

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Exploring Advanced Communication Primitives
Using Greedy Routing in Sensor Networks and Other

Complex Networks

A Dissertation Presented

by

Xiaomeng Ban

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2012

Stony Brook University

The Graduate School

Xiaomeng Ban

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Jie Gao – Dissertation Advisor
Associate Professor, Department of Computer Science

Joseph Mitchell – Chairperson of Defense
Professor, Department of Applied Mathematics and Statistics

Xianfeng Gu
Associate Professor, Department of Computer Science

Wei Zeng – External Member
Assistant Professor, School of Computing and Information Sciences

Florida International University

This dissertation is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Exploring Advanced Communication Primitives Using Greedy Routing in

Sensor Networks and Other Complex Networks

by

Xiaomeng Ban

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

Scalable point-to-point routing on a wireless sensor network has been an active re-

search topic for the past ten years. The major challenge comes from the fundamen-

tal resource limitation of sensor nodes, in terms of storage size and communication

bandwidth. The solution that requires a node to acquire the entire network topology

does not scale well. In the past few years there have been a number of innovative

proposals on scalable routing schemes where each node only keeps local informa-

tion and a routing path can be discovered by iteratively applying greedy routing

decisions. Such work has mainly focused on issues such as guaranteed delivery

and low path stretch, and has been relatively successful in that regard. The goal

of this dissertation is to move on with greedy routing techniques and explore more

advanced communication primitives.

The first challenge comes from load balancing in sensor networks. In large

scale sensor networks it is critical to balance out work load on different sensors,

to prolong network lifetime and prevent immature node failures or network discon-

nection. We propose two different techniques to balance out traffic load in the case

of uniform network traffic pattern. Given a sensor network densely deployed on a

simply connected domain Ω, we apply area-preserving map to transform Ω to a disk

D, then use load balanced routing on the virtual coordinates of the sensor nodes on

the disk D. Another technique we propose applies on a 3-connected sensor net-

work deployed on a domain possibly with holes inside, we use discrete Ricci flow

iii

to compute the circle packing of the spherical embedding of the 3-connected planar

subgraph, and apply a heuristic algorithm by Möbius transformation to optimize

load balancing across the sensor nodes.

The second issue is exploring the path space in sensor networks. In a sensor

network there could exist multiple disjoint paths between a source and a destina-

tion, an efficient method to explore and navigate in the ‘path space’ can help many

important routing objectives, e.g., high network throughput, low latency and fast

recovery on network failures. We present distributed algorithms based on Möbius

transformation on circular domains. The algorithms use local information and lim-

ited global information to generate disjoint multi-paths for a given source desti-

nation pair or switch to a different path ‘on the fly’ when transmission failure is

encountered. This method compares favorably in terms of performance and cost

metrics with centralized solutions of using flow algorithms or random walk based

decentralized solutions in generating alternative paths.

Thirdly, greedy routing could suffer from a wormhole attack, in which the ad-

versary places two radio transceivers connected by a high capacity link and retrans-

mits wireless signals from one antenna to the other. This creates a set of shortcut

paths in the network, and may attract a lot of traffic to the wormhole link. We intro-

duce a wormhole detection and removal algorithm based on local connectivity tests.

The algorithm uses purely local connectivity information, handles multiple worm-

hole attacks and generalizes to wireless networks deployed in 3D. It does not suffer

from typical limitations in previous work such as the requirements of special hard-

ware, communication models, synchronization, node density etc, and guarantees to

detect and remove the wormholes.

Last but not the least, greedy routing can be extended to routing on a general

graph due to its simplicity and efficiency, especially for navigation in real-world

complex networks. We systematically investigate the conjecture made in earlier

small world navigation studies that many real-world complex networks are naviga-

ble. That is, it is possible to discover a hidden metric space purely from the network

connectivity information alone that permits greedy routing on the coordinates in the

hidden space to discover extremely short paths for a majority of node pairs. We con-

firm the conjecture, delivering packages in a majority of cases in each of our five

empirical networks, from a diverse set of application scenarios.

iv

Dedicated to my family.

v

Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Overview . 5

1.2 References . 9

2 Background Review 10

2.1 Geographic Routing . 10

2.1.1 Greedy Routing . 10

2.1.2 Location Service . 11

2.2 Load Balanced Routing . 12

2.3 Conformal Mapping to Circular Domain 14

2.3.1 Conformal Mapping . 14

2.3.2 Discrete Ricci Flow . 15

2.3.3 Möbius Transformations 18

2.4 Polyhedron Routing . 19

2.4.1 Spherical Embedding . 19

2.4.2 Polyhedron Routing . 20

3 Load Balancing using Area-Preserving Map 21

3.1 Introduction . 21

3.1.1 Our Approach . 21

3.2 Load Balancing Using Area Preserving Maps 23

vi

3.2.1 Problem Definition . 23

3.2.2 Area Preserving Map to Disk 24

3.2.3 Load Balanced Routing in a Disk 34

3.3 Algorithm . 37

3.3.1 Compute Contour Generating Function 37

3.3.2 Compute the Area-Preserving Map 38

3.3.3 Routing on Virtual Coordinates 41

3.4 Simulations/Experimental Evaluations 42

3.4.1 Routing on Disk . 42

3.4.2 Routing on a Simply Connected Domain 44

3.5 Discussion . 47

4 Load Balancing using Möbius Transformation 50

4.1 Introduction . 50

4.1.1 Spherical Embedding . 51

4.2 Spherical Representation . 53

4.2.1 Spherical Representation Algorithm 53

4.3 Load Balancing . 60

4.4 Simulations . 61

4.4.1 Curveball and Outer Space Routing 63

4.4.2 Simulation Results . 64

5 Exploring Path Space in Greedy Routing 67

5.1 Introduction . 67

5.1.1 Our Approach . 67

5.2 Related Work . 69

5.2.1 Multipath routing . 69

5.2.2 Fast recovery from failures 70

5.3 Algorithms . 71

5.3.1 Embedding into Circular Domains with Ricci Flow 71

5.3.2 Multipath Routing . 71

5.3.3 Recovery From Failure . 77

5.4 Simulations . 79

5.4.1 Multipath Routing . 79

vii

5.4.2 Routing with link failures 82

5.5 Discussion . 85

6 Wormhole Attack Detection and Removal 90

6.1 Introduction . 90

6.2 Related Work . 92

6.3 Overview of Our Approach . 94

6.4 Wormhole and Local Connectivity Tests 96

6.4.1 Assumptions and Threat Model 96

6.4.2 Wormhole Definition . 97

6.4.3 Local Connectivity Test 98

6.4.4 The Wormhole Algorithm 101

6.4.5 Discussions on Parameters 104

6.4.6 Multiple Wormhole Sets 106

6.5 Simulations . 108

6.5.1 Simulation Setup . 108

6.5.2 False Positive Rates By Ring Connectivity Tests 109

6.5.3 Communication Cost . 113

6.5.4 Multiple Wormholes . 113

6.5.5 Comparison with Wormcircle 114

6.5.6 Network Dynamics . 118

6.6 Discussion . 119

6.6.1 Malicious Nodes . 119

6.6.2 Open Problems . 120

7 Space Filling by Aperiodic Dense Curve 121

7.1 Introduction . 121

7.1.1 Serial data fusion . 121

7.1.2 Motion planning of data mules 122

7.1.3 Sensor node indexing . 122

7.1.4 Related Work . 122

7.1.5 Our Contribution . 125

7.1.6 Planning motion for data mules 127

7.1.7 In-network storage and retrieval 127

viii

7.2 Algorithms for Discrete Conformal Mapping 128

7.3 Slit Map Algorithm . 133

7.4 Simulations . 134

7.4.1 Experiment Setting . 134

7.4.2 Comparison with Various Network Covering Approaches . . 135

7.4.3 Covering Network with Holes 136

7.4.4 Dense Curve Applications 136

8 Navigation in Complex Networks 139

8.1 Introduction . 139

8.2 Related Work on Small World Graphs 142

8.2.1 Navigation in model networks 142

8.2.2 Navigation in real-world networks 144

8.2.3 Graph embedding and greedy routing 145

8.3 Embedding and Greedy Routing 145

8.3.1 Embedding in Euclidean Spaces 146

8.3.2 Embedding in Hyperbolic Spaces 148

8.3.3 Greedy Routing in Latent Spaces 149

8.4 Experimental Results . 150

8.4.1 Embedding by MDS and LMDS 151

8.4.2 Greedy routing results on Euclidean space 152

8.4.3 Greedy routing results on hyperbolic space 155

8.5 Discussion . 157

Bibliography 160

ix

List of Tables

1 Comparative performance for dense networks (Fig 18(a)) 65

2 Comparative performance for dense network with holes (Figure 18(b)) 65

3 Comparative performance for sparse networks (Fig 18(c)) 66

4 Results of different sources and destinations in a uniform distribut-

ed graph with average edge links 20. 80

5 Results of graphs with different sensor densities. 81

6 Comparison of different p1 and p2 settings. 84

7 Wormcircle performance over 20 networks in each degree range.

The first column shows the average degree of 20 networks. The

false negatives show the percentage of cases that the algorithm

failed to detect an actual wormhole, while false positives show the

percentage of networks that did not have any wormhole but was

erroneously detected to have one. 117

8 The average number of false positive nodes under random link fail-

ure. The network has 2000 nodes and average degree is 8. α = 5,

β = 7. The maximum number of retransmissions is 30. Grid is

a network with perturbed grid distribution with UDG model, in

which the perturbation ratio p = 0.4. Q-Grid is a network with

perturbed grid distribution with quasi-UDG model, p = 0.4. quasi-

UDG model uses r = 0, q = 0.5. UDG is a networrk of node

random placement with UDG model. Q-UDG is a network with

node random placement with quasi-UDG model, r = 0, q = 0.5. . . 119

9 Empirical Data Sets . 150

x

10 Greedy routing with embedding in hyperbolic space. For abbrevia-

tions, please refer to Table 9 and Figure 49. SPL and RL stands for

shortest path length and routing path length, respectively. 156

11 Degree-based routing, SR stands for “success rate”, APL stands for

“average path length” . 158

xi

List of Figures

1 Consider some part of the network experiencing heavy inference (or

jamming attacks), shown as the dark colored circles. Links inside

these ‘failure’ regions have much higher loss rate. A route that hits

a small failure region might be able to get around by performing

some random walks in the neighborhood, as in the case of path

γ1. A route that hits a large failure region has difficulty recovering

from it – as simple random walk is likely to wander around for a

long time, as shown by the path γ2. In this case a path that makes

big de-tours would perform much better, as shown by the path γ3. . 4

2 The circle packing metric. 16

3 An example of area-preserving map from a triangle to a disk 26

4 A cross sectional view of the sphere and a plane tangent to it at

south pole. (i) Area preserving map: each point on the sphere (ex-

cept the northpole) is projected to the plane along a circular arc

centered at the point of tangency between the sphere and plane. (ii)

Stereographic map: a point p on the plane is mapped to the inter-

section of the line through p and the north pole with the sphere. . . 27

5 Different methods for finding contour generating function. (i) Con-

toured star-shaped polygon using shrinking boundary method. (ii)

Contoured pentagon using conformal mapping method. 27

6 Load distribution of each routing algorithm in the unit disk network.

In this figure, each node is represented by a circle, and the diameter

of circle is proportional to the traffic load at that node. 44

xii

7 Histogram of the average load for a unit disk network, as a function

of distance from the center. 45

8 Histogram of the maximum load for a unit disk network. 46

9 Three different domains and their area preserving maps. The red

and blue line indicate a sample route in respective domains. 48

10 The histogram comparison of load distribution over the cross-

shaped domain in fig. 9(c). We first map the cross shape domain

to the unit disk, then compare load balancing algorithm on the disk.

Notice that all unit disk load balancing routing algorithms now per-

form better than shortest path routing over cross shape domain. . . . 49

11 Compute the reduced graph. (a) A 3-connected planar graph G as

the input graph. (b) The overlap graph D = G∪G̃. (c) The reduced

graph. 55

12 Step 2. Select the infinity edge node e∞. 56

13 Step 3. Compute the reduced graph Ḡ 57

14 Step 4. Ricci flow . 58

15 (i) The circle packing embedded in the plane. (ii)The spherical p-

resentation of the graph and convex polytope realization in 3D. . . . 59

16 The above two are before Möbius optimization and the below two

are after Möbius optimization. 62

17 Sample Embeddings. (a) Original embedding after planarization.

(b) Embedding on a hemisphere. 63

18 Experimental networks. (a) Dense Network. 1850 nodes, avg. de-

gree 14.88 (b) Dense network with large holes. 2100 nodes, avg

degree 12.14 (c) Sparse network. 1774 nodes, avg. degree 3.32. . . 65

19 Cumulative distribution of load, for networks respectively corre-

sponding to those in Figure 18. (a) Dense Network. (b) Dense

network with large holes. (c) Sparse network. 66

20 The multiple paths on the domain D (in the middle) are the greedy

paths under transformations fj . The figure shows two transforma-

tions fj and fj+1 respectively. 72

xiii

21 For two curves γ1 and γ2 from s to t, the initial directional spread

is shown as θi and the final directional spread is shown as θf 73

22 For a pair of source and destination, each hole Ci will produce two

intervals θ+i and θ−i such that any two paths falling in the same

interval will hit the hole and share some segments of the boundary.

Thus any set of disjoint paths can only select one path inside each

interval. 75

23 Multipath Routing Algorithm. (a) and (b) are the original network-

s. (c) and (d) are the networks applying Ricci flow. (e) and (f)

are the networks applying Ricci flow and a Möbius transformation

(zoomed in). First column: m = 3; second column: m = 5. 86

24 Multipath Routing Algorithm in a region with holes. Up: original

network; bottom: network applying ricci flow. Here κ(s, t) = 9. . . 87

25 Routing delivery rate versus average degree (TTL = 500; link fail-

ure rate = 0.8). Möbius is our method. Greedy and Ricci are greedy

routings on the original and Ricci Flow coordinates respectively.

GreedyRand and RicciRand are greedy routings on the original and

Ricci Flow coordinates with random walk respectively. 87

26 Routing delivery rate versus TTL (time-to-live) of packets (AvgDe-

gree = 10; link failure rate = 0.8). 88

27 Routing delivery rate versus link failure rate (AvgDegree = 10; TTL

= 500). 89

28 Distribution of routing path lengthes (AvgDegree = 10; TTL = 500;

link failure rate = 0.8). 89

29 Demonstration of a wormhole attack. X and Y denote the worm-

hole nodes connected through a long wormhole link. As a result of

the attack, nodes in Area A consider nodes in Area B their neigh-

bors and vice versa. 92

xiv

30 A legal network structure such as a bridge connecting two nodes

on the boundary of a hole could also be identified as a ‘wormhole’

in our definition. However, the same graph structure can be gen-

erated by also placing wormhole antennas near u and v. Thus it is

impossible to eliminate this case from our definition. 98

31 The thick circles represent the nodes within the wormhole range,

those on two sides correspond to W0 and W1 respectively. The

physical wormhole link is not shown since it is not visible in the

network connectivity. The darkly shaded region denotes the ball

B1(p), which includes all nodes in W1. Thus removing B1(p) also

removes all wormhole edges. The lightly shaded region denotes the

ring N[1,2](p). It has two components, one near W0 and one near W1. 99

32 If N[α,β](p) has only one connected component, then there is a path

connecting two nodes p ∈ W0, q ∈ W1 not using any wormhole

edges with total length at most 2β. 101

33 The α-ball is shown as the shaded region and the nodes within β-

ball are within the dashed cycle. (i) If we take α = 1, β = 2, p will

be identified as a candidate since x, y ∈ N[1,2](p) are not directly

connected. But if we use β = 2, N[1,2](p) has three nodes x, y, z

and is connected. This way the false alarm for p is removed. (ii)

p has a dangling path of length 2. For α = 1, β = 2, the dangling

node x is not connected with other nodes in the ring. Increasing

α to be 2 will remove such dangling paths. (iii) Consider a bridge

of 3 hops wide as shown in the figure. Consider a test at p with

α = 1, β = 2. The nodes in the ring are connected and thus p

is not a candidate in this test. But if we increase α = 2, β = 3,

the entire bridge will be removed and the nodes in the ring will be

disconnected. Thus large α will not necessarily reduce the number

of false positives. 105

xv

34 There are two wormhole attacks (W0,W1) and (W ′
0,W

′
1), one on

top of the other. Nodes in the second set are shown as squares.

The edges after the removal of Bα(p) (darkly shaded region) are

shown. The second wormhole connects what would have been the

two components of N[α,β](p), which now appears to have one com-

ponent and is not detected in connectivity tests. 108

35 The number of false positive nodes on a network with 5000 n-

odes. In the first four figures, we vary α to be 2, 4, 6, 8 and take

β = α + 2. In the last two figures, we take α = 3 and take β

as 5, 7, 9 respectively. (a) Perturbed grid with UDG model, pertur-

bation ratio p = 0.4. (b) Perturbed grid with quasi-UDG model,

p = 0.4. quasi-UDG radius r = 0,q = 0.5. (c) Random distribution

with UDG model. (d) Random distribution with quasi-UDG mod-

el, r = 0,q = 0.5. (e) Random distribution with UDG model.(f)

Random distribution with quasi-UDG model, r = 0,q = 0.5. 110

36 Example of wormhole placement, Network size is 1000, average

degree is 6, α = 1, β = 3. 111

37 Wormhole detection in a 3D network. Network topology is formed

by using a 3D grid with perturbation. The network has 1000 nodes.

We use α = 3, β = 5. The wormhole transceivers are located

near a pair of diagonal corners and the nodes affected are accurately

detected as highlighted in the figure. 112

38 Communication cost in terms of packets transmitted. Network has

5000 nodes, β = α + 2. Grid is perturbed grid with UDG, pertur-

bation ratio p = 0.4. Rnd is node random placement with UDG. . . 114

39 Multiple Wormholes. Left: α = 1, β = 3; Right: α = 2, β = 4. . . 115

40 A wormhole detected by localized wormcircle at a regular node, in

a quasi unit disk graph. The 3-hop ring has two components. Edges

in dashed blue show the breadth first trees in the two cases. The red

solid edge is detected as a cut edge, implying a long cycle in one of

the trees and a false detection. 116

41 The Hilbert curve (source: Wikipedia). 123

xvi

42 (i) A torus cut open along two curves a, b. (ii) The flattened torus.

The line � : y = kx is shown on the flattened torus (the top and

bottom edges are the cut b, the left and right edges are the cut a).

Since the top edge and bottom edge are actually the same, the line

will go through the torus as shown by the parallel lines. It will not

intersect itself and can be shown to be arbitrarily close to any point

on the torus. 124

43 Compute the shortest path ηk connecting γ0 and γk. 129

44 Closed harmonic 1-forms {ω1, ω2, ω3}. 130

45 Exact harmonic 1-forms {ω4, ω5, ω6}. 130

46 Holomorphic 1-forms basis {τ1, τ2, τ3}. 131

47 Conformal mapping from the domain to the annulus, γ0 is mapped

to the outer circle, γ1 is mapped to the inner circle. 132

48 Comparison Between Dense Curve and Other Network Covering

Approaches. (a) Network Coverage. (b) Average Shortest Distance

from Unvisited Nodes to Visited Nodes. 137

49 Performance comparison of LMDS and MDS. BKC,Pre and ER s-

tands for Boguna-Krioukov-Claffy model, Preferential Attachment

model and Erdos-Renyi model, respectively. 152

50 Simple greedy routing. Random Selection W/ 20%: landmark n-

odes are random selected, 20% highest degree nodes are hub nodes.

Node number and average degree of ER, Pre and BKC are the same

as ASTRO network. For abbreviations, please refer to Table 9 and

Figure 49. 153

51 (i) Impact of landmark number and dimension. ACT500H is AC-

TOR network with 500 highest degree nodes as landmarks. (ii) Im-

pact of average degree. BKC8 means a BKC network with average

degree to be 8. 154

xvii

Chapter 1

Introduction

Advances in recent technologies have enabled the manufacturing of tiny and

inexpensive sensor nodes. Sensor nodes can be densely deployed to monitor re-

al world environments and achieve unprecedented spatial coverage and robustness.

By communicating with nearby nodes using wireless transceivers, the sensor nodes

are able to form large scale networks to serve in many applications, e.g., industrial

monitoring, natural disaster relief and smart transportation. While sensor networks

are powerful by monitoring the signal in the physical world, they are subject to a

unique set of resource constraints such as limited amount of memory, battery life

and network communication bandwidth, this makes efficient routing a big chal-

lenge. Routing in a wireless ad hoc network can be largely divided into proactive

routing and reactive routing. Reactive routing techniques, e.g., DSR [75] and AOD-

V [120], use on-demand approaches for finding routes. A route is established only

when it is required by a source node for transmitting data packets to the destination,

usually by issuing a flooding. While reactive routing techniques do not require

configuring and maintaining routing tables on sensor nodes, they introduce heavy

routing overhead and do not scale well when networks become large. Traditional

proactive routing techniques, e.g., link state based (OLSR) or distance vector based

(DSDV) routing algorithms, require to pre-configure and maintain routing tables on

sensor nodes. While proactive routing techniques have been successful in Internet

routing and are heavily used in TCP/IP stack, compared to Internet routers, sensor

nodes have quite limited resources and are prone to node and link failures, those

traditional proactive routing techniques do not scale well in sensor networks.

1

In the past few years there have been a number of innovative proposals on geo-

graphical based routing schemes where each sensor node only keeps and makes use

of geographical information of its neighbors, among those routing schemes greedy

routing is a widely used routing strategy. In greedy routing each intermediate node

on the routing path would greedily forward the packets by choosing the neighbor

closest to the destination as the next hop, and the routing path can be discovered by

iteratively applying greedy routing decisions. Since sensor networks are inherently

geometric, the number of neighbors of each node usually remains a constant when

the size of the network grows, which makes the geographical information storage

on each node scales well with the network size. While greedy routing works well in

general, it may get stuck in the middle due to a local trap and fail to delivery the data

to destination. There has been previous works focused on guaranteed delivery for

greedy routing, those works have been relatively successful in that regard. While

guaranteeing delivery is important for routing, there are some other communication

primitives that are important as well, e.g., load balancing, multi-path routing, se-

curities issues, etc. In our work, we move on with greedy routing techniques and

focus on those advanced communication primitives.

In large scale sensor networks it is critical to balance out work load on dif-

ferent sensors, to prolong network lifetime and prevent immature node failures or

network disconnection. We examine the problem of scalable routing algorithm de-

sign that balances out traffic load. Here, We focus on the load balancing issue in

the case of uniform network traffic pattern, i.e., all pairs of nodes have the same

amount of data to deliver. In this case, uneven load across the nodes can happen as

a result of network geometry and routing schemes. It is easy to see that for sensors

uniformly spread on a disk or a square, the nodes near the center carry more traffic

than the nodes near the boundary if we use shortest path algorithm or geographi-

cal greedy routing, which is called crowded center effect. The network topology

and its ‘shape’ are critically relevant to load balancing of a specific routing scheme,

how to design routing strategies to achieve load balancing for sensor networks is

a fundamental problem that is both theoretically and practically interesting. The

solution for uniform traffic pattern will also hope to provide insights for the general

case when traffic pattern is not uniform.

Besides load balancing, routing primitives such as throughput, low latency and

2

recovery from failures are also important in practice. The exploration of ‘path s-

pace’ turns out to be helpful in those primitives. Between a source and a destination

there can be multiple different paths, a single path from source to destination may

give limited throughput due to bandwidth constraints, hop length, wireless inter-

ference or other transmission failures. If there is a lot of data to be delivered, it is

natural to consider using multiple node disjoint paths such that different data seg-

ments can be simultaneously delivered to the destination. With multipath routing

one obtains higher throughput and lower delay. Such multipath routing can also be

used to enhance data security. For example, sensor data can be encoded such that

different codewords are sent along different paths. Therefore a single compromised

node stays on at most one path and with its captured data segments it is unlikely

to reconstruct the original data. Exploring the space of routing paths between two

nodes is also helpful for fast recovery from link or node failures. In a large wireless

network, there are network changes of different scales. At the node level, wireless

links have high link quality variation; nodes may fail; interference with other nodes

unpredictable, e.g., as in the hidden terminal problem. At a large scale, commu-

nication links in a region can be temporarily disabled by jamming attacks, either

imposed by malicious parties [159], or as a result of co-located multiple benign

wireless networks interfering with each other. In case of a transmission failure, it

would be good to quickly discover an alternative path to the destination. A single

isolated link failure can possibly be bypassed by local random de-touring attempts.

A large scale node or link failure, in particular one with strong spatial correlations

and a geometric pattern, would need some non-trivial exploration of the path space

– by making possibly a big de-tour from the planned path, see Figure 1 for an ex-

ample. To allow such robustness and quick response to network conditions, routing

schemes that find a single path are not enough and it is important to understand

the ‘space’ of paths and efficiently navigate within this space. multipath routing is

also helpful for load balancing under non-uniform traffic pattern. If there is a lot of

data to be exchanged between the source s and destination t, the nodes on the path

P are used more often than average. To improve load balancing, traffic needs to

be distributed on multiple paths from s to t that are sufficiently far apart from one

another to share the traffic load.

Since greedy routing is a geographic based routing paradigm, it may suffer

3

γ3

γ1

γ2s

t

t′

Figure 1: Consider some part of the network experiencing heavy inference (or jam-

ming attacks), shown as the dark colored circles. Links inside these ‘failure’ regions

have much higher loss rate. A route that hits a small failure region might be able to

get around by performing some random walks in the neighborhood, as in the case

of path γ1. A route that hits a large failure region has difficulty recovering from it –

as simple random walk is likely to wander around for a long time, as shown by the

path γ2. In this case a path that makes big de-tours would perform much better, as

shown by the path γ3.

from attacks making use of location information. In the wormhole attack, the ad-

versary places two radio transceivers in the network, connected by a high capacity

out-of-band wireless or wired link, signals captured by one transceiver are “tun-

neled” through the wormhole link to the other transceiver, and replayed there. If

the two transceivers are further away from each other, the wormhole link gains con-

trol of a large fraction of network traffic which opens the door for more dangerous

attacks afterwards.

Collecting data from sensor networks to a static data sink often suffers from

communication bottleneck near the sink, this is called ‘funnel effect’. One way to

address this is to use a mobile sink, or called a data mule, implemented by a mobile

device touring around the network to collect data through direct communication

with a sensor in close proximity. A data mule moves along a path, planning the

motion of a data mule requires a path that visits the nodes in the network with

minimum duplicate visits.

While greedy routing is widely used in sensor networks routing, as a routing

paradigm it is not limited to sensor networks. The ‘small-world phenomenon’ (aka

‘six degree of separation’) states that there exists a short path between almost any

pair of individuals in the world. It was later discovered that many other networks,

4

in vastly different contexts ranging from power grids, film collaboration networks,

and neural networks [48] to email networks [42], food webs [158] and protein inter-

action networks [72], also exhibit the small-world property. In addition to revealing

the existence of short paths in real-world acquaintance networks, the small-world

experiments showed that these networks are navigable by greedy routing: in Mil-

gram’s small world experiment [151], a short path was discovered through a local

algorithm with the participants forwarding to a friend who they believed to be more

likely to know the target. According to the homophily theory, each individual can

be considered having a vector of attributes, such as gender, age, nationality and

geographical location, as its own coordinate, and greedy forwarding can be done

by making use of measurements on such coordinate systems. Geographical prox-

imity has been found to be an important forwarding criterion in some cases, other

criteria such as profession and popularity may have been used as well. A recent

small-world study using email-chains [42] confirms this, finding that at least half

of the choices were due to either geographical proximity of the acquaintance to the

target or occupational similarity. Thus these experiments hint that perhaps also in

other networks, some greedy routing algorithm can successfully deliver messages,

provided that nodes are given appropriate coordinates. In our work we consider the

conjecture that real-world networks from diverse contexts, social and non-social,

can be embedded in a low-dimensional hidden space where the distances between

nodes in the hidden space approximate their graph distances in the network, such

that some greedy mechanism minimizing the distances to the destination in the la-

tent space is able to find a short path for most pairs of nodes.

1.1 Overview

Chapter 2 is background knowledge on greedy routing, conformal mapping to

circular domain and polyhedron routing.

In chapter 3 we address the problem of load balanced greedy routing for wire-

less sensor networks using area-preserving map. An area-preserving map φ is able

to transform any simply connected domain Ω to a disk D. If the sensor network is

uniformly densely deployed within an arbitrary shape region Ω, after applying the

area-preserving map on Ω, the original network sources and destinations are still

5

uniformly distributed in the disk D. There have been techniques achieving good

load balancing on sensor networks densely deployed on a disk, e.g., curveball rout-

ing. Based on the virtual coordinates of the sensor nodes in D, we can apply those

techniques to achieve good load balancing on sensor networks densely deployed on

an arbitrary simply connected domain.

In chapter 4 we address the problem of load balanced greedy routing for wire-

less sensor networks using Ricci flow and Möbius transformation. Motivated by

the analog of the continuous setting that geodesic routing on a sphere gives perfec-

t load balancing, we embed sensor nodes on a convex polyhedron in 3D and use

greedy routing to deliver messages between any pair of nodes with guaranteed suc-

cess. This embedding is known to exist by the Koebe-Andreev-Thurston Theorem

for any 3-connected planar graphs. Here we use Ricci flow to develop a distributed

algorithm to compute this embedding. Further, such an embedding is not unique

and differ by one another with a Möbius transformation. We employ an optimiza-

tion routine to look for the Möbius transformation such that the nodes are spread

on the polyhedron as uniformly as possible. We evaluated the load balancing prop-

erty of this greedy routing scheme and showed favorable comparison with previous

schemes.

In chapter 5 we investigate the application of ‘path space’ in greedy routing.

In a sensor network there are many paths between a source and a destination. An

efficient method to explore and navigate in the ‘path space’ can help many impor-

tant routing primitives, in particular, multipath routing and resilient routing (when

nodes or links can fail unexpectedly) as considered. Both problems are challenging

for a general graph setting, especially if each node cannot afford to have the global

knowledge. In this paper we use a geometric approach to allow efficient exploration

of the path space with very little overhead. We are motivated by the recent develop-

ment on regulating a sensor network geometry using conformal mapping [137,138],

in which any sensor network can be embedded to be circular (and any possible hole

is made circular as well) and greedy routing guarantees delivery. In this paper we

explore the freedom of a Möbius transformation inherent to this conformal map-

ping. By applying a Möbius transformation we can get an alternative embedding

with the same property such that greedy routing generates a different path. We

6

present distributed algorithms using local information and limited global informa-

tion (the positions and sizes of the holes) to generate disjoint multi-paths for a given

source destination pair or switch to a different path ‘on the fly’ when transmission

failure is encountered. The overhead of applying a Möbius transformation sim-

ply boils down to four parameters that could be carried by a packet or determined

at need at the source. Demonstrated by simulation results, this method compares

favorably in terms of performance and cost metrics with centralized solutions of

using flow algorithms or random walk based decentralized solutions in generating

alternative paths.

In chapter 6 we propose a distributed wormhole detection and removal algo-

rithm, which uses purely local connectivity information. A wormhole attack places

two radio transceivers connected by a high capacity link and retransmits wireless

signals from one antenna at the other. This creates a set of shortcut paths in the

network, and may attract a lot of traffic to the wormhole link. The link thus gains

control of a large fraction of network traffic which opens the door for more danger-

ous attacks afterwards. The basic idea of our algorithm is that the neighborhood of a

wormhole contains two sets of nodes corresponding to two sides of the wormhole.

The distance between these two sets is small when using paths that pass through

the wormhole link, but is large when only regular network paths are considered,

Thus the removal of a small neighborhood containing potential wormhole edges

would lead a larger neighborhood to fall apart to multiple connected components.

The algorithm uses purely local connectivity information, handles multiple worm-

hole attacks and generalizes to wireless networks deployed in 3D. It does not suffer

from typical limitations in previous work such as the requirements of special hard-

ware, communication models, synchronization, node density etc. Our algorithm

guarantees the detection and removal of wormhole edges, handles multiple worm-

hole attacks and generalizes to wireless networks deployed in 3D. It does not suffer

from typical limitations in previous work such as the requirements of special hard-

ware, communication models, synchronization, node density etc. In simulations,

our method is seen to beat the state of the art solutions, in particular for cases where

previous solutions experience poor performance. In simulations, our method is seen

to beat the state of the art solutions, in particular for cases where previous solutions

experience poor performance.

7

In chapter 7 we propose an algorithm to construct a “space filling” curve for

a sensor network with holes. Mathematically, for a given domain R possibly with

holes inside, we generate a path P that is provably aperiodic (i.e., any point is

covered at most a constant number of times) and dense (i.e., any point of R is

arbitrarily close to P). Specifically, for a simple domain with no holes, we will first

map it one-to-one to a unit square, and then flip the square along the top edge and

the right edge to get four copies, creating a torus, then we find the dense curve on

the torus. Since any point in the original domain is mapped to four copies on the

torus, the curve we find will visit any point for at most four times, the property of

being dense still holds. For a domain with holes, we will first double cover it, i.e.,

creating two copies of the network, the upstairs copy and the downstairs copy. The

two copies are glued to each other along the hole boundaries to create a multi-torus,

each hole being a handle. In the same way we choose one handle to flatten the torus,

and the rest of the handles are mapped to very narrow ‘slits’. A line with irrational

slope in the covering space, when hitting a slit, bounces back. We could show that

the curve will visit each point of the original domain at most twice and is provably

dense. In a discrete setting as in a sensor network, the path visits the nodes with

progressive density, which can be adaptive to the budget of the path length. Given

a longer budget, the path covers the network with higher density. With a lower

budget the path becomes proportional sparser. We show how this density-adpative

space filling curve can be useful for applications such as serial data fusion, motion

planning for data mules, sensor node indexing, double ruling type in-network data

storage and retrieval. We show by simulation results the superior performance of

using our algorithm vs standard space filling curves and random walks.

In chapter 8 we propose to first embed social networks in latent spaces and

apply greedy routing with the coordinates generated, Our experiment is the first

to systematically investigate the conjecture made in earlier small world navigation

studies that many real-world complex networks are navigable. That is, it is possible

to discover a hidden metric space purely from the network connectivity information

alone that permits greedy routing on the coordinates in the hidden space to discover

extremely short paths for a majority of node pairs.

8

1.2 References

Chapter 3 is a recent work with Mayank Goswami, Chien-Chun Ni, Xianfeng

David Gu and Jie Gao.

Chapter 4 is the work coauthored with Xiaokang Yu, Wei Zeng, Rik Sarkar,

Xianfeng David Gu and Jie Gao. A paper with title “Spherical representation and

polyhedron routing for load balancing in wireless sensor networks” has been pub-

lished in the Proceedings of the 30th Annual IEEE Conference on Computer Com-

munications (INFOCOM’11), 612-615, mini-conference, March, 2011. The work

is also presented at 20th Fall Workshop on Computational Geometry, Oct 29-30,

2010.

Chapter 5 is the work coauthored with Ruirui Jiang, Xiaomeng Ban, Mayank

Goswami, Wei Zeng, Jie Gao, Xianfeng David Gu. A paper with title “Exploration

of Path Space using Sensor Network Geometry” has been published in the Pro-

ceedings of the 10th International Symposium on Information Processing in Sensor

Networks (IPSN’11), 49-60, April, 2011.

Chapter 6 is the work coauthored with Rik Sarkar and Jie Gao. A paper with

title “Local Connectivity Tests to Identify Wormholes in Wireless Networks” has

been published in the Proceedings of the 12th ACM International Symposium on

Mobile Ad Hoc Networking and Computing (MobiHoc’11), May, 2011.

Chapter 7 is the work coauthored with Mayank Goswami, Wei Zeng, Xian-

feng David Gu and Jie Gao. A paper with title “Topology Dependent Space Filling

Curves for Sensor Networks and Applications” has been accepted by the 32th An-

nual IEEE Conference on Computer Communications (INFOCOM’13) main con-

ference.

Chapter 8 is the work coauthored with Jie Gao and Arnout van de Rijt. A

paper with title “Navigation in Real-World Complex Networks through Embedding

in Latent Spaces” has been published in Workshop on Algorithm Engineering and

Experiments (ALENEX10), 138-148, January, 2010.

9

Chapter 2

Background Review

2.1 Geographic Routing

2.1.1 Greedy Routing

Sensor networks are deployed in real world and inherently associated with

geometric information. If nodes know their own location information, they can

adopt the greedy forwarding strategy for routing. The nodes would maintain the

location information of their neighbors. On each routing path, the current node

would choose the neighbor node closest to destination based on the location table,

and forward the packet to this neighbor. While greedy routing is light weight and

scalable by making use of purely local information, it might get stuck in the middle

when no neighbor node is closer to the destination than the current node itself.

There have been various approaches to deal with this issue [13, 56, 78, 87, 95].

Greedy routing has received a lot of attention since it was proposed for routing

in ad hoc wireless networks [19,78], due to its simplicity and efficiency. As greedy

routing may get stuck if all neighbors are further away from the destination, people

ask whether one can find a proper embedding of the network such that delivery is

guaranteed.

For 2D embedding, Papadimitriou and Ratajczak [118] made the conjecture

that any planar 3-connected graph has a greedy embedding in the plane. Dhanda-

pani discovered that any planar triangulation (without holes) admits a greedy em-

bedding in the plane [40]. Recently the 3-connected graph conjecture was proved to

10

be true by Leighton and Moitra [95], and independently by Angelini et al. [5]. Later

the algorithm in [95] was improved such that the coordinates use O(logn) bits for

a graph with n vertices [62]. In [137], a given network is embedded in the plane

such that all the holes are circular and thus greedy routing guaranteed delivery.

In higher dimensions, the polyhedron routing (in 3D) is first proposed in [118].

Flury et al. [56] examined embedding into O(logn) dimensional Euclidean space

and proposed greedy method that gives low stretch routing paths.

Embedding into non-Euclidean spaces has also been proposed. R. Klein-

berg [87] shows an embedding of a tree in the hyperbolic space for which greedy

routing always works. This scheme was later improved such that the coordinates

use logarithmic bits [52].

Of particular relevance to our technique, Ben-Chen et al. [13] computed a

circle packing of a given 3-connected planar graph and used the power distance for

greedy routing. They showed that their embedding as a contained power diagram is

another interpretation (and generalization) of the spherical embedding.

The above greedy routing schemes focused on guaranteed delivery and have

no consideration on load balancing.

2.1.2 Location Service

To apply greedy routing on sensor networks, the source and intermediate nodes

need to know the location information of the target node. In most cases, the source

node only knows unique identification UID of the target node instead of the location

information. Therefore, a mapping from UID to location information is needed, this

is called the location service.

One strategy for location service is to store all the locations in a central repos-

itory. Although centralized storage is simple and keeps data integrity, it suffers

single point of failure. Besides, this method is not scalable since when the net-

work size is large, communication cost and delay can be significantly large, and

funnel effect would happen around the repository. Another strategy is to store all

the locations on each sensor node, this would lead to enormous storage and the in-

formation updating would be extremely expensive. Flooding-based strategies adopt

either the proactive (e.g. SLS, DLS) or the reactive routing protocols (e.g. LAR,

11

RLS), in proactive routing nodes periodically flood their locations to a range of

nodes, while in reactive routing the source node perform a flooding to get the loca-

tion of the target node. In general flooding is not scalable for large sensor networks.

Rendezvous-based strategies set up a mapping from each node to a group of nodes,

the mapped-to nodes are the location servers for the node, which would get periodic

updated location information from the node, The location information of the target

node would be retrieved from the location servers of the target node. The map-

ping can be either flat or hierarchical, depending on whether recursive hierarchical

subareas are used.

2.2 Load Balanced Routing

In the field of networking algorithms, load balanced routing on a graph with

given source destination pairs is a long standing problem that has been studied a lot

in the literature. One way to formulate this problem is to select routes that minimize

congestion (the maximum number of messages that any node/link carries), termed

the unsplittable flow problem. Finding the optimal solution for this problem is NP-

hard even in very simple networks (such as grid). The best approximation algorithm

has an approximation factor of O(logn/ loglogn) [126,127] in a network of n ver-

tices. It is also shown that getting an approximation within factor Ω(loglogn) is

NP-hard [4]. Another popular way to formulate the problem is to consider node

disjoint or edge disjoint paths that deliver the largest number of given source des-

tination pairs. This is again extensively studied. It is one of the earliest NP-hard

problems [79]. The best approximation algorithm has a factor of O(
√
n) approxi-

mation [30] and it is NP-hard to approximate within a factor of Ω(log1/2−ε n) [33].

Beside, the approximation algorithms are mostly only of theoretical interest. They

require global knowledge and are not suitable for practical settings.

Here we consider the load balancing for sensor networks densely deployed in-

side a geometric domain Ω, insights on the geometric properties of such networks

are thus extremely helpful for interesting solutions. This is an approach that has

been adopted in recent years, in particular using geometric maps to generate virtu-

al coordinates that are suitable for greedy routing algorithms [137]. Our objective

is along the same direction with load balancing as the main consideration: given

12

a sensor network deployed inside a geometric domain Ω, can we generate virtu-

al coordinates and a companion greedy routing algorithm that achieves bounded

maximum congestion?

Existing work mainly focused on simple shapes such as strips, disks or squares;

or focused on reducing congestions in certain parts of the network such as interior

hole boundaries. Clearly the maximum congestion depends on the traffic pattern,

i.e., the distribution of sources and destinations. If all messages are from the same

source and/or same destination, there is no way we can reduce the congestion at

the sources/destinations and the problem becomes less interesting. Therefore it is

a common practice in previous work to assume that sources and destinations are

uniformly distributed. This limits the problem domain down to the core problem —

under uniform traffic pattern, how the geometric shape affects the congestion and

what kind of greedy routing algorithm gives the minimum congestion.

Load balancing routing on simple shapes. In [60], a greedy routing scheme that

achieves both constant routing stretch factor (compared with shortest path routing)

and constant load balancing ratio (compared with the optimal load balanced rout-

ing) is proposed, but only for wireless nodes distributed in a narrow strip.

In a disk, Popa et al. [124] pointed out that under uniform traffic patten, the

center is more loaded than nodes near the boundary – as more shortest paths go

through or near the center. By using numerical solvers, they develop a numerical

approximation of the optimal load balanced routing solution. They also proposed a

practical algorithm by using stereographic projection to map the network on a hemi-

sphere. Routing is guided by the spherical distance in a greedy manner. Improved

load balancing is shown as the routes are made to ‘curve’ around the network cen-

ter. The same idea is also used by Li et al. [97] to resolve routing congestion at

network center.

Mei and Stefa [109] studied load balancing for a regular square shape sensor

network and propose to use the ‘outer space’ by essentially creating four copies

of the network, wrapped up as a topological torus. The destination has four im-

ages and greedy routing is done by using the coordinates on the torus towards a

randomly selected image of the destination. On the original network, it is as if we

are reflecting on the boundaries. The idea is that through mapping on a torus the

original boundary or center of the square are essentially removed so they should

13

not present higher congestion. By evaluations we found out that the traffic load

on the nodes are indeed evened out, but unfortunately the traffic level at all nodes

have been greatly elevated as routing paths through reflections are on average much

longer than shortest paths.

Yu et al. [161] examined a network inside a simply connected domain and

used Ricci flow to generate the Thurston’s embedding as the skeleton of a convex

polytope. The intuition is to map the network on a sphere (or half sphere) as routing

on a sphere has no congestion due to perfect symmetry. The choice of a convex

polytope is to ensure that greedy routing has guaranteed delivery [118]. This has

good performance as shown in simulations but there is no guarantee on the worst

case congestion.

Reducing congestion on centers or hole boundaries. A number of previous work

focused on reducing traffic load on hole boundaries. This is because traditional

geographical routing [55,78] tends to send messages to nodes near hole boundaries.

In [138], a network of multiple holes is converted to the covering space, such that

one maps the network to the interior of each hole, filling it up. Again, since the

boundaries are removed, greedy routing, when touching a boundary node, does not

follow the boundary but get reflected away from the boundary. Simulation results

show that the traffic load on boundaries are greatly reduced. But the average traffic

load is increased as routing paths are made longer.

In [22], the focus is to reduce traffic load near the medial axis, which is a

generalization of the center of a disk in a domain of general shape and is likely to

attract traffic load. The proposed routing algorithm will follow a path parallel to the

medial axis or orthogonal to the medial axis, minimizing the intersections with the

medial axis. Again no theoretical guarantee is given.

2.3 Conformal Mapping to Circular Domain

2.3.1 Conformal Mapping

In the continuous setting for Riemannian surfaces, let (S1, g1) and (S2, g2) be

two surfaces with Riemannian metrics g1, g2. A mapping φ : S1 → S2 is called

a conformal mapping (angle preserving mapping), if the intersection angle of any

14

two curves is preserved.

A planar domain D of connectivity m is called a circular domain, if all its

m boundaries are circles. It is known from conformal geometry that any genus

zero multiply connected planar domain can be mapped to a circular domain by

conformal mappings. Such a mapping is not unique: all such mappings differ by

Möbius transformations [39, 122].

To compute the conformal mapping from a surface to a circular domain, one

can use Ricci flow as introduced in [74,137]. In the case of sensor network setting,

we will use the discrete version, which represents a domain by a discrete triangu-

lation. We first give some references on how to obtain such a triangulation from a

sensor network setting and then move on to the algorithm description of the discrete

Ricci flow.

2.3.2 Discrete Ricci Flow

In the following we explain Ricci flow in the discrete setting for a triangulation

of a domain with m holes. The triangulation is denoted by Σ with vertex set V , edge

set E and face set F .

In the discrete setting we define a Riemannian metric by using the edge lengths

on Σ:

l : E → R
+,

such that for a triangle face fijk with vertices vi, vj, vk, the edge lengths satisfy the

triangle inequality:

lij + ljk > lki, ∀i, j, k.
The lengths of the edges of the triangulation determine the corner angles of the

triangles. For a triangle fijk with edge lengths {lij , ljk, lki}, and the angles opposite

to these edges {θijk , θjki , θkij } respectively, we have the following equations by cosine

law:

l2ij = l2jk + l2ki − 2ljklki cos θ
ij
k . (1)

Now we can define the discrete Gaussian curvature at a vertex vi as the angle deficit:

Ki =

{
2π −∑fijk∈F θjki , vi is an interior vertex;

π −∑fijk∈F θjki , vi is at boundary.
(2)

15

i

j k

φij

φjk

φkiγi

γj

γk

θi

θj θk

ljk

lki
lij

Figure 2: The circle packing metric.

where θjki represents the corner angle at vertex vi in the triangle fijk. In other words,

the curvature at a vertex v is the difference of 2π or π and the total corner angles at

v, for an interior vertex or a vertex on a hole boundary respectively. The curvature is

0 when it is locally flat (for interior vertices) or locally a straight line (for boundary

vertices).

Ricci flow uses the circle packing metric in the discrete case, proposed by

[146, 150], to approximate the conformal deformation of metrics. See Figure 2.

Each vertex vi has a circle with radius γi. On each edge eij , φij is defined as

the intersection angle of the two circles at vi and vj . The pair of vertex radii and

intersection angles at the edges on a mesh Σ, (Γ,Φ), is called a circle packing

metric of Σ. Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on Σ are conformal

equivalent, if Φ1 ≡ Φ2. Therefore, a conformal deformation of a circle packing

metric only modifies the vertex radii γi’s and maintains the intersection angles φij’s

to be constant.

For a given mesh, the circle packing metric (Γ,Φ) and the edge lengths can be

converted to each other by cosine law as below:

l2ij = γ2
i + γ2

j + 2γiγj cos φij. (3)

Thus given a circle packing metric, we can calculate the edge lengths of the trian-

gulation Σ and then the embedding in the plane realizing the given curvatures.

Let ui to be log γi for each vertex. The discrete Ricci flow is defined as the

16

following differential equation:

dui(t)

dt
= (K̄i −Ki), (4)

where Ki is the current curvature at vertex i and K̄i is the target curvature at i.

Define an energy function

f(u) =

∫ u

u0

n∑
i=1

(K̄i −Ki)dui, (5)

as the Ricci energy, where u0 is an arbitrary initial metric. It has been proved by

Chow and Luo [31] that the discrete Ricci flow will converge to a unique minimum

of the Ricci energy. The convergence rate of the discrete Ricci flow using Equation

4 is shown to be exponentially fast, i.e.,

|K̄i −Ki(t)| < c1e
−c2t, (6)

where c1, c2 are two positive constants.

The Ricci flow algorithm is naturally an iterative algorithm with all vertices

adjusting local metrics and local curvatures. All the radii at the vertices are initial-

ized to be 1/2. That is, the circles at adjacent vertices of Σ are kept to be tangent

to each other. We set the target curvature to be 0 at all interior vertices. That is, the

network should be embedded to be flat in the domain. We set the target curvature

at a boundary vertex to be −2π/k, if the boundary of the hole has a total number

of k vertices. That is, the boundary circle should be perfectly circular. We apply

the Ricci flow algorithm by changing the circle packing metric, ui, by δ(K̄i −Ki),

where δ is a constant parameter as the step size. The algorithm stops when the

current curvature is within an error bound of ε from the target curvature.

Since the curvature error decreases exponentially fast, the number of steps in

the Ricci flow algorithm is in O(log(1/ε)
δ

), where δ is the step size in the Ricci flow

algorithm. The total number of messages is thus in O(n log(1/ε)
δ

), if the algorithm is

running on a network of n vertices.

17

2.3.3 Möbius Transformations

Möbius transformations are rational functions defined on the complex plane

C. The general form of a Möbius transformation is

f(z) =
az + b

cz + d
.

Here a, b, c, d ∈ C and satisfy ad− bc 	= 0. If c 	= 0 we can extend this mapping to

the Riemann Sphere (or the extended complex plane, i.e., with a point of infinity)

Ĉ = C ∪ {∞} by specifying f(−d/c) = ∞ and f(∞) = a/c. In the case when

c = 0, we specify f(∞) = ∞.

Here are the important properties of Möbius transformations:

1. Möbius transformations are all the bijective holomorphic (differentiable in

the complex sense) mappings from Ĉ to itself. This also implies that they are

conformal, or angle-preserving.

2. Möbius transformations carry circles and lines (which can be regarded as

circles passing through ∞, point of infinity) to circles and lines. Thus, giving

a circular domain, any Möbius transformation will map it to another circular

domain.

3. To every Möbius transformation one can associate a matrix

Mf =

[
a b

c d

]
.

Any other matrix which is a (nonzero) scalar multiple of this matrix repre-

sents the same Möbius transformation. Composition of two Möbius transfor-

mations is equivalent to matrix multiplication, i.e., Mf◦g = Mf ·Mg.

4. Given distinct z1, z2, z3 ∈ Ĉ and distinct w1, w2, w3 ∈ Ĉ, there is a unique

Möbius transformation f satisfying f(zi) = wi , i = 1, 2, 3. In other words,

as there are unique circles C1 and C2, defined by z1, z2, z3 and w1, w2, w3

respectively, the transformation f maps the circle C1 to C2 and is unique.

Determining f explicitly is equivalent to finding determinants of four 3 × 3

matrices.

18

It should be noted that there is a natural way to identify the real plane R2

with the complex plane C, so for our purposes we can assume that nodes are in the

complex plane.

2.4 Polyhedron Routing

2.4.1 Spherical Embedding

A graph G is k-connected if the removal of any k − 1 vertices will not discon-

nect the graph. A graph is planar if it can be embedded in the plane. For spherical

representation we only require a combinatorial planar graph (that does not have K5

and K3,3 minors).

A circle packing is a connected collection of circles on any Riemann surface,

whose interiors are disjoint. The intersection graph (the tangency graph or contact

graph) of a circle packing is the graph having a vertex for each circle, and an edge

for every pair of circles that are tangent.

Suppose G is a 3-connected planar graph, and G̃ is the dual graph1 of G, the

following theorem shows the existence of a pair of circle packings for G and G̃

respectively.

Theorem 1 (The Koebe-Andreev-Thurston Theorem) There is a pair of circle

packing P, P̃ , where the intersection graph of P and P̃ are isomorphic to G and G̃

respectively. Furthermore, for any vertex v ∈ G and an adjacent face f , the vertex

circle in P is orthogonal to the face circle in P̃ .

Let e be an edge in G, adjacent to face f1, f2. Then the planes of face circles in

P̃ corresponding to f1 and f2 will intersect at a line tangent to the sphere. All edges

through a vertex v will intersect at a common point in R3. All such kind of line

segments form a convex polytope, which is the realization of the graph G induced

by the circle packing P .

Corollary 2 (Spherical Representation) Each 3-connected planar graph can be

1Each face of G is a vertex of G̃. Each vertex of G is a face of G̃. An edge connecting two
vertices of G̃ if there is an edge shared by the corresponding faces in G.

19

realized by a 3-polytope which has all edges tangent to the unit sphere. The real-

ization is unique up to Möbius transformations.

A Möbius transformation is a map that maps a complex plane to itself, f(z) =
az+b
cz+d

, where a, b, c, d are four complex numbers satisfying ad − bc = 1. A Möbius

transformation is a conformal map and maps circles to circles.

2.4.2 Polyhedron Routing

Given source vi and destination vj , polyhedron routing is a greedy routing

method with distance function d(vi, vj) = −c(vi) · c(vj), where c(vi) is the 3D co-

ordinate of vi in the spherical representation. vi delivers the message to the neighbor

closer to vj . To see that this polyhedron routing guarantees delivery, we note that

the distance function d(vi, vj) is essentially the projection of the vector −→v i on the

vector −−→v j . d(vi, vj) is clearly a linear function of vj and achieves the global min-

imum when vi = vj . The function can not have a local minimum as for a linear

function any local minimum is also the global minimum.

For routing in a sensor network, we first extract a 3-connected planar graph,

compute its spherical representation, and obtain a 3D coordinate for each node.

Then we apply the greedy routing method on the original communication graph.

The non-planar edges can also be used to route messages if they happen to be useful

by the greedy routing standard.

20

Chapter 3

Load Balancing using

Area-Preserving Map

3.1 Introduction

We study the problem of greedy routing in wireless sensor networks and focus

on the issue of load balancing. While load balancing or reducing congestion is

a general objective for most networking scenarios, in a battery-powered wireless

sensor network, this problem becomes more critical. Any subset of nodes used

too much faces the risk of running out of battery prematurely; the functionality of

the network may deteriorate dramatically even when many nodes still have ample

battery life.

3.1.1 Our Approach

The main idea in this paper is to use an area-preserving map φ that transforms

any simply connected domain Ω to a disk D– the only case in which optimal or near

optimal load balanced routing is understood. An area preserving map, intuitively,

preserves area – an ε-area ball is mapped to a piece (not necessarily round) with

total area ε. One of the area preserving maps is the Lambert azimuthal projection,

that projects the sphere to a planar domain in an area preserving way, and is used in

printing world maps. In this paper the reason we use area preserving map is to pre-

serve the traffic pattern (distribution of sources and destinations). If on the original

21

network sources and destinations are uniformly distributed in the domain Ω, then

they are still uniformly distributed in the disk D, after an area preserving map. An

area preserving map does not necessarily preserves angles or length stretch. But the

maximum length stretch d can be computed and is dependent on the specific shape

of Ω. Suppose we use the optimal load balanced routing (minimizing maximum

congestion) inside the disk D, and pull back the routing method on the original

domain Ω, the maximum congestion is bounded by a factor d2 times the maximum

congestion on D, where d is the maximum length stretch of φ. In practice, what this

means is that we can compute a virtual coordinate for each node x in Ω, as φ(x),

the coordinate inside the disk D. Based on the virtual coordinate we can run good

load balanced routing using greedy algorithms. The maximum congestion under

uniform traffic pattern is guaranteed to be bounded by only a factor d2 more. Note

that the factor d2 we compute is via a worst-case analysis.

For load balanced routing on a disk, the most prominent work is done by

Popa et al. [124]. They studied the numerical solution of the optimal load balanced

routing on a disk, though not practical and also proposed a heuristic algorithm,

called the curveball routing, that routes the message on a sphere using stereograph-

ic projection. Curveball routing alleviates congestion near the center but does not

have any bound on how much it can reduce maximum congestion. In our paper use

area preserving map again to find a good solution for routing in a disk. In particular,

by using the Lambert azimuthal projection, we map a disk to a sphere (or part of

it). Then we route using greedy routing with spherical coordinates. This algorithm

gives not only bounded maximum congestion, but also bounded path stretch. It is

the first such algorithm known. Putting two methods together we have an algorithm

that computes virtual coordinates for any simply connected domain such that greedy

routing using this method has bounded stretch and bounded worst congestion. This

is the first such result known for a general network.

In the following we first present the main idea for using area preserving maps

in the continuous domain. We also show the bound on routing stretch and maximum

load, compared to the optimal solution. The distributed implementation of the idea

in a sensor network is presented afterwards together with simulation results.

22

3.2 Load Balancing Using Area Preserving Maps

3.2.1 Problem Definition

In this section we first describe load balancing in the continuous setting.

Throughout the paper we consider a simply connected domain Ω (e.g., no holes). A

routing scheme describes how to find a path between two points inside Ω.

Definition 3 (Routing Scheme) Given a simply connected domain Ω ⊂ R2, a

Routing Scheme Γ is a way of specifying, for every pair of points (p, q) inside Ω, a

path γp,q ⊂ Ω which connects p to q. The set Γ is the collection of all such paths.

In the discrete graph setting, the traffic load is taken as the number of messages

delivered along each edge/through each node. In the continuous setting, however,

there could be various definitions of traffic load, e.g. [49, 50, 121, 124]. In [49]

load is presented as a flux and load balancing is presented as a minmax problem.

We will use the definition of load presented in [124]. The definition we present

below is essentially the same, but described in a way more suited to our purposes.

One should note that although these definitions are different, they nevertheless are

comparable and the basic idea behind them is the same. Furthermore, one can

expect the discrete definitions to agree with the continuous definitions in the case

of a dense network.

Definition 4 (Load) Given a routing scheme Γ for Ω, for any region A ⊂ Ω, define

the load of A (denoted as �Γ(A)) by the following procedure:

1. Choose n source-destination pairs {(ai, bi)}ni=1 uniformly randomly insideΩ.

For all such pairs, find γi, the paths as determined by Γ.

2. Let Xn(A) be the expected length of intersection of the γi with A.

3. Define

�Γ(A) = lim
n→∞

Xn(A)

Area(A)
(7)

Next, define the load at a point p in the domain by:

1. Choose a nested sequence of neighborhoods An whose intersection is p and

which satisfy Area(An) → 0 as n → ∞;

23

2. Define

�Γ(p) = lim
n→∞

�Γ(An) (8)

The load balancing problem we will attack throughout the remainder of this

paper can be formulated now as

Definition 5 (Optimal Load Balanced Routing Problem) Given a simply con-

nected domain Ω in the plane, find the routing scheme Γ such that

max
p∈Ω

�Γ(x) ≤ max
p∈Ω

�Γ′ (x)

for any other routing scheme Γ
′
on Ω.

3.2.2 Area Preserving Map to Disk

First we show how we use area preserving maps to reduce the problem on an

arbitrary domain to that on a disk. For some domains (e.g. the square) a closed

form for an area-preserving mapping to the disk is available. However, this is not

generally always possible and numerical methods are required.

We start with a simply connected domain (with finite area) whose boundary is

a piece-wise smooth curve. For our purposes, we can assume that the boundary is

a polygon with k vertices. This is reasonable because any smooth boundary can be

approximated by polygons. Note that k is often much smaller than the number of

sensors, n, inside the domain.

Let Ω denote the interior of such a polygonal region, with P being the bound-

ary polygon. Our goal is to map Ω to a disk D centered at the origin (of area equal

to that of Ω) in an area-preserving way. Consider a real valued function f defined

on Ω in such a way that the level sets of this function are simple closed curves that

fill up Ω. We will call f the contour generating function. Given such an f , we will

first define an area-preserving mapping from Ω to the disk in terms of f . We will

then show how to obtain f for any given Ω in a simple manner.

3.2.2.1 Area-Preserving map using the contour generating function

Let C be the family of contours of f , i.e. C is a set containing all simple closed

curves γ ⊂ Ω, such that there exists cγ , f(x, y) = cγ for all points (x, y) ∈ γ. Let

24

O be a point interior to all the curves in C, and let L be a path joining O to some

point on P such that L intersects each curve in C once. We will assume that f has

continuous first order partial derivatives everywhere except at O, and not both of

the partials are zero at any point. See examples of contoured regions in Figure 2.

The area-preserving mapping φ : Ω → D we use was first described in [21]. It

has the following properties:

1. Every curve γ ∈ C is mapped to a circle inside D centered at the origin.

Hence the contours are mapped to concentric circles.

2. The path L is mapped to any given radius of D.

To construct φ, we first modify our f as follows. Define a function f̃ on Ω such that

[f̃(x, y)]2 at any point (x, y) ∈ Ω equals 1/π times the area inside the contour in C
passing through (x, y), i.e.

f̃(x, y) =

√
1

π
Area(Int γ(x,y)), (9)

where γ(x,y) ∈ C is the contour passing through (x, y). Choose polar coordinates

(R,Θ) in D where Θ is measured from the given radius to which we want to map

L. The map φ : (x, y) → (R,Θ) is now given by :

R(x, y) = f̃(x, y) (10)

Θ(x, y) =
1

f̃(x, y)

∫ x,y

Y (x,y)

ds

(f̃ 2
x + f̃ 2

y)
1/2

, (11)

where Y (x, y) is the point of intersection of L with the curve in C through (x, y),

f̃x and f̃y are the partial derivatives, and the integral is evaluated along the curve of

C from Y (x, y) to (x, y) in the direction for which the interior is on the left.

For the proof that this map is indeed area-preserving, we refer the reader to

[21]. Observe that any contour γ passing through (x, y) gets mapped to a circle of

radius f̃(x, y), and by the definition of f̃ , they have the same area. In general, there

are many area-preserving mappings from Ω to D; we choose the above one because

of its nice property of mapping contours to circles. Furthermore, we will see later

that by choosing O to be the point with the maximum load, we can achieve good

results for load balancing. We show a simple example of a triangle mapping to the

disk in Figure 3.

25

Figure 3: An example of area-preserving map from a triangle to a disk

3.2.2.2 Finding the contour generating function

The previous section assumed the knowledge of f - the contour generating

function. In this section we describe how we generate contours for an arbitrary

domain.

For many shapes, the contours can be generated easily just by shrinking the

boundary by appropriate factors. For instance, consider the case of star-shaped

polygons P; one can find the center of this polygon p (the point from which the

entire polygon is “visible”) and find the distance of every point x on the boundary

to p. Let Lpx denote the line segment between p and x and �px denote its length.

Define the ith contour γi by

γi = {qx ∈ Lpx : distance(qx, p) = εi�px; x ∈ P}
where the εi ∈ (0, 1) are constants. For examples of this, see the contoured

domain on the left in Figure 2. Note that the contours attained in this way are

non-differentiable, i.e. they will have corners.

We describe next one elegant and simple method to get a (smooth) contour

generating function for any domain Ω. Let g : Ω → D be the conformal mapping

from the polygon to the disk. For conformal mapping between domains whose

26

(i) (ii)

Figure 4: A cross sectional view of the sphere and a plane tangent to it at south

pole. (i) Area preserving map: each point on the sphere (except the northpole) is

projected to the plane along a circular arc centered at the point of tangency between

the sphere and plane. (ii) Stereographic map: a point p on the plane is mapped to

the intersection of the line through p and the north pole with the sphere.

(i) (ii)

Figure 5: Different methods for finding contour generating function. (i) Contoured

star-shaped polygon using shrinking boundary method. (ii) Contoured pentagon

using conformal mapping method.

27

boundary is a polygon and the disk, there is a nice formula called the Schwarz-

Christoffel formula which was developed by the German mathematicians Hermann

Amandus Schwarz and Elwin Bruno Christoffel in the mid-19th century. Various

softwares implementing this mapping are widely available, including a MATLAB

toolbox. The Schwarz-Christoffel formula [46] describes the mapping of the upper

half plane H onto the interior of a simple polygon.It maps the real line (which is the

boundary of H) onto the boundary of Ω, which is the the polygon P . This mapping

h : H → Ω (with continuous extension to the boundary) is given by:

h(z) = A

∫ z n∏
k=1

(ζ − zk)
−βkdζ +B, (12)

where the pre-image of wk (the vertices of the polygon) on the real line is zk, i.e.,

wk = h(zk); the polygon tangent turning angle at wk is βkπ; A and B are two

constants. The unit disk D is conformally equivalent to H via the map e : D → H

given by

e(z) = i
1 + z

1− z

Using this, we get a map h̃ : D → Ω given by h̃ = h ◦ c. This is related to our

conformal map g from Ω to D simply by g = h̃−1.

Now we define f : Ω → [0, 1] by f(x, y) = |g(x, y)| where |g(x, y)| denotes

the distance of g(x, y) from the origin. It is now clear that f−1(a) for some a ∈ [0, 1]

will be a simple closed curve γ inside Ω. Furthermore, the pre-image of the interval

[0, 1] can be seen to be a curve joining O to g−1(1) which intersects every contour

only once. We define L := g−1([0, 1]) and then use the mapping described in

the previous section. The second figure in Figure 2 illustrates this method for a

pentagon. As mentioned, the contours are smoothened out here. Care should be

taken when deciding on which point inside the polygon is to be mapped to the

origin on the unit disk; essentially the point should not be too close to the boundary

of the polygon, since then the contours would no longer be uniformly dense.

3.2.2.3 Approximation load balancing solution

In this section we show why using area-preserving maps guarantees an approx-

imate solution to the load balancing problem on the original domain Ω. Specifically,

28

we will show that, given a factor c approximation to the solution of the minmax

problem on the disk, we can achieve a factor cD(φΩ) approximation to the minmax

problem on an arbitrary domain Ω, where D(φΩ) is a constant depending only on

the area-preserving map between Ω and the disk. Later we discuss load balanced

routing solutions for a disk with constant approximation factor c.

To describe our bounds, we need to define the Jacobian of our mapping. Set

u := R cosΘ and v := R sinΘ where R and Θ are the same as in Equations 10 and

11, but now we use the conformal mapping g and the contour function f described

in the previous section. The new equations for R and Θ now become:

R(x, y) = f̃(x, y) :=

√
1

π
Area (Int {f−1(f(x, y))}) (13)

Θ(x, y) =
1

f̃(x, y)

∫ x,y

g−1(f(x,y))

ds

(f̃ 2
x + f̃ 2

y)
1/2

(14)

The area-preserving map can now be written in axis-parallel coordinates as φ :

(x, y) → (u, v). The Jacobian matrix is a 2 × 2 matrix of the partials of u and

v with respect to x and y. By change of variable formulae, one can see that the

following equations hold:

∂u

∂x
= (cosΘ)

∂R

∂x
− (R sinΘ)

∂Θ

∂x
∂u

∂y
= (cosΘ)

∂R

∂y
− (R sinΘ)

∂Θ

∂y
∂v

∂x
= (sinΘ)

∂R

∂x
+ (R cosΘ)

∂Θ

∂x
∂v

∂y
= (sinΘ)

∂R

∂y
+ (R cosΘ)

∂Θ

∂y

The partials of R and Θ with respect to x and y cannot be written down in a

nice form, but one can nevertheless form the matrix J(φ) with the four entries given

as above. Now, φ is area-preserving, which is equivalent to the determinant of J(φ)

being identically 1 at all points in the domain. Let λ1(x, y), λ2(x, y) denote the two

eigenvalues of J(φ) (not necessarily real). Note that λ1λ2 = 1 at every point, and

hence

|λ1| = 1

|λ2|

29

Let d(x, y) = max(λ1(x, y), λ2(x, y)), which is the maximum length distor-

tion at point (x, y). When p = (x, y), we will just write d(p). Let

d(φΩ) = sup
p∈Ω

d(p) (15)

The following theorems hold for any area preserving map φ between two simply

connected domains Ω and Ω
′

with the same total area. The first theorem tells us

how the load function changes after applying the mapping and the subsequent ones

then compare the minmax solutions. Note that in our case, Ω
′
= D, the disk with

total area equal to that of Ω.

Given φ : Ω → Ω
′

area-preserving, define J(φ) and d(p) analogously, and let

d(φΩ,Ω
′) = sup

p∈Ω
d(p).

Theorem 6 Given a routing scheme Γ on Ω and φ : Ω → Ω
′
area-preserving,

denote by Γ
′
the routing scheme on Ω

′
which allots the path φ(γ) to the pair (a, b),

where γ is the path joining φ−1(a) and φ−1(b) as dictated by Γ. Then

1

d(p)
�Γ(p) ≤ �Γ′ (φ(p)) ≤ d(p)�Γ(p) ∀p ∈ Ω (16)

Proof 7 Fix an ε > 0. By continuity of Jφ(x, y), ∃δ > 0 such that for any p
′
in the

disk of radius δ around p (denoted as Bδ(p)),

d(p
′
) < d(p) + ε, and (17)

1

d(p′)
>

1

d(p)
− ε (18)

Let Bδ(p) ⊃ Bδ1(p) ⊃ Bδ2(p) ⊃ · · · be a sequence of nested neighborhoods

of p such that ∩∞
i=1Bδi(p) = p. We will calculate the load at φ(p) using the sequence

φ(Bδi(p)). Note that φ(Bδi(p)) has the same area as Bδi(p).

Pick n source destination pairs uniformly randomly in Ω
′
. Since φ is measure

preserving, this amounts to picking n pairs uniformly randomly in Ω and looking at

their images under φ. Consider any source destination path γ (joining two points

a and b) intersecting Bδi(p) in Ω. The fact that φ is a homeomorphism implies that

φ(γ) intersects the neighborhood φ(Bδi(p)) of φ(p) ∈ Ω
′
.

Now let γi = γ ∩Bδi(p). As a consequence of Equations 17 and 18, the length

of φ(γi), denoted as |φ(γi)| satisfies

30

(
1

d(p)
− ε

)
|γi| < |φ(γi)| < (d(p) + ε)|γi| (19)

as a consequence of which the load of Bδi(p) and φ(Bδi(p)) (both of which

have the same area) satisfy

(
1

d(p)
− ε

)
�Γ(Bδi(p)) < �Γ′ (φ(Bδi(p))) < (d(p) + ε)�Γ(Bδi(p))

Taking limit as i → ∞ gives(
1

d(p)
− ε

)
�Γ(p) ≤ �Γ′φ(p) ≤ (d(p) + ε)�Γ(p) ∀p ∈ Ω (20)

Since ε > 0 chosen above was arbitrary, this proves the theorem.

Given a routing scheme Γ, we will denote the maximum load according to

this routing scheme as �Γ. The next theorem shows how the optimal load balanced

routing solution to Ω is related to the optimal load balanced routing solution on Ω
′
.

Theorem 8 Let Γ∗ and Ψ∗ be the optimal load balanced routing schemes on do-

mains Ω and Ω
′
respectively, i.e.

�Γ∗ ≤ �Γ and �Ψ∗ ≤ �Ψ (21)

for all routing schemes Γ on Ω and Ψ on Ω
′
. Let φ be an area-preserving map from

Ω to Ω
′
and define d(φΩ,Ω′) as above. Then

1

d(φΩ,Ω′)
�Γ∗ ≤ �Ψ∗ ≤ d(φΩ,Ω

′)�Γ∗ (22)

Proof 9 We first prove �Ψ∗ ≤ d(φΩ,Ω
′)�Γ∗ . Let Γ

′
denote the push-forward of the

routing scheme Γ∗ via φ, i.e. Γ
′
allots the path φ(γ) to source-destination pair (a, b)

inside Ω
′
, where γ is the path joining φ−1(a) to φ−1(b) as dictated by Γ∗.

Since Ψ∗ is optimal, we know that �Ψ∗ ≤ �Γ′ . Furthermore, by Theorem 6,

we know that �Γ′ ≤ d(φΩ,Ω′)�Γ∗ , since the two routing schemes arerealted by φ.

Combining these two inequalities we obtain the claimed result.

Similarly, by interchanging the roles of Ω and Ω
′
, and by noting that the eigen-

values of J(φ−1) (the Jacobian of φ−1) are the inverse of the eigenvalues of J(φ),

we get that �Γ∗ ≤ d(φΩ,Ω′)�Ψ∗ , which proves the other inequality.

31

Remark. The above theorem holds for any area-preserving homeomorphism be-

tween the two domains. The maximum traffic load in optimal routing solutions on

the two domains are bounded from each other by the maximum length stretch of the

area preserving map. Different from other approximation algorithms in the litera-

ture in which the constant bound is a fixed value, here clearly the length stretch is a

property of the shape of Ω – the more similar Ω is to a disk, the smaller the stretch

is. Besides, not only does the above theorem help us prove the approximation guar-

antee of our method, it also gives non-trivial lower bounds for the best achievable

load on any given domain. This has not been accomplished before. It can be intu-

itively understood that any routing algorithms on domains with narrow bridges/cuts

necessarily create high traffic load at the bridge area – the shape matters. This the-

orem makes it more precise. If our area preserving mapping has length distortion

at most say δ, then we know that the optimal on the domain is at least 1/δ times the

minimum maximum load on the disk, which is shown to be at least1 0.45 [124].

The next theorem tells us how to obtain an approximate solution on the original

domain by using an approximate (or exact) solution on the target.

Theorem 10 Let Ψc be a factor c approximation of the optimal solution to the

minmax problem on Ω
′
, i.e. �Ψc ≤ c�Ψ∗ , where Ψ∗ is as in Theorem 8. Let Γ be the

routing scheme on Ω that allots the path φ−1(γ) to the source-destination pair (a, b)

inside Ω, where γ is the path between φ(a) and φ(b) as dictated by Ψc. Let Γ∗ be

the optimal routing scheme on Ω. Then there exists a constant D(φΩ,Ω′) depending

only on the area-preserving mapping between Ω and Ω
′
such that

�Γ ≤ cD(φΩ,Ω
′)�Γ∗ (23)

Proof 11 Again, since Γ and Ψc are related by φ−1, and since the eigenvalues of

J(φ−1) are inverses of eigenvalues of J(φ), we have that �Γ ≤ d(φΩ,Ω′)�Ψc . We

now have the follwing string of inequalities

10.45 is the average load of a node in the disk when one uses shortest path routing. Clearly,
no other routing scheme can have a maximum load smaller than this, because the maximum of this
routing scheme must be larger than its average, which in turn must be larger than the average of
shortest path routing since it minimizes the total load. The number 0.45 can be explained in the
network setting intuitively as follows. Take any node p in the network and draw a small disk of
radius ε around it. Consider all shortest paths that go through this disk and find the length of the part
lying in this disk. Then the total length of these parts (over all such paths) is (0.45)πε2.

32

�Γ ≤ d(φΩ,Ω′)�Ψc ≤ cd(φΩ,Ω′)�Ψ∗

≤ cd2(φΩ,Ω′)�Γ∗ (24)

where the second inequality follows by the hypothesis on Ψc and the last

inequality follows by Theorem 8. Setting D(φΩ,Ω′) = d2(φΩ,Ω′), we obtain the

claimed result.

This theorem, translated in our setting by putting Ω
′
= D, says that if we can

find an approximate solution to the load balancing problem on the disk, just pulling

it back via our area-preserving mapping described in Section 3.2.2.1 gives us an

appoximate solution to the load balancing problem on the domain Ω.

3.2.2.4 Length stretch bound

It is clear that any other routing scheme on the domain Ω will generate longer

paths than shortest path routing. In particular, any attempt for load balancing will

necessarily make the average path length longer and the total traffic load higher.

Now we will show that by using area preserving map φ, we also bound the path

stretch by a constant factor dependent on d(φ). Assume that Γ and Ψ are shortest

path routing schemes on Ω and D respectively, and let Ψc be a routing scheme on

the disk such that the path it generates between a source-destination pair (u, v) is at

most c times the length of the shortest path between u and v, for all pairs (u, v). We

will write this as

|RΨc(u, v)| ≤ c|RΨ(u, v)|
here RΨ(u, v) denotes the route between u and v under Ψ and |.| denotes its length.

Now let φ be an area-preserving map from Ω to D, and define d(φΩ) as in

Equation 15. Let Γ
′

be the pull-back of Ψc via φ.

Theorem 12 Under the above hypothesis, there exists a constantD(φΩ) depending

only on the area-preserving map φ such that

|RΓ′ (a, b)| ≤ cD(φΩ)|RΓ(a, b)| ∀a, b ∈ Ω (25)

33

Proof 13 Let Ψ0 be the push-forward of Γ (the shortest path routing on Ω) via φ.

From the proof of Theorem 6, one can see that the image of a route R in Ω (denoted

as φ(R)) has length at most d(φΩ) times that of R. We now have the following

string of inequaities:

|RΓ′ (a, b)| ≤ d(φΩ)|RΨc(φ(a), φ(b))|
≤ cd(φΩ)|RΨ(φ(a), φ(b))|
≤ cd(φΩ)|RΓ∗(φ(a), φ(b))|
≤ cd2(φΩ)|RΓ(a, b)| (26)

where the second inequality follows by the hypothesis on Ψc, the third by the

fact that shortest path routing Ψ will have shorter lengths than Γ∗ and the last

inequality follows by the same observations as the first (since Γ∗ is the image of Γ,

the shortestpath routing on Ω).

Setting D(φΩ) = d2(φΩ), the theorem is proved.

Note that the above theorem also holds for any domain Ω
′

and an area-

preserving mapping φ from Ω to Ω
′
. We will show in the simulation section that

in all practical scenarios, the stretch is much smaller than the claimed constant and

that we always overestimate the maximum stretch in our proof.

3.2.3 Load Balanced Routing in a Disk

Having reduced the problem on an arbitrary domain to that on a disk, in this

section we focus solely on the problem of routing in a disk. The problem of finding

the optimal load balanced routing inside a disk was initiated in [124]. The authors

examined properties of the optimal solution and then developed a numerical solu-

tion for the optimum. This solution is not practical. In addition, the authors also

used a technique called Curveball Routing which first maps the disk to the sphere

using stereographic projection, an angle-preserving mapping. The nodes in the disk

are then assigned virtual coordinates on the sphere, and routing is done using the

spherical metric in a greedy fashion.

34

Although this is an efficient heuristic, there are no results as to how far this

solution is from the minmax solution for the disk (the only available bound is that

on the maximum stretch using this routing, published in [96]).

We will now propose a routing scheme on the disk which is both a constant

factor from the optimal minmax solution and also has bounded stretch compared

to shortest path routing. The theorems in the last section then help us get the routing

scheme on Ω with the same properties.

Instead of stereographic projections, one can also use the Lambert azimuthal

equal-area projection from the disk to the sphere. Denote the (open) disk of radius

r centered at the origin in the plane by Dr, and set D := D1. The Lambert azimuthal

projection, g : D2 → S2 \ {(0, 0, 1)} is the area preserving map from the disk of

radius 2 to the sphere of radius 1 (centered at the origin in 3-D) minus its north pole

given by:

g(x, y) =

(
x

√
1− x2 + y2

4
, y

√
1− x2 + y2

4
,
x2 + y2

2
− 1

)
(27)

One can see that g maps the disk of radius
√
2 to the lower hemisphere, the

circle of radius
√
2 to the equator, and the remainder of the bigger disk with radius

2 to the upper hemisphere. Moreover, it is clear that just by scaling the original

network, one can arrange for the map to cover different parts of the sphere. A

nice property of this map is that it is area-preserving, i.e. the area of any region

in the domain is equal to the area of its image under g. A comparison of the area

preserving map and the stereographic projection is shown in Figure 4.

To route on the disk, we give the nodes virtual coordinates on the half sphere

(chosen for convenience), and route on the half sphere greedily using the spherical

metric. Note that depending on how much we want the final routes to be pushed

towards the boundary of the original domain, we increase the part of the sphere we

cover. Thus we scale our disk to a radius close to 2 if we want to push routes more

towards the boundary and closer to
√
2 if we want them pushed lesser.

Let SH denote the lower half sphere, and Γ denote the greedy routing using

spherical metric on it. For two nodes a, b ∈ D√
2, we choose the path g−1(Rg(a),g(b)),

where Rg(a),g(b) is the shortest path between g(a) and g(b) on SH using Γ. Denote

this routing scheme on D√
2 as Ψ. Furthermore, let Δ denote shortest path routing

35

on the disk. We first show that paths under Ψ are not arbitrarily longer than paths

in Δ.

3.2.3.1 Bounded Stretch

Theorem 14 For any source destination pair (a, b) inside D,

|RΨ(a, b)| ≤ 4|RΔ(a, b)| (28)

Proof 15 First we will need to calculate the maximum stretch in any direction at

a point. We will prove that given any curve γ ∈ D√
2, its length is stretched by at

most a factor of 2 under the Lambert azimuthal map.

Note that the constant 4 appearing above is a worst-case scenario; which can

actually be shown to never occur. In our simulations, the stretch was never larger

than 1.9.

3.2.3.2 Approximation of Optimal

Now, let Ψ∗ be the optimal routing schemes on D√
2. We will now give a bound

on the constant c by which Ψ is away from Ψ∗. Let β denote the maximum load

(which occurs at the south pole) when one uses greedy routing on the lower half

sphere. For the load distribution on the lower half sphere under greedy routing, one

can perform a similar integration as in Theorem 1 in [124] and find β exactly.

Theorem 16 Under the above hypothesis,

�Ψ ≤ (4.5)β�Ψ∗ (29)

Combined with an obvious bound of β < 2π, which is the maximum load at

the center of a disc using greedy routing (Theorem 1 in [124]), we see that the con-

stant c mentioned above is at most 9π. Again, we would like to remind the reader

that a more detailed analysis might give better bounds. In the simulation section we

compare the maximum load of this routing (coming from Lambert azimuthal map)

to the approximate optimal routing on the disk given in [124]; they appear to be

very close.

36

3.3 Algorithm

Having laid out the theoretical foundation for our method, we will now proceed

to describe how to implement it in a distributed fashion. Assume that the sensors

are distributed densely uniformly inside a simply connected domain Ω. Basically,

there are four steps in our algorithm:

1. Compute the contour generating function using conformal mapping or the

shrinking method.

2. Compute the area-preserving map and give virtual coordinates to the sensor

nodes in the disk.

3. Compose with the area-preserving Lambert azimuthal map from the disk to

the sphere and give virtual coordinates to the sensor nodes on the sphere.

4. Route greedily on the sphere using these virtual coordinates and the spherical

metric and follow the corresponding path in the original domain.

Note that instead of 3, one can also use stereographic projection to map the disk to

the sphere, i.e., use curveball routing on the disk. Moreover, after Step 2, one can

also use the approximate optimal scheme described in [124] and route directly on

the disk using this routing scheme, without going to the sphere. We now proceed to

describe the steps in detail.

3.3.1 Compute Contour Generating Function

The goal of this step is for every sensor node z to find its image in the unit

disk under the conformal mapping g(z). As mentioned in section 3.2.2.2, the map

e given by e(z) = i(1+ z)/(1− z) maps the unit disk to the half plane conformally

(with inverse given by e−1(z) = (z − i)/(z + i)), so it is enough to find the point

w such that h(w) = z, where h is given by Equation 12. The map h depends only

on the polygon P - boundary of the domain Ω. Another freedom in the Schwarz-

Christoffel mapping is that we can choose which node in Ω to be mapped to the

origin of disk. For our purposes, we feel it is reasonable to map the node with

expected high traffic load (e.g., the centroid of P) under the shortest path routing

scheme to the origin. This is because the method that we use to alleviate load in

37

the disk assume the center to be overloaded and then try to route away from it.

However, this node should not be very close to the boundary as stated earlier, for so

the contours would not be uniformly dense; if this happens, we choose an arbitrary

node closer to this node, but is farther from the boundary.

With all this information, a single node (e.g., the base station) computes the

prevertices zk on the real line, and also the constants A and B. Only the informa-

tion about the prevertices zk, the polygon angles βk, and the constants A and B in

the Schwarz-Christoffel mapping h is relayed to all nodes via flooding. Using the

functional form of h in Equation 12, the nodes individually compute their own pre-

images and compose with e−1 as above to find their coordinates in the disk. Once

every sensor node with original coordinate z has found g(z) (its image under the

conformal map to the disk), it calculates f(z) which is just the distance of g(z) from

the origin. f(z) is the contour generating function.In this method, the information

relayed is only O(k), where k � n is the number of vertices of the polygon and is

much smaller than n, the number of sensors in the domain. The contour function for

the shrinking method for star-shaped polygons is just the distance of every node to

the center of the star, which can be computed by each node individually by routing

to the center node.

3.3.2 Compute the Area-Preserving Map

Now we describe how to map Ω to D (the disk of area equal to that of Ω) in

a distributed manner. For ease of description we assume first that D is a unit disk;

the method described below can easily be generalized for a larger disk. Recall that

the nodes on the same contour (the same value under f) will be mapped to the same

circle in D. Thus there are two steps for computing the map. First we need to

form the level set of f in a distributed way. Second we will compute the virtual

coordinate for each node under the area preserving map.

There has been previous work on finding contours, one of such robust algo-

rithms in a distributed setting is to use the cut locus [157, 166]. In fact, in this

setting the level sets are simple – f has only a single minimum inside Ω and no

saddles. We discretize the interval [0, 1] into 1/ε intervals of width ε each. Here ε

depends on the density of the nodes in the network and is in the order of O(π/n).

38

We now find one contour cycle γi for each interval [iε, (i + 1)ε], 0 ≤ i ≤ n/π.

The set of nodes whose values are inside [iε, (i + 1)ε], denoted as Ci, naturally

occupies an annulus. Note that we will choose ε according to the network density

such that Ci is connected. One node, denoted as the root of this contour, ri floods

within Ci. For the purpose of the computations later, we will choose the roots ri

for different levels along a path that maps to a radius under the conformal map g.

That is, the nodes whose projection under g on the positive x-axis (or is the closest

to the x-axis among neighbors) will be chosen as the roots for the contours. After

the flooding from ri in Ci, the cut locus is defined as a pair of neighboring nodes

whose shortest paths to the root are different and far apart. Then connecting the

shortest path for the cut pair will give us a closed cycle γi = {zij} representing the

contour at the range [iε, (i + 1)ε]. The nodes within the band that are not selected

to be on the contour cycle will be rounded to the nearest node on the contour cycle

and will be handled later. Remark that the flooding is only restricted to the nodes

inside the annulus and flooding for different levels does not overlap. Thus the total

communication cost is linear in the number of nodes.

At the end of this procedure, we have a closed contour γi with a root ri. Now

we can circulate another message along γi to calculate the area inside γi. Specifi-

cally the area of a non-self-intersecting polygon with vertices (x1, y1), · · · , (xn, yn)

is
1

2

(∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣+
∣∣∣∣∣x2 x3

y2 y3

∣∣∣∣∣ + · · ·+
∣∣∣∣∣xn x1

yn y1

∣∣∣∣∣
)
,

where |M | is the determinant of M . Thus the message circulating on γi will com-

pute the determinant involving the current node and the previous node on γi and

summing up along γi will give the area inside γi when the message returns to ri.

Then ri forms

f̃i =

√
1

π
Area(γi)

and sends this value to all nodes in the contour γi. This gives the radius of the circle

that γi is mapped to. In polar coordinates (R,Θ), R for node zij lying on contour γi
is just f̃i, i.e R(zij) = f̃i, ∀j. Now we will find the angular coordinate for each node

of γi by computing a (discrete) integral along γi, which approximates the integral

in Equation 14.

39

First we need to calculate the partial derivatives. For every node zij on the

contour γi:

1. Locates neighbors x+
ij , x

−
ij , y

+
ij , and y+ij , where x+

ij (y+ij) is the closest neighbor

in the positive direction of the horizontal (vertical) line passing through zij ,

x−
ij (y−ij) is the closest neighbor in the negative direction of the horizontal

(vertical) line passing through zij . Find their values under f̃ through local

communications.

2. Computes

vx(zij) =
(f̃(x+

ij)− f̃(x−
ij))

distance(x+
ij , x

−
ij)

; vy(zij) =
(f̃(y+ij)− f̃(y−ij))

distance(y+ij , y
−
ij)

and vij =
1√

(vx(zij))2+(vy(zij))2
.

For computing Θ(zij), we start from the root of the contour ri = zi0, for

which Θ(ri) = 0. Now we just discretize the integral in Equation 14. Let Vi0 =

0. A node zij gets a value Vi(j−1) from node zi(j−1). It then adds the quantity

vij(distance(zij , zi(j−1))) to this value and passes it as Vij to node zi(j+1). In other

words, the sum

Vij =

j∑
k=0

vij(distance(zij , zi(j−1)))

is updated by node zij . We finally define

Θ(zij) =
Vij

f̃i

In this way all the nodes on contours find their positions inside the disk in polar

coordinates. Setting u = R cosΘ and v = R sinΘ gets them the cartesian coordi-

nates. Denote this map as φ : (x, y) → (u, v).

For nodes that are not on any contour in the above method, a simple “interpo-

lation” function can be used. Pick such a node at original coordinate z ∈ Ω. By

simple local queries, this node can locate a quadrilateral ABCD such that z lies in

the interior of this quadrilateral, and all nodes at A,B,C and D lie on some contour.

Hence by knowledge of this quadrilateral and the quadrilateral φ(ABCD), this n-

ode can compute φ(z). If we want coordinates inside the unit disk, a simple scaling

by the radius of the disk suffices.

40

3.3.3 Routing on Virtual Coordinates

Having obtained the coordinates on the disk D, we can follow three methods

now:

Using Lambert azimuthal Projection. The coordinates obtained in the disk D
can be lifted to the sphere using the Lambert azimuthal equal area projection as in

Equation 27. Note that by scaling the disk D to disks of any desired radius, we

can cover either the half sphere (R =
√
2) or more portions of the sphere. In our

simulations we provide different values of R for which we apply this map.

Once the nodes have virtual coordinates on the sphere, routing proceeds greed-

ily using the spherical metric.

Using Approximate Optimal. An approximate optimal solution to the load bal-

ancing problem on the disk was described in [124]. However, since the optimal is

complicated, one cannot hope to get closed formulae for the route from a source to

a destination. We refer the reader to Section 3.4 of [124] for details on how to route

using this scheme. In our implementation, we weight each edge by its distance r to

the center of the disk using the formula 1.8r3 − 3.1r2 + 2.3. And we compute the

shortest path in the weighted graph and compare the performance with our methods.

Using Stereographic Projection. This is similar to the method above, except that

the projection used in this case form the disk to the sphere is the conformal stereo-

graphic projection. We refer the reader to [124] for details. Again, routing is done

greedily using spherical metric on these virtual coordinates.

For an arbitrary domain, greedy routing can get stuck at a local minima. How-

ever, because our coordinates are either in the disk or on the sphere (both convex

shapes), for a dense network it is very unlikely that greedy routing gets stuck. More-

over, if the density is not high enough and greedy routing does get stuck, we can

still ensure delivery by using the contours. The node at which the packet is stuck

can always use the “contour” routes to route along its contour until it finds a node

that can continue greedy routing. Although this might change the load function, the

effect would not be drastic as 1) Such instances would be rare due to convexity of

the target domain in which the virtual coordinates lie and 2) The expected detour

would be very small. In the next section, we always compare our newly developed

methods to shortest path routing on the original domain Ω because greedy routing

41

can get stuck, in which case packets are not delivered, and our conclusions about

the change in load function would be erroneous.

3.4 Simulations/Experimental Evaluations

To evaluate the load reduction and routing stretch of our algorithm, the exper-

iments are performed in two phases; first we demonstrate the performance of our

algorithm in the disk case. We then reduce the problem on an arbitrary domain to

that on the disk using area-preserving mapping and use the previous algorithm on

the disk. Our observations can be summarized as follows:

1. When the original network is a disk, Lambert azimuthal mapping performs

at least as well as curveball routing when it comes to reducing load. It also

does not suffer from the problem of a heavily loaded boundary, which is very

apparent in the approximate optimal routing scheme on the disk. Loads in

the region near the disk are slightly higher than those in the approximate

optimal [124]. The maximum routing stretch of Lambert azimuthal method

is less than 1.9.

2. For a general simply connected domain, applying the area-preserving map to

the disk followed by any of the three methods above gives a major reduction

in load over shortest path routing on the domain. The reduction is similar for

a considerable range of varying shapes.

3.4.1 Routing on Disk

In the first phase of our experiments, we compared the area preserving map

algorithm to shortest path routing, the optimum approximation [124], and stereo-

graphic projection method curveball [124].

We consider a unit disk network model with nodes on a perturbed grid; all

nodes have the same radius of communication, and the communication range is set

for each node to have an approximate degree of 8. Nodes are then given different

virtual coordinates based on the type of routing algorithm. For example, curveball

42

routing uses stereographic mapping to sphere, and Lambert’s area preserving map-

ping (Eqn. 27) projects the original coordinates onto a sphere minus the north pole

(or a smaller portion of it).

For the case of a disk, the two quantities we are interested in are the average

load over a circle of radius r (as a function of r) and the maximum load in the disk.

For each routing method, we ran all-pairs shortest path over the network with a

corresponding method for weighing edges.

For shortest path routing, the edge weight is simply set to be the Euclidean

distance between nodes. For our method and curveball routing, since we are routing

on the sphere by the virtual coordinates, the weight is the geodesic distance between

these virtual coordinates. Optimum approximation is a little different from previous

methods. Based on the optimal cost function in [124], each node is given a score

based on its radius on the unit disk according to a polynomial. With this score,

the edge between nodes is weighted by the product of the average score of each

end-nodes and its Euclidean distance.

To evaluate load distribution on different areas of the unit disk network, we

partition the disk into annuli of the same width. Fig 6 on a unit disk with 315 nodes

and an average degree 7 insinuates that both Lambert’s mapping and curveball re-

duce loads near the origin compared to shortest path routing; and do not do so at

the cost of increasing loads at the boundary like the optimal approximation.

Fig. 7 and Fig. 8 illustrate the results in a unit disk graph with 2000 nodes.

Since most of the paths used by shortest path routing pass through or near the center

of the disk, both the average and maximum load of nodes are higher when closer to

the center. By adjusting the radius of the disk for Lambert’s mapping, we can “push

out” the load from the center to the boundary. The maximum max load decreases

by 37.8% of the shortest path at radius r = 1.6, is 19% lower than that of the

optimal approximation (which performs well near the origin but increases towards

the boundary), and is almost the same as the best achieved by Curveball routing at

r = 1.1. For average load, the maximum average load drops to 40.2% of the shortest

path routing (r = 1.7). Compared to curveball and the optimal approximation, the

average load is about the same in area near the origin, but lower in the far away

from origin areas.

To understand the stretch ratio of Lambert’s mapping, we generate 10 random

43

networks with 300 to 1000 perturbed grid nodes with an average degree around 8,

and map them to half sphere (r =
√
2). While Thm. 14 suggests an upper bound

of 4, we actually got an average stretch ratio of 1.86, and it was never above 1.89.

Note that the stretch factor for curveball is around 1.6.

AVG=2448, MAX=7192
Shortest Path

AVG=2621, MAX=5714
Optimum Approx.

AVG=2514, MAX=5056
Lambert's R=1.5

AVG=2521, MAX=5204
Curveball R=1

Figure 6: Load distribution of each routing algorithm in the unit disk network.

In this figure, each node is represented by a circle, and the diameter of circle is

proportional to the traffic load at that node.

3.4.2 Routing on a Simply Connected Domain

We now evaluate our algorithm on differently shaped simply connected do-

mains. As mentioned in Sec. 3.2.2.1, for a given simply connected domain, the

area preserving map gives virtual coordinates in the unit disk while maintaining the

traffic pattern. In this way, any load balancing algorithm over unit disk can help

benefit the process of balancing load on an arbitrary domain.

Fig. 9 shows some examples of area preserving maps over domains. The point

44

Lambert's r=1.4
Lambert's r=1.5
Lambert's r=1.6
Lambert's r=1.7
Shortest Path
Optimum
CurveBall R=1
CurveBall R=1.1

A
ve

ra
ge

 L
oa

d
C

ou
nt

0

20000

40000

60000

80000

Distance From Center (%)

00 10 20 30 40 50 60 70 80 90 100

Figure 7: Histogram of the average load for a unit disk network, as a function of

distance from the center.

45

Lambert's r=1.4
Lambert's r=1.5
Lambert's r=1.6
Lambert's r=1.7
Shortest Path
Optimum Approx.
CurveBall R=1
CurveBall R/1.1

M
ax

 L
oa

d
C

ou
nt

0

20

40

60

80

100

120

140

160×103

Distance From Center (%)

00 10 20 30 40 50 60 70 80 90 100

Figure 8: Histogram of the maximum load for a unit disk network.

46

inside the polygon which is mapped to the origin inside the disk is chosen to be the

highest loaded point as long as it is not very close to the boundary. If it is close to

the boundary then we take a point more in the interior and choose that as the center.

Once the given domain is mapped to a unit disk, we can apply any unit disk

load balancing routing algorithm on it. Fig. 9(c) presents the load balancing per-

formance on a cross shape domain. With Lambert’s mapping, the maximum load

of the domain is reduced by 18%; while Curveball and optimum approximation

achieve even better, up to 30%. This clearly shows that area-preserving mapping to

a unit disk drastically reducec the load. Note that for ”fat” and convex domains, the

reduction in load was even more prominent, which is to be expected. We achieve

similar figures for many complicated shapes (like the star); for simplicity we just

presented a generic case of the cross shaped domain.

We also test the routing stretch in all domains. The maximum routing stretch

factor was 1.96, which we believe is reasonable, considering the reduction in load.

3.5 Discussion

A clear open problem is to consider non-simple domains, i.e., domains with

holes. Previous work mainly focused on how to alleviate the heavy traffic along hole

boundaries. We remark that bounded load balancing would become much more

challenging as one has to also consider paths of different homotopy types (getting

around holes in different ways). In particular, an extreme case of the problem on a

multi-connected domain could be load balanced routing on a planar graph, which

is known to be NP-hard. New ideas are needed to solve that case and this remains

one of the most interesting future directions.

47

(a) A pentagon with grid nodes and area-preserving map to disk using
contour,s by conformal mapping method (238 nodes, avg degree 7.24)

(b) L-shape domain with 1441 perturbed grid nodes, avg. degree 7.43

(c) X-shaped domain with 1302 perturbed grid nodes, avg. degree 7.38

Figure 9: Three different domains and their area preserving maps. The red and blue

line indicate a sample route in respective domains.

48

AP + Lambert's
AP + Curveball
AP + Shortest Path
AP + Optimum approx.

Lo
ad

 C
ou

nt

0

50

100

150

200

250

300

350

400

450

Node Load

0 14000
28000

42000
56000

70000
84000

98000
112000

126000
140000

154000
168000

182000
196000

0

10

980
00

112
000

126
000

140
000

154
000

168
000

182
000

196
000

Figure 10: The histogram comparison of load distribution over the cross-shaped

domain in fig. 9(c). We first map the cross shape domain to the unit disk, then com-

pare load balancing algorithm on the disk. Notice that all unit disk load balancing

routing algorithms now perform better than shortest path routing over cross shape

domain.

49

Chapter 4

Load Balancing using Möbius

Transformation

4.1 Introduction

There are two fundamental questions regarding load balancing and routing: (1)

From the theoretical perspective, how does the network shape relate to the distribu-

tion of shortest paths? (2) From the practical perspective, how to deform a network

shape (i.e., designing a new network metric, specifying new weights on the edges)

such that some greedy routing scheme is able to produce good load balancing? In

particular, we look for the embedding of the network in some space with each node

given a virtual coordinate such that by some distance function one can route the

message to the neighbor closest to the destination, delivery is guaranteed and the

routes are load balanced.

Let us first consider a general surface in 3D. Intuitively the points with neg-

ative curvatures (the saddle points) attract geodesic (shortest) paths, while points

with positive curvatures (peaks and valleys) repel geodesic paths. Thus surface cur-

vature is intrinsically related to geodesic path densities and the load balancing issue

for shortest path routing. Unfortunately, to our knowledge, there is little under-

standing of this relationship. Limited prior work will be reviewed in a later section.

Alternatively, we ask whether we can change the surface metric (i.e., deform the

surface) such that all points have positive curvature and thus receive uniform traffic

50

load. A surface with uniform positive curvature everywhere is a sphere. There are

tools to deform a given surface to a sphere by using conformal geometry.

4.1.1 Spherical Embedding

For a surface with positive constant curvature everywhere, i.e., a sphere, the

shortest paths have uniform distribution and greedy routing (in terms of spherical

distance) on the sphere has guaranteed delivery and perfect load balancing. Moti-

vated by this, we would investigate the mapping of a sensor network to a spherical

metric. The well-known Koebe-Andreev-Thurston Theorem describes the spheri-

cal embedding of a 3-connected planar graph1: for any such graph G, there exists

a pair of circle packing on a unit sphere, whose intersection graphs are isomorphic

to G and the planar dual of G respectively. This spherical embedding realizing

the 3-connected planar graph can be seen as a convex polyhedron with all edges

tangent to the unit sphere. Each vertex is associated with a circle on the sphere.

Adjacent vertices have their circles tangent to each other. See Figure 15 for an

example. With the spherical embedding, it is not hard to see that with the 3D co-

ordinates of the vertices, a greedy method has guaranteed delivery for all pairs of

vertices, as mentioned in [118]. This greedy method uses the distance function

d(u, v) = −c(u) · c(v), where c(u) is the coordinate of u. This routing scheme is

referred to as polyhedron routing.

The circle packing can be computed with a number of approaches. The

Thurston algorithm sets the boundary radii and iteratively updates the internal radii

to satisfy local conditions [34, 149], when G is a triangulation. The algorithm is

shown to converge at the limit and in practice is stopped when the error bound is

below a given threshold. Springborn and Bobenko [15] proposed a general frame-

work to compute circle patterns for a general 3-connected planar graph, but the

algorithm requires a global optimization of certain energy function and is hard to

implement in a distributed network. Here we use a different technique by using dis-

crete Ricci flow. We intersect the original planar graph and its dual graph to obtain

a planar triangulation and run the Ricci flow algorithm to compute a pair of circle

packings, for the original graph and its dual simultaneously. Ricci flow, introduced

1A graph is 3-connected if it remains connected after the removal of any 2 nodes.

51

by Richard Hamilton for Riemannian manifolds [64], modifies the surface metric,

in proportional to Gaussian curvatures, such that the curvature evolves in the same

manner as heat diffusion. It is a powerful tool for finding a Riemannian metric

satisfying the prescribed Gaussian curvature. For discrete triangulated graph, dis-

crete Ricci flow is formulated. Chow and Luo [31] proved a general existence and

convergence theorem. Ricci flow is naturally a distributed algorithm in which each

node evaluate its local curvature and modify the edge weights accordingly. In this

case, we apply Ricci flow to find the spherical embedding of a given graph.

The spherical embedding is not unique and differs from one another by a

Möbius transformation. Thus we further investigate the load balancing property

of this spherical embedding by choosing a proper Möbius transformation. One

heuristic is to makes the circles at the vertices to have a similar size. By simulations

we show that this idea works well in practice and compares favorably with previous

load balanced routing schemes. We must remark that given a discrete network and

uniform traffic, perfect load balancing (i.e., all nodes having the same load) may not

be possible. Considering the case when two large sensor fields are connected by a

narrow corridor, the nodes on a narrow corridor necessarily carries heavy traffic re-

gardless of routing schemes. Finding the most load balanced routing scheme is an

NP-hard problem (modeled as unsplittable flow problem) and the best approxima-

tion algorithm has an approximation factor of O(logn/ loglogn) [126,127]. These

approximation algorithms are centralized and are not practical for large scale low

resource networks. For this reason we evaluated our scheme with prior heuristic

algorithms using greedy approaches. It remains as our future work to show how our

algorithm performs theoretically, compared with the optimal load balanced routing

(minimizing the max load).

Last, our scheme falls within the framework of building a virtual coordinate

system for greedy routing in a network [129]. For all the virtual coordinates

schemes, one needs to have a location service such that one can inquire the vir-

tual coordinate of any other node in the network. Efficient location services for

sensor networks have been developed [98,130]. Such location services can be used

in routing with virtual coordinates developed. The virtual coordinate addresses in

this case, as in [129], are simple Euclidean coordinates of the form (x, y, z). The

location service keeps the mapping from a node’s ID and its virtual coordinates.

52

In the following, we first review related work on the topic of greedy routing

and load balanced routing respectively. Then we introduce the theory of spheri-

cal representation and polyhedron routing. Simulation results are presented on the

performance evaluation.

4.2 Spherical Representation

4.2.1 Spherical Representation Algorithm

According to Koebe-Andreev-Thurston Theorem, spherical embedding of 3-

connected planar graph guarantees delivery on greedy routing. Here we present the

algorithm to compute a spherical embedding. This algorithm requires a 3-connected

planar graph, which is obtained in step 0.

Step 0: Extract a Planar Subgraph. Algorithms for such purpose have been

developed in the past literature and are briefly reviewed below. We only require a

combinatorial planar graph and does not require a planar embedding.

In [137], a local, distributed algorithm has been developed to obtain a triangu-

lation from the connectivity graph. The idea is to compute the restricted Delaunay

graph (RDG) [59], i.e., a planar graph containing all Delaunay edges of length no

greater than 1. The RDG can be computed by the nodes locally when the commu-

nication graph follows a quasi-unit disk graph (q-UDG)2 of parameter α ≤ √
2.

The requirement of a quasi-UDG is to ensure that crossing edges can be detected

locally and handled properly. Funke et al. [57] developed a location-free triangula-

tion algorithm by using landmarks and combinatorial Delaunay graph. The idea is

to select a set of nodes as landmarks. The landmarks flood with a restricted range

such that every node identifies the closest landmark a and is grouped to the Voronoi

cell of a. A planar graph is computed on the landmarks by connecting the land-

marks a, b that have 2-hop wide ‘channel’ of only nodes within cells of a, b. The

authors showed that this graph is planar when the communication model follows a

2In a quasi unit disk graph with parameter α ≥ 1, if two nodes are within distance 1/α, an edge
between the two exists, if they are at a distance more than 1, the edge does not exist; while for other
distances, the existence of the edge is uncertain.

53

quasi-UDG of parameter α ≤ √
2. The two algorithms above both require a quasi-

UDG model and thus does not work when a sensor network does not follow the

quasi-UDG assumption. The following algorithms compute planar graphs without

such assumptions.

Kim et al. [63, 83] addressed the problem that planarization techniques using

relative neighborhood graph or Gabriel graph fail when the communication model

does not comply to the unit disk graph assumption. They developed a cross link

detection protocol to probe each link, detect and remove possible crossings with

other links. The resulted graph is a combinatorial planar graph. Zhang et al. [164]

developed a location-free algorithm to extract a planar subgraph from the connec-

tivity graph. The main idea is to planarize adjacent layers of a shortest path tree.

Again this method does not require a unit disk graph model or quasi-UDG model.

All these algorithms above can be used in our framework. In our implementa-

tion, we have used the restricted Delaunay graph approach [137]. In the following

we deal with an extracted planar graph and denote it as G.

Step 1: Compute the Dual & Overlap Graph. A planar 3-connected graph G is

shown in Figure 11 (a), the k-th vertex is labeled as k, the j-th face is denoted as

fj . Note that, face f8 represents the infinite face. The overlap graph D := G ∪ G̃,

where G̃ is the dual graph of G, is shown in Figure 11 (b). On the overlap graph D,

there are three types of nodes:

1. Vertex node vi: corresponding to a vertex in G, is represented as a red dot.

2. Face node fj : corresponding to a face in G, is represented as a green dot.

3. Edge node eklij : corresponding to an intersection of an edge [vi, vj] in G, and

an edge [fk, fl] in the dual graph G̃, where [vi, vj] is the common edge of the

faces fk and fl, represented as a blue square.

Each facet on the overlapped graph D is a topological quadrilateral, with two edge

nodes, one vertex node vi and one face node fj , we denote the quadrilateral as

�(vi, fj).

By adding an edge connecting the vertex node and the face node on each

quadrilateral, we get a planar triangulated graph T .

Step 2: Select an Infinity Edge Node. Select one edge node to be mapped to the

infinity point. We call it the infinity edge node and denote it as e∞. The choice of

54

1 2

3

45
6

7 8

9

10

11

12

f1

f2

f3

f4f5

f6

f7

f8

1 2

3

45
6

7 8

9

10

11

12

f1

f8

f6
f7

f2

f3

f4f5

∞

(a) (b)

1 2

6 5 4 3

87

11
10

9

12

∞∞

f1

f8

f6

f5
f4

f3

f2

f7

∞

∞

e1 e2

e3e4

(c)

Figure 11: Compute the reduced graph. (a) A 3-connected planar graph G as the

input graph. (b) The overlap graph D = G ∪ G̃. (c) The reduced graph.

55

1 2

3

45
6

7 8

9

10

11

12

f1

f8

f6
f7

f2

f3

f4f5

∞
e1 e2

e3

e4

1 2

3

45
6

7 8

9

10

11

12

f1

f8

f6
f7

f2

f3

f4f5

∞
e1

e2

e3
e4

(a) e∞ = [v1, v2] ∩ [f1, f8] (b) e∞ = [v8, v9] ∩ [f7, f2]

Figure 12: Step 2. Select the infinity edge node e∞.

the edge could be arbitrary. Figure 11 (b) shows an example when the edge node

e∞ = [v1, v2] ∩ [f1, f8] is selected as the infinity edge node.

Step 3: Compute the Reduced Graph Ḡ. Suppose the infinity edge node is given

by e∞ = [vi, vj] ∩ [fk, fl], then we remove all the quadrilateral facets adjacent to

vi, vj or fk, fl in the overlap graph D, to get the reduced graph Ḡ. Figure 11 (c)

shows the reduced graph for Figure 11 (b). The boundary of the reduced graphs are

labeled as the red edges

Figure 13 frame (a) and (b) show the reduced graphs, which are deduced from

Figure 12 frame (a) and (b) respectively. The boundary of the reduced graphs are

labeled as the red edges in Figure 12.

Step 4: Ricci Flow. On the reduced graph Ḡ, each quadrilateral facet �(vi, fj) is

triangulated by adding one virtual edge [vi, fj] connecting the vertex node vi and

the face node fj . Then we run Ricci flow on the triangulated reduced graph in the

following way. Each triangle on the triangulated reduced graph has one vertex node

vi, one face node fj and one edge node ek, [vi, fj, ek], as shown in Figure 14. In

particular, For each vertex node vi, we associate it with a circle C(vi, γi), centered

at vi with radius γi; For each face node fj , we associate it with a circle C(fj , γj);

For each edge node ek, we associate it with a circle with zero radius all the time,

56

1 2

6 5 4 3

87

11
10

9

12

∞∞

f1

f8

f6

f5
f4

f3

f2

f7

∞

∞

e1 e2

e3e4

(a) reduced graph of Fig 12 (a)

f8

f1 f4

1

f6

7 11 10

1232

f5

f3

4

5
6

f2

e1 e4

e2 e3

f7

8 9

∞

∞

∞∞

(b) reduced graph of Fig 12 (b)

Figure 13: Step 3. Compute the reduced graph Ḡ

57

vi fj

ek

π
2

θi θj

h li
lj

lk

Figure 14: Step 4. Ricci flow

C(ek, 0); The vertex node circle and the face node circle intersect at a right angle;

The intersection angle between the edge node circle with other circles are zeros.

Therefore, from Figure 14,

li = γj, lj = γi, lk =
√

γ2
i + γ2

j , θk =
π

2
.

For both vertex nodes and face nodes with circle radius γ, let u = log γ, then the

Ricci flow is given by the following differential equation:

dui

dt
= −Ki, (30)

where Ki is the discrete Gaussian curvature at a vertex vi, defined as the angle

deficit at vi, i.e., the difference of 2π and the sum of the corner angles of all triangles

adjacent to vi. Specifically, the Ricci flow algorithm is carried out in a distributed

manner. Each vertex vi modifies its radius γi with respect to the current curvature.

In an iterative way, the radii are adjusted until the curvature becomes sufficiently

close to 0. Recall that we have some virtual nodes such as the face nodes and edge

nodes, these are actually represented by some nearby vertex nodes when Ricci flow

computation is carried out. To run the algorithm, each sensor node only requires

the local information about nodes in adjacent faces.

We then flatten the reduced graph triangle by triangle and compute the circle

packing embedded in the plane, as shown in Figure 15. Suppose the infinity edge

node is e∞ = [vi, vj] ∩ [fk, fl], then the vertex node circles of vi and vj are mapped

to vertical lines, the face node circles of fk and fl are mapped to horizontal lines.

These four circles intersect at the infinity point.

58

7 8

11

10
9

12

3456

1 2
f6

f7

f2

f5
f4

f3

f1

f8

(i) (ii)

Figure 15: (i) The circle packing embedded in the plane. (ii)The spherical presen-

tation of the graph and convex polytope realization in 3D.

Step 5. Stereo-graphic Projection. Finally, we use stereo-graph projection φ :

(u, v) → (x, y, z) to map the circle packing on the plane to the sphere,

φ(u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
.

For each face node circle C(fi, γi) on the plane, we compute its image of the stereo-

graphic projection φ(C(fi, γi)), which is a circle in R3. We can compute the planes

through all the spherical face node circles. The convex hull bounded by these planes

is the convex polytope P . In more details, if a vertex vi in the original graph G is

adjacent to faces fk’s, then all the planes of spherical face node circles C(fk, γk)

intersect at one point in R3. If two faces fi and fj sharing an edge e, then the inter-

section line between the plane of C(fi, γi) and C(fj, γj) is tangent to the spherical

image of e. Figure 15 shows the spherical representation of the graph and the in-

duced convex polytope. The convex polytope will be used for our routing purpose.

Communication Costs. Last we remark that the majority of computation and com-

munication costs is for the Ricci flow algorithm, as all other steps can be handled

with only constant cost per node. The curvature error decreases exponentially fast.

Therefore, the number of steps to reach the desired curvature error bound ε is given

59

by O(− log ε
δ
), where δ is the step size in the Ricci flow algorithm. The total com-

munication cost is thus O(−n log ε
δ

). In the simulation section we evaluated the cost

on different networks.

4.3 Load Balancing

The spherical representation of the 3-connected graph is not unique, two such

embeddings differ by a Möbius transformation. All these spherical representations

guarantee successful delivery with polyhedron routing. But they give different load

balancing properties. Intuitively, when the vertices are more uniformly spread on

the sphere, i.e., approximating the spherical metric better, polyhedron routing has

better load balancing property. In the following we look for a Möbius transforma-

tion that uniformizes the vertex distribution.

For a discrete finite network, the network outer boundary is a large face. We

map it to the equator of a unit sphere, such that all the vertices are then mapped

to a hemisphere. For that, we apply a circular reflection, as defined below. The

circular reflection is a special case of Möbius transformation. It maps the points

inside a circle C with center c and radius r to the points outside, and vice versa:

τ(z) = c+ γ2

z̄−c̄
.

We first translate and scale the exterior face node circle C(f∞, γ∞) to the unit

circle. Then all the other face circles are mapped to the exterior of the unit disk.

Then we use circular reflection to map the exterior of the unit circle to the interior.

Then we use the Möbius transformation to map the interior of the unit disk to itself.

All such kind of maps are parameterized by an interior point of the unit disk z0,

ηθ,z0(z) = eiθ
z − z0
1− z̄0z

.

The choice of η is to make the spherical vertex node circle radii as uniform as

possible.

Because the graph is 3-connected, each vertex circle Cv goes through at least

3 edge nodes, denoted as {e1, e2, e3}. The stereo-graphic projection φ : C → S2

maps them to points on the unit sphere {s1, s2, s3}, sk = φ(ek). These three points

determine a plane in R3, the normal is given by

n =
(s1 − s3)× (s1 − s2)

|(s1 − s3)× (s1 − s2)| ,

60

the plane is given by

πv : 〈p− s1,n〉 = 0.

The distance from the origin to the plane πv is given by

dv = 〈s1,n〉.

To find the Möbius transformation such that all the vertex radii are as uniform

as possible, we minimize the energy

E(θ, z0) =
∑
v∈G

(dv − d̄)2,

where d̄ =
∑

v dv

m
, m is the total number of vertices in G.

The energy E(θ, z0) is invariant with respect to angle parameter θ. It is highly

non-linear, and has multiple local optima. Direct gradient descend method won’t

guarantee to reach the global optimum. Therefore, we randomly choose initial seed-

s, then further use gradient descend method to reach the optimum in the neighbor-

hood of the seed. The seed z0 is uniformly chosen among the positions of vertex

coordinates vi. The gradient of E(z0) with respect to the real and imaginary parts

of z0 can be deduced in closed analytic form. This optimization step is a centralized

algorithm. Once the desired Möbius transformation is found, it is delivered to all

nodes in the network, which then apply the transformation to derive their respective

coordinates in 3D.

Figure 16 shows the spherical representation before and after the Möbius opti-

mization.

4.4 Simulations

We conducted extensive simulation tests to evaluate routing properties of our

polyhedron routing. It was compared with shortest path routing, and also the

previously published methods of Curveball Routing [124] and Outer Space Rout-

ing [109]. Finding shortest paths is expensive and requires large routing tables, so is

not exactly suitable for distributed efficient routing, but it forms a standard baseline.

61

Figure 16: The above two are before Möbius optimization and the below two are

after Möbius optimization.

62

(a) (b)

Figure 17: Sample Embeddings. (a) Original embedding after planarization. (b)

Embedding on a hemisphere.

4.4.1 Curveball and Outer Space Routing

In Curveball routing [124], the entire network is mapped to a sphere using

stereographic projection. A sphere S is assumed with its center coinciding with the

center of the network. Then each node p in the network is projected to the point

on S where the straight line joining p with the north pole of the sphere intersects

S. The network is assumed to be of the shape of a disk of some radius R, and the

authors suggested using a sphere of radius R/1.2.

Routing is done as greedy routing based on the geodesic distance between

the virtual coordinates on the sphere. The idea behind this method is to avoid the

crowded center effect. In a usual disk-shaped network, the center receives more

load. The greedy routes on the sphere correspond to paths that tend to move away

from the center, thereby avoiding the congestion at the network center.

In Outer space routing [109], the network is assumed to be in the shape of a

square in the first quadrant. The size of the network is then quadrupled by succes-

sive reflections in the X and Y axes. Each node is assigned a virtual coordinate

with equal probabilities in the image of the network in one of the 4 quadrants. Note

that being created by reflections, the right and left borders of the quadrupled net-

work correspond to the same regions of the original network. Similarly, the top and

63

bottom borders are identified. The quadrupled network therefore has the topology

of a torus.

When routing to any node, the route actually travels to the virtual coordinate

selected for the destination. This is achieved by greedy routing in the metric of the

torus. Observe that this method spreads the nodes in a region that is 4 times the

area. Therefore, it reduces the density of the network to about 1/4. For networks

that are not very dense to start with, this leads to even sparser networks, increasing

the chance of a routing attempt failing.

Neither of these methods guarantee delivery. As we see in the simulations

below, presence of large holes cause these methods to fail easily. Sparse networks

naturally tend to have holes, and therefore cause more frequent failures.

4.4.2 Simulation Results

We varied the density of the random networks and also considered networks

with artificially created large holes, such as those representing physical features

and obstacles in the domain. We randomly select source and destination pairs and

for each experiment we selected 20000 such random routing requests. The main

observations of the experiments were the following.

• The polyhedron routing is the only one that has 100% delivery guarantee

(other than shortest path routing). Other methods in consideration perform

progressively worse as the density decreases.

• Other methods have poor delivery guarantees on networks with large holes.

• The load balancing properties of the methods are comparable.

The details follow. We first look at routing characteristics, followed by the load

balancing properties. Finally we present results regarding the computational cost of

the embedding algorithm.

Delivery and stretch. To evaluate the routing qualities of our algorithm, we tried

it out on networks of various densities and types (as shown in Figure 18). Here

we show the extreme cases of a random but dense network, a dense network with

large holes and a random sparse network . We compared the delivery guarantees

and stretch of different schemes, the results are shown in Tables 1, 2 and 3. Our

64

(a) Dense Network. (b) Dense network with large holes. (c) Sparse network.

Figure 18: Experimental networks. (a) Dense Network. 1850 nodes, avg. degree

14.88 (b) Dense network with large holes. 2100 nodes, avg degree 12.14 (c) Sparse

network. 1774 nodes, avg. degree 3.32.

Polyhedron Short path Curveball Outer Space

Delivery% 100 100 99.73 70.88

Stretch 1.060 1 1.051 1.216

Table 1: Comparative performance for dense networks (Fig 18(a))

method also has consistently small routing stretch. We also found that the delivery

rate of curveball routing is better than that of outer space routing.

Load balancing. For the same set of routing attempts, we also monitored the traffic

load at each node. The cumulative distributions of loads for the networks in Fig-

ure 18 are shown in Figure 19. All three schemes, polyhedron routing, the curveball

routing and the outer space routing, have similar load balancing properties, which

are significantly better than that of shortest path routing. We also remark that for the

curveball routing and the outer space routing, since they do not deliver all packets,

the load distribution is more favorable for them.

Polyhedron Short path Curveball Outer Space

Delivery% 100 100 95.55 36.41

Stretch 1.092 1 1.076 1.219

Table 2: Comparative performance for dense network with holes (Figure 18(b))

65

Polyhedron Short path Curveball Outer Space

Delivery% 100 100 64.05 1.27

Stretch 1.109 1 1.090 1.071

Table 3: Comparative performance for sparse networks (Fig 18(c))

(a) (b)

(c)

Figure 19: Cumulative distribution of load, for networks respectively corresponding

to those in Figure 18. (a) Dense Network. (b) Dense network with large holes. (c)

Sparse network.

66

Chapter 5

Exploring Path Space in Greedy

Routing

5.1 Introduction

Finding multiple routings in a network is a challenging problem for a large

scale network, in particular if a node does not have the entire topology. On the

theoretical side, one can run a flow algorithm to find a maximum number of node

disjoint paths between source and destination. But the flow algorithm requires cen-

tralized knowledge and also has a high computational cost of O(n3) if the network

size is n. Even if one can afford to pre-compute multiple routing paths, storing these

paths at the sensor nodes will be, storage-wise, too overwhelming, which makes the

centralized algorithms scale poorly with the size of the network. In literatures on

mobile ad hoc networks, there have been a number of heuristic proposals to find

multiple paths but the theoretical understanding of these schemes rarely exists. If

one wants to use multiple paths to recover from en-route node or link failure, there

is not much understanding (globally) on where the second path is going to be.

5.1.1 Our Approach

We approach the problem from a geometric angle. Since nodes are typically

densely deployed in a geometric domain, the network topology is not like a general

graph. We explore different embeddings of the network such that by controlling a

67

constant number of parameters we can quickly switch between different network

embeddings such that greedy routing in such embeddings generates different rout-

ing paths. Thus one can easily come up with multiple node disjoint paths, or even

switch to an alternative path in the middle of a routing process, by spontaneously

changing to a different embedding.

We are motivated by our recent development of conformal mapping of a sensor

network [137, 138]. We first compute an embedding of a sensor network such that

all the holes are deformed to be circular. We name this embedding to be a circular

domain. On a circular domain, greedy routing that always delivers the message to

the node closer to the destination using the new coordinates guarantees message

delivery. However, the embedding as a circular domain is not unique, and all such

embeddings differ by Möbius transformations, which maps a complex plane to itself

and can be represented by

f(z) =
az + b

cz + d
,

where z is a complex variable and a, b, c, d are four complex numbers satisfying

ad−bc = 1. A Möbius transformation always maps circles to circles. Thus applying

a Möbius transformation on a circular domain essentially ‘re-arranges’ the positions

and the sizes of the circular holes and the new embedding remains to be a circular

domain. Therefore there are actually infinitely many circular domains on each of

which greedy routing guarantees delivery. The previous work as in [137, 138] on-

ly considered one such circular domain by fixing one hole to be at the center of

the network. Here we investigate all possible circular domain embeddings and the

applications to multipath routing in a sensor network.

The main difficulty for efficient and scalable routing in a sensor network is

due to lack of the global knowledge. Embedding the network as a circular do-

main makes that difficulty go away in some sense. Our routing scheme avoids the

requirement for the global network topology, while the geometric information we

need — the locations and shapes of the holes and the boundary – are typically of

a constant size and usually remain stable. With a circular domain one can predic-

t where the path is (subject to the assumption that the sensor nodes are sufficient

dense so that the continuous path is a good approximation of the discrete path by

greedy routing) and by applying a Möbius transformation we know what a path we

68

will get and how different it is from the previous one. Since a Möbius transforma-

tion only uses four parameters, we can attach the current Möbius transformation at

the packet such that by applying the Möbius transformation a node can compute its

coordinates under the transformation on the spot to generate the greedy path under

the new embedding. In case of a link failure on the current greedy path, a node can

generate a new Möbius transformation and switch to a different path immediately.

The new Möbius transformation is simply attached to the packet.

Using a circular domain representation gives us the following advantages that

will be proved in the continuous case and evaluated by simulations for the discrete

network setting:

• By using different Möbius transformations one generates multiple paths to

the destination that are disjoint except at the source and the destination. We

present algorithms for networks with or without holes.

• In case of node failures, we present an algorithm that identifies a different

path to the destination. The second path takes a big circular arc type of de-

tour that is likely to jump over correlated failure regions.

In the following we first quickly review prior work on multipath routing. We

present the theoretical proofs of our method and present simulation results after-

wards.

5.2 Related Work

In this section we quickly review prior work on three relevant topics: multipath

routing both in theory and in practice; some of them focus on how to recover from

node or link failures; and previous greedy routing schemes.

5.2.1 Multipath routing

Multipath routing has been investigated extensively in computer network-

ing in order to improve routing robustness [9, 37], achieve better load balanc-

ing [41, 148, 162], reduce network congestion, reduce end-to-end delay [165] and

increase network throughput [70, 155]. Between a pair of source and destination,

69

multipath routing looks for multiple paths that are sufficiently different from each

other such that node or link failures will not destroy all of them. One formulation

is to look for k node disjoint or edge disjoint paths, which can be computed by flow

algorithm [35]. But this is a centralized algorithm and would require the knowl-

edge of the entire network [68]. Distributed algorithms only exist for special case

of k = 2. In [128] two colored trees were constructed for routing such that the paths

in the two trees are link or node disjoint. Relaxation of the node/edge disjointness

of the multiple paths leads to the approach of braided multipath [58] in which the

multiple paths are only partially disjoint.

In a mobile ad hoc network, multipath routing has also been developed to

enhance the performance of on-demand routing protocols such as AODV [3, 28,

92, 106, 132] or DSR [102, 112, 143] as the network topology undergoes constant

changes. Prior work in this direction uses extensive message exchange or flooding

to discover alternative paths to bypass a broken link. A major problem of these

schemes is that they suffer from high recovery delay from node or link failures,

which severely affects the performance of end-to-end QoS measurements in the

transport or application layer.

5.2.2 Fast recovery from failures

Recently there has been a number of interesting work that studies the problem

of fast recovery from link or node failures, even for a centralized situation. When a

link or node fails, the goal is to quickly discover an alternative path with nearly no

delay, such that the current traffic is not interrupted. For the intra-domain routing

protocols on the Internet, the recent IP fast re-routing (IPFRR) schemes (Loop-free

alternate (LFA) [7], O2 [133, 134, 142], DIV-R [131], MARA [117] and protection

routing [91]) aim to ensure fast re-covergence when node failures are detected. In

general this family of work would like to find an alternative next hop when the

intended next hop is not reachable. Depending on the detailed implementations, the

design often suffers from one or more of the following problems: having possible

transient loops, the requirement for a lower bound on node degree, computational

intractability (e.g., verifying whether a graph has a protection routing or not turns

out to be NP-hard [91]).

70

Our work is motivated by routing with multiple metrics as introduced in the

path splicing idea [111], which is proposed for increasing routing reliability on

the Internet. Given a weighted graph, one perturbs the weights of the edges and

computes a shortest path tree on each node. These multiple shortest path trees are

used in combination to generate a routing path in case of in-transit link failures.

Traffic in the network can freely switch between different shortest path trees, which

results in a large number of routing paths (these paths are the braided multi-paths).

The overhead of switching between different trees is done by just changing a few

bits in the packet header. This supports fast recovery from link or node failure and

ensures low end-to-end delay. However, this is mainly for interdomain routing on

the Internet. The computation of the multiple shortest path trees is too costly for a

large scale sensor network. For sensor network setting we need to have a low cost

method to generate multiple metrics with great flexibility and path diversity.

5.3 Algorithms

Our routing algorithm tries to find various embeddings, or mappings from the

original sensor network to a circle domain, in which all holes are of a circular shape

and greedy routing can guarantee delivery. Such mappings are conformal (angle

preserving) and computed by discrete Ricci flow. Then Möbius transformations

could help us to find more embeddings, or controllable multiple metrics.

5.3.1 Embedding into Circular Domains with Ricci Flow

5.3.2 Multipath Routing

In this section we describe how to generate multiple paths from a given source

node s to a given target node t. We will give different embeddings of the domain

in such a way that the route used by greedy routing in one embedding is likely to

be different from the one used by greedy routing in any other embedding, and these

routes are ‘well spaced’, a notion we will make precise soon. The algorithm we

will present generates paths that are provable to be disjoint in the continuous case.

In the discrete setting, we evaluate the performance by simulations.

71

−1 = fj(s)

1 = fj(t)

0

0

f−1
j+1([−1, 1])

f−1
j ([−1, 1])

fj fj+1−d
2

d
2 −1 = fj+1(s)

0
1 = fj+1(t)

Figure 20: The multiple paths on the domain D (in the middle) are the greedy

paths under transformations fj . The figure shows two transformations fj and fj+1

respectively.

We first present the algorithm for a network without holes. Then we discuss

how to find disjoint paths in a network with holes.

5.3.2.1 Network Without Holes

Without loss of generality we can assume that the outer boundary is a circle,

and that the coordinates of source s are (−d/2, 0) while those of destination t are

(d/2, 0), so that the line segment joining s to t is horizontal and of length d. This

can easily be achieved by a rotation and translation. We denote the domain by D.

Consider a continuous domain D we can easily generate many disjoint paths

– by essentially applying a different Möbius transformation each time. The greedy

path under a Möbius transformation turns out to be a circular arc connecting s and

t in the original domain D. See Figure 20. In the discrete case when the domain

D is represented by a triangulation, the routing paths are found by using greedy

routing in different embeddings, after proper Möbius transformations. We remark

that potentially one can design greedy routing to follow any curve, i.e., as in the

idea of routing along a curve [113]. But in general routing on a curve does not have

any guarantee on the delivery. In our case, as we actually perform greedy routing

in another circular domain after a proper Möbius transformation, this immediately

shows a proof that such a route is guaranteed to reach the destination.

In a continuous domain D, obviously all such circular arcs are disjoint except

at source and destination. In the discrete case the greedy paths are guided by the

circular arcs but can definitely deviate from them due to discrete node distribution.

Since typically sensor networks have upper bounded density, a major constraint on

the number of node disjoint paths between s and t is due to the degree at s and t. A

72

θfθi t

γ1

γ2

s

Figure 21: For two curves γ1 and γ2 from s to t, the initial directional spread is

shown as θi and the final directional spread is shown as θf .

reasonable heuristic to minimize overlaps of multiple paths is to design paths that

are evenly spread out at s and t. We use this heuristic to design our paths in the

discrete setting.

Given two curves γ1 and γ2 joining s to t, we can define initial and final di-

rectional spread between γ1 and γ2 to be the angle between the tangent vectors

of γ1 and γ2 at s and t respectively. We denote these by di(γ1, γ2) and df(γ1, γ2)

respectively. See Figure 21 for an example. In the following we use Möbius trans-

formations to generate circular arcs connecting s and t such that their directional

spread at source and destination are as evenly spread as possible.

For a given k ≥ 1, let θ = π
2k

and define θj =
π
2
(1− j−1

k
) for 1 ≤ j ≤ 2k + 1.

Also, let αj = d/2 tan θj/2 for 1 ≤ j ≤ 2k + 1.

We next define a Möbius transformation fj(z) for 1 ≤ j ≤ 2k + 1 by

fj(z) =
zd− idαj

z(−2iαj) + d2/2
.

Theorem 17 fj has the following properties:

1. fj(s) = −1, ∀1 ≤ j ≤ 2k + 1.

2. fj(t) = 1, ∀1 ≤ j ≤ 2k + 1.

3. Let γj = f−1
j ([−1, 1]). Then γj is a curve joining s to t. Moreover, it is the

arc of the unique circle passing through s and t, such that the tangent vectors

at s and t both make an angle of θj with the x-axis.

4. di(γj, γj+1) = df(γj, γj+1) = θ, ∀1 ≤ j ≤ 2k + 1.

Proof 18 (1) and (2) are trivial.

To prove (3) we use the property that Möbius transformations map circles to

circles. Note that the point (0, αj) is represented by the complex number z = iαj .

73

One can check that fj(iαj) = 0. Since −1, 0 and 1 lie on a line, it means that s,

(0, αj) and t lie on a circle. Therefore f−1
j ([−1, 1]) is an arc of the circle passing

through these three points. One has to now verify that the tangent to this (unique)

circle at s and t makes an angle of θj with the horizontal axis.

(4) follows from (3) and the fact that θj−1 − θj = θ.

What the above calculations mean is that if we define a new embedding of the

domain D by mapping a point z ∈ D to fj(z) ∈ fj(D), then the source maps to

−1 and the target maps to 1. In this new embedding, the shortest path from source

to target is simply the straight line from −1 to 1. Following this path for some j is

equivalent to following the arc of the unique circle passing through s and t whose

tangents at s and t make an angle of θj with the horizontal axis. Any two such

arcs have an initial and final directional spread of at least θ = π
2k

. Hence we have

generated 2k + 1 node disjoint θ spread paths from s to t. See Figure 20 for an

example.

All such paths lie in the circle with the line segment st as its diameter. We can

also consider the case θj = π
2
(1+ j−1

k
) to get 2k− 2 more node disjoint paths, with

an angle spread of θ, getting 4k − 1 in total. For example if k = 3, we can get a

total of 11 paths, such that the directional difference is at least π
6
.

We remark that the above results hold only for source s and target t pairs for

which the circle with line segment st as diameter, denoted as Cst, is contained inside

the domain (i.e., in the interior of the outer circle C). When this is not the case, the

paths will ‘hit’ the outer boundary circle. Such paths will merge as they follow

along the outer boundary and are hence not disjoint. However, this is actually a

case that will be handled by the algorithm in the following section as the outer

boundary is also a topological hole.

The above analysis is done in the continuous setting. We will present the

multiple path routing results in a discrete setting by simulations.

5.3.2.2 Network With Holes

Consider a circular domain D with k holes (including the outer hole, which

can be regarded as a circle centered at ∞). In this case, finding disjoint paths is

more complicated. This is precisely because if two paths both hit the same hole,

74

t

s

s

θ+i

θ−i
θi

θi

θ+i

θ−iγ−
i

γi

Ci γ+
i

Figure 22: For a pair of source and destination, each hole Ci will produce two

intervals θ+i and θ−i such that any two paths falling in the same interval will hit the

hole and share some segments of the boundary. Thus any set of disjoint paths can

only select one path inside each interval.

they will start to follow the boundary of the hole and converge. This will create a

long shared sub-path on that boundary. Therefore we would need to find paths such

that either (i) they do not hit the same hole, or, (ii) when two paths hit the same

hole, they hit the top and bottom of the circular hole respectively so they follow the

upper boundary and lower boundary and do not converge. Take a look at Figure 22.

For each hole Ci in the domain, we take three circular arcs through s and t, the

one that is tangent to Ci internally (i.e., including Ci); the one that goes through

the center of Ci; and the one that is tangent to Ci externally (i.e., excluding Ci).

These three paths are denoted as γ+
i , γi, γ

−
i , respectively. Now, any two circular

arcs through s and t that fall in between γi and γ+
i (or γi and γ−

i) will definitely

merge on the boundary of Ci. Thus we can only allow one path selected within

each angular range bounded by [γ+
i , γi], and [γi, γ

−
i]. In the following we present

an algorithm that finds a maximum number of hole touching paths satisfying the

above constraints.

Given a source s and a destination t, we can first assume without loss of gener-

ality that the x coordinate of t is larger than that of s and that there does not exist a

circle which passes through s and t which is tangent to more than one of the holes.

For a hole Ci with center ci, there are three arcs of relevance: γi, γ
+
i and γ−

i , as

defined earlier. Let θi,θ
+
i and θ−i denote the angles that the initial tangent vectors to

γi, γ
+
i and γ−

i make with the horizontal axis. Note that the convention is that all of

them are contained in the interval [−π, π].

Now we define the following angular intervals {Ti}2mi=1, two for each of the m

75

holes: T2h−1 = [θ−i , θi] and T2h = [θi, θ
+
i] (1 ≤ h ≤ m). For the outer hole, arc

γi is simply the straight line joining s to t; while arcs γ+
i and γ−

i are contained in

circles that pass through s and t and are tangent to the outer boundary at the top and

bottom.

Now any two circular arcs joining s to t, both of whose initial directions lie

in the same interval T2h−1 or T2h, will both traverse either the upper or the lower

boundary of the hole Ci, and hence cannot be disjoint. We want to find the max-

imum number of arcs, all of which pass through s and t, and touch at least one

hole.

Since all the Ti’s lie in [−π, π], we can think of them as subsets of the unit

circle S1. We can angularly sort the endpoints, to obtain a sequence s1, s2, ..., s4k

where each si is an endpoint of Tj for some j. If some interval [si, si+1] is not

contained in any Tj , we are free to use it as there are no constraints associated

to such an interval. Assume that we have collapsed all the [si, si+1] that are not

contained in any Tj , and now we are left with a sequence s1, s2, ..., sl.

Now we want to find a maximum number of intervals such that any two inter-

vals cannot be part of the same Ti for any i. That is, each interval in the solution

can be used to generate one circular arc and all such circular arcs do not intersect

with each other except at s or t.

The above problem has an optimal solution using a greedy algorithm that we

now describe. Each interval Ai = [si, si+1] now is contained in (covered by) some

Tj’s. We obtain a solution Qi as follows. Qi starts with a seed interval Ai. Move

clockwise on the circle until the first interval [sj1, sj1+1] which is not covered by any

Tj that covers Ai. When this happens, include Aj1 in the solution Qi and proceed

greedily until we cannot include any more intervals to Qi.

After this process, we have l solutions Q1, Q2, ..., Ql. We choose the one with

a maximum number of intervals. This solution is optimal.

Theorem 19 The number of intervals in the solution chosen above (i.e., the best

amongst the {Qi}li=1) is equal to the number of intervals chosen in the optimal

solution.

Proof 20 Pick any interval that the optimal solution chose, say Aj1 . Consider what

the greedy algorithm performed in Qj1 . Let the next interval chosen by the greedy

76

algorithm be Gj2 while the one chosen by the optimal be Oj2 . Assume they are

different (if they are the same the argument proceeds). If there does not exist j

such that Gj2 and Oj2 are both contained in Tj , then adding the interval Gj2 to

the optimal solution increases the number of intervals in the optimal, which is a

contradiction. So assume Tj contains both Gj2 and Oj2 . Therefore by the end of

Tj we have not done any worse than the optimal, as both have added one interval

each. The argument now proceeds in a similar fashion. Gj3 and Oj3 would both

have to be contained in some Tj again, by the end of which we are again no worse

than the optimal and so forth. Inductively we can show that our solution is no worse

than the optimal and thus must be optimal.

Using this greedy method we can thus find a maximum number of node disjoint

paths in the domain all of which pass through a hole. We can use results of the

previous section to generate node disjoint θ spread paths in the intervals [si, si+1]

which were not covered by any Tj . Thus putting together, we can find a maximum

number of disjoint paths that do touch some hole and depending on the spread we

can find disjoint paths that do not touch any hole using previous results.

To summarize, our multipath algorithm will generate k disjoint paths in a net-

work with and without holes by applying different Möbius transformations, with

provable results for the continuous case. When the nodes have high density, the

greedy paths in the discrete case will better approximate the circular arcs. When

the node density drops, the multiple paths may overlap in the middle. We evaluate

in the simulation section the dependency of the performance on the network density.

5.3.3 Recovery From Failure

In this section we describe how to deal with en-route node failures or link

failures. Recall that our embedding produces a circular domain that guarantees de-

livery when links are assumed to be reliable. When a link may fail, greedy routing

no longer guarantees delivery. For example, a node may discover that all the neigh-

bors that are closer to the destination are not reachable. In this case we aim to find

an alternative path. The freedom of applying Möbius transformations on a circular

domain provides great flexibility for this task.

77

Assume s is the source node that wants to transmit a package to t (s, t ∈ D).

Let the degree of s be ν. Furthermore, assume that s has sorted its neighbors in

increasing order of their distances from t such that

||p1t|| ≤ ... ≤ ||pkt|| ≤ ||st|| ≤ ||pk+1t|| ≤ ... ≤ ||pνt||.

||uv|| is the Euclidean distance between u, v. If the link between s and any of

the {pi}ki=1 is functional, s routes the message to that neighbor just as in greedy

routing. Assume that the only links available to s are those in {pi}νi=k+1. Then s

picks a functional link from this set, say the link to p = pk+1. Now the idea is to

find a Möbius transformation such that in the new embedding, p is closer to t than s,

so that greedy routing would then continue by using p as the next hop. The details

are presented below.

As soon as node s finds that greedy routing can no longer continue, it does the

following:

1. It finds the coordinates of a neighbor p. Assume that s knows the coordinates

of p and the destination t.

2. s finds a Möbius transformation that maps s to −1, p to 0 and t to 1. The

explicit formula for f is

f(z) =
z(s− t) + p(t− s)

z(2p− (t+ s))− p(t+ s) + 2st
.

3. s then sends the package to p along with the information about this Möbius

transformation. p calculates new coordinates for all of its neighbors and for

t.

4. Greedy routing then continues (since now f(p) is clearly closer to f(t) than

f(s)), until we get stuck at another node. When this happens, we repeat the

entire process, i.e., find another Möbius transformation and compose it with

the previous one.

As will be shown later in the simulation section, our failure recovery mecha-

nism is compared with random walk – simply pick a random ‘live’ link until greedy

78

routing can be performed again. Basically our scheme makes big jumps and choos-

es a vastly different alternative path while random walk can only make local ad-

justments. This benefit of using long de-tours is significant for failures that exhibit

spatial patterns.

5.4 Simulations

In the experiments, we perform greedy routing with Möbius transformations to

achieve multipath routing and link failure recovery. Our simulations are performed

on unit disk graph topologies potentially with holes inside, and in the following are

our key observations.

Multipath routing. By using Ricci flow with different Möbius transformations, we

can generate a substantial fraction of node disjoint paths. With reasonable sensor

density (average degree around 20), the average number of disjoint paths we find

using our algorithm is consistently more than 70% of the input parameter m (the

desired number of disjoint paths). We can consistently find two node disjoint paths

even in very sparse networks. We also observed that when the network is sparse, the

bottleneck for finding node disjoint paths is often near the source and destinations.

Recovering route from link failures. Under a spatial failure model in which the

nodes in a geometric failure region have a much higher failure rate, our method of

using greedy routing on the virtual coordinates in a circular domain with Möbius

transformations as the recovery scheme performs consistently better than all other

methods (on virtual or original coordinates, using random walk as the recovery

scheme). The advantage of using Möbius transformations rather than random walk

as a recovery scheme diminishes when the failure pattern is no longer spatially

correlated.

5.4.1 Multipath Routing

After we generate the sensor network G = (V,E), we randomly choose two

vertices s and t from V as the source and the destination. We then calculate the

maximum number of node-disjoint paths between s and t, called the vertex connec-

tivity κ(s, t), as a reference for comparison, using the centralized maximum flow

79

κ(s, t) m Disjoint paths generated Approximation factor

6
3 2

67.7%
5 4

8

3 3

62.5%5 4

7 5

11

5 4

72.7%9 7

11 8

Table 4: Results of different sources and destinations in a uniform distributed graph

with average edge links 20.

algorithm [35]. To test our multipath routing algorithm, we generate m (no larg-

er than κ(s, t)) paths from the source to the destination, and count how many of

them are node-disjoint. We also try different m parameters to further observe the

performance of the algorithm.

Figure 23 shows the proposed routing scheme on a sensor network with 1000

vertices and 10006 links. We first apply Ricci flow to embed the network into a

circular domain where each node is given a virtual coordinate. We use our multipath

routing algorithm to seek m1 = 3, and m2 = 5 paths from s (in yellow) to t

(in red) respectively (in this graph κ(s, t) = 6). Those paths are not necessarily

node-disjoint, and all the shared nodes/edges are marked in purple in the figure.

We also show the paths on the original network, and a different circular domain

obtained by a Möbius transformation as well. In each of the three embeddings,

the paths with the same color and number are identical. We can see that in different

circular domains, the greedy paths, or the straight lines from s to t are also different,

which demonstrates that Möbius transformations together with greedy routing give

us flexibility in choosing multiple paths.

More results are shown in Table 4. From the table we can see two facts. First,

as a distributed algorithm, the Möbius transformation method gives us a good ap-

proximation of the number of node-disjoint paths in a dense graph. Second, the

number of disjoint paths we can get is usually smaller than m, or equivalently,

80

Nodes
Average

Input m
Average output paths

mlink number

1000 20.00

3 83.3%

5 79.0%

7 71.4%

600 12.02

3 76.7%

5 64.0%

7 51.4%

400 5.62

3 63.3%

5 46.0%

7 35.7%

Table 5: Results of graphs with different sensor densities.

some paths we generate share common nodes or edges. This is due to the discrete

nature of graphs. From s, we can only send packets to its neighbors, which is a

restriction in choosing the first few hops of the transmission; the hops near t suffer

from the similar problem. But in the middle segments, the paths generally follow

the shape of a circle arc connecting s and t, which is desired. When the network

becomes denser, the situation becomes more similar to that of the continuous case.

To further explore the differences between the discrete and continuous settings,

we also simulate under different graphs. In graphs with different densities (with

uniform sensor distribution), we randomly pick 10 pairs of sources and destinations,

give the different inputs m as 3, 5 and 7, and calculate the average numbers of

disjoint output paths we get. The results are shown in Table 5. From the table,

we observe that the algorithm performs better in a denser graph with more links.

This is reasonable since the gap between the discrete and continuous settings is

smaller with a denser sensor distribution. Moreover, when the input m is smaller,

the algorithm gives better approximation. This is simply because given a smaller

input, the arcs span further away with each other (this result does not conflict with

Table 4 where κ(s, t) is known). We also notice that when m exceeds the average

node degree, the percentage drops drastically, where the input – the number of

disjoint paths we are trying to find – often exceeds the optimal value.

81

When the sensor distribution is non-uniform, the bottleneck of the performance

lies in the sparse regions, especially when those regions cover the neighborhood of

the source or the destination.

Figure 24 shows the result of a network region with holes. Some paths go

along the inner boundary, but the heavy load along the boundaries is avoided.

5.4.2 Routing with link failures

In sensor networks, links are likely to fail, especially in an adversarial envi-

ronment. Since greedy routing requires that for each step, there exists one link

leading to a node closer to the destination, the performance of greedy routing will

drop quickly when a link failure happens. What is more, link failures often have a

property of spatial locality, which means that a group of nearby links are likely to

fail at the same time. Therefore, when greedy routing hits this region, the message

may ‘get trapped in the mud’. We use the freedom of Möbius transformations to

recover from this situation.

Based on the above observations, we adopt the setting of clustered random

link failures. We first test a simple setting in which there is a region with arbitrary

size and shape. All the links within this region have a link failure rate p, while all

the links outside the region or crossing the boundary of the region will not fail. A

message following greedy routing in the circular domain may not have guaranteed

delivery as the link to the next hop can suddenly fail. Our strategy is to adopt

a different Möbius transformation. We compare it with another simple strategy

that recovers from failure by performing a random walk. Although random walk

is simple, it is time-consuming for the routing path to jump out of a large link

failure region, due to its locality and randomness. In our following experiment,

we will compare greedy routing with Möbius transformations with other greedy

routing techniques, in terms of routing delivery rate and routing path length. The

experiment network size is 1000 nodes with a varying number of links. The link

failure region is a rectangle lying in the network.

In the experiments, we compared the following methods.

Greedy routing on the original coordinates. Simple greedy routing on the orig-

inal coordinates, which fails to route to the destination easily due to link failures.

82

We call this method Greedy in short.

Greedy routing on the virtual coordinates. Greedily route to the destination using

coordinates computed by Ricci Flow. We call this method Ricci in short.

Greedy routing on the original coordinates with random walk.] Route based on

the original coordinate set and perform random walk to recover from failure. We

call this method GreedyRnd in short.

Greedy routing on the virtual coordinates with random walk. Greedily route

using virtual coordinates and perform random walk to recover from link failures.

We call this method RicciRnd in short.

Greedy routing with Möbius transformations. Our method performs greedy

routing based on the virtual coordinates in a circular domain. If the route gets

stuck in the middle due to link failures, it performs a Möbius transformation to get

a new path towards the destination. We call this method Möbius in short.

Various parameters will affect the success rate of routing. In our experiment,

we focus on the average degree of the network, the link failure rate and the TTL

(time-to-live) of the packet. If the connectivity of networks becomes better as the

average degree increases, routing will be easier for all methods. Obviously a higher

link failure rate will make all methods suffer. We also include a TTL with each

packet to stop a packet from roaming aimlessly in the network, in particular in the

random walk method.

Routing result and analysis. In Figure 25, 26 and 27, we show the message deliv-

ery rates by varying the network density, the TTL and the link failure rate respec-

tively. In all settings, we can see our method has a significantly higher delivery rate

than the other methods, which shows that by using a new Möbius transformation,

we can effectively find an appropriate path which leads the route out of the failure

region. In general the performance of different methods, in decreasing order, fol-

lows the trend of Möbius > RicciRnd > Ricci � GreedyRnd � Greedy. Greedy

routing using the original coordinates nearly does not work, no matter whether it is

augmented with random walk or not.

Figure 25 shows the performance of all methods on networks of different node

average degrees. The performance of all methods deteriorates when the network

becomes sparse. Still our method is the leader. Note that in all cases we must first

83

p1 p2 Möbius Ricci RicciRand Greedy GreedyRand

0.3 0.0 0.962 0.573 0.779 0.021 0.028

0.6 0.0 0.912 0.402 0.651 0.014 0.016

0.6 0.3 0.738 0.207 0.472 0.003 0.009

0.9 0.0 0.823 0.271 0.511 0.008 0.013

0.9 0.3 0.632 0.148 0.335 0.002 0.006

0.9 0.6 0.472 0.037 0.193 0.001 0.004

0.6 0.6 0.587 0.094 0.263 0.002 0.004

0.3 0.3 0.802 0.254 0.513 0.007 0.011

0.3 0.6 0.591 0.119 0.285 0.002 0.005

0.3 0.9 0.224 0.017 0.104 0.001 0.002

0.6 0.9 0.152 0.011 0.063 0.001 0.002

Table 6: Comparison of different p1 and p2 settings.

make sure that the network is connected and has a triangulation for computing the

virtual embedding as a circular domain.

Figure 26 shows the importance to choose an appropriate TTL. As TTL grows,

the delivery rate of our routing method grows rapidly and then stays close to 1, while

the other methods do not exhibit a growing trend with TTL. This shows that the

Möbius transformation scheme does recover from link failures and makes progress

towards the destination, while the other methods still get stuck in the middle. Fig-

ure 28 shows the distribution of path length under different methods. Indeed our

method gradually delivers more messages when TTL is increased.

Another potential factor affecting the routing performance is the distribution

of link failure rates. We test the situation where links lying inside and outside the

failure regions have failure rates p1 and p2, respectively. We evaluate the perfor-

mance by varying the difference between p1 and p2. From the simulation results

shown in Table 6, we can see that our method consistently outperforms the other

methods in different settings. When p1 and p2 are getting close, RicciRnd starts

to catch up. In these experiments we also vary the shape and positions of failure

regions. While the exact values may vary, the trend is clear: our method makes

progress towards the destination despite the existence of high link failure rate, and

84

is unlikely to get stuck in the middle; making long de-tours is generally better than

taking local random walks.

5.5 Discussion

In this work we presented a method that uses circular domain embeddings

and Möbius transformations to switch between them for multipath routing and im-

proving routing resilience. This shows the power of a geometric transformation that

regulates a network shape — difficult routing problems due to lack of global knowl-

edge can benefit significantly from such transformations. We expect to extend the

intuition to more problems on distributed network setting in the future.

Our multipath routing algorithm in the discrete case uses a heuristic method

that maximizes the angular spread of the paths at source and destination. It would

be a very interesting problem to exploit the freedom of using such routing scheme

to improve network throughput, or optimize energy usage, etc.

We would also like to mention that the paper borrows heavily intuitions that

arise from the continuous domain. Our provable results are in the continuous case

and the performance of the algorithm in the discrete case is only evaluated by sim-

ulations. The problem of addressing the gap between the continuous space and a

discrete graph, theoretically, is yet an open problem. It would be an interesting and

challenging problem to come up with a suitable discrete model and derive minimum

density bound. We leave this for future work.

85

(a) (b)

(c) (d)

(e) (f)

Figure 23: Multipath Routing Algorithm. (a) and (b) are the original networks. (c)

and (d) are the networks applying Ricci flow. (e) and (f) are the networks applying

Ricci flow and a Möbius transformation (zoomed in). First column: m = 3; second

column: m = 5.

86

Figure 24: Multipath Routing Algorithm in a region with holes. Up: original net-

work; bottom: network applying ricci flow. Here κ(s, t) = 9.

Figure 25: Routing delivery rate versus average degree (TTL = 500; link failure rate

= 0.8). Möbius is our method. Greedy and Ricci are greedy routings on the original

and Ricci Flow coordinates respectively. GreedyRand and RicciRand are greedy

routings on the original and Ricci Flow coordinates with random walk respectively.

87

Figure 26: Routing delivery rate versus TTL (time-to-live) of packets (AvgDegree

= 10; link failure rate = 0.8).

88

Figure 27: Routing delivery rate versus link failure rate (AvgDegree = 10; TTL =

500).

Figure 28: Distribution of routing path lengthes (AvgDegree = 10; TTL = 500; link

failure rate = 0.8).

89

Chapter 6

Wormhole Attack Detection and

Removal

6.1 Introduction

A wormhole attack to a wireless network [67] is to place two radio transceiver-

s, connected by high capacity out-of-band wireless or wired links. Signals captured

by one antenna are “tunneled” through the wormhole link to the other antenna, and

replayed there. In the ‘store-and-forward’ scheme, the wormhole nodes copy the

entire packet before transmittal through the wormhole link. In more sophisticated

schemes, the wormhole can be launched at the bit level (the replay is done bit-by-

bit even before the entire packet is received, similar to cut-through routing [116])

or at the physical layer [54] (the actual physical layer signal is replayed, similar to

a physical layer relay [141]). Effectively, the wireless nodes near one wormhole

antenna find out that they can directly communicate with the wireless nodes near

the other antenna and would consider them as immediate neighbors. See Figure 29.

A wormhole attack is easy to launch. It is independent of the MAC (medium ac-

cess control) layer protocols and is also immune to cryptographic techniques. It

does not require the adversary to break into the wireless nodes or understand the

communication mechanisms employed by the network.

If the adversary only replays the signal faithfully, the presence of wormhole is

of no harm or even beneficial as it enhances the network connectivity and creates

90

short paths between otherwise far off regions. When the tunneled distance is larger

than the transmission range in the network, nodes near the wormhole antennas find

shorter, faster, and probably more reliable paths by tunneling through the wormhole.

Wireless networks running any variations of shortest path routing will discover such

paths and eventually make use of them to deliver data. For example, take a simple

scenario where nodes are uniformly deployed in the domain with d nodes per unit

area on average and the wormhole antennas are placed of distance k apart, roughly

at least πdk2/8 pairs of nodes will find shorter paths through the wormhole link.

In another case when one radio transceiver is placed next to a data sink in a sensor

network, the wormhole link provides shortcut paths to the sink for πdk2/4 nodes.

Therefore, a wormhole attack, in particular one with a long tunneling distance, will

be able to attract a lot of traffic through the wormhole link. This puts the wormhole

link at a powerful position than other nodes in the network and this allows the

adversary to exploit this position in a variety of ways.

Since a wormhole attack fundamentally changes the network connectivity, by

turning on and off the signal replay an adversary can suddenly create and destroy

a large number of shortest paths in the network and upset most routing protocols.

In on-demand routing protocols, a wormhole can attract the route request packet

through the tunnel and later play denial of service attack by refusing to forward

any packets. In routing protocols that periodically discover neighbors, the adver-

sary can trigger frequent neighbor changes and paths changes, which consumes the

node energy and communication bandwidth. Even when the wormhole does not

shut down its replay scheme, the wormhole can be used to attract network traffic,

and can then eavesdrop, maliciously drop packets, or to perform man-in-the-middle

attacks. Traffic gathered this way can also help to break encryption and security

mechanisms used in the network. Thus wormhole attack opens the door to many

more malicious attacks. We measure the impact of a wormhole attack by the num-

ber of pairs whose shortest paths are affected by the wormhole attack. In this sense,

a wormhole attack has larger impact/potentially more damages when the two an-

tennas are placed relatively far away, as more traffic and more paths in the network

are affected by the wormhole link. We call such a wormhole to be a ‘long’ one and

it is of most interest to detect those long wormholes in the network.

91

Wormhole link

B

Y

X

A

Figure 29: Demonstration of a wormhole attack. X and Y denote the wormhole

nodes connected through a long wormhole link. As a result of the attack, nodes in

Area A consider nodes in Area B their neighbors and vice versa.

In addition to messing up with the routing protocols, using wormholes an at-

tacker can also break any protocol that directly or indirectly relies on geographic

proximity. For example, target tracking applications in sensor networks can be eas-

ily confused in the presence of wormholes. Similarly, all localization algorithms

that use network connectivity would fail or be confused by the alteration of the net-

work topology due to wormhole links. This can have a major impact as location is a

useful service in many protocols and application, and out-of-band location systems

such as GPS are not always available.

6.2 Related Work

In the literature a number of techniques have been proposed to detect worm-

hole attacks. These methods have their respective limitations, e.g., assuming addi-

tional hardware or explicit communication models or lacking the ability to single

out wormhole links. We first review the prior work and then describe our approach

using novel algorithmic techniques.

Methods using distance or timing analysis. Packets going through a wormhole

take longer to reach the destination due to the delay in reception, transfer and re-

transmission at the other end. A number of schemes have tried to detect wormhole

attacks by measuring packet traverse distance or time. Such methods are generally

called packet leashes [29, 54, 66, 140]. The limitation of this method is that one

needs to obtain the node location information using out-of-band mechanism such

92

as GPS, or, extremely accurate globally synchronized clocks to bound packet prop-

agation time. It is unclear whether the techniques can be carried out in low-cost

hardware such as sensors. Even if so, such timing analysis may not be able to de-

tect cut-through or physical layer wormhole attacks, as such replays can happen

quite fast and cannot be detected easily.

Methods using special hardware. Using purely physical layer mechanisms one

can prevent wormhole attacks such as those involving authentication in packet mod-

ulation and demodulation [66]. But such techniques require special RF hardware.

Directional antennas can also be used to prevent wormhole attacks [65]. The re-

quirement of special devices limits the use of such protocols.

Methods using special guarding nodes. A few protocols of this type [80, 81, 123]

have been proposed that use special-purpose guard nodes with known locations,

higher transmit power and different antenna characteristics, to attest the source of

each transmission. The use of such special purpose guard nodes makes this ap-

proach limited in applicability.

Methods using neighborhood discovery. Since the placement of wormhole in-

creases the local connectivity at the neighborhood of the wormhole nodes, one can

use statistical approaches to detect the increase in number of neighbors and the de-

crease in lengths of shortest paths between all pairs of nodes due to wormhole pres-

ence [27]. A similar approach using statistical measurements of multi-path routing

is used in [125]. Both schemes assume that the network is free of wormhole to start

with and they are vulnerable if the attack is launched prior to such discovery.

A different approach examines the changes in the connectivity graph by the

wormhole attacks and look for ‘forbidden substructures’ in the connectivity graphs

that should not be present in a legal connectivity graph [105]. This approach how-

ever assumes fairly detailed knowledge of wireless communication model (i.e., a

model that describes with some given confidence whether a link between two n-

odes should exist) and the performance deteriorates if such a model is lacking.

Methods using global network topology. The last family of work examines the

global network topology. Essentially the wormhole attack drastically changes the

network connectivity by ‘gluing’ links between the nodes near wormhole nodes.

In [156], distance estimates between sensors are used to determine a “network lay-

out” using multi-dimensional scaling (MDS) technique. Without any wormhole the

93

network layout should be relatively flat. But the layout could be warped in pres-

ence of wormholes. Thus detecting whether the network can be embedded on a flat

domain can tell whether wormhole attacks are present. This method is centralized

and it does not identify nor isolate wormhole attacks.

Dong et al. [44] uses the local topological changes around the neighborhood

of the wormhole nodes to detect the wormhole links. In particular, one takes a

local k-hop neighborhood and see whether the ‘boundary’ has single or double

cycles. Intuitively, the neighborhood that encloses a wormhole link will have two

cycles and single cycle otherwise. The limitation of the method is that it requires

relatively high node density to ensure that boundary detection algorithm works well,

and relies on the local hop count metric being close to the Euclidean metric. They

suggest using global topological properties to detect presence of wormholes in [43].

This idea has some merit for certain 2-manifolds, but do not carry over to actual

networks, since real world network graphs are not surfaces.

6.3 Overview of Our Approach

We search for a detection method that is not limited to the various constraints

as described earlier. The approach we use is to examine graph connectivity, and

detect the fundamental connectivity changes a wormhole would introduce. This

puts us into the family of protocols that test the network connectivity or global

topological changes, such as those described in [43, 44, 105, 156]. Compared with

these work, our method makes contributions in the following aspects.

Rigorous Definition of A Wormhole Attack. None of the previous connectivity

based detection method has a rigorous definition of what constitutes a wormhole at-

tack in the connectivity graph. Thus there is no provable results on detection ability

and the algorithms rely on simulations to evaluate the performance. We introduce a

rigorous definition of how a wormhole attack affects the network connectivity. Ba-

sically a wormhole would ‘shortcut’ the paths between two sets of nodes W0,W1

that can directly communicate with the two wormhole antennas respectively. There-

fore, the wormhole attack introduces links between nodes in W0 and W1 and adds

the full bipartite graph on W0,W1 to the existing topology. The length of the worm-

hole is dictated by the shortest hop count between nodes in W0 and nodes in W1

94

before the wormhole is introduced.

Guaranteed Detection of Wormhole Sets. All previous algorithms are conserva-

tive, in the sense that it is possible to report no wormhole while there is one even

in the case of a long wormhole (connecting nodes that are far away in the original

network). We consider the false negative to be more dangerous than false positive

(that certain legal links are labeled as suspicious). When a false positive link is re-

moved, a valid communication link is lost, but security is not compromised. A false

negative, on the other hand, leaves the network insecure. We prove that our algorith-

m guarantees to detect all the nodes affected by the wormhole attack. Abstracting

away some technical details, in our method we remove a local neighborhood around

a node p and check whether a slightly larger neighborhood is connected. If not, p

is considered as a suspicious node. We prove for all suitable parameters this simple

test is guaranteed to identify all the nodes affected by a wormhole. By repeating

the test for different sets of parameters we can also substantially reduce the number

of false alarms. With the candidate sets, we include additional tests to verify that it

is indeed a wormhole structure in our definition. Thus a wormhole set is provably

and accurately detected.

Robustness to Different Communication Models and Dimensions. We remark

that our detection algorithm looks at network connectivity alone. Thus the method

applies to any general network settings. For example, the method does not require

any assumption nor knowledge of the wireless communication models (as opposed

to the method in [105]). It does not use any geometric intuition that relies on the

network being embedded in the plane, as opposed to the methods in [43, 44]. The

same algorithm works on networks deployed in 3D.

Scalability and Communication Costs. Our detection algorithm at a node p only

uses information of a small bounded neighborhood of p. Thus naturally the algo-

rithm is scalable to networks of large size. The communication cost for the test is

low, dependent only on the network degree for each node.

We evaluated the detection performance (in terms of false positive and false

negative) with connectivity based methods [43, 44]. The results show that our

method has better performance in detecting wormholes. In particular when the

network model does not follow unit disk graph model the performance of other

95

methods deteriorates substantially. Our method has slightly more false alarms but

the detection of wormhole attacks is accurate.

In the following we first present the definition of a wormhole set, the threat

model, and then describe the algorithm to detect nodes affected by a wormhole

attack. We also discuss methods to eliminate false alarms and to detect multiple

wormholes. We then present simulation results and comparisons with other con-

nectivity based methods.

6.4 Wormhole and Local Connectivity Tests

Our algorithm is to detect the anomalies in the graph connectivity. To start

we first rigorously define what is the connectivity structure of a wormhole and then

describe our algorithm.

6.4.1 Assumptions and Threat Model

In a wireless network communication links can possibly be directional. That

is, A can send messages to B but not vice versa. We only consider the bidirectional

links, as directional links do not support acknowledgement schemes. We assume

that the transmission characteristics of the wormhole transceivers are the same as

that of the other legal nodes in the network, to enable bidirectional communications.

We assume that the adversary can place wormhole nodes at arbitrary places in

the network, and that these nodes are connected through a communication channel

that is unobservable by other nodes. The wireless network can adopt efficient sym-

metric cryptographic schemes (as in [67]) to authenticate communication partners

and protect the communication messages. The wormhole attacker simply sniffs

traffic on one end and replays on the other end. That is, the attacker does not need

to know the cryptographic schemes used in the network to fool the nodes to believe

that they have a direct communication link. The wormhole transceivers also do not

have identities. In fact, the wireless nodes are not aware of the presence of any

special wormhole radios in the neighborhood and just hear about some messages in

the air, that are possibly replay messages.

We assume a wireless ad hoc network in which the nodes are not compromised

96

nor malicious. In particular, there is no Sybil attack [69], where a malicious node

behaves as if it was a larger number of nodes, for example by impersonating other

nodes or simply by claiming false identities. We will discuss the case of compro-

mised or malicious nodes in the discussion section.

6.4.2 Wormhole Definition

We start with an unweighted communication graph G = (V,E). A wormhole

attack captures the signal in the air from one radio transceiver A and then broadcast

from another radio transceiver B. As a consequence, all the nodes whose signal

reach A and B respectively will think they have direct communication links. This

creates a local structure of a full bipartite graph as a subgraph. The damage from a

wormhole attack is defined as the number of pairs discovering shorter paths through

the wormhole link. Thus, further away the two radio transceivers are, more damage

is done by the wormhole attack. On the other hand, very short wormholes do not

significantly modify connectivity and are not such a threat. Our wormhole defini-

tion captures this parameter by measuring the hop distance k between the nodes

connected through a wormhole in the original network in absence of the wormhole.

We assume that k is greater than a sufficiently large constant. All our tests will only

use a bounded neighborhood of size determined by k around each node.

Definition 21 (k, τ)-wormhole set. A set W ⊂ V is a (k, τ)-wormhole set if it is

a maximal disjoint union W0 ∪W1 for which the following conditions hold:

1. Each edge (u, v) ∈ W0 ×W1 is in E. That is, each node in W0 is a neighbor

of each node in W1. Such edges are called wormhole edges.

2. |W0|, |W1| ≥ τ , that is, there are at least τ nodes whose signals are captured

by the wormhole link on either side.

3. Removing all wormhole edges W0 ×W1 increases the distance between W0

and W1 to be at least k, but does not disconnect any part of the network.

The set W is said to maximal in the sense that no node can be added to it while

keeping true to the conditions above. This definition implies that the diameter of W

97

vu

v2

u1

u2

v1

Figure 30: A legal network structure such as a bridge connecting two nodes on the

boundary of a hole could also be identified as a ‘wormhole’ in our definition. How-

ever, the same graph structure can be generated by also placing wormhole antennas

near u and v. Thus it is impossible to eliminate this case from our definition.

is at most 2. Sometimes we write a wormhole set simply as a k-wormhole to mean

that τ is not relevant, or equivalently, τ = 1.

We remark that in certain cases, legal links can be identified as a wormhole

set. Consider a network with a ‘bridge’ connecting two nodes that are otherwise far

apart in the network. Such a bridge or bridge like structure falls in our definition.

See Figure 30. But such bridges could also be the result from a wormhole attack

and there is no way to distinguish them from a real wormhole attack based on graph

connectivity only. Thus, our tests will be on the aggressive side and also identify

such structures, and report them for further investigation.

Finding a complete bipartite subgraph can be done in the centralized setting

when the entire network topology is available. Eppstein [51] shows an algorithm

that lists all complete bipartite subgraphs in a network with constant degree. The

running time of the algorithm is linear in the size of the graph and exponential in the

node degree. We will use this algorithm on local neighborhoods in the final stage

of our algorithm to test that the wormholes detected have τ nodes on each side.

6.4.3 Local Connectivity Test

The idea in our test is to observe that a wormhole attack connects two sets

of nodes that are otherwise far away in the graph, while the wormhole set itself

is contained in a very small neighborhood. As a node near a wormhole expands

its neighborhood, the neighborhood grows on two sides of the wormhole edges.

Removing a small region around the node removes the wormhole and disconnects

the neighborhood into two components.

Thus our local connectivity test is to check whether a neighborhood of a proper

size will fall into multiple connected components. Since wireless communication

98

q
p

W1

W0

Figure 31: The thick circles represent the nodes within the wormhole range, those

on two sides correspond to W0 and W1 respectively. The physical wormhole link

is not shown since it is not visible in the network connectivity. The darkly shaded

region denotes the ball B1(p), which includes all nodes in W1. Thus removing

B1(p) also removes all wormhole edges. The lightly shaded region denotes the ring

N[1,2](p). It has two components, one near W0 and one near W1.

has a lot of local spatial variations, checking the 1-hop neighborhood does not give

reliable results. Thus we consider neighborhoods of different sizes. To be precise,

we will introduce the following definitions.

Definition 22 α-ball and [α, β]-ring. An α-ball centered at node p, written as

Bα(p) is the set of all nodes with distance at most α-hops from p. All the nodes

that are within β hops from p but are more than α-hops away from p are called the

[α, β]-ring N[α,β](p). In symbols : N[α,β](p) = Bβ(p) \ Bα(p). α, β are integers

satisfying β > α ≥ 1.

To test for a wormhole, we first introduce a basic [α, β]-ring-connectivity test,

where α, β are integers satisfying β > α ≥ 1.

Definition 23 [α, β]-ring-connectivity test for node p. Consider the set of nodes

N[α,β](p) = Bβ(p) \ Bα(p), and the subgraph in G induced by it. If this subgraph

contains more than one connected components, the test returns true, and we say p

is a k-wormhole candidate for all k > 2β. See Figure 31 for an example.

Guaranteed Detection of Wormhole Sets. We show that if there is a wormhole,

the [α, β]-ring-connectivity test always detects it successfully. For now we consider

the case that the network has just a single wormhole set. First we show that the

connectivity test will surely label the nodes in a wormhole set.

99

Theorem 24 (Guarantee of detection) Given a (k, τ)-wormhole set W , all the n-

odes in W will surely be detected by the [α, β]-ring-connectivity test, given that

k > 2β, β > α ≥ 1.

Proof 25 Consider a (k, τ)-wormhole set W . Without loss of generality, we take

representative nodes p ∈ W0 and argue that it must be labeled as wormhole candi-

date. Assume otherwise, then the subgraph induced by N[α,β](p) remain as a single

connected component, after we remove the α-ball of p. Recall that all the nodes in

W1 are neighbors of p, thus removing α-ball of p with α ≥ 1 will surely remove all

nodes inW1. Thus all the wormhole edges are removed as a result. Intuitively the n-

odes in N[α,β](p) were originally reached from p through either the wormhole edges

or not using any wormhole edges. After the wormhole edges are removed, these

two sets naturally form disconnected components. We make this intuition rigorous

in the following.

Consider the nodes in N[α,β](p). We define the set N1 to be the nodes whose

shortest paths to p go through nodes in W1, and the set N0 to be the nodes whose

shortest paths to p do not go through nodes in W1. We argue that the two sets are

disjoint, and form disconnected components.

If the subgraph induced by N[α,β](p) has only one connected component, take

a node x /∈ W in this subgraph. Since x ∈ N[α,β](p), x is within β hops from p.

There are also two shortest paths that connect from p to x, one through the nodes

in W1 (denoted as P1) and one not through the nodes in W1 (denoted as P0). These

two paths, concatenated, form a cycle of length at most 2β + 1. See Figure 32

for an example. We now argue that on path P1 there can only be one node q from

W1, that is, the node immediately after p on P1. Clearly, if there is another node

q′ ∈ W1 further down the path P1, then one can shortcut the path P1 as p and q′ are

also neighbors. This will contradict with the fact that P1 is a shortest path. Thus,

removing the edges between W0 and W1 will still leave a path connecting p and q

with total length 2β. This contradicts with the definition of a k-wormhole, where

k > 2β.

The parameters α, β can be varied. Our tests are aggressive, in the sense that a

single wormhole attack will surely be identified for suitably small values of α and β.

Thus detection is always guaranteed. Different parameters may introduce different

100

p

x

W0

W1
P1P0

q

Figure 32: If N[α,β](p) has only one connected component, then there is a path

connecting two nodes p ∈ W0, q ∈ W1 not using any wormhole edges with total

length at most 2β.

type of false positives. For example, a small β is likely to introduce false positives

– that is, certain nodes in sparse regions may be wrongly identified as a candidate

because their small neighborhoods are naturally disconnected. But using a large β

will show that it is actually not a real wormhole node, since the neighborhoods are

connected by a slightly longer path. In our final algorithm we run multiple tests

with different parameters and output the nodes that are labeled in all tests. We start

with smaller values of α, β, and perform additional tests with larger values only on

the nodes that are labelled as suspicious – as wormhole candidates – by the earlier

tests. We take to be wormhole set the nodes that that are detected by all the tests up

to a suitable value. Once a set of candidates are detected, we can remove the links

connecting the candidates.

6.4.4 The Wormhole Algorithm

Based on the ring-connectivity test, we describe a simple distributed algorithm

that identifies neighborhoods in a network as wormholes. Our goal is to detect

wormholes of length k and greater. Since k must be greater than 2β, and β is at

least 2, the minimum permissible value of k is 5.

Let us denote by C[α,β] the set of nodes detected to be wormhole candidate by

the [α, β]-ring-connectivity test performed at each node in the network.

Algorithm: Connectivity Metric Test. The algorithm consists of performing the

test on increasing values of (α, β) in lexicographic order, and performing subse-

quent tests only at nodes that are labelled candidates by all previous tests. More

101

precisely, we select α = 1, 2, . . . , �(k− 3)/2�. And for each α, we perform the test

for β = α+1, α+2, . . . �(k− 1)/2�. Clearly, the result of the algorithm is a set of

candidates
	(k−3)/2
⋂

α=1

⎛⎝	(k−1)/2
⋂
β=α+1

C[α,β]

⎞⎠ .

What we have covered until now addresses the detection of some subgraphs

whose presence have a large effect on the metric – the basic symptom of a worm-

hole. Condition 2 in our definition of wormholes requires that each side of a worm-

hole have a size τ . We now describe how to check for this threshold. For this,

we make use of the algorithm in [51] that finds the maximal complete bipartite

subgraphs in any graph. Note that this entire phase can be ignored for τ = 1.

Algorithm: Test for τ Partitions. We take connected components of the subgraphs

induced by the nodes detected as wormhole candidates after the connectivity metric

test above. Let C be one such connected subgraph.

On the subgraph C, we apply the algorithm of [51]. Let B be the set of max-

imal complete bipartite subgraphs generated by the algorithm. We write as a pair

(W0,W1) an element in B, where W0 and W1 are the two partitions of the bipartite

graph.

On each such bipartite subgraph, we perform the following test. We consider a

neighboring subgraph N that consists of nodes that are at a distance at most �(k −
1)/2� from all nodes inW = W0∪W1, but not the nodes inW itself. LetN0, N1, . . .

be the connected components of N .

For any edge (a, b) ∈ W0 ×W1, if nodes a and b are neighbors to nodes of N ,

we check that these are in different components of N . For a graph that satisfies this

condition, we check that |W0|, |W1| ≥ τ . If there is a complete bipartite subgraph

that satisfies all these conditions, we have detected a wormhole W = W0 ∪W1.

Removal of Wormholes. One of the goals of detecting a wormhole is to be able to

nullify it unobtrusively. We would like to retain the wireless nodes in action (thus

keeping the sensing or computational capabilities of the nodes), but eliminate the

high volume of traffic passing through the wormhole link that creates the wormhole

effect. We do this by removing the edges W0 ×W1 in the bipartite graph.

Test for network connectivity. Once a wormhole has been detected and removed,

102

we flood from any one node in it and ensure that the flood reaches all other nodes.

This is to guarantee that the network remains connected as required by our defini-

tion.

Provable guarantee. Now we are ready to show our main result. The [α, β]-ring

connectivity test is guaranteed to label all nodes in a real wormhole, but may label

some legal nodes incorrectly. Together with γ-partition test, the removal and the

connectivity test, the false positives are removed so our detection precisely identi-

fies a wormhole in our definition.

Theorem 26 Any (k, τ) wormhole W = W0 ∪W1 is detected by our test. And, our

detection is surely a (k, τ) wormhole.

Proof 27 To show the first claim that our test is effective, we simply need to show

that in each of the succession of tests, a real wormhole set (W0,W1) is not elimi-

nated. First, (W0,W1) is by definition a maximal bipartite graph. Therefore, it will

be one of the graphs detected by [51].

Next we need to show that if (a, b) ∈ W0 × W1, and a and b are neighbors

to the neighbor set N , they are neighbors to different connected components of N .

Suppose to the contrary that they are neighbors to the same connected component.

Then there is a node c ∈ N that is at a distance at most (k − 1)/2 from both a and

b. Thus, there is a path of length k − 1 from a to b not passing through W . This

contradicts the definition of a (k, τ) wormhole.

Finally, by definition, |W0|, |W1| ≥ τ. Thus every legitimate wormhole is de-

tected by the test.

Now we show that our detections follow the wormhole definition. It is clear

that our detection generates a bipartite graph (W0,W1) satisfying that each side

has at least τ nodes. By the test of τ -partition, we see that without edges in the

bipartite graph the nodes in W0 and W1 can only be connected by paths of length at

least k. By the wormhole removal and connectivity test, the removal of the edges in

the bipartite subgraph does not disconnect the network. Thus the detected structure

precisely follows the definition of a wormhole.

Scalability and Communication Costs. The detection method is naturally local

and distributed. It is local in the sense that communication distances are bounded

103

by a known parameter, and completely independent of the size of the global net-

work. Each node only uses the connectivity information of the nodes within its β

neighborhood, whose size just depends on the average network degree and not on

any other property of the network. This makes the algorithm scalable to networks

of any size.

For the test for τ sized partition, we aggregate the data about the set C and the

adjoining components of N to a single node, and conduct the computation at that

node. The algorithm from [51] can be computation intensive in a dense network,

since its cost is exponential in degree. But note that we do this only at a few small

neighborhoods we consider very likely to contain a wormhole. The overall cost for

the network is therefore typically not large. Also, this step can be ignored for τ = 1,

which is the value we use in simulations and get very good results.

6.4.5 Discussions on Parameters

As shown in the previous section, our [α, β]-ring connectivity test algorithm

surely labels the nodes in a wormhole set. If we use the τ -partition test and the

wormhole removal and connectivity test we precisely identify a wormhole. It is nice

to have such theoretical guarantee but in practice one suggestion is to use the [α, β]-

ring connectivity test only, for the reason of simplicity and low communication

requirement. In this way we do not lose any detection power but may identify some

false alarms. In this section we discuss a few interesting cases and in particular how

the parameters may influence the performance of the algorithm.

Effect of k. The user supplied parameter k essentially determines the sensitivity of

the algorithm. A smaller value of k makes the algorithm more sensitive. It can de-

tect smaller wormholes, but introduces a greater chance of false positives. A larger

value of k may miss some smaller wormholes, but provides more reliable detection

of the longer wormholes. Longer wormholes are more dangerous, since they intro-

duce larger distortion to the graph metric and attract more traffic. Thus, in a sense

the algorithm’s accuracy automatically scales with the effect of the wormhole, or

the danger posed by it.

The Influence of Parameters α, β. Recall that in our detection algorithm there are

parameters α, β satisfying k > 2β, β > α ≥ 1. α is the size of the neighborhood

104

z
p

x

y
p

· · ·
x

· · ·
p

· · ·

(i) (ii) (iii)

Figure 33: The α-ball is shown as the shaded region and the nodes within β-ball

are within the dashed cycle. (i) If we take α = 1, β = 2, p will be identified as a

candidate since x, y ∈ N[1,2](p) are not directly connected. But if we use β = 2,

N[1,2](p) has three nodes x, y, z and is connected. This way the false alarm for p is

removed. (ii) p has a dangling path of length 2. For α = 1, β = 2, the dangling

node x is not connected with other nodes in the ring. Increasing α to be 2 will

remove such dangling paths. (iii) Consider a bridge of 3 hops wide as shown in the

figure. Consider a test at p with α = 1, β = 2. The nodes in the ring are connected

and thus p is not a candidate in this test. But if we increase α = 2, β = 3, the entire

bridge will be removed and the nodes in the ring will be disconnected. Thus large

α will not necessarily reduce the number of false positives.

around p to be removed. α is at least one. β must be at least one greater than α to

allow a non-empty ring between the α hop and β hop.

While clearly a sufficiently long wormhole will surely be detected for many

different combinations of these parameters, an intelligent choice of parameters can

lead to fewer false alarms. Our final algorithm tries different sets of parameters

and take the intersection of their candidate sets. Notice that our sufficiency proof

guarantees that any real wormhole nodes will definitely pass all such tests so we

will not miss any real wormholes. We discuss the influence of the parameters in the

following.

When β is increased, the [α, β]-ring has more nodes in it. For an example,

take a look at Figure 34 (i). If α = 1, β = 2, the ring has two nodes that are not

connected. But if we increase β to be 3, the ring has three nodes in one connected

component. It is also clear that the newly included nodes are always connected

to the nodes already in the ring, so there will not be any newly connected emerged

components in the ring. Increasing β will always reduce the number of false alarms.

105

The issue is that β cannot be increased arbitrarily due to upper bound of k and

higher communication/computation cost.

The parameter α works in an interesting way regarding false alarms. First,

when α is small, there can be many false positives in a network that is not well

connected. Take a look at Figure 34 (ii). In particular, when there are small ‘dan-

gling’ nodes, these nodes may lead to identifications of some false positives. But

increasing α can enclose all these dangling nodes inside the α ball and thus remove

them. For a ‘dangling’ component with ‘depth’ of �, using an α ≥ � will include all

dangling nodes inside the α ball and thus eliminate the false positives created this

way. On the other hand, making α too big may remove a ‘bridge’ in the network

and thus create falsely identified candidates. Take a look at Figure 34 (iii). A smal-

l α does not disconnect the bridge but a large α can fully remove the bridge and

report p as a candidate (false alarm).

Eliminate False Alarms with τ . So far in our discussion we focused on the length

of a wormhole, denoted by the parameter k, as the minimum hop distance between

nodes in W0 and W1 once the wormhole edges are removed. Another parameter

in a wormhole definition is the size of W0 and W1. A wormhole antenna takes all

the signal it hears and broadcasts to the other antenna. Thus all the nodes within

direct communication range of a wormhole antenna will be affected by the attack.

In a case when the node density has a lower bound τ (i.e., an antenna placed at any

location can hear from at least τ nodes), then it is clear that |W0|, |W1| ≥ τ . We can

also use this property to eliminate the false alarms. This avoids identifying isolated

edges that act as connection between otherwise distant parts of a sparse network.

6.4.6 Multiple Wormhole Sets

When the network has multiple wormhole sets, our [α, β]-ring-connectivity

test can also detect these wormhole sets if they are far away (and thus ‘independent-

ly’ alter the network connectivity) or too close (thus removing the α neighborhood

will remove all related wormhole edges).

Theorem 28 When there are multiple k-wormhole sets, the nodes in the wormhole

sets are surely picked up by our [α, β]-ring-connectivity test, given that k > 2β,

106

β > α ≥ 1, and either one of the following conditions holds for each pair of

wormhole sets W , W ′:

1. The minimum hop distance between any two nodes that belong to different

wormhole sets W , W ′ is greater than β + 1.

2. There are two nodes p ∈ W , p′ ∈ W ′ such that p, p′ are within α− 1 hops of

each other.

Proof 29 In the first case, the two wormhole sets W,W ′ are far apart. Thus when

we run the test at a node p ∈ W , all edges involved are within β hops from p. That

means the existence of W ′ does not affect the test we run around p. Thus all nodes

in W are still identified.

In the second case, the two wormhole sets are ‘close’. Basically there is a node

p ∈ W and p′ ∈ W ′, p, p′ are within α − 1 hops of each other. Now if we do a test

on any node x ∈ W , then all the nodes in W ′ are within α hops from each other.

Thus the wormhole tests running on p will remove the wormhole edges of both W

and W ′. Thus the test will also turn out to label p as a candidate, since there cannot

be any edges of W ′ that affect the results (i.e., decrease the number of connected

components).

The test for size τ of wormholes can be carried out as usual. In the second

case, the detection of the complete bipartite graphs can help in identifying the fact

that there are in fact two wormholes.

The case when our detection algorithm fails with multiple wormholes is when

the multiple wormholes are carefully placed at a proper distance from each other

such that they interfere. An example is shown in Figure 34. The removal of the

α-ball around a node p does not leave the nodes in the ring in different connect-

ed components — as they can possibly be connected through another wormhole.

In fact, in this case any single wormhole itself does not actually follow our Defi-

nition 21. The two wormholes interfere with each other such that the removal of

edges from only one of them does not leave the nodes with long paths in the net-

work. However, if the wormholes are long, that is, if k is large compared to the

separation between W0 and W ′
0, then removing a sufficiently large α-ball discon-

nects both wormholes, and detects a candidate. This property can be used to detect

107

p

W1

W0

W ′
1

W ′
0

Figure 34: There are two wormhole attacks (W0,W1) and (W ′
0,W

′
1), one on top of

the other. Nodes in the second set are shown as squares. The edges after the removal

of Bα(p) (darkly shaded region) are shown. The second wormhole connects what

would have been the two components of N[α,β](p), which now appears to have one

component and is not detected in connectivity tests.

potential threats of multiple wormholes though it does not identify the wormholes

precisely.

6.5 Simulations

6.5.1 Simulation Setup

We evaluated our algorithm using extensive simulations under various condi-

tions, including different node distributions and density, radio models, positions of

wormholes, and different test parameters.

Node Distribution. Two node deployment models are used in our simulations: grid

with perturbation and random placement. In the model of grid with perturbation,

the wireless nodes are placed on an m × n grid, each cell in the grid is a square

with edge length d. Then each node with coordinate (x, y) will be perturbed around

its initial position with displacement parameter p: its coordinate will be uniformly

randomly drawn from the region [x− pd, x+ pd]× [y− pd, y+ pd]. By varying p,

we can get various node placements with different levels of regularities. In random

placement, each node is assigned a coordinate uniformly randomly drawn from

the network field. Random distribution typically has more irregularity than the

perturbed grid distribution. In our simulations, we also extend both types of node

placement strategies to three dimensional networks.

108

Radio Models. To determine links between nodes, we adopt both unit disk graph

(UDG) and quasi-UDG settings. In the UDG setting, each pair of nodes u and v

has an undirected link between them if and only if their distance is no greater than

R, where R is the communication radius. Quasi-UDG adopts a more practical link

generation model: each pair of nodes u and v will have a link if their distance is

no greater than r. Besides, they will have a link with probability q if their distance

is within [r, R]. In our simulation, we set r = 0 for quasi-UDG. By adjusting the

parameters in UDG and quasi-UDG, we vary the average degree in the network

from 6 to 20.

Wormhole Placement. The location of wormholes is a crucial factor in wormhole

detection. The length of a wormhole is important: a wormhole is significant on-

ly when it is reasonably long. In previous work [44], the placement of wormhole

antennas turns out to be another important factor: for the antennas being placed

near the network boundary or sparse regions certain algorithms may experience

deteriorating performance. Previous schemes did not tackle the case of multiple

wormholes. Multiple wormholes detection is influenced by their relative positions.

In our simulations, we vary the length of wormholes, put the antennas at different

positions of the network, and change the relative positions of two or more worm-

holes.

6.5.2 False Positive Rates By Ring Connectivity Tests

Our ring connectivity test guarantees to detect true wormhole nodes, which

means that there are no false negatives. Our method may run for multiple rounds

using different α, β parameters. For each round, we only test the candidates that

have passed all previous rounds. We evaluate the number of false positive nodes in

each round, by varying different setup parameters: node distribution, density, α, β,

and radio models (UDG or quasi-UDG).

Influence of Node Distributions and Density. Figure 35 shows that in general

there are much fewer false positives for networks with perturbed grid distribution

than networks of uniform random distribution, since a network of perturbed grid

is more regular. Second, with the same node deployment method and the same

109

5 10 15 20
0

10

20

30

40

Average Degree

F
al

se
 P

os
iti

ve
 N

um
be

r Perturb Grid UDG

α=2
α=4
α=6
α=8

5 10 15 20
0

10

20

30

40

Average Degree

F
al

se
 P

os
iti

ve
 N

um
be

r Perturb Grid Quasi−UDG

α=2
α=4
α=6
α=8

(a) (b)

5 10 15 20
0

500

1000

Average Degree

F
al

se
 P

os
iti

ve
 N

um
be

r Random Placement UDG

α=2
α=4
α=6
α=8

5 10 15 20
0

500

1000

Average Degree

F
al

se
 P

os
iti

ve
 N

um
be

r Random Placement Quasi−UDG

α=2
α=4
α=6
α=8

(c) (d)

5 10 15 20
0

200

400

600

Average Degree

F
al

se
 P

os
iti

ve
 N

um
be

r Random Placement UDG

β=5
β=7
β=9

5 10 15 20
0

200

400

600

Average Degree

F
al

se
 P

os
iti

ve
 N

um
be

r Random Placement Quasi−UDG

β=5
β=7
β=9

(e) (f)

Figure 35: The number of false positive nodes on a network with 5000 nodes. In

the first four figures, we vary α to be 2, 4, 6, 8 and take β = α + 2. In the last

two figures, we take α = 3 and take β as 5, 7, 9 respectively. (a) Perturbed grid

with UDG model, perturbation ratio p = 0.4. (b) Perturbed grid with quasi-UDG

model, p = 0.4. quasi-UDG radius r = 0,q = 0.5. (c) Random distribution with

UDG model. (d) Random distribution with quasi-UDG model, r = 0,q = 0.5. (e)

Random distribution with UDG model.(f) Random distribution with quasi-UDG

model, r = 0,q = 0.5.
110

average degree, our detection methods have fewer false positive nodes on quasi-

UDGs than UDGs. This observation is a bit counter-intuitive but confirms that our

method does not rely on the communication models. In particular, on quasi-UDGs

previous methods typically perform worse, especially for location based techniques.

Figure 35 also shows that as the average degree grows, the number of false positive

nodes drops very fast.

Effect of α and β. From Figure 35 shows that the increase of α and β reduces the

number of false positive nodes. This resonates with our design idea in which we

test the (α, β) parameters in lexicographic order, gradually removing false positives.

Notice that we take the candidates that pass all tests, the number of false positives

is very small.

Figure 36: Example of wormhole placement, Network size is 1000, average degree

is 6, α = 1, β = 3.

Wormhole Placement. Certain schemes proposed earlier are extremely sensitive to

the positions of wormholes. For example, the WormCircle method [44] divides the

wormhole positions into different cases and under certain cases the detection rate

is high, while in other cases, e.g. placing wormhole antennas on network bound-

aries, the detection rate is much lower. Our method is not influenced much by the

wormhole placement. We show different scenarios in Figure 36. It shows that we

can place wormhole antennas near the network outer boundary, or near holes, the

detection is always effective and accurate.

3D Wireless Networks. A wireless Network may be deployed in 3D space, say,

111

under water or in a multi-floor building. Most previous results would fail in 3D net-

works. The method that uses forbidden substructure in [105] can be extended to 3D,

but would need very high node densities and detailed radio models. The WormCir-

cle method [44] strictly assumes the underlying geometry to be two dimensional,

and does not generalize to 3D at all.

Figure 37: Wormhole detection in a 3D network. Network topology is formed by

using a 3D grid with perturbation. The network has 1000 nodes. We use α = 3,

β = 5. The wormhole transceivers are located near a pair of diagonal corners and

the nodes affected are accurately detected as highlighted in the figure.

Our method operates purely in terms of graph connectivity, without any de-

pendency on the dimension of the network. Therefore it works naturally in 3D.

Figure 37 shows an example of wormhole detection on 3-dimensional wireless net-

work. The behavior of our method in a 3D network is similar to that on a 2D

network.

112

6.5.3 Communication Cost

Our detection mechanism requires all nodes to participate initially, and the sus-

picious nodes participate more rounds using different parameters. For a test using

parameter α, β, a node will need to gather the connectivity information for all n-

odes within β hops. While the nodes participating in more detection rounds will

introduce higher communication cost, the number of participants is fairly small

compared to the total number of nodes. Figure 38 shows the communication cost

in terms of packets transmitted for each node on average for the entire detection

process. There are a few interesting observations. First, the communication cost

is smaller for networks built by a perturbed grid model than networks of randomly

distributed nodes. This is because there are fewer false positives in a perturbed grid.

Second, when the network density increases, obviously it would incur a higher cost

to collect the connectivity in local neighborhood as there are more nodes. However,

when the average degree increases, fewer nodes are marked suspicious in the first

round, which leads to a decrease of communication cost in later rounds. The com-

bination of the two factors shows the interesting trend of first increasing and then

decreasing for the case of a network of random node distribution.

6.5.4 Multiple Wormholes

When multiple wormholes are placed simultaneously, they may interfere with

each other, making the detection harder. The interference of two wormholes de-

pends on the relative positions of their antennas: as long as there exists at least one

antenna which is far away from other antennas, those two wormholes will not af-

fect each other in terms of detection. Figure 39 shows three scenarios. From top to

bottom, in the first one the antennas of the two wormholes are far away from each

other. In the middle, several wormholes share one antenna and the other antennas

are far from each other. In both cases the wormhole nodes are well recognized. The

last case is an interesting example where the second wormhole reduces the length of

a previous existing wormhole. The wormhole nodes are detected for smaller values

of α, β (left). But they are not detected when we use a larger set of α, β parameters

(right).

113

4 6 8 10 12 14 16
0

50

100

150

200

250

Average Degree

P
ac

ke
ts

 T
ra

ns
m

itt
ed

 P
er

 N
od

e

Grid α=4
Grid α=6
Rnd α=4
Rnd α=6

Figure 38: Communication cost in terms of packets transmitted. Network has 5000

nodes, β = α + 2. Grid is perturbed grid with UDG, perturbation ratio p = 0.4.

Rnd is node random placement with UDG.

6.5.5 Comparison with Wormcircle

We compared the performance of our method with the Wormcircle algorith-

m [44].This algorithm is based on the idea that presence of a wormhole changes the

geometry and topology of the ring of nodes at k-hops from a root node. Without

wormhole, the k-hop ring should have the connectivity as a ring. If one antenna of

the wormhole is less than k hops away from the root, then the set of k hop nodes

will appear as two rings. The cut locus method of [157] is used to determine the

topology of the k-hop band. The paper presents two different algorithms based on

this principle.

The basic Wormcircle scheme starts with a designated root node in the net-

work, and computes the breadth-first tree from this node. Next, it considers the

connected components of nodes at k hops for each k. In a Euclidean or similar

domain, each component resembles a circle. However, the connected component

induced by the wormhole will have a smaller radius. In particular, the main con-

nected component is expected to have a circumference of 2πk, where the distant

wormhole component will have a much smaller circumference. By comparing the

114

Figure 39: Multiple Wormholes. Left: α = 1, β = 3; Right: α = 2, β = 4.

115

Figure 40: A wormhole detected by localized wormcircle at a regular node, in a

quasi unit disk graph. The 3-hop ring has two components. Edges in dashed blue

show the breadth first trees in the two cases. The red solid edge is detected as a cut

edge, implying a long cycle in one of the trees and a false detection.

circumference to 2πk, a wormhole can be detected.

The localized wormcircle scheme takes a more topological approach. It com-

putes a shallow breadth-first tree around every node and considers the k-hop ring.

If the k-hop ring has two components and at least one of them resembles a circle, a

wormhole is said to be detected. The circumference of the circle is not considered.

These methods depend heavily on the geometry of the network resembling a Eu-

clidean plane. On graphs that are more general than that, they can fail frequently.

The localized wormhole algorithm, while in some ways similar to ours, is still tied

to the Euclidean geometry, and expects a circle as in that case. Our simulations

show that if a network has significant holes or is not a unit disk graph, both these

methods perform poorly.

Figure 40 shows a network constructed as a quasi unit disk graph. In the figure,

the edge in red is detected as a cut edge. that is, it connects leaves of the same

breadth first tree, such that the leaves are far apart within the tree itself. This method

is used to confirm the presence of a circle. As seen in this example, in networks that

are less geometric, this strategy can fail by detecting a cycle that does not resemble

a circle at all. In our simulations and in [44] the localized method performs better

116

Avg Degree False negative False positive

6.3 60% 00%

7.7 50% 10%

9.0 50% 20%

10.3 40% 20%

11.5 30% 30%

12.8 30% 20%

14.1 30% 30%

15.3 20% 20%

16.8 20% 30%

18.0 20% 30%

Table 7: Wormcircle performance over 20 networks in each degree range. The first

column shows the average degree of 20 networks. The false negatives show the

percentage of cases that the algorithm failed to detect an actual wormhole, while

false positives show the percentage of networks that did not have any wormhole but

was erroneously detected to have one.

117

than basic wormhole. Therefore we only present the results for localized wormhole

in the following.

Table 7 shows the performance of localized wormcircle. We created a worm-

hole with end points 20 units apart in a region of diameter 40 units. Then we added

nodes randomly and created networks in quasi unit disk model. We selected net-

works of different densities, and obtained 20 networks in each range. It is seen that

wormcircle makes substantial errors in detecting wormhole. In comparison, our

method detected presence or absence of wormhole correctly in all these cases.

In network structures with wormholes placed next to holes such as those in

Figure 36, we find that wormcircle performs even more poorly. In these cases, the

hole breaks the circular structure of the wormcircle. Thus it fails to detect the actual

wormhole in all cases, though sometimes it detects wormhole at incorrect locations.

Whereas our method is not affected in any significant way by the presence of holes.

6.5.6 Network Dynamics

In practice, wireless links may experience various types of dynamics, both

temporal and spatial. Here we consider the setting that links fail randomly with

a probability p. In our method, all nodes participate in the detection of wormhole

region, but they may not enter the detection phase at the same time. Therefore, each

node may have different view of the network topology due to potential dynamic link

failures. When a single transmission fails, we may re-transmit and give up after a

maximum K number of trials. In Table 8, we can see that when link failure rate is

relatively low, our method still works fine on the tested networks. As failure rate

grows, for random placement with UDG, the false positive node number increases

dramatically, which makes our identification of wormhole infeasible. This can be

understood since the network topology varies significantly and different nodes have

very different views.

118

0% 1% 5% 10% 15% 20%

Grid 0 0.03 0.05 0.13 0.27 0.46

Q-Grid 0.21 0.24 0.46 0.82 1.40 2.36

UDG 3.40 4.32 20.62 41.67 91.50 180.6

Q-UDG 0.11 0.20 0.32 0.37 5.33 27.17

Table 8: The average number of false positive nodes under random link failure. The

network has 2000 nodes and average degree is 8. α = 5, β = 7. The maximum

number of retransmissions is 30. Grid is a network with perturbed grid distribution

with UDG model, in which the perturbation ratio p = 0.4. Q-Grid is a network with

perturbed grid distribution with quasi-UDG model, p = 0.4. quasi-UDG model

uses r = 0, q = 0.5. UDG is a networrk of node random placement with UDG

model. Q-UDG is a network with node random placement with quasi-UDG model,

r = 0, q = 0.5.

6.6 Discussion

6.6.1 Malicious Nodes

Our connectivity tests detect the bipartite subgraph introduced by the pres-

ence of wormholes. Notice that such connectivity change does not need the help of

any compromised nodes. In the case when some nodes are compromised, a mali-

cious node can choose not to cooperate with the local connectivity tests or report

incorrect connectivity information. For example, the nodes that are within commu-

nication range of the wormhole antennas can choose not to report the edges faked

by the wormhole link. However, not reporting the presence of the link faked by

the wormhole attack would be equivalent to not imposing the attack to the network.

That is, for the wormhole attack to truly alter the network connectivity and for such

connectivity change to be observed and used by the honest nodes – to make any

real damage — then the local connectivity tests can be executed to examine such

possibilities.

However, a malicious node may impose sybil attacks and fake many node i-

dentities or even create phantom subgraphs. This will surely add to the detection

difficulty. For example, a node x within the [α, β] ring of a node p may wrongly

119

claim itself to be identical to a node near the other side of the wormhole antenna,

thus causing the detection algorithm to fail. Since a sybil attack may create all kinds

of incorrect graph structures we remark that the wormhole attack together with care-

fully positioned sybil attack may change the network topology in such a way that

the wormhole links do not follow our definitions. Thus we defer the discussion of

such combined, more sophisticated attacks to be the future work.

6.6.2 Open Problems

In this work we examine the network connectivity and propose a local, dis-

tributed method to detect suspicious nodes. The method compares favorably with

existing connectivity based methods. We believe this strategy can be improved fur-

ther. For example, the multiple wormholes detection possibly can be improved by

a more careful execution of connectivity and bipartite graphs test. The issue of

eliminating false positives also remains open for closer investigation.

120

Chapter 7

Space Filling by Aperiodic Dense

Curve

7.1 Introduction

We consider a sensor network that densely covers a planar domain with possi-

bly multiple network holes. Here we develop algorithms to linearize the network,

i.e., ‘covering’ the sensor network by a single path. By enforcing a linear order

of the sensor nodes one can carry serial logical definitions and serial operations on

both the sensor nodes and the sensor data. We list a number of such applications in

the following.

7.1.1 Serial data fusion

When a signal is spread over an area larger than the coverage range of a single

sensor, we will need to use multiple sensors to collaboratively detect the distributed

signal. One type of data fusion mechanisms, called serial fusion [14,154], combines

sensor observations in a linear fashion to derive hypothesis. A state is maintained

and passed on from sensor to sensor along a serial path, incorporating new obser-

vation at each step. This is in contrast with parallel fusion mechanism in which

sensors independently process their data and pass the output to a centralized fusion

center. There are pros and cons for serial fusion v.s. parallel fusion respectively.

One particular advantage of serial fusion is that the fusion process can be stopped as

121

long as there is enough evidence to support or reject the hypothesis, while in paral-

lel fusion all data will be sent to the fusion center nevertheless. The implementation

of the serial data fusion in a distributed network requires a path that visits all the

nodes in a linear order [119].

7.1.2 Motion planning of data mules

Collecting data from sensor networks to a static data sink often suffers from

communication bottleneck near the sink. One way to address this is to use a mobile

sink, or called a data mule, implemented by a mobile device touring around the net-

work to collect data through direct communication with a sensor in close proximity.

Besides collecting sensor data, a data mule can also be helpful for sensor network

maintenance such as battery recharge, beacon-based localization [8,89], etc. A data

mule moves along a path. Planning the motion of a data mule requires a path that

visits the nodes in the network with minimum duplicate visits. When there are mul-

tiple data mules in the network, a flexible set of paths that can be used by the data

mules with minimum coordination and minimum interference (e.g duplicate visits

by different mules) will be handy.

7.1.3 Sensor node indexing

Another application of representing a sensor network by a linear order is for

indexing sensor nodes or sensor data [94]. A number of indexing schemes for

multi-dimensional input first take a space filling curve to ‘linearize’ the input and

then apply standard 1D indexing mechanisms.

In the following we first review previous work of linearizing a two dimensional

continuous domain or a discrete two dimensional network, before we present our

ideas.

7.1.4 Related Work

Space filling curves. In the continuous setting, various space filling curves have

been defined for a square region [135]. The narrow definition of space filling

curve, in mathematical analysis, refers to a curve whose range contains the entire

122

2-dimensional unit square (or more generally an N-dimensional hypercube). S-

pace filling curves were initially discovered by Giuseppe Peano and are also called

Peano curves. These curves are often recursively constructed. See Figure 41 for an

instance of the Hilbert curve. The basic recursive structure is to replace a line seg-

ment by a zig-zag pattern. In a recursive step, each segment is replaced by a scaled

and rotated version of this pattern. The larger number of recursions used, the denser

the curve becomes. Mathematically every point of the unit square is on the curve,

given an infinite number of recursions. For a discrete set of points it suffices to take

a sufficiently high number of recursions to generate a linear order of the points.

Space filling curves in this narrow definition only apply to 2-dimensional (or N-

dimensional) unit squares (hyper-cubes). When the domain is irregular and/or has

holes the space filling curve will be chopped into many disconnected pieces. Very

little work is known about extending the space filling curves to other shapes. The

only work known is a heuristic algorithm [76] with a modified Hilbert curve for an

ellipse.

Figure 41: The Hilbert curve (source: Wikipedia).

Hamiltonian paths. In

a discrete setting such as

a graph, a natural analog

of a space filling curve is

a Hamiltonian cycle or a

Hamiltonian path, i.e., a

cycle or a path that vis-

its each vertex once and

only once. Only a sub-

set of graphs has a Hamil-

tonian path and determin-

ing whether a Hamiltonian

path or a Hamiltonian cycle exists in a given graph (whether directed or undirected)

is NP-complete, even in restricted families such as planar graphs [61].

Traveling salesman tour. When a metric is defined between any two nodes, the

traveling salesman problem (TSP) asks for the shortest tour that visits each node

once and only once. In our setting the distance between two nodes can be either the

graph distance or the Euclidean distance. The latter becomes the Euclidean TSP.

123

Both the metric TSP and the special case of Euclidean TSP are NP-complete. For

the metric TSP, the heuristic of using the Euler tour on the minimum spanning tree

gives a two-approximation. With some additional tricks, the Christofides algorith-

m [32] gives a 3/2 approximation. For the Euclidean TSP, polynomial approxima-

tion schemes (PTAS) are known [6, 110] to find a (1 + ε) approximate solution for

any ε > 0. Such algorithms are mostly of theoretical interest. When multiple tours

are allowed (e.g., multiple data mules), the problem of minimizing the total trav-

el distance collectively done by all tours becomes the multiple traveling salesman

problem (mTSP), which is also NP-complete and does not have any efficient ap-

proximation algorithms [12]. Existing solutions for mule planning are all heuristic

schemes [71, 77, 101, 144, 153].

a

b

a a

b

� : y = kxb

(i) (ii)

Figure 42: (i) A torus cut open along two curves

a, b. (ii) The flattened torus. The line � : y = kx

is shown on the flattened torus (the top and bot-

tom edges are the cut b, the left and right edges

are the cut a). Since the top edge and bot-

tom edge are actually the same, the line will go

through the torus as shown by the parallel lines.

It will not intersect itself and can be shown to

be arbitrarily close to any point on the torus.

Random walk. A practically ap-

pealing solution for visiting n-

odes in a network is by random

walk. The downside is that we

encounter the coupon collector

problem. Initially a random walk

visits a new node with high prob-

ability. After a random walk has

visited a large fraction of nodes,

it is highly likely that the nex-

t random node encountered has

been visited before. Thus it takes

a long time to aimlessly walk in

the network and hope to find the

last few unvisited nodes. The-

oretically for a random walk to

cover a grid-like network, the

number of steps is quadratic in

the size of the network [104]. For a random walk of linear number of steps, there

are a lot of duplicate visits as well as a large number of nodes unvisited at all. In

the case of multiple random walks, since there is little coordination between the

random walks, they may visit the same nodes and duplicate their efforts.

124

A major problem with all the above constructions is that the curve found does

not have adaptive density. A space filling curve has a fixed density, determined

by the threshold of the recursion. Hamiltonian paths and TSP will generate fixed

length paths. In sensor network applications such as serial fusion and data mule

planning, the length of a path may be restricted by travel budget or required fusion

delay. If we start with a high density curve, we spend a lot of time visiting nodes

in one region of the network before we ever get information from another region.

Instead, we may want to adopt a visiting scheme such that we quickly tour around

the network coarsely, get a rough idea of the sensor data and gradually refine the

density when more travel budget is available or a higher delay is allowed. Our

construction is one of this type.

7.1.5 Our Contribution

Our main contribution in this paper is to propose a scheme to generate a curve

that (i) densely cover any geometric domain with possibly holes; (ii) have a cover-

age density proportional to its length. To understand the main idea, we first consider

a torus. See Figure 42. We cut a torus open with two cuts a, b, and flatten it as a

square in the plane with the top edge identified as the bottom edge and the left edge

identified as the right edge.

We will consider the universal covering space by packing an infinite number

of translated copies of the torus to cover the entire two dimensional plane, with the

origin at the bottom left corner of one such copy. Now take a straight line � with

a slope k being an irrational number. Mapping back to the original torus, the line

becomes a curve that spirals around the torus for infinitely long and never repeats

itself. Figure 42 (ii) shows the curve on the torus. We could prove that the curve has

no self-intersections and the curve is dense, i.e., any point p of the torus is arbitrarily

close to the curve.

With the basic construction for a torus, we will generalize it to any planar

domain with holes. Specifically, for a simple domain with no holes, we will first

map it one-to-one to a unit square, and then flip the square along the top edge and

the right edge to get four copies, creating a torus. Then we find the dense curve on

the torus. Since any point in the original domain is mapped to four copies on the

125

torus, the curve we find will visit any point for at most four times. The property of

being dense still holds. For a domain with holes, we will first double cover it, i.e.,

creating two copies of the network, the upstairs copy and the downstairs copy. The

two copies are glued to each other along the hole boundaries to create a multi-torus,

each hole being a handle. In the same way we choose one handle to flatten the torus,

and the rest of the handles are mapped to very narrow ‘slits’. A line with irrational

slope in the covering space, when hitting a slit, bounces back. We could show that

the curve will visit each point of the original domain at most twice and is provably

dense.

The mapping of a general two dimensional domain to a multi-torus is handled

by conformal map. Computing a conformal map for deforming the shape of a sen-

sor network has been done by using Ricci flow to change the network curvature,

in a number of prior work [73, 137, 138, 163]. We remark that the tools we use in

this paper is different. Our current method is based on holomorphic differentials

from Riemann surface theory. Imagine an electric field on a surface, then the e-

quipotential lines are orthogonal to the electric field lines everywhere, the pair of

electric field lines and the equipotential lines form the holomorphic 1-form. All

holomorphic 1-forms on a surface form a group, which is isomorphic to the first

homology group of the surface. We select a special holomorphic 1-form, such that

the integration of the 1-form gives a special conformal map. Assume the network is

a planar domain with multiple holes, then the conformal map transform the domain

to an annulus with concentric circular slits. Two boundaries are mapped to the inner

and outer circles, the other boundaries are mapped to the slits. This type of maps

can not be carried out by Ricci flow method, because Ricci flow requires the target

curvature at prior. But in this scenario, neither the position nor the radii of circu-

lar slits are known at the beginning. On the other hand, Ricci flow is a non-linear

method in nature; whereas holomorphic differential method is a linear one, which

is computationally more efficient.

The conformal map is computed for a given network field at the network ini-

tialization phase. With the map computed the dense curve can be found and fol-

lowed locally by simply specifying an irrational slope. This leads to naturally de-

centralized computations and planning in the network that can benefit data storage

and data mule collection.

126

7.1.6 Planning motion for data mules

The space filling curves have the property that nearby points in the two dimen-

sional space are also nearby on the curve. For example, the Hilbert curve will first

visit all the points in the southwest quadrant before it visits the points in the north-

west quadrant, then the northeast quadrant, and the southeast quadrant at the last,

and do so recursively. This is typically referred to as the locality property of space

filling curves. In contrast, the curve we define will grow far apart initially, and the

longer it is, the denser it covers the domain. See Figure 42 for an example. Thus

our curve does not have the locality property but instead visits the entire domain in

a sketchy manner, and gradually refines when the path gets longer. If the budget of

a data mule is small, the data mule starts on the curve and simply stops early. This

will provide a sampled view of the network and the network data. As more budget

is available, the data mule simply prolongs its walk and will gather data with higher

resolution. This suggests a progressive and adaptive scheme for data collection,

dependent on the urgency of the scenarios.

Our dense curve can also be used for planning motion plans for multiple data

mules. If there are m mules starting at different locations in the network, they

can simply walk from their respective starting points with the same slope in the

virtual coordinate space. Their trajectories will be parallel to each other and never

intersect as long as they start at integer grid positions. This makes planning motion

trajectories for multiple mules and coordinating between them easy. If any one

mule fails due to unforeseeable reasons, the other mules can easily take over the

task by simply prolonging their paths.

7.1.7 In-network storage and retrieval

Another application of the dense curve is for in-network storage and retrieval.

One scheme for storing sensor data in the network, called double rulings, stores the

sensor data along a storage curve and retrieves data along a retrieval curve. Data

is retrieved when the retrieval curve intersects the storage curve. Previous double

rulings schemes are only designed for networks of a regular shape, e.g., the hori-

zontal/vertical lines [103, 147, 160], or proper circles (great circles through a stere-

ographic mapping) [139]. When the network has holes, these curve are fragmented

127

by the presence of holes. Alternative repairing schemes must be used to reconnect

them. We show that by using the space filling curves we can easily generate the

storage and retrieval curves, for any two dimensional domain. In particular, for s-

torage curves, we simply use the line � : y = kx with slope k. For the retrieval

curves, we use the line �∗ : y = x/k, i.e., the line perpendicular to � in the universal

covering space. The two curves are guaranteed to intersect and by varying the slope

one can get many sets of curves suitable for storing categorized data.

In the following we first present the theory of finding a dense curve in a con-

tinuous domain. The algorithmic details follow. We present simulation results and

comparisons with space filling curves and random walks at the last.

7.2 Algorithms for Discrete Conformal Mapping

The discrete algorithms for computing conformal mappings for arbitrary 2D

domain are explained in details. The pipeline is as follows: 1) Compute cohomol-

ogy basis; 2) Compute harmonic 1-form basis; 3) Compute holomorphic 1-form

basis; and 4) Compute the slit map.

Discrete exterior calculus. Similar to all prior work [73,137,138,163], the network

is represented as a discrete triangular mesh M = (V,E, F), with the vertex set V ,

the edge set E and the face set F . An oriented edge is denoted as [vi, vj], an oriented

faces is [vi, vj , vk]. The boundary operator takes the boundary of a simplex:

∂[vi, vj] = vj − vi, ∂[vi, vj , vk] = [vi, vj] + [vj , vk] + [vk, vi].

A 0-form is a function defined on the vertex set f : V → R. A 1-form is a linear

function defined on the edge set ω : E → R. A 2-form is a linear function defined

on the face set τ : E → R. The discrete exterior differential operator is defined as

dω(σ) := ω(∂σ).

If ω is a closed form, then dω = 0.

Let [vi, vj] is an interior edge, with two adjacent faces [vi, vj , vk] and [vj , vi, vl].

Then the edge weight

wij := cot θkij + cot θlji,

128

η1

η2

η3

Figure 43: Compute the shortest path ηk connecting γ0 and γk.

where θkij is the corner angle at vertex vk in the face [vi, vj, vk]. If [vi, vj] is a

boundary edge, adjacent to [vi, vj, vk] only, then wij := cot θkij . The discrete co-

differential operator is defined as follows. Let ω be a one-form, then δω is a 0-form,

δω(vi) =
∑

[vi,vj]∈E
wijω([vi, vj].

If f : V → R is a harmonic function, then

Δf(vi) = δdf(vi) =
∑
[vi,vj]

wij(f(vj)− f(vi)) = 0, ∀vi ∈ V.

Step 1: Compute cohomology basis. Suppose the boundary components of the

mesh are ∂M = γ0 − γ1 − γ2 · · ·γn, where γ0 is the exterior boundary. Compute

the shortest path from γk to γ0, denoted as ηk as shown in figure 43. Slice the mesh

M along ηk to get a mesh Mk, the path ηk on M corresponds to two boundary

segments η+k and η−k on Mk. Define a function fk : Mk → R,

fk(vi) =

⎧⎪⎨⎪⎩
+1 vi ∈ η+k
−1 vi ∈ η−k
0 vi 	∈ η+k ∪ η−k

Assume e ∈ η+k ∪ η−k , then dfk(e) = 0. Therefore, the exact 1-form dfk on Mk in

fact is a closed 1-form on the original mesh M . Let ρk := dfk on M , then

{ρ1, ρ2, · · · , ρn}
form a basis for the cohomology group H1(M,R).

Step 2: Compute harmonic 1-form basis. Given a closed 1-form ρk, we can find

a function gk : M → R, such that

δ(ρk + dgk)(vi) =
∑
[vi,vj]

wij{ρk([vi, vj]) + (g(vj)− g(vi))} = 0,

129

Figure 44: Closed harmonic 1-forms {ω1, ω2, ω3}.

Figure 45: Exact harmonic 1-forms {ω4, ω5, ω6}.

for all vertex vi in M . Then ωk := ρk + dgk is a harmonic 1-form. Then

{ω1, ω2, · · · , ωn} form the basis for the harmonic 1-form basis.

Similarly, we compute n harmonic functions fk : V → R, with Dirichlet

boundary condition, such that⎧⎪⎨⎪⎩
Δfk(vi) = 0 ∀vi
fk(vi) = 1 vi ∈ ηk

fk(vi) = 0 vi ∈ ∂M − ηk

Then let ωn+k := dfk, then {ωn+k}, k = 1, 2, · · · , n are exact harmonic 1-forms.

Step 3: Holomorphic 1-form basis. For each harmonic 1-form ωi, we compute its

conjugate harmonic 1-form ∗ωk.

∗ωi =
2n∑
j=1

λijωj

The unknowns {λij} can be computed by solving the following linear equation

system: ∫
M

ωi ∧ ∗ωj =

2n∑
k=1

λjk

∫
M

ωi ∧ ωk.

130

Figure 46: Holomorphic 1-forms basis {τ1, τ2, τ3}.

The wedge products can be computed as follows. Let [vi, vj, vk] be a triangle face,

ei = [vj, vk], ej = [vk, vi] and ek = [vi, vj]. Then by direct computation, we get

∫
[vi,vj ,vk]

ω1 ∧ ω2 =
1

2

∣∣∣∣∣∣∣
ω1(ei) ω1(ej) ω1(ek)

ω2(ei) ω2(ej) ω2(ek)

1 1 1

∣∣∣∣∣∣∣
and ∫

[vi,vj ,vk]
ω1 ∧ ∗ω2 =

1
2
[ω1(ei)ω2(ei) cot θ

i
jk+

ω1(ej)ω2(ej) cot θ
j
ki + ω1(ek)ω2(ek) cot θ

k
ij]

Let τk := ωk +
∗ωk

√−1, Then {τ1, τ2, · · · , τn} form the basis for the holomorphic

1-form group. Figure 46 shows the basis for holomorphic 1-forms.

Step 4: Slit conformal mapping. We then search for a special holomorphic 1-form

τ =
∑

k xkτk, such that

Img(

∫
γ0

τ) =
∑
k

xkImg(

∫
γ0

τk) = 2π.

and ∫
γi

τ =
∑
k

xkImg(

∫
γi

τk) = 0, i = 2, 3, · · · , n.

This implies
∫
γ1
τ = −2π. Then the mapping is given by

φ(z) = exp{
∫ z

z0

τ}.

where the integration path is arbitrarily chosen.

Topological torus. A topological torus has the homology basis {a, b}. The holo-

morphic 1-form induces the flat metric. The torus is flattened to a periodic rectangle

on the Euclidean plane.

131

𝛾0

𝛾1

𝛾2

𝛾3
γ0

γ1

γ2

γ3

(a) a 3-hole domain (b) circular slit mapping

𝛾0

𝛾1
𝛾2 𝛾3𝜂−1

𝜂2𝜂3
𝜂+1

𝛾0

𝛾1

𝛾2 𝛾3

(c) horizontal slit mapping (d) cylinder mapping

Figure 47: Conformal mapping from the domain to the annulus, γ0 is mapped to

the outer circle, γ1 is mapped to the inner circle.

Simply connected domain. If the input network is a simply connected domain,

we select four corner vertices on the boundary {v0, v1, v2, v3} sorted counter-clock-

wisely. Then we glue two copies of the network along the boundary segments

between v0, v1 and the boundary segments between v2, v3. The result surface is a

topological annulus. The above algorithms are able to handle general metric sur-

faces, then we can map the doubled network to an annulus. By taking the complex

logarithm, the original network is mapped to a planar rectangle, such that the four

corners are mapped to the corners of the rectangle.

Doubly connected domain. If the input network is a doubly connected domain,

the conformal mapping is a canonical annulus. By taking the complex logarithm,

it is flattened to a periodic rectangle. Glue one copy along one boundary, the result

domain is a topological torus.

Now we summarize the computation and communication steps involved in the

pipeline.

First step. Compute cohomology basis. In this step we will find shortest paths

connecting the interior holes to the outer boundary. This can be done by a single

flooding starting from the nodes at the inner hole boundaries simultaneously.

Second step. Compute harmonic 1-form basis. In this step we compute n harmonic

132

functions, where n is the number of holes. This uses the Dirichlet boundary con-

dition and an iterative gossip-style algorithm, similar to the distributed algorithm

used in [100].

Third step. Compute holomorphic 1-form basis. This involves completely local

operations. Each node will solve a linear system only on its neighbors.

Forth step. Slit conformal mapping. This involves only one round of flooding,

starting from the outer boundary inward. The nodes compute their virtual coordi-

nates.

The algorithm solves sparse linear systems. Therefore the holomorphic differ-

ential method is more efficient compared to the non-linear curvature flow methods.

7.3 Slit Map Algorithm

In order to compute slit maps, one needs to compute the holomorphic form-

s. In practice, networks are represented as a piecewise linear polyhedral surfaces,

namely triangular meshes. All the geometric concepts are generalized to this dis-

crete setting. In the following, we briefly explain the intuitions, details can be found

in the appendix B.

Suppose M is a mesh, with vertex, edge and face sets (V,E, F). A function

f : V → R is defined on vertices, and linearly extended to the whole mesh. A

discrete 1-form ω : E → R is a linear function defined on the oriented edges of

the mesh. A 2-form σ : F → R is a function defined on the faces. The boundary

operator ∂ takes a simplex to its boundary. The exterior differential operator δ is

dual to the boundary operator, e.g. dω = ω ◦ ∂.

First step. The homology and cohomology groups are computed using algebraic

topology methods. If M is a multi-holed disk, then homology group contains loops

which can not shrink to a point. The cohomology group is the dual to the homology

group. Suppose ω is a 1-form, such that df ≡ 0, then ω is a closed 1-form. Suppose

f is a function, then df([vi, vj]) = f(∂[vi, vj]) = f(vj)− f(vi) is a 1-form, which

is called an exact 1-form. Because d2 = 0, all exact 1-forms must be closed. But

closed 1-forms may not be exact. If ω1, ω2 are closed 1-forms and differ by an exact

1-form ω1 − ω2 = df , then we say ω1 is cohomological to ω2. The cohomology

133

group contains all cohomological equivalence classes of 1-forms.

Second step. Physically, if a surface is deformed, the deformation will introduce

the membrane stretching energy, the so-called harmonic energy. Harmonic energy

can be derived from the derivative of the deformation, which is the 1-form. Accord-

ing to Hodge theory, each cohomological class has a unique 1-form, the so-called

harmonic 1-form, that minimizes the harmonic energy. The basis of all harmonic 1-

forms can be computed using heat diffusion method from the basis of cohomology

group.

Third step. Harmonic 1-forms can be treated as piecewise constant vector fields

on the mesh. If ω1 and ω2 are harmonic 1-forms, such that the vector field of ω2 can

be obtained by rotating that of ω1 at each point, then we say ω2 is conjugate to ω1.

A pair of conjugate harmonic 1-forms form a holomorphic 1-form. In this step, we

compute the basis of all holomorphic 1-forms.

Forth step. Finally, we compute a special holomorphic 1-form ω by linear com-

bining the basis of all holomorphic 1-forms, such that the imaginary part of the

integration ω along the exterior boundary is 2π, −2π along one inner boundary,

and 0’s along all other inner boundaries. The slit map φ : V → C is given by this

ω. Choose one vertex v0 ∈ M , for each vertex v ∈ M , find any path γ connecting

v0 and v, then φ(v) is the complex exponential of the integration of ω along γ.

7.4 Simulations

7.4.1 Experiment Setting

To identify the effectiveness of the aperiodic dense curve in network covering,

we choose sensor networks following unit disk graph model. Since the aperiodic

dense curve is identified as a continuous line in the universal covering space, to

apply it in sensor networks, the curve needs to be mapped to a discrete path. There

are various strategies for curve discretization, in our setting we suppose there is a

sensor network G deployed on a continuous sensor domain R, then compute the

dense curve on R and expand the width of the curve to get a belt region B. The

discrete path starts at an arbitrary node s ∈ B, then for any node u on the path, we

compute its next hop from C(u) = {u|u ∈ N(u) and Coor(u) ∈ R} based on a

134

closeness measurement, an infinite discrete path can be generated as the aperiodic

dense curve covers R.

7.4.2 Comparison with Various Network Covering Approaches

The Space filling curve is able to cover a specific area, which is quite similar

to the aperiodic dense curve. However, there are several different aspects between

the two when whey are applied in sensor networks covering. First, starting at a

particular node, the space filling curve would visit the nearby nodes before moving

to nodes faraway, while the aperiodic dense curve doesn’t have this locality. Since

in sensor networks nearby nodes tend to contain similar data, the aperiodic dense

curve is able to get a better sampling of the whole network than the space filling

curve. Second, if the network has holes inside, our method would map the holes to

slits, in this case the aperiodic dense curve would still be able to cover the whole

network. On the contrary, the space filling curve would get stuck on the boundaries

of holes. In our experiment, we compare aperiodic dense curve with a particular

space filling curve called the Moore curve.

Besides space filling curves, there are other ways to perform network covering.

The Eulerian cycle method builds a spanning tree from the network, duplicates all

its edges, then finds an Eulerian cycle in it. Compared to the aperiodic dense curve,

Eulerian cycle also exhibits locality issue in network coverage. In our experiment,

Eulerian cycles are generated from minimum spanning trees. We also compare with

random walk, in which the next hop of the path is chosen uniformly randomly from

the neighbors of the current node.

Figure 48(a) shows the network coverage percentage as the paths move for-

ward. The x axis is the length of the path in the number of hops, the y coordinate

is the percentage of nodes covered by the path. It’s obvious that aperiodic dense

curves, Eulerian cycles and Moore curves are much better than random walk in

terms of coverage, which is not surprising because these are well-guided curves,

while random walk is aimless.

Figure 48(b) shows the average shortest distance from the set of unvisited n-

odes to the set of visited nodes, this average shortest distance criteria measures the

locality property of the paths. If the path visits most of nearby nodes before moving

135

to nodes faraway, the average shortest distance would remain relatively high as the

path visits more nodes, vice versa. Compared to other methods, the average short-

est distance of the aperiodic dense curve drops more quickly, which means that the

aperiodic dense curve visits the network in a more global way than other methods.

To conclude, the aperiodic dense curve, Moore curve and Eulerian cycle cover

the network much faster than random walk. Compared to the Moore curve and Eu-

lerian cycle, the aperiodic dense curve is able to quickly sample the whole network,

which gives a good representation of the network in the early stage.

7.4.3 Covering Network with Holes

Sensor networks may have obstacles inside, which lead to holes in sensor do-

main. Normal space filling curves like Moore curve would fail under such cases,

because those curves only cover the unit square, and would become disconnected

pieces. By performing conformal mapping to mapped the holes to slits, the aperi-

odic dense curve can be used to cover the whole sensor domain.

7.4.4 Dense Curve Applications

Double ruling. A pair of non-parallel aperiodic dense curves give two trajectories

on the network that intersect with each other. Those two trajectories form a lat-

tice on the network, which is very suitable for double ruling. Double ruling is a

framework for information in-network storage and fetching problem, the producer

stores data on the nodes of one trajectory, the consumer fetches the data by follow-

ing another trajectory to a node that stores the data. By using two aperiodic dense

curves perpendicular to each other for data storing and fetching, the data producer

is given the freedom to store the data on any set of nodes on the producer trajectory,

while the data consumer is guaranteed to get the data by following the consumer

trajectory.

Multiple paths. It’s common to cover the sensor network and fetch data by using

not only one, but multiple data mules. To coordinate and collaborate with each

other the data mules may need to communicate during the data collection, which

can be expensive or even infeasible. Since each aperiodic dense curve would be

136

(a)

(b)

Figure 48: Comparison Between Dense Curve and Other Network Covering Ap-

proaches. (a) Network Coverage. (b) Average Shortest Distance from Unvisited

Nodes to Visited Nodes.

137

able to cover the whole network in a particular pattern, and the visiting pattern is

predefined by the slope and starting position, by deliberately assigning slopes and

starting positions to multiple aperiodic dense curves, not only they would be able

to cover the whole network, but also the paths could be as if they were coordinated

so that the coverage converges quickly.

138

Chapter 8

Navigation in Complex Networks

8.1 Introduction

In the 1960’s, Stanley Milgram and his collaborators conducted a series of ex-

periments in which individuals from Nebraska and Kansas were asked to try and get

letters delivered to unknown recipients in Boston [151]. A person forwards the let-

ter to a friend who is more likely to know the target. Many letters were discarded by

uncooperative intermediaries, but about 20% of the letters arrived at the target, in an

average of under six hops. This experiment is the earliest to verify the ‘small-world

phenomenon’ (aka ‘six degree of separation’) that there exists a short path between

almost any pair of individuals in the world. It was later discovered that many other

networks, in vastly different contexts ranging from power grids, film collaboration

networks, and neural networks [48] to email networks [42], food webs [158] and

protein interaction networks [72], also exhibit the small-world property.

In addition to revealing the existence of short paths in real-world acquaintance

networks, the small-world experiments showed that these networks are navigable:

A short path was discovered through a local algorithm with the participants for-

warding to a friend who they believed to be more likely to know the target. Al-

though forwarding decision-making was not systematically recorded, geographical

proximity was found to be an important forwarding criterion in some cases. Other

criteria such as profession and popularity may have been used as well. A recent

small-world study using email-chains [42] confirms this, finding that at least half

139

of the choices were due to either geographical proximity of the acquaintance to the

target or occupational similarity. Thus these experiments hint that perhaps also in

other networks, some greedy routing algorithm can successfully deliver messages,

provided that nodes are given appropriate coordinates.

We consider the conjecture that real-world networks from diverse contexts, so-

cial and non-social, can be embedded in a low-dimensional hidden space where the

distances between nodes in the hidden space approximate their graph distances in

the network, such that some greedy mechanism minimizing the distances to the des-

tination in the latent space is able to find a short path for most pairs of nodes. The

existence of such a latent space in social networks is suggested by the sociological

principle of homophily, that friends tend to have similar traits or adopt similar be-

haviors [108]. A set of individuals with a large number of social ties between them

may indicate that they have nearby positions in the space of characteristics [16].

This social space may refer to a space of observed or unobserved latent character-

istics that represent potential transitive tendencies in network relations. Moreover,

networks may have a spatial component, with connectivity decreasing in geograph-

ical distance [26, 93]. Nevertheless, we must remark that the methods we consider

do not use any social, spatial or any other node-identifying information. Instead,

they attempt to discover this space from network structure alone. This allows them

to be applicable to anonymous social networks as well as non-social networks that

must be navigated. We must also emphasize that these methods are rather basic

and straight-forward. The methods themselves are not the main contribution here.

Rather, we use them to verify the navigability conjecture on five different empirical

networks, social and non-social, of very diverse origin and topology. Our results

show that they can all be navigated. In each network, a majority of packages is

delivered in fewer than six steps.

Our contribution. We propose to first embed the network in a latent space and

apply greedy routing with the coordinates generated.

We start with the obvious choice of Euclidean space and use the prominent

embedding algorithm of Multi-Dimensional Scaling (MDS) [18]. We measure the

distance between any two nodes as the length of the shortest path between them in

the social network. With the all pair graph distances MDS produces a coordinate

for every node in the Euclidean space with a pre-specified dimensionality.

140

MDS however requires the all pairs distance matrix of the network and is

computationally intensive. To make our method feasible for very large empirical

networks that are only partially observed, we adopt landmark-based MDS (LMD-

S) [38], in which a few nodes are selected as landmarks and embedded first, and the

rest of the nodes embed themselves using distances to these landmarks. It is shown

below that landmark MDS achieves a comparable performance (in terms of delivery

rate and routing path length) to that of MDS, but more than an order of magnitude

faster. The use of landmark MDS also implies a distributed implementation of the

embedding/routing algorithm. In particular, we can sample a small set of nodes in

the social network as landmarks, and embed them. Any individuals who would like

to route can embed themselves on the fly, by using the distances to the landmarks.

In a coauthorship or film collaboration network, the obvious choices for the land-

marks are the famous scholars or actors with well-known connections to each other

and the distances to others pre-calculated (such as the Erdös number or the Bacon

number). The distances from all nodes to the landmarks can be computed in time

linear in network size.

As the Euclidean space of dimension d has a geometric growth rate and small-

world graphs have been observed to have low diameters, suggesting an exponential

growth rate, we also consider embedding into the hyperbolic space. We employ R.

Kleinberg’s embedding method [88] to embed a tree in hyperbolic space with the

induced coordinates used for greedy routing.

We consider five real-world networks from diverse contexts and of varying

topology: A peer-to-peer file sharing network, a scientific collaboration network, a

movie-actor coappearance network, and an Internet autonomous systems network.

Surprisingly, with simply out-of-the-shelf methods one is able to get reasonably

high delivery rate, and even more, very small average path length, within six steps.

Before we conducted these experiments, we expected that possibly some fraction of

the messages can reach the destination via the greedy algorithm, as the embedding

by MDS preserves the distances to some extent. We have never expected that these

messages only use 4 or 5 hops on average! Note that successful delivery does not

imply the path is short.

Significance of network navigation. The task of identifying short paths appears

141

in a wide variety of empirical settings. Short paths allow for speedy package deliv-

ery in decentralized file-sharing networks [2], searching for pathways in very large

metabolic networks [45], and enable reputation-based trust in exchange [24]. The

fact that we are living in a ‘small world’ suggests that potentially we can consult

with any expert in a field of interest, or do business with any individual, with rec-

ommendations through a short chain of friends — if only we were able to find such

a short path quickly. Short path identification will also facilitate a number of so-

cial operations. The occupants ‘structural holes’, positioned on short paths between

otherwise distant others in social networks earn brokerage benefits [23, 152]. The

task of ensuring sufficient structural distance between two individuals appears fre-

quently: monopoly mediation, double-targeting in advertisement, avoiding infec-

tion, and sharing confidential information that must travel far to reach an unwanted

ear [25, 152].

In many of these application scenarios, a central navigation device is often

lacking, distributed flooding causes congestion and excessive use of resources. In

addition, the nodes may have limited information storage capacity and processing

power. The network data may be incomplete, and node attribute information may

be absent altogether. For these settings greedy routing is a better choice than cen-

tralized short path computations.

8.2 Related Work on Small World Graphs

8.2.1 Navigation in model networks

A number of studies have proposed mathematical models for small world net-

works and navigation in such networks.

Watts and Strogatz [48] proposed as a ‘random rewiring model’ in which with

some probability the edges on a ring are rewired to random vertices. The rewiring

probability can be tuned to generate networks in between the two extremes of per-

fectly regular and perfectly random networks. It is shown that for most of the pa-

rameter space, networks simultaneously exhibit high clustering and low path length.

Additionally, three diverse real-world networks are shown to exhibit both proper-

ties. They show that short paths often exist but not how they could be found without

142

global knowledge of the network.

Barabasi et al. [10] considered an evolving graph in which each newcomer

connects to existing vertices with probability proportional to their current degree

(thus the name preferential attachment model). The network constructed is a scale-

free graph, i.e., it has a power-law degree distribution, a property of various real-

world networks. The graph also has small diameter and in addition, hub nodes

that are highly connected to other vertices. For scale-free graphs, a degree-based

greedy routing has been investigated [2,82]. The intuition is to send the message to

a neighbor with higher degree as the neighbor is more likely to be a neighbor of the

destination.

Another idea to navigate in small world networks is to make use of user i-

dentities (geographical location, profession, etc.) and the structure of the ‘social

space’. Kleinberg [86] considered a lattice network in Rd and placed additional

edges pq with probability proportional to 1/|pq|α, where |pq| is the Euclidean dis-

tance between p, q and α is a parameter. Then he showed that if α = d the greedy

algorithm of delivering the message to the node closest to the destination in Eu-

clidean distance is able to find a short path to the destination with polylogarithmic

number of hops. If d 	= α, the greedy routing takes necessarily polynomial number

of hops, i.e., the network is not navigable. Watts et al. [47] considered a hierarchi-

cal professional organization of individuals and a homophilious network with ties

added between two nodes closer in the hierarchy with a higher probability. If each

node has a fixed probability of dropping the message, they show a greedy rout-

ing algorithm sending packages to the neighbor most similar to the target (called

homophily-based routing) successfully deliver a fraction of the messages before

they are dropped. Kleinberg [84] also confirmed similar results on a hierarchical

network. Şimşek and Jensen [145] evaluated routing schemes on networks with d-

ifferent homophilous level. When the homophily level is low, degree based routing

is effective as the hubs connect different part of the network. When the network ho-

mophily level is high, hubs are not very useful as they connect to other individuals

very similar to themselves. They proposed to use a simple product of the homophi-

ly and degree to estimate the neighbor who is most likely to be directly connected

to the target.

Boguñá et al. [17] incorporated both the idea of having a social space and the

143

power law degree distribution. They considered nodes on a ring and assigned target

degrees from a power law distribution. An edge is then placed between two nodes

with a probability positively dependent on their distance and negatively dependent

on their degrees. They investigated greedy routing with the distances on the ring as

a means of navigating in the network.

Krioukov et. al [90] considered using a hyperbolic plane as the hidden social

space. Nodes are uniformly distributed in a radius R disk in a hyperbolic plane with

edges placed in pairs with distance smaller than r. They show that such a graph is

naturally scale-free and that greedy routing with hyperbolic distance delivers the

packets with high success rate.

8.2.2 Navigation in real-world networks

Although the theoretical models and algorithms above are very inspiring, they

require networks to satisfy certain properties, such as a scale-free degree distri-

bution, or they require additional node-identifying information. They may fail in

real-world networks that violate these properties, and are impossible to apply in

real-world networks that lack node-identifying information, such as anonymous so-

cial networks and non-social networks. Even if such information is available, the

edges in real-world networks do not necessarily follow the distribution of similarity-

dependence specified in these theoretical models. These algorithms have been test-

ed on only a few real-world networks for which node-identifying information was

available, and without much success. For example, the hierarchical organization

model [47] has been shown to work well only on the HP email network, for which

messages were delivered in a median of four hops, but perform poorly for the Club

Nexus online social network due to incomplete data or less structured hierarchy [1]

(even using extensive profile knowledge the local search has a medium of 21 steps

and a mean of 53 steps). Using geographical locations has shown only a delivery

rate of 13% to deliver a message to the target city (not the target individual!) on

a LiveJournal data set [99]. Kleinberg’s small world model [86] is used to fit the

‘web of trust’ of the email cryptography tool Pretty Good Privacy (PGP) [136]. But

the delivery rate is only 32% delivery rate with mean 26 steps.

Compared with prior work, we do not require the network to be scale-free as

in [2, 17, 82]. We do not assume nodes stay in a given space as in [17, 86, 90]. And

we do not require any node identities or geographical locations as in [47,84,86,145].

Instead of requiring an embedding of the network in an observed space, our task is

to discover the hidden space of real-world networks, which is possibly specific to

each network. As it turns out, with this hidden space discovered, greedy routing

achieves much higher success rates compared with previous experiments with real-

world spatial embedding.

8.2.3 Graph embedding and greedy routing

Embedding a graph in Euclidean spaces with small metric distortion has been

studied actively in recent years. It is known that any graph of n vertices can be em-

bedded in Rd with d = O(logn) such that the graph distance is distorted by a factor

of at most 1+ε, for any ε > 0, with the Euclidean distance in the embedding (please

refer to the book [107] for a large body of work on this topic). It can be shown that

the Internet Autonomous Systems network (AS-network) can be embedded in R7

such that most of the routes can estimate their inter-delay fairly accurately by their

Euclidean distances [85,115]. Similar efforts have also been done for transportation

networks [20].

The greedy routing algorithm minimizing ‘distance’ to the destination is used

pervasively in ad hoc wireless network routing [19,78], which is the motivation for

the study of graph embeddings that supports greedy routing schemes. Most existing

work only considered embedding in low dimensional Euclidean space such as R2

or R3 [95, 118].

8.3 Embedding and Greedy Routing

In this section we describe the algorithms we used for embedding a given com-

plex network in Euclidean space and greedy routing with the ‘social distances’ in

that space. We considered embedding in both Euclidean spaces and hyperbolic s-

paces. We remark that these algorithms are ‘off the shelf’ techniques. However,

even these simple methods produce extremely short paths with greedy routing. We

discuss the implication and empirical significance of the results in a later section.

145

8.3.1 Embedding in Euclidean Spaces

Multi-dimensional scaling (MDS) is a classical method for embedding a set

of nodes in Rd. It takes an n × n distance matrix P as input, outputs an n × d

coordinate matrix such that the �2 distance between any pair of nodes approximates

the corresponding distance in P . MDS is done as follows:

1. Transfer P = (pij)n×n to B = (bij)n×n s.t.

bij = −1

2
(p2ij −

1

n

n∑
j=1

p2ij −
1

n

n∑
i=1

p2ij +
1

n2

n∑
i=1

n∑
j=1

p2ij).

This step shifts the matrix to the center by subtracting the mean.

2. Perform eigen-decomposition on B s.t.

B = V AV T ,

in which matrix A is a diagonal matrix with the eigenvalues ordered from

largest to smallest and matrix V contains the corresponding eigenvectors. Set

X = V A1/2.

Then X gives the coordinate of the n nodes in n dimensional Euclidean space.

3. To reduce the embedded dimension to d, take the largest d eigenvalues from

A and their corresponding eigenvectors in V to form an n × d coordinate

matrix.

MDS has a running time of O(n3) and requires O(n2) space, once the distance

matrix P is given. In our case, the distance matrix will include the all pairs shortest

path distances.

For large data sets, MDS is too slow. V. de Silva and J. Tenenbaum proposed a

landmark based multi-dimensional scaling method (LMDS) [38]. LMDS selects a

small subset of nodes as landmarks, and performs MDS to embed these landmark-

s. The other nodes will measure their distances to the landmarks. By performing

distance-based triangulation, each node will embed itself. Denoting by n the num-

ber of nodes, k the number of landmark nodes, d the embedded dimension, the

procedure is as follows:

146

1. Let Pk denote the squared distance matrix of landmark nodes, compute Bk

by adopting step1 in MDS, which shifts Pk to its center.

2. Let λi and �vi denote the ith largest eigenvalue and its corresponding eigen-

vector of Bk, respectively. Compute

wi = �vi
T/
√

λi,

then W = (w1, w2, . . . , wk) is the transformation matrix of triangulation.

3. Let δi, i = 1, · · · , k, be the hop distance vector from node i to the k land-

marks, taking its mean as

δμ =

k∑
i=1

δi/k.

4. Given a node i, the embedded coordinate

�xi = −1

2
W (δi − δμ),

which is an affine transformation of the distance vector. The first d elements

of �xi gives the desired embedding result.

LMDS only requires O(kn) space and its running time is O(dkn+ k3), where

k is the number of landmarks, d is the dimensionality to be embedded to. Since d <

k � n, LMDS requires much less space and time than MDS. In our applications k

and d are both chosen to be small constants. Thus LMDS has a linear running time.

Another benefit of LMDS is that it does not require the knowledge of the entire

network. Note that we only need to know the shortest path distances from the

landmarks to all other nodes in the network. This can be achieved by using breadth-

first search from the landmarks with a running time of O(kn).

MDS requires the knowledge of the entire network and thus is less desirable

for a distributed system, compared with LMDS. To use landmark MDS, each land-

mark can flood the network so every node knows the distance to the landmarks.

One of the landmark nodes performs the classic MDS method on the pairwise dis-

tance matrix Mk×k on all landmarks and broadcasts the landmark coordinates to the

entire network. Non-landmark nodes then perform distance-based triangulation on

their own to derive their coordinates. Since we typically use a constant number of

147

landmarks. k can be considered as a constant, so MDS on the landmark nodes takes

a constant amount of time and space. Alternatively, we may also use the distributed

MDS [36] to compute the coordinates of the landmark nodes in the first step.

8.3.2 Embedding in Hyperbolic Spaces

A hyperbolic plane is a 2D Riemannian manifold with negative curvature. A

popular model is the Poincaré disk model, in which points are in a unit disk, and

the straight lines are segments of circles contained in the disk orthogonal to the

boundary of the disk, or else diameters of the disk. If u, v are two vectors with

Euclidean norm less than 1, we define an isometric invariant by

δ(u, v) = 2
||u− v||2

(1− ||u||2)(1− ||v||2) ,

where || · || denotes the usual Euclidean norm. Then the distance function is

d(u, v) = arccosh(1 + δ(u, v)).

R. Kleinberg [88] proposed a method to embed a graph in hyperbolic plane.

First we compute a spanning tree T of the graph. The tree T is then embedded in

hyperbolic plane so that each vertex is given a coordinate. Note that although one

can route on the tree edges only, the non-tree edges are also used by greedy routing

to produce (hopefully) shorter paths.

If the maximum degree of the tree T is d, there will be at most d branches from

the root. We take a regular polygon P such that each side corresponds to a branch.

Take any side of P , we introduce a hyperbolic isometry τ which maps endpoints

of this side to 1 and −1 while mapping the midpoint of its corresponding arc on

the boundary circle to −i. Define u = τ(0) as the point of root on the Poincaré

disk, then the virtual coordinate of root node r can be computed as μ−1
r (u). μr is a

Möbius transformation defined below. Consider two hyperbolic isometries

a : z �−→ −z,

b : z �−→ τ(ρ(τ−1(z))) , ρ(z) = e2πi/dz,

the Möbius transformation is computed from a and b. For each pair of parent and

child nodes (p(w), w), if the virtual coordinates of p(w) is known as f(p(w)), points

148

on the Poincaré disk for p(w) and w are u and v, respectively, then f(w) = μ−1
w (v).

This process can be made to work in a distributed manner and it takes O(n) time

to find coordinates for all nodes. For the scheme described above the length of

the coordinates can be exponential in n in the worst case. There are techniques to

reduce the length of the coordinates to be O(polylogn).

8.3.3 Greedy Routing in Latent Spaces

After the construction of the coordinate system, greedy routing will be used to

navigate from source to destination, by sending the message to a neighbor closer to

the destination. The distance is evaluated by the Euclidean distance or hyperbolic

distance, depending on the embedding. When a node does not have a neighbor

closer to the destination than itself, greedy routing gets stuck and fails to deliver

the message. The performance is evaluated by measuring the success rate of greedy

routing and the average routing path length.

Greedy Routing with Degree Information. A small world network typically has

a power law degree distribution [11], with many low-degree nodes and a few high

degree ‘hubs’. As high degree nodes have more neighbors, routing to high degree

nodes has a higher chance of encountering a node with the destination as immedi-

ate neighbor. This is the idea used in the degree-based greedy routing by Adamic

et al. [2]. However, one drawback of pure degree-based routing is that messages

arriving at hub nodes have no direction to ‘come down’ to low degree destinations.

We propose a hybrid scheme by using greedy routing based on both distance

and degree. Apart from the reason that high degree nodes are ‘more connected’ to

other nodes, they also tend to be embedded nearer to the ‘core’ of the network than

low degree nodes, as will be shown later with our experiments. We set a degree

threshold T . The nodes with degree higher than T are the hubs of the network. The

rest of the nodes are at the periphery of the network. When the message is at a

periphery node s, we send the message to its neighboring node with highest degree.

If s does not have a neighbor with higher degree or it is already a hub, we go back

to greedy routing with the embedded distances.

149

8.4 Experimental Results

We tested our method on a number of complex networks, including five real-

world networks we were able to find from publicly available sources, except some

really small size networks. We also tested on three artificially graphs generated

from models. The details of these data sets are shown in Table 9.

Data set name Num(node) Num(edge) Avg degree Num(landmark)

Astrophysics (ASTRO) 14,845 119,652 16.1202 100

Internet AS Network (AS) 31,277 70,527 4.5098 100

Gnutella Network (Gnu) 574 835 2.9178 30

Actor Network (Actor) 171,427 6,984,461 81.4861 100, 300 and 500

NYT Network (NYT) 209,158 666,956 6.378 100 and 500

Table 9: Empirical Data Sets

The astrophysics collaboration network (ASTRO) [114] is the network of

coauthorship between scientists posting preprints on the Astrophysics E-Print

Archive between January 1, 1995 and December 31, 1999.

The Internet AS network (AS) is a snapshot of autonomous systems gener-

ated by The Cooperative Association for Internet Data Analysis (CAIDA). This

snapshot is taken on March 11, 2009. We do not specify the type of links, say, as

customer-provider links or peer-peer links. So AS is an undirected graph with only

connectivity information.

The Gnutella network (Gnu) is a data set used by Adamic in [2]. Gnutella was

a popular P2P application, the data set is a small world network with hubs as the

high degree nodes.

The actor network (ACT) [10] is a data set extracted from imdb, each line

between two nodes means those two actors collaborated in one movie.

The NYT news network (NYT) puts an edge between individuals that appear

together in at least two articles(strong juxtapositions) in the New York Times news-

paper from 1981 to 2007.

The preferential attachment model (Pre) [10] assumes a dynamic network with

nodes coming in one by one. When a new node joins the network, it is connected to

150

existing nodes with probability proportional to their current degree. The preferential

attachment model introduces the ‘rich gets richer’ hypothesis in the formation of

complex networks and has been a popular model in explaining natural systems. In

this experiment, we take 14, 845 nodes, each additional node has outdegree 8.

The Boguna-Krioukov-Claffy model (BKC) [17] is a recently proposed model

assuming a hidden metric space on which the nodes reside. In particular, the hidden

space is assumed to be a ring with the nodes uniformly placed on the ring. Each

pair u and v has a distance |uv| on the ring. Each node u is assigned a target degree

ku, drawn from a power law distribution. Each edge (u, v) is added with probability

proportional to

(1 + |uv|/(kukv))−α,

where α is a model parameter. Intuitively the probability that two nodes have an

edge is inversely dependent on their distance in the hidden space, and positively

dependent on their target degrees. In general nodes near to each other in the hidden

space are more likely to be connected. If they are hub nodes, they are also likely to

be connected even though they are far away in the hidden space. In this experiment,

we draw the degree from power law distribution Prob{k = i} ∼ 1/i3, which is the

degree distribution in the preferential attachment model. α is set to be 2.

The Erdos-Renyi model (ER) [53] is the uniform random graph model, in

which each pair of nodes is connected uniformly randomly. It has a small diam-

eter. We include this graph as a baseline, as a random graph has no special structure

to help with navigation.

For all the theoretical model networks, we vary the average degree to examine

the performance dependency on the number of edges.

8.4.1 Embedding by MDS and LMDS

We evaluate the performance of embedding with MDS and landmark MDS.

LMDS is computationally more efficient than MDS, yet it gives similar embedding

results even when k is small.

Figure 49 shows the comparison between MDS and LMDS. Since the coordi-

nates of landmark nodes by LMDS are consistent with those in MDS [38], LMDS

with all nodes as landmarks is exactly MDS. The testing graph is generated by

151

0 1000 2000
0

0.1

0.2

0.3

0.4

Landmark number

D
is

to
rt

io
n

BKC
Pre
ER

0 1000 2000
0

0.2

0.4

0.6

0.8

Landmark number

S
uc

ce
ss

 R
at

e

BKC
Pre
ER

0 1000 2000
0

5

10
x 10

9

Landmark number

R
un

ni
ng

 ti
m

e

Figure 49: Performance comparison of LMDS and MDS. BKC,Pre and ER stand-

s for Boguna-Krioukov-Claffy model, Preferential Attachment model and Erdos-

Renyi model, respectively.

means of the preferential attachment model, Boguna-Krioukov-Claffy model and

Erdos-Renyi models with 2, 000 nodes and 8, 000 edges. The embedded dimension

is 6. Given a pair of nodes u and v, denote the distance generated by MDS and

LMDS as du,v and d′u,v, respectively. The individual distortion of LMDS relative

to MDS is ρ′u,v = |du,v − d′u,v|/du,v. The average distortion is ρ′ =
∑

u,v ρ
′
u,v/n

2.

The average distortion drops as the number of landmarks decreases. Figure 49 also

shows that by selecting only a small number of landmarks, high success rates for

greedy routing can nevertheless be achieved.

8.4.2 Greedy routing results on Euclidean space

We evaluated two strategies for routing: greedy routing, and greedy routing

with degree information. We also evaluated two different strategies for selecting

landmarks, random selection and selection of high degree nodes. The left four plots

of Figure 50 shows the success rate for different embedded dimensionality. The

Internet autonomous system network has the highest success rate, which reaches

nearly 80% with an embedded dimensionality of 50. The preferential attachment

graph achieves up to 56% success with hubs selected as landmarks, while the as-

trophysics collaboration network has a success rate of more than 60% with random

landmark selection. The average path length of the AS network and preferential

attachment graph stays around 4, and ASTRO network stays around 5. This result

152

shows that greedy routes are short. The results also show that a random graph does

not have good navigability. The graph generated by the recently proposed BKC

model, though claimed to be navigable in [17], does not work better than the prefer-

ential attachment model or the real networks. Among the model networks, random

graph are the most ‘unstructured’ one. It does not have power-law degree distribu-

tion or high clustering coefficient. Our experiments show that random graphs are

indeed less navigable than all the other networks.

Figure 50 also shows that for some networks selecting highest degree nodes as

landmarks performs better, while for other networks random selection works bet-

ter. Detailed analysis shows that ASTRO network contains multiple clusters, while

most of the highest degree nodes belong to only one cluster. Therefore, selecting

highest degree nodes cannot capture the true network structure, which leads to lower

success rate than random selection. Figure 51 (i) also shows that random selection

works better in the actor network.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Dimension

G
re

ed
y

R
ou

tin
g

 S
uc

ce
ss

 R
at

e

Highest degree

BKC
Pre
ER
ASTRO
AS
Gnu

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Dimension

Random Selection

BKC
Pre
ER
ASTRO
AS
Gnu

0 20 40 60
3

4

5

6

Dimension

BKC
Pre
ER
ASTRO
AS
Gnu

0 20 40 60
3

4

5

6

Dimension

A
ve

ra
ge

 P
at

h
Le

ng
th

BKC
Pre
ER
ASTRO
AS
Gnu

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Dimension

BKC
Pre
ER
AS
ASTRO
Gnu

0 20 40 60
3

4

5

6

Dimension

Random Selection W/ 20%

 BKC
Pre
ER
AS
ASTRO
Gnu

Figure 50: Simple greedy routing. Random Selection W/ 20%: landmark nodes

are random selected, 20% highest degree nodes are hub nodes. Node number and

average degree of ER, Pre and BKC are the same as ASTRO network. For abbrevi-

ations, please refer to Table 9 and Figure 49.

In the right two plots of Figure 50, we set the high degree threshold such

that 20% of the nodes are hubs respectively. Contrary to the intuition that greedy

153

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Dimension

S
uc

ce
ss

 R
at

e

ACT100R
ACT300R
ACT500R
ACT500H
NYT500R

(i)

0 20 40 60
2

3

4

5

6

Dimension

A
ve

ra
ge

 P
at

h
Le

ng
th

BKC8
BKC4
PRE8
PRE4
ER8
ER4

0 20 40 60
0

0.2

0.4

0.6

0.8

Dimension

S
uc

ce
ss

 R
at

e

BKC8
BKC4
PRE8
PRE4
ER4
ER8

(ii)

Figure 51: (i) Impact of landmark number and dimension. ACT500H is ACTOR

network with 500 highest degree nodes as landmarks. (ii) Impact of average degree.

BKC8 means a BKC network with average degree to be 8.

154

routing with degree information improves the performance, we do not see much

improvement. This shows that degree information is not important in our method,

but rather that the distances in the discovered space truly help with greedy routing.

Success rate is possibly influenced by landmark number and embedded dimen-

sionality. While Figure 50 shows that the success rate grows with dimension, we

take a larger network to see how those two factors influence the success rate.

The actor network is a large network with more than 170, 000 nodes. Figure 51

(i) shows an apparent growth of success rate as the embedded dimensionality grows.

Landmark number does not seem to play an important role, since using 100, 300,

and 500 landmarks gives similar curves. Remark that the number of dimensions

must be smaller than the number of landmarks. Similar results are obtained for

NYT network, which contains similar number of nodes with actor network, but

with much fewer edges. It suggests that network density does not play an essential

role in our greedy routing. Despite that actor network and NYT network are much

larger than our other data sets, the average path lengths are below or around 5 for

all experiments.

Since the empirical networks have different average degrees, it is essential to

justify whether average degree is an important factor in our embedding and greedy

routing. Figure 51 (ii) shows the impact of average degree, it takes three model net-

works preferential attachment model, BKC model and Erdos-Renyi Model. Com-

bining with Figure 50, we show how success rate and average path length changes

while the average degree changes from 16 to 8 and 4. The result turns out that

average degree does not show an essential impact on our embedding and routing.

8.4.3 Greedy routing results on hyperbolic space

As shown in [88], greedy routing on hyperbolic space is proved to have guaran-

teed success. Therefore the length of average path length is the crucial performance

factor to evaluate. In hyperbolic embedding, different choices of spanning tree and

the root of the spanning tree will lead to different routing pathes between source

and destination.

We first use the shortest path spanning tree (SPT) rooted as the node with

highest degree as the tree in the hyperbolic embedding. This tree is computed by

155

flooding from the root. In the first phase, an arbitrary node will flood all the other

nodes to compute the highest degree node in the network. Ties are broken arbitrar-

ily. In the second phase, The node with maximum degree will perform flooding to

get a breadth-first tree.

In the second method, we use random walk to generate a spanning tree (RWT).

In particular, we take an arbitrary node u as the starting node, and uniformly ran-

domly select one of its neighbors v. If v has not been visited, edge (u, v) is a tree

edge. We move to v and perform the same strategy until all nodes are visited. The

running time of this distributed process depends on the cover time of the random

walk on the particular graph.and ranges from O(n logn) to O(n3). RWT is a span-

ning tree uniformly randomly selected from the set of all possible spanning trees.

Data Set SPT RWT

Avg SPL Avg RL Avg distortion Avg SPL Avg RL Avg distortion

ASTRO 4.579 5.837 1.459 4.579 23.080 5.770

AS 3.847 4.265 1.422 3.847 9.712 3.237

Gnutella 4.812 5.533 1.383 4.812 9.202 2.301

NYT 5.270 5.971 1.994 5.271 21.846 4.368

Actor 4.185 5.617 1.404 4.182 27.990 6.997

Pre 3.318 4.001 1.334 3.318 18.012 6.004

BKC 3.252 3.927 1.309 3.252 20.425 6.808

ER 4.863 7.978 1.995 4.863 36.270 9.067

Table 10: Greedy routing with embedding in hyperbolic space. For abbreviations,

please refer to Table 9 and Figure 49. SPL and RL stands for shortest path length

and routing path length, respectively.

Table 10 shows the average distortion, average path length and shortest path

length for hyperbolic routing on the empirical networks. It shows that there is

a huge difference between different spanning trees. The spanning tree selected

by shortest path tree rooted on highest degree node achieves much smaller path

distortion. We conjecture that the reason might be that SPT usually divides nodes

into more balanced branches than the trees obtained from random walk.

156

8.5 Discussion

Prior work has demonstrated that under certain special conditions, networks

can be navigated in a decentralized fashion with algorithmic methods. How naviga-

ble real-world networks that may violate these special conditions are, has remained

largely unknown. We have shown here that five actual empirical networks, social

and non-social, of very diverse origin and topology, can all be embedded in some

hidden space such that effective navigation becomes possible. Using rather elemen-

tary methods, we deliver a majority of packages in under six hops in every network.

Even more surprisingly, navigation results are generally better, not worse, than in

simulated model networks.

Our experimental results yielded a number of interesting findings.

Greedy routing performance. The performance of navigation in real-world net-

works using a hidden space improves substantially on previous results. Past small-

world experiments in which human participants forwarded messages in social net-

works had much lower delivery rates due to uncooperative participants. Milgram’s

experiment used node identifying information about the destination such as name,

gender, occupation, etc. 64 out of 296 letters arrived at the destination (around 20%

success rate), with an average path length of around 5.5. Dodds et. al [42] conduct-

ed the same Milgram’s experiment with emails instead of snail mails and extended

the geographical range to the whole world. They show that only 1.5% messages

arrived at the destination, as many participants dropped from the game. Liben-

Nowell et. al [99] conducted a greedy routing simulation on a LiveJournal data set,

thus eliminating user participation issues. They used geographical information as

the greedy routing criterion (a message is delivered to a friend closer to the target

geographically) and considered delivery successful if the message arrived at the city

where the destination individual resides (not the actual precise location of the indi-

vidual target). Their simulations show a 13% success rate. We compare our results

with Liben-Nowell’s results, as also their investigation involves real data sets and

users are assumed cooperative. Liben-Nowell’s results use only geographical loca-

tion as the greedy routing criterion, which may only partially capture the attributes

attributed to navigability. We use the coordinates extracted from the embedding.

Our results confirm that using a proper embedding into latent spaces greatly helps

157

with navigation in the network. It remains as interesting future work to see whether

the embedded space corresponds to a set of real-world attributes or combination of

attributes.

ASTRO AS Actor NYT Gnutella Pre BKC ER

SR 29.7% 35.7% 74.9% 26.8% 51.8% 99.7% 98.4% 98.9%

APL 55.30 10.96 572.54 341.55 14.02 206.97 338.00 631.58

Table 11: Degree-based routing, SR stands for “success rate”, APL stands for “av-

erage path length”

Adamic [2] proposed degree routing and performed greedy routing simulations

on the same Gnutella data set. The degree routing strategy selects the highest degree

node among the neighbors which have not been explored, if all neighbors have been

visited, routing process enters a dead end and fails. Results on comparison between

degree-based routing strategy and our method is shown in table 11. Although degree

routing gives very good success rate on dense model networks, average path length

is too high to be considered as practical. Besides that, as average degree of Pre,

BKC and ER reduces below 4, success rate drops quickly to below 40%, while

average path length is still higher than 100.

Sandberg [136] tried to fit a particular small world model by J. Kleinberg [86]

to a real data set, the web of trust, so as to discover the users’ locations on a grid

using Markov Chain Monte Carlo method. The method has only demonstrated

limited success with 32% delivery rate and mean 26 steps. Part of the reason could

be that it is not clear whether J. Kleinberg’s model truly reflects the structure of the

real data set.

There is a tradeoff between the dimensionality of the embedding and the suc-

cess rate of greedy routing using that embedding. On one hand, the success rates

grows as the dimensionality is increased, but the growing speed slows down. Thus

increasing the embedding dimensionality has diminishing return. Depending on

the network structure and the size of network, some networks, for example AS and

BKC, have a tipping point on the growth of success rate. On the other hand, the size

of the coordinates for each node grows linearly as the embedding dimensionality.

The embedded dimension should also be strictly smaller than the number of land-

marks, hence one may have to use more landmarks with a higher dimensionality.

Real networks are more navigable than models. We did not try to pinpoint the

exact properties that make certain networks navigable, like many small-world mod-

els that have been proposed were intended to capture. Rather, we show that even

with off the shelf techniques one is able to get very reasonable performance on real-

world networks, something we never expected before we ran these experiments. An

interesting additional discovery is that the performance of real-world networks turns

out to be better, not worse, than equivalent model networks with the same network

size and average degree. That is, real networks are more navigable than existing

models! Besides results shown here, we also tested the J. Kleinberg’s model [86].

With around 14, 000 nodes and average degree 8, it gives low success rate(around

20%) and average path length is around 20. This is not good compared to greedy

routing using Kleinberg’s grid coordinates, which guarantees delivery and gives

similar average path length. In a sense, this suggests that there is some structural

feature to real-world complex networks that has not yet been captured by any single

theoretical model. It is also possible that hybrid models that combine the different

navigation-facilitating characteristics of various small-world models would do bet-

ter. How to build such hybrid models is an interesting line of future work.

The choice of latent space and embedding. We experimented with both Eu-

clidean spaces and hyperbolic spaces as the hidden spaces. Embedding in both

spaces achieves high success rate and more importantly, very low greedy routing

path length. This raises the question whether the topology of the hidden space

matters after all, and whether there is some structure of real-world networks that

transcends the hidden spaces.

What is the optimal hidden space? – results on the BKC model. The BKC

model [17] assumes a hidden space for the nodes in a social network but does not

mention how to discover this space. The model assumes a ring structure as the

hidden space and greedy routing is based on the distance on the ring. With this

method, routing on the BKC graph with 14, 845 nodes and 118, 325 edges has a

success rate of about 25% with average path length to be 8.07. As Figure 50 shows,

our method will give around a 47% success rate with the average path length to be

159

3.36. Thus, paradoxically, although the BKC model constructed the network with

an assumed hidden space, the assumed hidden space is apparently not the optimal

one. It remains as interesting future work how to characterize the ‘hidden space’

from the network structure and how to find the optimal hidden space, if there is

one.

160

Bibliography

[1] L. Adamic and E. Adar. How to search a social network. Social Networks,

27:187–203, 2005.

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search

in power-law networks. Physics Review E., 64:046135, 2001.

[3] G. Alandjani and E. Johnson. Fuzzy routing in ad hoc networks. In Pro-

ceedings of the 2003 IEEE International on Performance, Computing, and

Communications, pages 525 – 530, april 2003.

[4] M. Andrews and L. Zhang. Hardness of the undirected congestion minimiza-

tion problem. SIAM Journal on Computing, 37(1):112–131, 2007.

[5] P. Angelini, F. Frati, and L. Grilli. An algorithm to construct greedy drawings

of triangulations. In Proc. of the 16th International Symposium on Graph

Drawing, pages 26–37, 2008.

[6] S. Arora. Polynomial time approximation schemes for euclidean traveling

salesman and other geometric problems. J. ACM, 45:753–782, September

1998.

[7] A. Atlas and A. Zinin. Basic specification for IP fast reroute: Loop-free

alternates. IETF RFC 5286, September 2008.

[8] J. M. Bahi, A. Makhoul, and A. Mostefaoui. Localization and coverage for

high density sensor networks. Comput. Commun., 31(4):770–781, 2008.

161

[9] A. Banerjea. Simulation study of the capacity effects of dispersity routing

for fault tolerant realtime channels. In SIGCOMM ’96: Conference proceed-

ings on Applications, technologies, architectures, and protocols for computer

communications, pages 194–205, New York, NY, USA, 1996. ACM.

[10] A. Barabasi and R. Albert. Emergence of scaling in random networks. Sci-

ence, 286:509–512, 1999.

[11] M. Barthelemy and L. Amaral. Small-world networks: Evidence for a

crossover picture. 82(15), 1999.

[12] T. Bektas. The multiple traveling salesman problem: an overview of formu-

lations and solution procedures. Omega, 34:209–219, June 2006.

[13] M. Ben-Chen, C. Gotsman, and C. Wormser. Distributed computation of

virtual coordinates. In Symposium on Computational Geometry, pages 210–

219, 2007.

[14] R. Blum, S. Kassam, and H. Poor. Distributed detection with multiple sensors

ii. advanced topics. Proceedings of the IEEE, 85(1):64 –79, jan 1997.

[15] A. I. Bobenko and B. A. Springborn. Variational principles for circle patterns

and koebe’s theorem. Trans. Amer. Math. Soc, 356:659–689, 2004.

[16] E. S. Bogardus. Social distance in the city. Proceedings and Publications of

the American Sociological Society, 20:40–46, 1926.

[17] M. Boguna, D. Krioukov, and K. C. Claffy. Navigability of complex net-

works. Nature Physics, 5:74–80, January 2009.

[18] I. Borg and P. Groenen. Modern Multidimensional Scaling: theory and ap-

plications. Springer-Verlag, 2nd edition, 2005.

[19] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaran-

teed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616,

2001.

162

[20] U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Generating node coordi-

nates for shortest-path computations in transportation networks. Journal of

Experimental Algorithmics, 9(1), 2004.

[21] A. B. Brown and M. Halperin. On certain area-preserving maps. Annals of

Mathematics, 36(4):833–837, Oct. 1935.

[22] J. Bruck, J. Gao, and A. Jiang. MAP: Medial axis based geometric routing

in sensor networks. Wireless Networks, 13(6):835–853, 2007.

[23] R. S. Burt. Structural Holes: The Social Structure of Competition. Cam-

bridge University Press, 1992.

[24] V. Buskens. Social Networks and Trust. Kluwer, 2002.

[25] V. Buskens and A. van de Rijt. Dynamics of networks if everyone strives for

structural holes. American Journal of Sociology, 114:371–407, 2008.

[26] C. T. Butts. Predictability of large-scale spatially embedded networks. In

Dynamic Social Network Modeling and Analysis, pages 313–323, 2003.

[27] L. Buttyn, L. Dra, and I. Vajda. Statistical wormhole detection in sensor

networks. In Second European Workshop on Security and Privacy in Ad Hoc

and Sensor Networks (ESAS), volume 3813, pages 128–141, 2005.

[28] J. Cai and W. Wu. Degraded link-disjoint multipath routing in ad hoc net-

works. In ISWPC’09: Proceedings of the 4th international conference on

Wireless pervasive computing, pages 149–153, Piscataway, NJ, USA, 2009.

IEEE Press.

[29] S. Capkun, L. Buttyn, and J. P. Hubaux. SECTOR: Secure tracking of n-

ode encounters in multi-hop wireless networks. In 1st ACM Workshop on

Security of Ad Hoc and Sensor Networks (SASN), October 2003.

[30] C. Chekuri, S. Khanna, and F. B. Shepherd. An o(
√
n)-approximation for

EDP in undirected graphs and directed acyclic graphs. Theory of Computing,

2:137–146, 2006.

163

[31] B. Chow and F. Luo. Combinatorial ricci flows on surfaces. Journal Differ-

ential Geometry, 63(1):97–129, 2003.

[32] N. Christofides. Worst-case analysis of a new heuristic for the traveling sales-

man problem. In J. F. Traub, editor, Sympos. on New Directions and Recent

Results in Algorithms and Complexity, page 441, New York, NY, 1976. Aca-

demic Press.

[33] J. Chuzhoy and S. Khanna. New hardness results for undirected edge-disjoint

paths. Manuscript, 2005.

[34] C. R. Collins and K. Stephenson. A circle packing algorithm. Comput.

Geom. Theory Appl., 25(3):233–256, 2003.

[35] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press, 1994.

[36] J. A. Costa, N. Patwari, and A. O. H. III. Distributed weighted-

multidimensional scaling for node localization in sensor networks. ACM

Transactions on Sensor Networks, 2(1):39–64, 2006.

[37] S. De, C. Qiao, and H. Wu. Meshed multipath routing with selective for-

warding: an efficient strategy in wireless sensor networks. Comput. Netw.,

43(4):481–497, 2003.

[38] V. de Silva and J. Tenenbaum. Sparse multidimensional scaling using land-

mark points. Technical report, Stanford University, 2004.

[39] T. K. Delillo, A. R. Elcrat, and J. A. Pfaltzgraff. Schwarz-christoffel mapping

of multiply connected domains. Journal d’Analyse Mathématique, 94(1):17–

47, 2004.

[40] R. Dhandapani. Greedy drawings of triangulations. In SODA ’08: Proceed-

ings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 102–111, 2008.

164

[41] P. Djukic and S. Valaee. Reliable packet transmissions in multipath routed

wireless networks. IEEE Transactions on Mobile Computing, 5(5):548–559,

2006.

[42] P. Dodds, M. Roby, and D. Watts. An experimental study of search in global

social networks. Science, 301:827, 2003.

[43] D. Dong, M. Li, Y. Liu, X.-Y. Li, and X. Liao. Topological detection on

wormholes in wireless ad hoc and sensor networks. In Proceedings of the

17th annual IEEE International Conference on Network Protocols (ICN-

P’09), pages 314–323, 2009.

[44] D. Dong, M. Li, Y. Liu, and X. Liao. Wormcircle: Connectivity-based

wormhole detection in wireless ad hoc and sensor networks. In ICPAD-

S ’09: Proceedings of the 2009 15th International Conference on Parallel

and Distributed Systems, pages 72–79, Washington, DC, USA, 2009. IEEE

Computer Society.

[45] G. Dooms, Y. Deville, and P. Dupont. Constrained metabolic network anal-

ysis: discovering pathways using cp(graph), 2005.

[46] T. A. Driscoll and L. N. Trefethen. Schwarz-Christoffel Mapping, volume 8.

Cambridge University Press, 2002.

[47] D.Watts, P.Dodds, and M.Newman. Identity and search in social networks.

Science, (296):1302–1305, 2002.

[48] D.Watts and S.Strogatz. Collective dynamics of ‘small-world’ networks. Na-

ture, 393(6684):409–410, 1998.

[49] J. V. E. Hyytiä. On load balancing in a dense wireless multihop network,

2006.

[50] J. V. E. Hyytiä. Near optimal load balancing in dense wireless multi-jop

networks, 2008.

[51] D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Informa-

tion Processing Letters, 51(4):207–211, August 1994.

165

[52] D. Eppstein and M. T. Goodrich. Succinct greedy graph drawing in the

hyperbolic plane. In Proc. of the 16th International Symposium on Graph

Drawing, pages 14–25, 2008.

[53] P. Erdos and A. Renyi. On random graphs. Publicationes Mathematicae,

6:290–297, 1959.

[54] J. Eriksson, S. Krishnamurthy, and M. Faloutsos. Truelink: A practical coun-

termeasure to the wormhole attack. In ICNP, 2006.

[55] Q. Fang, J. Gao, and L. Guibas. Locating and bypassing routing holes in

sensor networks. In Mobile Networks and Applications, volume 11, pages

187–200, 2006.

[56] R. Flury, S. Pemmaraju, and R. Wattenhofer. Greedy routing with bounded

stretch. In Proc. of the 28th Annual IEEE Conference on Computer Commu-

nications (INFOCOM), April 2009.

[57] S. Funke and N. Milosavljević. Network sketching or: “how much geometry

hides in connectivity? - part II”. In SODA ’07: Proceedings of the eigh-

teenth annual ACM-SIAM symposium on Discrete algorithms, pages 958–

967, 2007.

[58] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient,

energy-efficient multipath routing in wireless sensor networks. SIGMOBILE

Mob. Comput. Commun. Rev., 5(4):11–25, 2001.

[59] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Geometric

spanners for routing in mobile networks. IEEE Journal on Selected Areas

in Communications Special issue on Wireless Ad Hoc Networks, 23(1):174–

185, 2005.

[60] J. Gao and L. Zhang. Load balanced short path routing in wireless networks.

IEEE Transactions on Parallel and Distributed Systems, Special Issue on

Localized Communications, 17(4):377–388, April 2006.

166

[61] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1990.

[62] M. T. Goodrich and D. Strash. Succinct greedy geometric routing in R
2.

Technical report on arXiv:0812.3893, 2008.

[63] Y.-J. K. R. Govindan, B. Karp, and S. Shenker. Lazy cross-link removal

for geographic routing. In SenSys ’06: Proceedings of the 4th international

conference on Embedded networked sensor systems, pages 112–124, 2006.

[64] R. S. Hamilton. Three manifolds with positive Ricci curvature. Journal of

Differential Geometry., 17:255–306, 1982.

[65] L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks.

In Network and Distributed System Security Symposium (NDSS), 2004.

[66] Y. C. Hu, A. Perrig, and D. Johnson. Packet leashes: a defense against

wormhole attacks in wireless networks. In INFOCOM, volume 3, pages

1976–1986, 2003.

[67] Y.-C. Hu, A. Perrig, and D. Johnson. Wormhole attacks in wireless networks.

IEEE Journal on Selected Areas in Communications (JSAC), 24:370–380,

February 2006.

[68] K. Ishida, Y. Kakuda, and T. Kikuno. A routing protocol for finding two

node-disjoint paths in computer networks. In ICNP ’95: Proceedings of the

1995 International Conference on Network Protocols, page 340, Washing-

ton, DC, USA, 1995. IEEE Computer Society.

[69] N. James, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor networks:

analysis & defenses. In Proceedings of the 3rd international symposium on

Information processing in sensor networks, IPSN ’04, pages 259–268, New

York, NY, USA, 2004. ACM.

[70] F. Javadi and A. Jamalipour. Multi-path routing for a cognitive wireless mesh

network. In RWS’09: Proceedings of the 4th international conference on

167

Radio and wireless symposium, pages 223–226, Piscataway, NJ, USA, 2009.

IEEE Press.

[71] D. Jea, A. A. Somasundara, and M. B. Srivastava. Multiple controlled mobile

elements (data mules) for data collection in sensor networks. In IEEE Inter-

national Conference on Distributed Computing in Sensor System (DCOSS),

pages 244–257, 2005.

[72] H. Jeong, S. Mason, A.-L. Barabasi, and Z. Oltvai. Lethality and centrality

in protein networks. Nature, 411:41–42, 2001.

[73] R. Jiang, X. Ban, M. Goswami, W. Z. adn Jie Gao, and X. D. Gu. Exploration

of path space using sensor network geometry. In Proc. of the 10th Interna-

tional Symposium on Information Processing in Sensor Networks (IPSN’11),

pages 49–60, April 2011.

[74] M. Jin, J. Kim, F. Luo, and X. D. Gu. Discrete surface Ricci flow. IEEE

Transaction on Visualization and computer Graphics, 14(5):1030–1043,

2008.

[75] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless

networks. In Imielinski and Korth, editors, Mobile Computing, volume 353.

Kluwer Academic Publishers, 1996.

[76] M. Kamat, A. Ismail, and S. Olariu. Modified hilbert space-filling curve for

ellipsoidal coverage in wireless ad hoc sensor networks. In Signal Processing

and Communications, 2007. ICSPC 2007. IEEE International Conference

on, pages 1407 –1410, nov. 2007.

[77] A. Kansal, M. Rahimi, W. J. Kaiser, M. B. Srivastava, G. J. Pottie, and D. Es-

trin. Controlled mobility for sustainable wireless networks. In IEEE Sensor

and Ad Hoc Communications and Networks (SECON’04), 2004.

[78] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless

networks. In Proc. of the ACM/IEEE International Conf. on Mobile Comput-

ing and Networking (MobiCom), pages 243–254, 2000.

168

[79] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller

and J. W. Thatcher, editors, Complexity of Computer Computations, pages

85–103. Plenum Press, 1972.

[80] I. Khalil, S. Bagchi, and N. Shroff. MOBIWORP: Mitigation of the worm-

hole attack in mobile multihop wireless networks. In Ad Hoc Networks,

volume 6, pages 344–362, May 2008.

[81] I. Khalil, S. Bagchi, and N. B. Shroff. LITEWORP: A Lightweight Counter-

measure for the Wormhole attack in multihop wireless network. In Interna-

tional Conference on Dependable Systems and Networks (DSN), Yokohama,

Japan, 2005.

[82] B. Kim, C. Yoon, S. Han, and H. Jeong. Path finding strategies in scale-free

networks. Physical Review E, 65(027103), 2002.

[83] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made

practical. In Proceedings of the Second USENIX/ACM Symposium on Net-

worked System Design and Implementation (NSDI 2005), May 2005.

[84] J. Kleinberg. Small-world phenomena and the dynamics of information. In

In Advances in Neural Information Processing Systems 14. MIT Press, 2001.

[85] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and embedding using

small sets of beacons. In Proc. 45th IEEE Symposium on Foundations of

Computer Science, pages 444–453, 2004.

[86] J. M. Kleinberg. The small-world phenomenon: an algorithm perspective. In

Proc. of ACM Symposium on Theory of Computing (STOC), pages 163–170,

2000.

[87] R. Kleinberg. Geographic routing using hyperbolic space. In Proceedings of

the 26th Conference of the IEEE Communications Society (INFOCOM’07),

pages 1902–1909, 2007.

[88] R. Kleinberg. Greedy routing using hyperbolic space. pages 1902–1909,

2007.

169

[89] D. Koutsonikolas, S. Das, and Y. Hu. Path planning of mobile landmarks for

localization inwireless sensor networks. In Distributed Computing Systems

Workshops, 2006. ICDCS Workshops 2006. 26th IEEE International Confer-

ence on, page 86, july 2006.

[90] D. Krioukov, F. Papadopoulos, M. Boguna, and A. Vahdat. Greedy forward-

ing in scale-free networks embedded in hyperbolic metric spaces. In ACM

SIGMETRICS Workshop on Mathematical Performance Modeling and Anal-

ysis (MAMA), June 2009.

[91] K.-W. Kwong, L. Gao, R. Guerin, and Z.-L. Zhang. On the feasibility and

efficacy of protection routing in IP networks. In INFOCOM’10, March 2010.

[92] W. K. Lai, S.-Y. Hsiao, and Y.-C. Lin. Adaptive backup routing for ad-hoc

networks. Comput. Commun., 30(2):453–464, 2007.

[93] B. Latane, J. H. Liu, A. Nowak, M. Bonevento, and L. Zheng. Distance mat-

ters: Physical space and social impact. Personality and Social Psychology

Bulletin, 21:295–805, 1995.

[94] J. K. Lawder and P. J. H. King. Using space-filling curves for multi-

dimensional indexing. In Proceedings of the 17th British National Conferenc

on Databases: Advances in Databases, BNCOD 17, pages 20–35, London,

UK, 2000. Springer-Verlag.

[95] T. Leighton and A. Moitra. Some results on greedy embeddings in metric

spaces. In Proc. of the 49th Annual Symposium on Foundations of Computer

Science, pages 337–346, October 2008.

[96] F. Li, S. Chen, and Y. Wang. Load balancing routing with bounded stretch.

EURASIP J. Wirel. Commun. Netw., 2010:10:1–10:16, Apr. 2010.

[97] F. Li and Y. Wang. Circular sailing routing for wireless networks. In INFO-

COM, pages 1346–1354, 2008.

[98] J. Li, J. Jannotti, D. Decouto, D. Karger, and R. Morris. A scalable location

service for geographic ad-hoc routing. In Proceedings of 6th ACM/IEEE

170

International Conference on Mobile Computing and Networking, pages 120–

130, 2000.

[99] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins. Geo-

graphic routing in social networks. In Proceedings of the National Academy

of Science, volume 102, pages 11623–11628, 2005.

[100] H. Lin, M. Lu, N. Milosavljević, J. Gao, and L. Guibas. Composable infor-

mation gradients in wireless sensor networks. In Proc. of the International

Conference on Information Processing in Sensor Networks (IPSN’08), pages

121–132, April 2008.

[101] W. Lindner and S. Madden. Data management issues in periodically discon-

nected sensor networks. In Proceedings of Workshop on Sensor Networks at

Informatik, 2004.

[102] C. Liu, M. Yarvis, W. S. Conner, and X. Guo. Guaranteed on-demand dis-

covery of node-disjoint paths in ad hoc networks. Comput. Commun., 30(14-

15):2917–2930, 2007.

[103] X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: balancing

push and pull for discovery in large-scale sensor networks. In SenSys ’04:

Proceedings of the 2nd international conference on Embedded networked

sensor systems, pages 122–133, 2004.

[104] L. Lovasz. Random walks on graphs: A survey. Bolyai Soc. Math. Stud., 2,

1996.

[105] R. Maheshwari, J. Gao, and S. R. Das. Detecting wormhole attacks in wire-

less networks using connectivity information. In Proceedings of the 26th

Conference of the IEEE Communications Society (INFOCOM’07), pages

107–115, May 2007.

[106] M. K. Marina and S. R. Das. Ad hoc on-demand multipath distance vector

routing. SIGMOBILE Mob. Comput. Commun. Rev., 6(3):92–93, 2002.

[107] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

171

[108] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Ho-

mophily in social networks. Annual Review of Sociology, 27:415–444, 2001.

[109] A. Mei and J. Stefa. Routing in outer space: fair traffic load in multi-hop

wireless networks. In MobiHoc ’08: Proceedings of the 9th ACM interna-

tional symposium on Mobile ad hoc networking and computing, pages 23–32,

New York, NY, USA, 2008. ACM.

[110] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivi-

sions: A simple polynomial-time approximation scheme for geometric tsp,

k-mst, and related problems. SIAM J. Comput., 28:1298–1309, March 1999.

[111] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing. SIG-

COMM Comput. Commun. Rev., 38(4):27–38, 2008.

[112] A. Nasipuri and S. Das. Demand multipath routing for mobile ad hoc net-

works. In Proceedings of the 8 th Annual IEEE Internation Conference on

Computer Communications and Networks (ICCCN), pages 64–70, October

1999.

[113] B. Nath and D. Niculescu. Routing on a curve. SIGCOMM Comput. Com-

mun. Rev., 33(1):155–160, 2003.

[114] M. Newman. Astrophysics collaborations. In Proc. Natl. Acad. Sci., vol-

ume 98, pages 404–409, 2001.

[115] E. Ng and H. Zhang. Predicting Internet network distance with coordinates-

based approaches. In Proc. IEEE INFOCOM, pages 170–179, 2002.

[116] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in

direct networks. Computer, 26(2):62–76, 1993.

[117] Y. Ohara, S. Imahori, and R. V. Meter. Mara: Maximum alternative routing

algorithm. In Proc. IEEE INFOCOM, 2009.

[118] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric

routing. Theor. Comput. Sci., 344(1):3–14, 2005.

172

[119] S. Patil and S. R. Das. Serial data fusion using space-filling curves in wireless

sensor networks. In Proceedings of IEEE International Conference on Sen-

sor and Ad Hoc Communications and Networks (SECON’04), pages 182–

190, 2004.

[120] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector rout-

ing. In Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and

Applications, pages 90–100, 1999.

[121] P. P. Pham and S. Perreau. Performance analysis of reactive shortest path

and multipath routing mechanism with load balance. In INFOCOM 2003.

Twenty-Second Annual Joint Conference of the IEEE Computer and Com-

munications Societies. IEEE, Vol. 1 (2003), pp. 251-259 vol.1, 2003.

[122] P.Henrici. Applied and Computational Complex Analysis, volume 3. Wiley,

New York, 1986.

[123] R. Poovendran and L. Lazos. A graph theoretic framework for preventing

the wormhole attack in wireless ad hoc networks. ACM Journal of Wireless

Networks (WINET), 13, January 2005.

[124] L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica. Bal-

ancing traffic load in wireless networks with curveball routing. In MobiHoc

’07: Proceedings of the 8th ACM international symposium on Mobile ad

hoc networking and computing, pages 170–179, New York, NY, USA, 2007.

ACM.

[125] L. Qian, N. Song, and X. Li. Detection of wormhole attacks in multi-path

routed wireless ad hoc networks: a statistical analysis approach. J. Netw.

Comput. Appl., 30(1):308–330, 2007.

[126] P. Raghavan. Probabilistic construction of deterministic algorithms: approx-

imating packing integer programs. J. Comp. and System Sciences, pages

130–143, 1988.

173

[127] P. Raghavan and C. D. Thompson. Provably good routing in graphs: regular

arrays. In Proceedings of the 17th annual ACM Symposium on Theory of

Computing, pages 79–87, 1985.

[128] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz. Disjoint multipath

routing using colored trees. Comput. Netw., 51(8):2163–2180, 2007.

[129] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing

without location information. In Proceedings of the 9th annual international

conference on Mobile computing and networking, pages 96–108, 2003.

[130] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.

GHT: A geographic hash table for data-centric storage in sensornets. In Proc.

1st ACM Workshop on Wireless Sensor Networks ands Applications, pages

78–87, 2002.

[131] S. Ray, R. Guérin, K.-W. Kwong, and R. Sofia. Always acyclic distributed

path computation. IEEE/ACM Transactions on Networking, 2009.

[132] L. Reddeppa Reddy and S. V. Raghavan. Smort: Scalable multipath on-

demand routing for mobile ad hoc networks. Ad Hoc Netw., 5(2):162–188,

2007.

[133] C. Reichert, Y. Glickmann, and T. Magedanz. Two routing algorithms for

failure protection in IP networks. In Proc. ISCC, 2005.

[134] C. Reichert and T. Magedanz. Topology requirements for resilient IP net-

works. In Proc. 12th GI/ITG Conf. on Meas., Mod. and Eval. of Comp. and

Comm. Sys, 2004.

[135] H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.

[136] O. Sandberg. Distributed routing in small-world networks. In Proc. of Algo-

rithm Engineering and Experiments (ALENEX), 2006.

[137] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with guaran-

teed delivery using ricci flows. In Proc. of the 8th International Symposium

174

on Information Processing in Sensor Networks (IPSN’09), pages 97–108,

April 2009.

[138] R. Sarkar, W. Zeng, J. Gao, and X. D. Gu. Covering space for in-network

sensor data storage. In Proc. of the 9th International Symposium on Informa-

tion Processing in Sensor Networks (IPSN’10), pages 232–243, April 2010.

[139] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage

in sensor networks. In Proc. of the ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom), pages 286–297, September

2006.

[140] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims.

In ACM Workshop on Wireless Security (WiSe 2003), September 2003.

[141] A. Scaglione and Y. W. Hong. Opportunistic large arrays: Cooperative trans-

mission in wireless multihop ad hoc networks to reach far distances. IEEE

Transactions on Signal Processing, 51(8), 2003.

[142] G. Schollmeier, J. Charzinski, A. Kirstädter, C. Reichert, K. Schrodi,

Y. Glickman, and C. Winkler. Improving the resilience in IP networks. In

Proc. HPSR, 2003.

[143] C. Sengul and R. Kravets. Bypass routing: An on-demand local recovery

protocol for ad hoc networks. Ad Hoc Netw., 4(3):380–397, 2006.

[144] R. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling a three-

tier architecture for sparse sensor networks. In IEEE SNPA Workshop, May

2003.

[145] O. Simsek and D. Jensen. Navigating networks by using homophily and

degree. In Proceedings of the National Academy of Sciences, pages 12758–

12762, September 2008.

[146] K. Stephenson. Introduction To Circle Packing. Cambridge University Press,

2005.

175

[147] I. Stojmenovic. A routing strategy and quorum based location update scheme

for ad hoc wireless networks. Technical Report TR-99-09, SITE, University

of Ottawa, September, 1999.

[148] H. Suzuki and F. Tobagi. Fast bandwidth reservation scheme with multi-link

and multi-path routing in atm networks. In Eleventh Annual Joint Conference

of the IEEE Computer and Communications Societies, pages 2233 –2240

vol.3, may 1992.

[149] W. Thurston. The finite riemann mapping theorem. In Invited talk, An Inter-

national Symposium at Purdue University on the occasion of the proof of the

Bieberbach conjecture, March 1985.

[150] W. P. Thurston. Geometry and Topology of Three-Manifolds. Princeton lec-

ture notes, 1976.

[151] J. Travers and S. Milgram. An experimental study of the small world prob-

lem. Sociometry, 32:425, 1969.

[152] A. van de Rijt, X. Ban, and R. Sarkar. Effective networking when connec-

tions are invisible: Comment on reagans and zuckerman. Industrial and

Corporate Change, 17:945–952, 2008.

[153] Z. Vincze and R. Vida. Multi-hop wireless sensor networks with mobile

sink. In CoNEXT’05: Proceedings of the 2005 ACM conference on Emerging

network experiment and technology, pages 302–303, New York, NY, USA,

2005. ACM Press.

[154] R. Viswanathan and P. Varshney. Distributed detection with multiple sensors

i. fundamentals. Proceedings of the IEEE, 85(1):54 –63, jan 1997.

[155] H. Q. Vo, Y. Y. Yoon, and C. S. Hong. Multi-path routing protocol using

cross-layer congestion-awareness in wireless mesh network. In ICUIMC

’08: Proceedings of the 2nd international conference on Ubiquitous infor-

mation management and communication, pages 486–490, New York, NY,

USA, 2008. ACM.

176

[156] W. Wang and B. Bhargava. Visualization of wormholes in sensor networks.

In WiSe ’04: Proceedings of the 2004 ACM workshop on Wireless security,

pages 51–60, New York, NY, USA, 2004.

[157] Y. Wang, J. Gao, and J. S. B. Mitchell. Boundary recognition in sensor

networks by topological methods. In Proc. of the ACM/IEEE International

Conference on Mobile Computing and Networking (MobiCom), pages 122–

133, September 2006.

[158] R. Williams, E. Berlow, J. Dunne, A. Barabasi, and N. Martinez. Two degrees

of separation in complex food webs. Proceedings of the National Academy

of Sciences, 99(20):12913–12916, 2002.

[159] W. Xu, K. Ma, W. Trappe, and Y. Zhang. Jamming sensor networks: attack

and defense strategies. Network, IEEE, 20(3):41–47, May-June 2006.

[160] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination

model for large-scale wireless sensor networks. In MobiCom ’02: Proceed-

ings of the 8th annual international conference on Mobile computing and

networking, pages 148–159, 2002.

[161] X. Yu, X. Ban, R. Sarkar, W. Zeng, X. D. Gu, and J. Gao. Spherical represen-

tation and polyhedron routing for load balancing in wireless sensor network-

s. In Proc. of 30th Annual IEEE Conference on Computer Communications

(INFOCOM’11), April 2011.

[162] D. Zappala. Alternate path routing for multicast. IEEE/ACM Trans. Netw.,

12(1):30–43, 2004.

[163] W. Zeng, R. Sarkar, F. Luo, X. D. Gu, and J. Gao. Resilient routing for

sensor networks using hyperbolic embedding of universal covering space. In

Proc. of the 29th Annual IEEE Conference on Computer Communications

(INFOCOM’10), pages 1694–1702, March 2010.

[164] F. Zhang, A. Jiang, and J. Chen. Robust planarization of unlocalized wireless

sensor networks. In Proc. of INFOCOM 2008, pages 798–806, 2008.

177

[165] Z. Zhou and J.-H. Cui. Energy efficient multi-path communication for time-

critical applications in underwater sensor networks. In MobiHoc ’08: Pro-

ceedings of the 9th ACM international symposium on Mobile ad hoc net-

working and computing, pages 221–230, New York, NY, USA, 2008. ACM.

[166] X. Zhu, R. Sarkar, J. Gao, and J. S. B. Mitchell. Light-weight contour track-

ing in wireless sensor networks. In Proceedings of the 27th Annual IEEE

Conference on Computer Communications (INFOCOM’08), pages 960–967,

May 2008.

178

