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Abstract of the Dissertation 

Clustering and Network Analysis with Single Nucleotide Polymorphism (SNP) 

by 

Hongyan Chen 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

 

The goal of the genome-wide association studies (GWAS) is to investigate the 

relationships between disease phenotypes and genotypes, which are usually 

determined by a large number of single nucleotide polymorphisms (SNPs). Currently 

GWAS are often underpowered to identify SNPs with small to moderate effect sizes. 

In order to overcome this difficulty, two major approaches, (1) meta-analysis by 

increasing sample size and (2) SNP pre-selection by dimension reduction, are often 

adopted. Dimension reduction for SNP data has been arduous due to the categorical 

nature of SNP that renders most association measures such as the Pearson correlation 

or the Euclidean distance inappropriate. In this thesis, we propose a novel (partial) 

canonical correlation association measure for categorical data that can be 

implemented to major dimension reduction approaches including: cluster analysis 

(CA) and partial correlation network analysis (PCNA) towards the analysis of 

GWAS data. Its performance is examined and comparison is made to other existing 

association measures. 

 

Network analysis methods such as PCNA and the Bayesian network serve as not 

only dimension reduction approaches but also data driven pathway discovery tools. A 

key objective in modern genetic studies is to discover the regulatory causal 

relationships between genetic mutations measured by SNPs and the resulting 

functional changes often gauged by gene expression levels. With the former being 

categorical and the latter continuous numerical data, we now face the problem of 

mixed data types. Our novel partial canonical correlation measure developed for 

categorical data can be readily extended to PCNA with mixed variables. This new 

approach is illustrated by using a real data example from a study on inflammatory 

bowel diseases conducted at Stony brook University Medical Center and the 

Washington University at St. Louis. Comparison is also made to Bayesian network 

analysis for mixed data and guidelines provided on the pros and cons of each method. 
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Chapter 1 Introduction 

 

1.1 Single Nucleotide Polymorphism (SNP) 

 

Single nucleotide polymorphism or SNP (pronounced ‘SNiP’), is a major form of 

genome variation, accounts for approximately 90% of human DNA polymorphisms 

(Collins et al., 1998). By the widely accepted definition, a SNP represents a single 

nucleotide genetic variation along the genome sequence that exists in individuals from 

some population (Brookes, 1999). These different sequence alternatives within a 

population are also called alleles. The number of alleles corresponds to the same SNP 

could be two, three or four, and such SNP is categorized as bi-, tri-, and tetra-allelic 

polymorphism, respectively. However, tri-allelic and tetra-allelic SNPs hardly exist in 

human genome, hence bi-allelic SNPs are the major target of the Human Genome 

Project (Sachidanandam et al., 2001). Strictly speaking, SNP should be distinguished 

from rare variations, with the criterion that the least frequent allele has an abundance 

of 1% or greater. Nevertheless, this criterion is not always implemented in practice 

(Brookes, 1999). Some other extensions to the above SNP definition have been also 

seen in the past decade, for instance, the single nucleotide variation map on cDNA for 

human chromosome 21 was constructed in 2001 (Deutsch et al., 2001), focusing on 

the final protein product differences caused by SNPs, although such a cSNPs study 

ignores potential effects from RNA editing. Finally, it should be noted that single 

nucleotide polymorphisms do not include insertion/deletion variants or multiple-base 

alternation, which are other important biological sources of disease. In this 

dissertation, we will focus our interest on the bi-allelic SNPs along the genome DNA 

sequence but without the 1% least allele frequency restriction. 

 

To understand the significance of SNPs studies, we first examine the frequency of 

SNPs across individuals. Several research groups have reported independently that the 

occurrence of single nucleotide variation in genomic DNA is at the level of 1/1000bp 
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(Li and Sadler, 1991; Wang et al., 1998; Lai et al., 1998; Nickerson et al., 1998). 

Moreover, such variation occurs with significantly different frequencies in different 

genome regions. Usually more polymorphisms are observed in non-coding sequences 

while fewer ones are found in coding exons - with a reported 100-fold difference 

between these two regions (Nachman et al., 1998; Guillaudeux et al., 1998; Horton et 

al., 1998). Considering that there are over 3 billion base pairs for the entire human 

genome, we could make a reasonable estimate that between any two individuals 

millions of SNPs can be identified, among which there are hundreds of thousands of 

amino acid variations. Combining this with the fact that it is 1/10 of the protein 

variations between human and primates, a great promise thereby lie in the 

investigation of the relationship between SNPs to phenotypic differences within a 

population (Brookes, 1999). 

 

From the biological point of view, phenotypic differences should result from a 

combination of genetic and environmental factors. And many diseases have been 

found to be heavily influenced by genetic factors, for example the Alzheimer’s disease 

(Gatz et al., 1997) and Autism (Stevenson, 1992). In addition, we can assume 

influences from genetic factors depend primarily upon the SNP patterns. The SNP 

genotype – disease phenotype relations can be classified into two broad categories:  

(1) “simple gene disorders”, where genetic variations directly affect genes that cause 

disease, and (2), “complex disease”, where any single related SNP is not sufficient to 

cause significant phenotypic difference, but instead, only modifies the disease risk. 

The complex disease scenario, where a collection of SNPs from various genes 

contribute to the same disease, is more common (Brookes, 1999; Wang et al., 2005). 

In this scenario, environmental factors would also be essential for disease formation – 

for example, the effect of smoking on lung cancer (Vial, 1986). A concrete example 

for complex disease is stature or body height, a quantitative trait. One research group 

claims that they have identified 20 selected SNPs that will explain the height variation, 

but only to a degree of 3% (Weedon et al., 2008). Assuming these 20 SNPs are the 

most influential ones, a set of thousands of SNPs is required to explain the entire 
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height variation (Goldstein, 2009). On the other hand, treating disease as a categorical 

variable, several SNPs have been identified for Type 2 diabetes in 2008 by Manolio et 

al. According to their family-genetic study, the SNP with the strongest effect would 

have a sibling relative risk only about 1.02. Given that no single SNP may have 

enough contribution to a certain phenotypic variation and SNPs can be located on 

numerous loci, traditional genetic-disease analysis methods such as the family linkage 

analysis may fail to identify any significant SNP candidate. This in turn, calls for 

association studies or genome-wide association studies. 

 

1.2 Genome Wide Association Study (GWAS) 

 

The idea of association analysis is rather straightforward: if a SNP has an effect 

on disease occurrence (case-control studies), one allele of this SNP (also called risk 

allele) should have higher frequency in disease group, compared to non-diseased 

controls. Therefore, association studies mainly test the allelic frequency differences 

between control and disease groups, with appropriate control for the confounding 

effects (gender, age, race, etc.). This method has already shown to be more powerful 

to detect disease-associated alleles than the traditional family linkage analysis 

(Greenberg, 1993; Hodge, 1994; Risch and Merikangas, 1996).  

 

 When such an analysis is conducted at the whole genome level where usually 

100,000 SNPs are genotyped and tested, it becomes the genome-wide association 

study, or GWAS. It is widely believed that the first GWAS paper was published in 

2005, an investigation on age-related macular degeneration (AMD) (Klein et al., 2005) 

(Figure 1.1). There are also several other papers performing similar studies published 

in the same year, aiming to identify SNPs associated with myocardial infarction (MI) 

(Ozaki et al., 2002) or Crohn’s Disease (CD) (Yamazaki et al., 2005). The paper from 

Klein’s group is regarded as the landmark study because of two main reasons. First, 

SNP genotyping was conducted with new microarray technology not the traditional 

PCR-Invader method, which has much lower success rate of genotyping (~70%). 
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Second, SNPs were selected “randomly” along the entire human genome instead of 

gene-based regions. Furthermore, with a rather small sample size (50 controls and 96 

cases), they successfully identified common risk alleles with exceptionally large effect 

size, e.g., odds ratio at 4.6 for heterozygous and odds ratio at 7.4 for homozygous risk 

alleles. These results brought great excitement to the human genetics community. 

Subsequently, nearly 400 GWAS research articles were published in 2007 and that 

year was named the year of GWAS by the journal Science (Ku et al., 2010).  

 

 
Figure 1.1 Macular retinopathy. Age-related macular degeneration (AMD) is a 

medical condition which usually affects older adults and results in a loss of vision in 

the center of the visual field (macula) (http://www.medicinenet.com). 

 

Although GWAS can be customized in many ways, they still share several 

common steps at the beginning: quality control, bias correction, statistical testing and 

visualization (Corvin, et al., 2010).  

1) Quality control is the first and the most time-consuming step of GWAS. The 

control has two-fold meaning. First, unqualified SNPs are excluded if they exhibit 

imprecise mapping to the genome, excessive missing values, low minor allele 

frequency, etc. Afterwards, subjects are examined by checking agreement between 

chrX/chrY genotypes and excessive missing values.  

2) As GWAS aims to test the allelic frequency difference between cases and controls 
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for qualitative traits, it is a great concern to ensure such frequency difference does 

not come from the underlying population structure divergence between cases and 

controls, also referred to as population stratification. For instance, genetic drift of 

allele frequencies could result from different ancestry of two groups (e.g., African 

and European), producing false positive SNPs. In practice, individuals with mixed 

ancestry should be excluded or a statistical method should be used to control this 

bias 

3) In case-control studies, logistic regression with a single SNP as the predictor is 

applied or an independence test on a contingency table serves as an alternative. 

Both are suitable for a study on association between individual SNP and disease, 

whereas logistic regression is able to incorporate other covariates (Corvin, et al., 

2010).  SNP is sometimes coded as 0, 1, 2 in terms of the number of one allele, 

usually the minor or risk allele – however, such practice has severe limitations in 

analysis, especially regression analysis. In addition, covariates such as gender, 

race can be included in the statistical modeling process, such as logistic regression, 

to control for potential confounding effects. Since such analysis is repeated for 

each SNP, a GWAS typically generates over 100,000 tests. These tests are 

typically not mutually independent as SNPs could be located physically close to 

each other, causing linkage disequilibrium. Previous experience suggests that to 

guarantee a familywise Type I error rate of 0.05 for the simultaneous testing of 

1,000,000 SNPs, each individual test has to be conducted at the significance level 

of 5 × 10
-8

 (Pe’er et al., 2008). In addition, for controlling FDR at 0.05, individual 

tests are required at the same significant level as that for familywise error rate of 

0.05 (Xing et al., 2010). 

4) To present massive statistical test results appropriately, the Manhattan plot is 

widely used to transform p-values into logarithmic form and then to depict SNPs 

with significantly small p-values by genomic position (Corvin, et al., 2010). 

 

It is noteworthy that steps described above are without prior knowledge. If other 

information on SNPs is available or downstream statistical analyses are necessary, we 
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can prioritize GWAS results in pathway analysis or other bioinformatics approaches 

(Cantor et al., 2010). 

 

Despite the promising prospect of GWAS, several challenging problems already 

emerged in recent years. The most important one is the common-disease 

common-variant (CD/CV) hypothesis, which is theoretically fundamental for GWAS 

(Manolio, 2010). According to this hypothesis, disease susceptibility is a result of a 

number of common genetic variants, which present in more than 1% of the population. 

Hence, affected individuals would share a significant number of risk alleles, not a just 

single one. In short, as its name suggests, common disease is caused by common 

variants. A conjugate of CD/CV is the disease heterogeneity hypothesis, where 

distinct genetic variants are assumed to occur in different affected individuals, and 

thus each risk allele is a rare event (<1%) within a population. Therefore, the first 

GWAS paper is a “lucky” exception because the CD/CV model would suggest that 

each SNP should provide relatively small effect size (odds ratio < 1.5). In practice, 

after the GWAS on AMD, researchers have not successfully found common risk 

alleles with considerably large effect size (odds ratio > 2.0): most of the ensuing 

findings fall into an odds ratio range 1.1 – 1.3 (Cantor et al., 2010). Subsequently, 

GWAS is questioned as whether it is a powerful approach to detect common variants 

with small effect size. Figure 1.2 below (Wang et al., 2005) demonstrates this 

practical issue. Considering an odds ratio of 1.2 with allelic frequency of 0.2, we may 

need a sample size as unrealistically large as 11,000 at a relatively loose significance 

level of 10
-6

. Besides, the CD/CV model would exclude rare SNPs and even they are 

included in GWAS, the chance of finding them is extremely low. One way to increase 

the power of GWAS is to directly increase the sample size, most commonly with 

meta-analysis by combing independent GWAS datasets. Alternatively, we can perform 

a more thorough pre-selection of the SNPs for testing (Brookes, 1999). In this 

dissertation, we propose that this pre-selection can be achieved with traditional 

dimensional reduction techniques, such as hierarchical clustering analysis and partial 

correlation network analysis (PCNA) – enabled by our newly developed 
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correlation/partial correlation measures for SNPs as categorical data. 

 

Figure 1.2 Effects of allele frequency and effect size on sample-size requirements. 

Sample size required for a balanced-design case-control study with allelic odds ratios 

of 1.2 (red), 1.3 (blue), 1.5 (yellow) and 2 (black) are shown, assuming a 

multiplicative model with a statistical power of 80% and a Type 1 error rate of 10
-6

 

via logistic regression analysis (Wang et al., 2005). 

 

In addition, other concerns on the future of GWAS includes inconsistent findings 

(Herbert et al., 2006; Maraganore et al., 2005), indirect study designs, etc. Indirect 

design would interfere with biological interpretation of GWAS results. SNPs 

identified by GWAS are most likely to be surrogate markers. If SNPs are synonymous 

(no amino acid alternation), the biological functions of these SNPs remain ambiguous. 

The association between SNPs and disease phenotype could be due to either SNPs 

regulate transcription level and/or their physical proximity (i.e. nearly perfect linkage 

disequilibrium) rather than the true functional variants. 
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Chapter 2 Clustering Analysis with SNP 

 

2.1 Categorical Properties and Coding Schemes of SNP 

 

Typically, a SNP is treated as a nominal categorical variable. Within a population, 

SNP can be assigned a minor allele frequency, which is the lowest allele frequency at 

an observable locus in a particular population. This is simply the lesser of the two 

allele frequencies for bi-allelic SNP. Therefore, a SNP can be denoted as AA, Aa and 

aa, where A/a are normal/minor alleles respectively. Under certain circumstances, we 

can assign a value to the SNP that records the frequency of either allele A or a: 0, 1 or 

2. And such an order obviously has a biological meaning. Therefore, SNPs might also 

be treated as an ordinal categorical variable with assumption that the heterozygous Aa 

lies between two homozygous AA and aa. Unfortunately, it is still inappropriate to 

treat a SNP as a single numeric variable because the 0, 1, 2 coding represents a 

monotone linear relationship between the three SNP categories and corresponds to 

severe modeling assumptions in regression analysis. Dummy variable coding should 

be considered instead. 

 

A categorical variable is binary when it has only two categories. In this case, 

coding strategy has little effect on the subsequent analysis. For a variable with more 

than two categories, different coding would yield different interpretations of each 

individual coding variable. For instance, in multiple regression analysis, the 

coefficients would represent different comparisons under different coding schemes. 

Nevertheless, overall model fit is always the same regardless of coding scheme. In 

more recent times, quite a few widely accepted coding schemes have been developed, 

including treatment/dummy coding, effects/sum coding, contrast coding and 

polynomial coding (Cohen and Cohen, 1983; Kaufman and Sweet, 1974; Serlin and 

Levin, 1985; Wendorf, 2004).  
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In general, a categorical variable C with g groups needs to be coded by (g – 1) 

dummy variables: D1, D2… D(g-1). In treatment/dummy coding, groups are well 

defined and a reference group usually exists. If this reference group is assigned as Di 

= 0, i = 1, 2 … (g - 1), then the intercept term β0 in a multiple regression analysis: Y 

=β0 + β1D1 +…+β(g - 1)D(g - 1) represents the reference group mean. If the goal is to 

compare a single group to the grand mean, a base group should be coded as Di = -1, i 

= 1, 2 … (g - 1), and the sum of assigned values of each coding variable should be 

equal to zero. Sometimes the base group can have a different value other than -1: its 

advantage is to make coefficient terms in regression more straightforward for 

interpretation.  

 

Based on effects/sum coding, an additional constraint can be implemented: all the 

pairwise inner products of coding variables D1, D2… D(g-1) must be zero (orthogonal 

constraint). Under such an orthogonal contrast coding scheme, we are able to catch 

unique portions of the variance and test specific (i.e., theory-guided) hypotheses 

(Cohen and Cohen 1983). Finally, if the categorical variable is ordinal, polynomial 

coding can be derived from the coding strategies mentioned above so as to perform a 

trend analysis to capture all the (g - 1) – order trends. This coding strategy also 

overcomes the collinearity problem from natural polynomial coding (Muller and 

Fetterman, 2002). 

 

2.2 Clustering Categorical Data 

 

Clustering is a popular data mining tool for discovering the underlying structures 

in a dataset of interest. By classifying observations/variables into different subsets, 

one can easily perform further studies more efficiently since high associations are 

expected within the same subset and low associations among members from different 

subsets. These associations must be quantified by a distance/dissimilarity function, 

based on which clustering algorithms can be developed. The existing clustering 

algorithms are mainly divided into two groups: partition clustering and hierarchical 
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clustering. However, most of them generally deal with continuous data only 

(Kaufman and Rousseeuw, 1990). The major challenge of applying those algorithms 

to categorical variables is that datasets with categorical variables have a greatly 

different data structure: the distance functions that are suitable for continuous data 

may not be applicable to categorical one. As an example, the Euclidean distance 

function cannot be used directly for measuring distance with nominal categorical 

variables since arbitrary coding schemes would assign different values and thus alter 

the measurement. Hence, in order to overcome those challenges, researchers have 

developed several modified algorithms specifically for data with categorical attributes 

in partition clustering. 

 

K-means algorithm proposed by MacQueen (MacQueen, 1967) is a widely used 

example of the partition algorithm. It starts with a pre-defined cluster number K, and 

subsequentially initializes K cluster centers. Afterwards, it performs iterations until a 

convergence criterion is reached. Obviously it is not reasonable to apply it to 

categorical variables, because they do not have measurable coordinates for calculation. 

Instead, K-modes algorithm was introduced (Huang, 1997), in which modes replace 

means to represent cluster centers of categorical data and mismatch counting is used 

as distance function: 

1
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where i, j are individual subjects with p categorical attributes. Similar to K-means, it 

uses iterations to update memberships of every mode and data point. However, it still 

relies on coding schemes of the categorical variable. More importantly, it might be 

sensitive to the initial parameters that start the algorithm. Different input orders would 

generate different outcomes from the same dataset. 

 

Different from the K-means idea based on distance measurement, Cheeseman and 
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Stutz in 1995 reported a model-based algorithm AutoClass, which is formulated on 

the basis of mixture models not on the distance function. Instead of using sample 

space, AutoClass introduces model space that constitutes all possible probability 

density functions from different numbers of mixture components or modes. AutoClass 

algorithm determines the most probable set of partitions for a given dataset through a 

Bayesian model selection procedure. Thus it is a Bayesian unsupervised clustering 

algorithm. It selects the desired model as the one whose probability density function 

form has the “best” posterior probability. A fundamental flaw of this algorithm is the 

computational burden: the computational complexity is O(nlogn). Moreover, EM 

algorithm is implemented in AutoClass clustering method to determine the global 

maxima. EM algorithm is believed to have a rather slow convergence rate and 

sensitive to initial values, which keep AutoClass from being applied to 

high-dimensional datasets. 

 

In recent years, a new partition algorithm originated from Hamming Distance 

(HD) vector was introduced (Zhang et al., 2006). Hamming Distance (metric) has 

been used in clustering categorical data with K-modes. As proposed by their group, 

the center of the dataset can be identified by minimizing the sum of the HDs over all 

data points. Afterwards, the categorical sample space is projected into the 

one-dimensional space as a histogram representing HD frequencies from every data 

point to that center, which is also defined as the Categorical Distance (CD) vector. 

Unlike K-means or AutoClass, this algorithm does not require any convergence 

criteria or parameters for specified models. At each iteration step, it would identify 

one new cluster from the remaining dataset based on the CD vector pattern until no 

more significant clusters exist. Therefore, this CD algorithm will determine the 

number of clusters K automatically. The main drawback of this algorithm is that 

Hamming Distance is only reasonable for nominal data. When categorical variables 

are ordered, the CD algorithm will cause a serious loss of ordering information. 

 

 On the other hand, dealing with categorical attributes in hierarchical clustering 
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remains relatively unexplored. It might be due to the fact that usually only pairwise 

dissimilarities are calculated (for average, complete and single linkage agglomeration 

methods). Hence, iterative updating of categorical cluster centers would be not 

necessary. Therefore, the key in hierarchical clustering with categorical data is to 

define certain appropriate dissimilarity measurements between categorical attributes; 

several such measurements already exist, either for the general situation or 

specifically for SNPs studies. 

 

2.3 Pairwise Association Measurement between Categorical Variables 

 

2.3.1 Traditional Measurements 

 

The primary technique to analyze pairwise categorical attributes is with an r by c 

contingency table: 

 

 Variable 2 

Group 1 Group 2 … Group c Total 

 

 

Variable 1 

 

 

Group 1 n11 n12 … n1c n1. 

Group 2 n21 n21 … n2c n2. 

… … … … …  

Group r nr1 nr2 … nrc nr. 

Total n.1 n.2 … n.c n.. 

Table 2.1 A typical r by c contingency table for two categorical variables. 

 

The most common statistic derived from a contingency table is Pearson’s 

chi-square statistic for independence assessment (Pearson, 1900; Plackett, 1983), 

2

. .

1 1

[ ( )]
, ( )

( ) ..

r c
ij ij i j

ij
i j

ij

n E n n n
E n

E n n 


    

When sample size is large (nij > 5), under the null hypothesis where independence 
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holds, this statistic asymptotically follows a chi-square distribution with degrees of 

freedom equals to (r - 1)(c - 1) (Cochran, 1954). An alternative approach is Fisher’s 

exact test, which performs better especially for the small sample size scenario (Fisher, 

1922). 

 

Cramér’s V is a popular extension to the chi-square statistic by normalizing it 

with both sample size and degree of freedom (Cramér, 1946), we obtain 

2

( 1)
V

N k





 

where N is the total number of observations and k is the lesser of r and c. Two major 

advantages may explain why Cramér’s V is a popular measurement. First, the value is 

normalized in the range between 0 and 1, and such value is readily interpreted: V may 

be viewed as the ratio of the actual association between two variables to their 

maximum possible one. Second, it is well adapted to studies involving a large 

contingency table, e.g., in multiallelic loci research (Brynedal et al, 2007). 

  

When categorical variables have rank order, the standard chi-square test would 

not be powerful enough as it does not take into account category ordering information. 

Agresti has introduced several other strategies as alternatives using Mann-Whitney 

Test and weighted sum of differences (Agresti, 1983). Moreover, other powerful 

methods to detect association between ordered categorical variables have been 

reported, such like Kendall’s τ, Goodman and Kruskal's γ, etc. (Kendall, 1938; 

Goodman and Kruskal, 1954). Both methods rely on calculation of concordant and 

discordant pairs, which are only applicable for ordered categorical variables. Consider 

a pair of bivariate observation data-set {X1, Y1} and {X2, Y2}. If sgn(X2 – X1) = sgn(Y2 

– Y1), the pair is termed concordant; on the other hand, if sgn(X2 – X1) = -sgn(Y2 – Y1) 

the pair is discordant. Letting C and D be the total number of concordant and 

discordant pairs respectively, we have 
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2 2 2 2

. .
1 1

( )( )
r c

i j
i j

C D

n n n n



 




   

 

C D

C D






 

Similar to properties of Pearson’s correlation coefficient r, both measurements lie 

between -1 and 1, where 0 suggests independence holds between two variables. When 

the sample size is sufficiently large, corresponding test statistics can be also derived 

for hypothesis testing. 

 

Another important aspect of measurement between categorical variables is 

inter-rater agreement assessment. Among techniques in this field, Cohen’s kappa 

receives continuing popularity (Cohen, 1960): 

Pr( ) Pr( )

1 Pr( )

a e

e






 

where Pr(a) is the relative observed agreement among raters, and Pr(e) is the 

hypothetical probability of agreement by chance or the probability of each observer 

randomly saying each category. If the raters are in complete agreement then κ = 1. If 

there is no agreement among the raters (other than what would be expected by chance) 

then κ ≤ 0. Based on this method, several derivatives have been developed for the 

purposes of taking disagreement differently (Cohen, 1968) or relating categorical data 

to continuous data (King and Chinchilli, 2001). A similar statistic, called Scott’s pi, 

was used more specifically in communications studies (Scott, 1955). The difference 

between those two methods is how Pr(e) is calculated. In addition, Fleiss’ κ, an 

extension of Scott’s pi, generalizes the classic two-rater agreement problem to 

multi-rater case (Fleiss, 1971).  

 

If a contingency table is 2 by 2 or can be collapsed into a 2 by 2 one with 

matched pairs of subjects, McNemar’s test will be useful to test marginal 

homogeneity (McNemar, 1947). It is worthy to point out that an application of this 

test, termed transmission disequilibrium test (TDT), has been reported as a 
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family-based association test and it is robust to the presence of population structure 

(Spielman et al., 1993). 

 

2.3.2 Linkage Disequilibrium (LD) 

 

The concept of linkage disequilibrium (LD) was introduced to population 

genetics much earlier than the onset of SNPs research (Lewontin and Kojima, 1960). 

It is mainly used to describe the non-random association of alleles at two or more loci. 

The existence of a significant LD among loci suggests a strong association, which 

could be a result of many possible factors, including physical proximate location, the 

recombination rate, selection, etc. Consider an example with two loci A/a and B/b and 

assume we already know the four possible haplotype frequencies: 

Haplotype Frequency 

AB h11 

Ab h12 

aB h21 

ab h22 

We are then able to obtain corresponding individual allele frequencies: 

Allele Frequency 

A p1 = h11+h12 

a p2 =h21+h22 

B q1 =h11+h21 

b q2 = h12+h22 

If there is no linkage between two loci haplotypes are completely random 

combinations of A/a and B/b, and the following four equations hold: 

Haplotype Expected frequency  

AB h11 = p1q1 

Ab h12 = p1q2 

aB h21 = p2q1 
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ab h22 = p2q2 

However, if two loci are not independent to each other, the allelic variation in one 

locus would influence the other one, and subsequently we would expect to observe 

deviation from the above four hypothesized equations. The degree of deviation is 

commonly denoted by D: 

 A a Total 

B h11 = p1q1 + D h21 = p2q1 - D q1 

b h12 = p1q2 - D h22 = p2q2 + D q2 

Total p1 p2 1 

When D ≠ 0, we conclude linkage disequilibrium is observed between these two loci. 

A larger value of D indicates stronger association between A/a and B/b. Nevertheless, 

the direct use of D is not desirable: the sign of D is arbitrary since either allele can be 

assigned as the capital allele A/B; besides, the possible value range of D is bounded by 

calculated allelic frequencies, which may vary from one study to another. Instead, two 

other metrics have been devised: D’ and r
2
 (or r).  

max 1 2 2 1'

min 1 1 2 2

2
2 2

1 2 1 2

, 0
min( , )

, 0
min( , )

,

D D
D

D p q p q
D

D D
D

D p q p q

D
r r r

p p q q


 


 
  


 

 

Both can be viewed as standardized D, whose values are comparable across LD 

measurements of different loci. Particularly, r
2
 is preferable in population genetic 

studies since its expected value is a function of required sample size for association 

mapping, given a fixed genetic effect (Sham et al., 2000; Pritchard and Przeworski, 

2001). 

 

LD measurements have recently become extremely useful in GWAS mainly 

because of two reasons. By measuring pairwise LDs of a set of SNPs, “tag-SNPs” 

could be selected so as to work as surrogates for analyses. Such tag-SNPs usually 
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have strong LDs with all the other SNPs in a given set. In other words, the use of 

tag-SNPs greatly reduces the number of SNPs that are required for either commercial 

array genotyping (cost reduction) or statistical tests (dimension reduction). Secondly, 

as mentioned in the first chapter, GWAS is an indirect approach to find out pathogenic 

genes. In practice, a relatively small set of SNPs will be identified that shows strong 

associations with disease phenotype directly or implicitly, with the underlying genes. 

In addition, the associations between SNP candidates and underlying genes are always 

modeled with LD measurements (Wang et al., 2005). 

 

Due to the fact that LD is based on haplotype but not genotype, which is the data 

form in GWAS, heterozygous ambiguity exists (Figure 2.1). The non-one-to-one 

corresponding pattern between genotype and haplotype leads us to estimate haplotype 

frequencies. One widely accepted approach is to solve the maximum likelihood 

function with EM algorithm (Becker and Knapp, 2004).  

 

Figure 2.1 Heterozygous ambiguity from genotype to haplotype. The left panel 

shows a clear transform from genotype to haplotype; the right panel depicts why 

one-to-one corresponding fails when heterozygote exists in both loci, where one 

genotype is related to two possible haplotype combinations. 

  

 Suppose the following contingency table has been constructed, where n1… n9 are 

numbers of observations and the four haplotype frequencies required for LD maresure 

are PAB = P11, PAb = P10, PaB = P01, Pab = P00. 

 BB Bb bb 

AA AB|AB (n1) AB|Ab (n2) Ab|Ab (n3) 
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Aa AB|aB (n4) AB|ab or Ab|aB (n5) Ab|ab (n6) 

aa aB|aB (n7) aB|ab (n8) ab|ab (n9) 

Table 2.2 A sample table of pairwise bi-allelic SNPs. Note that n5 is a mixture of 

two possible haplotype combinations. 

 

Assuming n1…n9 follow a multinomial distribution, we can write down the 

likelihood function in terms of P11, P10, P01 and P00, where N = n1 + n2 + … +n9: 

2 1 2 2 9

11 11 10 00

1 2 9

2 4 6 8 2 1 2 4 2 3 2 6 2 7 8 4 2 9 8 6 5

11 10 01 00 11 00 10 01

1 2 9

!
( ) (2 ) ...( )
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
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(2P11P00 + 2P10P01) indicates a mixture of two possible haplotype combinations in n5. 

By introducing a new parameter θ, we let the proportion of P11P00 (AB|ab) be θ and 

the proportion of P10P01 (Ab|aB) be (1 – θ) and reorganize the likelihood function 

2 4 5 6 8 2 1 2 4 5 2 3 2 6 (1 ) 5 2 7 8 4 (1 ) 5 2 9 8 6 5

11 10 01 00

1 5 5 9

!
2

!...( )!((1 ) )!... !

n n n n n n n n n n n n n n n n n n n n nN
L P P P P

n n n n

   

 

                 


 

Afterwards, EM algorithm can be implemented. In the expectation step, given certain 

initial guess of P11, P10, P01 and P00,  

11 00
5 5

11 00 10 01

11 00

11 00 10 01

~ binomial ,

[ ]

P P
n n

P P P P

P P
E

P P P P





 
 

 




 

Then P11, P10, P01 and P00 are updated with this expected value of θ, 

11 00
1 2 4 5

11 00 10 01
11

10 01
2 3 6 5

11 00 10 01
10

10 01
4 7 8 5

11 00 10 01
01

11 00
6 8 9 5

11 00 10 01
00

2

2

2

2

new

new

new

new

P P
n n n n

P P P P
P

N

P P
n n n n

P P P P
P

N

P P
n n n n

P P P P
P

N

P P
n n n n

P P P P
P

N

  




  




  




  




 



19 
 

Iterations are terminated when convergence occurs. In practice, we set the 

convergence criterion as the l
2
-norm of the difference vector between two rounds of 

estimated P11, P10, P01 and P00 less than 1e
-10

. 

 

2.3.3 Canonical Correlation Measurement 

 

In this section, we propose a novel pairwise association measurement for 

categorical variables. Recall SNP is a three-category variable – AA, Aa and aa. With 

the simple dummy coding,  

1 2

1 2

1 2

: 0, 0

: 0, 1

: 1, 0

AA X X

Aa X X

aa X X

 

 

 

  

or with polynomial coding, 

2

2

2

: 0, 0

: 1, 1

: 2, 4

AA S S

Aa S S

aa S S

 

 

 

 

The corresponding coding matrices are 

1 2

0 0 0 0

1 1 , 0 1

2 4 1 0

A A

   
   

 
   
      

 

Note that they are linearly transformable to each other 

2 1

0.5 2

0.5 1
A A

 
 

 
 

Now define association between two SNPs X and Y is computed as the (first) 

canonical correlation between ({SX, SX
2
}, {SY, SY

2
}). Such measurement will remain 

constant even if simple dummy coding is used because the two-dimensional dummy 

variable spaces created under those two coding schemes are linear. Canonical 

correlation seeks to find out the maximized correlation from the one-dimensional 

space projected from dummy variables; therefore, its value will be invariant to coding 

schemes listed above. 
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2.3.4 Link Canonical Correlation Analysis to Chi-square Test 

 

 Using canonical correlation in categorical variable studies is not a completely 

new idea. As early as 1973, sociologists gave the first report on how chi-square tests 

on contingency tables can be treated as a special form of canonical correlation 

analysis (Darlington et al., 1973). Years later, t-test for either correlated or 

independent samples, general linear model (ANOVAs), discriminate analysis were 

also successfully incorporated into the general canonical correlation testing system 

(Knapp, 1978).  

  

 As demonstrated in most multivariate textbooks (Anderson, 1958; Morrison, 

1976), a typical canonical correlation analysis involves two sets of variables: X = [X1... 

Xp] and Y = [Y1… Yq]. Without loss of generality, let q be no greater than p. Then 

canonical correlations can be obtained as the square root of eigenvalues - λi’s of the 

matrix M = RYY
-1

RYXRXX
-1

RXY, where R represents sample correlation matrices 

(standardized variance-covariance matrices). Its significance can be verified with an 

F-statistic as follows: 

1/

1/

1
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2 2
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  

  

   




 


 

 

 Now suppose these two sets of variables X and Y are coded dummy variables, 

corresponding to two categorical variables A and B, with (p + 1) and (q + 1) groups, 

respectively. The ordinary chi-square independence test would use the (p + 1) × (q + 1) 

contingency table and the obtained statistic follows chi-square distribution with 

degree of freedom of pq. Since χ
2
(pq) = pq × F(pq, ∞), the two tests are exchangeable 

when sample size is sufficiently large (Knapp, 1978). 
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 Moreover, the quantity of canonical correlation is closely related to Cramér’s V 

because the squared Cramér’s V is the mean squared canonical correlations between 

coded dummy variables (Cramér’s, 1946). And Cramér’s V can be expressed in terms 

of a modified LD r with Hardy-Weinberg principle and certain assumption on 

heterozygous ambiguity. Table 2.3 provides a simple example to illustrate how these 

three measures can be linked to each other. Cramér’s V can be obtained from the 

Chi-square statistic: 

22 2
0.154 0.024

2 2
V V

N N

 
      

We can also have two canonical correlations from dummy variable coding: 

2 2

1 2
1 20.217, 0.005 0.024

2

r r
r r


     

Additionally, we estimate the LD between two SNPs: phi = 0.65, r
2
 = 0.023, r = 0.15 

Now assuming Hardy-Weinberg principle holds in our data and phi = 0.5 

2
2 2 2

ˆ ˆ, , 0.5

ˆ ˆ

4
( ') 0.024; ( ) , ( )

[ (1 ) ][ (1 ) )]

' 0.154

A AA B BB

AB A B

A AA A B BB B

A A A B B B

P P P P

D P P P

D
r P P P P

P P P P

r

  

  

        
     

 

Therefore, Cramér’s V takes equal weights of canonical correlations: 
2 2

1 2( ) / 2r r , 

while our measure focuses on the first one r1. A large difference between r1 and r2 will 

indicate a significant difference between the two measures. Another possible measure 

would be giving different (optimal) weights of r1 and r2. Note that Cramér’s V is also 

close to the LD measure r in our example, which is expected since Cramér’s V already 

serves as an alternative global LD measure (more than two SNPs) (Brynedal et al, 

2007). 

 

 BB Bb bb 
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AA 3 5 2 

Aa 3 5 3 

aa 2 3 4 

Table 2.3 An example to show the squared Cramér’s V is the mean squared 

canonical correlations. 

 

Hence previous studies on canonical correlation analysis with categorical 

variables provide us a theoretical support of using it to measure association strength 

between SNPs: the first canonical correlation is positively related to the chi-square 

statistic, whose value implies association strength. Additionally, in Knapp’s paper, 

simple dummy variable coding was suggested. We have already shown that both 

simple dummy variable coding and the linear/quadratic minor allele frequency coding 

will generate the same canonical correlation measures. On the other hand, these 

published papers focused on the testing point of view, which is significance testing of 

canonical correlations and its equivalence to the independence test on contingency 

table. In particular, they did not investigate the first canonical correlation quantity and 

its potential applications, such as the dissimilarity matrix input in hierarchical 

clustering analysis that we have performed with real datasets.  
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Chapter 3 Clustering Application to GWAS Data 

 

 In this chapter, we examined the performance of the canonical correlation 

measure when it serves as the input dissimilarities for hierarchical clustering with 

SNPs. Clustering outputs were compared to outputs using with other measures, 

including linkage disequilibrium (r
2
 and r), Cramér’s V, Kendall’s τ and Pearson’ r. 

These four other measures were selected for distinct reasons: LD measure is the 

conventional one in GWAS; Cramér’s V is derived from chi-square test, which is 

explicitly related to canonical correlation measure; Kendall’s τ is most suitable for 

ordinal variables, which might be true when SNP is codes as 0, 1 and 2, the number of 

risk alleles; Pearson’s r is to check whether it is applicable to treat SNP as a single 

numeric variable (0, 1 and 2 coding).  

 

To make a feasible comparison, we need to control all the other factors in 

clustering, most importantly, the linkage method and the cluster number determination. 

In the following applications to real datasets, we used the traditional average linkage 

method for all clustering analyses. However, we did not calculate common statistics 

for cluster number determination, such as R
2
, pseudo-F and pseudo-t

2
 since they all 

rely on Euclidean distance and cluster centers (mean). Instead, we implemented a 

package in R: DynamicTreeCut (Langfelder et al., 2008). With this method, clusters 

are defined by cutting branches off a dendrogram, but not with some arbitrary height 

value. The cutting procedure would be specific/dynamic to different clusters, 

controlled by certain parameters, e.g., minimum number of variables in a cluster, 

maximum joining tree height, etc. Therefore, these parameters can be set to be the 

same levels in different SNP association measures comparison. This package is also 

able to detect outliers in a dendrogram, which can be viewed as SNPs that are distant 

from all defined clusters. 

 

Since clustering analysis is rather an exploratory approach, chromosome 
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locations could serve as a general standard (prior knowledge) to evaluate clustering 

results. SNPs with closer physical distance are more likely to be genetically linked. 

Thus a reasonable clustering would separate SNPs completely or partially by their 

chromosome locations: good performance will generate clusters whose SNP members 

come from the same chromosome. In other words, it will group SNPs from the same 

chromosome into one cluster. Furthermore, such evaluation can be more thoroughly 

conducted if SNP positions along the same chromosome are also available. 

 

3.1 Collaborative Genetic Study of Nicotine Dependence (COGEND) 

 

We first applied the canonical correlation concept and other association 

measurements to the COGEND data from our collaborator, Laura Bierut’s group. 

Strictly speaking, it is a subset from a GWAS since it contains 2022 subjects (1114 

cases and 908 controls) and only 215 SNPs located in eight different chromosomes, 

but the number of SNPs should be sufficient for clustering. As explained earlier, SNPs 

are coded with the following rule: heterozygous Aa is always set to be 1; homozygous 

reference genotype AA is identified with higher frequency in samples and then set to 

be 0; the minor allele homozygous is aa and codes as 2. For instance, if a SNP has 

three genotypes: CG/CC (24%), CC/CC (35%) and CG/CG (41%), the corresponding 

coding is 1 (Aa), 2 (aa) and 0 (AA), respectively. Such coding can be directly used for 

Pearson’s r and Kendall’s τ. For canonical correlation measurement, polynomial 

dummy variables are required: CG/CC {1, 1}, CC/CC {2, 4} and CG/CG {0, 0}. 

Additionally, we ensured all three possible genotypes exist in samples for every SNP. 

However, we did not exclude those 15 SNPs with rare minor allele frequencies < 5% 

(Figure 3. 1) since it has been found that less common SNPs could be also associated 

with nicotine dependence (Saccone et al., 2009). 
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Figure 3.1 Minor allele frequency distribution of COGEND data. Left panel is the 

overall distribution of all 215 SNPs while right panel displays more details of rare 

minor alleles (frequency < 5%). 

 

3.1.1 Clustering Evaluation 

 

 Clustering outputs are summarized in tables below (Table 3.1 – Table 3.6). Note 

that “Cluster0” represents outliers detected by DynamicTreeCut package (minimum 

cluster size = 10 SNPs). 

 

Canonical correlation 

Cluster 
Chromosome 

1 2 4 8 11 15 17 20 

Cluster0 0 0 0 1 1 2 0 0 

Cluster1 4 5 0 26 1 0 6 0 

Cluster2 0 0 0 0 0 31 0 0 

Cluster3 0 0 0 0 0 24 0 0 

Cluster4 0 0 0 0 0 24 0 0 

Cluster5 0 0 0 0 2 15 0 0 

Cluster6 0 0 0 0 0 16 0 0 

Cluster7 0 0 0 0 0 0 14 0 
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Cluster8 0 12 0 0 0 0 0 0 

Cluster9 0 0 0 0 0 0 0 11 

Cluster10 0 0 10 0 0 0 0 0 

Cluster11 0 0 0 10 0 0 0 0 

Table 3.1 Clustering pattern of 215 SNPs based on canonical correlation. 

Highlighted (red) rows are clusters not achieving separation goal. Cluster0 is a 

collection of outliers. 

 

Linkage disequilibrium (r
2
) 

Cluster 
Chromosome 

1 2 4 8 11 15 17 20 

Cluster0 4 12 10 12 4 10 6 1 

Cluster1 0 5 0 25 0 3 0 0 

Cluster2 0 0 0 0 0 32 0 0 

Cluster3 0 0 0 0 0 29 0 0 

Cluster4 0 0 0 0 0 24 0 0 

Cluster5 0 0 0 0 2 14 0 0 

Cluster6 0 0 0 0 0 0 14 0 

Cluster7 0 0 0 0 0 0 0 10 

Table 3.2 Clustering pattern of 215 SNPs based on linkage disequilibrium r
2
. 

Highlighted (red) rows are clusters not achieving separation goal. Cluster0 is a 

collection of outliers. 

 

Linkage disequilibrium (r) 

Cluster 
Chromosome 

1 2 4 8 11 15 17 20 

Cluster0 0 0 0 1 4 2 0 0 

Cluster1 4 5 0 26 0 0 6 0 

Cluster2 0 0 0 0 0 32 0 0 

Cluster3 0 0 0 0 0 24 0 0 
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Cluster4 0 0 0 0 0 24 0 0 

Cluster5 0 0 0 0 0 15 0 0 

Cluster6 0 0 0 0 0 15 0 0 

Cluster7 0 0 0 0 0 0 14 0 

Cluster8 0 12 0 0 0 0 0 0 

Cluster9 0 0 0 0 0 0 0 11 

Cluster10 0 0 10 0 0 0 0 0 

Cluster11 0 0 0 10 0 0 0 0 

Table 3.3 Clustering pattern of 215 SNPs based on linkage disequilibrium r. 

Highlighted (red) rows are clusters not achieving separation goal. Cluster0 is a 

collection of outliers. 

 

Cramér’s V 

Cluster 
Chromosome 

1 2 4 8 11 15 17 20 

Cluster0 4 0 0 2 4 2 1 1 

Cluster1 0 5 0 25 0 0 4 0 

Cluster2 0 0 0 0 0 31 0 0 

Cluster3 0 0 0 0 0 24 1 0 

Cluster4 0 0 0 0 0 24 0 0 

Cluster5 0 0 0 0 0 16 0 0 

Cluster6 0 0 0 0 0 15 0 0 

Cluster7 0 0 0 0 0 0 14 0 

Cluster8 0 12 0 0 0 0 0 0 

Cluster9 0 0 10 0 0 0 0 0 

Cluster10 0 0 0 10 0 0 0 0 

Cluster11 0 0 0 0 0 0 0 10 

Table 3.4 Clustering pattern of 215 SNPs based on Cramér’s V. Highlighted (red) 

rows are clusters not achieving separation goal. Cluster0 is a collection of outliers. 
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Kendall’s τ  

Cluster 
Chromosome 

1 2 4 8 11 15 17 20 

Cluster0 0 0 0 0 0 0 0 0 

Cluster1 4 6 1 28 2 1 7 7 

Cluster2 0 2 0 1 2 33 5 0 

Cluster3 0 7 3 4 0 24 1 3 

Cluster4 0 1 3 4 0 30 0 1 

Cluster5 0 1 3 0 0 18 0 0 

Cluster6 0 0 0 0 0 6 7 0 

Table 3.5 Clustering pattern of 215 SNPs based on Kendall’s τ. Highlighted (red) 

rows are clusters not achieving separation goal. Cluster0 is a collection of outliers. 

 

Pearson’ r 

Cluster 
Chromosome 

1 2 4 8 11 15 17 20 

Cluster0 0 0 0 0 0 0 0 0 

Cluster1 4 6 1 28 0 1 7 7 

Cluster2 0 7 3 5 0 25 1 3 

Cluster3 0 2 0 0 4 32 4 0 

Cluster4 0 1 3 4 0 30 0 1 

Cluster5 0 1 3 0 0 18 1 0 

Cluster6 0 0 0 0 0 6 7 0 

Table 3.6 Clustering pattern of 215 SNPs based on Pearson’ r. Highlighted (red) 

rows are clusters not achieving separation goal. Cluster0 is a collection of outliers. 

 

 As shown in tables above, each row represents chromosomal separation 

information within each cluster. And ideally each cluster should contain SNPs from 

only one chromosome. Highlighted red rows indicate clusters not achieving 

separation goal. Therefore, according to the chromosome separation criterion, we 
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conclude that canonical correlation, LD (r) and Cramér’s V produce extremely similar 

clustering patterns and they perform much better than Kendall’s τ and Pearson’ r. 

Regarding comparison between r and r
2
 for LD measures, r is a better choice mainly 

because there are a great number of SNPs classified as outliers with r
2
 measure. 

Furthermore, if we examine these tables by columns (chromosomes) instead of by 

rows (clusters), we will find that SNPs from the same chromosome could be grouped 

into two or more clusters, in a quite consistent manner (canonical correlation, LD r 

and Cramér’s V). For example, 17 SNPs in chromosome 2 were grouped into two 

clusters (the same 5 and 12 SNPs, respectively) across all the three measures; 20 

SNPs from chromosome 17 were grouped into two clusters (the same 6 and 14 SNPs, 

respectively) with canonical correlation and LD r. Such separation might suggest a 

poor clustering but it is reasonable based on detailed chromosomal positions (Figure 

3.2). 
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Figure 3.2 SNPs positions in chromosome 2 and 17. Clustering information is based 

on canonical correlation measure and LD (r).  

 

 A more extreme case is in chromosome 15, where there are more than 100 SNPs 

mainly located in two regions, one around 3e7 (region I) while the other around 8e7 

(region II) (Figure 3.3). Thus it is worthy to conduct clustering analysis specifically 

with SNPs from chromosome 15. Results are shown in Table 3.7 – Table 3.9. 

 

   

Figure 3.3 SNPs positions in chromosome 15. The most left panel shows the overall 

information, clearly SNPs are located in two distant regions along chromosome 15; 

the right two panels show more detailed histograms of each region. 

 

Canonical correlation 

 
Number of SNPs 

Positional range 

min max 
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Cluster0 2 30228925 76729090 

Cluster1 39 30088689 30232287 

Cluster2 31 76518863 76721606 

Cluster3 24 76619452 76713073 

Cluster4 16 76517368 76711042 

Table 3.7 Clustering pattern of 112 SNPs from chromosome 15 based on 

canonical correlation. Cluster0 is a collection of outliers. 

 

Linkage disequilibrium (r) 

 
Number of SNPs 

Positional range 

min max 

Cluster0 2 30228925 76729090 

Cluster1 24 30088689 30232287 

Cluster2 15 30172411 30228226 

Cluster3 32 76518863 76721606 

Cluster4 24 76619452 76713073 

Cluster5 15 76517368 76711042 

Table 3.8 Clustering pattern of 112 SNPs from chromosome 15 based on Linkage 

disequilibrium r. Cluster0 is a collection of outliers. 

 

Cramér’s V 

 
Number of SNPs 

Positional range 

min max 

Cluster0 1 30228925 30228925 

Cluster1 24 30088689 30232287 

Cluster2 15 30172411 30228226 

Cluster3 32 76518863 76729090 

Cluster4 24 76619452 76713073 

Cluster5 16 76517368 76711042 
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Table 3.9 Clustering pattern of 112 SNPs from chromosome 15 based on 

Cramér’s V. Cluster0 is a collection of outliers. 

 

Similar to the previous tables, clustering patterns across all three measures are 

consistent. SNPs from region II were grouped into three clusters and one or two SNPs 

were detected as outliers in Cluster0. Nevertheless, only the canonical correlation 

measure successfully identified all the SNPs from region I as a single cluster. 

However, two clusters from region I generated by LD and Cramér’s V overlapped, 

which is not desirable according to the physical location criterion (Figure 3.4). Hence, 

in this case, it appears that the canonical correlation measure achieved a slightly better 

performance than the other two.  

 

Figure 3.4 Box plots of two clusters from chromosome 15 region I, with linkage 

disequilibrium r or Cramér’s V. Box plots illustrate two clusters are overlapped in 

terms of SNPs locations. 

 

3.1.2 Biological Interpretation of Clustering Results 

 

 We first revisit clustering tables with all the 215 SNPs, by looking at outliers in 

Cluster0. Canonical correlation, LD (r) and Cramér’s V share four common outliers: 

rs17621256 in chromosome 8, rs16925377 in chromosome 11, rs2611605 and 

rs3971872 in chromosome 15. rs17621256 is located in the intron5 region of a 

neuronal nicotinic receptor gene CHRNB3, but did not show significant association 
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with “dizziness” to tobacco; on the other hand, the most significant SNPs identified in 

previous study, including rs10958726, rs13277254 and rs13277524, are located in the 

upstream region (promoter) of CHRNB3 (Enringer et al., 2009), and all three were 

grouped into the same cluster (Cluster1) in our analyses. rs16925377 refers to a gene 

that does not belong to neuronal nicotinic receptors family, although it may have 

modest effect on nicotine dependence (Saccone et al., 2010). In our dataset, the other 

three SNPs from chromosome 11 are rs2231532, rs2231529 and rs6578411. 

rs2231532 is in the proximate region around CHRNA10, another neuronal nicotinic 

receptor while the other two have not been reported yet, regarding nicotinic 

phenotype association. More convincing evidence to support our clustering analyses 

comes from rs2611605 and rs3971872, two CHRN related SNPs. Although quite a 

few SNPs in chromosome 15 have been identified to influence nicotine-addiction trait 

through CHRN genes cluster (Saccone et al., 2009), there is no paper thus far to claim 

similar findings for rs2611605 and rs3971872. 

 

 Another way to verify our clustering results is to examine specifically SNPs that 

are already reported in nicotine-addiction studies. Complying with these previous 

findings, we would expect SNPs that biologically work together to be in the same 

cluster while SNPs from different functional proteins should be separated. Two 

recently identified SNPs on nicotine-addiction field are rs16969968, a 

non-synonymous CHRNA5 SNP and rs578776, a CHRNA3 SNP. It is reported that 

their effect’s directions are opposite (odds ratio equals to 1.4, 0.7, respectively) and 

their correlation is low (r
2
 = 0.2). Furthermore, researchers performed joint logistic 

regression and found both of them remained significant (Saccone et al., 2009). Putting 

them together, a consistent clustering would put these two SNPs into different clusters. 

Taking canonical correlation measure for an example, in clustering analysis with all 

the 215 SNPs, rs16969968 is in cluster 6 and rs578776 is in cluster 2; in clustering 

analysis restricted to SNPs in chromosome 15, rs16969968 is in cluster 4 and 

rs578776 is in cluster 2. On the other hand, considering the four SNPs that refer to 

IREB2 (rs17483548, rs17405217, rs2656052, and rs17484235), a neighboring gene 
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of CHRN gene cluster, we found all of them will be grouped into the same cluster, 

regardless of whether clustering is conducted with all the 215 SNPs or with only 

SNPs from chromosome 15. 

 

3.2 Crohn’s Disease Location Study 

 

Subsequently, similar analyses were conducted on another dataset on Crohn’s 

diseases. Crohn’s diseases (CD) are chronic relapsing inflammatory intestinal disorder 

that can affect any segment of the intestine often in a discontinuous manner (Goyette 

et al., 2007; Abraham et al., 2009). One great advantage of GWAS on CD is that it has 

been intensively explored and more than 30 susceptibility loci have now been 

identified through genome-wide association studies (Barrett et al., 2008).  

 

As a further exploratory step, CD patients are phenotypically heterogeneous. 

Efforts have been made to subphenotype the patients in order to facilitate 

genoytpe-phenotype correlations. Both the Vienna and Montreal classifications have 

classified the patients on the basis of three major parameters: age of diagnosis, disease 

location and disease behavior (Satsangi et al., 2006; Louis et al., 2001). While disease 

behavior changes over time (Unkart et al., 2008), disease location remains fairly 

stable. Based on both the Vienna and Montreal classifications, there are four major 

patterns of disease location: L1, ileal disease with or without cecal disease (ileal CD); 

L2, colonic disease only (Crohn’s colitis); L3, ileal disease with colonic disease 

beyond the cecum; L4, proximal intestinal disease. Most CD patients have ileal and/or 

colonic disease (L1, L2, and L3). Only a small number of patients have disease 

restricted to the proximal gut (L4). Two identified CD-related genes: NOD2 and 

ATG16L1 have been previously associated with the subset of Crohn’s disease patients 

with ileal disease location compared to control patients without inflammatory bowel 

diseases. These studies incorporated a relatively limited set of susceptibility loci 

(Cuthbert et al., 2002; Lesage et al., 2002; Prescott et al., 2007; Fowler et al., 2008; 

Van Limbergen et al., 2008; Márquez et al., 2009). 
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3.2.1 Clustering with 29 SNPs  

 

Our dataset contains 628 CD patients within the Washington University Digestive 

Diseases Research Core Center Tissue Procurement Facility database (recruited 

between April 2005 - February 2010) that have complete genotype information on 31 

established CD risk alleles (Barrett et al., 2008) (Table 3.10) and complete clinical 

information on disease location (L1-L4), smoking, gender, race and age of diagnosis 

(Table 3.11). From a case-control study point of view, we intended to carry out 

comparison between (L1 + L3) vs. L2, which is ileal (case) vs. non-ileal (control). 

With chi-square test, univariate results on such association are also attached in Table 

3.12 and 3.13. Furthermore, in practice, we excluded those six L4 observations and 

combined three SNPs information on NOD2. Therefore it is a dataset including 622 

samples and 29 SNPs in total. Afterwards, we are able to verify whether clustering 

analyses would be consistent with our published findings (Chen et al., 2011). 

 

Gene SNP 

 

L1 

n = 288 

L2 

n = 131 

L3 

n = 203 

L4 

n = 6 

L1 + L3 

vs. L2 

P-value 

NOD2 

R/R 

R/NR 

NR/NR 

(composite) 

rs2066847 

rs2066844 

rs2066845 

 

36 (12%) 

87 (30%) 

165 (57%) 

 

3 (2%) 

18 (14%) 

110 (84%) 

 

13 (7%) 

47 (23%) 

143 (70%) 

 

0 (0%) 

2 (33%) 

4 (67%) 

<0.0001 

ATG16L1 

R/R 

R/NR 

NR/NR 

rs2241880  

101 (35%) 

130 (45%) 

57 (20%) 

 

39 (30%) 

56 (43%) 

36 (27%) 

 

74 (36%) 

91 (45%) 

38 (19%) 

 

4 (67%) 

0 (0%) 

2 (33%) 

0.1227 

IL23R  

R/R 

R/NR 

NR/NR 

rs11209026 

 

 

276 (96%) 

12 (4%) 

0 (0%) 

 

125 (95%) 

6 (5%) 

0 (0%) 

 

186 (92%) 

17 (8%) 

0 (0%) 

 

6 (100%) 

0 (0%) 

0 (0%) 

0.6729 

IRGM 

R/R 

R/NR 

NR/NR 

rs13361189 

 

 

11 (4%) 

77 (27%) 

200 (69%) 

 

7 (5%) 

24 (18%) 

100 (76%) 

 

4 (2%) 

41 (20%) 

158 (78%) 

 

0 (0%) 

0 (0%) 

6 (100%) 

0.1971 

STAT3 

R/R 

R/NR 

rs744166 

 

 

95 (33%) 

143 (50%) 

 

48 (37%) 

60 (46%) 

 

64 (32%) 

109 (54%) 

 

1 (17%) 

2 (33%) 

0.5200 
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NR/NR 50 (17%) 23 (18%) 30 (15%) 3 (50%) 

ICOSLG 

R/R 

R/NR 

NR/NR 

rs762421 

 

 

48 (17%) 

140 (49%) 

100 (35%) 

 

18 (14%) 

63 (48%) 

50 (38%) 

 

25 (12%) 

108 (53%) 

70 (34%) 

 

0 (0%) 

4 (67%) 

2 (33%) 

0.7857 

X21q21 

R/R 

R/NR 

NR/NR 

rs1736135 

 

 

110 (38%) 

143 (50%) 

35 (12%) 

 

58 (44%) 

49 (37%) 

23 (18%) 

 

98 (48%) 

80 (39%) 

25 (12%) 

 

2 (33%) 

4 (67%) 

0 (0%) 

0.1709 

7p12 

R/R 

R/NR 

NR/NR 

rs1456893 

 

 

149 (52%) 

119 (41%) 

20 (7%) 

 

65 (50%) 

55 (42%) 

11 (8%) 

 

101 (50%) 

85 (42%) 

17 (8%) 

 

2 (33%) 

3 (50%) 

1 (17%) 

0.9087 

LOC4411108 

R/R 

R/NR 

NR/NR 

rs2188962 

 

 

57 (20%) 

131 (45%) 

100 (35%) 

 

17 (13%) 

62 (47%) 

52 (40%) 

 

49 (24%) 

96 (47%) 

58 (29%) 

 

0 (0%) 

4 (67%) 

2 (33%) 

0.0562 

ITLN1 

R/R 

R/NR 

NR/NR 

rs2274910 

 

 

122 (42%) 

135 (47%) 

31 (11) 

 

60 (46%) 

58 (44%) 

13 (10%) 

 

94 (46%) 

88 (43%) 

21 (10%) 

 

4 (67%) 

2 (33%) 

0 (0%) 

0.9385 

CCR6 

R/R 

R/NR 

NR/NR 

rs2301436 

 

 

64 (22%) 

150 (52%) 

74 (26%) 

 

29 (22%) 

71 (54%) 

31 (24%) 

 

51 (25%) 

101 (50%) 

51 (25%) 

 

2 (33%) 

4 (67%) 

0 (0%) 

0.8455 

PTPN2 

R/R 

R/NR 

NR/NR 

rs2542151 

 

 

21 (7%) 

79 (27%) 

188 (65%) 

 

2 (2%) 

45 (34%) 

84 (64%) 

 

9 (4%) 

69 (34%) 

125 (62%) 

 

0 (0%) 

4 (67%) 

2 (33%) 

0.0751 

PTPN22 

R/R 

R/NR 

NR/NR 

rs2476601 

 

 

251 (87%) 

36 (13%) 

1 (0%) 

 

112 (85%) 

17 (13%) 

2 (2%) 

 

175 (86%) 

27 (13%) 

1 (0%) 

 

2 (33%) 

4 (67%) 

0 (0%) 

0.3271 

TNFSF15 

R/R 

R/NR 

NR/NR 

rs4263839 

 

 

159 (55%) 

108 (38%) 

21 (7%) 

 

72 (55%) 

56 (43%) 

3 (2%) 

 

94 (46%) 

86 (42%) 

23 (11%) 

 

3 (50%) 

3 (50%) 

0 (0%) 

0.0241 

ORMDL3 

R/R 

R/NR 

NR/NR 

rs2872507 

 

 

58 (20%) 

133 (46%) 

97 (34%) 

 

35 (27%) 

62 (47%) 

34 (26%) 

 

35 (17%) 

103 (51%) 

65 (32%) 

 

1 (17%) 

2 (33%) 

3 (50%) 

0.1031 

MST1 

R/R 

R/NR 

rs3197999 

 

 

31 (11%) 

121 (42%) 

 

16 (12%) 

56 (43%) 

 

19 (9%) 

83 (41%) 

 

1 (17%) 

2 (33%) 

0.7062 
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NR/NR 136 (47%) 59 (45) 101 (50%) 3 (50%) 

C11orf30 

R/R 

R/NR 

NR/NR 

rs7927894 

 

 

54 (19%) 

130 (45%) 

104 (36%) 

 

22 (17%) 

67 (51%) 

42 (32%) 

 

41 (20%) 

92 (45%) 

70 (34%) 

 

1 (17%) 

4 (67%) 

1 (17%) 

0.4907 

C13orf31 

R/R 

R/NR 

NR/NR 

rs3764147 

 

 

20 (7%) 

103 (36%) 

165 (57%) 

 

14 (11%) 

47 (36%) 

70 (53%) 

 

14 (69%) 

90 (44%) 

99 (49%) 

 

1 (17%) 

1 (17%) 

4 (67%) 

0.3284 

PTGER4 

R/R 

R/NR 

NR/NR 

rs4613763 

 

 

16 (6%) 

84 (30%) 

188 (65%) 

 

3 (2%) 

36 (27%) 

92 (70%) 

 

11 (5%) 

61 (30%) 

131 (65%) 

 

0 (0%) 

3 (50%) 

3 (50%) 

0.2659 

CDKAL1 

R/R 

R/NR 

NR/NR 

rs6908425 

 

 

181 (63%) 

96 (33%) 

11 (4%) 

 

80 (61%) 

44 (34%) 

7 (5%) 

 

122 (60%) 

75 (37%) 

6 (3%) 

 

4 (67%) 

2 (33%) 

0 (0%) 

0.5650 

6q21 

R/R 

R/NR 

NR/NR 

rs7746082 

 

 

24 (8%) 

105 (36%) 

159 (55%) 

 

8 (6%) 

55 (43%) 

68 (52%) 

 

23 (11%) 

80 (39%) 

100 (49%) 

 

0 (0%) 

4 (67%) 

2 (33%) 

0.4046 

1q24 

R/R 

R/NR 

NR/NR 

rs9286879 

 

 

25 (9%) 

112 (39%) 

151 (52%) 

 

7 (5%) 

65 (50%) 

59 (45%) 

 

20 (10%) 

76 (37%) 

107 (53%) 

 

0 (0%) 

3 (50%) 

3 (50%) 

0.0493 

IL12B 

R/R 

R/NR 

NR/NR 

rs10045431 

 

 

161 (56%) 

112 (39%) 

15 (5%) 

 

76 (58%) 

43 (33%) 

12 (9%) 

 

96 (47%) 

95 (47%) 

12 (6%) 

 

4 (67%) 

2 (33%) 

0 () 

0.0760 

JAK2 

R/R 

R/NR 

NR/NR 

rs10758669 

 

 

127 (44%) 

123 (43%) 

37 (13%) 

 

59 (45%) 

57 (44%) 

15 (11%) 

 

75 (37%) 

103 (51%) 

25 (12%) 

 

2 (33%) 

2 (33%) 

2 (33%) 

0.7569 

10p11 

R/R 

R/NR 

NR/NR 

rs17582416 

 

 

40 (14%) 

128 (44%) 

120 (42%) 

 

12 (9%) 

63 (48%) 

56 (43%) 

 

29 (14%) 

94 (46%) 

80 (39%) 

 

1 (17%) 

1 (17%) 

4 (67%) 

0.3411 

NKX2-3 

R/R 

R/NR 

NR/NR 

rs11190140 

 

 

76 (26%) 

141 (49%) 

71 (25%) 

 

32 (24%) 

71 (54%) 

28 (21%) 

 

48 (24%) 

100 (49%) 

55 (27%) 

 

1 (17%) 

3 (50%) 

2 (33%) 

0.5257 
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ZNF365 

R/R 

R/NR 

NR/NR 

rs10995271 

 

 

61 (21%) 

126 (44%) 

101 (35%) 

 

18 (14%) 

70 (53%) 

43 (33%) 

 

34 (17%) 

102 (50%) 

67 (33%) 

 

0 (0%) 

3 (50%) 

3 (50%) 

0.2432 

LOC651731 

R/R 

R/NR 

NR/NR 

rs11584383 

 

 

172 (60%) 

90 (31%) 

26 (9%) 

 

71 (54%) 

52 (40%) 

8 (6%) 

 

109 (54%) 

84 (41%) 

10 (5%) 

 

5 (83%) 

1 (17%) 

0 (0%) 

0.6580 

MUC19 

R/R 

R/NR 

NR/NR 

rs11175593 

 

 

0 (0%) 

21 (7%) 

267 (93%) 

 

0 (0%) 

6 (5%) 

125 (95%) 

 

0 (0%) 

10 (5%) 

193 (95%) 

 

0 (0%) 

0 (0%) 

6 (100%) 

0.5385 

Table 3.10 Joint distribution of CD genotypes with the four major disease 

locations. L1, L2, L3 include subjects with L4 as a modifier. L4 refers to patients 

with only L4 disease location. P-values result from chi-square test on individual SNP 

with L1 + L3 vs. L2. SNPs with significant P-values (<.05) are highlighted in red. 

 

 L1 

n = 288 

L2 

n = 131 

L3 

n = 203 

L4 

n = 6 

L1 + L3 

vs. L2 

P-value 

Gender (male) 128 (44%) 65 (50%) 92 (45%) 5 (92%) 0.3244 

Race 

White 

Black 

Other 

 

262 (91%) 

23 (8%) 

3 (1%) 

 

110 (84%)          

18 (14%)             

3 (2%) 

 

182 (90%)            

18 (9%)                   

3 (1%) 

 

5 (92%)                

0 (0%) 

1 (8%) 

0.0852 

Smoking habit 

Smoker 

Ex-smoker 

Non-smoker 

 

113 (39%) 

17 (6%) 

158 (55%) 

 

33 (25%)             

17 (13%) 

81(62%) 

 

73 (36%) 

15 (7%)                

115 (57%) 

 

2 (33%) 

1 (17%) 

3 (50%) 

0.0047 

Age of 

Diagnosis 

A1 (<17 y) 

A2 (14-40y) 

A3 (>40y) 

 

 

32 (11%) 

202 (70%) 

54 (19%) 

 

 

21 (13%) 

79 (60%)            

31 (27%) 

 

 

43 (21%)             

123 (61%)             

37 (18%) 

 

 

0 (0%)            

5(92%)                 

1 (8%) 

0.3553 

Surgery 222 (77%) 54 (41%) 132 (65%) 4 (67%)  

Table 3.11 Patient clinical characteristics. L1, L2, L3 include subjects with L4 as a 

modifier. L4 refers to patients with only L4 disease location. P-values result from 

chi-square test on individual variable with L1 + L3 vs. L2. Smoking is highlighted in 

red with significant p-value (<0.05). 

 

 However, it could be inappropriate for us to evaluate clustering outputs according 

to chromosomal separation, because of the sparsity of these 29 SNPs. The 29 selected 
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SNPs are located in fifteen different chromosomes. Five of them are in chromosome 1, 

which is the most “concentrated” one in terms of the number of SNPs. Alternatively, 

since it is a rather small set of variables, the entire dendrogram would be readable and 

comparable across different measures. In addition, we actually can not apply R 

package DynamicTreeCut here since we may not be able to define a reasonable 

minimum cluster size in this case. Dendrograms based on canonical correlation, 

linkage disequilibrium r, Cramér’s V and Pearson’s r are displayed below (Figure 3.5 

– Figure 3.8). 

 

 

Figure 3.5 Clustering dendrogram of 29 SNPs with canonical correlation 

measure. 
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Figure 3.6 Clustering dendrogram of 29 SNPs with linkage disequilibrium r. 

 

Figure 3.7 Clustering dendrogram of 29 SNPs with Cramér’s V. 
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Figure 3.8 Clustering dendrogram of 29 SNPs with Pearson’s r. 

 

 As expected, dendrograms based on canonical correlation, linkage disequilibrium 

r and Cramér’s V share several consistent and biologically meaningful patterns. For 

instance, two immunity – related genes IL23R and PTPN2 are always clustered at the 

very early step with all the three measures, these two genes have also been associated 

with other autoimmune disorders (Xavier and Podolsky, 2007). However, they appear 

to be distant to each other with Pearson’ r, suggesting that SNPs should not be treated 

as numeric variables. More importantly, it is also possible for us to connect clustering 

output to our published variable selection result (Chen et al., 2011), where we 

identified TNFSF15 and NOD2 after logistic regression with stepwise selection (Table 

3.12). According to outputs above, TNFSF15 and NOD2 are located in distant 

branches: their mergence occurred in later stage of clustering.  

 

 P-value R/R vs. NR/NR R/NR vs. NR/NR R/R vs. R/NR 

NOD2 <0.0001 6.102 2.552 2.391 
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smoking 0.0082 1.689 0.647 2.611 

TNSF15 0.0479 0.227 0.218 1.045 

Table 3.12 L1 +L3 (ileal CD and ileocolonic) vs. L2 (nonileal) logistic regression 

analysis with stepwise variable selection. 

 

3.2.2 Including Smoking in Analyses 

 

 It is noteworthy that we included smoking and other covariates in Table 3.11 

when running variable selection in logistic regression model. And smoking was found 

to be significant in the final result. In practice, we also treated smoking as a 

categorical variable: non-smoker, ex-smoker and current smoker. Thus it might be 

acceptable to consider smoking as a “hypothesized” SNP: non-smoker, ex-smoker and 

current smoker corresponds to NR/NR, NR/R and R/R genotypes, respectively. 

Updated clustering results (Figure 3.9 – Figure 3.12), however, vary regarding the 

position of smoking in dendrogram. With canonical correlation and Cramér’s V 

measures, NOD2 and smoking are close to each other while linkage disequilibrium r 

successfully recognized smoking as a distinct branch. Such discrepancy might have 

two-fold meanings. First, canonical correlation measure would be more consistent 

with Cramér’s V index because of their underlying theoretical connection. Second, 

simply treating smoking as another SNP variable remains questionable. The LD 

measure worked well with smoking status but does not guarantee the appropriateness 

of such application, especially when we notice that LD is derived from the allelic 

combination, a biological fact only meaningful with SNP data. Therefore, we should 

be cautious when extending clustering analysis with canonical correlation measure (or 

other measures) to a set of variables including other covariates. Finally, the clustering 

fact that smoking and NOD2 are close to each other does not necessarily contradict to 

our findings (Table 3.12). Although two highly correlated variables are less likely to 

be retained into a logistic regression model together, both of them can be still selected 

if they account for distinct effects on the response variable. 
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Figure 3.9 Clustering dendrogram of 29 SNPs and smoking status with canonical 

correlation measure. 

 

 
Figure 3.10 Clustering dendrogram of 29 SNPs and smoking status with linkage 

disequilibrium r. 
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Figure 3.11 Clustering dendrogram of 29 SNPs and smoking status with 

Cramér’s V. 

 

 

Figure 3.12 Clustering dendrogram of 29 SNPs and smoking status with 

Pearson’s r. 
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Chapter 4 Network Analysis with SNP 

 

 Strictly speaking, motivation of performing network analysis with SNP is 

two-fold. First, similar to clustering analysis, network analysis may serve as another 

dimension reduction technique. For instance, if the underlying network represents a 

hub-structure, hub-SNPs can be identified through network analysis and be used for 

the follow-up analysis. Second, it would be informative for pathway findings. A 

typical example will be in cancer research. It is well known that loss of heterozygosity 

(LOH) is a major source in cancerogenic pathways. As a result, SNPs of interest can 

be coded as 1 (LOH occurs) and 0 (LOH does not occur) and then put into a 

categorical network analysis. In this way, edges linking SNPs together may indicate 

potential cancerogenic network. 

 

 Furthermore, we will have other experimental information from the sample 

biological sample, such as microarray, proteomics, covariates, etc. These other 

variables are likely to be continuous. Therefore, network analysis with SNP should be 

able to handle such mixed variable scenarios. In this chapter, we first review the 

existing methods for pure categorical and mixed scenarios, respectively and then 

propose our novel partial canonical correlation measure, which is readily adapted to 

both situations. 

 

4.1 Partial Correlation Network Analysis (PCNA) 

 

The studies on partial correlation analysis can be traced back to the early 20th 

century by Pearson, Fisher and others (Isserlis, 1914; Pearson, 1915, Fisher, 1924; 

Goodman and Kruskal, 1979). It is the correlation between two variables while effects 

from additional variables are controlled at the same time. One of its usages is in the 

causal analysis through graphic modeling. As a typical example, the partial 

correlation between two variables is compared to the conventional correlation without 
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excluding other variable effects: no difference between the two correlations suggests 

that the controlled variables have no effect on relation between these two variables. 

On the other hand, if the partial correlation approaches 0, it indicates that the original 

correlation is spurious and caused by controlled variables. In other words, partial 

correlation excludes the confounding effects. 

 

Furthermore, a corresponding partial correlation network analysis (PCNA) can be 

performed graphically based on pairwise partial correlations of variables of interest. A 

statistically non-zero partial correlation between two variables is denoted with an 

edge to link them. Like most parametric statistical analyses, traditional PCNA 

requires the sample size (n) to be larger than the number of variables (p). Nevertheless, 

methods derived from the sparse property of partial correlation matrix have been 

introduced in recent studies to estimate partial correlation under the insufficient 

sample size condition or the high dimensional scenario (p > n): Schafer and Strimmer 

(2005) proposed a shrinkage covariance estimation procedure to overcome the 

ill-conditioned problem of sample covariance matrix when p > n; Li and Gui (2006) 

introduced a threshold gradient descent regularization procedure; Meinshausen and 

Buhlmann (2006) reported a variable-by-variable approach for neighborhood 

selection via the lasso regression; Yuan and Lin (2007) proposed a penalized 

maximum likelihood approach which performs model selection and estimation 

simultaneously and ensures the positive definiteness of the estimated concentration 

matrix; Friedman et al. (2008) proposed an improved algorithm so as to address 

problems with high dimensions; Bickel and Levina (2008) proposed to regularize the 

covariance matrix by hard thresholding for families of covariance matrices satisfying 

suitable sparsity assumptions; Peng et al (2009) developed a new algorithm based on 

the joint sparse regression model (JSRM). The simulation study shows an 

improvement in performance for p >> n data, and efficiency in identifying network 

hubs. There are also quite a few applications of PCNA to exploratory gene microarray 

analysis, which generates many “hub-genes” as potential key regulators within the 

whole regulatory network (Barabasi and Oltvai, 2004). Finally, it should be noted that 
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so far PCNA mainly focuses on continuous (numeric) variable. When categorical 

variables are involved in PCNA, it is often referred to a categorical Markov Random 

Field problem. 

 

4.1.1 PCNA with Categorical Data 

 

In graph theory, PCNA generates an undirected graph: G = {V, E}, where node 

set V corresponds to variables {Xi}, the edge set E indicates pairwise relationship. If 

nodes are not linked by an edge, two corresponding variables are conditionally 

independent and such independence does not have directional information: 

( , ) ( , )| |r s r s s r r sX X X X X X     

When V includes only continuous variables, joint Gaussian distribution is often 

assumed, so as to estimate the precision matrix (inversed variance-covariance matrix 

Σ
-1

). On the other hand, when V is a set of only categorical variables, it is regarded as 

a categorical Markov Random Field, which possesses properties similar to a partial 

correlation network under the continuous scenario (Figure 4.1). Strictly speaking, 

continuous Markov Random Field is also a common tool for continuous PCNA. 

Nevertheless, estimation on a categorical Markov Random Field is notably harder, 

due to the complexity of the partition function. 

 

 

Figure 4.1 An illustration of Markov Random Field. V = {A, B, C, D, E, F, G}. 

Three major properties are: 1) two non-connected variables are conditionally 

independent given all the others, e.g., A is independent to C given {B, D, E, F, G}; 2) 
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a variable is conditionally independent of all the others given its connected neighbors, 

e.g., E is independent of {A, C, D}; 3) any two variable sets are conditionally 

independent given a separate one, e.g., {A, B ,C} is independent to {F, G} given {D, 

E}. 

 

 Consider a binary Markov random field. Under certain assumptions from graph 

theory (maximum cliques in graph ≤ 2), the probability distribution can be factorized 

as the following quadratic exponential model (Wang et al., 2011): 

1 , , ' '

1 1 '
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( )

p
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i i i p

f X X X X X
Z

 
   

 
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  
   

It has been shown that with this expression of the joint distribution, θi, i’ will directly 

represent conditionally independence: 

( , ) , '| 0r s r s i iX X X     

Therefore, identifying the edge set E in graph leads to estimating non-zero 

coefficients θi, i’. As mentioned earlier, one major challenge is from the partition 

function Z(Θ), which is composed of 2
p
 terms. As a result, it is infeasible to directly 

maximize the exact joint distribution function. Instead, several groups have published 

their efforts on bypassing it. For example, one could use the log-determinant 

relaxation to approximate the log-partition function (D’Aspermont et al., 2008; Kolar 

and Xing, 2008). Recently, two independent pieces of research work successfully 

decomposed it into a joint logistic regression problem (Guo et al., 2010; Wang et al., 

2011). In the former paper, the joint distribution function was approximated with 

pseudo-likelihoods (Besag, 1975): 

1 1 1 1

1

( ,..., ) ( | ,..., , ,..., )
p

p i i i p

i

f X X f X X X X X 



  

Afterwards, each conditional probability density function was assumed to follow 

Bernoulli distribution, or equivalently modeled with p logistic regressions: 
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Alternatively, the partition function Z(Θ) can be canceled out with the likelihood 

ratio: 
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 The early work on estimating coefficients within p logistic regressions focused on 

separate model fitting with l1-regularization (Ravikumar et al., 2010): 

, 1

, , , , , , , ,
{ }

1

max ( ) log 1 exp | |
p

j k k

n

i j j j j k i k j j j k i k j j k

i k j k j k j

x x x


     
    

    
       

     
     

Criticisms on this approach mainly address the symmetry issue that separate fitting 

will not ensure θi,i' = θi’,i. Since it is an undirected graph, symmetry restriction must be 

imposed. Consequently, certain post hoc rules are necessary when inequality occurs, 

such like maximum aggregation, minimum aggregation, etc. Furthermore, λj’s are 

usually set to be the same value in practice, which is obviously not suitable for a 
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non-homogeneous network, i.e., existence of hubs. Hence joint structure estimation 

method was later proposed: 
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The maximization problem is solvable with various algorithms (Friedman et al., 2007 

and 2010; Hofling and Tibshirani, 2009; Peng et al., 2009). In other words, we are 

able to construct a SNP network with the control of complexity of network by using 

joint sparse logistic regression model. 

 

4.1.2 Partial Canonical Correlation Measurement 

 

We hereby present another aspect of PCNA with SNPs. It can be viewed as an 

effort on making ordinary partial correlation measurable for categorical variables. In a 

general definition, partial correlation is the Pearson’s correlation r between residuals 

from two regressions on controlled variables: 
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If X and Y are categorical variables here, we can obtain Pearson residuals from 

logistic regressions. Considering a binary case: 
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For each observation xi and yi, Pearson residuals are calculated as the following 
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Pearson residuals are mainly used in diagnostics for logistic regression. Since they 

follow normal distribution asymptotically (Homster and Lemeshow, 2000), the sum of 

squared residuals forms a chi-square statistics, and may serve as goodness fit index. 

On the other hand, Pearson residual was also suggested for a second-stage analysis, 
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by only including confounding effects from logistic regression in the first step (other 

graduate students work from our group). Thus it would be acceptable to apply 

conventional correlation measure/test here to detect conditional dependency between 

X and Y given Z (Z refers to controlled or cofounding effect). Additionally, there are 

other types of residuals that can be derived from logistic regression model, for 

instance, deviance residuals based on likelihood ratio concept. But other types of 

residuals would not have asymptotic normality property and subsequently are not 

appropriate in a second-state analysis. 

 

More importantly, this method can be readily extended to a multi-category 

scenario, where multinomial logistic regression will be used. Taking SNP for an 

example, a reference group is needed to fit a multinomial model, which is applicable 

for the SNP. As explained in our canonical correlation measure, we can always treat 

non-risk homozygous (AA) as the baseline. Subsequently, we can have generalized 

residual form: 
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It can also be shown that residuals {rx1, rx2} and {ry1, ry2} will asymptotically follow 

multivariate normal distribution (Seber and Nyangoma, 2000). Hence, the partial 

correlation between X and Y given Z can be defined as the first canonical correlation 

between {rx1, rx2} and {ry1, ry2}. And using canonical correlation test on Pearson 
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residuals to detect significant edges in a network is a novel application. 

 

 To verify our new measure/test, simulations are performed, addressing four 

different scenarios. In a simple case involving three categorical variables – X, Y and Z, 

we treat Y as response variable that is affected by both X and Z, which are simulated 

independently (Figure 4.2). We expect to see significant partial correlation between X 

and Y while controlling Z in our new measure. In other words, the first canonical 

correlation test between {rx1, rx2} and {ry1, ry2} is expected to be significant. 

Assuming they are all SNPs, Y is simulated as the following 
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Note that X1, X2, Z1 and Z2 refer to coded dummy variables (linear and quadratic 

minor allele frequencies S and S
2
) in regression. Set [β1, βX11, βX12, βZ11, βZ12]

T
= [-2, 1, 

0.2, 1, 0.2]
T
; [β2, βX21, βX22, βZ21, βZ22]

T
= [-3, 1.2, 0.2, 1.2, 0.2]

T
. The intercept term is 

negative since we expect the reference group (AA) to be the majority; the coefficient 

for S
2
 is set to be lower than that for S. Effects for X and Z are set to be equal. X and Z 

are generated independently with a multinomial distribution (0.5, 0.3, 0.2), 

corresponding to (AA, Aa, aa) with N (sample size) = 100. For one simulated dataset, 

Y will have the following distribution: AA – 58, Aa - 27 and aa – 15, which resembles 

the distributions of X and Z. We also calculated the LDs between SNPs: r
2
 x,y = 0.50 

and r
2
 y,z = 0.34, which are not large effect sizes (r

2
 < 0.8). Thus the coefficients set 

for the logistic regressions are appropriate since we do not arbitrarily create a dataset 

with large effect sizes that might be easier to be detected with canonical correlation 

measure. After 500 simulations, we record the number of times the first canonical 

correlation test between {rx1, rx2} and {ry1, ry2} is significant (Figure 4.3): 461/500 = 

92.2%. We also record the number of times the first canonical correlation test between 

{rx1, rx2} and {rz1, rz2} is not significant (Figure 4.4): 433/500 = 86.6% 
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Figure 4.2 Simulation scenario I for pure categorical network. 

 

 

Figure 4.3 p-values plot from the canonical correlation test between {rx1, rx2} and 

{ry1, ry2}. 

 

 

Figure 4.4 p-values plot from the canonical correlation test between {rx1, rx2} and 

{rz1, rz2}. 
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In a second scenario, Z does not affect Y, (βZ21=βZ22=βZ11=βZ12=0), while the same 

values for all the other parameters remain the same (Figure 4.5). We record the 

number of times the first canonical correlation test between {rx1, rx2} and {ry1, ry2} is 

significant: 402/500 = 80.4% 

 

 

Figure 4.5 Simulation scenario II for pure categorical network. 

 

 Now considering the situation where X and Y has no conditional relation (Figure 

4.6), then we have 
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For X, set [β1, βZ11, βZ12, β2, βZ21, βZ22]
T
 = [-2, 1, 0.2, -3, 1.2, 0.2]

T
; for Y, set [β1, βZ11, 

βZ12, β2, βZ21, βZ22]
T
 = [-2, 1, 0.2, -3, 1.2, 0.2]

T
. Thus effects from Z to X and Y are 

equal. Z and the other parameters are generated as mentioned above. We record the 

number of times the first canonical correlation test between {rx1, rx2} and {ry1, ry2} is 

not significant: 469/500 = 93.8% 
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Figure 4.6 Simulation scenario III for pure categorical network. 

 

 Figure 4.7 displays another very typical partial correlation scenario for 

continuous variables, where X and Y would be correlated but not partially correlated 

given Z. Data are simulated sequentially: 
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From X to Z, [β1, βX11, βX12, β2, βX21, βX22]
T
 = [-2, 1, 0.2, -3, 1.2, 0.2]

T
; from Z to Y, [β1, 

βZ11, βZ12, β2, βZ21, βZ22]
T
 = [-2, 1, 0.2, -3, 1.2, 0.2]

T
. Hence we expect our canonical 

correlation test will not reject the null hypothesis regarding X and Y, the number of 

times of such output: 471/500 = 94.2%; on the other hand, we expect significant 

canonical correlation from the test between X and Z (490/500 = 98%) and the test 

between Y and Z (440/500 = 88%) 
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Figure 4.7 Simulation scenario IV for pure categorical network. 

 

Finally, it is noteworthy to point out that there are other conditional association 

tests available in our simple simulation scenarios, such as generalized 

Cochran–Mantel–Haenszel (CMH) test on a M×N×K table, which can be viewed as 

an association test on a contingency table while controlling the third stratification 

variable (Agresti 2002).  But this test would be not applicable with more than three 

variables, and more importantly, can be not generalized to a mixed scenario discussed 

later. Hence, we did not compare our method with CMH test in our simulation 

examples as CMH test can be used in real SNP datasets (COGEND and Crohn’s 

Disease). The main purpose of simulations illustrated above is to verify that our 

method is powerful enough to detect the underlying true conditional dependencies in 

model.  

 

4.2 Network Analysis with SNP and Other Variables 

 

 In real data analysis, it is quite likely for us to have other types of variable than 

SNP. Subsequently, different approaches would be applicable, depending on the 

properties of other variables and specific research aims, for example, categorical 

covariate in network and mixed Bayesian network. 

 

4.2.1 Covariate in network 
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 Suppose the number of covariates is manageable and covariates are categorical, 

we can generate networks one by one, according to each assignment to covariates. 

Then the task turns to be evaluating whether those networks are significantly different 

from each other. One previous graduate student from our research group, Dr. Kith 

Pradhan, studied comprehensively on this topic. Generally speaking, there are four 

ways to conduct such partial correlation analysis: Fisher’s transformation, 

bootstrapping, two-level regression and likelihood ratio test. The former two are 

existing methods and the others are novel developed methods. However, not all of 

them can be directly applied to our research problems since they are all under 

ordinary continuous variables scenario. The most applicable extension from Dr. Ktih 

Pradhan’s work would be bootstrapping, where we compare partial correlations in a 

non-parametric way, without the continuous case assumption.   

 

4.2.2 Mixed Bayesian network 

  

 A Bayesian network is a directed probabilistic graph model, presenting a joint 

distribution of variables in this network. The first part of a Bayesian network is 

similar to an undirected graph, which contains G = {V, E}, except E in a Bayesian 

network has arrows, the directional information. In practice, such information might 

indicate causality, but not always. The second part is local distribution for each 

variable, given its parents in the first part. The reason why local distributions are 

sufficient to describe the joint one is brought by the local Markov property: each 

variable is conditionally independent of its non-descendants given its parent variables. 

Therefore, by chain rule 

1

1

( ,..., ) ( | ( ))
n

n i i

i

f X X f X Pa X


  

 

An example is demonstrated in Figure 4.8. In order to fully represent information 

on this Bayesian network, five local probability functions need to be specified: P(A), 

P(B|E, A), P(C|B), P(D|A) and P(E). Generally speaking, there are three scenarios to 
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represent local distributions in Bayesian network, depending on the variable types in 

it. 

 

 

Figure 4.8 An example on a Bayesian network can be represented with local 

distributions. The graph itself implies conditional independences. By chain rule P(A, 

B, C, D, E) = P(A)P(B, C, D, E|A) = P(A)P(D|A)P(B, C, E|A) = P(A)P(D|A)P(B, C|E, 

A)P(E|A) = P(A)P(D|A)P(E)P(C|B, E, A)P(B|E, A) = P(A)P(B|E, A)P(C|B)P(D|A)P(E). 

 

When all variables in the network are discrete (case I), denoting {U1,…,Uk} as 

parents for a certain variable X, P(X|U1,…,Uk) can be represented as a categorical 

distribution after specifying each assignment to U1,…,Uk, in the form of tables (Table 

4.1) or the logistic regression model. When all variables are continuous (case II), 

people commonly assume Gaussian conditional densities: 

2

1 0( | ,..., ) ~ ( , )k i i

i

P X u u N a a u   

It has already been shown if all variables in Bayesian network follow the distribution 

above, the joint distribution is a multivariate Gaussian. For a more general case with 

both types of variables, studies are restricted to the scenario where there are both 

discrete and continuous parents to a continuous descendent (case III). Hence under 

different value assignments to discrete parents, the descendent variable follows a 

Gaussian distribution conditional on the other continuous parent, similar to case II. 

One major reason continuous parents to discrete variable are not allowed is to ensure 

exact computation methods (Friedman et al., 2000; Bottcher and Dethlefsen, 2003). 

Nevertheless, if such a situation where continuous parents point to a discrete variable 
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is encountered in real data analyses, some researchers compromise by simply treating 

a discrete descendent like a continuous one (Bottcher and Dethlefsen, 2003).  

 

P(X=x1|U1,…Uk),…,P(X=xn|U1,…Uk) U1 … Uk 

θ1, …, θn, θ1+…+θn = 1 u1 … uk 

… … … … 

θ1’, …, θn’ , θ1’+…+θn’ = 1 u1’ … uk’ 

Table 4.1 Specification of local distribution in a categorical Bayesian network. 

θ1, …, θn are parameters required to describe local probability mass function of X. 

 

4.2.3 Mixed Network with Partial Canonical Correlation Measure 

 

There are three possible scenarios in a mixed case: between categorical variables, 

between continuous variables and between categorical and continuous variables. The 

former two can be solved with our partial canonical correlation measure and 

conventional partial correlation measure, respectively. In the last scenario, continuing 

to use SNP as an example, where there are three categories: 
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Consequently, the partial correlation between X and Y can be defined as the first 

canonical correlation between {rx1, rx2} and εy. Furthermore, a test on the significance 

of the first canonical correlation will be equivalent to the corresponding ANOVA F- 

test on the regression model significance with εy on rx1 and rx2 (Knapp, 1978). 
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 Two simulation scenarios are represented below to verify this partial correlation 

concept in a mixed network. Simulations are similar to what we conducted in pure 

categorical network, except we let Y be continuous (Figure 4.9). As a result, Y is 

simulated in a different manner, while the others are the same 

1 1 1 2 2 1 1 2 2X X Z ZY X X Z Z            

Set [β1, βX1, βX2, βZ1, βZ2]
T
 = [-0.5, 1, -0.2, 1, -0.2]

T
, ε~N(0,1). It is expected that X and 

Y are correlated given Z while X is conditionally independent from Z. We still record 

the number of times true patterns are recognized through canonical correlation testing: 

498/500 = 99.6% for X, Y|Z and 366/500 = 73.2% for X, Z|Y. 

 

 

Figure 4.9 Simulation scenario I for mixed network. X and Z are categorical while 

Y is continuous. 

 

Moreover, we also consider the following scenario (Figure 4.10),  
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From X to Z, the parameters are the same as those previously used [β1, βX11, βX12, β2, 

βX21, βX22]
T
 = [-2, 1, 0.2, -3, 1.2, 0.2]

T
; From Z to Y, we set [β1, βZ1, βZ2]

T
 = [-0.5, 1, 

-0.2]
T
, ε~N(0,1). Examining the partial correlation between X and Y, the number of 

times our partial canonical test to successfully conclude a non-significant correlation 
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given Z: 457/500 = 91.4% 

 

 

Figure 4.10 Simulation scenario II for mixed network. X and Z are categorical 

while Y is continuous. 

 

Note that this approach will generate an undirected mixed network, without 

directional information as Bayesian network has. On the other hand, by excluding 

such information in the network, it does not have limitations caused by it. As 

explained earlier, in practice, mixed Bayesian network does not allow discrete 

variables to have continuous parents, which will not be an issue in PCNA with our 

partial canonical correlation measure. In addition, PCNA does not aim to find out the 

overall optimized network, but to focus on pairwise partial correlations. Hence, we 

might have a more intensive structure in comparison with Bayesian network, implying 

more information on pathway/pattern discovery. Summing them together, PCNA and 

Bayesian network require distinct interpretation. 
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Chapter 5 Network application to GWAS data 

 

 We used the same two datasets as we did in clustering analysis: COGEND - 2022 

subjects (1114 cases and 908 controls) with 215 SNPs; Crohn’s Disease - 491 patients 

having ileal disease location (considered as cases) and 131 patients having non-ileal 

disease location (considered as controls) with 29 SNPs. SNPs networks were then 

constructed with partial canonical correlation introduced earlier. For comparison 

purpose, we also established another two networks either by treating SNPs as single 

numeric variables (Pearson’s partial correlation) or by using joint sparse logistic 

regression model (Wang et al., 2011) in an R package LogitNet. 

 

Potential covariates in network were also examined when we applied these 

methods to Crohn’s Disease data. If the covariate is categorical (phenotype), SNPs 

networks under different phenotypic groups were estimated and compared to find 

distinct relations; if the covariate is continuous (mRNA), a Bayesian mixed network 

was built up so as to identify causal pathways from SNP to downstream gene. 

 

5.1 Collaborative Genetic Study of Nicotine Dependence (COGEND) 

 

Edges (grey lines) in SNPs network were either defined as significantly non-zero 

partial (canonical) correlations through statistical testing or numerically non-zero 

values under certain threshold (> 1e
-6

). For partial (canonical) correlations, since 

pairwise tests are conducted, multiple test correction must be implemented. In our 

study, false discovery rate is controlled at 0.05. Regarding “hub-SNPs” identification, 

we first plotted the numbers of edges from every SNP, producing a general picture to 

verify whether the underlying network possesses a hub-structure or not. If the 

hub-structure truly exists, it will be easy for us to set a threshold for selecting hub 

SNPs. Taking Figure 5.1 for an example, if two SNP variables pass the test on the fist 

canonical correlation at FDR = 0.05, they are connected with grey edge. SNPs with 
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notably large number of edges will be then considered as hubs. However, it appears 

most SNPs are intensively connected to each other. Plotting shows no evident gap 

between hypothesized hub-SNPs and the others.  

 

 

Figure 5.1 COGEND network analysis based on partial canonical correlation 

(FDR = 0.05). Edges are recognized by significance test on the first canonical 

correlation. According to edge numbers plotting, there is no convincing evidence to 

support a hub-SNP structure in network. 

 

 Network based on Pearson’s r hardly exhibits a hub-structure (Figure 5.2) and 

there are fifteen outliers considerably apart from the main network. Furthermore, a 

main advantage of joint sparse model estimation is that we can control the overall 

network complexity with the l1 penalty term, whereas this approach also generated an 

intensive network pattern with COGEND data (Figure 5.3). rs2600685 will be 

recognized as the only reasonable hub, which is different from partial canonical 

correlation measure. Given the complexity of all three networks, it is hard for us to 

present a thorough evaluation regarding their performances. Hence we further 

combined clustering and network techniques to perform a sequential analysis: 

hierarchical clustering with all 215 SNPs was conducted first and then SNP 

representative was selected within each cluster. The concept is similar to that in LD 

studies – SNP that has overall highest similarities (canonical correlations) to all the 

other SNPs within each cluster will be chosen. Subsequently, 11 SNPs from 11 
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clusters and 4 SNPs from cluster 0 (outliers) (Table 3.1) were included in the 

following network analysis. Lastly, we compare networks based on partial canonical 

correlation measure and sparse joint logistic regression (Figure 5.4 & Figure 5.5). 

According to the final outputs, rs1316971 is recognized by both methods while 

rs1107953 and rs2337980 are recognized by sparse joint logistic regression only. All 

the three SNPs belong to CHRN gene family – neuronal nicotinic receptor genes. 

Moreover, rs1316971 is a marker of CHRNB4, and was reported to affect early 

alcohol and tobacco initiation in young adults (Schlaepfer et al., 2007). On the other 

hand, rs2337980 is located in CHRNA7, a gene related to schizophrenia (Peng et al., 

2008) and rs1107953 has not associated with any neurological disease so far. 

Therefore, our partial canonical correlation measure successfully identified a 

“hub-SNP” that is truly associated with nicotine-addition. 

 

 

Figure 5.2 COGEND network analysis based on partial correlation measure 

(FDR = 0.05). Edges are recognized by significance test on Pearson’s partial 

correlation. According to edge numbers plotting, there is no convincing evidence to 

support a hub-SNP structure in network, whereas fifteen SNPs are apart from the 

main framework. 
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Figure 5.3 COGEND network analysis based on joint sparse logistic regression 

modeling. Edges are recognized by non-zero values (>1e
-6

). According to edge 

numbers plotting, a threshold = 120 (red line) is set to distinguish hub-SNP (blue) 

from the others (green) in the left panel. 

 

  

Figure 5.4 COGEND network analysis based on partial canonical correlation 

after clustering with canonical correlation measure (FDR = 0.05). Edges are 

recognized by significance test on the first canonical correlation. A threshold = 3 (red 

line) is set to distinguish hub-SNP (blue) from the others (green).  
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Figure 5.5 COGEND network analysis based on joint sparse logistic regression 

modeling after clustering with canonical correlation measure. Edges are 

recognized by non-zero values (>1e
-6

). A threshold = 10 (red line) is set to distinguish 

hub-SNP (blue) from the others (green).  

 

5.2 Crohn’s Disease Study 

 

5.2.1 Network Analysis with 29 SNPs 

 

Figure 5.6 compiles network analysis outputs based on partial canonical 

correlation measure. Figure 5.7 and 5.8 show results based on partial correlation and 

sparse logistic regression respectively. It appears that network would still exhibit a 

fairly hub-structure with sparse logistic regression modeling while it failed to do so 

when we conducted partial (canonical) correlation tests. In sparse logistic regression 

modeling regarding hub-structure, two SNPs, IL23R and STAT3 were selected as 

hub-SNPs.  
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Figure 5.6 Network analysis of Crohn’s disease study based on partial canonical 

correlation measure (FDR = 0.05). Edges are recognized by significance test on the 

first canonical correlation. There is no convincing evidence to support a hub-SNP 

structure in network. 

 

 

Figure 5.7 Network analysis of Crohn’s disease study based on partial 

correlation measure (no multiple test correction). Edges are recognized by 

significance test on Pearson’s partial correlation. According to edge numbers plotting, 

there is no convincing evidence to support a hub-SNP structure in network. After 

correction with FDR = 0.05, there is no significant partial correlations in network. 

 



68 
 

 

Figure 5.8 Network analysis of Crohn’s disease based on sparse logistic 

regression modeling. Edges are recognized by non-zero values (>1e
-6

). According to 

edge numbers plotting, a threshold = 15 (red line) is set to distinguish hub-SNPs (blue) 

from the others (green) in the left panel. 

 

5.2.2 Phenotype as Covariate in Network 

 

Similar to the “tag-SNPs”, hub-SNPs can be viewed to include most of the 

information from all SNPs. Hence it seems that classification performance with those 

hub-SNPs should be performed, by including them as independent variables in any 

classification model. However, disease location information was out of our 

consideration when we constructed SNPs network. As a result, there is no natural 

connection from SNPs network to additional information on disease location. In fact, 

neither of IL23R and STAT3 can be associated significantly with phenotype. It can be 

seen through univariate chi-square tests between individual SNP and phenotype (Chen 

et al., 2011). Besides, as demonstrated with variable selection, NOD2 and TNFSF15 

were selected in the final model, whereas, both of them own relatively smaller 

number of edges in Figure 5.6 - 5.8. Such discrepancy implies that most of SNPs will 

have little effect size on disease and can be regarded as the majority “background”, 

while the truly disease-associated SNPs would be far away from the majority and 

show weaker relations to these background SNPs. In order to connect SNPs network 
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to disease phenotype study, we might need other approaches, e.g., treating disease 

phenotype as a covariate in network analysis. 

 

As explained in the last chapter, within case and control groups, we can construct 

SNPs network separately and then compare the underlying structural difference. For 

every possible edge in network (regardless of non-zero significance), a confidence 

interval may be obtained with bootstrapping method. If the corresponding confidence 

intervals from case and control groups do not overlap, we conclude that this partial 

relation between SNPs is different. Table 5.1 summarizes 44 different conditional 

relations with sparse logistic regression modeling. After incorporating phenotype as a 

covariate, we found previously identified hub-SNPs IL23R and STAT3 did not account 

for the major difference between two networks, while ATG16L1 possesses quite a few 

distinct conditional dependencies in case and control groups, further suggesting that 

hub-SNPs should not be assumed to have greater effect size on phenotype. Because 

results from partial canonical correlation measure are not readily interpretable, 

subsequently, a simple alternative is simply to focus on non-zero partial correlations 

(conditional dependencies) that are shown in one network but not the other (Table 

5.2). 

Different conditional relations  

ATG16L1-STAT3 ICOSLG-MST1 CCR6-JAK2 

ATG16L1-ICOSLG ICOSLG-JAK2 PTPN2-C11orf30 

ATG16L1-ITLN1 21q21-rs1456893 PTPN22-TNFSF15 

ATG16L1-TNFSF15 21q21-TNFSF15 PTPN22-IL12B 

ATG16L1-rs7746082 21q21-LOC651731 PTPN22-NKX2_3 

ATG16L1-IL12B rs1456893-ITLN1 PTPN22-MUC19 

ATG16L1-NKX2_3 rs1456893-PTPN22 TNFSF15-IL12B 

ATG16L1-LOC651731 rs1456893-TNFSF15 TNFSF15-NKX2_3 

IL23R-LOC651731 rs1456893-MUC19 TNFSF15-LOC651731 

STAT3-LOC4411108 LOC4411108-ITLN1 C11orf30-IL12B 
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STAT3-ITLN1 ITLN1-PTPN22 C13orf31-NKX2_3 

STAT3-TNFSF15 ITLN1-CDKAL1 CDKAL1-IL12B 

STAT3-LOC651731 ITLN1-NKX2_3 IL12B-LOC651731 

ICOSLG-LOC4411108 ITLN1-ZNF365 rs17582416-ZNF365 

ICOSLG-ITLN1 CCR6-PTPN22  

Table 5.1 Different conditional relations of SNPs from L1 + L3 vs. L2, according 

to sparse logistic regression model. 

 

Different conditional relations 

NOD2-CCR6 STAT3-PTPN22 rs1456893-rs17582416 

ATG16L1-IRGM STAT3-TNFSF15 LOC4411108-ITLN1 

ATG16L1-STAT3 STAT3-ORMDL3 LOC4411108-ORMDL3 

ATG16L1-ITLN1 STAT3-C13orf31 LOC4411108-C13orf31 

ATG16L1-PTPN2 STAT3-CDKAL1 LOC4411108-JAK2 

ATG16L1-PTPN22 STAT3-ZNF365 LOC4411108-ZNF365 

ATG16L1-TNFSF15 STAT3-LOC651731 ITLN1-C11orf30 

ATG16L1-PTGER4 ICOSLG-rs1456893 ITLN1-CDKAL1 

ATG16L1-CDKAL1 ICOSLG-LOC4411108 ITLN1-rs17582416 

ATG16L1-IL12B ICOSLG-ITLN1 ITLN1-NKX2_3 

ATG16L1-rs17582416 ICOSLG-PTPN22 ITLN1-ZNF365 

ATG16L1-ZNF365 ICOSLG-ORMDL3 CCR6-TNFSF15 

ATG16L1-MUC19 ICOSLG-PTGER4 CCR6-rs17582416 

IL23R-STAT3 ICOSLG-CDKAL1 CCR6-NKX2_3 

IL23R-21q21 ICOSLG-rs17582416 PTPN22-C11orf30 

IL23R-rs1456893 ICOSLG-ZNF365 PTPN22-NKX2_3 

IL23R-ITLN1 21q21-rs1456893 PTPN22-MUC19 

IL23R-CCR6 21q21-PTPN22 TNFSF15-PTGER4 

IL23R-PTPN2 21q21-TNFSF15 TNFSF15-NKX2_3 

IL23R-TNFSF15 21q21-MST1 TNFSF15-LOC651731 
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IL23R-PTGER4 21q21-PTGER4 ORMDL3-CDKAL1 

IL23R-CDKAL1 21q21-CDKAL1 MST1-rs17582416 

IL23R-IL12B 21q21-IL12B C11orf30-ZNF365 

IL23R-NKX2_3 21q21-MUC19 CDKAL1-IL12B 

IL23R-ZNF365 rs1456893-LOC4411108 CDKAL1-NKX2_3 

IL23R-MUC19 rs1456893-ITLN1 CDKAL1-MUC19 

STAT3-ICOSLG rs1456893-CCR6 rs7746082-rs9286879 

STAT3-21q21 rs1456893-PTPN22 IL12B-ZNF365 

STAT3-LOC4411108 rs1456893-PTGER4 IL12B-LOC651731 

STAT3-ITLN1 rs1456893-CDKAL1 rs17582416-ZNF365 

STAT3-CCR6 rs1456893-IL12B NKX2_3-ZNF365 

Table 5.2 Different non-zero conditional relations of SNPs from L1 + L3 vs. L2, 

according to sparse logistic regression model. 

 

5.2.3 Continuous Variables in Network 

 

 We also investigated relations between SNPs and continuous variables in a mixed 

network. To ensure an interpretable network analysis, we limited SNPs of interest to 

NOD2 and ATG16L1, the two major SNPs associated with Crohn’s Disease. 

Continuous variables are mRNA expression profiles, which were chosen by 

classification feature selection (CD vs. control) according to microarray data. We then 

compared the network outputs from Bayesian mixed network and PCNA with our 

partial canonical correlation measure. It is noteworthy that the dataset used here is 

slightly different: we have to ensure every observation for this study has both SNPs 

and microarray information, thus the sample size is much smaller (n = 98). Finally, 

the R package deal was used to search the optimal Bayesian network pattern, 

complying with maximum likelihood principle (Bottcher and Dethlefsen, 2003).  

 

We first included the nine most important mRNAs selected by boosting in R 

package CMA. Figure 5.9 shows the result from Bayesian mixed network. Because of 
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the local Markov property of Bayesian network, arrows in the network may suggest 

casual relationships and therefore have biological interpretations. For instance, notice 

that FOLH1 is the only parent variable of BAX, in other words, expression level of 

BAX is independent to all the other information in this network, given FOLH1’s 

expression. FOLH1 encodes a folate hydrolase, a type II transmembrane glycoprotein 

belonging to the M28 peptidases family. It works as a glutamate carboxypeptidase on 

folate and other substrates. On the other hand, BAX encodes Bcl-2-associated X 

protein, which facilitate apoptosis. It has been found that low Bax expression in 

mucosal tissue may prevent T cells from activation and apoptosis, which is necessary 

for immune homeostasis. And subsequently, the decay of immune system triggers 

Crohn’s disease formation (Itoh et al., 2001). Although there is no published research 

yet reporting FOLH1 and BAX could act in the same physiological pathway, folate 

deficiency syndrome has been associated with decreased Bax expression in colon 

cancer cells (Novakovic et al., 2006). Regarding direct effects from SNP to mRNA, 

there are three conditional dependencies: ATG16L1 to PACSIN1, NOD2 to SORD and 

NOD2 to CYP26B1. It is well recognized that ATG16L1 plays a key role in the 

autophage pathway, affecting intestinal Paneth cells (Cadwell et al., 2008). 

Consistently, PACSIN1 belongs to a kinase family that regulates macroautophage 

process, aiming to maintain cellular homeostasis (Szyniarowski et al., 2011); NOD2 

may be the most important Crohn’s disease associated phenotype. The underlying 

NOD2 protein mainly recognizes bacterial pepetidoglycans and regulates downstream 

immune reactions. Correspondingly, it has been claimed that T cell activation involves 

SORD and CYP26B1 (Wang et al., 2008; Takeuchi et al., 2011). To sum them together, 

putting both genotype and mRNA in a mixed network provides us another opportunity 

to perform data-driven pathway analysis. It may bridge the gap between statistical 

modeling and biological bench work. The conditional relationships in network, or 

more specifically causalities, give potential directions in terms of finding out novel 

pathogenic pathways of interest.  
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Figure 5.9 Bayesian mixed network with genotype and mRNAs. Black nodes 

indicate categorical SNPs - NOD2 and ATG16L1 while white nodes are continuous 

variables representing mRNA profile of nine Crohn’s Disease related genes. Arrows 

distinguish parents and descendents. 

 

 We applied our partial canonical correlation measure to this mixed variables 

situation. It is worthy to point out again that such PCNA is an undirected graph 

modeling, which means it needs different interpretation on outputs. Figure 5.10 

depicts a similar network structure. Regardless of direction/causal relationships, 

arrows in Figure 5.9 are partially overlapped with the edges in Figure 5.10. For 

instance, KIAA0644 is connected with SOSTDC1 and CYP26B1 in a Bayesian 

network while it is associated with SOSTDC1 and FOLH1 in terms of partial 

canonical correlation measure. Nonetheless, the biological meaningful pathways in 

Figure 5.9 (ATG16L1 to PACSIN1, FOLH1 to BAX, etc.) are still kept in PCNA; it 

may provide some new relations that are worthy to explore in further studies. For 

example, ATG16L1 and BAX are linked together in Figure 5.10, suggesting a possible 

crosstalk between autophage and apoptosis pathways, which can be trigger by 

common signals. 
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Figure 5.10 Mixed network analysis with genotype and mRNAs based on partial 

canonical correlation (FDR = 0.05). Note that edges have no direction information. 

 

 In practice, there are several other ways to perform feature selection among genes 

(probes) in microarray, including Prediction Analysis for Microarrays (PAM), 

RandomForest and least absolute shrinkage and selection operator (lasso). More 

importantly, each method would generate distinct feature list (results not shown). 

Therefore, we should conduct a batch of mixed network analyses with every mRNA 

list, so as to achieve a thorough investigation on relationship between SNPs and 

mRNAs. Alternatively, we can choose features (mRNAs) that are consistently picked 

across different platforms as input. According to work from other students in our 

group, there are six mRNAs – FOLH1, KIAA0644, AK130891, NPC1L1, C4orf7, and 

DB340110 selected more than three times from the four methods mentioned above. 

Subsequently, these six mRNA expression profiles were included in a new round of 

mixed network analyses, along with NOD2 and ATG16L1. Figure 5.11 – 5.12 are 

outputs based on Bayesian network and partial canonical correlation measure, 

respectively. It appears that no effect from NOD2 or ATG16L1 to mRNA expressions 

will be recognized in an optimized Bayesian network. Regardless, the identified 
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network structure in Figure 5.11 would be not unique in terms of class equivalence. 

The sub-structure with AK130891, NPC1L1, C4orf7, and DB340110 can be replaced 

with alternative relationships (red lines). Hence causal directions within this structure 

cannot be confirmed unless there is additional biological evidence. On the other hand, 

partial canonical correlation measure generates a highly similar network, but also 

provides additional clues from genotypes to gene expressions - ATG16L1 to DB340110. 

However, DB340110 currently refers to an unexplored mRNA. There is no published 

study on its function so far. Hence, more evidence from future biological work would 

be necessary to support our finding in a mixed network according to partial canonical 

correlation measure. 

 

Figure 5.11 Bayesian mixed network with genotype and mRNAs selected by all 

the four methods. Black nodes indicate categorical SNPs - NOD2 and ATG16L1 

while white nodes are continuous variables representing mRNA profiles of six 

Crohn’s Disease related probes. Red lines indicate an equivalent alternative.  
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Figure 5.12 Mixed network analysis with genotype and mRNAs selected by all 

the four methods, based on partial canonical correlation (FDR = 0.05). Black 

nodes indicate categorical SNPs - NOD2 and ATG16L1 while white nodes are 

continuous variables representing mRNA profiles of six Crohn’s Disease related 

probes. Note that ATG16L1 is linked to DB340110. 
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Chapter 6 Discussion and Future Work 

 

6.1 Canonical Correlation Measure in Hierarchical Clustering Analysis 

 

 Applications to both GWAS datasets support that our novel canonical correlation 

measures as an appropriate way to quantify pairwise association strength of SNPs. 

According to our clustering results, canonical correlation performs at least as well as 

the popular linkage disequilibrium measure r. And Cramér’s V, another measure 

closely related to canonical correlation analysis, also works quite well. The other two 

measures included for comparison purpose, Pearson’ r and Kendall’s τ, did not 

achieve satisfying outputs. It implies that we must be cautious when treating SNPs as 

continuous or ordinal variables, even though the 0, 1 and 2 coding has biological 

meaning in terms of the risk allele number. 

 

Besides the performance outcomes, canonical correlation measure may have 

additional advantages in practical sense. For instance, it would be feasible for us to 

define categorical cluster centers with this measurement. With polynomial coding {S, 

S
2
} in our studies, we can determine cluster mean in the form of { 2,S S }, assuming the 

two coded dummy variables are in a continuous manner. Consequently, this new 

definition could be helpful for cluster number determination with the ordinary R
2
 

computation or for obtaining representative SNPs after clustering. Figure 6.1 shows a 

comparison of R
2
 plot from COGEND data between polynomial coding and single 

numeric coding (0, 1 and 2); the difference is immaterial. This is expected to some 

degree since polynomial coding eventually added one more calculation for sum of 

squares, which is from the coded variable S
2
. The other dummy variable S includes 

equivalent information from single numeric coding. Given the fact that S
2
 is highly 

correlated with S, results having information from both S and S
2
 should be similar to 

results having information merely from S. Said in another way, it also explains why 

single numeric coding with SNP may also work well in certain GWAS articles 
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(Parkhomenko et al., 2009).  

 

Figure 6.1 Clustering number determination with R
2
. Clustering is based on 

COGEND dataset with 215 SNPs, sum of squares were calculated through either 

polynomial dummy coding (left) or single numeric coding – 0, 1 and 2 (right).  

 

Because the ultimate goal in GWAS is to find out disease-related SNPs, clustering 

is merely a dimensional reduction approach to achieve this. With the linkage 

disequilibrium measure, tag-SNP concept is commonly applied – select a SNP 

representative that shows highest LDs to all the others in each cluster/region; with the 

canonical correlation measure, we may be able to use cluster means { 2,S S } directly. 

Either way, we then include these representatives in a logistic regression model to 

predict disease phenotype. Table 6.1 - 6.2 summarize their classification performances 

based on COGEND data. We discovered the canonical correlation measure has lower 

specificity (28.6%) than LD (36.9%) and slightly higher sensitivity (76.8%) than LD 

(76.3%). A more comprehensive comparison is also made across three measures: 

canonical correlation, linkage disequilibrium and Cramér’s V with the conventional 

tag-SNP concept (Table 6.3). SNPs that have the highest (median) similarities to all 
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the other SNPs within each cluster are selected into the logistic regression model to 

examine the prediction power from selected SNPs. SNPs identified as outliers (cluster 

0) were also included. As shown in Table 6.3, none of them achieves a satisfying 

overall performance. The major reason for such poor classification would be 

confounding effects, most likely coming from the population structure. Previous 

studies on nicotine-addiction have pointed out that SNPs may be in different 

association patterns with phenotype within African-Americans and 

European–Americans subgroups (Saccone et al., 2009). Unfortunately, we do not have 

such covariate information on our data. Regardless, there must be other confounding 

factors in our study. For instance, rs16969968, a SNP described earlier shows a 

medium effect size (odds ratio = 1.40) on a dataset without population ancestry 

discrimination, but has a much smaller effect size (odds ratio = 1.18) in ours. 

Nevertheless, instead of focusing on particular classification performance, our 

canonical correlation measure implies another general way to select the most relevant 

SNPs information from high-dimensional data. 

 

 Truly non-addicted Truly addicted Total 

Predicted as non-addicted 260 258 518 

Predicted as addicted 648 856 1504 

Total 908 1114 2022 

Table 6.1 Classification performance with cluster means from canonical 

correlation measure. Leave-one-out cross validation was applied to estimate 

prediction accuracies and 0.5 was set to be the threshold since our dataset exhibits a 

fairly balanced design (1114 cases and 908 controls). 

 

 Truly non-addicted Truly addicted Total 

Predicted as non-addicted 335 264 252 

Predicted as addicted 573 850 1770 

Total 908 1114 2022 

Table 6.2 Classification performance with tag-SNPs from LD r. Leave-one-out 

cross validation was applied to estimate prediction accuracies and 0.5 was set to be 
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the threshold since our dataset exhibits a fairly balanced design (1114 cases and 908 

controls). 

 

Measure Specificity 

(%) 

Sensitivity 

(%) 

Overall accuracy 

(%) 

Canonical 

correlation 

35.4 74.2 56.8 

Linkage 

disequilibrium 

36.9 76.3 58.6 

Cramér’s V 36.2 73.8 56.9 

Table 6.3 Classification performance with tag-SNP concept from three measures. 

Leave-one-out cross validation was applied to estimate prediction accuracies and 0.5 

was set to be the threshold since our dataset exhibits a fairly balanced design (1114 

cases and 908 controls). 

 

 Finally, there have been more risk loci identified from GWAS on Crohn’s disease 

since our published study (Chen et al., 2011). After Barrett’s paper in 2008, the 

number of SNPs associated with Crohn’s disease is doubled (Khor et al., 2011). 

Besides, much more subjects are available now for statistical analysis. The latest 

GWAS study even includes >15,000 subjects in both disease and control groups 

(Rivas et al., 2011). Therefore, more thorough clustering analysis with increasing SNP 

candidates and sample size could be conducted in future, so as to further verify our 

stepwise variable selection findings. 

 

6.2 Partial Canonical Correlation Measure in Network analysis 

 

6.2.1 Categorical Network 

 

 Upon results from two GWAS datasets, our partial canonical correlation measure 

appears to be largely different from the joint sparse logistic modeling, in terms of the 

hub-SNPs recognition (COGEND) and the overall network structure (Crohn’s 
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disease), while ordinary partial correlation measure would generate greater 

discrepancies. In particular, we did not obtain reasonably sparse (or hub) structure 

with either dataset. Further work on other real data or simulation will be necessary to 

thoroughly evaluate their performances. Moreover, we found there are certain 

practical problems in R package LogitNet. It is suppose to be able to handle 

multi-category variables, such like SNP with NR/NR, NR/R and R/R genotypes 

(Wang et al., 2011), but it is only applicable to binary data in practice. As a result, we 

had to combine R/R and NR/R together. 

 

 Another potential application of partial canonical correlation between Pearson 

residuals would be in clustering analysis. Since its value is bound by 0 and 1, it may 

be also suitable to be used as dissimilarity input. In fact, partial canonical correlation 

measure might be more relevant to fundamental GWAS research purpose. For 

instance, in our Crohn’s Disease subphenotype dataset, we performed variable 

selection in a logistic regression model and successfully identified two associated 

SNPs - NOD2 and TNFSF15. Variable selection can be viewed as a detection of 

conditional effect from a variable given all the others that are already selected in the 

model. Therefore, we should expect that partial canonical correlation measure gives 

consistent clustering output. Most importantly, NOD2 and TNFSF15 are located in 

distance braches (Figure 6.2). 
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Figure 6.2 Clustering dendrogram of 29 SNPs with partial canonical correlation 

measure. 

 

 A future direction of network analysis is to incorporate genotype information 

when establishing a SNPs network. In reality, we pay more attention to 

disease-associated SNPs than hub-SNPs within an intra-SNP network. Applications to 

both COGEND and Crohn’s disease data also reveal such a problem, considering the 

poor classification performance with hub-SNPs as prediction variables. Inclusion of 

genotype information may be achieved through network structure comparison 

between case and control groups (Table 5.1 and Table 5.2). Alternatively, there has 

been a biological solution for this problem: code SNPs in terms of disease-associated 

information other than three-category genotype. For example, loss of heterozygosity 

(LOH) is a commonplace phenomenon in cancer studies. As result, SNPs can be 

coded in binary form, where 1 indicates the occurrence of LOH after comparing 

cancer tissue with normal tissue (Wang et al., 2011). However, this solution may not 

suitable for a general scenario, because it is not always feasible for us to incorporate 
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disease information in this way. In addition, a recent paper discussed a joint allelic – 

linkage disequilibrium test with a specific coding scheme (Kim et al., 2010). Let X, Y 

denote any two SNPs: {AA, Aa, aa} and {BB, Bb, bb} and be coded as -1, 0 and 1 

along with the order of genotypes listed in brackets. It can be shown that a logistic 

regression on disease phenotype relates the regression coefficients test to the 

corresponding joint allelic – LD test: 

 
0log

1
X Y XYX Y XY


   



 
    

 
 

( , , ) 0 Joint Allelic - LD testX Y XY      

It is essential to realize that interpretation from this test is completely different from 

sparse joint logistic regression or partial canonical correlation: non-zero edge from 

this test refers to a rejection on allelic – LD test: (βX, βY, βXY) ≠ 0, not conditional 

independency between X and Y. 

 

 Finally, we list the comparison between Markov random field and our partial 

canonical correlation measure in the following: 

1) Both are able to detect conditional dependency. Edges identified in a network 

have the same interpretation. 

2) Markov random field is conducted with numerical method while partial canonical 

correlation is based on testing (multiple test correction is required). Hence, 

threshold is set differently: non-zero values in MRF and a certain significance test 

level in partial canonical correlation. 

3) Current numerical methods in Markov random field mainly deals with binary data 

while our method is designed for multi-category case. 

4) According to our real data application, our method would not generate an 

intensive network structure, even without an explicit sparsity control in MRF. 

However, sparsity control implementation could be a future direction. 
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5) Our current method is not designed to the n<<p scenario, which can be handled 

with Markov random field method. But this difficulty can be remedied through a 

combination with clustering analysis (COGEND) (Figure 5.4). 

 

6.2.2 Mixed Network 

 

In our further studies on the Crohn’s disease data, mixed network was 

implemented for pathway discovery purpose. The existing Bayesian network and the 

extension of our partial canonical correlation measure were applied to find out 

relationships between SNPs and mRNAs. According to our results, they would 

provide similar outputs. Pros and cons of each method are summarized below: 

1) Bayesian mixed network is able to distinguish parents variables between 

descendents, thus provides directional (causal) relationship. On the other hand, 

our partial canonical correlation measure aims to make ordinary PCNA applicable 

to mixed data, generating an undirected graph. Although it might also be possible 

to have causality information from a simple partial correlations structure, such as 

partial correlations within three or four continues variables, the interpretations on 

edges from the two methods are different. 

2) Current Bayesian mixed network analysis (deal) does not allow continuous 

variables pointing to discrete descendents, which may become a practical issue 

when discrete variables other than SNPs are included. Unlike genotypes that are 

expected to be parents of mRNA expression levels, other covariates such as 

smoking status and disease phenotype would not have such clear prior information. 

In other words, we should not exclude potential effect from continuous mRNAs to 

these discrete covariates. Partial canonical correlation measure does not require 

such restriction in analysis. It is suitable for a more general mixed scenario. 

3) Equivalent class is an essential concept in Bayesian network, which implies that 

the optimized network structure is not unique – there are several equivalent ways 

to represent the entire network with different local distributions. Programming is 
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not able to distinguish them since they all possess the same score. Under this 

condition, casual pathways cannot be verified statistically (Figure 5.9). 

4) For a large number of controlled categorical variables, multicollinearity could 

exist in regression/logistic regression with the partial canonical correlation 

measure, causing the obtained Pearson’s residuals to be unreliable. However, this 

practical issue can be solved by principle component analysis on the controlled 

categorical variables. 

5) With the Crohn’s disease data, we also tried including all the 17 mRNAs from the 

boosting feature selection on microarray data, but then the entire network will 

contain excessive edges for both methods (results not shown). We only included 2 

major SNPs – NOD2 and ATG16L1, given the fact that there are 29 SNP 

candidates. As explained earlier, such restriction on the variable number is mainly 

to ensure the overall network interpretability. Thus, sparsity control would be a 

future development of our method. In regards to the Bayesian network, a 

combination of focusing on mixed variables scenario (Friedman et al., 2000; 

Bottcher and Dethlefsen, 2003) and obtaining sparse solutions (Tipping, 2001) 

will be necessary for a more thorough investigation in the future. 
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