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Abstract of the Thesis

Variational Delaunay Triangulation
by

Phanindra Bhagavatula

Master of Science

in

Computer Science

Stony Brook University

2012

In this thesis I present an algorithm and its implementation for 2D
and 3D simplicial mesh optimization. An energy function for each
simplex of a mesh in Rn 2 ≤ n ≤ 3 is defined as the volume of the
hyperbolic simplex in Hn+1 constructed from the said simplex. It
has been proven otherwise and mentioned here as well that a reg-
ular simplex has maximum energy. Thus maximizing this energy
by reshaping each individual simplex of the mesh will improve the
overall quality of the mesh. The algorithm maximizes this energy
to achieve an optimum mesh by displacing vertices and updating
connectivity of the mesh conforming to the Delaunay property by
following a gradient descent method. The details of the energy
function, proof of correctness and implementation details are pre-
sented herewith.
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Chapter 1

Introduction

A Mesh is a discretization of a space into simple geometric constructs to
model a real world object and represent the same digitally. The study of
meshes is a large subfield of computer graphics and geometric modeling. Dif-
ferent representations of such meshes are used for various applications and
goals.

Mesh generation algorithms are essential tools in many areas. Typically,
meshes are used in numerical solvers for solving partial differential equa-
tions (finite element methods) in computational science, geometric modeling,
physics-based simulations, realistic simulation of deformable objects in com-
puter graphics etc. Tetrahedral meshes are a popular choice for discretization
of three dimensional domains and can be generated using advancing front,
Delaunay or octree methods. In all applications, quality of a mesh plays a
critical role and influences the accuracy and speed of numerical computations.
Irregular meshes having slivers (skinny tetrahedra), can introduce numerical
errors and increase time needed to find a solution. Isotropic meshing is de-
sirable in common case where nearly-regular tetrahedra are preferred. Such a
combinatorial optimization leads to good geometric properties.

Creating High quality meshes is a difficult task for various reasons. The
size of a tetrahedral mesh is generally huge and handling the mesh requires
robust data structures and algorithms. Degenerate tetrahedra are not uncom-
mon even with evenly spaced vertices. Thus developing algorithms for 3D
meshing and suitable error analysis for the same is very challenging.

In this thesis I present an implementation of a novel mesh quality opti-
mization technique. The details of the implementation and an analysis of
quality of the mesh generated are provided.
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Chapter 2

Background

2.1 Delaunay Triangulation
The most popular triangular and tetrahedral meshing techniques are those

utilizing Delaunay [6, 7] criterion. The Delaunay Property states that for a
mesh in n dimensions the circumsphere of a nD Simplex should not contain
any other vertex of the mesh. Figure 2.1 depicts the criterion for a two di-
mensional mesh. For every triangle (2D simplex) the circus circle of it doesn’t
contain any other vertices of the mesh. Following the same analogy, in a 3D
mesh, every tetrahedron (3D simplex) has a circumsphere which is void of any
other vertices in the mesh.

Figure 2.1: 2D-Delaunay Criterion[4]

Formally for a given set of points P = {p1, p2, . . . , pn} in a d dimensional
space Rd, a k Simplex s (0 ≤ k ≤ d) is defined as a k dimensional polytope
which is the smallest convex set of its k + 1 vertices where a convex set of a
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set of points is a set of all possible convex combinations of the set of points.
For example, a triangle is a 2-simplex, a tetrahedron is a 3-simplex. A line
segment can be considered as a 1-simplex and a point as a 0-simplex.

A Convex Hull of a set of points P = {p1, p2, . . . , pn} in Rd is the smallest
convex set containing all the points. More precisely, it is the intersection of
all possible convex sets containing the points.

A Delaunay triangulation of a set of points P = {p1, p2, . . . , pn} in a d
dimensional space Rd is defined as a subdivision of the convex hull of the set of
points into simplices such that for any two simplices s1 and s2, the intersection
s1 ∩ s2 is φ or a k simplex where 0 ≤ k < d

Delaunay triangulation of a set of points in Rd is unique if the points are
in general position i.e there exists no k − flat containing k + 2 points or a
k − sphere containing k + 3 points for 1 ≤ k ≤ d − 1. There are many al-
gorithms to compute delaunay triangulation for a given set of points in Rd.
Below is a brief about each of the techniques.

2.1.1 Algorithms
Delaunay triangulation from Convex Hull

A Delaunay triangulation is closely related to convex hulls in that, a con-
vex hull in Rd corresponds to a a projection of convex hull in Rd + 1 onto
Rd. For a point pi = 〈x1, x2, ..., xd〉 ∈ Rd, we define a liftpoint p+ =
〈x1, x2, ..., xd, xd+1〉 ∈ Rd + 1, where pd+1 = ∑d

i=1 xi
2. For a point set P in

Rd we define a point set P+ = {p+
i |pi ∈ P}. P+ is a set of points "lifted"

from points in Rd to a paraboloid in Rd + 1. Then the convex hull conv(P+)
is a (d + 1)-dimensional polytope. The Delaunay triangulation of P can be
produced by projecting conv(P+) into d-dimensions. Thus convex hull algo-
rithms can be used to compute Delaunay triangulations. Figure 2.2 depicts
the relationship between a delaunay triangulation of a set of points in R2 and
the corresponding convex hull of the lifted points in R3.

Quick Hull Algorithm[8]
The Quick Hull algorithm computes convex hull of a given set of points in an
arbitrary dimension (d). The current implementation assumes points to be
present in general position (i.e., no set of d + 1 points defines a (d − 1) flat)
so that the convex hull is a simplicial complex. The convex hull is represented
by its vertices and (d − 1)-dimensional faces called facets. Each facet con-
sists of a set of vertices, a set of d− 2 simplices called ridges and a hyperplane
equation. Each ridge is an intersection of the vertices of two neighboring facets.

3



Figure 2.2: Delaunay Triangulation in R2 and Convex hull of lifted points in
R3[4]

Quickhull uses two geometric operations, oriented hyperplane through d
points and signed distance to hyperplane. A hyperplane is represented by its
outward-pointing unit normal and its signed offset from the origin. The signed
distance of a point to a hyperplane is the inner product of the point and the
normal plus the offset. If distance of a point is positive, it is considered above
the hyperplane.

For processing a point, quick hull uses a simplification of Grünbaum’s
Beneath-Beyond Theorem. [9]

Theorem. Simplified Beneath-Beyond Let H be a convex hull in Rd, and
let p be a point in Rd −H. Then F is a facet of conv(p ∪H) if and only if

1. F is a facet of H, and p is below F; or

2. F is not a facet of H, and its vertices are p and the vertices of a ridge of
H with one incident facet below p and other incident facet above p.

Quickhull algorithm has a simple way to determine visible facets. After the
initialization, every unprocessed vertex p is assigned to a facet’s outside set.
By definition, the facet is visible to the vertex. Every time a new set of facets
are created by the algorithm, it builds new outside set for the new facets using
vertices from the previously visible facets. If a vertex is above multiple facets,
it is assigned to the outside set of one of the facets. Additionally the farthest
vertex among the outside set is maintained for each facet.
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Algorithm 1 QuickHull Algorithm
procedure QuickHull(Set of points)

Create a simplex of d+1 points
for each Facets F

for each unassigned vertex p
if p is above F then assign p to F’s outside bucket
end if

end for
end for
for each Facet F with a non empty outside bucket

Select the furthest point p in F’s outside bucket
Initialize the Visible set V to F
for each Unvisited neighbors N of facets in V do

if p is above N then
Add N to V

end if
end for
The boundary of V is the set of Horizon ridges H
for each Ridge R in H

Create a new facet R and p
link the new facet to its neighbors

end for
for each new facet F’

for each Unassigned point q in outside bucket of a facet in V
if q is above F’ then

Assign q to outside bucket of F’
end if

end for
end for
Delete the facets in V

end for
end procedure

Incremental Delaunay Construction

The incremental algorithm bases itself on the concept of flips. A flip is an
operation to transform non-locally Delaunay simplices into a set of simplices
which are locally delaunay.

Definition and Classification of flips. For a set P of d + 2 points in

5



Rd, according to Lawson [10] there are exactly two ways to triangulate P . If
the points are lifted to Rd+1 as described above, the two ways of triangulation
are the ones corresponding to the two sides of d+ 1 simplex in Rd + 1. There
can be no other triangulation because a d+ 1 simplex exhausts all d simplices
as its facets owing to the Radon’s theorem [11]. A flip is the operation that
replaces one triangulation with the other.

In R2, the two cases correspond to the fact that a tetrahedron of the lifted
points in R3 corresponds to a triangle or a quadrilateral in R2. Figure 2.3
depicts the flips in R2.

’2 to 2’

’2 to 2’

’1 to 3’

’3 to 1’

Figure 2.3: Lawson Edge Flips R2 [5]

In case of R3, the 4-simplex in R4 projects to a single or a double tetrahe-
dron in R3. Flips in R3 are depicted in figure 2.4

An incremental algorithm for a set of points in Rd starts by constructing a huge
d-simplex containing all the points. Incrementally, the points are inserted in
random order. The Simplex in which the new point lies is determined and the
simplex is split by adding new edges joining the new point to each vertex of
the simplex (’1 to 3’ flip in 2D and ’1 to 4’ flip in 3D). The each edge then is
locally flipped if it is not locally delaunay. Eventually producing a delaunay
triangulation of the given set of points.

2.2 Mesh Quality [1]
The utility of tetrahedral meshes increases many folds if the shapes of the

tetrahedrons is so optimized that Finite Element Methods produce error free
and fast results. The quality of a tetrahedral mesh denotes how suitable it is

6



‘1 to 4’

‘4 to 1’

‘2 to 3’

‘3 to 2’

Figure 2.4: Lawson Edge Flips R3 [5]

for such numerically intensive operations. Many factors contribute to quality
of a tetrahedron. Dihedral angles between pairs of faces of a tetrahedron are
of particular importance. Figure 2.5 illustrates a dihedral angle between two
triangular faces.

In finite element methods, large dihedral angles cause large interpola-

θ1

d

a b

c

Figure 2.5: Dihedral Angle

tion errors, which hurt the accuracy of a simulation. Shewchuk’s What is a
good Linear Finite Element [12] explains in detail the costs of extreme dihedral
angles in finite element meshes. Examples of some tetrahedra with extreme

7



dihedral angles are shown in figure 2.6.

Figure 2.6: Left: Tetrahedra with extreme dihedral angles. Right: Tetrahedra
with good dihedral angles [1]

2.2.1 Quality Measures [1]
Tetrahedral meshes are employed in numerous applications. Thus a single

metric determining mesh quality can’t be relevant to every application. Mesh
improvement algorithms are still expected to generate meshes that are suitable
for many different applications. Quality of a tetrahedron is thus determined by
various user functions that the user could choose. Many quality measures are
available as described in [12, 13]. Here I present a summary of these measures.
The table 2.1 lists the formulae for each of the measures and its gradient.
Figure 2.7 illustrates the quantities used to compute the measures in table
2.1

Minimum Sine Measure

The minimum sine measure of a tetrahedron is the minimum of the sines
of its six dihedral angles. Since sines of 0◦ and 180◦ are both zero, this metric
ensures bad quality measure for a tetrahedron for such angles. For a regular
tetrahedron, where all dihedral angles are equal, the minimum sine measure
has a maximum value for a tetrahedron which is 2

√
2/3.

Volume-length measure

The Volume-length measure suggested by Parthasarathy, Graichen, and
Hathaway [14] and denoted V/l3rms is the signed volume of a tetrahedron di-

8



a
b

c

d

lad
lbd

lcd

lac lbc

lab

~t
~u

~v

Ad

Ac

Ab Aa

Figure 2.7: Tetrahedron labeling. l is edge length, A is face area and t, u, v
are edge vectors

vided by the cube root of its root-mean-squared edge length. Intuitively this
metric credits ’fat’ tetrahedra. A tetrahedron has a maximum quality accord-
ing to this metric when it is regular and the value is

√
2/12.

Radius Ratio(and its square root)

The radius ratio was suggested by Cavendish, Field, and Frey [15] is the
ratio of in-radius (radius of inscribed sphere) to circus-radius (radius of cir-
cumscribed sphere). This metric too credits ’fat’ tetrahedra. The regular
tetrahedron has a maximum value of this ratio which is 1/3.

2.3 Variational Approaches to Meshing
Mesh improvement techniques which employ minimization of energy de-

fined on the mesh are categorized under variational approach to meshing.
Triangular and tetrahedral meshes used in computer graphics, industrial mod-
eling and structural simulations can be improved using this powerful and ro-
bust tool. Various methods have been discussed in [3, 16–18]. These methods
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Table 2.1: Formulae for tetrahedron quality measures and their gradients.
Quantities are labelled in figure 2.7 and formulae for their computation are
in table 2.2. Numbers used as vertex subscripts 1, 2, 3, 4 correspond to a, b,
c, d respectively[1]

Measure Formula

Minimum Sine 3V
2 min

1≤k<l≤4

lkl
AkAl

Volume-Length 6√
2

V
l3rms

Square Root of Radius Ration 6
√

3 V√
Z(Aa+Ab+Ac+Ad)

Table 2.2: Formulae for quantities with respect to d needed to compute quality
measures.

f(d) Formula f(d) Formula

lad |t| lrms
√

1
6(∑{i,j∈{a,b,c,d}|i 6=j} l2ij)

lbd |u| Aa
|u×v|

2

lcd |v| Ab
|v×t|

2

lab |a− b| Ac
|t×u|

2

lbc |b− c| Ad
|u−v|×|t−v|

2

lac |c− a| V det[tuv]
6

Z ||t|2u× v + |u|2v × t + |v|2t× u + |

10



(a) Piecewise Linear Approximation(CVT) (b) Optimal Delaunay Triangulations(ODT)

Figure 2.8: [3]

define (often highly) non-convex energies that they minimize through vertex
displacement or connectivity changes in the mesh. Below is a short summary
of a few methods.

2.3.1 Centroidal Voronoi Tessellation [2]
The CVT tries to minimize a quadratic energy defined on a mesh. It gener-

ates a mesh which is dual to optimal Voronoi diagrams. The quadratic energy
is defined by

Ecvt =
∑

i=1..N

∫
Vi

‖x− xi‖2dx

where the xi are vertex positions and Vi a local cell associated with each xi.
The union of these cells forms a partition of the domain Ω. The algorithm
computes the Voronoi diagram for a given set of vertices restricted to the do-
main Ω since it is energetically optimal position for the current vertex position.
In the second phase the partition is held fixed and the vertex position of xi is
optimized. Each of these steps decreases the same energy. The analysis of Ecvt
[3] the minimization of energy corresponds to the minimization of the volume
between a paraboloid f(x) = ‖x‖2 and an underlaid circumscribed piece wise
linear approximate fdualPWL which is formed by planar patches tangent to the
paraboloid (Figure 2.8a depicts this).

ECV T = ‖f − fdualPWL‖L1

Tests have shown [3] that using CVT gives rise to numerous degenerate
sliver tets. It has been attributed to the fact that ECV T tends to optimize
the compactness of the Voronoi cells but not Delaunay triangulation. Thus

11



presence of a sliver is not penalized by this energy function.

2.3.2 Optimal Delaunay Triangulations
An energy optimization algorithm was proposed by Chen [19] which works

on the input mesh itself instead of its dual. The energy function used is

EODT = ‖f − fprimalPWL ‖L1

EODT = 1
n+ 1

∑
i=1..N

∫
Ωi

‖x− xi‖2dx

which is the volume between the paraboloid and an overlaid, circumscribing
piecewise linear approximate fPWLprimal formed by a linear interpolation of
points on the paraboloid (Figure 2.8b). For every vertex position xi, the
energy is calculated over the 1-ring region Ωi also called the star of vertex xi

which is the set of simplices incident at the vertex xi. This method doesn’t
formally guarantee an optimum mesh. The smoothing technique presented
updates the mesh connectivity through local edge flips only. This method
doesn’t carry over to 3D since there is no theorem to prove that an arbitrary
mesh is only finite number of flips away from the optimal connectivity.

2.3.3 Variational Tetrahedral Meshing [3]
Variational Tetrahedral Meshing by Alliez minimizes the EODT by a mini-

mization procedure by modifying both vertex positions and connectivity of the
mesh. Connectivity Optimization is easily achieved by following the Delaunay
property. For a vertex xi, EODT is minimized by the Delaunay connectivity.
For a given meshM with vertices xi, the EODT can be written as:

EODT = 1
4
∑
i

xi|Ωi| −
∫
M

x2dx

where |Ωi| is the measure of the 1-ring neighborhood of vertex xi. [3] states
that the last term is constant given a fixed boundary ∂M. A simple derivation
of the quadratic energy in xi leads to the following optimal position x∗i

x∗
i = − 1

2|Ωi|
∑
Tj∈Ωi

∇xi
|Tj|

 ∑
xk∈Tj ,xk 6=xi

‖xk‖2
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The term ∇xi
|Tj| is the gradient of the volume of the tet Tj with respect to xi.

Replacing function f(x) = ‖x‖2 by the translated function f(x) = ‖x−xi‖2,
we get the vertex position as

x∗
i = xi −

1
2|Ωi|

∑
Tj∈Ωi

∇xi
|Tj|

 ∑
xk∈Tj ,xk 6=xi

‖xi − xk‖2
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Chapter 3

System Overview

We propose a variational mesh optimization algorithm to improve mesh
quality. In this chapter I define the energy function used by our algorithm
and the motivation behind the same. For a given mesh in Rn (n ≤ 3) we
define an energy function Emesh = ∑

mE
i
simplex where the mesh is a union of m

simplices and each simplex i has energy Ei
simplex defined as the volume of the

ideal hyperbolic simplex in the hyperbolic space Hn+1 constructed from the
euclidean simplex in Rn. Further sections state some identities associated to a
hyperbolic simplex in Hn+1 and the construction of the same from a euclidean
simplex in Rn.

3.1 Triangular Mesh Optimization

3.1.1 Volume of an ideal hyperbolic 3-simplex
Theorem. Consider an ideal Hyperbolic 3-simplex, that is a simplex ∆ with
all four vertices on the sphere of points at infinity. If α, β, γ are the dihedral
angles along three edges meeting at a common vertex, then α+β+ γ = π, and

volume(∆) = Λ(α) + Λ(β) + Λ(γ)

It does not matter which particular vertex is chosen since the opposite
dihedral angles in an ideal hyperbolic tetrahedron are equal.

Proof. Milnor [20] proved this theorem as follows. We consider a Beltrami
upper half-space model of the hyperbolic space with the metric ds2 = (dx2 +
dy2 + dz2)/z2 and the associated volume element dxdydz/z3 where z > 0. Let
us position the ideal simplex ∆ such that one of its faces lies on the hemisphere
z = (1 − x2 − y2)1/2 and its opposite vertex lies at infinity. Projecting ∆

14



α

β

γ

γγ

α
αβ

β

Figure 3.1: Triangle inscribed in a unit circle

orthogonally to the unit disc in the x,y-plane, we obtain a triangle inscribed
in the disc with angles α, β, γ. These are angles of euclidean triangle, so
α+ β + γ = π. It follows from figure 3.1 that these angles determine ∆ up to
congruence, and are subject to no other restriction. Barycentrically dividing
the triangle from the origin of the circumcircle, we obtain six right triangles
as illustrated in 3.1. Considering the region in the upper half space lying over
one of the triangles like the one shaded in the figure, we must integrate the
Beltrami volume element dxdydz/z3 over the region defined by inequalities

z ≥
√

1− x2 − y2, 0 ≤ y ≤ x tanα, 0 ≤ x ≤ cosα

Integrating with respect to z, we obtain 1
2dxdy/(1−x

2−y2). Integrating with
respect to y, we obtain

dx

4A [log(A+ y)− log(A− y)]x tanx
o = dx

4Alog
A cosα + x sinα
A cosα− x sinα

where A = (1 − x2)1/2. Substituting A = sin θ, x = cos θ, dx = −Adθ, and
integrating we get

volume = 1
4

∫ π/2

α
log

2 sin(θ + α)
2 sin(θ − α)dθ

=
(
− Λ

(
π

2 + α
)

+ Λ(2α) + Λ
(
π

2 − α
)
− Λ(0)

)
/4

Now if we substitute the identity

Λ(2α) = 2Λ(α) + 2Λ(α + π/2),

15



this reduces easily to volume = Λ(α)/2. Adding the volumes of the other five
regions we obtain volume = Λ(α) + Λ(β) + Λ(γ)

Corollary. The maximum possible volume of a hyperbolic 3-simplex is 3Λ(π/3).

Proof. To find the max volume the continuous function Λ(α) + Λ(β) + Λ(γ)
has to be maximized subject to the constraints α, β, γ ≥ 0 and α+ β + γ = π.
Since the degenerate cases, where one dihedral angle is zero, all have zero
volume, the maximum must occur at an interior point where the derivative
Λ′(θ) = − log(2 sin θ) is defined and satisfies

Λ′(α) = Λ′(β) = Λ′(γ)

hence sinα = sin β = sin γ. Thus α = β = γ = π/3 is the only interior
solution.

3.1.2 Construction of Hyperbolic simplex in H3 for a
given simplex in R2

The above corollary can be used to optimize triangular meshes. Given an
arbitrary triangle, we can construct a hyperbolic tetrahedron in Beltrami up-
per half plane model in H3 such that the triangle is a projection of a face on
the hemisphere centered at the circumcenter of the triangle and the opposite
vertex is at infinity as depicted in figure 3.2. Changing the vertex positions
of the triangle such that the volume of the hyperbolic tetrahedron thus con-
structed is maximum leads to transformation of an irregular triangle to an
equilateral triangle. This volume is defined as the energy of a triangle in R2.
The energy of a triangular mesh is the summation of volumes of the hyperbolic
tetrahedra corresponding to each triangle in the mesh.
Since the energy is a function of the angles of the tetrahedron and thus a
function of the vertex positions, we define a gradient of energy of a triangle
w.r.t each vertex. The new position of a vertex is determined by gradient
descent method. In case of a mesh, the gradient of energy at a vertex is a
summation of gradient of each incident triangle w.r.t that vertex. We reshape
the triangular mesh such that the energy of the whole mesh is maximized.

Let energy of a triangle Etri be defined as

Etri = Λ(α) + Λ(β) + Λ(γ) α, β, γ are the interior angles of the triangle

Emesh =
∑
i

Ei
tri
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Figure 3.2: 3D Hyperbolic Simplex constructed from a triangle on 2D plane
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Figure 3.3: Transformation of a triangle from irregular to regular
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The gradient of the energy with respect to a vertex vi of the triangle is

E ′tri = d

dvi
(Λ(α) + Λ(β) + Λ(γ))

= − log(2 sinα) dα
dvi

+− log(2 sin β) dβ
dvi

+− log(2 sin γ) dγ
dvi

The algorithm stated below summarizes the procedure.

Algorithm 2 Variational 2D Delaunay Triangulation
procedure Variational Delaunay(Set of points)

Generate a Delaunay triangulation for the set of points.
for each Interior Vertex v

GradientVector Gvector ← 0
for each 2D Simplex incident on v

Calculate the Energy Gradient Vector for the 2D Simplex
Gvector ← Gvector + Energy Gradient Vector

end for
Normalize(Gvector)
pos(v)← pos(v) + ε×Gvector

Check Delaunay Legality of Each edge incident at v
for each Illegal Edge

Flip Edges to legalize the Mesh
end for

end for
end procedure

3.1.3 Proof Of Uniqueness
The energy function defined guarantees a unique and optimum mesh. We

first state the following lemma based on which the uniqueness theorem is
proven.

Definition. For an Internal edge of a mesh as shown in figure 3.4 the Edge
cross ratio is defined as

ρ(e) = a ∗ b′

a′ ∗ b
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θ1 θ2

θ′1 θ′2

e

a b

a′
b′

Figure 3.4: An interior edge e and the edges of incident triangles

Lemma 1. When Hyperbolic tetrahedron volume for neighboring triangles is
optimized, all the edge cross ratios equal to one.

ρ(e) = a ∗ d
b ∗ c

= 1

Proof. Consider the following deformations

θ1 = θ1 + εθ2 = θ2 − εθ′1 = θ′1 − εθ′2 = θ′2 + ε

Then at optimal point the following holds true

d[Λ(θ1 + ε) + Λ(theta2 − ε) + Λ(theta′1 − ε) + Λ(theta′2 + ε)]
dε

= 0

Lobachevsky function

Λ(θ) = −
∫ θ

log |2 sin t|dt

∴
dΛ(θ + ε)

dε
= − log |2 sin(θ + ε)|,

dΛ(θ − ε)
dε

= log |2 sin(θ − ε)|

Therefore we get
sin θ1

sin θ2
= sin θ′1

sin θ′2

∴ By law of sines a′b = b′a
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Theorem 1. If a triangulation is given and its boundary curvature is fixed,
then if optimal solution exists, it must be unique

Proof. If the triangulation is fixed, the edge cross ratio is fixed, then only
the edge lengths are deformed. This deformation is equivalent to the discrete
Yamabe flow. Let u : V → R is a function for edge [vi, vj], the length of which
is given b

lij = e
ui+uj

2

The planar triangulation with given boundary curvature is equivalent to set
all the target curvatures. For interior vertices the target curvatures are 0.

K = 0,∀vi /∈ ∂M

We define a 1-form
ω :=

n∑
i=1

(Ki −Ki)dui

The 1-form energy is closed. The energy

E(u1, u2, . . . , un) =
∫

(0,0,...,0)
(u1, u2, . . . , un)ω

is well defined. Furthermore, the energy is convex. So the optimal point is
unique. The desired configuration is the unique optimal point.

Theorem 2. Delaunay triangulation optimizes triangle energy. Thus the op-
timum Triangulation is Delaunay.

Proof. Delaunay Triangulation maximizes the minimal angle. Thus given an
edge, the total energy of the incident triangles, is optimized if the edge is
flipped to restore Delaunayhood. Thus the optimum triangulation will always
be Delaunay.

3.2 Volume of an ideal hyperbolic 4-simplex
A hyperbolic 4-simplex corresponding to a tetrahedron in R3 can be con-

structed in a similar fashion as a hyperbolic tetrahedron from a euclidean
triangle. The volume of the hyperbolic 4-simplex ∆ is given by the following
formula as mentioned in section 11.3 of [21]

V olume(∆) = 4
3π

2 − π

3
∑
i<j

θij
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Figure 3.5: Angles of Tetrahedron Corresponding to Dihedral angles of Hy-
perbolic 4-simplex

where θij is the dihedral angle between the faces of the hyperbolic 4-simplex.
As seen earlier in case of a triangle, the dihedral angles of hyperbolic 4-simplex
constructed from a euclidean tetrahedron is the angles depicted in the figure
3.5

3.3 Implementation Details for Triangular Mesh
Optimization

Triangular meshes are represented using a variety of data structures. One
of the most efficient ones is the Half Edge Data Structure. The half edge data
structure represents each triangle as an interconnection of its elements. We
define class for each element viz. the Face class, the edge class, the ver-
tex class and the halfEdge class. The halfEdge class gives orientation of the
winding for vertices of each face. It helps in determining the face normals
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• hei : Half Edges

• ei : Edges

• vi : Vertices

• f : Face

parentFace

Figure 3.6: Half Edge Data Structure

without much orientation checking calculations. The interconnection between
each of these data structures is depicted in the figure 3.6. The implementation
generates a set of random points in a circle and triangulates the vertices using
Delaunay triangulation algorithm. For the case mesh in R2 we use a simple
incremental Delaunay triangulation algorithm. The algorithm starts with an
initial large triangle and each point is inserted and 2D-flips[5] as described
earlier are used to ensure Delaunay property is maintained as each point is
inserted.

3.4 Implementation Details for Tetrahedral Mesh
Optimization

The code to optimize a 3D mesh is presented. We use a standard represen-
tation of the mesh using C++ Classes emulating interconnection of entities of
a mesh.
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3.4.1 Data Structures
The triangulation is represented by a set of classes for each element of the

mesh. We use an aggregation style of design. The complete object is repre-
sented by the Solid class. Each tetrahedron is represented by the Cell class,
each face by the Face class and each vertex by the Vertex class. The solid is
an aggregation of each of the smaller elements (simplices of lower dimensions).
Thus we maintain a list of all cells, faces and vertices in the solid class. Each
cell, face or vertex has a unique id which helps identify the desired object from
the list. We use a map data structure in the Solid class to maintain the list of
each entity. Each of the simplices is an aggregation of simplices of the lower
dimensions. For example, a cell is formed by a set of vertices and faces, where
each of the faces is a combination of vertices which form the face. We maintain
a list of the lower dimension simplices which a given simplex is made up of.
For robustness of the application and for simplicity, we only maintain the list
of id’s representing the desired simplex.

The implementation optimizes a mesh generated from a number of random
points in a unit cube. The code has two main parts. The Delaunay Triangu-
lator and the Optimizer.

3.4.2 Delaunay Triangulator
This part of the code takes as input a set of random points and gener-

ates a Delaunay tetrahedralization of the those in 3D. The code implements
the QuickHull algorithm explained earlier to generate a convex hull of the
projected points in 4D. The quick hull requires representation of simplices in
4d and hence a different connectivity relationship between simplices of each
dimension. We thus use a different set of classes derived from a set of Base
classes representing each simplex. The Delaunay Triangulator gives as output
the 4D mesh which is a convex hull. This Delaunay triangulation in 3D can be
obtained by projecting this 4D convex hull into 3D. The optimizer code does
that once the mesh is returned by the quickHull algorithm.

3.4.3 Optimizer
The optimizer code does the major processing. This code initially generates

a set of random points and calls for generation of 3D Delaunay tetrahedral-
ization. Once the mesh representing 4D convex hull is obtained, the same is
projected into 3D and the Delaunay mesh for the set of points is obtained.
The optimizer while creating the mesh, also identifies the faces and vertices
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which belong to the convex hull of the mesh in 3D. This information is used
by the variational algorithm to ensure the boundary vertices are not moved.
The optimizer then parses through each tetrahedron and calculates the energy
of the tetrahedron and the energy gradient with respect to each vertex of the
tetrahedron. This information is maintained as a map in the Cell class. The
energy is calculated using the formula derived in the previous section. For
simplicity of calculation, the energy gradient is calculated using the numerical
derivative formulae. Once this data has been obtained, the code now deter-
mines the new position for each internal vertex such that the energy of the
complete mesh is reduced. The connectivity of each vertex needs to be checked
to ensure the new position of the vertex doesn’t destroy the Delaunay property
of the mesh. Thus we check each face of the tetrahedra incident on the said
vertex for Delaunay legality and employ a series of flips as described in [5] to
restore delaunayhood. This series of flips is not guaranteed to stop or produce
a Delaunay triangulation. But we employ this method for overall speed of the
algorithm. The algorithm continues to run until the energy of the mesh is not
constant at which point, every vertex is at its optimum position.
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Chapter 4

Results

Figure 4.1 shows Mesh Optimization results for a 2D mesh in R2 for 10, and
100 vertices A histogram of the interior angles of triangles of the mesh with
1000 vertices is shown in figure 4.2. The optimization reduces the obtuse
angles, increases all acute angles and most of the triangles are equilateral.
Figure 4.3 shows the Energy Etri calculated using the formula described above
after each iteration of optimization. The energy of the mesh increases to the
optimum after which it is almost constant within a small factor. Figure 4.4
shows the Cross Ratio of edges corresponding to triangles incident on each
edge as explained earlier in the previous chapter. The histogram clearly shows
how the proposed algorithm makes the mesh optimum and changes the edge
lengths such that all edge ratios are in the range of 0.9 to 1.1. Figure ?? shows
a histogram of the dihedral angles of tetrahedrons in the 3D mesh before and
after optimization. The algorithm improves the mesh quality slightly but not
much since there were not many iterations that could be run due to slow nature
of the algorithm.
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(a) Delaunay triangulation
of 100 vertices

(b) Variational Delaunay Triangula-
tion of 100 vertices

(c) Delaunay triangulation
of 1000 vertices

(d) Variational Delaunay Triangula-
tion of 1000 vertices

Figure 4.1: Variational Delaunay triangulation
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Figure 4.2: Histogram Of Interior angles of 2D Mesh before and after opti-
mization

Figure 4.3: Energy Etri of mesh
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Figure 4.4: Edge Cross Ratio Histogram

Figure 4.5: Dihedral Angles of Tetrahedrons of 3D mesh before and after
optimization
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Chapter 5

Conclusion and Future work

This thesis presents an algorithm which can be a practical method to pro-
duce high quality meshes. The Energy function described earlier is a good
measure of quality of a mesh and thus an appropriate parameter to improve
mesh quality. There are many improvements that the current algorithm and
the implementation requires.

Speed
The major shortcoming of the current software is speed of execution. Since

the algorithm is an iterative algorithm where each internal vertex is iterated
over to determine the energy gradient for the incident cells w.r.t the vertex
and determine the new position of the vertex, the complexity of the algorithm
is very high. The complexity further increases due to the fact that every
movement of a vertex requires restoration of the Delaunay property of the
mesh. The restoration of Delaunay hood can be sped up by using an efficient
local Delaunay fixing methods. The software currently uses Lawson’s flipping
method [22] which doesn’t guarantee a solution in 3D for some special cases.
Star Splaying method by Shewchuk [23] is a fast local delaunay fixing method
which can be used to speed up the algorithm.

Termination of Optimization
There is no good way to determine convergence in variational algorithms.

The current method relies on optimum position of vertices. Determination of
optimum position depends solely on the mesh density and the least count of
vertex displacement. A higher least count of vertex displacement could cause
wobbling of a vertex in a small region due to change in direction of gradient
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at each new position. If the least count is too small, the convergence would
take a lot of time to be achieved.

Extension to practical use
The algorithm can be extended in future to practical applications where

remeshing objects pose constrained boundaries which need special treatment to
maintain the delaunay property of the mesh. Constrained Delaunay algorithms
can be used in conjunction with the optimization algorithm to achieve higher
quality meshes.

Parallelization
The algorithm has high scope of parallelization. Determination of new ver-

tex position can be parallelized by a GPU implementation. It would improve
the speed tremendously thus achieving optimum meshes quickly.
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