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Abstract of the Dissertation 

Structural and energetic determinants of function in the Heterotrimeric G-Proteins 

by 

Noel Carrascal 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Computational Biology) 

Stony Brook University 

2011 

The heterotrimeric G-proteins are important in signal transduction that triggers important 

biological functions in cells of living organisms. The use of theoretical models to study these 

proteins gives additional insight into mechanisms of signal transduction and molecular 

recognition events in the cell. With that objective in mind, molecular dynamics simulations of a 

heterotrimeric G-protein reveal structural and energetic differences among the states of its 

signaling cycle. The simulations are stripped explicit waters and analyzed in search of 

determinants of function with the help of backbone clustering and continuum electrostatic 

models such as Poisson–Boltzmann (PB) and generalized-Born (GB). The energies are broken 

down into contributions from individual components corresponding to the carbonyl and amino 

part of the backbone as well as the side chain of each residue. The results allow the identification 

of components that are important for folding and binding. Two interdependent results emerge 

from this research: continuum electrostatic models facilitate the understanding of biological 

systems from a theoretical point of view; and the heterotrimeric G-protein in its three states 

serves as a biologically important model for evaluating electrostatic continuum models. As a 

preliminary work, an evaluation of the GB continuum model was done by measuring entropic 

differences in free energy of binding from simulations in continuum and explicit solvent models; 

this supports the use of explicit solvent for molecular dynamics and GB for measuring 
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electrostatic binding free energies. Explicit water for simulation and continuum electrostatic free 

energy calculations—with GB and PB—were further tested by simulating a heterotrimeric G-

protein in three different states for 100ns of simulation time. The degree to which GB 

approximates PB was quantified for total binding energies as well as for individual components’ 

contributions to binding energies. GB is corroborated as a reasonably good approximation to PB, 

but it appears to be most useful as a filter of relevant components to be calculated with the more 

reliable PB method. The simulations of the heterotrimeric G-proteins were extended to 608ns, 

and further analysis included clustering and the calculations of folding free energies in addition 

to binding free energies. Cluster analysis was performed on the backbone of the α-subunit 

revealing structural differences in sub domains and loop regions of the heterotrimeric G-protein 

in its different states. Differences in binding energies from one state of the heterotrimeric G-

protein to the other were used to identify and structurally characterize the interaction of 

important components. At the end of this work, a detailed description of structural and energetic 

determinants of function in the heterotrimeric G-protein is given at the atomic level. This 

information gives important insight into the changes that the heterotrimeric G-protein undergo 

during signal transduction from theoretical models.   
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CHAPTER 1 

Introduction 

1.1 Heterotrimeric G-protein function 

1.1.1 General function 

Guanine nucleotide binding proteins, such as the heterotrimeric G-proteins, are important 

in the transmission of extracellular signals into the cell. These proteins are commonly localized 

in the proximity of trans-membrane G-Protein Coupled Receptors (GPCRs), with post-

translationally modified termini that allow them to remain attached to the cell membrane.(1) 

Heterotrimeric G-proteins and GPCRs interact in many different ways depending on sequence 

variability. At least 865 genes have been identified to code for GPCRs in the human genome; 

these receptors work together with heterotrimeric G-proteins to modulate the transduction of 

signals into the cell.(2) In addition to the large number of genes that code for GPCRs, there are 

also multiple genes that code for heterotrimeric G-proteins. There are at least 21 Gα, 6 Gβ and 12 

Gγ subunits of the heterotrimeric G-proteins in humans.(3) Gα is primarily used to classify 

heterotrimeric G-proteins based on sequence similarity. There are four distinct classes of Gα: Gs, 

Gi, Gq and G12.(4) The large possible number of combinations between heterotrimeric G proteins 

and GPCRs allows for the modulation of a large variety of signal pathways, which activate the 

machinery and specific cellular function in a variety of organisms that range in complexity from 

unicellular yeast to cells in tissues of humans and other mammals.(5-6) 

 Heterotrimeric G-proteins wait for activating signals from GPCRs that are passed into 

the cell through a series of protein-protein interactions and conformational motions that, to some 

extent, have been characterized experimentally.(7-9) Experiments suggest that upon GPCR 

activation, the heterotrimeric G-protein undergoes conformational changes that precede 

nucleotide exchange. After GDP is replaced with GTP, it was originally believed that the 

heterotrimeric G-protein would dissociate into the Gα and Gβγ subunits; however, in a proposed 

second mode of signal transduction the heterotrimeric G-protein subunit simply rearranges rather 

than fully dissociating.(10-12) 
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Figure 1.1. Example of a heterotrimeric G-protein signaling cycle. (1) GPCR and 
heterotrimeric G-protein wait for an activator. (2) a ligand binds to the GPCR. (3) Changes in the 
complex signals for nucleotide exchange. (4) GDP is replaced by GTP. (5) the α and βγ 
dissociate. (6) α hydrolyzes GTP, turns it into GDP and the system goes back to state 1. (This 
figured was copied from Wikipedia under GNU-FDL licensing and was created by Sven 
Jähnichen) 

In addition to the two possible modes of activation, dissociation or rearrangement, 

heterotrimeric G-proteins and GPCRs may work in a variety of combinations. The simplest mode 

of operation is a single heterotrimer with a single receptor. It is also possible to have GPCRs 

bound to their respective heterotrimers in a 1:1 stoichiometry in multiple pairs. Finally, a 2:1 

stoichiometry has been experimentally observed that suggests that Gα and Gβγ bind to different 

GPCRs, as opposed to a single heterotrimer per GPCR.(13) In addition to the possible 

rearrangements between heterotrimers and GPCRs, there are many other proteins that interact in 

a concerted mode that aid signal transduction in ways depending on the surface of the cell 

environment and the tissue where the protein is present. 

Some proteins involved in downstream signaling of G-proteins are G-protein Exchange 

Factors (GEFs), Regulators of G-protein signals (RGSs), and G-protein Interacting Proteins 

(GIPs). For heterotrimeric G-proteins, GPCRs correspond to the GEF that activates them. 

Downstream signaling after activation involves many types of GIPs that are involved in a large 

number of functions in different cells such as G-protein-gated ion channels found in neurons. 

Active heterotrimeric G-proteins regulate other proteins involved in processes such as metabolic 

enzymes, ion channels and transporters, transcriptional machinery, motility or contractility 

machinery and secretory machinery. Passing of the signal through the heterotrimeric G-protein 
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into the interior of the cells generates cascading signaling that bifurcates in patterns that generate 

complex reactions in the cell. Some of the outcomes of this downstream signaling are glucose 

metabolism, steroid production, pacemaker activity, chemotaxis, cardiac function, synaptic 

plasticity, and pituitary function. Therefore, heterotrimeric G-proteins are part of intricate large 

scale systems such as organism homeostasis, embryonic development, gonadal development and 

learning and memory.(4-5, 14-15) Despite of the diversity of functions, configurations and roles 

of the heterotrimeric G-proteins, they all have two important properties in common: they 

recognize GDP and GTP as well as their corresponding Gβγ.  

1.1.2 Structural features 

There are three crystal structures of the G-protein that are particularly interesting because 

they all have identical subunit sequence corresponding to Giα1. Two of the crystal structures are 

monomers in the inactive (1GDD) and active (1GIA) states, and the other is the heterotrimer in 

the inactive state (1GP2).(16-18) The Gα subunits can be generally divided into three large 

domains as shown in Figure 1.2. Domain 1 interacts with Gβ in the heterotrimeric state, and its 

N-terminus is modified to go into the cell membrane. Domain 2, also called the GTPase domain, 

is well conserved in all members of the heterotrimeric G-protein super family.(3) Domain 3 is an 

α helical bundle unique to Gα proteins that buries the nucleotide binding pocket into the core of 

the protein.(19) 

	
  

Figure 1.2. Topology of the heterotrimeric G-protein fold. Domains 1 and 3 are made of α 
helical structures and domain 2 is formed by a combination of α helical and β sheet structures. 
The location of the nucleotide is roughly between Domains 2 and 3. Switch regions 1, 2, 3 are 
shown in purple. The lengths of α helical, β sheets and loop regions are not drawn to scale. This 
schematization does not intend to show the binding orientation between α, β and γ subunits. 

There are three switch regions that play a very important role in Gα specificity and 

affinity of binding to Gβγ. Conformational motions of these switch regions relative to each other, 
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and the GTPase domain, are believed to play an important role in modulating interactions with 

Gβγ.(20) Finally, Gβ is a heptameric β-propeller with a helical domain at the N-terminus. 

Figure 1.3 shows that the most notable differences between the Gi alpha 1 in the crystal 

structures is at the N-terminus; it bends towards the Gα domain in (1GDD), is missing in (1GIA), 

and is extended along Gβγ in the heterotrimeric complex. The Gγ subunit interacts mostly with Gβ 

by forming an inter-twined coil-coil structure at the helical region, and it is opposite in location 

to Gα relative to Gβ. The crystal structure of the heterotrimer (1GP2) does not show any contact 

between the N-terminus of Gα and the C-terminus of Gγ; however, their proximity indicates 

possible cooperation to penetrate into the membrane.(19)  

	
  

Figure 1.3. Structures of the three G-protein systems. From left to right: 1GDD, 1GIA and 
1GP2. Added structural information is shown in yellow, green and cyan colors. The cell 
membrane is shown only for illustration purposes, and it is not included in the simulations. 

A recently crystallized structure of the GPCR β2 adrenergic receptor with a nucleotide-

free Gs heterotrimer bound to it reveals new insights about the purported mechanism of function 

inferred from previous crystallographic structures and experimental observations. The most 

revealing observation in the heterotrimeric G-protein of this structure is a displacement of the α-

helical domain relative to the GTPase domain. The involvement of these two domains in 

nucleotide binding, in addition to the range of motion of the α-helical domain, is a smoking gun 

that helps revealing the mechanism of nucleotide exchange that is fundamental in the 

heterotrimeric G-protein cycle.(21) The results of this work supports the importance in 
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characterizing the motions between the α-helical and GTPase domain in the structures of Giα1 

simulated here. 

1.2 Computational methods 

1.2.1 Molecular dynamic simulations 

The relevance of molecular simulations to understanding protein function is now 

enhanced with the help of powerful supercomputers which allow for the study of larger proteins 

for longer periods of simulation time. The internal motions of atoms and protein domains as a 

function of time, and in their biological environment, cannot easily be observed with most 

experimental techniques. For this purpose, molecular dynamics simulations of large proteins 

have been done to reproduce and expand on experimental information.(22) Molecular dynamics 

simulations are based on strong theoretical foundations in classical physics that can be 

summarized in the form of the Hamiltonian: 
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The Hamiltonian above is used to calculate the forces acting between atoms in the 

protein. The first two terms model harmonic oscillators with their corresponding constants ki. In 

the first term in the equation, li corresponds to the distance between pairs of atoms and li0 to a 

reference value. The second term is a summation over the difference between an angle (θi) and a 

reference angle (θi0) formed by consecutive atoms A-B-C, with A and C both bonded to B. The 

third term is a torsional potential of dihedral angles formed by four consecutive bonded atoms, 

and it is modeled with a sinusoidal function where n is the multiplicity (given by the number of 

minima as the bond is rotated through 360o), w is the dihedral angle and γ is the phase factor that 

determines where the dihedral angle passes through the minimum. The fourth term corresponds 

to non-bonded pair-wise interactions between all atoms in the protein. This term is formed by a 

Coulomb potential of electrostatic interactions, which is a function of distance between atoms rij, 

charge q and the permittivity of free space εo, and a Lennard-Jones potential that accounts for 

van der Waals interactions, which is a function of depth of the potential well εij, and σij, is a 
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distance to establish the point at which the interparticle potential toggles from attractive to 

repulsive. The sum of these potentials in the equation gives the total energy of the system.  

Physical models used in simulations have given structural biologists new insights about 

the dynamics of proteins.(22) The wide range of applications of these models include entropy 

calculations by Brooks and Karplus in 1983 and the estimation of structural populated states 

from long simulations by Shaw in 2010; both studies were done on the bovine pancreatic trypsin 

inhibitor.(23-25) The simulation of the trypsin inhibitor by Shaw was done for a single trajectory 

with a specially designed supercomputer that allows simulations to be extended to milliseconds 

of simulation time. Supercomputers are still of limited access to most scientists. For that reason, 

methods to assemble discrete molecular dynamic simulations done on distributive computer 

networks have been developed to study the folding of the N-terminus of the L9 ribosomal protein 

using Markov state models approach by Voelz et. al. (26) The fundamental principles of protein 

folding studied in the works of Shaw and Voelz have extended applications to the sampling of 

different structural changes related to specific protein function such as flap opening in HIV 

protease.(27) Signal transduction is another biological process involving proteins that can benefit 

from studying conformational changes from molecular dynamics simulations; thus, the 

simulation of the heterotrimeric G-protein is ideal for understanding its transformations during 

stages of its signal transduction process.  

Modeling the solvent is as important as modeling the protein. The energetic contribution 

of the solvent to binding is very important in understanding protein-protein interactions such as 

those in the G-protein heterotrimer. The statistical thermodynamics of non covalent binding have 

been derived for continuum solvation models;(28) these models have become an alternative 

approach to computationally expensive free energy perturbation approaches to calculate binding 

free energies in explicit water.(29) In continuum solvation models, the solute is modeled with a 

dielectric constant that ranges from 1 to 8, and the solvent modeled by a statistical continuum 

with a dielectric constant of 80.(30) An important continuum solvation method that calculates 

free energies is the Poisson–Boltzmann (PB) equation,(31) but solutions to this method are 

computationally expensive, especially for proteins the size of the heterotrimeric G-protein. As a 

computationally friendly approximation, the generalized-Born (GB) method has emerged as a 

fast alternative solution to PB methods.(32) Both methods allow for the decomposition of free 
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energies into residue contributions that help understand free energies of binding in more detail, 

and help to better understand electrostatic affinity and specificity.  

Electrostatic contributions to free energies play a fundamental role in determining 

specificity of protein-protein interactions. The importance of electrostatics has also been 

demonstrated for other biological systems (33) and has been applied to the design of 

biomolecules.(34-35) In this work, an energetic analysis is applied to identify residues with 

significant electrostatic contributions in the heterotrimeric G-protein that can help understand 

specificity and its energetic determinants of function that are fundamental in molecular 

recognition events in signal transduction.(36-37)  

1.2.2 Computational studies of G-proteins  

Simulations on other G-proteins are helpful in guiding the analysis done in this work. 

Recent papers on molecular dynamics simulations of other proteins belonging to the Ras GTPase 

family of proteins include the work by Futsugima and Tsuda exploring the switching mechanism 

of H-ras gene with a point mutation.(38) Gorfe et. al. simulated 5 GTPase systems for 10 to 15 

ns.(39) Three of the systems correspond the α H-ras protein with GDP, GTP and no nucleotide. 

The other two simulations correspond to an N-ras and a K-ras system without a nucleotide; a 

mutation in the respective simulations explored the nucleotide switching mechanism that is 

associated with the oncogenic tendency of these systems to remain in a GTP-like state. A recent 

publication by Jones et. al. (40) simulated a heterotrimer built from homology modeling based on 

the 1GP2 systems studied here; their conclusion suggest a connection between the N-terminus 

alpha helix and switch region two, and the conclusion is supported by experimental observations. 

Raimondi et. al. (41) explored solvent accessibility of the nucleotide as a factor for its exchange. 

They also looked at the effect of long range allosteric interactions in small G-proteins as well as 

in a larger Gαt for 40 ns each. The simulation of the G-protein in its three states done in this work 

adds to the growing body of knowledge on this important family of proteins. These three 

different states correspond to snapshots of the heterotrimeric G-proteins, and their simulations 

will give insights into the transformations that occur to arrive to these three states. Because the α 

subunit of the three systems is identical in sequence conformation, differences among the 

systems can be interpreted as caused by the presence of different nucleotides and the βγ subunit. 
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Energetic and backbone structural analysis of the trajectories will be used to characterize the 

three systems.  

1.3 Structural and energetic analysis from trajectories 

The following sections give a brief introduction of what will be covered in each of the 

chapters. In Chapter 2, free energy calculations using generalized-Born from simulations in both 

explicit and implicit solvent models are compared to experimental values. In Chapter 3, 

generalized-Born and Poisson–Boltzmann methods are compared for decomposing binding free 

energies in the G-protein. In Chapter 4, a structural analysis of the G-protein backbone 

conformations, from its three different states, is performed from extended molecular dynamics 

simulations. Finally in Chapter 5, an energetic and structural analysis is performed on the three 

G-protein systems in order to characterize important backbone and side-chain structural 

differences.  

1.3.1 Comparing ensembles generated with implicit and explicit water models help in the 

interpretation of free energies of binding 

The characterization of the energetic landscape of any protein can be done with 

molecular dynamics simulations in either implicit or explicit solvent. A comparison of these two 

solvent models is made to experimental binding energies of a family of pyrimidine 

dicarboxamide bound to MMP-13 protein. The relative simplicity of the systems makes a good 

case study for comparing generalized-Born dynamics to simulations in explicit water. 

Generalized-Born free energies of binding are computed for both trajectories. For the ensembles 

generated with both solvent models, the free energies of binding give good correlation to 

experiment for the sum of differences in van der Waals and Coulomb contributions, as well as 

polar and non polar free energy of transfer contributions. The inclusion of entropy in the binding 

free energies ensembles improves the correlation to experiment for binding energies calculated 

from explicit solvent, but lowers the correlation for binding energies calculated from implicit 

solvent. Calculations on these systems confirm that generalized-Born methods give comparable 

results to explicit solvent in calculating binding free energies. The concepts explained in this 

paper suggest that entropy gives better results when explicit solvent models are used. In this 
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chapter, the theoretical foundations necessary for better understanding the results in the next 

chapter are introduced.  

1.3.2 Energetic decomposition with the generalized–Born and Poisson–Boltzmann solvent 

models: Lessons from association of G-Protein components 

Large protein oligomers require refined tools for the understanding of binding free 

energies. The accuracy of generalized-Born free energy calculations on ensembles generated in 

explicit water is assessed by comparing them to Poison–Boltzmann free energy calculations on 

the heterotrimeric G-protein. Poisson–Boltzmann is considered the gold standard in calculating 

binding free energies, for which generalized-Born is an approximation. Additionally, both 

methods allow the decomposition of the binding free energy into the individual contributions 

from each residue component. Comparing the decomposed energies, as well as overall binding 

energies, to Poisson–Boltzmann is a more rigorous assessment of the applications of the 

generalized-Born method. Correlation of total binding free energies, as well as contributions 

from individual residue types, unveils the advantages and limitations of generalized-Born 

methods; the chapter concludes that application of this method is best as a filter for identifying 

relevant components to be calculated with the computationally more demanding and accurate 

Poisson–Boltzmann method. 

1.3.3 Structural motifs of heterotrimeric G-protein subunits and domains from backbone 

clustering 

Long molecular dynamics simulations of the heterotrimeric G-protein in its three 

different states require methods to group and characterize differences in backbone structures. 

These differences are due to differences in initial structures from crystals, but more importantly 

to the presence of different nucleotides and the βγ subunit. The analysis first aligns all the 

trajectories in the three systems to rigid sections whose alpha carbons have low B-factor values; 

this alignment is only applied to the α-subunit, which is identical in sequence in all the systems. 

Switch regions, shown in Figure 1.2, are of special interest for characterizing α in its three 

different states. Differences in backbone motions between the GTPase domain and the α-helical 

domain are analyzed in search of differences that suggest a mechanism of nucleotide exchange. 

For this purpose, a clustering algorithm is implemented to measure and compare motions in these 

regions of the proteins. The clustering algorithm is based in Root Mean Square Deviations 
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between all frames within each simulation, and across frames in different simulations. This 

methodology shows that motion of the backbone reflects differences due to the presence of GDP, 

GTP and the βγ-subunit.  

1.3.4 Energetic decomposition of binding and stability of selected components from 

extended molecular dynamic simulations 

This chapter gives a structural and energetic analysis of the heterotrimeric G-protein in its 

three different states. Because of the length of the calculation, and the sizes of the systems, it is 

extremely difficult to perform the energetic decomposition on all the components of the protein. 

To make the analysis practical, the generalized-Born method is used as a preliminary filter for 

selecting the most relevant components. Poisson–Boltzmann calculations are then performed on 

components selected from this cutoff. In addition to binding energies of the nucleotides and 

between α and βγ, folding energies are also considered in the analysis. Folding energies help 

identify components that are not captured in binding calculations, but that interact with other 

components that in turn are important for binding affinity and molecular recognition. Folding can 

also identify inter-subunit interactions in the protein that may not be important in binding but 

play other functions in the protein. Folding analysis thus provides a more complete energetic 

picture of heterotrimeric G-protein function. For each of the folding and binding components 

considered, a detailed description of their structural differences in the three systems is given. In 

this way, an energetic and structural characterization of the heterotrimeric G-protein gives 

insights into signal transduction mechanisms. 
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CHAPTER 2 

Calculation of binding free energies for non-zinc chelating pyrimidine dicarboxamide 

inhibitors with MMP-13 

This chapter corresponds to a published paper by Carrascal N., and Rizzo R.C. with the same 

title in Bioorganic & Medicinal Chemistry Letters, 2009. 19(1): p. 47-50. I contributed to this 

paper by generating the data and  analysis of the data. Writing of the text was done by Dr. 

Robert C. Rizzo with my assistance.  

2.1 Abstract 

All-atom molecular dynamics (MD) simulations in both explicit and implicit solvent, 

followed by MM-GBSA energy analysis, have been used to estimate binding free energies of 

four pyrimidine dicarboxamide inhibitors with human collagenase-3 (MMP-13) for comparison 

with experimental activities.  Energetic analysis reveals that affinity is driven primarily by 

favorable van der Waals interactions and burial of total surface area.  The computed effects of 

desolvation, as a function of ligand structure, quantitatively show that hydrophilic derivatives 

pay greater penalties upon binding than their related more hydrophobic analogs. 

2.2 Introduction 

The initial excitement generated by early matrix metalloproteinase (MMP) inhibitors 

(MMPIs) for treatment of cancer was dampened by disappointing clinical trial results which 

showed little or no efficacy.(42-43)  In retrospect, early compounds such as marimastat were too 

broad spectrum and efforts are now focused on design of inhibitors selective for a given MMP.  

Engel et. al.(44) has recently reported a series of highly selective pyrimidine dicarboxamide 

inhibitors, shown in Table 2.1, which target human collegenase-3 (MMP-13).  These compounds 

showed no activity against ten other MMPs tested.  Uniquely, these are the first reported MMPIs 

whose mechanism of action is not chelation of the active site catalytic zinc ion.(44) 

 Despite minimal changes to the pyrimidine scaffold, the ligands .reported  by  Engel et. 

al. (44) span a wide 4 kcal/mol range in binding free energy which makes an ideal test case for 

evaluating computer-aided design methods.  In this report, we have used all-atom molecular 

dynamics (MD) computer simulations, in conjunction with free energy calculations, in an effort 

to characterize which specific physical properties modulate binding for this MMPI series. To 
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evaluate how different water models affect the results, separate MD trajectories for each protein-

ligand complex were generated in both explicit TIP3P (45) (TIP3P-MD) and implicit 

generalized-Born (46) (GB-MD) solvent.  Implicit-based MD provides an attractive alternative to 

explicit solvent simulations when enhanced sampling is desired. 

2.3 Theory 

For each protein-ligand complex free energies of binding were estimated using the MM-

GBSA (47) method.  Our laboratory has recently employed this method to quantify inhibition for 

peptides with HIVgp41 (48) and characterize  origins of resistance for small molecules with 

neuraminidase.(49)  An earlier study by Rizzo et. al. (50) used the method to quantify binding 

and selectivity for the related MMP-1 and MMP-3 systems with good results.  Although 

considered to be an approximate approach, the relatively straightforward setup, ease of use, and 

the ability to study large structural and conformational changes make use of MM-GBSA an 

attractive alternative to more computationally intensive methods such as free energy perturbation 

(FEP).  

 

Using coordinates saved periodically during an MD simulation of each relevant complex 

Table 2.1. Experimental activities of pyrimidine dicarboxamides with MMP-13. 

MMPI Structure IC50
a ΔGbind 

exptlb 

P01 

N N

OO

N
H

N
H

NN

 

6600 -7.07 

P02 

N N

OO

N
H

N
H  

400 -8.73 

P03 

N N

OO

N
H

N
H

CH3H3C

 

72 -9.75 

P04 

N N

OO

N
H

N
H

CH3H3C

F F  

8 -11.05 

aIC50 values in nM from reference.(44) 
bΔGbind exptl estimated as RT ln (IC50) in kcal/mol.   
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the binding affinities are estimated via Equation 2.1. 

STGEEG hvdvdwcoulbind Δ−ΔΔ+Δ+Δ=Δ
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (2.1) 

 In Equation 2.1, ΔEcoul and ΔEvdw are nonbonded protein-ligand intermolecular 

Coulombic and van der Waals energies, ΔΔGhyd is the change in system hydration (desolvation 

penalties), and TΔS is the change in solute vibrational, rotational, and translational entropy.  The 

energies are computed using a classical molecular mechanics force field.  ΔΔGhyd is obtained 

from ΔGhyd = Gpolar + Gnonpolar of each species (complex, receptor, and ligand).  The GB (46) 

method is used to estimate Gpolar and molecular solvent accessible surface (SASA) is used to 

estimate Gnonpolar = γ*SASA + β using standard constants.(51) TΔS energies are computed from 

normal-mode analysis of energy minimized structures.(47)  

2.4 Methods 

Setup, simulations, and analysis employed the AMBER8 suite of programs (52) which 

was used for assignment of force-field parameters (leap, antechamber), MD simulations/post 

processing (sander, ptraj), and normal-mode calculations (nmode).  AMBER radii (mbondi2) 

with dielectric constants 1 and 78.5 and GB model (igb=5) were used for both the original GB-

MD simulations and the single-point calculations used to obtain the energy terms in Equation 

2.1.  For explicit solvent simulations the water was stripped off prior to MM-GBSA analysis.   

The catalytic domain of human collagenase-3 (MMP-13) complexed with ligand P03 

(pdb entry 1XUC)(44) was used as a starting point for the simulations as shown schematically in 

Figure 2.1.  Other analogs in Table 2.1 were manually constructed using the coordinates of 

1XUC as a guide with the program MOE. (53)  His residues were singly protonated at either the 

epsilon (Nε) or delta nitrogen position (Nδ) to maximize coordination with zinc.  Two zinc and 

two calcium ions were retained but all crystallographic waters were removed.  FF99SB (54) and 

GAFF (55) parameters were used for the protein residues and ligands respectively.  Ligand 

partial atomic charges were obtained from ChelpG (56) calculations at the HF/6-31G*//HF/6-

31G* level of theory using Gaussian98. (57) Zinc parameters were taken from the Stote et. al. 

(58) nonbonded model. 

A multi-step equilibration procedure was used for both simulation protocols with the 
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intent of obtaining representative and stable ensembles using short simulation times.  For explicit 

solvent (TIP3P-MD), energy minimization for 1000 cycles followed by 15 ps of MD was first 

performed using a restraint weight of 5.0 kcal/mol/Å2 on heavy atoms (steps 1-2).  Next, three 

energy minimizations of 1000 cycles each were done in which heavy atoms restraints were 

reduced from 2.0, 0.1, to 0.0 kcal/mol/Å2 (steps 3-5).  Two short 5 ps MD runs followed using 

weights of 1.0 and 0.5 kcal/mol/Å2 (steps 6-7).  Finally, a 10 ps MD equilibration followed with 

0.5 kcal/mol/Å2 restraints only on backbone atoms and ions (step 8).  Lastly, equilibration for 

505 ps followed by production MD for 500 ps was performed (steps 9-10) in which restraints 

were used only on ions and backbone atoms further than 10 Å from each ligand (0.5 kcal/mol/Å2 

weight).  All MD runs were at 298.15 K and used a 1 fs time step during equilibration (steps 1-8) 

and a 2 fs time step during final equilibration and production (steps 9-10).  The particle mesh 

Ewald (PME) (59) method was used with 8.0 Å direct-space nonbonded cutoff.  Implicit solvent 

simulations (GB-MD) employed the exact same multi-step protocol however PME was not used, 

the nonbonded cutoff was increased to 15.0 Å, and a 1 fs time step was employed.   

	
  

	
  

Figure 2.1 MMP-13 structure. MMP-13 (orange) complexed with ligand P03 (green) from pdb 
entry 1XUC.  The catalytic zinc ion is shown in cyan and the flexible binding site loop is shown 
in blue.   



	
  

15 
	
  

2.5 Results 

All simulations were well-behaved as measured by root-mean-square stability and plots 

of energy vs. time.  Energetic results from the last 500 ps are shown in Table 2.2.  Here, free 

energies of binding, calculated both with (ΔGMM-GBSA+E) and without (ΔGMM-GBSA) solute entropy 

are listed along with a breakdown of the individual energy terms in eq 1.  Both explicit and 

implicit-solvent results are presented along with correlation coefficients (R2 values) computed 

for all columns with the experimental activities.  However, given that the dataset contains a small 

number of ligands, these R2 values are useful only in the context of viewing general trends.  

Nevertheless, an inspection of the correlations, along with the raw energy components, clearly 

reveal that both simulation protocols yield the same trends with the sole exception being TΔS as 

discussed further below.  Figure 2.2 highlights the overall good agreement.   

Table 2.2 Contributions towards calculated free energies of binding for pyrimidine 
dicarboxamide inhibitors with MMP-13.a  

MM
PI 

ΔΕvdw 
(N=501) 

A 

ΔΕ coul 
(N=501) 

B 

ΔΔGpolar 
(N=501) 

C 

ΔΔGnonpolar 
(N=501) 

D 

TΔS 
(N=21) 

E 

ΔGMM-GBSA 
A+B+C+D  

G 

ΔGMM-GBSA+E 
A+B+C+D+E 

H 

ΔGbind 
exptlb  

I 

Explicit Water (TIP3P-MD) 
P01 -52.65 ± 0.11 -22.97 ± 0.20 44.77 ± 0.15 -5.63 ± 0.00 -18.86 ± 1.93 -36.48 ± 0.13 -17.61 ± 1.93 -7.07 
P02 -52.07 ± 0.12 -17.35 ± 0.13 35.72 ± 0.10 -5.76 ± 0.00 -20.28 ± 1.45 -39.44 ± 0.12 -19.17 ± 1.46 -8.73 
P03 -59.42 ± 0.11 -21.26 ± 0.14 40.22 ± 0.10 -6.09 ± 0.00 -26.16 ± 2.00 -46.55 ± 0.12 -20.38 ± 2.00 -9.75 
P04 -60.30 ± 0.11 -25.29 ± 0.14 44.59 ± 0.10 -6.35 ± 0.00 -26.57 ± 1.90 -47.35 ± 0.12 -20.79 ± 1.90 -11.05 
	
  

R2 = 0.74 R2 = 0.12 R2 = 0.00 R2 = 0.94 R2 = 0.85 R2 = 0.89 R2 = 0.96 	
  

Implicit	
  Water	
  (GB-­‐MD)	
  
P01 -52.47 ± 0.14 -25.74 ± 0.22 47.04 ± 0.17 -5.80 ± 0.01 -15.85 ± 2.20 -36.97 ± 0.14 -21.12 ± 2.21 -7.07 
P02 -54.81 ± 0.12 -21.13 ± 0.16 39.70 ± 0.13 -5.91 ± 0.01 -11.36 ± 1.76 -42.14 ± 0.13 -30.78 ± 1.77 -8.73 
P03 -57.76 ± 0.15 -18.72 ± 0.16 38.94 ± 0.11 -6.46 ± 0.01 -21.06 ± 2.01 -43.99 ± 0.15 -22.93 ± 2.02 -9.75 
P04 -59.62 ± 0.14 -24.76 ± 0.17 44.90 ± 0.14 -6.52 ± 0.01 -18.43 ± 1.58 -46.00 ± 0.14 -27.57 ± 1.59 -11.05 

	
   R2 = 0.98 R2 = 0.06 R2 = 0.09 R2 = 0.85 R2 = 0.23 R2 = 0.97 R2 = 0.18 	
  
 
aAll energies ± standard error of the mean in kcal/mol. 
bΔGbind exptl from Table 2.1.   
 
 Notably, both MD simulation protocols yield comparable binding free energies (Table 

2.2 column G, ΔGMM-GBSA) which correctly reproduce the experimental ordering provided TΔS is 

omitted.  In both cases, increased favorable intermolecular packing, as embodied in ΔEvdw and 

ΔΔGnonpolar (Table 2.2 columns A and D) appears to best explain the experimental variation.  In 

general, more van der Waals contact occurs and more surface area is systematically buried as 

additional atoms are added to the ligand scaffold. 
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Figure 2.2. Comparison between energy components obtained from explicit solvent (TIP3P-
MD) and implicit solvent (GB-MD) trajectories.   

 Both simulation protocols also yield the same trends in intermolecular Coulombic 

interactions (Table 2.2 column B).  The ΔEcoul terms are consistently more favorable for the more 

polar P01/P04 pair versus the more hydrophobic P02/P03 pair.  Further, the simulations quantify 

the important desolvation effects which are a function of ligand structure.  The more hydrophilic 

P01 (pyridine) and P04 (o-fluro toluene) derivates show greater desolvation penalties (Table 2.2, 

ΔΔGpolar column C) of ca. 45 – 47 kcal/mol compared with the more hydrophobic P02 (benzene) 

and P03 (toluene) compounds at 36 – 40 kcal/mol.  Consistent with these quantitative GB results 

are the visual patterns of hydration observed in snapshots from the explicit solvent MD 

simulations (Figure 2.3).  In all cases, water is clustered about the central polar dicarboxamide 

pyrimidine scaffold.  However, for the more polar derivatives, additional waters cluster about the 

terminal pyridine (P01) and o-fluro toluene (P04) groups in comparison with the more 

hydrophobic benzene (P02) and toluene (P03) groups.   

	
   Compared with the other energy terms (Table 2.2, Figure 2.2) estimates for TΔS appear 

to be more sensitive to the sampling protocol used to derive the ensembles.  Explicit MD 

trajectories yield TΔS energies which lead to a systematic increase in entropy across the ligand 

series which also correlate with the experimental ΔGbind. The implicit-derived results show a 
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different pattern.  Surprisingly, an examination of individual results from snapshots which 

comprise the average entropy values listed in Table 2.2 reveal that some GB-derived terms yield 

positive values. 

 

	
  

Figure 2.3.  Solvation patterns for MMPIs from explicit solvent TIP3P-MD trajectories. 
Spheres indicate water oxygens within 2.5 Å of ligand heavy atoms for the center pyrimidine 
ring (red) or outer rings (blue). (N=500).  

Positive TΔS terms are not intuitive as the overall change in free energy is expected to 

decrease (ΔG = ΔH - TΔS) when solute entropy changes are included.  In contrast, explicit 

solvent calculations showed no such anomalies.  Here, the greater variation inherent in GB vs. 

TIP3P ensembles is likely the dominant factor for the observed TΔS differences.  As illustrated 

in Figure 2.4, coordinates from implicit MD show greater variation than the corresponding set 

from explicit MD after the extensive energy minimizations required for the nmode calculations 

used to compute TΔS.  In general, use of larger ensembles is probably more important for 

entropy estimates when using implicit simulation results given the greater variation observed 

here for minimized GB-MD snapshots.  Studies to more fully address how sampling influences 

TΔS results, across different simulations protocols, are underway in our laboratory. 

Incorporating the intuitively correct TΔS results derived from explicit solvent simulations 

yields a strong correlation with experimental ΔGbind of R2=0.96 (Table 2.2 column H).  Most 

striking is the fact that the computed relative free energies of binding (ΔΔGbind) yield  
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Figure 2.4. Ensemble differences from implicit and explicit solvent models. Energy 
minimized snapshots (N=21), from both simulation protocols, for the P01-MMP13 complex.  
Binding site loop in blue.   

quantitative agreement with the experimental results as shown in Table 2.3.  With high accuracy, 

the explicit ΔΔGMM-GBSA+E results quantify the effects of functional group substitution for 

changing pyridines on P01 to benzene (-1.66 exptl vs -1.56 calcd, P02), adding ortho methyl 

groups (-2.68 exptl vs -2.77 calcd, P03), and adding para fluorines (-3.88 exptl vs -3.18 calcd, 

P04).  Importantly, this accuracy approaches that of FEP methods which are historically 

regarded as the gold standard in binding energy calculations with errors on the order of only ca. 

0.25 to 0.5 kcal/mol.  Further investigation of MM-GBSA methods is clearly warranted. 

Table 2.3. Relative free energies of binding (ΔΔG) from TIP3P-MD simulations for 
pyrimidine dicarboxamide inhibitors with MMP-13.a 

MMPI ΔΔGbind exptla ΔΔGMM-GBSA+E 
P01 0.00 0.00 
P02 -1.66 -1.56 
P03 -2.68 -2.77 
P04 -3.98 -3.18 

aExperimental and predicted values from Table 2.1 normalized to P01. 

2.6 Conclusion 

In summary, results from all-atom simulations of four pyrimidine dicarboxamide 

inhibitors with MMP-13 have been used to characterize what drives binding and to test the 

effects of using explicit vs implicit solvent MD.  Both modeling methods reveal that variations in 

van der Waals interactions (ΔEvdw) and burial of surface area (ΔΔGnonpolar) best describe the 

experimental results.  The calculations also yield physically sound ΔΔGpolar and ΔEcoul energies 

with the more polar compounds showing enhanced Coulombic interactions in the binding site 
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and an associated larger desolvation penalty.  An examination of explicit solvent results reveals 

local changes in hydration, as a function of ligand structure, in good visual agreement with the 

GBSA results.   

The strong correspondence in the results suggest that overall both MD protocols sample 

comparable regions of the energy landscapes which is encouraging for use of GB-derived 

ensembles for estimation of ΔGbind.  The exception is solute entropy for which implicit and 

explicit-derived results yield TΔS terms which are not correlated.  The addition of implicit-

derived entropy to the calculated free energies of binding yield diminished agreement with 

experiment.  However, for explicit solvent results good accord is obtained in all cases.  In 

particular, relative free energies of binding (ΔΔGbind) are in striking quantitative agreement.  

Future studies should examine the use of larger datasets, longer simulations, and in particular 

larger ensembles for estimation of TΔS to more fully assess convergence.   
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CHAPTER 3 

Energetic decomposition with the generalized-Born and Poisson–Boltzmann solvent 

models: lessons from association of G-protein components 

This chapter corresponds to a published paper by Carrascal N., and Green D.F. with the same 

title in the Journal of Physical Chemistry B, 2010. 114(15): p. 5096-5116. I contributed to this 

paper by generating the methods for generating the data and plots. Analysis and writing of the 

final text was done by Dr. David. F. Green with my assistance. 

3.1 Abstract 

Continuum electrostatic models have been shown to be powerful tools in providing 

insight into the energetic of biomolecular processes. While the Poisson–Boltzmann (PB) 

equation provides a theoretically rigorous approach to computing electrostatic free energies of 

solution in such a model, computational cost makes its use for large ensembles of states 

impractical. The generalized-Born (GB) approximation provides a much faster alternative, 

although with a weaker theoretical framework. While much attention has been given to how GB 

recapitulates PB energetics for the overall stability of a biomolecule or the affinity of a complex, 

little attention has been given to how the contributions of individual functional groups are 

captured by the two methods. Accurately capturing these individual electrostatic components is 

essential both for the development of a mechanistic understanding of biomolecular processes and 

for the design of variant sequences and structures with desired properties. Here, we present a 

detailed comparison of the group-wise decomposition of both PB and GB electrostatic free 

energies of binding, using association of various components of the heterotrimeric-G-protein 

complex as a model. We find that, while net binding free energies are strongly correlated in the 

two models, the correlations of individual group contributions are highly variable; in some cases, 

strong correlation is seen, while in others, there is essentially none. Structurally, the GB model 

seems to capture the magnitude of direct, short-range electrostatic interactions quite well but 

performs more poorly with moderate-range “action-at-a-distance” interactions. GB has a 

tendency to overestimate solvent screening over moderate distances, and to underestimate the 

costs of desolvating charged groups somewhat removed from the binding interface. Despite this, 

however, GB does seem to be quite effective as a predictor of those groups that will be computed 

to be most significant in a PB-based model. 
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3.2 Introduction 
The interactions between biological molecules lie at the heart of the majority of 

fundamental biological processes. As a result, a deep understanding of these interactions is an 
essential component of understanding biology as a whole. The mechanisms by which 
extracellular signals are transduced into intracellular changes in cellular behavior are a perfect 
example of this, being driven by cascades of interactions between various signaling molecules.  

One of the prototypical models for signal transduction is the heterotrimeric-G-protein 
signal transduction pathway.(5, 8, 15) Heptahelical, integral membrane proteins (the G-protein-

coupled receptors, GPCRs) interact with a diverse range of extracellular ligands. Intracellularly, 

the GPCRs interact with heterotrimeric G-proteins, which consist of three subunits (α, β, and γ). 

In the inactive state, the G-proteins are in a trimeric form, with the α-subunit additionally 

associated with guanosine-5′-diphosphate (GDP). Upon receptor activation (by ligand binding), 

the receptor promotes exchange of the GDP bound to Gα with guanosine-5′-triphosphate (GTP); 

this leads to a conformational change in Gα that results in dissociation from the β- and γ-subunits 

(which remain complexed). Both Gα and Gβγ are then free to interact with additional cellular-

signaling proteins; different variants of the G-protein subunits have different secondary targets. 

In mammalian genomes, there are multiple variants of each subunit—at least 20 α (16 

well-characterized, and several putative forms that are less or uncharacterized), 7 β (including 

multiple isoforms from individual genes), and 12 γ variants;(60) it is the appropriate combination 

of these which leads to the correct coupling of a specific GPCR to the cognate cellular response. 

While a great deal of work has been done to decode the specific interactions made between 

various G-protein subunits, there remain many open questions regarding which combinations of 

subunits are possible, as well as which are physiologically relevant.(61-65) A detailed 

understanding of the energetics underlying subunit association could provide important insight 

into this problem. 

	
   The association of biological molecules typically occurs in an aqueous environment of 

moderate ionic strength; thus, solute–solvent interactions must be appropriately treated in any 

energetic model. Fully explicit, all-atom simulations with the biomolecule embedded in a box of 

water molecules and ions, with periodic-boundary conditions to reduce boundary effects, have 

been very successful in providing a deep understanding of biomolecular structure and dynamics 
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in solution.(54, 66-67) However, while well-suited to determining the dynamic, configurational 

ensembles of a single species (or complex), many challenges arise in computing free-energy 

differences between the bound and unbound states of a complex. In particular, accurate 

estimations of free energies in explicit solvent require adequate sampling of solvent degrees of 

freedom; additional difficulties arise in comparing two independent simulations where the 

number of explicit solvent molecules may vary. Accurate calculations of free-energy differences 

in solution can be achieved though free-energy perturbation techniques, but these approaches are 

tremendously costly.(28, 68)  

 It has long been recognized that a powerful alternative to explicit-solvent free-energy 

perturbation approaches to computing solute-solvent interaction free energies is the use of 

continuum solvent models.(29, 69) Representing the interior of a  biomolecule as a region of low 

dielectric (typically between 1 and 8) and solvent as a region of high dielectric (roughly 80 for 

water at room temperature) with a Debye–Hückel-like treatment of mobile ions, the electrostatic 

potential of a molecule, and thus its free energy, can be computed by solution of the Poisson–

Boltzmann (PB) equation.(31, 70) PB-based continuum solvent models have been used to 

provide important insights into many aspects of molecular recognition: understanding the 

optimum of enzymes for substrate or transition-state binding;(71-73) dissecting the contribution 

of various groups to binding affinity;(33, 74) predicting the relative affinities of ligands;(75-77) 

understanding protein-membrane association;(78) and applications to the design of protein 

complexes.(35, 79) 

 Over the past decade, there has been an increasing interest in faster alternatives to PB-

based models for use in applications that require many repeated evaluations, such as high-

throughput virtual screening of potential drug molecules and molecular dynamics simulations. 

One of the most commonly used of these is the generalized-Born (GB) model originally 

proposed by Still and co-workers.(46, 80-81) Several implementations of the GB model have 

been applied to many problems with a great deal of success, but some concerns have also been 

raised.(82-86) For example, Brooks and co-workers have noted an imbalance between solute-

solvent and intersolute interactions,(87) and Onufriev et al. have found that GB-based methods 

can be sensitive to the method by which effective Born radii are computed.(88) 
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 One of the great advantages of Poisson–Boltzmann-based models is that the free-energies 

are, in the context of the linearized-PB equation, pairwise decomposable in terms of individual 

partial atomic charges. This allows for a rigorous decomposition of contributions from individual 

chemical groups, such as the amino-acid side chains of a protein; such a detailed understanding 

of the role of particular residues in contributing to protein stability and complex affinity has been 

shown to be an important tool in the engineering of proteins with enhanced properties.(89-91) 

Additionally, the pairwise decomposability of PB-based electrostatics has led to an elegant 

optimization theory, through which the electrostatic interactions in a complex may be tuned to 

provide a provably optimal contribution to binding.(72, 92-93) 

 Generalized-Born models are equally pairwise decomposable, and thus should be 

applicable in the same framework that has made PB-based analysis so powerful. However, the 

ability of GB-based models to recapitulate PB-based energetics at this level of detail has not 

been extensively explored. Here, we present results from the application of both PB- and GB-

based component analysis to the interactions between various components of the heterotrimeric 

G-proteins. The results highlight important differences that must be taken into consideration in 

understanding any energetic decomposition with GB models. We begin with a review of the 

underlying theory, and then present the computational results along with a detailed discussion. 

3.3 Theory 

3.3.1 The linearized-Poisson–Boltzmann model is pairwise decomposable  

Implicit solvent models replace an atomistic description of solvent with a continuum 

model; typically, this solvent continuum is described by macroscopic solvent properties such as a 

dielectric constant and surface tension. While debate remains as to the most appropriate 

treatment of nonpolar effects, the physical theory for interactions of charged particles in a 

(nonuniform) dielectric continuum is well-defined.(94)  

Given an arbitrary density of charge, )(rρ , in a medium of spatially varying dielectric, 

)(rε , the potential in all space, )(rφ , is determined by the solution to the Poisson equation, 

)(4)()( rrr  πρφε −=∇•∇ .	
   When monovalent mobile ions are additionally considered (with a 

Debye-Hückel-like treatment), this leads to the Poisson–Boltzmann (PB) equation: 
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)(4)(sinh)()()( 2 rrrrr  πρφκφε −=+∇•∇                (3.1) 

The Poisson equation simply lacks the second term, as rr  ∀= ,0)(2κ  if no mobile 

ions are present, and a well-defined extension to multivalent ions exists.(95) When the 

electrostatic potential in solution is low, the hyperbolic sine term may be approximated by the 

leading (linear) term in the power series expansion, giving the linearized-Poisson–Boltzmann 

(LPB) equation: 

)(4)()()()( 2 rrrrr  πρφκφε −=+∇•∇                          (3.2) 

 The PB equation, both in its linearized and nonlinear forms, can be solved numerically 

through many methods, including finite-difference,(70, 96) finite element,(97) and boundary 

element (98) implementations.  

Decompositions of LPB energetics have been applied to many systems, but the theory 

underlying the decomposition is worth reviewing. Given the potential in all space, the free 

energy of a state in the LPB model is given by 

∫=
v

dVrrG )()(
2
1  φρ                                                        (3.3) 

with the integral taken over all space. This is indeed a free energy, as the cost of creating reaction 

field in a dielectric medium (including entropic terms) is included. In a typical application 

involving biological macromolecules, the molecular charge distribution is approximated by a set 

of point charges at atomic centers. Thus, the term )(rρ  vanishes at all points other than atomic 

centers, and the integral in Equation 3.3 becomes a simple sum over atoms: 

∑
=

=
N

j
iiqG

12
1 φ                                                               (3.4) 

where qi is the partial atomic charge on atom i and φi is the total electrostatic potential at atom i. 

Now, since the LPB equation describes a linear-response model, the potential at a given point 

can be described by a linear combination of the potentials due to all atoms in the system. 
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Furthermore, the potential due to a given atom is the potential due to a unit charge at that 

position, φ′ij, scaled by the partial atomic charge, qj: 

                                       ∑
=

=
N

j
ijii q

1

'φφ                                                              (3.5) 

 Combining Equations 3.4 and 3.5, we get the result 

∑∑
= =

=
N

i

N

j
jiji qqG

1 1

'

2
1 φ                                                        (3.6) 

 Thus, we see that the electrostatic free energy of a system described by the LPB model is 

pairwise decomposable by atom. This feature allows the energy to be similarly decomposed into 

pairwise terms involving various sets of atoms, such as chemical functionalities or individual 

amino acids in a protein. We may simplify this expression by defining the electrostatic potential 

matrix, ][2/1 '
ijφ=Φ , and a partial atomic charge vector, ][ iqQ =


, which gives the matrix 

expression for the electrostatic free energy: 

     QQG T


Φ=                                                              (3.7) 

 It is worthwhile to briefly discuss the origin of the factor of one half in the free-energy 

expression, which has two distinct sources. The off-diagonal terms of the Φ matrix (pairwise 

interactions) are halved in order to prevent double counting; in the double-sum form of Equation 

3.6, the factor of half may be dropped if the second sum is taken over j > i rather than over all j. 

These  terms involve both a Coulombic term and a term due to dielectric screening of the 

Coulombic interaction. The diagonal terms of Φ (self-energies) are halved for a very different 

reason. These terms, which correspond to the interaction of a single charge with its own reaction 

field, are not counted twice in the summation. However, the energetic cost of creating the 

reaction field is equal to half of the total interaction energy of the charge with the reaction field 

but of opposing sign. Thus, the factor of one half for the diagonal elements accounts for the cost 

of reorganizing the dielectric medium; as this includes both entropic and enthalpic terms, this 

leads to a free energy, and not simply a potential energy. 
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Note that, in the full nonlinear PB model, the energy is not simply given by Equation 3.3, 

as an additional integral over all space is required to account for the energy of the mobile ions. 

Additionally, the potential in the nonlinear form is not a linear superposition of potentials from 

unit charges. Thus, this decomposition strictly applies only to the linearized form. 

3.3.2  Free-energy differences in the linearized-Poisson–Boltzmann model  

The atom-by-atom pairwise decomposability of the LPB model for the free energy of a 

single state leads directly to similar pairwise decomposability for differences in free energy, 

including the free energies of solvation, of molecular association, and of conformational changes 

(such as protein folding). Given two states, A and B, with corresponding potential matrices ΦA 

and ΦB, the electrostatic free-energy change going from A to B is 

  
QQG

QQQQG

AB
T

A
T

B
T





ΔΦ=Δ

Φ−Φ=Δ                                                       (3.8) 

where ΔΦAB = (ΦB – ΦA) is the difference of the two potential matrices. Note that this presumes 

a nonpolarizable description of the molecular system, where partial atomic charges do not vary 

with state. In a polarizable model, the pairwise decomposability remains, but the representation 

of Equation 3.8 does not hold.  

 For a solvation free energy, the two states correspond to the same molecular  

configuration in two different dielectric environments; most often, the external dielectric 

environment is that of aqueous solution in one state and that of vacuum (ε = 1) in the other. As a 

result, the Coulombic terms (in a vacuum) are identical in the two states, and the difference 

matrix consists only of differences in interactions with the reaction field; in moving from a 

higher to lower external dielectric, the difference matrix will then be positive definite.(99) For a 

conformational free-energy change, the molecular composition and general dielectric 

environment remain fixed, but the positions of both partial atomic charges and the boundary 

between dielectric regions vary. Thus, the difference matrix will contain both Coulombic and 

reaction-field components, and no general statements can be made about the properties of the 

matrix. When the conformational change of interest is that of protein folding, often an 

approximation to the unfolded state is made in which short, contiguous sequences of amino acids 

(1-3) are modeled as isolated molecules. In this model, the same formalism holds, and the 
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potential matrix for the unfolded state will be block diagonal, with zero elements for all atoms 

not present in the same reference molecule and each diagonal block corresponding to the 

potential matrix for the model. Thus, in the difference matrix, only the diagonal blocks will differ 

from the potential matrix of the folded state. For a binding free energy, the two states consist of 

(A) a complex and (B) each component of the complex in isolation. The unbound-state matrix, 

similar to the unfolded-state matrix discussed above, will be block diagonal, with all 

intermolecular elements zero; each diagonal block will be the potential matrix of the isolated 

molecule. Again, this leads to the result that the off-diagonal blocks of the difference matrix are 

unchanged from that of the complex potential matrix. In a rigid-body binding model, where the 

unbound states are identical in conformation to the bound state, the Coulombic entries of the 

diagonal blocks are identical in both states, and thus the diagonal blocks of the difference matrix 

contain only the difference of the reaction field terms. 

3.3.3 Energetic decomposition in the linearized-Poisson–Boltzmann model 

The form of  Equation 3.8 makes it clear that the differences in electrostatic free energies 

are strictly pairwise decomposable over the atoms of the system, given ΦA and ΦB. These 

matrices do not depend on the magnitudes of the charges in the system but do depend both on the 

position of the atomic charges and on the boundary separating high from low dielectric (and 

nonzero ionic strength from zero). The effect of the dielectric boundary on the potential matrices 

is fundamentally not pairwise decomposable, and this must be considered in the definition of an 

appropriate reference state. Thus, we raise the concept of a hydrophobic isostere—a hypothetical 

molecule with an identical shape as that of interest but with some subset of partial atomic 

charges set to zero. Electrostatic free-energy differences in such a system will be represented by 

an identical ΔΦ matrix, but the charge vector will have the appropriate subset of charges zeroed. 

We define zero energy to be that of the fully hydrophobic system )0(


=Q .  

The atomic-level pairwise decomposability of the model allows for pairwise 

decomposability across any groupings of atoms. Consider a set of m groups, each of which may 

have its charges defined by a vector iq
 . Then,  

]....[ 21
T
m

TTT qqqQ 
=                                                           (3.9) 
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where we recall that the ordering of the indices for the charge vector and the potential matrix is 

arbitrary, as long as it is consistent. We may similarly consider ΔΦ as a block matrix, divided in 

the same way: 

⎥
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⎥
⎥

⎦

⎤
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                                               (3.10) 

The free-energy expression then becomes 

∑∑
= =

ΔΦ=Δ
m

i

m

j
jij

T
i qqG

1 1


                                                    (3.11) 

The meaning of each term in Equation 3.11 depends specifically on how the groups were defined 

and on the physical process being considered. Consider, for example, a binding reaction between 

two species (L and R), where the groups are defined simply as all the atoms in each species. In 

this case, we have 

RRR
T
RLRL

T
RRLR

T
LLLL

T
L qqqqqqqqG  φφφφ Δ+Δ+Δ+Δ=Δ               (3.12) 

The terms LLL
T
L qq  φΔ  and RRR

T
R qq  φΔ  correspond to the difference in the interactions of an 

individual species with its own reaction field in the bound and unbound states, which may be 
termed the desolvation energy for each species. As ΔΦ is symmetric, the two off-diagonal terms 

are equal, and their sum RLR
T
L qq  φΔ2  corresponds to the solvent-screened Coulombic 

interaction between the two species in the bound state; the factor of 2 simply accounts for the 
factor of one half that was included in our definition of ΔΦ. Thus, we have the result 

int
LR

des
R

des
L GGGG Δ+Δ+Δ=Δ                                              (3.13) 

where the desolvation terms are quadratic in the charges of each species and the interaction term 
involves a linear contribution from each. This formalization allows for an elegant technique for 
finding a charge distribution on one species that optimizes the binding free energy to its partner; 
details of this procedure and applications have been extensively discussed in the literature.(71-
73, 92-93, 99-102) 



	
  

29 
	
  

Another common decomposition is into the individual chemical functionalities of a 
molecule. For a protein, each amino acid is easily divided into three groups: one containing all 
atoms of the side chain, another containing the backbone amino group, and a third containing the 
backbone carbonyl. Again considering a binding reaction, we obtain terms of three types 
(unrelated to the division of each amino acid into three groups). These are the following: 

•  The diagonal terms, iii
T
i qq  φΔ , which correspond to the difference (between the 

bound and unbound state) of the interactions that the ith group makes with its own 
reaction field. This is termed the desolvation energy of group i, analogously to the 
desolvation of species A and B, above. 

• The off-diagonal terms, jij
T
i qq  φΔ , where group i and group j belong to different 

binding partners. These are easily interpreted as the solvent-screened Coulombic 
interactions between the two groups in the bound state, analogous to the 
interaction term above, and are termed direct interactions. 

• The off-diagonal terms, jij
T
i qq  φΔ , where group i and group j belong to the same 

binding partner. In this case, there are nonzero contributions from both the bound 
and unbound states, and in the rigid-body binding model, the Coulombic terms in 
the two states perfectly cancel. Thus, these terms correspond to the difference in 
the solvent screening that intramolecular interactions experience in the bound and 
unbound states, referred to as indirect interactions. 

To compute the ΔΦ matrix, a separate solution to the LPB equation must be found for 

each atom in the system, in each of the two states. For each state, considering a system in which 

a single atom is charged to 1 (and all others are replaced with their hydrophobic isosteres) gives 

the potential at all atoms due to a unit charge at one specific atom. The vector of these potentials 

forms a single row of the Φ matrix for that state. 

However, while the full ΔΦ matrix provides the motivation for energetic decomposition, 

it is generally not computed; rather, a single calculation can be done for each group in the 

blockmatrix representation. A system in which a single group is charged (with appropriate partial 

atomic charges) and all others are replaced with hydrophobic isosteres provides the potential due 

to that single group; this provides each of the terms from Equation 3.11 )( jij
T
i qq  φΔ  for a 
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particular group, i. Details and applications of these decompositions have also been discussed in 

the literature.(33, 89, 103) 

3.3.4 Energetic decomposition in the generalized-Born model 

 As discussed above, in the linearized-PB model, a separate calculation must be done for 

each group. For a full residue-by residue decomposition of a large protein complex, this can 

involve several thousand individual calculations. While this is entirely feasible for a single 

structure, it becomes computationally costly to take this approach to ensembles of structures of 

any significant size. For example, to perform a complete analysis over an ensemble of 1000 

snapshots from a constant temperature molecular dynamics simulation could require millions of 

solutions of the LPB equation. 

The generalized-Born model has gained a great deal of favor in providing a fast 

alternative to Poisson–Boltzmann electrostatics in situations where speed is a key factor, such as 

implicit-solvent molecular dynamics and high-throughput virtual screening. Thus, the question 

naturally arises as to whether GB may provide a useful approximation to PB-based energetic 

decomposition. In the GB model, each atom in the system is described by an effective Born 

radius, which is the radius for which a sphere with a centrally located charge would have the 

same solvation free energy as the charge located at the atomic center in the actual system of 

interest; for unit charges, these values correspond to the diagonal elements of the Φ matrices 

discussed above. Given the effective Born radii, the free energy is approximated by the Still 

equation:(46) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−−= ∑∑

= −

N

i

N

j
jijiij

ji

extij

ji

RRrRRr

qq
r
qq

G
1 1 22

intint0 )4/exp(

11
8
1

 εεεπε       (3.14) 

where the first term (skipped for i = j) corresponds to Coulomb’s Law in uniform dielectric, εint, 

and the second term accounts for solvent polarization (solvent dielectric, εext). Clearly, this 

expression can be expressed in an analogous fashion to Equation 3.7, with 

( ) })4/exp(/1]{)1()1[()1(
2/122

intint jijiijextijij RRrRRrr  −+−−=Φ εεε Thus, the 

decompositions with respect to groups of charges apply equally well to GB-based electrostatics.  
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For the self-energy of individual charges, the Still equation is rigorously correct when 

provided exact effective Born radii; the pairwise interactions converge to the energy of a dipole 

in a sphere in the small distance limit and to the interaction of two isolated point charges in the 

far distance limit. In practice, however, exact effective Born radii are not known but rather are 

approximated by a number of different approaches.(80, 83, 104-105) 

Case and co-workers have also derived an extension to the GB model that allows for a 

treatment of mobile ions;(106) the extension simply involves a substitution in Equation 3.14 of  
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                       (3.15) 

 Note that, in the GB formulation of the potential matrix Φ, only the effective Born radii 

are needed; this is a result of the fact that Equation 3.7 separates contributions from geometry 

and from partial atomic charge. However, whereas in a PB-based model a full solution of the 

Poisson–Boltzmann equation is required for each row in the potential matrix, a single evaluation 

of the GB energy (in any implementation) yields all effective Born radii, and thus one energetic 

evaluation provides the full potential matrix. This could potentially result in tremendous savings 

in computational cost; while an individual GB computation may be 10- to 100-fold faster than a 

single solution of the PB equation, when upward of a thousand components are involved, the 

savings becomes 4 or 5 orders of magnitude.  

However, while the potential savings in computation cost are exceptional, it is important 

to consider accuracy as well. While many studies have considered the overall ability of 

generalized-Born methods to recapitulate Poisson–Boltzmann-based solvation and binding free 

energies, there have been few studies of how the two methods compare when energetics are 

decomposed into individual contributions. The remaining sections of the manuscript discuss 

these issues. 

3.4 Methods 

3.4.1 Structure preparation 
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 Initial heavy-atom coordinates were obtained from the Protein data Bank (1gia, 1gdd, 

and 1gp2).(107) The positions of heavy atoms with missing electron density were modeled using 

coordinates from the other structures (where these atoms were observed). Protonation states were 

chosen with the REDUCE program, as were the orientations of amides and imidazole rings;(108) 

this resulted in a single protonated histidine in the  subunit of the trimer (1gp2), with all other 

histidines in a neutral state, all aspartates and glutamates negatively charged, and all lysines and 

arginines positive. Hydrogen atom positions were determined with the HBUILD module (109) of 

the CHARMM computer program.  

3.4.2 Molecular dynamics 

All-atom, explicit solvent molecular dynamics simulations were performed using the 

CHARMM (110) and NAMD (111) programs with PARAM22/27 parameters;(112-113) system 

setup and postprocessing were done with CHARMM, while production dynamics simulations 

were run using NAMD. Each complex was placed in a pre-equilibrated box of TIP3P waters,(45) 

with a minimum of 10 Å between any solute atom and the box edge in all directions. Random 

water positions were replaced with enough sodium and chloride ions to yield physiological (145 

mM) ionic strength; the sodium to chloride ratio was adjusted from unity to provide a system 

with zero net charge. Periodic boundary conditions were applied to minimize edge artifacts, and 

particle-mesh Ewald (PME) summation was used for long-range electrostatic interactions; short-

range interactions were cut off at 12 Å. 

3.4.3 Poisson–Boltzmann calculations 

 All solutions of the linearized-Poisson–Boltzmann equation were obtained using a 

multigrid finite-difference solver distributed with the ICE (Integrated Continuum Electrostatics) 

package.(114-115) The atomic radii used were those optimized by Roux and co-workers for use 

with continuum electrostatic models;(116-117) partial atomic charges were taken from the 

PARAM22/27 parameter set.(112-113) For consistency with the all-atom molecular dynamics 

simulations, an internal dielectric constant of 1 was used, along with an external dielectric 

constant of 80. Two sets of calculations were performed, one with an ionic strength of 0.145 M, 

using a 2.0 Å ion exclusion (Stern) layer, and the other with 0.0 M salt. Binding free energies 

were computed as the difference between the bound complex and rigidly separated unbound 
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components; the bound and unbound states were positioned identically on the finite-difference 

grid so as to cancel artifactual grid energy. Focusing boundary conditions were used: an initial 

calculation was done with the largest dimension of the system occupying 23% of one side of the 

grid, and Debye-Hückel boundary conditions were used; a second calculation was then done with 

the system occupying 92% of the grid, and using the potentials from the previous calculation at 

the boundary. For individual components, but not for net binding energies, an additional 

overfocused calculation was done with the molecule occupying 184% of the grid (centered on 

the component of interest). Net binding energies were computed with a 2573 unit cubic grid, and 

individual components with a 1293 unit grid; due to the overfocusing used for components, the 

grid spacing was identical in both of these cases. 

3.4.4 Generalized-Born calculations 

Generalized-Born calculations were done using the GBSW module (105) of a version of 

the CHARMM computer program modified to output the effective Born radii. As for the PB 

calculations, the atomic radii used were those optimized by Roux and co-workers.(116-117) 

Binding was considered as the difference between the bound state and a state in which one 

component was rigidly translated 500 Å. The scaling coefficients were set to standard values, of 

a0 = 1.2045 and a1 = 0.1866, the molecular surface was used, and a smoothing length of 0.2 Å 

was applied; no cutoffs were used. GBMV calculations (Appendix A) were also performed using 

CHARMM,34 using Lebedev integration with a grid of 38.  

3.4.5 Component analysis 

PB-based component analysis was done with the ICE software package, using a standard 

approach.(37, 114) Each amino acid was divided into three groups: side chain, amino (including 

CR and attached hydrogens), and carbonyl. For each group, the LPB equation was solved (in 

both the bound and unbound states) for a system in which only that group is charged; the 

difference in the potentials from this pair of calculations was used to compute the self-

desolvation for the group and all interactions (direct and indirect) involving the group. GB-based 

component analysis was done with the same partitioning of groups. Effective Born radii for each 

atom in the bound and unbound states were computed with the CHARMM computer program as 

outlined above. These radii were then used within a separate, locally written program to compute 
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the pairwise energies between all groups. As every term is a difference between the bound and 

unbound states, intramolecular terms (desolvation and indirect interactions) include only the 

polarization term of Equation 3.14, while intermolecular (direct) interactions additionally include 

the Coulombic term for the bound state. 

 

Figure 3.1 Overview of complex structures. For each system studied, a representative structure 
is displayed, with Gα in purple cartoon, Gβ in gray cartoon, Gγ in bronze cartoon, and the 
nucleotide (GTP or GDP) in tan licorice: (left) the G-protein heterotrimer, Gα.GDP.Gβγ (PDB ID 
1gp2); (center) the activated Gα monomer, Gα.GTP.Mg (PDB ID 1gia); (right) the Gα monomer in 
the inactive state, Gα.GDP (PDB ID 1gdd). Figures generated with VMD.78(118) 

3.5 Results 

 The heterotrimeric G-proteins can exist in both a bound complex or an unbound state; 

additionally, the α-subunit may be bound to guanosine-5′-di- or triphosphate. In the unbound 

state, Gα has been structurally characterized bound to both GDP and GTP (or more precisely, a 

nonhydrolyzable GTP analogue), while, in the bound state, only the GDP-bound state is 

experimentally accessible—nucleotide exchange is coupled with trimer dissociation as a 

fundamental step in signaling. We have thus begun our analysis of this system with three states: 

isolated Gα bound to GDP; isolated Gα bound to GTP; and Gα bound to GDP, in complex with 

Gβγ.  

In each of these systems, we have considered a single binding equilibrium; for the 

unbound α-subunits this is nucleotide association, while for the trimeric complex it is the 

association of Gβγ with Gα.GDP. Each of these systems has distinct features at the binding 
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interface, and thus, the set of three presents a range of interaction chemistries. In particular, 

βγα GG GDP −.  binding is characteristic of the interactions of large proteins, with a large amount of 

surface area buried on binding, and a diverse range of side chain–side chain, side chain–

backbone, and backbone–backbone contacts. Nucleotide binding, on the other hand, involves the 

near complete burial of a small organic molecule in a deeper binding pocket. The nucleotides are 

both highly polar molecules carrying a net negative charge (–3e for GDP and –4e for GTP). 

GTP, however, is associated in the binding site with a magnesium ion. In solution, the preferred 

state of nucleotide triphosphates is in complex with magnesium,(119) and thus, considering the 

ligand as a GTP.Mg complex with net charge –2e is a reasonable approximation. These 

structures are displayed in Figure 3.1. 

3.5.1 Electrostatic binding free energies computed with generalized-Born and with 

linearized Poisson–Boltzmann are well-correlated 

 Molecular dynamic simulations of each system were performed for 100 ns in explicit 

solvent with periodic boundary conditions. Analysis of these trajectories indicated that they were 

all stable and well-behaved (see the Supporting Information). 101 evenly spaced snapshots were 

then extracted for the computation of binding free energies with both the generalized-Born and 

Poisson–Boltzmann methods. These data are shown in Figure 3.2 and Table 3.1. There is quite 

strong correlation between GB- and PB-computed electrostatic binding free energies in all cases, 

with R2 values of greater than 80%; these correlations persist over a range of over 100 kcal/mol 

in all three systems. However, there are important differences as well.  

3.5.2 Generalized-Born Overestimates Net Electrostatic Binding Free Energies 

While for some snapshots the GB-computed binding free energy is lower than that 

computed with PB, overall there is a strong trend for lower binding free energies with PB. The 

ensemble-averaged binding free energy for the trimer is 2 kcal/mol lower when calculated with 

PB as compared to the same value computed with GB; the nucleotides show an even greater 

tendency for GB to give higher values, with a 10 kcal/mol difference for GTP·Mg binding to GR 

and a 22 kcal/mol difference for GDP. While these differences are within the standard deviations 

of the ensembles (see Table 3.1), they are not within the standard errors of the mean.  
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Figure 3.2 Variation in single-snapshot net binding energies computed by GB and PB. 
Rigid-body electrostatic binding free energies (in kcal/mol) computed for each snapshot by both 
GB (y-axis) and PB (x-axis) are shown for all three systems studied: (left) Gα.GDP.Gβγ; (center) 
Gα.GTP.Mg; (right) Gα.GDP. Note that the single outlier of high energy for Gα.GTP.Mg corresponds to 
the first frame of the simulation; when this point is excluded, R2  is 0.761, and the best-fit line is 
y = 0.808x - 17.078. 
 
Table 3.1: Net electrostatics binding free energies.a 

System mean Std. dev R2 rms 
PB GB PB GB 

βγα GGGDP /  62.16 64.70 32.26 28.01 0.90 10.82 
MgGTPG ./α

 -138.38 -128.81 22.98 20.61 0.84b 13.30 
GDPG /α

 -135.33 -112.63 36.11 23.25 0.81 29.13 
aAll energies in kcal/mol; all values are computed over a set of 101 evenly spaced snapshots from a 100 ns MD 
trajectory. b.  R2 is 0.76 when the first snap shot of the trajectory is excluded.  

3.5.3 Generalized-Born underestimates differences in net electrostatic binding free 

energies between configurations 

Considering the best-fit lines relating the two values makes it clear that the reason for 

these discrepancies is not simply a difference of reference state. In all cases, the least-squares fit 

describing the variation of GB-computed binding energies to those computed with PB has a 

slope less than unity—slightly above 0.8 for association of the trimer and for the binding of 

GTP.Mg to Gα and below 0.6 for GDP—Gα binding. A slope of below unity indicates that GB 

will tend to underestimate the magnitude of free-energy differences between configurations, as 

compared to PB—both highly favorable (negative) and unfavorable (positive) values will be less 

so with GB. While this general trend holds in all three cases, the offset from zero (intercept) is 

very different in all cases. For the association of the protein components of the trimer, where the 

net electrostatic binding energy is always positive, the intercept is also significantly positive (+15 

kcal/mol); it is this positive offset that makes the mean GB result greater than that from PB, 
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despite a slope of correlation below y = x. For the binding of the nucleotides, however, the 

intercept is negative (-15 kcal/mol for GTP·Mg and -34 kcal/mol for GDP). Despite this, the 

highly negative values of the binding free energies make the less than unit slope dominate the 

difference in the means. Although there are significant variations between the equations of the 

best-fit lines in the different systems, fitting the data from all three components gives a strong 

correlation (R2 = 0.98) with a least-squares fit having a slope of 0.91 and intercept of 5.3 (see 

Appendix A). Thus, gross differences between systems seem to be more closely captured by the 

two models than are the details of energetic variation within a system. 

3.5.4 Energetic components show highly variable correlations between GB and LPB 

models 

As discussed in the Theory section, one of the great benefits of linear-response models 

such as generalized-Born and linearized Poisson–Boltzmann is that computed energies may be 

rigorously decomposed into contributions from individual groups and pairs of groups. In order to 

better understand the observed differences in binding free energies computed with the two 

models, we performed such a decomposition with both approaches. Each amino acid was 

partitioned into three groups: side chain, backbone amino, and backbone carbonyl. For each 

group, the difference in the self-energy in the bound and unbound states (due to differences 

interactions with solvent) is termed the desolvation energy; for each pair of groups within a 

molecule, the difference in solvent screening of the interaction (in the bound and unbound states) 

is termed the indirect interaction; and for each pair of groups on opposite binding partners, the 

solvent-screened Coulombic interaction is termed the direct interaction. Finally, the sum of all 

terms involving a single group (desolvation and all interactions, both direct and indirect) is 

termed the mutation energy; the mutation energy is the energetic difference in binding free 

energy between the natural system and a hypothetical system  with that group (and that group 

alone) replaced with a hydrophobic isostere. Figure 3.3 and Table 3.2 summarize these data, 

excluding components for which both GB and PB are within ±1.0 kcal/mol of zero; these consist 

primarily of components not close to the binding interface.	
  	
  

Table 3.2. Group-Based Electrostatic Binding Energy Component.a 
system N Mean Std. dev. R2 rms 

PB GB PB GB 
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3.5.5 Direct, solvent-screened Coulombic interactions show bimodal correlations 

In considering the mutation energies, a very interesting result appears. The great majority 

of points show strong correlation in the values computed by each method, with the data largely 

falling along a line of near unit slope. However, in all systems, there appears to be a 

subpopulation with a decidedly lower slope. This is most apparent for the nucleotide-binding 

systems but is also seen for a few groups in trimer association. 

The mutation energy includes both indirect (intramolecular) and direct (intermolecular) 

terms, as well as self-desolvation penalties, and it is informative to consider how each of these 

vary when computed in the two models. Individual group desolvation energies computed with 

the two models are only loosely correlated. On average, generalized-Born underestimates 

individual desolvation energies; this is by a small amount for the components of the trimer but a 

larger amount for the protein components of the nucleotide-binding systems. However, visual  

 

Mutation Energy 
Gα.GDP.Gβγ 9485 -1.70 -1.76 5.81 5.57 0.91 1.75 
Gα.GTP.Mg 7328 -6.30 -6.22 18.18 17.35 0.93 4.71 

Gα.GDP 9621 -4.21 -3.71 14.85 11.30 0.84 6.31 
Desolvation Penalties 

Gα.GDP.Gβγ 5505 4.67 4.41 5.17 5.08 0.79 2.43 
Gα.GTP.Mg 1341 5.75 3.43 5.23 4.14 0.83 3.22 

Gα.GDP 1439 5.33 3.69 5.34 4.51 0.64 3.60 
Indirect Interactions 

Gα.GDP.Gβγ 5294 -1.23 -1.09 3.25 1.87 0.48 2.38 
Gα.GTP.Mg 5710 0.68 0.84 5.02 4.44 0.90 1.65 

Gα.GDP 4765 0.31 1.08 4.59 5.36 0.51 3.89 
Direct Interactions 

Gα.GDP.Gβγ 9490 -3.87 -3.84 8.67 8.60 0.98 1.26 
Gα.GTP.Mg 10342 -5.74 -5.38 18.99 17.07 0.96 4.30 

Gα.GDP 10812 -4.68 -4.36 16.85 14.72 0.94 4.41 
aAll energies are in kcal/mol. Values are computed over the set of components from all 101 snapshots with either a 
GB- or PB-computed energy of greater than 1.00 kcal/mol in absolute value; N is the size of this set. 
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Figure 3.3 Variation in group-based energetic terms computed by GB and PB. The 
individual group-based energetic terms computed for every snapshot of each system are 
displayed. Columns correspond to the three different systems: (left) Gα.GDP.Gβγ; (center) 
Gα.GTP.MG; (right) Gα.GDP Rows correspond to different energetic terms: (top) mutation energies 
(relative to hydrophobic isostere); (second) desolvation penalties; (third) indirect 
(intramolecular) interactions; (bottom) direct (intermolecular) interactions. All energies are in 
kcal/mol, and for clarity, components with energies computed to be within ±1.0 kcal/mol by both 
methods have been excluded, and the range plotted is restricted to ±50.0 kcal/mol. 

analysis of these data clearly reveals that the deviations are not randomly distributed. Indirect 

interactions, corresponding to the differential solvent screening of intramolecular interactions in 
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the bound and unbound state, show relatively weak correlations, although the degree of 

correlation is system-dependent. The direct interactions, on the other hand, show the greatest 

degree of correlation. The direct interactions also most clearly exhibit the existence of two 

populations, with different slopes of correlation; this seems to be the primary but not exclusive 

source of the patterns seen in the mutation term. 

3.5.6 Inconsistencies between GB and PB are group-specific 

 That certain groups show qualitatively different behaviors raises the possibility that the 

distinct properties of particular amino acids may play a role. To consider this, the contributions 

of each group were further broken down by group type. Figures 3.4 and 3.5 show these data for 

the association of Gα.GDP and Gβγ to form the G-protein heterotrimer. 

Individual group solvation free energies (Figure 3.4) show a wide range of behaviors, with some 

groups showing strong correlation between the GB- and PB-computed values (10 of the 39 most 

significant groups have R2 values of greater than 0.80) and others showing minimal correlation 

(R2 is below 0.5 for 13 of the 39 groups with significant desolvation energies by PB). For 

example, essentially all glutamate and lysine points are distributed about y = x, albeit with some 

degree of variation. Glutamine, tyrosine, and arginine also display relatively well distributed 

linear correlations but with slopes somewhat below unity; the backbone groups (both amino and 

carbonyl) also tend to follow this pattern. However, some groups show much more structure in 

the variation between the two methods. The data for asparagine, for example, fall into distinct 

clusters, largely identified as particular residues; the data for Asn B88, for example, are well-

correlated (R2 = 0.88) and approximately follow y = x (with a slight offset), while the data for 

Asn B119 are more weakly correlated (R2 = 0.40) with a slope significantly below 1. For serine 

and threonine, most positions show very little correlation but in a manner that varies; Ser A16 

and A206, as well as Thr A182 and B153, all have GB-computed values largely confined to 

about a 1 kcal/mol range near 3 kcal/mol, while their PB-computed values span a wider range (1-

6 kcal/mol). In other cases, however, some degree of correlation is seen, although generally with 

a slope much less than 1. The most profound deviation between the GB- and PB-computed 

values is for the protonated histidine at B54, with a correlation coefficient of only 0.18; by by 

Poisson–Boltzmann, the desolvation of this group ranges from about 5 to 25 kcal/mol, while, 

with GB, the desolvation never exceeds 5 kcal/mol. 
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Figure 3.4. Gα.GDP.Gβγ group desolvation penalties, by type. The data displayed in Figure 3.3 
(second row, left) are shown, further broken down by group type. In each case, individual 
residues making significant energetic contributions are uniquely marked. Nonpolar groups 
(aliphatic and aromatic amino-acid side chains) do not make significant electrostatic 
contributions and thus are not shown; as no cysteines make interactions across the  interface, 
these are also not shown. 
3.5.7 Contributions of a buried salt bridge are missed by GB 
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As noted earlier, group mutation energies in this system show a remarkable level of 

correlation given the many inconsistencies in the desolvation terms, and this is true for 

essentially all group types (Figure 3.5); 27 of the 39 most significant groups (by PB) have 

correlation coefficients between the two models of greater than 0.80. There are, however, two 

notable exceptions to this: Asp 76 and His+ 54 on the β-subunit. Both of these groups are 

computed in the Poisson–Boltzmann model to make significantly favorable contributions in a 

subset of snapshots, of as much as -25 kcal/mol for Asp 76 and -15 kcal/mol for His 54, while 

the terms computed with GB are uniformly low in magnitude. As seen in Figure 3.6, these two 

groups are located proximal to one another, near—but not directly involved in—the interface 

with Gα. In the crystal structure, they are involved in an intramolecular salt bridge with one 

another; through the course of the simulation, this salt bridge breaks and then reforms. In all 

cases, however, both groups make additional intramolecular interactions that keep the groups 

localized beneath the protein surface. Under the Poisson–Boltzmann model, the desolvation 

penalty paid by both groups is substantial for certain snapshots, while the GB model suggests a 

small desolvation, uniform across all snapshots; this leads to a correlation coefficient between 

the two models of only 0.24 for His and 0.05 for ASP, and the best fit lines have a slope of only 

0.20 and 0.04, respectively. In the PB model, the indirect interactions made between these 

groups also are very large in some cases (particularly when the salt bridge is formed); these 

correspond to the enhancement of the favorable electrostatic interactions between the two groups 

upon removal of solvent from the volume of the α-subunit, and the GB model is unable to 

capture these effects. 

3.5.8 Deviations between PB and GB are larger for nucleotide binding 

The differences seen between the two methods in assessing the contributions of 

individual groups to the association of the Gα and Gβγ subunits are generally moderate, 

particularly due to the cancellation of error in the mutation term. However, this is much less so in 

the case of nucleotide binding. Figures 3.7 and 3.8 show these  data for the association of  Gα  

with  GTP.Mg. In this system, self-desolvation energies computed with GB are greatly 

underestimated (with respect to the values from PB) for the majority of groups with significant 

desolvation. This is seen for serine and threonine, as well as for cysteine, asparagine, although 
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Figure 3.5.  Gα.GDP.Gβγ group mutation energies, by type. The data displayed in Figure 3.3 
(first row, left) are shown, further broken down by group type. In each case, individual residues 
making significant energetic contributions are uniquely marked. Nonpolar groups (aliphatic and 
aromatic amino-acid side chains) do not make significant electrostatic contributions and thus are 
not shown; as no cysteines make interactions across the interface, these are also not shown. 
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Figure 3.6. Structure of  His+ 54 and Asp 76 of Gβ in the Gα.GDP.Gβγ complex. Top: This pair 
of residues is located proximal to the Gα binding interface (left) but is oriented so as not to make 
direct interfacial contacts, nor to be solvent exposed (right). Center: In some snapshots, the two 
groups make a hydrogen-bonded salt bridge, with a representative structure shown on the left; in 
others, the aspartate shifts to interact with the backbone amino group of Leu 55. Bottom: The 
energetics of each component are shown, with the left-most panels displaying the correlation of 
GB- and PB-computed desolvation and mutation terms for each residue (His+ 54 top, Asp 76 
bottom) and the right-most panels showing the variation of these terms during the coarse of the 
simulation; the top graph of the left-most panels shows a metric of salt bridge formation. 
Structural figures generated with VMD.(118) 
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no terms are particularly large for the latter three. Similar behavior is seen for the backbone 

groups. For individual groups, even when there is significant correlation, the best-fit line has a 

very low slope; the GB- and PB-computed results for Ser 151 are correlated with an R2 value of 

0.50, but the best-fit line has a slope of 0.15, and for the backbone NH of position 45 the R2 

value is 0.36, but the best fit slope is 0.20 (correlation coefficients and best-fit lines for all 

significant groups are given in the Supporting Information). For both aspartate and arginine, 

reasonable agreement between the two methods is seen, although with significant variances some 

positions are highly correlated with near unit slope (for example, Asp 272 with R2 = 0.96, slope 

0.84, and intercept -0.1), while others are less so (such as Asp 200, with R2 = 0.30, slope 0.38, 

and intercept 3.3). For lysine, while a (weak) overall positive correlation is seen when all 

positions are considered, when individual positions are considered, the GB-computed values 

span a very small range as compared to the PB-computed values; with Lys 51, for example, the 

two methods give a correlation coefficient of only 0.27, and the best-fit line has a slope of 0.24 

and an intercept of 8.54. Finally, the two methods give results with very little correlation for the 

single glutamate that is desolvated; the data for Glu 43 have an R2 value of 0.27.  

 Again, the mutation terms agree much better when computed in the two different models. 

For the backbone groups, as well as serine, threonine, aspartate, arginine, and lysine, the GB-

computed mutation energies are linearly correlated to those computed with PB with quite a tight 

distribution. For example, while the desolvation energies computed with the two methods for Ser 

47 were completely uncorrelated (R2 = 0.04), the mutation terms are correlated with an R2 value 

of 0.98; the data for the backbone of position 45, discussed earlier, shifts from a weak correlation 

with slope  0.2  for  desolvation to a strong  correlation   (R2 = 0.79)   with a   near   perfect  y = x 

correlation (best-fit line, y = 1.02x - 0.09). However, while in the case of the α-βγ subunit 

association was largely due to a cancellation of errors in the computation of desolvation and 

interaction terms, in this case, the primary effect seems to be the dominance of the interaction 

terms, which are highly correlated in the two models. This can be seen clearly in the magnitude 

of the terms; for example, the (poorly correlated) desolvation energies for serine range from 0 to 

4.5 kcal/mol, while the (highly correlated) mutation energies span a range of -40 to +10 

kcal/mol. As seen in Figure 3.9, Ser 47 makes a hydrogen bond with the α phosphate of GTP; in 

the  bound state, this  position is  completely buried from solvent.  In a buried site,  the  direct  



	
  

46 
	
  

 
Figure 3.7. Gα.GTP.Mg group desolvation penalties, by type. The data displayed in Figure 3.3 
(second row, center) are shown, further broken down by group type. In each case, individual 
residues making significant energetic contributions are uniquely marked. Nonpolar groups 
(aliphatic and aromatic amino-acid side chains) do not make significant electrostatic 
contributions and thus are not shown; as no histidines make interactions with the nucleotide, 
these are also not shown.  
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Figure 3.8. Gα.GTP.Mg group mutation energies, by type. The data displayed in Figure 3.3 (first 
row, center) are shown, further broken down by group type. In each case, individual residues 
making significant energetic contributions are uniquely marked. Nonpolar groups (aliphatic and 
aromatic amino-acid side chains) do not make significant electrostatic contributions and thus are 
not shown; as no histidines make interactions with the nucleotide, these are also not shown. 



	
  

48 
	
  

interaction energies will approach the limit of Coulomb’s law in a uniform dielectric constant 

equal to that of the protein interior (in this case, 1.0). Both GB and PB approach this limit in this 

case, and thus agree well. These terms are large in magnitude because of the highly charged   

nature of the ligand, and the low internal dielectric constant. Adding to this, the desolvation 

penalties of many of the groups lining the binding pocket are rather low, due to significant burial 

in the unbound state.  

3.5.9 Moderate-range, action-at-a-distance interactions are poorly captured by GB 

In other cases, however, greater deviations between the GB- and PB-computed mutation 

energies are seen. Gln 204 pays essentially zero desolvation, and thus, the mutation energies are 

again dominated by interactions. However, the correlation of the values computed with the two 

models, while linear, has a slope much lower than 1; similar results are seen for certain 

asparagine, arginine, and lysine residues. As can be seen in Figure 3.9, Gln 204 does not make 

direct contact with the GTP ligand but does make moderate-range, action-at-a-distance 

electrostatic interactions with the triphosphate. The GB model overestimates the solvent 

screening of this interaction, as compared to the PB-computed values. The results for Glu 43, 

which showed no correlation in desolvation, remain essentially uncorrelated in the mutation 

term. The desolvation of this group is quite small for a charged group, and the interactions are 

unfavorable. This group is near the phosphate of the nucleotide but not involved in any direct 

interaction; the unfavorable action-at-a-distance effects of this group are not well-captured by 

GB. Lys 51, noted above as being weakly correlated with a slope much below unity for 

desolvation, behaves similarly in mutation energies, with only a slightly improved correlation 

coefficient of 0.50; this position is proximal to the phosphate tail of the nucleotide but does not 

make direct hydrogen-bonding interactions. 

3.5.10 Structurally similar interactions are reproduced between systems with both 

methods  

Structurally and chemically, the binding of GDP to Gα is very similar to that of GTP.Mg, 

and thus, it may be expected that the behavior of the two models in these systems would also be 

similar. The data for Gα—GDP binding are shown in Figures 3.10 and 3.11, and while many 
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similarities are seen, there are notable differences. The desolvation energies of Glu 43, showing 

very little correlation with GTP.Mg binding, are strongly correlated (R2 = 0.90) with a reason- 

 
Figure 3.9. Structure of key Gα residues in the Gα.GTP.Mg and Gα.GDP complexes. Ser 47 makes 
consistent interactions with the α phosphate in both complexes; Thr 48 coordinates the 
magnesium ion through the oxygen of the side chain in the complex with GTP.Mg but directly 
donates a hydrogen bond to the β phosphate in the GDP complex. Gln 204 makes consistent 
action-at-a-distance electrostatic interactions with GTP.Mg but is structurally variable in the 
GDP-bound state. Arg 178 shifts from making a bidentate interaction with the β and γ phosphates 
of GTP to forming an intramolecular salt bridge with Glu 43 when GDP is bound; Asp 200 
coordinates the magnesium of GTP.Mg but makes only repulsive, action-at-a-distance 
interactions with GDP. Lys 51 makes no direct nucleotide contacts but makes favorable action-
at-a-distance interactions with both GTP and GDP. While in the GTP-bound state, Asp 272 
occupies two structural clusters (one interacting with the nucleotide base and the other not); in 
the complex with GDP, it makes consistent hydrogen-bonded interactions. Figures generated 
with VMD.(118) 



	
  

50 
	
  

able slope (0.68) with GDP; while a similar correlation remains in the mutation terms    (R2 = 

0.85), the slope is significantly reduced (0.36). In this state, Glu 43 makes a hydrogen-bonded 

salt bridge with Arg 178; this interaction covers the nucleotide diphosphate and thus brings the 

aspartate closer, making correspondingly stronger repulsions. These more intimate interactions 

seem to be better captured by GB, although there are still significant discrepancies.  

The desolvation energies of lysines and arginines computed by the two methods appear, 

on visual inspection, to be less correlated with GDP binding. However, more careful analysis 

shows that the dominant observation is simply that the various groups have more similar mean 

desolvation penalties; there is little correlation for the data of a single position in either case, but 

with GTP.Mg binding, the wider range of contributions from different positions results in a 

better apparent correlation. 

3.5.11 Quantification of energetic differences between systems can be very model 

dependent 

When the interactions made in the two systems are similar, comparisons between the 

model generally give consistent results within an individual system, as seen in the case of Ser 47. 

Thr 48 also behaves similarly with both GTP.Mg and GDP binding, and is worthy of note as the 

details of the interaction change in the two systems. While in the GTP·Mg-bound state, the side 

chain oxygen coordinates the metal ion, in the GDP-bound form, the side chain hydroxyl donates 

a hydrogen bond directly to the terminal (β) phosphate (Figure 3.9). These interactions differ in 

important ways, but both are direct, short-range interactions, where the correlation of the two 

models seems to be greatest. However, even when energetic differences between structures of 

the same system are captured similarly, there can be striking differences between systems; the 

difference in the ensemble-averaged mutation energy of Ser 47 for GTP.Mg binding versus GDP 

binding is computed to be +4.3 kcal/mol by PB (favoring GTP.Mg), while the same difference 

computed by GB is +13.2 kcal/mol. For Thr 48, on the other hand, the same  difference is -0.6 

kcal/mol by PB and -1.8 kcal/mol by GB, a much closer agreement. In the correlations of GB- 

and PB-computed mutation energies, there are additional differences between the two 

nucleotide-binding systems. Arg 178 and Asp 200 both make vastly reduced contributions to 

GDP binding than to GTP.Mg. When binding GTP.Mg, Arg 178 makes a bidentate interaction 
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Figure 3.10. Gα.GDP group desolvation penalties, by type. The data displayed in Figure 3.3 
(second row, right) are shown, further broken down by group type. In each case, individual 
residues making significant energetic contributions are uniquely marked. Nonpolar groups 
(aliphatic and aromatic amino-acid side chains) do not make significant electrostatic 
contributions and thus are not shown; as no histidines make interactions with the nucleotide, 
these are also not shown. 
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Figure 3.11. Gα.GDP group mutation energies, by type. The data displayed in Figure 3.3 (first 
row, right) are shown, further broken down by group type. In each case, individual residues 
making significant energetic contributions are uniquely marked. Nonpolar groups (aliphatic and 
aromatic amino-acid side chains) do not make significant electrostatic contributions and thus are 
not shown; as no histidines make interactions with the nucleotide, these are also not shown. 
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with the β and γ phosphates and Asp 200 coordinates the magnesium, but with the loss of both 

the γ phosphate and the associated Mg2+, these interactions are lost (Figure 3.9). While Arg 178 

becomes involved in an intramolecular interaction with Glu 43 (discussed above), Asp 200 

becomes partially solvent exposed. As it was these groups that dominated the agreement between 

GB- and PB-computed mutation energies, the correlations drop greatly. Again, these unfavorable 

action-at-a-distance interactions are not well captured. However, while the differences within a 

structure do not agree well, the gross differences between the states are in general agreement. PB 

gives an ensemble-averaged mutation energy for GTP.Mg binding of -79.5 kcal/mol for Asp 200 

and -67.5 kcal/mol for Arg 178, and corresponding terms for GDP binding of +5.6 and -19.5 

kcal/mol; with GB, these values are -95.6 and +1.7 kcal/mol for Asp 200 and -50.0 and -4.8 

kcal/mol for Arg 178 (complete data in Appendix A). Thus, the differences agree to within about 

13% for Asp 200 and 6% for Arg 178. Asp 272 shows similar behavior but in the opposing 

direction and somewhat less pronounced. This group makes direct hydrogen-bonding 

interactions with the nucleotide base, which persist throughout the simulation with GDP bound, 

but which is broken for some of the GTP.Mg-bound simulation. The rough differences in 

desolvation energy between these two states are captured by GB (ensemble averages of 4.3 

kcal/mol for GTP binding and 14.1 kcal/mol for GDP binding) in a somewhat similar fashion as 

by PB (5.2 and 19.3 kcal/mol, respectively), but while PB shows decided variations within each 

cluster, GB does not. Additionally, while average mutation terms agree reasonably well for GTP 

binding (-3.5 kcal/mol with PB, -6.4 kcal/mol with GB), there are dramatic differences with GDP 

binding—a weakly favorable contribution of -1.2 kcal/mol is computed with PB, while GB 

predicts a strongly favorable contribution of -25.0 kcal/mol. Many of the points for all three 

cases fall into the cluster of the majority of other arginines and aspartates lying along a line of 

very low slope. This low-slope behavior has been discussed previously in the text. 

3.5.12 Generalized-Born is an effective filter for the selection of important groups 

While the results discussed above indicate that there are clearly concerns with using GB 

as a substitute for PB in a detailed component-based decomposition, an another application is to 

use GB as a screen for those components expected to be most significant. These terms could then 

be considered in detail with PB-based calculations, while eliminating the need to perform these 

expensive calculations on those groups that do not make significant interactions. To test the 
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utility of this, the ensemble-averaged mutation energy as computed by each method was 

compared for each group (Figure 3.12, top). The mean energies are highly correlated in all 

systems, although individual residues show differences of as high as 10 kcal/mol or more.	
  	
  

As a direct measure of the utility of the GB-computed energies as a screen, the 

enrichment in the most significant components (in mutation energy) computed by PB was 

measured, using a GB-ranked list of components (Figure 3.12, middle and bottom). GB performs 

remarkably well; when a cutoff of 1.36 kcal/mol is used to determine significance 

(corresponding to a 10-fold difference in affinity relative to the hydrophobic isostere), 100% of 

the set is found within the top third of GB-ranked components in all systems. Perhaps more 

remarkably, 60-70% of the set can be found with very little wasted effort; among these top GB- 

ranked components, no more than three components (out of between 30 and 60) are not in fact 

significant. 

3.5.13 Salt effects are well correlated between LPB and GB models, when significant 

The data presented above was all from computations done in the context of 0.0 M ionic 

strength; in this case, the Poisson–Boltzmann equation reduces to the Poisson equation. To 

evaluate the effect of this, net binding free energies for all snapshots were additionally computed 

with a 0.145 M concentration of monovalent ions (NaCl) using both the GB and linearized-PB 

models; the data are summarized in Table 3.3 and Figure 3.13. Inclusion of salt has a relatively 

small effect on the net binding free energies; in all three systems, the correlation coefficient 

between the energies computed with and without salt is greater than 99.9%. For nucleotide 

binding, the rms difference is roughly 0.4 kcal/mol, and the maximum absolute difference is 1.0 

kcal/mol or less. In these cases, where the salt effects are relatively small, the salt effects 

computed by the two methods are only weakly correlated. The effect of salt in the computed 

protein-protein binding free energy for trimer formation is much more significant; the rms 

difference over all snapshots is almost 3 kcal/mol, and individual differences as great at 4.5 

kcal/mol are seen. However, in this case, the effects are very similar when computed with the 

LPB and GB models; the differences are correlated with an R2 value of 0.88, an rms difference 

of 0.3 kcal/mol, and a maximum difference of only 0.7 kcal/mol. As salt effects are either 

relatively weak (nucleotide binding) or highly correlated between the two models (trimer 
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formation), the conclusions drawn from the analysis of the salt-free systems may be expected to 

transfer well to salt-containing calculations. 

	
  

Figure 3.12. Performance of GB in selecting most significant residues by PB. The utility of 
GB in screening for those components that are most significant by PB is displayed in two ways 
for each system: (left) Gα.GDP.Gβγ; (center) Gα.GTP.Mg; (right) Gα.GDP. Top: The ensemble-averaged 
mutation energies for each component computed with GB are plotted against the same terms 
computed with PB. Middle and Bottom: The cumulative number of components with PB-
computed mutation energies of greater than 1.36 kcal/mol in magnitude are plotted against the 
number of components tested, with components ranked by PB, GB, or randomly. The bottom 
panels show the same data as the middle panels, with the x-axis scaled for increased resolution. 
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Figure 3.13. Effects of salt on net electrostatic binding free energies. The effects of including a 
physiological salt concentration of  0.145 M on the net binding free energies computed with both 
the LPB and GB models are shown for all three systems studied: (left) Gα.GDP.Gβγ; (center) 
Gα.GTP·Mg; (right) Gα.GDP. Top: The linearized-Poisson–Boltzmann model with 0.145 M NaCl is 
compared to the Poisson model with 0.0 M ionic strength. Middle: The GB model with salt is 
compared to the same without. Bottom: The differences in net binding energies computed with 
and without salt are compared between the two models. 

3.5.14 Alternative approaches and directions of study 

The results presented here were computed with a single implementation of the 

generalized-Born method (GBSW).(105) In this method, the dielectric boundary between solute 
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Table 3.3. Salt Effects on Binding Energies. 

 

 

System 

PBa GBa GB vs. PBb 

0.145 vs. 0.0 M 0.145 vs. 0.0 M 0.145 M – 0.0 M 

rms max rms max R2 rms max 

Gα.GDP.Gβγ 2.94 4.54 2.78 3.97 0.88 0.29 0.71 

Gα.GTP.Mg 0.37 0.81 0.45 0.80 0.42 0.27 0.62 

Gα.GDP 0.46 1.07 0.71 1.12 0.16 0.67 1.53 
aRoot-mean-square (rms) and maximum absolute difference in net binding energy, in kcal/mol, computed with 0.145 
M or with 0.0 M NaCl.  
bCorrelation coefficient, rms, and maximum absolute difference (in kcal/mol) in the effect of salt (ΔG0.145M - ΔG0.0M) 
computed with GB or PB. 
 
and solvent is smoothed, while a sharp boundary is used in the Poisson–Boltzmann approach. To 

evaluate whether this difference contributes	
  significantly to the observed deviations, we repeated 

all calculations using the GBMV model,(83) also within the CHARMM software package. While 

the results (presented in Appendix A) differ in the details, the deviations seen between GBMV 

and PB are qualitatively the same as those seen between GBSW and PB (it is worth noting, 

however, that GBMV gave notably poorly agreement of net binding free energies). GBMV	
  

differs from GBSW in a number of ways in addition to the use of an abrupt dielectric boundary, 

and thus, these results  suggest  that  these  deviations  are  not  a  peculiarity  of  one  GB  

implementation. 

A number of alternatives are also available,(80, 104) and these approaches may have 

somewhat different behaviors. However, the overall energetics computed with the two models 

agree fairly well, and only specific interactions are poorly	
  captured. Thus, it seems unlikely that 

other approaches would not show similar deviations, if not exactly the same differences.  

Deficiencies in GB-based methods have been noted before. For example, Onufriev et. al. 

have noted the sensitivity of GB-based methods to the method by which effective Born radii are 

computed, and demonstrated that the use of the so-called “perfect” radii computed from solution 

of the PB equation results	
   in much better performance.(88) Unfortunately, the use of these 

perfect radii involves a solution of the PB equation for each atom in the system; in effect, 

calculation of the full Φ matrix, which is more than an order of magnitude more costly than 

performing a residue-by-residue decomposition with PB. While the use of a single reference 
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structure to compute the effective Born radii may reduce costs, the results presented here clearly	
  

demonstrate large variations in group solvation energies with conformation; as these are 

dominated by individual atomic solvation terms, effective Born radii computed from a single 

structure would not be able to capture this variation.  

Brooks and co-workers have noted that there can be an imbalance between solute-solvent 

and intersolute interactions with the generalized-Born model,(87) and as methods are improved 

to better capture this, it will be worthwhile examining their ability to reproduce individual 

component energies. Bardhan has also recently described an alternative approach based on a 

boundary-integral formulation.(120-121) Interestingly, this method was demonstrated to better 

reproduce the eigenvectors of the solvation matrix (Φ) than did a generalized-Born approach, and 

thus, the performance of this method in a system-wide component analysis will also be 

interesting to evaluate. 

3.6 Conclusions 

 A detailed comparison of the use of both generalized-Born and linearized-Poisson–

Boltzmann models in performing a component analysis of the contribution of various groups and 

energetic terms to binding free energies has been performed.	
  Association of the components of 

the heterotrimeric G-protein were used as a test case; three binding reactions were considered, 

including the formation of a protein-protein complex (the G-protein heterotrimer) as well as the 

binding of guanosine-5′-di- and triphosphate to the monomeric Gα subunit. 

The results indicate that in many cases the relative net contributions of individual groups 

are captured well by the GB model, as measured by the difference in free energy of binding 

relative to a hydrophobic isostereswhat we term mutation free energy. However, this agreement 

is far from universal, and a significant subset of groups show linear correlations between GB- 

and PB-computed mutation free energies with slopes much lower than unity. In a few cases, the 

differences are much more dramatic, with essentially no correlation between the results of the 

two methods. Individual energetic terms, such as the cost of desolvating a particular group upon 

binding, tend to be captured much more poorly by the GB-model, as compared to the results 

from PB. Cancellation of some of this error leads to better results for net contributions, as for 

total binding free energies. Furthermore, even when relative energetics are captured relatively 
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well (as indicated by a strong correlation of GB- and PB-computed results), individual values 

computed with GB often deviate by over 10 kcal/mol.	
  	
  

While universal rules are not clearly present, several observations can be made. First, in 

general, GB seems to capture PB-based energetics reasonably well for hydrogen-bonded 

interactions, particularly at buried sites. In contrast, for interactions that act over moderate 

distances, partially screened by solvent, GB-computed results are often lower in magnitude than 

those computed by PB; as “action-at-a-distance” interactions of this type have recently been 

identified as an attractive class of interactions to target in design,(122-123) the poor performance 

of GB in this regime should be noted. Finally, GB does not seem to capture the same sensitivity 

to structural variation of the energetics of buried charged groups as does the PB model. These 

data clearly indicate a need to take care in interpreting the results of energetic decompositions 

with a generalized-Born model.  

In many cases, however, the primary goal may not be to describe the contribution of 

every group in a quantitative manner but rather to provide a more qualitative profile of those 

groups that contribute most to the affinity. In this application, GB is found to be remarkably 

accurate, and when used to select groups most likely to be significant under a PB-based model, 

the GB model performs very well. Given the great difference in computational cost of a full 

system-wide component analysis performed with GB and with PB, the use of GB as an initial 

screen to identify important components may thus be well merited. This may be followed by 

Poisson-Boltzmann-based analysis on this focused set of components, providing a reasonable 

trade-off between accuracy and speed. 

Supporting information is available in appendix A.	
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CHAPTER 4 

Structural analysis of the heterotrimeric G-protein in three different states from Long 

molecular dynamic simulations 

4.1 Abstract 

Structural differences in the different states of the heterotrimeric G-protein can be expected from 

the type of nucleotide bound to the α-subunit and the presence—or absence—of the βγ subunit. 

These structural differences have been studied with the help of molecular dynamics simulations 

of the G-protein in its three different states. The resulting trajectories are clustered and compared 

to quantify structural variations in a systematic way. Of special interest are regions of the α 

subunit that are known to play an important role in nucleotide exchange and trimer 

dissociation—two important events in signal transduction through the heterotrimeric G-protein. 

These important regions correspond to the helical bundle attached to the GTPase domain, the 

three switch loop regions and an additional loop region. A comparative analysis from trajectories 

gives clues about the function of the G-protein in different states from three different endpoints 

of its signaling cycle. Differences in structure in these three endpoints can be related to 

transitions of the protein from one state to another. For example, the helical domain shows a 

flapping mechanism with a range whose extremes and center are populated differently by the 

three states of the G-protein. The switch loop regions also behave differently for the different 

states, with the heterotrimer showing narrower ranges of motions for switch regions one and two, 

and broader for three and four, compared to the two monomers. These ranges or motions are 

characterized quantitatively with the help of clusters, and qualitatively by displaying backbone 

clusters in different colors. This type of clustering analysis is ideal for large protein with multiple 

subunits that undergo significant changes as in signal transduction. The heterotrimeric G-protein 

shows clear differences in its trajectories in its three states that indicate that the ranges of motion 

of these important regions represent a theoretical mechanical model for signal transduction at the 

molecular level. 
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4.2 Introduction 

 Cellular signaling is important for many metabolic processes in multi-cellular organisms 

such as mammals. The transmission of signals into the cell is modulated by a variety of proteins 

located inside and near the cell membrane in a concerted mechanism. For example, activation of 

the trans-membrane G-protein Coupled Receptors (GPCRs) causes structural changes that are 

passed on to the heterotrimeric G-protein. These structural changes can activate a large number 

of downstream mechanisms depending on both the type of heterotrimer G-protein and the tissue 

or cell in which they occur;(5, 15, 19) these structural changes are partially captured by 

crystallographic structures of the G-protein in three different states of its signaling cycle, and 

their study can reveal important structural features with the help of molecular dynamic models 

and subsequent clustering of their backbones. Results from these theoretical studies reveal 

important structural features that characterize cellular signaling at a more detailed level of 

understanding for the heterotrimeric G-protein in particular. 

 
Figure 4.1.  Two possible methods of G-protein activation. Top. (1) GPCR activates and 
signals is passed for nucleotide exchange, (2) the heterotrimer dissociates after nucleotide 
exchange, (3) the nucleotide is hydrolyzed and the heterotrimer is set for re-association, and (4) 
the heterotrimer is re-associated and it is set for activation again. Bottom, (1) GPCR activates 
and signals is passed for nucleotide exchange, (2) activation causes conformational motions that 
interact with neighboring proteins without dissociation, and (3) when the G-protein goes inactive 
again, it just remains in its original conformation near the GPCR. 



	
  

62 
	
  

 It is important to account for modes of G-protein activation before attempting to relate 

theoretical models to signaling through heterotrimeric G-protein pathways. The activation of the 

heterotrimeric G-proteins can lead to two possible ways of signal transduction that are debated in 

the literature. In one, the heterotrimer completely dissociates and interacts with other 

downstream effectors. In the second one, the heterotrimer simply undergoes a conformational 

change between the α and βγ subunits that activates nearby proteins without fully 

dissociating.(124) Figure 4.1 shows a scheme of these two possible mechanisms. 

Three crystallographic structures that give insights into the structural changes that occur 

in the heterotrimeric G-protein as it transmits the signal are three Giα1 structures crystallized by 

Mixon et. al.,(16) Coleman et. al.,(17) and Wall et. al.(18) The first two structures are monomers 

of Giα1 bound to GDP and GTP, and the last structure includes Gβ1 and Gγ2 in complex with 

Giα1bound to GDP . These three crystal structures correspond to the heterotrimeric G-protein in 

three different states with identical Giα1 sequence. The crystallographic structures give a lot of 

insightful structural information, but this information does not capture the full extent of motions 

within subunits, domains, sub-domains and even side chain conformations. For this reason, 

computational methods can be used to explore structural differences in the heterotrimeric G-

protein in its different states from simulations initiated from crystallographic structures. The 

simulations provide a time-dependent theoretical model of the motions of the heterotrimeric G-

protein in its three different states solvated in a box of waters with Na+ and Cl- ions at a 

concentration equal to human physiological conditions. 

A comparison between motions in simulation to experimental observations can be done 

by plotting temperature B-factors. These factors give a measure of mobility of each atom. B-

factors are obtained from x-ray diffraction and are also calculated from Root Mean Square 

Fluctuation (RMSF) calculations from the simulations. Equation 4.1 is used to convert RMSFs of 

atom i to its corresponding B-factor value.(125)  

2
2

)(
3
8

ii RMSFB π=                                                          (4.1) 

Making inferences that can be related to function from molecular dynamic simulations 

can be done with the help of clustering algorithms. There are many clustering algorithms that can 
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be used in a variety of scenarios depending on the characteristics of the problem. There is no one 

clustering algorithm that work across different data mining problems. Even when the data that is 

available for searching corresponds to structural information from molecular dynamics 

simulations, different cluster algorithms for the same data set could give different results as 

explored by Shao et. al.(126) For this reason, a clustering algorithm for the problem in hand 

needs to be selected to facilitate interpretation of results. 

Many clustering algorithms have been inspired by the need of organizing structures 

generating by computational folding studies of small peptides. Kerpen et. al. applied a 

nonhierarchical clustering algorithm based on a self organizing neural network on a 

pentapeptide.(127) Satoh et. al. (128) use NMR structures from a 10 residue peptide to cluster 

conformations from molecular dynamics within a cutoff of 1 Å; in a second round of clustering 

pair-wise Cα RMSD were “superclustered” with a single linkage algorithm and a 0.4 Å cutoff. 

These clustering algorithms do not specify a specific alignment reference, since in folding of 

small peptides the structures change more and lack a well defined core structure as in the 

heterotrimeric G-protein. 

In this work, rigid sections of the heterotrimeric G-protein are used for alignment before 

clustering. The regions used for clustering are the size of small peptides but are constrained in 

both ends by secondary structure regions of the G-protein that are more rigid. Clustering is then 

reduced to grouping structures that pivot around a reference frame. Meningful interpretation of 

this type of clustering is possible as long as the reference frame is the same in the three systems; 

that requires alignment of the three trajectories to the same—and only one—structure.  

 The structural differences between the three systems are due to the presence of GDP, 

GTP or βγ in the inactive monomer, active monomer and the inactive heterotrimer respectively. 

Regions of the heterotrimeric G-protein that are the most different in its three different states will 

be analyzed, grouped and displayed by clusters obtained from 2D-RMSD differences between 

frames from simulations. This analysis of the heterotrimeric G-protein will identify structural 

determinants of function from theoretical studies that could be important for signal transduction 

in living organisms; thus, expanding on structural information that can be derived from crystal 

structures. The following methodology for clustering is suitable for larger molecules with well 

define core structures and multiple loop regions that are attached to sequence-separated regions 
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of the protein. This chapter organizes the structures in simple and intuitive way that can be used 

as a guide for analyzing side chain conformations in the next chapter. 

4.3 Methods 

4.3.1  Structure preparation  

Initial heavy-atom coordinates were obtained from the Protein Data Bank (1gia, 1gdd, 

and 1gp2).(107, 129) While Giα1 has the exact same primary structure in the three systems, not all 

of the residues in the sequence diffracted the X-rays to reveal the positions of the atoms. 

Different sections of Giα1 were missing in each one of the three crystal structures. These sections 

were completed by homology modeling after the available common structural information was 

aligned with the program PROFIT.(130) Missing sections from the alignment were concatenated 

to the PDB files in the three systems; thus, making Giα1 sequence identical in the three systems. 

Protonation states were chosen with the REDUCE program, as were the orientations of amides 

and imidazole rings;(108) this resulted in a single protonated histidine in the  subunit of the 

trimer (1gp2), with all other histidines in a neutral state, all aspartates and glutamates negatively 

charged, and all lysines and arginines positive. Hydrogen atom positions were determined with 

the HBUILD module (109) of the CHARMM (110, 131) computer program. 

4.3.2  Molecular dynamics 

All-atom, explicit solvent molecular dynamics simulations were performed using the 

CHARMM (110, 131) and NAMD (111) programs with PARAM22/27 parameters;(112-113) 

system setup and post processing were done with CHARMM, while production dynamics 

simulations were run using NAMD. Each complex was placed in a pre-equilibrated box of TIP3P 

waters,(45) with a minimum of 10 Å between any solute atom and the box edge in all directions. 

Random water positions were replaced with enough sodium and chloride ions to yield 

physiological (145 mM) ionic strength; the sodium to chloride ratio was adjusted from unity to 

provide a system with zero net charge. Periodic boundary conditions were applied to minimize 

edge artifacts, and particle-mesh Ewald (PME) summation was used for long-range electrostatic 

interactions; short-range interactions were cut off at 12 Å. With the previous initial starting 

conditions, a time step of 2 femtoseconds was used to run the simulations for 608 ns of 

simulation time, after 240 steps of minimization and 200 ps of equilibration using Langevin 

dynamics implemented in NAMD. 
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4.3.3  Preparation and alignment of trajectories for comparison 

The resulting trajectories were stripped the waters and ions for structural analysis. Gα was 

selected for alignment because this is the only monomer common to the three structures. Gα was 

divided into regions that were selected to separate parts of the structures with low and high 

temperature factors—or B-factors— from the crystallographic structures. Figure 4.2 shows a 

secondary and quaternary structure division of the regions used for fitting all the frames in all the 

trajectories to a reference frame. Table 4.1 defines the regions of the sequence used for diving 

the α subunit. 

Table 4.1. Definition of regions used for trajectory fitting and structural analysis of Gα.a 
Region Sequence Color 

N-terminus 6 - 34 Purple 

GTPase 35 – 40, 50 – 59, 187 – 201, 221 – 231, 244 – 281, 296 - 326 Green 

P Loop 41 - 49 Blue 

Helical 60 - 178 Red 

Switch 1 179 - 186 Cyan 

Switch 2 202 - 220 Cyan 

Switch 3 232 - 243 Cyan 

Switch 4 282 – 295 Cyan 

C-terminus 327 - 354 Blue 

Nucleotide 355 Orange 
aThe sequence regions can be seen in Figure 4.3. 

4.3.4  Two dimensional root mean square deviations (2D-RMSD) 

The root-mean-square deviation (RMSD) of each molecular dynamics frame in the 

simulation to every other frame was organized in a two dimensional matrix. These matrices of 

RMSDs ware calculated from trajectories that had been fitted using the more rigid sections of the 

GTPase domain described in the previous method section. The 2D-RMSD is usually displayed as 

a square matrix whose numerical values are color coded to ease the visual identification of 

conformational transition for the section of the protein analyzed. This information is useful to 

assess the relative change of each structural frame to every other frame in the simulation; thus, 

showing an all-to-all frame comparison of the systems. This type of analysis is sensitive to the 
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regions used for alignment, it is important that this region is consistent for the three systems in 

order to make the analysis comparable. 

 

 
Figure 4.2. Subdivision of Gα for trajectory fitting and structural analysis. Top, 

quaternary structure of the heterotrimer. Bottom, secondary structure representation of the 
heterotrimer with helical regions represented by rectangles, loop regions by lines, and beta sheet 
regions by arrows. Both figures are colored identically to show where regions are located in the 
protein sequence and in the structure. Regions used for fitting all frames in the trajectories are 
colored green, and the other colors are used to identify regions of interest: the N-terminus 
domain in purple; the helical domain in red; the nucleotide in orange; the C-terminus domain in 
blue; and loop regions in cyan and blue. Only loop regions in cyan are analyzed in this chapter. 
The βγ subunits are colored in grey.  

4.3.5  Dendrograms from two dimensional RMSDs 

 It is possible to measure an Euclidean distance from the RMSD of each frame in the 

simulation to every other frame. Each row or column in the 2D-RMSD can be considered a 608 

dimensional vector, and the distance between each vector can be measure by Equation 4.2, where 

j and k correspond to vectors formed by two different frames, identify as f, and n is the number 

of frames, or dimensions. 

2608608222211
, )(....)()( kjkjkj
n
kj ffffffD −++−+−=                            (4.2) 
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 The distance information between all frames can be organized in a dendrogram that 

shows the grouping of frames, and groups of groups of frames, closest to each other. In order to 

get the dendrogram, the 2D-RMSDs are input into the MATLAB (132) function pdist with the 

Euclidian parameter. This function outputs a matrix with the distance between all frames that is 

then input into the MATLAB linkage function with the second parameter set to average. The 

resulting N-1 by 3 matrix is input into the dendrogram function for display; N represents the 

dimension of the 2D-RMSD matrix. The dendrograms show the size of each of this clusters 

displayed in different colors, and the envelope plots next give a reference of how this clusters 

distances relate to Angstroms. The clusters do not give information about the order in which the 

clusters alternate as the simulation goes on; that information is organized right below it by 

showing the clusters that are populated throughout the simulation, followed by a bundle of all 

backbone structures in the simulation colored according to the cluster they belong. 

4.3.6  Average and maximum cluster RMSDs 

 In the dendrogram from a simulation trajectory with N snapshots there are N-1 possible 

ways to assign clusters based on a distance cutoff. For clusters formed by more than one 

snapshot, their average RMSD was calculated, and then cluster averages are calculated and 

joined with a node to the closest cluster until all possible clusters are linked. The corresponding 

threshold for each cluster is plotted as a function of distance in angstroms; this threshold is 

defined as the smallest one that gives the given number of clusters from 1 to N-1. Some 

thresholds of special interest are those corresponding to a minimum average separation of 3, 2.5 

and 2 Å between them. In other words, thresholds for which the separation of the clusters it 

defines is less at least 3, 2.5 and 2 Å. The results are then use as a guide to select a threshold that 

would give a reasonable number of clusters for each section of the protein; this allows a detail 

description of differences in backbone structural snapshot bundles among the three systems.   

4.3.7  Clustering of regions from separate simulations 

It is possible to cluster the frames from the three simulations by doing the exact same 

procedure as for a single simulation.  For that purpose, the matrices for each one of the regions in 

the previous section are used, in addition to matrices that measure 2D-RMSDs from frames in 

separate trajectories. Distance matrices between frames in the same trajectory were placed in the 

diagonal and off the diagonal distance matrices across different systems. The three systems gave 
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a 3 by 3 block matrix with the upper diagonal transposed for symmetry purposes. Clustering 

analysis was done on this 1824 by 1824 symmetric matrix. The matrix was then rearranged to 

coincide with the ordering of the frames from the three simulations as they were grouped in the 

dendrograms. The system to which each frame belonged in the rearranged matrix was then used 

to plot how frames from different simulations were group by proximity. This is presented in the 

middle of Figures 4.6, 4.8, 4.10, 4.12 and 4.14 with three values on the y-axis that corresponds to 

each of the systems. Finally, bundled backbone representations from the trajectories are shown 

next to the clustering, showing proximity patterns between conformational space sampled by the 

three systems and the clustering from 2D-RMSDs.  

4.4 Results and discussion 

 Structural analysis was first done on the large domain regions of the α subunit, followed 

by important loop regions considered important in structural transitions in G-protein signaling. 

The N-terminus was not given a full analysis because results can only be interpreted if the cell 

membrane is present. The GTPase domain is presented only with 2D-RMSD because of its lack 

of mobility and its use for fitting. The switch loop regions and the helical region are given a full 

clustering analysis. 

4.4.1. Motions between sub-domains 

4.4.1.1 N-terminus domain 

It is difficult to compare 2D-RMSDs, dendrograms and clustering for the N-terminus 

domain with the GTPase domain used for alignment. This region has modifications that penetrate 

the cell membrane, and it is missing from the crystallographic structure of Gα.GTP.MG. Missing 

structural information was added from available structural information from Gα.GDP, making the 

N-terminus in the monomers relatively similar in the simulations; however, in the heterotrimer, 

the N-terminus is stretched along the βγ subunit. For these reasons it is difficult to make any 

possible interpretations about the role of this subdomain in signal transduction from molecular 

dynamics simulations. Figure 4.3 shows how this region varies for the three systems. It is 

interesting to see clear differences between the active and inactive monomer, blue and yellow in 

Figure 4.3, despite having identical starting structural information. The differences are due to 

initial crystallographic differences in the GTPase domain and the presence of a different 
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nucleotide in the monomers. It is interesting to note that in this long simulation the same region 

explores evidently different conformations. It is not clear that this is due to lack of convergence 

or that these regions explore different conformational wells. 

   
Figure 4.3 Variation in N-terminus structure. Difference in N-terminus domain orientation 
relative to the GTPase fitting domain for the heterotrimeric G-protein in its three different states: 
red for Gα.GDP.Gβγ; yellow for Gα.GTP.MG; and blue for Gα.GDP. 

4.4.1.2 GTPase domain  

This domain ‘harbors’ the nucleotide. Important differences between the three systems 

are due to the loop regions in this domain and are excluded from the alignment. Beta-sheets  and 

helical sections are used for alignment so that other regions of the protein can be compared 

between the three systems. Figure 4.4 shows this comparison between systems in the form of 

2D-RMSD matrices and their corresponding ranges of mobility in angstroms next to them, with 

the superposition of backbone structures to the right; Gα.GDP has a maximum RMSD between 

frames of 1.97 Å, Gα.GTP.MG of 1.84 Å and Gα.GDP.Gβγ of 2.32 Å. The nucleotide is not exclusively 

surrounded by this region of the protein, but it has residues that allow it to interact favorably with 

the phosphate groups primarily. The nucleotide is also in contact with switch region one and the 

α-helical domain. Clustering did not evidenced differences that could be structurally 

differentiated and is not presented for this region of the protein. 

 
Figure 4.4. Variation in GTPase domain structure. From left to right, 2D-RMSDs for Gα.GDP, 
Gα.GTP.MG and Gα.GDP.Gβγ, and alignment of the GTPase domain used for fitting the trajectories for 
the heterotrimeric G-protein in its three different sates: red for Gα.GDP.Gβγ; yellow for Gα.GTP.MG; 
and blue for Gα.GDP.    
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4.4.1.3.The α-helical domain 

The nucleotide is partially surrounded by residues in the α-helical domain. It has been 

suggested that nucleotide exchange occurs when the GTPase domain and the α-helical domain 

separate following GPCR activation.(21, 133) Figure 4.5 shows a systematic analysis of the α-

helical domain’s range of motions in the three systems. As a first step, the magnitude range of 

these motions can be seen in the scales to the right of the 2D-RMSDs; they show that Gα.GTP.MG 

has a maximum RMSD of 10.18 Å, while Gα.GDP.Gβγ goes up to 12.98 Å and Gα.GDP to 12.54 Å. 

This suggests that the α-helical region of Gα.GTP.MG is generally more rigid in terms of mobility 

relative to the GTPase domain by ~2 Å.  

After clustering the 2D-RMSDs, a minimum threshold distance between frames was 

selected to give a reasonable number of clusters in the three systems. This selection was guided 

by a relationship between distance and angstroms in the plots next to the dendrograms in Figure 

4.5. The selection of this threshold for clustering is also explained in Section 4.3.6, and was 

chosen to be 38 in order to group the blocks in the 2D-RMSDs; this threshold separates the 

trajectories of Gα.GDP into 6 clusters, Gα.GTP.MG into 5, and Gα.GDP.Gβγ into 6. One fewer clusters 

suggest that Gα.GTP.MG is more rigid. This is supported by having a predominant cluster in yellow 

for 389 snapshots, followed by a smaller cluster (green) with 88 frames and the remaining 23 

frames distributed among the remaining three clusters. Gα.GDP.Gβγ and Gα.GDP do not show such 

concentration of frames in one single cluster with 257 and 267 frames for the bigger clusters 

respectively.  

A top view of the clusters at the bottom of Figure 4.5 shows that the motions are 

generally sideways as if the domain flaps relative to the GTPase domain, with clusters clearly 

separated from one extreme of these motions to the other. The clusters that are colored magenta 

are the bigger outliers in the three systems, and show a larger separation in the dendrograms of 

Figure 4.5. For Gα.GDP, this cluster is found in the middle of the simulation—implying a rare 

sampling of a conformation. For Gα.GTP.MG and Gα.GDP.Gβγ this cluster is found at the beginning of 

the simulations—implying a strained conformation in the crystal structure. In the three systems, 

the magenta cluster shows some regions from which it protrudes from the bundle of clusters. 

While this protuberance is not very noticeable, it is relevant considering it corresponds to a few 

snapshots of the total 608; however, it was difficult to pinpoint to a single loop or helical region 
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as the cause for the large distance of this cluster to the remaining clusters.  The bottom row of 

Figure 4.5 shows that the differences in clusters across systems are due to a large motion of the 

entire domain that is similar to a flapping mechanism relative to the GTPase domain. The 

extreme ends of this flapping mechanism correspond to Gα.GDP.Gβγ and Gα.GDP, with Gα.GTP.MG 

sampling an intermediate space in between. 

 

Figure 4.5. Structural variation 
in the α-helical domain. The 
columns correspond to α-helical 
domain ordered from left to right: 
Gα.GDP, Gα.GTP.MG and Gα.GDP.Gβγ. 
The top row corresponds to 2D-
RMSDs deviations between frames 
in each trajectory.  The second row 
shows the dendrograms that group 
distances between groups of 
frames. Clusters are defined and 
colored with a threshold distance 
of 38. Average distances between 
frames are plotted against the 
corresponding average distances in 
angstroms in the envelope plots 
next to the dendrograms. As a 
guide to relate thresholds to 
angstroms, color coded thresholds 
are shown for the mean average of 
frame averages below 3 (red), 2.5 
(blue) and 2 (green) Å. Also, for 
maximum average of frame 
averages below 3 (black), 2.5 
(cyan) and 2 (magenta) Å.  The 
following row shows how the 
clusters from the dendrograms 
alternate through the simulation. 
The structures in the row below 
show how the clusters separate 
structures in the simulation from 
two different points of view.  

It is possible to cluster all frames corresponding to the molecular dynamics trajectories of 

the three systems. This is done by aligning the three 2D-RMSDs from Figure 4.5, and calculating 

2D-RMSDs  between different trajectories of the three  systems off the  diagonal.  The resulting 
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3 x 3 block matrix can be clustered in a similar way as it is done for individual systems. This is 

done in Figure 4.6 where the three systems are clustered. Three clusters emerge from the 

dendrogram if a threshold between 113.34 and 152.27 is selected. Under this threshold, all of the 

systems overlap with each other; Gα.GDP.Gβγ and Gα.GDP overlap sporadically, and Gα.GTP.MG 

overlaps more often with the other two. The range of this motion is 18 Å with a maximum 

distance between clusters of 191.59. 

 
Figure 4.6 Variations in α-helical structure are common in all simulations. α-helical 
domains clustering of combined 2D-RMSDs from different trajectories. Left, 2D-RMSDs from 
Figure 4.5 are used to form a 3 by 3 matrix for clustering. Clustering shows that Gα.GTP.MG 
samples conformations closer to the other two systems. Gα.GDP.Gβγ and Gα.GDP seem to sample 
distant conformations that do not overlap, as seen in the dendrogram and the coloring of the 
clusters according to system. Right, in the same coloring scheme, three angles of the α-helical 
region show that indeed Gα.GTP.MG seems to be in the middle, yellow, of the other two systems, 
Gα.GDP.Gβγ in red and Gα.GDP in blue. These motions relative to the GTPase domain act like a 
flapping mechanism suggesting different degrees of mobility when different nucleotides are 
present and when the βγ subunit is present. This suggests a large structural bias between sub-
domains in the release, exchange and hydrolization of the heterotrimeric G-protein in its different 
states. 

4.4.2. Motions in switch regions. 

Four loop regions will be considered for structural analysis in this paper. Three of those 

are the switch regions referred by crystallographic papers to be important in heterotrimeric G-

protein. A fourth region is a loop region located far from the βγ subunit, the nucleotide and the α-

helical region. This region is not considered to be very important for the heterotrimeric G-protein 

to function, yet it takes different conformations in the three different states that suggest some 

allosteric reaction to the presence of a different nucleotide or βγ. 
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4.4.2.1. Switch region one 

This switch region is located between the GTPase and the α-helical sub-domains, and it 

connects the two sub-domains through a region that is closer to the nucleotide. The other section 

of the protein that connects the two main sub-domains is not close to the nucleotide and connects 

two long helical regions in both domains. This region varies largely among the three systems. 

The ranges of motions are initially described from 2D-RMSD plots for the three systems. Figure 

4.7 shows that Gα.GDP has three main blocks clearly defined; a small one at the beginning, 

followed by a large block throughout most of the simulation, and smaller one towards the end. 

Gα.GTP.MG has two predominant blocks, though the second block, towards the end, may be formed 

by three, or more, smaller clusters closer to each other than to the first one. Finally, Gα.GDP.Gβγ 

has many blocks indicating multiple clusters close to each other in contrast to the large block 

transitions in the two monomers. The RMSD ranges for the two monomers are 7.81 Å for 

Gα.GDP and 8.84 Å for Gα.GTP.MG, for the heterotrimer the maximum RMSD is 4.40 Å. 

The average distances between frames in the clusters can be observed in the dendrograms 

below. A threshold of 28 was selected because it gives a reasonable number of clusters for the 

three systems. This threshold divided this region in 5 clusters for Gα.GDP and Gα.GTP.MG. As for 

Gα.GDP.Gβγ, it gives only one cluster under this threshold, indicating its lack of motion compared 

to the monomers. While the two monomers have the same number of clusters, the maximum 

distance between their clusters is different. Gα.GDP has all of it clusters closer together and 

separated by a maximum vector distance of 51.23; Gα.GTP.MG has a larger maximum separation of 

99.40 between clusters. The corresponding distance in angstroms for these two clusters 

separations is very close considering that the average frame vector distance is almost twofold. 

For Gα.GDP the largest separation between clusters is equivalent to 2.90 Å, and for Gα.GTP.MG the 

largest separation is 3.23 Å. This discrepancy in angstroms between cluster distances from 

vectors and angstroms occurs because they are simply averages calculated from frames that 

could be spread differently: the standard deviation for Gα.GDP is 1.18 Å and for Gα.GTP.MG is 2.02 

Å, a larger spread between clusters in the active monomer compared to the inactive monomer. 

The nucleotide interacts strongly with some of the residues in this region and it is a factor in the 

difference in motion. 
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In the active monomer, the nucleotide coordinates a magnesium ion with the help of its 

additional phosphate group. Additionally, Thr 181 interacts with the magnesium ion from the 

beginning of the simulation. Dissociation of this residue from the magnesium ion is an event that 

coincides with a larger range of conformations that in turn generates clusters of backbone 

structures that are farther from the original one. 

 

Figure 4.7. Structural 
variation in switch region one. 
The columns correspond to α-
helical domain ordered from left 
to right: Gα.GDP, Gα.GTP.MG and 
Gα.GDP.Gβγ. The top row 
corresponds to 2D-RMSDs 
deviations between frames in 
each trajectory.  The second row 
shows the dendrograms that 
group distances between groups 
of frames. Clusters are defined 
and colored with a threshold 
distance of 28. Average 
distances between frames are 
plotted against the corresponding 
average distances in angstroms 
in the envelope plots next to the 
dendrograms. As a guide to 
relate thresholds to angstroms, 
color coded thresholds are 
shown for the mean average of 
frame averages below 3 (red), 
2.5 (blue) and 2 (green) Å. Also, 
for maximum average of frame 
averages below 3 (black), 2.5 
(cyan) and 2 (magenta) Å.  The 
following row shows how the 
clusters from the dendrograms 
alternate through the simulation. 
The structures in the row below 
show how the clusters separate 
structures in the simulation from 
two different points of view. 
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The difference in mobility between the two monomers for this switch region can be better 

described from how different clusters are sampled through the simulation. Gα.GDP appears to start 

at a strained conformation from the crystallographic origins as suggested by cluster 3 and 4 in 

green and blue, before transitioning to cluster 2 in red. Gα.GTP.MG starts in a more stable 

conformation corresponding to cluster 5 in green. The active monomer, Gα.GTP.MG, remains in this 

state until after 316 nanoseconds into the simulations when that cluster of conformations is never 

sampled again. Gα.GDP.Gβγ is very rigid judging by the smaller range of RMSD that groups all 

frames in one cluster below the threshold of 28. 

Figure 4.8 groups all frames in the three systems clustered by proximity with 

corresponding backbone bundling colored for each state of the heterotrimeric G-protein. Clusters 

red and blue—corresponding to Gα.GDP.Gβγ and Gα.GDP respectively—are separated in two 

extreme conformations with the yellow cluster— Gα.GTP.MG—spawning conformations between 

the other two clusters.   

 
Figure 4.8 Structural variations in switch region one are similar for the monomers. Switch 
region one clustering of combined 2D-RMSDs from different trajectories. Left, 2D-RMSDs from 
Figure 4.7 are used to form a 3 by 3 block matrix for clustering. Clustering shows that Gα.GTP.MG 
samples conformations closer to the other two systems. Gα.GDP.Gβγ and Gα.GDP seem to sample 
distant conformations that do not overlap. Right, in the same coloring scheme, two angles of 
switch region one show that indeed Gα.GTP.MG seems to be in the middle, yellow, of the other two 
systems, Gα.GDP.Gβγ in red and Gα.GDP in blue. 

4.4.2.2  Switch region two 

This region is not in direct contact with the nucleotide in any of the structures. Some of 

its residues do interact with other residues that in turn interact with the nucleotide. In the 



	
  

76 
	
  

heterotrimer, this region is in contact with the βγ subunit. Backbone structural differences for the 

three systems show that this region is between the nucleotide and the protein-protein binding 

interface formed by α and β. Figure 4.10 shows the 2D-RMSD plots for this region. This region 

shows more mobility in the inactive monomer, Gα.GDP, with a maximum distance between frames 

of about 5.08 Å. The active monomer, Gα.GTP.MG, has a range of RMSDs that goes up to 3.41 Å, 

and the heterotrimer Gα.GDP.Gβγ has a range of 3.94 Å. This region did not show any electron 

diffraction in the crystals structures of the inactive monomer, and was completed with sections of 

the active monomer. It is important to note that molecular dynamic simulations show an 

increased mobility for the inactive monomer that the crystal structure suggests from the lack of 

refraction. 

The 2D-RMSDs were clustered with a threshold of 15 to give a reasonable number of 

clusters in the three systems, as seen in Figure 4.9, and Gα.GDP gives seven clusters, Gα.GTP.MG 

gives only two, and Gα.GDP.Gβγ gives five clusters. A slightly lower threshold for Gα.GDP would 

divide the red cluster in two, for a total of eight clusters, and no additional clusters for Gα.GTP.MG 

and Gα.GDP.Gβγ. The reason for not using a threshold lower than 15 is that Gα.GDP already has 

many clusters, and an additional one would make it harder to interpret the differences in 

structures. 

 The structures grouped by clustering for Gα.GDP are not very easy to distinguish from the 

color coded bundles of snapshots in Figure 4.9. For this same system, it can be seen from the 

distributions of clusters in time in the figures above, that four of the clusters, black, green 

magenta and blue, are sampled only for a few snapshots in the simulations. Only the yellow red 

and cyan clusters are sampled for significant periods of time, but their corresponding backbone 

structures don’t merit any further subdivisions of these clusters by a lower threshold. The two 

clusters in Gα.GTP.MG also have evident differences, with the red cluster deviating sampling 

towards the end of the simulation. Finally, Gα.GDP.Gβγ shows that the alpha helix structure of this 

region is interrupted in the middle; also, the region in this system appears more compact or rigid; 

this is supported by more evenly distributed clusters in the dendrograms shown in Figure 4.9. In 

summary, Gα.GDP is less rigid than Gα.GTP.MG, and this one in turn, is more compact than 

Gα.GDP.Gβγ; thus, differences in the nucleotide influence this region even though there is no direct 



	
  

77 
	
  

interaction with them, βγ also must play a role in the interruption of the alpha helix structure of 

this region in the heterotrimer.  

 
Figure 4.9. Structural variation in switch region two. The columns correspond to α-helical 
domain ordered from left to right: Gα.GDP, Gα.GTP.MG and Gα.GDP.Gβγ. The top row corresponds to 
2D-RMSDs deviations between frames in each trajectory.  The second row shows the 
dendrograms that group distances between groups of frames. Clusters are defined and colored 
with a threshold distance of 15. Average distances between frames are plotted against the 
corresponding average distances in angstroms in the envelope plots next to the dendrograms. As 
a guide to relate thresholds to angstroms, color coded thresholds are shown for the mean average 
of frame averages below 3 (red), 2.5 (blue) and 2 (green) Å. Also, for maximum average of 
frame averages below 3 (black), 2.5 (cyan) and 2  (magenta) Å.  The following row shows how 
the clusters from the dendrograms alternate through the simulation. The structures in the row 
below show how the clusters separate structures in the simulation from two different points of 
view. 

Figure 4.10 shows all frames in the three systems clustered by proximity with 

corresponding backbone bundling colored for each state of the heterotrimeric G-protein. Clusters 
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yellow and blue—corresponding to Gα.GTP.MG and Gα.GDP respectively—maintain an uninterrupted 

alpha helical secondary structure better than the cluster corresponding to Gα.GDP.Gβγ, in red. The 

range of RMSD for this region is 7.74 Å. 

 
Figure 4.10. Switch region two adopts unique structure in the trimer. Switch region two 
clustering of combined 2D-RMSDs from different trajectories. Left, 2D-RMSDs from Figure 4.9 
are used to form a 3 by 3 block matrix for clustering. Gα.GDP.Gβγ sample distant conformations 
that do not overlap with the two monomers, most likely due to the precense of βγ. Right, in the 
same coloring scheme, two angles of switch region one show that Gα.GDP.Gβγ has a bundle of 
backbone structures that clearly separate from the two monomers, Gα.GDP and Gα.GTP.MG. in blue 
and yellow respectively.  

4.4.2.3. Switch region three 

This region is located below the nucleotide, opposite to the N-terminus C-terminus of the 

α-subunit relative to the cell membrane. This loop region is in an intermediate position within 

reach of interaction with the other two loop regions, the α-helical domain and the p-loop region 

that harbors the phosphate groups of the nucleotide. Because of its locations, its importance 

appears to be to mediate with other important regions of the heterotrimeric G-protein. 

A particular feature of this region is the presence of three glutamate residues that can 

reach and interact with Arg 205 in switch region 2, Gln 147 in the α-helical domain and Lys 180 

in switch region 1. Figure 4.11 shows that this switch region has a large range of motions in the 

inactive monomer, followed by the active monomer and then by the heterotrimer. The 

heterotrimer seems to start in a strained position and then it relaxes into two large conformations 

for the remaining of the simulations.  
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Clustering of the 2D-RMSD was done from a judicious selection of a threshold of 25 for 

the three systems as seen in Figure 4.11. This threshold forms four clusters in Gα.GDP.Gβγ, of 

which three are small. This suggests that the main blocks seen in the 2D-RMSD correspond to 

similar structures and not transitions to new conformations. The smaller clusters are brief 

departures from the main conformation. Gα.GTP.MG has three clusters that include a larger cluster, 

a medium second cluster, and only one small transitional cluster. Gα.GDP.Gβγ has in turn five 

clusters with two  large ones and three small ones. 

 

Figure 4.11. Structural 
variation in switch region 
three. The columns correspond 
to α-helical domain ordered from 
left to right: Gα.GDP, Gα.GTP.MG and 
Gα.GDP.Gβγ. The top row 
corresponds to 2D-RMSDs 
deviations between frames in 
each trajectory.  The second row 
shows the dendrograms that 
group distances between groups 
of frames. Clusters are defined 
and colored with a threshold 
distance of 25. Average distances 
between frames are plotted 
against the corresponding 
average distances in angstroms in 
the envelope plots next to the 
dendrograms. As a guide to 
relate thresholds to angstroms, 
color coded thresholds are shown 
for the mean average of frame 
averages below 3 (red), 2.5 
(blue) and 2 (green) Å. Also, for 
maximum average of frame 
averages below 3 (black), 2.5 
(cyan) and 2 (magenta) Å.  The 
following row shows how the 
clusters from the dendrograms 
alternate through the simulation. 
The structures in the row below 
show how the clusters separate 
structures in the simulation from 
two different points of view. 
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The three smaller  clusters sample at the beginning of the simulation and they explain the 

strained conformations observed in the 2D-RMSD plot. The sampling of the frames throughout 

the simulation shows that the two monomers sample mostly one cluster for most of the 

simulation. The heterotrimer shows the yellow, magenta and blue clusters sampled mostly at the 

beginning of the simulation, but it is bimodal for the most part, green and red clusters. The 

maximum RMSDs for the three systems are 7.43 Å, 6.71 Å and 8.55 Å for Gα.GDP, Gα.GTP.MG and 

Gα.GDP.Gβγ respectively. 

Figure 4.12 show that while the sampling of the frames by the three systems overlap, the 

blue and yellow cluster, corresponding to the monomers, seem to be closer to each other than to 

the heterotrimer. The RMSD for the three regions combined range from 0 to 10.71 Å. 

 
Figure 4.12. Switch region three is mobile in all structures. Switch region three clustering of 
combined 2D-RMSDs from different trajectories. Left, 2D-RMSDs from Figure 4.11 are used to 
form a 3 by 3 block matrix for clustering. Clustering shows that the three systems sample 
clusters that overlap with each other. This region shows four defined clusters within thresholds 
of 45.95 and 138.69. Right, two angles of switch region three show that while the sampling of 
the frames by the three systems overlap, the blue and yellow cluster, corresponding to the 
monomers, seem to be closer to each other than to the heterotrimer.  

4.4.2.4. Switch region four 

This region is not considered to be as important as the previous regions in 

crystallographic papers. It is located far from the nucleotide in the three systems, and also far 

from βγ in the heterotrimer. Its analysis is relevant because it is the only other major loop that is 

not close to the N-terminus domain. As a reminder, the N-terminus moves a lot and it is meant to 

be restraint by the cell membrane; analysis of anything close to it would be hard to interpret from 

molecular dynamic simulations in solution. Figure 4.13 shows the 2D-RMSD for the three 
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systems increasing in mobility in the following order: Gα.GDP, Gα.GTP.MG, and Gα.GDP.Gβγ; this 

increase in mobility is supported by the ranges of RMSD for the three systems—which in the 

same order as mention before—are 3.58 Å, 5.88 Å and 7.96 Å. 

 

Figure 4.13. Structural 
variation in switch region four. 
The columns correspond to α-
helical domain ordered from left 
to right: Gα.GDP, Gα.GTP.MG and 
Gα.GDP.Gβγ. The top row 
corresponds to 2D-RMSDs 
deviations between frames in 
each trajectory.  The second row 
shows the dendrograms that 
group distances between groups 
of frames. Clusters are defined 
and colored with a threshold 
distance of 21. Average 
distances between frames are 
plotted against the corresponding 
average distances in angstroms 
in the envelope plots next to the 
dendrograms. As a guide to 
relate thresholds to angstroms, 
color coded thresholds are shown 
for the mean average of frame 
averages below 3 (red), 2.5 
(blue) and 2 (green) Å. Also, for 
maximum average of frame 
averages below 3 (black), 2.5 
(cyan) and 2 (magenta) Å.  The 
following row shows how the 
clusters from the dendrograms 
alternate through the simulation. 
The structures in the row below 
show how the clusters separate 
structures in the simulation from 
two different points of view. 

Because of the large mobility of the heterotrimer, a threshold of 19 was used to get a 

number of clusters that is not too large. For the heterotrimer, a threshold higher than 19 would 

put under one cluster, in green, two clusters that seem far apart. Lowering the threshold more 

would increase the number of cluster significantly for the heterotrimer without changing the 
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number of clusters for the two monomers. Too many clusters for one system make their analysis 

impractical. 

With a threshold of 19, only one cluster is obtained in Gα.GDP, four in Gα.GTP.MG, and eight 

for Gα.GDP.Gβγ. It can be seen that for the Gα.GTP.MG the blue cluster separates from the green and 

red one, with the cyan cluster somewhat as an intermediary. The clusters in the heterotrimer 

show more disorder, making them harder to characterize. In general, all clusters seem to have the 

helix region of them more defined in the heterotrimer than in the two monomers.  

 Figure 4.14 shows frames from the three systems overlapping to some degree, with 

Gα.GTP.MG sampling conformations with the heterotrimer more often, and Gα.GDP.Gβγ and Gα.GDP 

having frames belonging to the same clusters. Gα.GDP shows less mobility than Gα.GTP.MG, yellow, 

and this one in turn with less mobility than Gα.GDP.Gβγ, red. The RMSD for the three regions 

combined range from 0 to 7.96 Å. 

 
Figure 4.14 Switch region four is variable in all structures. Switch region four clustering of 
combined 2D-RMSDs from different trajectories. Left, 2D-RMSDs from Figure 4.13 are used to 
form a 3 by 3 block matrix for clustering. Clustering shows that frames from the three systems 
overlap to some degree, with Gα.GTP.MG sampling conformations with the heterotrimer more often, 
and Gα.GDP.Gβγ and Gα.GDP having frames belonging to the same clusters. This region shows four 
defined clusters within thresholds of 42.80 and 92.98. Right, two angles of switch region four 
shows Gα.GDP with less mobility than Gα.GTP.MG, yellow, and this one in turn with less mobility 
than Gα.GDP.Gβγ, red.  

4.4.3 Comparison of B-factors between crystallographic structures and simulations 

Figure 4.15 shows the comparison between crystallographic and simulation B-factors. 

The magnitudes of the B-factors indicate more fluctuation in the simulations than in the 
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crystallographic structure. A notable difference in both type of B-factors plotted in Figure 4.15 

are the regions defined by residues 60 to 178. In the crystal structure, this region does not show 

significant differences in B-factor values from the rest of the sequence; in the calculated B-

factor, this regions show increased B-factors. The bottom region of Figure 4.15 shows a closer 

view of the B-factors for the GTPase domain and loop regions of interest. The sections of the 

sequence corresponding to the loop regions show increased mobility. 

 
Figure 4.15. Comparison between B-factors obtained from crystallographic structures and 
simulations for alpha carbons of every residue in the backbone. Top, crystal structure B-
factors; middle, B-factors from simulations; bottom, B-factors from simulation are plotted not 
including N and C-terminus and the residues 60 to 178. The vertical black lines correspond to 
residue numbers that divide the Gα in regions as described in table 4.1. These regions separate 
sections of interest such as the N and C terminus, loop regions, and the GTPase and helical 
domain. 
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4.5. Conclusion 

 Backbone structure characterization is performed with the relatively rigid GTPase 

domain as a frame of reference for the three trajectories of the heterotrimeric G-protein in three 

different states. The motions of regions of interest were characterized in a quantitative way by 

using RMSD matrices and clustering. The α helical region attached to the GTPase domain 

shows differences in motion for the three regions: with the monomer bound to GTP in a more 

rigid conformation than the other two systems, and the other two systems populating different 

extremes of the range of motion observed. The loop regions show differences in mobility that are 

particular to every system. For switch region one the heterotrimer is very rigid, the monomer 

bound to GTP shows a broader distribution of clusters and the inactive monomer as an 

intermediate between the two in terms of mobility. In this region, the mobility of Gα.GTP.MG is 

directly associated to loss of coordination between Thr 181 and the Mg2+ ion. Switch region one 

is close to the nucleotide and far from the βγ subunit in the heterotrimer; this suggest an 

allosteric stabilization effect of this region cause by the presence of βγ. Switch region two is less 

mobile in the heterotrimer because this region is stabilized by the βγ subunit. In the monomers, 

this region has more mobility in Gα.GDP than in Gα.GTP.MG; this is consistent with the fact that the 

inactive monomer does not have electron diffraction for this region and therefore it moves more. 

Switch region three can be characterized not by the degree of its mobility but by the number of 

clusters it forms in the three systems; the two monomers sample conformation that are 

predominantly grouped in one cluster while the heterotrimer samples two distinct clusters. 

Switch region four is less mobile for the inactive monomer, Gα.GDP, than for the active 

monomer, Gα.GTP.MG, and this one in turn is less mobile than the heterotrimer.  

 The four regions characterized by clustering are restrained on both ends to the GTPase 

domain. When these regions are compared across systems by clustering conformation from 

separate trajectories, they show not only differences in general range of conformation, but also in 

secondary structure. It appears that these loop regions sample well defined conformational 

basins, and while there is no certainty that this—and all important—basins are fully explored, the 

ranges of motions, and the restrained in both ends of these regions, make it unlikely that a radical 

departure from the observed conformation occur in molecular dynamics at equilibrium. The 

question that remains is how these regions would depart from equilibrium when interacting with 

other proteins in the cell and the membrane, by aiding transitions in the heterotrimeric G-protein. 
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If the loop regions undergo radical changes when G-protein-interacting proteins come in contact, 

then this work would be a reference starting point for further studies of the heterotrimeric G-

protein in complex with other proteins. 
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CHAPTER 5 

Energetic analysis of relevant components from extended molecular dynamic simulations 

of heterotrimeric G-proteins 

 5.1 Abstract 

Extended simulations of a heterotrimeric G-protein in three different states were 

performed for up to 608 ns. The simulated states of the heterotrimeric G-protein correspond to 

the inactive Gα.GDP monomer, the active Gα.GTP.MG and the heterotrimer in the bound state 

Gα.GDP.Gβγ. The electrostatic free energies of binding and folding were calculated for all residue 

components using the generalized-Born (GB) method. From mutation energy ranking of the 

main components in GB, Poisson–Boltzmann (PB) calculations were performed on components 

within a GB cutoff +/-1kcal/mol. The implementation of this filter is important given the large 

size of the three systems, which makes it very impractical to perform calculations of this 

simulation length for all the components. An energetic profile of the heterotrimeric G-protein is 

presented in this chapter from the main components; this energetic analysis allows identifying 

important residue components, their network of interactions and role in the function of the 

protein. An energetic analysis serves as a preliminary way to single out important residues that 

could escape the eye from direct observations of the trajectories. The contributions of this 

theoretical work can be applied to mutagenesis studies of residues that did not seem important 

from crystallographic structures. 

5.2 Introduction 

There are many proteins interacting continuously inside the cell. These proteins are 

responsible for most of the cell’s functioning by associating and dissociating in a concerted 

way.(134) The proteins’ mechanism for recognizing and interacting with each other is known to 

work with a high degree of accuracy but is poorly understood at the atomistic level. Electrostatic 

interactions, both of the solvent and the solute, lie at the heart of this intricate network of protein 

interactions and their high level of specificity.(135) Understanding electrostatic interactions 

between proteins opens the possibility of revealing the mechanisms that cascade into signals that 

allow the cell to function and to interact with its environment.(136) 
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It is possible to study these electrostatic interactions from crystallographic structures that 

have protein-protein or protein-ligand binding interfaces. The information obtained from crystal 

structures can be expanded with the help of computational methods. The simulations of the 

heterotrimeric G-protein in its different states provide a time-dependent theoretical model of the 

G-protein. All atom simulations have been useful in understanding structure and dynamics of 

proteins.(54, 66-67) It is then expected that with the help of these methods additional insights 

can be obtained to what crystallographic structures provide. 

Electrostatic interactions merit further study from long molecular dynamic simulations 

for an additional reason. Had it not been for electrostatic interactions, and the corresponding 

solvent contributions, and interactions between proteins were limited to the ones driven by van 

der Waals electrostatics only, proteins inside the cell would interact in a more promiscuous way, 

making it difficult for the cell to function correctly. To better understand the role of electrostatics 

in protein specificity, calculations of free energies in solution need to be done on the trajectories 

obtained from simulations. Additionally, a breakdown of energetics can be done to obtain free 

energy contributions from individual residue components in the protein using the generalized-

Born (46, 80-81) and the linearized Poisson–Boltzmann (89-91) methods. 

Two types of free energy calculations are utilized to dissect the electrostatic contribution 

of each component: binding and folding, the latter is also referred as stability. The contribution 

of every component to the net electrostatic free energies of binding is calculated for protein-

nucleotide and protein-protein interactions. This gives a total of four binding interfaces that 

require separate calculations, two of those for the heterotrimer and one for each monomer. The 

contribution of every side chain to folding, or stability, of the protein is also done for the three 

systems. In summary, the total binding and folding electrostatic free energy calculations for the 

three systems, for each of the 608 frames, adds up to almost five million. The CPU and memory 

requirements to perform these calculations are difficult to attain for the computationally more 

expensive method of PB. Each component takes on average 5 minutes to calculate with the 

Poisson–Boltzmann method, which adds up to 15687.4 days for all components in all systems for 

every frame using a single CPU. For this reason, it would be impractical to perform all of these 

calculations knowing that a large number of the components are far from the binding interface, 

and many non-polar components have little electrostatic contributions. It is then that the less 



	
  

88 
	
  

accurate GB method emerges as a quick alternative to select the most important components 

based on energies to be refined with PB. Gα.GDP has 1031 components that take in total 

approximately 30 minutes to calculate using the Generalized-Born method. 

The use of GB calculations as a filter of relevant residue components for calculation with 

PB had been tested before in a previous work that is also presented in Chapter 3.(137) 

Generalized-Born component analysis models have also been applied by Karplus and co-workers 

to a small peptide, but their results were not compared to similar calculations with the PB 

method,(138) and neither were the results of Zoete and Michielin.(139) On the other hand, the 

exclusive use of PB has been applied to the study of the GCN4 leucine zipper (64 residues) by 

Hendsch and Tidor,(33) in rational redesign of calmodulin (169 residues), by Green, Tidor and 

Jasanoff, and to optimize an inhibitor of HIV entry into the cell (210 residues).(34) These 

applications of PB were done on systems that are relatively small compared to the heterotrimeric 

G-protein and its three states. They did not require a filter because the number of calculations 

was not as demanding. 

The degree to which generalized-Born approximates Poisson–Boltzmann for each residue 

component was presented in the work by Carrascal and Green.(137) That work is also presented 

in Chapter 3 of this thesis. GB and PB electrostatic binding free energies were calculated for all 

the components for 100 ns simulation time, for all frames taken at 1 ns intervals. The results of 

these calculations quantified how much GB approximates PB; while GB is not a very accurate 

substitute for PB calculations, it was concluded that the use of GB is justified as a filter for 

selecting the most important components to be calculated with PB—giving a good tradeoff 

between accuracy and speed for large systems. 

Mutation energies are calculated to assess the contributions of individual components to 

the electrostatic free energies of binding and folding. This type of energy is the sum of direct, 

indirect and desolvation energies, as described in Equation 5.1. The coefficients i,j correspond to 

indexes between every pair of components in the system. Self electrostatic free energies are 

calculated for each component only once, solv
iGΔ , and the pair-wise electrostatic free energies are 

calculated for every permutation of components i,j.  

∑∑ Δ+Δ+Δ=Δ
j

indir
ij

j

dir
ij

solv
i

mut
i GGGG                                           (5.1) 
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The terms in these equations are solvation, direct and indirect contributions. Solvation energy 

corresponds to the self electrostatic free energy difference in contribution from each residue 

component in the bound and the unbound states, or the unfolded to the folded state. For each pair 

of components, direct energies correspond to solvent-screened Coulombic pair-wise interactions 

between component i and all of the components in the binding partner. Indirect energy 

corresponds to solvent-screened Coulombic pair-wise interactions between component i and 

every other component in the same molecule. Mutation energy is the theoretical counterpart of 

alanine scanning mutagenesis.  This energy corresponds to the theoretical process of turning on 

the charges of a component, and it is a measure of the component importance to binding or 

folding. 

Equation 5.1 is applicable to both folding and binding. In folding, the equation 

corresponds to the difference in energy from the unfolded side chain alone and the side chain 

attached to the protein and folded, surrounded by solvent, the remaining of the protein or both, 

depending on the side-chain location. Binding is calculated from the energetic difference of each 

residue component in the presence and absence of the binding molecule.  

Individual components’ average free energies of binding and folding provide a measure 

of their importance to each system. The importance of each component to transitions of 

heterotrimeric G-protein states may reveal changes important to signal transduction from a 

thermodynamic state function; that is, a function in which changes are studied for end states of a 

protein and independent of the energy necessary for the transition. These differences of states in 

free energies of binding between the systems describe what is energetically different, or how 

much a component’s energy changes. 

Thorough calculations of electrostatic binding and folding free energies are important in 

understanding signal transduction at the atomic level. The passing of signal through the cell 

membrane requires a relaying heterotrimeric G-protein that in turn undergoes specific intra-

protein mechanisms between its electrostatic components. Passing of a signal within a protein is 

as important as passing a signal between proteins; the following work sheds light on both intra 

and inter protein electrostatic signal relay by studying changes in the α-alpha subunits from three 

states, and how components interact between the α and βγ subunits in the heterotrimer. This type 
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of analysis gives a higher certainty that no important interactions were missed, and it gives a 

succinct way of organizing electrostatic interactions in a filtered profile by energetic relevance; 

this could be used as a reference for possible characterizations of other members of the G-protein 

family that have slightly different sequences or mutations; thus, extending understanding in 

signal transduction from theoretical models. 

5.3  Methods 

5.3.1 Poisson–Boltzmann calculations 

All solutions of the linearized Poisson–Boltzmann equation were obtained using a 

multigrid finite-difference solver distributed with the ICE (Integrated Continuum Electrostatics) 

package.(114) The atomic radii used were those optimized by Roux and co-workers for use with 

continuum electrostatic models;(116-117) partial atomic charges were taken from the 

PARAM22/27 parameter set.(112-113) For consistency with the all-atom molecular dynamics 

simulations, an internal dielectric constant of 1 was used, along with an external dielectric 

constant of 80. Focusing boundary conditions were used: an initial calculation was done with the 

largest dimension of the system occupying 23% of one side of the grid, and Debye–Hückel 

boundary conditions were used; a second calculation was then done with the system occupying 

92% of the grid, and using the potentials from the previous calculation at the boundary. For 

individual components, but not for net binding energies, an additional overfocused calculation 

was done with the molecule occupying 184% of the grid (centered on the component of interest). 

Net binding energies were computed with a 2573 unit cubic grid, and individual components with 

a 1293 unit grid; due to the overfocusing used for components, the grid spacing was identical in 

both of these cases. 

5.3.2 Generalized-Born calculations 

Generalized-Born calculations were done using the GBSW module (105) of a version of 

the CHARMM computer program modified to output the effective Born radii. As for the PB 

calculations, the atomic radii used were those optimized by Roux and co-workers (116-117) 

Binding was considered as the difference between the bound state and a state in which one 

component was rigidly translated 500 Å. The scaling coefficients were set to standard values, of 
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a0 = 1.2045 and a1 = 0.1866, the molecular surface was used, and a smoothing length of 0.2 Å 

was applied; no cutoffs were used. 

5.3.3 Tabulation and ranking of components within the cutoff 

All components in the three systems were initially calculated with generalized-Born 

model. A cut off of 1 kcal/mol was used to select the top components from GB, for binding and 

folding electrostatic free energy. These components were then calculated using Poisson–

Boltzmann component analysis. Only the top 50 components in folding for the trimer were 

recalculated with PB. The ranking of components in these tables is done in terms of the absolute 

value of their energies. In this way, both favorable negative energies and unfavorable positive 

ones are considered relevant for their magnitude. 

5.4 Results and Discussion 

The decomposition of binding and folding free energies was performed on the heterotrimeric G-

protein in three different states on structures obtained from molecular dynamic simulations. For 

each one of the structures, the contribution of every residue to binding and folding was tabulated 

and ranked for analysis using GB initially. PB calculations were performed on a set of 

components selected from top ranked GB results. The selection criteria applied to GB results for 

refinement with PB includes components with energies larger than 1 kcal/mol for unfavorable 

interactions, and components with energies lower than -1 kcal/mol for favorable interactions. 

The total number of  PB and GB components considered for the analysis, as well as the number 

of backbone and side chain components, is presented in Table 5.1 for folding and binding. For 

binding, all of the components within the GB cutoff were calculated with PB. For folding of the 

heterotrimer, a lot of components fall within the cutoff, and it is not practical to calculate them 

all with PB. For this reason only the top 50 components for each system were calculated. 

5.4.1 Important components for binding 

5.4.1.1. Nucleotide-protein binding energy 

 Mutation energies of binding of side chain components are shown in Figure 5.1 on the 

left. This figure can be seen as an electrostatic profile that shows the nucleotide’s points of 
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contact to Gα. These points of contact across the heterotrimeric G-protein give an initial 

indication of how electrostatics within the protein varies as signals are passed through them. 

Some of the components that are significant in binding for the three systems have conserved 

interactions that do not change from one state of the G-protein to another. In order to determine 

residues with relevant changes, the plots in Figure 5.1 A, B and C, on the left, were subtracted 

from one another to give side chain differences in mutation energies from one state of the 

heterotrimeric G-protein to the other; these are shown in Figure 5.1 on the right.  In other words, 

the figure corresponds to changes in energy before and after nucleotide exchange and the 

consequent trimer dissociation and association. 

The association of βγ causes an unfavorable change in many components that are bound 

to the nucleotide because they go from interactive primarily with the nucleotide, to having βγ 

competing in their interactions. In Figure 5.1 for example, two components gain in mutation 

energy to go into a less favorable energetic state upon binding of the heterotrimer, Glu 43 and 

Asp 272, both of which simply go from favorable state to a less favorable state, and giving a 

peak with an unfavorable energy in the plot of Figure 5.1 F. 

Components selected outside the ±1 kcal/mol energy range can be grouped in five major 

discrete regions along the primary structure sequence. These regions are separated in the protein 

Table 5.1. Number of components calculated with GB and PB.  
 

System 

Binding Foldinga 

GB PB GB PB 

total Backbone Side 

chains 

total Backbone Side 

chains 

total Backbone Side 

chains 

Side 

chai

ns 

Gα.GDP 1030 698 332 47 31 16 785 520 265 50 

Gα.GTP.MG 1030 698 332 45 29 16 788 516 272 46 

Gαβγ to 

GDP 

2185 1486 699 39 23 16  

1639 

 

1108 

 

531 

 

46 

Gα.GDP to 

Gβγ 

2185 1486 699 53 44 9 

aGB folding gave a large number of components for the ±1kcal/mol cutoff that include side chain and backbone 
components. PB folding is calculated for side chains selected from the top 50 GB folding components; this number 
of components corresponds to a cutoff energy of 6.86 kcal/mol for Gα.GDP, 6.22 kacal/mol for Gα.GTP.MG and 8.67 for 
Gα.GDP.Gβγ. PB folding gave 46 components for Gαβγ to GDP and Gα.GDP to Gβγ because some components that are 
included in the 1kcal/mol GB cutoff do not make the cutoff in PB.  
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sequence, but come close to the nucleotide making significant interactions. In Figure 5.1, the 

nucleotide interacts with side chain residues that range from closer in sequence to the N-termini 

to closer in sequence to the C-termini. The five regions that show significant binding PB, GB 

energies are analyzed in groups and more detail in the remaining of this section. 

 
Figure 5.1. Contribution to binding free energies. PB(blue) and GB(red) side chain mutation 
energies for binding of Gα to the nucleotide for all GB components(red) and selected PB 
components(blue). Left, (A) Gα.GDP. (B) Gα.GTP.MG (C) Gα.GDP.Gβγ. Right, (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ), the G-protein goes from the inactive heterotrimer to the active monomer. (E) 
ΔG(Gα.GDP)-ΔG(Gα.GTP.MG), the G-protein hydrolyses the third phosphate group in the nucleotide 
and goes from the active to the inactive state. (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP), the G-protein goes 
from the monomeric state to the association of βγ to form the heterotrimer again. 

5.4.1.1.1. Nucleotide-protein binding group one 

 Side chains Glu 43, Ser 44, Lys 46, Ser 47, Thr48, Lys 51 make interactions with the 

nucleotide that make the cutoff energy in the three systems. Gln 52 only makes the cutoff energy 

for the inactive monomer, Gα.GDP. These side chains have chemical groups that tend to 

facilitate hydrogen bonding with the phosphate groups of the nucleotide. The backbone 

superposition in Figure 5.2 shows that the parts of this sub domain that hold the nucleotide in 

place are relatively rigid in the three systems. The third phosphate group displaces the backbone 

slightly more for the active monomer, but this backbone section is very rigid relative to the loop 

regions one to three, so not much can be inferred from this differences. 

There are few noticeable structural differences of side chain conformation in the three 

systems for this region, and the differences are mostly in energetics listed in Table 5.2. Glu 43 

(D) 

(F) 

(E) 

(A) 

(C) 

(B) 
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has unfavorable binding energies in the three systems and point away from the phosphate groups. 

The side-chain and amino group of Lys 46 interact favorably with the last phosphate group of the 

nucleotide in both inactive states of the G-protein. In the active state, however, the amino group 

of Lys 46 interacts with the second to last phosphate group. Ser 47 interacts favorably through a 

hydrogen bond with the nucleotide in the inactive states, but in the active state, the side chain 

oxygen atom interacts with the magnesium ion, making its interaction with the nucleotide 

unfavorable by breaking the hydrogen bond and forcing the oxygen atoms to get closer. Thr 48 

interacts in a similar way in the three states of the heterotrimeric G-protein forming a conserved 

hydrogen bond with the same phosphate group in the nucleotide. 

 

Figure 5.2. Binding group one interactions. From left to right, Glu 43, Ser 44, Lys 46, Ser 47 
and Thr 48 side chains in Gα.GDP, Gα.GTP.MG, Gα.GDP.Gβγ respectively, followed by superimposed 
back bone conformations for the three systems, and Gα.GTP.MG showing only Lys 51 and Gln 52. 

5.4.1.1.2. Nucleotide-protein binding group two 

This group is formed only by the side chain of Asp 150 in the three systems. In the 

heterotrimer, the side chain of Ser 151 also makes the cutoff. For these two residues, only the 

carbonyl group of Asp 150 is included in the cutoff with favorable interactions for Gα.GDP and 

Table 5.2. PB nucleotide mutation binding energies for binding group one.a 
 Binding Energy (ΔG) Difference in binding (ΔΔG) 
 A B C D E F 

Glu 43 23.32  7.45 10.29  -2.84  15.87    -13.03 
Ser 44  -4.10  5.06  -5.02  10.08 -9.16 -0.92 
Lys 46 -85.14 -101.05 -85.30 -15.75  15.9 -0.16 
Ser 47 -22.28   -29.97 -23.54   -6.43  7.69 1.26 
Thr 48 -11.17 -9.51 -11.64   2.13 -1.66 0.47 
Lys 51 -28.02   -17.69 -10.88   -6.81 -10.33   -17.14 
Gln 52  -2.96   -0.29*     -0.01*      0.28*     -2.67*  2.95* 

a(A) Gα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ).   (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB.  
All units in kcals/mol 
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Gα.GDP.Gβγ, as well as the amino group of Ser 151 for the heterotrimer. Arg 176 also interacts 

also interacts favorable in Gα.GDP and Gα.GDP.Gβγ. 

In this group, Asp 150 interacts unfavorably in the three states because it is close to the 

oxygen atom in the ribose group of the nucleotide. In the two monomers, Ser 151 makes few and 

sporadic interactions with the nucleotide. Ser 151 interacts with the nucleotide only in the 

heterotrimeric structure where it gets between the backbone of Arg 176 and a hydrogen in the 

nucleotide. This interaction is conserved during the whole simulation as seen in Figure 5.3. 

 
Figure 5.3. Interactions of binding group two.Top left, location of binding group 2 in the α 
sub-unit. Top center, Arg 176 interacting with residues in the α helical domain and away from 
the nucleotide. Top right, Arg 176 interacting with the nucleotide. Top inset, labeling of atoms in 
Arg 176, Ser 151 that interact with the nucleotide. Bottom left, distances from Ser 151 HG1 to 
Arg 176 O in black, and from Ser OG to Nucleotide H3T in red. Bottom right, distances from 
Arg 176 HH11 to Nucleotide 176 O2’ in black, and from Arg 176 HH22 to Nucleotide N2 in red. 
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Table 5.3. PB nucleotide mutation binding energies for binding group two.a 
 Binding Energy (ΔG) Difference in binding (ΔΔG) 
 A B C D E F 

Asp 150 11.29    5.57   6.81 -1.24   5.72   -4.48 
Ser 151     0.95*  0.54*  -4.37   4.37     0.41*     -5.32* 
Arg 176 -7.51 -0.51* -23.87 23.87 23.36 -16.36 
Crb 150 -1.90 -0.55*   -2.82   2.27    -1.35*     -0.92* 
Amn 151    0.28*  0.10*   -2.15   2.25     0.18*     -2.43* 

a(A) Gα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB. Crb 
stands for carbonyl group, and Amn for amino group. All units in kcals/mol 

Figure 5.3 also shows the difference in interaction of Arg 176. This residue interacts with 

the nucleotide in the inactive state, Gα.GDP, for the first 230 ns of the simulation, it then goes to 

interact with a group of residues in the α-helical domain temporarily, Asp 158, Arg 161, Tyr 167, 

Gln 172 and Leu 273, before it re-associates and disociates again. In the active monomer, 

Gα.GTP.MG, Arg 176 is also bound to the nucleotide at the beginning of the simulation, but it goes 

to interact with the group of residues in the α-helical domain only 30 ns into the simulation. In 

the heterotrimer, Gα.GDP.Gβγ, Arg 176 never interacts with the group of residues. 

5.4.1.1.3. Nucleotide-protein binding group three  

This group is formed by various side-chain and backbone groups from 175 to 185, from 

which only the most significant ones are considered in Table 5.4. Only the side chains of Arg 

178 and Lys 180 have significant favorable energies in the three systems. Side-chain Thr 181 is 

only observed to have significant energies in the two monomer states of the G-protein. The 

heterotrimer does not have any backbone components within the 1 kcal/mol cutoff, and the 

inactive monomer only includes carb 179 and carb 180. The active monomer has many backbone 

groups included by the cutoff likely due to the additional phosphate group.  

The structural differences of residues in this group are relevant because they are part of a 

loop region that connects the α-helical domain and the GTPase domain. Figure 5.4 shows the 

location of Arg 178, Lys 180 and Thr 181 and the distance from the heavy atoms in their side 

chains to the second phosphate group of the nucleotide, which is present in the three systems. 

The schematic  of  Figure 5.4 is from  Gα.GTP.MG  and  shows the coordination of the  Mg2+ ion by 
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Figure 5.4. Interactions of binding group three. Top left, location of binding group 3 in the α 
sub-unit with the GTPase domain in green and the α helical domain in blue for Gα.GTP.MG. Top 
right, zoom in of Arg 178, Lys 180, Thr 181, the magnesium ion in magenta and the nucleotide 
in orange. Bottom left, distances from the PB atom in the nucleotide to Arg 178 CZ in black and 
Lys 180 NZ in red. Bottom right, distances from the PB atom in the nucleotide to Thr 181 CG. 

the last two phosphate groups of the nucleotide and Thr 181. The coordination of Thr 181 with 

Mg2+ ion only occurs for a little over the first 300 nanoseconds of the simulations before 

dissociating for the remaining 308 ns; this dissociation is the reason for the increased mobility of 

the loop region to which this residue belongs. In the other two states of the G-protein, Thr 181 

remains dissociated all the time.  

Lys 180 starts far from the nucleotide in the inactive monomer, Gα.GDP, and gets closer to 

the nucleotide after 7 nanoseconds into the simulation and never dissociates again. Lys 180 is 

bound to the nucleotide throughout the whole simulation in the heterotrimeric state of the G-
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protein. For the active state, Gα.GTP.MG, Lys 180 is mostly dissociated, and it only interacts with 

the nucleotide between the 451th and the 549th nanosecond of the simulation. Lys 180 is always 

bound to the nucleotide in the heterotrimeric state. 

Table 5.4. PB nucleotide mutation binding energies for binding group three.a 
 Binding Energy (ΔG) Difference in binding (ΔΔG) 

 A B C D E F 

Arg 178 -13.93 -57.01 -48.49  -8.52  43.08    -34.56 
Lys 180 -95.09   -7.78 -82.97 75.19 -90.31     12.12 
Thr 181    1.70 -18.50     0.12*  -18.62*  20.20     -1.58* 
Crb 175    0.13   -2.69     0.01*   -2.70*   2.82     -0.12* 
Crb 176   -1.20   -2.24     0.01*   -2.25*   1.04 1.21* 
Crb 178     -0.41*   -3.47     0.01*      -3.4*    3.06* 0.42* 
Crb 180   -2.30   -3.71     0.05*   -3.76*  1.41 2.35* 
Crb 181     -0.43*   1.89    -0.06*    1.95*   -2.32* 0.37* 
Amn 181     -0.22*  -3.27     0.00*   -3.27*    3.05* 0.22* 

a(A) Gα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB. Crb 
stands for carbonyl group, and Amn for amino group. All units in kcals/mol. 

Arg 178 is close to Lys 180 and they compete for binding to the nucleotide in the two 

monomers. In Gα.GDP, Arg 178 dissociates from the nucleotide at about the same time Lys 180 

binds to it. The opposite occurs in Gα.GTP.MG, Arg 178 remains bound to the nucleotide even 

when Lys 180 is also bound to the nucleotide between the 451th and the 549th nanosecond. In the 

heterotrimer, the two appear to remain close to the nucleotide without excluding each other. The 

distance of Arg 178 to the nucleotide is a little higher than Lys 180, but this is in part due to the 

larger size of the arginine side chain compared to lysine and the effect of measuring interactions 

from heavy atoms distances, which makes the distance easier to read when there are side chain 

flips or rotations.  

5.4.1.1.4 Nucleotide-protein binding group four 

 In the three systems side chain Asp 200 make the cutoff. Only the active monomer, 

Gα.GDP, includes any other components, the side chain of Glu 207, the carbonyl groups of 202 

and 203 and the amino group 203, shown in Table 5.5. 

The location of Asp 200 and Glu 207 is in an intermediate location between the 

nucleotide and βγ subunit in the heterotrimer. Asp 200 is closer to the nucleotide while Glu 207 
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to protein-protein interface as seen in  Figure 5.8.  In  Gα.GDP, Asp 200 is found on the phosphate 

side of the nucleotide and it interacts with an unfavorable energy of 4.92 kcal/mol. Glu 207 does 

not have an interaction energy above the 1kcal/mol cutoff. In Gα.GDP.Gβγ, Asp 200 also points 

towards the nucleotide and it is closer to it, giving an even higher unfavorable interacting energy 

of 23.11 kcal/mol. In both the inactive monomer and heterotrimer, Asp 200 is kept pointing to 

the nucleotide despite its unfavorable energies by residues surrounding it; this residue is also 

exposed to the solvent. 

 
Figure 5.5. Interactions of binding group four. Top left, location of binding group 4 in the α 
sub-unit with the GTPase domain in green, the α helical domain in blue and βγ in gray for 
Gα.GDP.Gβγ. Top right, zoom in of Asp 200, Glu 207 and Lys 180. Bottom left, distances from the 
last phosphorous atom (PB/GB depending on the system) to Glu 207 CD and Lys 180 NZ. 
Bottom right, distances from the last phosphorous atom in the nucleotide to Asp 200 CG. 
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Table 5.5: PB nucleotide mutation binding energies for binding group four.a 
 Binding Energy (ΔG) Difference in binding (ΔΔG) 

 A B C D E F 
Asp 200 4.92     -75.53     23.11 -98.64 80.45     18.19 
Glu 207   0.96*  4.40  3.49      0.91*   -3.44* 2.53* 
Crb 202 -1.14* -3.99 -0.01     -3.98*    2.85* 1.13* 
Crb 203 -0.73* -2.37 -0.27   -2.1*   1.64* 0.46* 
Amn 203   0.16* -2.91  0.27    -3.18* 3.07 0.11* 

a(A) Gα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). Crb stands for carbonyl group, 
and Amn for amino group. Crb stands for carbonyl group, and Amn for amino group. All units in kcals/mol 

In Gα.GTP.MG, Asp 200 makes a favorable interaction with the Mg2+ ion. Glu 207 is 

involved in the interaction of Lys 180 with nucleotide. Lys 180 is in the solvent until it makes a 

favorable interaction with Glu 206, shortly after, Lys 180 moves on to interact with the 

nucleotide. This interaction lasts between 452 and 548 nanoseconds in the simulation; after that 

Lys 180 interacts intermittently with Glu 207. 

5.4.1.1.5. Nucleotide-protein binding group five 

Side chains Asn 269, Lys 270, Asp 272 and the 269 carbonyl group are all included in the 

cutoff for the three systems. Only Gα.GDP has two additional components in this group, the 

carbonyl and amine group of residue number 270. This group of components is located in the 

side of the α subunit opposite to the βγ subunits as shown in Figure 5.6. Because of its location, 

this group of residues could play an important role in nucleotide exchange. 

In the three states, Asn 269 makes a favorable interaction with the guanine group of the the 

nucleotide although in the single digits. The preferred interaction takes place between the 

hydrogen atom in the carboximide group in asparagine and one of the nitrogen atoms in the 

nucleotide. The side chain of the asparagine never flips, but it sporadically distances from the 

nucleotide for a few nanoseconds throughout the simulation in the three systems.  

Lys 270 is extended along the nucleotide in the three states of the G-protein, with the 

hydrophobic part of the side chain along the guanine ring and the polar part in close proximity to 

an oxygen atom, O4’, in the ribose ring of the nucleotide.  
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Figure 5.6. Interactions in binding group five. Top left, location of binding group 5 in the α-
subunit with the GTPase domain in green and the α helical domain in blue. Top right, Asp 272, 
Asn 269 and Lys 2700 interacting with the nucleotide. Top inset, labeling of atoms in the 
nucleotide that interact with the side chains in this group. Bottom left, distances from Asn 269 
ND2 to the Nucleotide atom N7; and from Lys 270 NZ to the Nucleotide atom O4’. Bottom 
right, distances from Asp 272 CG to the Nucleotide atom C2, and from Arg 176 HH22 to 
Nucleotide N2. 

 The last important residue in this group is Asp 272. It forms a double hydrogen bond with 

the guanine group of the nucleotide in a way that it appears to lock the nucleotide in place. In 

Gα.GDP, the hydrogen bonds break and re-associate a few times before dissociating for good after 

470 nanoseconds into the simulation. The opposite occurs in Gα.GTP.MG, the dynamics of the 

hydrogen bond changes as it starts associated and then dissociates 25 nanoseconds after the 
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simulation begins. The double hydrogen bond is also formed at 209 and 215 to 220 nanoseconds; 

This double bond is less conserved in the active monomer because of the additional phosphate 

group in GTP that pushes it away towards the solvent. Finally Gα.GDP.Gβγ forms the double 

hydrogen bond with the nucleotide for the first 220 nanoseconds before dissociating for the 

remaining of the simulation. Asp 272 is an example of a residue that departs from the position 

observed in the crystal structure. 

Table 5.6. PB nucleotide mutation binding energies for binding group five.a 

 Binding Energy (ΔG) Difference in binding (ΔΔG) 
 A B C D E F 

Asn 269 -3.92   -2.60  -4.54 1.84    1.32 -8.46 
Lys 270     -36.38 -25.27 -31.80 6.53 -11.11  4.58 
Asp 272 -5.09  -0.42  -1.06 0.64  -4.67  4.03 
Crb 269 -2.12  -1.01  -1.65 0.64 -1.11  0.47 
Crb 270 -1.69    -0.80*   0.00 -0.80* -0.89  1.69* 
Amn 270 -1.68  -0.50   0.01  -0.51* -1.18  1.69* 

a(A) Gα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB. Crb 
stands for carbonyl group, and Amn for amino group. All units in kcal/mol. 

5.4.1.2. Binding between Gα and Gβγ 

This binding interface is large compared to the nucleotide’s, and it has an average of 

495.93±53.28  Å2.  It has fewer  components than nucleotide binding for  components  within  a 

1 kcal/mol cutoff.  There are  28 components interacting at the binding interface with a cutoff of 

1 kcal/mol. Of those components, 15 belong to βγ, and 13 to α. Of these components, only four 

belong to the backbone: carbonyl 16 and carbonyl 213 in the α-subunit, and carbonyl 117 and 

carbonyl 118 in the βγ subunit. Figure 5.7 shows a binding profile of every side chain in the 

heterotrimer protein–protein interface. 

There are three possible reasons for having fewer components despite a larger binding 

surface. One is that the interface is not as tight as the one by the nucleotide wrapped inside a α 

subunit. Another one is that the interactions are made between components and not between a 

component and a nucleotide that has larger partial charges.  Lastly, the barrel shape of βγ has a 

hollow center and interactions between the two subunits are only possible around the side of the 
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barrel shape structure that is closer to α, and along the side of the βγ barrel that is in contact with 

the alpha helical region of the N-terminus of α. 

 

Figure 5.7. Contributions to protein–protein binding. PB (cyan) and GB (pink) heterotrimer 
binding for the α and βγ binding interface. (A) Side chain components corresponding to the α 
.sub-unit (B) Side chain components corresponding to the β sub-unit. 

The main side-chain components in the protein–protein heterotrimer interface can be 

grouped according to their proximity along the αβ binding interface; this facilitates the 

independent analysis of each in the remaining of this sections.  

5.4.1.2.1. Protein–protein binding group one 

 This group is near the α-subunit N-terminus. In the crystal structure, its components do 

not show any interaction, but during the simulation, Asp 8 (-17.4 kcal/mol) and Asp 9 (-12.9 

kcal/mol) in the α-subunit interact favorably with Arg 68 (-25.4 kcal/mol), Arg 129 (-15.7 

kcal/mol) and Thr 86 (-1.3 kcal/mol) in the β subunit. Figure 5.8 shows the location of the group 

in the heterotrimer as well as the two predominant states. 

(A) 

(B) 
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Figure 5.8. Interactions protein–protein group one. Location and main conformations of 
protein–protein binding group one. Above, location of the group in the αβ interface. Below left, 
initial state of the group at the beginning of the simulation. Below right, sample frame at 181 
nanoseconds when the residues in this group interact with each other. 

 The side chains in this group start interacting with each other after about 70 nanoseconds 

into the simulation. These interactions remain stable for the rest of the simulation, with only brief 

separations due to water molecules in their surroundings that might interfere. For the most part, 

Asp 9 in α and Thr 186 and Arg 129 in β interact with each other. Also, Asp 8 in α and Arg 68 in 

β interact mostly with each other. Asp 8 mediates between Arg 68 and Arg 129, in β, for brief 

periods of time during the simulation. While the interactions between the residues in this group 

are generally conserved, they are in one end of the protein which allows them to move broadly, 

and their biological interpretation is difficult to make knowing that this end of the protein is 

restrained by post-translational modifications that insert the cell membrane. 

5.4.1.2.2. Protein–protein binding group two 

 The residues in this group are also located at the interface formed by the N-terminus α 

helical region of α that is extended along the β-subunit. Figure 5.13, shows this group formed by 
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Asp 26 (-10.8 kcal/mol), Asp 20 (-12.3 kcal/mol) and Ser 16 (-3.2 kcal/mol) in the α-subunit, and 

Lys 78 (-13.1 kcal/mol), Arg 52 (-4.5 kcal/mol), Lys 89 (-6.2 kcal/mol) in the β-subunit. Asp 26 

and Arg 52 would only interact at 1 nanosecond and between 120 and 232 nanoseconds out of 

the whole simulation. Lys 89 does not interact so cleanly with Asp 20 and Ser 16, they dissociate 

intermittently, but they tend to be associated around the 120 to 232 nanoseconds interval of Asp 

26 and Arg 53. Asp 26 in α and Lys 78 in β have a more conserved interaction with no long 

dissociations, only brief intermittent ones, also, as seen in Figure 5.9. 

 
Figure 5.9. Interactions protein–protein group two. Left, location of protein–protein binding 
groups 2 and 3 in the αβ interface. Right, closer view of the groups showing interactions among 
its residues. 

5.4.1.2.3. Protein–protein binding group three 

Figure 5.9 also shows the interactions between Glu 186 (15.2kcal.mol) in α and Asp 118 

(11.2kcal/mol) in β; this interaction is unfavorable—they never get closer than 3 Å—and 

suggests that some unfavorable interactions are necessary to facilitate the dissociation of a large 

binding interface. 

5.4.1.2.4. Protein–protein binding group four 

 Figure 5.10 shows the group four location along the αβ binding interface on the right, in 

the top black block. The block in the top left shows a closer view of residues Glu 216 (-13.0 

kcal/mol) in α, and Lys 57 (-22.2 kcal/mol) and Gln 75 (-1.6 kcal/mol) in β. Gln 75 tends to 

interact with the backbone and Lys 57 with the side chain of Glu 216. These two interactions 
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move a lot, making it difficult to describe in terms of dissociation and association of hydrogen 

bonds and side-chain flips in Gln 75. 

5.4.1.2.5. Protein–protein binding group five 

Figure 5.10 shows the group five location along the αβ binding interface on the right, in 

the middle black block. The block in the middle left shows a closer view of residues Lys 257 (-

8.2 kcal/mol) in α and Asp 290 (-11.1 kcal/mol) in β. While the interaction of these two residues 

is also very noisy, with salt bridges formed and broken constantly, the two side chains start far 

apart for the most part in the first 200 nanoseconds, and seem to form more frequent and closer 

interactions for the remaining of the simulation. A similar pattern is observed for the interactions 

between Lys 257 and Carbonyl 290.  

 
 Figure 5.10. Interactions in protein–protein group 4, 5 and 6. Left, zoom in on the groups 
showing interactions among its residues. Left, from top to bottom: protein–protein binding group 
4; 5 and 6. Right, location of protein–protein groups 4, 5 and 6 in the αβ interface from two 
different perspectives. 

5.4.1.2.6. Protein–protein binding group six 

 Figure 5.10 shows the group six location along the αβ binding interface on the right, in 

the bottom black block. The block in the bottom left shows a closer view of residues Lys 209 

(95.8 kcal/mol) in α, and Asp 246 (-3.3 kcal/mol) and Asp 228   (-5.1 kcal/mol) in β. Lys 209 

interacts more strongly with both Asp 246 and 228 after about 150 to 175 nanoseconds. Asp 246 

forms a stronger interaction while Asp 228 dissociates between 400 and 475 nanoseconds and for 

the last 80 nanoseconds of the simulation. These interactions are too noisy to characterize in any 

more detail. 
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Figure 5.11. Interactions in protein–protein group 7. Top, location of the protein–protein 
binding group 7 in the αβ interface. Bottom, zoom in on the group showing interactions among 
its residues.  

5.4.1.2.7. Protein–protein binding group seven 

 Figure 5.11 shows groups seven location along the αβ binding interface on the right, in 

the top black block. In the bottom, Glu 207 (1.7 kcal/mol) and Lys 210 (-18.8 kcal/mol) in α, and 

Asp 186 (-10.4 kcal/mol) in β. Lys 210 and Asp 186 do not interact until after 195 nanoseconds 

into the simulation. Glu 207 does not interact with Lys 210 until 217 nanoseconds into the 

simulation; this interaction is very unstable and breaks and forms intermittently, without any 

clear patterns throughout the remaining of the simulation. In this mode of interaction, Lys 210 is 

an intermediary between two negatively charged residues, one in its own chain and the other one 

in a different chain across the binding interface.  

 With group seven ends the analysis of the interactions in the αβ interface. The following 

analysis is done on residues that are important in folding, and that have not already been 

analyzed structurally in binding; as some residues have both binding and folding interactions. 
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5.4.2 Important components for folding 

Important components for folding are those that have a significant electrostatic 

interaction with other components besides the nucleotide. There are still some residues with low 

binding energies that interact with residues that interact with the nucleotide; in order to identify 

these residues from the simulation of proteins with many components, the calculation of folding 

energies is a useful tool. Folding calculations correspond to the energy of transferring every 

residue side chain in the protein from the solvent to the folded state in the protein. In this way, 

important interactions between side chains emerge in the rankings according to energy. For 

example, a residue that forms a salt bridge inside the protein would have favorable transfer 

energy from the solvent to its environment in the protein. In this way, networks of salt bridges 

emerge that interconnect important regions of the G-protein in ways that give insights into their 

potential relevance in signal transduction through the G-protein. Folding gives an idea of how 

the exposure to solvent changes through the simulation. For example, a side chain that is kept 

isolated from the solvent through the simulation would give a large energy of folding; a side 

chain that remains completely solvated through the simulations would give zero folding energy. 

As in Figure 5.1 for binding, folding mutation energies of side chains are shown in Figure 

5.12 on the left. This figure can be seen as an electrostatic profile that shows residues energies of  

 
Figure 5.12. Contributions to folding free energy. PB(black)  and GB(green) side chain 
mutation energies for folding of Gα to the nucleotide for selected components by GB. Left, (A) 
Gα.GDP. (B) Gα.GTP.MG (C) Gα.GDP.Gβγ. Right, (D) ΔG(Gα.GTP.MG) –ΔG(Gα.GDP.Gβγ).   (E) 
ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). 

 (A) 

(C) 

(D) 

(E) 

(F) 

(B) 
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folding for each amino acid side chain. Some of the components significant in folding for the 

three systems have conserved interactions that do not change from one state of the G-protein to 

another. In order to determine residues with relevant changes, the plots in Figure 5.12 A, B and 

C, on the left, were subtracted from one another to give side chain differences in folding 

mutation energies from one state of the heterotrimeric G-protein to the other; these are shown in 

Figure 5.12 on the right. 

5.4.2.1. Folding group one 

This group shows significant folding energies, and it is located near the other loop region 

that connects the GTPase and α helical domains. It is formed by Lys 54, Glu 58 and Glu 65. The 

three residues interact forming a double salt bridge. The salt bridge between Lys 54 and Glu 65 

is very loose in the heterotrimer in comparison to the two monomers; this salt bridge appears to 

hold the GTPase and α helical domain in the monomers but is more unstable in the heterotrimer, 

distance plots in Figure 5.13. It has been suggested that conformational motions between this two 

domains is important in nucleotide exchange, and that this nucleotide exchange is initiated when 

the G-protein is in the heterotrimeric state.(21) The breaking of this salt bridge would contribute 

to this mechanism. 

Table 5.7 shows that Lys 54 has a favorable folding energy for the monomers, and not 

very significant for the heterotrimer. The table also shows that going from the heterotrimer to the 

monomer with a GTP is very favorable, as it would be expected for such transition since it would 

favor the formation of the salt bridge. Going from the inactive monomer to the heterotrimer is 

unfavorable as it would cause the salt bridge to be broken.  

Table 5.7. PB mutation folding energies for group 1, and change in folding energies from 
one system to the other.a 

 Binding Energy (ΔG) Difference in binding (ΔΔG) 
 A B C D E F 

Lys 54 -31.33 -41.29   -5.34* -41.29 9.96  25.99* 
Glu 58  -6.12  -8.64 -5.98   -2.66 2.52 0.14 
Glu 65     0.64*  -8.53    6.14*   -14.67*  9.17* 5.5* 

aGα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB. Crb 
stands for carbonyl group and Amn for amino group. All units in kcal/mol. 
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Figure 5.13. Interactions in folding group one. Schematics and distances between heavy atoms 
in folding group 1. Top, this loop is located near the region of the protein that connects the 
GTPase domain and the α helical region. In green, the GTPase domain; in red, the loop region 
between Lys 54 and Glu 65; in blue, the α helical domain. Bottom, distances between heavy 
atoms in forming the salt bridge, left, distance between Lys 54 NZ and Glu 58 CD, right, 
distance between Lys 54 NZ and Glu 65 CD. 

5.4.2.2. Folding group two 

This group is positioned away from the GTPase domain and the nucleotide. From its 

location, it does not appear to play a direct role in nucleotide exchange or trimer dissociation, 

Figure 5.14. It is believed that for nucleotide exchange to occur, the α helical domain opens 

relative to the GTPase domain; if this is the case, then this group of residues may interact with 

other proteins to facilitate this process. 

 This group of residues may change the way they interact among themselves when the G-

protein is in the trimeric, inactive state. In Table 5.8, Asp 102 and Asp 133 do not show any 

folding interaction when the βγ subunit is bound to the GTPase domain, but they show favorable 

folding energies between -15.96 and -22.50 kcal/mol for the two monomers. In other words, in 

the trimeric state these two residues interact with the solvent for most of the simulation. 
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Figure 5.14. Interactions in folding group two. Schematics of folding group 2. This group is 
located in the α helical region that is far from the GTPase doamain and the nucleotide. Because 
of it location, it does not appear to play a role in heterotrimeric G-protein function, but it could 
interact with signaling downstream effectors or other G-protein interacting proteins that help in 
its transitions through the cycle. 

Table 5.8. PB mutation folding energies, and change in folding energies for one system to 
the other for folding group two.a 

 Binding Energy (ΔG) Difference in binding (ΔΔG) 
 A B C D E F 

Asp 94 0.32 -0.44  6.78* -7.22*   0.44  6.46* 
Asp 97 0.97   1.50  8.05* -6.55*       -0.53 -0.97* 
Arg 100 -0.37*     -21.48 -8.13* 29.61*      21.48 -7.76* 
Asp 102      -6.78 -7.04  7.64*    -14.68*  0.26     14.42* 
Glu 115      -0.41 -1.12  6.68* -7.80*  1.12  7.09* 
Arg 129    -22.50     -22.39    -24.71 2.32 -0.11      -2.21 
Asp 133    -17.83     -15.96      -7.48* -8.48* -1.87 10.35* 

aGα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB. Crb 
stands for carbonyl group and Amn for amino group. All units in kcal/mol. 

5.4.2.3. Folding group three 

This group shows the most important non-covalent interactions between the GTPase 

domain and α helical domain; it is away from the two loop regions that connect this sub-

domains. If the GTPase and the α helical domain separate to exchange nucleotides, the salt 

bridge formed between Arg 144, Asp 229 and Asp 231 would break. The distances between the 

constituents of this salt bridge can be seen in the bottom left of Figure 5.15. In this figure, the 
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active monomer forms the salt bridge for only a few nanoseconds. The inactive monomer shows 

that the salt bridge forms sporadically until about 250 nanoseconds into the simulation, when the 

interactions become well conserved. In the heterotrimer the salt bridge is formed between about 

50 and 90 nanoseconds; at any other time, the salt bridge is loose. It is important to note the 

differences in distance between Asp 231 and Arg 144 in Gα.GDP.Gβγ and Gα.GDP when the salt 

bridge is formed; it is a lot closer for Gα.GDP. 

 The interactions of Lys 277 with Asp 229 and 231 show no correlation with the 

formation of the salt bridge between of the two aspartates and Arg 144 for the monomers. For the 

heterotrimer, the breaking of the salt bridge of the aspartates with Lys 277 appears to coincide 

with the formation of the salt bridge with Arg 144. 

Table 5.9. PB mutation folding energies, and change in folding energies for one system to 
the other for folding group three.a 

 Binding Energy (ΔG) Difference in binding (ΔΔG) 
 A B C D E F 

Arg 142 -25.68 -25.88 -24.82 -1.07    0.21 0.86 
Arg 144 -23.75     -0.34*     -1.87*    1.53* -23.75     -21.81* 
Glu 145 -16.56 -16.45 -16.05      -0.41  -0.11 0.52 
Asp 229 -11.40     1.31      4.00* 1.31     -12.71 15.40* 
Asp 231 -48.73      0.36*     -4.02*  4.38*  -49.09* 44.71* 
Asp 277 -26.02 -42.87 -26.05    -16.82 16.85      -0.03 

aGα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB. Crb 
stands for carbonyl group and Amn for amino group. All units in kcal/mol. 

 The energies of interaction for this group are shown in Table 5.9. Arg 144 only has a 

significant folding energy in the inactive monomer, where the salt bridge is form after 250 

nanoseconds. It is notable that Arg 144, together with Asp 229, forms the salt bridge for about 

140 nanoseconds in the heterotrimer, yet the folding energy average for the whole simulation is 

close to zero. 
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Figure 5.15. Interactions in folding group three. Schematics and distances between heavy 
atoms in folding group 3. Top, this group of residues is located opposite, relative to the 
nucleotide, from switch region one and the loop region formed by folding group 1. In green, the 
GTPase domain; in blue, the α helical domain. Bottom, distances between heavy atoms forming 
the salt bridge, left, distances between Arg 144 CZ, Asp 229 CG and Asp 231 CG. Right, 
distances between Lys 277 NZ and Asp 229 CG and Asp 231 CG. 
 

There is another salt bridge formed within the α subunit only between Arg 142 and Glu 

145. This salt bridge is so conserved in the three systems that the average distance between the 

CZ atom in Arg 142 and the CD in Glu 145 is the exactly the same, 3.92 Å. The energies of 

folding of these two components are also very similar in the three systems suggesting that this 

salt bridge plays no significant role in the heterotrimeric G-protein in its different states despite 

of its location close to the interface between the GTPase domain and the α helical domain.  
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5.4.2.4. Folding group four 

 The interactions in this group modulate the motions of switch regions two and three. 

Switch region two is in contact with the βγ subunit, and it has more mobility in Gα.GDP than 

Gα.GTP.MG. The residues that form the salt bridges in this group do not interact with the βγ via 

a hydrogen bond or salt bridge. They seem to modulate the degree this group moves in the three 

different states of the heterotrimeric G-protein. 

 One of the salt bridges is formed between Arg 205 and Asp 236, Glu 237 and Asp 238. 

Figure 5.16 shows that the distance between three carboxylic group in the negatively charge 

residues and the arginine varies simultaneously despite some of the components in switch region 

three being farther. It is possible to see jumps in Asp 238 and 236 at similar times in the 

simulation.  This salt bridge is more stable in the inactive monomer than in the active monomer, 

as seen in the bottom left plots of Figure 5.16. The structural backbone analysis of switch region 

moves more in the inactive monomer. Also, the crystal structure of the inactive monomer does 

not show diffraction for switch region two, yet the salt bridge between switch region two and 

three is more conserved in the inactive monomer. An explanation for this is that the increase 

mobility for switch region one in the monomer is due to internal motions of the whole GTPase 

domain that are transmitted to it through switch region three. If differences in mobility between 

the two regions were due solely to the solvent they would move about the same. Switch region 

three does not show a significant difference in mobility between the two monomers, suggesting 

that its mobility is coupled to the GTPase domain to a greater extent than to switch region two. 

The dependence of mobility of switch region two to switch region three, and in turn to the 

GTPase, domain, is an interesting observation that links this salt bridge to a nucleotide that is 

harbored away from it. This suggest some interconnectivity that supports changes in roles for the 

GTPase domain when different nucleotides are bond to it, and this changes can be attributed to 

changes in behavior between the three states of the heterotrimeric G-protein.  

 The other salt bridge of importance in this group is between two arginines and a 

glutamate. This salt bridge interacts differently for the three states of the G-protein. While this 

salt bridge is close to the salt bridge discussed in the previous paragraph, and has interactions 

with it, it interacts differently in the three systems, as seen in Figure 5.17. The tighter interaction 
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between Arg 205, which is part of a helical region of the GTPase domain, in the inactive 

monomer supports the notion that the increased mobility of switch region one in the inactive 

monomer is due to its stronger connection with the GTPase domain through salt bridges. 

 There no salt bridge formed between Glu 238 and Arg 242 in any of the systems. The 

distance between the carbon atoms at the center of their side chains do tell something about the 

differences in these regions between the different states of the heterotrimeric G-protein. The 

average distance between the CD atom in glutamate and the CZ atom in arginine is similar in the 

two monomers, 15.09±1.17 Å for the inactive momoner and 15.08±1.51 Å for the active 

monomer, and closer in the heterotrimer, 9.96±0.68 Å. 

Table 5.10. PB mutation folding energies, and change in folding energies for one system to 
the other for folding group 4.a 

 Binding Energy (ΔG) Difference in binding (ΔΔG) 
 A B C D E F 

Arg 205 -35.39 -29.69 -5.34* -24.35* -5.70   30.05* 
Arg 208 -17.91 -11.77   0.16* -11.93* -6.17   18.07* 
Glu 236  -8.98  -5.49  7.47* -12.96* -3.49  16.45 
Asp 237 -15.68  -9.49 1.14     -10.59 -6.23  16.82 
Glu 238  -0.84  -0.58    -15.81 15.23 -0.26 -14.97 
Arg 242 -17.37 -26.40    -34.97   8.57  9.03 -17.60 
Glu 245 -45.74 -18.59      -7.82     -10.76     -27.16  37.92 

aGα.GDP, (B) Gα.GTP.MG and (C) Gα.GDP.Gβγ. ΔΔG mutation energies between systems: (D) ΔG(Gα.GTP.MG) –
ΔG(Gα.GDP.Gβγ). (E) ΔG(Gα.GDP)-ΔG(Gα.GTP.MG) . (F) ΔG(Gα.GDP.Gβγ)-ΔG(Gα.GDP). * Energies calculated with GB. Crb 
stands for carbonyl group and Amn for amino group.All units in kcal/mol. 
 

 The folding energies for residues in this group are in Table 5.10. Arg 205, Arg 208, Glu 

236 and Asp 237 have favorable folding energies for the two monomers only and very low for 

the  heterotrimer. Glu 238 has an opposite interaction profile, it is more vaforable in the 

heterotrimer and not very significant for the monomers. Arg 242 and Arg 245 have favorable 

folding energies in the three systems although their variations are in the tens of kilo calories per  
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Figure 5.16. Interactions in folding group 4. Schematics and distances between heavy atoms in 
group 4. The box on the left is zoomed in in a different angle on the right to better show 
structural features. Top, this group of residues interconnect switch region two and switch region 
three. In green, the GTPase domain; in blue, the α helical domain. Middle, distances between 
heavy atoms forming the salt bridge, left, distances between Arg 205 CZ, Glu 236 CD, Asp 237 
CG and Glu 238 CD. Right, distances between Glu 245 CD and Arg 208 CZ and Arg 242 CZ. 
Bottom, distance between Arg 205 CZ and Glu 245 CD of folding group 4. Black, the inactive 
monomer Gα.GDP. Red, the active monomer Gα.GTP.MG. Blue, the heterotrimer Gα.GDP.Gβγ. 
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mol.  There  are very  high transition  energies of  folding between states for this group region, as 

seen in columns D, E and F, but no trend can be derived from these transitions because of the 

intricate electrostatic interactions that couples them; however, the significant changes in this 

region, and the discrete explanation of interactions, support that there are relevant allosteric 

interactions due to nucleotide exchange alone. 

5.5 Conclusion 

The structural characterization of components relevant to binding and folding was studied in 

this chapter. From the ranking of mutation energies for individual components, it is easier to 

identify important components that may be relevant for function in the heterotrimeric G-protein. 

Going into details of side chain conformations show clear differences in the three states that can 

be attributed to differences in nucleotide or the presence of the βγ subunit. These differences, 

such as in Glu 43 and Asp 272, indicate structural determinants that can be related to function. 

Important components in binding and folding were subdivided by proximity into interacting 

groups. For the most part, the interactions analyzed were between residues in the group. These 

groups sometimes spawn several regions that are not necessarily contiguous in sequence. For 

example, folding group four is formed by residues in both switch region two and three. In this 

way, component analysis of folding and binding free energies provides alternative way to divide 

the α sub-unit of the heterotrimeric G-protein that is different than the usual division based on 

contiguous sequential blocks.  

This analysis gives a more detailed look into function of the heterotrimeric G-protein than 

can be given by analyzing the crystal structures alone. The energetic and structural 

decomposition can be done on the crystal structure alone if the theoretical molecular dynamics 

are not used because of their inherent uncertainty. If dynamic information from simulations is 

considered, additional information could be inferred to help understand G-protein function. 
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CHAPTER 6 

 

Conclusions and future directions 

 

6.1 Conclusions 

 The study of the heterotrimeric G-protein from theoretical models based on molecular 

dynamics simulations gives deeper insight into the mechanisms of signal transductions at the 

molecular and atomic level. This insight does not emerge from direct observation of the 

molecular dynamic trajectories but from the systematic analysis of its structures and energetics. 

The emergence of determinants of functions reveal that signal transduction through oligomers 

with multiple sub-domains is not a disordered mechanism; instead, it is carefully concerted 

through interactions between loop regions, other secondary structural features, multiple helix 

domains and nucleotides. The exact way these concerted motions occur is not fully understood; 

these molecular dynamic simulations and their analysis give insights into concerted mechanisms 

of heterotrimeric G-protein function. 

  The analysis shown here includes regions that are considered of importance by the 

crystallographic papers from which the initial trajectories are obtained for the simulation. The 

relaxation of switch regions II and III from the active to inactive states is mentioned in the 

crystallographic papers to be important in the interaction between the α an β subunit as well as 

nucleotide exchange.(16-18) In particular, Coleman et. al. (17) suggest the importance of Glu 

204 and Arg 178; both residues identified by energetic component analysis to be important in 

Chapters 3 and structurally characterized in Chapter 5. Another section of importance studied is 

the helical bundle that is attached to the GTPase domain which is believed to move in such way 

as to contribute in nucleotide exchange.(21) The ranges of motions described in Chapter 4 for 

this helical region shows clear differences in motions for the three different states of the G-

protein α-subunit. 

 As a conclusion of this work, the energetic information can be summarized with the aid 

of primary structure maps. Figure 6.1 shows the primary structure map for the three systems 

studied in this thesis.   One application of the primary structure map in  Figure  6.1  is to  identify  
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0 0 0 0 0 0 0 -­‐6.98406 0 -­‐6.98406 6.984061 0 -­‐17.4444 0 GLU	
  8
0 0 0 0 0 0 0 0 0 0 0 0 -­‐12.9335 0 ASP	
  9
0 0 0 0 0 0 -­‐11.168 -­‐13.6586 0 -­‐13.6586 2.490636 11.16795 0 0 GLU	
  14
0 0 0 0 0 0 0 0 0 0 0 0 -­‐3.18508 0 SER	
  16
0 0 0 0 0 0 -­‐15.3826 0 0 0 -­‐15.3826 15.38264 -­‐12.3071 0 ASP	
  20
0 0 0 0 0 0 0 -­‐15.0055 0 -­‐15.0055 15.00551 0 0 0 ARG	
  21
0 0 0 0 0 0 -­‐23.8759 -­‐42.7319 0 -­‐42.7319 18.85591 23.87595 0 0 ARG	
  24
0 0 0 0 0 0 -­‐3.05229 -­‐22.0913 -­‐9.69425 -­‐12.3971 19.03902 -­‐6.64196 -­‐10.7796 -­‐9.69425 ASP	
  26
0 0 0 0 0 0 -­‐2.31489 0 0 0 -­‐2.31489 2.314885 0 0 GLU	
  28
0 0 0 0 0 0 -­‐12.6407 -­‐27.3099 0 -­‐27.3099 14.66924 12.64066 0 0 ARG	
  32
0 0 0 0 0 0 -­‐15.6666 -­‐11.8148 0 -­‐11.8148 -­‐3.8518 15.66664 0 0 GLU	
  33

23.31651 7.452053 10.29531 -­‐2.84326 15.86445 -­‐13.0212 -­‐21.3892 10.11657 -­‐9.16034 19.27691 -­‐31.5058 12.22885 0 -­‐9.16034 GLU	
  43
-­‐4.1037 5.059338 -­‐5.02916 10.0885 -­‐9.16304 -­‐0.92546 0 0 0 0 0 0 0 0 SER	
  44
-­‐85.1393 -­‐101.046 -­‐85.2958 -­‐15.7502 15.90675 -­‐0.15651 -­‐47.0065 -­‐82.7613 -­‐54.9329 -­‐27.8284 35.75479 -­‐7.92637 -­‐0.39594 -­‐54.9329 LYS	
  46
-­‐22.2803 -­‐29.9734 -­‐23.5405 -­‐6.4329 7.693069 -­‐1.26017 -­‐12.7354 -­‐26.0519 -­‐12.8374 -­‐13.2145 13.31646 -­‐0.10198 0 -­‐12.8374 SER	
  47
-­‐11.1708 -­‐9.51028 -­‐11.6437 2.133413 -­‐1.66051 -­‐0.47291 -­‐6.64145 0 0 0 -­‐6.64145 6.641452 0 0 THR	
  48
-­‐28.0185 -­‐17.689 -­‐10.8872 -­‐6.80181 -­‐10.3295 17.13127 0 0 0 0 0 0 0 0 LYS	
  51
-­‐2.46369 0 0 0 -­‐2.46369 2.463686 0 0 0 0 0 0 0 0 GLN	
  52

0 0 0 0 0 0 -­‐31.3257 -­‐41.2872 0 -­‐41.2872 9.961462 31.3257 0 0 LYS	
  54
0 0 0 0 0 0 -­‐6.12357 -­‐8.64038 -­‐5.97839 -­‐2.66199 2.516811 0.145179 0 -­‐5.97839 GLU	
  58
0 0 0 0 0 0 -­‐8.53023 0 -­‐8.53023 8.530225 0 0 0 GLU	
  66
0 0 0 0 0 0 -­‐2.16663 -­‐2.21196 -­‐2.13022 -­‐0.08174 0.045327 0.03641 0 -­‐2.13022 ALA	
  84
0 0 0 0 0 0 0.966066 1.497181 0 1.497181 -­‐0.53112 -­‐0.96607 0 0 ASP	
  98

0 0 0 0 0 0 0 -­‐21.4769 0 -­‐21.4769 21.47695 0 0 0 ARG	
  101
0 0 0 0 0 0 -­‐6.77791 -­‐7.04027 0 -­‐7.04027 0.262359 6.777914 0 0 ASP	
  103
0 0 0 0 0 0 0 -­‐1.11931 0 -­‐1.11931 1.119311 0 0 0 GLU	
  116
0 0 0 0 0 0 -­‐22.4979 -­‐22.3887 -­‐24.7113 2.322634 -­‐0.10919 -­‐2.21345 0 -­‐24.7113 ARG	
  130
0 0 0 0 0 0 -­‐17.8268 -­‐15.9578 0 -­‐15.9578 -­‐1.869 17.82676 0 0 ASP	
  134
0 0 0 0 0 0 -­‐25.6767 -­‐25.8833 -­‐24.8167 -­‐1.06657 0.206622 0.859947 0 -­‐24.8167 ARG	
  143
0 0 0 0 0 0 -­‐23.754 0 0 0 -­‐23.754 23.75402 0 0 ARG	
  145
0 0 0 0 0 0 -­‐16.5629 -­‐16.4521 -­‐16.046 -­‐0.40612 -­‐0.11083 0.516951 0 -­‐16.046 GLU	
  146

11.28993 5.572397 6.805883 -­‐1.23349 5.717536 -­‐4.48405 -­‐5.01177 8.925592 -­‐9.77435 18.69994 -­‐13.9374 -­‐4.76258 0 -­‐9.77435 ASP	
  151
2.364412 0 -­‐4.37162 4.371616 2.364412 -­‐6.73603 0 0 0 0 0 0 0 0 SER	
  152

0 0 0 0 0 0 -­‐19.1577 -­‐27.7432 -­‐9.52786 -­‐18.2153 8.585451 9.629849 0 -­‐9.52786 ASP	
  159
0 0 0 0 0 0 0 -­‐14.1808 0 -­‐14.1808 14.18079 0 0 0 ASP	
  161

0 0 0 0 0 0 -­‐51.0733 -­‐51.5241 -­‐51.6082 0.084117 0.450796 -­‐0.53491 0 -­‐51.6082 ARG	
  162
1.909365 0 0 0 1.909365 -­‐1.90937 -­‐54.7626 -­‐61.9496 -­‐72.3074 10.3578 7.186967 -­‐17.5448 0 -­‐72.3074 ASP	
  174
-­‐7.51172 0 -­‐23.8711 23.87111 -­‐7.51172 -­‐16.3594 -­‐4.79548 -­‐13.3165 -­‐16.2551 2.938637 8.520983 -­‐11.4596 0 -­‐16.2551 ARG	
  177
-­‐13.9302 -­‐57.0123 -­‐48.4877 -­‐8.52464 43.08216 -­‐34.5575 -­‐22.5843 -­‐44.3375 -­‐17.4276 -­‐26.9099 21.75324 5.156643 0 -­‐17.4276 ARG	
  179

0 0 0 0 0 0 0 0 0 0 0 0 0 0 VAL	
  180
-­‐95.0894 -­‐7.78387 -­‐82.9692 75.1853 -­‐87.3055 12.12021 -­‐75.449 -­‐6.93282 -­‐42.551 35.61819 -­‐68.5162 32.898 0 -­‐42.551 LYS	
  181
1.698913 -­‐18.5037 0 -­‐18.5037 20.20257 -­‐1.69891 0 0 0 0 0 0 0 0 THR	
  182

0 0 0 0 0 0 -­‐3.04913 -­‐7.69682 11.53688 -­‐19.2337 4.647684 14.58601 15.2382 11.53688 GLU	
  187
0 0 0 0 0 0 -­‐28.0808 0 0 0 -­‐28.0808 28.08077 0 0 LYS	
  193
0 0 0 0 0 0 -­‐10.0269 -­‐1.20787 0 -­‐1.20787 -­‐8.81908 10.02695 0 0 ASP	
  194

4.919706 -­‐75.5272 23.10735 -­‐98.6345 80.44688 18.18764 9.856668 -­‐73.3251 12.67809 -­‐86.0032 83.18175 2.821418 0.474453 12.67809 ASP	
  201
1.052266 0 0 0 1.052266 -­‐1.05227 0 0 0 0 0 0 0 0 GLN	
  205

0 0 0 0 0 0 -­‐35.3893 -­‐29.6904 0 -­‐29.6904 -­‐5.69887 35.38929 0 0 ARG	
  206
1.464287 4.398892 0 4.398892 -­‐2.93461 -­‐1.46429 -­‐12.1825 0 0 0 -­‐12.1825 12.18251 1.664557 0 GLU	
  208
-­‐2.6482 0 0 0 -­‐2.6482 2.648204 -­‐17.9084 -­‐11.7722 0 -­‐11.7722 -­‐6.13625 17.90841 -­‐0.62687 0 ARG	
  209

0 0 0 0 0 0 0 0 0 0 0 0 -­‐5.82075 0 LYS	
  210
0 0 0 0 0 0 0 0 0 0 0 0 -­‐18.8522 0 LYS	
  211

0 0 0 0 0 0 0 0 0 0 0 0 -­‐12.9971 0 GLU	
  217
0.469154 0 0 0 0.469154 -­‐0.46915 0 0 0 0 0 0 0 0 PHE	
  224
-­‐0.65888 0 0 0 -­‐0.65888 0.658877 0 0 0 0 0 0 0 0 CYS	
  225
1.074056 0 0 0 1.074056 -­‐1.07406 0 0 0 0 0 0 0 0 SER	
  229
6.546695 0 0 0 6.546695 -­‐6.5467 -­‐11.402 1.31077 0 1.31077 -­‐12.7128 11.40199 0 0 ASP	
  230
1.908852 0 0 0 1.908852 -­‐1.90885 -­‐48.7268 0 0 0 -­‐48.7268 48.7268 0 0 ASP	
  232
1.416752 0 0 0 1.416752 -­‐1.41675 -­‐8.9801 -­‐5.49035 0 -­‐5.49035 -­‐3.48975 8.980102 0.272749 0 GLU	
  237

0 0 0 0 0 0 -­‐15.6781 -­‐9.44893 1.139289 -­‐10.5882 -­‐6.22917 16.81739 0.289059 1.139289 ASP	
  238
0 0 0 0 0 0 -­‐0.84072 -­‐0.57766 -­‐15.8064 15.22872 -­‐0.26305 -­‐14.9657 0 -­‐15.8064 GLU	
  239

-­‐4.15056 0 0 0 -­‐4.15056 4.150555 -­‐17.3719 -­‐26.4003 -­‐34.9697 8.569363 9.028398 -­‐17.5978 0 -­‐34.9697 ARG	
  243
2.070427 0 0 0 2.070427 -­‐2.07043 -­‐45.7432 -­‐18.5861 -­‐7.8219 -­‐10.7642 -­‐27.1571 37.92133 0.351502 -­‐7.8219 GLU	
  246

0 0 0 0 0 0 -­‐1.96071 0.138061 1.889507 -­‐1.75145 -­‐2.09877 3.850213 0.236644 1.889507 ASP	
  252
0 0 0 0 0 0 -­‐10.409 0 0 0 -­‐10.409 10.40897 0 0 ASN	
  256
0 0 0 0 0 0 0 0 0 0 0 0 -­‐8.17296 0 LYS	
  258
0 0 0 0 0 0 -­‐2.21403 -­‐3.4281 -­‐2.82994 -­‐0.59816 1.214069 -­‐0.61591 0.438629 -­‐2.82994 ASP	
  262

-­‐3.92947 -­‐2.60384 -­‐4.54177 1.937936 -­‐1.32563 -­‐0.61231 0 -­‐8.75855 0 -­‐8.75855 8.758553 0 0 0 ASN	
  270
-­‐36.3837 -­‐25.2705 -­‐31.8006 6.530072 -­‐11.1131 4.583074 -­‐41.6822 -­‐70.4663 -­‐44.486 -­‐25.9803 28.78414 -­‐2.8038 0 -­‐44.486 LYS	
  271
-­‐1.62984 0 0 0 -­‐1.62984 1.629837 0 0 0 0 0 0 0 0 LYS	
  272
-­‐5.09341 -­‐0.41705 -­‐1.05899 0.641941 -­‐4.67636 4.034417 -­‐25.0827 0 0 0 -­‐25.0827 25.0827 0 0 ASN	
  273

0 0 0 0 0 0 -­‐1.1912 -­‐0.21199 -­‐0.2731 0.06111 -­‐0.97922 0.918107 0 -­‐0.2731 GLU	
  276
0 0 0 0 0 0 -­‐3.7948 -­‐2.22817 0 -­‐2.22817 -­‐1.56663 3.794799 0 0 GLU	
  277

-­‐2.53562 0 0 0 -­‐2.53562 2.535624 -­‐26.0194 -­‐42.8711 -­‐26.0532 -­‐16.8178 16.85162 -­‐0.03381 0 -­‐26.0532 LYS	
  278
0 0 0 0 0 0 0.198229 -­‐6.27831 0 -­‐6.27831 6.476538 -­‐0.19823 0 0 GLU	
  299
0 0 0 0 0 0 -­‐1.43536 -­‐1.85154 -­‐1.5594 -­‐0.29214 0.416182 -­‐0.12404 0 -­‐1.5594 GLU	
  308
0 0 0 0 0 0 5.516804 5.551464 5.213171 0.338293 -­‐0.03466 -­‐0.30363 0 5.213171 HIS	
  322

1.413108 0.12686 0.856905 -­‐0.73005 1.286248 -­‐0.5562 0 0 0 0 0 0 0 0 THR	
  327
0 0 0 0 0 0 -­‐12.0152 -­‐3.91445 0 -­‐3.91445 -­‐8.10077 12.01522 0 0 ASP	
  337
0 0 0 0 0 0 1.335859 -­‐11.7225 -­‐6.23625 -­‐5.48621 13.05832 -­‐7.57211 0 -­‐6.23625 ASP	
  341

0 0 0 0 0 0 -­‐1.61833 -­‐5.26106 -­‐0.06291 -­‐5.19815 3.642732 1.555417 0.098997 -­‐0.06291 ASP	
  350
B B B B B B F F F F F F B F
1 2 3 4 5 6 7 8 9 10 11 12 13 14  

Figure 6.1. Primary structure map for residues 
that are included using a 1 kcal/mol cutoff for 
folding and binding of the nucleotide to the α-
subunit, and αβ binding. The color in the block 
indicates if the residue side chain has a favorable 
binding energy in red, unfavorable binding energy 
in blue, favorable folding energy in green, 
unfavorable folding energy in black, favorable 
binding energy in magenta and unfavorable 
binding energy in cyan. Blocks colored white are 
not considered important and are excluded by the 
cutoff. The B and F letters in the bottom identifies 
columns corresponding to binding or folding. The 
numbers below the letters identify the binding or 
folding sections of interest in the heterotrimeric 
G-protein in the following way: 1, Gα.GDP binding; 
2, Gα.GTP.MG binding; 3, Gα.GDP.Gβγ binding; 4, 
binding difference between Gα.GTP.MG and 
Gα.GDP.Gβγ; 5, binding difference between Gα.GDP 
and Gα.GTP.MG; 6, binding difference between 
Gα.GDP.Gβγ and Gα.GDP; 7, Gα.GDP folding; 8, 
Gα.GTP.MG folding; 9, Gα.GDP.Gβγ folding; 10, 
folding difference between Gα.GTP.MG and 
Gα.GDP.Gβγ; 11, folding difference between Gα.GDP 
and Gα.GTP.MG; 12, folding difference between 
Gα.GDP.Gβγ and Gα.GDP; 13, Gα.GDP.Gβγ binding for 
the α-subunit; 14, Gα.GDP.Gβγ folding for the α-
subunit.  
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relevant components that could be computationally mutated and simulated from the same initial 

starting structures. These mutations could then be analyzed and compared to the pre-mutated 

primary structure map. In this way, vast amounts of information can be compiled and compared 

in simple plots that could occupy as little as one page. Primary structure maps can also be used to 

display important binding and folding interactions. Figure 6.2 shows how residues important in 

binding, folding and both in different colors. This figure relates the primary structure maps to 

tertiary structures in an intuitive way. 

 Primary structure map information can also be used to display residues according to 

whether they are energetically favorable or unfavorable. In the case of the αβ interface, this 

allows to better identify favorable and unfavorable interaction over a large binding interface. 

Figure 6.3 shows residues favorable to binding in magenta, and unfavorable to binding in cyan. 

Possible modifications to the αβ interface would be easier to suggest from the rendering of the 

information from primary structure maps to quaternary structure of binding interfaces between 

proteins. As in the primary structures alone, this way of displaying the quaternary structure 

would be ideal for comparing results between the native structures and a computationally 

mutated simulations of Gαi1 in its three different states.  

 
Figure 6.2. Tertiary structure visualization of important folding and binding residues from 
primary structure map information. Red, α-subunit backbone; black, nucleotide; magenta, 
important binding residues; green; important folding residues; blue, residues that are both in 
binding and folding. 
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Figure 6.3. Quaternary structure visualization of important αβ binding residues from 
primary structure maps. Red, α-subunit backbone; grey, β-subunit backbone; magenta, 
residues with favorable binding energies; cyan, residues with unfavorable binging energies. The 
top box shows favorable interactions between α an β subunits at near the N-terminus of the α 
subunit. Middle box shows HSE 213 in switch region 2 interacting unfavorably with the β-
subunit. The bottom box shows GLU 207, LYS 09 and LYS 210 in Gα interaction with ASP 186,  
ASP 228 and ASP 246 in Gβ. 

6.2 Future directions 

 As more structures of variations of heterotrimeric G-proteins are obtained, their 

simulations and analysis with the method developed for this thesis could be applied for 

comparison. Structures of the same α-subunit with mutated residues, or other α subunits with 

large differences in sequences, could give more insight into the mechanisms of signal 

transduction from the outside environment of the cell and into the cytoplasm. 

 The analysis presented in this thesis can be applied to new structures of Gαi1 in the 

monomer and complex state, and with variations in its sequences and corresponding structures. 

These variations of the G-protein and their analysis would add large amounts of structural and 

energetic information for analysis. Organizing the data into energetic and structural data in 

succinct plots is important for comparing different types of G-proteins from molecular dynamic 
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simulations. The structural information could be easily summarized and compared with 2D-

RMSDs between different trajectories. 

 Parameterization of N and C termini post-translational modifications of G-proteins would 

allow the simulations of this protein in the presence of the cell membrane, and perhaps of a G-

protein Coupled Receptor. This type of simulations present challenges and demand long 

simulations in supercomputers, but the structural and energetic information would help 

understand the mechanisms of signal transduction in more detail. 

 The ultimate goal of the accumulation of structural dynamics of these types of proteins is 

to develop the insight necessary for predict G-protein designs that would behave different from 

their natural relatives; this goal would require the accumulation of a large set of information that 

is within current technological capabilities. The compilation, analysis and interpretation of that 

vast amount of information can be summarized with methods developed in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

123 
	
  

References 

1. Casey, P. J. (1995) Protein lipidation in cell signaling, Science 268, 221-225. 

2. Milligan, G., and Kostenis, E. (2006) Heterotrimeric G-proteins: a short history, Br J 
Pharmacol 147 Suppl 1, S46-55. 

3. Downes, G. B., and Gautam, N. (1999) The G-protein subunit gene families, Genomics 
62, 544-552. 

4. Simon, M. I., Strathmann, M. P., and Gautam, N. (1991) Diversity of G-proteins in signal 
transduction, Science 252, 802-808. 

5. Neves, S. R., Ram, P. T., and Iyengar, R. (2002) G-protein pathways, Science 296, 1636-
1639. 

6. Dohlman, H. G., and Thorner, J. W. (2001) Regulation of G-protein-initiated signal 
transduction in yeast: paradigms and principles, Annu Rev of Biochem 70, 703-754. 

7. Albert, P. R., and Robillard, L. (2002) G-protein specificity: traffic direction required, 
Cell Signal 14, 407-418. 

8. Offermanns, S. (2003) G-proteins as transducers in transmembrane signalling, Prog 
Biophys Mol Biol 83, 101-130. 

9. Preininger, A. M., Funk, M. A., Oldham, W. M., Meier, S. M., Johnston, C. A., 
Adhikary, S., Kimple, A. J., Siderovski, D. P., Hamm, H. E., and Iverson, T. M. (2009) 
Helix dipole movement and conformational variability contribute to allosteric GDP 
release in Gαi subunits, Biochemistry-Us 48, 2630-2642. 

10. Bunemann, M., Frank, M., and Lohse, M. J. (2003) Gi protein activation in intact cells 
involves subunit rearrangement rather than dissociation, Proc Natl Acad Sci USA 100, 
16077-16082. 

11. Wang, J., Golebiewska, U., and Scarlata, S. (2009) A self-scaffolding model for G-
protein signaling, J Mol Biol 387, 92-103. 

12. Wang, J., Sengupta, P., Guo, Y., Golebiewska, U., and Scarlata, S. (2009) Evidence for a 
second, high affinity Gβγ binding site on Gα1 (GDP) subunits, J Biol Chem 284, 16906-
16913. 

13. Kamal, M., Maurice, P., and Jockers, R. (2011) Expanding the concept of G-protein 
coupled receptor (GPCR) dimer asymmetry towards GPCR-interacting proteins, 
Pharmaceuticals 4, 273-284. 

14. Oldham, W. M., and Hamm, H. E. (2006) Structural basis of function in heterotrimeric 
G-proteins, Q Rev Biophys 39, 117-166. 



	
  

124 
	
  

15. Cabrera-Vera, T. M., Vanhauwe, J., Thomas, T. O., Medkova, M., Preininger, A., 
Mazzoni, M. R., and Hamm, H. E. (2003) Insights into G-protein structure, function, and 
regulation, Endocr Rev 24, 765-781. 

16. Mixon, M. B., Lee, E., Coleman, D. E., Berghuis, A. M., Gilman, A. G., and Sprang, S. 
R. (1995) Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis, 
Science 270, 954-960. 

17. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. 
R. (1994) Structures of active conformations of Giα1 and the mechanism of GTP 
hydrolysis, Science 265, 1405-1412. 

18. Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., 
and Sprang, S. R. (1995) The structure of the G-protein heterotrimer Giα1 β1 γ2, Cell 83, 
1047-1058. 

19. Oldham, W. M., and Hamm, H. E. (2008) Heterotrimeric G-protein activation by G-
protein coupled receptors, Nat Rev Mol Cell Biol 9, 60-71. 

20. Vetter, I. R., and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three 
dimensions, Science 294, 1299-1304. 

21. Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., 
Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. 
A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., 
and Kobilka, B. K. (2011) Crystal structure of the β2 adrenergic receptor-Gs protein 
complex, Nature 477, 549-555. 

22. Karplus, M., and McCammon, J. A. (2002) Molecular dynamics simulations of 
biomolecules, Nat Struct Biol 9, 646-652. 

23. Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., 
Bank, J. A., Jumper, J. M., Salmon, J. K., Shan, Y., and Wriggers, W. (2010) Atomic-
level characterization of the structural dynamics of proteins, Science 330, 341-346. 

24. Brooks, B., and Karplus, M. (1983) Harmonic dynamics of proteins: normal modes and 
fluctuations in bovine pancreatic trypsin inhibitor, Proc Natl Acad Sci USA 80, 6571-
6575. 

25. Karplus, M., and Petsko, G. A. (1990) Molecular dynamics simulations in biology, Nat 
Struct Biol 347, 631-639. 

26. Voelz, V. A., Bowman, G. R., Beauchamp, K., and Pande, V. S. (2010) Molecular 
simulation of ab initio protein folding for a millisecond folder NTL9(1-39), J Am Chem 
Soc 132, 1526-1528. 

27. Hornak, V., Okur, A., Rizzo, R. C., and Simmerling, C. (2006) HIV-1 protease flaps 
spontaneously open and reclose in molecular dynamics simulations, Proc Natl Acad Sci 
USA 103, 915-920. 



	
  

125 
	
  

28. Gilson, M. K., Given, J. A., Bush, B. L., and McCammon, J. A. (1997) The statistical-
thermodynamic basis for computation of binding affinities: a critical review, Biophys J 
72, 1047-1069. 

29. Gilson, M. K., and Honig, B. H. (1987) Calculation of electrostatic potentials in an 
enzyme active site, Nature 330, 84-86. 

30. Feig, M., and Brooks, C. L., 3rd. (2004) Recent advances in the development and 
application of implicit solvent models in biomolecule simulations, Curr Opin Struct Biol 
14, 217-224. 

31. Mohan, V., Davis, M. E., McCammon, J., and Pettit, B. M. (1992) Continuum model 
calculation of solvation free energies: accurate evaluation of electrostatic contributions, J 
Phys Chem-Us 96, 6428-6431. 

32. Bashford, D., and Case, D. A. (2000) Generalized-born models of macromolecular 
solvation effects, Annu Rev Phys Chem 51, 129-152. 

33. Hendsch, Z. S., and Tidor, B. (1999) Electrostatic interactions in the GCN4 leucine 
zipper: substantial contributions arise from intramolecular interactions enhanced on 
binding, Protein Sci 8, 1381-1392. 

34. Green, D. F., Dennis, A. T., Fam, P. S., Tidor, B., and Jasanoff, A. (2006) Rational 
design of new binding specificity by simultaneous mutagenesis of calmodulin and a 
target peptide, Biochemistry-Us 45, 12547-12559. 

35. Green, D. F., and Tidor, B. (2005) Design of improved protein inhibitors of HIV-1 cell 
entry: Optimization of electrostatic interactions at the binding interface, Proteins 60, 644-
657. 

36. Lippow, S. M., and Tidor, B. (2007) Progress in computational protein design, Curr Opin 
Biotechnol 18, 305-311. 

37. Green, D. F., and Tidor, B. (2003) Evaluation of electrostatic interactions, Current 
Protocols in Bioinformatics Chapter 8, Unit 8 3. 

38. Futatsugi, N., and Tsuda, M. (2001) Molecular dynamics simulations of Gly-12-->Val 
mutant of p21(ras): dynamic inhibition mechanism, Biophys J 81, 3483-3488. 

39. Gorfe, A. A., Grant, B. J., and McCammon, J. A. (2008) Mapping the nucleotide and 
isoform-dependent structural and dynamical features of Ras proteins, Structure 16, 885-
896. 

40. Jones, J. C., Temple, B. R., Jones, A. M., and Dohlman, H. G. (2011) Functional 
reconstitution of an atypical G-protein heterotrimer and regulator of G-protein signaling 
protein (RGS1) from Arabidopsis thaliana, J Biol Chem 286, 13143-13150. 

41. Raimondi, F., Portella, G., Orozco, M., and Fanelli, F. (2011) Nucleotide binding 
switches the information flow in ras GTPases, PLoS Comput Biol 7, e1001098. 



	
  

126 
	
  

42. Coussens, L. M., Fingleton, B., and Matrisian, L. M. (2002) Matrix metalloproteinase 
inhibitors and cancer: trials and tribulations, Science 295, 2387-2392. 

43. Pavlaki, M., and Zucker, S. (2003) Matrix metalloproteinase inhibitors (MMPIs): the 
beginning of phase I or the termination of phase III clinical trials, Cancer Metastasis Rev 
22, 177-203. 

44. Engel, C. K., Pirard, B., Schimanski, S., Kirsch, R., Habermann, J., Klingler, O., 
Schlotte, V., Weithmann, K. U., and Wendt, K. U. (2005) Structural basis for the highly 
selective inhibition of MMP-13, Chem Biol 12, 181-189. 

45. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. 
(1983) Comparison of simple potential functions for simulating liquid water, J Chem 
Phys 79, 926-935. 

46. Still, W. C., Tempczyk, A., Hawley, R. C., and Hendrickson, T. (1990) Semianalytical 
treatment of solvation for molecular mechanics and dynamics, J Am Chem Soc 112, 
6127-6129. 

47. Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S. H., Chong, L., Lee, M., Lee, 
T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., and 
Cheatham, T. E. (2000) Calculating structures and free energies of complex molecules: 
Combining molecular mechanics and continuum models, Acc Chem Res 33, 889-897. 

48. Strockbine, B., and Rizzo, R. C. (2007) Binding of antifusion peptides with HIVgp41 
from molecular dynamics simulations: quantitative correlation with experiment, Proteins: 
Struct Func Bioinformatics 67, 630-642. 

49. Chachra, R., and Rizzo, R. C. (2008) Origins of resistance conferred by the R292K 
Neuraminidase mutation via molecular dynamics and free energy calculations, J Chem 
Theory Comput 4, 1526-1540. 

50. Rizzo, R. C., Toba, S., and Kuntz, I. D. (2004) A molecular basis for the selectivity of 
thiadiazole urea inhibitors with stromelysin-1 and gelatinase-A from generalized-Born 
molecular dynamics simulations, J Med Chem 47, 3065-3074. 

51. Sitkoff, D., Sharp, K. A., and Honig, B. (1994) Accurate calculation of hydration free-
energies using macroscopic solvent models, J. Phys. Chem. 98, 1978-1988. 

52. (2004) AMBER Version 8, University of California at San Francisco, San Francisco, CA. 

53. (2007) MOE, Chemical Computing Group, Montreal, Canada. 

54. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) 
Comparison of multiple Amber force fields and development of improved protein 
backbone parameters, Proteins 65, 712-725. 

55. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) 
Development and testing of a general amber force field, J Comput Chem 25, 1157-1174. 



	
  

127 
	
  

56. Breneman, C. M., and Wiberg, K. B. (1990) Determining atom-centered monopoles from 
molecular electrostatic potentials - the need for high sampling density in formamide 
conformational-analysis, J Comput Chem 11, 361-373. 

57. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, 
J. R., Zakrzewski, V. G., Montgomery, J. A., Jr., Stratmann, R. E., Burant, J. C., 
Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., 
Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., 
Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, 
D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., 
Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, 
R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, 
C., Challacombe, M., Gill, P. M. W., Johnson, B. G., Chen, W., Wong, M. W., Andres, J. 
L., Head-Gordon, M., Replogle, E. S., and Pople, J. A. (1998) Gaussian 98, revision A.9, 
Gaussian Inc., Pittsburgh PA. 

58. Stote, R. H., and Karplus, M. (1995) Zinc binding in proteins and solution: a simple but 
accurate nonbonded representation, Proteins 23, 12-31. 

59. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: An Nlog(N) method 
for Ewald sums in large systems, J Chem Phys 98, 10089-10092. 

60. Swiss Institute of Bioinformatics (SIB) and European Bioinformatics Institute (EBI), 
SWISS-PROT. http://www.ebi.ac.uk/swissprot/. 

61. Dingus, J., Wells, C. A., Campbell, L., Cleator, J. H., Robinson, K., and Hildebrandt, J. 
D. (2005) G-Protein βγ dimer formation: Gβ and Gγ differentially determine efficiency of 
in vitro dimer formation, Biochemistry-Us 44, 11882-11890. 

62. Pronin, A. N., and Gautam, N. (1992) Interaction between G-protein β and γ subunit 
types is selective, Proc Natl Acad Sci USA 89, 6220-6224. 

63. Robillard, L., Ethier, N., Lachance, M., and Hebert, T. E. (2000) Gβγ subunit 
combinations differentially modulate receptor and effector coupling in vivo, Cell Signal 
12, 673-682. 

64. Schmidt, C. J., Thomas, T. C., Levine, M. A., and Neer, E. J. (1992) Specificity of G-
protein beta and γ subunit interactions, J Biol Chem 267, 13807-13810. 

65. Yan, K., Kalyanaraman, V., and Gautam, N. (1996) Differential ability to form the G-
protein βγ complex among members of the β and γ subunit families, J Biol Chem 271, 
7141-7146. 

66. de Bakker, P. I., Hunenberger, P. H., and McCammon, J. A. (1999) Molecular dynamics 
simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: 
contribution of salt bridges to thermostability, J Mol Biol 285, 1811-1830. 

67. Kuczera, K., Gao, J., Tidor, B., and Karplus, M. (1990) Free energy of sickling: A 
simulation analysis, Proc Natl Acad Sci USA 87, 8481-8485. 



	
  

128 
	
  

68. Straatsma, T. P., and McCammon, J. A. (1992) Computational alchemy, Annu Rev Phys 
Chem 43, 407-435. 

69. Warwicker, J., and Watson, H. C. (1982) Calculation of the electric potential in the active 
site cleft due to alpha-helix dipoles, J Mol Biol 157, 671-679. 

70. Gilson, M. K., Sharp, K. A., and Honig, B. H. (1988) Calculating the electrostatic 
potential of molecules in solution: - Method and error assessment, J Comp Chem 9, 327-
335. 

71. Green, D. F., and Tidor, B. (2004) Escherichia coli glutaminyl-tRNA synthetase is 
electrostatically optimized for binding of its cognate substrates, J Mol Biol 342, 435-452. 

72. Kangas, E., and Tidor, B. (2001) Electrostatic complementarity at ligand binding sites: 
Application to chorismate mutase, J Phys Chem B 105, 880-888. 

73. Sims, P. A., Wong, C. F., and McCammon, J. A. (2004) Charge optimization of the 
interface between protein kinases and their ligands, J Comput Chem 25, 1416-1429. 

74. Archontis, G., Simonson, T., and Karplus, M. (2001) Binding free energies and free 
energy components from molecular dynamics and Poisson-Boltzmann calculations. 
Application to amino acid recognition by aspartyl-tRNA synthetase, J Mol Biol 306, 307-
327. 

75. Kuhn, B., and Kollman, P. A. (2000) A ligand that is predicted to bind better to Avidin 
than Biotin: Insights from computational fluorine scanning, J Am Chem Soc 122, 3909-
3916. 

76. Mardis, K. L., Luo, R., and Gilson, M. K. (2001) Interpreting trends in the binding of 
cyclic ureas to HIV-1 protease, J Mol Biol 309, 507-517. 

77. Fujimoto, Y. K., Terbush, R. N., Patsalo, V., and Green, D. F. (2008) Computational 
models explain the oligosaccharide specificity of cyanovirin-N, Protein Sci 17, 2008-
2014. 

78. Murray, D., McLaughlin, S., and Honig, B. (2001) The role of electrostatic interactions in 
the regulation of the membrane association of G protein beta gamma heterodimers, J Biol 
Chem 276, 45153-45159. 

79. Sarkar, C. A., Lowenhaupt, K., Horan, T., Boone, T. C., Tidor, B., and Lauffenburger, D. 
A. (2002) Rational cytokine design for increased lifetime and enhanced potency using 
pH-activated "histidine switching", Nat Biotechnol 20, 908-913. 

80. Qiu, D., Shenkin, P. S., Hollinger, F. P., and Still, W. C. (1997) The GB/SA continuum 
model for solvation. A fast analytical method for the calculation of approximate Born 
radii, J Phys Chem A 101, 3005-3014. 

81. Reddy, M. R., Erion, M. D., Agarwal, A., Viswanadhan, V. N., McDonald, D. Q., and 
Still, W. C. (1998) Solvation free energies calculated using the GB/SA model: Sensitivity 
of results on charge sets, protocols, and force fields, J Comput Chem 19, 769-780. 



	
  

129 
	
  

82. Chocholousova, J., and Feig, M. (2006) Implicit solvent simulations of DNA and DNA-
protein complexes: agreement with explicit solvent vs experiment, J Phys Chem B 110, 
17240-17251. 

83. Lee, M. S., Salsbury, F. R., and Brooks, C. L. (2002) Novel generalized-Born methods, J 
Chem Phys 116, 10606. 

84. Liu, H. Y., Kuntz, I. D., and Zou, X. Q. (2004) Pairwise GB/SA scoring function for 
structure-based drug design, J Phys Chem B 108, 5453-5462. 

85. Sorin, E. J., Engelhardt, M. A., Herschlag, D., and Pande, V. S. (2002) RNA simulations: 
probing hairpin unfolding and the dynamics of a GNRA tetraloop, J Mol Biol 317, 493-
506. 

86. Zhu, J., Shi, Y., and Liu, H. (2002) Parametrization of a generalized-Born/solvent-
accessible surface area model and applications to the simulations of protein dynamics, J 
Phys Chem B 106, 4844-4853. 

87. Chen, J., Im, W., and Brooks, C. L., 3rd. (2006) Balancing solvation and intramolecular 
interactions: toward a consistent generalized-Born force field, J Am Chem Soc 128, 3728-
3736. 

88. Onufriev, A., Case, D. A., and Bashford, D. (2002) Effective Born radii in the 
generalized Born approximation: the importance of being perfect, J Comput Chem 23, 
1297-1304. 

89. Hendsch, Z. S., Jonsson, T., Sauer, R. T., and Tidor, B. (1996) Protein stabilization by 
removal of unsatisfied polar groups: computational approaches and experimental tests, 
Biochemistry-Us 35, 7621-7625. 

90. Hendsch, Z. S., Nohaile, M. J., Sauer, R. T., and Tidor, B. (2001) Preferential 
heterodimer formation via undercompensated electrostatic interactions, J Am Chem Soc 
123, 1264-1265. 

91. Nohaile, M. J., Hendsch, Z. S., Tidor, B., and Sauer, R. T. (2001) Altering dimerization 
specificity by changes in surface electrostatics, Proc Natl Acad Sci USA 98, 3109-3114. 

92. Lee, L.-P., and Tidor, B. (1997) Optimization of electrostatic binding free energy, J 
Chem Phys 106, 8681. 

93. Sulea, T., and Purisima, E. O. (2001) Optimizing ligand charges for maximum binding 
afinity. A solvated interaction energy appoach, J Phys Chem B 105, 889-899. 

94. Jackson, J. D. Classical Electrodynamics, 3rd Ed., John Wiley & Sons, Inc. New York, 
1998. 

95. Rocchia, W., Alexov, E., and Honig, B. (2001) Extending the applicability of the 
nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent 
ions, J Phys Chem B 105, 6507-6514. 



	
  

130 
	
  

96. Davis, M. E., and McCammon, J. A. (1989) Solving the finite difference linearized 
Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradient 
methods, J Comput Chem 10, 386-391. 

97. Holst, M., Baker, N., and Wang, F. (2000) Adaptive multilevel finite element solution of 
the Poisson–Boltzmann equation I. Algorithms and examples, J Comput Chem 21, 1319-
1342. 

98. Altman, M. D., Bardhan, J. P., White, J. K., and Tidor, B. (2009) Accurate solution of 
multi-region continuum biomolecule electrostatic problems using the linearized Poisson-
Boltzmann equation with curved boundary elements, J Comput Chem 30, 132-153. 

99. Kangas, E., and Tidor, B. (1998) Optimizing electrostatic affinity in ligand-receptor 
binding: Theory, computation, and ligand properties, J Chem Phys 106, 7522. 

100. Chong, L. T., Dempster, S. E., Hendsch, Z. S., Lee, L. P., and Tidor, B. (1998) 
Computation of electrostatic complements to proteins: a case of charge stabilized 
binding, Protein Sci 7, 206-210. 

101. Kangas, E., and Tidor, B. (1999) Charge optimization leads to favorable electrostatic 
binding free energy, Phys Rev E 59, 5958-5961. 

102. Lee, L.-P., and Tidor, B. (2001) Barstar is electrostatically optimized for tight binding to 
barnase, Nat Struct Biol 8, 73-76. 

103. Hendsch, Z. S., and Tidor, B. (1994) Do salt bridges stabilize proteins? A continuum 
electrostatic analysis, Protein Sci 3, 211-226. 

104. Schaefer, M., and Karplus, M. (1996) A comprehensive analytical treatment of 
continuum electrostatics, J Phys Chem-Us 100, 1578-1599. 

105. Im, W., Lee, M. S., and Brooks, C. L., 3rd. (2003) Generalized born model with a simple 
smoothing function, J Comput Chem 24, 1691-1702. 

106. Srinivasan, J., Trevathan, M. W., Beroza, P., and Case, D. A. (1999) Application of a 
pairwise generalized-Born model to proteins and nucleic acids: inclusion of salt effects, 
Theor Chem Acco: Theor, Comp, Model 101, 426-434. 

107. Research Collaboratory for Structural Bioinformatics (RCSB). Protein Data Bank. 

108. Word, J. M., Lovell, S. C., Richardson, J. S., and Richardson, D. C. (1999) Asparagine 
and glutamine: using hydrogen atom contacts in the choice of side-chain amide 
orientation, J Mol Biol 285, 1735-1747. 

109. Brunger, A. T., and Karplus, M. (1988) Polar hydrogen positions in proteins: empirical 
energy placement and neutron diffraction comparison, Proteins 4, 148-156. 

110. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and 
Karplus, M. (1983) CHARMM: A program for macromolecular energy, minimization, 
and dynamics calculations, J Comput Chem 4, 187-217. 



	
  

131 
	
  

111. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., 
Skeel, R. D., Kalé, L., and Schulten, K. (2005) Scalable molecular dynamics with 
NAMD, J Comput Chem 26, 1781-1802. 

112. MacKerell, A. D., Bashford, D., Bellott, Dunbrack, R. L., Evanseck, J. D., Field, M. J., 
Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., 
Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. 
E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., 
Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential 
for molecular modeling and dynamics studies of proteins, J Phys Chem B 102, 3586-
3616. 

113. MacKerell, A. D., Wiorkiewicz-Kuczera, J., and Karplus, M. (1995) An all-atom 
empirical energy function for the simulation of nucleic acids, J Am Chem Soc 117, 
11946-11975. 

114. Green, D. F., Kangas, E., Hendsch, Z. S., and Tidor, B. (2003) ICE - integrated 
continuum electrostatics., MIT. 

115. Altman, M. D., and Tidor, B. (2003) MultigridPBE - Software for computation and 
display of electrostatic potentials., MIT. 

116. Nina, M., Beglov, D., and Roux, B. (1997) Atomic radii for continuum electrostatics 
calculations based on molecular dynamics free energy simulations, J Phys Chem B 101, 
5239-5248. 

117. Banavali, N. K., and Roux, B. (2002) Atomic radii for continuum electrostatics 
calculations on nucleic acids, J Phys Chem B 106, 11026-11035. 

118. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics, J 
Mol Graph 14, 33-38. 

119. Sigel, I. H. (1987) Isomeric equilibria in complexes of adenosine 5'-triphosphate with 
divalent metal ions, Eur J Biochemistry 165, 65-72. 

120. Bardhan, J. P. (2008) Interpreting the Coulomb-field approximation for generalized-Born 
electrostatics using boundary-integral equation theory, J Chem Phys 129, 144105. 

121. Bardhan, J. P., Knepley, M. G., and Anitescu, M. (2009) Bounding the electrostatic free 
energies associated with linear continuum models of molecular solvation, J Chem Phys 
130, 104108. 

122. Joughin, B. A., Green, D. F., and Tidor, B. (2005) Action-at-a-distance interactions 
enhance protein binding affinity, Protein Sci 14, 1363-1369. 

123. Selzer, T., Albeck, S., and Scheiber, G. (2000) Rational design of faster associatind and 
tighter binding protein complexes, Nat Struct Biol 7, 537-541. 



	
  

132 
	
  

124. Wang, J., Sengupta, P., Guo, Y., Golebiewska, U., and Scarlata, S. (2009) Evidence for a 
second, high affinity Gbetagamma binding site on Galphai1(GDP) subunits, J Biol Chem 
284, 16906-16913. 

125. Willis, B. T., and Pryor, A. W. (1975) Thermal vibrations in crystallography, Cambridge 
University Press London and New York. 

126. Shao, J., Tanner, S. W., Thompson, N., and Cheatham, T. E. (2007) Clustering molecular 
dynamics trajectories: 1. characterizing the performance of different clustering 
algorithms, J Chem Theor Comp 3, 2312-2334. 

127. Karpen, M. E., Tobias, D. J., and Brooks, C. L., 3rd. (1993) Statistical clustering 
techniques for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns 
trajectories of YPGDV, Biochemistry-Us 32, 412-420. 

128. Satoh, D., Shimizu, K., Nakamura, S., and Terada, T. (2006) Folding free-energy 
landscape of a 10-residue mini-protein, chignolin, Febs Lett 580, 3422-3426. 

129. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Jr., Brice, M. D., Rodgers, 
J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1978) The Protein Data Bank: a 
computer-based archival file for macromolecular structures, Arch Biochem Biophys 185, 
584-591. 

130. Martin, A. C. R. Profit is a program that performs fitting of structures by implementing 
the McLachlan algorithm. www.bioinf.org.uk/software/profit/index.html. 

131. Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, 
B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., 
Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., 
Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z., 
Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X., Yang, W., York, D. 
M., and Karplus, M. (2009) CHARMM: the biomolecular simulation program, J Comput 
Chem 30, 1545-1614. 

132. MATLAB. (August 16, 2010) The MathWorks, Inc. Version 7.11.0.584 (R2010b) 64-bit 
(glnxa64) www.mathworks.com. 

133. Van Eps, N., Preininger, A. M., Alexander, N., Kaya, A. I., Meier, S., Meiler, J., Hamm, 
H. E., and Hubbell, W. L. (2011) Interaction of a G-protein with an activated receptor 
opens the interdomain interface in the alpha subunit, Proc Natl Acad Sci USA 108, 9420-
9424. 

134. Vidal, M. (2001) A biological atlas of functional maps, Cell 104, 333-339. 

135. Honig, B., and Nicholls, A. (1995) Classical electrostatics in biology and chemistry, 
Science 268, 1144-1149. 

136. Reichmann, D., Rahat, O., Cohen, M., Neuvirth, H., and Schreiber, G. (2007) The 
molecular architecture of protein-protein binding sites, Curr Opin Struct Biol 17, 67-76. 



	
  

133 
	
  

137. Carrascal, N., and Green, D. F. (2010) Energetic decomposition with the generalized-
Born and Poisson–Boltzmann solvent models: Lessons from association of G-protein 
components, J Phys Chem B 114, 5096-5116. 

138. Zoete, V., Meuwly, M., and Karplus, M. (2005) Study of the insulin dimerization: 
binding free energy calculations and per-residue free energy decomposition, Proteins 61, 
79-93. 

139. Zoete, V., and Michielin, O. (2007) Comparison between computational alanine scanning 
and per-residue binding free energy decomposition for protein-protein association using 
MM-GBSA: application to the TCR-p-MHC complex, Proteins 67, 1026-1047. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

134 
	
  

APPENDIX A 

 

Supplementary material for chapter 3: “Energetic decomposition with GB and PB solvent 

models” 

 Figure A.1 displays the structural variation in the backbone throughout the simulations. 

Figure 2 shows the overall correlation between GB and PB for the net binding energy of all three 

systems. Tables A.1, A.2 and A.3 give the correlation coefficients and best fit lines for each of 

the individual residues highlighted in the main text. Tables A.4, A.5 and A.6 give the mean 

desolvation and mutation energies for this same set of residues. Figure A.3 shows the 

relationship between gbmv-computed binding energies and the same values computed with PB; 

Figures A.4–A.9 show these data broken down by individual components. 

 
Figure A.1. Structural fluctuations through molecular dynamics simulations. Overall 
backbone variations (as root-mean-square deviation) from both the first and last frame of the 
simulation are plotted for each system. All simulations are well-behaved, without any evidence 
of artifactual conformational changes. 
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Figure A.2. Variation in single-snapshot net binding energies computed by GB and Pb. The 
net electrostatic binding free energies computed by both GB and PB are shown for all three 
systems in a single plot. Over all three systems, the correlation between the two methods is very 
strong, with near unit slope for the best-fit line. (note: These data are the same as presented in 
Figure 3.2 of the manuscript.) 

 
Figure A.3. Variation in single-snapshot net binding energies computed by GBMV and PB. 
These data can be compared to Figure 3.2 of the text. 
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Table A.1. Gα.GDP.Gβγ residue-specific correlations for select components.a 

  Desolvation  Mutation 

Component R2 Best-Fit Line  R2 Best-Fit Line 

NH 184α 0.331 0.236 x + 0.12  0.944 1.141 x + -0.25 
NH 128β 0.498 0.108 x + 0.011  0.108 0.074 x + 0.015 
NH 145β 0.453 0.188 x + 0.059  0.746 0.822 x + -0.004 
NH 144β 0.334 0.366 x + 0.021  0.721 0.72 x + -0.339 
CO 90β 0.67 0.459 x + 0.402  0.988 0.998 x + -0.707 
CO 117β 0.273 0.318 x + 0.879  0.84 0.745 x + -3.05 
CO 143β 0.27 0.36 x + 0.547  0.854 0.737 x + -1.811 
CO 89β 0.543 0.639 x + -0.186  0.986 0.994 x + -1.036 
Hsp 54β 0.176 0.033 x + 0.972  0.239 0.195 x + -1.446 
Hse 91β 0.561 0.383 x + 0.721  0.96 1.144 x + -0.143 
Hse 213α 0.713 0.446 x + 1.586  0.888 0.975 x + 0.027 
Asp 9α 0.933 0.88 x + 1.882  0.939 1.072 x + 0.283 
Asp 26α 0.765 0.727 x + 5.051  0.947 0.942 x + 0.707 
Asp 228β 0.897 0.745 x + 2.173  0.97 1.116 x + 0.137 
Asp 76β 0.468 0.131 x + 2.636  0.047 0.04 x + 0.619 
Asn 119β 0.397 0.309 x + 0.868  0.818 0.65 x + -1.709 
Asn 22α 0.921 0.857 x + 0.397  0.959 1.065 x + -0.038 
Asn 88β 0.875 0.823 x + 0.98  0.923 1.133 x + 0.195 
Asn 230β 0.567 0.385 x + -0.016  0.922 1.11 x + -1.596 
Ser 16α 0.304 0.199 x + 2.11  0.925 0.958 x + -2.366 
Ser 206α 0.673 0.458 x + 0.707  0.788 0.86 x + -2.309 
Ser 97β 0.794 0.31 x + 0.155  0.903 1.119 x + -0.243 
Glu 186α 0.761 0.832 x + 0.77  0.906 0.922 x + -0.635 
Glu 8α 0.913 0.84 x + 2.996  0.95 0.965 x + 0.956 
Glu 216α 0.489 0.592 x + 7.268  0.815 0.898 x + -0.488 
Gln 204α 0.824 0.529 x + -0.038  0.735 0.908 x + -1.215 
Gln 75β 0.422 0.34 x + 1.009  0.903 0.908 x + -0.902 
Thr 143β 0.875 0.571 x + 0.606  0.754 0.763 x + -0.455 
Thr 182α 0.672 0.288 x + 1.579  0.881 1.24 x + -0.651 
Thr 86b 0.587 0.295 x + 0.147  0.664 0.493 x + -0.038 
Tyr 145β 0.41 0.208 x + 0.858  0.504 0.47 x + 1.292 
Tyr 59β 0.815 0.354 x + 0.179  0.731 0.916 x + -0.093 
Arg 1α 0.714 0.661 x + 0.413  0.846 0.756 x + -1.61 
Arg 129β 0.956 0.816 x + 0.202  0.988 1.055 x + -0.107 
Arg 68β 0.942 0.698 x + 0.26  0.987 1.053 x + -0.186 
Lys 210α 0.74 0.741 x + 5.683  0.961 0.905 x + 2.897 
Lys 78β 0.802 0.507 x + 5.994  0.883 0.863 x + -0.335 
Lys 89β 0.732 0.844 x + 4.47  0.95 1.084 x + 1.579 
Lys 57β 0.623 0.446 x + 9.362  0.796 0.859 x + -0.387 
aListed components are those highlighted in Figures 3.4 and 3.5 of the  text. 
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Table A.2. Gα.GTP.MG residue-specific correlations for select components.a 
  Desolvation  Mutation 

Component R2 Best-Fit Line  R2 Best-Fit Line 
NH 43a 0.199 0.112 x + 0.111  0.819 1.083 x + 1.36 
NH 45a 0.362 0.199 x + 0.042  0.791 1.019 x + -0.088 
NH 48a 0.487 0.209 x + -0.006  0.891 1.039 x + -0.613 
NH 327a 0.457 0.141 x + 0.023  0.808 1.011 x + 0.003 
CO 176a 0.221 0.207 x + 0.503  0.842 1.175 x + -1.34 
CO 175a 0.5 0.386 x + -0.059  0.836 0.837 x + -3.243 
CO 177a 0.751 0.227 x + 0.065  0.055 0.117 x + -0.595 
CO 150a 0.578 0.324 x + 0.03  0.479 0.374 x + 0.037 
Cys 325a 0.523 0.189 x + 0.011  0.698 0.734 x + 0.129 
Asp 272a 0.963 0.837 x + -0.094  0.936 1.395 x + -1.585 
Asp 200a 0.3 0.38 x + 3.283  0.872 1.035 x + -13.376 
Asp 150a 0.792 0.473 x + 0.501  0.542 0.23 x + -0.369 
Asn 149a 0.175 0.376 x + 0.033  0.505 0.167 x + 0.071 
Asn 269a 0.536 0.315 x + 0.149  0.543 0.939 x + 0.694 
Ser 151a 0.496 0.147 x + 0.105  0.471 0.428 x + -0.535 
Ser 47a 0.043 0.131 x + 0.105  0.975 1.043 x + -4.107 
Glu 43a 0.273 0.316 x + 0.882  0.278 0.262 x + 0.991 
Gln 52a 0.015 -0.119 x + 0.033  0.224 0.287 x + 0.068 
Thr 48a 0.145 0.089 x + 0.558  0.862 0.886 x + -5.348 
Thr 327a 0.199 0.218 x + 0.435  0.729 1.144 x + -1.468 
Thr 181a 0.001 -0.015 x + 0.186  0.955 1.027 x + -5.205 
Tyr 154a 0.766 0.411 x + 0.067  0.18 0.278 x + 0.008 
Tyr 155a 0.467 0.153 x + 0.021  0.167 0.427 x + 0.257 
Arg 176a 0.808 0.247 x + 0.042  0.384 0.189 x + -0.04 
Arg 178a 0.284 0.554 x + 2.585  0.801 0.897 x + 10.546 
Lys 51a 0.465 0.113 x + 1.372  0.29 0.351 x + 2.124 
Lys 180a 0.51 2.31 x + 0.024  0.579 0.265 x + 0.089 
Lys 270a 0.463 0.429 x + 1.56  0.623 0.403 x + 0.513 
Lys 46a 0.274 0.244 x + 8.544  0.497 0.651 x + -21.535 
aThis data corresponds to figures 3.7 and 3.8 of the text. 
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Table A.3. Gα.GDP residue-specific correlations for select componentsa. 

  Desolvation  Mutation 
Component    R2 Best-Fit Line  R2 Best-Fit Line 

NH 43α 0.144 0.206 x + 0.077  0.906 0.74 x + -0.62 
NH 45α 0.484 0.212 x + 0.06  0.679 0.862 x + 1 
NH 48α 0.387 0.203 x + 0.016  0.528 0.787 x + -0.676 
NH 327α 0.508 0.118 x + 0.022  0.387 0.543 x + 0.49 
CO 176α 0.56 0.31 x + 0.123  0.588 0.812 x + -2.863 
CO 175α 0.433 0.392 x + -0.038  0.417 0.501 x + -5.988 
CO 177α 0.65 0.312 x + 0.014  0.017 0.056 x + -1.21 
CO 150α 0.446 0.242 x + 0.073  0.184 0.351 x + -1.395 
Cys 325α 0.001 -0.013 x + 0.047  0.347 0.239 x + 0.314 
Asp 272α 0.1 0.131 x + 11.586  0.162 0.214 x + -24.759 
Asp 200α 0.032 0.358 x + 0.16  0.795 0.347 x + -0.199 
Asp 150α 0.401 0.492 x + 1.262  0.179 0.17 x + -0.268 
Asn 149α 0.032 0.05 x + 0.063  0.413 0.15 x + 0.141 
Asn 269α 0.383 0.197 x + 0.182  0.436 0.744 x + 0.642 
Ser 151α 0.406 0.114 x + 0.251  0.619 0.534 x + 0.119 
Ser 47α 0.185 0.114 x + 0.231  0.799 0.684 x + -3.447 
Glu 43α 0.896 0.68 x + 0.979  0.851 0.358 x + 1.689 
Gln 52α 0 -0.02 x + 0.018  0.085 0.191 x + -0.481 
Thr 48α 0.481 0.165 x + 0.313  0.779 1.003 x + -5.227 
Thr 327α 0.007 0.037 x + 0.292  0 0.013 x + -1.161 
Thr 181α 0.031 0.142 x + 0.017  0.797 0.732 x + -0.12 
Tyr 154α 0.116 0.128 x + 0.154  0.189 -0.259 x + 0.085 
Tyr 155α 0.006 0.036 x + 0.002  0.005 -0.032 x + 0.425 
Arg 176α 0.036 0.143 x + 1.064  0.107 0.111 x + -0.423 
Arg 178α 0.511 0.713 x + -0.53  0.716 0.708 x + 9.001 
Lys 51α 0.359 0.104 x + 1.154  0.346 0.236 x + 0.325 
Lys 180α 0.81 1.033 x + 1.485  0.944 0.797 x + 0.877 
Lys 270α 0.262 0.33 x + 3.671  0.435 0.348 x + -3.23 
Lys 46α 0.002 -0.017 x + 6.413  0.663 0.451 x + -30.125 

aThese data corresponds to Figures 3.10 and 3.11 of the  text. 
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Table A.4. Gα.GDP.Gβγ residue-specific correlations for select components.a 

  Desolvation  Mutation 
  Mean  Std. Dev.  Mean  Std. Dev. 

Component PB GB  PB GB  PB GB  PB GB 
NH 184α 0.573 0.255  0.087 0.036  -2.141 -2.693  1.613 1.894 
NH 128β 0.03 0.015  0.093 0.014  0.076 0.021  0.248 0.056 
NH 145β 0.308 0.117  0.106 0.03  0.154 0.123  0.599 0.57 
NH 144β 0.213 0.099  0.045 0.029  0.161 -0.223  0.741 0.629 
CO 90β 2.431 1.518  0.768 0.431  -3.045 -3.744  4.641 4.659 
CO 117β 2.868 1.792  0.378 0.23  -1.111 -3.878  2.213 1.799 
CO 143β 2.575 1.473  0.498 0.344  0.574 -1.387  2.448 1.954 
CO 89β 2.872 1.65  0.278 0.241  -0.684 -1.716  3.388 3.392 
Hsp 54β 5.572 1.157  6.719 0.533  -2.532 -1.939  3.04 1.214 
Hse 91β 1.469 1.285  1.336 0.684  -0.97 -1.254  3.125 3.651 
Hse 213α 2.077 2.512  0.971 0.513  1.653 1.639  1.979 2.048 
Asp 9a 9.274 10.047  8.441 7.695  -2.471 -2.367  5.307 5.874 
Asp 26α 10.256 12.503  4.728 3.927  -8.71 -7.494  9.303 9.002 
Asp 228β 7.585 7.823  6.785 5.338  -9.689 -10.674  9.776 11.076 
Asp 76β 5.54 3.362  4.583 0.877  -3.132 0.493  5.711 1.058 
Asn 119β 4.274 2.189  0.907 0.445  -2.553 -3.367  3.78 2.715 
Asn 22α 0.756 1.045  1.244 1.111  -0.009 -0.047  2.751 2.993 
Asn 88β 2.547 3.076  1.401 1.232  0.157 0.373  2.467 2.91 
Asn 230β 1.871 0.704  1.237 0.632  -0.674 -2.345  3.155 3.65 
Ser 16α 4.304 2.964  1.045 0.376  -5.114 -7.268  3.613 3.599 
Ser 206α 4.715 2.868  1.411 0.788  0.405 -1.961  2.612 2.532 
Ser 97β 1.846 0.728  1.479 0.515  -0.621 -0.938  3.356 3.953 
Glu 186α 16.46 14.462  7.956 7.586  6.055 4.948  8.428 8.163 
Glu 8α 11.731 12.846  8.539 7.502  -11.575 -10.216  10.329 10.23 
Glu 216α 9.977 13.171  2.294 1.94  -12.503 -11.717  2.978 2.962 
Gln 204α  6.291 3.292  2.074 1.209  -3.467 -4.364  2.954 3.13 
Gln 75β 3.606 2.235  1.001 0.523  -1.4 -2.173  2.349 2.244 
Thr 143β 1.686 1.57  1.622 0.991  0.789 0.147  2.528 2.221 
Thr 182α 2.618 2.333  1.421 0.499  -0.524 -1.301  2.259 2.984 
Thr 86β 0.433 0.275  0.377 0.145  -0.478 -0.274  0.838 0.507 
Tyr 145β 3.49 1.585  1.312 0.427  2.144 2.3  1.966 1.301 
Tyr 59β 2.083 0.916  0.671 0.263  -0.803 -0.828  1.338 1.433 
Arg 15α 7.771 5.553  3.858 3.02  -1.763 -2.943  5.19 4.265 
Arg 129β 4.602 3.956  3.162 2.639  -14.454 -15.358  10.581 11.233 
Arg 68β 3.606 2.778  3.213 2.312  -11.048 -11.815  10.216 10.826 
Lys 210α 13.2 15.47  4.9 4.224  -11.907 -7.882  10.331 9.54 
Lys 78β 12.072 12.113  6.907 3.91  -9.631 -8.646  9.64 8.85 
Lys 89β 9.626 12.592  2.807 2.768  -9.428 -8.638  7.224 8.03 
Lys 57β 14.611 15.88  4.327 2.445  -19.547 -17.177  4.383 4.219 
aListed components are those highlighted in Figures 3.4 and 3.5 of the  text. 
 
 
 
 
	
  



	
  

140 
	
  

Table A.5. Gα.GTP.MG residue-specific correlations for select components.a 

  Desolvation  Mutation 
  Mean  Std. Dev.  Mean  Std. Dev. 

Component PB GB  PB GB  PB GB  PB GB 
NH 43α 0.322 0.147  0.122 0.031  -7.621 -6.896  1.669 1.997 
NH 45α 0.394 0.121  0.1 0.033  -2.719 -2.858  1.66 1.901 
NH 48α 0.188 0.033  0.07 0.021  -5.38 -6.204  1.128 1.242 
NH 327α 0.104 0.038  0.073 0.015  -0.248 -0.248  0.461 0.519 
CO 176α 1.768 0.869  0.411 0.181  -2.013 -3.705  1.169 1.497 
CO 175α 1.962 0.699  0.271 0.148  -2.757 -5.551  1.615 1.478 
CO 177α 0.734 0.231  0.496 0.13  0.375 -0.551  0.974 0.49 
CO 150α 0.108 0.065  0.171 0.073  -0.526 -0.16  0.527 0.285 
Cys 325α 0.155 0.04  0.136 0.036  0.481 0.482  0.651 0.572 
Asp 272α 5.249 4.299  7.656 6.53  -3.47 -6.426  7.764 11.196 
Asp 200α 10.707 7.35  1.842 1.276  -79.499 -95.626  9.995 11.074 
Asp 150α 0.975 0.962  1.915 1.018  3.648 0.472  2.754 0.862 
Asn 149α 0.017 0.039  0.029 0.026  -0.264 0.027  0.534 0.125 
Asn 269α 0.672 0.36  0.36 0.155  -2.285 -1.451  1.188 1.513 
Ser 151α 2.134 0.419  1.284 0.269  1.553 0.13  1.411 0.88 
Ser 47α 0.95 0.23  0.204 0.13  -26.662 -31.92  6.014 6.354 
Glu 43α 0.729 1.112  0.947 0.574  8.273 3.16  2.239 1.112 
Gln 52α 0.028 0.029  0.011 0.01  -1.079 -0.242  0.333 0.202 
Thr 48α 4.44 0.954  0.545 0.128  -10.476 -14.627  1.963 1.873 
Thr 327α 1.887 0.846  0.571 0.278  0.234 -1.2  1.194 1.6 
Thr 181α 1.131 0.168  0.227 0.094  -37.057 -43.27  5.093 5.354 
Tyr 154α 0.086 0.102  0.226 0.106  0.042 0.019  0.246 0.161 
Tyr 155α 0.15 0.044  0.17 0.038  -0.134 0.199  0.324 0.339 
Arg 176α 0.808 0.242  1.658 0.456  -2.336 -0.482  1.297 0.396 
Arg 178α 9.076 7.615  1.005 1.045  -67.515 -50.026  6.576 6.591 
Lys 51α 8.621 2.344  3.63 0.6  -19.187 -4.614  3.125 2.037 
Lys 180α 0.021 0.072  0.021 0.067  -2.704 -0.628  1.078 0.376 
Lys 270α 9.558 5.662  3.968 2.501  -14.336 -5.267  6.979 3.564 
Lys 46α 16.336 12.532  1.969 0.919  -108.408 -92.128  5.057 4.673 
aThese data corresponds to Figures 3.10 and 3.11 of the  text.	
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Table A.6. Gα.GDP residue-specific correlations for select components.a 

  Desolvation   Mutation 
  Mean  Std. Dev.  Mean  Std. Dev. 

Component PB GB  PB GB  PB GB  PB GB 
NH 43a 0.122 0.102  0.056 0.03  -7.688 -6.312  4.432 3.446 
NH 45a 0.287 0.12  0.105 0.032  -10.283 -7.868  2.481 2.596 
NH 48a 0.164 0.049  0.058 0.019  -8.321 -7.228  1.183 1.283 
NH 327a 0.14 0.039  0.096 0.016  -0.263 0.347  0.515 0.449 
CO 176a 1.237 0.506  0.319 0.132  -0.519 -3.284  1.643 1.739 
CO 175a 1.801 0.669  0.188 0.112  0.147 -5.914  1.82 1.413 
CO 177a 1.216 0.393  0.429 0.166  2.364 -1.077  1.608 0.685 
CO 150a 0.568 0.211  0.385 0.14  -2.082 -2.126  1.007 0.824 
Cys 325a 0.11 0.045  0.075 0.027  0.451 0.422  1.512 0.613 
Asp 272a 19.278 14.109  3.318 1.371  -1.192 -25.014  8.855 4.71 
Asp 200a 0.021 0.168  0.051 0.101  5.567 1.733  3.258 1.268 
Asp 150a 2.359 2.423  1.318 1.024  14.294 2.168  4.324 1.743 
Asn 149a 0.082 0.068  0.086 0.024  1.793 0.41  1.18 0.275 
Asn 269a 0.46 0.273  0.371 0.118  -4.734 -2.881  1.439 1.622 
Ser 151a 1.91 0.469  0.841 0.151  3.886 2.194  1.865 1.265 
Ser 47a 0.586 0.298  0.568 0.15  -22.346 -18.729  5.509 4.214 
Glu 43a 2.128 2.426  3.4 2.443  16.995 7.778  12.213 4.743 
Gln 52a 0.027 0.018  0.009 0.009  -2.83 -1.023  0.532 0.348 
Thr 48a 4.281 1.021  0.602 0.144  -11.171 -16.43  1.914 2.175 
Thr 327a 1.713 0.356  0.48 0.213  2.541 -1.127  1.446 1.362 
Thr 181a 0.009 0.019  0.021 0.017  1.648 1.087  1.571 1.289 
Tyr 154a 0.214 0.181  0.24 0.09  -0.877 0.312  1.183 0.705 
Tyr 155a 0.017 0.003  0.026 0.012  0.291 0.416  0.615 0.291 
Arg 176a 4.688 1.736  1.068 0.808  -13.624 -1.934  4.379 1.485 
Arg 178a 2.854 1.504  1.19 1.187  -19.457 -4.768  8.019 6.707 
Lys 51a 10.299 2.23  3.586 0.625  -34.573 -7.828  7.674 3.077 
Lys 180a 10.084 11.898  3.693 4.238  -89.848 -70.732  28.474 23.352 
Lys 270a 9.455 6.791  2.404 1.55  -41.315 -17.617  7.256 3.831 
Lys 46a 2.515 6.371  2.054 0.762  -83.241 -67.692  12.088 6.7 

aThese data corresponds to Figures 3.10 and 3.11 of the  text.	
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Figure A.4. Gα.GDP.Gβγ group desolvation penalties, by type, using GBMV model. These data 
can be compared to Figure 3.4 of the text. 
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Figure A.5. Gα.GDP.Gβγ group mutation penalties, by type, using GBMV model. These data 
can be compared to Figure 3.5 of the text. 
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Figure A.6. Gα.GTP.MG group desolvation penalties, by type, using GBMV model. These data 
can be compared to Figure 3.7 of the text. 
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Figure A.7. Gα.GTP.MG group mutation penalties, by type, using GBMV model. These data 
can be compared to Figure 3.8 of the text. 
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Figure A.8. Gα.GDP group desolvation penalties, by type, using GBMV model. These data can 
be compared to Figure 3.10 of the text. 
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Figure A.9. Gα.GDP group mutation penalties, by type, using GBMV model. These data can 
be compared to Figure 3.11 of the text. 
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APPENDIX B 

 

Completing missing structural information in the crystallographic structures from 

homology modeling between the three systems 

Crystal structures used as a starting point for simulations do not have structural 

information for all the residues in their sequence because of lack of x-ray diffraction. Complete 

structures were built by combining information from all the structures, Missing Structural 

information was filled by simply aligning the common available residues around the missing 

structure with that from a fully resolved structure. A simple least-square alignment of the α-

carbons of the back bone was sufficient to merge the structures. The program PROFIT was used 

for aligning the structures to α-carbons that were present in both structures. The regions were 

added to the PDBs with missing structural information by copying and pasting the text 

corresponding lines of text from one PDB file to the other. The following color coded sequence 

alignments describes what parts were missing, added and not included in the three structures: 
1GP2_A   GCTLSAEDKAAVERSKMIDRNLREDGEKAAREVKLLLLGAGESGKSTIVKQMKIIHEAGY 
1GIA_A   GCTLSAEDKAAVERSKMIDRNLREDGEKAAREVKLLLLGAGESGKSTIVKQMKIIHEAGY 
1GDD_A   GCTLSAEDKAAVERSKMIDRNLREDGEKAAREVKLLLLGAGESGKSTIVKQMKIIHEAGY 
 
1GP2_A   SEEECKQYKAVVYSNTIQSIIAIIRAMGRLKIDFGDAARADDARQLFVLAGAAEEGFMTA 
1GIA_A   SEEECKQYKAVVYSNTIQSIIAIIRAMGRLKIDFGDAARADDARQLFVLAGAAEEGFMTA 
1GDD_A   SEEECKQYKAVVYSNTIQSIIAIIRAMGRLKIDFGDAARADDARQLFVLAGAAEEGFMTA 
 
1GP2_A   ELAGVIKRLWKDSGVQACFNRSREYQLNDSAAYYLNDLDRIAQPNYIPTQQDVLRTRVKT 
1GIA_A   ELAGVIKRLWKDSGVQACFNRSREYQLNDSAAYYLNDLDRIAQPNYIPTQQDVLRTRVKT 
1GDD_A   ELAGVIKRLWKDSGVQACFNRSREYQLNDSAAYYLNDLDRIAQPNYIPTQQDVLRTRVKT 
 
1GP2_A   TGIVETHFTFKDLHFKMFDVGGQRSERKKWIHCFEGVTAIIFCVALSDYDLVLAEDEEMN 
1GIA_A   TGIVETHFTFKDLHFKMFDVGGQRSERKKWIHCFEGVTAIIFCVALSDYDLVLAEDEEMN 
1GDD_A   TGIVETHFTFKDLHFKMFDVGGQRSERKKWIHCFEGVTAIIFCVALSDYDLVLAEDEEMN 
 
1GP2_A   RMHESMKLFDSICNNKWFTDTSIILFLNKKDLFEEKIKKSPLTICYPEYAGSNTYEEAAA 
1GIA_A   RMHESMKLFDSICNNKWFTDTSIILFLNKKDLFEEKIKKSPLTICYPEYAGSNTYEEAAA 
1GDD_A   RMHESMKLFDSICNNKWFTDTSIILFLNKKDLFEEKIKKSPLTICYPEYAGSNTYEEAAA 
 
1GP2_A   YIQCQFEDLNKRKDTKEIYTHFTCATDTKNVQFVFDAVTDVIIKNNLKDCGLF 
1GIA_A   YIQCQFEDLNKRKDTKEIYTHFTCATDTKNVQFVFDAVTDVIIKNNLKDCGLF 
1GDD_A   YIQCQFEDLNKRKDTKEIYTHFTCATDTKNVQFVFDAVTDVIIKNNLKDCGLF 
     
            Sequence with structural information from crystal structure. 
            Structure missing in crystal but added from 1GIA.   
            Structure missing in crystals but added from 1GDD.              
            Structure missing in crystals, not included in simulations. 
            Structure missing in crystal but added from 1GP2.   


