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Abstract of the Dissertation

Automatic Mesh Generation and Processing for
Biomedical Geometries

by

Volodymyr Dyedov

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2012

Introduction of advantages of fluid dynamics simulations into clinical practice
depends on ability to quickly create patient-specific computational models from
computed tomography or magnetic resonance images with minimal human in-
teraction. Our research addresses three steps in this process. First is identifying
lung airways in radiological images. Our approach is based on a combination
of geometric analysis of gradient vector flow and graph-based algorithms. Sec-
ond is a novel method for robust and efficient computation of medial curves for
complex biomedical geometries. This algorithm is based on three key concepts:
a local orthogonal decomposition of geometry into substructures, a differential
concept called the interior center of curvature, and integrated stability and con-
sistency tests. Finally, we introduce variational method for generating prismatic
boundary-layer meshes. Compared to existing methods, our approach is novel
in the following aspects: it relies on feature size to make resulting mesh scale
invariant and prevent global self-intersections; it uses face-offsetting method to
propagate surface mesh to generate the high-quality prismatic layers; finally, it
allows to add prismatic boundary layer to any tetrahedral mesh while preserving
structural qualities of original discretization.
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Chapter 1

Introduction

Computational continuum physics has become a platform for discovery in many
scientific and engineering disciplines, including biomedical research. For exam-
ple, the understanding of blood shear stress profiles requires numerical simulations,
which can shed light on the pathophysiology of thrombus formation or rupture in
cerebral aneurysms [35, 64]. Also, evaluating risk of cerebral aneurysm rupture can
be modeled as a fluid-structure interaction problem. If risk is deemed high enough
to warrant a surgery, the operation has to be planned with high precision because
the effects of an increased wall stress caused by the intervention will only be ev-
ident over time. Similarly, fluid and particle dynamics in the lung can shed light
on airway smooth muscle spasm in asthma or abnormal clearance in cystic fibrosis
[12, 41]. Many of these biomedical problems involve complex geometries, which
are increasingly derived from imaging modalities such as magnetic resonance or
computed tomography. Image processing and isosurface extraction have been the
subject of much research (e.g. [49, 57, 58, 73]). While these techniques have be-
come relatively mature in recent years to extract surface geometries from medical
images, the whole process of extracting topologically correct volumetric image still
requires a lot of manual interaction and is time-consuming. Geometries extracted
from medical images are noisy and can be substantially more complex than the
man-made CAD models in classical engineering problems. Therefore, significant
challenges remain in the pre-processing and generation of computational meshes
from these complex biological geometries.

We have been working on framework that will provide a pipeline from medi-
cal images to simulation of physics of fluids. Patient-specific simulations require
ability to quickly build computational models of the organs from radiological data
with minimum of human interaction. In this work we addressed three steps in the
process. First, airways or blood vessels have to be identified in the computed to-
mography or magnetic resonance image. Images we have been working with are CT
scans of rodents whose airways were injected with silicone. Density of the silicone
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filling is close to that of surrounding rib cage and spine which makes it difficult to
differentiate between them based on intensity, moreover, they appear connected in
the image. Local structure of airways and bones is also similar as they both can be
viewed as collection of tubes. Finally, the cast material often forms bubbles which
appear as darker points in the domain and areas of brightness where contrast agent
dissolved unevenly forming pockets. Our approach is based on a combination of
geometric analysis of gradient vector flow and graph-based algorithms. We divide a
problem of identifying airways into sub-tasks of extracting connected airways and
surrounding bone structure and then separating them from each other.

Result of the image segmentation is a volume mesh. Surface mesh extracted
directly from this representation has to be pre-processed to accommodate boundary
conditions. Imposing proper outlet boundary conditions for accurate simulations re-
quires the identifications of outlets. Introduction of orthogonal boundary patches -
outlets, into treed structures, such as arterial or airway trees, is a challenging part of
transforming images into computational mesh. Traditionally, this process is accom-
plished interactively using some surface mesh editor. But with recent advances in
image acquisition and processing, it is now common to resolve tens of thousands of
dense branches in these geometries, like in lung airways. So manual manipulation
becomes impossible. We introduced an efficient and robust approach to identify-
ing and truncating the outlets for complex biomedical geometries. This technique
led to developing the method of medial axis computation for certain types of ge-
ometries. The computation of medial curves poses significant challenges, both in
terms of theoretical analysis and practical efficiency and reliability. In biomedical
engineering medial curves are important for multi-scale modeling [24], morphom-
etry [17, 80], physiology [53], image analysis [50], and computer assisted surgery
[78]. For example, the medial curves can form the basis of a morphometric analy-
sis of tree-structured airways in the lung [17] or coronary vessels in the heart [25],
by providing statistics for segment length, diameter, and bifurcation angle. Since
the medial curves embed the topology of the tree and distill its geometry, these
data can then be analyzed for fractal relationships that reveal genetic decision mak-
ing in morphogeneis, pathological remodeling or anatomic variation. Furthermore,
in multiscale modeling, these data can form the basis of physiological multiscale
boundary conditions in the form of lower-dimensional differential equations that
represent the biophysics of subsets of the vessel or airway tree at a scale that is
not practical to represent as a 3D continuum [24]. In endoscopy or virtual surgery,
the medial curves can help to pilot diagnostic devices to a specific location in the
airway or vessel tree [78].

In second part of the writeup, we propose a definition and analysis of medial
curves and also describe an efficient and robust method called local orthogonal
cutting (LOC) for computing medial curves. Our approach is based on three key

2



concepts: a local orthogonal decomposition of objects into substructures, a differ-
ential geometry concept called the interior center of curvature (ICC), and integrated
stability and consistency tests. These concepts lend themselves to robust numerical
techniques and result in an algorithm that is efficient and noise resistant. Next part
will talk about hybrid mesh generation based on the input surface preprocessed by
LOC.

Third part is devoted to generation of hybrid prismatic-tetrahedral volume mesh.
The grid is the link between geometry and the resolution of the flow physics. Its
density and quality is of significant importance for the solution accuracy. For most
applications two most important types of interpolation errors are the difference be-
tween the interpolated function and the true function, and the difference between
the gradient of the interpolated function and the gradient of the true function. Errors
in the gradient can be extremely important for blood flow simulation. Pathology in
wall shear stress can have dramatic consequences for patients so gradient error is
the primary arbiter of element quality. In finite element methods they contribute
to discretization errors. If the true function is smooth, the error in the interpolated
function can be reduced simply by refining the mesh. However, the error in the gra-
dient is strongly affected by the shape of the elements as well as their size. Finite
element method rely on the availability of meshes whose elements have the right
shapes and sizes. Element shape has a strong influence on matrix conditioning.
Condition number of the stiffness matrix associated with the method should be kept
as small as possible. Poorly conditioned matrices affect linear equation solvers by
slowing them down or introducing large roundoff errors into their results.

Viscous flows like air and blood flow tend to have strong gradients at the bound-
ary due to wall shear stress, an effect that has been shown to be extremely important
in biomechanics. We generate volume mesh based on a given surface. In boundary
layer regions of the flow field derivatives normal to the wall can be much greater
than they are parallel to the flow. We fill this region with several layers of prisms
to resolve these features of the flow by concentrating computational grid at the wall
while keeping the overall computational cost of the problem tractable. The use
of tetrahedra to fill the rest of the domain allows single-block generation for ex-
tremely complex geometries since the tetrahedron is the simplex element in 3-D.
This approach has the advantages of creating elements that are mostly orthogonal
to the wall in regions of high solution gradients while essentially decoupling the
grid density in the normal and tangential directions. In addition, prismatic layers
have been shown to be effective in reducing errors in turbulence, particle deposi-
tion, and mass-transfer problems. In biological fluid-structure interaction problems
with a Lagrangian interface, prismatic boundary layers are also desirable near the
interfaces, such as closing cardiac valves. In these cases, the direction of impaction
is locally normal to the boundary, so it is aligned with axis of the prisms. Thus,
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prisms as opposed to tetrahedra are less prone to entanglement.
Generating such a mesh based on surface of biomedical object faces some sig-

nificant challenges. First of all, they can have large variations in curvature. Unlike
man-made engineering models, biomedical geometries have no well-defined sharp
features but combination of high curvature and coarse resolution can introduce near-
singularities. In addition, biological geometries often span multiple spatial scales.
The lumen of a coronary artery, for example, may be several orders of magnitude
smaller than the span across a ventricle, and thus there is a need to equilibrate error
over a range of meaningful scales. These challenges are not limited to the heart.
The airways of the lung for example range from a several centimeters to hundreds
of microns.

We propose a new method for generating prismatic boundary-layer meshes that
is suitable for complex biological geometries. Compared to existing methods, our
method is novel in the following aspects:

1) We use the feature size defined to control the height of the prisms to make
the resulting mesh scale invariant and prevent global self-intersections.

2) We use the face-offsetting method to propagate the surface mesh to gener-
ate the prismatic layers, which provides reliable directions of vertex motions and
prevents local self-intersections.

3) We develop a variational mesh optimization for prismatic layers, which im-
proves not only the shapes of the triangles but also the orthogonality of the prisms.

4) We propose an approach to introduce high quality boundary layer to any
tetrahedral mesh while preserving structural qualities of the original discretization.

4



Chapter 2

Segmentation

2.1 Introduction
The heart mesh used in our simulations is an idealized model. On the other hand,
surfaces of airways in lungs and coronary vessels were extracted from radiological
images, e.g. computer tomography. In this section we will address the problem
of identifying airways in the chest image. This is an example of image segmenta-
tion problem, which had been an active area of research in computer science and
electrical engineering. Segmentation of airways for generating meshes used in this
work had been done through manually intensive and time consuming process. This
section describes our work on automating the task of identifying airways in the CT
chest images.

Problem of segmentation of airways in medical images attracted a lot of at-
tention. Evaluation study was held in 2009 to compare performances of different
airways extraction algorithms [47]. We used the study as a starting point in our
work. One of the best results was shown by algorithm by team from Institute for
Computer Graphics and Vision at Graz University of Technology lead by Christian
Bauer. In a nutshell, his method consists of identifying tube-like objects in the im-
age, constructing their centerlines, constructing a tree-like structure based on subset
of centerlines satisfying certain heuristics, which is thought of as centerline of the
airways, and finally, employing graph cut algorithm initialized with the centerline
and seeds assumed to be outside the airways. He also proposes novel segmentation
method. This approach is described in many details in his excellent thesis [6], so
we started our research by implementing certain parts of his algorithm. The images
we work for are of rats who had silicone casting material injected into their lungs.

The cast image differs from typical image of lung airways in three important
ways. Firstly, there is a high degree of contrast between the airways and the
parenchyma, i.e. airways and alveolar regions wherein the cast material did not
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penetrate. Secondly, the intensity of the cast material is close to that of bone and
not far from that of the pulmonary vasculature. In other words, the casted airways
are on the white end of the spectrum rather than the typically black end. Finally,
the cast material often forms bubbles which appear as darker points in the domain
and areas of brightness where contrast agent dissolved unevenly forming pockets.

Both airways and surrounding bone structure are locally tube like. Moreover
their intensity values are close enough to not be a reliable criteria for distinction.
Because of this similarities, tube-likeliness filters and further ridge extraction pro-
cess in Bauer’s algorithm recover centerlines of bones as well. That makes struc-
tural analysis in his approach too expensive. We also found the algorithm to fail on
higher resolution images because tube filters tend to find several lines for each tube.

Figure 2.1: Response of Median Tube-Likeliness Filter and ridges extracted from
it.

Arguably the most important contribution in [6] is application of Gradient Vec-
tor Flow field to this problem. Bauer used it to replace multi-scale Gaussian dif-
fusion for tube-likeliness filters and for the segmentation. We found GVF to be
extremely useful meta image and used it extensively in our approach.
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Figure 2.2: Flow of our method.

2.2 Gradient Vector Flow Field
Gradient Vector Flow (GVF) field was first introduced in [81] as an external force
for active contours with the purpose of improving behavior of the snakes near con-
cave boundaries. It is a diffusion of intensity gradients.

Given initial gradient vector field F n(x), GVF is defined as vector field G(x)
that minimizes

E(x) =

ˆ ˆ ˆ

Ω

µ|∇G(x)|2 + |F n(x)|2|G(x)− F nI(x)|2dx, (2.2.1)

where Ω is the image domain and x is a voxel. µ is regularization parameter that can
be adapted according to the amount of noise. As a result, gradients are smoothed
out in homogeneous areas of the image and point towards objects (if background is
dark compared to the object). At the objects boundaries gradients magnitudes have
local extremums.
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Figure 2.3: Slice of the image of Gradient Vector Flow field magnitudes. Ex-
tremums correspond to boundaries of the objects.

Figure 2.4: Subset of the image that can be extracted based on analysis of singular
value decomposition and Hessians of local GVF and normalized GVF.

To minimize errors in estimated gradient directions, we compute first partial
derivatives of the image using the coefficients given by Farid and Simoncelli ([18])
.

2.3 Flow of the Algorithm
The presence of contrast in the casted image might seem to suggest a connected
threshold or similar intensity based algorithm, but such an approach quickly fails
due to the presence of noise and the similarities between cast material, bone and
blood vessels. Moreover, an intensity-based approach would leave gaps where bub-
bles have formed in the cast. Completely immersed bubbles could be filled with
little effort, but bubbles on the boundary of the cast material would need to be man-
ually filled. The shear number of bubbles makes such a strategy inadvisable. To

8



some extent, application of an ’edge-preserving’ filter would help to address the
influence of noise, but the improvement would come inevitably at the loss of ge-
ometric detail, particularly at the smaller scale. In addition, the gradients become
weaker at the smaller scale.

Gradient vectors are pointing away from dark areas of the image towards lighter
areas. Both airways and bones are colored lighter then surrounding areas, while
being relatively homogeneous in color themselves. Therefore direction of intensity
gradients in the interior of the airways and bones are generally chaotic. Diffusing
the gradient vector field by solving 2.2.1, results in the smooth field G(x), at each
vertex pointing towards the boundary of the nearest object. Since both airways
and bones can be views as a collection of tube-like objects, GVF points away from
centerlines. Then inverted field −G(x) points towards centerlines and away from
boundaries. Of course, this property is not unique to centerlines points but it does
imply that superset of centerlines can be detected by local analysis of the GVF
field. This assumption lies at the core of the method in [6]. Their execution of the
analysis showed to be unreliable for datasets we used though. Power watersheds
method [11] combined with GVF analysis seems to be a promising approach, but
in this work though we used simplified method. We notice, that within airways and
bones, div(−G(x)) < 0, in particular −1 ≤ div

(
− G(x)
‖G(x)‖2

)
< 0, where divergence

equals to −1 at points located exactly on the centerline (Figure 2.5).

Figure 2.5: Panel A: Subset of the image with divergence of normalized GVF less
then −0.001. Panel B: subset of the image extracted by intensity based connected
threshold algorithm within subset in Panel A.
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While this criteria alone is not strong enough to select a meaningful subset of
the image, introducing it into intensity-based connected threshold algorithm allows
for extraction of the image subset corresponding to the union of airways and sur-
rounding rib cage (Figure 2.5). Connected threshold method has two parameters:
initial voxel located within airways, and image intensity range. Seed can be cho-
sen interactively by the user, or automatically, utilizing iterative clustering scheme
([79]) for finding a seed within trachea. Range of image intensity is chosen by the
user.

2.4 Random Walks
To separate bones and airways we rely on a variant of Random Walker Algorithm[20].
We ask user to mark the airways and bones by selecting one or more voxel within
each object, and assign labels {l1, l2} to the selected points. Then we build a
weighted graphG = (V,E), where V are set of vertices vi, i = 1, N , corresponding
to image voxels; and E is a set of edges eij describing chosen connectivity pattern
between neighboring voxels. We consider two neighborhood connectivity options:
“6−connectivity” - voxels are connected to six immediate neighbors, so E is a sub-
graph of a square grid, and “26− connectivity”, which also includes diagonals of
a square grid subgraph. For each unmarked vertex vi we compute probability p1

i

that a random walker, traveling from the vertex along edges of the graph, will first
reach one of the seeds labeled l1. Since there are only two labels, corresponding
probability p2

i for random walker first reaching l2, is 1− p1
i . The likelihood of ran-

dom walker traveling over the edge eij is proportional to the weight wij . Weighting
scheme is chosen to bias random walker to avoid cross-boundary trajectories. Given
the probabilities, each vertex vi is labeled lk, where k = arg maxk∈{1,2}(p

k
i ).

Probabilities at unseeded vertices are solutions to linear system of equations
arising from discrete Dirichlet problem [16, 36]. Let L be the combinatorial Lapla-
cian matrix

Lij =


di if i = j,

−wij if ∃eij ∈ E,
0 otherwise

(2.4.1)

where di =
∑

all j wij. Let xM be a vector of all labeled vertices, and xU be a
vector of unlabeled vertices ( we assume without loss of generality that vertices are
numbered so that labeled vertices go first). Relationship between them is described
by

LUxU = −BTxM , (2.4.2)

where L =

[
LM B
BT LU

]
(from minimization of Dirichlet integral [20]). From the
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point of view of electrical circuit theory, which is the most intuitive, this system
describes relationship between node’s potentials satisfying Ohm’s and Kirchhoff’s
laws. For each unseeded voxel there is a corresponding row (and column) in the
system. To find probabilities l1i for all unlabeled vertices we set potentials of seeds
labeled l1 to 1, and seeds labeled by l2 to 0.

Figure 2.6: Figure on the left shows subset of the image corresponding to airways
and bones colored by probability that random walker starting at the vertex will first
reach seed in the airways. On the right are voxels at which the probabilities are
greater then 0.5.

2.4.1 Implementation Details
We design all the functions in the framework to be able to work with images with
resolution up to 1024 × 1024 × 1024. If we apply Random Walker to this image
directly, for example by assigning zero weights to all edges incident on at least one
vertex corresponding to a voxel outside preselected area, the resulting system would
have 10243 equations. Most of the rows would be zeros, but common sparse matrix
structure used, for example, by MATLAB, has nnz+n+1 integers of overhead for
storing m× n matrix with nnz non-zero elements. So for n = 10243 that is around
4Gb of additional memory used just to account for the matrix size. This matrix is
reducible and can be treated as such by MATLAB in all relevant operations, but
not without some efficiency costs. To avoid them we construct graph only based on
preselected vertices.

Let X̃ be a set of preselected voxels, G̃ = {Ṽ , Ẽ} corresponding graph. Fur-
thermore, we denote Ṽ in vertices corresponding to voxels whose all immediate
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neighbors are within the preselected area and Ṽ bd those on the boundary of pre-
selected area. Assuming 6−connectivity pattern chosen for the graph, there are
7 · |Ṽ in| + 4 · |Ṽ bd| non-zero elements in this matrix (for each interior vertex there
are 6 edge weights and a diagonal value, for boundary vertices there are 3 edge
weights and a diagonal value). Since matrix is symmetric number of non-zero el-
ements stored can be decreased by only keeping non-zero elements in upper trian-
gular part. Also, customized solver can recreate diagonal elements based on non-
diagonal ones. Resulting matrix L̃ ∈ R|Ṽ |×|Ṽ |, so overhead for storing it in sparse
form is only |Ṽ | instead of n. We still need to keep the mapping from the vertices
in the graph to corresponding voxels in the image, as it is not as straightforward as
when graph is build on the whole image. The map requires additional |Ṽ | integers
of storage, but it can be deleted for the run-time of linear system solution method
and recomputed later. We used this approach for most of the cases as it allows
to leverage strength of the parallelized built-in MATLAB preconditioned conjugate
gradient linear solver. Some of the disadvantages of this approach are additional op-
erations needed for mapping between graph and image voxels and that MATLAB
can only create sparse matrices with double precision ( at least in the version we
are using), while satisfactory results can be achieved with single precision data. So
we also implemented matrix-free conjugate gradient method for solving the system
which operates directly on the edge list and corresponding weights. Edge list adds
|Ẽ| integers to the amount of memory needed to store weights, which is somewhat
less memory efficient then sparse matrix form for G̃.

2.4.2 Random Walker Weights
Common way of biasing random walker to avoid crossing boundaries is to weight
the graph edges based on intensity levels at vertices. Likelihood of random walker
crossing the edge is proportional to the weight. Therefore, when weight of the edge
is a monotonic function of the inverse difference between colors of incident vertices,
random walker tends to travel between most similarly colored voxels. When objects
are intuitively defined as relatively homogeneous areas of different colors, random
walker approach on a graph weighted this way handles weak boundaries remarkably
well. In our case though, because of similarity between densities of the bones and
the silicone filling, colors of the airways and bones are very similar (Figure 2.7).
Under these circumstances, the length of the shortest path between the point and
seeds is the main contributor to the solution.
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Figure 2.7: Airways and bones colored same as in the original CT image. Color
histograms of bones and airways.

Since a random walker is likely to first reach the seed that is the closest, solution
is highly dependent on seeds locations. The algorithm still provides good results
when seeds with different labels are close enough to the boundary between objects,
but fails otherwise. Since there is no other signal in the image to bias random walker
but the intensity levels, we need some more sophisticated way to utilize the inten-
sity information. We notice that the path between most of the points inside airways
and most of the points inside bones would drastically bend at the boundary between
them. While this is also true for many paths within rib cage, it doesn’t matter be-
cause we are looking for most probable first seed. Based on this observation we
would like to include shape of the path into weighting scheme to encourage random
walker from taking a path that has globally sharp turn. Gradient Vector Flow field
provides an excellent way to introduce awareness of local geometry into random
walker algorithm. GVF propagates information about geometry of local boundary
throughout interior in a vector field form. Angle between GVF vectors at vertices
incident on edge gives an idea how much the local boundary is bended. The differ-
ence of GVF magnitudes is an indicator of a degree to which edge is aligned with
a centerline. For those trajectories that do not bend when crossing the boundary,
intensity biasing is quite effective as we mentioned earlier. Therefore we include
difference in both magnitude and direction of GVF vectors at incident vertices into
the formula for computing edge weights, as well as difference in intensity levels.
The formula for the weight wij of the edge between vi and vj is

wij = e−(α(1+cos(Ĝi,Gj))+β|‖Gi‖2−‖Gj‖2|+γ|Ii−Ij |), (2.4.3)

whereGi,Gj - Gradient Vector Flow Field at voxels corresponding to graph vertices
vi, vj; Ii, Ij denote corresponding intensity levels, and coefficients α, β and γ are
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weights reflecting relative importance of each metric. Including GVF into consid-
eration decreases dependence on the choice of seeds locations, and improves con-
dition number of the matrix, which in turn, improves efficiency of iterative solvers.
(condition number for matrix based on intensity weighting, condition number of
matrix corresponding to weighting with GVF included).

2.5 Results
We illustrate our approach on one of the computed tomography images provided
by our collaborators at The Pacific Northwest National Laboratory. The dataset
represents the chest image of specific-pathogen-free adult male Sprague-Dawley
rat (Charles River Laboratory, Raleigh, NC). The animal was sacrificed with CO2

asphyxiation and prepared for lung airway casting, as described by Perry et al. [61].
Silicone casting material, consisting of 10.5 g Dow Corning 734 flowable sealant,
2.5 g Dow Corning 200 fluid (20 CS), and 1 ml Ultravist 300 (Bayer Healthcare)
contrast agent, was thoroughly mixed and degassed under vacuum. Approximately
1.5 ml of the mixture was injected into the lungs. After about 1 hour, the cast was
CT imaged in situ with the following parameters: 100 kVp, 50 mA, 20 ms exposure
time. The image has resolution of [384× 347× 512] voxels.

Figure 2.8: Panel A shows pre-segmentation of the image by connected intensity
threshold algorithm within the subset of the voxels where divergence of normalized
inversed GVF field is < −0.0001. Airways and bones are connected on slices 4 to
120. Panel B shows section yz of the sub-image and slices 4, 60 and 120.
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Gradient Vector Flow field of the image was computed in 128.30 seconds on 8
core workstation with 26GB of RAM. Seed within trachea was manually selected
and intensity range specified to be [150,max(I(x))]. Pre-selection takes 7 seconds
and result is shown on Figure 2.8. Next step is choice of seeds for Random Walker
algorithm (Figure 2.9). Five seed vertices were chosen, 2 within bones and 3 within
airways. Seeds were chosen arbitrarily, the only guideline was to pick at least one
seed within both spine and sternum.

Figure 2.9: Seeds for initializing Random Walker Algorithm. From top left to
bottom right corner seeds are [188, 131, 18] (bones); [184,159,43] (airways);
[181,158,85] (airways) and [181,148,136] (airways) and [201,280,136] (bones).

Volume of the preselected subset of the image is only 5.7% of the whole image.
Constructing the graph, including weights computation took 40 seconds. There are
two linear systems of equations, one per each label in the image, constructed based
on the graph and the choice of seed points. Their solutions add to 1, so one sys-
tem was solved using preconditioned conjugate gradient method with incomplete
Cholesky precondtioner, and solution to another one was found by simple subtrac-
tion of the first solution from 1. It took 29.13 minutes.
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Figure 2.10: Solutions of the discrete Dirichlet problems associated with Random
Walker algorithm. Panel A is the sub-image colored by the probabilities that Ran-
dom Walker starting from the vertex will first reach on of the seeds inside the rib-
cage. Panel B depicts solution to second linear system, which equals to vector of
1’s minus first solution. On the right image are cross-sections of the image on Panel
A

Final segmentation (Figure 2.11) is obtained by labeling voxels according to
maximum probability at the point.

Figure 2.11: Segmentation of the airways.
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Chapter 3

Medial Curves

Excerpts from this chapter appeared in [30] (c) SIAM.
The subject of this part is the construction of a 1-D representation (commonly

known as the curve skeleton) of a 3-D object that is mostly composed of tubular sub-
structures. Curve skeletons have a number of variants [9]. We define and compute
a special type of curve skeleton, which we refer to as the medial curves.

3.1 Previous Work
There is a vast literature on extracting curve skeletons or similar 1-D curves from
an explicit or an implicit representation of an object. We will only review a few
representative references. We divide the approaches into two categories: algorithms
that are based on the volume, and those based on the surface.

3.1.1 Volume-Based Approaches
Most volumetric methods begin with a binary voxelized image, derived from MRI
(magnetic resonance) or CT (computed tomography) scans. Among these methods,
thinning is probably the most popular paradigm for computing skeletons, due to its
relative simplicity and efficiency. A thinning algorithm typically iteratively erodes
the contours in a binary image until a single layer of pixels remain, and these pixels
are then connected to form the skeleton. The process is based on Blum’s grass-fire
analogy of the medial axis [8]. There are many variants of thinning algorithms. See
for example [45] for a survey on thinning in 2-D and see [46, 59] for algorithms
in 3-D. Because the resolution of quantized to the voxel size, the precision of these
methods are limited, so the resulting curves in general are not smooth and have
limited accuracy. In addition, they are sensitive to the noise in the image. This
sensitivity is often manifested as spurious branches, leading to incorrect structures.
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In [77], smoothness is improved by adding a shrinking step before thinning and
sensitivity to noise is alleviated by a pruning step, but centeredness and accuracy of
the skeletons may still suffer.

Another class of methods is distance transform, which computes distance field
for each interior point or voxel center (see e.g. [51], [7]). Ridges of the distance
field are detected, yielding an approximate medial surface, which is then pruned.
Similar to other voxel-based methods, the accuracy of these methods is constrained
by voxel resolution. In addition, these methods can be sensitive to noise due to
the instability of the medial axis. To alleviate the sensitivity to noise and improve
accuracy, Cornea et al. proposed to compute the distance field based on a simu-
lated electric potential [10]. However, their method is computationally prohibitive
for practical image sizes. Wischgoll et al. proposed a variation of this approach,
which positions discrete points on the boundary of the object with subvoxel preci-
sion based on intensity gradients in the voxelized image [80]. This approach con-
siderably reduces the computational overhead, but it does not guarantee topological
correctness.

3.1.2 Surface-Based Approaches
Surface-based approaches have two potential advantages over volumetric approaches.
First, they are not limited by the voxel resolution. Second, they can potentially be
much more efficient, as the number of surface points is usually orders of magni-
tude smaller than the number of image voxels for large datasets. The most common
class of surface-based approaches begins by computing the medial surface from
the Voronoi diagrams [2]. The Voronoi-based medial surfaces are then distilled
into medial curves or medial skeletons by either clustering points, or by extracting
the internal edges of the Voronoi diagram [14]. This approach is quite expensive.
In addition, since small perturbations in the original surface can induce large per-
turbations in the medial axis, this approach is sensitive to noise, and the resulting
medial curves are in general not smooth. In addition, approaches based on the me-
dial surfaces can produce structurally incorrect medial curves for many biomedical
applications. For example, the stable medial-axis based skeleton of a cylinder is a
centered line that has four legs reaching out at 45 degrees to the top and bottom of
the cylinder, while the desired solution is a straight, centered line that extends all
the way from one end of the cylinder to the other.

Another class of surface-based approaches involves mesh contraction. For ex-
ample, in a recent approach meshes are operated on directly by shrinking the bound-
ary to a 1D graph, by applying a curvature flow and implicit Laplacian smoothing
with global positional constraints [4]. This approach produces medial curves that
are homotopic to the object, and it is reasonably efficient. However, the endpoints
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tend to retract into the geometry, and the medial curve tends not to be well centered.
Another type of method is based on Reeb and Morse graphs. Such methods

are typically very efficient and can encode the correct surface topology [60], and
they are closely related to many mesh segmentation methods. Typically, level set
functions are defined on the surface and stable feature points are defined as the
extrema of these so-called mapping functions. Various mapping functions have
been defined for Reeb-graph methods, but it is in general difficult to define mapping
functions that yield a geometrically correct skeleton. It is also difficult to transform
a topological graph into a geometrically accurate skeleton [72]. Another approach
to Reeb-graphs is to identify feature points on the surface before defining mapping
functions by locating vertices at the extremities of surface components [38, 54].
However, stable feature point identification is challenging by itself and may be
sensitive to noise.

Other related surface based approaches examine contours of intersection with
the surface rather than contours of a mapping function [55, 56]. These methods
are based on the observation that tubular networks can be decomposed into tubular
and non-tubular regions by examining the intersection curves of inflated spheres.
In the first of these, the spheres were centered at the vertices [55]. The study of
the evolution of the intersection curves, γi, as function of the radius in terms of the
number of connected components i, determines the local topology. Where i = 1 the
neighborhood will be an extremity; where i = 2 the neighborhood will be tubular;
where i ≥ 3 the neighborhood will be a branch. Since every point on a medial
curve is an endpoint, a segment or a branch point, the connection to medial curves
is obvious. However, the sizes of the neighborhoods must be subjected to applica-
tion specific parameters due to multiple ambiguities. In [56], only tubular sections
were extracted, by first finding two intersection curves from spheres inflated at seed
vertices, termed medial loops. The medial loops were then swept along the tubular
section by collocating spheres located at the centroids of the medial loops rather
than the seed vertices.

3.2 Requirements for the Medial Curve
Medial curves and other curve skeletons have a wide range of applications in ge-
ometric modeling and analysis, such as shape matching and shape retrieval, which
are surveyed thoroughly in [9], though we mostly are interested in biomedical ap-
plications.

Biomedical applications imply following key requirements for the medial curve:

Topological and structural correctness: The medial curve should be homotopic
to the object, and should represent the structure of the object by correctly
labeling the ends and branches.
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Smoothness: The medial curve should be smooth except at branches and distinct
sharp turns.

Centeredness: The medial curve should be near the “centers” of the object.

In addition, an algorithm for computing medial curves must satisfy the following
requirements.

Robustness: The algorithm must handle complex geometries with tens of thou-
sands of branches without user intervention.

Noise resistance: The algorithm should tolerate moderate level of noise, which are
unavoidable in image-derived geometries.

Efficiency: The algorithm must be fast and have a small memory footprint (i.e.,
have close to linear complexity in time and space) to handle large datasets
with millions of triangles.

We focus on imaging-derived biomedical geometries. We assume the input geom-
etry is given by a surface triangulation, such as that obtained by an isosurfacing
algorithm (see [57] for a survey of such algorithms). The decision of using sur-
face triangulations (instead of using volumetric data) is for the considerations of
accuracy, efficiency, and application requirements.

We take a novel perspective on defining and computing medial curves, and make
a few contributions toward the better understanding, and more robust computation,
of medial curves. Our first contribution is a concept called the interior center of
curvature (ICC) of surfaces. For canonical shapes (such as spheres, cylinders and
tori) and more generally the canal surfaces [21, Sec. 20.2], the ICCs of the surface
give precisely their medial curves. For general surfaces, we define the average
interior center of curvature (AICC) as approximations of ICC with improved noise
resistance, and use AICCs as a starting point for finding the medial curves.

Our second contribution is to define the medial curve based on a local orthog-
onal decomposition of the object into tips, segments, and junctions. We define this
decomposition based on geometric quantities (including AICC and orthogonality)
and topological invariance (the Euler characteristic). The medial curve is then the
graph connecting the centers of these substructures and of the cutting planes be-
tween them.

Third contribution is a new algorithm for the computation of medial curves,
called local orthogonal cutting (LOC). Our algorithm is robust and resistant to
noise, and it has nearly linear time and space complexities. We demonstrate the
effectiveness of our method for complex biomedical geometries derived from med-
ical images, including lung airways and blood vessels, and present comparisons of
our method with some existing methods.
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3.3 Geometry and Topology of Medial Curves
In this section, we present some basic geometric and topological concepts. We
consider a volumetric object Ω embedded in R3. The surface is the boundary of the
object, denoted by ∂Ω, so it is by definition a 2-manifold without boundary. We
will define the medial curve of the object Ω (or equivalently, the medial curve of
its surface ∂Ω). We assume the surface is given by a triangulation. By convention,
surface normals are outward, so the curvature is positive if the object is locally
concave and is negative if it is locally convex. Without loss of generality, we assume
the object contains a single connected component. For an object with multiple
connected components, all of our discussions apply to each connected component
of the object.

3.3.1 Canal Surfaces and Centers of Curvature
To define the medial curve, we first consider a special but important class of surfaces
called canal surfaces [21, Sect. 20.2], which are closely related to the medial axis
and centers of curvatures.

Canal Surfaces and Medial Axis

A canal surface is the envelope of a 1-parameter family of spheres in R3. The
notion of canal surface is quite general: all tubes and most surfaces of revolution
are canal surfaces. The curve formed by the centers of these spheres is called the
center curve of the canal surface [21, page 646]. Figure 3.1 shows some examples
of canal surface and their center curves. In this paper, we refer to the center curve
as the medial curve, as it is a special case of the medial axis for general surfaces, as
we will explain next.

Figure 3.1: Examples of medial curves (red) of a cylinder, a torus, and a surface
generated by a sphere of radius 0.3 + 0.15 sin(3t) moving on a unit circle.

Although the medial axis is typically explained using the grass-fire analogy, it
was originally motivated by the medial axis transformation [8], which is the process
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of computing the medial axis and the local feature size (lfs) and then approximating
the surface (or curve) using the envelope of the spheres (or circles) that are centered
on the medial axis and have radii equal to the lfs. The local feature size is therefore
also called the radius of the object. If the medial axis is a curve (namely, the
medial curve), then the envelope of these spheres is either a canal surface (if the
medial curve is a closed curve) or a collection of canal surface patches (if the medial
curve has branches). Many geometries, especially biomedical geometries, can be
well approximated as a union of canal surfaces (more precisely, the union of the
volume bounded by canal surfaces). Therefore, it is important and valuable to first
understand canal surfaces and their medial curves. For more complex geometries,
we will develop numerical approximations and introduce other measures to address
the additional issues such as junctions and open-ends.

Interior Center of Curvature

To help understanding canal surfaces, we introduce some new concepts. The in-
terior curvature (IC) is the most negative curvature at a point. We refer to the
reciprocal of the absolute value of IC as the interior radius of curvature (IRC). The
point that has a distance equal to IRC along the inward surface normal of p will be
called the interior center of curvature (ICC). More precisely, given a point p ∈ ∂Ω,
let n̂p denote the unit outward surface normal to Γ at p, κp1 and κp2 denote the
principal curvatures at p. Then the interior curvature, denoted by κ−p , is the more
negative value of κp1 and κp2, i.e.,

κ−p =


κp1 κp1 < 0 and κp1 ≤ κp2,
κp2 κp2 < 0 and κp2 < κp1
−ε κp1 ≥ 0 and κp2 ≥ 0

(3.3.1)

where ε is an infinitesimal number (e.g., 10−100 for double-precision floating-point
arithmetic) and is introduced to avoid division by zero. The interior center of cur-
vature (ICC) at p is then

cp = p+
1

κ−p
n̂p. (3.3.2)

The ICC is the center of an osculating sphere, which is tangent to the surface at p
and has a radius equal to the IRC.

The above definitions of IRC and ICC seem to be new and are applicable to
any smooth surfaces. For a canal surface Γ, the IRC is the local feature size of the
surface, and the IRCs form the medial curve of Γ. The osculating sphere intersects
a canal surface Γ at a circle, which we refer to as an intersection circle. If the radius
of the canal surface is constant, then this circle is a principal curve and is orthogonal
to Γ (see Theorem 20.14 in [21, page 649]).
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Average Interior Center of Curvature

The curvatures are second-order differential quantities, so the ICC are inherently
sensitive to noise. To improve noise resistance for surface triangulations, we define
the average interior center of curvature (AICC) of a surface patch sampled by a
discrete point set P = {p1,p2, . . . ,pm} to be a weighted average of the ICCs at
these points, i.e.,

c̄ =

∑m
i=1wici∑m
i=1 wi

, (3.3.3)

where ci denote the ICC at point pi. We choose the weight wi to be
(
κ−i
)2 times a

control area ai of the vertex i (where the control area is chosen to be one third of
the sum of the areas of the incident triangles of pi). This weighting scheme gives
higher priorities to more curved areas and lower priorities to flatter areas. Therefore,
it tends to underestimate the average radius of curvature and in turn stabilizes the
AICC. For better robustness, we sometimes set the weights to zeros for the points
that are “invisible” from a particular viewpoint, as we will explain in Section 3.5.
The AICC of a sphere is exactly the center of the sphere. The AICC of a small patch
of a tube is close to the medial axis, and it converges to a point on the medial axis
as the size of the patch tends to zero. Therefore, AICC preserves the key features
of ICC while allowing better noise resistance.

AICC-Centered Minimum Containing Sphere

Besides ICC, the osculating sphere is an important concept for canal surfaces. An
osculating sphere intersects a canal surface at a circle. Such an intersection is unsta-
ble to compute in the presence of numerical errors. For better stability, we approx-
imate an osculating sphere by a sphere that is centered at the AICC with a slightly
larger radius, such that this enlarged sphere would intersect the surface at a finite
area. We refer to the enlarged sphere as the AICC-Centered minimum containing
sphere (MCS) of the area, and it will be useful in our computation of medial curves
later.

3.4 Local Orthogonal Decomposition
Our objective now is to define the medial curves for surfaces that are mostly com-
posed of canal surfaces. We propose a decomposition of an objects into three differ-
ent types of sub-structures, and the definition of medial curves will naturally follow
from this decomposition.
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3.4.1 Decomposition of Objects
Suppose a given object is mostly composed of a set of canal surfaces, referred to
as the component canal surfaces (CCS). Imagine moving a planar knife to cut the
object through the intersection circles of the CCSes. We refer to the cross-section
of the knife with the object as a cut. In general, the cuts do not intersect with each
other, and any point in the object belongs to at most one cut. If the medial axis
γ of one CCS is not closed, then the cut corresponding to an open-end of γ cuts
off a tip of the object. At an intersection of multiple CCSes, the cutting planes are
ill-defined, but such an intersection may be identified by the well-defined cuts from
their adjacent CCSes.

In summary, the above process decomposes an object into three types of sub-
structures: the segments, each of which is composed of continuous cuts and bounded
by two cuts, the tips, each of which is incident on one cut, and the junctions, each of
which is incident on three or more cuts. The cuts also decompose the surface of the
object into surface patches, and for convenience we refer to these surface patches
as tips, segments, and junctions as well. Figure 3.2 shows an illustration of these
three types of local structures and their corresponding cuts.

Figure 3.2: Illustration of tip, segment, and junction, along with orthogonal cuts
(blue planes). Red curves show medial curves.

Given this above decomposition, we define the medial curve of the surface to
be the union of the medial curves of the segments as well as the edges that connect
the “junction centers” with the end-points of the medial curves of their adjacent
segments. This decomposition also determines the topology of the medial curve:
the end-points of medial curve correspond to the tips, and the bifurcations and multi-
furcations of the medial curve correspond to the junctions. The key of computing
the medial curve is then the computation of such a decomposition of the object,
which we describe in the next subsection.

Remark 1. Note that for a given object, there are a constant number of tips and
junctions, but there can be an arbitrary number of cuts. For efficiency, it is desirable
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to have the lengths of the segments to be proportional to the local diameter of the
object and potentially be dependent on the curvature, so that the medial curve of
each segment can be approximated by a line segment, and the number of edges in
the medial curve is independent of the resolution of the surface triangulation.

3.4.2 Approximation by Orthogonal Cuts
Computing the exact intersection circles is a difficult and potentially unstable pro-
cess. For simplicity, we assume the radii (i.e., the local feature sizes) of the com-
ponent canal surfaces do not change rapidly, so that the cutting plane are nearly
orthogonal to the surface and the ICCs are approximately at the centroid of the cut-
ting plane. Thereafter, we can locate the cuts by computing cutting planes that are
as orthogonal to the surface as possible. This concept of near orthogonality will
lend itself to robust numerical optimization techniques.

A plane is uniquely determined by a point and a normal direction. We will
determine the points based on the AICC and the centroid. For the normal direction,
we measure orthogonality using two different types of quantities: angle-based and
eigenvalue-based. Given a plane P , let n̂P denote the unit normal to P , and n̂τ
denote the unit face normal of a triangle τ . The dihedral angle between P and τ is
arccos |n̂TP n̂τ |, which ideally should be 90◦ but can be as small as 0◦. We therefore
define the angle-based measure as the minimum dihedral angle between P and the
triangles intersecting P .

The minimum dihedral angle is useful for measuring the quality of a given
plane, but by itself it cannot facilitate optimizing orthogonality. For the latter pur-
pose, we introduce an eigenvalue-based measure. Consider the matrix

N =
∑
τ

wτ n̂τ n̂
T
τ , (3.4.1)

which we refer to as the normal covariance matrix. If the plane P intersects a
cylinder nearly orthogonally, then all the normals n̂τ are coplanar, andN is a rank-
two matrix. Let σ2 and σ3 denote the two smaller eigenvalues of N , and then
ρ = σ3/σ2 is then a measure of how close the surface is to a cylinder locally. In
general, ρ is between 0 and 1, and the smaller the better. If ρ is sufficiently small,
then the eigenvector ofN corresponding to σ3 may provide a better normal for the
plane.

Remark 2. The angle-based and eigenvalue-based measures complement each other
in algorithm design. The former is a measure of a given plane, whereas the latter
is a measure for potentially a better plane, and the corresponding eigenvectors can
facilitate optimizing the normals of the plane. Both of these measures are numerical
in nature, so some tolerances are needed, which we will discuss in Section 3.5.3.
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Topological Invariants

Besides geometric measures, important information about the local structure of the
object can be obtained by analyzing the topology of a surface patch P . In par-
ticular, we classify P based on whether it is connected, whether it is closed, and
whether it has tunnels. To capture the first two criteria, we consider the number of
connected components of P and the number of connect components of the border
curves of P and a simple counting. The definitions of these quantities are trivial,
and their computations require only a breadth-first search. For the third criterion,
we must consider the Euler characteristic of P . Given a polygonal surface (such as
a triangulated surface), the Euler characteristic is the alternating sum:

χ ≡ #vertices− #edges + #faces. (3.4.2)

For a tip, segment, or junction, the surface patch is an open surface. The Euler
characteristic is 1 for the surface of a tip, 0 for a segment, and a negative number
for a junction. Therefore, χ gives an alternative means for classifying tip, segment,
and junction. In the next section, we present an algorithm for decomposing an
object using the AICC, orthogonality, and Euler characteristic.

3.5 Computation of Medial Curves
In the preceding section, we defined the medial curves based on a decomposition
of an object into tips, segments, and junctions, and introduced measures for these
local structures and for the cuts between them. We hereafter present an algorithm,
called local orthogonal cutting (LOC), based on these intuitive definitions. At a
high level, our algorithm has the following five steps: 1) compute the differential
quantities, 2) identify stable tips, 3) identify other patches, 4) fine-tune cuts and
segments, and 5) reconstruct the medial curve. We describe each of these steps
in the following subsections and present the analysis, data structures, and some
implementation issues in Section 3.5.6.

3.5.1 Computing Differential Quantities
The identification of candidate cuts relies on the concept of interior center of cur-
vature. Thus, we begin by computing the geometric quantities of the surface, in-
cluding the normals and principal curvatures at the vertices as well as the normals
and areas of the triangles. The surfaces in our applications are inherently noisy, as
they are typically derived from medical images. For stability and noise resistance,
we compute these vertex quantities by applying a quadratic fitting over the two-ring
neighborhood of each vertex (i.e., the set of vertices that are within two edges away
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from the vertex) and solve the fitting using the weighted least squares framework
in [33]. From the normals and principal curvatures, we obtain the interior curva-
ture (IC) and the interior center of curvature (ICC) using Eqs. (3.3.1) and (3.3.2),
and then compute the AICC of a face incident on each vertex using Eq. (3.3.3) for
improved noise resistance.

3.5.2 Local Dimensionality of Object
The medial curve is a lower-dimensional representation of an object. To understand
the geometry and topology of the medial curve, we must therefore have some con-
ceptual understanding of the object itself. One particularly important concept is the
local dimension of some finite neighborhood of the surface around a point.

Given an object Ω, let p be a point in Ω. Consider a neighborhood of p ∈
Ω of some finite size that is greater than the local diameter of the object. This
neighborhood of p may have different characteristics depending on its location in
Ω, in that it may appear to be more like a tube, a disk, or a ball.

Mathematically, let N(p) denote the neighborhood of p in Ω. The centroid, or
the center of mass, of N(p) is a weighted average of the positions. More formally,
the centroid of N(p) is

c =

(ˆ
N(p)

xdu

)/(ˆ
N(p)

du

)
, (3.5.1)

where u denotes a conceptual local parametrization of N(p). Consider the 3 × 3
covariance matrix

M ≡
ˆ
N(p)

(x− c)(x− c)Tdu. (3.5.2)

In general,M is symmetric and positive semi-definite (i.e., its eigenvalues are non-
negative). Consider its eigenvalue decomposition

M = XΛX−1, (3.5.3)

where X is an orthogonal matrix composed of the eigenvectors of M , and Λ is
the diagonal matrix diag(λ1, λ2, λ3) composed of the eigenvalues λi with λ1 ≥
λ2 ≥ λ3 ≥ 0. Assume the neighborhood has a size that is larger than the local
diameter of the object. The local dimensionality of the neighborhood, denoted by
d, is then the number of relatively large eigenvalues of M , i.e., λ1 ≈ · · · ≈ λd �
λd+1. This eigenvalue-based interpretation will be helpful for understanding the
definitions and algorithms in this paper. Note that the criteria for ≈ and� may be
problem dependent. There may also be some inherent ambiguities if λ1 ' λ2 and
λ2 ' λ3 over the whole object. In such situations, the decomposition is intrinsically
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ambiguous and hence inherently unstable.

3.5.3 Identifying Stable Tips
As defined in Section 3, a tip is a topological disk in the surface. However, not every
disk corresponds to a tip. The objective of this step is to determine the disks that
are stable tips, which are critical for the stability of the medial curve. Our goal is to
avoid false positiveness while being as accurate as possible. Due to its complexity,
we outline a high-level pseudocode of this step in Algorithm 1. The procedure has
some key aspects, which we describe in more detail as follows.
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Algorithm 1 Identify stable tips.
1: for each convex seed vertex v, in ascending order of IRC
2: if v has been visited; then continue
3: S ←AICC-centered MCS of a face incident on v;
4: χold ← 1;
5: for i = 1, 2, ...
6: obtain patch Γ in S and cut P ;
7: fill in small holes in Γ;
8: χ←Euler characteristic of Γ;
9: if χ 6= 1 and χold = 1

10: save non-disk patch;
11: elseif χ 6= 1
12: resort to saved tip; break;
13: else
14: if P is highly orthogonal to ∂Ω
15: save patch as tip; break;
16: elseif P is more orthogonal than last saved
17: save P and patch as tip for resort;
18: end if
19: end if
20: S ←MCS of Γ centered at its AICC;
21: χold ← χ;
22: end for
23: if any tip was saved
24: mark triangles intersecting or below P by tip ID;
25: mark vertices of the above triangles as visited;
26: associate cut with a seed face incident on border edge;
27: else
28: mark vertices in saved non-disk patch as visited;
29: end if
30: end for

Selecting and Sorting Seed Vertices To identify stable tips, we select a dense
sampling of mesh vertices as seeds, based on their IRCs. We need at least one seed
per tip. A tip must have a vertex that is convex. Therefore, we require each seed
vertex to be convex, i.e., whose principal curvatures are both negative. To reduce
the number of seeds, we impose an upper bound on the IRC of seed vertices. A
tight upper bound would be the local radius of the object in the neighborhood near
the vertex, but estimating the local radii is overly complex and expensive for our
purpose. Instead, we set the upper bound to be half of the minimum dimension of
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the bounding box of the object.
The ordering of seed vertices is also important. With an arbitrary ordering, a

large feature might subsume a smaller one and in turn cause small but important
tips to be missing. Thus, we sort the seed vertices in ascending order of IRC (cf.
line 1 of Algorithm 1), so that smaller features would be processed first. We go
through the seed vertices one by one, and skip those that have been marked as
visited in earlier iterations (cf. lines 2, 25 and 28). In the following we describe the
sub-steps for each individual seed vertex.

Growing Candidate Patch Starting from a seed vertex, we grow a candidate
patch to seek a stable tip. We obtain a candidate patch starting from an incident face
of the seed vertex, and grow the patch through the aid of the MCS of the candidate
patch centered at its AICC (cf. lines 3, 6 and 20). To increase the growth rate,
we enlarge the MCS slightly (typically by 5%). To guard against strongly bended
areas, we include a simple “visibility condition” in the computation of AICC (lines
3 and 20). Specifically, let o denote the AICC of the surface patch in the previous
iteration. Given a vertex p in the surface patch, let n̂ denote the outward unit normal
at p. We set the weight for p to 0 in (3.3.3) if n̂T (p− o) ≤ 0.

In line 6 of Algorithm 1, we obtain the triangles that intersect or fall within the
sphere and that at the same time are not yet assigned to any tip. These triangles
are found efficiently through a breadth-first search on the dual graph of the mesh.
To reduce sensitivity of the topology to small perturbations, we fill in small holes
in the candidate patch (cf. line 6), including the holes that each correspond to a
single face, two adjacent faces along an edge, or the one-ring neighbor of a ver-
tex (or more concisely, the star of a face, edge, or vertex). From the candidate
patch, we also obtain a candidate cutting plane P that is nearly orthogonal to the
surface. The determination of the cutting plane is fairly involved, which we defer
to Section 3.5.3.

We continue to grow a candidate patch until it reaches some steady state topo-
logically and geometrically, so that a small perturbation would less likely affect
the qualitative behavior of the medial curve. Topologically, we consider a patch to
be non-disk only if it is non-disk for at least two consecutive iterations (cf. lines
9–12). This persistency requirement avoids the situation where a non-disk is in-
troduced due to a small perturbation during an intermediate step. A variable χold
was introduced to facilitate this persistency checking (cf. lines 4, 9, and 21). Ge-
ometrically, we consider the orthogonality of the cut, measured by the minimum
dihedral angle as defined in Section 3.4.2. Our basic idea is to look for the patch
with the most orthogonal cut (cf. lines 16–17). For better efficiency, we consider
the plane as highly orthogonal if the minimum angle is close to 90◦ (say ≥ 75◦).
A topological-disk patch with a highly orthogonal cut is accepted as a tip immedi-
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ately (cf. lines 14–15). For robustness, we consider a cut as not orthogonal if the
minimum angle is smaller than 45◦, and we impose an upper bound on the number
of iterations of the growth (cf. line 5). In practice, we found an upper bound of 20
to 30 works well. After identifying a tip, we label the triangles that intersect or are
below the cut within the candidate patch by a unique integer ID for the tip (cf. lines
24). In addition, we associate the cut with a seed face that is incident on the border
edge of the surface patch (cf. lines 26). This seed face will be used in the next step
for determining the connectivity of the tips with adjacent patches.

Computing and Optimizing Cut To determine stable tips, the most involved
and critical sub-step is the determination of the cut for a given candidate patch,
as described in more detail as follows. This procedure is employed in line 6 of
Algorithm 1. It will also be a basic building block in later steps of our overall
algorithm.

Given a candidate patch Γ that is a topological disk, we determine a cutting
plane in an iterative manner starting from its border curve. A cutting plane is
uniquely determined by its normal direction and a point, which we refer to as an
anchor point of the plane. To determine a candidate cut, we first determine a normal
direction using a principal component analysis of the border curve ∂Γ. In particu-
lar, let c =

´
∂Γ
xds/

´
∂Γ
ds be the centroid of the border curve, where s denotes a

parametrization of ∂Γ. The matrix

A =

ˆ
∂Γ

(x− c)(x− c)Tds (3.5.4)

is the covariance matrix of the curve. We obtain an initial normal direction n0 to
the plane as the third eigenvector of A (i.e., the eigenvector corresponding to the
smallest eigenvalue ofA). Let s denotes the area-weighted average of the centroids
of the triangles incident on ∂Γ. We choose the sign of n0 to satisfy (c−s)Tn0 > 0,
so that n0 points outwards with respect to the region between Γ and the plane.

After obtaining the normal, we select an anchor point for the plane so that all
the triangles incident on the border curve are just above the plane. This condition
ensures that the surface patches corresponding to different tips would not overlap
at any vertex. It will be important in ensuring the remainder of the surface can be
decomposed into valid patches, as we will explain shortly. We consider the plane as
the base cut if it is orthogonal to the surface, and in addition if the AICC is below
the plane. If any of these conditions is violated, we cannot extract a cut and instead
would continue grow the patch.

After determining a base cut, we further optimize its location and orthogonal-
ity. Algorithm 2 shows the pseudocode for this procedure. Ideally, the cut should
contain the AICC, but there may not exist a plane passing through the AICC while
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being orthogonal to the surface. For robustness, we instead search for an orthog-
onal cut that is as close to the AICC as possible. This requires adjusting both the
position as well as the orientation of the cut. We achieve this in a double loop: In
the outer loop, we perform a bisection procedure to adjust the position, and in the
inner loop we adjust the orthogonality.

Algorithm 2 Optimize position and orientation of cut starting from base cut P0 =
(p0,n0) and desired center o.

1: p← o;
2: for i = 1, 2, . . .
3: P ← (p,n0);
4: for j = 1, 2, . . .
5: Compute ñ from normal covariance matrix of P ∩ Γ;
6: P̃ ← (p, ñ);
7: if P̃ is safe and is more orthogonal than P
8: P ← P̃ ;
9: else

10: break;
11: end if
12: end for
13: if P is orthogonal
14: return P ;
15: end if
16: p← (p+ p0)/2;
17: end for
18: return base cut P0;

We first describe the inner loop. Our key idea is to use the normal covariance
matrix to obtain an improved normal direction. In particular, let γ denote the inter-
section curve of a candidate plane P with the surface patch Γ. The normal covari-
ance matrix is N =

´
γ
n̂n̂Tds, computed as in (3.4.1). Consider the eigenvalue

decomposition of N . If the smallest eigenvalue of N is far smaller than the other
two (in practice, λ3 ≤ 0.5λ2), let ñ be the third eigenvector of N with a sign such
that ñTn0 > 0. Let P̃ denote a plane centered at the same anchor point as P but
with normal ñ. We check whether P̃ intersects only the interior triangles of Γ (i.e.,
the triangles not incident on ∂Γ), and whether the triangles intersecting and below
P̃ constitute a disk. If P̃ satisfies both of these conditions, it is then considered
safe. We accept P̃ as an improved plane if it is safe and it is more orthogonal to the
surface than P . We repeat the inner loop for up to four iterations to obtain the most
orthogonal plane.
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In the outer loop, we start by trying to place the anchor point at the AICC and
improving the orthogonality by invoking the inner loop. Let p denote the anchor
point of the current trial plane. If the trial plane is not orthogonal, we then move
the anchor point of the trial plane to the mid-point between p and the anchor point
of the base cut. This process is repeated for a few (typically up to four) iterations.
If none of the trial planes is orthogonal enough, we then accept the base plane.

Identifying Other Patches

After finding stable tips, we then identify the other patches in the remainder of
the surface. These other patches include segments, junctions, and potentially some
tips that were designated as unstable in the previous step. This step shares some
similarities with the previous one. However, there are also some key differences
in terms of seed selection, growth of patches, and stopping criteria. In addition, in
this step we must address the additional complexity of having potentially too many
branches in a junction. We hereafter describe the algorithm and focus on these key
issues. Algorithm 3 outlines a high-level pseudocode for this step.
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Algorithm 3 Identification of remaining patches.
1: for each seed vertex v, in ascending order of IRC
2: while any incident face σ of v is not assigned
3: S ←MCS of σ centered at its AICC;
4: obtain patch Γ in S;
5: for i = 1, 2, . . .
6: χ←Euler characteristic of Γ;
7: if χ = 1
8: identify cut or grow AICC-centered MCS;
9: else

10: for each border curve γ of Γ
11: identify cut or grow sphere at γ;
12: end for
13: if χ < 0
14: move cut inwards toward junction center;
15: end if
16: end for
17: end while
18: if patch has more than three cuts
19: attempt to decompose junction;
20: end if
21: mark triangles of the patch by patch ID;
22: associate each cut of patch with a seed face;
23: end for

Selecting and Sorting Seeds We search for the patches starting from a series of
seed vertices. A junction or segment may be free of convex points, but it cannot
be composed of only concave points. Therefore, the seed vertices must include not
only those at convex areas but also at saddle points. We select the candidate seed
vertices as those whose IRCs are smaller than half of the smallest dimension of the
bounding box of the object, and sort them in ascending order of the IRC (cf. line 1
of Algorithm 3). We go through the seed vertices one by one, and skip a vertex if
all of its incident faces have been assigned to a patch (a tip, segment, or junction).
Checking incident faces (instead of checking only vertices) is necessary, because
some triangles may not have been assigned to any patch even after all vertices have
been assigned.

Growing Candidate Patch Similar to the previous step, we grow a candidate
patch starting from an unassigned face incident on a seed vertex, by locating the
triangles that intersect or fall within its AICC-centered MCS and at the same time
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are not yet assigned to another patch. Although the candidate patch starts as a
topological disk, it would inevitably grow into a non-disk at segments and junctions,
for which we must consider the potential interactions of the different cuts of a patch.
Therefore, we grow a candidate patch differently depending on its topology, as we
will describe shortly. Note that it is possible for a candidate patch to change its
topology during the growth.

Given a patch, we define a border curve of the patch as a single closed curve
composed of border edges of the patch. For each patch, we continue to grow it until
each border curve has a corresponding cut. In general, each cut has two adjacent
patches. For each border curve, its corresponding cut is therefore either matched
with a cut that was identified in an adjacent patch earlier, or is created as a new
cut and to be matched by another patch later. After locating a patch, we assign an
integer ID to it, mark all the faces in it by the patch ID, and associate each newly
created cut with a seed face that is incident on a border edge of its corresponding
border curve. This seed face will be used for matching the cut later.

Given a candidate patch that is topologically a disk, we grow it as in Algorithm 1
by using the AICC-centered MCS of the candidate patch. A minor difference is that
when filling small holes, we consider not only those within the candidate patch but
also those between it and previously identified patches. Since we have identified
the tips that are stable by themselves, in this step we accept a disk-patch as a tip
only if its border curve γ is matched with an existing cut. We match γ with a cut P
in an adjacent patch Γ if every border edge of γ is incident on a triangle assigned to
Γ, and P is the cut in Γ whose seed face is incident on γ.

When a candidate patch grows into a non-disk, we then change to grow the
patch along each of its border curves separately to identify a cut for each of its
border curves. For a patch with two border curves, if one of its border curves γ does
not match any existing cut, we attempt to construct a cutting plane from γ, measure
its orthogonality of the candidate cut in terms of the minimum dihedral angle, and
improve its orthogonality based on the normal covariance matrix. This process is
the same as that for stable tips in the previous step. In addition, we emphasize that
we place the cut so that all the triangles incident on the border curve are above the
cutting plane, so that the remainder of the surface patch would not have any isolated
triangles and can be further decomposed into valid sub-structures. If the candidate
cut is sufficiently orthogonal, we accept it as the cut for the curve. If an orthogonal
plane cannot be obtained, we grow the candidate patch outward at γ. Specifically,
we construct a sphere centered at the centroid of γ and containing the triangles
incident on γ, and then locate the triangles that fall within or intersect the sphere
and are not yet assigned to a different patch, accomplished by a breadth-first search
from the triangles incident on γ. We add these triangles into the candidate patch and
then re-attempt to match a cut or determine a new cut for the patch. We continue to
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grow the patch until a cut is identified for the border curve or the number of border
curves has changed.

For a candidate patch with more than two border curves, it is desirable for the
bounding cuts to be as close to the junction as possible while maintaining the or-
thogonality of the cuts, so that the junction itself would be more likely to be convex
and be closer to a ball-shape. For this reason, we relax the tolerance of orthogonal-
ity for junctions. For each border curve γ, we attempt to match a cut, determine a
new cut, or grow the patch at γ as above. Starting from each of the identified cuts
(either matched or newly created), we try to move it closer to the junction using a
bisection procedure. In particular, we try to move the cut toward the centroid of the
junction by half of its distance and then optimize its orthogonality. If the plane is
not orthogonal enough, we move it back closer to the border curve; otherwise we
move the plane closer to the centroid. This process is repeated for a few (typically
four) iterations. We identify the cuts one by one and accept the patch as a junction
if a cut is identified for each border curve.

Decomposing Multi-Cut Junctions When growing a patch, it is probable for a
junction to have more than three border curves. Some of these junctions may be
real multi-furcations in the geometry, while other are artifacts. These artifacts are
especially likely to occur if the geometry has regions where junctions are close to
each other. To resolve this issue, we attempt to decompose any multi-cut junctions
into bifurcations. In particular, if a candidate junction with more than three cuts
is obtained, we sort its cuts by their maximum radii (computed as the maximum
distance from the points on the curve to the centroid) in ascending order, and then
try to recompute a patch from the seed face of each of these cuts. If we reach at the
same number of cuts starting from different seeds, we accept the multi-cut junction
as a real multi-furcation. We accept a recomputed patch if it is a segment or a
bifurcation. If a recomputed patch is neither a segment nor a bifurcation but has
fewer cuts, we then try to recompute for this smaller patch recursively.

In practice, multi-furcations typically have few cuts. For better efficiency, we
set an upper bound on the number of cuts of a junction. We stop the growth of a
patch if its number of cuts is larger than the upper bound and resort to recomputing
the junction from these cuts as above. In practice, an upper bound 10 works well for
a variety of geometries in our test. This upper bound is rarely reached even without
the decomposition.

Remark 3. The two steps (steps 2 and 3) described in Section 3.5.3 and 3.5.3 iden-
tify an initial decomposition of the object into tips, segments, and junctions. This
initial decomposition determines the topology of the medial curve. In step 3 we
preserved all the stable tips identified in step 2. For better efficiency, it is possi-
ble to merge part of step 3 into step 2. In particular, we can identify the segments
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and junctions along with the stable tips in step 2, but allow stable tips to take over
the triangles assigned to segments and junctions and remove segments and junc-
tions that overlap with tips. Then, in step 3 we need to identify only the remaining
patches from faces that are not yet assigned to any patch. However, such a reorga-
nization complicates the logic of the algorithm, so we sacrificed efficiency slightly
for clarity in our algorithm.

3.5.4 Fine-Tuning Cuts
The preceding steps identified the local sub-structures mostly independently of each
other, except for the care taken in matching the cuts and ensuring topological consis-
tencies. Those steps could not optimize the cuts with respect to each other, because
some adjacent patches might still be unknown. Thus, the lengths of adjacent seg-
ments may differ drastically. In addition, our algorithm might have pushed some
cuts too deep into the junction in order to keep the junctions as compact as possi-
ble. It is therefore desirable to have an additional step to fine-tune the cuts. Our
algorithm allows for such optional step.

We first adjust location of the cuts at junctions. Those that are adjacent to some
stable cut can be improved by moving them closer to the stable cut. Way that
the seeds were originally chosen implies that high curvature regions between two
consecutive cuts should be rare. So while in the patch, orthogonality of the cut is
reasonably monotonic function of its distance to known stable cut. Based on this
assumption we use bisection to optimize orthogonality of the junction cut while
keeping junction as compact as possible. This time we use more strict tolerance for
orthogonality than in 3.5.3. Note that cut might be deleted if it can’t be improved
or is too close to next cut. Adjacent (but not incident to same junction) cut might
also be unstable. If the patch between two is a segment we try to replace them both
with cut in the middle of the segment. In all other cases we leave it alone.
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Algorithm 4 Optimize unstable junction cut U(pu, nu) based on adjacent stable cut
S(ps, ns).

1: for each junction cut U(pu, nu)
2: S(ps, ns)-adjacent cut
3: if S is not stable
4: if patch between S and U is segment
5: no = ns or no = nuwhichever is more orthogonal
6: adjust O ← (po = pu+ps

2
, no)

7: if O is not orthogonal enough
8: continue
9: else

10: replace U with O
11: end if
12: else
13: continue
14: end if
15: else
16: M ← (pm = pu+ps

2
, nm = ns);

17: L = U ; R = S;
18: O = S;
19: for i = 1 : 4
20: adjust M
21: if M is orthogonal enough
22: move cut toward junction center
23: M ← (pm+pL

2
, nm);

24: R = M ;
25: O = M ;
26: else
27: see if cut can be improved by moving closer to stable one
28: M ← (pm+pR

2
, nR);

29: L = M ;
30: end if
31: end for
32: if O = S
33: remove unstable cut U
34: else
35: replace U with O
36: end if
37: end if
38: end for
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After optimizing the cuts at junctions, we then perform an iterative Laplacian
smoothing to redistribute the cuts between segments and optimize their orthogonal-
ity, while preserving the cuts at the tips and junctions.

Figure 3.3: Post-processing of local orthogonal decomposition, before and after.

3.5.5 Reconstructing Medial Curve
After decomposing an object into tips, segments, and junctions, we reconstruct its
medial curves based on the connectivity of these patches. Specifically, we create a
vertex in the medial curve for each cut center and for the center of each segment
and junction, and assign consecutive integer IDs to the vertices. After creating the
vertices, we create an edge in the medial curve to connect each cut center with the
center of each of its incident segments or junctions, and identify each edge by a pair
of vertex IDs. We choose the cut center to be the centroid (i.e., the center of mass)
of the cross section of the cutting plane with the surface. The centroid is defined
as
´
C
xdxdy/

´
C
dxd, which we compute by decomposing the cross section into

triangles apexed at a point in the cross section and then computing the signed-area-
weighted average of the centroids of these triangles. For each segment, we compute
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its center as the average of the cut centers. For each junction, we compute its center
as the volume centroid of the junction, and compute it as a signed-volume-weighted
average of the centroids of the pyramids that are apexed at the same point and based
at the cuts or based at the parts of the faces that fall within the patch. The centroid
of a pyramid is simply three fourths of the centroid of the base plus one forth of the
apex.

3.5.6 Implementation Details
Our algorithm requires only the vertex coordinates and element connectivity of the
triangles as input. Internally, our algorithm requires some data structures to store
the mesh, the cuts, the patches, and their correlations with each other. We hereafter
describe these data structures.

For the mesh, we need a data structure that can facilitate neighbor-to-neighbor
traversal. We use the well-known half-edge data structure (also known as doubly-
connected edge list) [13, §2.2], and in particular an array-based version described
in [1]. At a high-level, each edge in general has two opposite, directed half-edges
in its two incident triangles. Our data structure identifies each half-edge in a face
by a face ID and a local edge ID within the face, encoded in a single integer, and
stores the mapping from each half-edge to its opposite half-edge in a 2-D array of
size m × 3, where m is the number of triangles. Together with the element con-
nectivity and a mapping from each vertex to one of its incident half-edges, we have
a compact and complete half-edge data structure. This data structure can be con-
structed efficiently in linear time. We group these arrays along with other geometric
quantities (including normals, curvatures, and surface areas) into an object (a.k.a. a
structure).

A key output of our algorithm is the medial curve. Similar to the input mesh,
we store the medial curve simply by a list of vertex coordinates and the element
connectivity of the edges. For later processing, a data structure is also needed for
neighbor-to-neighbor traversal of the curve. We define a vertex-based data structure
for storing the medial curve, analogous to the array-based half-edge data structure.
Specifically, we refer to a vertex within each edge as a “half-vertex” and identify it
by the edge ID and a local vertex ID within the edge, encoded in a single integer.
Since the medial curve in general is not a manifold, a vertex can have more than two
incident edges. We construct a cyclic mapping for the half-vertices corresponding to
the same vertex (instead of a mappings between opposite half-vertices in a manifold
mesh). This mapping is stored in a 2-D n× 2 array, where n is the number of edges
in the medial curve. We refer to this as an extended half-vertex data structure for
non-manifold curves.

In our algorithm, we assign an integer ID for each cut and patch, and store the
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data for them in arrays grouped with an aggregate object. We assign patch IDs in the
order of being identified. Note that each cut is incident on two patches. We consider
the patch that is identified first as the the owner patch of the cut. We assign IDs to
the cuts consecutively in ascending order of their owner patches. For each cut, we
store its centroid, its normal outward to its owner patch, as well as the IDs of its
incident patches. For each patch, we store the cuts owned by it consecutively and
also store a list of the IDs of the matched patches. These data allow the complete
reconstruction of the medial curve as well as the computation of the statistics of the
medial curve for applications. For best efficiency, our algorithm preallocates buffer
spaces used by the algorithm and group them into a single object.

We have implemented our algorithm in MATLAB, which is feasible because
our data structures are all array-based, without using any pointers. The use of the
high-level programming language MATLAB and its interactive visualization envi-
ronment eases implementing and debugging of the complex logic of our algorithm.
We then converted our MATLAB code into efficient and portable ANSI C code us-
ing the Agility MCS software (www.agilityds.com; acquired by Mathworks
in early 2009).

3.5.7 Experimental Results
In this section, we report some experimental results with our method for complex,
image-derived biomedical geometries and compare our method against some oth-
ers. The medial-curve algorithms are largely independent of the image processing
method. In our setting, we used a fuzzy-connected threshold approach for segmen-
tation [74] and a variant of the well-known marching cubes algorithm for the isosur-
face extraction [57]. To assess the robustness and noise resistance, we will report
results for raw, unsmoothed surface meshes from isosurfacing, smoothed meshes
with a volume-conserving smoothing algorithm [43], as well as those after adaptive
remeshing using the method in [44].

Results for Smoothed Geometries

We first present results for three complex biomedical geometries. All these ge-
ometries are smoothed, as they typical are in real applications. Table 3.1 shows
the statistics of the datasets and summarizes our results. Our first test geometry
is a mouse coronary artery network, derived from the CT dataset courtesy of Dr.
Ghassan Kassab [52]. Figure 3.4 shows the geometry, superimposed on the medial
curve computed by our algorithm; see row “Coronary” in Table 3.1 for the statis-
tics of the mesh and the medical curve. Since this geometry is much simpler than
the other two (with fewer than 100 tips and junctions), we could visually inspect
the accuracy of the result. Our inspection indicated that the structure of the medial
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curve was 100% accurate (i.e., fully agreed with the intuition of a trained biolo-
gist). This accuracy is remarkable, as evident from the comparative study that we
will show in Section 3.5.8. Our algorithm took 0.97 seconds for this case, including
0.36 seconds to identify the tips, on a Linux computer with a 3GHz Intel Duo Core
processor and 2GB memory.

A B C
Figure 3.4: Medial curve of three biological surfaces. A) A mouse coronary artery
from CT data. B) A monkey pulmonary airway from MRI data. C) A high-
resolution rat pulmonary airway from CT data.

Table 3.1: Results for three test geometries in Figure 3.4.
Input Mesh Elements Run Times (sec)

Case vertices triangles tips junctions tips others total
Coronary 57,008 114,012 96 85 0.36 0.60 0.97

Monkey Lung 895,915 1,791,826 6,214 7,121 13.3 14.6 27.9
Rat Lung 3,975,949 7,951,894 17,416 12,525 55.8 312.7 368.5

Our second test geometry is a monkey pulmonary airway tree (see Figure 3.4)
and row “Monkey Lung” in Table 3.1), derived from the MRI dataset courtesy of
Dr. Kevin Minard. Algorithm processed the dataset in about 27.89 seconds, and
identified 6,214 tips and 7,121 junctions. The medial curve is homotopic to the
object, as guaranteed by our algorithm. Visual inspection at sampled locations in-
dicates that the curve was smooth, well centered, and structurally correct almost
everywhere.
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Our third test geometry is a high-resolution rat pulmonary airway tree (see Fig-
ure 3.4C and row “Rat Lung” in Table 3.1), derived from the CT dataset courtesy
of Drs. Timothy Cox, Richard Jacobs and James Carson. It took about six minutes
for the algorithm to identify 17,416 tips and 12,525 junctions.

Assessment of Sensitivity to Noise

To further assess the noise resistance of our method, we apply our algorithm to a
series of meshes for the mouse coronary artery, including an unsmoothed triangu-
lation of the isosurface from marching cubes, a smoothed triangulation, as well as
three meshes that were registered to the gradient-limited feature size as described
in [44] with three different levels of refinement and derefinement. Table 3.2 sum-
marizes the numbers of vertices, triangles, identified tips, and identified junctions
of these cases.

Table 3.2: Results for different meshes for the mouse coronary.
Input Mesh Elements

Case vertices triangles tips junctions
Unsmoothed 57,008 114,012 96 83

Smoothed 57,008 114,012 96 85
Adaptive 1 76,143 152,282 92 81
Adaptive 2 71,130 142,256 91 83
Adaptive 3 64,685 129,366 91 79

The unsmoothed mesh is a challenging test, as the noise in this dataset is high-
frequency and has a magnitude of up to one voxel. Figure 3.5 shows the tips,
junctions and medial curve for this dataset. Our method identified the same number
of tips with and without smoothing, although it produced different number of junc-
tions (because some high-degree junctions in the unsmoothed mesh were broken
into low-degree junctions). This result shows that our method is relatively insensi-
tive to noise. For the adaptively refined meshes, our method slightly fewer tips and
junctions (by about 7%), probably because the additional smoothing involved in
the mesh adaptation process eliminated some short branches and their correspond-
ing tips.
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Figure 3.5: Noisy dataset of mouse coronary artery and the computed medial curve.

3.5.8 Comparison with Other Methods
We compare our method against the publicly available implementations of two other
surface-based approaches [4, 14]. The method of Dey and Sun in [14] is based on
an analysis of a medial geodesic function on the Voronoi-based medial surface [14],
and the method of Au et al. in [4] is based on mesh contraction. Table 3.3 shows
the numbers of identified tips and junctions as well as the overall run times for our
method and those two methods for the smoothed and unsmoothed coronary geome-
tries shown in Figures 3.4 A and 3.5. Figure 3.6 shows close-up views of the results
from these methods. Note that the result of our method for the smoothed geometry
has verified manually, so we use it as the reference solution. The Dey-and-Sun’s
approach in [14] produced nearly twice as many tips and junctions as our method.
From Figures 3.6 A and 3.6 C, it is obvious that there were many short, spurious
branches. Besides spurious branches, Dey-and-Sun’s approach also missed several
actual branches as can be seen in Figure 3.6 C. In addition, the method in [14] pro-
duced far more tips and junctions for the unsmoothed mesh than for the smoothed
mesh, and the medial curve tends to be highly jagged, showing its sensitivity to
noise both topologically and geometrically. In terms of computational cost, the
runtime of Dey-and-Sun’s method was more than three orders of magnitude slower
than ours for this mesh. This ratio grows substantially as the size of the mesh in-
creases, and their code never terminated for the meshes with one million or more
faces in our test.
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Table 3.3: Comparison of our method with alternative surface-based methods for
the mouse coronary artery. For Au et al., numbers of tips and junctions were
counted visually, as their code did not allow saving the result. All times are in
seconds.

Ours Dey and Sun [14] Au et al. [4]
Case tips junctions time tips junctions time tips junctions time

Smooth 96 85 0.97 146 142 1294.3 84 79 35.3
Noisy 96 83 1.10 163 161 1439.3 87 81 32.6

In contrast to [14], the mesh contraction method of Au et al. in [4] appears to
be relatively insensitive to noise. However, as shown in Figure 3.6E, their method
tends to miss tips and branches. Furthermore, the medial curve from their method
was not well centered, with some vertices outside of the object (see Figure 3.6F). In
terms of running time, their method is more than 30 times slower than ours. From
these results, we conclude that for biomedical geometries, which are the interests of
our applications, our algorithm delivers a better combination of structural accuracy,
smoothness, centeredness, robustness, noise resistance, and efficiency, compared to
the other state-of-the-art methods.
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Figure 3.6: Comparison of our results against two other methods for the smoothed
and unsmoothed coronary geometry. Artifacts in the results are indicated by black
arrows. Panels A-D contrast the medial-geodesic method with our method; Panels
E-H contrast the mesh contraction method
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Chapter 4

Boundary Layer Meshes

4.1 Previous work
Traditionally, mesh generation is broadly classified as structured or unstructured
(see [71] for a comprehensive survey). Structured meshes are known to produce
higher accuracy results but are too time consuming (if even possible) to generate
for complex biomedical geometries. On the other hand unstructured meshes can
be generated fast and without manual interaction which is desirable for clinical
applications of CFD. In recent years, the generation of semi-structured boundary-
layer meshes has attracted significant interest (see e.g. [3, 5, 19, 22, 26, 27, 37,
40, 62, 63, 76]), as these meshes are effective for capturing large gradients and
resolving viscous flows near the boundary and can be generated much faster then
structured meshes. We review some of the literature on the generation of three-
dimensional boundary-layer meshes, focusing on those that have played a notable
historical role or represent the current state of the art.

Most of existing methods, including those in the literature or commercial soft-
ware, generate boundary layers by marching the vertices of the surface and smooth
the vertex positions to improve mesh quality. For example, the advancing-layers
method in [62] extrudes the surface mesh by moving its vertices nearly orthogo-
nally to the surface to create thin layers of elements. For a triangular surface mesh,
prisms are typically generated by connecting the vertices of adjacent surface lay-
ers, such as in [37, 40, 66]. The remainder of the domain away from the boundary
is typically meshed with tetrahedra, using advancing front or Delaunay methods.
Sometimes, the prisms are subsequently subdivided into tetrahedra for compatibil-
ity with some simulation codes [62, 63].

Some key challenges in advancing-layers methods include enforcing the valid-
ity of the prismatic layers (e.g. to avoid inverted elements and self-intersections)
and obtaining high quality elements in the mesh. Some earlier methods could only
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generate very thin layers and were not robust for complex geometries or large dis-
placements. Garimella and Shephard [19] later proposed a generalization of the
advancing-layers method to enhance robustness by adopting multiple marching di-
rections at convex sharp edges and applying smoothing, shrinking, and pruning at
concave sharp edges. The idea of multiple marching directions was also used and
advocated by other authors (see e.g.,[5, 26, 27, 48]). Athanasiadis and Deconinck
[3] introduced more sophisticated methods to address these sharp features, but their
method required many different types of elements (including degenerate prisms and
degenerate hexahedra), which introduce additional complexities to the algorithms
and may not be suitable for many simulation codes. These existing techniques are
mostly designed for CAD models with piecewise smooth surfaces, and they invoke
special treatments at well-defined sharp features (i.e., ridges and corners). They do
not address the “near singularities” caused by large curvatures or coarse resolution
of the surface mesh, both of which are common for biological geometries.

A key difficulty associated with meshing concave sharp areas is the development
of “swallow-tails” [65]. Recently, Wang et al. proposed generating boundary-layer
meshes in three dimensions using a fast marching method with unit speed [75, 76].
However, their method does not allow for the adaptation of the marching based
on the geometry or physics, and difficulties still remain in reconstructing the con-
nectivities [75]. We propose hybrid technique for generating hybrid meshes with
high-quality boundary layers. It can very efficiently generate hybrid tetrahedral-
prismatic mesh with high-quality boundary layer and isometric tetrahedral core.
In case when running time is less important constraint then properties of terahe-
dral core, high quality boundary layer can be added to any teraherdralization of the
geometry while preserving structural characteristics of the core. Our approach com-
bines the efficiency and flexibility of advancing layers with the “entropy condition”
of the level set methods. This combination is made possible by the face-offsetting
method (FOM) for surface propagation [29], which relies on a mathematical formu-
lation called the generalized Huygens’ principle to impose the entropy condition to
explicit dynamic surfaces. However, unlike level set methods, FOM directly propa-
gates a surface mesh, and unlike fast marching methods, FOM allows adapting the
heights of the layers through a “speed function” to generate high-quality meshes
and avoid self-intersections. We apply a modification of the face-offsetting method
to create hybrid meshes in challenging biomedical geometries by computing the
speed function based on a feature size of the geometry.

4.2 Feature Size Guided Face Offsetting
First we will describe out approach to fast generation of unstructured tetrahedral-
prismatic mesh based on the isosurface. As an input method accepts a suitable,
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geometrically and topologically correct isosurface that has been appropriately ma-
nipulated to accommodate the definition of proper boundary conditions. Figure~4.2
shows the overall control flow of our method, given that isosurface. Like some ex-
isting methods, we generate layers with prisms near the boundary and fill the inte-
rior with tetrahedra. However our method is novel in the following aspects: 1) We
use the feature size defined in [44] to control the height of the prisms to make the
resulting mesh scale invariant and prevent global self-intersections. 2) We use the
face-offsetting method [29] to propagate the surface mesh to generate the prismatic
layers, which provides reliable directions of vertex motions and prevents local self-
intersections. 3) We develop a variational mesh optimization for prismatic layers,
which improves not only the shapes of the triangles but also the orthogonality of
the prisms. 4) We introduce simple and effective measures to guarantee the validity
of the resulting prisms.

Compute feature size of geometry and

adapt surface triangulation

Determine height of next layer
Propagate surface using face offsetting based on 

feature size with adaptive step size control

Optimize prismatic layer by variational smoothing

Interpolate intermediate layers if desired

More layers?

Finished current layer?

N

Y

Y N

Generate tetrahedral mesh in interior

First we estimate feature size and use it to adapt the surface triangulation. This
method was developed by our collaborators in The Pacific Northwest National Lab-
oratory [44]. Then we use feature size to provide a “speed function” of face offset-
ting for the generation of prismatic boundary layers with the face-offsetting method
developed by Professor Jiao [29]. This novel and natural integration will allow the
generation of high-quality, adaptive boundary-layer meshes when fortified by the
optimization techniques that we will introduce in later sections.

4.2.1 Gradient Limited Face Offsetting
One of the key concepts in our method for generating boundary-layer meshes is the
gradient-limited feature size (or GLFS), introduced in [44]. The GLFS is essentially
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a rough estimation of the local feature size of a surface (where the local feature
size is the shortest distance form every point on the surface to its medial axis),
computed without constructing the medial axis. It is useful to control the grading
of the tetrahedral and surface meshes, as well as the thickness of the boundary
layers.

At the high-level, the GLFS is defined and computed as follows. Let S be
an oriented closed triangulated surface, derived from imaging data. We allow S
to consist of one large enclosing closed surface S0 and possibly any number of
closed surface holes S1, . . . Sn inside S0. Any of the surfaces S0, S1, . . . Sn may
have handles (i.e., have nonzero genus). For any vertex X ∈ S, we define the raw
feature size F [X] as the length of the line segment formed by first shooting a ray
from X in the direction of n̂in[X], the inward normal at X , and then truncating the
ray at its first intersection with S, i.e.,

F [X] ≡ min{λ > 0 | X + λn̂in[X] ∈ S}. (4.2.1)

Some user-specified lower and upper bounds may also be imposed on F [x]. How-
ever, this raw feature size may be sensitive to abrupt changes in the geometry, so
we perform a gradient-limiting procedure as follows: first initialize f [X] to F [X].
Given a bound on the surface gradient of f [X], we iteratively relax f [Xi] to satisfy
the gradient limit. The resulting feature size f is then the gradient-limited feature
size (or GLFS).

We use GLFS to adapt the surface mesh and as the speed function for propa-
gating the surface layers using face offsetting. We modify S based on GLFS by
performing the operations of smoothing, refinement and de-refinement while limit-
ing perturbations to a small fraction of a voxel. Resulting high-quality surface mesh
S ′ has local resolution proportional to local scale (Figure~4.1).

49



A

B

C

D

E

Figure 4.1: Development of a scale-invariant surface mesh from MRI data: A)
binary segmentation of the imaging data of a monkey lung cast; B) isosurface gen-
eration; C) detail of the isosurface; D) surface triangulation registered to the feature
size; E) feature size field.
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Figure 4.2: Without gradient limiting F [xi] can discontinuously jump with a small
perturbation in the surface S due to borderline clipping of local diameter ray. With
gradient limiting, this jump is generally limited to G‖xi−xj‖, where xj is a neigh-
bor whose local diameter ray is robustly clipped.

4.2.2 Advancing Layers by Face Offsetting
Our method advances a surface layer by solving the Lagrangian evolution equation,

∂x

∂t
= f(x, t)n̂, (4.2.2)

where t denotes time, n̂ denotes unit surface normal, and f(x, t) denotes the speed
function as we will explain shortly. In principle, generating a layer of prisms re-
duces to marching the vertices in time by discretizing (4.2.2).

The method provides two options in generating a multi-layered prismatic mesh.
The first option is to generate one layer of prisms per time step by connecting the
vertices before and after propagation, and generate a layered mesh by taking mul-
tiple time steps. Another option is to march the surface by the desired total height
of all the layers and then interpolate the intermediate layers. We refer to the two
options as propagated layers and interpolated layers, respectively. Both options
can generate quality, graded prismatic meshes, as we will demonstrate in later ex-
perimental studies. We will focus our discussions on the first option as it can be
easily extended to support the second one.

In (4.2.2), the speed function serves two purposes: 1) it controls the density
of the prisms along normal direction, and 2) it can slow down the propagation of
the surface at small features to avoid collisions. We note that the gradient-limited
feature size (GLFS) seems to be ideal to fulfill these purposes. First, the surface
mesh is adapted commensurate with GLFS, so adapting the height of the boundary
layers gives some control of the aspect ratios of the prisms. Second, GLFS is ap-
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proximately twice of the surface’s local feature size, so it can control the distance
of the surface to the medial axis to avoid collisions. Therefore, we choose GLFS
as the speed function, and “time” is then a measure of the height of the boundary
layer versus GLFS. Note that unlike surface mesh adaptation, we need not limit the
speed function based on the maximum curvature, and we may use different Lmin
and Lmax parameters when computing GLFS.

Given the speed function, a key question in integrating Eq.~(4.2.2) is the evalu-
ation of surface normals, which is challenging for coarse meshes of noisy surfaces.
After obtaining the GLFS, we could simply move each vertex along the normal di-
rection by the desired distance, but we observed that a simple weighted-averaging
of face normals can lead to unreliable normal estimates for imaging-derived geome-
tries in our applications. In addition, it is well known that the Lagrangian equation
can encounter difficulties (such as “swallowtails” or severe lagging) at strongly con-
cave regions and large curvatures. We address these issues using the face offsetting
method in [29], which is based on a geometric construction called the generalized
Huygens’ principle and numerical techniques of least-squares approximation and
eigenvalue analysis.

The basic idea of the face-offsetting method (FOM) is to integrate the La-
grangian evolution equation in time by advancing the faces (instead of vertices)
along normal directions and then reconstructing the vertices from the displaced
faces. We first advance each triangle by moving its ith vertex normal to the face
for a distance proportional to the GLFS at the vertices. After displacing the faces,
we reconstruct the vertices based on the generalized Huygens’ principle [29]. This
principle states that every point of an interface has a field of influence (such as the
trajectory of a particle in advection or a spherical neighborhood of a heat source in
burning), and the new interface is the boundary of the union of the influences of
all the points on the interface. Unlike the classical Huygens’ principle, this princi-
ple is applicable to both advective and wavefrontal motions, which have different
behaviors at expansions as illustrated in Figure~4.3. In terms of mesh generation,
a wavefrontal motion may be more desirable than advective motion, as it would
smooth out convex sharp edges and in turn is likely to be more robust than advective
motion, which would preserve convex sharp edges. Computationally, solving ad-
vective motion is a prerequisite for solving wavefrontal motion in FOM, as we will
explain shortly. If the interface remains smooth, this principle results in Eq.~(4.2.2)
and also the well-known level set equation [65]. Unlike those PDEs, however, this
construction is well defined even at singularities.

We first describe the numerical solution of vertex reconstruction for advective
motion. Based on the generalized Huygens’ principle, each vertex should move to
the intersection of the offsets of its incident faces. In three dimensions, the intersec-
tion may be ill-defined, and we therefore formulate the intersection at each vertex
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Figure 4.3: Advective vs. wavefrontal
propagation at expansion.

Figure 4.4: Illustration of offsetting
each face.

as an ill-conditioned least squares approximation and solve it using an eigenvalue
analysis as follows. At a vertex v, consider the computation of the displacement
vector d from the vertex to its new position. Let n̂τ denote the unit normal to
the offset face incident on v after displacing its vertices by ∆tfv (see Figure~4.4),
where fv denotes the GLFS at v. For each face incident on v, we obtain an equation
n̂Tτ d ≈ ∆tfv. Suppose vertex v has m incident faces. We then obtain an m × 3
linear system

Nd ≈ f . (4.2.3)

Let ωτ denote the area of face τ ,W = diag(ω1, . . . , ωm), and√
W = diag(

√
ω1, . . . ,

√
ωm). We pose (4.2.3) as a weighted least squares

problem,
min
d
‖Nd− f‖W ≡ min

d
‖
√
WNd−

√
Wf‖2, (4.2.4)

which reduces to a linear system

Ad = b, whereA = NTWN and b = NTWf . (4.2.5)

Because A is symmetric positive semi-definite, it has an eigenvalue decompo-
sitionA = V ΛV T , where Λ = diag(λ1, λ2, λ3) is composed of the eigenvalues of
A, with λ1 ≥ λ2 ≥ λ3 ≥ 0. The ith column vectors of V , denoted by êi, is the
eigenvector corresponding to λi. We refer to the space spanned by the eigenvec-
tors corresponding to very “small” eigenvalues as the null space (or the numerical
null space). For numerical stability, we filter out the components of the solution to
(4.2.5) in the null space and then obtain the normal displacement for vertex v as

uv = d ≈
k∑
i=1

êiê
T
i b/λi. (4.2.6)

In our setting, the surface meshes are typically fairly coarse and do not have
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sharp features except for the boundary curves of inlet and outlet walls. Therefore,
we use a simple procedure to consider an eigenvalue λi to be “small” if λi ≤ ελ1

for some ε (such as ε = 0.003 as suggested in [29]), so the summation in (4.2.6)
becomes d ≈

∑
{i|λi≥ελ1} êiê

T
i b/λi.

For generating boundary-layer meshes, it is often desirable to use wavefrontal
motion, which produces smoother surfaces at convex regions and in turn can lead
to better robustness. We solve the wavefrontal motion using a predictor-corrector
procedure: first, we “predict” a direction of motion d̂ = d/‖d‖ for vertex v, where
d is computed using (4.2.6). Second, we “correct” the displacement along d̂ as
follows. For each face σ incident on v, let sσ denote the vector from v to the
centroid of the face after applying the displacements. The displacement of v within
face σ is then determined based on whether the face is contracting or expanding
locally at v, i.e.,

dσ =

{
d if sTσd > 0 (i.e., contracting)
∆t|fv|d̂ otherwise (i.e., expanding).

(4.2.7)

As in (4.2.4), let ωσ denote the area of σ. The weighted least-squares approximation
of the displacement along d̂ results in a simple weighted averaging

uv =

 ∑
{σ|v∈σ}

ωσdσ

/ ∑
{σ|v∈σ}

ωσ

 . (4.2.8)

We refer readers to [29] for more details. The face-offsetting method provides us
an effective method to propagate the surfaces and generate prismatic mesh. How-
ever, the resulting prisms do not necessarily have good quality and may even cause
inverted elements. We address these quality and robustness issues in the next two
sections.

4.3 Variational Optimization of Prismatic Layers
Accuracy and efficiency of numerical simulations depends on shapes of the mesh
elements. In this section we focus on prisms comprising the boundary layer. Shapes
of the base triangles and the orthogonality of the side edges are particularly impor-
tant. The former can affect the aspect ratios of the prisms in the boundary layers and
of their adjacent tetrahedra in the interior, while the latter can affect the skewness
of the prisms. Orthogonality is important for producing smoother boundary layer
meshes and for capturing the boundary layer effects in simulations more accurately.
Figure~4.5 shows some examples of poorly-shaped prisms due to poorly-shaped tri-
angles or lack of orthogonality.In our framework, the displacements of the vertices
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are decomposed into normal and tangential motions, where the tangential motion
controls mesh quality.

Figure 4.5: Examples of poor-shaped prisms due to poor triangles with too large
or too small angles (left two) and lack of orthogonality due to twisting or shifting
(right two).

For flexibility, we optimize the prisms using a variational approach by minimiz-
ing a weighted sum of two potential energy functions to control triangle shapes and
side-edge orthogonality, denoted by Eθ and E⊥, respectively. We compute these
energies element by element and refer to the energy of each element as elemental
energy. The total energy is then the sum of the elemental energies. For efficient
minimization, we need to evaluate the gradient and Hessian of the energies with re-
spect to the vertex positions of the prism. We hereafter describe the computation of
the elemental energies and their derivatives and then present our overall smoothing
algorithm.

For the convenience of presentation, let us define a special naming convention of
the prism and some additional notation. As shown in Figure~4.6(a), let the vertices
of the prism be xj for j = 1, . . . , 6. We refer to the triangle x1x2x3 and x4x5x6

as bottom and top triangles, respectively. Let the opposite edge of xj in the top or
bottom triangle be tj , and let the si = xi+3−xi be the ith side edge for i = 1, 2, 3.
In the following, i ranges between 1 and 3 and j ranges between 1 and 6, unless
otherwise stated. Let us define the shorthands

i+ =

{
i+ 1 i < 3
1 i = 3

and i− =

{
i− 1 i > 1
3 i = 1

(4.3.1)

and then ti = xi− − xi+ and ti+3 = x(i−)+3 − x(i+)+3. Let nt = t5 × t4
and nb = t1 × t2, which are the inward normals to the top and bottom faces,
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Figure 4.6: Naming convention of (a) vertices, edges, face normals, and (b) or-
thogonal directions of prism for energy computation. Underlined symbols indicate
edges.

respectively. Let ‖x‖ denote the 2-norm of a vector x. Let li denote ‖si‖, i.e.
the lengths of the ith side edges. Let at = ‖nt‖ and ab = ‖nb‖, i.e., twice of
the areas of the top and bottom triangles, respectively. Let Vi = sTi nb, i.e., six
times of the tetrahedra spanned by the bottom triangle and the side edge si, and
similarly Vi+3 = −sTi nt. Let t⊥i = −ti × n̂b denote the 90◦ rotation of ti in the
bottom triangle pointing toward xi, and t⊥i+3 = ti+3× n̂t be the 90◦ rotation of ti+3

in the top triangle pointing toward point xi+3, as illustrated in Figure~4.6(b). Let
ŝi = si/li, n̂t = nt/at, and n̂b = nb/ab, i.e., the unit vectors of si, nt, and nb,
respectively.

4.3.1 Elemental Energy for Triangle Shapes
We first consider the energy for the shapes of the top and bottom triangles. Follow-
ing [31], we define the energy to measure the discrepancy between the actual trian-
gle and a reference triangle, and compute the energy in R3 (instead of in R2). Let
Eθ,b and Eθ,t denote the energies for the bottom and top triangles, respectively, and
the elemental energy of triangle distortion of a prism τ is then Eθ(τ) = Eθ,b +Eθ,t.
We describe only Eθ,b, as Eθ,t can be obtained easily by symmetry.

As shown in [31], an effective energy for Eθ,b is the ratio between the sum of
the squared edge lengths versus twice of the triangle area, derived from a confor-
mal mapping between the actual triangle with a reference equilateral triangle. Its
gradient and Hessian with respect to the vertex positions have simple closed forms.
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In particular,

Eθ,b =
1

ab

3∑
i=1

‖ti‖2, (4.3.2)

∇xi
Eθ,b =

1

ab
(2ti+ − 2ti− − Eθ,bt⊥i ), (4.3.3)

∇2
xi
Eθ,b ≈

4

ab
I − 1

ab

(
(∇xi

Eθ,b) t
⊥T
i + t⊥i (∇xi

Eθ,b)
T
)
, (4.3.4)

where I is the 3×3 identity matrix. The residual in (4.3.4) is− (Eθ,b‖ti‖2/a2
b) n̂bn̂

T
b ,

which is negligible because the vertices move nearly tangentially. From (4.3.4), it
can be easily shown that∇2

xi
Eθ,b is symmetric positive definite as long as ab > 0.

4.3.2 Elemental Energy for Edge Orthogonality
We derive a new energy function for measuring the orthogonality of the side edges.
Let φ

i
be the angle between si and nb and φi+3 the angle between −si and nt, i.e.,

φi = arccos

(
sTi nb
‖si‖‖nb‖

)
and φi+3 = arccos

(
−sTi nt
‖si‖‖nt‖

)
. (4.3.5)

Assuming the prism remains valid during mesh optimization, the quality 1/ cosφj
is minimized if φj = 0 and approaches∞ if φj = 90◦, so 1/ cosφi and 1/ cosφi+3

effectively measure the deviation from orthogonality of si with respect to nb and
nt. Therefore, we define the elemental orthogonality energy for a prism τ as

E⊥(τ) =
6∑
j=1

1

cosp φj
=

3∑
i=1

((
‖si‖‖nb‖
sTi nb

)p
−
(
‖si‖‖nt‖
sTi nt

)p)
. (4.3.6)

In practice, we use p = 1, as it leads to simpler formulas. Like Eθ, E⊥ is highly
nonlinear. However, we can also derive closed-form formulas of the gradient and
Hessian of E⊥ with respect to the vertex positions.

For convenience, let Ei = liab/Vi and Ei+3 = liat/Vi+3. First, note that

∇xj
Vi =


si × tj j = i±
tj × (xi− − xi+3) j = i
nb j = i+ 3
0 otherwise

,

and
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∇xj
Vi+3 =


si × tj j = (i±) + 3
−tj × (x(i−)+3 − xi) j = i+ 3
nt j = i
0 otherwise

.

We obtain the following formulas for the gradients:

∇xj
Ei =

1

Vi


lit
⊥
j − Ei∇xj

Vi j = i±
· · · − abŝi j = i
abŝi − Ei∇xj

Vi j = i+ 3
0 otherwise,

(4.3.7)

and

∇xj
Ei+3 =

1

Vi+3


lit
⊥
j − Ei+3∇xj

Vi+3 j = (i±) + 3
· · ·+ atŝi j = i+ 3
−atŝi − Ei+3∇xj

Vi+3 j = i
0 otherwise,

(4.3.8)

where “· · · ” denotes the repetition of the previous row. To compute the Hessian, let
us define a matrix

Bkj =
((
∇xj

Ek
) (
∇xj

Vk
)T

+
(
∇xj

Vk
) (
∇xj

Ek
)T)

, (4.3.9)

where k = 1, ..., 6. We obtain the following formulas for the Hessian:

∇2
xj
Ei =

1

Vi


li
ab
‖tj‖2n̂bn̂

T
b −Bij j = i±

· · ·+ ab
li

(
I − ŝiŝTi

)
−
(
ŝit
⊥T
j + t⊥j ŝ

T
i

)
j = i

ab
li

(
I − ŝiŝTi

)
−Bij j = i+ 3

0 otherwise,

(4.3.10)

and

∇2
xj
Ei+3 =

1

Vi+3


li
at
‖tj‖2n̂tn̂

T
t −B(i+3)j j = (i±) + 3

· · ·+ at
li

(
I − ŝiŝTi

)
+
(
ŝit
⊥T
j + t⊥j ŝ

T
i

)
j = i+ 3

at
li

(
I − ŝiŝTi

)
−B(i+3)j j = i

0 otherwise.
(4.3.11)

It is fairly easy to implement the above formulas. As for ∇2
xj
Eθ, we can omit the

n̂bn̂
T
b and n̂tn̂Tt terms in∇2

xj
Ei and ∇2

xj
Ei+3.
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4.3.3 Energy Minimization
Given the gradient and Hessian of the elemental energies, the gradient and Hessian
of the total energy with respect to each vertex v is equal to the sum of those in the
incident prisms of the vertex. Therefore,

∇xvE =
∑
{τ |v∈τ}

(µ∇xvEθ(τ) + (1− µ)∇xvE⊥(τ)) , (4.3.12)

∇2
xv
E =

∑
{τ |v∈τ}

(
µ∇2
xv
Eθ(τ) + (1− µ)∇2

xv
E⊥(τ)

)
, (4.3.13)

where µ controls the importance of triangle shapes versus edge orthogonality.
In practice, we give higher priority to orthogonality and choose µ = 0.2. After

obtaining the gradient and Hessian, one could apply one step of Newton’s method to
determine a displacement dv for the vertex v, i.e., by solving the equation

(
∇2
xv
E
)
dv =

−∇xvE. To preserve the height of the prisms, we constrain the vertex to move
nearly tangentially within a layer. For a vertex of the current surface layer, let t̂1
and t̂2 denote two orthonormal tangent vectors at v. Let T = [t̂1 | t̂2]. We obtain
the displacement by solving

(
T T
(
∇2
xv
E
)
T
)
y = −T T∇xvE and then dv = Ty,

i.e.

dv = −T
(
T T
(
∇2
xv
E
)
T
)−1

T T∇xvE. (4.3.14)

4.3.4 Overall Smoothing Algorithm
For the overall algorithm, it is most efficient and convenient to compute the gra-
dient and Hessian of Eθ and E⊥ over all the triangles, accumulate them at each
vertex, and then compute the displacements for all the vertices concurrently. This is
similar to the control flow of a typical finite-element code. When applying the dis-
placements, we determine a relaxation factor αv for each vertex and then add αvdv
to the vertex, where the relaxation factor is chosen to ensure mesh validity, as we
explain in Section~4.4.2. This variational algorithm is essentially a block-diagonal
solver for one step of Newton’s method. Our algorithm repeatedly invokes this
procedure for a desired number of iterations or until the mesh no longer improves.
This procedure is simple and efficient and delivers sufficient accuracy for optimiz-
ing prisms.
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4.4 Robustness and Implementation Issues
The preceding sections established the theoretical foundation of our framework for
generating prismatic boundary layer meshes. To obtain a robust method for prac-
tical biological computations, we must address a few additional issues, including
the verification of mesh validity, adaptation of step sizes, enforcement of boundary
constraints, and generation of tetrahedral mesh of the interior.

4.4.1 Positivity of Jacobian
In finite element methods, the computation over a prismatic element is based on
a mapping from a master element to the actual element. As illustrated in Fig-
ure~4.7, the mapping maps a point ξ = (ξ, η, ζ) in the master element to a point
x(ξ) ≡

∑6
i=1Ni(ξ)xi, where xi = (xi, yi, zi), and Ni is the shape function of the

element associated with its ith vertex. For accuracy and stability, it is important
that the Jacobian (aka the Jacobian determinant) of the mapping is positive every-
where within the element. Because the shape functions are nonlinear, it is nontrivial
to verify the positivity of a prismatic element. We describe a simple and efficient
technique to verify the positivity of the Jacobin for prisms in this subsection. This
technique will also serve as the foundation of our method for preventing mesh fold-
ing in the next subsection.

Figure 4.7: Schematic of mapping from master element to actual element for
prisms.

Our technique is based on the following proposition, proved by professor Jiao:
The Jacobian is positive everywhere within a prism if and only if it is positive along
all the side edges of the prism. For a prismatic element, the standard shape functions
of the prism are
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N1 = (1− ξ − η)(1− ζ) N4 = (1− ξ − η)ζ
N2 = ξ(1− ζ) N5 = ξζ
N3 = η(1− ζ) N6 = ηζ.

(4.4.1)

Using the naming conventions in Section~4.3, the Jacobian matrix at a pointx(ξ, η, ζ)
is

J ≡


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 =

 j1

∣∣∣∣∣∣ j2

∣∣∣∣∣∣ j3

 , (4.4.2)

where

j1 = t2 + ζ(s2 − s1)j2 = t3 + ζ(s3 − s1)j3 = u1 + ξ(s2 − s1) + η(s3 − s1).

The Jacobian is then det(J). It is obvious that det(J) is quadratic, because the
terms ζ2ξ and ζ2η vanish. Furthermore, det(J) is linear in ξ and η. Note that the
Jacobian is nonpositive if and only if the minimum Jacobian within the prism is zero
or negative. Suppose a point x0 = x(ξ0, η0, ζ0) has the minimum Jacobian. This
point is contained in the triangle with vertices x(0, 0, ζ0), x(0, 1, ζ0), x(1, 0, ζ0)
(which are in general not the vertices of the prism). Because the Jacobian varies
linearly within the triangle, the Jacobian attains its minimum at a vertex of the
triangle, which is contained in a side edge. Therefore, the minimum Jacobian is
nonpositive within a prism if and only if it is nonpositive along a side edge.

Based on this observation, we can therefore check the positivity of a prism by
considering only the side edges. As in Section~4.3, let si = xi+3−xi for i = 1, 2, 3.
Let xi,k denote xk − xi and si,k denote sk − si. Note that ξ and η are constants
along the ith side edge for i = 1, 2, 3. The Jacobian at the points on the edge is then
a quadratic function in ζ , Ji(ζ) = aiζ

2 + biζ + ci, where

ai = (s1,2 × s1,3)T sibi = (s1,2 × x1,3 + x1,2 × s1,3)T sici = (x1,2 × x1,3)T si.

The problem then reduces to the determination of the positivity of Ji(ζ) within the
interval ζ ∈ [0, 1]. In the presence of round-off errors, the equation Ji(ζ) = 0 can
be solved in a numerically stable fashion using the alternative quadratic formulas
(see e.g. [23, p. 26]). Suppose Ji(0) > 0 for i = 1, 2, 3. For robustness, we
consider Ji to be positive within the ith side edge only if none of its solutions is
in the interval [−ε1, 1 + ε2] for some positive ε1 and ε2. In practice, we choose
ε1 ≈ 10−6 to guard against round-off errors, and choose ε2 ≈ 0.05 or 0.1 so that
the prism is reasonably far from degeneracy.
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4.4.2 Adaptive Step Size Control
In our advancing layers algorithm, if the prescribed height of a layer is too large,
some prisms may become folded. Such foldings can be detected by checking the
Jacobian as described in the above. More importantly, we can extend the checking
procedure to control the adaption of the step sizes for ensuring the validity of the
mesh. At a high level, our basic idea is to verify the positivity of all the prisms, and
if any prism is invalid, we then repeatedly reduce the vertex displacements and re-
perform the checking until all elements are valid. We apply two different variants
of this procedure to normal and tangential displacements, respectively.

Let us first describe the scaling procedure for normal motions. A difficulty
arises because the user seems to have lost control of the height of the prismatic
layers due to the scaling of the displacements. This problem is easily overcome by
employing a “subcycling” technique. In particular, within each time step we take
a few sub-steps toward the prescribed height of the current layer while ensuring
the validity of the prisms. Let xi denote the vertex coordinates of a triangle in the
previous layer, di the accumulated displacements of the previous sub-steps of the
current time step, andui be the displacements of the current sub-step. We determine
a scaling factor αg so that the prisms composed of vertices xi and xi + di + αgui
are all positive. For simplicity, we determine αg using bisection by starting with
αg = 1 and repeatedly reduce αg by half until all prisms are valid. After each sub-
step, we perform a few iterations of mesh smoothing for the intermediate prismatic
layer. This procedure automatically invokes more smoothing steps for more skewed
meshes.

Mesh smoothing itself must also preserve the validity of the mesh. However,
instead of scaling all of the vertex displacements by a global αg, we compute a
different scaling factor for each vertex for more effective smoothing. In particularly,
we first determine an ατ for each element τ by bisection so that the prism with
vertices xi and xi+di+ατui is positive, where i = 1, 2, 3 and denotes the vertices
of a triangle in the surface layer. We then set the scaling factor αv for vertex v to
be the minimum of ατ among its incident triangles, i.e., αv = min{τ |v∈τ} ατ . If
αv < 1 for any vertex, we scale its displacement and recompute ατ and αv in its
neighborhood. We repeat this process until αv ≥ 1 for all vertices, which typically
terminates in very few iterations.

4.4.3 Enforcement of Boundary Constraints
In biomechanical simulations, it is often necessary to impose inflow/outflow con-
ditions, such as for specifying the velocity of the blood flow at the end of a blood
vessel. Boundary layers are not desired for the inflow/outflow walls, so we must
extend our algorithm to accommodate these needs. For simplicity, we assume the
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inlet/outlet walls are flat as they are in our applications.
For the purpose of meshing, we consider the inlet/outlet walls as constrained

patches, on which vertices can move only tangentially (i.e., only smoothing is
allowed), and consider the other surface patches as advancing patches (see Fig-
ure~4.8). In our framework, we simply set the speed function of the constrained
faces to zero when computing the vector f in (4.2.3) and then solve (4.2.5) as
usual. For the vertices at the curves between the advancing and constrained patches,
the displacement d from (4.2.5) would then be nearly tangential to the constrained
patch and nearly orthogonal to the advancing patch, just as desired. For better ac-
curacy, we further project d orthogonally onto the constrained surface. Figure~4.9
shows an example of the boundary layer mesh under boundary constraints, where
the initial triangulated inlet wall in Figure~4.9(a) is replaced by a hybrid triangle-
quadrilateral mesh in Figure~4.9(b).

Finally, for completeness Algorithm 5 summarizes our overall algorithm for
advancing the layers with subcycling and boundary constraints. Note that the time
step ∆t may differ from layer to layer to allow gradation of the mesh. Note that
in the case of propagation and interpolation, we simply run the algorithm with
nlayers equal to 1 and then subdivide the side edges into subintervals to obtain
the intermediate layers. We have implemented our algorithm for the generation
of boundary-layer meshes in MATLAB and converted it into C code using Agility
MCS (www.agilityds.com).

4.4.4 Generation of Interior Tetrahedral Meshes
In general, there are two paths to follow in order to fill out the interior with tetra-
hedra: we can construct a tetrahedral interior and project the prisms to the original
surface, or we can construct the prismatic boundary layer and fill in the tetrahedral
core. The former allows more freedom in the construction and improvement of the
tetrahedral core, but that freedom comes at the cost of constraints on the construc-
tion of the prismatic boundary layer. The latter path restricts the construction of the
tetrahedral core in a very specific way: it must be boundary constrained. In other
words, the triangulation of the interface between prismatic boundary layer and tetra-
hedral core must be unchanged. We generate boundary constrained tetrahedral core
using constrained Delaunay tetrahedralization in Tetgen (http://tetgen.berlios.de/)
developed by Si [70]; for more details on constrained Delaunay tetrahedralization,
see e.g., [68, 70].
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Figure 4.8: 2-D illustration
of constraints.

(a) Initial surface mesh.

(b) Final surface mesh.

Figure 4.9: Example of evolution of surface under
boundary constraints.

Algorithm 5 Advancing layers by face-offsetting.
1: for i = 1 .. number of layers
2: Comment: construct layer by layer
3: δt� ∆ti
4: while δt > 0
5: compute normal displacements uv at all vertices with GLFS as speed

function;
6: impose boundary constraints;
7: determine global rescaling factor αg ∈ (0, 1]
8: if αg is too small
9: stop and return layers up to i− 1

10: end if
11: for desired number of iterations
12: Comment: Perform mesh smoothing
13: compute tangential displacements tv at all vertices;
14: determine local rescaling factors αv for each vertex v;
15: move each vertex to xv ← xv + αvtv;
16: end for
17: δt← (1− αg)δt;
18: end while
19: save xv as the ith surface layer;
20: end for
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4.5 Experimental Assessment and Comparisons
In this section, we assess the robustness and quality of our proposed method for gen-
erating prismatic boundary layer meshes. We report the results with two complex
biological geometries: a rat lung and a human heart, and compare our method with
some other alternatives. We evaluate the meshes in terms of four quality measures,
which we define next.

4.5.1 Quality Measures for Prisms
Good quality measures are critical for assessing and comparing different methods.
To the authors’ knowledge, there is no previously well-established quality measures
for prisms. A measure sometimes used in the literature is the so called scaled Ja-
cobian (or minimum scaled Jacobian, see e.g., [15]). At each vertex of a prism, the
scaled Jacobian is the determinant of the matrix composed of the unit vectors of its
three edges, and the quality of the prism is then measured by the minimum among
the vertices. The scaled Jacobian was initially defined for hexahedra [42], where
the three edges should ideally be mutually orthogonal. However, this measure is
not ideal for prisms, because a prism may be inverted even if the Jacobian (and in
turn the scaled Jacobian) is positive at all the vertices. In addition, the pointwise
scaled Jacobian does not attain its maximum value at the vertices of an ideal prism.

We propose a different quality measure for prisms, referred to as the {\em scaled
aspect ratio}, which resolves the above issues of scaled Jacobian. First, we define a
pointwise measure at each point within the prism as

ρ(ξ) =

(
2
√

3j1 × j2

‖j1‖2 + ‖j2‖2 + ‖j1 − j2‖2

)T
j3

‖j3‖
, (4.5.1)

where ji is given in (4.4.2). For a prism τ that has positive Jacobian everywhere,
we define the scaled aspect ratio of τ , denoted by ρ(τ), to be the minimum of ρ
among the six vertices; for a prism that has nonpositive Jacobian, we define ρ(τ)
to be the minimum of ρ(ξ) among the points that attain the most negative value of
det(J) in the side edges, i.e.,

ρ(τ) =

{
min{ρ(vi) | i = 1, . . . , 6}if τ is not inverted
min{ρ(ξk) | det(J(ξk)) is most negative along kth side edge}otherwise.

(4.5.2)
Note that our boundary-layer algorithm guarantees positive Jacobian. However,
some other methods may not guarantee positive Jacobian, so the general definition
above is necessary for comparison purposes.

This scaled aspect ratio has both geometric and algebraic meanings. The magni-
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tude of the first term in (4.5.1) measures the aspect ratio of the triangle with edges
j1, j2, and j1 − j2, and it resembles the reciprocal of the triangle-shape energy
(4.3.2). The inner product in (4.5.1) resembles those in the edge-orthogonality en-
ergy (4.3.6). Therefore, this quality measure in effect combines the measures of
triangle shapes and edge orthogonality, which we optimize in our mesh smoothing
step. Note that ρ(τ) ∈ [−1, 1], ρ = 1 for ideal prisms, and ρ ≤ 0 indicates an
inverted element. Algebraically, we can rewrite (4.5.1) as

ρ(ξ) =
2
√

3 det(J)

‖j3‖ (‖j1‖2 + ‖j2‖2 + ‖j1 − j2‖2)
, (4.5.3)

where J is given in (4.4.2). From (4.5.3), it is clear that the scaled aspect ratio
involves a simple “fix” to the scaled Jacobian for prisms.

Besides scaled aspect ratio, we also consider the statistics of the angles of the
triangles (60◦ is ideal) and the distortions of the side edges with respect to the face
normals, which we refer to as triangle angles and edge distortions, respectively.
We compute the latter as the angles between the side edges and the upward normals
to the triangles of the prisms, so 0◦ is ideal. These can be considered as measures
of triangle shapes and edge orthogonality, respectively. Although the scaled aspect
ratio already contains information about both of these measures, these statistics are
more intuitive to understand and sometimes revealing. For the tetrahedral interior,
we report the aspect ratio χ of a tetrahedron, defined as

χ ≡ 2
√

6
inscribed radius

length of longest edge
(4.5.4)

which has a maximum value of 1.0 for regular tetrahedra.

4.5.2 Rat Lung
Our first example geometry, as shown in Figure~4.10, is a rat lung, whose surface
has genus 0. Magnetic imaging data was acquired using silicone casts of pulmonary
airways in a 9-wk-old, male, Sprague-Dawley rat. The surface was extracted with
a variant of the marching cubes algorithm [73].

Panel A shows the gradient-limited feature sizes (GLFS) f [x] and fout[x]. Adapted
surface mesh contained 162,923 vertices and 325,842 triangles.
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Figure 4.10: Boundary layer mesh of a rat lung. Panel A shows the feature size
fields on the lung surface, as well as the locations of the cutaway sections in panels
B–E. Panel B shows the boundary prism and interior tetrahedra at a region where a
large airway , with f(x) greater than , transitioning to a smaller airway. Panels C and
D show the sections through the trachea and through a pair of airways downstream
of the bifurcation, respectively. Panel E shows the resulting surface mesh in the
neighborhood of several outlets, where the faces are constrained.
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Quality Measurements

Our algorithm generated five layers of prisms for a total height of about 40% of
the GLFS. The layers were graded with an exponent of 1.2, so the height of first
layer was about 4.48% and that of the last layer was about 11.15%. We used face-
offsetting with both shape and orthogonality optimization and with interpolated
layers. The generation of the prismatic layers took about 36 minutes on a PC with
a 3GHz Intel Core 2 Duo CPU. The generation of the tetrahedral mesh took about
2 minutes. The resulting hybrid mesh is shown in Figure~4.10.

Panel B shows the prismatic boundary layer and interior tetrahedra in a large
airway transitioning to a smaller airway. Panels C and D show sections through the
trachea and a pair of airways downstream of the bifurcation, respectively. Panel
E shows both the external boundary and the prismatic layer in the neighborhood
of several outlets that are roughly 1/30 of the diameter of the trachea. The outlet
surfaces in panel E illustrate the enforcement of the boundary constraints of the
prismatic boundary layers described in subsection~4.4.3.
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Figure 4.11: Mesh-quality statistics for the prismatic layers and interior tetrahedra
of the rat lung mesh generated using our proposed method. Panel A shows the
triangle angles for each surface layer, starting with the original surface mesh (60◦

is ideal). Panel B shows the edge distortions of each prismatic layers (0◦ is ideal).
Panel C shows the scaled aspect ratios of prisms for each prismatic layers (1.0 is
ideal, and a negative value would indicate an inverted prism). Finally, panel D
shows the aspect ratios for tetrahedral elements (1 is ideal)
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Figure 4.11 shows three prism statistics: triangle angle, edge distortion and
scaled aspect ratio for the five layers generated, along with the conventional aspect
ratio for tetrahedra. For both aspect-ratio measures, the vertical axes are the num-
bers of their corresponding elements. However, for the triangle angles, the vertical
axis is equal to the number of triangles times three, and for edge distortions it is
equal to the number of prisms times six (since there are two triangles and three side
edges per prism). As can be readily seen, the peak angles of the original surface
mesh and the final offset surface were between 40◦ and 80◦. For edge distortion,
the peak remained in the 0◦−10◦ range. For scaled aspect ratio, the peak was in the
0.8− 1.0 range, and very few prisms were in the 0.0− 0.2 range in the final layer,
with a minimum of 0.113. It is beyond the scope of this paper to report detailed
simulation results using boundary-layer meshes, which we will report elsewhere.
Nevertheless, Figure~4.12 shows the result from a transient CFD simulation using
our meshes, demonstrating the usability of our method for our targeted biomedical
applications.
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Figure 4.12: Transient CFD results for the pulmonary airways of 9-wk-old, male
rat. Flow data (inset) were experimentally determined from a mechanical ventilator
and prescribed to the trachea. Downstream outlets were uniformly prescribed zero
pressure boundary conditions. Columns A&B correspond to time points A&B on
the inset velocity curve, roughly corresponding in turn to peak inhalation and peak
exhalation. Velocity vectors and velocity contours through each domain (prismatic
or tetrahedral) are shown in respectively in rows 1− 3.
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Comparison of Different Alternatives

To get an indirect comparison with other methods, we note that most competing al-
gorithms are based on vertex propagation rather than face offsetting. To our knowl-
edge, few (if any) of the existing methods optimize the orthogonality of prisms.
We therefore compared our method against vertex propagation. We consider two
alternatives of normal computations for vertex propagation: area-weighted ver-
tex normals, which we refer to as AVP, and the normal computation proposed by
Kallinderis and Ward in [37], which we refer to as BVP. To evaluate the effective-
ness of our mesh-optimization and layer-interpolation strategies, we ran 18 different
cases, as indicated in the first panel in Figure~4.13, where "Interp." indicates the
propagation by a single big step followed by interpolating the intermediate layers,
and "Prop." indicates that each layer is generated by propagating layer by layer. For
each case, we let each method propagate up to 40% of the GLFS, invoked subcy-
cling whenever necessary, and stopped the propagation if the subcyling time step
became too small (≤ 10−5). As shown in the first panel in Figure~4.13, only the
methods with our full optimization strategy (i.e., optimizing both triangle shape and
edge orthogonality) marched the desired distance, demonstrating the effectiveness
of our smoothing strategy in enhancing the robustness for prismatic boundary lay-
ers. Note that when optimizing only triangle angles, all the methods failed after
mere 0.13% propagation because of severe edge distortions. In terms of the propa-
gated and interpolated layers, the former was more robust without mesh smoothing,
but the latter became more robust with our optimization. Furthermore, a layer-by-
layer propagation could not produce the desired number of layers if it fails in the
middle, but the interpolation schemes can always produce the desired number of
layers even if the propagation fails prematurely, and it is also convenient to change
the number of layers. Therefore, we advocate using interpolated layers with varia-
tional optimization for better robustness and flexibility. Between vertex propagation
and face offsetting, it seemed to be a tie for this particular geometry, but face off-
setting will be shown to be more robust for a more complex geometry in the next
subsection.

To assess the quality of the resulting meshes, we compare six out of the 18
cases to propagate, encoded as BPO, BIN, BIO, FPO, FIN, and FIO, where the
first letter (B or F) indicates BVP versus FOM, the second letter (P or I) indicates
Prop. versus Interp., and the third letter (N or O) indicates no-optimization versus
full optimization. For fairness of comparison, we reran the six cases to generate
boundary layers with a total height equal to 15% of the GLFS, which were about
the maximum distance that BIN and FIN could propagate. The last three panels in
Figure~4.13 shows the statistics of the prismatic layers for these six cases. Overall,
different methods produced similar overall distributions of mesh quality, but FIO
was notably better than the others in terms of the worst edge distortion and scaled

71



Marched distances of different
alternatives

Smoothing AVP BVP FOM
None 19.5% 19.6% 19.6%

Prop. Triangle only 0.12% 0.13% 0.13%
Triangle & Orth. 28.8% 40% 40%

None 18.0% 14.5% 15.4%
Interp. Triangle only 0.12% 0.13% 0.13%

Triangle & Orth. 40% 40% 40%

Triangle Angle

Edge Distortion Scaled Aspect Ratio

Figure 4.13: Comparative statistics for prismatic layers using different alternatives.
First panel shows the options used for each series and also their corresponding
marched distances as percentage of GLFS. Last three panels show quality metrics
of selected methods after propagating 15% of GLFS.

aspect ratio. Finally, we note that vertex propagation was about 10 − 20% slower
than FOM, because the former required far smaller time steps than FOM to avoid
negative Jacobian.

4.5.3 Human Heart
Our second example, as shown in Figure~4.14, is an idealized human heart model.
This model was originally from the NYU Medical Center. It is relatively realistic
and highly complex topologically, with a genus 12. The heart mesh is composed of
two distinct material regions: the heart musculature and the enclosed blood. The
blood region in turn consists of two disconnected components, the left and right
ventricular and atrial cavities. Panels A and B of Figure~4.14 show the GLFS of
the tissue fT issue[x] and blood fBlood[x], respectively.

For the heart, we constructed three, instead of two mesh domains. The tis-
sue of the heart muscle was tessellated by a layered tetrahedral meshing algorithm
described in [44]. The interior surface of this layered tetrahedral region was the
boundary of the blood region that was to be offset. Within the offset boundary,
we produced a boundary-constrained tetrahedral core. Surface mesh has 64, 865
vertices and 129, 722 triangles.
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Figure 4.14: Multi-material boundary layer mesh of a human heart, consisting of
heart tissue, blood boundary layer and blood domains. Panels A and B show the
feature size field on the outer surface of the heart tissue domain and the blood
domain, respectively. Panel B shows the feature size field on the outer surface of
the blood domain. Panel C shows a cut through the heart muscle tessellated with
layered tetrahedra [44], where the orientation of the cut plane is indicated in Panel
A. Panel D shows the detail of the layered tetrahedral mesh of the heart tissue.
Panels E and F are zoomed-in views on the regions of the cardiac valves, showing
the prismatic boundary layer alone. Panels G, H and I show the prismatic boundary
layer at about 25% of GLFS of the blood domain, sandwiched between the layered
tetrahedra of the tissue and the Delaunay tetrahedra of the blood. Heart model and
surface mesh are courtesy of the NYU Medical Center and Zhang et al. .
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Quality Measurements

We first generated a six-layer prismatic mesh with our method by marching for
about 27% of the GLFS of the blood domain, again using the default mode of our
proposed method, namely face offsetting with full optimization and with interpo-
lated layers. The propagation and construction of the prismatic layers took about
20 minutes on a PC in the same setting as for the lung mesh. The generation of the
tetrahedral mesh for the heart tissues took 30 minutes, and that for the blood region
took 5 minutes. The resulting hybrid, multi-material mesh is shown in Panels C–I
of Figure 4.14.

Panels C and D show the layered tetrahedral tissue mesh in isolation. In this
case, we chose to generate three layers of tetrahedra, corresponding to the histo-
logically distinct myocardial, valvular and arteriovenous layers of the tissue. The
prismatic boundary layer is shown in Panels E and F. Note the ordered layers of
prisms transitioning from the larger myocardial scale to the lower valvular scale.
Panels G, H and I show the three regions integrated at various levels of scale.

Figure 4.15 shows the three prism statistics: triangle angle, edge distortion and
scaled aspect ratio for the six layers generated, as well as the conventional aspect
ratio for tetrahedra.

The distribution of triangle angles did not significantly degrade in the final offset
surface. The same trend can be seen in the edge distortion statistics, where peak
distortion remained in the 0◦ − 10◦ range. Only a few prisms had a distortion
greater than 70◦, with a maximum of 77◦. In terms of the scaled aspect ratio, the
majority of the prisms are close the 1.0, the ideal value. Only a handful were in the
0.0-0.2 range, with a minimum of 0.085.

Comparison of Different Alternatives

As for the lung mesh, we compared a number of methods for generating prismatic
boundary layers, including face offsetting (FOM) as well as vertex propagation
(AVP and BVP), and ran the same 18 combinations. For each variant, we march the
surface as far as possible, and recorded the marched percentages of GLFS in Ta-
ble. Most methods marched less than 10% of the GLFS. The clear winner was our
proposed method, namely face offsetting with full optimization and layer interpo-
lation, which reached 27%. The second place was BVP, namely vertex propagation
using the normal computation of Kallinderis and Ward in [37], augmented with our
mesh optimization and layer interpolation, which marched 17.1%. These results
once again show that our mesh optimization and layer interpolation techniques are
effective in enhancing the robustness of prismatic boundary layers. In addition, this
example also demonstrates that FOM is more robust than vertex propagation for
complex geometries.
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Figure 4.15: Mesh quality statistics for the prismatic layers and interior tetrahedra
of the human heart mesh generated using our proposed method. Panel A shows
the angles for each surface layer (60◦ is ideal). Panel B shows the edge distortions
of each prismatic layer (0◦ is ideal). Panel C shows the the scaled aspect ratio for
prisms of each prismatic layer (1 is ideal, and a negative value would indicate an
inverted prism). Finally, panel D shows the aspect ratio for tetrahedral elements (1
is ideal)
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There appear to be two main reasons for vertex propagation to be less robust
than FOM. First, the heart mesh contained some convex areas with large curvatures,
which quickly evolve into sharp edges after a moderate amount of propagation due
to the coarse mesh resolution. These sharp edges cause difficulties for normal com-
putations, even for the normal computation in [37], causing some vertex normals
to point opposite to some face normals and in turn negative Jacobian. FOM over-
comes the problem using an eigenvalue analysis to deliver more reliable directions
for the propagation. The second reason is that unlike FOM or the level set methods,
vertex propagation is not based on the Huygens’ principle (or its generalization)
and can lead to severe lagging at sharp convex regions. This deficiency of vertex
propagation tends to accelerate the formation of sharp edges and cause early termi-
nation of the propagation. Note that these difficulties with convex sharp edges are
the main motivations for the use of multiple normal directions in previous methods
[19, 26, 27], which are unfortunately difficult to apply for complex biological ge-
ometries, because the sharp edges do not correspond to well-defined sharp features
in the surface and they emerge dynamically.

4.5.4 Comparison with Commercial Software
Our comparisons with other methods for the lung and heart meshes were based on
our own implementations of different alternatives, so they only serve as indirect
comparisons with other methods. Due to the lack of standard benchmarks, it is
admittedly difficult to compare against other software implementation. For com-
pleteness, we nevertheless report a comparison against a mesh generator from a
leading CFD company. Like a few others, this software can import a surface mesh
to reconstruct the geometry (a discrete CAD model) and then generate a boundary-
layer mesh using different algorithms. The algorithms supported by this software
include one that produces uniform heights of the prisms, one that adapts the heights

Table 4.1: Marched percentage of the GLFS for heart geometry using different
methods. “Prop.” and "Interp." refer to propagated and interpolated layers, respec-
tively.

AVP BVP FOM
Prop. Interp. Prop. Interp. Prop. Interp.

No mesh optimization 3.8% 2.7% 3.5% 5.8% 3.6% 8.0%
Optimize triangle only 6.0% 5.9% 6.1% 6.1% 10.0% 9.1%

Optimize triangle & orth. 8.0% 12.5% 9.5% 17.1% 9.9% 27%
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of the prisms based on the edge lengths of the initial input surface, and one that
adapts the heights of the prisms based on the edge lengths of the propagated sur-
face. None of these options allows the adaptation of the boundary layer based on
a user-specified field, such as the GLFS. However, since our surface meshes are
adapted based on the GLFS, the latter two options can indirectly adapt the heights
of the prisms based on GLFS. Therefore, we therefore compare our method against
the latter two algorithms and refer to them as Commercial A and Commercial B,
respectively.

We first attempted to generate prismatic boundary layers from the lung and the
heart surface meshes. Even after our best effort (including consultation with the
principal developer of this capability in the commercial software), for the lung
mesh the commercial software failed to properly reconstruct the surface patches,
which is a pre-requisite for the software to generate boundary-layer meshes. For
the heart mesh, the software successfully reconstructed the surface patches, but it
repeatedly generated prismatic meshes that had self intersections or that were too
skewed for that software itself to produce a valid tetrahedral mesh. With our best
possible effort, we were able to generate only a very thin layer of prisms to cover
approximately 3% of the domain using Algorithm B of the software. Figure~4.16
shows a visual comparison of the resulting meshes using the commercial software
and our method.

The above tests demonstrated the tremendous difficulties in generating prismatic
boundary-layer meshes for complex geometries even for the state-of-the-art com-
mercial software. This is not surprising, because as we noted earlier, most existing
methods and software for boundary layers are designed for CAD models, so they
are not well suited for complex geometries from medical imaging. The commer-
cial software with which we compared was no exception. In order to compare the
quality of the meshes generated by our method against commercial software, we
resorted to a simpler geometry. We chose a simple T shaped intersection of tubes.
After many unsuccessful trials, the commercial tool reported successful generation
of prismatic elements using either of the two algorithms, which apparently marched
about 35 to 45% of the GLFS. The left two panels in Figures~4.17 show the result-
ing meshes, which were visibly jagged and skewed. Such jagged boundary-layer
meshes appear to be common for some other software as well. In this comparison,
we set our method to march 50% of the GLFS for this geometry, and the last panel
in Figures~4.17 shows the resulting mesh using our method. In contrast, the mesh
from our method was visibly far smoother because of its variational nature.

Figure 4.18 shows the statistics of the prismatic layers using the commercial
software as well as our method in terms of the triangle angle, edge distortion, and
scaled aspect ratio. It is worth noting that the commercial software appears to de-
liver better triangle angles than ours. However, because that software does not
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Commercial Our Method

BA

DC

Figure 4.16: Comparison of prismatic boundary layer generated using a leading
commercial CFD mesh generator and our method.

optimize the orthogonality of the prisms, it caused severe edge distortions and even
inverted elements. Overall, the mesh from our method is superior in terms of the
scaled aspect ratio. This result is consistent with our observations for the lung
mesh. These results demonstrate that our method is more robust and can produce
higher quality meshes than this (and likely some other) state-of-the-art, commercial
software.

4.6 Variational Generation of Hybrid Mesh
Generating prisms prior to tetrahedralization of the interior quickly produces thick
boundary layers with well shaped prisms, but it doesn’t allow flexibility in choosing
properties of terahedral core.

The reason is that after propagation, the domain is shrunk. Tetrahedral core has
to be generated by a constrained tetrahedralization, which cannot add Steiner points
on the surface. As a result, the quality of the resulting tetrahedral mesh is limited.
To maintain the consistencies of prisms, the tetrahedral mesh generator has more
constraints than usual, making it difficult to produce high-quality tetrahedra. To
overcome this limitation, we propose an alternative strategy. The method has four
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Our Method Commercial A Commercial B Our Method Commercial A Commercial B

Figure 4.17: Comparison of mesh quality of prismatic boundary layer generated
using commercial software and our method. Solid curves indicate ridge curves in
the surface mesh with dihedral angles close to 90◦.

key steps:

1. generate an initial tetrahedral mesh;

2. propagate an initial thin-layer of prisms and shrink the tetrahedral core;

3. further expand prisms and shrink tetrahedra by variational smoothing;

4. enhance overall hybrid mesh using local mesh adaptivity.

We discuss each of these steps in the following subsections.

4.6.1 Initial Generation of Tetrahedra
In this section we describe our own technique for terahedralization of the surface,
though our method can add prismatic boundary layer to any tetrahedral mesh. For
our purpose, the boundary triangulation of the tetrahedral mesh should have a good
mesh quality, as the prisms will be generated from it. The interior of the tetrahedral
mesh has more flexibility: it may be anisotropic and/or layered, and it does not need
to have perfect mesh quality since it will be deformed and enhanced later. However,
in general it is desirable to avoid high-valence vertices and very small tetrahedra for
better effectiveness and higher efficiency.
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Figure 4.18: Comparison of mesh quality statistics of prismatic boundary layer
generated using commercial software and our method.

In our implementation, we generate the tetrahedral mesh by first generating a
surface mesh and also a point set within the volume, with a distribution in propor-
tion to the GLFS. Our current approach differs from the algorithm detailed in [44],
in several key ways. First, the entire algorithm is implemented in our Matlab-based
numerical geometry library, NumGeom. Second, we use TetGen [69] interoper-
ably linked to NumGeom as our Delaunay connection engine. Importantly, since
TetGen performs semi-constrained Delaunay tetrahedralization, inclusion of the ex-
terior feature size (Fout in [44]) in the GLFS and subsequent adaption of the surface
mesh which includes this exterior value is no longer necessary. It is important to
note that we simply ask TetGen to connect the points. We put no requirements on
quality, dihedral angle or volume. Since our point placement is very deliberate, we
wish to improve the quality of the initial tetrahedral mesh in a way that is inherently
compatible with that placement. Secondly, we adapt the outlet surface triangulation
with Triangle [67], similarly interoperably linked to NumGeom.
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Algorithm 6 GENERATELAYEREDTETS

1: [Given a closed triangulated surface S with planar boundary outlets S1...n
fac , gen-

erate a quality, scale-invariant layered tetrahedral grid]
2: Inputs: minimum and maximum feature size limits Lmin and Lmax, a collision

tolerance Φ, a curvature parameter γ, and the desired number of layers nlayers
3: α = nlayers/nlayers+1

4: Compute vertex normals and curvatures [33]
5: Compute GLFS [44? ] to return F [x] the raw ray shoot, and f [x] its gradient-

limited value, where here F [x] and f [x] are considered radii not diameters
6: for each boundary facet S1...n

fac

7: delete facet triangles
8: for each point xfac on the border
9: project vertex normals nfac onto the facet

10: for j← 1 . . . nlayers
11: dist = αf [xfac] · j nlayers
12: generate points on the interior of the facet xnew ← xfac + dist · nfac;

new + +
13: create a kdtree structure of all of the new points
14: sort new points in order of descending SR = f [x]/F [x[

15: for each new point xnewi from sorted list
16: if ¬ dudded[xnewi ]
17: use the kdtree to find points, xfound, in xnewwithin Φ · f [xnew

i ]/nlayers
18: dudded[xfound ]← TRUE
19: call TRIANGLE [67] to connect the surviving new points and the contour
20: add the new triangulated facet to S
21: for each point xi ∈ S that is not a facet point
22: for j← 1 . . . nlayers
23: dist = αf [xi ] · j nlayers
24: generate points on the interior of S xnew ← xi + dist · nfac; new + +
25: create a kdtree structure of all of the new points
26: sort new points in order of descending SR = f [x]/F [x[

27: for each new point xnewi from sorted list
28: if ¬ dudded[xnewi ]
29: use the kdtree to find points, xfound, in xnewwithin Φ · f [xnew

i ]/nlayers
30: dudded[xfound ]← TRUE
31: call TETGEN [69] to connect the surviving new points and S into tetrahedral

mesh T
32: map the boundary conditions to T [28]
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Algorithm 7 IMPROVETETMESH

1: [Given a tetrahedral mesh T generated with Algorithm 6, apply edge flipping
and r-adaption to improve the mesh quality]

2: while RMST > tol
3: while nflips > 0
4: perform a sweep of 3-2, 2-3, 2-2 and 4-4 flips to decrease the error
5: perform n iterations of variational smoothing

6: RMST ←

(
1
N

N∑
i=1

‖d v‖2

)1/2

, where dv is the change in the position of

the node during

There are also differences in terms of the distribution of points on the interior. In
particular, we compute a shoot ratio (SR[x]) which is the ratio of the GLFS (f [x])
to the length of the ray (F [x]). It should be noted that SR[x] is a measure of our
confidence that the gradient limited radius is actually on the medial axis. For exam-
ple, SR[xi] ≈ 1 implies that the GLFS at xi underwent very little gradient limiting.
Given this measure of confidence we sort all of the candidate interior (and outlet)
points by SR[x] in descending order and use this sorted list within a kdree [39] to
delete points that are within a fraction of the point offset times a collision parameter
Φ. This is a natural way to remove troublesome points that would wreck the layer
structure and create small badly shaped elements. The details of the overall point
generation and connection method are given in Algorithm 6. Generation of this
initial layered tetrahedral mesh is followed by a simple but effective tetrahedral im-
provement strategy that pairs well with our tetrahedral mesh generation strategy. It
consists of alternating topological flip operations with nodal smoothing (Algorithm
7). For both operations, we define an energy for each tetrahedron with respect to
some “ideal” reference tetrahedron, similar to that presented in [32]. We define this
energy in detail below since it will be applied during the prism propagation and
hybrid mesh improvement stages, as well.

Variational Tetrahedral Energy

Given a tetrahedron τ = x0x1x2x3, and its corresponding reference tetrahedron,
p0p1p2p3, let J1 and J2 denote their respective Jacobians with respect to the stan-
dard master element, i.e., J1 = [x1−x0|x2−x0|x3−x0], and J1 = [p1−p0|p2−
p0|p3 − p0]. We define
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G1 = JT1 J1 =

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 andG2 = JT2 J2 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 ,
(4.6.1)

and let gj and hj denote the jth columns of G1 and G2, respectively. Let ν =√
|G1| and V =

√
|G2|. As illustrated in Figure 4.19, we label the edges of the

tetrahedra as li and ri for i = 1, 2, 3, where li = xi−x0 and ri = xi−−xi+, with

i+ =

{
i+ 1 i < 3

1 i = 3
and i− =

{
i− 1 i > 1

3 i = 1
. (4.6.2)

Let n0 = r2×r1, the normal to the opposite triangle of x0 pointing toward x0 with
magnitude equal to twice of the triangle area. For any a ∈ R3, let sum(a) denote
a1 + a2 + a3. The energy Eθ(τ) for a tetrahedron τ in R3 is

Eθ =
1

V 2/3

3∑
i=1

(
αi‖li‖2 + βi‖ri‖2

)
, (4.6.3)

where αi = sum(gi+× gi−)/ν4/3 and βi = (giigi−,i+− gi,i−gi,i+)/ν4/3. If the ideal
tetrahedra are regular, then αi = βi = 2−4/3.

Nodal Smoothing of Tetrahedral Mesh

Smoothing sweep functional is the error defined in Equation 4.6.3. In this applica-
tion, the reference element is a regular tetrahedron, and thus again αi = βi = 2−4/3,
as defined above. During smoothing the neighborhood on which the error is defined
is the polyhedron of elements surrounding each node. Nodal smoothing is subject
to the constrained degrees of freedom of the point. Boundary surface nodes that are
not on the interior of a plane are currently excluded from the sweep.

We add up the energy of all the tetrahedra and then try to minimize the total
energy by moving vertices. In our optimization algorithm, we compute the gradient
and Hessian of the energy with respect to vertex coordinates. For the elemental
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energy Eθ, the gradient∇x0Eθ and Hessian∇2
x0
Eθ with respect to x0 are

∇x0Eθ = − 2

V 2/3

(
3∑
i=1

αili

)
− 2

3V
Eθn0 (4.6.4)

∇2
x0
Eθ =

(
2

V 2/3

3∑
i=1

αi

)
I − 2

3V
B − 2

9V 2
Eθn0n

T
0 , (4.6.5)

where I denotes the 3× 3 identity matrix andB = (∇x0Eθ)n
T
0 + n0 (∇x0Eθ)

T .

Figure 4.19: Naming convention for tetrahedron. Underlined symbols indicate
edges.

Given Equations 4.6.3, 4.6.4 and 4.6.5, we apply Newton’s method to determine
a displacement dv for the vertex, i.e., by solving(

∇2
xv
Eθ
)
dv = −∇xvEθ. (4.6.6)

In the case of constrained nodes with 1 or 2 degrees of freedom, we solve a reduced
system that is either along an edge or in the plane of a planar boundary (typically
an outlet). Solution of Equation 4.6.6 or the reduced system leads to proposed
nodal displacement dv that is scaled back - if necessary - to avoid folding; if any
vertex is scaled back, we recompute the gradient and Hessian of its surrounding
elements and compute its displacement. Smoothing based upon the minimization
ofEθ has a very favorable characteristic. The tetrahedra do not invert under adaptive
smoothing, owing to the presence of the tetrahedral volume in the denominator.

4.6.2 Initial Generation of Prisms and Shrinking Tetrahedra
We add a layer of prisms outside the tetrahedral mesh to set up the topology of the
prismatic-tetrahedral hybrid mesh. This is done by 1) propagating the surface mesh
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to generate a thin layer of prisms, and 2) shrinking the tetrahedral mesh to make
space for the prisms.

Initial Propagation

We generate an initial prismatic mesh using a simplified version of our previous
algorithm. We retain the core ideas of 1) using GLFS to control the depth of the
prisms, 2) using face offsetting to propagate the surfaces, and 3) applying varia-
tional smoothing and step size control to ensure high-quality prisms and positive
Jacobians. This combination has been demonstrated to be robust and efficient.
However, because our goal is to just produce a thin layer of prisms, we omit some
optimizations in the original algorithms in favor of faster execution, as we describe
in more detail below.

Overall, the initial propagation proceeds as follows:

1. compute vertex displacements for ∆t using face offsetting with GLFS as
speed function;

2. check positivity of Jacobian of the prisms and reduce ∆t to prevent mesh
folding;

3. apply variational smoothing to optimize triangle shapes and side-edge orthog-
onality;

4. if it has propagated sufficiently (say 50% of the desired depth of the prisms)
or the time step was reduced to some too small value, then stop; otherwise
return to step 1.

Shrinking Tetrahedra

After a thin boundary layer has been generated, we deform the tetrahedral mesh
using a variational smoothing procedure:

1. add displacements computed from the initial propagation to boundary ver-
tices; if the displacements cause tetrahedral elements to fold, scale back the
displacements;

2. smooth the interior tetrahedral with fixed boundary;

3. if displacements were scaled back, go back to step 1 and repeat step 1 and
2, until all displacements have been applied or the displacements are scaled
back to nearly zero.
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Because the process does not change the connectivity of the mesh, it is possible
that the procedure stops before all the propagated distances of the prismatic layer
are transferred to the tetrahedra. This is not a problem, as our goal is simply to
generate a thin layer of prisms with consistent tetrahedra.

We smooth the tetrahedra using a modified algorithm of that in [32]. In par-
ticular, we define an energy for each tetrahedron with respect to some “ideal” ref-
erence tetrahedron, according to the energy defined in Equations 4.6.3, 4.6.4 and
4.6.5. Since the input mesh may be graded or layered, we try to preserve the
shapes of the initial tetrahedra, we use the elements in the input mesh as refer-
ences for smoothing. Thus, the shape parameters αi = sum(gi+ × gi−)/ν4/3 and
βi = (giigi−,i+ − gi,i−gi,i+)/ν4/3 are computed directly from the reference mesh.
This is reasonable since if the mesh does not deform, this choice of reference ele-
ments would exactly preserve the character of the original tetrahedral mesh. How-
ever, there are two potential issues about using the input elements as references.
First, since the tetrahedra are shrunk during the process, the angles cannot be re-
constructed exactly. However, in our experiments the tets tend to shrink nearly
uniformally, and hence the layers are preserved reasonably well.

When using the input tetrahedra as references, the quality of the resulting mesh
may suffer if there are slivers in the input mesh. To address this issue, we regu-
larize the energy by adding a component with respect to the regular elements. In
particular, let

c =
1

1 + exp(−ρ(θ − 5
6
π))

, (4.6.7)

where θ denote the largest dihedral angle of the reference element, and ρ is a con-
trollable parameter. Then we set

α̃i = (1− c)αi + c2−4/3. (4.6.8)

It is obvious that c ≈ 1 for θ � 150◦ and c ≈ 0 for θ � 150◦, so that α̃i is
dominated by the regular elements if the input element is close to slivers, and is
dominated by the input elements otherwise. We chose ρ to be 40 based on empirical
evidence.

4.6.3 Expanding Prisms
The previous step generated and smoothed prisms and tetrahedra independently of
each other. During the process, if some tetrahedra have very large aspect ratios, the
propagation of the prismatic boundary layers would terminate prematurely. We ad-
dress the issue in this step by smoothing the prisms and tetrahedra simultaneously.
Our goals are twofold: 1) to propagate the prisms further while continuing to shrink
the tetrahedra, and 2) to allow local adaptation of prism heights based on the over-
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all mesh quality. We assume that the input surface triangulation has a reasonable
quality, and we do not move the vertices on the boundary, except for those on the
outlet walls, which must slide along the walls.

Definition of Energy

To couple prism expansion with tetrahedral core compression, we define energy for
prisms based on tetrahedral energy formulation. Given a triangle σ on the propa-
gating boundary, let n̂σ be the unit normal toward the direction of propagation, and
dσ be the average of the desired propagated distance of its three vertices. We define
a target prism for the given triangle to have points vi, where

vi =

{
xi i = 1, 2, 3

xi−3 + dσn̂σ i = 4, 5, 6
. (4.6.9)

To define the energy for a prism, for simplicity we sample a tetrahedron at each
vertex of the prism, and use the corresponding vertices in the actual and target
prisms as the actual and reference tetrahedra. For example, at vertex 1 the actual
tetrahedron is x1x2x3x4 and the reference tetrahedron is v1v2v3v4. At vertex 4,
the actual tetrahedron is x4x5x6x1 and the reference tetrahedron is v4v5v6v1, as
shown in Figure 4.20. The constructions for other vertices are similar. For each
pair of actual and reference tetrahedra, we substitute them into 4.6.3 to compute its
energy, and the energy for the prism is the sum of the energy of the six tetrahedra.
We refer to this energy as the height energy of the prism, , denoted by Eh, as its
main objective is to control the height of the prisms.

v1

v3=x3

v2=x2

v1=x1

x6

v6

v1

v3

v2

x4
x5

v4 v4 v5

(a) (b) (c)

v4

v6

v5

Figure 4.20: Illustration of construction of reference tetrahedra for vertices 1 and 4
of a prism. (a) the actual (in dark edges) and ideal prism. (b) Reference tetrahedron
(in dark edges) at vertex 1. (c) Reference tetrahedra at vertex 4.
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In addition to the height energy, we also would like to optimize the orthogonality
of the side edges of prisms. Note that the height energy also penalizes edges that
are far from orthogonal, but it is not strong enough to enforce orthogonality. We
use the same energy defined in 4.3.6.

Given these elemental energy, our overall prism expansion algorithm computes
the total energy E as a weighted sum of the height energy Eh of the prisms, the
orthogonality energy E⊥, and the shape energy Et of the interior tetrahedra, i.e.,

E = wt
∑

Et +
∑

(whEh + w⊥E⊥) , (4.6.10)

w denotes the corresponding weights. We set the weights to wh = 4 and w⊥ =
wt = 1, where the higher weights for Eh allows more substantial growth of the
prisms. We minimize this energy similarly as for tetrahedra, as summarized by the
following procedure:

1. Loop through the interior tetrahedra, and for each tetrahedron compute the
gradient and Hessian of Et with respect to its vertex coordinates, and add
them to the corresponding vertex values;

2. Loop through the prisms, and for each prism compute the gradient and Hes-
sian of Eh and E⊥ with respect to its vertex coordinates, and add them to the
corresponding vertex values;

3. Loop through all vertices to divide the gradient by the Hessian to obtain a dis-
placement; for vertices on the outlet walls, constrain the displacement within
the wall or along the ridge;

4. Scale back displacements to avoid folding; if any vertex is scaled back, re-
compute the gradient and Hessian of its surrounding elements and compute
its displacement;

5. Repeat steps 1 through 4 for a few times.

Remarks Note that unlike the energy for interior tetrahedra, we do not blend the
objective function for regular tetrahedra, because it may complicate the control of
the height of the prisms. In addition, it is not necessary because by construction
slivers are not possible, and very poorly shaped triangles are prevented by the en-
ergy of the interior tetrahedra.
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4.7 Results
We consider the qualities of the generated prisms and tetrahedra. To measure the
quality of prisms, we use the scaled aspect ratio defined via Jacobian, deviation of
prisms edges from normals to bases and angles of surfaces triangles.

To measure the quality of tetrahedra, we use the aspect ratio quality measure,
defined as

χ ≡ 2
√

6
inscribed radius

length of longest edge
(4.7.1)

which has a maximum value of 1.0 for regular tetrahedra.
In addition to the element based quality metrics above, we report the face-based

quality statistics defined in [34] that are important for finite volume codes: face-
orthogonality, face-skewness and face-uniformity. Each of these metrics relates
the ray, d, between the centroid of a polyhedra and that of its face-neighbor to the
shared face between them. Face-orthogonality (α) is the angle between d and the
face normal, with an face-orthogonality of 0.0 being optimal. Face-skewness (ψ)
is the distance between the intersection of d with the plane of the face and the
face centroid, normalized by the length of the d. A face-skewness of 0.0 is optimal.
Lastly, face-uniformity (fx) is the ratio of the distance between the element centroid
and the plane of their common face with d. A face-uniformity of 0.5 means that the
two neighbors are roughly the same size and is optimal. Details of these face-based
statistics can be found in [34]. All of our experiments were conducted on a PC with
a 3.16GHz Intel® Core-2 Duo E8500 CPU and 4GB of RAM, running 64-bit Linux
2.6.31 with gcc 4.4.1.

4.7.1 Rat Lung
We evaluate new approach on the same surface mesh as in 4.5.2. Based on this sur-
face we generate four volume meshes. First, we evaluate how good the method is in
preserving the quality of the tetrahedral mesh it compresses. To compare the qual-
ity of tetrahedra before and after compressing we let TetGen produce unconstrained
Delaunay tetrahedralization of the surface. Then we proceed to generate boundary
layer on top of the core with the height of about 40% of GLFS. Comparison (Figure
4.21) shows that quality deterioration is acceptable, and is mostly pronounced in
the face orthogonality.
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Figure 4.21: Quality of tetrahedral mesh before and after compressing by 40% of
GLFS. Number of tetrahedra : 526393.

Next we compare the quality of compressed tetrahedral core with the quality of
constrained Delaunay tetrahedralization of the inner boundary layer surface (Figure
4.22). This is somewhat different from our original approach, as we allow TetGen
to add Steiner points to original surface, then generate boundary layer, then invoke
TetGen again for constrained tetrahedralization. In this case both meshes have same
boundary layer, so we only compare quality of tetrahedra. Results show that both
approaches generate tetrahedral meshes of comparable quality, though compressing
the tetrahedral mesh is much more computationally expensive.
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Figure 4.22: Quality (percentage points) of tetrahedral core compressed by 40% of
GLFS, dark columns correspond to compressed core, light to tetrahedra generated
by tetgen based on inner surface of boundary layer. Total number of tetrahedra in
compressed core was 526393, in constrained tetrahidralization by TetGen - 623473.

The case that shows clear advantage of modified approach is when boundary
layer is introduced on top of terahedral mesh generated as described in 4.6.1. We
compare it with mesh generated by Algorithm 5 . Both meshes have five layers
of prisms with total height of about 25% of GLFS. Layered mesh has 5926260
tetrahedra, about ten times more then constrained Delaunay tetrahedralization of
the surface by TetGen, which has 585104 tetrahedra.
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Figure 4.23: Comparison between quality of compressed layered and constrained
Delaunay tetrahedral cores. Dark columns correspond to compressed mesh, light to
constrained Delaunay. Values in tables are percentage points.

Quality of the compressed layered tetrahedral core is far superior, especially
considering it has ten times more elements. We also show quality of the boundary
layer prisms for both cases.
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Figure 4.24: Comparison between quality of prismatic boundary layers.

So modified method applied to layered tetrahedral mesh produces volume mesh
that has higher quality of both boundary layer and interior.

4.8 Conclusions and Discussions
We introduced a new method for generating prismatic boundary-layer meshes for
complex biological geometries. Our method uses a gradient-limited feature size
(GLFS) to guide the generation of the prismatic mesh at the boundary layers and
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the tetrahedral mesh in the interior. Unlike previous approaches, which propagate
vertices along some vertex normals, our algorithm uses the face-offsetting method
(FOM) to advance the surfaces. In addition, we introduced a novel prismatic varia-
tional smoothing procedure to improve bases triangle shapes and edge orthogonal-
ity. Our experimental study showed that the face-offsetting method is more robust
than traditional methods based on vertex propagation, and our variational smooth-
ing further enhances the robustness substantially and enables high-quality prismatic
meshes. In addition, our experimentations also demonstrated that it is in general
more robust to propagate the surface and then interpolate the intermediate layers
than propagating the surface layer by layer. Combined with a robust, high-quality
tetrahedral mesh generation, our overall framework produces high-quality hybrid
meshes that adapt to the local scales of the geometry. Moreover, we introduced
method to add thick high-quality prismatic boundary layer to any tetrahedral mesh.
We demonstrated our method for two complex geometries, including a rat lung and
an idealized human heart. We have conducted preliminary numerical simulations
using our hybrid meshes and demonstrated that our method is effective and promis-
ing for biomedical computations. The output of our method can be also used to
generate high-quality polyhedral meshes.
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Chapter 5

Conclusions

We introduced a series of new methods for automatic processing and generation
of hybrid prismatic-tetrahedral meshes for complex biological geometries. Each of
the methods has value and applications by itself, and put together they provide a
sequence of steps for generating high quality computational hybrid mesh for nu-
merical simulation of fluid dynamics from radiological data.

Starting with CT scan of the chest of a rat injected with silicon solution, our
method identifies airways in the image. Our approach is based on a combination of
Gradient Vector Flow field analysis and Random Walker algorithm. We introduced
novel scheme for computation of weights for Random Walker and proposed a way
to state a subproblem which can be effectively solved with this Random Walker
modification. We pre-select subset of the image, corresponding to union of airways
and surrounding rib cage by applying region growing method to both image and
meta-image of divergence of normalized Gradient Vector Flow Field. We continue
work on this step, trying to replace region growing method with Power Watersheds
approach combined with analysis of Gradient Vector flow field.

A triangulated surface extracted out of a volumetric voxel mesh originated from
MRI or CT scan can not be directly used for generating high quality tetrahedral or
hybrid volume mesh. It has to be preproccesed to accommodate boundary condi-
tions and scale-invariability. In order to produce a mesh that is useful for numerical
analysis, we identify outlets and perform the operations of smoothing, refinement
and de-refinement to the surface, subject to volumetric constraint, by limiting per-
turbations to a small fraction of a voxel. We presented a new method for computing
the medial curves, which includes identifying and truncating the boundary outlets.
We defined the medial curves based on a decomposition of objects into three differ-
ent types of substructures, including tips, junctions, and segments, which naturally
map to substructures of the medial curve. To facilitate the identification of these
substructures, we introduced a new geometric concept called the interior center of
curvature (ICC), which constitute the medial axis of canal surfaces, and the aver-
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age interior centers of curvature (AICC), which inherits the key features of the ICC
while being more noise resistant. We then proposed robust numerical techniques,
including eigenvalue analysis, weighted least squares approximations, and mini-
mization algorithms, to enhance the noise resistance. We have illustrated the ef-
fectiveness and robustness of our approach with some highly complex, large-scale,
noisy biomedical geometries derived from medical images, and presented a com-
parison of our method with some existing methods.

Having truncated the boundary outlets we can proceed to generation of the vol-
ume mesh. We introduced a new method for generating prismatic boundary-layer
meshes for complex biological geometries. Our method uses a gradient-limited
feature size (GLFS) to guide the generation of the prismatic mesh at the bound-
ary layers and the tetrahedral mesh in the interior. Unlike previous approaches,
which propagate vertices along some vertex normals, our algorithm uses the face-
offsetting method (FOM) to advance the surfaces. In addition, we introduced a
novel prismatic variational smoothing procedure to improve bases triangle shapes
and edge orthogonality. Our experimental study showed that the face-offsetting
method is more robust than traditional methods based on vertex propagation, and
our variational smoothing further enhances the robustness substantially and enables
high-quality prismatic meshes. In addition, our experimentations also demonstrated
that it is in general more robust to propagate the surface and then interpolate the in-
termediate layers than propagating the surface layer by layer. Combined with a
robust, high-quality tetrahedral mesh generation, our overall framework produces
high-quality hybrid meshes that adapt to the local scales of the geometry. We
demonstrated our method for two complex geometries, including a rat lung and an
idealized human heart. We have conducted preliminary numerical simulations us-
ing our hybrid meshes and demonstrated that our method is effective and promising
for biomedical computations. Moreover, we extended this method to be able to add
prismatic boundary layer to any tetrahedral mesh while preserving its quality. This
allowed us to accommodate a method for generation of anisotropic scale-invariant
layered tetrahedra meshes developed by our collaborators at PNL which has several
significant advantages over isotropic generators.
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