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Abstract of the Dissertation

Conservative and accurate data remapping for
coupling climate models (WRF and CAM)

by

Ying Chen

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2012

The two-way coupling of WRF and CAM for regional climate mod-
eling requires transferring data (such as wind velocities, temperature,
moisture, etc.) between the grids of WRF and CAM. These grids are
in general non-matching, and the data transfer should be both phys-
ical conservative and numerically accurate. Our method contains two
parts: constructing the common refinement and conservative data trans-
fer using the common refinement. The former computes the cell inter-
sections and provides the necessary data structures for the latter. We
project the grids of WRF and CAM onto a plain surface using their
corresponding map projection methods (such as: Lambert conformal
projection). Then common refinement method will locate the edge
intersection points of two grids, and determine sub-facets to create a
new mesh based on the union of the intersection points and vertices
of the original two grids within the overlapping area. After obtaining
the common refinement mesh, we use a weighted-residual formulation,
which minimizes the L-2 norm of the error, to complete the data trans-
fer. The L-2 minimization method satisfies physical conservation and
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at the same time is as accurate as interpolation.
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Chapter 1

Introduction

Numerical Atmospheric Modeling is a useful approach to simulate every possible

case in future climate change or weather prediction. Depending on simulation area,

numerical atmospheric models can be categorized into two classifications: global

climate system and regional weather model. Global climate systems take care of

the whole atmosphere in a long term period, while regional weather models focus

on short-term and small-scale weather phenomena. In general, we can say global

climate systems are close systems, and they should satisfy fundamental physical

principles, such as conservation of mass, conservation of momentum, conservation

of thermodynamic energy, and the radiative transfer equation. In contrast, regional

weather models don’t guarantee physical conservation. Community Atmosphere

Model (CAM) and Weather Research and Forecasting Model (WRF) are the most

outstanding typification for global climate system and regional weather model, re-

spectfully.

The Community Atmosphere Model (CAM with version 5) is developed by the

climate community in collaboration with the National Center for Atmospheric Re-
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search (NCAR). Like its predecessors, CAM is designed to be a modular and versa-

tile model suitable for climate studies by the general scientific community. CAM5

can be run either as a stand-alone AGCM (coupled to the CLM land model) or as

a component of the Community Climate System Model (CCSM). When coupled to

the CCSM it interacts with fully prognostic land, sea-ice, and ocean models. It is

also being employed in biogeochemical and physical-chemistry studies in experi-

mental configurations. Meanwhile, the Weather Research and Forecasting (WRF)

model is a numerical weather prediction (NWP) and atmospheric simulation sys-

tem designed for both research and operational applications. The development of

WRF has been a multi-agency effort to build a next-generation mesoscale forecast

model and data assimilation system to advance the understanding and prediction of

mesoscale weather and accelerate the transfer of research advances into operations.

Due to the imperfectness of both climate systems and weather models, the idea

of coupling WRF and CAM together to overcome their weakness is quite straight-

forward. In theory, WRF will contribute accuracy in small weather phenomena

to CAM, so that CAM will perform better in long-term climate simulation. At the

same time, CAM can provide boundary condition to WRF under physical conserva-

tion, so that WRF can produce more accurate output in regional weather prediction.

In order to test our intuition, we use the simulated Frontal Clouds during the ARM

March 2000 as an example. The results supports our ideas very well.

However, there are many issues we need to addresses during the coupling. One

of them is the data remapping issue. Since CAM and WRF are based on different

resolution of grids, then to transfer data between those two grids conservatively and

accurately is really a challenge.
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1.1 Problem Description

1.1.1 2-D Mesh

A 2-D mesh is a discretization of the geometry of a 2-D plane. It divides a plane

into many small elements. Such elements are polygons in general, including trian-

gles and rectangles. There are three kinds of topological objects in a mesh, which

are vertices, edges, and facets. Hence, each element consists of several vertices,

several edges and one facet. Edges are formed by connecting vertices, while facets

are surrounded by joined edges. The realization of the connection between any two

vertices can be a line segment, or a curved edge which is a circular arc in our appli-

cation. A 2-D mesh is then defined as collections of these vertices, edges and facets

embedded in R2.

1.1.2 Formulating the Problem

In order to fully couple CAM and WRF, state variables (wind stress, temperature,

etc) and heat and water fluxes should be transferred between models periodically,

and such fields should be remapped from one model mesh to another. In particu-

lar, fluxes should be remapped conservatively in order to maintain the total amount

of energy and water in the whole system. Both CAM and WRF use finite volume

method. CAM supports several kinds of mesh, but regular Latitude-Longitude grid

is the most important one. While in WRF, the earth surface is first projected onto

a plain surface by using several kinds of Map Projection methods, so the computa-

tional mesh is indeed regular quadrilateral. The location of data is crucial for data

transfer. All state variables and fluxes are cell-centered in CAM, that is different
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in WRF, where the wind velocities are located in the cell side. Both cell-centered

and staggered data are associated at a finite number of discrete points in a mesh,

referred to as control points. Together with the basis functions (or shape functions,

typically piece wise linear or quadratic) associated with the nodes, these nodal val-

ues determine a piece wise polynomial interpolant over the underlying space of the

mesh. Let m be the number of source control points and n be the number of tar-

get control points. Let f = ∑
m
i=1 fiφi denote the source function, where fi = f (si)

andφi are the data value and basis function, respectfully, where si stands for the ith

source control point. Similarly, let g = ∑
n
i=1 giψi denote the target function, where

gi = g(ti) and ψi are related to the ith target control point ti. Therefore, the data

remapping problem is just to find out the value of gi , given fi , φi and ψi . It is

obvious that g− f determines the error between the data before and after remap-

ping, and whether
´

(g− f )dx = 0 tells whether the data remapping is conservative

or not.

1.1.3 Coordinate System

In order to transfer data between CAM and WRF, we need to compute the in-

tersection between CAM’s mesh and WRF’s mesh in order to set up a geometric

relationship between those two input meshes. With the intersection, then we can

operate interpolation method or remapping method to transfer data across two do-

mains. Therefore, we need to clarify the geomeric properties for CAM’s mesh and

WRF’s mesh. CAM’s mesh consists with regular rectangles in spherical coordinate,

and the edges of those rectangles are along with either latitude or longitude. While

WRF’s domain is simulated by a rectangular mesh in Carteisan plain with certain
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kinds of map projection method, like Lambert projection, Mercator projection and

so on.

There are two ways to compute the intersections, the first way is based on spher-

ical coordinate which is used by SCRIP package (P. Jones, 1999), and the other

way is within the Cartesian coordinate. For the first kind, there are several disad-

vantages, and the most essential one is due to edge linearly approximation. That is

because although CAM’s mesh is a rectangular mesh, WRF’s elements are sectors

in spherical coordinate, and the edges of WRF’s elements don’t need to be along

with latitude ,longitude or any great circles, which makes it difficult to accurately

approximate curved edges of WRF’s mesh. Then WRF’s edges will be linearly

approximated when computing the edge-to-edge intersection, which may introduce

big errors to the data transfer. In Cartesian coordinate, in contrast, WRF’s mesh are

regular rectanglular mesh, and CAM’s elements are sectors whose information are

clearly defined by certain map projection method, so that CAM’s curved edges can

be precisely fixed. Then we can accurately compute the intersection of two meshes

based on sector-to-rectangle intersection and arc-to-segment intersection.

1.2 Software Architecture

Our data remapping package will be integrated into CCSM system, as a module

between CAM and WRF. CCSM is referred to Community Climate System Model,

which is a Global Climate Model developed by the University Corporation for

Atmospheric Research (UCAR). There are several sub-models in CCSM system:

atmosphere(CAM), land surface(CLM), ocean(POP), sea ice(CICE) and land-ice

component (GLC). In our project, we will insert WRF into CCSM framework as

5



shown in Figure 1.1. And our remapping package will also added into CCSM, as a

bridge between CAM and WRF, as shown in Figure 1.2 .

CPL

WRFCAM

CLM

CICE GLC

POP

Figure 1.1: Software architecture
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CPL

WRF

CAM

CLM

CICE GLC

POP

remapping

our focus

Figure 1.2: Software architecture with remapping package

1.3 Existing Methods and Their Limitations

Data transfer method can be divided into two steps in general:

1. Compute the intersection between source mesh and target mesh.

2. Transfer data based on the intersection by using certain numerical methods.

There are vast amount of existing methods for data transfer, but none of them works

well. We will describe some most used existing methods in the following.
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1.3.1 Intersection Algorithm

1.3.1.1 SCRIP Package

SCRIP is an abbreviation of Spherical Coordinate Remapping and Interpolation

Package. This is a software package which computes addresses and weights for

remapping and interpolating fields between grids in spherical coordinates. It was

written originally for remapping fields to other grids in a coupled climate model.

SCRIP is widely used in Atmospheric community, and its functionality has been in-

cluded in the Earth System Modeling Framework and the European PRISM frame-

work.

Since SCRIP is designed for global models, then it is not suitable for two meshes

with non-matching boundaries. In addition, SCRIP computes the intersection in

spherical coordinate. Therefore, the edge-to-edge intersections would be accurate

for edges along latitude or longitude. If the edges are not along latitude or longitude,

SCRIP just linearly approximates the edges in spherical coordinate and computes

the edge-to-edge intersection. Moreover, SCRIP is not able to get accurate edge-

to-edge intersection for curved edges. Furthermore, SCRIP approximates surface

integral with line integral by using divergence theorem. Another issue of SCRIP

is the treatment of pole. Pole is a line in latitude-longitude grid, although it is

physically a point. Therefore, if the pole is not treated well, then big computational

errors would be brought in.

Currently, in SCRIP, there are four numerical options which will be described

in the section of numerical methods:

1. Point-wise bilinear interpolation
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2. Point-wise bi-cubic interpolation

3. Point-wise distance-weighted averaging

4. Area-based conservative remapping: First- and second-order conservative

remapping as described in (P. Jones, 1999).

1.3.1.2 Construct Common Refinement Mesh

Our data transfer method uses a data structure called the common refinement

of two non-matching meshes, which is described in (X. Jiao and M. Heath, 2004). A

common refinement of two meshes is a mesh composed of elements that subdivide

the elements of both input meshes simultaneously, or, simply put, the intersections

of the elements of the input meshes. It provides a one-to-one correspondence be-

tween a point in source mesh and a unique point in target mesh. In the common

refinement mesh, we refer to the vertices, edges and facets as subvertices, subedges

and subfacets, respectfully. For every sub-object of the common refinement, it has

two corresponding parent objects, one of which in the source mesh and the other in

the target mesh. A subvertex is either a vertex of the original two meshes, or an edge

intersection. The subedges of the common refinement are the intervals of edges of

original two meshes between the subvertices. A sub-facet is a part of correspond-

ing facets of original two meshes. A common refinement mesh R is minimal if

all sub-objects have different pair of parent objects. With common refinement, the

geometric relationship between two input meshes would be very clear to us. More-

over, it enables accurate integration of functions that depend on the shape functions

of the two meshes. For these reasons, the common refinement is important for our

method both theoretically and practically.
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However, the original common refinement method cannot handle two input

meshes with curved edges or with non-matching boundaries. Therefore, we need

to enhanced the original common refinement method to an extended version in our

project. Before we introduce the extended version, we will briefly describe the orig-

inal method in the following section. In general, the original common refinement

method consists with several sub-methods:

• Looping through source mesh and target mesh.

• Face-to-face intersection

– Project vertices of source element onto the target element.

– Edge-to-edge intersection

• Triangulation

We will explain the above steps in the following.

Looping through the source mesh and target mesh The common refinement

algorithm is accomplished by iterating element by element for both source mesh

and target mesh, which can be described with following steps:

1. Choose a source element, and locate the potential target element that inter-

sects the current source element. Add this pair to the list of seed elements.

2. For the pair of seed elements found in the last step, operate face-to-face in-

tersection.

3. Search the neighborhood of current pair of seed elements, look for other pairs

of potential seed elements and insert them into the list of seed elements.
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4. Get the next pair of seed elements from the list of seed elements, and repeat

from step 2 until all pairs of seed elements of that list have been operated with

face-to-face intersection.

After we have the first pair of seed elements, we will operate face-to-face inter-

section for current pair of seed elements. In addition we create a local list of target

elements that could potentially intersect with current source seed element. Target

elements are added to the local list as more subvertices on the source face are found.

There are two ways of finding subvertices of common-refinement: point (or vertex)

projection and edge-to-edge intersection. To begin with, all the target elements that

the vertices of current source seed element projected onto are added to the local

list. These target elements are helpful in finding more target elements that could

intersect with the current source element. If a vertex of the source element were

projected onto a target vertex then all the target elements containing that target ver-

tex are added to the local list of potential candidates. On the other hand, if a source

vertex were projected onto a target edge, then both the elements (one element if it

is a boundary edge) incident on that edge are potential seed target elements. If a

source vertex falls inside a target element, then only that target element is added

to the local list because a source vertex can just lie inside one target element at a

time. Besides point (or vertex) projection, we also use edge-to-edge intersection

to find subvertices of common refinement. Using the relative position of projec-

tion of source vertices found in last step, all the potential pairs of source edges and

target edges for the current pair of source seed element and target seed element

are marked. Then we operate edge-to-edge intersection on the pairs of edges and

we never apply the edge-to-edge intersection to a pair of source and target edge

11



more than once in order to avoid duplicate computations. Whenever a subvertex

is found we add more target elements to the list depending on whether the target

parent is right at a vertex , at an edge or within an element. In this way we find all

the subvertices lying on the current source element. Then we can merge the local

list of potential target elements to the global list of seed elements, which has the

information of both source seed elements and target seed elements.

In order to optimize the efficiency of common refinement method, we don’t

check for the intersection for all the possible pairs of source elements and target

elements. Therefore, the list of seed elements is very important for a robust and

accurate algorithm. If we fail to identify some target elements that have intersec-

tions with some source elements, then this would leads to big errors in the output.

That is why the looping process plays an very important role in common-refinement

method.

Face-to-face intersection In this step we traverse both the source mesh S and

target mesh T element by element simultaneously. And for every pair of source

element and target element, we operate face-to-face intersection, which is based on

vertex projection and edge-to-edge intersection. It is applied to a pair of source

and target elements while trying to find the common subvertices hosted by them.

The vertices of the source element are projected onto the target element first. Af-

ter finding the projections of all the source vertices, we find the projection of all

the target vertices onto the source element, and mark all pairs of source and target

edges that could potentially intersect. Then with the relative positions (i.e, natural

coordinate) of the source vertices with respect to the target element, we can oper-

ate edge-to-edge intersection for all the pairs of source and target edges which are
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marked above.

Finding the images of source vertices on target element ElemT After we

locate a pair of source element ElemS and target element ElemT , we begin to find

the one-to-one correspondence between source vertices and points of target element

ElemT , and also the images of target vertices within source element ElemS. This

step can be referred as point projection, which is very important in common refine-

ment method because the projections are subvertices of common refinement mesh

and their pre-images are parent vertices, and we can determine whether a source

edge has intersections with a target edge based on the point or vertex projection.

Generally speaking, the original common refinement algorithm is suitable to any

pair of surface meshes with the same boundaries. In our project, both CAM’s mesh

and WRF’s mesh are discretized on the same Cartesian coordinate plane, so the

projection of vertices is quite straightforward based on x and y coordinates. In or-

der to improve the robustness and efficiency of point projection, we bring in a local

coordinate system: boundary encoded natural coordinate system. This natural co-

ordinate describes the location of a point compared to a 2D facet. If the facet is a

triangle, then natural coordinate is just the barycentric coordinate. For a rectangu-

lar facet, we will parametrize the point along a pair of neighborhood edges of the

rectangle. The natural coordinate of a vertex with respect to an element will show

us whether the projection is inside the element, on the edge or right at the vertex of

a specific element.

Locating subvertices produced by edge intersections This step locates the

subvertices for the common-refinement mesh and also finds out their source and

13



target parents. Every vertex of the new common refinement mesh has at least one

pre-image in source mesh and one in target mesh, respectfully. A vertex of the

common refinement mesh is either a vertex of one of the two input meshes or the

intersection of a pair of source and target edges, and we call a vertex of common

refinement mesh as a subvertex.

This edge-to-edge sub-algorithm is to compute the intersection of a source edge

EdgeS ∈ S with a target edge EdgeT ∈ T , and reports whether the intersection

is in the interior of edges, at a vertex or the empty set (i.e, the two edges don’t

have any intersections). The following explains this sub-algorithm when EdgeS

and EdgeT are all line segments on the 2-D Cartesian plane. Let the source edge be

EdgeS = VS0VS1 and the target edge be EdgeT = VT0VT1 . We parametrize EdgeS by

VS0 +α(VS1−VS0) , and parametrize EdgeT by VT0 +β (VT1−VT0). Then we have

VS0 +α(VS1−VS0) = VT0 +β (VT1−VT0) , (1.3.1)

which is a linear system with two equations in x direction and y direction respect-

fully. The intersection is in the interior of EdgeS if a ∈ (0,1) , at a vertex if a = 0

or 1, in the exterior otherwise; similarly for b. A solution corresponds to an actual

edge intersection if a ∈ [0,1] and b ∈ [0,1] are both satisfied simultaneously.

Making sub-facets by triangulation After operating face-to-face intersection

between a source element ElemS and a target element ElemT , we get the intersec-

tion zone with a list of subvertices and their source and target parent edges. For

two elements whose edges are all line segments, this intersection zone could be a

polygon, a line segment, a single point or empty set. Here we only consider how to
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treat the polygon, since other possible cases are relatively easier to handle. During

this step, we are going to make subfacets by triangulating the intersection polygon.

The sorted lists of subvertices and their parent information are utilized to form the

surfacets. The source and target parent edges provide us with constraints we need

to follow while making the surfacets. For a source-target element pair we find out

the common subvertices between them and try to form surfacets from those com-

mon subvertices. If two subvertices (from the list of common subvertices between

a source-target element pair) are on the same source edge then they should be on

the same edge in the surfacet of the new common refinement mesh too. These con-

straints are applied to all the common subvertices of that source-target element pair.

In this way starting from the first common subvertex of a source-target element

pair, we form a surfacet following the constraints by traversing the subvertices in

counter-clockwise order.

1.3.2 Numerical Methods

1.3.2.1 Point-wise Interpolation and Extrapolation

Interpolation (and sometimes extrapolation) is probably the most popular method

for transferring data between meshes, and it is even sometimes used as a synonym

for data transfer. Interpolation, or point-wise interpolation, refers to the process of

determining and evaluating an interpolant to obtain values for some query points

from given values at a finite number of control points, where the interpolant must

be evaluated to the given values at the control points. Extrapolation is required

when a query point falls outside the range of the source mesh. Point-wise inter-

polation can be categorized into two types. One type uses the source function as
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the interpolant, and is sometimes referred to as consistent interpolation or inverse

isoparametric mapping. Let t j = ∑i φi(t)si be a target control point, where the φi

are the shape functions associated with the source mesh. Consistent interpolation

assigns the value at t to be g(t j) = ∑i φi(t) f (si). Consistent interpolation includes

bilinear interpolation and bi-cubic interpolation. The other type constructs an in-

terpolant using high order basis functions, and will be referred to as alternative

interpolation. Some popular alternative interpolation are thin-plate spline, infinite-

plate splines, finite-plate splines, and multiquadric-biharmonic. The cubic spline,

obtained by enforcing continuity of second derivatives, is another widely used inter-

polant in geometric modeling and other scientific applications. A major drawback

of interpolation and extrapolation schemes is that they are not strictly conservative.

When the shape functions are linear, the error in the conservation measure is of

second order for consistent interpolation, but is in general non-zero and is sensitive

to the second derivative of the input function. Alternative interpolation can deliver

higher order accuracy but is still non-conservative. If the second derivative is large

or does not exist, then the loss of information can be arbitrarily large, unless the ex-

tremes coincide with the nodes. For repeated transfers, accuracy and conservation

measures may also degrade quickly over time.

1.3.2.2 Mortar Elements Methods

Mortar element methods are general techniques for projecting data at interfaces

between two or more sub-domains in a non-conforming domain decomposition. In

these methods, the discretized interfaces between sub domains are divided into the

mortar side and the non-mortar side. Each side forms a discretization of the in-

terfaces, and data are projected from the non-mortar side to the mortar side. The
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formulations of mortar element methods are also based on a weighted residual,

where the weight functions are usually chosen from the space spanned by the basis

functions of the mortar side. Most investigations of mortar element methods have

focused on analysis of its semi-discrete form in the context of non-conforming do-

main decompositions.

1.3.2.3 Specialized Methods

Point-wise interpolation and weighted residual are generic methods that are ap-

plicable to a wide range of problems. There are also methods designed for specific

applications that do not fall directly into the above categories but frequently are

variants or combination of them. A particular example of specialized methods is

load and motion transfer in fluid–solid interaction for aero-elasticity problems. In

these problems, traction from the fluid must be converted into nodal loads (equiva-

lent to the load vectors in weighted residual methods) on the solid. Displacements

of the solid are then transferred back to the fluid, typically using consistent interpo-

lation. By taking advantage of knowledge about their specific applications, special-

ized methods can be more efficient than generic methods. However, they frequently

must also face the same discretization issues as those of weighted residual methods

and can also benefit from common-refinement-based discretization.

1.3.2.4 Area-weighted Averaging

For cell-centered data, area-weighted averaging is the simplest form of conser-

vative data transfer. In this method, the value of a target element is the weighted

average of the values of the source elements in contact, where the weights are the

areas of the intersections between the source and target elements. For the discretiza-
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tion of area-weighted averaging method, integrations are usually evaluated over the

intersections of the source and target elements, or sometimes converted to bound-

ary integration. Area-weighted method satisfies physical conservation strictly and

it preserves positivity, but is not very accurate in some aspect, because the source

basis functions and target basis functions are all constant.

1.3.2.5 2nd Order Conservative Method

This method is described in (P. Jones, 1999). This method is developed based on

area-weighted method by utilizing information of gradient of source function. In

practical use, the gradient is approximated as linear functions. Therefore, the source

basis functions are linear while the target basis functions remains constant. 2nd

order conservative method strictly satisfies physical conservation and it preserves

positivity, but it cannot achieve high order accuracy.

Because of the disadvantages of existing data transfer methods, we want to im-

plement a new method based on the extended common refinement method.

1.4 Contributions

There are most three important contributions of this thesis:

• Transfer data between meshes with curved edges.

• Extend the original common-refinement method for meshes with non-matching

boundaries.

• Develop a monotonic numerical method, in order to preserve the positiveness

of target function.
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For the original common-refinement method which is described in (Jiao and

Heath, 2004), there are face-to-face intersection and edge-to-edge intersection sub-

algorithm. The face-to-face intersection is suitable for a pair of elements which

might be triangles or rectangles, based on the edge-to-edge intersection that com-

putes the intersection between two line segments. However, in the model coupling

of CAM and WRF, CAM’s elements becomes sectors after map projection method,

for which the original face-to-face intersection is not able to handle. Therefore we

implement a new intersection algorithm of circular arcs with line segments to re-

place the original edge-to-edge intersection. In this way, the original face-to-face

intersection is extended to sector-to-rectangle intersection, which is essential for

conservative and accurate data remapping between CAM and WRF.

In addition, CAM’s boundary is not consistent with WRF’s boundary, because

CAM is a global model and WRF is a regional model. In practical implementation,

CAM’s domain is always bigger than WRF’s domain. Therefore, it would be very

tricky to transfer data from WRF to CAM, because it would be highly possible to

cause big jumpings and inconsistencies around the WRF’s boundary. In order to

remap the data smoothly from WRF to CAM, we implement a specific upscaling

method to handle this issue. Such method would be suitable for any two meshes

with non-matching boundaries, which would bring more convenience and more

possibilities for different model couplings beside our current project.

Moreover, we have also tried to preserve the positivity of target function, be-

cause it is very important for climate models. Although L2 method works well to

preserve positivity of target function most of time, but it does not guarantee positiv-

ity. We have considered several numerical methods such as monotonic cubic spline

interpolation (Wolberg, 1999), area weighted method (Jones, 1999) and 2nd order
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conservative method (Jones, 1999). Because physical conservation is also signif-

icant for climate models, we choose the later two methods and integrate them to

our framework, so that users is able to use corresponding numerical methods for

different purposes.
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Chapter 2

Extended Common Refinement

Method

In order to transfer data accurately and conservatively between CAM and WRF, we

introduce L2 norm error minimization method as the key algorithm for data remap-

ping. L2 norm error minimization method is to minimize the E =
√

(g− f )2 which

is the error in L2 norm. This method belongs to the family of Rayleigh–Ritz–Galerkin

methods. The value E is also known as energy of mesh, so L2 norm error minimiza-

tion method is also consistent with minimum energy principle. For convenient pur-

pose, we will call L2 norm error minimization method as L2 minimization method or

L2 method in the following. In order to use L2 minimization method, it needs to be

discretized over the remapping area. In addition, in order to minimize the numerical

errors, the points of source mesh and target mesh have to be corespondent to each

other well. Therefore, we use common-refinement method to prepare data structure

for L2 minimization method. Sobolev minimization method uses Sobolev norm

which is a general form of L2 norm. When the source function changes abruptly
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(i.e, there are big gaps among data values in source grid), then we need to replace

L2 minimization method with Sobolev minimization method.

The whole process of common-refinement based remapping method can be di-

vided into two phases, which will be explained in the following section:

(i). Based on the input two parent meshes, construct a common-refinement mesh.

(ii). Using L2 minimization or Sobolev minimization to operate data transfer.

In this chapter, we will describe the extended common refinement method in details.

2.1 Algorithm Overview

Common-refinement based L2 minimization method provides a general ideas for

accurate and conservative data remapping between two meshes. However there are

still many issues that need to be solved in real implementation, such as nonlinear is-

sue and boundary issue. Common-refinement method is suitable for almost all pair

of surface meshes whose edges are line segments, so how to construct common-

refinement accurately when one parent mesh contains edges that are now line seg-

ments would be a big challenge. At the same time, original face-to-face intersection

algorithm also needs to be extended. In addition, the original common-refinement

method only handles pairs of meshes having the same boundaries, therefore we

need to figure out how to smooth the results and avoid big jumpings along the

boundary if two parent meshes have non-matching boundaries. Moreover, the iter-

ation method through the parent meshes needs to be modified based on the type of

those two meshes, in order to achieve the most efficiency.
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In our project, CAM’s mesh is a regular rectangular mesh in spherical coor-

dinate, while WRF’s mesh is a regular rectangular mesh in Cartesian coordinate.

After project CAM’s mesh onto Cartesian plane with Lambert projection, CAM’s

elements become sectors whose center is the cone center of Lambert projection, but

origin is different from the cone center. Since both CAM’s mesh and WRF’s mesh

are regular meshes, then we optimize the face by face (or element by element) it-

eration method. Additionally, CAM’s mesh and WRF’s mesh have non-matching

boundaries, because one’s elements are sectors and the others are rectangles. In

practical use, CAM’s domain is always larger than WRF’s domain. Therefore, it

is easy to transfer data from CAM to WRF which is referred as downscaling, but

very tricky from WRF to CAM which is referred as upscaling. For this issue, we

introduce a new upscaling algorithm to make it possible for smooth remapping.

Furthermore, we implement an algorithm to handle the face-to-face intersection for

a pair of a sector and a rectangle, based on edge-to-edge intersection algorithm be-

tween circular arcs and line segments. And for the edge-to-edge intersection, we

utilize the polar coordinate for sectors for which the origin is the cone center, there-

fore we have to move the origin of WRF’s Cartesian coordinate system to make the

two coordinate systems consistent. Besides, the triangularization process also needs

to be considered carefully. After all, the area integrals is computed within Carte-

sian coordinate, so we need to transform the area to that of spherical coordinate

which would be the closest to real area on the Earth surface. In the following sec-

tions, we will explain the details of implementation of common-refinement based

L2 minimization method, and provides the resolutions for the above questions.
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2.2 Main Process of Our Method in Implementation

Our method contains two phrases, the first one is to construct the new common-

refinement mesh, and the second one is to remap data by using L2 minimization

method. And the numerical methods used in the second phrases can be replaced by

many existing numerical methods, such as area-weighted method (P.Jones, 1999)

, 2nd order monotonic method (P. Jones, 1999) and interpolation methods. The

whole process includes several steps which are shown in the following figure.

Map Projection

in Cartesian coordinate
CAM's element

Loop through target's m
esh

Loop through source's m
esh

CAM's Mesh
in spherical coordinate

WRF's Mesh
in Cartesian coordinate

Triangularization 

Find a pair of seed elements

Point projection

Arc-segment intersection
Sector-rectangle 
intersection

Compute mass matrix and 
load vector 

Quadrature rule

Save intersection points Compute moments

Common 
refinement

Figure 2.1: Whole process of common-refinement based L2 minimization method
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• First, input CAM’s mesh and WRF’s mesh. Cam’s mesh is in spherical coor-

dinate, while WRF’s mesh is in Cartesian coordinate.

• Second, find a pair of a CAM’s element and a WRF’s element that could

potentially intersect each other. This pair of elements will be set as seed

elements.

• Third, compute the intersection between seed elements that are found in the

second step.

– Transform CAM’s element from spherical coordinate to Cartesian coor-

dinate.

– Find the projection of vertices of one element to the other.

– Operate edge-to-edge intersection.

• Fourth, triangularize the intersection zone, and compute the entries of mass

matrix and load matrix within each small triangles.

• Fifth, search the neighborhood of seed elements to find next pair of elements

having potential intersections. And repeat from the third step to fifth step

until all the CAM’s elements and WRF’s elements have been touched.

2.3 Find a Pair of Seed Elements

Before the main process of common-refinement, we need to find the first pair of

seed elements. There are many possible ways to locate the seed pair. In our method,

we implement a ’fix-loop’ method depending on the properties of CAM’s mesh and
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WRF’s mesh. Because a CAM’s element is much bigger than a WRF’s element,

and number of CAM’s elements is much smaller than that of WRF, then we choose

two central elements of CAM and WRF as starting elements. If the pair of starting

elements doesn’t have any intersections, we fix up WRF’s starting element, and

loop through the neighborhood elements of CAM’s starting element until we locate

a CAM’s element that has intersections with WRF’s starting element.

2.4 Resolution of Different Coordinates

After get a pair of seed elements, we need to consider the issue of different coor-

dinate systems used by CAM and WRF. Because CAM is a global climate model,

the Earth surface is discretized along latitude and longitude notated as which would

be convenient to simulate and employ numerical methods. Contrarily, WRF is a

regional weather model. Since for a small domain, the Earth surface is more like a

plane instead of a sphere, then WRF model simulates a small fraction of the Earth

surface within Cartesian coordinate plane by using certain types of map projection

methods. Among numbers of map projection method, Lambert conformal projec-

tion is most suitable for North America, so it is widely used in WRF’s model when

simulating the weather forecast for the America. Therefore our project focuses on

Lambert projection.

Map projection methods is a set of methods that represent the surface of a sphere

onto a plane, i.e, map projection methods are used to create maps. There is no limit

to the number of possible map projection methods. Every map projection method

will deform the earth surface in some fashion. Therefore different map projection

methods are used to preserve different kinds of properties depending on the purpose
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of the map. There are map projection methods being used in WRF model, including

Lambert conformal projection, Mercator projection, polar stereographic projection

and cylindrical equidistant projection. Our method will focus on Lambert confor-

mal projection, which is the most suitable for North America.

Figure 2.2: Lambert conformal conic projection

Lambert conformal projection The Lambert conformal conic map projec-

tion is developed by Johann Heinrich Lambert, who was an 18th century Swiss

mathematician, physicist, philosopher, and astronomer. Lambert conformal projec-

tion is suitable for Mid-latitude area. Substantially, this projection superposes a

cone over the Earth, and this cone will secant the globe at two reference latitudes.

This projection is conformal, in other words, it preserves the angle and shape. There

is no distortion along two reference parallels, but distortion increases further from

the chosen parallels. This projection has several nice features. Besides preserving

the angle and shape, a straight line on this projection approximates a great-circle

route between endpoints. That is why this projection is widely used in the field of

map-drawing.
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With Lambert conformal projection, CAM’s mesh will be projected onto Carte-

sian plane. CAM’s mesh is rectangular in spherical coordinate, but its rectangular

elements will become sectors after Lambert projection. Since CAM’s elements are

sectors and WRF’ elements are rectangles, in order to compute the face-to-face in-

tersection we further transform the CAM’s mesh into polar coordinates based on the

already know Cartesian coordinates. The origin of the polar coordinate system is

the cone center of Lambert projection, while the origin of the Cartesian coordinate

system produced by Lambert projection is defined by input parameters. Therefore,

we have to move the origin of WRF’s Cartesian plane to the cone center also.

In total, there are three four kinds of different coordinate systems in our algo-

rithm:

(a) spherical coordinate, notated as (lat, lon)

(b) Cartesian coordinate produced by Lambert projection, notated as (xL,yL)

(c) Cartesian coordinate with the origin of cone center, notated as (xm,ym)

(d) polar coordinate with the origin of cone center, notated as (r,θ)

The formula to transfer (lat, lon) to (xL,yL) is as follows:

xL = ρ · sinθ (2.4.1)

yL = ρ0−ρ · cosθ (2.4.2)

where

ρ = RF/tann(π/4+ lat/2) (2.4.3)

θ = n(lon− lon0) (2.4.4)

28



ρ0 = RF/tann(π/4+ lat0/2) (2.4.5)

F = cos(lat1)tann(π/4+ lat1/2)/n (2.4.6)

n = ln(cos(lat1)/cos(lat2))/ln(tan(π/4+ lat2/2)/tan(π/4+ lat1/2)) (2.4.7)

R is the radius of the Earth, lat1 and lat2 are two standard parallels of Lambert pro-

jection, and lat0 and lon0 are the latitude and longitude of the origin of Cartesian

coordinate system (b). To transform Cartesian coordinate (b) to Cartesian coordi-

nate (c), we need to know the coordinate of cone center (xc,yc). The x-axis and

y-axis of coordinate system (b) are parallel to that of system (c), and having the

same direction. Then the formulas from (xL,yL) to (xm,ym) are :

xm = xL− xc (2.4.8)

ym = yL− yc (2.4.9)

For the polar coordinate system, the set of points (r = 0,θ = 2kπ), for k = 0, ±1,

±2, · · · coincides with the origin of coordinate system (c), i.e, the cone center of

Lambert map projection. And θ = 2kπ , for k = 0, ±1, ±2, · · · are consistent with

positive x-axis. Then the formulas from (xm,ym) to (r,θ) are :

r =
√

x2
m + y2

m (2.4.10)

θ = acos(xm/r) (2.4.11)
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2.5 Intersection Between Sectors and Rectangles

When we have a pair of seed elements, we need to compute the intersection be-

tween them. The original face-to-face intersection only handles linear elements

whose edges are line segments. But in our project, CAM’s elements are sectors in

Cartesian coordinate system, so we need to extend the original face-to-face intersec-

tion sub-algorithm to sector-rectangle intersection. First of all, we transform both

CAM’s element and WRF’s element onto the Cartesian coordinate system whose

origin is the cone center of Lambert projection. Then based on the Cartesian co-

ordinate, we further transform CAM’s element into polar coordinate. This sector-

rectangle intersection contains two parts:

(a). Point projection

(b). Circular arc-to-segment intersection

(c). Prepare the intersection polygon

2.5.1 Point Projection

Similar to the original face-to-face intersection, we also need to get the images of

source vertices on target element and vise versa. Every vertex or edge of a element

has a local id. After the point (vertex) projections of source vertices are computed,

their relative positions with respect to the current target seed element is found. After

that, the point (vertex) projections of target vertices will also be calculated. For

every pair of source and target elements, two 4×4 matrices are maintained, which

keeps track of which combination of source edge and target edge should be operated

with the edge-to-edge intersection. We call these 4×4 matrices as vertex projection

matrices. Entry at the position (i, j) of the source vertex projection matrix shows
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the relationship between source vertex i and target edge j , where i and j are the

local ids of the vertex and the edges within the elements, respectfully. If the (i, j)

entry of source vertex projection matrix is positive, then the ith source vertex lies

on the left of the jth target edge. Otherwise, if it is negative, then the ith source

vertex lies on the right of the jth target edge. If it is zero, then it means that the

ith source vertex locates right on the jth target edge. This definition is the same for

target vertex projection matrix. Therefore if ith source vertex lies on the right of

the jth target edge, and the (i + 1)th source vertex lies on the left of the jth target

edge, then the ith source edge would intersect with the jth target edge. We call

these two matrices as vertex projection matrices, which are necessary for extended

edge-to-edge intersection in next step.

In our project, it is relatively easy to find the projection of CAM’s vertices

with respect to WRF’s element. Because WRF’s element is a rectangle in Carte-

sian coordinate, then we parametrize the Cartesian coordinate of a CAM’s vertex

along the edges of WRF’s element and get the boundary encoded natural coordi-

nate (ξcam,ηcam). With the natural coordinate, we can locate the relative position

of that CAM’s vertex comparing to WRF’s edges, and determine the values for cor-

responding entries of one vertex projection matrix. On the other hand, when we

want to project WRF’s vertices onto a CAM’s element, it is more reasonable use

the spherical coordinate instead of Cartesian coordinate because CAM’s elements

are rectangular in spherical coordinate. Then we can compute the natural coordi-

nate (ξwr f ,ηwr f ) for a WRF’s vertex with respect to CAM’s element, and construct

the other vertex projection matrix. With the help of two vertex projection matrices,

we will know a set of pairs of CAM’s edge and WRF’s edge that would potentially

have intersections.

31



2.5.2 Arc-to-Segment Intersection

For several pairs of CAM’s edge and WRF’s edge we found in the last step,

some CAM’s edges would be circular arcs, while the others are line segments.

For a pair of a CAM’s edge and a WRF’s edge, if the CAM’s edge is a line seg-

ment, we can just use original edge-to-edge intersection to compute the intersec-

tion. If the CAM’s edge is a circular arc, the original edge-to-edge intersection

sub-algorithm would be useless, therefore we implement a arc-to-segment inter-

section sub-algorithm to compute the intersection between circular arcs and line

segments. Assume the circular arcs is from varc
1 = (r,θ1) to varc

2 = (r,θ2) that is part

of a circle C with radius r, and two end points of the line segment are vseg
1 = (x1,y1)

and vseg
2 = (x2,y2) which is a part of straight line L, where the circular arc is in po-

lar coordinate and line segment is in Cartesian coordinate whose origin is the cone

center of Lambert projection. And the definitions of polar coordinate and Cartesian

coordinate are the same as we described in last section. First, we will get the dis-

tances of vseg
1 and vseg

2 to the origin, and let the distance of vseg
1 to the origin as l1

and the distance of vseg
2 to the origin as l2. If l1 < r , then vseg

1 is located inside of

the circle C ; if l1 = r , then vseg
1 coincide with a point of the circle C ; otherwise,

vseg
1 is outside the circle C. We will also compare l2 and r similarly. Only compare

the distances of vseg
1 and vseg

2 to the origin is still not enough, because it is possible

that both vseg
1 and vseg

2 are outside circle C, but this segment still has two intersec-

tion points with the circle. Therefore, we orthogonally project the origin onto the

line L, and compare the location of projection point vpro j with two end points of

line segments by t = (vpro j−vend)/(vstart−vend). In addition, we also calculate the

distance between projection point and the origin lpro j. In order to make it clear, we
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list all the possible cases in the following:

Table 2.1: All possible cases for intersection between circle and line segment
Condition Number of intersections

l1 < r and l2 < r no intersection

l1 = r and l2 = r two intersections: vseg
1 and vseg

2

l1 = r and l2 < r one intersection: vseg
1

l1 = r and l2 > r and t 5 0 one intersection: vseg
1

l1 = r and l2 > r and 0 5 t 5 1 two intersections

l2 = r and l1 > r and t = 1 one intersection: vseg
2

l2 = r and l1 > r and 0 5 t 5 1 two intersections

l1 > r and l2 > r and no intersection
(t > 1 or t < 0) and lpro j > r

l1 > r and l2 > r and two intersections
0 5 t 5 1 and lpro j < r

l1 > r and l2 > r and one intersection: vpro j
0 5 t 5 1 and lpro j = r

Otherwise error

It is easy to get the intersection point if there is only one intersection point, be-

cause that intersection would be one of vseg
1 , vseg

2 and vpro j. For the cases that having

two intersection points, we can the intersections by using parametrization along the

line segment. For example, in the case where l1 > r and l2 > r and 0 5 t 5 1 and

lpro j < r , there will be two intersection points uinter
1 and uinter

2 . In addition, the

distance from vpro j to either uinter
1 or uinter

2 will be lpro j−inter =
√

r2− l2
pro j . Then

the parametrization of two intersection points would be t1 and t2, where t1 = (vseg
1 −

vpro j− lpro j−center)/(vseg
1 − vseg

2 ) and t2 = (vseg
1 − vpro j + lpro j−center)/(vseg

1 − vseg
2 ).

Based on t1 and t2, two intersection points are uinter
1 = vseg

1 +(vseg
1 − vseg

2 ) ∗ t1 and

useg
2 = vseg

1 + (vseg
1 − vseg

2 ) ∗ t2. In this way, we can get more accurate result than

33



Algorithm 1 Step I: Compute the intersection between whole circle and line seg-
ment

get d_center_pt_1 {distance between circle’s center and first end point of line
segment}
get d_center_pt_2 {distance between circle’s center and second end point}
get d_center_pro j {distance between circle’s center and its projection on straight
line}

if d_center_pt_1 < r and d_center_pt_2 < r then
case(a): no intersection

else if (d_center_pt_1 > r and d_center_pt_2 < r) or (d_center_pt_1 < r and
d_center_pt_2 > r) then

case(b): one intersection
else if d_center_pt_1 > r and d_center_pt_2 > r then

case(c): needs further judgement
if d_center_pro j < r then

case(c-i): two intersections
else if d_center_pro j == r then

case(c-ii): one intersection
else {d_center_pro j > r}

case(c-iii): no intersection
end if

else if d_center_pt_1 == r or d_center_pt_2 == r then
case(d): needs further judgement
if d_center_pt_1 == r and d_center_pt_2 == r then

case(d-i): two intersections
else if (d_center_pt_1 == r and d_center_pt_2 > r) or (d_center_pt_1 > r
and d_center_pt_2 == r) then

if circle center’s projection is outside line segment then
case(d-ii): one intersection

else {circle center’s projection is inside line segment}
case(d-iii): two intersections

end if
else {(d_center_pt_1 == r and d_center_pt_2 < r) or (d_center_pt_1 < r
and d_center_pt_2 == r)}

case(d-iv): one intersection
end if

else
error

end if
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Algorithm 2 Step II: Check whehter the intersections are within the circular arc

get ui {intersection point}

if ui is within circular arc then
ui is the intersection point between circular arc and line segment

else {ui is outside circular arc}
ui is NOT the intersection point between circular arc and line segment

end if

simply solving quadratic equations which would lead to rounding errors. After we

get the intersection points of circle C and line segments, we can transform the inter-

section points to polar coordinate uinter = (r,θ inter). If θ inter is within the interior

of [θ1 +2kπ,θ2 +2kπ] , for k = 0, ±1, ±2, · · · , then uinter is the intersection point

of circular arc and line segment.

2.5.3 Prepare the Intersection Polygon

After finishing the above two steps, we get all subvertices of common-refinement.

Besides the Cartesian coordinate of subvertices, we also output the parent informa-

tion for the subvertices. With these information, we can construct an intersection

polygon for current sector and rectangle. In addition, some edges of the polygon

would be circular arcs, while others are line segments.

2.6 Common refinement Searching Neighborhood

After computing the intersection for a pair of seed elements, it is time to search

neighborhood of current seed elements finding potential seed elements. Common-

refinement method would be suitable for most pairs of surface meshes in general,

for which we can use the method looping algorithm described in section 3.1. For
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our project, CAM’s mesh and WRF’s mesh are all regular meshes, so we optimize

the looping algorithm to make it more efficient. First of all, we need to analyze

the properties of CAM’s mesh and WRF’s mesh. As a global climate model, the

elements of CAM’s mesh have much bigger size than WRF’s element. In normal,

every CAM’s element may include nearly 100 WRF’s elements. In practical remap-

ping, we don’t need to use global CAM’s domain, and instead, we just use certain

size of CAM’s domain such that it will totally cover WRF’s domain that we are in-

terested in. Therefore for the local CAM’s domain, the number of elements would

be limited, while WRF may have relatively much bigger number of elements. In

this way, we mark all the surrounding CAM’s elements (at most eight elements)

as potential CAM’s seed elements being accompanied with current WRF’s seed el-

ement. For WRF, we remain to use the original method explained in section 3.1,

which is to utilize the information of all subvertices of the common-refinement. For

example, if a subvertex is located on WRF’s edge, then the WRF’s element on the

other side of that edge will be added into the list of seed elements. If a subver-

tex coincides with a WRF’s vertex, that means this WRF’s vertex is located within

CAM’s element, then the other three, one (vertex is in the boundary) or zero (vertex

is in the corner) WRF’s elements would intersect with current CAM’s seed element.

In this way, we can get all potential pairs of seed elements for CAM and WRF.

2.7 Triangulation Method

For the intersection polygon we get in the sector-rectangle intersection, we need

to triangulate it so that L2 minimization method can be used within these small tri-

angles. Although L2 minimization method can also be applied to the polygon itself,
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it would be more accurate to be applied to small triangles. The general process of

triangulation is to choose a vertex as the fan center first, and then add diagonals to

all the other vertices which are not the neighborhood of the fan center. In order to

avoid making ill-conditioned triangles, we choose the vertex as the fan center that

has largest angles. For that, we compute cosine value for all the vertices, and the

smaller the consine is, the larger the corresponding angle would be. In our project,

CAM’s mesh has sectors as its elements and WRF’s mesh is a rectangular mesh,

so the intersection polygon of sector with rectangle must be a simple connected

polygon. Therefore the triangulation method mentioned in the above would be very

efficient and robust enough in our project.

2.8 Output

With the small triangles we get in last step, there are several optional outputs

of common refinement process. First, we can save sub-vertices to construct the

new common refinement mesh whose elements are triangles. The advantages of

outputting sub-vertices are very obvious. It is very flexible for further use, and it

is very efficiency and straightforward. However, the set of sub-vertices involves

vertices from two parent meshes and edge intersection points, so it may require

relative big memory for storage if those parent meshes are large.

Instead of storing sub-vertices, we can save the value of moments for every

intersection zone of two parent meshes:
´

xdxdy ,
´

ydxdy ,
´

xydxdy ,
´

x2dxdy

and
´

y2dxdy . In general , second order moments are enough for numerical usage.

The intersection zones are polygons, and some edges may be circular arcs. The

required storage space of 2nd order moments would be much less than sub-vertices,
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and it is easy to get the values of many functions by utilizing moments.

In addition to the above two options, we can also save the entries of mass ma-

trix and load matrix for multiple numerical methods, such as interpolation method,

area-weighted method , L2 minimization method and so on. Take L2 minimization

method as example, with the entries of mass matrix and load matrix, we can get

the value of target functions by solving linear systems Mg = L f , where M is the

mass matrix, L is the load matrix, g is the target function and f is the source func-

tion. With this kind of output, it would be very easy to integrate multiple numerical

method into our algorithm and also very efficient to get the result. Besides, because

the entries of mass matrix and load matrix are the products of shape functions, mass

matrix and load matrix are sparse matrices which would be very efficient in mem-

ory use. That is why we decide to use this output in our real implementation, which

will be explained in more details during the following section.

2.8.1 Implementation of L2 Minimization Method

Within every small triangles, we compute a fraction of entries for mass matrix and

load matrix. As we explained before, L2 minimization method is to minimize the

error in L2 norm: E =
√´

Ω
(g− f )2dx , according to principle of minimum energy.

Minimizing E will lead to solving a linear system as follows:



´
Ω
(ψ1ψ1g1 +ψ1ψ2g2 + · · ·+ψ1ψngn)ds =

´
Ω

ψ1(∑m
i=1 φi fi)ds

· · · · · · · · ·
´

Ω
(ψnψ1g1 +ψnψ2g2 + · · ·+ψnψngn)ds =

´
Ω

ψn(∑m
i=1 φi fi)ds

(2.8.1)
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or in matrix form:



´
Ω

ψ1ψ1dx
´

Ω
ψ1ψ2dx · · ·

´
Ω

ψ1ψndx
´

Ω
ψ2ψ1dx

´
Ω

ψ2ψ2dx · · ·
´

Ω
ψ2ψndx

· · · · · · · · · · · ·
´

Ω
ψnψ1dx

´
Ω

ψnψ2dx · · ·
´

Ω
ψnψndx





g1

g2

...

gn


=



´
Ω

ψ1(∑m
i=1 φi fi)dx

´
Ω

ψ2(∑m
i=1 φi fi)dx
...

´
Ω

ψn(∑m
i=1 φi fi)dx


(2.8.2)

The above linear system can be referred as Mg = L, where M is the mass matrix,

L is the load vector, g is the target function and f = [ f1, f2, · · · , fm]T is the source

function. In order to make our algorithm more convenient and the interface more

clear, we divide the load vector L into:



´
Ω

ψ1(∑m
i=1 φi fi)dx

´
Ω

ψ2(∑m
i=1 φi fi)dx
...

´
Ω

ψn(∑m
i=1 φi fi)dx


=



´
Ω

ψ1φ1dx
´

Ω
ψ1φ2dx · · ·

´
Ω

ψ1φmdx
´

Ω
ψ2φ1dx

´
Ω

ψ2φ2dx · · ·
´

Ω
ψ2φmdx

· · · · · · · · · · · ·
´

Ω
ψnφ1dx

´
Ω

ψnφ2dx · · ·
´

Ω
ψnφmdx





f1

f2

...

fm


(2.8.3)

Therefore Mg = L = N f , where N is the load matrix and f is the source function.

2.8.2 Isoparametric Method and Shape Functions

Let’s look at the linear system Mg = N f , the entry of mass matrix is in the form
´

Ω
ψiψ jds , where ψi and ψ j are the basis (or shape) functions at the i−th and j−th

vertices of target mesh. This is essentially making use of isoparametric method.

Isoparametric method belongs to the family of finite element methods. As other

39



finite element methods, isoparametric method discretize the whole mesh into small

elements, and in every element, the geometry and displacement of some data fields

(i.e, source function or target function) are defined by local natural coordinate. The

geometry of elements is parametrized with the natural coordinate, while the dis-

placement of data field is parametrized with shape functions. If the elements are

super parametric, then natural coordinate coincident to shape functions. The shape

functions can be defined at vertices, edge’s middle points and center of element.

The more shape functions of one element, the higher order of this element will be

, and hence the data transfer will be more accurate. Isoparametric method is a co-

ordinate transformation method which transforms between physical coordinate and

local natural coordinate.

A complete set of shape functions are essentially the basis of a subspace, so

shape functions are also known as basis functions. Certain shape functions of

source mesh and target mesh span the subspace of source mesh and target mesh,

respectfully. Therefore shape functions can be defined arbitrarily, as long as they

can span the specific subspace. For the isoparametric method, shape functions for a

quadrilateral element are defined below:



N1 = (1−ξ )(1−η)

N2 = ξ (1−η)

N3 = ξ η

N4 = (1−ξ )η

(2.8.4)

where ξ and η are natural coordinate of a certain point with respect to quadrilat-

eral elements, and Nk is the basis function with respect to k− th vertex within that
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element. Due to the properties of natural coordinate, basis function N1 = 1 at first

vertex but equal to zero at all the other vertices, which is similar for N2 , N3 and

N4. The product of Nk and Nl will only have nonzero value within that quadrilat-

eral element if k 6= l , and have nonzero value within the surrounding element of

the k− th vertex if k = l . Furthermore, the product of two basis functions from

different elements would be zero if those two elements are not neighborhood to

each other. That is why most of entries of mass matrix are equal to zero. In our

project, for WRF’s element, ξ and η are computed in Cartesian coordinate. While

for CAM’s element, the natural coordinates are computed in spherical coordinate.

That’s because CAM’s element is rectangle in spherical coordinate, but it will be

a sector in Cartesian coordinate. Thus computing natural coordinates in spherical

coordinate will be more reasonable and also more accurate for CAM’s element than

in Cartesian coordinate. Since natural coordinate is local coordinate system within

each element, so after we get the natural coordinate, it will be independent from

either Cartesian coordinate or spherical coordinate. That’s why CAM’s mesh can

be viewed as quadrilateral mesh.

2.8.3 Discretize Mass Matrix and Load Matrix into Small Tri-

angles

Although the entries of the mass matrix
´

Ω
ψiψ jds and the entries of load ma-

trix
´

Ω
ψiφ jds are computed over whole target domain Ω, they can be discretized

into every small triangles due to isoparametric method and the properties of basis

functions. To take the entries of mass matrix as an example, according to properties

of basis functions, the domain Ω can be replaced with pi1 + pi2 + · · ·+ pih , where
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pik(k = 1, · · · ,h) is an intersection polygon of certain pair of a CAM’s element and

a WRF’s element within which the product of basis functions ψi and ψ j is nonzero.

Assume the above set of intersection polygon can be divided into a set of small

triangles: ti1 + ti2 + · · ·+ tiq . Then we have

ˆ
Ω

ψiψ jds =
ˆ

h
∑

k=1
pik

ψiψ jds =
ˆ

q
∑

k=1
tik

ψiψ jds =
q

∑
k=1

ˆ
tik

ψiψ jds (2.8.5)

So the entry of mass matrix
´

Ω
ψiψ jds can be computed within every small triangle

tik(k = 1, · · ·q) now. For the entries of load matrix
´

Ω
ψiφ jds, we also discretize it

into small triangles similarly. Therefore, using quadrature rule whose order high

enough, the entries of both mass matrix and load matrix can be computed exactly

over each small triangle.

2.8.4 Computation Over Each Triangle

For a small triangle ti, we only need to compute following 10 integrals for up-

triangle of sub mass matrix due to symmetry of sparse matrix:



´
ti

ψi1ψi1ds
´

ti
ψi1ψi2ds

´
ti

ψi1ψi3ds
´

ti
ψi1ψi4ds

´
ti

ψi1ψi2ds
´

ti
ψi2ψi2ds

´
ti

ψi2ψi3ds
´

ti
ψi2ψi4ds

´
ti

ψi1ψi3ds
´

ti
ψi2ψi3ds

´
ti

ψi3ψi3ds
´

ti
ψi3ψi4ds

´
ti

ψi1ψi4ds
´

ti
ψi2ψi4ds

´
ti

ψi3ψi4ds
´

ti
ψi4ψi4ds


(2.8.6)
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and also corresponding 16 integrals for sub load matrix:



´
ti

ψi1φ j1ds
´

ti
ψi1φ j2ds

´
ti

ψi1φ j3ds
´

ti
ψi1φ j4ds

´
ti

ψi2φ j1ds
´

ti
ψi2φ j2ds

´
ti

ψi2φ j3ds
´

ti
ψi2φ j4ds

´
ti

ψi3φ j1ds
´

ti
ψi3φ j2ds

´
ti

ψi3φ j3ds
´

ti
ψi3φ j4ds

´
ti

ψi4φ j1ds
´

ti
ψi4φ j2ds

´
ti

ψi4φ j3ds
´

ti
ψi4φ j4ds


(2.8.7)

These integrals are computed by using quadrature rule within the triangle ti. Where

ψik (for k = 1, · · · ,4) and φ jk (for k = 1, · · · ,4) are shape functions of parent target

element and source element, respectfully. After that we insert the sub mass matrix

and sub load matrix into mass matrix M and load matrix N.

2.8.5 Quadrature Rule

In order to compute integral
´

ti
ψiψ jds within a triangle ti, we will utilize quadra-

ture rule within that triangle. In our implementation, we use 6-points quadrature

rule and we have: ˆ
ti

ψiψ jds =
ˆ

ti
ψiψ j|J|dξ1dξ2dξ3 (2.8.8)

where |J| is the determinant of Jacobian matrix from local coordinate to physical

coordinate, and ξi is the i− th local coordinate of that triangle. Moreover, ψi is also

in local coordinate of that triangle. With quadrature rule,

ˆ
ti

ψiψ j|J|dξ1dξ2dξ3 =
6

∑
k=1

wk(ψiψ j|J|)k (2.8.9)
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And the equation of Jacobian matrix is as follows:

J =
1
2


1 1 1

6
∑

k=1
xk

∂Nk
∂ξ1

6
∑

k=1
xk

∂Nk
∂ξ2

6
∑

k=1
xk

∂Nk
∂ξ3

6
∑

k=1
yk

∂Nk
∂ξ1

6
∑

k=1
yk

∂Nk
∂ξ2

6
∑

k=1
yk

∂Nk
∂ξ3

 (2.8.10)

In the above equation of Jacobian matrix, xk and yk are physical coordinates, Nk

are shape functions and ξi are local natural coordinate. Therefore, the process of

computing mass matrix and load matrix is just a process combining isoparamet-

ric method and quadrature rule, i.e, to use quadrature on function ψiψ j|J| within

triangle ti.

2.8.6 Jacobian Matrix

The entries of mass matrix and load matrix are computed within the small triangles

of the common-refinement. For a triangle ti, computing
´

ti
ψiψ j · |J|dx and

´
ti

ψiφk ·

|J|dx is just to calculate the area integral of function ψiψ j · |J| and ψiφk · |J| over

the small triangle ti. In our method, we utilize isoparametric method, quadrature

rule and Jacobian matrix to get the real integral value in spherical coordinate for

the intersection of CAM’s mesh and WRF’s mesh. The above Jacobian matrix J

is the transformation from local coordinate to spherical coordinate. In practice the

Jacobian matrix J is divided into two Jacobian matrix J1 and J2, where J1 is the

Jacobian matrix which transforms local coordinate to Cartesian coordinate, and J2

is the Jacobian matrix that transform spherical coordinate to Cartesian coordinate.

Then the formulas of computing entries of mass matrix and load matrix become:
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´
Ω

ψiψ j · |J1|/|J2|dx and
´

Ω
ψiφk · |J1|/|J2|dx . Here J1 =

 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 while J2 =

 ∂x
∂ (lon)

∂x
∂ (lat)

∂y
∂ (lon)

∂y
∂ (lat)

, where (x,y) is Cartesian coordinate, (ξ ,η) is local coordinate

and (lat, lon) is spherical coordinate. And in the second Jacobian matrix J2, the

longitude is ahead of latitude. Take Lambert map projection as an example, the

formula of Lambert projection is :



x = ρ · sin(n(lon− lon0))

y = ρ0−ρ · cos(n(lon− lon0))

n = ln(sin(π/2−lat1))−ln(sin(π/2−lat2))
ln(tan(π/4−lat1/2))−ln(tan(π/4−lat2/2))

F = cos(lat1) · tann(π/4+ lat1/2)/n

ρ = RF · tann(π/4− lat/2)

(2.8.11)

where R is the radius of the Earth, lat1 and lat2 are two standard parallels of Lambert

projection, and lat0 and lon0 are the latitude and longitude of the origin. Then the

entries of J2 are as follows:



∂x
∂ (lon) = ρ ·n · cos[n(lon− lon0)]

∂x
∂ (lat) =− n

cos(lat) ·ρ · sin[n(lon− lon0)]

∂y
∂ (lon) = ρ ·n · sin[n(lon− lon0)]

∂y
∂ (lat) = n

cos(lat) ·ρ · cos[n(lon− lon0)]

(2.8.12)
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2.9 Resolution of Non-Matching Boundary

Boundary issue is very important for remapping method between multiple scales,

because it is highly possible that some big jumpings or inconsistencies happen

around the boundary. Especially in our project, since CAM’s elements are sec-

tors in Cartesian coordinate and at the same time WRF’s elements are rectangles,

then the boundary between two meshes would be very irregular. In practical use,

CAM’s domain will totally cover WRF’s domain. We don’t need to worry about

the boundary issue when transfer data from CAM to WRF, because the computing

domain is the target domain which is WRF’s domain in downscaling. However,

it would be very difficult when transfer dada back from WRF to CAM, because

WRF’s mesh doesn’t have information for parts of CAM’s domain which are not

covered by WRF’s domain. In order to solve this issue, we implement a specific

upscaling method to handle the data remapping from WRF to CAM. For this up-

scaling method, the general idea is to integrate the information into source function

for multiple parts of CAM’s domain which are not covered by WRF’s domain.

For example, assume source function in WRF’s domain is f = ( f1, · · · , fn)T , and

the unknown target function in CAM’s domain is g = (g1, · · · ,gn)T . In addition,

gout = (gout
1 , · · · ,gout

h ) is the information for parts of CAM’s domain that are outside

WRF’s domain. In order to transfer data smoothly, we integrate gout into source

function, so that source function becomes f ext = ( f1, · · · , fn,gout
1 , · · · ,gout

h ) , while

the target function remains the same. In real implementation, two way data remap-

ping always starts from downscaling that is from CAM to WRF, which makes our

upscaling method practical. We can stores the gout during downscaling transfer first,

and then integrate gout into f during upscaling.
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Therefore, the original L2 minimization algorithm is:



´
Ω

ψ1ψ1 · |J|dx
´

Ω
ψ1ψ2 · |J|dx · · ·

´
Ω

ψ1ψm · |J|dx
´

Ω
ψ2ψ1 · |J|dx

´
Ω

ψ2ψ2 · |J|dx · · ·
´

Ω
ψ2ψm · |J|dx

· · · · · · · · · · · ·
´

Ω
ψmψ1 · |J|dx

´
Ω

ψmψ2 · |J|dx · · ·
´

Ω
ψmψm · |J|dx





g1

g2

...

gm


(2.9.1)

=



´
Ω

ψ1φ1 · |J|dx
´

Ω
ψ1φ2 · |J|dx · · ·

´
Ω

ψ1φn · |J|dx
´

Ω
ψ2φ1 · |J|dx

´
Ω

ψ2φ2 · |J|dx · · ·
´

Ω
ψ2φn · |J|dx

· · · · · · · · · · · ·
´

Ω
ψmφ1 · |J|dx

´
Ω

ψmφ2 · |J|dx · · ·
´

Ω
ψmφn · |J|dx





f1

f2

...

fn


(2.9.2)

After being applied with the new upscaling method, the algorithm becomes:



´
Ω

ψ1ψ1 · |J|dx
´

Ω
ψ1ψ2 · |J|dx · · ·

´
Ω

ψ1ψm · |J|dx
´

Ω
ψ2ψ1 · |J|dx

´
Ω

ψ2ψ2 · |J|dx · · ·
´

Ω
ψ2ψm · |J|dx

· · · · · · · · · · · ·
´

Ω
ψmψ1 · |J|dx

´
Ω

ψmψ2 · |J|dx · · ·
´

Ω
ψmψm · |J|dx





g1

g2

...

gm


(2.9.3)
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=



´
Ω

ψ1φ1 · |J|dx · · ·
´

Ω
ψ1φn · |J|dx

´
Ω

ψ1ψout
1 · |J|dx · · ·

´
Ω

ψ1ψout
h · |J|dx

´
Ω

ψ2φ1 · |J|dx · · ·
´

Ω
ψ2φn · |J|dx

´
Ω

ψ2ψout
1 · |J|dx · · ·

´
Ω

ψ2ψout
h · |J|dx

· · · · · · · · · · · · · · · · · ·
´

Ω
ψmφ1 · |J|dx · · ·

´
Ω

ψmφn · |J|dx
´

Ω
ψmψout

1 · |J|dx · · ·
´

Ω
ψmψout

h · |J|dx





f1

f2

...

fn

gout
1
...

gout
h


(2.9.4)
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Chapter 3

Conservative Data Transfer

In this chapter, we will describe several three numerical methods for data transfer:

L2 minimization method, Sobolev method and monotone method. All these three

methods satisfy physical conservation, which is very important for data transfer

between climate models. L2 method utilizes 2nd order source and target shape

functions, so that it can achieve high order accuracy besides physical conservation.

Sobolev method is an extension of L2 minimization method, and it will be used

when the source functions have very big gradients at some points. L2 minimization

method doesn’t guarantee positivity, although it does well in our tests. In order to

strictly preserve positivity, we implement a monotone method.

3.1 L2 Minimization Method

In the following section, we will introduce L2 minimization method, which is

accurate and physically conservative.
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3.1.1 Notation and Semi-Discrete Formulation

Main idea is to minimize L2 norm of errors of source function and target function

over target domain: E =
√´

Ω
(g− f )2dx , where f is the source function and g

is the target function. Assume source mesh has m vertices, while target mesh has

n vertices, then derivation from finite element method we have f = ∑
m
i=1 φi fi and

g = ∑
n
j=1 ψ jg j , where φi and fi are basis function and function value of the i− th

vertex of source mesh, respectfully. Similar case for ψ j and g j. According to prin-

ciple of minimum energy (or Rayleigh-Ritz method), the error will be minimized if

∂E2/∂gi = 0 , which leads to ∂
´

Ω
(g− f )2dx/∂gi = 0 , for k = 1, · · · ,n. Then we

can have the following equations:

∂
´

Ω
(g− f )2ds
∂gk

=
∂
´

Ω
g2ds

∂gk
−2

´
Ω

g f ds
∂gk

+
∂
´

Ω
f 2ds

∂gk
(3.1.1)

=
∂
´

Ω
(∑n

j=1 ψ jg j)2ds

∂gk
−2

´
Ω
(∑n

j=1 ψ jg j)(∑m
i=1 φi fi)ds

∂gk
+

∂
´

Ω
(∑m

i=1 φi fi)2ds
∂gk

(3.1.2)

= 2
ˆ

Ω

ψk

n

∑
j=1

ψ jg jds−2
ˆ

Ω

ψk(
m

∑
i=1

φi fi)ds (3.1.3)

= 2
ˆ

Ω

(ψkψ1g1 +ψkψ2g2 + · · ·+ψkψngn)ds−2
ˆ

Ω

ψk(
m

∑
i=1

φi fi)ds = 0 (3.1.4)

The above equations are actually a linear equation system:
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

´
Ω
(ψ1ψ1g1 +ψ1ψ2g2 + · · ·+ψ1ψngn)ds =

´
Ω

ψ1(∑m
i=1 φi fi)ds

· · · · · · · · ·
´

Ω
(ψnψ1g1 +ψnψ2g2 + · · ·+ψnψngn)ds =

´
Ω

ψn(∑m
i=1 φi fi)ds

(3.1.5)

Then transform linear system to matrix form Mx = b , where M is the mass matrix, b

is the load vector and J is the Jacobian matrix from Cartesian coordinate to spherical

coordinate:

[ ´
Ω

ψiψ j · |J|dx

]


g1

g2

...

gn


=
[ ´

Ω
ψi(∑m

k=1 φk fk) · |J|dx

]
(3.1.6)

3.1.2 Proof of Physical Conservation

L2 minimization method strictly satisfies physical conservation over the domain

of target mesh. The mathematical proof of physical conservation are as follows.

Based on the above linear system , we can get for k = 1, · · · ,n :

ˆ
Ω

(ψk

n

∑
j=1

ψ jg j)ds =
ˆ

Ω

(ψk

m

∑
i=1

φi fi)ds (3.1.7)

Since f = ∑
m
i=1 φi fi and g = ∑

n
j=1 ψ jg j , we get:

ˆ
Ω

ψkgds =
ˆ

Ω

ψk f ds (3.1.8)
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Move the right hand side to the left, we have:

ˆ
ψk(g− f )ds = 0 , (3.1.9)

which means if target function g satisfies principle of minimum energy, then (g− f )

will be orthogonal to all basis functions ψk, for k = 1, · · ·n. Therefore (g− f ) will

be orthogonal to the function space spanned by a set of target basis functions ψk ,

for k = 1, · · ·n: ˆ
Ω

(g− f )vds = 0 , (3.1.10)

where v is any function within that function space. If let v be the constant function

1, then we have ˆ
Ω

gds =
ˆ

Ω

f ds , (3.1.11)

which means the value is physical conservative over the domain of target mesh.

Then the target function g which we get from the output of linear system satisfies

physical conservation.

3.1.3 Proof of Accuracy

Besides physical conservation, we also concern about accuracy of L2minimization

method. Here we will compare L2 minimization method with point wise Linear

Interpolation method. If we assume g(1) is the result of L2 minimization method,

and g(2) is the result of interpolation method. Because ||g(1)− f ||2 is minimized in

the function space spanned target basis function, then ||g(1)− f ||2 5 ||g(2)− f ||2 .

From this aspect, L2minimization method will be more accurate then interpolation

method in general, and will be as accurate as interpolation method at least.
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3.1.4 Features of Mass Matrix

Mass matrix has some attracting properties, such as: symmetric, sparse and pos-

itive definite. Based on these features, solving the linear system of mass matrix

would be relatively easy and efficient. In addition, mass matrix would require less

storage space compared to storing the subvertices of common-refinement mesh. We

will show more details of these properties in the following.

First, the mass matrix M is symmetric, which is obvious from the definition

Mi j =
´

Ω
ψiψ jdx . Then Mi j = M ji =

´
Ω

ψiψ jdx .

Second, basis functionsψi are nearly orthogonal to each other, so most of ψiψ j

are equal to zero. Then mass matrix is a typical sparse matrix.

In addition, because for any vector x = (x1,x2, · · · ,xn)T , we have

xT Mx = (x1,x2, · · · ,xn)



´
Ω

ψ1ψ1ds
´

Ω
ψ1ψ2ds · · ·

´
Ω

ψ1ψnds
´

Ω
ψ2ψ1ds

´
Ω

ψ2ψ2ds · · ·
´

Ω
ψ2ψnds

· · · · · · · · · · · ·
´

Ω
ψnψ1ds

´
Ω

ψnψ2ds · · ·
´

Ω
ψnψnds





x1

x2

...

xn


(3.1.12)

xT Mx =
ˆ

Ω

(
n

∑
j=1

ψ jx j)2ds = 0 , (3.1.13)

where xT Mx = 0 if and only if x = 0. Then the mass matrix is a positive definite

matrix.

Moreover, the condition number of M is only dependent on mesh quality of

target mesh, so for well-shaped mesh L2 minimization method will always be good

conditioned.
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3.2 Sobolev Minimization Method

L2 minimization gives accurate and conservative solutions for many cases, but un-

fortunately it cannot always deliver satisfactory results. In particular, if the source

function changes abruptly, L2 minimization method may cause overshoots and un-

dershoots at some points, a behavior similar to the Gibbs phenomenon seen in

Fourier analysis. A few approaches are feasible to resolve these overshoots and un-

dershoots. For simple applications where jumps are isolated at well-characterized

geometric features such as sharp edges of a surface, the simplest and most effective

approach is to split the interface into patches along these features and to transfer

data separately for each patch. Another approach is still to solve for the whole in-

terface but introduce non-linear limiters to the linear solvers. This section pursues

a different avenue by altering the objective function through minimizing a different

norm of error, namely the Sobolev norm, to damp out the oscillations.

Let k be a constant integer. Given a function f whose derivatives of all orders

less than or equal to k exist almost everywhere, then the Sobolev norm of f is

|| f ||Hk =

√√√√ k

∑
i=0

αi|| f (i)||22 , (3.2.1)

where f (i) denotes the i− th derivative of f , and αi is its associated weight and is in

general non-negative. Actually, the L2 norm is a special case of the Sobolev norm

with k = 0. Intuitively, if the derivatives of the source function are already known,

a data transfer method can take advantage of them to obtain a more meaningful

solution, and this section exploits this idea. For simplicity, this paper considers
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only the case k = 1 and α0 = 1, i.e. minimizing

||g− f ||2H1 = ||g− f ||22 +α||g
′
− f

′
||22 (3.2.2)

This method is referred to as Sobolev minimization. The first derivative of

f =
m
∑

i=1
φi fi can be computed as f

′
=

m
∑

i=1
φ
′
i fi , obtained by differentiating f element-

by-element, or as f
′
=

m
∑

i=1
φi f

′
i , where f

′
i is some derivative value at the node i sup-

plied as input or computed using a certain approximation. The first approximation

is referred to as consistent differentiation, and the second as alternative differenti-

ation. Alternative differentiation can potentially deliver higher order of accuracy

than consistent differentiation.

Assume that consistent differentiation is used for g. The Sobolev norm is mini-

mized if ∂
´

Ω
(g− f )2 +α(g

′− f
′
)2dx/∂gk = 0 for k = 1, ...,n. Now

∂
´

Ω
(g− f )2 +α(g

′− f
′
)2dx

∂gk
=

∂
´

(∑n
j=1 ψ jg j− f )2 +(∑n

j=1 ψ jg
′
j− f

′
)2dx

∂gk

(3.2.3)

= 2
n

∑
j=1

gk

ˆ
Ω

ψkψ j +αψ
′
kψ
′
jdx−2

ˆ
Ω

ψk f +αψ
′
k f
′
dx , (3.2.4)

which again leads to an n×n linear system Sx = b, where S = M+αK is a weighted

sum of the mass matrix M and the stiffness matrix K, with entries Ki j =
´

Ω
ψ
′
i ψ
′
jdx ,

and b is the modified load vector, with components bk =
´

Ω
ψk f +αψ

′
k f
′
dx. Same

as L2 minimization, Sobolev minimization is also conservative, because
´

Ω
(g−

f )v +(g
′ − f

′
)v
′
dx = 0 for any function v in the function space spanned by the ψi

, and constant functions are in this space. Note that this argument holds indepen-
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dently of how f
′
is computed.

Sobolev minimization shares some properties with L2 minimization: The matrix

S is sparse and symmetric positive definite, and this scheme stabilizes the solution in

that ||g||H1 = || f ||H1 . However, because the stiffness matrix K is singular, the matrix

S is not necessarily well conditioned for large α . In general, α should be of order

O(h2
t ), as a larger α would lead to ill-conditioned systems as ht → 0. Furthermore,

|| f −g||2H1 is proportional to O(αh2
t +h4

t +h4
s ), and an α of order O(h2

t ) ensures the

same order of accuracy as L2 minimization. To discretize this method, a common-

refinement based scheme needs to be used and exact integration is preferred for

optimal accuracy. When computing Si j, because the degree of the polynomials ψ
′
i ψ
′
j

is lower than that of ψiψ j, integrating to compute Ki j requires a smaller number of

quadrature points than for computing Mi j.

Sobolev minimization can effectively smooth out overshoots and undershoots,

because such oscillations tend to have large derivatives, and Sobolev minimization

inhibits unwanted oscillations by biasing the target function toward some prescribed

derivatives. Sobolev minimization also has advantages in transferring data from a

coarse mesh onto a fine mesh. Consider transferring a piecewise linear represen-

tation of a smooth function from a coarse mesh with k intervals onto a fine grid

with ck intervals, where c is a positive integer. When minimizing the L2 norm, the

target function would be identical to the source function, because the source basis

functions are in the space of the target basis functions. By specifying continuously

varying f
′
, Sobolev minimization can construct a smoother representation on the

target mesh.
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3.3 Monotone Method

In climate models, negative values are meaningless for some physical fields.

Therefore, positivity preservation is very important for data transfer for coupling

of climate models. In our framework, we have implemented a monotone method

for positivity preservation which is described in (P. Jones, 1999) and (J. K. Dukow-

icz and J. W. Kodis, 1987). In this monotone method, the target shape functions

are constant 1, while the source shape functions are linear. We utilize the gradient

information of the source function to improve the accuracy of the data transfer.

3.3.1 Formulation

In order to describe the method more clear, we list the formulation of monotone

method in the following:

I



g1

g2

...

gn


(3.3.1)

=



l1ka1( f̄ka1
+∇ka1

f (r) · (r− r̄a1))+ · · ·+ l1kb1( f̄kb1
+∇kb1

f (r) · (r− r̄b1))

l2ka2( f̄ka2
+∇ka2

f (r) · (r− r̄a2))+ · · ·+ l1kb2( f̄kb2
+∇kb2

f (r) · (r− r̄b2))
...

l1kan( f̄kan
+∇kan

f (r) · (r− r̄an))+ · · ·+ l1kbn( f̄kbn
+∇kbn

f (r) · (r− r̄bn))


(3.3.2)

In the above linear system Ig = f , I is an identity matrix, g is the cell-centered

value of target function and f is the source function with gradient information. f̄k

is the cell-centered average value of the kth element in the source domain, and
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∇k f (r) is the gradient value at location r in the kth element and r̄k is the centroid

of the kth source element. The ith row of right hand side vector f only contains the

information of source elements which have intersections with the ith target element,

and kai to kbi are indices of those related source elements of the ith target element.

In addition, likai to likbi are the parameters of corresponding source element. In order

to make it as consistent with L2 method, we reorganize right hand side of the above

linear system Ig = f into Ig = L1 f̄ +L2∇ f as follows:

I



g1

g2

...

gn


=



l1
11 l1

12 · · · l1
1m

l1
21 l1

22 · · · l1
2m

· · · · · · · · · · · ·

l1
n1 l1

n2 · · · l1
nm





f̄1

f̄2

...

f̄m


+



l2
11 l2

12 · · · l2
1m

l2
21 l2

22 · · · l2
2m

· · · · · · · · · · · ·

l2
n1 l2

n2 · · · l2
nm





∇1 f

∇2 f
...

∇m f


(3.3.3)

If we assume the ith target element has positive intersection area areainter with the

kth source element, then l1
ik and l2

ik are positive, and their values are areainter/areai

and (areainter/areai) · (r̄inter − r̄k) respectfully, where areai is the area of the ith

target element and r̄inter is the centroid of the intersection zone of the ith target

element and the kth source element.

From the above formulation, it is obvious that the monotone will reduce to nor-

mal area-weighted method if we ignore the gradient information. The same as

area-weighted method, monotone method also satisfies physical conservation, but

it has one more order accuracy than area-weighted method with source gradient

information. In our project, we obtain linear approximation of the gradient, there-

fore the gradient would be exact if the source function is linear. But if the source

function has some sharp features at some points, the gradient approximation would
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get large overshoots or undershoots at those points, which would cause monotone

method loses the ability to preserve positivity. For such reasons, we need to intro-

duce gradient limiting to avoid such overshoots and undershoots.

3.3.2 Gradient Limiting

The gradient limiting is to smooth the overshoots and undershoots of gradient

approximation when the source function has very big gradient at some points. Cur-

rently, we use Van Leer limiting method, which is described in (J. K. Dukowicz

and J. W. Kodis). The general idea of Van Leer limiting is to multiply the initial

value of gradient approximation ∇i f with a parameter αi, where αi = min{1, αmax,

αmin}. In addition, αmax = max{0, ( fmax− fi)/( fimax − fi)}, and αmin = max{0,

( fmin− fi)/( fimin − fi)}, where fmax is the maximum cell-centered value of neigh-

borhood source elements and fimax is the maximum value within the ith source ele-

ment. Therefore, with the help of gradient limiting, monotone method can preserve

the monotonicity, which is very helpful for data transfer of coupling of climate

models.
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Chapter 4

Results

In order to show the accuracy and physical conservation of our method, we have

operated series of tests. We test convergent rate of L2 method, and also plot the

results for several analytic functions and real fields from climate models. From

the results, L2 method are more accurate than area-weighted method and monotone

method. L2 method preserves positivity very well in our test, although it doesn’t

guarantee positivity. We also test multiple steps transfer in order to show the ability

of our method in real practice, and the results are quite encouraging. Comparing

to area-weighted method and monotone method, L2 method preserves the shape

very well when transferring water vapor between CAM and WRF after 1000 steps.

Therefore , in this chapter we will show the results and explain them in details.

4.1 Convergent Rate

With the result of common-refinement based L2 minimization method, we need

to test the convergent rate of error. We choose a pair of CAM’s mesh and WRF’s
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mesh, whose sizes are 26× 28 and160× 160, respectfully. The two meshes are

shown as follows:

Figure 4.1: Left to right: (a). two meshes in spherical coordinate, (b). two meshes

in Cartesian coordinate

Within the above figure, blue mesh is the CAM’s mesh, and green mesh is

WRF’s mesh. For different resolutions of that pair of meshes, we test three ana-

lytic functions: f1 = 2+cos2(θ)cos(2φ) , f2 = 2+sin16(2θ)cos(16φ) and f3 = y2,

and compare the output with analytic value of target function to get the relative

error in L2 norm by using the equation:

error =

√
n

∑
k=1

(gk−ganalytic
k )2/

n

∑
k=1

(ganalytic
k )2 , (4.1.1)

where gk is the output value of target function at k− th vertex, and ganalytic
k is the

corresponding analytic value. For L2 minimization method, area-weighted method

and monotone method, we all calculate the relative error in L2 norm for both down-

scaling (from CAM to WRF) and upscaling (from WRF to CAM). First, we show

the quantitative results for L2 minimization method. And from the table, we can see
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that if the mesh is fine enought, the L2 error can achieve the order of 10−5.

Table 4.1: L2 norm error in downscaling

Relative L2 error in

downscaling

7×7

vs40×40

13×14 vs

80×80

26×28

vs160×160

f1 =

2+ cos2(θ)cos(2φ)

0.0018 4.6199e-04 8.4396e-05

f2 =

2+ sin16(2θ)cos(16φ)

0.0512 0.0129 0.0025

f3 = y2 5.9026e-04 1.4880e-04 2.9375e-05

Table 4.2: L2 norm error in upscaling

Relative L2 error in

upscaling

7×7 vs

40×40

13×14 vs

80×80

26×28

vs160×160

f1 =

2+ cos2(θ)cos(2φ)

0.0010 2.5407e-04 6.2861e-05

f2 =

2+ sin16(2θ)cos(16φ)

0.0331 0.0083 0.0020

f3 = y2 3.4685e-04 8.9371e-05 2.2225e-05

Afterwards, we also compute L2 error for area-weighted method. For area-

weighted method, the errors are at least around 10−3, which are bigger than that of

L2 method.
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Table 4.3: L2 norm error in downscaling

Relative L2 error in

downscaling

7×7

vs40×40

13×14 vs

80×80

26×28

vs160×160

f1 =

2+ cos2(θ)cos(2φ)

0.0123 0.0062 0.0031

f2 =

2+ sin16(2θ)cos(16φ)

0.0770 0.0382 0.0188

f3 = y2 0.0250 0.0125 0.0063

Table 4.4: L2 norm error in upscaling

Relative L2 error in

upscaling

7×7 vs

40×40

13×14 vs

80×80

26×28

vs160×160

f1 =

2+ cos2(θ)cos(2φ)

0.0023 7.8190e-04 3.2218e-04

f2 =

2+ sin16(2θ)cos(16φ)

0.0184 0.0056 0.0018

f3 = y2 0.0041 0.0015 5.7208e-04

In addition, the following are the results of monotone method. From the follow-

ing tables, monotone method has more accurate results than area-weighted method,

but has less accurate results than L2 minimization method. From the above chapters,

we know that area-weighted method has both constant source shape functions and

constant target shape functions, while monotone method has linear source shape

functions and constant target functions. In addition, L2 minimization method has
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2nd order source and target shape functions. Then the quantitative results are con-

sistent with the order of shape funtions of those three methods.

Table 4.5: L2 norm error in downscaling

Relative L2 error in

downscaling

7×7

vs40×40

13×14 vs

80×80

26×28

vs160×160

f1 =

2+ cos2(θ)cos(2φ)

3×10−3 7×10−4 4×10−4

f2 =

2+ sin16(2θ)cos(16φ)

0.0769 0.0382 0.0186

f3 = y2 0.0036 0.0019 6.2672e-04

Table 4.6: L2 norm error in upscaling

Relative L2 error in

upscaling

7×7 vs

40×40

13×14 vs

80×80

26×28

vs160×160

f1 =

2+ cos2(θ)cos(2φ)

6×10−4 1×10−4 6×10−5

f2 =

2+ sin16(2θ)cos(16φ)

0.0184 0.0056 0.0018

f3 = y2 1×10−3 6×10−4 1×10−4

And the plots of convergent rate for f3 = y2 are:
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Figure 4.2: Left to right: (a). downscaling convergent rate, (b). upscaling conver-

gent rate

4.2 Comparison with Existing Methods

There are many existing available numerical methods for data remapping, such

as: interpolation method, area weighted method (P. John, 1999), monotone method

(P. John, 1999) and so on. Among these numerical methods, interpolation method

doesn’t satisfy physical conservation, while area weighted method, monotone method

and our method strictly satisfy physical conservation. Since physical conservation

is very important for climate and weather models, then we only focus on the com-

parison among our method, area weighted method and monotone method. The com-

parison among interpolation method, area weighted method and monotone method

can be found in (P. John, 1999). The later two methods are also implemented by

P. John into the numerical package SCRIP, which is widely used in atmospheric

community.

First, we choose a CAM’s mesh with size 12×17 and a WRF’s mesh with size
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101×101, which are shown below:

Figure 4.3: Left to right: (a). two meshes in spherical coordinate, (b). two meshes

in Cartesian coordinate

For the above pair of meshes, we test several functions or real field: f1 = y ,

f2 = y−6, f3 = 2+cos2(θ)cos(2φ), f4 = 2+sin16(2θ)cos(16φ) and f5 = q , where

f5 is the water vapor from the output of CAM, and we calculate relative maximum

errors and relative L2 errors for the above analytic functions or real fields. First, we

show the results of test with function f1 = y :

Table 4.7: Compare the result of f1 = y

Downscaling Upscaling

Method max error L2error max error L2error

area weighted 0.0133 0.0065 0.0039 6.8558e-04

monotone 0.0035 9.9020e-04 9.5820e-04 6.9536e-05

L2 minimization 9.8315e-07 1.2453e-08 3.9371e-09 5.0633e-10

Then the following are the results of the test with the function f2 = y−6 :
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Table 4.8: Compare the result of f2 = y−6

Downscaling Upscaling

Method max error L2error max error L2error

area weighted 0.0835 0.0429 0.0226 0.0060

monotone 0.0496 0.0207 0.0149 0.0046

L2 minimization 0.0050 0.0031 0.0041 0.0018

The following pictures shows the data transferring of f2 = y−6 between CAM

and WRF:

Figure 4.4: Area weighted method. Left is downscaling and right is upscaling.
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Figure 4.5: Monotone method. Left is downscaling and right is upscaling.

Figure 4.6: L2 minimization method. Left is downscaling and right is upscaling.

Also, test with the function f3 = 2+ cos2(θ)cos(2φ) :
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Table 4.9: Compare the result of f3 = 2+ cos2(θ)cos(2φ)

Downscaling Upscaling

Method max error L2error max error L2error

area weighted 0.0249 0.0089 0.0044 0.0011

monotone 0.0243 0.0088 0.0040 0.0010

L2 minimization 0.0011 3.4856e-04 9.3304e-04 2.3761e-04

Pictures of the output of function f3 are as follows:

Figure 4.7: Area weighted method. Left is downscaling and right is upscaling.
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Figure 4.8: Monotone method. Left is downscaling and right is upscaling.

Figure 4.9: L2 minimization method. Left is downscaling and right is upscaling.

In addition, test the function f4 = 2+ sin16(2θ)cos(16φ) :
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Table 4.10: Compare the result of f4 = 2+ sin16(2θ)cos(16φ)

Downscaling Upscaling

Method max error L2error max error L2error

area weighted 0.1953 0.0459 0.0328 0.0064

monotone 0.1608 0.0361 0.0229 0.0051

L2 minimization 0.0810 0.0137 0.0086 0.0007

And corresponding pictures of function f4 are:

Figure 4.10: Area weighted method. Left is downscaling and right is upscaling.
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Figure 4.11: Monotone method. Left is downscaling and right is upscaling.

Figure 4.12: L2 minimization method. Left is downscaling and right is upscaling.

More importantly, our method need to be verified by using real field. Here we

choose water vapor, which has small values in general and has very big gradient

at some points. The following pictures shows the result of remapping water vapor

between CAM and WRF:
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Figure 4.13: Area weighted method: Left is downscaling and right is upscaling.

Figure 4.14: Monotone method: Left is downscaling and right is upscaling.
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Figure 4.15: L2 minimization method: Left is downscaling and right is upscaling.

4.3 Multiple Steps Remapping

Furthermore, we test multiple steps remapping between CAM and WRF with

the above three methods. We transfer the data for 1000 steps, first of which is

downscaling from CAM to WRF, and then transfer the data back from WRF to

CAM, after that we will transfer data from CAM to WRF again. We have tested

with function f = 1 and the real field water vapor. We compare the output CAM’s

value after 1000 steps with the original CAM’s value, and get the errors as follows:

Table 4.11: Compare the result of f = 1

Method Relative maximum error Relative L2 norm error

area weighted method 0.0130 0.0080

monotone method 0.0016 3.0162e-4

L2 minimization method 1.7006e-09 2.6250e-10

The following pictures shows the results for water vapor after 1000 steps:

74



Figure 4.16: Left to right: (a). original water vapor in CAM’s domain; (b). after

1000 steps transfer with area weighted method

Figure 4.17: Left to right: (a). 1000 steps transfer with 2nd order monotonic

method; (b). 1000 steps transfer with L2 minimization method

4.4 Analysis of Results

According to the results of our tests, L2 minimization method has higher order con-

vergent rate than area weighted method and monotone method in accuracy. Because

WRF’s mesh is a much finer mesh than CAM’s mesh, then data transfer from WRF
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to CAM is more accurate than that from CAM to WRF. In multiple steps transfer, L2

minimization method preserves the shape quite well, while area-weighted method

and monotone method lose information in the middle domain.
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Chapter 5

Conclusion and Future Research
Directions

Among the conventional methods, high-order interpolation schemes are accu-

rate but not strictly conservative, area weighted method and 2nd order conservative

method (P. Johns, 1999) satisfy physical conservation but not that accurate. The

L2 minimization method can achieve both accuracy and physical conservation. We

have compared our method with area weighted method and 2nd order conservative

method, and the results are encouraging. Common-refinement based discretiza-

tion have obvious advantages compared with other existing methods for repeated

data transfer, because it is accurate, robust and time-efficient. Based on the origi-

nal common-refinement method (X. Jiao, 2004) which is only suitable for meshes

with linear elements and matching boundaries, we have implemented an extended

method which can perfectly handle nonlinear issue and non-matching boundaries.

In addition, we have also fixed the issue of different coordinate systems used by

CAM and WRF. Moreover, we have extended the original face-to-face intersection

so that it is able to compute the intersection between sectors and rectangles.

For the technical aspect, the interface of our algorithm is consistent with many
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existing numerical methods, so that it is easy to integrate other available methods

into our package. For the use of comparison, we have integrated area weighted

method and 2nd order conservative method into our package. And further integra-

tion with more methods would be quite straightforward.

In the next step, we can implement a smoothing process from coarse mesh to

fine mesh. In addition, we can further explore the issue of positivity preservation.

Moreover, we can impose the physical conservation constrained by PDEs. Fur-

thermore, there are other applications of common refinement method, so we can

compare the results among these applications. Besides, we can extend current 2-D

method to 3-D so that volumetric data can be transferred.
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