-4.  Partitioning of outcome space (positive or negative results, red region) as a function of prediction 
(predicted positive or predicted negative, green region) into four quadrants (blue region) representing (I) true 
positives, (II) false positives, (III) true negatives, and (IV) false negatives for (a) pose identification and (b) database 
enrichment definitions of success.  Gray colored lines represent hypothetical data.   
 

As a specific example, if a Euclidean-based footprint score cutoff of ≤ 0.3 was employed 

to make a classification, a molecule with a similarity score which equals 0.2 would be predicted 

as positive.  Although the choice of score cutoff used to make prediction is somewhat arbitrary it 

should also be chosen with care.  For example, although a more generous cutoff could be used to 

improve the number of true positives, as described further below, there is the risk that the 
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number of false positives may also increase.  As a general rule the goal is to maximize the 

number of true positives and true negatives while minimizing the false positives and false 

negatives as is illustrated by the hypothetical data in the graphic (Figure 3-4a, gray data).   

 

3.2.3 Database Enrichment.   

The second key test (Figure 3-4b) involves assessing the ability of footprint-based 

scoring to predict whether a given compound will have biological activity (yes or no definition).  

From a virtual screening standpoint, if active ligands can be statistically scored better than 

inactive ligands (termed database enrichment), then rank-ordering of candidate ligands based on 

score provides a mechanism for focusing on only the most promising compounds.  Using 

databases such as DUD,106,108 consisting of known active ligands seeded into a large group of 

decoys, scoring accuracy (Figure 3-4b, red region) is gauged by comparing the number of active 

and inactive compounds (Figure 3-4b green region) predicted to be in a given percentage of the 

database.  As illustrated by the hypothetical data in the graphic, (Figure 3-4b gray lines) the 

scoring function should ideally separate active vs inactive molecules when viewed as histograms.  

As before, if a score cutoff is applied, the results can be classified into four quadrants (Figure 3-

4b, blue region).  However, as the actual positive and negative regions (Figure 3-3b, red region) 

are binary (yes/no activity); each sub-region contains only a single value representing the 

number of actual actives or decoys.   

The amount of enrichment a given method provides versus random prediction is often 

gauged through use of receiver operator characteristic (ROC) curves124 which plot the true 

positive rate (true positives / positives) versus the false positive rate (false positives / negatives).  

In conjunction with calculation of the area under the curves (AUC), both ROC and AUC metrics 
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can be used to identify which classifiers are significantly better than random.  For example, a 

truly random classifier will have an ROC with slope = 1 and an AUC of 0.5 while a scoring 

function which is good at separating positives from negatives will yield a steep early rise in the 

ROC curve with a corresponding AUC much closer to 1.0.  The amount of fold enrichment (FE) 

in any given region of the database (typically the first 1-10%) may also be of interest and is 

defined here by taking the AUC for the range of interest normalized by the area expected from a 

random classifier (FE = AUC / AUCrandom).  See Appendix B for additional discussion of 

enrichment studies as an evaluation tool.   

 

3.3 Computational Details. 

3.3.2 Pose Identification Datasets.   

Candidate binding geometries to quantify pose identification success rates were derived 

from the SB2010 database recently reported by Mukherjee et al.13 and interested readers should 

consult the manuscript for specifics regarding receptor and ligand structure preparation steps and 

docking protocols.  Briefly, three distinct sampling methods were used to generate ensembles of 

poses, for each of the 780 protein-ligand complexes in SB2010, containing potentially correct 

ligand binding geometries as well as numerous low-energy decoys.  The rigid (RGD) protocol 

attempts to rigidly place and optimize the known experimental pose back into the binding site 

through sampling the six degrees of rigid body translation and rotation.  The fixed anchor (FAD) 

protocol tests re-growth of a molecule starting from crystallographic ligand scaffold positions.  

The flexible (FLX) protocol employs the DOCK anchor-and-grow algorithm,26,36 which involves 

orienting of ligand scaffolds (anchors) into the binding site followed by flexible conformer 

growth.   A top-first clustering procedure26,36 was used to prune away redundant structures 
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during orientation and growth (FAD, FLX) and at the final stage of ranking (RGD, FAD, FLX).  

The retained group, termed clusterheads, each represent the lowest energy pose identified among 

geometrically related structures (< 2 Å) sampled during the docking.  Use of clusterheads helps 

to ensure diversity in the ensemble when retaining a reduced set of top-scoring poses.   

For the three datasets (RGD, FAD, FLX) the 50 top-ranked clusterheads for each system 

were energy minimized and rank-ordered on the protein Cartesian coordinates using 1000 

iterations of simplex optimization with DOCK6.4.  To help enforce that the original grid-based 

and subsequent Cartesian space poses would remain similar after an energy minimization, an 

rmsd-based harmonic tether was used to restrain each pose to the original input coordinates 

(force constant k = 10 kcal / mol Å2).  As shown in Figure 3-5a, most, but not all SB2010 

systems have at least 50 clusterheads.  Figure 3-5b plots the lowest-rmsd pose identified, relative 

to the experimental ligand geometry, after energy minimization of the original grid-based 

ensembles (clusterheads).  The number of systems in Figure 3-5b to the left of the 2 Å rmsd line 

for each sampling protocol (RGD=775, FAD=748, FLX=680) constitutes perfect sampling 

subsets, with associated ensembles (RGD = 38,569, FAD = 19,073, and FLX = 26,830), and 

these subsets were employed in the pose identification experiments described below.  

Importantly, use of perfect sampling subsets ensures that at least one pose for each system is 

close to the experimental pose which is an appropriate data group to use for tests designed to 

evaluate scoring (not sampling) accuracy.   



69 

 

Figure 3-5.  Database preparation histograms.  (a) Population of systems with a given number of clusterheads 
(max=50) derived from Cartesian space minimizations of grid-based results reported by Mukherjee et al.13  (b) 
Population of systems with a given rmsd using only the single lowest-rmsd pose found among the ensemble of poses 
retained.  The portion to the left of the dashed line at 2 Å rmsd constitutes perfect sampling subsets for (RGD=775), 
fixed-anchor (FAD=748), and flexible (FLX=680) ligand sampling.  (c) Population of ligand rmsds for reference 
poses after polar hydrogen optimizations using the energy grids (black line) and subsequent energy minimizations in 
Cartesian space (purple line) using a harmonic tether.   
 

3.3.2 Database Enrichment Datasets.   

For the enrichment tests, systems were taken from the directory of useful decoys (DUD) 

database.106,108   Three systems were evaluated, (i) neuraminidase (pdb code 1A4G)125 consisting 

of 1,874 decoys and 49 actives, (ii) trypsin (pdb code 1BJU)126 consisting of 1,664 decoys and 

49 actives, and (iii) EGFR (pdb code 1M17)58 consisting of 15,996 decoys and 475 actives.  

Decoy and active ligands were used as originally downloaded from DUD (default protonation 

states and partial atomic charges).  Docking setups (receptor preparation, energy grids, docking 

spheres, etc) were taken from SB201013 with the native cognate ligands from each pdb entry 

used as the footprint reference (zanamivir from 1A4G, benzamidine derivative from 1BJU, and 

erlotinib from 1M17).  Docking calculations employed identical grid-based FLX protocols 

described by Mukherjee et al.13 with the exception that the single best scoring pose was retained 

for subsequent Cartesian-based energy minimization (as described above) followed by footprint 

rescoring.  Enrichment was evaluated by plotting standard ROC curves.   
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3.3.3 Footprint Reference Preparation.   

Initial testing revealed that in some cases footprints, and thus FPS scores, could be 

sensitive to placement of hydrogen atoms.  Perhaps not surprisingly, sensitivity appeared to be 

most pronounced for electrostatic (ES) and hydrogen-bond (HB) interactions involving charged 

moieties.  To reduce variability as a result of sub-optimal hydrogen rotamers in molecules used 

as the reference, an optimization procedure was developed in which growth routines in the 

DOCK6.4 program were co-opted for sampling polar −OH, −SH and −NH groups deemed most 

susceptible.  The procedure uses a modified DOCK flexible definition file (flex.defn) with six 

angle steps sampled for each torsion at 0°, 60°, 120°, 180°, 240°, and 300° followed by 

minimization.  Sampling is performed using standard DOCK energy grids to achieve quick 

optimization and a stiff harmonic restraint (k = 1000 kcal / mol Å2) is used on ligand heavy 

atoms to insure only hydrogen atoms move.  Following sampling the most favorable pose is 

minimized on the Cartesian coordinates (restraint k = 10 kcal / mol Å2) so that footprints may be 

computed.  It should be noted that additional hydrogen optimization is not generally necessary 

for poses generated using FAD or FLX protocols as the −OH, −SH and −NH polar groups are 

sampled during ligand growth procedures.  Thus, hydrogen optimization was only done for 

molecules used as a reference.  As shown in Figure 3-5c the hydrogen optimization and 

subsequent minimization process minimally alters the experimental binding poses (rmsds 

typically ≤ 0.2 Å) yet these structures result in better behaved reference footprints.   

 

3.3.4 Footprint Rescoring Protocols.   

The modular nature of the DOCK program lends itself to be easily extended with new 

scoring functions.36,37  The ability to compute footprints and footprint similarity scores was 



71 

implemented into an inhouse version of DOCK6.4 as a new scoring function termed "descriptor 

score".  Code modifications will be made available to registered users of DOCK through the 

official UCSF distribution site (http://dock.compbio.ucsf.edu) in the near future.  FPS scores 

(FPSVDW, FPSES, FPSHB or any combination thereof) may be calculated with any of the four 

comparison methods described above (standard Pearson, threshold Pearson, standard Euclidean, 

normalized Euclidean) using a user supplied reference.  If desired, users can also output a 

comma separated text file consisting of a list of residue numbers with associated energies for the 

reference and candidate poses which facilitates graphical plotting of the footprints.  Importantly, 

the FPS rescoring procedure is relatively fast.  As an example, grid-based docking of 15,996 

molecules to EGFR using the DUD subset with FLX protocols takes ca 159 seconds per 

molecule on single 3.2Mhz Pentium IV cpu.  Energy minimization in Cartesian space takes an 

additional ca 17 seconds per molecule followed by FPS scoring which takes ca 0.13 seconds per 

molecule.  Thus, compared to the time required for flexible docking the additional costs to obtain 

FPS scores are minimal.   

 

3.4 Results and Discussion.   

3.4.1 Footprint Similarity (FPS) vs DOCK Cartesian Energy (DCE) Scores for Pose 

Identification.   

Table 3-3 shows pose identification results using FPS or DCE scoring criteria to choose a 

"top pose" from among the RGD (N =775), FAD (N=748), and FLX (N=680) perfect sampling 

subsets (Figure 3-5b) from the SB2010 database13 (see Methods).  Ideally this top pose should 

match the crystal structure with a low heavy atom rmsd.  Here, use of perfect sampling subsets 

ensure that at least one pose for each system is in fact within 2 Å rmsd of the crystal structure.  
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Other poses (> 2 Å rmsd) in each system ensemble (Figure 3-5b) may be thought of as decoys.  

For a given protocol, percent success is the ratio between the number of systems with top poses 

correctly identified and the total number in the perfect sampling subset (e.g. in Table 3-3 the top 

right most entry is 80.9% = 627 identified / 775 possible x 100).  For each of the three subsets 

(RGD, FAD, and FLX) the standard Pearson, standard Euclidean, normalized Euclidean, and 

threshold Pearson methods were used to compute footprint similarities (FPS) scores using 

footprints representing VDW, ES, VDW+ES, or VDW+ES+HB terms.  It is important to note 

that no scoring cutoff (i.e. above/below a certain FPS value) was employed in choosing top 

scoring poses for the results presented in Table 3-3.  For each system, the best scoring pose was 

always retained even if the FPS score relative to the reference was poor.   
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Table 3-3.  Pose identification success using Footprint similarity (FPS) vs DOCK Cartesian energy (DCE) methods to 
rescore rigid (RGD), fixed anchor (FAD) and flexible ligand (FLX) pose ensembles.   

Row 
Ligand 

Ensemble 

FPS Standard 
Pearson 

A 

FPS Standard 
Euclidean 

B 

FPS Threshold 
Pearson 

C 

FPS Normalized 
Euclidean 

D 

DCE  
 

E 
VDW+ES 

1 RGD  691 (89.2%)a 718 (92.6%) 683 (88.1%) 707 (91.2%) 627 (80.9%) 
2 FAD 642 (85.8%) 638 (85.3%) 644 (86.1%) 652 (87.2%) 606 (81.0%) 
3 FLX 563 (82.8%) 565 (83.1%) 556 (81.8%) 574 (84.4%) 489 (71.9%) 

VDW 
4 RGD 687 (88.6%) 684 (88.3%) 662 (85.4%) 687 (88.6%) 445 (57.4%) 
5 FAD 638 (85.3%) 630 (84.2%) 621 (83.0%) 638 (85.3%) 464 (62.0%) 
6 FLX 545 (80.1%) 539 (79.3%) 525 (77.2%) 545 (80.1%) 309 (45.4%) 

ES 
7 RGD 579 (74.7%) 583 (75.2%) 576 (74.3%) 579 (74.7%) 398 (51.4%) 
8 FAD 601 (80.3%) 573 (76.6%) 598 (79.9%) 603 (80.6%) 460 (61.5%) 
9 FLX 521 (76.6%) 505 (74.3%) 513 (75.4%) 522 (76.8%) 314 (46.2%) 

VDW+ES+HB 
10 RGD 670 (86.5%) 726 (93.7%) 590 (76.1%) 685 (88.4%) 633 (81.7%) 
11 FAD 621 (83.0%) 643 (86.0%) 590 (78.9%) 632 (84.5%) 606 (81.0%) 
12 FLX 557 (81.9%) 564 (82.9%) 501 (73.7%) 561 (82.5%) 492 (72.4%) 

a Number of molecules in which the pose identified was ≤ 2 Å from the x-tal structure pose followed by success rates in 
parenthesis.  Pose ensembles (RGD = 775, FAD = 748, FLX= 680) derived from docking runs reported by Mukherjee et 
al.13   
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It should be emphasized that the results in Table 3-3 only test scoring and not sampling.  

Thus, the VDW+ES values (rows 1 to 3 column E) for DCEVDW+ES (RGD=80.9%, FAD=81.0%, 

FLX=71.9%) are representative of the accuracy of the standard DOCK scoring function.  

Importantly, these results are similar to those reported by Mukherjee et al.13 (RGD=83.5%, 

FAD=81.6%, FLX=72.6%) for the analogous perfect-sampling subsets suggesting excellent 

correspondence between grid-based and Cartesian-based results.  With one exception (threshold 

Pearson with FPSVDW+ES+HB, rows 10-12 column C) all methods and protocols in Table 3-3 for 

computing footprint similarity scores yield higher success rates than the comparable DCE scores.  

Although the values for many of the tests in Table 3-3 yield similar results, overall, use of the 

FPSVDW+ES footprint classifier with normalized Euclidean distance (rows 1 to 3 column D) 

appears best at identifying correct poses from within the various ligand ensembles (RGD=91.2%, 

FAD=87.2%, and FLX=84.4%).  Specifically, FPSVDW+ES increases success over comparable 

DCEVDW+ES scores by 10.3 %, 6.2 %, and 12.5 % for RGD, FAD, and FLX respectively.  

Although not directly comparable, due to differences in dataset size and/or analysis, prior studies 

have also reported improvements in identification of native-like poses, relative to using a 

standard scoring function, using bit-string representations and related methods.  Interested 

readers should consult studies by Singh and coworkers,113,115,116,121 Kelly et al.,114 Marcou et 

al.,117 Mpamhanga et al.,118 Pfeffer et al.,119 Renner et al.,120 and Pérez-Nueno et al.122   

Interestingly, use of a single energetic descriptor in DCE scores yields severely degraded 

results compared to using the corresponding footprint for FPS scores (Table 3-3 columns D vs E 

rows 4 to 9).  For example, normalized Euclidean FPSVDW (80-89%) and FPSES (75-81%) show 

much higher success rates versus analogous DCEVDW (45-62%) and DCEES (46-62%) methods.  

Thus, the information encoded by a single VDW or ES footprint vector appears to be sufficient 
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to identify native-like poses.  However, tests using a single HB footprint revealed that there is 

insufficient information encoded due to the discrete nature of hydrogen bonds employed in the 

present implementation (yes or no geometric definition with one hydrogen bond = −1 kcal/mol).  

In addition, the fact that numerous poses (real or decoy) make only a few, or even no hydrogen 

bond interactions with a target, precludes rank-ordering using HB footprints alone.  In any event, 

use of HB in conjunction with VDW and ES footprints is not problematic however the addition 

generally decreases the success rates (Table 3-3 VDW+ES vs VDW+ES+HB).  Surprisingly, 

modifying the standard DCE scoring function to energetically account for intermolecular 

hydrogen bonds yields no degradation and in fact shows a slight improvement (Table 3-3 

DCEVDW+ES+HB vs DCEVDW+ES).   

 

3.4.2 Functional Relationships between Methods used to Compute FPS Scores.   

To more closely examine how results using two different comparison methods may be 

related, Figure 3-6 shows three functional relationships (standard vs threshold Pearson, standard 

vs normalized Euclidean, and standard Pearson vs normalized Euclidean) derived from plotting 

clusterhead ensembles for all FLX systems (N = 680 structures x ca. 39.445 average # of 

clusterheads each = 26,830 footprints).  Data derived from both ES and VDW footprint similarity 

scores are shown and the results are colored by population.  Across all datapoints, both Pearson 

methods yield results which are quantitatively similar especially when FPS scores are highly 

correlated (r-values near 1) or fall within the 0 to 1 range (Figure 3-6a,b blue and red 

populations).  Interestingly, when the FPSVDW scores themselves become anti-correlated (r-

values ≤ 0) there is significantly less agreement between the two comparison methods but only 

for the VDW results.  In contrast, results using both Euclidean methods also show a strong linear 
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relationship when FPS scores are nearest 0 and therefore most correlated (Figure 3-6c,d blue and 

red populations) but as the scores themselves become less-correlated (values >> 0) the ca linear 

relationship is lost for both VDW and ES results.  Finally, the strong relationship 

( ( )rdnorm −≈ 12 , see derivation in section 4.4.3) between standard Pearson and normalized 

Euclidean methods (Figure 3-6e,f) suggests both comparison metrics will yield very similar 

results across the entire range.  As noted above, FPSVDW+ES scoring in combination with 

normalized Euclidean distance appears marginally best at pose identification.  Therefore, unless 

otherwise stated, and to simplify discussion in the remainder of the text, normalized Euclidean 

methods in combination with FLX results will be emphasized.   

 

 

Figure 3-6.  Functional relationships between footprint similarity (FPS) scores computed for van der Waals (VDW, 
top) and electrostatic (ES, bottom) interactions using (a, b) standard Pearson vs threshold Pearson, (c, d) standard 
Euclidean vs normalized Euclidean, and (e, f) standard Pearson vs normalized Euclidean.  Population color ranges 
for green = [1, 50], blue = [51, 250], and red = [251, 500+] are derived from the total FLX ensemble of N = 26,830 
footprints.   
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3.4.3 Approximate Mathematical Relationship.  

The following corollary and theorem prove the approximate relationship that exists 

between normalized Euclidean distance and Pearson Correlation Coefficient (two methods 

employed to calculate the similarity for interaction footprint vectors).  The strong relationship is 

demonstrated in Figure 3-6 panels e-f.  This relationship is strong because the mean of the 

footprint vectors is usually close to zero; however, if the mean is not then this relationship will 

be much weaker.  For example for threshold based footprints the mean will likely not be close to 

zero.   

Corollary 1:  if u
r
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 are unit vectors, then ( )( )θcos12 −=− vu
rr
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Theorem:  ( )rdnorm −≈ 12  for two vectors x and y, whose means are close to zero, where normd  

is the normalized Euclidean distance and r  is the Pearson Correlation Coefficient (both 

calculated between the two vectors).  

Proof: 

)var()var(

),cov(

yx

yx
r rr

rr

=  

The correlation coefficient can also be thought of as the cosine of the angle formed between the 

mean-modulated vectors xµ and yµ where [ ]xixx µµ −=r
 and [ ]yiyy µµ −=r

, and  µ  represents 

the mean of each vector.   

( )θ
µµ

µµ
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The mean of a footprint is normally close to zero since most footprint entries are close to zero so 

this is a reasonable approximation.  The normalized Euclidian distance (dnorm) is defined as:  

γχ rr
−=normd  

where 
x

x
r

r
r =χ , and 

y

y
r

r
r

=γ . 

( ) ( )rdnorm −≈−= 12*)cos(12 θ  

There is a relationship between the cos(θ*) and normalized Euclidean (dnorm) by Corollary 1  and 

because the angle between two vectors is the same as that between their unit vectors.  Therefore, 

the approximate relationship is demonstrated. 
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3.4.4 Predicted Positive and Predicted Negatives.   

Figure 3-7 and Table 3-4 show normalized Euclidean results using the FLX-derived 

dataset in terms of the three areas of partitioning described in Methods (see Figure 3-4a) 

comprised of (1) positive and negative regions, (2) predicted positive and predicted negative 

regions, and (3) true positive, false positive, true negative, and false negative quadrants.  Positive 

and negative regions in Figure 3-7 are shown below and above, respectively, the horizontal 

dashed line at 2 Å in the rmsd histograms (left of each panel).  From a prediction standpoint, the 

predicted positives and predicted negatives in Figure 3-7 are to the left and right, respectively, of 

the vertical dashed line representing a 0.6 score cutoff in the FPS score histograms (bottom of 

each panel).  It is important to note that the choice of a specific FPS score cutoff choice for 

prediction is user defined.  Table 3-4 lists results using a 0.3, 0.6, or 0.9 score cutoff which under 

these conditions appear to be reasonable choices.  Results in each of the four quadrants in Figure 

3-7a,b indicate populations which follow the color ranges for green = [1, 5], blue = [6, 20], and 

red = [21, 30+].  For completeness, Figure 3-7 and Table 3-4 show results both when keeping 

only the best scored pose identified for each of the 680 FLX systems as well as for all poses in 

the total ensemble of FLX-derived clusterheads (N=26,830).   
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Figure 3-7.  Two dimensional histograms of rmsd versus FPSVDW+ES score for (a) the best scored poses (N=680) and (b) the entire ensemble derived from all 
poses (N=26,830).  Population color ranges for green = [1, 5], blue = [6, 20], and red = [21, 30+].   

 

Table 3-4.  FLX results scored with FPSVDW+ES for three differing footprint similarity score cutoffs using a 2 Å rmsd to 
separate positive from negative regions.   

 
Set 

 
Cutoff 

 
Positive 

 
Negative 

Predicted 
Positive 

Predicted 
Negative 

True 
Positive 

False 
Positive 

True 
Negative 

False  
Negative 

best 
scoreda 

0.3 
574 106 

251 429 240 11 95 334 
0.6 507 173 458 49 57 116 
0.9 618 62 537 81 25 37 

all 
posesb 

0.3 
965 25,865 

295 26,535 261 34 25,831 704 
0.6 1,185 25,645 577 608 25,257 388 
0.9 3,026 23,804 759 2267 23,598 206 

aN = 680.  bN = 26,830.   
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Generally good separation is observed in Figure 3-7 with higher populations appearing in 

true positive and true negative quadrants relative to false positive and false negative quadrants 

(population legend follows red > blue > green).  Ideally, the number of true positives and true 

negatives should be near 100% while the number of false positives and false negatives should be 

near 0%.  Quantitatively, the percent values of each quadrant, computed from the raw numbers in 

Table 3-4, suggest useful predictive ability.  For example, the best scored poses dataset using a 

FPS cutoff of 0.6 yields a strong true positive rate = 79.8% (458 / 574 x 100) and a relatively 

strong true negative rate = 53.8%.  The corresponding false positive (46.2%) and false negative 

(20.2%) rates are smaller as desired.  At the looser 0.9 cutoff the true positive rate substantially 

increases to 93.6% however the corresponding false positive rate also increases (76.4%) which is 

not desirable.  As expected, the true negative (23.6%) and false negative (6.4%) rates show a 

corresponding decrease.  Importantly, as discussed further below, a substantial number of poses 

labeled here as false positive appear to be miscategorized.  Roughly similar trends (true positive 

and true negative quadrants > false positive and false negative quadrants) are seen using the 

dataset derived from all ligand poses (Figure 3-7b).  At the 0.6 cutoff the true positive rate = 

59.8%, the true negative rate = 97.6%, the false positive rate = 2.3%, and the false negative rate 

= 40.2%.  Here, the large numbers of decoys (negatives) present in the all poses dataset (N = 

25,865) yields excellent statistics for both true negative and false positive rates.  For comparison, 

similar analysis based on a quadrant partitioning of rmsd vs score was reported by Marco et al.117 

using binary fingerprinting.   

 



82 

3.4.5 False Positive Examples.   

Focusing on the best scored dataset, although changing the FPS score cutoff from 0.6 → 

0.9 increases the number of true positives (79.8% → 93.6%) the number of false positives also 

increases (46.2% → 76.4%).  In general, as the vertical dashed line representing footprint 

similarity in Figure 3-7 is shifted from left to right, greater numbers of false positives will occur.  

However, while it may be acceptable in a virtual screen to discard molecules that could bind 

(false negatives) as long as a sufficient number of true positives are retained, it is extremely 

undesirable to retain non-active molecules (false positives) because molecules without activity 

may be passed onto more costly testing (i.e. purchase or synthesis).   

Figures 3-8 and 3-9 graphically illustrates how poses classified as false positive may in 

fact be geometrically and chemically correct in terms of binding.  Overlays of predicted (green) 

versus crystallographic (red) poses are shown along with corresponding FPS score, rmsd in Å, 

and potential sources of misclassification which primarily involves: (i) symmetry issues with 

rmsd calculations, and (ii) solvent-exposed moieties which do not interact with the binding site.  

False positives not belonging to either of these two categories appear to arise from the potentially 

useful phenomena (i.e. in virtual screening) that poses can yield similar footprints despite poor 

geometric overlap and are here labeled promiscuous.  The group in Figure 3-8, termed type I 

false positives, represents those from the best pose dataset with excellent footprint overlap 

(FPSVDW+ES < 0.3) but were classified as failures in terms of a close-to-medium geometric match 

(rmsd > 2 Å and < 5 Å).  The group in Figure 3-9, termed type II false positives, shows more 

extreme cases in which ligand poses have reasonable footprint overlap ( FPSVDW+ES < 0.6 ) but 

very poor geometric matches (rmsd > 5 Å).  It is important to note the categories used here in 
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Figures 3-8 and 3-9 defining systems as solvent-exposed, promiscuous, and to a lesser extent 

symmetry-related, are subject to interpretation.   

 

 

Figure 3-8.  False positive examples type I.  Excellent similarity scores (FPSVDW+ES < 0.3) but classified as failures 
due to a close-to-medium geometric match (rmsd > 2 Å and < 5 Å).  The associated PDB code, rmsd in Å, FPS 
score, and overlay of the predicted (green) versus crystallographic (red) pose are shown for each system.   

 

 

Figure 3-9.  False positive examples type II.  Good similarity scores (FPSVDW+ES < 0.6) but classified as failures due 
to a poor geometric match (rmsd > 5 Å).  The associated PDB code, rmsd in Å, FPS score, and overlay of the 
predicted (green) versus crystallographic (red) pose are shown for each system.   
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Symmetry: Symmetric molecules or molecules containing moieties with symmetry often 

produce docked candidates in which poses or functional groups (i.e. aromatic rings) are flipped 

about an axis of symmetry.  At this time, DOCK does not correct for symmetry and several of 

the best scored poses in Figures 3-8 and 3-9, based on visual examination, have higher than 

expected rmsd values.  Particularly dramatic examples are the two symmetric HIV protease 

inhibitors 1HWR (7.28 Å) and 1MER (8.56 Å) shown in Figure 3-9 which have essentially 

perfect overlap with the reference but high rmsds.  More extreme examples include the long 

symmetric inhibitors 2CKM (13.08 Å) and 1H22 (12.32 Å) for which the lowest energy docked 

poses are flipped by ca 180 degrees resulting in high rmsd.  Marcou et al.117 similarly found that 

many false positives also turned out to be molecules containing symmetry.  As a possible 

alternative to traditional rmsd-based methods, Kroemer et al.127 has described the interaction-

based accuracy classification (IBAC) method which judges the correctness of a docked pose by 

manually comparing key receptor-ligand interactions identified in the crystal structure.  IBAC 

however, as the authors note, is not easily automated.  More recently, Trott and Olson128 have 

introduced an alternative definition for computing rmsd in the program AutoDock Vina which 

the authors indicate accounts for symmetry, partial symmetry, and near symmetry.  Efforts to 

incorporate symmetry-corrected rmsd calculations into DOCK are under evaluation.  It should be 

emphasized however that although accounting for symmetry may affect pose identification 

accuracy it will not directly impact virtual screening.   

Solvent-exposed: Solvent exposed moieties of a bound ligand may not interact strongly 

with the receptor.  In such cases, it is not unexpected that exposed groups could adopt multiple 

conformations while the bulk of the molecule, and therefore the footprint, remains unchanged.  

As the rmsd metric takes into account all ligand atoms such systems could be unfairly penalized 
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by using rmsd to evaluate potential FPS scoring accuracy.  Interestingly, most of the false 

positive errors in the type I classification (close to medium rmsds) appear to fall into the 

"exposed" category.  1KTS129 provides a clear example.  Here, only the solvent exposed ethyl 

ester substituent is not well overlaid (Figure 3-8) although the rest of the molecule shows almost 

perfect overlap.  Perhaps not surprisingly, as discussed by Nar et al.130 for the same ligand bound 

to Factor Xa, the electron density is not as well defined in this region.   

Promiscuous: Importantly, the available conformational space for a given ligand, even 

for ligands with no (or imperfect) symmetry, can yield reasonable FPS scores despite poor 

geometric and/or chemical overlap as shown in Figures 3-8 and 3-9 for 1RGL, 1ROB, 3H1K, 

1HFC, and 1OS0.  Labeled here as promiscuous, of the three categories (symmetry, solvent 

exposed, or promiscuous), these could be considered as bona fide failures of the pose 

identification tests.  On the other hand, the misidentified conformations also suggest, 

conceptually, that compounds with high footprint overlap can be structurally diverse.  Additional 

crossdocking and database enrichment studies presented below strongly suggests this hypothesis 

to be true.  From a virtual screening standpoint, promiscuity may in fact be desirable by allowing 

for identification of new molecules with chemotypes, scaffolds, and/or functionality different 

from known inhibitors.   

 

3.4.6 False Negative Examples.   

Although false negatives are generally considered less problematic than false positives an 

examination of systems which fall into this category was undertaken to more fully characterize 

the method.  Table 3-5 shows representative examples in which good geometric overlap (low 

rmsds) is observed for correspondingly poor footprint scores (high FPS) defined by the ranges 
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rmsd < 1.0 Å and FPSVDW+ES > 1.0.  Interestingly, the poor FPSVDW+ES scores in these false 

negative examples arise because only one of the two terms, FPDVDW or FPSES is sub-optimal 

(Table 3-5 underline entries).   

 

Table 3-5.  False negative examples for the range defined by the 
range rmsd < 1.0 Å and FPSVDW+ES > 1.0.   

Code rmsd (Å) FPSVDW+ES FPSVDW
a FPSES

a 

2QE4 0.35 1.34 0.14 1.20 
1HSH 0.77 1.31 0.16 1.15 
2F80 0.70 1.47 0.47 0.99 
1CPI 0.56 1.05 0.13 0.92 
1TNL 0.69 1.11 0.92 0.19 
2JJ3 0.44 1.18 0.81 0.37 

9AAT 1.00 1.01 0.79 0.22 
aPoor scores for individual terms are underlined.   

 

In many instances, close inspection reveals the source of the poor footprint term as 

illustrated in Figure 3-10 for two representative systems, 2QE4 (estrogen receptor) and 9AAT 

(aspartate aminotransferase).  As before, results for the reference and candidate poses are shown 

in red and green respectively.  Only the most significant footprint interactions are shown with 

energetic differences indicated in black.  Figure 3-10a dramatically highlights how a poor 

electrostatic footprint overlap may be a result of variation in intermolecular hydrogen bonding.  

Specifically, the positioning of a key ligand hydrogen atom (indicated as spheres), on the left 

side of the reference molecule (red) in Figure 3-10a, results in favorable ES interactions with 

Glu43 but unfavorable ES interactions with Arg84.  However, for the candidate pose (green) 

with an alternate polar hydrogen rotamer, both interactions are reduced significantly in 

magnitude and a new favorable ES interaction is observed with the backbone carbonyl at 

position Leu77.  In contrast, both poses show the same rotameric state for hydrogen bonding 

with His203 (overlapping spheres on the right side of molecules) and the accompanying 
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energetic difference at this position is zero.  Overall, the observed correspondence between 

changes in geometry with energy is physically reasonable.   

 

Figure 3-10.  Pose and footprint comparisons for (a) 2QE4 and (b) 9AAT showing results for the reference pose in 
red, the docked pose in green, and per-residue differences as black bars.   

 

The second example (Figure 3-10b) is representative of cases in Table 3-5 in which 

VDW footprints are dissimilar despite well-overlapped FPSES profiles.  Here, the significant ES 

attraction between the ligand sulfonate and Arg659 (~ 10 kcal/mol), in concert with interactions 

at Tyr67 (favorable) and Asp615 (unfavorable) which are in general greater in magnitude than 

any individual VDW energy, likely impacts the fact steric packing differences show greater 

variation.  Interestingly, the candidate pose in Figure 3-10b (green line), in comparison to the 

reference (red line), yields a somewhat more satisfying VDW footprint in that most active site 

per-residue terms become favorable while at the same time the ES footprint remains unchanged.  

In contrast, the reference pose (red line), shows unfavorable energies (e.g. at Ser205, Asn587, 

Asp615, and Lys651) which could indicate sub-optimal X-ray refinement of the ligand.  In any 
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event, the strong interaction with Trp534 is well preserved by both poses.  Importantly, both 

examples in Figure 3-10 provide evidence that molecular footprints capture interactions which 

make physical sense but additionally highlight the need for care when preparing reference poses, 

especially for ligands containing polar hydrogens.  In a more general sense, the results also 

indicate the importance of using intermolecular energy minimization, prior to computing FPS 

scores, for all binding geometries being considered, including references.  Although for 9AAT, 

energy minimization alone was not sufficient to alleviate all unfavorable steric packing in the 

original crystallographic pose (Figure 3-10b red VDW footprints).   

Crossdocking Rescoring:  As recently reported by Mukherjee et al.13 carbonic 

anhydrase provides a good system on which to test new scoring functions given that 

crossdocking experiments, despite high scoring failures, yield few sampling failures.  

Crossdocking employs a related family of proteins, aligned into a common "master" coordinate 

frame, thus enabling docking of all ligands into all receptors.  Importantly, the alignments 

provide, in addition to cognate protein-ligand pairs that lie on the diagonal matrix entries, off-

diagonal elements for which a hypothetical reference pose can be established for all possible 

combinations.  Figure 3-11 shows results using the aligned carbonic anhydrase family from the 

SB2010 testset.13  Here, pose identification accuracy was determined across the 29 x 29 matrix 

using two FPSVDW+ES scoring schemes (Figure 3-11b,c), to rerank ensembles of poses generated 

by docking each ligand into each receptor, for comparison with the standard DCEVDW+ES method 

(Figure 3-11a).  It is important to note that in these experiments only the number of scoring 

failures (green), and thus actual success rates (blue), will be affected.  Sampling failures and/or 

incomplete growth (red and white elements) do not change depending on which function is used 
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as these experiments only involve rescoring.  Similar to the pose identification experiments 

(Table 3-3) the crossdocking studies employed no FPS score cutoff.   

 

 

Figure 3-11.  Pose identification results for the carbonic anhydrase family using crossdocking ensembles from 
Mukherjee et al.13  Blue, green, red, and white elements indicate successes, scoring failures, sampling failures, and 
incomplete growth, respectively.  Three scoring methods were evaluated: (a) standard DCEVDW+ES, (b) FPSVDW+ES in 
which cognate ligands (diagonals) were used as the footprint-reference corresponding to each receptor, (c) 
FPSVDW+ES in which footprint-references were derived by minimizing each ligand in each receptor and every matrix 
element used a unique reference.  Note that in all cases the rmsd references employed the set of ligands minimized 
in each receptor.   
 

Marked improvement in pose identification success (increased number of blue matrix 

entries), in comparison with the DCEVDW+ES standard method (Figure 3-11a vs 3-11b), is 

observed using FPS scoring which employs reference footprints derived from diagonal entries in 

the matrix.  Notably, the results in Figure 3-11b show nearly perfect diagonal success rates 

(24/29), for the experimentally verifiable cognate protein-ligand systems, compared with Figure 

3-11a for which only a few successes (9/29) are obtained.  Importantly, the Figure 3-11b 

protocol mimics that which might be applied to a typical virtual screening scenario, in which one 

reference per-receptor (i.e. the native ligand and or substrate) would be used to help identify 

related ligands.  Figure 3-11c provides an additional experiment, in which references were 

derived by minimizing each ligand in each receptor and using the resultant structures from each 
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corresponding element for footprint-based scoring to the receptor contained within that element.  

Not surprisingly, this protocol yields the highest overall success rates (Figure 3-11c, blue entries), 

which serves to confirm the overall robustness of the footprint procedure, although in practice 

using a unique reference for each ligand is somewhat artificial.  Nevertheless, the progressive 

increase in total matrix success (% coverage of blue squares) in going from DCEVDW+ES, (17.8%), 

to FPSVDW+ES using diagonal references (45.4%), to FPSVDW+ES using unique references (70.9%), 

demonstrates utility of the method for identification of specific binding patterns.  Additional 

virtual screening tests as described below provide further support.   

As an additional visual point of reference, Figure 3-12 shows the molecular footprints for 

the cognate diagonal entries of the carbonic anhydrase family which for clarity consist of only 

the most significant (favorable or unfavorable) interactions.  Notably, the significant 

commonalities in the overlaid cognate footprints emphasize the similar types of interactions 

made by this group of inhibitors (sulfonamides and related compounds) in the carbonic 

anhydrase binding site.  In particular, the strong interactions between zinc (residue Z), both 

positive (VDW) or negative (ES), are well-conserved across all inhibitors.  Importantly, the plot 

derived from these crystallographic references provides strong evidence that FPS 

pharmacophoric patterns are a reproducible property and are thus encoding potentially useful 

information.  Deng et al.113 came to a similar conclusion that bit-strings generated with the SIFt 

method encode useful patterns based on an analysis of 89 kinase-inhibitor complexes.  In Figure 

3-12, it should also be emphasized that each diagonal matrix entry represents a separate structure 

deposited with the PDB thus the receptor length and/or sequences may not be identical 

(insertions, deletions, missing residues, etc) despite the fact they are all the same protein.  To 

facilitate visualization of multiple receptors together, a protocol incorporating ClustalW131 multi-
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sequence alignments was developed and the positions labeled X in Figure 3-12 represent amino 

acids not conserved across the 29 PDB entries.  Besides visualization, the alignment protocol 

also provides a convenient way to generate multi-receptor (i.e. average) footprints which could 

also be used for FPS scoring.   

 

 

Figure 3-12.  Cognate protein-ligand footprints for the aligned carbonic anhydrase family.  Residue X indicates a 
given residue is not conserved across all crystal structures from the PDB entries in terms of amino acid sequence or 
signifies a substitution or deletion.   
 

3.4.7 Database Enrichment.   

The last group of experiments to characterize FPS scoring involves database enrichment.  

Figure 3-13a-c and Table 3-6 shows enrichment results for three representative systems, 

neuraminidase, trypsin, and EGFR, taken from the DUD database.106,108  Here, docking was first 

performed using the grid-based DOCK protocol described in Methods prior to rank-ordering 

using DCEVDW+ES, FPSVDW+ES, FPSVDW, and FPSES functions.  In the present studies, 100% of 

actives and >96% of decoys produced a viable docked pose.  Figure 3-13 shows standard 

receiver operator characteristic (ROC) enrichment curves while Table 3-6 lists corresponding 
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area under the curve (AUC) results along with fold enrichment (FE) values computed from the 

total (FEtot), top 10% (FEtop), and bottom 10% (FEbot) of the ROC curves.  It is important to note 

that unlike other analysis, ROC curves inherently include use of the entire range of FPS score 

cutoffs.  A rank-ordered list (FPS scores with associated molecules) is analyzed by continuously 

varying the score cutoff from best (zero or few molecules retained) to worst (all molecules 

retained) score.   

 

 

Figure 3-13.  ROC enrichment curves for (a) neuraminidase, (b) trypsin, and (c) EGFR using different ranking 
methods.   
 

Table 3-6.  Area under the curve (AUC) and accompanying fold enrichment (FE) statistics from receiver 
operator characteristic (ROC) plots for three protein-ligand systems.   

 AUCtot
a 

FEtot = AUCtot / 
AUC tot, rand 

FEtop = AUCtop / 
AUC top, rand 

FEbot = AUCbot / 
AUCbot, rand 

 Random 0.50 1.00 1.00 1.00 

Neura-
minidase 

1A4G 

DCEVDW+ES 0.84 1.68 11.88 1.05 
FPSVDW+ES 0.85 1.69 6.32 1.06 
FPSVDW 0.56 1.12 0.64 1.04 
FPSES 0.86 1.71 9.04 1.06 

Trypsin  
1BJU 

DCEVDW+ES 0.55 1.09 3.18 1.01 
FPSVDW+ES 0.86 1.71 9.65 1.04 
FPSVDW 0.61 1.22 3.50 0.96 
FPSES 0.87 1.73 8.23 1.03 

EGFR 
1M17 

DCEVDW+ES 0.59 1.18 6.29 0.97 
FPSVDW+ES 0.79 1.59 9.21 1.03 
FPSVDW 0.67 1.35 4.89 1.03 
FPSES 0.78 1.57 8.20 1.03 

aAUCtot is 100% of the database, AUCtop is the top 10%, and AUCbot is the bottom 10% 



93 

Visually, the standard DCEVDW+ES (Figure 3-13 red lines) and FPSVDW+ES (Figure 3-13 

black lines) rankings yield initial steep upwardly sloping ROC curves for all systems which is an 

indication of "early enrichment" compared to random (Figure 3-13a, dashed line).  The original 

DUD paper employing DOCK3.5108 similarly obtained early strong enrichments for 

neuraminidase and trypsin although differences in sampling and scoring protocols between the 

two studies make a direct comparison here difficult.  Interestingly, the FPSVDW+ES ROC curves 

show enrichment is maintained throughout the entire database ranking (Figure 3-13 black lines) 

in contrast to DCEVDW+ES which show degradation, in the case of trypsin and EGFR, as 

increasingly larger percentages of each database are examined (Figure 3-13 red lines).  ROC 

curves derived using FPSVDW or FPSES methods suggest in some systems better enrichment may 

be obtained using only a single descriptor.  For example, ES-based rankings alone show strong 

enrichment for neuraminidase in comparison to VDW which is essentially random (Figure 3-13a 

blue vs green lines).  This finding is physically reasonable considering the highly-charged 

neuraminidase binding site and consistent with an earlier study from our laboratory in which the 

best correlation with experimental binding free energies was obtained using the electrostatic 

component from MM-GBSA calculations.83   

From a more quantitative standpoint, fold enrichment statistics using FPSVDW+ES rankings 

reveal > 9-fold enrichment over random for trypsin (FEtop = 9.65) and EGFR (FEtop = 9.21) in the 

critically important top 10% region of the ROC curve space (Table 3-6 underlined entries).  For 

neuraminidase in this region, DCEVDW+ES performs best (FEtop = 11.88) followed by the 

previously mentioned electrostatic term FPSES (FEtop = 9.04) and finally FPSVDW+ES (FEtop = 

6.32).  With one exception, FPSvdw for neuraminidase (FEtop = 0.64), footprint similarity 

rankings always lead to significant early fold enrichment versus random (1.00).  Good 
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enrichment has also been reported by the groups using related computational methods which 

encode binding interaction patterns.113,115,117,118,122  For example, Deng et al.113 (see Table 1 in 

the reference) reported use of the SIFt method led to better enrichment, than two other scoring 

methods considered, for the identification of 16 known p38 inhibitors out of a database of 1000 

decoys.  Likewise, ROC curves reported by Marcou et al.117 (see Figure 8 in the reference) 

revealed that use of interaction fingerprints led to stronger enrichment, than other tested scoring 

functions, using a database of 19 actives and 22,230 decoys.   

Focusing on the EGFR system, Figure 3-14 shows differences in the ensemble of docked 

compounds chosen using either DCEVDW+ES (14a) or FPSVDW+ES (14b) scoring.  The top panel in 

Figure 3-14 shows overlaid poses representing the top 50 (green = best) or bottom 50 (gray = 

worst) ranked compounds in relationship to the molecular surface envelope derived from the 

crystallographic pose of the known drug erlotinib (red surface).  The bottom panel in Figure 3-14 

shows corresponding molecular weight (MW) histograms for top (green) and bottom (red) 

ranked ensembles with the number of compounds increased to 100.  It is immediately apparent 

that DCEVDW+ES scoring leads to MW bias due to the fact that the molecular mechanics-based 

additive function increases proportionally with ligand size.132  The ensemble of top-ranked 

compounds in Figure 3-14a yield significantly larger ligands (green molecules and MW curve) 

which, in this example, do not appear to fit as well in the molecular surface envelope of erlotinib 

as bottom ranked compounds which are smaller (gray molecules and MW curve).  In sharp 

contrast, when FPS score rankings are employed using erlotinib as a reference, the 50 top ligands 

fit the molecular surface envelope almost perfectly (Figure 3-14b top panel).  Further, MW bias 

of top-ranked ligands here does not favor size but instead favors MW similar to that of the 

reference (erlotinib = 393.44 g/mol) as shown by the large green MW peak in Figure 3-14b 
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(bottom panel).  Interestingly, the top-ranked molecules using FPS are somewhat smaller on 

average than erlotinib (ca 340 vs 393 g/mol) which, for this example, is likely a function of the 

composition of the DUD database.  Bottom ranked ligands show no particular bias and are 

spread throughout the entire MW range (Figure 3-14b gray line).  Overall, the current FPS 

implementation appears to yield targeted, understandable, and robust enrichments.   

 

 

Figure 3-14.  Graphical representation of the 50 top and 50 bottom ranked poses obtained from docking the 475 
active ligands from the DUD EGFR database and using (a) DCEVDW+ES and (b) FPSVDW+ES scoring functions.  The 
reference (erlotinib) is shown in red surface with top ligands in green and bottom ligands in gray.  On the bottom are 
corresponding histograms of molecular weight (MW) for the 100 top (best) and 100 bottom (worst) ranked 
molecules.  Note that the large MW peak at ca. 340 for the 100 best scoring molecules using FPSVDW+ES corresponds 
ca. to the MW of the erlotinib reference (393.44 g/mol).   

 

As a final example of the potential utility of FPS scoring, Figure 3-15 shows 

representative virtual screening results for EGFR, derived from docking and rescoring of 

906,914 commercially available compounds from the ZINC database14 (Chemdiv vendor), to 
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ascertain how many compounds would be identified which make interactions similar to that of 

erlotinib at a given FPS score cutoff.  Although the number of compounds identified at any score 

cutoff is likely to be system dependent, and a function of which database is screened and which 

reference molecule is employed, the results in Figure 3-15 suggest a reasonable number of 

molecules (i.e. 25 to 201 molecules) can readily be identified out of ca. 1 million compounds 

using a score cutoff range of 0.8-0.9.  Similar to the results obtained in the DUD example above 

(Figure 3-14b), the graphic in Figure 3-15 highlights significant pose overlap in docked 

geometries for the 25 compounds obtained using a 0.8 cutoff from the virtual screen, which fit 

well into the molecular surface envelope defined by the reference erlotinib (red).   

 

 

Figure 3-15.  Number of molecules retained from a virtual screen of 906,914 molecules to EGFR using various 
FPSVDW+ES score cutoff values.  The graphic shows the 25 molecules identified (green) using a cutoff of 0.8 in 
comparison with the known drug erlotinib (red) which was used as the footprint reference.   
 

3.5 Conclusions  

The primary goal of this study was to introduce and evaluate a new DOCK scoring 

function, termed footprint similarity (FPS) score which employs per-residue interaction maps 

(footprints) to derive a binding site comparison metric between any two molecules.  From a 

practical standpoint, FPS scoring facilitates rapid identification of ligands whose binding 

interaction patterns resemble that of a reference molecule used as an input query.  Thus, the 

method may find utility in a variety of structure-based drug design scenarios.  Potentially useful 
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outcomes include identification of ligands which make footprints similar to known drugs or 

inhibitors, native substrates or cofactors, transition states, or side-chains which mediate protein-

protein interactions (Table 3-1).  Identification of ligands with footprints similar to a known 

reference but based on novel chemotypes could facilitate scaffold hopping.  And, identification 

of ligands having footprints which do not rely on residues that are prone to mutation could 

enable development of inhibitors with enhanced resistance profiles.   

Several FPS score types were evaluated in this study (Table 3-2) which employed 

footprints based on intermolecular van der Waals energies (FPSVDW), Coulombic energies scaled 

by a distance dependent dielectric constant (FPSES), and hydrogen bond energies (FPSHB).  

Combination scores constructed from two (FPSVDW+ES) or three (FPSVDW+ES+HB) footprint types 

were also evaluated.  Footprint similarities were quantified using standard Euclidean Distance, 

normalized Euclidean Distance, standard Pearson Correlation, and threshold Pearson Correlation 

metrics (Tables 3-2 and 3-3) and functional relationships between these methods were examined 

(Figure 3-6).  Results using the different FPS protocols were compared with those obtained using 

the standard DOCK Cartesian energy scoring function (DCEVDW+ES) on tests designed to 

primarily assess accuracy of (1) pose identification and (2) database enrichment using cognate 

ligands from crystallographic complexes deposited in the PDB as references.  To facilitate 

comparison with the work presented here, should other groups wish to evaluate their interaction-

based functions and/or docking codes, the datasets for pose identification and crossdocking are 

available from the SB201013 website (http://rizzolab.org) and for enrichment from the DUD108 

website (http://dud.docking.org).   

With one exception, all FPS protocols yielded improved pose identification success, 

using three large datasets (680-775 systems) to assess accuracy, relative to using comparable 
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DCE methods (Table 3-3).  Overall, the FPSVDW+ES function in combination with normalized 

Euclidian distance yielded the best results (Table 3-3).  Success using FPSVDW+ES, defined as the 

pose being ≤ 2.0 Å from experiment, showed increases over analogous DCEVDW+ES scores by ca 

10%, 6%, and 12% using rigid (RGD = 775), fixed anchor (FAD = 748), and flexible (FLX=680) 

perfect sampling subsets derived from the SB201013 database.  Additional tests, using ensembles 

derived from crossdocking (29 ligands to 29 receptors) showed significantly greater success 

(matrix coverage) using two different FPS protocols (45.4% and 70.9%) compared with DCE 

(17.8%) for a challenging carbonic anhydrase family (Figure 3-11).   

A close examination of results (Table 3-4, Figure 3-7) classified as false positive (good 

FPS score and bad rmsd) revealed in many cases, poses that were both geometrically and 

chemically correct (Figures 3-8 and 3-9) and that misclassifications can result due to deficiencies 

with how current DOCK pair-wise rmsd routines handle symmetry.  The results indicate the 

reported success rates for pose identification are in fact a lower bound on the potential accuracy 

of the calculations.  A related issue, in which otherwise well-overlaid ligands showed rmsds > 

2.0 Å rmsd was traced to differences only in solvent exposed moieties (Figure 3-8) which for 

many cases would not reasonably be considered a failure.  Examination of false negatives (bad 

FPS score and good rmsd, Table 3-5) revealed in some cases that small variations in pose 

geometry can yield larger than expected differences in energy (Figure 3-10), especially for 

interactions involving charged groups and/or polar hydrogens, which highlights the need for care 

when preparing a reference.   

Area under the curve (AUC) and fold enrichment (FE) statistics (Table 3-6) derived from 

receiver operator characteristic (ROC) curves (Figure 3-13), for three representative systems 

from the DUD database,108 reveal significant fold enrichment using FPSVDW+ES (neuraminidase = 
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6.32, trypsin = 9.65, and EGFR = 9.21) compared to random (1.00) in the most critical early 

regime (top 10%) of the ranked databases.  In two out of three cases, the FPSVDW+ES enrichment 

exceed those obtained using the standard DOCK DCEVDW+ES scores (Table 3-6).  Close 

inspection of EGFR results reveals DCEVDW+ES scoring leads to top-ranked molecules not well-

accommodated in the molecular surface envelope defined by the cognate ligand erlotinib and 

have a distinct MW bias towards larger molecules (Figure 3-14a).  In sharp contrast, top-ranked 

molecules using FPSVDW+ES using erlotinib as the footprint reference lead to poses which nicely 

fit within the binding envelope and have a MW biased towards the reference (Figure 3-14b).  

Finally, the potential utility of the method for identification of novel compounds was 

demonstrated by a representative virtual screen to EGFR.  On-the-fly flexible ligand docking of 

ca 1 million compounds obtained from ZINC,108 followed by FPSVDW+ES re-ranking using 

erlotinib as a reference (Figure 3-15), yielded a reasonable number of compounds (25-201) with 

good FPS scores (0.8-0.9) available for purchase.  Taken together, the results of this 

comprehensive study strongly suggest the implementation of footprint-based comparison 

methods into DOCK will have utility for structure-based design.  A future goal, based on studies 

in progress, is to incorporate molecular footprints with de novo design methods to bias 

construction of new ligands from scratch towards that of a reference.   
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Chapter 4.  Grid-based Molecular Footprint Comparison 

Method for Docking.   

 
 
 
 
This chapter contains results which are to be incorporated in a manuscript currently in 

preparation.   

 

TEB, SM and RCR designed research plan.  TEB performed research, analysis and is writing the 

initial draft. 

 

4.1. Introduction  

In drug design, it is often convenient to employ prior knowledge such as using a known 

drug or substrate as a reference.  In Chapter 3, we showed that Footprint Similarity (FPS) score, 

when used as a post-docking rescoring tool, is a powerful approach to identify ligands that bind 

similarly to a reference molecule.  However, applying FPS score, which was previously 

calculated using Cartesian space receptors, to de novo design techniques or to standard docking 

was computationally restrictive due to the time cost.  Many docking programs, including DOCK, 

use grids to speed up energy calculation from O(M*N) time depending on the size of the receptor 

(M) and the ligand(N) to O(N) time which only depends on the size of  ligand.40,133 
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We envision that footprint-guided sampling, using a reference, can be used in at least 

three important ways: (1) pose identification; (2) virtual screening and (3) de novo design.  For 

pose identification, chemically similar ligands may be docked to determine the binding mode 

using a reference molecule with a known pose.  For virtual screening (molecule libraries) and de 

novo design (fragment libraries) the objective is to identify new molecules that bind to a receptor 

like known molecules, but are chemically different.  In this work, we demonstrate that grids can 

be used to speed up footprint calculations, we describe a generalization of the FPS scoring 

method that utilizes grids, and we show a proof-of-concept that grid-based footprints can be used 

to guide docking using the SB2010 pose identification test set.13   

 

4.2. Theoretical Methods 

Grid-based Footprints.  Here we show that we can extend Cartesian-footprints 

described in Chapter 3 to grid-based footprints.  The standard molecular mechanics energy 

function is pair-wise additive.  Therefore, we can separate the non-bonded interaction energy 

into per-residue components.  Grids for each residue are calculated using the standard energy 

function.  The through space interactions between receptor and ligand can be written as follows:   
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Here, i and j are indexes for the ligand L and receptor R, respectively. Ec is the Cartesian energy, 

D is the dielectric function (often a distance dependent function is used, D = 4r), ri,j is the 

distance between atoms i and j, and qi is the charge at atom i.  The value 332.0 converts the 

electrostatic (ES) energy into kcal/mol.  The van der Waals (VDW) terms are generalized to 

work with any VDW exponents (a and b):  
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Ai and Bi are the VDW parameters where  ε  is well depth and R is the minimum distance r in the 

well.  Fast implementation of energy calculations during docking can be achieved by pre-

computing the interactions and storing the potential energy on a grid.  Every point p on the grid 

(gd) has three values: attractive VDW (gda_vdw), repulsive VDW (gdr_vdw) and ES energies (gdes):   

( ) ∑
∈

=
Rj

a
jp

j

vdwa
r

A
pgd

,

_ , ( ) ∑
∈

=
Rj

b
jp

j

vdwr
r

B
pgd

,

_ , and ( ) ∑
∈

=
Rj jp

j

es Dr

q
pgd

,

332  

Grids are energy potentials; one can think of each grid point (p) as the interaction of the 

receptor with a dummy atom (where Ai = 1, Bi = 1 and qi = 1).  The through-space interactions 

can be approximated by interpolating grid values onto the ligand atoms (ai) located at some point 

between grid points.  The grid energy (Eg) calculated by Eq. 2 is an approximation of the 

Cartesian energy (Ec) shown in Eq. 1 (Ec ≈ Eg).  The finer the grid spacing, the better the 

approximation of the Cartesian energy. 
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Here, the function TLI performs a tri-linear interpolation of each of vectors: 
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The TLI is a linear function of the form: 
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The TLI combines the potentials stored using the eight closest grid points ( p1, . . . , p8) and the 

position of atom i to approximate the Cartesian-based energy at atom i.   
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We can obtain a per-residue decomposition of the grid calculation by generating a grid 

for each residue as is shown for a single grid point (p) here: 
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Here R is the set of receptor atoms and Si is the set of atoms in residue i.  The receptor has N 

atoms and M residues.  The union of the residue atom sets is the set of receptor atoms:   
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And the sum of the size (number of atoms) of the residues is the size of the receptor:  
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We calculate the per-residue components (Eg,S(i)) by using the grids generated for each receptor 

residue ( GS(i) ).  Moreover, by Equations 4-2 to 4-4, the sum of these components add up to the 

standard grid energy (Eq. 4-5).    
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4.3 Computational Details. 

Residue selection and grid generation.  A threshold based criteria was used to identify 

important residues, based on their standard DOCK Cartesian energy (DCE) with the optimized 

(H-opt) ligand crystallographic pose, unless otherwise stated.  H-opt structure generation is 

described in Chapter 3.  Residues with absolute interaction energies exceeding 1.0 kcal/mol for 

VDW or 0.5 kcal/mol for ES were selected for residue grid generation.  All other residues were 

grouped together to create a remainder grid.  For each receptor, grids were generated for the 

selected residues and for the remainder.  An in-house python script iteratively calls the grid 



104 

program for each selected residue and the remainder.  For this study, all grids are generated at 

0.4 Å resolution.  The grids were calculated using 6-9 VDW exponents for a softer receptor to 

somewhat mimic receptor flexibility.134   

Pose reproduction experiments.  The SB2010 dataset was used.13  Six docking runs 

were performed using different random seeds.  The success rates were calculated for each run 

and the averages were used as a means to better gauge docking success.  As previously 

discussed,13 docking experiments may have one of three outcomes: (1) docking success is when 

the program selected a correct posed (within 2 Å of native pose),  (2) scoring failure occurs when 

the correct pose was sampled but it was not scored at the top of the list, and (3) sampling failure 

is when docking did not sample the correct pose.   

Standard Docking and Rescoring.  Docking here uses the same protocol as discussed in 

Mukherjee et al.13  One modification was that final clustering parameter used was changed from 

2.0 Å to 0.5 Å; this affects sampling and rescoring.  DOCK uses a best-first clustering method.  

The rescoring with DOCK Cartesian energy (DCE) and FPS used the 6-9 VDW exponents as 

were used for the grid calculations. This makes comparisons easier between the DOCK grid 

energy (DGE) and DCE scores.   

Grid-based Footprint Similarity Score docking. As described in Chapter 3, standard 

Euclidean, normalized Euclidean, and Pearson correlation are three methods employed to 

calculate Grid-based FPS score.  Footprint-guided docking experiments employs solely Grid-

based FPS score (using the three footprint comparison methods) to “guide” growth, meaning that 

anchor-and-grow prunes, clusters, and minimizes growth using FPS score.  Footprint-nudged 

docking experiments use the standard grid score “nudged” by the FPS score, meaning that 

anchor-and-grow prunes, clusters, and minimizes growth using FPS score combined with grid 
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score.  Both “guide” (coefficients C1 and C2 are zero) and “nudged” (coefficients C1 and C2 are 

equal to one) uses eq 4-6.   

 

Total Score = C1 * DGEES + C2 * DGEVDW + C3 * FPSES + C4 * FPSVDW  (4-6) 

 

The coefficients used by the score (eq 4-6) are list in Table 4-1 for the different Grid-based FPS 

methods.   

 

Table 4-1.  Footprint Similarity Score docking coefficients.   
 Footprint-guided docking Footprint-nudged docking 
Standard Euclideana C1 = C2 = 0  

C3 = C4 = 1 
C1 = C2 = 1 
C3 = C4 = 1 

Normalized Euclidean C1 = C2 = 0  
C3 = C4 = 1 

C1 = C2 = 1 
C3 = C4 = 20 

Pearson correlation C1 = C2 = 0 
C3 = C4 = -1 

C1 = C2 = 1 
C3 = C4 = -20 

a for equations 4-6 
 

4.4 Results and Discussion   

4.4.1 Grid Generation. 

Grid vs Cartesian energies.  As discussed above, Cartesian per-residue energy 

decomposition can be approximated by using multiple energy grids.  Per-residue energy 

decomposition is accomplished by the creation of a grid for each protein residue.  For example 

the smallest receptor in SB2010, consisting of 80 residues, is pdb code 2PK4, plasminogen 

kringle-4 protein which is an important protein in blood clotting,135 and a comparison of grid-

based (grey filled circles) and Cartesian (black squares) footprints are shown in Figure 4-1.  We 

see that the two energy footprints are very similar. However, for the grid-based method, for most 

systems, it is infeasible to consider all residues in the FPS comparison calculation; the grids take 

up a large amount of memory during runs.  In addition, the time needed to perform the docking 
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calculations increases as more grids are used.  As is shown in Figure 4-2a, the 0.4Å resolution 

grids well approximate the electrostatic interactions (r = 1.000 ) but does a slightly poorer job for 

the VDW footprint (r = 0.994) .  Interestingly, preliminary studies showed that finer grids do not 

in fact result in better docking success.  This observation may be a consequence of the fact that 

coarser grids smooth the underlying energy landscape allowing better sampling.   

 

 
 

Figure 4-1.  Comparisons between grid-based (grey) and Cartesian (black) footprints.  The van der Waals 
(a and b) and electrostatics (c and d), all-residues footprints (a and c), and the threshold-based residues 
plus remainder footprints (b and d) are shown for pdb code 2PK4.   
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Figure 4-2.  (a) comparison of Grid (DGE) score vs Cartesian (DCE) Score. (b) Comparison of Sum of the footprint 
grid-values vs standard grid score. (c) Comparison of the Grid-based footprint values vs (d) Histogram of the 
number of grids used for footprint-guided docking (# grids = # residues + 1 ).  For panel A-C, blue dots are ES and 
red are VDW.   

 

Remainder vs no remainder.  In Chapter 3, we described a threshold-based method 

footprint correlation comparison which used no remainder where we used the union of the two 

sets (pose and reference) and the residues selection is calculated for every pose on the fly.  For 

the grid-based footprint method, we must pre-compute the grids used to describe the footprint 

using only the residue selection for the reference since the candidate pose interactions will only 

be for those residues originally deemed important for the reference.  A problem could arise if 

neglected residues would interact strongly with the candidate pose.  For example, if a reference 

makes strong interactions with 12 residues and a generated pose interacts with 11 and the 
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intersection between these sets is 9 residues then the docked pose makes interactions with two 

residues not considered in the FPS calculation.  To alleviate this drawback, we will include a 

"remainder-grid" consisting of all the remaining residues (those without their own grids).  

Although these could be considered non-important residues, their inclusion ensures that their 

sum adds up to the total grid energy of the protein.  This is demonstrated by the essentially 

perfect correlation shown in Figure 4-2b, a poorer correlation would be expected if remainders 

were not included.  Importantly, excellent agreement is seen between the DGE and DCE 

footprints (r = 1.000, r = 0.988) as is shown in Figure 4-2c.  As is the case in the DGE and DCE 

scores, there is also poorer agreement between the VDW footprints compared with ES footprints.  

On average 20 grids per receptor are used Figure 4-2d.   

  

Table 4-2.  Standard docking and rescoring.  FPS scoring uses normalized Euclidian.   
 docking function residues FPS  successa failures (%) time  
    type (%) scoring sampling (min) 
a Stand. Grid all -- 63.6 25.9 10.5 9.97 
b rescoreb Grid-FPS sel+rem Eucl 79.4 10.1 10.5 0.23 
c rescoreb Grid-FPS sel+rem Norm 79.0 10.4 10.5 0.21 
d rescoreb Grid-FPS sel+rem Corr 78.5 11.0 10.5 0.18 
e minb Cart  all -- 63.4 21.5 15.2 15.22 
f rescorec Cart-FPS all resid Norm 79.0 5.9 15.2 0.09 
g rescorec Cart-FPS thres Norm 77.9 7.0 15.2 0.11 
h rescorec Cart-FPS sel Norm 78.5 6.3 15.2 0.10 
i rescorec Cart-FPS sel+rem Norm 78.8 6.0 15.2 0.10 
         
j Stand. Grid-Sum sel+rem  64.3 25.6 10.1 41.16 
         
k Guided  Grid-FPS sel+rem Eucl 77.5 9.4 13.1 38.72 
l Guided  Grid-FPS sel+rem Norm 30.2 13.5 56.3 38.13 
m Guided  Grid-FPS sel+rem Corr 20.5 12.2 67.3 37.77 
         
n Nudged Grid-FPS sel+rem Eucl 81.0 11.1 7.9 41.49 
o Nudged Grid-FPS sel+rem Norm 79.8 11.0 9.3 43.18 
p Nudged Grid-FPS sel+rem Corr 72.2 17.5 10.3 42.25 
a N = 780, average of 5 runs.  b standard docking results (row a) results rescored or minimized with 
alternative scoring function.  c rescoring the Cartesian minimization results (row e).    
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4.4.2 Docking and Rescoring in Pose Reproduction.   

Table 4-2 shows statistics (docking success, scoring failure, and sampling failure) for 

numerous experiments (SB2010, N = 780) comparing Grid-FPS results with their Cartesian 

counterparts (Cart-FPS).  Comparisons with the standard docking scoring function are also 

reported.  The average outcome of six docking runs are reported for standard DGE docking 

(Table 4-2, rows a, j); rescoring the standard docking runs with Grid-FPS (Table 4-2, rows b to 

d), standard DCE (Table 4-2, row e), and Cart-FPS (Table 4-2, rows f to i); and docking 

calculations in which their sampling is influenced by Grid-FPS scores (row k to p).  The grid-

FPS is a decomposition of DGE score which is the scoring function used during docking, thus no 

sampling failures were added (rows b to d).  Docking success is comparable between Cartesian 

minimization, 63.4% (row e) and grid docking to 63.6% (row a), however, a decrease in 

sampling success (4.7%) occurs upon minimization with sampling failures going from 10.5% 

(grid, row a) to 15.2% (Cartesian, row e).  The FPS all residues method does the best with an 

average success of 79.0% (row f).  Interestingly, when comparing FPS threshold and FPS 

selection with no remainder, the success increases from 77.9% (row g) to 78.5% (row h), this is 

most likely due to the inclusion of more electrostatic residues for consideration.  There is a 

further increase in success when using the FPS selection remainder 78.8% (row i); however, FPS 

selection remainder is still not as good as the FPS for all residues.  The sampling failures are the 

same among the Cartesian results.  The “Grid FPS selection remainder” does as well as the 

Cartesian best method (FPS all residues), with a dock success of 79.0% (row c, f).  Because we 

can use the grid based dock results without minimization the grid based rescoring has no 

additional sampling failures.   
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Overall in Table 4-2 the combination of FPS with grid score (termed FPS-nudged) does a 

better job at pose identification than the standard docking scoring function, or FPS-guided 

method alone across 3 different footprint comparison methods: Euclidian (row n), normalized 

Euclidean (row o), Pearson correlation (row p).  Figure 4-3 shows the results graphically with 

each vertical bar representing a result using a different random seed.  Importantly, the nudged 

methods appear to be most accurate in combination with the Euclidian comparison metric 

(81.0% success rate, row n).  Furthermore, Euclidian comparison metric also does very well for 

Guided docking (77.5% row k) which is due to both magnitude and shape matching.  For the 

FPS-guided results, the poor performance of normalized Euclidean (30.2%, row l) and Pearson 

correlation (20.5%, row m) is most likely due to the fact that magnitudes are not matched.  A 

lack of magnitude information may be acceptable when only used for rescoring because only the 

best solutions (lowest energy) would be considered.  However, since the FPS scoring function 

affects sampling during growth (FPS-guided), without consideration of the magnitude, 

energetically unfavorable poses may be scored favorably in FPS space which can be problematic.  

However, when grid energy is used in combination with the normalized Euclidean (79.8%) and 

Pearson correlation (72.2%) both methods do very well and thus the combination methods would 

be recommended.  Importantly, there are only on average 5.84 systems (or 0.7%) that differ 

between the standard grid (row a) vs standard Grid-Sum (row j) results showing the robustness 

of a multi-grid energy decompositions strategy.  However, since the footprint-guided and 

footprint-nudged docking methods are for example ~4 times slower than standard docking (when 

comparing rows j-p with row a, Table 4-2) care must be used in their application.   
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Figure 4-3.  Shows six docking experiments using SB2010.  Five random seeds were used to gage variability.  
Success (blue), scoring failure (green) and sampling failure (red) add up to 100%.   

 

Finally, It should be noted that the approximate functional relationship between 

normalized Euclidean and Pearson correlation described in Chapter 3 will break down because 

the mean of the footprints will not be expected to be close to zero since only the peaks that 

should make strong interactions are included.  For this reason normalized Euclidean and Pearson 

correlation will likely give users different rank orderings.   

 

4.4.2 FPS Behavior During Growth.   

To evaluate behavior of FPS (using Euclidian comparison method) as a function of 

growth step, fixed anchor docking (which begins growth starting from an anchor in the 

crystallographic position) using a restraint [k = 10 kcal/(mol Å2)] was performed on the 10 

rotatable bond subset (N = 59) of the SB2010 testset.  Figure 4-4 shows box plots for the 10 RB 

subset (top) and for a single system, pdb code 1M17 (middle).  Both FPS-guided docking (Figure 

4-4, left) and rescored standard docking (Figure 4-4, right) was performed.  In general, the FPS-
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guided results, overall yield better footprint values at the end of the runs than the corresponding 

rescoring results.  Although many of the branches do not converge to a good FPS score, there is a 

clear downward trend of the median values (Figure 4.4, top panel).  In fact, this shows that on 

average the FPS scoring method is guiding growth toward better footprint similarities.  The 

bottom panel of Figure 4-4 and Figure 4-5 show one branch in which structures and energetics 

converges to a reasonable native-like answer.  The representative 1M17 example shows the 

system converges to a lower FPS value than the all-system set (N=59). In Figure 4-5, one branch 

of the growth tree is shown for erlotinib, the structures and the corresponding footprints.   

 

 
 

Figure 4-4.  FPS score for growth step for the 10 rotatable bond subset of SB2010 (N= 59) are shown.  Left panels 
show FPS guided docking results.  Right panels show rescoring results from a standard grid score docking 
experiment.   
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Figure 4-5.  Fixed anchor docking branch converges to a low RMSD and low FPS score.  Both structures before and 
after minimization are shown.   
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Here, growth steps before and after minimization are shown.  We observe that after-

minimization values converge to a favorable FPS score (Figure 4-4, bottom panel) which is also 

evident by the final well-overlaid footprint at the bottom left panel of Figure 4-5 (step 10).   

 

4.4.3 Conclusions. 

This chapter describes work in progress to implement and validate a grid-based footprint 

comparison method into the program DOCK.  Our results have shown that a grid-based method 

produces footprints similar to those for Cartesian decompositions (Figures 4-1 and 4-2).  The 

method does about 1% better than standard docking with rescoring but is on average about ca. 4 

times slower (Table 4-2).  Nevertheless, this may be an acceptable tradeoff for specific docking 

scenarios.  FPS-guided docking, which uses only FPS score to drive sampling, does very well 

using standard Euclidean but very poorly for normalized Euclidean and standard Pearson which 

is most likely do to the need to account for the magnitude of the interactions (Figure 4-3 and 

Table 4-2).  Standard Euclidean matches both the magnitude and the shape of the footprint 

spectra while normalized Euclidean and standard Pearson only match the shape.  All comparison 

methods perform well in the FPS-nudged docking experiments (Figure 4-3 and Table 4-2).  

However, for virtual screening or de novo design application it may be better to use FPS-nudged 

docking with a shape matching method to find molecules that may have larger magnitudes than 

the reference.  The FPS-guided results clearly show that use of FPS during growth yields 

molecular interactions which are more similar to the reference than standard grid sampling.  The 

FPS scores are lower for the guided results than for the rescoring results (Figure 4-4 and Figure 

4-5).  These results indicate that the grid-based footprint may be a useful scoring function to 

drive sampling for de novo design applications.   



115 

 
 
 
 
 
 

Chapter 5.  Dissertation Summary: Scientific Impact, 

Related Work, and Future Direction.  

 
 
 
 
As discussed in the introduction (Chapter 1) computational modeling is an increasingly 

important part of the overall drug discovery process.  The studies presented in this dissertation 

provide additional examples of well validated computational work in which discoveries and 

advances have been made regarding the anticancer target EGFR and progress towards improved 

virtual screening protocols.  This final chapter summarizes key findings of the projects in 

Chapters 2, 3, and 4 in terms of scientific impact, and related work and future direction.   

 

5.1 Structural and energetic analysis of EGFR simulations.   

Scientific impact.   

As described in Chapter 2, through all-atom simulations, we obtained structural and 

energetic data which allowed us to characterize the mechanisms of resistance of EGFR to 

inhibitors.  A key finding was the reduction of the water mediated interactions when comparing a 

baseline system (L858R) to a drug resistant mutant (L858R&T790M).  The impact of this study 

is a better understanding of (1) the binding of current inhibitors to EGFR variants and (2) the role 

mutations in the receptor play in ligand binding in part by perturbing hydration patterns.  Further 



116 

motivations of the work are to develop new and more robust inhibitors of EGFR and/or IGF-1R 

to combat cancer.   

 

Related work and future direction.   

Building on our understanding of the role of key water molecules to binding, Huang and 

Rizzo have examined the role of selectivity and mutation in the binding of lapatinib to the 

inactive conformation of HER family members including EGFR.136  Ligand changes were also 

proposed by the group to probe the importance of specific water mediated interactions.   

A future direction might be to use the data from Rewcastle et al.101 to probe the structure 

activity relationship of molecules similar to erlotinib and gefitinib (Chapter 2), using 

Thermodynamic Integration (TI) of ligands with the active conformation of wild-type EGFR.  

Simulations could be used to predict effects of small differences in ligands on binding to the 

mutant receptor.  By probing the relationships between activity and structure, we can understand 

which interactions are desirable for the design of next generation inhibitors that will target 

resistant receptors.  Extending footprint-like analysis to TI calculations (as briefly outlined in eqs. 

5-1 to 5-4) would also be worthwhile.   
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Here, the solvated complex system energy (Vsys) may be broken down into internal and multi-

species components eqs. 5-1 and 5-2.  In the case where only part of the ligand is contained in 

the lambda mask, only three of the components will change with lambda, the rest will be zero.  

Since summation, integration and partial derivatives are all linear operators, we may decompose 

the λ∂∂ recligV ,  into per-residue components and then integrate over these components (eqs. 5-3 

and 5-4).   

As discussed in the literature, the L858R&T790M mutation increases binding towards 

ATP.64  Part of the reason for resistance may not be just the weakening of interactions with 

inhibitors but also the strengthening of the binding of ATP.64  Interestingly, our preliminary 

unpublished simulations, using the same protocol described in Chapter 2, indicate that the ligand 

AMPPNP (an ATP analog) may preferentially bind to the mutant, as hypothesized by Yun et 

al.64  Future computational studies may be undertaken to more completely explore this result.   

Identification of alternative binding sites on EGFR is an important strategy for 

development of new inhibitors.  It would be interesting to construct and validate how the 

carboxyl tail of EGFR docks into the kinase domain to allow phosphorylation of its tyrosine and 

identify or design small molecules to block this event.  Since MIG6 is a naturally produced 

peptide that inhibits the dimerization of EGFR,137 it could be advantageous to discover small 

molecule inhibitors that will disrupt the dimerization event by mimicking MIG6 interactions.   

Additional studies using molecular dynamics, umbrella sampling and nudged elastic band 

methods could be performed to probe how ligand binding, mutations and dimerization shift the 

equilibrium of EGFR from inactive to active conformations.  In addition, an allosteric pocket 

may be identified by examining the pathway EGFR traverses from active to inactive states.  

There are two main areas of differences between the active and inactive conformations in the N-
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lobe helix and the activation-loop as shown in Figure 5-1.  Through a preliminary study, a path 

using structural linear interpolation with 20 windows between active and inactive conformations 

was identified.  A cavity near the N-lobe helix could be targeted to possibly trap the receptor in 

an intermediate state.  Another observation is that the residue K860 appears to impede the 

conformational change between active and inactive conformations.  Additional studies 

employing umbrella sampling and/or nudged elastic band are warranted to better determine the 

transition path between these two conformations.   

 

Figure 5- 1.  Active vs inactive conformations.   The grey ribbon indicates the backbone of EGFR.  The colored 
regions represent the main differences between the two structures.  An overlay of the N-lobe helix and the activation 
loop is also shown.   

 

5.2 Development of docking methods and virtual screening protocols.   

Scientific impact.   

A major component of this work has involved DOCK development to aid the drug 

discovery efforts in our laboratory and also the community.  Key improvements both to sampling 

and scoring routines have been made as discussed below.  Importantly, compounds targeting 

HIV gp41138 and botulinum neurotoxin, identified in computational virtual screens using DOCK 
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with the new footprint-based scoring function (Chapter 3), provided leads with experimental 

activity.  Such leads form the basis for additional studies and development for these therapeutic 

targets.  All of the work on DOCK has been released to the community in DOCK v6.4 and v6.5 

or will soon be made available in future releases.  Scientific contributions have included: (1) 

assistance with modifying growth routines to include internal energy, (2) adding growth tree 

protocol analysis feature, (3) adding RMSD tether, (4) implementing of Descriptor Score (FPS 

scoring function and hydrogen bonding code, Chaper 3), (5) adding anchor selection, (6) 

implementing Multi Grid code (Grid-based footprints, Chapter 4), and (7) assistance in the 

implementation of a SASA-based scoring function to estimate ligand burial.  Collaborative work 

also involved assisting with the construction of the SB2010 pose reproduction database.13   

 

Related work and future direction.   

Accounting for receptor flexibility during docking may be useful in drug discovery 

applications.139,140  To incorporate a method into DOCK, we have developed a preliminary 

implementation of a Multi-Grid scoring function in addition to the scoring functions discussed in 

Chapter 3 and 4.  There are two schemes for combining the grids:  One is termed Multiple 

Average Receptor (MAR) and the other is Multiple Independent Receptors (MIR).  Ongoing 

work in the lab is focused on further development and robust validation using crossdocking and 

enrichment studies.   

The grid-based footprint scoring function described in Chapter 4 is hypothesized to be 

useful in de novo design by facilitating construction of molecules with similar per-residue 

interactions as those of a known reference.  A new de novo design method is being implemented 

into DOCK using the anchor-and-grow infrastructure to construct new molecules from a library 



120 

of scaffolds, linkers, and side-chains.  An important feature of the de novo protocol is that 

fragment libraries will be generated from synthesizable molecules contained in databases such as 

ZINC.   

Finally, the DOCK development work discussed above was in part motivated to apply the 

improved methods to lead discovery applications targeting EGFR and other kinases.  Virtual 

screens to target IGF-1R are planned for the near future.  An additional goal is to identify leads 

that will target both T790M EGFR and IGF-1R using multi-grid docking methods.  Since IGF-

1R has a methionine at the gate keeper residue position, it is hypothesized virtual screening can 

identify lead compounds with reasonable affinity to both proteins.   

 

5.3 Summary.   

As demonstrated in this dissertation, computational tools are useful in aiding drug 

discovery efforts with the long term goal of treating human disease. The most striking results of 

the studies described in this dissertation are as follows.  (1) The role of the reduction in water 

mediated interactions between EGFR resistance mutant and erlotinib was identified. (2) The 

development of a new footprint-based scoring method was validated.  And (3) third-party virtual 

screening applications which employed the footprint-based methods have resulted in 

identification of new lead compounds for biologically relevant targets.   
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Appendix A.  Origins of Resistance to the HIVgp41 Viral 

Entry Inhibitor T20.   

 
 
 
 
Collaborative work described in this chapter has been published in McGillick, B. E.; Balius, T. 

E.; Mukherjee, S.; Rizzo, R. C. Origins of Resistance to the HIVgp41 Viral Entry Inhibitor T20. 

Biochemistry, 2010, 49 (17), 3575-3592.  Copyright © 2010 American Chemical Society.  

doi:10.1021/bi901915g  PMID: 20230061  

 

Author contributions:  BEM, TEB, SM, and RCR designed research; BEM, TEB, SM performed 

research; BEM, TEB, and RCR wrote paper with assistance from SM. 

 

A.1 Collaborative Project Summary.   

Fuzeon (T20), which targets HIVgp41, is the first FDA approved drug for inhibition of 

viral-host membrane fusion.  In this work, a model of T20 bound to HIVgp41 was constructed 

and solvated in explicit water and lipid to elucidate the molecular reasons for clinically relevant 

drug resistance.  Molecular dynamics simulations (run for 10 ns) were post-processed to yield 

detailed structural and energetic results.  Good agreement was observed between residues 

involved in resistance and those shown to be energetically important through per-residue energy 
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decomposition (footprint analysis).  Six out of seven HIVgp41 point mutations (L33Q, G36V, 

I37K, V38E, Q40H, Q40K and outlier L33S) which deleteriously affect binding of T20 showed 

good overall agreement with experiment (r2 = 0.72, N=6).   

My main contributions to this work include: (1) detailed convergence evaluation; (2) 

energy decomposition heatmap calculations; and (3) peptide-lipid interaction analysis.  These 

three key points, are discussed in the following subsections  which are taken from the published 

work.44   

 
A.2 Binding Free Energy Convergence: Autocorrelation and Block Averaging.   

An important part of any computer simulation analysis is estimation of uncertainty.  In 

this work, simulation convergence was assessed (Figure A-1) by plotting autocorrelation 

functions (ACF) and block averaged standard errors of the mean (BASEM) for the ∆Gbind calcd 

time-series from T20 with wildtype gp41, as well as seven gp41 mutants (L33Q, L33S, G36V, 

I37K, V38E, Q40H, Q40K).  For a given time series, ACF functions provide a means to assess 

how data are correlated and BASEM analysis allows error convergence to be estimated by 

allowing block length to vary.  Ideally, reasonably uncorrelated data should be used for block 

averaging.  Figure A-1a reveals that all ACF curves for ∆Gbind calcd drop quickly from 1 (100% 

correlated) at lag time = 0 ps, to less than ca. 25% correlated at 250 ps, before showing 

fluctuations which oscillate about 0% which is indicative of largely uncorrelated data.   

Interestingly, the ACF results for T20 with I37K show a distinctly different trend (green 

solid arrow), in comparison to other trajectories, which is an indication this one simulation is not 

in reasonable equilibrium or as well-behaved.  BASEM curves for similarly reveal I37K as an 

outlier in terms of poorly converged error estimates.  An additional MD simulation was run for 

I37K which employed a different random seed number in an attempt to yield a trajectory with 
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improved equilibrium/convergence statistics.  As shown in Figure A-1 (dashed green arrows), 

ACS and BASEM curves for the new MD run yielded results more consistent with the other 

converged simulations and this latter trajectory was used for all further analysis.   

Error estimates for ∆Gbind calcd were obtained using the BASEM plots in Figure A-1b.  

Here, block averaged standard errors of the mean in kcal/mol were computed as a function of 

block size which ranges from 1 ps to 5000 ps (1 to 5000 snapshots).  The BASEM results show 

the expected exponential increase as block averaging size becomes larger that begins to reach a 

plateau which is indicative of reasonable equilibrium.  BASEM errors computed at N=1 likely 

underestimate the true error in the simulations while at N=5000 (1/2 the simulation length) the 

errors may not be reliable due to the fact that only two blocks are used.  For the present 10 ns 

trajectories, Table A-1 plots BASEM errors, along with the % of uncorrelated data from ACF 

curves, for the eight simulations at block sizes of 1 ps, 100 ps, 250 ps, 500 ps, and 1000 ps.  

Individual system results and the overall average for these five block sizes are both reported.  

The regime between 250 and 500 ps yields data which is largely uncorrelated (ca 75 - 85%), and 

having a sufficiently large numbers of independent blocks (250 ps = 40 blocks and 500 ps = 20 

blocks), thus the errors of 0.68 - 0.91 kcal/mol may be taken as a reasonable estimate of the 

statistical noise for ∆Gbind calcd for these simulations.  Although the overall structural, energetic, 

and convergence metrics monitored over the course of the MD trajectories (Figure A-1 and Table 

A-1) indicate the T20-gp41 models are physically reasonable and well-behaved, ideally, longer 

time-series for each simulation would be desirable.   
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Figure A-1.  (a) Autocorrelation functions (ACF) of calculated binding energies (∆Gbind calcd) for T20 with wild HIVgp41 and seven mutants.  (b) 
Block average standard error of the mean (BASEM) in kcal/mol as a function of block size from 1 to 5000.  Solid arrows indicate initial I37K 
results while dashed arrows indicate I37K results obtained using a different random seed.   

 

Table A- 1.  Autocorrelation function percent uncorrelated data (ACF %)and block average standard error of the mean 
(BASEM) for ∆Gbind calc results from simulations of T20 with wildtype HIVgp41 and seven mutants for various block 
lengths.   
 N = 1 ps N = 100 ps N = 250 ps N = 500 ps N = 1000 ps 
mutation ACF %a BASEMb ACF % BASEM ACF % BASEM ACF % BASEM ACF % BASEM 
WT 46.13 0.06 79.44 0.38 82.93 0.56 87.91 0.73 95.10 1.01 
L33Q 41.45 0.07 65.54 0.44 75.20 0.65 84.34 0.88 88.44 1.13 
L33S 39.96 0.07 69.46 0.45 81.34 0.67 88.43 0.88 90.89 1.15 
G36V 34.54 0.08 64.29 0.52 71.87 0.76 78.96 1.03 86.10 1.34 
I37K 33.64 0.08 59.43 0.54 69.77 0.80 85.24 1.07 100.39 1.09 
V38E 44.79 0.07 74.14 0.39 79.68 0.56 86.96 0.78 95.13 0.97 
Q40H 36.55 0.07 66.64 0.48 70.09 0.68 81.25 0.91 94.81 1.27 
Q40K 32.04 0.07 61.20 0.53 75.26 0.79 83.38 0.99 96.64 1.24 
avergage 38.64 0.07 67.52 0.47 75.77 0.68 84.56 0.91 93.44 1.15 
aACF in % of uncorrelated data.  bBASEM energies in kcal/mol.   
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Figure A-2.  Intermolecular van der Waals interaction energy matrix (heat map) for all gp41 with T20 
residues from the wildtype simulation.  Footprint peak magnitudes represent summation ∆Evdw 
(kcal/mol) along each row (T20) or column (gp41).  Gray shaded regions indicate mapping of the gp41 
mutation region(L33-L45) to a charged/polar patch (E136-E148) on T20 defined by the black box in the 
ca. center of the matrix.  Heat map gradient colors indicate the magnitude of unfavorable (blue) or 
favorable (red) interactions with dark red being most favorable.   
 
A.3 Per-Residue Energetic Analysis.  

As discussed in Chapter 1, per-residue energy decompositions are very useful at 

identifying important interactions. For example, favorable Coulombic attractions in the T20 

system were observed to lead in some cases to unfavorable van der Waals energies at the site of 

the interaction as shown by the two matrix entries colored blue in Figure A-2 which represent a 

intermolecular R31-D153 salt bridge and a R46-Q139 H-bond between gp41 and T20.  For 

V38E, intermolecular repulsions which occurs as a result of the change to a negative residue 
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leads to large losses in favorable ∆∆Ecoul and a corresponding unfavorable solvent-mediated 

electrostatic energy ∆∆Gelec.
44  Overall, the simulation results suggest that ∆∆GFR is dominated 

by losses in favorable steric packing for I37K and Q40K vs losses in favorable electrostatic 

energy for V38E as a result of large changes in Coulombic attraction or repulsion.  This analysis 

is consistent with a recent study by Eggink et al.141 who grouped charged gp41 mutations into 

similar mechanistic classes.  In a related study, Gochin et al.142 found long-range electrostatic 

forces to be important for C-peptide peptide binding.   

 

A.4 Membrane Interactions: The Importance of the WNWF Motif.   

A growing body of experimental evidence143-148 suggests that T20 activity requires both N-

helical binding and membrane binding.  In particular, the four C-terminal residues on T20 termed 

the WNWF motif (residues 159-162, Figure 1 in paper44) are thought to interact with the host 

cell membrane during fusion.146,147  A side-by-side comparison of van der Waals and Coulombic 

energy footprints (Figure A-3) clearly indicate that in addition to gp41 (dashed lines), the C-

terminal end of T20 also makes significant interactions with the lipid bilayer (black lines).  T20 

packing interactions with membrane first appear to be important starting around W155, followed 

by L158, W159, W161, and F162.  Importantly, the two terminal T20 residues (Trp161, and 

Phe162) show strikingly enhanced lipid-packing compared with other residues and in a relative 

sense the interactions are much stronger than those which occur with gp41 (Figure A-3a solid vs 

dashed lines).  L158 also makes stronger van der Waals interactions with the membrane than 

with gp41.  Interestingly, the side-by-side comparison reveals that when C-terminal T20 residues 

make strong packing interactions with gp41, weaker interactions are observed with the lipid and 

vice versa.   
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Figure A-3.  Comparison of the per-residue van der Waals (a) and Coulombic (b) interaction energies 
between gp41 (dashed line, small squares) and lipid membrane (solid line, filled circles) for each T20 
residue from wildtype simulations.  Each datapoint represents the average value obtained from 10,000 
MD snapshots saved every 1 ps.   
 

The Coulombic plot reveals that the seven charged T20 residues interact with gp41 and 

the membrane (Figure A-3b dashed vs black lines) in an overall similar manner (i.e. peak 

location) which results in a net favorable interaction energy with the membrane.  Interestingly, 

despite the fact that the T20 is bound along the full length of the inner coiled-coil, more 

favorable Coulombic energies are observed to occur with the membrane, as opposed to gp41, for 

three out of the four residues in the C-terminal WNWF motif (Figure A-3b dashed vs black 

lines).  The regularly repeating pattern in the van der Waals footprint indicates which T20 

residues are in close contact with gp41 (Figure A-3a dashed lines) and include W159, N160, and 

F162 in the WNWF motif.  In contrast, prior experimental studies146,148 have suggested T20 C-
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terminal residues may not interact with gp41.  Champagne et al.148 recently reported that the 

mutation WNWF→ANAA led to no change in T20 binding affinity using a gp41 construct 

termed 5H-ex (N-helix a.a. 19-71).  And, Wexler-Cohen et al.146 has reported that D-

configuration substitutions on T20 at positions L158 and W159 did not significantly change 

binding to a construct termed N54 (N-helix a.a. 17-70).  However, the van der Waals heat map 

results (Figure A-2 x-axis) clearly indicate that T20 also makes favorable contacts with the gp41 

inner coiled-coil down to residues 16, 15, and 12.  Thus, the shorter truncated N-helical sites 

employed in these prior experimental studies146,148 may not have provided a complete binding 

interface for T20.  Consistent with this explanation, Champagne et al.148 noted that, compared to 

the peptide C37, substantial differences in affinity for 5H-ex were observed with T20 which 

might suggest the construct does not fully mimic a complete gp41 binding site.   

From a structural perspective, several types of interesting interactions were identified 

with the aid of stereo 3-D visualization between residues in the WNWF motif and the membrane 

which could contribute to stability of the overall complex (Figure A-4).  Specifically, lipid head 

groups appeared to be interacting favorably with aromatic rings and with the T20 backbone.  In 

an effort to quantify such interactions, radial distribution functions (rdfs) were computed for 

several types of interactions identified visually as being potentially long-lived.  Distinct 

structural features, representative of a "first solvation shell" for T20 with lipid were observed in 

several rdfs as shown in Figure A-4a.  Representative examples of favorable interactions (d2-d4 

distances ≤ 5 Å) are visually illustrated in the accompanying graphic (Figure A-4b).   
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Figure A-4.  Interactions of the T20 WNWF motif with membrane.  3-4a shows radial distribution 
functions (rdfs) for the average distances (N=10,000 snapshots) between all lipid headgroup N atoms and 
(d1) the center of ring atoms at W159, (d2) the backbone O at N160, (d3) the center of ring atoms at 
W161, and (d4) the backbone O at F162 (d4).  Summation of bins (panel a gray vertical lines) out to a 
distance ≤ 5 Å approximates the number of interactions occurring in the first T20-lipid solvation shell 
represented by the first peaks in the rdfs.  3-4b graphically illustrates representative favorable interactions 
(distances ≤ 5 Å) for the T20-lipid interaction pairs defined as d2-d4 (magenta dashed lines).  The graphic 
shows a single simulation snapshot of T20 (orange sticks) complexed with gp41 (gray surface) interacting 
with ten representative conformations of two nearby lipids (green sticks).  Lipid head group carbons 
omitted for clarity.   
 

Plots in Figure A-4a show the rdf which yielded the largest number of interactions 

(distance ≤ 5 Å) out of several atom selections evaluated for each WNWF residue with the lipid 

head groups.  Although numerous distance definitions (and thus rdfs) are possible, summations 

up to the peaks at around 5 Å strongly suggest that the aromatic ring of W161 is particularly well 

solvated by lipid head groups with 0.85 interactions followed by the backbone O of N160 with 

0.58 interactions (Figure A-4a).  For W161, this highly populated pi-type interaction likely 

corresponds with the distinct Coulombic energy peak seen at this position in the membrane vs 
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gp41 footprint plots for T20 shown in Figure A-3.  In sharp contrast, the rdf for the aromatic ring 

of W159 shows essentially no first solvation shell peak (Figure A-4a top) indicating an absence 

of specific interactions with the polar lipid head groups.  This result is consistent with W159 

being particularly well packed on the gp41 surface in comparison with other residues in the 

WNWF region (Figure A-3 dashed vs solid lines).  For F162, although the backbone O does 

show weak lipid interactions (Figure A-4, d4), surprisingly, the side chain is not solvated by head 

groups as seen with W161, despite the fact that the aromatic ring might also have participated in 

pi-type bonding.  Examination of the MD trajectories reveals that the phenyl group on F162 is 

too well buried in the lipid bilayer to make direct contact with polar head groups.  Supporting 

this explanation, results in Figure A-4a show that F162, the terminal residue on T20, makes 

stronger more favorable van der Waals interactions with the membrane than any other residue in 

the WNWF motif.   
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Appendix B.  Evaluation of DOCK 6 as a Database 

Enrichment Tool.   

 
 
 
 
Collaborative work described in this chapter has been published in Brozell, S. R.; Mukherjee, S.; 

Balius, T. E.; Roe, D. R.; Case, D. A.; Rizzo, R. C., Evaluation of DOCK 6 as a Pose Generation 

and Database Enrichment Tool.  J. Comput. Aided Mol. Des. 2012, in press. Copyright © 2012 

Springer Science+Business Media B.V. doi:10.1007/s10822-012-9565-y  

 

Author contributions.  SRB, SM, TEB, DRR, DAC, and RCR designed research; SRB, SM, 

TEB, DRR preformed research; SRB, SM, TEB, DRR, DAC, and RCR wrote the paper.   

 

B.1 Collaborative Project Summary  

We participated in a special symposium titled "Docking and Scoring: A Review of 

Docking Programs" which took place at the 241th American Chemical Society National Meeting 

held in Anaheim, CA (2011).  The meeting led to our participation in a special issue in the 

Journal of Computer-Aided Molecular Design as a collaboration between two DOCK 

development groups Stony Brook University (Rizzo) and Rutgers University (Case) groups.  As 

a requirement we were asked to evaluate DOCK6 using two main evaluation methods: pose 
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reproduction using the ASTEX Database149 and enrichment experiments using the DUD database.  

My contributions, which focuses on docking enrichment studies, is described below and is taken 

from our manuscript which has been accepted.45   

 

B.2 Theoretical Methods 

Enrichment Metrics.  For accessing the accuracy of docking programs for virtual 

screening, Receiver Operating Characteristic (ROC) curves are used to evaluate how well 

methods favorably rank known active molecules compared with a large number of decoys.124  In 

ROC curves, the True Positive Rate (TPR=TP/P) is plotted vs the False Positive Rate 

(FPR=FP/N), where TP is the number of True Positives, P is the total number of Positives 

(actives), FP is the number of False Positives, and N is the total number of Negatives (decoys).  

Figure B-1 shows ROC curve examples representative of good enrichment (panel a), random 

enrichment (panel b), and poor enrichment (panel c).  Quantitatively, the total area under the 

curve (AUC) of a ROC plot provides a measure of global enrichment.  In a practical sense 

however, good early enrichment is reasonably expected to be more important for prioritizing 

compounds identified by virtual screening of large ligand libraries.  The example in Figure B-1c 

illustrates ROC curve behavior with poor total enrichment but strong early enrichment.  Several 

methods for assessing early enrichments have been reported.107  In this report, we use four very 

specific definitions (%TPR, %FPR, %AUC, and FE) to assess early enrichment as outlined 

below.   
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Figure B-1.  Representative examples of ROC curves showing good (a), random (b), and poor (c) global 
enrichments.   
 

For early enrichment, we report %TPR, and %FPR for different percentages (0.1, 1.0, 

2.0) of the ranked database.  Transforming to percentages yield scaled values which are much 

more readable for very early enrichments (i.e. not near zero).  Percentages yield %FPR 

and %TPR in the range [0, 100].  We also report %AUC for early enrichment which is in the 

range [0, 10000].  We feel %AUC is a more meaningful metric to gauge early enrichment since 

the values involve the area and not a single point on the ROC curve.  When reporting total AUC 

we report unscaled values.  The panel in Figure B-2a illustrates the relationship between %FPR 

(Xε ), %TPR (Yε ), and the % of database ranked (ε = 0.1, 1.0, 2.0) for three different values.  It 

should be noted that, the %FPR and the % of database screened are not necessarily equal.  

However, under most conditions, when P < < N this is in fact a reasonable assumption (Xε ≈ ε).   
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Figure B-2.  (a) Schematic showing possible enrichments at 0.1%, 1.0%, and 2.0% of the database scanned and (b)-
(d) maximum Fold Enrichment (FE) values at each of these points.  FE = AUC / AUCran.   
 

The fourth early enrichment metric used here is termed fold enrichment, recently 

employed to assess the footprint-based scoring function,43 and defined as FE = AUC / AUCran.  

This quantity facilitates comparison with random behavior and is a very intuitive measure.  

Using the approximation Xε ≈ ε when 0.1%, 1.0%, and 2.0% of the database are kept then 2000, 

200, and 100 are the best possible (FEmax) fold enrichment values (Figure B-2b to d).  It is 

important to note that for FE it is only meaningful to compare values calculated at the same 

percentage of the database but not between different percentages.   

Enrichment Datasets.  DUD108 consists of forty protein structures (39 from the PDB and 

one homology model, denoted here with the name MODL) divided into six families as shown in 

Table B-1:  Metalloenzyme (N=4), Nuclear Hormone Receptor (N=8), Kinase (N=9), Folate 

Enzyme (N=2), Serine Protease (N=2), and finally a miscellaneous family called “Other 

Enzymes” (N=14) the same breakdown as in the DUD paper.108  Table B-1 lists for each entry, 

the associated pdb code, the DUD system name, number of active ligands, number of decoys, 

number of WOMBAT active ligands (if applicable), and the so-called semi-random pairings for 

which the DUD receptors were combined with actives and decoys developed for a different 
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system.  The WOMBAT set150 consists of active small molecules for 13 of the DUD systems.  

Two WOMBAT sets did not correspond to any DUD receptor and were not used.  For another 

set, active ligands for Estrogen Receptor alpha were a mix of both agonist and antagonists.  

However, DUD distinguishes between agonist and antagonist receptors thus WOMBAT runs for 

Estrogen Receptor are not included.  In summary, the DUD SUP datasets consist of 40 DUD and 

10 WOMBAT sets of active compounds which were used with the 40 supplied receptors.  For 

DUD PDB, two receptors 1L2I and 1AH3 were excluded owing to structural problems in the 

PDB coordinates.  Therefore, the DUD PDB datasets consist of 38 DUD and 9 WOMBAT sets 

of active compounds, with corresponding DUD decoy ligand sets, with 38 corresponding 

receptors.   
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Table B- 1.  DUD systems and semi-random matching information.   

Protein 
Family 

PDB 
name 

DUD 
name 

No. 
ligands 

No. 
decoys 

No. 
WOMBAT 

Semi-
random 
Pairing 

Pairing 
Description 

Metallo-
enzymea 
(N = 4) 

1O86 ace  49 1797  ada  
1NDW ada  39 927  ace  
1H1D comtb 11 468  pde5  
1XP0 pde5  88 1978 101 comt  

Nuclear 
Hormone 
Receptor 
(N = 8) 

2AO6 ar  79 2854 56 rxr  
1L2Id er_agon  67 2570 83c mr  
3ERT er_antag  39 1448 83c ppar  
1M2Z gr  78 2947  pr  
2AA2 mrb  15 636  er_agon  
1FM9 ppar  85 3127 43 er_antag  
1SR7 pr  27 1041  gr  

1MVC rxr  20 750  ar  

Kinase 
(N = 9) 

1CKP cdk2  72 2074 190 pdgfrb  
1M17 egfr  475 15996 81 hsp90  
1AGW fgfr1  120 4550  src  
1UY6 hsp90  37 979  egfr  
1KV2 p38  454 9141 60 vegfr2  
MODL pdgfrb  170 5980  cdk2  
2SRC src  159 6319  fgfr1  
1KIM tkb  22 891  pnp unrelated 
1VR2 vegfr2  88 2906  p38  

Folate 
Enzyme  
(N = 2) 

3DFR dhfr  410 8367  gart  
1C2T gart  

40 879 
 dhfr  

Serine 
Protease 
(N = 3) 

1F0R fxa  146 5745 125 thrombin  
1BA8 thrombin  72 2456  fxa  
1BJU trypsin  49 1664  hivpr unrelated 

Other 
Enzymesa  
(N = 14) 

1EVE ache  107 3892  hmga  
1AH3d alr2  26 995 42 ampc  
1XGJ ampc  21 786  alr2  
1Q4G cox1  25 911  sahh  
1CX2 cox2  426 13289 88 na  
1A8I gpb  52 2140  hivrt  
1HPX hivpr  62 2038  trypsin unrelated 
1RT1 hivrt  43 1519 120 gpb  
1HW8 hmga  35 1480  ache  
1P44 inha  86 3266  parp  
1A4G na  49 1874  cox2  
1EFY parp  35 1351  inha  
1B8O pnp  50 1036  tk unrelated 
1A7A sahh  33 1346  cox1  

aProteins in these groups are unrelated, and not expected to cross-enrich.  bThe very small number of 
ligands makes evaluating enrichment statistics at 0.1% problematic (< 1 ligand).  cERα ligands not used 
for WOMBAT studies.  dDUD systems not used in DUD PDB prep.   

 
For each PDB code in DUD, the organizers also prepared alternative non-native pairings 

(termed semi-random pairings) which was described as a way to perform "null hypothesis" 
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testing.  Unrelated proteins would be expected to yield enrichments no better than random (null 

hypothesis).  However, due to the fact that the semi-random pairings actually involve structurally 

related proteins (Table B-1), good enrichment may not be unexpected for certain pairings.  

Metalloenzyme and Other Enzymes groups represent collections of unrelated proteins.   

Enrichment Calculations.  For a given molecule (active or decoy) that is docked to a 

target it is important to note that a final answer may not always be obtained.151,152  Such 

occurrences necessitate a decision as to how subsequent ROC curve analysis should be 

performed.  For the current study, this was generally not problematic as on average a viable 3-D 

pose was returned for 99% of the molecules (Tables B-2 and B-3).  From a practical standpoint, 

there are at least three possible ways of generating ROC curves (see Figure B-3 for a graphical 

representation) when not all molecules yield a ranked answer:  (1) Generate ROC curves by 

ignoring molecules for which an answer was not obtained (Figure B-3 a black line).  In this case 

the number of actives (P, positives) and decoys (N, negatives) employed become Pdocked and 

Ndocked.  (2) Generate ROC curves by using the initial number of actives and decoys (Pinitial and 

Ninitial).  In this instance ROC curves may not always reach TPR=1, FPR=1 (Figure B-3a gray 

line).  (3) Generate ROC curves by assuming perfect, none, or random enrichment for the 

molecules which do not yield a final answer (Figure B-3b gray and purple lines).  In this scenario 

ROC curves always reach TPR=1, FPR=1.  In the current manuscript, ROC curves (and 

accompanying AUC values) were generated using method 3 and using the reasonable assumption 

of random enrichment for missing molecules.   
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Figure B-3.  (a) Hypothetical ROC curves computed using two different values for the total number of molecules 
classified as active (P, positive) or decoy (N, negative).  The gray curve was computed using Pinitial and Ninitial and the 
black curve was computed using Pdocked and Ndocked.  (b)  Missing data can be assumed as yielding perfect enrichment 
(blue upper line), no enrichment (lower red line), or random enrichment (purple middle line) to ensure the ROC 
curve will reach TPR=1, FPR=1.  The dashed line is the random ROC curve.  
 

   

B.3 Results 

DOCK Completion Rates for DUD Enrichment Experiments.  DOCK completion statistics 

are presented below for both the DUD PDB (Table B-2) and DUD SUP (Table B-3) experiments.  

In cases where a DOCK answer was not generated possible reasons include an exceedingly high 

energy score (i.e. > +1000 kcal/mol), incompatibility with the binding site (i.e. large molecule in 

a small cavity), or insufficient torsion sampling.  On average, a DOCK pose was returned in 99% 

of the runs.  Shaded entries indicate the cases where less than 90% of the initial (total) molecules 

yielded a final (dockd) pose.  On the average, 99% of molecules yielded a final answer.   
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Table B-2.  Enrichment completion statistics using DUD PDB preparation.   
   Normal Semi-random 
 DUD pairing decoys actives decoys actives 
PDB Normal Semi-

rand 
initial dockd initial dockd initial dockd initial d ockd 

1O86 ace ada 1797 1787 49 49 927 925 39 39 
1NDW ada ace 927 925 39 39 1797 1787 49 49 
1H1D comt pde5 468 467 11 11 1978 1970 88 88 
1XP0 pde5 comt 1978 1970 88 88 468 467 11 11 
2AO6 ar rxr 2854 2812 79 74 750 714 20 20 
1L2I er_agon mr NA NA NA NA NA NA NA NA 
3ERT er_antag ppar 1448 1437 39 38 3127 3116 85 85 
1M2Z gr pr 2947 2694 78a 58 1041 1015 27 22 
2AA2 mr er_agon 636 601 15 8 2570 2560 67 65 
1FM9 ppar er_antag 3127 3116 85 85 1448 1437 39 38 
1SR7 pr gr 1041 1023 27 23 2947 2845 78 64 
1MVC rxr ar 750 714 20 20 2854 2815 79 72 
1CKP cdk2 pdgfrb 2074 2074 72 71 5980 5977 170 170 
1M17 egfr hsp90 15996 15990 475 475 979 978 37 37 
1AGW fgfr1 src 4550 4537 120 120 6319 6311 159 159 
1UY6 hsp90 egfr 979 978 37 37 15996 15990 475 475 
1KV2 p38 vegfr2 9141 9127 454 454 2906 2903 88 88 
MODL pdgfrb cdk2 5980 5977 170 170 2074 2074 72 71 
2SRC src fgfr1 6319 6311 159 159 4550 4537 120 120 
1KIM tk pnp 891 889 22 22 1036 1033 50 50 
1VR2 vegfr2 p38 2906 2903 88 88 9141 9128 454 454 
3DFR dhfr gart 8367 8354 410 410 879 877 40 40 
1C2T gart dhfr 879 877 40 40 8367 8354 410 409 
1F0R fxa thrombin 5745 5728 146 146 2456 2404 72 72 
1BA8 thrombin fxa 2456 2404 72 72 5745 5728 146 146 
1BJU trypsin hivpr 1664 1615 49 49 2038 2029 62 62 
1EVE ache hmga 3892 3868 107 107 1480 1475 35 23 
1AH3 alr2 ampc NA NA NA NA NA NA NA NA 
1XGJ ampc alr2 786 786 21 21 995 992 26 26 
1Q4G cox1 sahh 911 910 25 25 1346 1345 33 33 
1CX2 cox2 na 13289 13259 426 423 1874 1862 49 49 
1A8I gpb hivrt 2140 2136 52 52 1519 1513 43 42 
1HPX hivpr trypsin 2038 2029 62 62 1664 1615 49 49 
1RT1 hivrt gpb 1519 1513 43 43 2140 2136 52 52 
1HW8 hmga ache 1480 1475 35 23 3892 3867 107 107 
1P44 inha parp 3266 3255 86 86 1351 1350 35 35 
1A4G na cox2 1874 1862 49 49 13289 13265 426 423 
1EFY parp inha 1351 1350 35 35 3266 3256 86 86 
1B8O pnp tk 1036 1035 50 50 891 890 22 22 
1A7A sahh cox1 1346 1345 33 33 911 908 25 25 
aShaded entries indicate DUD sets in which less than 90% of the initial (total) ligands yielded a final 
(dockd) pose.   

 



153 

 
Table B-3.  Enrichment completion statistics using DUD SUP preparation.   
   Normal Semi-random 
 DUD pairing decoys actives decoys actives 
PDB Normal Semi-

rand 
initial dockd initial dockd initial dockd initial d ockd 

1O86 ace ada 1797 1787 49 49 927 925 39 39 
1NDW ada ace 927 925 39 39 1797 1787 49 49 
1H1D comt pde5 468 467 11 11 1978 1970 88 88 
1XP0 pde5 comt 1978 1969 88 88 468 467 11 11 
2AO6 ar rxr 2854 2807 79a 71 750 677 20 16 
1L2I er_agon mr 2570 2560 67 65 636 608 15 10 
3ERT er_antag ppar 1448 1437 39 39 3127 3116 85 85 
1M2Z gr pr 2947 2663 78 56 1041 1017 27 22 
2AA2 mr er_agon 636 599 15 9 2570 2561 67 65 
1FM9 ppar er_antag 3127 3116 85 85 1448 1437 39 38 
1SR7 pr gr 1041 1014 27 24 2947 2839 78 65 
1MVC rxr ar 750 708 20 20 2854 2813 79 73 
1CKP cdk2 pdgfrb 2074 2074 72 71 5980 5977 170 170 
1M17 egfr hsp90 15996 15990 475 475 979 978 37 37 
1AGW fgfr1 src 4550 4537 120 120 6319 6311 159 159 
1UY6 hsp90 egfr 979 978 37 37 15996 15990 475 475 
1KV2 p38 vegfr2 9141 9127 454 454 2906 2903 88 88 
MODL pdgfrb cdk2 5980 5977 170 170 2074 2074 72 71 
2SRC src fgfr1 6319 6311 159 159 4550 4537 120 120 
1KIM tk pnp 891 890 22 22 1036 1035 50 50 
1VR2 vegfr2 p38 2906 2903 88 88 9141 9128 454 454 
3DFR dhfr gart 8367 8354 410 410 879 878 40 40 
1C2T gart dhfr 879 878 40 40 8367 8354 410 410 
1F0R fxa thrombin 5745 5728 146 146 2456 2404 72 72 
1BA8 thrombin fxa 2456 2404 72 72 5745 5728 146 146 
1BJU trypsin hivpr 1664 1615 49 49 2038 2029 62 62 
1EVE ache hmga 3892 3868 107 107 1480 1475 35 23 
1AH3 alr2 ampc 995 992 26 26 786 786 21 21 
1XGJ ampc alr2 786 786 21 21 995 991 26 26 
1Q4G cox1 sahh 911 910 25 25 1346 1344 33 33 
1CX2 cox2 na 13289 13259 426 423 1874 1862 49 49 
1A8I gpb hivrt 2140 2135 52 50 1519 1504 43 38 
1HPX hivpr trypsin 2038 2029 62 62 1664 1615 49 49 
1RT1 hivrt gpb 1519 1513 43 42 2140 2136 52 52 
1HW8 hmga ache 1480 1475 35 23 3892 3868 107 107 
1P44 inha parp 3266 3256 86 86 1351 1350 35 35 
1A4G na cox2 1874 1862 49 49 13289 13263 426 423 
1EFY parp inha 1351 1350 35 35 3266 3256 86 86 
1B8O pnp tk 1036 1017 50 48 891 887 22 21 
1A7A sahh cox1 1346 1329 33 33 911 787 25 23 
aShaded entries indicate DUD sets in which less than 90% of the initial (total) ligands yielded a final 
(dockd) pose.   
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Global Enrichment Statistics (Total AUC).  Table B-4 shows the overall global 

enrichment results (AUC values) for both the native and semi-random pairing using receptor 

structure derived from the protein databank (PDB) or supplied by the organizers (SUP) using 

actives and decoys from DUD or actives from WOMBAT.  AUC values for individual systems 

are shown as bar plots in Figure B-4.  The results for the native pairings yield, in the case of the 

DUD PDB runs (Figure B-4a, Table B-4), individual AUC values which range from 0.29 (bad 

enrichment) to 0.96 (good enrichment).  For the DUD SUP results the max AUC value at 0.90 is 

not as high (Figure B-4b, Table B-4).  Interestingly, both receptor preps using DUD actives and 

decoys yield nearly identical average AUC values of 0.60 and 0.59.  This is a somewhat 

surprising result as the different preps use different partial charge assignments (FF99SB23 vs 

Gasteiger153), hydrogen orientation, and protonation states of the receptor (as discussed further 

below).  For the WOMBAT results, average enrichment for the native pairings is worse than 

random (DUD SUP = 0.42, DUD PDB = 0.45).  And, min AUC values for are significantly 

lower (0.13 and 0.16) than the corresponding DUD values (0.29 and 0.21).  This is likely a 

function of the fact that two of the WOMBAT ROC curves (pde5 and ppar) perform significantly 

worse than random, a phenomenon not generally seen in the other ROC curves, as is discussed in 

more detail in the subsequent subsection (see ROC Curve Analysis).  In addition, the much 

smaller WOMBAT dataset size (~10) vs DUD (~40) exacerbates this difference.   
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Table B-4.  Global enrichment (total AUC) for native and semi-random pairings.   
 Native pairing Semi-random pairing 
 DUD lig WOMBAT lig DUD lig WOMBAT lig 
AUCa PDB SUP PDB SUP PDB SUP PDB SUP 
avg 0.60 0.59 0.42 0.45 0.48 0.46 0.39 0.40 
std 0.17 0.17 0.17 0.16 0.18 0.17 0.15 0.15 
median 0.56 0.56 0.41 0.50 0.48 0.46 0.41 0.44 
max 0.96 0.90 0.60 0.61 0.84 0.85 0.61 0.62 
min 0.29 0.21 0.13 0.16 0.15 0.10 0.08 0.09 
aTotal AUC calculated using FPR and TPR [0, 1] 

 

 

Figure B-4.  Bar plots showing AUC values sorted from high to low using SB/DUD PDB naive pairing results in 
panel a.   
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As expected, results from semi-random experiments (Table B-4, Figure B-4c-d) show 

average AUC values which are consistently worse than random (avg AUC < 0.50).  However, as 

discussed further below, for many semi-random pairings good cross-enrichment is observed, 

especially for receptors within the same protein family.  This is reflected in the relatively high 

max AUC values which are in the range 0.84-0.85 (Table B-4) although they are lower than the 

native pairing (0.90-0.96).  For DUD actives, average AUC drops from the higher 0.59-0.60 for 

the native pairing to 0.46-0.48 for the semi-random pairing.  However, for WOMBAT actives, 

average AUCs are only marginally higher for the native pairing (0.42-0.45), compared to the 

semi-random pairing (0.39-0.40).  This could be due to the fact that 7/10 of WOMBAT semi-

random pairings are between proteins in the same family.  As with the native pairings, there is 

striking agreement for the semi-random set, between DUD PDB and DUD SUP results, despite 

differences in the two different structure preparations.   

Individual AUC Values and Group-based Analysis (Heatmaps).  Figure B-4 shows 

bar plots of individual AUC values, comprising the total values in Table B-4, for all pairings for 

both structure preparations.  Here, the plots are sorted by descending total AUC using the DUD 

PDB native pairing results.  Figure B-5 shows a matrix representation of the data (heatmap) for 

the DUD PDB results which facilitates, for example, determining if a related group (or family) 

yields good or poor enrichment.  Similar results are seen for the DUD SUP runs (Figure B-6).  In 

Figure B-5, receptors are labeled according to the pdb code (and group) on the y-axis and ligands 

are labeled according to the DUD system name on the x-axis.  The entries in Figure B-5 indicate 

native pairings (diagonal elements) and semi-random pairings (off diagonal elements).  Red = 

worse than random (AUC < 0.5), green = greater than or equal to random (AUC ≥ 0.5), and 

white = non-paired systems.  See Table B-5 for a detailed breakdown of systems which fall into 
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the different categories (better, equal, or worse than random).  Figure B-5 groupings highlight 

the fact that many of the so called semi-random pairings are in fact not random but are pairings 

between related protein structures.  Thus, for many semi-random pairings, good enrichment 

would not be unexpected.  Exceptions would likely include the "other enzyme" group, and to a 

lesser extent the metalloenzyme group.  Ideally, experiments using all receptors paired with all 

active-decoys sets should be performed (entire matrix) to derive better statistics.   

 

Figure B-5.  Heatmaps showing enrichment study which employ SB/DUD PDB results and DUD actives and 
decoys.  Receptors are labeled by the pdb code and family on the y-axis.  Ligands are labeled by the DUD system 
name on the x-axis.  Red = worse than random (AUC < 0.5), green = greater than or equal to random (AUC ≥ 0.5), 
and white = non-paired systems.   
 

As evident by the median value of 0.56 (27/38 have AUC ≥ 0.5) for the DUD PDB 

results in Table B-4, most systems yield better than random enrichment (green squares) for the 
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native pairings occurring on the diagonal:  metalloenzymes = 3/4, nuclear hormone receptor = 

4/7, kinase = 4/9, folate enzyme = 2/2, serine protease = 3/3, other enzymes = 11/13.  For the 

analogous off-diagonal experiments the median AUC value 0.48 (15/38 have AUC ≥ 0.5) 

indicates a roughly even split between good and bad enrichment: metalloenzymes = 3/4, nuclear 

hormone receptor = 3/7, kinase = 2/8, folate enzyme = 1/2, serine protease = 2/2, other enzymes 

= 1/11, misc pairings = 3/4.  Importantly, off-diagonal elements for the "other enzymes" group, 

consisting of mostly unrelated proteins, yields poor enrichment which is to be expected.  This 

group is probably the most useful overall as an actual null hypothesis test set for evaluating 

virtual screening.   

Of all the groups evaluated, the serine protease group yields the best overall enrichment 

(5/5) for the five pairings evaluated (3 diagonal, 2 off-diagonal).  Cross-enrichment was also 

observed for serine proteases in the original DUD manuscript (Table 2 in Ref.108).  This is not 

surprising given that trypsin, factor Xa and thrombin are very similar proteins.  In fact, trypsin 

has been successfully used as a template for developing thrombin and factor Xa inhibitors.130,154  

Interestingly, while the trypsin receptor (1bju) with HIV protease actives (hivpr) shows no 

enrichment (1bju-hivpr pairing, Figures B-4 c and d, B-5) the use of the HIV protease receptor 

(1hpx) with trypsin actives (trypsin) does show enrichment (1hpx-trypsin pairing, Figures B-4 c 

and d, B-5).   

Global Enrichment for DUD SUP set. Figure B-6 shows enrichment results for the 

native and semi-random pairing for the DUD SUP set.  This figure corresponds with the Figure 

B-5 showing the same data for the DUD PDB set.  Despite differences between the two setups, 

the heatmaps yield remarkably similar results for both preps.  Table B-5 shows the three counts 

(better, equal or worse than random) for results obtained using DUD PDB and DUD SUP 
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preparations.  As is noted in the heatmaps discussion section, the native results yield more better 

than random results (27/38, 29/40) compared to semi-random (13/38, 12/40).   

 

Figure B-6.  Heatmaps showing enrichment study which employ the DUD SUP receptor and DUD actives and 
decoys.  Receptors are labeled by the pdb code and family on the y-axis.  Ligands are labeled by the DUD system 
name on the x-axis.  The area under the ROC curve for each receptor-ligand pairing is used as a measure of 
enrichment.  No data available (white), better than random enrichment (green), or worse than random enrichment 
red is indicated by the colored cells.   
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Table B-5.  Global breakdown of DUD systems into three sets 
(better, equal or worse than random) using the AUC to define 
enrichment.   
type better equal worse 
DUD PDB, Native 27 0 11 
DUD PDB, Semi-rand 13 2 23 
DUD SUP, Native 29 1 10 
DUD SUP, Semi-rand 12 2 26 
 

 
In contrast to serine protease, the kinase group shows poor native and semi-random 

enrichment.  An interesting observation is that epidermal growth factor receptor (egfr) ligands 

show enrichment with the heat shock protein (1uy6) receptor while the converse pairing (1m17-

hsp90) is worse than random enrichment for both preparations (Figure B-4a-d, B-5, B-6).  

However, since the 1uy6-hsp90 native pairing also had sub-random enrichment (Figures B-4a-b, 

B-5) this result may not be unexpected if the set of actives and decoys dominate enrichment 

behavior as discussed below.  Surprisingly, when thymidine kinase is paired with purine 

nucleoside phosphorylase actives, and vice versa, (1kim-pnp and 1b8o-tk pairings, Figure B-4c-d, 

B-5), these two unrelated systems enrich one another.  The authors of the original DUD paper 

also noted that these two enzymes yielded cross-enrichment (Table 2 in DUD paper108) in 

addition to thymidine kinase being a promiscuous target.   

System-Specific Analysis: DUD PDB vs DUD SUP Preparations.  Although the 

overall average AUC (0.59, 0.60) for native pairings is essentially the same, examination of the 

individual results in Figure B-4a-b reveals that there can be differences in enrichment depending 

on which structure preparation (DUD PDB vs DUD SUP) is used.  The DUD PDB prep starts 

with raw pdb files from scratch (see Methods) while the DUD SUP structures, with the exception 

of hydrogens added by the organizers, were from the original DUD database.108  Examples 

include the good enrichment seen for system 1a8i but only when using the DUD SUP receptor 
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prep (Figure B-4a vs B-4b, 0.43 vs 0.75).  Examination of the glycogen phosphorylase receptor 

in this system show that the DUD SUP prep contains active site waters in the binding site (Figure 

B-7b) which are absent in the DUD PDB prep. The known actives may use the water-mediated 

interactions to their advantage although a more detailed study should be performed to determine 

the actual importance.  For certain systems, binding site water is known to play critically 

important roles.  Another, more subtle example is shown in FigureB-7a for 1hw8.  Here, the 

native pairings appear to favor the DUD PDB receptor prep (Figure B-4a vs B-4b, 0.42 vs 0.21) 

although the average AUC values are both below random.  The hmg coa reductase receptor in 

this system has four chains, labeled A-D in the original pdb structure, with four occupied binding 

sites.  For the DUD PDB prep, the binding site used was at the interface of chains A-B in 

contrast to the DUD SUP prep which was at the interface of chains C-D.  Differences between 

the two sites (see Figure B-7a) involve a conformational change of methionine and alternate 

orientations of two cysteine thiol hydrogens which appear to favor the DUD PDB prep.  These 

structural differences are likely a result of a nearby co-factor originally present in the C-D site.   

 

 

Figure B-7.  Differences between DUD PDB (red) and DUD SUP (green) structure preps for (a) 1a8i and (b) 1hw8.  
Native ligands are shown in cyan.  Binding site waters in the DUD SUP prep for 1a8i indicated by blue circles.   
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Differences are also observed for systems 1f0r and 1a4g.  For factor Xa (1f0r), 

protonation state differences of a histidine near the binding site could influence the computed 

enrichments (DUD SUP = 0.78, DUD PDB = 0.62).  For neuraminidase (1a4g), electrostatics are 

known to be especially important 83, thus the use of dramatically different charge models (F99SB 

23 vs Gasteiger 153) would likely influence the results (DUD PDB = 0.85, DUD = SUP = 0.59).  

Finally, although differences in a binding site environment would normally be expected to affect 

enrichment, for some systems this is not always observed.  For example, for catechol o-methyl 

transferase in 1h1d, high enrichment is observed using both preps (AUC 0.85, 0.87) despite the 

fact the DUD SUP prep is missing part of the co-factor (S-adenyl methionine, SAM) included in 

the DUD PDB prep.  Overall, the results highlight how use of different receptor sites or structure 

preparations, and by analogy alternative crystallographic coordinates of the same receptor can 

influence enrichment.   

ROC Curve Analysis.  Figure B-8a shows standard ROC curves for the native DUD 

pairings (see Figures B-9 and  B-10 for semi-random pairings).  The curves are sorted from high 

to low according to total AUC using SB/DUD PDB data with SB/DUD PDB shown in black and 

SB/DUD SUP shown in gray.  These comparisons allow, at a glance, which systems yield overall 

good, reasonable, poor, or early enrichments.  Most of the curves have strikingly similar shapes 

despite the fact that two different structure preps were evaluated.  In contrast, 1hw8 and 1a8i 

show dramatically different shaped ROC plots which ultimately lead to the larger differences 

discussed above.  Systems with poor overall enrichment may still have good early enrichment 

which is characterized by relatively steep upward sloping curves starting on the left right hand 

corner of the ROC plots which then decrease as more and more of the database is covered.  

Although the left part of the curve will be above the random line the right part of the curve may 
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approach the random (1m17, 1kv2) or even dip below (1hpx, 1o86).  This phenomena, 

interestingly, seems especially true for kinases 2src, 1vr2, 1xp0, and 1agw.  Indirectly, the 

inherent plasticity of kinase binding sites could adversely affect enrichment due to known 

induced fit effects which can be ligand dependent.  For example, the few actives which might 

favor a particular kinase conformation could be scored favorably but in absence of receptor 

flexibility the remaining pool of actives might not yield favorable scores thus accounting for the 

observed early, but not global, enrichment.  Other systems with short lasting early enrichment 

include MODL (based on a homology model) and 1sr7.  For DUD vs WOMBAT native pairings 

two systems in particular, 1xp0 and 1fm9, stand out as having significantly different ROC curves 

(Figure B-8b).  The ROC curve for 1fm9 shows good enrichment behavior when using DUD but 

a sub-random curve with WOMBAT.  For 1xp0, although the overall DUD results are not much 

better than random the WOMBAT results are always sub-random.  Additional analysis would be 

required to determine the cause of these enrichment differences.   
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Figure B-8.  (a) ROC curves for the 40 DUD families.  (b) ROC curves for the 10 Wombat families (Wombat 
ligands + DUD decoys).  ROC curves sorted from high to low according to total AUC using SB/DUD PDB data 
with SB/DUD PDB in black and SB/DUD SUP in gray.   
 

ROC Curves for Semi-Random Pairing.  Overall, much poorer enrichment is observed, 

as expected for the semi-random pairing (Figure B-9), compared to Figure B-8.  For each curve, 

the results for both DUD SUP and DUD PDB are shown.  Good enrichment is observed for 

pairings between related enzyme families (serine proteases, nuclear hormone receptors, and 

folate enzymes).   
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Figure B-9.  Semi-random pairings run with DOCK6.6.  (a) ROC curves for the 40 DUD families.  (b) ROC curves 
for the 10 WOMBAT families (WOMBAT ligands DUD decoys).  Results are sorted by Stony Brook structures 
results in black and gray is the provided organizer structures.  Receptors are labeled by the pdb code and family on 
the y-axis.  Ligands are labeled by the DUD system name on the x-axis.   
 

Comparing Native vs Semi-random.  An interesting observation is that a given ligand 

set (actives + decoys) can yield similarly shaped ROC curves in two receptors suggesting that 

shape, in some instances, can be driven by properties inherent in the ligand set.  Two examples 

of this phenomenon are the kinase pair egfr and hsp90 (Figure B-10a) and the serine proteases 

pair fxa and thrombin (Figure B-10b).  The egfr ligand set shows strong early enrichment with 
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both receptors.  Conversely, the hsp90 ligand set yields curves that are slightly below random.  

As previously mentioned, fxa and thrombin have strong enrichment with the DUD SUP 

performing better than DUD PDB for all four combinations.  On the other hand, this observation 

does not appear to hold when the receptors are unrelated.  As an example, hivpr (1hpx) more 

strongly enriches the trypsin ligands than its cognate ligands (Figure B-10c).  Conversely, the 

trypsin receptor (1bju) performs worse than random for the hivpr ligands as noted above in the 

heatmap discussion.  More studies are needed to explore these issues in greater detail.  For 

completeness, Figure B-9 contains ROC curves for all semi-random pairings and may be used to 

aid in making additional comparisons.   

 

 

Figure B-10.  ROC curves for 3 pairs of DUD families (a) egfr and hsp90, (b) fxa and thrombin, (c) trypsin and 
hivpr.  Top panels show the native pairing.  Bottom panels show the semi-random pairing.  
 

Early Enrichment.   Table B-6 lists average early enrichment statistics, in terms of 0.1%, 

1.0%, and 2.0% of the database examined, using several metrics 

including %TPR, %FPR, %AUC, and FE (see Methods for definitions).  Which is the best metric 

for quantifying early enrichment is still an active area of research.  Here, to help gauge 

enrichment, values for the expected random and best possible cases are also reported.  Results 

from the 0.1% bracket are reported at the request of the organizers but in some cases may be too 
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small to be meaningful considering the small number of molecules contained in some DUD 

datasets.  Analysis presented below is focused on results obtained using DUD at 1.0% and 2.0% 

of the database.  WOMBAT data is provided for completeness.   

Importantly, average early enrichment is always significantly better than the hypothetical 

random results.  For example, comparison of FE values using DUD PDB native pairings (Table 

B-6) yields: 9.99 (1.0%), and 10.09 (2.0%).  This is an order of magnitude improvement over 

random FE (1.0) regardless of the theoretical maximum which will decrease as larger 

percentages of the database are examined (Figure B-2, Table B-6).  The much better than random 

FE results in these early regions mirror the visual trends seen in the ROC curves shown above 

(Figure B-8) and should favorably benefit virtual screening efforts.  The same trends are 

observed for the other three metrics (%TPR, %FPR, %AUC) with the computed enrichments 

being consistently better than random.   

A comparison of results using the two different structure preps similarly shows 

consistently improved early enrichments for the DUD PDB prep.  For example, %TPR values for 

DUD PDB vs DUD SUP yield: 15.14 vs 13.02 (1.0%) and 20.40 vs 17.33 (2.0%).  Similar trends 

are observed for %AUC: 4.99 vs 4.17 (1.0%) and 20.19 vs 17.45 (2.0%) as well as FE: 9.99 vs 

8.34 (1.0%) and 10.09 vs 8.72 (2.0%).  In addition, %FPR values are lower, which is desirable: 

0.56 vs 0.62 (1.0%), and 1.43 vs 1.52 (2.0%).  Overall, use of the DUD PDB prep appears to 

yield better early enrichment results despite the overall average AUCs being the same at 0.60 and 

0.59 (Table B-4).  Finally, the native pairings yield higher early enrichment values compared to 

the semi-random pairings which is to be expected.  For example, native vs semi-random DUD 

PDB %AUC results yield 4.99 vs 3.53 (1.0%) and 20.19 vs 12.49 (2.0%).  The %TPR results for 

these runs yield the same trend: 15.14 vs 8.58 (1.0%) and 20.40 vs 11.47 (2.0%).   
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Table B-6.  Averaged early enrichment at 0.1%, 1.0%, and 2.0% of the databases examined.  
% 

Data-
base 

  Native pairing Semi-random pairing 
  DUD WOMBAT DUD WOMBAT 
Metric a Bestb Ranc PDB SUP PDB SUP PDB SUP PDB SUP 

0.1% %TPR  100 0.1 2.57 2.34 2.59 2.29 1.90 1.40 2.90 2.36 
0.1% %FPR  0 0.1 0.03 0.03 0.06 0.06 0.04 0.06 0.05 0.06 
0.1% %AUC  10 0.005 0.01 0.01 0.10 0.07 0.01 0.00 0.07 0.06 
0.1% FE 2000 1.0 2.00 2.88 19.51 13.50 1.73 0.83 13.00 11.79 
1.0% %TPR 100 1.0 15.14 13.02 9.69 9.29 8.58 7.71 8.43 7.65 
1.0% %FPR 0 1.0 0.56 0.62 0.78 0.75 0.77 0.79 0.76 0.82 
1.0% %AUC 100 0.5 4.99 4.17 5.14 4.49 3.53 3.17 4.10 3.91 
1.0% FE 200 1.0 9.99 8.34 10.29 8.97 7.06 6.35 8.20 7.83 
2.0% %TPR 100 2.0 20.40 17.33 11.86 12.38 11.47 10.68 10.65 9.98 
2.0% %FPR 0 2.0 1.43 1.52 1.67 1.66 1.71 1.71 1.69 1.77 
2.0% %AUC 200 2.0 20.19 17.45 14.26 13.74 12.49 11.63 13.12 12.46 
2.0% FE 100 1.0 10.09 8.72 7.13 6.87 6.24 5.82 6.56 6.23 

aMetrics for %TPR and %FPR indicate percentages on [0,100] while %AUC is on [0, 10000] calculated 
using %FPR and %TPR,  FE is unitless.  bBest = best possible enrichment.  cRan = random enrichment.  
Best and Ran values are estimations used for comparison purposes.   

 
B.4 Enrichment Study Conclusions.  

To evaluate the ability of DOCK6 to enrich actives vs decoy molecules, the standard 

DOCK grid scoring function was used to screen 38-40 systems (Table B-4, Figure B-4 and B-5) 

contained in the DUD database using either organizer supplied receptor coordinates (DUD SUP) 

or the protein data bank (DUD PDB).  In addition to the standard DUD sets a subset of 10 

systems employing WOMBAT actives was performed.  DUD PDB results (Figure B-4a, Table 

B-4) using native pairings yield AUC values obtained from ROC curve analysis (Figure B-8) 

ranging from 0.29 (bad enrichment) to 0.96 (good enrichment) with an average AUC of 0.60 

(27/38 have AUC ≥ 0.5).  ROC curve analysis visually indicates good early enrichment for most 

systems which was quantified using several metrics including, %TPR, %FPR, %AUC, and FE, at 

0.1%, 1.0%, and 2.0% of the database examined (Table B-6).  In particular, at 1.0%, and 2.0% an 

order of magnitude improvement over random FE (1.0) is observed for the DUD PDB native 

pairing results.  Overall, the early enrichment trends are encouraging and consistent with 
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previous studies2,4,16,155,156 in which DOCK was used to successfully identify active lead 

molecules through virtual screening.   

As expected, analogous DUD PDB results for semi-random pairings show a lower 

average AUC (0.48).  However, appreciable enrichment is observed among groups of related 

receptors (Figure B-5).  In contrast, the miscellaneous other enzyme group, comprised of 

unrelated receptors, shows only 1/11 systems with AUC > 0.5.  Some system specific analysis 

revealed possible contributors to differential enrichments according to which of the two receptor 

preparation protocols was used (DUD PDB vs DUD SUP protocols).  Observed differences 

include alternate side chain conformations, numbers of binding site waters, partial atomic 

charges, and protonation states.   

 


