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Abstract of the Dissertation 

Transmembrane Domain Structure and Function in the Erythropoietin Receptor 

by 

Ian Christopher Brett 

Doctor of Philosophy 

in 

Biochemistry and Structural Biology 

 

Stony Brook University 

2012 

 

Activation of the erythropoietin receptor (EpoR) by the soluble cytokine erythropoietin (Epo) is 
essential for the differentiation of erythrocyte progenitors and their development into red blood 
cells. The single transmembrane (TM) helix of the EpoR mediates dimerization of the receptor in 
the inactive state and is responsible for coupling ligand binding to activation of an intracellular 
Janus kinase. Neither the structure of the inactive dimer nor the structural changes in the TM 
region that occur upon ligand binding are known.  This work presents the solution NMR 
structures of peptides corresponding to the TM and juxtamembrane (JM) sequences that bridge 
the extracellular and intracellular domains. The N-terminal end of the TM-JM peptides contains 
the transition point between the last !-strand of the extracellular D2 domain of the receptor and 
the TM "-helix. NMR measurements indicate that the TM helix extends to Pro225. This proline 
allows Asp224 to fold back and form side chain hydrogen bonds to the backbone NH of Leu226. 
Structural studies on the TM region of the EpoR alone reveal intermolecular contacts between 
polar residues (Ser231, Ser238 and Thr242). At the intracellular TM-JM boundary, the defined 
"-helical structure appears to break at Arg250-Arg251. However, Leu253-Lys256 exhibit 
downfield carbonyl chemical shifts consistent with helical structure for the JM switch region. To 
stabilize the TM-JM peptides in an active conformation, two approaches were undertaken. The 
first approach was to substitute Leu223 with cysteine; full length L223C EpoR is constitutively 
active. The second approach was to characterize the complex between the TM-JM dimer and the 
TM domain of an EpoR-activating viral membrane protein, gp55-P. In both cases, the largest 



 

!" 
 

chemical shift changes were at the intracellular TM-JM boundary, particularly His249. 
Mechanisms of receptor activation that unite biophysical and biochemical data are discussed.
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Chapter 1-Introduction 

Cytokine Receptor Structure and Biology 

 The cytokine receptor family performs a wide variety of essential biological functions 

including the growth and development of multiple cell types (e.g., blood cells) or regulation of 

the immune system (1). Members of this family of receptors commonly feature at least one 

cytokine receptor homology domain (CHD) composed of the fibronectin derived D1 and D2 

domains; the D1 domain has 4 conserved cysteines and the D2 domain has a conserved WSXWS 

motif. The receptors that have functional intracellular domains (ICD) share homology as well, 

containing the conserved Janus kinase (Jak) binding sites Box 1 and Box 2.  Each receptor shows 

high conservation across species (2). They are subdivided into 5 subgroups based on sequence 

homology, receptor structure, and type of functional oligomer (homo- or heterooligomer). Group 

2 is the largest subgroup and has the most diverse extracellular domain (ECD), with a varying 

number of fibronectin and immunoglobulin domains in addition to the CHD. This group contains 

the gp130 common signaling chain receptor used by several of the Group 2 members. Group 3 

also has a modified ECD containing an immunoglobulin domain in addition to the CHD; several 

of its members also use gp130 as a common signaling chain. Groups 4 and 5 are also 

heterocomplex receptors, but instead of using gp130 as the common signaling chain, either IL-

2#c or IL-3R!c are used.  

 Group 1 is made up of homodimeric receptors, including the receptor that is the focus of 

this research, the erythropoietin (Epo) receptor.  Other Group 1 members include receptors for 

thrombopoietin (Tpo), growth hormone (GH) and prolactin (Prl) (Figure 1.1). Together, these 

four receptors are structurally similar with the exception of the TpoR. It has a duplicated ECD 
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(2x CHD), only one of which binds ligand, and a five-residue insert at the C-terminus of the 

transmembrane (TM) domain. Each of these receptors uses Jak2 and STAT5 (signal transducer 

and activator of transcription) for intracellular signaling. 

 The active form of Group 1 receptors is a dimer. The ligand is bound in a cleft between 

the two halves of the receptor dimer ECD in an asymmetric fashion, using a high-affinity site on 

one receptor monomer and a low-affinity site on the other (3). Ligand makes contact with several 

residues from both the D1 and the D2 domains. A short flexible linker region between the two 

domains allows changes in the relative position of the two domains in response to ligand. The 

conserved WSXWS motif in the second fibronectin fold of the CHD is necessary for proper 

receptor function and trafficking to the membrane. Solution nuclear magnetic resonance (NMR) 

structures of the D2 domain of the GH receptor and the IL-6 receptor (4, 5) and crystal structures 

of the GHR, PrlR and the EpoR extracellular domains (6-9) revealed that the conserved 

tryptophan residues of the WSXWS motif interact with conserved arginine residues in the CHD, 

likely stabilizing the structure of this domain. Mutagenesis of this motif performed in several 

receptors to gain insight into the potential structural and functional roles of the WSXWS motif 

(10, 11) usually resulted in decreased affinity for ligand. These results led researchers to 

hypothesize that WSXWS was involved in ligand binding. However, a more definitive WSXWS 

mutational study performed by Hilton et al. (12) determined that while the W232 and W235 

residues had a very narrow mutational range (where functionality is preserved only if replaced by 

Phe or Tyr), S233 and S236 functioned with a wider range of mutations. In addition, the EpoR 

could still bind Epo when position A234 was mutated to almost any other residue. Despite the 

fact that mutation generally decreased receptor activity, Epo binding assays indicated that even 

mutant receptors that made it to the cell surface were capable of binding Epo and productive 
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signaling. This result is more consistent with the WSXWS motif performing a structural role in 

folding of the Epo receptor. Indeed, when the crystal structure of the Epo receptor ECD with 

ligand bound was solved, the WSXWS motif was located outside of the Epo binding site (8).  

  

Figure 1.1 Group 1 cytokine receptor family members. Four members of the Group 1 cytokine 
receptors share general structural homology with each having an extracellular cytokine 
homology domain, a single transmembrane domain of varying length, and an ICD with a 
variable number of tyrosines, capable of non-covalent binding to a Janus kinase. The TpoR has 
two unique features: a duplicated extracellular domain and a five-residue insert (R/KWQFP) 
that modulates receptor activity. Epo:erythropoietin, Tpo:thrombopoietin, Prl:prolactin, 
GH:growth hormone 
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Figure 1.2 Group 1 cytokine receptor family member TMD sequences, human and mouse. The 
region including and around the TMD of the Group 1 receptor family members reveals 
interesting features. Beginning with the conserved WSXWS motif, each member has an acidic 
extracellular juxtamembrane domain of variable length, a hydrophobic TMD that shows 
interspecies conservation, an intracellular switch region with basic residues and a proline-rich 
Box 1 region that interacts with the Janus kinase. Conserved prolines are highlighted. 
Epo:erythropoietin, Tpo:thrombopoietin, Prl:prolactin, GH:growth hormone 

 

 The TMD, in contrast, does not share sequence conservation across Group 1 cytokine 

receptor members, though sequence conservation of each receptor between species is generally 

seen (2). Alignments of the TMD sequences from Group 1 receptors produce no useful 

comparisons (Figure 1.2), and though these receptors are thought to function as dimers, no clear 

TM dimerization motifs are seen. Given the conflicting reports about the role of the TMD in 

receptor dimerization of this subgroup of receptors (13-17), this is not surprising. For instance, 

studies show that both wild type GHR and chimeric GHR with the TMD replaced with the low-

density lipoprotein receptor (LDLR) TMD co-precipitate with a co-expressed, intracellular 

domain (ICD) truncated GHR mutant (13). This result not only indicates that the TMD is not 

necessary for dimerization of the GHR, but that the ECD is required.  This observation is in 

contrast to experimental results from the Epo receptor. When EpoR-PrlR chimeras are co-

expressed in cells with full-length WT Epo receptor, receptor co-patching only occurs when the 

EpoR TMD is present (14). A related study of truncated Prl receptors (ECD-TM or ICD-TM) 

indicated that when co-expressed in cells the ECD-TM inhibited signaling, while the ICD-TM 

construct augmented signaling (16). These results suggest that the TMD mediates PrlR 
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interaction. Using the TOXCAT expression-reporter system (18), further studies of the Epo and 

GH receptors indicate that the propensity for TM self-association is four times greater for the 

EpoR TMD than the GHR TMD (19). 

 While the EpoR and TpoR TMDs are leucine-rich, the GHR and PrlR TMDs are not. The 

presence of polar residues in the TMD is interesting. Studies show that when present they 

typically perform a critical function, such as mediate interhelical interaction (20). While the 

GHR is rich in aromatic residues, the other members are not. It is clear that the sequence of the 

TMD plays an important part in the function of each receptor, but if dimerization is mediated by 

the TMD a single dimerization motif that governs all of these receptors is unlikely to be found. 

 The ICDs of these receptors are arguably the most important and least understood part of 

the molecule. The ICD is responsible for both binding the tyrosine kinase molecule and 

harboring the tyrosine residues that, when phosphorylated, allow binding of adapter proteins for 

several downstream effector pathways. Each receptor has a variable length tail with a variable 

number of tyrosines, only some of which are essential for basic receptor function (21), the rest of 

which often function as docking sites for accessory pathway proteins (22).  An important 

conserved region of the ICD is the Box 1 motif (Figure 1.2), necessary for binding the Janus 

kinase tyrosine kinase (23, 24). A second important Jak binding site is the smaller Box 2 motif 

(24-26).  

 Other interesting observations can be made regarding the receptor sequence, especially 

surrounding the TMD. First, the extracellular juxtamembrane region, like the TMD, is not highly 

conserved, but is certainly important as it mediates the transition between the !-sheet rich ECD 

and the "-helical TMD. It generally contains a number of acidic residues, the function of which, 
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if any, is unknown. In contrast the “switch” region, located in the membrane proximal 

intracellular juxtamembrane region, contains a number of basic residues. While these may be 

part of the “positive-inside” rule (27, 28), in at least the TpoR these basic residues have a defined 

role as part of a receptor-recycling motif (29).  

Cytokine Receptors and Disease 

 The diverse array of biological processes regulated by the cytokine receptors make them 

targets for disease-causing mutation or other modulation resulting in pathology. Mutations can 

cause gain-of-function or loss-of-function, leading to physiological states that may be 

characterized as being within normal limits or pathologic, depending on severity. Interestingly, 

each receptor does not seem to have an equal chance of acquiring a pathologic mutation. For 

instance, the TpoR has several described mutations, but the EpoR does not. This may reflect a 

difference in the structural requirements for signaling, a difference in tolerance of variability in 

the ultimate physiological response, or differences in importance of the pathway either overall or  

at different stages of organism development. 

 The most common mutation associated with increased cytokine receptor function occurs 

in the associated Janus kinase, in EpoR/TpoR, Jak2 (JAKV617F) (30). It is unknown exactly 

how this mutation causes a gain of function, but the mutation occurs in the pseudokinase region 

of the kinase, which is thought to regulate C-terminal kinase activity (31). However, mutation in 

the receptors can modulate activity as well, presumably by inducing structural changes in the 

receptor. A mutation in the ECD of the EpoR (R129C) causes constitutive receptor activation in 

mice (32). Point mutations in the TpoR TMD (S505N), the EC-JM region (T487A), or the IC-JM 

region (W515K/L) cause constitutive TpoR activation (33-35). Alternatively, deletions in the 

intracellular C-terminus of the TpoR resulting in a truncated receptor can cause 
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thrombocytopenia (36), while organisms possessing an EpoR with a truncated intracellular C-

terminus exhibit polycythemia (22). 

 The Friend spleen focus forming virus infects mice and causes erythroleukemia (37). It 

possesses a TM protein, gp55-P, which interacts with the TMD of the EpoR (38). This 

interaction is specific to the murine EpoR TMD, as it does not activate the human receptor. This 

specificity has been traced to the S238 residue in the murine EpoR, which is a leucine in the 

human receptor (39). Mutation of this residue to serine in the human TM sequence allows the 

EpoR to be activated by gp55-P (39). Expressed gp55-P349-409 is used here in conjunction with 

expressed muEpoR218-268 to probe possible effects on the EpoR TM structure.  

Erythropoietin and Erythrocyte Development 

 Erythrocytes are the cells responsible for oxygen transport. In adult mammals these cells 

are produced in the bone marrow in a carefully regulated cascade involving several organs. 

Decreased oxygen delivery is sensed by cells in the kidney (40), which triggers a release of 

erythropoietin (Epo). Epo travels to the bone marrow where pluripotent stem cells (PSCs) give 

rise to all hematopoietic cell precursors. The particular precursor for erythrocytes, the 

erythrocyte blast forming unit (BFUe), is differentiated from PSCs by a combination of stem cell 

factor, IL-3, Tpo, and GM-CSF (granulocyte macrophage colony stimulating factor), but it is 

Epo that provides the definitive signal to begin differentiation to erythrocytes (41, 42).   

 The protein hormone Epo is a 30.4 kDa member of the four helix bundle cytokine family 

(43). Secreted by specialized cells in the outer cortex of the kidney it travels through the blood 

until it encounters the ligand-binding domain of the membrane-embedded Epo receptor on the 

cell surface of hematopoietic stem cells (HSCs) where it binds with high affinity. The Epo 
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receptor is a homodimer formed from two 66 kDa monomers which have sequence and structural 

homology to other members of the hematopoietin cytokine receptor subfamily (Figures 1.1, 1.2). 

The ECD portion of the Epo receptor has been well studied. Several crystal structures of the 

ECD exist at varying resolutions. In the absence (PDB ID:1ERN) (9) and presence of either the 

native ligand (PDB ID:1EER/1CN4) (8) or an Epo stimulatory peptide (PDB ID:1EBP) (44), the 

ECD is a dimer. The crystal structure of the Epo-bound ECD (PDB ID:1CN4) (8) confirms that 

the ratio of receptor to hormone in the active complex is 2:1, with the Epo molecule binding to 

the two halves of the ECD in an asymmetric fashion. Cellular studies confirm that the active 

state of the receptor is in fact a dimer (45). 

 The next well-defined domain is the hydrophobic TMD that consists of roughly 25 

mostly hydrophobic amino acids. It allows tethering of the receptor in the membrane bilayer of 

the HSC and provides a route of communication between the EC and IC domains. The role of the 

ICD is perhaps the most poorly understood. This portion of the receptor has two conserved 

features important for proper receptor function, the Box 1 and Box 2 motifs that are important 

for Jak2 binding. There are 8 tyrosine residues present that are phosphorylated by Jak2 to allow 

binding of effector proteins, such as signal transducers and activators of transcription (STATs). 

These tyrosine residues are non-equivalent, Y343 is the only one shown to be absolutely 

necessary for activation (21). Most of the others can signal in a positive or negative regulatory 

fashion (22). 

 Receptor processing is an important part of the “life cycle” of the EpoR. After protein 

translation the receptor pre-associates with Jak2 in the endoplasmic reticulum (ER); most of the 

pool of Epo receptor does not leave the ER without Jak2 bound (46). This finding may be 

consistent with other members of the cytokine receptor family, as the TpoR behaves similarly 
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(47). After release from the ER the Epo receptor moves to the Golgi where oligosaccharide is 

added to the Jak2-bound fraction of the EpoR (46). This differentiates mature receptor (endo-H 

resistant oligosaccharide, 66 kDa) from the less mature form (endo-H sensitive, 64 kDa). Once 

the receptor is activated termination of signaling occurs by receptor internalization mediated by 

ubiquitination of cytoplasmic lysine residues, particularly K256, which mediates activation-

induced internalization, and K428, which directs internalized receptor to the lysosome for 

degradation (48). These ubiquitination reactions are dependent on the activity of Jak2, and 

receptor that is not degraded by the lysosome can be degraded by the proteasome (49).  

Mechanism of Receptor Activation 

 The activation mechanism of the EpoR is an area of active research. Previously it was 

thought that the receptor existed as a monomer, and two receptor monomers came together in the 

presence of ligand (50). More recently, it has become accepted that the Epo receptor exists as a 

pre-formed dimer (dimer in the absence of ligand) (51). The existence of a pre-formed, inactive 

dimer suggests that the receptor dimer resides in some low-energy conformation in the absence 

of ligand. Then, when ligand binds to the ECD, the global receptor structure is perturbed in a 

way that allows activation of the ICD-bound Jak2 molecules. This position is the result of two 

experimental studies. The first is that the crystal structure of the unliganded ECD is a dimer (9). 

The second comes from Förster resonance energy transfer (FRET) experiments using other 

receptors from this family. FRET studies using the GHR (52) indicate that these receptors form 

dimers in the absence of ligand. Furthermore, heterodimeric receptors associate as pre-formed 

dimers; as gp130 and LIF-R can be co-precipitated in the absence of ligand (53). Interestingly, 

similar FRET studies on the EGF receptor, a receptor tyrosine kinase (RTK) single TMD 

receptor shows that these receptors are also pre-formed dimers (54). However, this is 
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controversial as other reports have found inactive monomers (55), heterodimers (56), and 

activated higher-order oligomers (57). The importance of pre-association of receptor monomers 

is not known, but in theory having a pre-formed receptor complex awaiting only ligand should 

ultimately decrease activation latency. The following sections discuss receptor dimerization in 

the context of each domain of the receptor. 

Extracellular Domain 

 The position or location of cytokine receptor monomer association is a point of 

contention. Studies of the ECD crystal structure of the ECD in the absence of Epo (PDB 

ID:1ERN) support the idea that the ECD mediates receptor dimerization (9). Several residues in 

the interface between the two halves of the ECD dimer are proposed to form near-symmetric 

interactions. When compared with the crystal structure of an non-Epo agonist-bound ECD (PDB 

ID:1EBP) (44) the domain movements involve a 13° rotation of D2 towards D1 and a change of 

the relative positions of the D2 domain C-termini from 73 Å to 39 Å (Figure 1.3). The Epo-

bound structure shows similar domain movements (8). The relative positions of the two D1 

domains in the ligand-bound structures are different, as the inter-D1 domain angle is 120° in the 

Epo-bound structure and 180° in the EMP-bound structure. This difference is likely due to more 

Epo-ECD contacts than the EMP-ECD structure, as Epo is a larger ligand. This observation 

suggests that the differences in biological activity of the two ligands (Epo > EMP) (58) originate 

from structural differences between ECD-ligand complexes.  
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Figure 1.3 EpoR ECD intra- and inter-domain motion upon ligand binding. Crystal structures 
of the EpoR ECD in the absence (left, PDB ID:1ERN) and presence of Epo (right, PDB 
ID:1CN4) demonstrate intra-ECD domain motion (D1-D2) and inter-ECD motion upon ligand 
binding. Inter-ECD motion demonstrates that the D2 domains rotate to be in close proximity. D1 
domains are highlighted with dark ellipses, D2 domains are highlighted with light ellipses. 

 Points of inter-ECD contact are seen in both the unbound and Epo-bound structures. In 

the ligand-unbound structure, residues that normally interact with the ligand form contacts in the 

buried surface between the two ECD monomers (Phe93, Phe205, Leu33, Pro140, Met150). 

When either ligand is added the D2 domains move closer together, and residues in the D2 

domain move within contact distance. Hydrogen bonds are formed between Glu134 and Ser135 

on opposite D2 domains to stabilize the dimer (8). In contrast, a more extensive interface exists 

between the D2 domains of the GH receptor, which may contribute more to dimerization (45).  

 The result of studying crystal structures of the ECD without and with ligand suggests that 

there must be a significant rotation of the ECDs relative to each other as well as a change in D1-
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D2 domain angle in order to activate (8). This hypothesis agrees with the computational studies 

on the GH receptor that describe a 45° rotation of the ECD upon GH binding (59). Pang and 

Zhou (60) also propose a similar rotation model based upon the crystal structures of the ECDs of 

the EpoR, PrlR, and GHR but with a twist. In their model each half of the ECD dimer performs a 

rotation and scissor motion, where they rotate toward each other about an axis perpendicular to 

the membrane, then the D2 domains pivot to bring together the C-terminal ends of the ECD (60).  

Consequently, the ICDs are brought closer together, allowing activation of Jak2. 

Transmembrane Domain 

 Concurrent with the flurry of research on the Epo receptor ECD crystal structures, 

membrane protein groups investigated the role of the TMD on the function and activity of the 

Epo receptor. Gurezka et al. (61) used the TOXCAT assay to assess the propensity of the Epo 

receptor TMD to oligomerize and found that the self-association was the strongest of all TMDs 

studied that contained the leucine heptad repeat. This work led to a proposed dimerizing motif 

for the TMD of the Epo receptor, the leucine heptad repeat (LLxxLLx- LLxxLLxLL). This 

heptad repeat is a reference to the Leu zipper family of helical proteins that form sequence driven 

homodimers (62, 63). Originally found to exist in DNA-binding proteins, the dimerization of 

these proteins is driven by the interaction of Leu sidechains across the homodimer and this 

consensus sequence is found in a variety of TM and non-TM proteins. Subsequent experiments 

demonstrated that perturbation of this sequence by replacing Leu240 and Leu241 with Gly-Pro 

abrogated receptor activation as measured by colony formation, even when coupled with the 

activating R129C mutation (19). The leucine zipper dimerization motif in the EpoR was 

investigated further by examining the effect of asparagine mutagenesis on TMD oligomerization 

(64). L241N was found to increase TM oligomerization as measured by the TOXCAT assay. 
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This result led to a refinement of the Leu heptad repeat consensus to include serine residues in 

the interface (SxxLxxx-SxxLXxxxA). 

 Further work demonstrated a difference in the strength of association of the mouse and 

human Epo receptor TMDs. Ebie and Fleming (65) conducted analytical ultracentrifugation 

(AUC) on fusions of either the human or murine Epo receptor TMDs with staphylococcal 

nuclease. These studies demonstrated the intrinsic propensity of the Epo receptor TMD to 

dimerize in detergent micelles and found a difference in the free energy of association between 

the murine and human sequences of 1.3 kcal mol-1 and 0.4 kcal mol-1, respectively. Sequence 

alignments of the two receptors (Figure 1.4) point toward 3 differences between the two 

sequences that may be responsible for the change in association energy.  These three changes 

surround Ser238(mouse)/Leu239(human), indicating the importance of this region to the murine 

Epo TM association. The fact that the murine TMD sequence dimerizes more strongly is 

hypothesized to be due to the mouse’s higher turnover rate for erythrocytes (65) and implies that 

the basal rate of signaling activity is linked to the strength of the TM dimer. These results 

indicate that the oligomerization of the TMD is not indiscriminant clustering, but rather there 

exists a sequence-dependent association. These findings are consistent with sequence-specific 

oligomerization seen in other TM protein systems, such as glycophorin A (66), BNIP3 (67), and 

integrin TM helices (68). 

Intracellular Domain 

 Research on the ICD sequence has identified several regions critical for Epo receptor 

function. The Box 1 (69) and Box 2 (70) regions are critical for binding Jak2, and the eight 

tyrosine residues are necessary for activation of downstream signaling pathways (21, 71). More 

detailed study of the residues connecting the C-terminus of the TMD and the Box 1 region have 
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identified 3 critical residues: Leu253, Ile257, and Trp258 (72). These residues are important for 

receptor activity, as mutation to alanine abrogates receptor function.  Furthermore, their proper 

orientation is critical as insertion of 1 or 2 alanine residues between the TMD and Leu253 

destroys receptor function. Interestingly, addition of three alanines (~1 helix turn) recovers 

activity, providing a hint that the region connecting the TMD and these “switch” residues is 

helical. Together, these data are suggestive of a rigid structural link between the TMD and the 

ICD.  

Discordance of Data from Different Regions 

 Data collected from the study of the ECD suggest an inactive receptor model in which the 

TM domains are monomeric (9), while EpoR TMD studies in detergent (65) and in bacterial 

membranes (64) indicate that the EpoR TMD has a propensity to associate in a sequence-specific 

manner. The conflict between ECD dimerization data and TM dimerization data sets up a major 

question in cytokine receptor biology, “What is (are) the point(s) of receptor self-association?” 

This question cannot be answered by merely studying pieces of the receptor; it can only 

determine the relative strengths of self-association. Therefore, Constantinescu et al. (73) 

examined dimerization of the full-length receptor in cellular membranes. Using chimeras of the 

Epo and Prl receptors, it was determined that the TMD was both necessary and sufficient to 

cause receptor copatching in BOSC (human embryonic kidney) cells (73). Further studies were 

conducted to determine whether the orientation of the TMD is important in receptor activation. 

Cysteine mutagenesis studies on the TMD in the background of the full-length receptor in BaF3 

cells indicated that when mutated, several residues in the N-terminus could either increase basal 

levels (Leu223, Leu226/Ile227) or severely decrease maximal levels of signaling (Asp224, 

Pro225) (74, 75). Furthermore, experiments studying Put3 coiled-coil-EpoR TMD fusions 
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demonstrated a dependence of activity on the rotational orientation of the TMD (76). 

Collectively, these results show that the TMD is critical for Epo receptor dimerization, and that 

receptor activity is dependent upon TMD orientation.  

 Complementing the cysteine mutagenesis studies of full-length EpoR is a report of 

asparagine mutagenesis of the EpoR TMD in cells (77), again correlating mutation with native 

function. This is an extension of the Ruan et al. (64) study that used asparagine mutagenesis in 

conjunction with the TOXCAT assay (18) to argue that the TM dimer interface of murine EpoR 

is mediated by a serine-leucine zipper. In Ruan et al. (64), L241N exhibited the strongest 

TOXCAT signal, indicating a strong dimer. However, in the background of the full-length EpoR 

in cells, the results were slightly different with L241N and A245N being hypersensitive to Epo 

(77). Interestingly, T242N responded at a lower level than WT to Epo, a result that was 

mimicked by T242Q as well. Oddly, similar to A245N, T242A demonstrated a hypersensitivity 

to Epo. The authors correlate the biological responses to TMD dimer models produced by 

molecular dynamics, which show that the Epo-hypersensitive mutants (T242A, A245N) have a 

smaller interhelical distance and packing volume than less active receptor mutants (T242N, Q) 

(77). Interestingly, different species utilize threonine or alanine at position 242 of the EpoR 

(Figure 1.4, (77)), but the reason for the difference is unclear. The AUC results mentioned above 

indicate that the three residue difference between the mouse and human sequences surrounding 

Ser238(mouse)/Leu239(human) indicate the importance of sequence specificity in TM 

association. Together, these results indicate that the role of the peptide sequence in TM 

dimerization is likely more complicated than a simple change in strength of TM association. 

They also hint that changes in the interhelical distance may be integral to the activation 

mechanism of the EpoR.  
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Figure 1.4 Epo receptor TM region multiple species alignment. Epo receptor protein sequences 
of the TM and surrounding region from 11 species show a high degree of conservation. 
Highlighted are residues in the middle of the TMD where the human sequence is different from 
the mouse (and others). Also indicated (orange) are the L-IW residues of the “switch” region 
that are shown to be important for receptor function. S238 in the mouse TMD is in red text. 
Sequence numbering provided is based on the human sequence minus the signal peptide. 

 Putting all of these data in context is difficult. Given that multiple experiments show that 

the full-length Epo receptor is dimeric at the cell surface in the absence of ligand it seems 

reasonable that a pre-formed dimer exists. Yet the activation mechanisms proposed to date by 

study of the receptor piecewise are unsatisfying, as a single mechanism is not able to account for 

all of the biochemical and biophysical data. Studies of the ECD structure propose mechanisms of 

activation based upon data from what, in a functional sense, corresponds to only a third of the 

total receptor. Many of the TMD studies suffer because they are performed on severely truncated 

receptor TMDs. Also, conclusions from low-resolution TM association experiments are (perhaps 

erroneously) interpreted as being solely the result of studying TM dimers instead of being 

properly attributed to “oligomers of unknown constitution” (e.g., TOXCAT assay results). The 

studies herein pick up where others leave off, studying the full TM sequence, at a sub-nanometer 

level of resolution, to determine the structure of the TMD and surrounding regions of the Epo 

receptor. From these studies, mechanisms of receptor function are proposed that are consistent 

with these and other data from the literature. 
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Strategy for Structure-Function Studies on the EpoR 

 Because the biochemical and biophysical evidence suggests that the TMD plays an 

integral role in the function of the EpoR, we decided to undertake 3D high-resolution structural 

studies of TMD-containing peptides in order to correlate structure and function. By starting with 

small constructs containing only the TMD we can initially capture the relevant TM structure and 

points of interaction between the receptor TM monomers. Then, studying longer constructs by 

adding portions of the receptor sequence gives us the ability to examine how changes in TMD 

structure are translated to the intracellular portions of the receptor.  

 This proposal assumes that the inactive and the active states can be “trapped,” and that 

there will be some structural change that can be assessed by NMR. We assume that the WT 

peptide sequence approximates the “inactive state.” We subsequently show using cysteine 

mutants that this assumption is correct. Comparisons between the inactive TMD structure and the 

active structures are accomplished in two ways. Because there are no clinically relevant 

mutations in the EpoR as in the TpoR (W515K/S505N/T487A), we rely on two types of 

activating mechanisms to approximate the active state, constitutive activity and allosteric 

modulation. The first involves the identification of a constitutively active mutant (L223C) from 

cysteine mutagenesis studies performed separately by two laboratories (74, 75). The second 

involves a viral receptor activating protein, gp55-P, from the spleen focus forming virus (SFFV) 

(38). This TM protein associates specifically with the TMD of the murine Epo receptor (39, 78), 

causing activation and cell proliferation that supports viral replication.  

 Starting with constructs containing the smallest independently folded domain, the TMD 

(muEpoR220-248), structural studies were conducted to determine the structure of the wild type 

murine Epo receptor TM dimer. I found that the structure is a symmetric dimer, with 
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dimerization mediated by intermolecular hydrogen bonds formed between the sidechains of polar 

TM residues. My NMR studies of longer constructs that include the Box 1 region show a similar 

structure. In addition, I determined that residue His249 is a marker of the active state, and thus 

His249 is implicated in the activation mechanism. 
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Chapter 2-Material and Methods 

Cloning, Expression and Purification 

 Two fusion protein constructs were prepared using polymerase chain reaction in order to 

clone portions of the murine Epo receptor sequence into the ligation-independent cloning His-

MBP vector (kindly supplied by Dr. Tim Cross, NHMFL, Tallahassee, FL). The two TMD-

containing constructs correspond to residues 220-248 (muEpoR220-248) or 218-268 (muEpoR218-

268) of the murine EpoR. The correct sequence was verified by DNA sequencing. Vectors 

containing the correct fusion were transformed into chemically-induced competent Escherichia 

coli BL21(DE3) cells. Expression of the fusion proteins was accomplished in M9 medium 

without isotopic labels or M9 medium containing either 1 g/L 15N-ammonium chloride or 1 g/L 

15N-ammonium chloride and 3.6 g/L U-13C-glucose (Cambridge Isotope Laboratories, Andover 

MA). A single colony from an isolation streak on a Luria-Bertani agar plate (100 ug/mL 

ampicillin) was expanded overnight in 25 mL Luria-Bertani broth containing 100 ug/mL 

ampicillin in a shaking incubator at 37 ˚C. These cells were pelleted by centrifugation at 3,300 x 

g for 20 minutes and then washed with 5 mL sterile M9 medium (79) and centrifuged again at 

3,300 x g for 20 minutes. The resulting cell pellet was resuspended into 10 mL of M9 medium 

and the entire volume was used to inoculate 1 L of the appropriate M9 medium (as above). These 

cells were grown with shaking (200 rpm) at 37 ˚C until the OD600 reached 0.5-0.6 (~6 hours) at 

which point the temperature was reduced to 23 ˚C and the culture was induced by adding 

isopropyl "-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.4 mM. The culture 

was allowed to continue incubating at 23 ˚C for 16-20 hours with shaking at 200 rpm. Cells were 

collected by centrifugation and cell pellets were resuspended in 10 mL of ‘binding buffer’ (50 

mM Tris, pH 7.9, 500 mM NaCl, 5 mM imidazole) and frozen at -20 ˚C until future use. These 
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frozen cell aliquots were thawed and then the cells were lysed using a French press. Cell lysates 

were clarified by centrifugation at 25,000 x g for 25 minutes at 4 ˚C. 200 mg octyl-!-D-

glucoside ("-OG) was added to the supernatant and dissolved by nutation at 23 ˚C, ~5 minutes. 

This mixture was then loaded onto a 10 mL Ni+/NTA column equilibrated with 20 mL binding 

buffer (as above). Binding was accomplished by nutating the column for 2-4 hours at 4 ˚C. The 

column was then allowed to flow through and washed with 16 times the column volume with 

‘wash buffer’ (50 mM Tris, pH 7.9, 500 mM NaCl, 20 mM imidazole). The protein was then 

eluted in 1 mL fractions with ‘elution buffer’ (50 mM Tris, pH 7.9, 500 mM NaCl, 500 mM 

imidazole) until the A280 dropped to 0.05. Fractions above 0.05 were pooled (typically ~50 ml) 

and n-dodecyl-!-D-maltoside (DDM) was added to a final concentration of 1.7 mM, which is 

10x the critical micelle concentration (CMC). The yields of the fusion proteins were typically 

about 100-120 mg/L.  

 To cleave the fusion tag (His-MBP) from the protein of interest, Tobacco Etch Virus 

(TEV) protease was used. His-tagged TEV protease (His-TEV) was produced in-house, using 

BL21(DE3) cells expressing His-TEV grown in Luria-Bertani broth and induced with 0.4 mM 

IPTG. Purification of His-TEV proceeded in a manner similar to the TM containing the TM 

fusion proteins described above, with the exception that no detergent was added to the cleared 

cell lysate before incubating on the Ni+/NTA column. After elution, fractions with an OD280 

higher than 0.05 were combined and sterile glycerol was added to 50% of the final volume (v:v). 

Then dithiothrietol (DTT) was added to 5 mM final concentration and ethylenediamine 

tetraacetic acid (EDTA) was added to 1 mM final concentration. Typical yields of TEV were 17-

22 mg/L. The fusion protein was combined with His-TEV in a 1:1 (v:v) ratio and the mixture 

was nutated at 23 ˚C for 36 hours. Cleavage was confirmed by SDS-PAGE. To separate the TM-
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domain containing muEpoR220-248 or muEpoR218-268 from the His-MBP fusion tag, the His-TEV, 

and any uncleaved fusion protein, the entire mixture was precipitated by addition of 

trichloroacetic acid to a final concentration of 6%. The chalky white precipitate was collected by 

centrifugation (3,300 x g, 20 minutes) and washed twice with 10 mL distilled deionized water. 

The washed pellet was lyophilized for 16 hours and then the hydrophobic peptide content was 

extracted by nutating for 2 hours at 23 ˚C with 9 mL of methanol:chloroform (90:10, v:v). After 

two hours, the supernatant was removed by syringe and then filtered through a 0.22 µm PTFE 

syringe filter. Estimations of the final protein yield were made based on the A280 (muEpoR218-268) 

or A230 (for the muEpoR220-248 peptide), the molar extinction coefficient and Beer’s Law 

(A=$ℓc, where $ is the molar absorption coefficient,ℓ is the pathlength and c is the 

concentration), according to the method described by Aitken and Learmonth (80). 

NMR Sample Preparation 

 The organic extract containing the peptide of interest was used for reconstitution based 

on the protocol of Sulistijo and MacKenzie (81). Briefly, the appropriate amount of peptide (for 

a particular final concentration in ~300 uL NMR sample, usually 1 mM) was aliquotted into a 

separate glass vial and evaporated under dry argon or nitrogen gas to approximately 2 mL. 10 mg 

d38-dodecylphosphocholine (DPC) was dissolved into this solution, and then water was added 

dropwise until the solution, when agitated, produced large bubbles that did not immediately 

dissipate. The sample was immediately frozen in a liquid nitrogen bath and then lyophilized in a 

low pressure (~10 mTor) and low temperature (-95 ˚C) lyophilizer. To maintain the sample in a 

frozen state, the entire lyophilization jar was placed in a Styrofoam container filled with ice. 

Lyophilization typically took place over a 16-hour period. The dried sample was rehydrated in 1 

mL 10 mM sodium phosphate, pH 7.0, using sonication to dissolve any precipitates. The sample 



 

%% 
 

was then dialyzed (1,000 Da MWCO) against 3 changes of 2 L 10 mM sodium phosphate, pH 

7.0 to remove any residual glycerol or imidazole carried over from the TEV cleavage or TCA 

precipitation steps.  

 The sample was then concentrated to ~250 uL in a 4 mL Millipore ultra 3 kDa MWCO 

spin column (centrifuge speed, 3,000 x g for variable time). 30 uL of D2O was added for the 

solvent lock along with 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) to 0.2 mM for an 

internal reference.  

 Alternatively, a detergent exchange step is incorporated into the protocol. A non-

negligible amount of DDM can be carried over from the elution of fusion protein through the 

TEV cleavage/TCA precipitation steps. While it does not seem to change the spectral data, the 

presence of residual amounts of DDM can adversely impact the collection of certain NMR 

datasets (e.g., NOESY-13C-HSQC). A protocol was developed to do an anion column detergent 

exchange for Epo receptor TM containing peptides, based on a method described elsewhere (82). 

Detergent Exchange 

 After reconstitution the sample was dialyzed into 20 mM Tris, pH 8.5 to exchange it into 

a buffer that made the Epo receptor TMD negatively charged for anion exchange (and 

simultaneously remove residual glycerol and imidazole). Two buffers were prepared, START 

buffer (20 mM Tris, pH 8.5, 2x CMC d38-DPC) and ELUTE buffer (20 mM Tris, pH 8.5, 1 M 

NaCl, 2x CMC d38-DPC). All buffers were degassed under vacuum for at least 20 minutes 

before the addition of detergent. A 1 mL GE healthcare Q FF anion exchange column was 

warmed to room temperature and equilibrated as per the manufacturer’s instructions (wash with 

5 mL START buffer, 5 mL ELUTE buffer, then 5 mL START buffer). The sample was clarified 
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by centrifugation (30 minutes at 20,000 x g) and loaded onto the column. The column was 

washed with 10 column volumes of START buffer, collecting 1 mL fractions for gel analysis, 

then eluted with 10 column volumes of ELUTE buffer. All fractions were saved for SDS-PAGE 

analysis. The construct usually eluted in the first 5 fractions. These fractions are combined and 

dialyzed against 10 mM sodium phosphate, pH 7.0 in order to exchange the sample into a more 

“NMR friendly” buffer, then concentrated to ~270 uL using a 4 mL Millipore ultra 3 kDa 

MWCO spin column (centrifuge speed, 3,000 x g for variable time). 30 uL D2O was added to the 

sample and then it was loaded into a D2O susceptibility-matched Shigemi tube for NMR studies. 

Analytical Ultracentrifugation  

 Sedimentation equilibrium experiments were performed on a Beckman XL-I analytical 

ultracentrifuge at 25 °C. Samples for AUC were prepared in a manner similar to solution NMR 

samples, co-dissolving peptide and detergent in organic solvent followed by lyophilization and 

rehydration. The rehydration solution (50 mM Tris-HCl, 0.1 M NaCl pH 7.5, and 15 mM DPC) 

was density matched to account for the buoyancy of DPC micelles by adding 52.5% D2O (83) 

upon rehydration. Absorbance (A280) data points were collected in radial increments of 0.001 cm. 

Three different peptide concentrations (~60 µM, 70 µM and 180 µM) and two different speeds 

(40,000 rpm and 48,000 rpm) were used to ensure data quality. UltraScan II version 9.9 data 

analysis software (developed by B. Demeler, http://www.ultrascan.uthscsa.edu/) was used to 

process and analyze the data. Global curve fitting was accomplished using non-linear least-

squares analysis. 
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NMR Experiments 

 Experiments were conducted on 3 different Bruker spectrometers; a 700 MHz equipped 

with a TXI probe, a 700 MHz equipped with a TCI cryoprobe, and an 800 MHz equipped with a 

TCI cryoprobe. To assign resonances to backbone atoms the following experiments were run: 

1H-15N-HSQC, HNCO, HNCACB, CBCACONH. For resonance assignment to sidechain atoms, 

HBHACONH, HCCCONH, CCCONH experiments were run. Through space NOESY 

experiments conducted to determine inter-residue distances were the 1H-15N NOESY-HSQC and 

1H-13C NOESY-HSQC experiments.  To examine intermonomer contacts, two different 

experiments were used. First, the X-filtered, edited NOESY experiment (84) was run using the 

1:1 U-13C, U-15N:Unlabeled EpoR sample in 100% D2O (150 ms mixing). Second, the CN-

NOESY experiment (85) was run using a fully 13C, 15N labeled sample in 10 mM sodium 

phosphate, pH 7.0, 200 mM DPC, 10% D2O (v:v). 

 Multidimensional experiments in solution NMR spectroscopy rely on two things, 

application of radiofrequency pulses of a defined length, power, and frequency and application 

of delays of a defined length of time. The radiofrequency pulses put energy into specific nuclei 

in the molecule and the delays allow that energy to evolve or dephase according to the particular 

set of nuclei that are being manipulated.  

 The values and particular combinations and precise application of these parameters are 

what defines a “pulse sequence,” which is the computer code that controls the spectrometer’s 

running of the experiment and allows magnetization transfer through nuclei in the molecule of 

interest. These parameters are set in the acquisition parameters window of the NMR software. 

Pulse sequence nomenclature for 3D experiments generally contains the names of atoms 

involved in the experiment (HNCO = amide proton/nitrogen, carbonyl carbon). The 
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magnetization transfer schemes presented in the figures below show how these multidimensional 

experiments are conducted. Atoms that are circled represent atoms through which magnetization 

is both transferred and evolve, that is, the frequency of the chemical shift of this atom is recorded 

experimentally. Bonds through which magnetization is transferred are colored red. Multiple bond 

transfers without chemical shift labeling of intervening atoms are represented by both colored 

bonds and indicated by curved red arrows. For experiments that begin with an INEPT transfer 

from proton to carbon to enhance carbon magnetization, such as CBCACONH, the proton 

resonances are indicated in red and the bonds between the proton and carbon atoms indicated in 

red, demonstrating that the proton resonance and the J-coupling between these atoms, 

respectively, are used in these experiments. For through-space experiments or multiple bond J-

transfers, magnetization transfers during mixing times are indicated by curved arrows and all 

involved nuclei are circled in red. Potential interresidue contacts are indicated with a dashed 

green arrow. Where possible, the experiments are run using sensitivity enhancement and pulsed 

field gradients described by Muhandiram and Kay (86). Solvent suppression can be implemented 

using a variety of means (e.g., flip-back pulses, WATERGATE sequences, gradient pulses). 

Where multiple pulses sequences are available, short experiments should be conducted to assess 

which version works best (i.e., highest signal-to-noise) for the sample in question. 

Sample-Experiment Parameters 

 It should be noted that it is not desirable to conduct all the experiments described below 

using a single prepared sample (i.e., in the same buffer system). For instance, for NH-detected 

experiments the buffer system should contain no more than 10% D2O, unless an H-D exchange 

experiment is being run. If the experiments being run are CH-detected, as in the 1H-13C HSQC, 

1H-13C NOESY-HSQC or related experiments, then the buffer should be exchanged into buffer 
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prepared in 100% D2O in order to decrease the contribution of residual water protons to the 

spectrum. This reduction of water signal increases the likelihood that resonances near the water 

frequency will be detected (often H") and can increase the receiver gain (because water protons 

are not present) so that these experiments can have the maximum sensitivity possible. Another 

important consideration for these experiments is to minimize or eliminate any non-protein 

system components that are not deuterated. This includes using buffers that do not have protons 

(phosphate instead of Tris), using deuterated detergents or lipids instead of nondeuterated ones, 

and eliminating transfers of protonated molecules from other sources (e.g., trace amounts of 

glycerol present in filter concentrators).  

Acquisition Parameters 

 1H pulse lengths, as well as the O1 (resonance frequency for the 1H channel) are 

measured on each sample. All 13C and 15N pulse lengths are calculated from the measured 90˚ 

pulse lengths determined either on a standard sample of urea or on the actual experimental 

sample. Typical experiment acquisition settings for the data matrix size would be 2048 x 48 x 

128 (F3 x F2 x F1, where F3 is the direct dimension). Sweep widths in each dimension should be 

truncated as much as possible to increase resolution (Hz/ppm). The resonance frequency of each 

channel should be chosen to be in the center of the sweep width (for HNCO- 1H ~4.7 ppm, 13C 

~176.0 ppm, 15N ~118.0 ppm). Last, secondary acquisition parameters (e.g., nd0/nd10, 

FnMODE) should be set correctly prior to acquisition using the pulse program as a guide. 

Processing Parameters 

 Processing NMR spectra was performed using Bruker’s Topspin software. However, 

because processing depends to an extent on the judgment of the operator, processing is more of 

an art than data acquisition. Despite the room for objectivity, there are general rules to follow 
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when doing this. It is acceptable to truncate the time domain of any spectrum that has decayed 

completely or where the end of the FID is noise. Datasets should be zero-filled no more than 

once (2 x TD). Proper FnMODE flags should be set depending upon acquisition parameters. 

Forward linear prediction is used in indirect dimensions to compensate for the lower number of 

points taken in the interest of saving experiment time. The number of coefficients (NCOEF) 

chosen for linear prediction is generally a number between 16-32, though some 

recommendations indicate that this should be roughly equal to the number of peaks expected in 

the spectrum. Post-acquisition referencing is done indirectly using DSS, either internally or 

externally, as described in (87, 88). 

2D Experiments 

1H-15N-HSQC (Heteronuclear Single Quantum Coherence) 

 The 1H-15N-HSQC is arguably the most important experiment in protein solution NMR. 

While it is a simple experiment, providing only through bond correlations for 2 nuclei (89), the 

spectrum itself provides a means for assessing conformational heterogeneity or changes in 

sample conformation upon changes in sample conditions (pH, buffer, mutating residues).  
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Figure 2.1 1H-15N-HSQC expected resonances. This experiment allows correlation of the 
chemical shift of nitrogen with that of its attached proton. Residues with sidechains containing 
nitrogens would generally show up in this experiment as well. 

.

1H-13C-HSQC (Heteronuclear Single Quantum Coherence) 

 Essentially the same experiment as the 1H-15N-HSQC above, the 1H-13C-HSQC provides 

through bond correlations between 13C and its directly attached 1H atom(s). While the premise is 

essentially the same, there are many more variations of the 1H-13C-HSQC than the 1H-15N-

HSQC. There are only two types of NH peaks in an 1H-15N-HSQC (backbone and sidechain 

amide), but for the 1H-13C-HSQC, the carbons and protons cover a wider frequency range in both 

dimensions. To make matters more complicated, aromatic C-H bonds have a different J-coupling 

value and show up at a different frequency (in C and H) than the aliphatic C-H do, so a second 

experiment with optimized values needs to be run to visualize the aromatic CH portion of the 

spectrum. The differences come mainly from the desire to look differently at the more numerous 

types of carbons in the spectrum, or at specific regions of the spectrum.  

 

Figure 2.2 1H-13C-HSQC expected resonances. This experiment allows correlation of the 
chemical shift of carbon with that of its attached proton(s). 

 



 

%, 
 

3D Backbone Experiments 

 Through bond correlations of carbon resonances to backbone amide resonances are the 

basis of assigning particular NH resonances to residues in the protein sequence. This assignment 

approach requires the collection of multiple datasets that correlate 1H-13C-15N resonances in a 

through bond fashion. There are several approaches to sequential protein assignment; a 

discussion of the merits of each is beyond the scope of this text but is covered elsewhere (90, 

91). 

HNCO 

 This interresidue experiment allows correlation of the i-1 carbonyl carbon resonance with 

the i NH (92). It has the highest sensitivity of all the 3D backbone experiments, and the 2-3 plane 

(NH plane) should generally (but not always) replicate the 1H-15N HSQC. The spectrum should 

yield one carbon peak per NH, so if two or more peaks are seen at a particular NH frequency, 

multiple conformations for that residue may exist (assuming there aren’t two or more 

overlapping amide resonances at this frequency). Resonances missing would be any residue 

preceding a particular residue that does not have intensity in the 1H-15N HSQC (i.e., proline or 

flexible residues). This experiment has the highest sensitivity of the HN-detected 3D triple 

resonance experiments, so all expected peaks should be seen with good resolution after 8 scans 

before proceeding to the other 3D experiments. Magnetization begins on the amide proton, is 

transferred to the attached nitrogen using an INEPT transfer using the HN J-coupling, then to the 

carbonyl carbon using the NCO one-bond J-coupling. Then magnetization is transferred back to 

the amide nitrogen for detection. The 2-3 plane will recreate the 1H-15N HSQC, the 1-3 plane 

shows the dispersion of the carbonyl carbon resonances. 
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Figure 2.3 HNCO magnetization transfer. This experiment correlates the chemical shifts of the 
i nitrogen and proton with that of the i-1 carbonyl carbon. 

CBCACONH 

 Sidechain assignment begins with this through-bond interresidue experiment that 

correlates the i residue NH with the C# and C" resonances of the i-1 residue. After the HNCO, it 

has the second highest sensitivity of the 3D backbone experiments described. Magnetization 

transfer begins with a 1H to 13C INEPT transfer to the C#/C" carbons, then to the C#, then a 

transfer through the carbonyl carbon to the amide nitrogen using the appropriate 1 bond J-

coupling for each bond. An INEPT transfer back to the attached amide proton from the nitrogen 

allows detection. All experimental peaks are positive, and the 2-3 plane should recreate the 1H-

15N-HSQC. The 1-3 plane demonstrates two carbon resonances for each NH resonance, 

representing the C# and C" peaks. Similar information can be obtained by the HNCOCACB 

experiment. 
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Figure 2.4 The CBCACONH experiment. This experiment correlates the chemical shifts of the i 
nitrogen and proton with that of the i-1 C!/C" carbons. 

 

HNCACB 

 Each of the previous experiments are solely interresidue experiments, so an experiment 

that contains resonances from both the i and i-1 C# and C" resonances is necessary for sequential 

reside assignment. Several possibilities are available to choose from when correlating inter- and 

intra-residual C#/C" resonances to a single NH resonance in the same experiment, but the 

experiment used in this series is the HNCACB experiment (93). Magnetization begins on the 

amide proton, is transferred to the attached nitrogen, then to the C# using an average of the J-

couplings from the i and i-1 (2 bond) N-C# couplings. Magnetization is then transferred to the 

C" using the C#-C" coupling. Then everything happens in reverse to transfer magnetization back 

to the amide proton for detection. This experiment yields peaks in the carbon dimension that are 

180˚ out of phase, which allows the phasing of the C# resonances (~65ppm-45ppm) positive and 

the C" resonances (~42ppm-18ppm) negative. Another important consequence of this is that 

processing the 2-3 plane will generally sum to zero (for a single scan) because of the addition of 

positive and negative peak intensities, so recreation of the 1H-15N HSQC is not possible. The 1-3 
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plane should overlap with the 1-3 plane of the CBCACONH above, albeit with twice as many 

peaks for each NH resonance.  

 Particular acquisition parameters to which attention should be paid are the shaped carbon 

pulses. These are generally calculated from the carbon 90˚ pulse, so if the 90˚ pulse is not 

correctly calibrated then the shaped pulses may be incorrect as well, causing phase errors in the 

carbon dimension and other spectral artifacts (e.g., zero-quantum effects). 

 

Figure 2.5 The HNCACB experiment. This experiment correlates the chemical shifts of the i 
nitrogen and proton with that of the i and i-1 C!/C" carbons. 

3D Sidechain Experiments 

 While the above experiments are sufficient for assignment of the backbone atoms to 

particular resonances in the various spectra, because high-resolution structure calculation 

requires identification of nuclear Overhauser effect spectroscopy (NOESY) crosspeak 

components, assignment of as many protons in the protein as possible is essential. Therefore, 

using the already identified backbone resonances as a starting point, magnetization transfers are 

extended to atoms further out the sidechain for collection and identification of these resonances. 

Generally, these experiments have lower sensitivity than the HNCO backbone experiment.  
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HBHACONH 

 This experiment is essentially the same as the CBCACONH experiment described above, 

but instead of evolving and recording the i-1 carbon chemical shifts, the i-1 H#/H" proton 

chemical shifts are recorded. Due to its relatively high sensitivity among the sidechain 

experiments, it should be run first.  

 

Figure 2.6 The HBHACONH experiment. This experiment correlates the chemical shifts of the 
i nitrogen and proton with that of the i-1 H!/H" protons. 

 

 HCCCONH 

 The HCCCONH experiment correlates all sidechain protons of aliphatic i-1 sidechains to 

the i NH resonances. It uses an isotropic 13C mixing sequence to exchange magnetization 

between the sidechain carbon atoms (94, 95). Magnetization is then transferred through the 

carbonyl carbon to the i NH for detection. An important acquisition parameter to pay attention to 

is the length of the isotropic mixing sequence.  
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Figure 2.7 The HCCCONH experiment. This experiment correlates the chemical shifts of the i 
nitrogen and proton with that of the i-1 sidechain protons. 

 

CCCONH 

 This experiment is closely related the the HCCCONH above, but instead of recording the 

chemical shift of the aliphatic sidechain protons, the chemical shifts of the sidechain carbons are 

recorded instead. As above, the length of the isotropic mixing period should be paid particular 

attention.  

 

Figure 2.8 The CCCONH experiment. This experiment correlates the chemical shifts of the i 
nitrogen and proton with that of the i-1 sidechain carbons. 
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3D Through-Space Experiments 

 High-resolution 3D structure calculation depends upon determining the relative positions 

of all of the molecule’s atoms in space. In X-ray crystallography, the X-rays passing through the 

protein crystal cause a diffraction pattern that gives a picture of the relative position of these 

atoms in space. In NMR spectroscopy, this through-space picture is taken using correlations 

between different protons in the sample. These experiments utilize the Nuclear Overhauser 

Effect and are called ”NOESYs” (Nuclear Overhauser Effect SpectroscopY). They use various 

magnetization transfer schemes to isolate different species of protons (amide, aliphatic, etc) but 

ultimately rely on a “mixing period” where different protons are allowed to exchange 

magnetization. For instance, the 1H-15N-NOESY-HSQC is an experiment where all sample 

protons are correlated to NH protons. This is to say that it examines all protons that are within 6 

Å (or so) of an amide proton. The mixing time controls how far the detection distance is; 

generally, shorter mixing times will generate less NOESY cross peaks (and cover less molecular 

distance) than longer ones will. Mixing times should be optimized on a per sample basis, 

generally larger molecules will have shorter optimal mixing times, but other factors such as 

buffer composition come into play here as well. 

NOESY-1H-15N-HSQC 

 This experiment combines a 1H-1H NOESY module with an 1H-15N HSQC module. This 

means that first, magnetization is exchanged between all protons in the sample, then in the 1H-

15N-HSQC, magnetization is detected through the NH moiety using an INEPT transfer. In this 

way, we filter all of the NOE contacts that were made in the first module through the HSQC 

module so that we’re only seeing the information exchange between protons that make contact 
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with the NH proton. Ideally, most of the i sidechain protons should make contacts with the i NH 

protons. In the figure below, these are denoted by solid red arrows. Potential contacts are 

contacts that may occur over longer distances from neighboring spin systems, and are indicated 

by dashed green arrows. Potential contacts are generally governed by secondary, tertiary, and 

possibly quaternary structural folds and intensity of these may be modulated by judicious choice 

of mixing time. 

 

Figure 2.9 The NOESY-1H-15N-HSQC experiment. This experiment measures through-space 
contacts between amide protons and all other protons in the sample. 

 

NOESY-1H-13C -HSQC 

 In a fashion similar to the 15N-NOESY-HSQC experiment above, this experiment 

combines a 1H-1H NOESY module with an 1H-13C-HSQC module. Correlations are detected 

between different protons attached to carbons, and nitrogens if the sample is not in 100% D2O. 

n.b., In the figure below (2.10), I have omitted contacts between the amide proton and nearby 

CH groups. Because this experiment is usually conducted in 100% D2O, amide protons would be 

expected to exchange with deuterons and therefore be invisible. However, if for some reason the 
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experiment was not conducted in D2O, or H-D exchange did not occur, these contacts would be 

expected in the spectrum.   

 

Figure 2.10 The NOESY-1H-13C-HSQC experiment. This experiment measures through-space 
contacts between aliphatic protons and all other protons in the sample. 

 

CN-NOESY 

 This experiment is also known as the HSQC-NOESY-HSQC because it sandwiches a 

NOESY experiment between an 1H-13C-HSQC module and an 1H-15N-HSQC module to allow 

detection through the amide NH resonances only those protons that are attached to a carbon (85). 

In this way, the flow of magnetization proceeds from carbon to its attached proton, then a 

NOESY mixing period occurs where protons are allowed to exchange magnetization, and finally 

detection occurs on the amide proton. This experiment deviates from a traditional NOESY in that 

the chemical shift axes recorded are carbon, nitrogen and the amide proton instead of two 

protons and one heteronucleus. In a traditional fully 13C15N labeled protein sample, this 

experiment would not record any additional information when compared to a NOESY-15N-

HSQC. However, in a homodimeric system where one monomer is 13C labeled and the other is 
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15N labeled, this experiment allows the transfer of NOEs in an intermonomer fashion, facilitating 

the identification of residues lining the dimer interface. One piece of information that is missing 

from this experiment is stereospecific information from the donating proton, assuming a 

particular carbon has multiple unique protons. This information can be regained by running the 

complementary NC-NOESY (see below). Important parameters are the J-couplings for the 

involved heteronuclei-proton pairs and the mixing time for the NOESY period. 

 

Figure 2.11 The 13C15N-NOESY experiment (aka. HSQC-NOESY-HSQC). This experiment 
measures through-space contacts between the amide proton and protons attached to carbons, 
but records the chemical shift of the carbon atom instead of the proton. 

 

NC-NOESY 

 This is the complementary experiment to the CN-NOESY above (85), but it swaps the 

1H-15N-HSQC and the 1H-13C-HSQC modules so that detection occurs through the CH instead of 

the NH. Important experimental considerations are as for the CN-NOESY above, but it is 

important to note that the signal to noise may be lower than the CN-NOESY because the NC-

NOESY contains more stereospecific information. 
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Figure 2.12 The 15N13C-NOESY experiment (aka. HSQC-NOESY-HSQC). This experiment 
measures through-space contacts between aliphatic protons and protons attached to nitrogens, 
but records the chemical shift of the nitrogen atom instead of the proton. 

 

X-Filtered NOESY-HSQC (or HSQC-NOESY) 

 The last, and arguably most complicated experiment is the X-filtered NOESY-HSQC. 

Originally developed to study points of interaction between parts of a 2-component system (84), 

it has more recently been used to determine which residues line the interface of TM helix 

homodimers (81). Intermonomer proton-proton NOEs are collected using the X-filtered NOESY-

HSQC (84) and a sample that has half unlabeled and half 13C15N-labeled monomers (see figure 

below-isotopically labeled atoms are green or blue). NOEs are transferred for one unlabeled 

molecule to the labeled one. Because this experiment depends upon detection of NOEs arising 

from unlabeled molecules, it is especially important to be certain that there are no components of 

the system that contain these types of molecules (residual unlabeled detergent, glycerol, buffer, 

or referencing agent). A related experiment switches the NOESY and the HSQC blocks of the 

experiment such that the experiment becomes an HSQC-NOESY. The information collected is 
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the same, however, because the NOESY crosspeaks are collected in the direct dimension (F3), 

greater resolution can be obtained. 

 

 

Figure 2.13 The X-filtered NOESY experiment. This experiment measures through-space 
contacts between of the protons of one unlabeled monomer and one isotopically labeled 
monomer. 

 

Other Useful Experiments 

HNCANNH 

 Allows the correlation of the i-1 and i+1 nitrogen resonances with the i NH (96). It is 

particularly useful for samples where protein sequences or C#/C" resonances are degenerate and 

correct assignment is precluded. The information produced allows one to walk through the 

1H15N-HSQC in a sequential fashion. While it is useful, for many samples it will have low 

sensitivity.  
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HNCACO 

 This experiment correlates the i NH with the i and i-1 carbonyl carbon resonances. It is 

useful in samples with proline residues, where the i-1 CO resonance for residues preceding 

proline are not visible in the HNCO experiment.  

TOCSY-HSQC 

 This experiment correlates the i sidechain protons to the i NH, and can be useful if 

sidechain protons are missing in the HCCCONH experiment.  

HCC-TOCSY 

 This experiment correlates sidechain carbons with one of the sidechain CH moieties. It 

can be useful for sidechain assignment, but in samples with multiple residues having similar 

chemical shifts, resonance overlap can preclude proper assignment. 

HCH-TOCSY 

 This experiment correlates sidechain protons with one of the sidechain CH moieties. As 

with the HCC-TOCSY above, resonance overlap can prevent specific resonance assignment. 

Relaxation NMR Experiments 

 Fluctuations about the NH bond can be used to determine the relative flexibility of the 

NH of each residue in the sample using the heteronuclear NOE experiment (97). T1 (spin-lattice) 

or T2 (spin-spin) relaxation parameters for each 15N in the sample can be measured with the T1 

relaxation and the T2 relaxation experiments (97).  

Solvent Accessibility 

 NOEs of backbone or sidechain NH moieties to solvent (e.g., water) can be measured 

using pulse sequences conaining the CLEANEX pulse sequence module (98).  



 

'% 
 

Peak Assignment 

 All datasets were processed with Topspin 2.0 and either internally or externally 

referenced to the DSS methyl peak as described previously (87, 88). Processed data were then 

converted into a .ucsf file using the “bruk2ucsf” file conversion program in Sparky v3.113 (99). 

All spectra were loaded into Sparky, saved as a single project file and appropriate axes were 

synchronized using the “synchronize views” command window. Peaks in each experiment were 

picked and then assignments were made manually using the protein sequence and the 1H-15N-

HSQC, CBCACONH and HNCACB experiments. Where degeneracies or discrepancies arose, 

the NOESY-15N-HSQC spectrum was used to determine sequential assignment of a particular 

NH resonance based on proximity. Also useful for this purpose was the HNCANNH experiment 

(96). Once assignment of backbone N, H, C# and C" atoms was complete, the assignments of 

carbonyl atoms were made using the HNCO spectrum. Sidechain atom assignment began with 

the HBHACONH experiment, then were finished with the (H)CCCONH and the CCCONH 

experiments (94). Peaks for the various NOESY spectra collected were peak picked for each 

strip within the Sparky data model, but were not given resonance assignments. 

 

Structure Calculation 

 Sparky peaklists, resonance assignments and ucsf spectra were transferred into the 

Collaborative Computing Project for NMR (CCPN) data model (100) to facilitate structure 

calculation. CCPN exports data directly into Aria2.3 (101), the program used to assign NOE 

spectra during the structure calculation process. Aria2.3 was used to automatically assign peak-

picked (but unassigned) NOESY-13C-HSQC spectra and Crystallography and NMR System 

(CNS) 1.21 (102, 103) was used as the structure calculation engine. Details of restraints and 
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structure parameters are discussed in Chapter 3, but briefly, constraint lists for structure 

prediction consisted of dihedral angle prediction and hydrogen bond lists for helical TM 

structure (i C=O/i+4 H-N bonding), derived from the chemical shift analysis (104). Initial rounds 

of structure calculation included these constraints and 1 or more of the NOESY spectra described 

above. Processing and structure calculations were performed on an Apple MacBook Pro with OS 

X 10.6.8, a 2.4 GHz Intel Core 2 Duo processor and 4 GB of RAM. 

CCPN 

 The Collaborative Computing Project for NMR (CCPN) has produced a multifunctional 

software package for processing of NMR data (100). In addition to spectrum organization and 

peak assignment, there are a variety of tools incorporated into the software package that aid in 

structure calculation. DANGLE (105) is a dihedral angle prediction program that works in a 

manner similar to TALOS (106). Using the resonance list and the protein sequence, dihedral 

angles are predicted from the chemical shifts of the backbone atoms H, N, CO, C#, C", H# and 

stored within the project directory for later export to Aria2.3. Tools for creating other constraints 

used in structure calculation, such as hydrogen bonding lists or other distance restraints are also 

incorporated into the software package.  

ARIA2.3/CNS 1.21 

 Ambiguous Restraints for Iterative Assignment (Aria2.3) is a program that is used to 

analyze NOESY spectra in the context of a fully assigned resonance list to determine NOE peak 

contributions, make assignments to these NOEs and then use this information iteratively to 

calculate protein structure (101). Through successive iterations of structure calculation, correct 

NOE assignments would be enforced and carried through to the next rounds of calculation and 

incorrect ones would be discarded, ultimately producing a list of correct NOE assignments and 
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an accurate protein structure. Aria2.3 works with CNS (102, 103) where Aria2.3 calibrates and 

assigns NOEs at the beginning of each structure calculation iteration and CNS uses this 

information in the structure calculation.  

 To do this, Aria2.3 source code is compiled with CNS source code to make an executable 

program. The Aria2.3 gui window allows easy incorporation of project data from a saved CCPN 

project or independently from user modified xml files. Constraint lists can be read into Aria2.3, 

along with the molecule information, and CNS iteration parameters can be set. These data can be 

saved-Aria2.3’s output is an xml file with links to all of the constraints and all the information 

that CNS needs to run structure calculations. Once saved, the script is setup and then activated 

from an X11 terminal window. At this point, CNS takes over and runs iterations, returning 

structures and data after each step. These results can be read back into CCPN to refine the data 

model in order to perform more precise structure calculations.  

NOE Assignment with Aria2.3 

 Crosspeaks in NOESY spectra contain two pieces of structural information. The 

frequencies of the crosspeak in the relevant spectral dimensions reveal the identity of the two 

interacting spins, and the crosspeak intensity generally provides information about the distance 

separating those spins. The combination of these two pieces of information allows structure 

calculation. In theory, for a given structure, a “correct” set of NOE assignments exists where the 

identity and distance information for all peaks are self-consistent, that is, they are derived from 

and support calculation of a single structure. A typical NOESY spectrum from even a small 

protein can contain hundreds of NOE crosspeaks, making manual assignment arduous. Aria2.3 

increases efficiency and accuracy of NOE spectrum assignment by automatically calibrating 

NOE crosspeaks and assigning them using the resonance list (101). Assignments that cannot be 
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unambiguously assigned are given an ambiguous assignment, where several possible 

assignments are treated as a single restraint. Then, these assignments are evaluated by a round of 

structure calculation. Through successive iterations of assignment and structure calculation, 

structural and NOE peaklist ambiguity are reduced, with correct assignments saved and incorrect 

ones discarded, resulting in structural refinement.  

 Input data for the structure calculation begins with the molecular system as defined by 

CCPN. This consists of the protein sequence and number of peptide chains in the system. The 

chemical shift list for each chain is read in, and the symmetry is set for “C2” symmetry, 

representing a symmetric homodimer system. Constraint lists begin with dihedral angle 

predictions for each chain, as well as hydrogen bond lists for the #-helical region of each TMD. 

Peak-picked NOESY spectra are added for each through space experiment being used for the 

calculation. An unambiguous constraint list consists of NOE contacts from manually calibrated 

NOE spectra such as the CN-NOESY and any NOE crosspeaks that can be unambiguously 

assigned to specific, non-overlapping resonances. All manually calibrated NOEs are sorted into 3 

categories, weak, medium, and strong based upon the intensity of the crosspeak. Where possible, 

peak intensities are calibrated using an internal standard, such as crosspeaks within the leucine 

sidechain (e.g., H# -> H$). All lower bounds for manually calibrated crosspeaks were set to 1.8 

Å. Upper bounds added 0.6 Å to the calibrated value. Other structural constraints used are the 

dihedral angle prediction for the molecular system and the hydrogen bond constraint list.  

Structure Calculation 

 Structures were calculated using Aria2.3 default settings (107). Unambiguous constraints 

enter the calculation in the first round of calculation. Default iteration parameters consist of 8 

rounds of structure calculations, with 20 structures generated each round. Refinement of the 
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resulting structures in explicit solvent occurred using a shell of water molecules. Analysis of the 

20 structures generated uses the seven lowest energy structures from each round to create an 

ensemble average. Procheck2 was used to evaluate the dihedral angles of each average structure 

as well as the root mean square deviation (RMSD) of backbone atoms and angles (108, 109). 
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Chapter 3-Structure of the Erythropoietin Receptor Transmembrane Domain Dimer  

 While there is compelling evidence that the Epo receptor exists as a pre-formed dimer, 

and the TMD mediates dimerization, several questions still remain unanswered. What is the TM 

dimerization interface? Does the murine Epo receptor TMD follow the proposed interface with 

Leu and Ser residues mediating dimerization (61)? How is it that the three amino acid difference 

between the mouse and human receptors influence 1) gp55-P binding and activation, and 2) the 

dimerization propensity seen by Ebie and Fleming (65)? Do the mouse and human receptors 

share the same interface? Most important of all, how is it that ligand binding is transmitted 

through the TM dimer to the ICD in order to activate Jak2?  

 To begin to define the role of the TMD in the structure and function of the Epo receptor, 

structural studies were performed on the smallest independently folding region, the TMD 

sequence from residues 220-248, referred to as muEpoR220-248 (Figure 3.1). My studies began 

with the murine sequence. The murine sequence was selected for structural studies on the basis 

of more available biochemical and biophysical data. The construct is expressed as a fusion 

protein and contains both the putative TMD and several residues from the region that connects 

the extracellular D2 domain with the TMD (Ala220-Asp224). The cleaved, purified peptide is 

solubilized in a membrane mimetic system and used for solution NMR and other biophysical 

experiments.  

  

Figure 3.1  Sequence of the muEpoR220-248 peptide. muEpoR220-248 captures the entire TMD 
(P225-L247) and a small segment of the extracellular JM domain sequence (in red) that overlaps 
with the C-terminus of the ECD crystal structure (PDB ID:1CN4). Proteolytic cleavage of the 
fusion protein leaves two non-native amino acids (Ser-Asn) attached to the N-terminus. 
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Choice of Membrane Mimetic System for Solution NMR Studies on Monotopic Membrane 

Proteins 

 Many decisions need to be made when undertaking biophysical studies on a particular 

protein. Solvent, buffer, pH, salt concentration, minor buffer components, and cofactors are 

several of the parameters that need to be considered for collection of biologically relevant data. 

Additionally, system components may not be compatible with certain techniques at the desired 

concentration, if at all. In an ideal situation, a preparation would resemble the protein in vivo, 

possessing the same structural features and any native biological activity. Finding the appropriate 

milieu can be difficult, even for soluble proteins. For membrane proteins, the natural 

hydrophobic character of TMDs presents an additional complexity as they are not soluble in 

water. Organic solvents, lipids, detergents (110) and amphipols (111) are typically used to 

solubilize membrane proteins.  

 Solution experiments can be run on peptides in organic solvent (112, 113), but any 

hydrophilic portions of the peptide may not adopt native structural features and TM 

oligomerization may be adversely affected (114). Another method for solubilizing hydrophobic 

TMDs involves simulating the hydrophobic environment of the lipid bilayer. This is possible by 

including molecules that have a hydrophobic and a hydrophilic domain. Such molecules would 

include lipids, detergents (110) and amphipols (111). Lipids normally self-assemble into 

multilamellar vesicles (MLV) consisting of many stacked bilayers; these MLVs are too large to 

be useful in solution NMR. Small unilamellar vesicles (SUVs) are smaller, but still too large and 

unstable to be used for solution NMR of integral membrane proteins; they are more commonly 

used to study soluble proteins that interact with lipid bilayers (110). Isotropic bicelles contain 

long and short chain lipids, typically 1,2-dimyristyl-sn-glycerophosphocholine (DMPC) and 1,2-
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dihexanoyl-sn-glycerophosphocholine (DHPC) at a ratio of 1:4. These are becoming more 

popular for solution NMR studies for integral membrane proteins, as they may lessen #-helical 

structure distortion or allow the protein to retain some native activity (115). However, bicelles 

are still about twice as large as a micelle, which may necessitate use of deuteration and/or 

TROSY type pulse sequences (116). Additionally, lipids are more expensive than detergents, and 

deuterated lipids may be much more costly if they are available at all. 

 Detergents possess a hydrophilic head group and a hydrophobic “lipid-like” tail; these 

molecules spontaneously form micelles in aqueous solutions that have a hydrophobic interior 

(tails) and a hydrophilic surface (head groups). Many different detergents are available; they 

differ in the constituent groups. Typically, the molecular weight of the micelle plus the protein of 

interest is small enough to be studied by solution NMR (110). 

 Solution NMR studies of TM proteins in detergents are becoming increasingly common. 

Structures or structural features of entire TM proteins (117) or portions of larger polytopic TM 

proteins (116, 118) are being studied with increasing frequency due to technological 

advancements in spectrometer/probe design (e.g., cryoprobes) or pulse sequence development 

(TROSY) (119). Advances in both fields allow the study of larger, more quickly relaxing 

systems. These methods are particularly suited to studying TM dimers. Judicious sequence and 

detergent choice allow the molecular weight of the complex to remain under 40 kDa, small 

enough to be studied by traditional solution NMR methods. This size is ideal, as crystallization 

of these systems has not progressed as quickly as for multitopic membrane proteins (e.g., 

GPCRs) (120).  
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 Regardless of what membrane mimetic is chosen, the complex under study must 

approximate the structure (and if possible function) of the biologically native sample. Many 

single TM receptors signal productively through a dimeric intermediate. Receptor interactions in 

single-pass membrane proteins are often mediated by sequence specific contacts in the TMD  

(82, 121). TM dimerization has been shown for the ErbB receptors, which are known to dimerize 

in lipid bilayers (122), the ephrin receptors (123, 124), and glycophorin A (125), among others. 

The solution structures of TM homodimers for Eph2A (126), the CD3 TCR %% domain (127), and 

BNIP3 (81, 128) have been solved.  

 However, important differences exist between lipid bilayers and detergent micelles that 

may bias structural studies. First, micelles have a greater degree of surface curvature that may 

adversely influence the structure of proteins solubilized by detergent micelles (129). Second, the 

width of the hydrophobic portion of the micelle may not match the native lipid environment, 

allowing or inducing changes in helix tilt or changes in packing of helices. Third, the packing 

between the hydrophobic detergent tails and the hydrophobic exposed amino acid sidechains 

may be suboptimal (130).  In the end, if possible, it is best to correlate biophysical and structural 

data from studies performed in lipid bilayers and studies performed in detergent micelles to 

minimize or eliminate bias induced by the system chosen.  

 These studies use dodecylphosphocholine (DPC) as the membrane mimetic system. DPC 

is the most commonly used mimetic for solving membrane protein structures (110). It also has 

been widely used for AUC studies on TM proteins (131). DPC mimics several characteristics of 

the lipid bilayer. The zwitterionic phosphocholine headgroup is the most common headgroup of 

all phospholipids in the typical eukaryotic cell membrane (132). The width of the hydrophobic 
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portion of a DPC micelle (25.5-27.5 Å) (133) as measured by small-angle X-ray scattering is 

roughly the same as the hydrophobic portion of a lipid bilayer (~25-30 Å) (132).  

AUC Measurements Confirm Dimer Formation of muEpoR TM Peptides in DPC 

 The existing cellular, biochemical, and biophysical data regarding dimerization of the 

EpoR TMD has been discussed above. Once reconstituted into DPC detergent micelles, our 

TMD-containing peptide was studied by analytical ultracentrifugation (AUC). Because of 

difficulty studying very small molecular weight proteins in detergent micelles by AUC, we used 

the slightly larger muEpoR218-268 peptide. AUC results (Figure 3.2) demonstrate that in DPC 

micelles, the molecular weight of the complex is ~12 kDa, approximately twice the weight of a 

muEpoR218-268 monomer (5.9 kDa).  
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Figure 3.2 AUC of muEpoR218-268 in DPC micelles. The muEpoR218-268 peptide was solubilized 
in DPC detergent micelles, 50 mM Tris, 100 mM NaCl, 15 mM DPC, pH 7.5 at peptide 
concentrations of 60, 70 and 180 µM. Centrifuge speeds used were 40,000 rpm and 48,000 rpm. 
Global curve fit analysis reveals that the MW of the complex is ~12 kDa, consistent with a dimer 
of muEpoR218-268. Shown is a representative curve and residuals. 

 

muEpoR220-248 NMR Measurements 

 For these experiments, the sequence of the mouse EpoR TMD (muEpoR220-248, Figure 

3.1) along with a few EC-JM residues were cloned into the His-MBP vector (Chapter 2), 

expressed and purified. muEpoR220-248 represents the smallest independently folding region of 

the receptor. The 1H-15N-HSQC of the muEpoR220-248 is presented in Figure 3.3. The spectrum 
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exhibits well-resolved, uniform peaks indicative of a homogeneous sample preparation. The 

spectrum shows the expected number of peaks, an indication that the sample under study is either 

monomeric or a symmetric oligomer. If the system under study was not structurally 

homogeneous, or an asymmetric oligomer, multiple peaks would be expected for each amino 

acid. Three-dimensional NMR measurements allowed the assignment of each peak in the 

spectrum to a particular amino acid (with the exception of Pro225). Chemical shift analysis 

carried out on the fully-backbone assigned sample indicates that the muEpoR220-248 peptide is "-

helical from residues Pro225-Leu246 (Figure 3.4). Circular dichroism spectroscopy of the 

muEpoR220-248 peptide solubilized in DPC micelles confirms these measurements. 

 

Figure 3.3 1H-15N-HSQC of muEpoR220-248. The 1H-15N-HSQC demonstrates good peak 
resolution and sensitivity, indicating sample homogeneity. The spectrum was collected on a 700 
MHz spectrometer at 313 K with 32 scans. Sample is ~1 mM protein, 10 mM sodium phosphate, 
pH 7.0, 200 mM d38-DPC, 10% D2O (v:v). 
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Figure 3.4 Secondary structure of muEpoR220-248 in DPC micelles from NMR measurements. 
Chemical shift analysis of NMR measurements predicts dihedral angle values consistent with 
alpha-helical secondary structure between P225-L246. The chemical shift analysis was made 
using the program DANGLE (105). 

 

Unusual Chemical Shifts of muEpoR220-248 TM Polar Residues  

 One curiosity that arose from analysis of the chemical shifts of the TM residues in 

muEpoR220-248 is the observation of downfield shifted 13C# resonances for Ser and Thr residues 

within the TMD (listed in Table 3.1). While the C! chemical shifts seem to be within one 

standard deviation of the mean value, the C# resonances for Ser/Thr residues in the muEpoR220-

248 peptide in aqueous solution (10 mM sodium phosphate, pH 7.0) are shifted downfield by 

more than 2 standard deviations from their mean values. Hypothesizing these downfield shifts 

were directly related to dimerization, a muEpoR220-248 sample was prepared in organic solvent 

(90% trifluoroethanol:10% CDCl3, v:v), backbone resonances were measured by NMR and 

assigned to specific amino acids. Trifluoroethanol (TFE) has been used for NMR data acquisition 

on TM peptides previously (134); it is expected to retain, but not induce #-helical structure for 

peptides, yet disrupts intermolecular interactions (114). Interestingly, this TFE preparation of the 

muEpoR220-248 peptide exhibits chemical shifts of the Ser/Thr C# atoms in more upfield 

positions. Secondary structure influences chemical shift such that C# resonances shift downfield 

and C" resonances shift upfield. However, because both peptides are #-helical and differ only in 

oligomeric status, we suggest that these residues may be involved in or affected by dimerization. 

The unusual downfield shift of the C# resonances could be due to several factors. The BMRB 
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keeps detailed records of all chemical shifts (http://www.bmrb.wisc.edu/ref_info/statsel.htm), 

and outliers (> 3 SD from the mean) are flagged separately. Interestingly, of the first six NMR 

structures in the BMRB with outlying Ser C" chemical shifts downfield of the mean value, all 

are in #-helical structure. Three (PDB IDs:1QQY, 1R7J, 1ZGG) are within hydrogen bonding 

distance to an acidic residue side chain (Asp, Glu), and two others (PDB IDs:1HA8, 2KZT) are 

within 6 Å of several polar sidechains (Gln, Arg, Lys). This observation would suggest that a 

combination of secondary structure and polar environment can cause such a chemical shift 

deviation. If the polar residues mediate an interface between two #-helical monomers, the 

proximity of the sidechain OH groups may create a polar environment able to perturb the 

chemical shifts in the manner seen. 

Residue C", DPC C", TFE C!, DPC C!, TFE 

S221 59.054 57.875 63.661 61.313 

T229 68.434 65.532 68.083 67.009 

S231 63.708 60.367 62.891 60.367 

S238 63.753 60.686 62.688 60.686 

T242 68.33 65.2 67.747 66.698 

S248 61.068 56.125 65.056 61.926 

BMRB 
Avg Ser/Thr (sd) Ser: 58.73 (2.08), Thr: 62.22 (2.59) Ser: 63.8 (1.48), Thr: 69.74 (1.65) 

 

Table 3.1 Unusual chemical shifts of TM polar residues suggests dimerization. The C! 
resonances of TM polar residues are downfield shifted from non-TM polar residues (shaded 
region). In particular, the Ser231/Ser238 C! resonances are shifted more than 2 standard 
deviations from the mean. The EC-JM (Ser221) and TM (Ser248) are presented for comparison, 
these remain unshifted. Average values were obtained from the BMRB 
(http://www.bmrb.wisc.edu/ref_info/statsel.htm). 
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Structural Model of the EpoR TM Dimer Based Upon Intermonomer NOE Contacts 

CN-NOESY 

 Perhaps the most compelling evidence for a dimer interface driven by polar sidechain 

interactions comes from specific NMR measurements using a sample that contained an 

equimolar ratio of 15N12C-labeled muEpoR220-248 and 14N13C-labeled muEpoR220-248. The CN-

NOESY experiment (85) transfers magnetization from an H-C group to an H-N group. Because 

one monomer of the dimer is labeled with 13C and the other monomer is only labeled with 15N, 

NOEs are transferred across the dimer interface. Contacts made to either 12C- or 14N-containing 

peptide are effectively filtered out. Representative strips of the spectrum are presented in Figure 

3.5. In these measurements, contacts are observed between the 13C-attached sidechain protons 

and amide nitrogens of Ser231, Val235, Ser238, Thr242, and Ala245, indicating these residues 

line the dimer interface. It is important to note that in general, stronger NOEs for a given residue 

are made for carbon atoms further out on the sidechain (e.g., Val235 C#1, C" > C"), which 

would be expected as those atoms are closer to the opposite amide in space. All strips show 

variable intensity peaks to unspecified Leu C" resonances. This is not surprising, as there are 12 

Leu residues in the TMD and chemical shift degeneracy prevents accurate assignment.  
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Figure 3.5 CN-NOESY NMR Spectra of muEpoR220-248 define TM dimer interfacial residues. 
CN-NOESY spectra of 15N12C muEpoR220-248 mixed with 14N13C muEpoR220-248 (1:1 molar) 
demonstrate that S231, V235, S238, T242 and A245 line the TM dimer interface. The spectrum 
was collected on a 700 MHz spectrometer at 313 K with 32 scans. Sample was ~2 mM total 
protein concentration in 10 mM sodium phosphate, pH 7.0, 200 mM d38-DPC, 10% D2O (v:v). 

CHI 

 Prior to conducting the NMR experiments, computational searches for low-energy 

symmetric homodimers using the CHI computational modeling program (135) were conducted 

on the murine EpoR TM sequence. The interhelical axis distance was specified at 9.5 Å and the 

dielectric was set to 1, reflecting the relatively low permittivity of a membrane bilayer. More 

left-handed symmetric interfaces were found than right-handed ones, though generally the 
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energies were similar. The interface of the resulting symmetric structures generally contained at 

least one polar residue making an interhelical hydrogen bond. Interestingly, one of the lowest-

energy left-handed structures (Figure 3.6) has Ser231, Val235, Ser238, Thr242, and Ala245 in 

the dimer interface. This low-energy interface was also found in computational searches that 

specified the interhelical axis distance at 10 Å. 

 

Figure 3.6 CHI computational modeling predicts a low-energy dimer interface. Computational 
searches for symmetric, low-energy structures using the muEpoR220-248 sequence yield a left-
handed coiled coil dimer with S231, V235, S238, T242, and A245 lining the dimer interface. The 
separation between the axes of the TM helices in the dimer (input parameter) is fixed at 9.5 Å. 

T229 

S231 

S238 

S248 

V235 

A245 

T242 
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X-Filtered NOESY 

 The protein structure calculation depends upon collecting through-space NOE datasets. 

This requires proper and complete assignment of backbone and sidechain atom resonances. 

While the results of the CN-NOESY described above provide a low-resolution picture of the 

dimer interface, it suffers from the lack of stereospecific information regarding proton contacts. 

Two experiments were used to gain a higher resolution picture of the muEpoR220-248 homodimer. 

First, the 1H-13C NOESY-HSQC provides distance information for pairs of protons in the 

sample. These can be ambiguous as to whether the NOE contacts are inter- or intramonomer, due 

to the proximity of the residues in the interface. They can also be ambiguous if several atoms 

have the same chemical shift. Intermonomer NOEs were collected for a 1:1 13C15N 

labeled:unlabeled muEpoR220-248 sample in D2O sodium phosphate (10 mM), 200 mM d38-DPC, 

using an NMR experiment that detects only NOEs transferred from an unlabeled to a labeled 

monomer (84). A third NOE dataset, a 1H-15N NOESY-HSQC was collected with a sample in 

sodium phosphate, pH 7.0, 200 mM d38-DPC, 10% D2O (v:v). Constraints from the CN-NOESY 

experiment were manually sorted into strong/medium/weak crosspeaks by intensity and included 

in the unambiguous constraint list. The other NOE spectra were assigned using the program 

Aria2.3 and the assigned peaklist through successive iterations of structure calculations. Lists of 

ambiguous and unambiguous NOE constraints were generated after each round of calculation. 

The ambiguous NOE list was analyzed and converted to unambiguous NOEs, which are 

automatically included in the structure calculation. Representative slices from the X-filtered 

NOESY are presented in Figure 3.8. These data demonstrate that small and polar residues line 

the interface of the EpoR TM helix dimer, confirming the results from the CN-NOESY 

experiment (Figure 3.5). A final list of distance constraints was prepared from these assigned 

NOE spectra, a partial list is available in Table 3.2. 
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Figure 3.7 muEpoR220-248 dimer structure determined from solution NMR measurements. 
Structure determination from NMR data of the muEpoR220-248 protein in DPC micelles reveals a 
symmetric left-handed coiled coil dimer with S231, V235, S238, T242, and A245 lining the dimer 
interface.  

 

Spectrum  Residues 
CN-NOESY Ser231C" - Ser231HN 
 Val235C" – V235HN 
 Val235C# – V235HN 
 Val235C#1 – V235HN 
 Val235C#2 – V235HN 
 Ser238C" - Ser238HN 
 Ser238C# - Ser238HN 
 Thr242C" - Thr238HN 
 Thr242C# – Thr242HN 
 Ala245C" – Ala245HN 

V235 

S238 

T242 

S231 

A245 

D224 
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 Ala245C# – Ala245HN 
  
X-Filtered NOESY  
 Ile227H#-Ile227H% 
 Ile227H#-Ile227H% 
 Val235H#-Val235H# 
 Val235H"-Val235H# 
 Ser238H"-Val235H" 
 Ser238H"-Ser238H# 
 Thr242H#-Thr242H# 
 Thr242H#-Ala245H" 
 Ala245H"-Val243H# 

 

Table 3.2 muEpoR220-248 interhelical dimer contacts. Intermonomer constraints were generated 
from the CN-NOESY experiment and the X-filtered NOESY. Each constraint was counted twice 
(From monomer A to monomer B and vice versa). 
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Figure 3.8 X-filtered NOESY of muEpoR220-248 defines TM dimer interfacial residues. 15N13C 
muEpoR220-248 mixed with 14N12C muEpoR220-248 (1:1 molar) demonstrates that V235, S238, 
T242, and A245 line the TM helix dimer interface. Asterisks mark diagonal peaks. The spectrum 
was collected on an 800 MHz spectrometer at 313 K with 24 scans. Sample was ~2 mM total 
protein concentration in 10 mM sodium phosphate, pH 7.0, 200 mM d38-DPC, 100% D2O. 

TM Dimer Interface 

 The structure of the muEpoR220-248 in DPC micelles calculated from NMR measurements 

reveals that polar residues line the muEpoR220-248 peptide TM dimer interface (Figure 3.7), with 

hydrophobic Leu sidechains facing the hydrophobic detergent tails. This interface correlates with 

low energy structures calculated from computational searches for symmetric TMD dimers. TMD 

dimerization mediated by polar residues has been demonstrated by asparagine mutagenesis 

studies of model polyleucine helices (136). Eilers et al. (20) have found that Ser and Thr residues 

mediate tight packing of helices in left-handed coiled-coil dimers. Furthermore, a clinically 

relevant mutation of the TpoR TMD (S505N) causes TM self-assembly in the TOXCAT system 

(15). The S505N mutation has been found in patients with thrombocythemia (33). These 

observations indicate that the TMD plays a critical role in receptor activation, and mutation of 

S505 to asparagine causes receptor hyperactivity via TM-mediated oligomerization. 

 The TM dimer interface presented for the muEpoR220-248 TM dimer can be compared 

with interfaces proposed in the literature. Gurezka et al. (61) first proposed that muEpoR TM 

self assembly was mediated by a leucine heptad repeat (Leu zipper) based on sequence similarity 

of the muEpoR TMD with self-assembling model peptides containing a Leu heptad repeat (61). 

Ruan et al. (64) took this work a step further and demonstrated by asparagine scanning 

mutagenesis that several Asn mutations of the TMD caused greater activity in the TOXCAT 

system; these mutations followed a different heptad repeat pattern that included Ser231 and 

Ser238 at the “a” positions and Leu234 and Leu241 at the “d” positions (SxxLxxx-SxxLxxx-A). 



 

)& 
 

However, characterization of the L241N mutation in the context of the full Epo receptor in BaF3 

cells demonstrated that this receptor was not constitutively active, but could be activated by Epo. 

Further work investigated mutation to asparagine of the other residues in the interface (Leu234, 

Ser238, Leu241, and Ala245) in the context of the full receptor (77). Curiously, and without 

explanation, Ser231 is omitted from this study. However, Thr242 is added, a residue not 

previously thought to be in the interface. None of the asparagine mutants were constitutively 

active and only T242N exhibited cell surface expression comparable to wild type. However, 

even though Epo could activate T242N, the receptor’s cellular staining pattern differed from the 

wild type EpoR. While the authors ultimately make comparisons between helix packing density 

and biological activity, the results are interpreted as if asparagine were driving specific TM 

dimerization, which is not clear as the results could also be due to receptor dimer clustering or 

trimer formation. Asparagine can drive trimer formation, as seen in mutants of #IIb"3 integrin 

(137), and asparagine containing TM peptides (138). Further examination of the TOXCAT 

method demonstrates that asparagine insertions in the background of a leucine heptad repeat can 

cause stronger than normal TOXCAT readings due to higher-order oligomer formation that may 

mislead interpretation of results (139). This may be the case in the L241N mutant, which showed 

TOXCAT assay results ~4 times higher than other asparagine mutants (64). 

 The interfaces defined by the Ruan et al. (64) and Becker et al. (77) studies differ from 

the interface defined here by ~52°, but share the Ser231, Ser238, and Ala245 residues. However, 

this would leave Thr242 outside the interface and exposed to the hydrophobic lipid environment. 

This is in direct contradiction with the T242N results obtained by Becker et al. (77). While the 

two Thr sidechains (one for each monomer) could back hydrogen bond to the helix backbone 

(140), this would otherwise lead to an increase in energy equivalent to 0.5 to 2.0 kcal/bond (141). 
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The interface presented here from NMR measurements satisfies as many of those hydrogen 

bonds as possible by burying the polar residues in the dimer interface. In support of this model 

the interface defined here is the only interface identified by Seubert et al. (76) that could be 

activated by the viral TM protein gp55-P, which has been shown to activate EpoR through TM-

TM interactions (14). 

Active Interfaces 

 The results from the muEpoR220-248 structure determination are presumed to be from the 

inactive TM dimer interface. However, asparagine mutants determined by Becker et al. (77) that 

are shared by this interface (Ser238, Val235, Thr242, and Ala245) are able to be activated by 

Epo. If the active dimers have a different interface than the inactive dimers (as in TM rotation), 

then the presence of asparagine should make it more difficult to activate, which does not appear 

to be the case based on Epo response curves. These results suggest three possibilities: 1) the 

activation is able to overcome presumed asparagine-induced dimerization, 2) the inserted 

asparagine does not affect the inactive dimer interface, or 3) the inactive and active interfaces are 

the same. None of the TM residues, when mutated to cysteine, caused constitutive activation, 

though L241C, L244C, and A245C could be crosslinked to varying degrees (74). However, all 

responded normally to Epo. The combination of these results suggests that some aspect of EpoR 

activation with respect to the TMD dimerization is misunderstood, and more work remains to be 

done. 

Human Receptor TM Domain 

 It is unclear if the human EpoR TMD uses the same interface. NMR measurements (1H-

15N-HSQC) conducted on the same segment of the human receptor huEpoR221-249 (numbering is 

slightly different because of an single amino acid insertion in the ECD) demonstrates a very 
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different spectrum (Figure 3.9). Differences of this magnitude would not be expected from a 

sequence that differs in only 3 amino acids in the center of the helix but uses the same 

dimerization interface. This is especially true for residues not in the interface or at the ends of the 

helix; if the dimerization interface remained the same, then those residues should be in a 

relatively similar environment in both peptides. This result suggests that either the dimerization 

interface has changed, or the huEpoR221-249 is no longer a dimer. However, AUC studies have 

demonstrated that the huEpoR TM dimerizes in detergent micelles (65), and other studies have 

determined a propensity of the huEpoR TM sequence to self-associate (19). If the human 

receptor has a different TM dimer interface than the mouse does due to the loss of Ser238, then 

this would suggest that Ser238 is important for dimerization, and explain the inability of the viral 

TM protein gp55-P to activate the human EpoR (39).  
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Figure 3.9 Comparison of muEpoR220-248 and huEpoR221-249 1H-15N HSQC spectra. Overlay of 
huEpoR221-249 (red) and muEpoR220-248 spectra demonstrates a completely different HSQC 
spectrum for the huEpoR221-249 as compared to the muEpoR220-248 spectrum. Underlined residues 
represent sequence differences between mouse and human (all peak labels refer to mouse amino 
acid assignments). Both peptides are at ~1 mM in 10 mM sodium phosphate, pH 7.0, 200 mM 
DPC, 10% D2O (v:v). muEpoR220-248 was collected with ns=2, huEpoR221-249 with ns=2 on a 700 
MHz spectrometer at 313 K.   

 

 What would the human dimerization interface look like if it were different than the 

murine one? Figure 3.10 (panel A) shows helical wheel diagrams for the two EpoR TM 

sequences. The muEpoR220-248 structure presented uses the dimer interface lined with Ser231, 

Val235, Ser238, Thr242, and Ala245 (marked with asterisk). AUC experiments (65) and 

TOXCAT experiments (19) indicate that the human sequence associates less strongly than the 

mouse sequence. If the same helix interface is used in the human receptor, the replacement of 

Ser238 with leucine in the human sequence may destabilize the helix dimer, assuming the polar 

Ser238 sidechain contributes to dimerization. Alternatively, mutation of Ser238 to leucine may 

force the use of a different interface. Leucine residues are not uncommon in TM helix dimer 

interfaces, and are almost twice as common in the “d” position than the “a” position (142), so 

why a leucine substitution at position 238 would be so destabilizing is unclear. If another 

dimerization interface were to be used by the huEpoR, it is unclear what interface that would be. 

However, maximizing the number of small or polar residues in the interface and restricting 

leucine residues to the “d” position suggests that an interface ~52° counterclockwise (Leu235, 

Leu242, Ser249; Ser232, Leu239, Ala246) might be used. This is the same interface described 

for the murine TM dimer by Ruan et al. (64). Computational searches for low-energy symmetric 

TM dimer interfaces suggest another possibility (Figure 3.10, Panel B). Comparison between the 

symmetric dimers of the mouse and human sequences show that for both sequences, sidechains 

of Thr242/243 form interhelical hydrogen bonds. However, the mutation of Ser238 in the 
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muEpoR to leucine in the huEpoR forces a larger crossing angle in the human TMD (6° vs. 16°, 

respectively). Interestingly, mutation of Leu239 to serine in the human TM sequence returns the 

structure to a narrow crossing angle (7.5°) as seen in the mouse WT sequence model. The mouse 

WT TM dimer energy is lower than that of the human WT TM dimer (-60.58 kcal/mol, -58.8 

kcal/mol, respectively), which agrees with the difference in association seen using AUC 

experiments (65). These data may also agree with other computational studies correlating the 

packing density of different murine EpoR TMD-based sequences with cellular activity (77). In 

that study, Thr242 was mutated to asparagine, glutamine and alanine, and Epo-induced receptor 

activity increased with decreasing sidechain length (increased packing density, 

Ala>WT>Asn>Gln). If decreased packing density of the EpoR TMD negatively affects receptor 

activity, then the lower activity of the human receptor is explained by the larger crossing angle. 
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B. 
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Figure 3.10 muEpoR and huEpoR helix interfaces. A. muEpoR220-253 and huEpoR221-254 
helical wheel diagrams. Left-handed coiled-coil (LHCC) helical wheel diagrams demonstrate 
relative positions of the residues in the helix if the EpoR TM dimer is a LHCC. The murine and 
human are positioned to be in the same register based upon the putative start of the TM helix (in 
blue). The putative end is marked in red. An asterisk marks the TM dimer interface in the 
muEpoR220-248 dimer structure. B. Computational modeling of mouse and human TM dimer 
interfaces. Computational searches for low-energy symmetric TM dimer structures for the mouse 
and human sequences result in interfaces with the same general interface, but with different 
crossing angles (#). Mutation of Leu239 to serine in the human sequence recovers the narrow 
crossing angle. The separation between the axes of the TM helices in the dimer (input 
parameter) is fixed at 9.5 Å. 

 How could a change in the EpoR TM dimer crossing angle result in a difference in its 

ability to be activated by gp55-P? While it has been shown that the ability of the gp55-P TMD to 

interact is dependent upon a single serine residue in the TMD, the same study demonstrates that 

gp55-P is able to activate the mouse TMD with S238 mutated to alanine (39), so S238 is unlikely 

to be intimately involved in the interactions between the EpoR and gp55-P. This conclusion is 

despite presentation in the same paper of an EpoR-gp55-P TM heterodimer model with Met390 

from gp55-P and EpoR Ser238 in the interface of the heterodimer. The change in crossing angle 

(&) in the EpoR TM homodimer (Figure 3.10) demonstrates a second, subtle consequence of 

leucine at position 239 of the huEpoR TMD, namely a slight rotation of the TM helices with 

respect to each other and a change in the interface of the EpoR TM dimer. Ser232 is clearly 
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rotated to a position outside the interface; this rotation is reversed in the huEpoR L239S 

mutation. This rotation in the huEpoR WT TMD may result in an obfuscation of the TM helix 

dimer ‘outerface’ that would be available for interaction with gp55-P in the native EpoR TM 

dimer structure. Therefore, if specific interactions between the EpoR and gp55-P TMDs are 

disrupted by changes in the sequence of the TMDs, the disruption is likely the result of two 

different changes. The first is a change in the relative homodimer’s (EpoR:EpoR or gp55-

P:gp55-P) ability to retain their native interfaces. Secondary to that is the inability to form 

specific EpoR:gp55-P TMD interactions that are critical to TMD repositioning related to the 

EpoR activation. 

 

Helix Cap 

 The i+4 backbone hydrogen bonding network of #-helices contribute to the stability of 

this particular type of secondary structure. An important and particularly interesting 

characteristic of the #-helix has to do with the structural transition at the ends of the helix. At the 

ends of the helix, the characteristic i carbonyl oxygen to i+4 amide proton hydrogen bonding 

pattern is disrupted, leaving several unsatisfied hydrogen bonds. These bonds could be satisfied 

by water, but a water NOESY experiment (98) demonstrates that these amide protons are not in 

exchange with water (data not shown). If a hydrogen bond contributes -0.5 to -2.0 kcal/mol of 

energy, then leaving 3 unsatisfied hydrogen bonds means an increase in the free energy of the 

system of 1.5-6 kcal/mol per monomer (141). In order to minimize this energy increase, a 

sequence dependent cap structure forms to stabilize the end of the helix (143). Typically, these 

involve both polar and non-polar interactions. In an N-terminal cap, residues with a polar 

sidechain forms a hydrogen bond with an amide nitrogen further C-terminal to the capping 
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residue. Further stability comes from the packing of non-polar sidechains. This cap structure 

successfully reduces the amount of free energy in the system, stabilizes the helix termini and 

prevents helix unraveling.  

 Helix cap structures have been well studied and consensus sequences for both the C-

termini and N-termini caps have been determined (143). Unfortunately, a survey of the currently 

available NMR solution structures of TM dimers (glycophorin A, T-cell receptor &&, EphA2, and 

BNIP3), demonstrates none with a definitive helix cap structure (Table 3.3). This is in spite of 

each of the sequences possessing a N-terminal capping motif sequence, as predicted by the 

consensus sequences of Aurora and Rose (143). This begs the question as to whether the lack of 

a cap structure is the result of a post-NMR data collection error (bias in structure calculation) or 

a problem with everything leading up to the structure calculation input (NMR data collection, 

data analysis or a problem with the system being studied). One possibility is that structure 

calculation algorithms could be to blame; the necessary forcefields may not be ‘mature’ enough 

to correctly handle correct structure calculation in the odd chemical environment at the 

polar/nonpolar interface (membrane boundary). However, the consensus sequences for the 

current cap motifs were in part determined through PDB structure searches. Given that these 

structures were calculated with similar or identical forcefields, an error at this step is unlikely, 

and we must search for other ways to explain the lack of defined helix caps in the structures 

listed below.  

Protein (PDB ID) Sequence Potential 

Cap Motif 

Glycophorin A 

(1AFO) 

VQLAHHFSEPEITLIIFGVMAGVIGTILLISYGI IIIb (F) 



 

*$ 
 

EphA2 (2K9Y) EFQTLSPEGSGNLAVIGGVAVGVVLLLVLAGVGFFIHRRRK Ia (V), Ib (I) 

BNIP3 (2KA1) GGIFSAEFLKVFLPSLLLSHLLAIGLGIYIGRRLT 
 

Ia (L) 

 

T-cell receptor && 

(2HAC) 

DSKLCYLLDGILFIYGVILTALFLRVKFSRSAD Ia (L) 

 

Table 3.3 Potential helix caps in currently available PDB TM dimers. Several TM homodimer 
structures are available for comparison. Each of these has a potential N-terminal cap sequence 
motif, yet none of the structures demonstrate such a feature.  

 

 Interestingly, in examining our spectral data and the resulting calculated structure, an N-

terminal helix cap is formed involving the sidechain of Asp224 and the amide proton of Leu226 

(Figure 3.10). Furthermore, this cap is predicted from the protein sequence based on the Aurora 

and Rose Ia (h-xpxhx) consensus sequence, where the first residue of the capping motif is 

Leu223 and the N1 residue is Pro225. Statistically, proline is the most common residue at the N1 

position for most of the N-terminus capping motifs (143). At the N3 position is Ile227, which 

makes contacts with the N’ hydrophobic residue (Leu223). This structure is directed by our 

through-space NMR data, Table 3.4 shows these contacts in the CN-NOESY spectrum. Specific 

contacts are made between Asp224 and Ile227, Pro225 and Ile227/Leu228. The sidechain of 

Asp224 seems to be within hydrogen bonding distance of the backbone amide NH groups of 

Leu226. There are also contacts between Leu223 and Ile227, indicating that hydrophobic 

packing contacts between the sidechains of these two residues contribute to the structure of the 

cap. Interestingly, when Asp224 is mutated to cysteine, receptor processing and trafficking to the 

membrane is affected, leading to about half the wild type receptor at the cell surface (75). The 

receptor that does make it to the membrane is capable of binding Epo, but has a decreased level 
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of activity. It is plausible that this decreased trafficking and activity is due to a disruption of the 

local cap structure.  

Spectrum Contact 
CN-NOESY D222HN-S221C"/C# 

 D222HN-L226C# 
 L223HN-S221C# 
 L223HN-D222C# 
 L223HN-P225C"/Cd 
 L223HN-L226C" 
 D224HN-I227C" 
 D224HN-I227C$1/C$2/Cd 
 D224HN-L223C$ 
 I227HN-L232C% 
 L228HN-P225C# 
 L228HN-I227C"/C$1/C$2 
 L228HN-S231C" 
 T229HN-P225C#/C" 
 T229HN-L223C$ 
 T229HN-L226C# 
 T229HN-L230C$ 
 T229HN-L232C% 

 

Table 3.4 Helix cap contacts in NOESY datasets. Contacts defining the helix cap structure in 
the muEpoR220-248 are listed. Contacts between residues S221-L232 are available to define the 
structure.  

 

 Previous computational work by our group on the murine EpoR TMD indicated that a cap 

structure forms between the sidechain OH of Thr229 and the amide proton of Leu232, one 

helical turn lower than we see in our current NMR-based structure (74). The differences in the 

two murine EpoR TM cap structures (Figures 3.11, 3.12) could have several different 

explanations. First, the Kubatzky structure is the result of computational studies based upon only 

two carbonyl chemical shifts (Leu228, Leu230). These chemical shifts were collected using 

solid-state NMR methods from a peptide reconstituted into multilamellar lipid vesicles (DMPC). 

Though counterintuitive, the DMPC bilayer has a shorter hydrophobic cross section (24 Å) than 
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a DPC micelle (~30 Å) (144, 145). Therefore, a longer hydrophobic helix would be expected in 

the DPC sample. It could be explained by the differences in surface curvature of DPC detergent 

versus DMPC lipid. Detergent micelles have an inherent surface curvature that is greater than 

that of the multilamellar lipid vesicles formed by the solid-state NMR preparation, which may 

induce structural variations, especially at the helix termini. Perhaps the greatest drawback of the 

solid-state based structure is that this structure was calculated based upon only two carbonyl 

chemical shift constraints resulting from solid-state NMR studies in lipid bilayers. In contrast, 

the solution NMR cap structure is the result of multiple through space contacts and measurement 

of chemical shifts of all relevant atoms.  

 

Figure 3.11 Previous muEpoR dimer helix cap structure. Helix cap structure from Kubatzky et 
al. (74) indicating that the sidechain OH of T229 forms a hydrogen bond with the HN of L232. 
The sidechains of L228 and L232 form hydrophobic contacts. 

L232 

L228 

T229 

L230 

1.2 Å 
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Figure 3.12 Current muEpoR dimer helix cap structure. Helix cap structure demonstrates 
D224 sidechain capping the helix by forming hydrogen bonds with the NH of L226. The 
sidechain of L223 makes contacts with the sidechain of I227. 

 

D224 

L226 
I227 

L223 
1.9 Å 
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Chapter 4-Structural Changes in the Erythropoietin Receptor Upon Activation  

 To begin to answer the question of how the TMD is involved in the function of the EpoR, 

we extend the sequence of the construct to include the conserved intracellular Box 1 region. Also 

added are several amino acid at the N-terminus to capture a larger portion of the EC-JM region, a 

part of the receptor which captures a number of positions that modulate receptor activity when 

mutated to cysteine. Figure 4.1 depicts the sequence of the muEpoR218-268 peptide and the regions 

of the receptor added (red text) for these studies. The underlined are those residues that, when 

mutated to cysteine (Leu223, Leu228) modulate receptor activity (74, 75).  

 

Figure 4.1 Amino acid sequence of the recombinant muEpoR218-268 peptide. The murine EpoR 
TM Box 1 construct includes 20 residues of the ICD corresponding to the region including the 
Jak2 binding Box 1 region (PGIPSP). Underlined are residues that, when mutated to cysteine, 
modulate receptor activity. Also included are the residues of the switch region (L253, I257, 
W258) demonstrated to be important for Jak2 activation. 

 

 This construct retains the hydrophobic TMD and adds three residues to the N-terminus 

(LTA). This N-terminal extension represents most of the remainder of the sequence between the 

WSXWS motif in the D2 domain and the TMD. Added to the C-terminus are 20 residues that 

represent the “switch” region and the Jak2 binding site, Box 1. The addition of this intracellular 

region serves two purposes. First, it would allow interaction studies between the Jak2 FERM 

domain and this longer EpoR TM containing peptide, as the Box 1 region is demonstrated to be 

necessary for association of these Jak2 with the EpoR (46, 146). More importantly, it allows the 

assessment of intracellular structural changes upon the simulation of the active state. Two 
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methods of simulating the active state are specific cysteine mutagenesis or the addition of the 

gp55-P TM peptide, which activates the EpoR (38).  Therefore, the addition of more of the 

protein sequence surrounding the TMD adds functional relevance and context for examining the 

propagation of structural changes to the ICD upon activation.  

Cysteine Mutants 

 Two important cysteine mutagenesis studies have been performed on the EpoR TMD and 

surrounding regions (74, 75). The difference between the two studies is the method of 

crosslinking, passive in Lu et al. (75) versus active with the lipid soluble linker ortho-

phenylenedimaleimide (o-PDM) in Kubatzky et al. (74). Both studies identified L223C as a 

constitutively active mutant. L226C and I227C were also identified to be constitutively active, 

but at a lower level than L223C. D222C, P225C and L228C are not constitutively active, but can 

respond to Epo (wild-type like), though P225C responds at lower levels. D224C is an interesting 

case, as it is expressed at the cell surface at reduced levels (~50%), and is not processed through 

the Golgi (endo-H negative). It shows a very small amount of constitutive activity, but cannot 

respond to WT levels when exposed to Epo.  

 The Kubatzky study (74) differs from the Lu et al. (75) study because of the advantage of 

being able to actively crosslink cysteines inside the TMD, using the membrane-permeable 

crosslinker o-PDM, where disulfides normally do not form. Interestingly, crosslinked receptor is 

found with L241C, L244C, and A245C. However, these receptors are not constitutively active, 

though oddly both Leu241 and Leu244 are in the “active” interface described in Seubert et al. 

(76). Recombinant L223C and L228C muEpoR218-268 are used in this study to approximate the 

active and the WT-like receptor, respectively. 
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Wild-Type muEpoR218-268 

 Figure 4.2 shows the 1H-15N-HSQC spectrum of the muEpoR218-268 construct in DPC 

detergent micelles. This spectrum has more peaks than the muEpoR220-248 spectrum (Figure 3.2), 

reflecting the extra residues added to the construct sequence. Peaks for residues in the TMD are 

generally of lower intensity, reflecting an overall lower mobility of this region than the N- and 

C-termini. Despite the added molecular weight, the spectrum peaks are generally well resolved, 

indicating that the preparation is homogenous. Significant peak overlap exists between the 

muEpoR218-268 and the muEpoR220-248, indicating that the TM conformation is preserved in the 

larger construct (Figure 4.3). Chemical shift deviation ('%) is calculated for each peak using the 

formula: 

 

 

where CSH1/CSN1 and CSH2/CSN2 are the chemical shifts of the relevant hydrogen and nitrogen in 

the first spectrum minus the second spectrum (147). Most of the intermonomer residues 

identified by the TMD structure (Ser231, Val235, Ser238, Thr242) are in the same position in the 

muEpoR218-268 spectrum. The only intermonomer peak that is not in the same position is Ala245. 

It is likely shifted because the entire C-terminus is shifted due to the additional C-terminus 

residues. Full 3D assignment reveals that all amino acids can be assigned with the exception of 

Leu226 and Arg251. Thr252 has very low intensity, and Arg250 is buried in the more intense 

Leu223 resonance, but can be assigned by examining the 3D experiment strips. The low intensity 

of these peaks is likely due to flexibility at the intracellular membrane boundary. At this site, 

where the TM helix emerges from the detergent micelle and transitions from #-helical to random 
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coil, structural heterogeneity is not unsurprising. It is unclear if the structural heterogeneity is an 

integral part of the system or a result of the study methodology. 

 

Figure 4.2 The murine EpoR WT TM Box 1 1H-15N-HSQC spectrum. The spectrum for 
muEpoR218-268 shows good resolution given the size of the detergent-protein complex. Peak 
assignments are shown on the spectrum; only 2 amino acids remain unassigned (L226, R251). 
Spectrum was collected on a Bruker 700 MHz spectrometer at 313 K, with 32 scans. Sample is 
~1 mM protein, 10 mM sodium phosphate, pH 7.0, 200 mM d38-DPC, 10% D2O (v:v). 
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Figure 4.3 Overlay of muEpoR220-248 
1H-15N-HSQC on muEpoR218-268 

1H-15N-HSQC. Only five 
of the resonances in the transmembrane region (L244-S248) shift when the peptide is lengthened 
to muEpoR218-268 (only S221-S248 are labeled). Residues in the TMD are numbered, numbers in 
blue represent a significant peak shift (and peaks for each construct are labeled). Generally 
these shifts occur in the last turn of the helix (A245-S248). Sample is ~1 mM protein, 10 mM 
sodium phosphate, pH 7.0, 200 mM d38-DPC, 10% D2O (v:v). 
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Simulating the Active State: L223C and gp55-P 

 In order to begin probing the functional mechanism for the EpoR, spectra of the WT 

(inactive) and the active state were compared. Peptides of the muEpoR218-268 with the L223C 

mutation were expressed, purified, and reconstituted into DPC micelles. Some optimization was 

necessary to obtain high quality spectra. First, DTT (20 mM final concentration) was added to a 

dilute (~2 ml) sample, and then the sample was dialyzed versus 3 changes of 10 mM sodium 

phosphate, pH 7.0 (1 kDa MWCO). This prevents TM dimers from two micelles from 

crosslinking, which degrades spectral quality because of slower molecular tumbling. Then the 

sample was concentrated to 250 uL and loaded into the Shigemi NMR tube. Other than these 

deviations, the NMR samples were prepared in the same manner as the WT TM peptides.  

 The L223C muEpoR218-268 spectrum-WT spectrum comparison is shown in Figure 4.5. It 

is clear from the spectral comparison that there are few shifted peaks from the WT spectrum, an 

indication that the structures are comparable. As expected, peaks in the vicinity of L223C were 

shifted quite dramatically (Asp222, Asp224), likely due to perturbation to the local structure. 

Figure 4.4 Chemical shift 
differences of the TM domain 
between muEpoR220-248 and 
muEpoR218-268. The core 
residues of the TM domain, 
including the dimer interface 
residues S231, V235, S238, 
and T242 remain in the same 
position, an indication of 
conformation preservation. 
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Chemical shift deviation calculation of the region from Ile227-Phe268 (Figure 4.6) shows that 

outside of the residues immediately surrounding L223C, His249 shifts the most of all residues, 

followed by Gly260 and Leu253. These results indicate that a mutation in the extracellular 

region can effect a change in the intracellular region of the protein. The significance of the large 

shift in Ile227 is thought to be due to local disruption of the helix cap structure, where the side 

chain of Asp224 hydrogen bonds to the NH of Ile227.  

 

Figure 4.5 1H-15N-HSQC comparison, L223C (red) compared to WT (black). The 1H-15N-
HSQC of the L223C muEpoR218-268 was prepared as described and a spectrum was collected at 
313 K with 32 scans. The overlay demonstrates that while many peaks overlap, several do not. 
Red text denotes new peaks/peak positions for the L223C mutant. H249, L253, and G260 are in 
blue. Sample is ~1 mM protein, 10 mM sodium phosphate, pH 7.0, 200 mM d38-DPC, 10% D2O 
(v:v).  



 

+% 
 

 

 

 

Figure 4.6 1H-15N HSQC chemical shift differences, active compared to wild type. Chemical 
shift differences from the WT spectrum are calculated for the peaks in 1H-15N-HSQC for each 
active sample, using the formula in the text. Differences from WT are blue:L223C, red:gp55-P.  

 

gp55-P 

 Recombinant gp55-P349-409 was expressed as a His-MBP fusion protein without isotopic 

labels and purified using the same method as the His-MBP EpoR TM fusion proteins (Chapter 

2). Purified TM peptide was mixed 1:1 (molar ratio) with 15N labeled muEpoR218-268 and 

reconstituted into DPC micelles. The resulting 1H-15N-HSQC spectrum, when overlaid with the 

EpoR WT spectrum, demonstrates that many peaks are in the same position indicating that the 
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overall structure is the same (Figure 4.7). However, shifts of the same magnitude and direction 

are seen in His249, Leu253, and Gly260 (Figure 4.6) as were seen in the L223C mutant. 

 

 

 

Figure 4.7 1H-15N-HSQC comparison, WT compared to WT + gp55-P. Wild type muEpoR218-268 
+ gp55-P was prepared with an EpoR:gp55-P molar ratio of 1:1. The spectra were collected on 
a 700 MHz spectrometer at 313 K with 32 scans. The overlay demonstrates that while many 
peaks overlap, there are several that do not, including H249. black=WT, red=WT+gp55-P. 
Sample is ~1 mM, 10 mM sodium phosphate, pH 7.0, 200 mM d38-DPC, 10% D2O (v:v). 
Residues that shift significantly are indicated with blue text. 
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The Inactive State: L228C = Wild Type 

 As mentioned in previous sections, the assumption is made that in this system, the WT 

sequence represents the inactive state of the EpoR. This assumption is necessary in order to 

establish a baseline for our structural studies, but must be confirmed experimentally if WT 

spectrum comparisons are to be made with active structures. This is accomplished using the 

L228C mutant. The mutant is demonstrated not to be constitutively active, but responds to Epo at 

the same level as wild type (74, 75), therefore it resembles the wild-type receptor in the absence 

of ligand. When this construct is prepared in the same manner as the L223C sample, peak shifts 

are seen in the residues surrounding the inserted cysteine as expected (Figure 4.8). However, the 

residues that shifted in both the L223C mutant and the WT + gp55-P spectra, notably His249 and 

Leu253 remain unshifted, and while Gly260 is the peak that shifts most in the spectrum, the 

magnitude of the shift is less than both active spectra (Figure 4.9). This result indicates that 

His249 and Leu253 are markers of the active state.  
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Figure 4.8 1H-15N HSQC comparison, WT compared to L228C. L228C muEpoR218-268 was 
prepared as described and a spectrum was collected on a 700 MHz spectrometer at 313 K with 
32 scans. The overlay demonstrates that while many peaks overlap, a few do not. H249, L253, 
and G260 are shown in blue. Black=WT, red=L228C. Sample is ~1 mM, 10 mM sodium 
phosphate, pH 7.0, 200 mM d38-DPC, 10% D2O (v:v). 
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Figure 4.9 1H-15N-HSQC chemical shift differences, inactive compared to wild type. Chemical 
shift differences from the WT spectrum are calculated for the peaks in the L228C 1H-15N HSQC, 
using the formula in the text.  

 

Structural Changes Between Inactive and Active Constructs 

 Engineered cysteine mutations are expected to cause local changes in protein structure 

and therefore the 1H-15N-HSQC spectrum due to changes in the local environment of 

surrounding nuclei, as we see with the residues surrounding L223C and L228C. However, 

spectral shifts of more distant amino acids (e.g., the opposite end of the helix) are interpreted as a 

structural change associated with activation. 
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His249 

 His249 is seen to shift in the same direction in the same magnitude in both the L223C 

and the WT+gp55-P spectra (Figure 4.10, B/C). This result, coupled with the lack of movement 

in the L228C spectrum (Figure 4.10, A), suggests that His249 is a marker of the active state. 

There are two pieces of data in the literature regarding His249. First, in an EpoR-PrlR chimera 

study (73), one of the receptor constructs used was a double mutant (L223V, H249G), 

presumably to insert restriction cloning sites for connection of chimeric receptor pieces. This 

L223V/H249G mutant appeared to be wild type like; without constitutive activity, but could 

respond to Epo at the same level as the WT receptor, as measured by GFP fluorescence, a 

measure of cell proliferation. The second piece of data also comes from Constantinescu, an 

alanine mutagenesis study of the intracellular juxtamembrane region (72). In one mutant, 

His249, Arg250, and Arg251 are mutated to alanine; this construct retains much of its wild-type 

level of activity, as measured by cell proliferation assays.  

 These points argue against His249 being intimately involved in the activation 

mechanism. However, this is only one possible extrapolation of our data to a potential 

mechanism. While chemical shift deviation would be expected if His249 were important for 

activation, shifts would also be expected if His249 were influenced by a change in local structure 

that depended upon transition to the active state. For example, if His249 were pulled into the 

membrane bilayer a change in chemical shift would be expected, as would one if a change in 

secondary structure occurred. In this way, the NMR data and the cell biological data are not 

incongruent. 
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Figure 4.10 Position of H249 is 
affected by active/inactive 
structures. Overlays of the inset 
regions of inactive and active 
spectra showing the area 
surrounding H249 demonstrate 
that H249 shifts in the active 
L223C and EpoR+gp55-P 
spectra, but not the L228C wild 
type-like spectrum. H249 and 
L253 are shown in blue. A) WT 
(black) vs. L228C (red) B) WT 
(black) vs. L223C (red) C) WT 
(black) vs. EpoR+gp55-P (red). 
Sample is ~1 mM, 10 mM 
sodium phosphate, pH 7.0, 200 
mM d38-DPC, 10% D2O (v:v). 

A. 

B. 
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Leu253 

 In the active structures, Leu253 NH shows chemical shift deviation from the WT 

spectrum. Three conserved residues (Leu253, Ile257, Trp258) have been shown, through 

mutational studies, to be absolutely required for receptor activity (72, 76). These residues 

constitute a hydrophobic motif that in addition to being highly conserved across species for the 

EpoR (Figure 1.4), they are relatively conserved among the Group 1 cytokine receptors (Figure 

1.2, and (72)). Despite conservation, the importance of the positioning of these residues is 

unclear. The position of these residues relative to the Box 1 motif is preserved across cytokine 

receptors, but not with respect to the end of the TMD (Figure 1.2). This would seem to indicate 

that whatever function they perform, they act in concert with the Box 1 motif and independently 

of the TMD. However, this is not necessarily true, because the function of the TMD in the rest of 

the cytokine receptors is unclear. If the TMD in the GHR and the PrlR drive dimerization as they 

do in the EpoR (73) and the TpoR (15), then two pieces of information are still missing. First, the 

putative dimerization interface in these receptors is unknown-the relative position of the three-

residue motif could indeed be consistent with that of the EpoR. Second, the conformation of the 

residues linking the TMD and the L, I, W residues is unknown. Much research still needs to be 

performed on this interesting region before cytokine receptor activation is understood. 

 Chemical shift index analysis (148) and dihedral angle predictions for the wild type and 

L223C muEpoR218-268 samples indicate that both are #-helical from Pro225-Ile257 (Figure 4.11). 

However, it is important to note that intensity is lost for Arg250-Arg251 in the 1H-15N-HSQC, 

which would indicate flexibility or structural heterogeneity of this region. Interestingly, if the IC-

JM is a rigid #-helix, then the hydrogen bonding partner for Leu253 would be the carbonyl of 

His249, the chemical shift of which is unclear at the moment in the wild type sample-there are 
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two possible chemical shift assignments, 175.8 ppm or 173.3 ppm. The L223C active carbonyl 

chemical shift of His249 is 176.05 ppm, which is predicted to be helical. Because the chemical 

shift of the wild type sample is upfield of the L223C sample, it is possible that there is a 

difference of secondary structure in this region between the two samples. However, because of 

the uncertainty of the exact chemical shift of the wild type sample, further investigation is 

required. 

 

Figure 4.11 Chemical shift index and secondary structure, muEpoR218-268 wild type and 
L223C. Chemical shift index is calculated on C!, C" and C=O chemical shifts between the WT 
and L223C samples. Secondary structure prediction is a result of these calculations and dihedral 
angle predictions. A) Wild Type B) L223C. 
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Box 1 

 Little is known about this region with the exception that it is necessary for Jak binding. 

This nine residue, proline-rich motif is highly conserved across species (for the EpoR) and 

somewhat conserved across receptor classes (Figure 1.2). With the possible exception of Gly260, 

this study was unable to detect any changes in the structure of the Box 1 region upon activation 

(L223C or gp55-P). The likely explanation is that because this region normally binds Jak2, 

whatever the structural conformation adopted in the TM-JM constructs in the absence of Jak2 

may be irrelevant.  

Cysteine Mutants and Protein Structure 

 Cysteine mutagenesis is an important tool in protein biochemistry, used to modulate a 

protein’s state of activity, but is a tool of somewhat dubious value. Cysteine residues do not 

normally oxidize to form disulfides in the hydrophobic membrane environment, so structural 

effects of cysteine mutagenesis are unknown. While the data herein are presented without 

explicitly stating that the L223C construct is a disulfide-linked dimer, it is important to disclose 

that chemical shift analysis of the C" of Cys223 indicates that it is unlikely to be oxidized. 1H-

15N-HSQC studies were performed on a copper-phenanthroline crosslinked L223C and 

crosslinking was confirmed by SDS-PAGE. However, with the exception of the residues in the 

region of the copper-phenanthroline (lost due to paramagnetic effects), the non-actively 

crosslinked spectrum was the same as the copper-phenanthroline crosslinked spectrum (data not 

shown).  Therefore, whatever structural changes are induced by the L223C mutation is 

independent of disulfide crosslinking. Indeed, in Lu et al.’s cysteine mutagenesis study (75), 

only a fraction of the L223C receptor exists as a crosslinked dimer. The strong effect of cysteine 
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without disulfide linking, while surprising, is not without explanation, as this region is part of a 

helix cap motif that is sequence dependent (Chapter 3).  

 Helix Cap 

 While we lack the datasets necessary for constructing a high resolution model of the N-

terminal helix cap region for the muEpoR218-268 WT and L223C proteins, the dihedral angles 

predicted from the chemical shifts of backbone atoms can be used to create a model. While the 

same helix cap contacts are made in both the WT and the L223C structures as in the muEpoR220-

248 structure (Chapter 3), the replacement of Leu with Cys at position 223 causes a coiling of the 

remainder of the N-terminus (Figure 4.12 A, B) compared with WT, which seems to be fully 

extended. The significance of this is at the moment unknown. However, considering the rigid 

coupling that is required for an ECD structural change to be transmitted through the TMD to the 

ICD, even small changes can have a significant impact on structure, and therefore activity. This 

is even more important given that the region between the WSXWS motif and the helix cap 

contains only 10 amino acids. 
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Figure 4.12 Helix cap models, WT & L223C. Helix cap models were constructed based upon 
dihedral angles calculated from the chemical shift values of backbone atoms. Green=WT, 
Blue=L223C. Cysteine at position 223 causes a significant change in structure of the N-
terminus, as the A) side view (stereo), L218-S231 B) view from N-terminus (stereo), L218-S231. 

Activation Mechanism 

 The NMR measurements made on the wild type, L223C and the wild-type + gp55-P 

reveal several details about receptor activation. First, the fact that the spectral shifts between the 

inactive and the active structures are unlikely to be due to a rotation of the two helices and 

formation of a new interface, as proposed by Seubert et al. (76). In fact, the residues 

demonstrated to be lining the interface by intermonomer NMR measurements show very 

B. 

A. 



 

,' 
 

minimal shifts. Second, several key juxtamembrane residues are perturbed during activation. 

Third, while the results of activation with L223C or gp55-P are essentially the same (His249 

movement et al.), structural changes in the TMD between L223C and gp55-P are different. 

L223C induces structural changes at the N-terminus that cause or allow TMD movement to an 

activating position. Gp55-P causes the same activating changes in the C-terminus as L223C, but 

does not perturb the structure of the N-terminus. This is an indication that the interaction 

between gp55-P and the EpoR forcibly repositions the TMD into the active conformation. It is 

strange that greater shifts are not seen in the TMD residues of the EpoR upon gp55-P binding, 

but the average shift over the length of the TMD is greater for gp55-P than for L223C. This 

disparity indicates that while the L223C mutation works by changing the N-terminus structure to 

reposition the interfacial residues in order to move the C-terminus, gp55-P may work from the 

outside (helix ‘outerface’) to accomplish the same task. 
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Chapter 5-Models for Erythropoietin Receptor Activation 

 Chapters 3 and 4 present the first atomic resolution studies of the EpoR TMD. An 

important aspect of these studies is that the TM domain is first shown to be dimeric under the 

conditions used and then measurements are made using a high resolution approach, namely 

NMR spectroscopy. Previous reports studying the TMD of the EpoR are unable to definitively 

say that the EpoR TM system under study is dimeric. This shortcoming leads to conclusions that 

overstate the data. In other studies, if a dimer could be demonstrated (e.g., with AUC), then the 

resolution to determine an actual dimer interface was missing. What makes the studies described 

here all the more important is that the dimeric nature of the system under study is demonstrated, 

and that the system is probed with angstrom resolution. 

TM Helix Association/Interactions 

 Several sequence motifs for helix association have been identified. Perhaps the best 

studied is the GxxxG motif. This motif is the basis for TM dimerization of glycophorin A (125) 

and BNIP3 (149), among other TM dimers. The two glycine residues in this motif allow the 

close approach of the helices within the dimer, while amino acids distal but on the same face 

modulate the strength of the TM interaction (150). The leucine zipper is another dimerization 

motif (62). Present in the DNA binding transcription factor GCN4, the hydrophobic residues 

(Leu/Val) form the hydrophobic dimer interface (63), while charged or polar residues form the 

surface that is exposed to water. However, it is unclear if homodimeric TM proteins make use of 

the strict leucine zipper as well. Despite TOXCAT studies on TM proteins possessing a similar 

sequence motif as GCN4 indicating variable propensities for self-assembly (61), studies by the 

developer of the TOXCAT assay indicated that model leucine zipper peptides containing Val at 

the “a” position did not self-associate, and a polar residue was required for the peptide to do so 
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(139). Further work on the EpoR TMD defined a slightly different interface with serines at the 

“a” positions (64). Such a motif may more appropriately be characterized as a serine zipper, 

which has been defined in model TM peptides (151). However, the asparagine mutagenesis 

studies by Ruan et al. (64) may be misleading, as the interface results may be due to trimer or 

oligomer formation. Studies by Zhou et al. (139) and Choma et al. (138) have determined that 

Asn-containing peptides can form trimers that cause abnormally intense results in the TOXCAT 

assay. These strong results can mislead researchers into believing that a particular Asn mutation 

causes “strong” dimerization. Therefore, while TOXCAT studies can be a useful tool to define 

whether TM segments self-associate, caution must be exercised when interpreting results from 

such studies as dimers, especially when it is the only method used to assess association. The 

implication for EpoR signaling is that the dimerization interface defined by Ruan et al. (64) may 

not be the actual dimer interface. NMR measurements made on muEpoR220-248 indicate that 

Ser231, Ser238 and Thr242 line the dimer interface, with Val235 and Ala245 allowing close 

approximation of the two helices. This interface has support in the literature from Put3-EpoR 

fusion studies in which only constructs with this interface are activated by gp55-P (76). 

EpoR TM Helix Movement During Activation 

 Several general models have been proposed for the function of proteins that associate via 

their TMDs. The three possibilities include a rigid turning of the TMDs relative to each other 

(15), a change in the helix crossing angles relative to each other (scissoring) (152), or a 

longitudinal motion of one or both of the TMDs in the lipid bilayer (pistoning) (153). It is 

important to note that regardless of mechanism, there appears to be rigid coupling of the TMD 

and the ICD. Put3-EpoR TM fusion experiments demonstrate that receptor activity has a 

dependence on the rotational orientation of the TMD (76). Insertion of alanine residues between 
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the TMD and the intracellular “switch” region of the EpoR also modulates receptor activity (72), 

with 1-2 inserted alanines reducing activity and 3 inserted alanines (~1 helix turn) recovering 

wild type activity. This result, coupled with the Put3-EpoR fusion data, suggested that the helix 

continues after His249 and that the position of the ICDs, and by extension receptor activity, 

depends upon TMD rotational orientation. This hypothesis fit nicely with the ECD crystal 

structures that demonstrated rotation of the two ECD halves upon ligand binding (8).  

 The TM rotation model for activation also has support from a related receptor family, the 

ErbB receptors. For example, cysteine mutagenesis studies have demonstrated that EGF receptor 

kinase activity is coupled to the rotational orientation of the TMD (154). The kinase domain of 

the Neu receptor, a related RTK, was also shown to have activity that is coupled to the rotational 

orientation of the TM region, albeit with a model TM sequence instead of the actual Neu 

receptor sequence (155). The receptor for atrial natriuretic peptide (NPRA) also seems to have a 

similar rotational mechanism of activation (156).  

 The bacterial aspartate chemoreceptor TAR is a good example of the piston model of 

signaling. This TM receptor is a homodimer, but the functional unit is thought to be a trimer of 

dimers. Tryptophan residues flank the TMD sequence, but activity seems to be controlled by the 

Trp at the C-terminus of the TMD, which is followed by a tyrosine. When the Trp-Tyr motif is 

moved closer to the N-terminus of the helix, the kinase is inactive (153). The opposite occurs 

when the Trp-Tyr motif is moved further C-terminal. The transitions along the bilayer normal are 

small, ~1.5 Å, which is accompanied by a small change in helix tilt (~5°) (153).  

 While the NMR data presented here for the muEpoR218-268 do not necessarily disagree 

with a rigid coupling of the TMD and the ICD, it is incompatible with a TM rotation model. The 
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NMR spectra of the muEpoR220-248 and muEpoR218-268 are those of a symmetric molecule where 

the TMDs do not change conformation greatly when switching from the inactive (WT) to active 

(L223C, gp55-P) conformations. A change in the TM dimer interface would be expected to cause 

shifts in the residues that were part of the old (inactive) interface, as well as shifts in residues in 

the new interface. Therefore, the NMR measurements presented here appear to be more 

consistent with a helix tilting model or a piston model.  

Implications for Other Group 1 Cytokine Receptors 

 It was hoped that the specific interaction of the TMDs of EpoR would provide a model 

for the function of other cytokine receptors, especially the members of the Group 1 receptors 

(GHR, PrlR, TpoR). However, it seems that even between members of this subgroup there may 

be divergent function. The GHR has the fewest polar residues in the putative TMD of all Group 

1 cytokine receptors (Figure 1.2), and no other immediately discernable dimerization motif. 

TOXCAT assays performed as controls for self-assembly of the EpoR TM domain indicate that 

the GHR TMD has no propensity to self assemble (19). This correlates well with the receptor 

monomer association studies performed on chimeric GH receptors harboring the LDLR TMD 

(13). The results of these studies indicate that the EC domain, not the TMD, mediates receptor 

self-assembly. Furthermore, comparisons between the ECD crystal structures of the EpoR and 

GHR reveal that the GHR has more inter-D2 domain contacts than does the EpoR (45). 

Together, these observations indicate that although the inactive and active forms of the cytokine 

receptor are dimeric, the mechanism of dimerization may differ between receptors.  

 The TpoR is divergent as well. It possesses a duplicated ECD, not uncommon in the 

cytokine receptor family. However, when this extra ECD is deleted, it causes constitutive 

receptor activation (157). There is also an additional five-residue insert (R/KWQFP) that 
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regulates activity of the TpoR (158). Deletion of this insert causes constitutive receptor 

activation. There are also several clinically relevant mutations of the TMD (S505N) or 

surrounding regions (T487A, W515K/L) that cause receptor hyperactivity, while for the EpoR 

none are known. Given these structural and functional differences between the Epo and the other 

Group 1 receptors, while they seem to generally function similarly, it seems likely that each 

receptor has evolved receptor-specific mechanisms for precise control of activation and cell 

signaling. These are likely related to pathway importance, cellular receptor density, and 

concentration and affinity for ligand. 

Implications for the Activation Mechanism of EpoR 

 While there is evidence for a rigid coupling of the TM-ICD functions, there is almost no 

data on the relationship between the ECD and the TMD and how information is transmitted 

between the two. The crystal structures of the ECD with and without ligand include several of 

the residues between these two regions, but the structure is undefined. The only constitutive 

mutant is the R129C mutation, which crosslinks the two D2 domains of the ECD (32). In the 

crystal structure of the Epo-bound ECD (PDB ID:1CN4) these residues are more than 30 Å 

apart. Positioning the D2 domains of receptor monomers so the R129C residues are within 

disulfide bonding distance would also reposition the EC-JM region to be in close proximity. If 

the constitutive activity of the L223C mutant depends upon disulfide linkage, then it would seem 

to accomplish the same thing. A recently described activating mutation of the TpoR (T487A) is 

located in this same region of the receptor (34). Recent studies on the Prl receptor where one to 

four alanine residues were inserted between the ECD and the TMD indicated that ligand-induced 

activity did not suffer (17). It is clear that ligand binding to the ECD of cytokine receptors causes 

structural changes that are propagated through the TMD to the ICD, but how remains a mystery. 
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Box 1, Jak2 and Prolines 

 Chemical shift analysis and dynamic NMR studies indicate that the rigid helical nature of 

the EpoR TM and IC-JM region is encoded by the sequence of the receptor (up to Ile257), but C-

terminal to that the structure is unknown. The conformations of the WT and the L223C Box 1 

regions seem to be generally very similar as judged by the 1H-15N-HSQC (Figure 4.5). These 

studies lack the ability to determine the conformation of the Box 1 region that binds Jak2. It may 

be that the conformation of the Box 1 region in the absence of Jak2 is irrelevant, as there is 

evidence that the EpoR (46) and TpoR (47) require Jak2 to be properly processed through the 

Golgi and transported to the membrane.  

 It is interesting to speculate about the role of the proline-rich Box 1 region and activation 

of the cytokine receptors. The proline residues in Box 1 throughout the cytokine receptor family 

are highly conserved, but their function is unknown. Given proline’s ability to be in the cis or 

trans conformation, it seems like a natural point of pathway regulation. Indeed, others have 

investigated peptidyl-prolyl isomerase (PPIase) activity in regulating other signaling pathways 

(159), and the processing of amyloid precursor protein (160). Pin1 is a PPIase that recognizes 

Ser/Thr-Pro motifs (161). Given the presence of the Ser263-Pro264 sequence, this is a potential 

target for regulation. A biophysical study of a peptide homologous to the sequence of the PrlR 

Box 1 region (IFPPVPGP) indicates that it is very flexible, but has a definite preference for cis- 

or trans-conformations in water (trans-trans-cis-trans) (162). The first, third and fourth Pro are 

conserved between the EpoR and PrlR (Figure 1.2). The chemical shift of the C" resonance is 

sensitive to cis/trans isomerization, the chemical shifts of C" for Pro259, Pro262, and Pro264 for 

both wild type and L223C EpoR are all more consistent with a cis conformation. This is unusual, 

as the cis conformation is expected to be found only ~10% of the time (163). The significance of 
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this is unclear, but given that our peptides were expressed in bacteria, it is possible that 

processing is different from mammalian expression systems. It is also possible that the C" 

chemical shifts observed are unrelated to the isomer present and are otherwise affected by the 

environment of the peptide. 

Mechanism of Activation 

 To postulate a mechanism for receptor activation, I begin with two premises: 1) that the 

EpoR dimers are pre-formed, and 2) that the TMD mediates receptor dimerization. The structure 

of the unliganded ECD dimer (9) leaves the C-terminal residues too far apart (~78 Å) to connect 

to a TM dimer, the TMDs would have to be monomeric. Because these two data points are 

incompatible, and several lines of evidence suggest that the TMD mediates dimerization of the 

EpoR in cells (73), the unliganded ECD structure is unlikely to be correct. Interestingly, the 

structure of the TM dimer presented here and the ligand-bound ECD structure (PDB ID:1CN4) 

are compatible, the C-terminus of the ECD and the N-terminus of muEpoR220-248 are separated 

by about the same distance and can be linked without difficulty (Figure 5.1). This exercise does 

not immediately suggest any clues as to how Epo binding changes in the ECD are propagated 

through the EC-JM domain to the TMD.  
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Figure 5.1 Human EpoR ECD linked to mouse TMD. The human EpoR ECD dimer with 
bound-ligand (Pro7-Thr220, PDB ID:1CN4) is joined to the mouse EpoR TM dimer (Ala221-
Ser248). Pro225, Ser231, Ser238, and Thr242 sidechains are shown for each monomer. 
Membrane boundaries are shown as horizontal lines.  

 

 Studies on the region that connects the TMD and the Box 1 motif indicate that Ser248-

Ile257 is a continuous helix (72). The NMR measurements on the wild type and the L223C 

sequence (Chapter 4) suggest that this may be the case in the muEpoR218-268 structure. Some 

controversy exists with regard to how activation is transmitted through the TM dimer of cytokine 

receptors. Studies on the EpoR indicate that receptor activity may be linked to the rotational 

orientation of the TMD (72). However, similar studies on the PrlR indicate that its activation is 

not consistent with rotation or a piston motion of the TMDs (17). The NMR measurements 
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presented here on the muEpoR218-268 peptide are inconsistent with a rotation model. The 1H-15N 

HSQC spectra of the L223C and the wild type EpoR + gp55-P show considerable overlap with 

the wild type spectrum, an indication that the overall structure does not differ greatly between the 

wild type and the active conformations. If the L223C and the wild type EpoR + gp55-P spectra 

are truly the result of studying the active conformations, then the only models that would be 

consistent with the structural data are a helix tilting model or a piston model where both helices 

move in or out of the membrane simultaneously. With respect to the helix tilting model, two 

modes of tilting are possible, one where the helix crossing angle changes (Figure 5.1, A), or one 

where the interhelical distance becomes unequal (i.e., greater at the bottom than the top, Figure 

5.2, B). For these two models, small changes in relative helix tilt should result in a significant 

change in intracellular distance. The residues from His249-Ile257 would constitute an additional 

length of ~13.5 Å, if it is a continuous alpha helix. If the crossing angle were centered in the 

middle of the TM segment (~17 Å), then the horizontal displacement of the two helix C-termini 

would be 5.4 Å, assuming a 5° tilt with the bilayer normal (sin 5° = X/30.5 Å). This is additive to 

the interhelical separation that already exists. The other possibility is that the entire peptide 

dimer piston model where the entire complex moves in or out of the membrane, parallel to the 

bilayer normal (Figure 5.2, C). How this would activate the intracellular kinases is not clear, 

unless the act of physically changing the distance of the kinase from the bilayer causes an 

activating (or inactivating) conformational change. Because distance measurements have not 

been made for the larger muEpoR218-268 peptide, the precise interface and thus the activation 

mechanism remains unknown. 
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Figure 5.2 Possible activation mechanisms. Potential activation mechanisms consistent with the 
NMR measurements presented here. A) Helix tilting repositions the C-terminal ends of the 
helices with respect to each other. B) Second helix tilt mechanism allows relative repositioning 
of the C-termini in a different manner. C) A piston model where the interface remains the same 
in the inactive and the active structures.  

 

 For the intracellular side, changes that occur upon whatever conformational change the 

TMD undergoes are also unknown. This is even more of a mystery because no structure of the 

ICD exists. It is known that the FERM domain of Jak2 binds to the proline-rich Box 1 sequence, 

but the relative positions of the FERM and the kinase from the two receptor chains are unknown.  

The NMR measurements made here of the Box 1 region are consistent with a random coil 

geometry. Therefore, it is not clear if the Box 1 region has a defined structure in the absence of 

Jak2. However, the structure of the ICD may not be as important as the state of Jak2 residence on 

the receptor ICD.  

 Funakoshi-Tago et al. (164) have demonstrated with mutants of Jak2 that 

phosphorylation of Tyr119 after receptor activation triggers Jak2 dissociation from Box 1. This 
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fits with another observation about the EpoR that suggests a dissociation of Jak2 from Box 1, the 

ubiquitination of Lys256 (48) in response to Epo-induced activation and subsequent degradation 

of the EpoR (49). Lys256 is a residue in the switch region, only one amino acid away from the 

beginning of the Box 1 sequence, where Jak2 binds. If Jak2 remained bound to Box 1 after Epo-

induced activation, then it seems unlikely that a rapid ubiquitination event could occur, as this 

would require space for the binding of ubiquitin and the ubiquitination machinery. More recent 

experiments on the GHR demonstrate a similar detachment of Jak2 upon receptor activation 

(165). Therefore, the activation mechanism of cytokine receptors upon ligand binding may 

involve dissociation of the bound Jak. 

 In light of the structural information regarding the EpoR TMD and ICD ascertained by 

these NMR studies, it is possible to begin connecting the various structural pieces of the receptor 

(Figure 5.3). I have mentioned above that it is possible to connect the ligand-bound ECD crystal 

structure (PDB ID:1CN4) with the EpoR TM dimer structure determined here by solution NMR 

(Chapter 3). Chapter 4 describes the extension of structural studies past the TMD dimer to 

include the Box 1 region that interacts with the Jak2 FERM domain. Using the dihedral angles 

predicted from chemical shifts of backbone atoms in the ICD region, I extended the TM dimer 

structure calculated in Chapter 3 to include ICD residues His249-Phe268. The conformation of 

the Box 1 residues is governed by the cis conformations of the proline residues in this region.  

 No crystal structure exists for the Jak2 FERM domain, but through homology modeling 

and computational studies, a model of the complete Jak2 structure has been proposed (166). The 

FERM domain structure for the focal adhesion kinase (FAK) has been solved (167), it shows the 

tri-lobed structure seen in other FERM domains (PDB ID:2AL6). One feature of this structure is 

that a region of the FAK C-terminal to the FERM domain that corresponds to the SH3 binding 
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site (RxxPxxP) binds in a groove between the F1 and F3 lobes of the FERM domain. This 

peptide sequence has suspicious homology to the sequence immediately preceding and including 

the Box 1 region of the EpoR (KIWPGIP). Hypothesizing that the Box 1 region of muEpoR218-268 

also binds between the F1-F3 lobes of the Jak2 FERM domain, the Jak2 structure is positioned 

such that the peptide aligns in this groove.  

 This exercise does not immediately suggest any keys for unlocking the mystery of 

receptor activation. Rather, it hints that with the proper perspective, studying the receptor 

piecewise and reassembling the pieces later may allow construction of a rational model of the 

receptor. For instance, as mentioned in earlier sections, while the unliganded EpoR ECD is 

incompatible with a TM dimer, the liganded ECD D2 domains connect easily with a TM dimer 

(Figure 5.1). Combining the knowledge of Box 1’s role in Jak2 binding with the structural 

knowledge of the FERM domain of other kinases provides clues about how to connect the two 

proteins. Interestingly, when the Jak2 molecules are positioned on the EpoR TM dimer such that 

the F1-F3 lobes of the FERM domain interact with the Box 1 region, there is no steric hindrance 

between the Jak2 molecules on opposite monomers. It seems that with Jak2 positioned as such, 

the FERM domain would just clear the membrane. The important Y1007/Y1008 residues near 

the active site are positioned at the bottom of the Jak2 molecule, near the interface of the two 

kinase molecules. 
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Figure 5.3 EpoR-Jak2 structure composite. The muEpoR218-268 structure based upon dihedral 
angles is colored blue, with the interfacial residues of the dimer (S231, V235, S238, T242, A245, 
and H249) are colored red. The Epo-bound EpoR ECD dimer (PDB ID:1CN4) is colored purple, 
the WSXWS motif in magenta. Epo is light pink. The different domains of Jak2 (Jak2.pdb, (166)) 
are color-coded; the FERM domain is cyan, the SH2 domain is yellow, the pseudokinase domain 
is grey, the kinase domain is green. Y1007/Y1008 are colored orange. 

 While the model presented above provides a compelling look into the possible structure 

of the full-length EpoR with Jak2, it unfortunately does not give any indication of how small 

changes in the EpoR TM structure upon activation would induce Jak2 activity. Clearly, these 

studies are merely the beginning of the road with respect to determination of the full receptor 
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ICD + Jak2 
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Jak2 Kinase 
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structure and ultimately, mechanism of activation. What is clear is that the TMD provides a 

connection between the ECD and Jak2, and the activation signal is transduced through this 

region. Building out from the TMD and successively studying larger and therefore more 

biologically relevant receptor constructs, in an manner similar to cryo-electron microscopy 

studies of the IL-6/IL-6R/gp130 complex (168), and the IL-6/IL-6R/gp130/Jak1 complex (169), 

it should be possible to determine structures of EpoR in the inactive and active state using 

solution NMR. The EpoR peptide/micelle system, as defined here, will allow the addition of the 

FERM domain of Jak2 to the muEpoR218-268 sample in order to ascertain changes in Box 1 

structure, as well as specific interactions between the two proteins. A range of experiment 

possibilities is explored further in Chapter 7. 
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Chapter 6-The S505N Mutation in the Thrombopoietin Receptor Drives Receptor 

Dimerization 

 The thrombopoietin receptor (TpoR), along with its cognate ligand, thrombopoietin (Tpo) 

governs megakaryocyte development and ultimately platelet production (170, 171). The 

sequence of the receptor is related to the rest of the Group 1 cytokine receptors (EpoR, PrlR, 

GHR), with two notable exceptions. First, the TpoR contains a duplicated ECD, resulting in an 

ECD that contains two D1 domains and two D2 domains. Deletion of the combined membrane 

distal D1-D2 domain results in constitutive receptor activity (157). Second, the TpoR contains a 

five-residue insert directly C-terminal to the TMD, RWQFP (KWQFP in mice), that has been 

shown to modulate receptor activity (158).  

 Much less is known about the structure of the TpoR than other Group 1 cytokine 

receptors. A crystal structure of the ECD has not been solved. However, several point mutations 

of the TpoR that cause disease in humans have been described; these have been helpful in 

correlation of receptor structure with function. The S505N (172), W515K (35) and T487A (34) 

mutations cause a gain of function of the TpoR, resulting in disease from thrombocythemia to 

myelofibrosis.  The positioning of these mutations is interesting. The S505N mutation resides in 

the middle of the TMD, while the W515K and T487A mutations are in the intracellular and 

extracellular juxtamembrane regions. The clustering of these mutations in and around the TMD 

seems to underscore the importance of this region in receptor function. What is not completely 

clear is how these mutations perturb receptor structure in order to cause activation. 

TpoR Dimerization 

 Because the other Group 1 cytokine receptors have been shown to function in the active 

state as dimers (45), it is reasonable to assume that the TpoR does as well. However, while 
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experiments to determine preassociation of receptor chains in the absence of ligand has been 

shown for the EpoR (73), GHR (52), and PrlR (16), the same experiments have not been 

conducted for the TpoR. Association studies on the TMD sequence of the human TpoR using 

cysteine mutagenesis and the TOXCAT expression reporter assay indicate that the wild type 

TMD sequence of the huTpoR491-515 associates as a dimer (15). In this model, the interfacial 

residues are G503, A506, L510, and L513. Interestingly, W515, when mutated to cysteine is also 

able to crosslink receptors, despite being on the helix ‘outerface’ with respect to the heptad 

interface defined above. There are two possible explanations for this result. The first is that the 

W515C induces oligomers composed of more than just two monomers. The second is less 

obvious. Alignments of the TMD-ICD of the EpoR and TpoR (Figure 1.4) indicate that the 

R/KWQFP insert has no overlap with the rest of the EpoR sequence and is a true insert of five 

residues (158). This would indicate that the five-residue insert may function as a unit, and the 

lack of the QFP residues affects the structure of the TMD, and therefore, the results of the 

Matthews et al. (15) series of experiments. For instance, typical #-helical backbone hydrogen 

bonding proceeds in an i C=O to i+4 NH pattern. If we stipulate that the secondary structure is 

helical through Pro518, then the NH groups of the missing Q516, F517 residues would be unable 

to hydrogen bond with L512 and L513 carbonyls, disrupting the secondary structure of this 

important region. This is especially relevant because activity studies on the full-length receptor 

with the RWQFP insert deleted is constitutively active (158). 

 In order to determine the contribution of the TMD and the insert region to the function of 

the TpoR, we decided probe the structural characteristics of the entire human TpoR TMD 

including the insert region using solution NMR. The construct sequence chosen (huTpoR481-520) 

stretches from the end of the "-sheet rich D2 domain to two residues after Pro518, so it should be 
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possible to assess the native structure and function of the complex. Because there are several 

clinically important disease-causing mutations in and around the TMD of the TpoR (T487A, 

S505N, W515K), peptides corresponding to these mutations can be studied alongside the WT 

peptide in order to determine the biological relevance of the results. We find that the WT peptide 

contains a kink in the TM helix such that there are two separate helices, an observation that 

corresponds to previous NMR studies of this peptide (147). We also find that the S505N 

mutation increases the oligomerization state of the TpoR481-520 peptide. Furthermore, there is also 

a change in secondary structure of the peptide associated with this active state, a straightening of 

the helix through the kinked region observed in the WT peptide.  Together, these results indicate 

that the S505N mutation functions by changing the oligomerization state of the TpoR TMD. 

Furthermore, the change in secondary structure may mimic the change in TMD structure induced 

by the binding of the natural ligand, thrombopoietin. 

Structural Data on the TpoR WT and S505N Peptides 

 The huTpoR481-520 WT and S505N peptides were expressed as His-MBP fusion proteins 

in E. coli BL21(DE3) cells and purified as previously described (173). Reconstitution of the 

peptides into DPC micelles as was performed for the EpoR TM peptides revealed that the 

huTpoR481-520 S505N peptide yielded poor quality spectra (data not shown). Repeated 

purification and different buffer conditions (changing pH, buffer and salt concentrations) did not 

improve the spectrum. However, reconstitution of each peptide in d25-sodium dodecyl sulfate 

(SDS) micelles yielded good quality spectra (Figure 6.1) that were used for 3D backbone studies. 

Interestingly, despite the sequence differing by a single amino acid, the two spectra were very 

different, an indication that the two conformations are very different. 
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Figure 6.1 Comparison between 1H-15N HSQC from huTpoR481-520 WT and S505N 
demonstrate large chemical shift changes. huTpoR481-520 WT (black) and S505N (red) 
reconstituted into SDS detergent micelles yielded high quality HSQC spectra. Samples were 1 
mM peptide in 10 mM sodium phosphate, pH 4.7, 85x CMC d25-SDS, 10% D2O (v:v). Spectra 
were collected at on a 700 MHz spectrometer at 320 K, 32 scans each. 

 

 Backbone chemical shift assignments for the WT and the S505N peptides (Figure 6.2 A, 

B) reveal secondary structure changes from WT to S505N peptides reconstituted into SDS 

micelles. Carbonyl chemical shift changes in the N-terminus of the TM helix occur between WT 

and S505N, particularly at residue I492. Changes in #-helical geometry for the TM helix would 

be expected to result in paired shift of the carbonyl and its i+4 hydrogen-bonding partner’s amide 

proton. This is seen for the I492 carbonyl-T496 amide pair, and the downfield shift of the I492 



 

$$& 
 

carbonyl is indicative of greater #-helical geometry for this region of the S505N peptide. The 

conclusion from these observations is that there seems to be an increase in #-helical character of 

the TMD N-terminus in the S505N peptide in the region surrounding I492-T496.  

 

A. 

T496 
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Figure 6.2 Backbone chemical shift changes between WT and S505N peptides suggest 
secondary structure changes from WT to S505N. A) Backbone NH chemical shift changes from 
huTpoR481-520 WT and S505N demonstrate large changes in I492 and T496. B) Carbonyl 
chemical shift changes indicate that the carbonyl of I492 shifts downfield in the S505N peptide. 

 The NH bond vector is particularly sensitive to changes is secondary structure and local 

environment. Flexibility of the peptide backbone can be assessed by probing the 1H-15N 

heteronuclear NOE relaxation NMR experiments (97). The heteronuclear NOE values of 

huTpoR481-520 WT and S505N in SDS micelles are presented in Figure 6.3. One of the most rigid 

residues in the WT peptide is Thr496, previously identified as a residue that has a large NH 

chemical shift change from WT to S505N. In the S505N peptide, the rigidity of Thr496 

decreases, while Thr487 becomes more rigid. The changes in rigidity of Thr487 and Thr496 

seem to be coupled to the structural change indicated by the chemical shift deviations seen in the 

Ile492 carbonyl and the Thr496 NH. Together, these changes in flexibility are consistent with a 

B. I492 
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change in secondary structure of Ile492-Thr96 to #-helix. Why Thr487 is perturbed by a 

mutation at S505N is not clear. A Thr487 mutation to alanine has previously been identified as a 

clinically important TpoR activating mutant in humans (34). Perhaps a shift in the conformation 

of Thr487 is critical for achieving the active state. Interestingly, in a continuous helix, Thr487 

would be on the same face as S505N. This would place it in the interface of a helix dimer that is 

mediated by the S505N mutation, potentially explaining the increase in rigidity seen in the 

S505N peptide. 

 

Figure 6.3 Backbone flexibility of the WT and S505N huTpoR481-520 peptides in SDS micelles. 
1H-15N Heteronuclear HSQC experiments conducted on the WT and S505N peptides indicate a 
change in flexibility of two threonine residues at the N-terminus of the peptide. Interscan delay = 
3s. blue=WT, red=S505N 

 The structural information encoded in the chemical shift measurements allows prediction 

of dihedral angles using the program DANGLE (105). The dihedral angles were used to create 

T496 

T487 
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structural models using CNS (102, 103). A single round of structure calculation (representing 

structures that are the result of dihedral angle input and a single round of minimization) produced 

the structures in Figure 6.4. The WT model (in green) demonstrates a kink in the helix around 

T496, which is consistent with a structural model based upon solid-state NMR measurements of 

the WT peptide in lipid (147). Conversely, the S505N model (in cyan) shows a continuous helix 

in this region of T496, consistent with the downfield shift of the carbonyl of I492. Together these 

data demonstrate that the mutation at position 505, which is more than 2 helix turns away from 

T496, induces a dramatic structural change in the TMD. 

 

Figure 6.4 Structural models of the WT and S505N huTpoR481-520 peptides in SDS micelles. 
Dihedral angles computed from backbone chemical shift measurements were used to create 
stereo structural models of the WT and S505N peptides. The sidechains of T487, W491, T496, 
S/N505, and W515 are visible. Green=WT, Cyan=S505N. 

 

 That the 1H-15N-HSQC for the TpoR WT and S505N peptides demonstrate such a 

dramatic structural change upon the mutation of a single amino acid is unexpected. The 1H-15N-

HSQC of muEpoR218-268 peptides with the L223C mutation (Chapter 4) demonstrates mostly 
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local changes in the peptide structure, along with a few residues distal to the site (His249, 

Leu253) associated with a shift to the activating state. One potential model that explains how 

such a large change in structure occurs upon the mutation of a single amino acid is TMD 

oligomerization. In model TMD peptides, polar residues such as asparagine can drive helix 

association (174). Changes in the oligomerization status of the huTpoR481-520 peptide in SDS 

detergent micelles upon mutation of serine 505 to asparagine can be assessed by relaxation NMR 

techniques (97). T1 (spin-lattice) relaxation and T2 (spin-spin) relaxation of the amide NH are 

sensitive to the rate of molecular tumbling and can be easily assessed with a series of 1H-15N-

HSQC based experiments. Histograms of these measurements are presented in Figure 6.5 and 

6.6, demonstrating that while there is no difference in the T1 values for the WT peptide, the T2 

values for the S505N peptide are roughly half that of the WT peptide. Faster relaxation for the 

S505N peptide is consistent with a larger complex, suggesting TM oligomerization.  
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Figure 6.5 Determination of T1 values for the WT and S505N huTpoR481-520 peptides in SDS 
micelles. T1 relaxation values for each NH in the WT and the S505N samples were determined 
using solution NMR. Pro518 has been omitted from the histogram. Interscan delay = 3s. 
blue=WT, red=S505N. 
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Figure 6.6 Determination of T2 values for the WT and S505N huTpoR481-520 peptides in SDS 
micelles. T2 relaxation values for each NH in the WT and the S505N samples were determined 
using solution NMR. Pro518 has been omitted from the histogram. Interscan delay = 3s. 
blue=WT, red=S505N. 

 

The correlation time (!c) of each residue in the complex can be calculated using the formula (97):  

 

"c =
6T1
T2
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Typically, these values are averaged over the amino acids that demonstrate a heteronuclear NOE 

value greater than 0.6 (relatively rigid) to measure the correlation time of the molecule (128). 

The !c calculations were performed for the WT and S505N peptides solubilized in SDS micelles 

and the results are presented in the histogram below (Figure 6.7). Because the calculation of !c is 
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dependent on the ratio of T1/T2, as expected the correlation time of S505N is roughly twice the 

rate of the WT peptide. This is another indication that the oligomerization state has changed from 

the WT to S505N peptides. 

 

 

Figure 6.7 Calculated values of !c values for the WT and S505N huTpoR481-520 peptides in 
SDS micelles. Correlation time of each NH in the WT and the S505N samples were determined 
from the T1/T2 relaxation values and the formula in the text. Pro518 has been omitted from the 
histogram. blue=WT, red=S505N. 

 

Conclusions 

 The peak shifts in the 1H-15N-HSQC between WT and S505N peptides suggests that the 

single amino acid difference causes a dramatic change in the structure of the TM peptide. The 

relaxation NMR data suggests that this dramatic structural change is related to a change in 
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oligomerization state of the peptide. The huTpoR481-520 TM peptide monomer is ~4.7 kDa, and 

the average SDS micelle is ~17 kDa (288.3 g/mol x aggregation number 62), for a total 

peptide:detergent complex size of ~26.4 kDa. A study of the BNIP3 TM peptide dimer prepared 

in isotropic DHPC/DMPC bicelles with a complex size of ~50 kDa measured a correlation time 

of ~18 ns (128). The S505N correlation time is ~8 ns, about half the BNIP3 !c, which fits well 

with the molecular weight of a huTpoR481-520 peptide dimer in an SDS micelle. Interestingly, 

other data in our lab suggest that S505N induces TM dimerization. AUC experiments in DPC on 

peptides corresponding to the TMD of the human TpoR demonstrate that the WT sequence is 

monomeric and the S505N peptide forms TM dimers (175). Similar results were seen using 

deuterium NMR experiments with the same peptides reconstituted in DMPC bilayers (175).   

Interface 

 If the S505N TM peptide forms a dimer in SDS micelles, then what is the peptide dimer 

interface? While there is not enough data to determine precisely what the interface of such a 

dimer would be, it is reasonable to hypothesize that the Asn505 residue would be in a helix 

dimer interface. Several studies on Asn-containing model TM peptides (136, 138, 139) and Asn 

mutagenesis of actual TMD peptides (64, 176) indicate that asparagine can mediate 

oligomerization of TM helices. If Asn505 is in the interface of the TM dimer, then two interfaces 

are possible, one where Asn505 is in the “a” position, one where it is in the “d”position (labeled 

“1” and “2” on Figure 6.8 below). If interface “1” is the actual interface, then this would place 

Thr487 and Trp515 in the interface of the active dimer. This is an interesting observation, as 

mutation of each of those residues causes disease associated with receptor hyperactivity in 

humans (34, 35). Interface “2” represents a model supported by TOXCAT assay data (15).  
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Figure 6.8 Helical wheel diagram of the huTpoR481-520 peptide TMD sequence. Left-handed 
coiled coil diagram for the WT huTpoR481-520 peptide sequence. Potential active interfaces “1” 
and “2” are labeled.  Blue=TM helix start, red=TM helix end, gray=N-terminal helical region. 

 

 The results of these experiments suggest that the clinically relevant S505N mutation 

induces receptor activation by driving dimerization of the TMD. This conclusion is supported by 

the change in correlation time of the peptide containing the S505N mutation, which suggests a 

change in oligomerization state. What is less clear is how the change in oligomerization state is 

associated with structural changes in the N-terminus of the receptor TMD. Using a combination 

of solid and solution NMR, Kim et al., (147) demonstrate that the WT TpoR TMD is broken into 

two helices, separated by a kink around I492-T496. This helical break is reproduced by our 

solution NMR data as well. It is clear from the downfield shift in carbonyl resonance of I492 and 

the amide chemical shift of T496 that in the presence of the S505N mutation, this region 

becomes more helical. The reason behind this structural change is unclear. One possibility is that 

1 
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the straightening of the helix could occur to accommodate formation of interhelical interactions 

between N-terminal residues of opposite receptor monomers, a “zippering-up” of this region.  

 Assuming the Kim et al. (147) model is correct, and the N-terminal helix resides along 

the membrane surface, helix straightening would serve to lift it off the membrane. This could lift 

the entire EC-JM region off of the membrane. Interestingly, such a model has some support. 

Weidemann et al. (177) have hypothesized that the IL-4 receptor WSXWS motif functions as a 

molecular switch, modulating receptor activity. Using free energy perturbation calculations, they 

demonstrate that the tryptophan residues of the WSXWS motif could reside in two 

conformations. In the ‘off,’ or inactive state, the Trp residues partition into the membrane, 

tethering the ECD to the cell membrane. In the ‘on,’ or active state, the ECD is lifted off the 

membrane and the Trp residues rotate inward to interact in the Trp-Arg zipper motif seen in the 

various crystal and NMR structures of the ECD D2 domain (4, 10).  

 More recent research gives support to a role for WSXWS as a molecular switch. NMR 

studies on the PrlR ECD in the absence and presence of Prl demonstrate a change in the 

conformation of the tryptophan residues in the WSXWS motif; in the ligand-bound state, the Trp 

sidechains form the Trp-Arg zipper (178). However, in the unbound state, the two Trp sidechains 

form a T-stack conformation, with the edge of one Trp ring stacking on the face of the other Trp. 

The consequence of this conformational change is a structural rearrangement of the D2 domain 

"-sheets. These changes do not mirror the structural changes hypothesized by the free energy 

perturbation studies of Weidemann et al., (177), since lipid was clearly unavailable for Trp 

sidechain partitioning. Given that mutational studies have clearly implicated the WSXWS motif 

in receptor activity (12), and now structural studies have demonstrated a conformational 

difference of the WSXWS motif between the ligand bound and free ECD structures, it seems 
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reasonable that this motif plays a greater role in receptor function than originally thought. 

Clearly more research on larger receptor constructs in a biologically relevant system (lipid) is 

necessary to probe the structure and function of the hematopoietin receptor family. However, the 

experiments described here are the necessary precursor to these more difficult studies and 

establish the structural changes induced by the S505N mutation that are associated with receptor 

activation.  
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Chapter 7-Conclusions and Future Directions 

 The data contained herein describe the structure of cytokine receptor TMD dimers and 

provide insights into the mechanism(s) of how structural changes induced by ligand binding may 

be transmitted through the TMD to the ICD. However, the broader picture that emerges from the 

study of these peptides includes three important observations. First, the structures of cytokine 

receptor TMD dimers can be elucidated by solution NMR. While the ability to derive structural 

information from TMD dimers has been well established (81, 125, 179), none of the cytokine 

receptor TMD structures have been reported.  The second observation from these studies is that 

mutations in the TM or JM regions can be added to the WT peptides to assess structural changes 

either locally or distally. Assessment of structural changes upon the addition of the S505N 

mutation in the background of the huTpoR TMD peptide demonstrates that not only can 

differences in oligomerization state be examined, but also the structural changes associated with 

oligomerization. The third point is the observation that the sequence of the TMD encodes 

secondary structure information (#-helix) that directs the proper folding and assembly of this 

region. To date, solution NMR studies on single TM receptors have focused on separate regions 

of the receptor such as the D2 domain (4) or the TMD dimer (122, 179). These studies are the 

necessary first steps for investigation of relationships between receptor structure and function. 

The muEpoR220-248 peptide spontaneously folds into an #-helix and dimerizes in DPC micelles 

(Chapter 3). When additional residues corresponding to the switch and Box 1 regions are added 

(muEpoR218-268), the secondary structure and TMD dimer interactions are preserved (Chapter 4). 

The addition of these regions provides context for assessing the role of activating mutations with 

respect to receptor structural changes.  
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 Finally, the recapitulation of interactions that occur in vivo can be made. While solution 

NMR has long been used to assess structural changes of soluble interacting proteins, it has not 

been widely used for TMD-containing proteins. The TMD of gp55-P interacts with the TMD of 

muEpoR, thereby activating the receptor. This work demonstrates that those TMD interactions 

can be recreated in a membrane mimetic system and associated structural perturbations can be 

assessed using solution NMR. Together, these experimental observations set the stage for 

collecting more biologically relevant data to elucidate the relationship between the structure and 

function of cytokine receptors. 

EpoR 

 Several potential avenues for extending the studies of the EpoR are available. Two 

subsets of experiments in particular can be considered based on experiments already performed. 

These fall into two separate categories, the addition of secondary interacting molecules or 

proteins (e.g. gp55-P) or extension of the sequence to study different regions of the receptor. For 

the first subset of experiments, it would be helpful to characterize the molecular interactions of 

the EpoR and gp55-P TMDs. This would not just define the interface between the EpoR and 

gp55-P, but also help define what changes in the EpoR TMD are associated with activation. An 

additional experiment that would be helpful here is to study the human EpoR TMD sequence 

with the L239S mutation that allows gp55-P activation of the receptor with the human sequence 

(39). 

 Interestingly, there is a second, albeit synthetic, TMD-containing protein that has been 

demonstrated to activate the EpoR through TMD interactions (180). This peptide has no 

sequence homology to gp55-P. It would be instructive to perform the same structural studies 
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with the muEpoR218-268 peptide in DPC micelles to assess whether the same structural changes 

are seen as with the active constructs studied here (L223C, +gp55-P).  

 Extension of the sequence construct from the core TMD region that we have studied here 

could help shed light on regions of the receptor that to date have not been studied. For instance, 

the JM regions of the receptor are areas of structural transition between the ECD "-sheet rich 

region and the #-helical TMD. In TpoR, mutations in these regions cause constitutive receptor 

activity and disease (34, 35). However, the changes in structure of these regions associated with 

the active state are unknown. By adding the sequence of the ECD D2 domain to the TMD-

containing peptide, the structure of the JM region between the WSXWS motif and the N-

terminus of the TMD in a more native conformation can be studied.  

 Furthermore, two modalities in addition to the JM cysteine mutations (74) can be used to 

simulate the active state. The R129C mutation causes EpoR hyperactivity by inducing receptor 

dimer crosslinking (32). This mutation can be introduced and NMR can ascertain structural 

changes from the WT peptide. A second method of activation is to add an activating peptide. 

Naranda et al. (181) have determined that a sequence corresponding to residues 194-216 of the 

EpoR activates the full length EpoR.  This peptide could be added to WT D2-TM peptides to 

simulate an active state, and again structural changes caused by the addition of the activating 

peptide can be determined through NMR experiments. The EpoR 194-216 peptide has been 

shown to bind to its identical sequence on the full receptor (181). Interestingly, the peptide 

includes an arginine residue (R171) demonstrated by X-ray crystallography to interact with a 

tryptophan residue (W212) of the WSXWS motif (8), suggesting this region has a role in 

receptor activation. Moreover, given the concentration of activating mutations in the EC-JM 

region in both the EpoR and TpoR, perhaps the WSXWS motif and the EC-JM region work in 
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concert to regulate receptor activity. The structural importance of this region is an area of active 

study, as a recent study of PrlR demonstrated that the WSXWS motif acts as a molecular switch 

(178). Clearly, study of this region of the receptor is critically important for determining how 

changes in ECD orientation upon ligand binding are transmitted to the TMD, and would 

ultimately shed light on an activation mechanism of these receptors. 

 Extension of the TMD-containing construct further into the ICD would be helpful as 

well. We have cloned and expressed a construct (muEpoR218-392) that extends the TM+Box 1 

construct through the Box 2 region and includes the first tyrosine phosphorylated by Jak2 upon 

Epo binding (Y343). We were able to purify this peptide, reconstitute it into DPC micelles and 

perform NMR studies. Unfortunately, the spectrum exhibited severe overlap, either because of 

chemical shift broadening due to slow molecular tumbling (approximate complex size is ~55 

kDa) or conformational heterogeneity (data not shown). However, use of technological advances 

for study of larger complexes can be helpful here. Deuteration of peptide sidechains, combined 

with TROSY NMR pulse sequences (119), can narrow linewidths of resonances in larger 

molecular weight complexes and make them amenable to study by solution NMR methods.  

 Once the structural conformations of the WT muEpoR218-268 and muEpoR218-392 

complexes have been determined, the FERM domain from Jak2, expressed separately, can be 

added to each peptide complex. This would provide information on the binding site of the FERM 

domain on the EpoR and how that interaction changes the local and the global structure of the 

complex. Difficulties due to the size of this complex may arise, but can be overcome with the 

TROSY method mentioned above (119). Structural details of near-megadalton protein 

complexes have successfully been studied in this manner (182). 
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TpoR 

 The avenues for continuing the research on the TpoR TMD are similar to the EpoR 

project. Given that the data described here clearly implicate the S505N mutation in receptor 

TMD association, it seems natural to continue experiments to determine the receptor interface. 

This would be more than merely an academic exercise. The rotational orientation of the murine 

TpoR TMD is linked to differential signaling of the receptor (183). The interface represented by 

the active S505N TM dimer induces proliferation to near WT-like levels, activating the 

Jak2/STATs, the MAPK and PI3K pathways, but not Tyk2. Further structural study of these 

interfaces will elucidate how the changes in TMD rotational orientation is coupled to changes in 

ICD orientation, and thus allows differential activation of intracellular pathways to effect 

specific physiological responses. 

 Another interesting question to be answered involves the role of the K/RWQFP insert in 

TpoR. This insert modulates the activity of the receptor in a sequence specific fashion (158). 

However, the actual mechanism of function is unknown. Mutation of Trp515 to lysine, leucine 

(35) or alanine (158) results in a constitutively active receptor, suggesting a role for Trp514 of 

this motif in the preventing activation. Even more mysterious is how activation by native ligand 

or S505N mutation is able to overcome the inhibition provided by this tryptophan. By studying 

TMD-containing peptides in the same manner as described here for the EpoR TM constructs, it is 

possible to determine how Trp515 and various mutants act in these cases. In a similar fashion, 

the structure of the active T487A mutant can be studied as well. It would be interesting to see if 

these mutants share a common structure and therefore method of activation, or if different 

structures lead to the same result.  
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 Finally, in the same vein as the EpoR, longer TpoR TMD-containing constructs can be 

expressed that include the Box 1 region in order to determine the molecular contacts between the 

TpoR ICD and the FERM domain of Jak2. This experiment has particular importance, as the 

TpoR is known to use two different kinases, Jak2 and Tyk2 (184). Such experiments could help 

determine the mechanism of kinase specificity in cytokine receptors.  

 Of course, while the potential experiments described here primarily utilize solution 

NMR, other approaches to assess structure should not be ruled out. X-ray crystallography may be 

useful in determining the structure of the ICD region if expressed by itself, or in complex with 

the FERM domain of Jak2. Solid-state NMR experiments are generally unable to obtain the 

resolution of solution NMR experiments, but have the advantage of being able to examine 

peptide structure in a native lipid environment, which may be desirable.  

 These structural characterizations or TMD containing peptides all lead to increasing the 

understanding of how these receptors function. Once Epo is bound to the ECD, the TMD shifts 

to the active conformation, and the ICD structure is reorganized to allow activation of Jak2. But 

how does this occur? If Jak2 disengages from Box 1 when the EpoR is activated, what structural 

changes would cause this to happen? What methods of regulation would exist to keep a free, 

soluble Jak2 from phosphorylating without limits? Much still remains to be discovered regarding 

the function of these receptors. It will be even longer until therapeutics can be developed based 

on the structural insights gleaned from these studies. However, the studies described here begin 

to define the role of the TMD in these receptors both structurally and functionally and represent 

the necessary first steps for understanding how these proteins function. 
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Appendix 

Chemical Shift Tables 

A.1 muEpoR220-248 chemical shifts in 10 mM sodium phosphate, pH 7.0, 200 mM d38-DPC, 
10% D2O (v:v) 

 Seq C=O Ca Cb Ha N 
 S      
 N  53.163 39.314 4.793  
220 A 177.651 53.586 18.923 4.202  
221 S 174.347 59.054 63.661 4.317 112.08236 
222 D 176 54.648 41.39 4.623 121.31871 
223 L 176.053 54.522 42.967 4.297 120.5382 
224 D  53.491 42.3  123.5524 
225 P 178.879 65.405 32.287 4.231  
226 L 178.314 58.395 41.467 4.117 121.08517 
227 I 179.21 64.227 36.932 3.675 118.829 
228 L 177.787 58.613 41.963 3.978 121.42733 
229 T 175.918 68.434 68.083 3.699 115.23447 
230 L 178.261 58.249 41.798 3.942 119.39 
231 S 175.117 63.708 62.891 3.996 114.49025 
232 L 178.507 58.205 41.605 3.942 121.10517 
233 I 177.269 65.608 37.282 3.554 118.28963 
234 L 179.929 58.436 41.393 3.974 119.15964 
235 V 177.227 67.332 31.212 3.468 120.9879 
236 L 178.717 58.895 41.688 3.943 119.94409 
237 I 177.451 65.476 37.565 3.584 117.21661 
238 S 176.856 63.753 62.688 4.019 116.59416 
239 L 178.073 58.297 41.932 3.989 124.19183 
240 L 178.503 58.531 41.729 3.924 119.42783 
241 L 178.448 58.18 41.77 3.96 116.863 
242 T 176.177 68.33 67.747 3.727 116.1027 
243 V 177.602 67.362 31.25 3.503 120.07525 
244 L 179.241 58.233 41.674 3.942 117.81175 
245 A 179.747 54.891 18.6 4.045 120.20555 
246 L 178.162 56.602 42.762 4.238 116.33357 
247 L 176.206 55.018 42.795 4.4 117.61337 
248 S  61.068 65.056 4.187 119.84088 

 

A.2 muEpoR220-248 chemical shifts in 90% trifluoroethanol, 10% deuterated chloroform (v:v) 

 C Ca Cb H N 
N219 172.185 50.546 36.334 8.658 116.43 
A220 175.321 51.914 15.324 8.075 122.801 
S221  57.875 61.313 8.393 111.785 
D222 172.61 51.784 35.041 8.233 118.254 
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L223 174.829 53.174 40.241 8.049 119.041 
D224  53.117 33.927 8.146 118.323 
P225 176.219 63.836 28.797   
L226 175.574 56.137 39.406 7.761 119.359 
I227 177.117 62.278 35.276 8.036 118.958 
L228 176.453 56.348 39.59 8.711 121.774 
T229 173.234 65.532 67.009 8.199 114.9 
L230 176.541 56.1 39.476 8.826 120.732 
S231 172.499 60.367  8.491 113.326 
L232  55.874 39.501 8.21 122.352 
I233 175.147 63.018 35.41 8.453 119.769 
L234 178.532 56.172 39.139 8.512 118.811 
V235 175.641 65.15 29.186 8.469 122.012 
L236 177.528 56.512 39.255 8.69 121.5 
I237 175.513 62.904 35.423 9.298 118.944 
S238 174.383 60.686  8.477 115.886 
L239 176.21 56.339 39.54 8.853 126.305 
L240 176.991 56.392 39.376 8.722 121.366 
L241 177.438 55.989 39.386 9.121 117.1 
T242 173.249 65.2 66.698 8.254 116.163 
V243 175.725 65.321 29.247 8.78 122.551 
L244 178.038 56.134 39.339 8.78 118.664 
A245 178.136 53.163 14.965 8.594 123.071 
L246 177.699 55.788 39.854 8.72 119.949 
L247 176.107 54.243 40.153 8.873 118.144 
S248  56.125 61.926 8.199 113.901 

 

A.3 Wild type muEpoR218-268 chemical shifts in 10 mM sodium phosphate, pH 7.0, 200 mM 
d38-DPC, 10% D2O (v:v) 

Wild Type      
  C Ca Cb H N 
 S      
 N 174.64904 53.51418 39.50878   
 A 177.39068 53.00189 19.75242 8.36448 123.36188 
218 L 176.76146 55.65966 42.75389 8.27975 119.51994 
219 T 174.49302 61.00128 70.21197 8.12354 112.39972 
220 A 177.8703 53.55676 19.2455 8.49114 124.62308 
221 S 174.27282 59.26771 63.72775 7.97884 112.44594 
222 D 175.82701 54.8776 41.52073 8.08274 120.65205 
223 L 176.07547 54.58111 43.08118 7.72845 120.09381 
224 D  54.42775 43.03436 8.189 123.34001 
225 P      
226 L 178.29115 58.58417 41.52057   
227 I 179.25282 64.25483 36.98435 7.84571 119.01423 
228 L 177.80552 58.84924 41.93387 8.21059 121.60099 
229 T 175.95305 68.0918  7.94914 115.36954 
230 L 178.29815 58.51818 41.88574 8.31024 119.41597 
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231 S 175.15035 63.53921 62.76026 8.17696 114.61253 
232 L 178.55808 58.30516 41.67067 7.91081 121.13175 
233 I 177.30515 65.517 37.35079 8.04518 118.3965 
234 L 179.97502 58.49818 41.49307 8.24393 119.21893 
235 V 177.25092 67.10518 31.29531 8.31149 121.11908 
236 L 178.7409 58.82468 41.67313 8.34538 119.97857 
237 I 177.48313 65.28394 37.73762 8.66729 117.3096 
238 S 176.86862 63.63482 62.63005 8.14779 116.71553 
239 L 178.08519 58.60595 41.99451 8.43321 124.34448 
240 L 178.57424 58.8893 41.88437 8.2851 119.48266 
241 L 178.36977 58.43049 41.71903 8.56275 117.0672 
242 T 176.30861 68.21235  7.85895 116.02906 
243 V 177.63102 67.39633 31.215 8.23644 120.37464 
244 L 179.37623 58.57203 41.53489 8.31669 118.70518 
245 A 179.82444 55.64047 18.53608 8.56764 122.22491 
246 L 178.89799 58.23828 42.27027 8.36416 118.32277 
247 L 179.52534 57.5618 42.15666 8.41682 117.03651 
248 S 175.31898 60.95305 63.40101 8.09369 113.59026 
249 H  57.14116 30.74674 7.91674 119.27719 
250 R    7.72036 120.13266 
251 R 178.09474 59.20649 29.44758   
252 T 176.35464 65.4327 68.5985 7.78609 114.32036 
253 L 178.3113 57.51019 42.18068 7.91977 120.51861 
254 Q 177.31 59.46324 28.80213 8.46463 118.15121 
255 Q 176.71167 57.34407 28.98848 7.76434 115.92335 
256 K 176.75494 57.0598 33.02405 7.60337 116.54817 
257 I 174.73794 62.52286 38.75947 7.55505 116.74118 
258 W  55.49808 29.03703 7.98595 118.84649 
259 P 177.92646 63.41782 32.10553   
260 G 173.84061 45.17598  8.21028 107.78397 
261 I  58.64655 38.58278 7.80287 121.40432 
262 P 176.46355 63.24791 32.12214   
263 S  56.18249 63.54117 8.29015 117.18823 
264 P 177.03438 63.52479 32.0578   
265 E 176.45209 56.99261 30.1038 8.41722 119.77598 
266 S 174.06548 58.32796 63.97491 8.00553 115.44215 
267 E 175.0503 56.85047 30.60347 8.19624 122.80193 
268 F  58.83643 40.52133 7.5768 124.65485 

 

A.4 L223C muEpoR218-268 chemical shifts in 10 mM Sodium phosphate, pH 7.0, 200 mM d38-
DPC, 10% D2O (v:v) 

L223C      
  C Ca Cb H N 
 S      
 N      
 A      
218 L 176.821 55.732 42.386 8.277 119.142 
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219 T 174.384 61.141 70.1395 7.961 111.8895 
220 A 177.838 53.08433 19.211 8.38925 124.86525 
221 S 174.237 59.39933 63.88067 8.05525 113.06175 
222 D 175.7 54.51467 41.23033 8.14813 120.69475 
223 C 173.546 58.552 28.66067 7.854 117.7355 
224 D  53.121 42.399 8.55413 125.88562 
225 P 178.82 65.383 32.35   
226 L 178.272 58.40767 41.38433 8.584 121.447 
227 I 179.136 64.13933 36.904 7.77787 118.83925 
228 L 177.829 58.59967 41.95367 8.1305 121.71637 
229 T 175.934 68.23767  7.91743 115.20071 
230 L 178.294 58.097 41.77667 8.34033 119.38467 
231 S 175.132 63.894 62.99533 8.17475 114.58988 
232 L 178.552 58.244 41.555 7.914 121.06043 
233 I 177.328 65.668 37.32067 8.05513 118.35988 
234 L 179.954 58.45467 41.2975 8.25713 119.238 
235 V 177.227 67.44333 31.158 8.3085 121.05838 
236 L 178.728 58.86033 41.65033 8.34237 120.03037 
237 I 177.474 65.42567 37.42867 8.68112 117.27037 
238 S 176.87 63.805 62.571 8.15888 116.71625 
239 L 178.08 58.241 41.9075 8.44688 124.30113 
240 L 178.587 58.536 41.678 8.299 119.4355 
241 L 178.376 58.2865 41.7 8.57817 117.08717 
242 T 176.326 67.791 67.818 7.867 116.12637 
243 V 177.636 67.576 31.167 8.2554 120.3908 
244 L 179.388 58.47233 41.56333 8.32175 118.6065 
245 A 179.798 55.603 18.38233 8.57387 122.08013 
246 L 178.843 58.041 42.091 8.36925 118.25538 
247 L 179.33 57.41333 42.0985 8.38917 117.09367 
248 S 175.255 61.134 63.771 8.06267 113.39817 
249 H 176.05 57.081 30.734 7.973 119.339 
250 R    7.792 120.218 
251 R 178.058 58.986 29.38193   
252 T 176.33 65.131 68.77733 7.78555 114.31694 
253 L 178.313 57.5965 42.023 7.91443 120.52314 
254 Q 177.311 59.517 28.741 8.46525 118.20675 
255 Q 176.694 57.446 28.93833 7.78586 115.93529 
256 K 176.715 56.912 32.663 7.61057 116.58271 
257 I 174.714 62.66167 38.799 7.54887 116.6725 
258 W  55.546 28.988 7.99063 118.80862 
259 P 177.904 63.788 32.013   
260 G 173.843 45.1335  8.208 107.74725 
261 I  58.672 38.576 7.803 121.37267 
262 P 176.45 63.0305 32.0975  117.15088 
263 S  56.293 63.728 8.29262  
264 P 177.024 63.7025 32.017   
265 E 176.451 56.96433 29.99633 8.42513 119.76538 
266 S 174.063 58.30467 64.121 8.00975 115.43213 
267 E 175.054 56.802 30.54633 8.201 122.782 
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268 F  58.927 40.463 7.579 124.65387 

Structure Parameter Table 

A.5 Murine EpoR TM dimer structure parameters  

Experimental Restraints per Monomer 
# of NOE restraints   

 Intraresidue 241  
 Inter-residue   
     sequential 105  
     medium-range 92  
     long-range 7  
     unambiguous intermonomer 66  
    

# of Hydrogen Bond Restraints 15  
# of Torsion Angle Restraints 52  

 Backbone ! 26  
 Backbone " 26  
    

Structure Statistics 
Restraint Violations 

 Distance (>0.5 Å) 2.53  
 Distance (>0.3 Å) 2.42  
 Dihedrals (>5°) 13  

Deviation from idealized geometry 
 Bonds (Å) 0.0085 ±0.0005  
 Angles (deg) 1.141 ±0.096  
 Impropers (deg) 4.23 ±0.569   

Deviation from experimental restraints 
    
 NOEs 24  
 Dihedrals (deg) 7.39  

RMSD 
 Backbone atoms 2.05  
 All Heavy Atoms 2.64  

Ramachandran Analysis 
 % Most Favored 72.1  
 % Allowed 24.8  
 % Generously Allowed 2.34  
 % Disallowed 0.72  

 

  


