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Abstract of the Dissertation 
 

Understanding Carbohydrate Recognition by Antiviral Lectins: 

Applying Computational Methods to Protein−Carbohydrate Complexes 

 

by 
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Doctor of Philosophy 

 

in 

 

Chemistry 

 

Stony Brook University 

 

2012 

 

Human immunodeficiency virus (HIV) infection of T-cells begins when the viral envelope 

glycoprotein, gp120, binds to CD4 receptors on the target cell surface.  Over the past several 

years, proteins isolated from various prokaryotes have been shown to inhibit HIV cell entry by 

binding to gp120 and thus blocking the association with CD4.  Lectins that bind to high-mannose 

oligosaccharides on gp120 are an attractive class of antiviral agents.  While several of these have 

been quite well characterized both structurally and biochemically, there remain many open 

questions regarding their mechanism of inhibition.  Among the best studied is cyanovirin-N 

(CVN), which is currently under clinical study for use as a topical prophylactic. Large-scale 

molecular dynamics simulations have identified important structural features of this system that 

are difficult to resolve experimentally, and binding free energies of a diverse set of 

oligosaccharide targets computed from these structural ensembles give remarkable agreement 

with experiment.  Detailed decompositions of the binding free energies on a residue-by-residue 

basis have additionally identified several key interactions that define broad affinity for -(1,2)-

dimannose-containing sugars, as well as a number of determinants of specificity.  These studies 

provide a deeper understanding of the mechanism of inhibitory activity.  In addition, this work 

has provided a foundation for methodological improvements that allow us to more accurately 

capture the energetics of carbohydrate binding. 
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Chapter 1 

Introduction to the Study of Protein−Carbohydrate Interactions 
 

 

 Carbohydrates are the most abundant class of biomolecules on Earth.  They are produced 

during the process of photosynthesis, in which the energy from the sun is converted into 

chemical energy by combining carbon dioxide with water to form carbohydrates and molecular 

oxygen.  During the last two decades of the nineteenth century, a great interest emerged in 

studying carbohydrates.  One of the leading pioneers in the carbohydrate chemistry field, Emil 

Hermann Fischer, laid the foundation of carbohydrate terminology, which is still in use today.  

He was also recognized for his investigations of sugar and purine groups.  Fischer introduced the 

“lock and key” hypothesis to interpret the action of an enzyme (“lock”) on a substrate (“key”) 

[1].  Over the years, the lock-and-key hypothesis had become one of the important features in 

cellular biology.  During the last several decades, attention has been focused on recognition 

mediated by carbohydrates and lectins.  There are many various types of lectins that differ in size 

and structure [2].  Fischer’s monumental achievements inspired a whole generation of scientists 

studying carbohydrates. 

 In recent years, interest in chemical glycobiology has grown significantly because it is 

now well established that carbohydrates and carbohydrate conjugates are involved in cellular 

processes, including cell-cell interactions [3], viral host interactions [4], microbial pathogenesis 

[5, 6], and immune response [7] (Figure 1-1 [8]).  With this growing interest for glycobiology 

also came an increased demand for tools to study carbohydrates.  The biochemical properties of 

oligosaccharides make them a challenging class of molecules for conformational analysis.  
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Unlike proteins and nucleic acids, it is not possible to readily introduce point mutations in a 

sugar sequence.  The analysis of carbohydrates differs in several ways from other molecules.  In 

protein studies, much can be learned from modeling based on known X-ray or nuclear magnetic 

resonance (NMR) structures.  In carbohydrate studies, there is a lack of data for carbohydrates 

from the inherent flexibility of many glycans—the more flexible a molecule is, the harder it is to 

induce crystallization.  Although relatively rigid oligosaccharides exist (e.g. blood group 

determinants), it cannot be said that the properties of these compact branched structures are 

representative of the majority of oligosaccharides.  Flexibility is not the only factor responsible 

for the resistance to crystal formation.  Other contributing factors include how water molecules 

coordinate to glycans and the CHO−CHO interactions on “hydrophobic” side of ring.  

 
 

Figure 1- 1. Schematic diagram portraying protein-carbohydrate interactions at the cell surface.  

Red ribbons indicate that the sugar chains can be linked to proteins or anchored in the plasma membrane via a 

lipid (Reprinted by permission from Nature Publishing Group: Immunology Cell Biology [8], copyright 2005). 

  

 In an effort to contribute to the glycobiology community, this thesis will explore a 

comprehensive set of computational methods for analysis in structural glycobiology, and the 

application of these tools to the glycobiology of HIV-1 infection.  The long term aim is to 

understand the role of carbohydrates on the Env glycoproteins both in recognition of cellular 

targets and in recognition by the immune system.  The following sections will address (1) a brief 
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overview of glycosylation in biological systems, (2) introduce glycobiology in the context of 

HIV-1 virus, and (3) list the objectives of this dissertation.   

1.1 Glycosylation in Biological Systems 

 Glycosylation is an important form of co- and post-translational modification.  It is a 

process by which carbohydrates are chemically attached to proteins to form glycoproteins.  It is a 

feature that enhances the functional diversity of proteins and influences their biological activity.  

Glycans undergo structural and functional roles in the membrane and secreted proteins [9].  The 

majority of proteins that are synthesized in the rough endoplasmic reticulum undergo 

glycosylation.  Glycosylation is also present in the cytoplasm and nucleus as the O-GlcNAc 

modification.  Glycosylation can be broadly divided into two categories—O-linked and N-linked 

glycosylation.   

 O-linked glycosylation refers to the carbohydrate moiety where it is covalently linked to 

the hydroxyl oxygen of serine and threonine residues of mammalian glycoproteins [9].  In 

addition, O-glycosylation also occurs as a primary modification of tyrosine and as a secondary 

modification of 5-hydroxylysine and 4-hydroxyproline [10].  O-linked glycosylation plays 

important roles in protein localization and trafficking, protein solubility, antigenicity and cell-

cell interactions.  O-linked glycans are built up in a stepwise fashion with sugars added 

incrementally.  The most common type of O-glycosylation in secreted and membrane-bound 

mammalian proteins seems to be the addition of reducing terminal N-acetylgalactosamine 

(GalNAc).  This type of O-linked glycan is also referred to as “mucin-type” glycan.  There are 

also several types of non-mucin O-glycans, including α-linked O-fucose, β-linked O-xylose, α-

linked O-mannose, β-linked O-GlcNAc (N-acetylglucosamine), α- or β-linked O-galactose, and 

α- or β-linked O-glucose glycans.  Mucin glycoproteins are ubiquitous in mucous secretions on 

cell surfaces and in body fluids.  Some cytoplasmic and nuclear proteins have simple O-linked 

glycans in which a single N-acetylglucosamine residue is linked to a serine or a threonine. This 

modification has been identified in a number of eukaryotes including plants and filamentous 

fungi. This type of O-linked glycosylation plays an important role in the modulation of the 

biological activity of intracellular proteins; in some proteins the same residue may be subject to 

competing phosphorylation and O-linked glycosylation [9].    
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 The simplest mucin O-glycan is a single N-acetylgalactosamine residue linked to serine 

or threonine.  The most common O-GalNAc glycan is Galβ-(1,3)GalNAc, and it is found in 

many glycoproteins and mucins.  It is termed a core 1 O-GalNAc glycan because it forms the 

core of many longer, more complex structures.  Another common core structure contains a 

branching N-acetylglucosamine attached to “core 1” and is termed “core 2”.  Core 2 O-GalNAc 

glycans are found in both glycoproteins and mucins from a variety of cells and tissues.  Core 3 

and core 4 O-GalNAc glycans have been found only in secreted mucins of certain mucin-

secreting tissues, such as bronchi, colon, and salivary glands.  Core structures 5–8 have an 

extremely restricted occurrence (e.g. core 5 have been reported in human meconium and 

intestinal adenocarcinoma tissue, core 6 are found in human intestinal mucin and ovarian cyst 

mucin, core 7 are shown in bovine submaxillary mucin, and core 8 has been reported in human 

respiratory mucin) [9].  All of the core structures can be sialylated.  However, only cores 1–4 and 

core 6 have been shown to occur as extended, complex O-glycans that carry antigens such as the 

ABO and Lewis blood group determinants.  The terminal structures of O-GalNAc glycans may 

contain fucose, galactose, N-acetylglucosamine, and sialic acid in α-linkages, N-

acetylgalactosamine in both α- and β-linkages, and sulfate.  Many of these terminal sugar 

structures are antigenic or represent recognition sites for lectins.  In particular, the sialylated and 

sulfated Lewis antigens are ligands for selectins.  Poly-N-acetyllactosamine units and terminal 

structures may also be found on N-glycans and glycolipids.   

1.1.1 N-linked Glycosylation 

N-linked glycosylation is the most common saccharide protein modification, and is the 

basis for the computational efforts described in this thesis.  In N-linked glycosylation the 

carbohydrate moiety is attached to the amide nitrogen of the side chain of asparagine, when 

asparagine is part of the consensus sequence, Asn-X-Ser/Thr.  Position “X” is referred to any 

amino acid other than proline.  A proline residue there would prevent N-glycosylation [11].  N-

glycosylation begins as a co-translational event in the endoplasmic reticulum (ER), where blocks 

of 14 sugars (including two N-acetylglucosamines, nine mannoses, and three glucoses) are first 

added to the polypeptide chain.  After cleavage of 3 glucose and 1 mannose residues, the protein 

is transferred to the Golgi apparatus where the glycans lose a variable number of mannose 

residues and acquire a more complex structure [12].  There are three types of N-glycans: (1) 
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complex type N-glycans; (2) hybrid type N-glycans; and (3) high-mannose type N-glycans that 

are abundantly present on the envelope glycoprotein gp120 of HIV, but are rare on mammalian 

glycoproteins [12].  A few examples of the glycan structures are shown in Figure 1-2. 

 
 

Figure 1- 2. Representative structures of different N-glycan types.  All N-linked glycans are based on 

the common core pentasaccharide, Man3GlcNAc2 (shown in red).  There are three main classes of N-linked 

glycan classes: (a) complex type N-glycans; (b) hybrid type N-glycans; and (c) high-mannose type N-glycans.  

High-mannose glycans contain mannose sugars and typically contain between five and nine mannose residues 

attached to the GlcNAc2 core.  Hybrid glycans are characterized as containing both mannose residues and 

substituted mannose residues with an N-acetylglucosamine linkage.  Complex N-linked glycans differ from the 

high-mannose and hybrid glycans by adding GlcNAc residues at both α-(1,3) and α-(1,6) mannose sites.  

Complex glycans do not contain mannose residues apart from the core structure.  Additional monosaccharides 

may occur in repeating GlcNAcβ-(1,4)Gal units.  Complex glycans exist in bi-, tri- and tetra-antennary forms 

and make up the majority of cell surface and secreted N-glycans.  Complex glycans commonly terminate with 

sialic acid residues.  The name abbreviations are as follow: Asn, asparagine; Fuc, fucose; Gal, Galactose; 

GlcNAc, N-acetylglucosamine; Man, mannose; SA, sialic acid; Ser, serine; Thr, threonine; X, any amino acid 

except proline. (Reprinted by permission from Nature Publishing Group: Nature Reviews Microbiology [12], 
copyright 2007). 

1.1.2 Interactions with Carbohydrate−Binding Agents 

 There are basically two types of carbohydrate−binding agents, (1) lectins, which are 

proteins that specifically recognize carbohydrate (glycan) structures, and (2) non-peptidic small-

size agents that may have a good and often specific affinity for monosaccharide and/or 

oligosaccharide structures [12].  This dissertation focuses on the first type.  Lectins are involved 

in many biological processes, among them host–pathogen interactions, cell–cell communication, 

induction of apoptosis, cancer metastasis and differentiation, targeting of cells, as well as 
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recognizing and binding carbohydrates [13].  Currently, over 600 complexes of lectins with 

carbohydrates have been solved; most from plant sources [14].  Table 1-1 shows several 

examples of lectins that have anti-HIV activity.   

 Experimental studies have shown that the binding regions of carbohydratelectin 

complexes are mostly in the form of shallow clefts on the surface of the protein, where typically 

one or two segments of the ligand are bound [1].  Lectins can interact by way of hydrogen bonds, 

hydrophobic, electrostatic, and water-mediated interactions [15].  Hydrogen bonds are involved 

in providing affinity and specificity to protein–carbohydrate interactions [16].  They depend 

largely on interactions involving the hydroxyls of the carbohydrate.  A sugar hydroxyl has the 

ability to interact with a protein both as a hydrogen bond donor and as an acceptor.  As a 

hydrogen bond donor, the hydroxyl has rotational freedom around the C–OH torsional angle, and 

thus can often attain a strong linear bond with an acceptor group.   

 

 
 

Table 1- 1. Anti-HIV carbohydrate-binding proteins of a non-mammalian origin. 

Species Lectin Name Abbreviation Carbohydrate Specificity 

Cyanobacteria 
   

Nostoc ellipsosporum   Cyanovirin-N CVN Manα-(1,2)Man 

Scytonema varium  Scytovirin SVN Manα-(1,2)Manα-(1,6)Man 

Microcystis viridis  None MVL Manβ-(1,4)GlcNAc 

Sea corals 
   

Gerardia savaglia None GSL D-Man 

Algae 
   

Griffithsia spp.  Griffithsin GRFT Man, Glc, GlcNAc 

Plants 
   

Hippeastrum hybrid Amaryllis lectin HHA Manα-(1,3)Manα-(1,6)Man 

Narcissus pseudonarcissus  Daffodil lectin NPA Manα-(1,6)Man 

Canavalia ensiformis  Jack bean lectin ConA Man>Glc>GlcNAc 
The species listed above are a subset of many carbohydrate binding agents that have been isolated and 

characterized to show anti-HIV activity.  The “>” symbol indicates a higher preference.  The name 

abbreviations are as follow: Glc, glucose; GlcNAc, N-acetylglucosamine; Man, mannose. 

 

Bidentate hydrogen bonds form when each of two adjacent hydroxyls of a monosaccharide 

interact with different atoms of the same amino acid (e.g. two oxygens from the carboxylate of 

glutamic or aspartic acid) [16].  Even though carbohydrates are highly polar molecules, the 

position of the hydroxyl groups can create hydrophobic regions on their surfaces, which can 
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form contacts with hydrophobic side chains of the protein [17].  Sometimes contacts between the 

protein and ligand are mediated by water bridges [18].  These watermediated interactions may 

be important for ligand recognition. 

1.2 N-linked Glycans and the Glycobiology of HIV 

 One leading example of a proteincarbohydrate interaction comes from the human 

immunodeficiency virus (HIV-1).  HIV is a member of the retrovirus family and it can hide for 

long periods of time in the body’s cells.  It attacks the T helper lymphocytes in the immune 

system.  These cells play a crucial role in the immune system, by coordinating the actions of 

other immune system cells.  A large reduction in the number of T helper cells seriously weakens 

the immune system.  HIV infects the T helper cell because it has the protein CD4 on its surface, 

which HIV uses to attach itself to the cell before gaining entry.  Once it has found its way into a 

cell, HIV produces new copies of itself, which can then go on to infect other cells.  Over time, 

HIV infection leads to a severe reduction in the number of T helper cells available to help fight 

disease.  It can take several years before the CD4 count declines to the point that an individual 

needs to begin an antiretroviral treatment.  Without treatment, the CD4 count continues to 

decline to very low levels, at which point the individual is said to have progressed to AIDS.  HIV 

is believed to have originated in primates in sub-Saharan Africa and transferred to humans early 

in the 20
th

 century [19].  As of 2009, the Joint United Nations Program on HIV/AIDS and the 

World Health Organization estimated 34 million people worldwide were living with HIV.  Of 

those, approximately 2.7 million people became newly infected and approximately 2.3 million 

people lost their lives to AIDS [20].  In the same report, the World Health Organization has 

estimated 1.2 million adults (15 and over) and children in the United States were infected with 

HIV [20].   

 As mentioned earlier, HIV is an enveloped retrovirus covered in glycoprotein (gp120), 

which is the major surface envelope glycoprotein of HIV-1 and contains 24 putative N-

glycosylation sites [12].  The HIV-1 gp120 consists of approximately 30−40% high-mannose 

glycans (Figure 1-3).  The N-linked glycans are critical to HIV infectivity, as they contribute to 

the proper folding of envelope glycoproteins and increased cyto-pathogenicity of the virus.  

Inhibition of N-linked glycosylation or downstream glycan processing has been proven to 

interfere with viral infectivity.  Glycoprotein gp120 and integral membrane glycoprotein gp41 
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are attractive targets for developing therapies aimed to decrease HIV viral load in infected 

persons.  Both reside in the external viral membrane as a trimer of three non-covalently 

associated heterodimers.  This trimer plays an important role in HIV viral entry through 

interactions with CD4 molecules and chemokine receptors.  The main steps in the viral entry 

process are (1) attachment of the viral gp120 to the CD4 T cell receptor, (2) binding of the gp120 

to CCR5 or CXCR4 co-receptors and (3) fusion of the viral and cellular membranes.  Disrupting 

this process interferes in viral infection. 

 
 

Figure 1- 3. The HIV envelope glycoprotein gp120.  Ribbon diagrams showing the 24 putative N-

glycosylation sites (colored circles) in the HIV-1 envelope glycoprotein gp120 [21, 22].  (a)   High-mannose-

type (green) and complex or hybrid type (yellow) glycans.  (b)   The red circles indicate the deleted N-

glycosylation sites that appear under pressure from carbohydrate-binding agents (CBAs) (for example 

cyanovirin-N (CVN)) in more than 30 different mutant virus isolates. The green circles represent glycosylation 

sites that have not yet been found to be deleted under CBA pressure [22].  (Reprinted by permission from 
Nature Publishing Group: Nature Reviews Microbiology [12], copyright 2007). 
 

 The prevalence of gp120 on the surface of HIV-1 makes it a target of immune response.  

A great deal of effort in vaccine design has focused on gp120 [23], but this approach is not 

always good [24].  The specific glycosylation pattern and structural composition of N-linked 

glycans is highly dependent on the host cell in which the virus was produced.  Due to the high 

rate of mutation, HIV is able to optimize its interactions with various host proteins and pathways, 

thereby multiplying more quickly [25].  The virus ensures that the host cell survives until the 

replication cycle is completed, and—possibly even more damaging—may establish a stable 

latent form that supports the chronic nature of the infection.  The complete suppression of the 

virus appears unlikely until effective methods are developed to purge these latent viral forms. 

More testing is needed to solve the mysteries of viral latency and replication [25]. 

a b 
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 Recently, there has been a growing interest in developing antiviral microbicides. 

Microbicides are substances that protect the body from infection by microorganisms such as 

bacteria, viruses, and fungi.  They work by either destroying the microbes or preventing them 

from establishing an infection.  Cyanovirin-N (CVN) is one of the microbicides being studied 

today.  It was originally isolated from cultures of the cyanobacterium (blue green algae) Nostoc 

ellipsosporum [26].  CVN—a HIV−cell fusion blocker—was discovered in a National Cancer 

Institute (NCI) screening program for natural anti-HIV agents [27, 28].  CVN binds to the 

carbohydrates attached to the HIV envelope protein, and thus is an inhibitor of all strains of HIV.  

While CVN is being studied for the prevention of HIV infection, it does not cure HIV or AIDS.   

1.3 Dissertation Objectives 

One biological system the Green laboratory is focused on is the initial steps in the 

recognition of target cells by the HIV-1 virus.  The Green lab is dedicated to advancing the field 

of glycobiology through the development of computational tools to aid in the ongoing 

investigations for understanding the role of glycosylation, in particular HIV glycobiology.  The 

following dissertation focuses on the application and development of a comprehensive set of 

computational methods for analysis.  In particular, we demonstrate the contribution of continuum 

electrostatic models and molecular dynamics simulations to dissect the protein−carbohydrate 

interactions.  Using this method allows the separation of the individual contributions of various 

parts of the complex with their energies, which is inaccessible by experiments.  Chapter 2 

provides background to the theory and computational techniques used in this dissertation.  The 

first project described in Chapter 3 involved simulations of complexes of CVN with a 

disaccharide and one trisaccharide model.  The purpose of the study was to first validate the 

application of continuum electrostatic models to carbohydrate–protein association.  In the next 

project shown in Chapter 4, we have extended the application used in Chapter 3 to various other 

saccharide models bound to CVN and developed a more robust procedure.  After having 

confidence in the computational techniques used in the CVN system, Chapter 5 includes 

preliminary work done using the same protocol applied to another lectin—Microvirin (MVN).  

In addition, Chapter 5 includes work focusing on improvements to accurately capture the 

energetics of carbohydrate binding.   
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Chapter 2 

Computational Methods to Study Protein−Carbohydrate 

Interactions 
 

The range of systems that can be considered in molecular modeling is extremely broad, 

from simple isolated molecules to polymers and biological macromolecules (proteins and DNA). 

Computational studies of biological systems can play an important role complementary to 

experimental studies.  These studies can separate individual contributions and energies of various 

parts of the complex in a way inaccessible to experiments.  This chapter provides background to 

the theory and computational methods used in this dissertation. 

2.1 Molecular Mechanics 

 In theory, quantum mechanical treatments should be the tool for a reliable description of 

a molecular system.  However, this is not feasible for large macromolecules.  A large number of 

particles must be considered and the calculations are time consuming.  To overcome these 

obstacles, one method that has been particularly successful is molecular mechanics. 

 Molecular mechanics considers molecules as a collection of point particles, each with its 

own mass and bonds as springs with appropriate force constants [31].  Common force fields used 

for macromolecules include CHARMM [32, 33], AMBER [30], and OPLS [29, 34].  The 

CHARMM force field is used in this dissertation.  CHARMM uses potential functions that 

approximate the total potential as a sum of bonded terms (stretching, angle, torsion, improper, 
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and Urey-Bradley), plus potentials representing the non-bonded van der Waals, and electrostatic 

interactions [35, 36, 37].  This is shown in Figure 2-1 and Equation 2.1.  In the bonded terms, 

bond stretching depends on the identity of the two atoms sharing the bond (l).  The energy is 

approximated as a function of the coordinates of only the two atoms sharing the bond and the 

values of the constants k which depend on the types of the atoms that are involved.  When 

CHARMM starts, it reads in all such force constants from a table of parameters.  The energy of 

bond bending depends on the three atoms defining the angle ().  The determination of the 

energy of bond twisting (torsion) requires four atoms to define the bond and the amount it is 

twisted ().  This energy term usually allows a full 360° of rotation about a bond at normal 

temperatures, but introduces preferences in the angle that correspond to positions of minimum 

clash of the atoms bonded.  Improper potentials are artificial potentials that are used to hold a 

group consisting of one central atom that is bonded to three others in a particular configuration.  

These structures are also known as improper dihedrals. By convention, the first of the four atoms 

listed is the central atom and  is the angle between the plane containing atoms A, B, and C and 

the plane containing atoms B, C, and D.  The energy constants used in these potentials are quite 

large, and so they serve to hold the atoms near the desired configuration.  Finally, the Urey-

Bradley component is the cross-term accounting for angle bending using 1, 3 non-bonded 

interactions (u) [38].   

 In addition to the terms discussed above that are transmitted by the covalent bonds 

between atoms, CHARMM includes van der Waals interactions and electrostatic interactions, 

both of which act at a distance.  By definition, the non-bonded forces are only applied to atom 

pairs separated by at least three bonds. The van der Waals interactions are approximated with a 

standard 12-6 Lennard-Jones potential and the electrostatic energy with a Coulombic potential 

between two atoms, where qi and qj are the charges of the two atoms, r is their separation, and ε 

is the dielectric constant of the surrounding medium.  Electrostatic and van der Waals 

interactions act over some distance and in principle, act between all pairs of atoms. Rather than 

compute their strength for every pair of atoms in a system, which would require an 

unmanageably large number of computations, CHARMM maintains and periodically updates a 

list of just those pairs of atoms that are sufficiently close together that they experience significant 

electrostatic or van der Waals interactions, and the two interactions are calculated only for atom 

pairs on the list. The contents of this non-bonded atoms list depends on the locations of atoms 
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and on the approximations used in calculating the forces such as the non-bonded cutoff distance 

[38]. 
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Figure 2- 1. Schematic representations of bonded and nonbonded contributions to molecular 

mechanics.  Each type is labeled with an illustration and equation. 

 

 

The form of the potential energy function used in CHARMM is given by the following equation: 
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 In the next section, we focus on the conformational analysis of molecules, specifically 

protein−carbohydrate complexes.  In this dissertation, we use molecular dynamics to study these 

complexes. 
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2.2 Molecular Dynamics 

 In the broadest sense, molecular dynamics is concerned with molecular motion.  Motion 

is inherent to all chemical processes.  Simple vibrations, like bond stretching and angle bending, 

give rise to IR spectra.  Chemical reactions, hormone-receptor binding, and other complex 

processes are associated with many kinds of intra- and intermolecular motions.  To complement 

experimental data, molecular dynamics can be used to understand more about complex 

molecular systems.  Structures are available from database repositories (e.g. Protein Data Bank 

(PDB) [39]), which stores structures derived from experimental techniques such as electron 

microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR).  The PDB 

was established in 1971 at Brookhaven National Laboratory and originally contained 7 

structures.  In 1998, the Research Collaboratory for Structural Bioinformatics (RCSB) became 

responsible for the management of the PDB, and currently has over 80,000 structures [39, 40].  

The static view of a molecule from an X-ray crystal or NMR structure is just not enough to fully 

explain its biological role.  Molecules are not frozen; the atoms continuously interact amongst 

themselves and environment.  The motions can explain more about their structure and function, 

and serve as a starting point for molecular dynamics simulations.  

 Molecular dynamics simulations of macromolecules have provided many insights 

concerning the internal motions of these systems since the first protein was studied over 30 years 

ago [41, 42].  This simulation dealt with a folded globular protein, bovine pancreatic trypsin 

inhibitor (BPTI).  Although the simulation was done in vacuum and lasted for only 9.2 ps, the 

results were instrumental in replacing our view of proteins as relatively rigid structures.  During 

the subsequent years, a wide range of molecular dynamics simulations of proteins and nucleic 

acids were performed.  They include the analysis of fluorescence depolarization of tryptophan 

residues [43], the effect of solvent and temperature on protein structure and dynamics [44], as 

well as using simulated annealing methods for X-ray structure refinement [45] and NMR 

structure determination [46].  With continuing advances in the methodology and the speed of 

computers molecular dynamics studies are being extended to larger systems [47], greater 

conformational changes, and longer time scales [48].  The results available today make clear that 

the applications of molecular dynamics will play an even more important role in our 
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understanding of biology in the future; thus, the simulation of protein−carbohydrate complexes is 

an ideal system to study.   

 Water molecules surround most biological macromolecules (e.g. proteins and DNA), and 

because water molecules are polarized and make hydrogen bonds to other molecules, the 

energetics and motions within protein and DNA are critically dependent upon the surrounding 

water molecules.  Therefore water is included in most calculations and simulations of proteins 

and DNA.  Some groups on the surfaces of proteins hold water molecules quite tightly and 

generate structure in the water that persists for a thickness of several water molecules.    

Frequently to avoid any artifacts resulting from modeling with insufficient water, considerably 

more water is included.  This means that some simulations of a protein may also include 10,000 

to 200,000 water molecules.  To minimize computation time it is important to represent water 

molecules just as simply as possible.  On the other hand, since water is so important to the 

properties of biological macromolecules, it is important that the representation of water be as 

accurate as possible.  Systems are normally simulated in a setting that represents its biological 

environment.  For many cases, the molecular complex can be simulated in a solvent of water 

with sodium chloride ions or with a lipid bilayer.  Molecular dynamics simulations can be done 

with explicit solvent molecules or by implicitly accounting for the effects of solvent.  There are a 

variety of models for explicit water including TIP3P, TIP4P, TIP5P, SSD, SPC, and PPC [49].  

The solvating water molecules are usually obtained from a suitable large box of water that has 

been previously equilibrated.  The entire box of water is overlayed onto the macromolecule and 

those water molecules that overlap the protein are removed. 

 Currently the water molecules used in most CHARMM calculations are based on an 

approximation known as TIP3P [49]. In this, water is modeled with three point charges, two 

equal positive charges corresponding to the two partial charges on the hydrogen atoms and one 

negative charge (on the oxygen) equal in magnitude to the sum of the two positive charges.  The 

van der Waals interactions involving a TIP3P water molecule are modeled with a Lennard-Jones 

potential centered at the oxygen atom and generally calculations are performed such that the 

oxygen-hydrogen bonds are held to a constant length and do not bend [38].   

Molecular dynamic simulations involve a number of steps, and in the following section, an 

overview of how to prepare a simulation will be discussed. 
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2.2.1 Simulation Preparation 

 As mentioned earlier, an initial starting structure of the system needs to be selected.  At 

this point, some care in choosing the structure is required.  The initial arrangement of the 

structure often determines whether the simulation will be a success or failure.  In many cases, the 

starting structure is obtained from X-ray crystallography or NMR and the coordinates of the 

structure can be found from the Protein Data Bank [39].  Once a structure is determined, atoms 

will be allowed to move with respect to one another.  First, in energy minimization of a structure 

or system, positions of atoms are allowed to shift so as to bring the system energy to a lower 

value.  An energy minimum is found by moving each atom down the potential until each is at a 

point where the energy can no longer be reduced by small movements [38]. 

 The second source of movement is performing a molecular dynamics simulation.  In such 

simulations atoms are given velocities appropriate to a chosen temperature and allowed to move 

in response to all the forces acting on them in paths determined by Newton's equations of 

motion.  The study of the movements of proteins in molecular dynamics simulations may give 

more correct or more useful information about the structure and function of proteins than an 

examination of static structures.  The studies clearly provide information about the motions and 

behavior of portions of proteins that range in size from side chains to domains. 

 One issue of concern in simulations is the possibility of anomalous effects generated by 

boundaries between a protein and the water molecule in which it is immersed and the rest of 

empty space, the surrounding vacuum.  Periodic boundary conditions eliminate boundary effects, 

essentially by surrounding the molecule with space filling images of itself [38, 50].  This is done 

by mapping the edges of the volume being simulated back onto itself.  In cubical geometry this is 

done by simulating the central cube and considering the surrounding cubes as identical images of 

the central cube.  A number of different geometries completely fill space and can be used for 

calculations using periodic boundary conditions.  These include cubes, rhombohedra, rhombic 

dodecahedra, truncated octahedra, and hexagonal prisms.  When an atom or molecule passes out 

of the central cell, for example, by moving past the right boundary, it enters the right hand image 

box from the left (Figure 2-2).  Of course, this same event happens in every one of the images of 

the central box.  By these means no boundary exists, and surface effects are eliminated, but at the 

expense of increased computational load and occasional artifacts arising from the existence of 
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images and interactions between image molecules and “real” molecules. The use of periodic 

boundary conditions is generally considered to best represent reality and many simulations are 

performed using periodic boundary conditions.  Table 2-1 shows the major types of systems that 

can be simulated with CHARMM with various boundary conditions.  The Newtonian equations 

of motion can be augmented by a friction term and random forces, which mimic the effect of 

collisions with a solvent.  Since this is effectively equivalent to a heat bath, the method 

automatically controls the temperature.  Due to the collisions, there is no conservation of rotation 

and translation.   

 
Figure 2- 2. A representation of periodic boundary conditions.  The primary region (in red square) 

contains a solute (in yellow circle).  The nearest-neighbor repeats this region (in black squares).  The solute 

avoids interacting with its own image by having a cutoff of all non-bonded interactions be smaller than the 

distance between the edge of the solute and the nearest edge of its nearest image. 

 

Table 2- 1. Types of ensembles simulated by CHARMM.   

Ensemble Constants Boundary Conditions 

Canonical N, V, T Fixed periodic boundary conditions 

Microcanonical N, V, E Fixed periodic boundary conditions 

Isothermic-isobaric  N, P, T Periodic boundary conditions 

Isoenthalpic-isobaric N, P, H Periodic boundary conditions 

Langevin simulation N, P, T or N, V, T Periodic boundary conditions 

 N, E No boundary (infinite) 
Listed are examples of systems that can be simulated with CHARMM under different conditions and various 

boundary conditions.  The name abbreviations are as follow: N (number of particles); V (volume); P 

(pressure); E (total energy); T (temperature); H (enthalpy). 
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 Starting a dynamics run with every atom at rest and every atom initially feeling a net 

force of zero (i.e. at energy minimum) is equivalent to starting the system at absolute zero.  One 

of the main reasons, however, for doing molecular dynamics is permit study of systems under 

normal conditions. Thus, an energy minimized system needs to be warmed up to about 300 

degrees Kelvin.  In some cases it is possible to assign each atom a velocity near the value 

characteristic for an atom of that mass at 300 degrees and let the system evolve in time 

thereafter.  Sometimes, however, this approach leads to the development of intolerable 

instabilities and CHARMM automatically stops the simulation.  Therefore, usually systems are 

brought to the desired temperature by gradually incrementing each atom's velocity and then 

allowing time for this perturbation to die away before the next velocity increment.  Often, 

systems are not completely equilibrated after these heating steps, and further evolution in the 

absence of heating is needed.  Ordinarily the system then comes to equilibrium at a temperature 

slightly different from what is desired.  After a further period of equilibration, the velocities are 

scaled so as to yield the desired target temperature. This process of equilibration followed by 

velocity scaling is performed until the system temperature remains constant at the desired value. 

Then the system is allowed to evolve in the absence of velocity adjustments.  This is called the 

simulation or production phase.  This can be from several hundred picoseconds to nanoseconds 

or even more now with the access to supercomputers. It is during the production phase that 

thermodynamic parameters can be calculated [38, 50]. 

 As mentioned earlier, solvent plays an important role to the structure, dynamics, and 

function of biological macromolecules.  When modeling biological systems with a solvent 

environment has been challenging.  An explicit representation of the surrounding solvent can 

provide accurate treatment of solute−solvent interactions, but it typically increases the size of the 

system; therefore, it becomes computationally costly.  Another disadvantage to the explicit 

solvent approach is entropy properties are difficult to determine accurately in simulations, since 

it is rarely clear to what extent all the important regions of phase space are sampled in the 

simulation [51].  To address this issue, an alternative method is applied to biological systems, 

called the continuum electrostatic model.  In this approach, molecules are described as a set of 

point charges located at the center of the atoms in a region of low dielectric constant that is 

surrounded by a solvent treated as a region of high dielectric continuum.  The electrostatic 
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potential (r) is calculated by solving the linearized Poisson−Boltzmann (PB) equation (Equation 

2.2), 

  [(r)(r)] − (r)
2
(r)(r) = −4(r) (2.2) 

 

where (r), (r), and (r) are the dielectric constant, the Debye−Hückel screening factor, and the 

charge distribution of the solute, respectively.  The different environments are characterized 

mainly by their dielectric response, with   values ranging from 80 for water to 2−4 for the 

interior [52].  After the simulation has been completed, trajectories will be analyzed both 

structurally and energetically.  The following section will discuss these methods. 

2.3 Structural and Energetic Analysis from Molecular Dynamics Trajectory 

The following sections give a brief introduction of the post-processing methods that will 

be covered in the subsequent chapters.  Along with calculating the energies of a particular 

system, it is also important to visualize a molecular dynamics simulation.  It generates a 

trajectory which is a set of configurations taken over a period of time.  The program VMD [53] 

has been developed for interactive graphical display of molecular systems.   

2.3.1 Binding Free Energy Calculations 

 Currently, there are over 80,000 crystallographic or solution structures of 

macromolecules available from the PDB.  The rate of macromolecular structure determination 

continues to grow every year, particularly with the development of new techniques (e.g. high 

throughput X-ray crystallography).  There have been many structure-based screening methods 

that have been developed to assist in identifying lead compounds that bind with reasonable 

affinity (low mM to nM range) to a particular target. Similarly, to aid lead optimization, 

computational methods capable of predicting binding affinities of similar compounds are 

required.  In general, calculations of binding free energies play a significant role in correlating 

the structure and function of proteins.  A commonly used method is the molecular mechanics 

Poisson–Boltzmann/surface area (MM/PBSA) [54].  This approach predicts the absolute binding 

free energy by combining molecular mechanics (MM) energy and solvation free energies with 

Poisson–Boltzmann calculations.  This dissertation aims to calculate the binding free energy with 

the MM/PBSA approach.   
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 Calculating free energies has been widely used with researchers working with molecular 

simulations.  However, calculating free energies has been troublesome from the fact that accurate 

free energy results can be obtained if the contributions of all the populated states (including 

configurational, conformational, and vibrational states) are included in the calculation.  To deal 

with such problems, relative free energies of rigid binding energies are calculated for a set of 

molecules that are computed by comparing the average ensemble energies extracted from bound 

state molecular dynamics and those of related conformations from the unbound state. 

2.3.2 Energetic Decomposition of Binding 

 In many cases, refined tools are needed to understand the binding free energies in more 

detail.  In order to understand the energy terms (i.e. intermolecular van der Waals, electrostatic, 

and solvent accessible surface area) that are between the binding partners, it is possible to break 

down the terms from various parts of the molecule.  For proteins, every residue is divided into a 

backbone amino, backbone carbonyl, and a side chain group.  For carbohydrates, we can divide 

based on functional group (such as each hydroxyl group).   

 Electrostatic interactions play a significant role in the structure and function of biological 

macromolecules.  Hendsch, et al. studied the GCN4 leucine zipper [55] to investigate the 

electrostatic effects in protein binding using continuum calculations.  To understand the role of 

electrostatic interactions in a complex, three types of calculations can be determined for every 

group.  One term is the desolvation energy of an individual group, the second term can be 

defined as the solvent-screened Coulombic interactions between two groups in the bound state 

(direct interaction), and lastly, the difference in the solvent screening that intramolecular 

interactions experience in the bound and unbound states (indirect interactions).  All three terms 

can be summed up to give the electrostatic contributions to binding.  Within a group, the total of 

the desolvation, direct, and indirect terms gives an energy called the mutation free energy.  It 

corresponds to the binding energy difference of the native complex and that of a complex with a 

specific group of interest that is substituted by a hydrophobic isostere.  The positive or negative 

values indicate the unfavorable and favorable contributions to the binding affinity.  This is a 

good way to determine the influences of single residues on the binding affinity and pinpoint 

hotspot residues.  This information can be used as a guide for design.  The van der Waals 
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interactions also plays a role and two types of calculations can be determined—energy 

interactions from the protein or with the ligand. 

 This dissertation describes research projects involving the methods stated above.  The project 

described in Chapter 3 involved simulations of the CVN bound to di- and one trimannose model.  

The purpose of this study is to validate the current techniques listed above. 
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Chapter 3 

Computational Models Explain the Oligosaccharide Specificity of 

Cyanovirin-N 
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Abstract 

The prokaryotic lectin cyanovirin-N (CVN) is a potent inhibitor of HIV envelope-

mediated cell entry, and thus is a leading candidate among a new class of potential anti-HIV 

microbicides.  The activity of CVN is a result of interactions with the D1 arm of high-mannose 

oligosaccharides on the viral glycoprotein gp120.  Here, we present computationally refined 

models of CVN recognition of the di- and trisaccharides that represent the terminal three sugars 

of the D1 arm by each CVN binding site.  These models complement existing structural data, 

both from NMR spectroscopy and X-ray crystallography.  When used with a molecular 

dynamics/continuum electrostatic (MD/PBSA) approach to compute binding free energies, these 

models explain the relative affinity of each site for the two saccharides.  This work presents the 

first validation of the application of continuum electrostatic models to carbohydrate–protein 

association.  Taken as a whole, the results both provide models of CVN sugar recognition and 
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demonstrate the utility of these computational methods for the study of carbohydrate-binding 

proteins. 

3.1 Introduction 

 Since the discovery of the antiviral activity of legume lectins such as Concanavalin A 

more than 20 years ago [56], it has been known that one mechanism of blocking HIV-envelope-

mediated cell entry is the association of a carbohydrate-binding protein with the oligosaccharides 

on the surface of the viral envelope.  In particular, the outer envelope glycoprotein, gp120, is 

heavily glycosylated by N-linked carbohydrates, both of the high-mannose and complex types 

[21].  As this glycosylation plays a key role in viral avoidance of natural immune responses, 

inhibitors that work through specific interactions with these carbohydrates provide a unique 

opportunity to interfere with cellular infection in a manner that makes it difficult for viral 

resistance to evolve [57]. 

 To date, numerous lectins from diverse sources have been identified as having virucidal 

activity against HIV, but among the best characterized is cyanovirin-N (CVN), originally 

isolated from the cyanobacterium, Nostoc ellipsosporum [26].  Both inhibition and calorimetric 

studies have determined that CVN specifically targets the (1–2)-linked mannoses found on the 

D1 arm of high-mannose oligosaccharides; CVN contains two pseudo-symmetric binding 

domains which have differing affinities and specificities for various oligosaccharides [58, 59].  

Several structures of CVN have also been solved, both in solution [60, 61] and crystal phases 

[62, 63]. Both its remarkable stability to denaturation and its potent antiviral activity have made 

CVN one of the leading candidates for use as a biopharmaceutical.  Preclinical trials in primates 

have shown promise for the use of CVN as a topical agent to prevent sexual transmission of HIV 

[64, 65]. 

 Despite the apparent wealth of data for this system, there remain open problems 

regarding the structure and energetics of specific sugar recognition.  The crystal structures of 

CVN bound to each of two high-mannose oligosaccharides, Man6 and Man9, have been solved 

[63], but the carbohydrates are not fully resolved.  While they are of reasonable resolution (2.4 

and 2.5 Å), only one of the two binding sites is occupied, and the oligosaccharide structures 

deviate strongly from that expected; several mannoses are in the  configuration (where  

anomers are expected), and numerous rings are in disfavored ring conformations.  Overall, only 
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the small portion of the oligosaccharide making the most intimate contact with the protein is 

particularly well structured.  A solution structure with both sites bound to the disaccharide 

Man-(1,2)Man is also available [61].  In this structure, however, few NOE constraints were 

available to accurately define the lower affinity site.  Here, we present computationally refined 

models of -(1,2)-linked di- (Man2) and trimannose (Man3), representative of the D1 arm of 

Man9, bound in both sites.  These models, combined with molecular dynamics and continuum 

electrostatic analysis, capture the observed specificity of binding with semi-quantitative 

accuracy. 

3.2 Results and Discussion 

 Initially, explicit-solvent molecular dynamics simulations were carried out, beginning 

with the solution structure in complex with two mannose disaccharides (PDB 1iiy) [61]. These 

simulations quickly revealed instability in the lower affinity binding site; the disaccharide began 

to dissociate from cyanovirin-N within the first 500 ps of simulation (see Figure 3-1, top panels).  

In the higher affinity site, however, the sugar remains stably bound for as long as we have 

simulated (currently upwards of 20 ns). Similar behavior has been noticed by Margulis, using 

different parameters and simulation conditions [66], suggesting that the instability is not simply 

an artifact of the method. 

 The difference between the two sites in affinity for Man2 is small (10-fold difference in 

Ka, as measured by a two-site fit to calorimetric data) [58]; thus, this behavior is not expected. 

The two binding sites of CVN are pseudo-symmetric, but the orientation of the sugar in each site 

of the structure differs noticeably; the sugar in the low-affinity site makes less intimate contact 

with some binding-site residues (see Figure 3-2, top panels).  A higher symmetry model of 

dimannose binding in the low-affinity site was thus considered. The protein backbone of the high 

affinity binding site was superimposed on that of the lower affinity site, and the sugar from the 

high affinity site placed in the lower affinity pocket. The structure was then briefly minimized 

while all protein residues further than 4.0 Å (minimum distance) from the sugar were held fixed.  

Molecular dynamics simulation from this starting structure shows similar stability to that of the 

high-affinity site. As an additional test, this procedure was repeated in reverse—the low-affinity 

site was superimposed on the high affinity site, and the low-affinity sugar orientation placed in 

the high-affinity pocket. The binding site was briefly relaxed, and then subjected to molecular 
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dynamics. This model shows the same instability as was first observed in the lower affinity site. 

These data are displayed in Figure 3-1 (top panels).  However, it remains possible that the 

observed stability of the refined structure is due to the constraints used in the simulation, which 

involved a sphere of solvent placed around each binding site, with the protein atoms outside this 

sphere held fixed.  

  

  

Figure 3- 1. Stability of Man2 in each CVN binding site. (Top) The root-mean-square deviation 

(RMSD) of sugar-heavy atoms, relative to the initial coordinates, is shown over 22 ns of explicit-solvent 

molecular dynamics. Trajectories beginning from the published structure are in black; those beginning with the 

sugar placed in the orientation found in the other site are shown in gray. A vertical bar indicates the end of the 

equilibration phase; all analysis was done on frames following this point. (Bottom) The RMSD of both protein 

backbone atoms (in black) and sugar-heavy atoms (in gray), relative to the initial coordinates, are shown over 

30 ns of implicit solvent (Generalized Born) molecular dynamics. 
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Man2 (-(1,2)-dimannose, Starting structure (1iiy): 

 
Global, two-domain structure 

 
Man2 Orientation 

 

Man2 (-(1,2)-dimannose): 

  
 

Man3 (-(1,2),-(1,2)-trimannose): 

 
Site A 

 
Site B 

Figure 3- 2. Structures of di- and trimannose bound to CVN. (Top left) The overall structure of CVN, 

showing two sugar binding sites in pseudosymmetric domains (domain A in gray, domain B in blue). (Top 
right) A superposition of the two binding sites of CVN, showing the difference in orientation of the original 

Man2 model in the low-affinity site (pink/gray) from the structure of the high-affinity site (green/blue). (Middle 
and bottom) A representative frame from each dynamic simulation is displayed, with protein in gray and sugar 

in bronze. All amino acid side chains involved in significant electrostatic interactions are shown. The 
viewpoint perspective of Man3 is rotated roughly 90° from that of Man2.  Figures generated with VMD [53]. 
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 To evaluate the possibility, an unconstrained simulation using the Generalized Born 

implicit solvent model was run, beginning with the preferred sugar orientation in each site.  The 

sugars remain stably bound throughout this simulation (Figure 3-1, bottom panels), while similar 

simulations with the nonpreferred starting orientations show rapid dissociation.  Taken in 

combination, these results strongly suggest that the source of the instability is the initial 

orientation of the sugar.   

 Fewer NOEs were observed experimentally for the lower affinity site than for the higher, 

and thus the published model was not uniquely determined by experimental constraints [61]. To 

further test the validity of the new model, we tracked the distances of all atoms involved in 

observed intermolecular NOEs throughout the first 10 ns of molecular-dynamics simulation (see 

Table 3-1); all experimentally observed contacts remain within 6.0 Å for the majority of the 

simulation, and most remain within 5.0 Å or less. In comparison, several contacts in the 

published model are beyond the largest constraint distance (6.0 Å). While the timescale of the 

simulation is much lower than that observed in the NOESY experiment, these data demonstrate 

the consistency of the refined model with available data. 

 These structures begin to explain the key determinants of oligosaccharide specificity in 

the two sites of CVN, as shown in Figure 3-2 (middle panels). In particular, a strong electrostatic 

interaction in the high-affinity site (between Glu41 and Man2 OH2) is absent in the low-affinity 

site, where the corresponding residue is an alanine (Ala92).  There are other ways in which the 

two binding sites vary, but the overall differences in interactions are less pronounced. A 

hydrogen bond made between Glu23 and Man1 OH6 in Site A is replaced by a similar 

interaction with Gln78 in Site B; these residues are not in equivalent positions, but make 

equivalent interactions. Thr25 in Site A is replaced by Arg76 in Site B, but neither makes close, 

specific interactions with the sugar. Interestingly, the Glu/Ala variation at sites 41/92 also may 

explain an intriguing feature of CVN—-(1,2)-linked trimannose binds to these sites with a 

specificity reversed from that of the dimannose. That is, Site A (low affinity for dimannose) 

binds the trimannose with higher affinity than does Site B (high-affinity for dimannose). With an 

additional (1–2)-linkage extending from Man2, the favorable hydrogen bond made by Glu41 in 

Site B would be lost, as the donating hydroxyl would become part of the glycosidic bond; in Site 

A the lack of an interaction with this hydroxyl would more easily accommodate this change. 
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Table 3- 1. Persistence of observed NOEs in simulation of refined structure. 

Sugar atom CVN atom d
a
 Occ.

b
 

c
 CVN atom d

a
 Occ.

b
 

c
 

Man1:         

H2 I94-CH3 6.0 (6.8) 1.70 1.37     

H4 T7-CH3 5.0 (5.2) 1.43 0.92     

H5 T7-CH3 5.0 (2.3) 0.96 3.56 T25-CH1 4.0 (2.4) 1.00 3333 

H6b T25-CH1 4.0 (2.9) 0.98 12.5     

Man2:         

H2 A92-CH3 4.0 (5.4) 1.05 3.81 I94-CH3 4.0 (5.0) 1.16 0.90 

H3 A92-CH3 5.0 (5.5) 0.97 3.66 I94-CH3 6.0 (5.2) 1.12 0.90 

H4 K3-CH2 4.0 (3.4) 1.11 17.2 Q6-CH2 5.0 (4.2) 1.45 1.77 

 T7-CH3 5.0 (4.5) 1.40 1.06     

H5 T7-CH1 5.0 (5.2) 1.00 175 T7-CH3 4.0 (3.0) 2.60 2.16 

H6a K3-CH2 6.0 (6.7) 0.70 0.95 Q6-CH2 4.0 (7.2) 1.29 1.93 

 Q6-CH2 5.0 (5.3) 1.38 1.85 T7-CH1 4.0 (6.4) 0.62 4.00 

 T7-CH3 4.0 (4.4) 1.98 1.97     

H6b K3-CH2 6.0 (5.5) 0.59 0.96 Q6-CH2 5.0 (5.7) 1.48 4.78 

 T7-CH1 5.0 (7.3) 0.82 1.32 T7-CH3 4.0 (5.1) 2.33 2.17 
a
  Persistent contact cutoff from MD  (distance in published structure, [61] ) in Å. 

b  
 Fraction of simulation in which contact is made (sum of all hydrogens in group). 

c   
Average lifetime of contact, in ps. 

 

 To investigate these further, models of Man3 in each site were generated by extending the 

dimannose by one unit. A new glycosidic bond formed either with OH2 of Man2 or OH1 of Man1 

would result in the same (1–2),(1–2)-linked trimannose; the structure of Man9—accurate in 

this region—indicates that the first of these configurations is preferred [63], and thus this was 

used in model building. Again, molecular dynamics simulations were performed to assess 

stability, and the sugar in both binding sites remained stably bound throughout.  Representative 

structures are shown in Figure 3-2 (bottom).  These structures support the analysis above: The 

incorporation of Man2 OH2 into the glycosidic bond makes Glu41 unable to interact favorably 

with the sugar in Site B. As well, two new interactions are made in Site A, explaining the 

increased affinity of this site for the trisaccharide: Glu101 (the C-terminal residue) receives a 

hydrogen bond from OH2 of the third sugar; and the charged N terminus donates one to OH3. In 

Site B, neither of these interactions is made: Gln50 (analogous to Glu101) is involved in 

satisfying Glu41 with an intramolecular interaction, and thus makes no interactions with the 

sugar; and a proline-containing loop replaces the chain termini, eliminating any hydrogen-

bonding potential. 
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 While the explanations based on the structural models seem reasonable, consideration of 

a bound state alone can be misleading, as the energetics of binding involves differences between 

bound and unbound states. Desolvation effects, in particular, have been clearly established as 

essential contributors to affinity and specificity [67, 68]. To assess this, the binding free energies 

of each complex were computed, accounting for solvent with a Poisson–Boltzmann/Surface Area 

(PBSA) model [69, 70] recently optimized for use with carbohydrates [71]; these energies were 

combined with van der Waals interactions and averaged over one thousand frames extracted 

from the MD simulations (the MD/PBSA approach) [54].   

 To assess convergence of these simulations, averages were also computed over the first 

and last halves of the trajectory independently, and with 5- and 10-fold coarser sampling; all 

these ensembles gave statistically equivalent results (see Figures 3-3 and 3-4, and Tables 3-2 and 

3-3), suggesting strong convergence of the results, both in terms of length of simulation and 

sampling frequency. 

Table 3- 2. Convergence of semi-rigid binding free energies. 

Averaging 

Domain 

Sampling 

Period 
-(1,2)-Man2 -(1,2), -(1,2)-Man3 

Site A Site B Site A Site B 

2-12 ns 200 ps −28.24 ± 0.27 −31.14 ± 0.36 −33.21 ± 0.39 −29.10 ± 0.45 

2-12 ns 100 ps −28.13 ± 0.18 −31.32 ± 0.25 −33.41 ± 0.26 −29.14 ± 0.31 

2-12 ns 20 ps −27.98 ± 0.09 −31.31 ± 0.11 −33.34 ± 0.12 −29.14 ± 0.14 

12-22 ns 200 ps −27.92 ± 0.25 −30.65 ± 0.48 −33.81 ± 0.45 −28.84 ± 0.45 

12-22 ns 100 ps −28.03 ± 0.19 −31.18 ± 0.29 −33.92 ± 0.29 −28.92 ± 0.32 

12-22 ns 20 ps −28.01 ± 0.09 −31.20 ± 0.11 −33.99 ± 0.12 −28.96 ± 0.14 

2-22 ns 200 ps −28.08 ± 0.18 −30.89 ± 0.29 −33.51 ± 0.30 −28.97 ± 0.32 

2-22 ns 100 ps −28.08 ± 0.13 −31.25 ± 0.19 −33.66 ± 0.20 −29.03 ± 0.22 

2-22 ns 20 ps −27.99 ± 0.07 −31.26 ± 0.08 −33.67 ± 0.09 −29.05 ± 0.10 

Each energy value is an average binding-free energy, computed over a set of evenly-spaced 

snapshots from a dynamic trajectory.  Averages are given for two consecutive 10 ns intervals, 

as well as the combined 20 ns simulation.  Sampling was done every 20, 100, and 200 ps, 

corresponding to 500, 100 and 50 frames per 10 ns. Errors are computed as the standard error 

of the mean for each set.  All energies in kcal/mol. 

 

 These calculations give three energetic terms: the intermolecular van der Waals 

interactions made in the bound state (G
vdw

), the hydrophobic solvation energy (G
h

, computed 

as proportional to the solvent-accessible surface area buried upon binding), and the electrostatic 

contribution (G
elec

, including both the solvent-screened intermolecular interactions and the cost 

of desolvating each molecule upon binding). The sum of these terms gives what may be termed a 
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“semirigid” binding free energy; energies are averaged over multiple conformations of both 

sugar and protein, but the structural ensembles of the unbound state are identical to those of the 

bound state. 

 

 

 

 

  

  

Figure 3- 3. Convergence of computed semi-rigid binding free energies.   Grey points are the rigid-

body binding free energies computed for individual snapshots, sampled every 20 ps.  The grey lines show the 

cumulative average of these points, with the thin line including 2 ns of equilibration, and the thick line 

excluding this.  The black lines are cumulative averages computed over each 10 ns interval, with a sampling of 

100 ps. 
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Table 3- 3. Convergence of configurational state free energies. 

Averaging 

Domain 

Sampling 

Period 
-(1,2)-Man2 -(1,2),-(1,2)-Man3 

Site A Site B Site A Site B 

Unbound-state configurations: 

2-12 ns 200 ps 39.06 ± 0.45 39.41 ± 0.61 52.03 ± 0.70 54.94 ± 0.80 

2-12 ns 100 ps 39.40 ± 0.42 39.15 ± 0.42 53.24 ± 0.57 54.79 ± 0.55 

2-12 ns 20 ps 39.36 ± 0.20 39.51 ± 0.21 54.35 ± 0.25 54.45 ± 0.26 

12-22 ns 200 ps 39.56 ± 0.64 39.52 ± 0.56 56.31 ± 0.73 55.09 ± 0.81 

12-22 ns 100 ps 39.26 ± 0.46 38.88 ± 0.41 54.66 ± 0.54 55.39 ± 0.56 

12-22 ns 20 ps 39.47 ± 0.20 39.12 ± 0.21 54.23 ± 0.25 54.19 ± 0.25 

2-22 ns 200 ps 39.31 ± 0.39 39.47 ± 0.41 54.17 ± 0.55 55.01 ± 0.57 

2-22 ns 100 ps 39.33 ± 0.31 39.02 ± 0.29 53.95 ± 0.40 55.09 ± 0.39 

2-22 ns 20 ps 39.42 ± 0.14 39.31 ± 0.15 54.29 ± 0.18 54.32 ± 0.18 

Bound-state configurations: 

2-12 ns 200 ps 40.93 ± 0.60 42.26 ± 0.57 55.52 ± 0.75 56.87 ± 0.86 

2-12 ns 100 ps 41.22 ± 0.42 42.11 ± 0.37 55.60 ± 0.50 57.08 ± 0.58 

2-12 ns 20 ps 41.71 ± 0.20 42.15 ± 0.19 55.87 ± 0.22 57.69 ± 0.27 

12-22 ns 200 ps 41.77 ± 0.65 40.89 ± 0.72 56.36 ± 0.80 58.06 ± 0.75 

12-22 ns 100 ps 41.55 ± 0.45 41.82 ± 0.47 55.94 ± 0.55 58.04 ± 0.57 

12-22 ns 20 ps 41.54 ± 0.19 41.93 ± 0.20 55.71 ± 0.24 58.18 ± 0.26 

2-22 ns 200 ps 41.35 ± 0.44 41.57 ± 0.46 55.94 ± 0.54 57.46 ± 0.57 

2-22 ns 100 ps 41.39 ± 0.31 41.96 ± 0.30 55.77 ± 0.37 57.56 ± 0.41 

2-22 ns 20 ps 41.62 ± 0.14 42.04 ± 0.14 55.79 ± 0.16 57.93 ± 0.19 
Each energy value is an average binding-free energy, computed over a set of evenly-spaced snapshots from a 

dynamic trajectory. Averages are given for two consecutive 10 ns intervals, as well as the combined 20 ns 

simulation. Sampling was done every 20, 100, and 200 ps, corresponding to 500, 100 and 50 frames per 10 ns. 

Errors are computed as the standard error of the mean for each set. All energies in kcal/mol. 

 

 

 

 

 
Figure 3- 4. Convergence of computed unbound-state free energies.  Grey points are the total single-

point free energies computed for individual snapshots, sampled every 20 ps over a 20 ns trajectory.  The grey 

line shows the cumulative average of these points.  The black lines are cumulative averages computed over 

each 10 ns interval, with a sampling of 100 ps. 
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The unbound ensembles will not, in actuality, be identical to those of the bound complex, 

and thus several additional terms contribute to the true binding free energy. Two of these are 

strain energies—the energetic cost of perturbing the ensemble of structures found in the unbound 

state into that found in the bound state—with a contribution both from the sugar and from the 

protein.  Strain energies are easily computed by running additional simulations of the unbound 

state; the difference in total energy (bond, angle, and dihedral strain, intramolecular van der 

Waals and Coulombic interactions, and solute–solvent interactions) between the unbound 

ensemble and the ensemble of structures taken from the bound state (with the binding partner 

removed) is the strain. This contribution was computed for each oligosaccharide (G
str

); the 

constraints used in the simulations led to artifacts in the protein strain term, which was thus 

neglected (see Table 3-4). Conceptually, this approach considers binding as a two-step process, 

in which the ligand ensemble first is perturbed into an ensemble that is “pre-formed” for binding 

(the carbohydrate strain energy), followed by rigid-body binding of each member of this 

ensemble to the corresponding member of the protein ensemble (semirigid binding energy). 

Table 3- 4. Free energies of di- and tri-mannose binding to CVN. 

Absolute semi-rigid binding free-energies: 

 G
vdw

 G
h

  GCVN
des

  Gcarb
des

 G
int

 G
bnd

 

Man2, A −19.3 ± 0.1 −2.1 ± 0.0 +8.9 ± 0.1 +11.4 ± 0.1 −27.0 ± 0.3 −28.0 ± 0.1 

Man2, B −20.2 ± 0.1 −2.2 ± 0.0 +9.6 ± 0.2 +12.5 ± 0.1 −30.8 ± 0.4 −31.3 ± 0.1 

Man3, A −20.6 ± 0.1 −2.7 ± 0.0 +14.8 ± 0.1 +13.5 ± 0.1 −38.8 ± 0.3 −33.7 ± 0.1 

Man3, B −24.4 ± 0.1 −2.4 ± 0.0 +9.9 ± 0.2 +11.5 ± 0.1 −23.4 ± 0.4 −28.9 ± 0.1 

Carbohydrate strain energies: 

 G
internal

 G
vdw

 G
h

 G
des

 G
elec

 G
str

 

Man2, A +2.0 ± 0.3 −0.3 ± 0.1 0.0 ± 0.0 −2.0 ± 0.0 +2.5 ± 0.1 +2.2 ± 0.2 

Man2, B +2.7 ± 0.3 −0.5 ± 0.1 0.0 ± 0.0 −2.0 ± 0.0 +2.5 ± 0.1 +2.6 ± 0.2 

Man3, A +0.9 ± 0.3 +0.1 ± 0.1 0.0 ± 0.0 −3.6 ± 0.0 +4.1 ± 0.1 +1.5 ± 0.2 

Man3, B +3.5 ± 0.3 +0.7 ± 0.1 −0.1 ± 0.0 −1.8 ± 0.0 +1.3 ± 0.1 +3.6 ± 0.3 

Relative binding free energies: 

 G
vdw

 G
h

 G
elec

 G
bnd

 G
str

 G
comp

 

Site B – Site A: 

Man2 −0.9 ± 0.1 −0.1 ± 0.0 −2.3 ± 0.1 −3.3 ± 0.1 +0.4 ± 0.2 −2.8 ± 0.2 

Man3 −3.8 ± 0.1 +0.3 ± 0.0 +8.2 ± 0.1 +4.7 ± 0.1 +2.1 ± 0.2 +6.9 ± 0.3 

Man3 – Man2: 

Site A −1.3 ± 0.1 −0.7 ± 0.0 −3.7 ± 0.1 −5.7 ± 0.1 −0.7 ± 0.3 −6.4 ± 0.3 

Site B −4.2 ± 0.1 −0.2 ± 0.0 +6.8 ± 0.1 +2.3 ± 0.1 +1.0 ± 0.3 +3.3 ± 0.4 
All energies are in kcal/mol, computed as ensemble averages over 20 ns trajectories with 20 ps samples.  

Errors are the standard error of the mean.  
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Additionally, there are terms related to solute entropy (solvent entropy is included 

implicitly in the PBSA model), both due to configuration/vibrational flexibility of each solute as 

well as the translational and rotational degrees of freedom of each component. Configurational 

entropy is most often estimated using normal modes (as in the first applications of the 

MM/PBSA approach) or quasi-harmonic analysis, with the latter having an advantage of being 

derived from the same simulation as other energetic values [72]. There are significant 

assumptions made in both these approaches, however, and thus the values are best considered 

estimates. Entropic contributions to binding from the carbohydrate estimated with a 

quasiharmonic analysis are roughly 0.5 kcal/mol, and contributions to relative binding free 

energies are even smaller (<0.2 kcal/mol, see Table 3-5).  

Table 3- 5. Entropies of di- and tri-mannose binding to CVN. 

 −TSstate  −TSbind −TSbind 

 Man2 Man3  Man2 Man3   

Site A −0.76 −1.16 Site A +0.43 +0.64 Site B – Site A: 

Site B −0.76 −1.24 Site B +0.43 +0.56 Man2   0.00 

Unbound −1.20 −1.80    Man3 −0.08 

      Man3 − Man2: 

      Site A +0.21 

      Site B +0.13 
Computed from a quasi-harmonic analysis of 20 ns trajectories with 0.5 ps sampling. 

 

 These values have been neglected in subsequent analysis, but their inclusion would not 

change the results in any significant way. The small contributions may initially be nonintuitive, if 

one expects significant flexibility in the free sugars. However, analysis of glycosidic bond 

dihedrals throughout the unbound simulation suggests a highly restricted conformational space, 

even in the unbound state (see Figure 3-5); the small additional constriction upon binding incurs 

a relatively small entropic penalty. Of course, it is entirely possible that more complete 

conformational sampling of the unbound state requires much longer timescales than considered 

here, a caveat in all simulations. In keeping with the semirigid approximation for the protein (to 

avoid artifacts from constraints), protein entropy was neglected. 
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Figure 3- 5. Glycosidic dihedral distributions for Man2 and Man3. Boxes are shaded according to the 

fraction populated during a 20 ns simulation (0.5 ps sampling).  corresponds to the C1-O2-C2-H2 dihedral; 

corresponds to the H1-C1-O2-C2 dihedral. The first column contains values for the sole glycosidic link of 

Man2, the second column values for the first (Man1-Man2) glycosidic link of Man3 and the third column values 
of the second (Man2-Man3) glycosidic link of Man3. 

 The terms neglected with a semirigid (protein) receptor model certainly contribute to the 

absolute binding free energies, and may contribute to relative energies as well.  However, the 

qualitative agreement of the results with experiment suggests that these approximations are 

reasonable. In Site B, Man2 and Man3 make largely the same contacts with the protein, with the 

exception of a single hydrogen bond to E41; thus, the protein strain and entropy of these two 

states may be expected to be quite similar; in Site A, Man3 makes additional contacts with the 

free N and C termini, and thus a larger unfavorable contribution might be expected than for Man2 
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binding in this site, or for Man3 binding in Site B. Site B additionally contains a large, flexible 

arginine at position 76, replaced with Thr 25 in Site A; this could lead to an increased 

unfavorable contribution in Site B for both sugars. Quantifying these effects is beyond the scope 

of this work, but the general trends should be considered in considering the following results. 

 The relative affinities of each state (presented in Table 3-6) are all computed with 

reasonable accuracy, further supporting the validity of the structural models; no attempt has been 

made here to modify our energetic model to give improved agreement with experiment. In all 

cases, the trends are computed correctly, both trimer/dimer specificity in each site and the 

relative affinities of either ligand in the two sites. However, the magnitude of the differences are 

somewhat overpredicted, a matter worthy of further consideration; for the two favorable values, 

the strain and entropic penalties paid by the protein on binding might be expected to modulate 

these toward lower magnitudes.  Considering each energetic term suggests a dominant role for 

electrostatic interactions in defining the specificity at each site, as only this term shows the same 

trend as the overall free-energy differences. This is consistent with the structural analysis, in 

which all major differences involved electrostatic interactions. 

Table 3- 6. Relative free energies of binding. 

 G
vdw

 G
h

 G
elec

 G
str

 G
comp

 G
expt

 

G Site A − Site B       

Man2 −0.9 (0.1) −0.1 (0.0) −2.3 (0.1) +0.4 (0.2) −2.8 (0.2) −1.5 

Man3 −3.8 (0.1) +0.3 (0.0) +8.2 (0.1) +2.1 (0.2) +6.9 (0.3) +1.7 

G Man3 − Man2       

Site A −1.3 (0.1) −0.7 (0.0) −3.7 (0.1) −0.7 (0.3) −6.4 (0.3) −1.4 

Site B −4.2 (0.1) −0.2 (0.0) +6.5 (0.1) +1.0 (0.3) +3.3 (0.4) +1.8 
Van der Waals, hydrophobic surface burial, electrostatics, carbohydrate strain, total computed, and experimental 

[58, 59], all in kcal/mol. Errors are the standard error of the mean for the ensemble averages. 

 

 Structure-guided mutagenesis and design are important tools, both for exploring function 

and for the development of complexes with enhanced affinity. For these to be successful, 

however, accurate models are essential. The models presented here thus provide an important 

reference for future work on cyanovirin-N. Ensembles of snapshots from the MD trajectories, as 

well as a minimized representative structure of each refined complex, are available from the 

authors.   

 Additionally, the results validate the use of the MD/PBSA approach in the study of 

carbohydrate-binding proteins. While this method has been used extensively in the study of 
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protein–protein and protein–small molecule interactions, to date there have been few applications 

to carbohydrates. This work strongly motivates the pursuit of future studies on protein–

carbohydrate recognition by these approaches. 

3.3 Materials and Methods 

3.3.1 Construction of Increased Symmetry Binding Models 

The initial structure for all calculations was the solution structure of cyanovirin-N (CVN) 

bound to Man(1–2)Man (PDB 1iiy) [61]. CVN has two pseudo-symmetric binding domains; in 

order to construct binding models based on symmetry, the backbone atoms of equivalent residues 

in each site were superimposed by an RMSD fit. The coordinates of the sugar in the site were 

then replaced with those from the superimposed structure; visual analysis indicated that no major 

steric clashes were introduced by this procedure. This initial placement was then subjected to a 

short minimization, with all protein residues >4.0 Å from the sugar held fixed, to alleviate small 

clashes. These manipulations were done using the CHARMM software package (version 32B1) 

[32]. 

3.3.2 Explicit-solvent Molecular Dynamics 

Molecular dynamics calculations were performed with CHARMM, using the Param22 

protein force field [35], the Carbohydrate Solution Force Field (csff) [73], and a TIP3P water 

model [49]. A 15.0 Å radius sphere of water molecules was centered on each ligand; waters with 

oxygens within 2.8 Å of any solute heavy atom were then removed. After 10 ps of simulation 

with fixed sugar and protein atoms, these steps were repeated to fill voids in the solvent. For 

further dynamics, all atoms outside the sphere were fixed, and a spherical boundary potential 

maintained waters in the droplet. Protein atoms in the outer 2 Å of the sphere were harmonically 

restrained (10 kcal/mol/Å
2
) and subjected to Langevin dynamics with a moderate friction 

coefficient (10 ps
-1

); waters in the outer 2 Å were unrestrained, but subjected to Langevin 

dynamics with a high friction coefficient (62 ps
-1

). Atoms in the inner 13 Å radius sphere were 

propagated with Newtonian dynamics. The SHAKE algorithm was used to fix all bonds 

involving hydrogens, and the time step of integration was 2 fs. The system was equilibrated for 2 

ns, following which 20 ns of dynamics were collected for further study. 
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3.3.3 Implicit-solvent Molecular Dynamics 

Implicit-solvent molecular dynamics simulations were carried out with the CHARMM 

software package and force field parameters as detailed above. The GBSW module was used to 

provide Generalized Born-based solvation terms [74], using atomic radii optimized for this 

approach [71, 75]. No constraints were applied, other than the use of the SHAKE algorithm to 

fix all bonds involving hydrogens. Simple Newtonian dynamic was used, with a time step of 2 fs. 

3.3.4 Computation of Binding Free Energies 

Binding free energies were computed with an MD/PBSA model [54]. The explicit-

solvent MD trajectories were sampled every 20 ps, for a total of one thousand frames per system. 

Rigid-body binding free energies were computed for each snapshot, and the results averaged 

over all frames. Electrostatic contributions were computed for each snapshot as the difference 

between the total electrostatic free energies of the bound complex and the two unbound 

components. These were obtained by solution of the linearized Poisson–Boltzmann (PB) 

equation [69], using a multigrid finite difference solver [76] distributed with the Integrated 

Continuum Electrostatics (ICE) software package [77, 78]. A solute dielectric constant of 2.0 and 

a solvent dielectric constant of 80.0 were used; the dielectric boundary was defined by the 

molecular surface using a 1.4 Å radius probe, with radii optimized for this purpose [71, 75]. The 

ionic strength was set to 0.145 M, with a 2.0 Å ion-exclusion layer. A 65
3
-unit grid was used 

with overfocusing boundary conditions (the longest dimension of the molecule occupying first 

23%, then 92%, and then 184% of one edge of the grid). Boundary potentials extracted from the 

previous calculation were used in each case, with Debye–Hückel boundary potentials used for 

the initial calculation. Energetic contributions from atoms falling outside the finest grid were 

taken from the middle-resolution grid. The total binding energy for each snapshot was the sum of 

the electrostatic contribution, the intermolecular van der Waals energy and a term proportional to 

the solvent accessible surface area buried on binding. The area was computed with CHARMM, 

using a 1.4 Å probe radius, and the energetic contribution was given by G
h

 = 0.005A + 0.86 

kcal/mol [70]. 
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3.3.5 Computation of Sugar Strain Energies 

Sugar strain energies were computed by comparing the total ensemble-averaged energies 

of sugar conformations extracted from bound-state molecular dynamics and those for 

conformations from unbound simulations. Electrostatic solvation free energies were computed 

with a Poisson–Boltzmann model, as the difference between a system with solvent dielectric 

constant of 80 (ionic strength of 0.145 M) and solute dielectric constant of 2, and a system of 

uniform dielectric constant of 2 (zero ionic strength). For these calculations, the largest grid 

contained the whole sugar (92% of the longest dimension). Hydrophobic solvation free energies 

were estimated with a term proportional to the total solute surface area, as described above. 

These energies were added to the molecular-mechanics energy of the solute, including all bonded 

terms (bonds, angles, dihedrals), intramolecular van der Waals, and intramolecular Coulombic 

(in uniform dielectric of 2) interactions. The sugar strain energy is given by the difference in the 

ensemble average of the total energy of the sugar in conformations extracted from the complex 

simulation and the similar average for conformations from a simulation of the free sugar. Thus, 

these values correspond to the energetic cost of perturbing the unbound conformational ensemble 

into the ensemble that is capable of binding, in a fully solvated context. Sugar entropies were 

computed from the same trajectories using the QUASI module of the CHARMM software 

package [72], using the average structure as a reference. 

3.4 Conclusion   

The results validate the use of the MD/PBSA approach in the study of carbohydrate-

binding proteins. While this method has been used extensively in the study of protein–protein 

and protein–small molecule interactions, to date there have been few applications to 

carbohydrates. This work strongly motivates the pursuit of future studies on protein–

carbohydrate recognition by these approaches.  In the next chapter, the same methods will be 

implemented to other saccharide models bound to CVN. 
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Carbohydrate Recognition by the Antiviral Lectin Cyanovirin-N 
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Abstract 

 Cyanovirin-N is a cyanobacterial lectin with potent antiviral activity, and has been the 

focus of extensive pre-clinical investigation as a potential prophylactic for the prevention of the 

sexual transmission of the human immunodeficiency virus (HIV).  Here we present a detailed 

analysis of carbohydrate recognition by this important protein, using a combination of 

computational methods, including extensive molecular dynamics simulations and Molecular-

Mechanics/Poisson−Boltzmann/Surface-Area (MM/PBSA) energetic analysis.  The simulation 

results strongly suggest that the observed tendency of wildtype CVN to form domain-swapped 

dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. 

The energetic analysis additionally indicates that the highest-affinity ligand for CVN 

characterized to date (-Man-(1,2)--Man-(1,2)--Man) is recognized asymmetrically by the 

two binding sites.  Finally, we are able to provide a detailed map of the role of all binding site 

functional groups (both backbone and side chain) to various aspects of molecular recognition: 

general affinity for cognate ligands, specificity for distinct oligosaccharide targets and the 

asymmetric recognition of -Man-(1,2)--Man-(1,2)--Man. Taken as a whole, these results 
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complement past experimental characterization (both structural and thermodynamic) to provide 

the most complete understanding of carbohydrate recognition by CVN to date. The results also 

provide strong support for the application of similar approaches to the understanding of other 

protein−carbohydrate complexes.  

4.1 Introduction 

 Nearly 25 years ago, Lifson and colleagues, identified mannose-specific carbohydrate 

binding proteins (most notably legume lectins such as Concanavalin A) as potential inhibitors of 

human immunodeficiency virus (HIV) viral cell fusion [56].  The outer envelope glycoprotein of 

HIV (gp120) is heavily glycosylated, with between 20 and 28 N-linked glycosylation sites 

occupied in various natural viral isolates; glycosylation consists of both high-mannose and 

complex oligosaccharide subtypes, in roughly equal proportions [21].  Antiviral lectins act by 

binding these carbohydrates and thus interfering with some aspect of cellular recognition and/or 

membrane fusion; the specific mechanism of inhibition may involve either direct blocking of 

CD4 receptor or CXCR4/CCR5 co-receptor binding, or interference in required conformational 

changes associated with fusion [12, 79, 80]. 

 More recently, numerous lectins from diverse sources have been found to have antiviral 

activity, many with much greater potency and specificity than the plant lectins.  As a therapeutic 

target, the carbohydrates of the viral envelope are attractive for several reasons.  First, the 

glycosylation plays an essential role in helping the virus avoid detection by the humoral immune 

response.  The carbohydrates are added by the enzymatic systems of the host cell, and reduced 

levels of glycosylation have been associated with increased susceptibility to immune-system 

recognition; inhibitors that work through specific interactions with the sugars may thus be less-

susceptible to the evolution of viral resistance [57].  Secondly, the remarkable density of 

carbohydrates on the surface of gp120 distinguishes it from naturally-occurring human 

glycoproteins, which typically have many fewer sites of glycosylation, and thus non-specific 

interactions may be avoided.  Finally, while the lack of oral bioavailability of protein 

therapeutics can make small molecule drugs more attractive, topical application as a prophylactic 

virucide does not suffer from this concern [81, 82].  Pre-clinical trials for use of lectins as a 

topical agent to prevent sexual transmission of HIV in simian models have shown significant 

promise [64, 65]. 
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 Beyond the inhibition of cellular infection by HIV, protein−carbohydrate interactions 

play key roles in a vast array of biology.  Many human retroviruses are heavily glycosylated in 

much the same manner as HIV, and, in fact, lectins with anti-HIV activity are often active 

against a diverse range of viruses; including the Ebola and Herpes Simplex Virus [83, 84]. 

Additionally, bacterial pathogens often display cell-surface carbohydrates distinct from those on 

eukaryotic glycoproteins, and many cancer cells are characterized by unique glycosylation 

patterns.  Thus, specific, high-affinity lectins could have potential application both as 

antimicrobial agents as well as for cancer-cell targeting.   

 Despite their importance, the study of protein−carbohydrate interactions has greatly 

lagged that of other biomolecular complexes.  In particular, many computational methods that 

have shown great success in understanding protein−protein, protein−nucleic acid, and 

protein−small molecule interactions, have seen only limited application to carbohydrate 

recognition.  As a good example, the combination of explicit solvent molecular dynamics with 

Poisson−Boltzmann-based calculations of free energies has been demonstrated as a powerful 

approach for predicting relative binding free energies and for dissecting energies into 

contributions from individual chemical groups [85−90].  As well as facilitating the understanding 

of natural systems, computational approaches provide unique opportunities for molecular design; 

as a perfect example, detailed studies on protein systems, coupled with robust computational 

models and innovative algorithms, have made the computational design and engineering of 

proteins and their complexes a reality [91−96].  Robust protocols for the simulation of 

protein−carbohydrate systems thus promise to be an enabling technology, opening up a wide 

range of potential applications to these important systems. 

 Among the best characterized of the antiviral lectins is cyanovirin-N (CVN), originally 

isolated from the cyanobacterium, Nostoc ellipsosporum [26].  Under physiological conditions, 

CVN is a small, monomeric protein, containing two pseudo-symmetric binding domains with 

differing affinities for specific oligosaccharides, but that both bind exclusively to sugars 

containing an -(1,2)-linked mannobiose substructure [58−61].  Interestingly, at high 

concentrations CVN has a tendency to form domain-swapped dimers, and this form is the only 

state found in the crystal phase [62, 63]; mutations that preferentially stabilize both the 

monomeric state and the dimer have been identified.  Thermodynamic, structural, and in vivo 

efficacy studies have all suggested preferential recognition of the D1 arm of high mannose 
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sugars [58, 59, 63], and multivalent interactions appear necessary for antiviral potency.  Despite 

the apparent wealth of data for this system, a complete understanding of the mechanism of 

CVN's antiviral activity has been hindered by the inherent complexities in both synthetic 

chemistry and structural biology of carbohydrates.  Among the questions that remain to be 

answered are: what are the determinants of specific carbohydrate recognition by CVN, what is 

the mechanism by which multivalent interactions by CVN lead to potent antiviral activity, and 

can CVN be engineered into a better virucidal agent?  Here we present a comprehensive answer 

to the first of these questions, building on a computational framework for modeling 

protein−carbohydrate interactions, which we have previously demonstrated as a promising 

approach [90].  The success of computational methods in explaining the structural determinants 

of carbohydrate recognition provides strong motivation for the use of similar approaches to 

address the remaining questions. 

 The minimal carbohydrate recognized by CVN is an -(1,2)-linked mannobiose, a moiety 

found on the terminal arms of high-mannose, N-linked oligosaccharides.  A structure of the 

largest of these (Man-9) is shown in Figure 4-1, with -Man-(1,2)-Man moieties highlighted 

(red); all high-mannose oligosaccharides are derived from Man-9 by varying degrees of 

glycolytic processing of one or more of the three arms (D1−3).  The thermodynamics of binding 

of trisaccharides corresponding to each of the three arms to the antiviral lectin Cyanovirin-N has 

been previously characterized by Bewley and co-workers, who demonstrated that the two CVN 

binding sites show distinct specificities for these targets [59].  

 

Figure 4- 1. A representative structure of a high mannose oligosaccharide (Man9GlcNAc2).  The arms 

are labelled D13.  The glycosidic linkages labelled in red represent the -(1,2) dimannose common to the tip 

of all three arms. The trimannose structures were computationally built by extending the dimannose anchor by 
one unit (dashed box). 
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 Structural insight into carbohydrate recognition by CVN has been limited by 

experimental challenges in working with oligosaccharide ligands, as well as the intrinsic 

propensity of CVN to form domain-swapped dimers when crystalized [62].  An NMR-derived 

structure of monomeric CVN in complex with mannobiose has been solved, [61] as have crystal 

structures of the domain-swapped dimer bound to Man-9 and to a smaller Man-9 fragment, Man-

6 [63].  However, in the domain-swapped dimer structure, only a single binding site is occupied, 

and much of the sugar is poorly resolved. The work here provides a mechanistic look between 

the structural and thermodynamical studies, both by molecular dynamics and continuum 

electrostatic analysis. 

4.2 Results 

4.2.1 Structural Models of Trisaccharide Recognition 

Initial models of the three trisaccharides highlighted in Figure 4-1 (purple dashed boxes) 

were constructed from the structure of CVN in complex with -Man-(1,2)--Man by extending 

the dimannose by one monosaccharide; the starting disaccharide structures for this procedure 

were computationally-refined models based on the solution (NMR) structure, as previously 

described [90].  To construct an -(1,2)--(1,2)-linked trimannose with this procedure, one may 

consider either the (new) monosaccharide or the (existing) disaccharide to be the reducing sugar. 

The two approaches result in chemically identical trisaccharides, but different bound state 

geometries; both of these were considered.  Each trisaccharide was modeled in the two binding 

sites both independently and in a doubly-bound form; each model was then subjected to explicit-

solvent molecular-dynamics simulation. 

4.2.2 Backbone Fluctuations in Domain B Binding Site Loop 

In our first set of simulations, domain A behaved stably and gave consistent results (both 

in structural and energetic terms) in the doubly and singly-bound models, while domain B 

showed a fundamental lack of stability, with the carbohydrate dissociating from the protein in 

many cases.  Visual analysis localized the structural plasticity of domain B to the “hinge” region 

of residues 50 through 54 (Figure 4-2).  In the starting NMR structure (Figure 4-3, structure A), 

the backbone amide protons S52 and N53 clash (1.56 Å H−H distance), resulting in a highly-
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strained configuration; during the simulations, two alternate conformations were sampled that 

relieved this strain. In all of the simulations, a crank-shaft-like rotation of the peptide bond 

between S52 and N53 was observed (Figure 4-3, structure B: the movement involves a concerted 

rotation of the  dihedral of S52 and the  dihedral of N53). While the energetic barrier between 

this state and the starting structure was low (as characterized by a 60 ps average lifetime of the 

initial state), it was not particularly stable; in several cases transitions back to the initial state 

were observed, and visual analysis linked sugar dissociation to this state. 

 

 

 

 

 

 

Figure 4- 2. Overlay image of three snapshots of CVN (no sugar is present in image).  The hinge 

region (residues 50−54) is highlighted by a dashed circle.  Snapshot from simulation of a doubly bound CVN 

with Man(1–2)Man (orange); snapshot from a simulation of a singly bound CVN with Man(1–2)Man 

(cyan); and a simulation from an unbound CVN (green). 

 

To further characterize this alternate conformation, a second set of simulations were 

carried out, beginning with trisaccharide structures modeled into the alternate protein structure. 

These simulations showed only moderate backbone flexibility in the hinge region, with roughly 

60° fluctuations in the  dihedral of S52 and the  dihedral of N53, but in every case the sugar 

disassociated within 100 ns.  Visual analysis of the structures provides a clear rationale for this 

behavior—the backbone carbonyl of N53 makes a hydrogen-bonded interaction with the 

hydroxyl at position 3 of the non-reducing sugar in the NMR structure, but this is lost (and 

replaced by an unfavorable interaction with the backbone amide proton) in the alternate 

configuration. 

  

Domain B Domain A 
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4.2.3 Identification of Cis Peptide Bond in Domain B 

 In a single simulation, a second transition—involving a trans- to cis-isomerization of the 

peptide bond between P51 and S52—was observed (Figure 4-3, structure C).  Unsurprisingly, the 

barrier to this transition is very high, and only a single transition was seen in a total of about 3 s 

of simulation. However, the structure after the transition remained stable for the duration of the 

simulation (100 ns).  In order to further assess the stability of this conformer, models of all 

trisaccharides were again constructed in this background, and subjected to the same simulation 

protocol.  In every case, the structure remained remarkably stable, with only thermal fluctuations 

around a single structure in the hinge region. Additionally, all oligosaccharide ligands remained 

stably bound throughout the simulations, which have been carried out to beyond 200 ns. 

   
Structure A Structure B Structure C 

   
Figure 4- 3. Alternate backbone configurations in hinge region.  (A) Monomeric NMR structure of wt 

CVN (PDB: 1IIY) (B) Crank-shaft movement of the middle region (C) Cis-trans isomerization movement in 

the lower region. 

 

4.2.4 Calculation of Trisaccharide Binding Free Energies 

 Simulations of each sugar (doubly-bound, as well as singly-bound in each site) were 

carried out for 200 ns from a cis-peptide-containing starting structure, and rigid-body binding 

free energies were computed for 1500 evenly spaced (every 100 ps) snapshots using an MM-

PBSA model.  In order to minimize potential bias from the initial structure, the first 50 ns of each 

simulation were excluded from further analysis (see Appendix A for time dependence of 

computed energies).  When average binding energies computed this way (over the last 150 ns of 

simulation) were compared to those computed over the entire 200 ns simulation, the effect was 
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less than 1 kcal/mol for 87.5% (14/16) of the simulations (and less than 0.5 kcal/mol in 75% 

(12/16)); in the remaining two cases (both for Domain B), excluding the first 50 ns reduced the 

computed binding free energies by 1.2 kcal/mol. Overall binding free energies (G
bind

) were 

further broken down into contributions from electrostatics (G
elec

), from bound-state van der 

Waals interactions (G
vdW

), and from non-polar solute-solvent interactions (G
h

). The 

electrostatic term includes contributions from loss of favorable interactions with solvent in the 

bound state (relative to the unbound state), as well as from solvent-screened Coulombic 

interactions made in the bound state; the hydrophobic solvation term is directly proportional to 

the solvent-accessible surface area buried upon binding. For all computed energies, results are 

presented as ensemble-averaged values over all 1500 snapshots; autocorrelation analysis 

(Appendix A) suggests that binding free energies computed from all these snapshots are 

statistically independent. 

 Contributions from individual side chains, backbone amino and backbone carbonyl 

groups (or groupings of these components), G
group

, were similarly computed from ensemble 

averages of electrostatic, van der Waals, and non-polar solvation terms.  The electrostatic term 

was computed as the difference in computed binding free energy between the native sequence 

and a hypothetical mutant in which only the groups under consideration have been mutated to 

hydrophobic isosteres; this has been termed the “mutation energy” in previous work on 

continuum electrostatic component analysis.  The van der Waals term is simply the sum of the 

bound-state (intermolecular) van der Waals interactions made by the atoms of the group of 

interest, and the hydrophobic solvation term is directly related to the change in solvent-accessible 

surface area of the group.  It should be noted that while the van der Waals and surface-area 

dependent terms are additive within a group of multiple components, the electrostatic term is not; 

simply adding the electrostatic terms of individual components would double-count any 

electrostatic interactions between them. 

 

4.2.5 Asymmetric Recognition of D1-arm Trisaccharides in Domains A and B 

Table 4-1 details the computed binding free energies for -Man-(1,2)--(1,2)--Man (the 

trisaccharide corresponding to the D1 arm of high-mannose oligosaccharides) in each of two 

possible binding orientations discussed above; we term the orientation in which the anomeric 
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hydroxyl of the original disaccharide is untouched as the “internal” binding mode, and that 

where this hydroxyl is linked to the third sugar as the “terminal” binding mode.  In domain A, 

the internal binding mode is preferred by about 3.0 kcal/mol; in domain B, on the other hand, it 

is the terminal mode that is preferred (by upwards of 8 kcal/mol).  In both cases, the differences 

result entirely from the electrostatic contribution to the binding free energies. 

Table 4-1. Asymmetric recognition of -Man-(1,2)--(1,2)--Man.  

 G
bind

 = G
elec

 + G
vdw

 + G
h

 

Domain A        

Terminal 31.7 (0.1)  7.4 (0.1)  21.8 (0.1)  2.5 (0.0) 

 30.5 (0.1)  6.5 (0.1)  21.5 (0.1)  2.5 (0.0) 

Internal 34.3 (0.1)  10.0 (0.1)  21.6 (0.1)  2.7 (0.0) 

 34.0 (0.1)  10.6 (0.1)  20.7 (0.1)  2.7 (0.0) 

Domain B        

Terminal 37.5 (0.1)  10.9 (0.1)  24.1 (0.1)  2.6 (0.0) 

 35.7 (0.1)  9.4 (0.1)  23.7 (0.1)  2.6 (0.0) 

Internal 28.1 (0.1)  0.9 (0.1)  24.7 (0.1)  2.5 (0.0) 

 27.5 (0.1)  +0.2 (0.1)  25.2 (0.1)  2.6 (0.0) 
All energies are in kcal/mol; for each value, the results of both singly and doubly-bound simulations are 

provided as the first and second row, respectively. 

 

The determinants of these differences can be narrowed down to a small number of key 

interactions that differ between the two binding modes in each site; these are detailed in Table 4-

2. In domain A, glutamate 101 makes a strongly favorable interaction with the last sugar in the 

internal binding mode; the charged N-terminus similarly makes a more moderately favorable 

interaction in this state, while both interactions are absent when the trisaccharide is bound in the 

terminal mode. In domain B, on the other hand, only slightly favorable interactions with 

glutamine 50 are made in the internal mode, and the free N-terminus is replaced with (non-

interacting) proline 51. Additionally, glutamate 41 in domain B makes favorable interactions in 

the context of terminal-mode binding, but unfavorable interactions (for a net difference of over 5 

kcal/mol) in the internal mode. Finally, both threonine 25 (domain A) and its corresponding 

residue in domain B (arginine 76) make more favorable interactions in the terminal model. For 

T25 this is primarily a van der Waals effect, and serves to slightly offset the enhanced 

stabilization of the internal mode in domain A by E101 and the N-terminus. For R76 on the other 

hand, a combination of both electrostatic and van der Waals interactions act to stabilize the 

terminal mode in domain B, reinforcing the destabilization of the internal mode by E41. It should 
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be noted, however, in the context of larger oligosaccharides, interactions between T25 and R76 

are lost with additional carbohydrates. 

Table 4- 2. Energetic determinants of internal vs. terminal recognition. 

 G
group

 G
elec

 G
vdw

 G
h

 

L1/P51 Backbone Amino 

A (L1) Terminal −0.3/ −0.2 −0.1/   0.0 −0.2/ −0.2 0.0/   0.0 

A (L1) Internal −1.5/ −1.6 −1.4/ −1.4 −0.1/ −0.1 0.0/ −0.1 

B (P51) Terminal   0.0/   0.0    0.0/   0.0   0.0/   0.0 0.0/   0.0 

B (P51) Internal   0.0/ +0.1  +0.1/ +0.2 −0.1/ −0.1 0.0/   0.0 

E101/Q50 Side Chain 

A (E101) Terminal −0.2/ −0.4 −0.1/ −0.3 −0.1/ −0.1 0.0/   0.0 

A (E101) Internal −4.0/ −4.3 −5.5/ −6.1 +1.5/ +1.8 0.0/   0.0 

B (Q50) Terminal −0.1/ −0.1      0.0/   0.0 −0.1/ −0.1 0.0/   0.0 

B (Q50) Internal −0.7/ −0.8 −0.5/ −0.6 −0.2/ −0.2 0.0/   0.0 

A92/E41 Side Chain 

A (A92) Terminal −0.4/ −0.4 +0.1/ +0.1 −0.5/ −0.5 0.0/   0.0 

A (A92) Internal −0.8/ −0.8 +0.1/ +0.1 −0.9/ −0.9 0.0/   0.0 

B (E41) Terminal −2.1/ −2.0 −2.6/ −2.4 +0.6/ +0.5   −0.1/ −0.1 

B (E41) Internal +3.0/ +3.8 +4.8/ +6.0 −1.8/ −2.0 0.0/ −0.2 

T25/R76 Side Chain 

A (T25) Terminal −2.4/ −2.5 −0.4/ −0.4 −1.8/ −1.8 −0.2/ −0.3 

A (T25) Internal −1.2/ −1.4 −0.1/ −0.2 −1.0/ −1.1 −0.1/ −0.1 

B (R76) Terminal −9.5/ −9.3 −4.3/ −4.1 −4.8/ −4.8 −0.4/ −0.4 

B (R76) Internal −3.8/ −4.5 −0.8/ −1.0 −2.9/ −3.3 −0.1/ −0.2 

Subtotal 

A Terminal −3.1/ −3.2 −0.3/ −0.3 −2.6/ −2.6 −0.2/ −0.3 

A Internal −5.7/ −6.2 −5.1/ −5.7 −0.5/ −0.3 −0.1/ −0.2 

B Terminal −11.5/ −11.2 −6.7/ −6.3 −4.3/ −4.4 −0.5/ −0.5 

B Internal −0.9/ −0.8 +4.2/ +5.2 −5.0/ −5.6 −0.1/ −0.4 

Remainder 

A Terminal −28.6/ −27.3 −7.1/ −6.2 −19.2/ −18.9 −2.3/ −2.2 

A Internal −28.6/ −27.8 −4.9/ −4.9 −21.1/ −20.4 −2.6/ −2.5 

B Terminal −26.1/ −24.5 −4.2/ −3.1 −19.8/ −19.3 −2.1/ −2.1 

B Internal −27.2/ −26.8 −5.1/ −5.0 −19.7/ −19.6 −2.4/ −2.2 
All energies are in kcal/mol; for each entry, the two values given are those from the singly and doubly-

bound simulations, respectively. 
 

 

When the contributions of these four groups are taken together (Table 4-2, Subtotal), they 

account almost entirely for the differences between the two binding modes in both sites. While a 

significant fraction of the overall binding energies (about 27 kcal/mol) come from other groups 



 

48 

 

(Table 4-2, Remainder), the contribution of these remaining groups is near equal in both binding 

sites and with both binding modes.  Figure 4-4 shows the structural view of these determinants. 

 

Figure 4- 4. Structural view of the energetic determinants of internal vs. terminal recognition.  

Residues in domain A are found in the orange ribbon structures and residues in domain B are found in the 

green ribbon structures. 

4.2.6 Near Quantitative Prediction of Relative Binding Free Energies 

 Table 4-3 shows the computed affinities for each of the three sugars in each binding site; 

for -Man-(1,2)--Man-(1,2)--Man the values given are for the preferred binding mode in each 

site.  The two computed values for each sugar/binding site combination (from singly and doubly-

bound simulations) are strongly consistent, with the calculations agreeing to within 1.0 kcal/mol 

for all but one case. As the structure is quite rigid, and the binding sites are separated by 

approximately 40 Å, no cooperativity in binding is expected. 

 Figure 4-5 shows these same values plotted against the experimentally-determined 

binding free energies of Bewley and co-workers [59].  The computed energies show remarkable 

correlation with the experimental values for five of the six cases; these data lie along a best-fit 

line with slope of 0.77. Interestingly, the electrostatic component correlates even more strongly 

with the experimental values, with a best-fit slope of 0.91, and deviation of the single outlier 

from this line is less than for the total energy.  This outlier, -Man-(1,2)--(1,2)--Man bound in 
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domain B, also shows the least consistency between the values computed for the singly and 

doubly bound states, with a difference of 1.8 kcal/mol. 

Table 4- 3. Overall energetics of trisaccharide binding. 

 G
bind

 = G
elec

 + G
vdw

 + G
h

 

Domain A        

-(1,2), -(1,2), -Man3
b
 −34.3 (0.1)  −10.0 (0.1)  −21.6 (0.1)  −2.7 (0.0) 

 −34.0 (0.1)  −10.6 (0.1)  −20.7 (0.1)  −2.7 (0.0) 

-(1,2), -(1,3), -Man3 −29.5 (0.1)  −5.7 (0.1)  −21.4 (0.1)  −2.4 (0.0) 

 −30.2 (0.1)  −6.9 (0.1)  −21.0 (0.1)  −2.4 (0.0) 

-(1,2), -(1,6), -Man3 −30.3 (0.1)  −7.3 (0.1)  −20.6 (0.1)  −2.4 (0.0) 

 −31.3 (0.1)  −7.2 (0.1)  −21.5 (0.1)  −2.5 (0.0) 

Domain B        

-(1,2), -(1,2), -Man3 −37.5 (0.1)  −10.9 (0.1)  −24.1 (0.1)  −2.6 (0.0) 

 −35.7 (0.1)  −9.4 (0.1)  −23.7 (0.1)  −2.6 (0.0) 

-(1,2), -(1,3), -Man3 −33.2 (0.1)  −8.0 (0.1)  −22.7 (0.1)  −2.4 (0.0) 

 −32.2 (0.1)  −7.6 (0.1)  −22.2 (0.1)  −2.4 (0.0) 

-(1,2), -(1,6), -Man3 −32.5 (0.1)  −7.6 (0.1)  −22.4 (0.1)  −2.5 (0.0) 

 −33.0 (0.1)  −8.2 (0.1)  −22.2 (0.1)  −2.6 (0.0) 
All energies are in kcal/mol; for each value, the results of both singly and doubly-bound simulations are 

provided as the first and second row, respectively. 
b
 For Domain A, the -(1,2), -(1,2)-linked sugar is bound 

in the internal orientation; all other sugars are bound in the terminal mode. 

 
 

  

Figure 4- 5. Comparison of computed and experimental binding free energies.  Open shapes represent 

simulations from singly bound models and closed shapes represent simulations from doubly bound models; 

circles represent domain A region  and triangles represent domain B; black line represents the linear best-fit 

line for trisaccharide data (excluding the terminal orientation of Man-(1,2)Man-(1,2)Man). 
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4.2.7 Conserved Backbone Interactions are Primary Source of Affinity 

A large fraction of the binding affinity for all three sugars in both sites can be attributed 

to a common set of interactions, primarily involving backbone contacts; the contributions of 

these groups are detailed in Table 4-4 and Figure 4-6.  Overall, these groups account for roughly 

−20 kcal/mol of overall affinity, with about −16 kcal/mol of this from electrostatics and −4 

kcal/mol from van der Waals contacts. In terms of electrostatic contributions, this is a more 

favorable contribution than the total overall electrostatic contribution to affinity. For van der 

Waals interactions, on the other hand, these groups contribute a much smaller fraction. 

Table 4- 4. Energetic determinants of general affinity for cognate sugars. 

 G
group

 G
elec

 G
vdw

 G
h

 

Subtotal Backbone 

Domain A (2−4) [−6.5, −5.8] [−6.5, −5.2] [−1.3, +0.7] [−0.1, 0.0 ] 

Domain B (52−54) [−5.3, −5.1] [−4.8, −4.4] [−0.7, −0.4] [  0.0, 0.0 ] 

Domain A (23−24) [−4.7, −4.1] [−3.8, −2.9] [−1.2, −0.8] [  0.0, 0.0 ] 

Domain B (74−75) [−5.0, −3.6] [−4.3, −2.6] [−1.1, −0.7] [  0.0, 0.0 ] 

Domain A (92−95) [−9.9, −9.5] [−7.8, −7.2] [−2.7, −1.8] [−0.1, 0.0 ] 

Domain B (41−44) [−10.5, −8.4] [−8.1, −5.5] [−2.9, −2.2] [−0.1, 0.0 ] 

Q6/E56 Side Chain     

Domain A (Q6) [−1.2, −1.1] [−0.1, −0.1] [−1.0, −0.9] [−0.1, 0.0 ] 

Domain B (E56) [−1.1, −0.9] [−0.5, −0.3] [−0.7, −0.5] [−0.1, 0.0 ] 

T7/T57 Side Chain     

Domain A (T7) [−3.7, −3.4] [−1.6, −1.5] [−2.0, −1.7] [−0.2, −0.2] 

Domain B (T57) [−3.6, −3.2] [−1.7, −1.4] [−1.7, −1.4] [−0.2, −0.1] 

Subtotal Side Chain     

Domain A (6−7) [−4.9, −4.5] [−1.8, −1.6] [−3.0, −2.6] [−0.3, −0.3] 

Domain B (56−57) [−4.6, −4.2] [−2.1, −1.8] [−2.3, −2.1] [−0.3, −0.2] 

Subtotal     

Domain A (Overall) [−24.9, −23.7] [−17.9, −17.2] [−7.4, −5.7] [−0.5, −0.3] 

Domain B (Overall) [−24.6, −20.6] [−18.6, −13.5] [−6.8, −5.3] [−0.3, −0.2] 
All energies are in kcal/mol; for each entry, the range of values seen over all simulations is given. 
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Figure 4- 6. Structural view of the energetic determinants of general affinity for cognate sugars.  

Residues in domain A are found in the orange ribbon structures and residues in domain B are found in the 

green ribbon structures. 

 

4.2.8 A Small Number of Residues Mediate Affinity Differences Between Domains 

A small number of groups make consistent interactions within each domain, but show 

significant differences between the two binding sites (Table 4-5 and Figure 4-7).  One of these is 

Ala92/Glu41, previously noted to contribute significantly to the differences in the terminal 

versus internal binding orientation of -Man-(1,2)--(1,2)--Man; in Domain B, Glu 41 makes 

strongly favorable electrostatic interactions will all sugars (bound in a terminal orientation), 

while Ala 92 in domain A contributes almost nothing to the affinity.  Similarly, Gln78 in Domain 

B makes a moderate electrostatic interaction, as well as favorable van der Waals contact, for a 

net favorable contribution of about 1 kcal/mol; the corresponding amino acid in Domain A is Gly 

27, with no side chain to make interactions with the sugar. On the other hand, Glu 23 in Domain 

A makes much stronger electrostatic interactions (about −3.0 kcal/mol) than does the equivalent 

residue in Domain B (Lys 74, between −0.6 and −0.9 kcal/mol), although these differences are 

modulated somewhat by opposing differences in van der Waals contact. 
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Table 4- 5. Determinants of differences in affinity for terminal mode. 

 G
group

 G
elec

 G
vdw

 G
h

 

A92/E41 Side Chain    
Domain A (A92) [−0.4, −0.3] [+0.1, +0.1] [−0.5, −0.4] [  0.0,   0.0] 

Domain B (E41) [−2.2, −1.9] [−2.7, −2.4] [+0.8, +0.5] [−0.1, −0.1] 

G27/Q78 Side Chain    

Domain A (G27) [  0.0,   0.0] [  0.0,   0.0] [  0.0,   0.0] [  0.0, 0.0] 

Domain B (Q78) [−1.3, −1.2] [−0.7, −0.5] [−0.8, −0.4] [−0.1, 0.0] 

E23/K74 Side Chain    
Domain A (E23) [−2.7, −2.5] [−3.1, −2.8] [+0.5, +0.3] [−0.1, 0.0] 

Domain B (K74) [−1.9, −1.7] [−0.9, −0.6] [−1.1, −1.0] [  0.0, 0.0] 

L1/P51 Backbone Carbonyl    
Domain A (L1) [−1.8, −0.2] [−1.9, +0.1] [−0.3, +0.1] [0.0, 0.0] 

Domain B (P51) [−0.2, −0.1] [−0.1,   0.0] [−0.1, −0.1] [0.0, 0.0] 

Subtotal    
Domain A [−4.8, −3.2] [−4.9, −2.7] [−0.5, +0.2] [−0.1,   0.0] 

Domain B [−5.5, −5.1] [−4.2, −3.9] [−1.3, −1.0] [−0.2, −0.1] 
All energies are in kcal/mol; for each entry, the range of values seen over all simulations is given 
 

 

Figure 4- 7. Structural view of the energetic determinants of differences in affinity for terminal 

mode.  Residues in domain A are found in the orange ribbon structures and residues in domain B are found in 
the green ribbon structures. 

4.2.9 One Pair of Interacting Residues Dominate Specific Sugar Recognition in Domain B  

A single pair of interacting residues (Arg 76 and Asp 44) in Domain B make strong 

contributions to binding that are not seen in Domain A (Table 4-6). In all cases, the side chain of 

Arg 76 interacts with the "third" mannose that extends from the core dimannose binding site. In 

particular, Arg 76 makes a strong favorable electrostatic and van der Waals interactions, 

especially with the -Man-(1,2)--(1,2)--Man model. In this model, Arg 76 makes this 

interaction because Asp 44 makes a salt bridge interaction with Arg 76. These residues interact 
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for about 80% of the simulation, while in the -Man-(1,2)-- (1,3)--Man it was about 40% 

and -Man-(1,2)--Man-(1,6)--Man was about 20%. In the other two models, Arg 76 alone 

would interact with the carbohydrate and Asp 44 would move away towards the solvent, and vice 

versa. 

Table 4- 6. Interactions of the R76/D44 salt-bridge and its equivalent. 

 G
group

  G
elec

  G
vdw

  G
h

 

R76 Side Chain (B) 

-(1,2), -(1,2), -Man3 −9.5/−9.3  −4.3/−4.1  −4.8/−4.8  −0.4/−0.4 

-(1,2), -(1,3), -Man3 −6.0/−5.1  −1.7/−1.4  −4.1/−3.5  −0.2/−0.2 

-(1,2), -(1,6), -Man3 −4.6/−7.3  −0.7/−2.4  −3.7/−4.4  −0.2/−0.5 

D44 Side Chain (B) 

-(1,2), -(1,2), -Man3 +0.4/  0.0  +1.0/+0.4  −0.6/−0.4    0.0/ 0.0 

-(1,2), -(1,3), -Man3 +0.0/−0.8  +0.5/−0.8  −0.5/  0.0    0.0/0.0 

-(1,2), -(1,6), -Man3 −0.9/−3.8  −0.8/−4.7  −0.1/+0.9    0.0/0.0 

Domain B Subtotal 

-(1,2), -(1,2), -Man3 −8.2/−8.4  −2.4/−2.8  −5.4/−5.2  −0.4/−0.4 

-(1,2), -(1,3), -Man3 −5.2/−4.7  −0.4/−1.0  −4.6/−3.5  −0.2/−0.2 

-(1,2), -(1,6), -Man3 −4.6/−8.9  −0.6/−4.9  −3.8/−3.5  −0.2/−0.5 

T25 Side Chain (A) 

-(1,2), -(1,2), -Man3
b
 −1.2/−1.4  −0.1/−0.2  −1.0/−1.1  −0.1/−0.1 

-(1,2), -(1,3), -Man3 −2.1/−2.4  −0.2/−0.5  −1.7/−1.7  −0.2/−0.2 

-(1,2), -(1,6), -Man3 −2.4/−2.0  −0.4/0.0  −1.7/−1.8  −0.3/−0.2 

D95 Side Chain (A) 

-(1,2), -(1,2), -Man3
b
 +0.2/+0.3  +0.7/+0.8  −0.5/−0.5    0.0/0.0 

-(1,2), -(1,3), -Man3 +0.5/+0.4  +1.0/+0.9  −0.5/−0.5    0.0/0.0 

-(1,2), -(1,6), -Man3 +0.4/+0.6  +0.9/+1.0  −0.5/−0.4    0.0/0.0 

Domain A Subtotal 

-(1,2), -(1,2), -Man3
b
 −1.1/−1.3  +0.5/+0.4  −1.5/−1.6  −0.1/−0.1 

-(1,2), -(1,3), -Man3 −1.9/−2.3  +0.5/+0.1  −2.2/−2.2  −0.2/−0.2 

-(1,2), -(1,6), -Man3 −2.2/−1.7  +0.3/+0.7  −2.2/−2.2  −0.3/−0.2 
All energies are in kcal/mol; for each entry, the two values given are those from the singly and doubly-bound 

simulations, respectively. 
b
 For Domain A, the -(1,2), -(1,2)-linked sugar is bound in the internal 

orientation; all other sugars are bound in the terminal mode. 
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4.3 Discussion 

4.3.1 Monomeric CVN Contains a Cis-Peptide Bond in the Hinge Region 

 One of the most significant results of the simulations presented here is the strong 

suggestion that monomeric Cyanovirin-N contains a cis-peptide bond in the hinge region.  As 

cis-peptide bonds are rare, these observations warrant some discussion.  First, in the original 

NMR structure determination, minimal constraints were available in this region, and thus the 

backbone structure of the hinge was not rigorously defined (C. Bewley, personal 

communication); it is not surprising that, in absence of explicit restraints, annealing would not 

sample the cis-conformer.  Secondly, the existence of a P51−S52 cis-peptide bond provides a 

structural and energetic explanation for an interesting observation involving a CVN variant 

containing a Pro to Gly mutation at position 51, previously characterized by Gronenborn and 

colleagues. This mutation has been shown to preferentially stabilize the monomeric form of 

CVN; the monomeric melting temperature is increased by 10 degrees, and the P51G mutant 

crystalizes exclusively as a monomer.  Typically, mutations to glycine destabilize proteins, 

unless they are made in regions requiring violations of the typically allowed region of 

Ramachandran space, due to increased entropy in the unfolded state.  Taken as a whole, these 

observations lead us to the conclusion that wild-type, monomeric CVN likely contains a cis-

peptide bond between Pro51 and Ser52.   

4.3.2 The D1 Arm is Asymmetrically Recognized by Domains A and B 

 Oligosaccharide recognition by CVN involves very interesting differences in the 

preferences of each domain for binding -(1,2)-linked mannobiose and a trimannose with two -

(1,2)-linkages; Bewley and co-workers observed that while the disaccharide binds domain B 

tighter (by roughly 10-fold in affinity) than domain A, the trisaccharide preferentially binds 

domain A by a similar amount.  The simulations presented here provide direct insight into this 

specificity-switch, with an interesting structural mechanism.  

 The -(1,2), -(1,2) trimannose could potentially bind in one of two binding modes both 

maintaining the -(1,2)-linked mannobiose in the same orientation—with the third sugar 

extending either from the reducing or non-reducing end of the disaccharide.  In the context of a 
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larger oligosaccharide, the first would correspond to recognition of the last two sugars on the D1 

arm as the mannobiose anchor, and thus we term this the “terminal” binding mode.  The second, 

on the other hand, would correspond to recognition of the second and third sugars from tip of D1 

as the anchor, and thus this mode is termed the “internal” orientation. In the crystal structure of 

Man-9 bound to the domain-swapped dimer, only site A is occupied, and an internal binding 

mode is observed.  

 Consistent with the crystal structure, the calculations indicate a strong preference of 

domain A for the internal binding mode, but notably show an even stronger bias against the 

internal mode in domain B; the net binding energy is 3.5 kcal/mol more favorable for the internal 

mode in site A and over 8 kcal/mol less favorable for the internal mode in domain B.  The source 

of these preferences are entirely electrostatic in nature, with differences in buried surface nearly 

zero and differences in van der Waals interactions slightly opposing the net difference.  In 

domain A, the internal binding mode makes strongly favorable electrostatic interactions (−10.6 

kcal/mol), compared with more moderately favorable interactions (−6.5 kcal/mol) for the 

terminal mode.  In site B, net electrostatic contributions are reduced from a (favorable) 

contribution of −9.4 kcal/mol for the terminal binding mode to essentially zero (+0.2 kcal/mol) 

for the internal mode.  The results are entirely consistent between both doubly- and singly-bound 

models.  These data are calculated based on semi-rigid binding free energies, averaging energies 

over 150 bound-state configurations, but with no explicit consideration of the unbound states. 

However, in comparing binding modes for a single ligand, the unbound state is identical, and 

thus no error arises from this neglect.  Additionally missing is an assessment of bound state 

configurational entropy, of both the protein and carbohydrate.  

 The origins of this asymmetry in recognition have a clear basis in structure.  In site A, 

several groups make favorable interactions in the internal binding mode that are absent (or 

weaker) in the terminal binding mode.  Chief among these is the side chain of Glu101, which 

makes a strongly favorable interaction with the hydroxyl at position C2 of the third 

monosaccharide in the internal mode (and makes no interactions in the terminal mode). 

Additionally, the free N-terminus makes a moderately favorable interaction with the hydroxyl at 

C2.   
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4.3.3 Determinants of Binding Affinity and Specificity 

 Overall, all the trisaccharide models in both sites captured several determinants that 

contributed to the binding affinity and specificity.  In particular, a large portion of the affinity in 

both sites (about −24 kcal/mol) came from backbone contacts making interactions with the core 

-Man-(1,2)-Man disaccharide.  Only two side chain groups (Domain A: Gln6 and Thr7; 

Domain B: Glu56 and Thr57) make interactions with the same disaccharide.  In this case, the 

electrostatic energies (about −17 kcal/mol) dominated the binding affinities in both sites, while 

the van der Waals energies make moderate interactions (about −7 kcal/mol).  

 A few residues make interactions within each site; however, its corresponding residue in 

the other site shows energetic differences.  These residues include: side chain groups of Ala 

92/Glu 41, Gly 27/Gln 78, and Glu 23/Lys 74. Glu 41 and Gln 78 make interactions with the 

carbohydrates in Domain A, but its corresponding residues in Domain A, Ala 92 and Gly 27, do 

not make interactions.  In Domain A, Glu23 made more overall favorable energy than its 

corresponding residue in Domain B, Lys 74.  

 Of all the residues that make interactions with the carbohydrates, only one pair appears to 

dominate energetically in Domain B, Arg 76 and Asp 44.  When there is a salt-bridge interaction 

being made between Asp 44 and Arg 76, it makes a strong interaction with the third mannose of 

the trisaccharide models. This is strongly seen in the -Man-(1,2)--Man-(1,2)-Man model.  

This is less seen in the other trisaccharide models.  In Domain A, its corresponding residues, Thr 

25 and Asp 95, make a moderate contribution to the overall energetics. 

4.4 Methods 

4.4.1 Construction of CVN Complexes with Trisaccharides  

The initial structure for all simulations originated from the last snapshot taken from an 

earlier study where the solution NMR structure of CVN bound to -Man-(1,2)--Man (PDB 

1IIY) was modified and simulated in a droplet of water [90].  Briefly, the backbone atoms of 

equivalent residues in each site were superimposed (by minimizing the backbone heavy-atom 

root-mean square deviation, RMSD), and the coordinates of the sugar in domain A were then 
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replaced with those from the superimposed structure to construct binding models of increased 

symmetry.   

  

Internal Orientation Terminal Orientation 

Figure 4- 8. Internal vs. terminal anchor placement in Man-(1,2)Man-(1,2)Man.  A glycosidic 

bond can be formed either with OH2 of the dimannose anchor (internal) or with OH1 (terminal). The crystal 

structure of Man9 bound in domain A [63] suggests that the internal orientation is preferred for domain A; no 

data is available for domain B.  Energetically, the internal orientation is preferred in domain A and the terminal 

orientation is preferred in domain B.  The black arrows represent the direction of the Man9GlcNAc2 structure. 

 

 Structures of three distinct trimannoses representing the three arms of Man9 (-Man-

(1,2)--Man-(1,2)--Man, -Man-(1,2)--Man-(1,3)--Man, and -Man-(1,2)--Man-(1,6)--

Man) were built by extending our dimannose model by one unit from the anomeric carbon of the 

reducing sugar.  In addition, an alternate structure of -Man-(1,2)--Man-(1,2)--Man was 

constructed by extending the dimannose by one unit from C2 of the non-reducing sugar (Figure 

4-8).  All these manipulations were done using the CHARMM software package, [33] and 

default conformations were used for the newly-built portions of each molecule.  A short 

minimization (100 steps) was performed on all the newly built structures to avoid any clashes.  

Three models were constructed in each case, two 1:1 (protein:sugar) complexes with a single 

sugar bound to each of the two binding sites, as well as a 1:2 complex with both binding sites 

occupied. 
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4.4.2 Molecular Dynamics Simulations  

Explicit-solvent molecular dynamics simulations were performed using the CHARMM 

[33] and NAMD [97] computer programs, using PARAM22 (protein) [35] and CSFF 

(carbohydrate) [73] parameter sets and the TIP3P water model [49].  Pre- and post-processing of 

all complexes was done with CHARMM, while production simulations were done using NAMD. 

Each complex was solvated in a box of water with a minimum of 10 Å between any solute atom 

and the box edge in all directions.  Randomly selected water molecules were replaced with about 

14 sodium and 11 chloride ions, the number of ions added was chosen to match physiological 

ionic strength (145 mM) and to obtain a net zero charge for the system (CVN has a formal 

charge of −3.0e).  A total of 200 ns was simulated for each complex (using a 2 fs time step) 

under NPT ensemble conditions (P=1 atm, T=300 K) with periodic boundary conditions and 

particle-mesh Ewald (PME) for long-range electrostatics. Short-range interactions were cut off at 

12 Å, and bonds involving hydrogens were held fixed using SHAKE. 

4.4.3 Calculation of Binding Free Energies 

 Binding free energies were computed with a Molecular Mechanics/Poisson−Boltzmann 

Surface Area (MM/PBSA) model. The first 50 ns of each simulation were excluded from the 

analysis to ensure adequate equilibration of each system.  The explicit-solvent MD trajectories 

were sampled every 100 ps, for a total of 1500 snapshots per trajectory.  The total binding energy 

for each snapshot was computed as the sum of a Poisson−Boltzmann-based electrostatic 

contribution (G
elec

), the intermolecular van der Waals energy (G
vdW

), and a term proportional 

to the solvent accessible surface area buried on binding; the area was computed with CHARMM, 

using a 1.4 Å probe radius, and the energetic contribution was given by (G
h

) = 0.005A+0.86 

kcal/mol for each snapshot. These energies were then averaged all frames (Tables 4-1 and 4-3). 

Standard errors of the mean were computed using an effective number of independent frames; 

this value was extracted from an autocorrelation analysis of the energetic time scales. 

 To assess convergence of these simulations, we first looked at ensembles from domain A. 

The slope of the running averages were nearly at zero after 50 ns. For consistency, 50 ns was the 

cut-off mark in domain B. 
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4.4.4 Continuum Electrostatic Calculations 

The linearized Poisson−Boltzmann equation was solved using a multi-grid finite-

difference solver distributed with the ICE software suite (courtesy of B. Tidor), using standard 

protocols [76, 77, 78].  Charges were taken from the PARAM22 and CSFF parameter sets for 

consistency with the molecular dynamics simulations.  The dielectric boundary was set as the 

molecular surface generated with a 1.4 Å radius probe, and a 2.0 Å ion exclusion layer was used; 

the surfaces were generated using radii optimized specifically for use in continuum electrostatic 

calculations [71, 75].  The internal and external dielectric constants were set to 2 and 80, 

respectively, and the (monovalent) ionic strength was set to 145 mM.  Boundary conditions were 

computed using a 3-step focusing procedure on a 129
3
-unit cubic grid, with the molecule 

occupying first 23%, then 92%, and finally 184% of the grid.  Boundary conditions at each level 

were taken from the previous calculation, with Debye−Hückel potentials used at the boundary of 

the lowest level.  The highest-resolution grid was centered on the oligosaccharide, and potentials 

at atoms falling off this grid were taken from the middle-resolution calculation.  Electrostatic 

contributions to the binding free energies were computed as the sum of a desolvation penalty for 

both the protein and the sugar and a bound-state, solvent-screened interaction. 

4.4.5 Component Analysis 

 Group-wise component analysis was done using the Integrated Continuum Electrostatic 

(ICE) package (courtesy of B. Tidor), [77, 78] again using standard protocols [55, 99. 100].   

Each protein residue was partitioned into three groups—backbone carbonyl, backbone amino and 

side chain—and the sugars were partitioned into one group per hydroxyl.  For each group, the 

desolvation penalty, indirect (intramolecular) interactions, and direct (intermolecular) 

interactions were computed.  The sum of these is the mutation energy, equivalent to the 

difference in energy between the natural system and a hypothetical mutant with that group 

replaced with a hydrophobic isostere (in the context of all other groups in their natural state). 

Additionally, the solvent-accessible surface area (and corresponding energy) of each group was 

computed, as were the pair-wise intermolecular van der Waals interaction energies between all 

groups. 
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4.5. Conclusion 

 Current force-fields are able to reasonably reproduce affinity differences in sugar binding 

by the two domains of CVN, in the context of an MM/PBSA model with optimized radii for the 

continuum electrostatic calculations.  We have been able to explain a number of important 

features of this protein.  First among these is that it seems likely that CVN contains a rare cis-

peptide bond in the monomeric state, which may contribute to its tendency to form domain-

swapped dimers under some conditions.  Additionally, we have demonstrated that the two 

domains of CVN, while highly homologous in sequence, recognize certain oligosaccharide 

targets with distinct binding modes.  The results from component analysis identified several key 

interactions throughout all the carbohydrate models.     

 However, challenges remain for addressing the sugar models that make non-conserved 

contacts with the protein.  As the most notable outlier, the computed binding free energy of 

Man-(1,2)Man-(1,2)Man in Domain B deviates significantly from the linear fit, being 

computed as overly favorable (shown in Figure 4-5).  In this case, it appears to be more 

favorable due to one pair dominating energetically in Domain B—Arg 76 and Asp 44.  After 

calculating the side chain entropies, one of the largest differences observed came from Arg 76 in 

the doubly and singly bound simulations of the Man-(1,2)Man-(1,2)Man in Domain B.  This 

suggests a possible entropic penalty missing from the computed Man-(1,2)Man-(1,2)Man 

binding energy.  In addition, just using bound state energies for van der Waals contributions can 

lead to size-dependent bias.  In the following chapter, we will discuss the inclusion of solute-

solvent vdW interactions (with a continuum approach) that improves the predictive power of the 

calculations.  Furthermore, we will discuss the contribution from entropy when specific 

interactions affect the bound-state flexibility of the protein or the carbohydrate, as well as 

calculating carbohydrate strain energies.   
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Chapter 5 

Improving the Accuracy of Computational Models of Protein− 

Carbohydrate Complexes 
  

 Molecular recognition is extremely important for biological function.  It involves 

specific, noncovalent formation of receptor−ligand, antigen−antibody, protein−DNA, and 

protein−carbohydrate complexes, which are crucial for normal cell functioning.  Therefore, 

accurate prediction of binding affinities is very helpful.  Thus far, we have used large-scale 

molecular dynamics simulations, coupled with energetic analysis; and a residue-by-residue 

decomposition of the binding free energies to identify key determinants of affinity and 

specificity.  In the last decades, a variety of methods have been developed to calculate affinities.  

Naturally, the goal is to obtain the highest possible accuracy with the least amount of effort.  

With the aim to improve efficiency and maintain accuracy, we recently started to focus on 

further improvements to capture the energetics of carbohydrate binding.  The three areas we will 

be focusing on are: solute−solvent van der Waals interaction energy, conformational entropy, 

and strain energies. 

5.1 Solute−solvent van der Waals Interaction Energy 

 An important step in computational modelling is the calculation of binding free energies.  

Hydration plays an important role in every process occurring in aqueous solution and has an 

effect on the thermodynamic processes involving the breakage and formation of noncovalent 

bonds.  Explicit solvent models provide the most detailed description of the hydration 
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phenomena.  However, these models are computationally demanding because of the large 

number of atoms involved.  Implicit solvent models offer an attractive alternative to explicit 

solvent models.  In a typical solvent model, the solvation free energy is decomposed into a 

nonpolar and an electrostatic component (Equation 5.1) [101].   

G
solv

 = G
polar

 + G
nonpolar

 (5.1) 

 

The nonpolar component corresponds to the free energy of hydration of the uncharged solute and 

the electrostatic component corresponds to the free energy of turning on the solute’s partial 

charges.  The electrostatics is calculated either with Poisson–Boltzmann or Generalized Born 

continuum models.  The structure and properties of proteins in water are highly influenced by 

hydrophobic interactions [102].  Hydrophobic interactions also play a key role in the mechanism 

of ligand binding to protein [103].   

 The nonpolar solvation free energy is often computed from a linear relationship between 

the nonpolar free energy and the solute surface area (Equation 5.2), 

G
nonpolar

 = A + b (5.2) 

 

where A is the solute surface area;  is the surface tension proportionality constant, which 

represents the contribution to the solvation free energy per unit surface area; and b is the free 

energy of hydration for a point solute.  The value of the surface tension constant with the 

nonpolar solvation surface area models vary.  They can range from 5 cal/mol/Å
2
 to 138 cal/ 

mol/Å
2
 because there are various definitions of solute surface area (e.g. van der Waals surface, 

molecular surface, or solvent accessible surface). 

 The solvation properties of hydrophobic groups are determined by the volume and shape 

of the solvent volume and van der Waals interaction with the solvent.  The hydrophobic nonpolar 

hydration free energy is shown as (Equation 5.3), 

G
np

 = G
cav

 + G
vdW

 (5.3) 

 

where  G
cav

 is the cavity hydration free energy, defined as the hydration free energy due to 

excluded volume effects, and G
vdW

 is the free energy of the solute−solvent van der Waals 

dispersion interactions.  The cavity formation depends on the size and shape of the cavity, which 

includes parameters such as volume and surface area.  The solute solvent dispersion term 

depends on the density, location, and the nature of the solute atoms that are placed in the cavity.  
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In this section, the focus will be on the solute−solvent dispersion term.  A variety of work has 

been done indicating deficiencies in the surface-area approach to the nonpolar term of solvation 

[104, 105, 106, 107, 108].  One limitation of a surface-area approach is that atoms that contribute 

little or no solvent-exposed surface area can in fact interact favorably with solvent.  Another 

limitation is that surface-area approaches tend to use a single energy per unit area independent of 

atom type, or a parameterized value for each of hydrophilic and hydrophobic surface area, but do 

not account for the full chemical diversity of atom types and their different parameterizations 

within molecular mechanics force fields. 

 Levy et al. [104] found an efficient approach in a continuum solvent model to calculate 

the solute−solvent van der Waals dispersion energy which is able to reproduce the results from 

explicit solvent simulations.  The vdW interactions with solvent can be computed as a sum of 

integrals over the solvent region, where each integral models the vdW energy to one atom in a 

solute molecule [109, 110, 111].  In the next section, we introduce the continuum van der Waals 

model followed by examples of showing how the continuum van der Waals changes the 

calculated outcome. 

5.1.1 Continuum van der Waals Model 

 Levy et al [104] expresses the solute−solvent van der Waals interaction energy as a 

volume integral over the solvent (Equation 5.4), 

      ∑∫       
   

       

               

 

   

 (5.4) 

where n is the number of solute atoms, ρw is the bulk number density of water,     
   

(r) is van der 

Waals potential due to atom i at distance r from the solute’s i
th

 atomic center ri.  The van der 

Waals potential is modeled using the Lennard-Jones 6-12 function (Equation 5.5), 

    
       

    

   
 

    

  
 (5.5) 

The solvent interface that is used comes from Lee and Richards definition of the solvent- 

accessible surface as the boundary of a union of spheres (shown in Figure 5-1).  Each sphere 

corresponds to one atom in the solute molecule, and each sphere radius is equal to the 

corresponding atom’s vdW radius plus the radius of a spherical probe molecule.  This defines 

how close the probe center can approach the solute atoms.  This surface definition is chosen 
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because the van der Waals potential is defined as a function of the distance between atom 

centers.  The boundary between protein and solvent is taken as the solvent-accessible surface, 

which is the closest approach of the center of a probe sphere rolled over the protein set of 

spherical atoms.  However, the radius of this probe sphere (commonly taken to be 1.4 Å to 

approximate a water molecule) is left as a free parameter.  This parameter of the continuum van 

der Waals interaction model is used to balance the assumptions that the solvent region is of 

constant density and approaches the protein to a discrete, solvent-accessible surface.  

 
Figure 5- 1.  Illustration of the solvent-accessible surface as the boundary of a union of spheres. 

 

5.1.2 Application of Continuum van der Waals Calculations to CVN Complexes 

 The continuum van der Waals formulation was tested on all CVN systems bound to 

various saccharide models using the PARAM22 parameters, a TIP3P water model, and a molecular 

surface probe radius of 1.4 Å.  The calculations were performed on 150 snapshots.  Each 

snapshot was separated 1 ns apart.  Table 5-1 shows a list of continuum van der Waals 

calculations computed from the protein and carbohydrate components of the CVN complex, the 

intermolecular van der Waals calculations taken from each simulation, and the sum between the 

intermolecular and continuum van der Waals calculations.  The values in the cvdW
prot

 and 

cvdW
carb

 are positive because in the unbound state, the protein and sugar make more favorable 

van der Waals interactions with solvent.  The magnitude is slightly higher in the cvdW
carb

 

compared to the cvdW
prot

 because there are more interactions made between solvent and the 

carbohydrate molecule than with the protein. 

vdW radius spheres 

vdW + probe 

radius spheres 
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Table 5- 1. Decomposition of the continuum van der Waals interaction energies. 

 cvdW
prot

 cvdW
carb

 cvdW
total

 Inter. vdW Sum 

Domain A 
     

-1,2)Man2 +7.0/ +7.1 +12.5/ +12.4 +19.5/ +19.5 −18.8/ −18.9 +0.7/ +0.6 

-1,2), -1,2)Man3 +9.4/ +9.4 +14.6/ +14.7 +24.0/ +24.1 −21.6/ −20.7 +2.4/ +3.4 

-1,2), -1,3)Man3 +8.5/ +8.6 +13.6/ +13.6 +22.1/ +22.2 −21.4/ −21.0 +0.7/ +1.2 

-1,2), -1,6)Man3 +8.6/ +8.8 +13.5/ +13.7 +22.1/ +22.5 −20.6/ −21.5 +1.5/ +1.0 

Domain B 
     

-1,2)Man2 +7.2/ +7.0 +12.3/ +12.4 +19.5/ +19.4 −19.2/ −20.6 +0.3/ −0.6 

-1,2), -1,2)Man3 +9.1/ +9.3 +13.8/ +13.7 +22.9/ +23.0 −24.1/ −23.7 −1.2/ −0.7 

-1,2), -1,3)Man3 +8.9/ +9.0 +13.7/ +13.6 +22.6/ +22.6 −22.7/ −22.2 −0.1/ +0.4 

-1,2), -1,6)Man3 +9.1/ +9.3 +13.7/ +13.7 +22.8/ +23.0 −22.4/ −22.2 +0.4/ +0.8 
All energies are in kcal/mol; for each entry, the two values given are those from the singly and doubly-

bound simulations, respectively. 

 

 As shown in Figure 5-2 (left panel), the computed dimannose energies show a 

destabilization with a constant offset of approximately 4.5 kcal/mol from the best-fit line, 

suggesting a systematic error for the smaller ligands.  As the most notable outlier, the computed 

binding free energy of Man-(1,2)Man-(1,2) in domain B deviates significantly from the linear 

fit, being computed as overly favorable.  The addition of the total cvdW calculations were 

applied to the computed binding energy results (Figure 5-2, right panel), the cvdW values helped 

lower the magnitude closer to the experimental binding energy results.  The most noteworthy 

effect came from the dimannose models.  By adding the cvdW term, it significantly stabilizes the 

computed dimannose energies towards the trimannose energies. 
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Figure 5- 2.  Comparison of computed vs. experimental binding free energies.  (Left) The comparison of 

energies without cvdW.  (Right) The comparison with cvdW.  Open shapes represent simulations from singly 

bound models and closed shapes represent simulations from doubly bound models; circles represent domain A 

region  and triangles represent domain B; black line represents the linear best-fit line for trisaccharide data 

(excluding the terminal orientation of Man-(1,2)Man-(1,2)Man).  The red line represents the linear best-fit 

line with the dimannose models. 

 

 In chapter 4, we were able to breakdown the electrostatic and van der Waals energies on 

every protein residue by its backbone amino, backbone carbonyl, and side chain groups.  We can 

apply that procedure to the continuum van der Waals calculations.  The intermolecular vdW 

energy decomposition of each protein residue is shown in Figure 5-3 (top panel).  Figure 5-3 

(bottom panel) also highlights the energy decomposition from the sum of the intermolecular 

vdW and continuum vdW.  Every residue was divided into three groups—amino groups, 

carbonyl groups, and side chain groups.    Overall, adding the cvdW energy for each component 

decreases the magnitude of the energies—in almost all cases, values are now within ± 1.0 

kcal/mol.  Prior to the addition of the cvdW calculations, many components had energy values 

greater than ± 2.0 kcal/mol.  Several other cases show the cancellation of positive and negative 

terms when the cvdW is added.  These values correspond to a contribution toward improvement 

in binding energy calculations.  The increased interactions appear to prefer larger amino acids.  

One of the largest changes came from Arg 76 for all models in both doubly and singly bound 

simulations.  It lowered the magnitude of energy by 1.5−2.0 kcal/mol. 
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Figure 5- 3.  Comparison between the intermolecular results and the combined intermolecular and cvdW 

results.  (Top panel)  Decomposition of the intermolecular van der Waals results.  (Bottom panel)  
Decomposition of the combined intermolecular and cvdW results.    Man-12;   Man-12-12*;   Man-12-

12;   Man-12-13;  Man-12-16. 

 

We observe just using bound state energies for van der Waals contributions can lead to size-

dependent bias; the inclusion of solute-solvent vdW interactions (with a continuum approach) 

improves the predictive power of the calculations. 
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5.2 Calculation of Conformational Entropy 

 The binding affinity of a ligand for its protein partner depends on the balance between 

intermolecular interactions between the binding partners, desolvation of the binding partners, and 

the conformational entropy changes.  The entropy change arises from changes in configurational 

fluctuations of the ligand, changes in configurational fluctuations of the protein, and the 

translational and rotational freedom of the ligand with respect to the protein.  Changes in the 

entropy of molecules are believed to contribute importantly to the free energies of 

conformational change and binding.  A reliable method of computing entropy could provide 

valuable insights into the mechanism of such processes.  However, calculating entropy is 

traditionally a challenging problem, especially for complex molecules.  One approach has been 

the quasiharmonic approximation [112], which involves a molecular dynamics simulation and 

computing the covariance matrix of atomic coordinates.  The quasiharmonic method was 

successfully applied to simple systems with only one highly occupied energy well, and 

fluctuations were analyzed in a system of internal bond, angle, torsion coordinates.  However, in 

recent studies this method does not yield accurate estimates of entropy when dealing with larger 

complexes.  Quasiharmonic analysis has been used to study the motions in torsion-angle space 

for side chains.  However, the torsional fluctuations of the main chain atoms restrict the range of 

side chain fluctuations [113].  The present work aims to analyze the conformational entropy for 

the protein side chains, and the conformational entropy for the carbohydrates’ torsions around 

glycosidic bonds and hydroxyl groups.    

 Once again, we used the singly and doubly bound CVN systems for this analysis.  In this 

work, the method used to estimate the entropies was a histogram-based approach.  To calculate 

entropy from each simulation, torsion angles were extracted every picosecond and grouped into 

10° bins.  For carbohydrates, the frequencies in each bin (pi) were used to calculate the entropy 

from the torsion angles of each glycosidic bond and for every hydroxyl group.  For proteins, the 

frequencies in each bin (pi) were used to calculate the entropy from the torsion angles of each 

side chain.   The entropy equation for each case is shown below (Equation 5.6),   

S = −RT ∑ pi ln pi (5.6) 

 

where R is the gas constant and T is temperature (300 K).  
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 In calculating the entropy for the protein side chains, there was one outlier from the 

trisaccharide analysis, and that came from the Man-(1,2)Man-(1,2)Man simulations.  The 

largest difference observed came from Arg 76 in the doubly and singly bound simulations of 

Man-(1,2)Man-(1,2)Man (highlighted in red box in Figure 5-4). This suggests a possible 

entropic penalty missing from the computed Man-(1,2)Man-(1,2)Man binding energy for 

Domain B.   

 

 

 

 

 

 

 

 

 

  

  

Figure 5- 4.  Changes in side-chain entropy on binding.  The distribution of differences in computed side-

chain entropy between the bound and unbound states is shown as a histogram; the heavy vertical line indicates 

the mean of the distribution, and the vertical dashed lines correspond to ±, ±2 and ±3 (where  is the 

standard deviation of the distribution).  All side chains for which any value was outside 3 are labeled, with 

the outliers in black and values within 3 in grey. Points are labeled (U-)[S/D][A/B]-12-yy(*), where S/D 

denotes results from a singly- or doubly-bound simulation, A/B denotes the domain, yy denotes the type of 

linkage for the second glycosidic bond and * denotes binding in the internal (as opposed to terminal) mode; a 

preceding U indicates that the residue is from the unbound domain of in a singly-bound simulation. Only a 

few residues show consistent deviations from the bulk distribution, with Arg 76 (domain B) a notable outlier 

in the context of -Man-(1,2)--Man-(1,2)--Man binding. 
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Table 5- 2.  Carbohydrate entropy – Domain A. 

 1,2)Man2 1,2)-1,2)Man3 1,2)-1,3)Man3 1,2)-1,6)Man3 

1,2 +0.6/ +0.6 +0.5/ +0.5 +0.6/ +0.6 +0.6/ +0.6 

1,2/1,3/1,6 ND/ ND +0.3/ +0.4 −0.1/ −0.2 +0.4/   0.0 

C5/C6 (1) +0.1/ +0.1 −0.1/ +0.1 +0.1/ +0.1 +0.1/ +0.1 

C5/C6 (2) +1.2/ +1.1 +1.2/ +1.1 +1.2/ +1.2 +1.3/ +1.2 

C5/C6 (3) ND/ ND −0.1/ +0.1 −0.1/ −0.1 ND/ ND 

OH2 (1) +0.2/ −0.2 ND/ ND +0.1/ −0.3 +0.3/ +0.1 

OH3 (1) +0.8/ +0.7 +0.8/ +0.8 +0.7/ +0.7 +0.8/ +0.7 

OH4 (1) +0.6/ +0.6 +0.6/ +0.6 +0.6/ +0.6 +0.6/ +0.6 

OH3 (2) +0.6/ +0.8 +0.8/ +0.8 +0.7/ +0.7 +0.8/ +0.8 

OH4 (2) 0.0/ +0.1 +0.2/ +0.3 +0.3/ +0.3 +0.5/ +0.3 

SUM +4.2/ +3.8 +4.7/ +4.8 +4.2/ +3.6 +5.5/ +4.2 

All energies are in kcal/mol, the two values given are those from the singly and doubly-bound simulations, 

respectively.  In the first column, 1,2; 1,3; 1,6 refers to the glycosidic linkage; C5/C6 (1) refers to the 

hydroxymethyl group around Man1; C5/C6 (2) refers to the hydroxymethyl group around Man2; C5/C6 (3) 

refers to the hydroxymethyl group around Man3; OH2 (1) refers to the hydroxyl group from the C2 position of 

Man1; OH3 (1) refers to the hydroxyl group from the C3 position of Man1; OH4 (1) refers to the hydroxyl 

group from the C4 position of Man1; OH3 (2) refers to the hydroxyl group from the C3 position of Man2; OH4 
(2) refers to the hydroxyl group from the C4 position of Man2. 

Table 5- 3.  Carbohydrate entropy – Domain B. 

 1,2)Man2 1,2)-1,2)Man3 1,2)-1,3)Man3 1,2)-1,6)Man3 

1,2 +0.5/ +0.5 +0.5/ +0.6 +0.5/ +0.5 +0.5/ +0.6 

1,2/1,3/1,6 ND/ ND +0.5/ +0.7   0.0/ +0.1 +0.2/ −0.1 

C5/C6 (1) +0.3/ +0.2 +0.2/ +0.2 +0.2/ +0.2 +0.2/ +0.2 

C5/C6 (2) +0.4/ +0.4 +1.0/ +1.2 +0.9/ +0.9 +0.9/ +0.9 

C5/C6 (3) ND/ ND +0.6/ +0.8 +0.1/ +0.1 ND/ ND 

OH2 (1) +0.3/ +0.3 +0.2/ +0.2 +0.2/ +0.3 +0.2/ +0.2 

OH3 (1) +0.7/ +0.7 +0.7/ +0.7 +0.7/ +0.7 +0.6/ +0.7 

OH4 (1) +0.7/ +0.7 +0.7/ +0.8 +0.7/ +0.7 +0.6/ +0.7 

OH3 (2) +0.5/ +0.3 +0.6/ +0.8 +0.5/ +0.5 +0.3/ +0.5 

OH4 (2) +0.1/   0.0 +0.1/ +0.5 +0.3/ +0.2 +0.1/ +0.3 

SUM +3.4/ +3.0 +5.3/ +6.4 +4.1/ +4.2 +3.8/ +4.0 

All energies are in kcal/mol, the two values given are those from the singly and doubly-bound simulations, 

respectively.  In the first column, 1,2; 1,3; 1,6 refers to the glycosidic linkage; C5/C6 (1) refers to the 

hydroxymethyl group around Man1; C5/C6 (2) refers to the hydroxymethyl group around Man2; C5/C6 (3) 

refers to the hydroxymethyl group around Man3; OH2 (1) refers to the hydroxyl group from the C2 position of 

Man1; OH3 (1) refers to the hydroxyl group from the C3 position of Man1; OH4 (1) refers to the hydroxyl 

group from the C4 position of Man1; OH3 (2) refers to the hydroxyl group from the C3 position of Man2; OH4 
(2) refers to the hydroxyl group from the C4 position of Man2. 
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 In calculating the entropy for various regions of the carbohydrates, many values that were 

conserved throughout all the models in both domains, correspond to contacts made in the core -

(1,2) dimannose unit.  The largest values observed came from regions where it makes direct 

contact with a residue in the binding pocket (see Table 5-2 and 5-3).  For example, in domain A, 

the largest entropy value came from the hydroxymethyl group of Man2 and that was consistent 

throughout all the models.  This is due to a consistent interaction with the side chain of Glu 23.  

In domain B, the largest magnitude was seen in the model with the hydroxymethyl group of 

Man2 from Man-(1,2)Man-(1,2)Man.  Interactions with Arg 76 lead to less flexibility of this 

region in the bound state, and thus a corresponding increase in entropy.  Again, this helps explain 

the computed over-stabilization of this molecule.  However, the data above cannot be simply 

added to the computed binding energies.  When looking at the sum of the entropies in both 

tables, there is a range of values throughout all the models, and it appears it is due to taking the 

difference taken from the unbound state.  Even taking the difference from the complete unbound 

state to all unbound regions from singly bound simulations, the values vary (Tables 5-4 and 5-5).  

In Table 5-5, if the difference between the unbound region in a singly bound simulation and the 

complete unbound state is taken, one could assume the value to be zero.  However, this is not the 

case.  Instead, we see a range of positive and negative values.  Since many regions of CVN are 

highly dynamic, it raises the possibility of imperfect sampling of the various states; longer 

simulations could help address this question.  Nevertheless, these data were computed by 

assuming that all the side chains behave independently, that backbone configurations do not 

contribute, and without consideration of the flexibility of the carbohydrate.  As a result, they 

should not be taken as a quantitative prediction of configurational entropic effects, nor should 

they be directly added to the semi-rigid binding free energies presented here. Further work will 

be needed to develop quantitative assessments of these contributions.  

Table 5- 4. The sum of all residue side chain entropies after the differences for each 

residue was taken between the complete unbound state and the bound state. 

 -1,2)Man2 -1,2),-1,2)Man3 -1,2),-1,3)Man3 -1,2),-1,6)Man3 

Domain A +1.0/ +1.3 +2.7/ +1.1 +0.1/ +2.5 −1.1/ +5.5 

Domain B +3.2/ +3.2 +5.5/ +5.2 +2.8/ +3.6 +2.6/ +3.7 
All energies are in kcal/mol, the two values given are those from the singly and doubly-bound simulations, 

respectively. 
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Table 5- 5. The sum of all residue side chain entropies after the differences for each 

residue was taken between the complete unbound state and the unbound side from the 

singly bound simulations. 

 -1,2)Man2 -1,2),-1,2)Man3 -1,2),-1,3)Man3 -1,2),-1,6)Man3 

Domain A −1.4 +6.9 +1.8 +0.8 

Domain B −0.5 −1.0 −1.6 −1.0 
All energies are in kcal/mol. 

5.3 Carbohydrate Strain Energies 

 Another energy component missing from the binding free energy calculation is the strain 

energy.  Strain energies are easily computed by running additional simulations of the unbound 

state; the difference in total energy (bond, angle, and dihedral strain, intramolecular van der 

Waals and Coulombic interactions, and solute–solvent interactions) between the unbound 

ensemble and the ensemble of structures taken from the bound state (with the binding partner 

removed) is the strain.  It corresponds to the energetic cost of perturbing the unbound 

conformational ensemble into the ensemble that is capable of binding.  The carbohydrate strain 

energy is given by the difference in the ensemble average of the total energy of the sugar in 

conformations extracted from the complex simulation and the average for conformations from a 

simulation of the free sugar.  The protein strain energies were also calculated by taking the 

difference in the ensemble average of the total energy of the protein in conformations extracted 

from the complex simulation and the average for conformations from a simulation of the free 

protein; however, it produced large values.  Just like the entropy calculations, the protein strain 

calculations cannot be additive due to a lack of convergence.  This calculation requires an 

exhaustive sampling of the protein conformational space and currently this has not been tested. 

 Table 5-6 shows the calculated results from the carbohydrate strain energies.  The 

similarity of the computed values for most cases suggests reasonable convergence of the bound-

state simulations; although the Man-12-16 in Domain B is a notable outlier to this trend.  
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Table 5- 6. Carbohydrate strain energies. 

 G
internal

 G
vdW

 G
h

 G
des

 G
elec

 G
str_A



Domain A       

-1,2)Man2 +1.3/ +1.4 +0.1/ +0.1   0.0/ 0.0 −2.7/ −2.5 +3.3/ +3.0 +2.0/ +2.0 

-1,2)--1,2)Man3 +1.3/ +1.3 +0.1/ −0.2   0.0/ 0.0 −2.8/ −3.0 +8.2/ +7.0 +6.8/ +5.1 

-1,2)--1,3)Man3 +0.8/ +1.1 +0.3/ +0.3   0.0/ 0.0 −2.5/ −2.5 +3.5/ +3.6 +2.1/ +2.4 

-1,2)--1,6)Man3 −1.3/ +1.2 −0.5/ −0.2 −0.1/ 0.0 −3.0/ −3.2 +8.7/ +5.5 +3.8/ +3.3 

Domain B       

-1,2)Man2 +2.4/ +2.2 +0.1/ −0.1   0.0/ 0.0 −1.8/ −1.5 +1.8/ +1.5 +2.5/ +2.1 

-1,2)--1,2)Man3 +1.4/ +1.3 −0.2/   0.0   0.0/ 0.0 −1.6/ −2.2 +3.4/ +4.2 +3.1/ +3.4 

-1,2)--1,3)Man3 +2.2/ +2.3 −0.1/   0.0   0.0/ 0.0 −2.0/ −2.1 +1.8/ +2.1 +1.8/ +2.4 

-1,2)--1,6)Man3 +0.1/ +2.1 −0.5/ −0.2 −0.1/ 0.0 −2.0/ −2.2 +7.7/ +3.8 +5.8/ +3.5 

All energies are in kcal/mol. The two values given are those from the singly and doubly-bound simulations, 
respectively. 

 Carbohydrate strain calculations appear to play a role, but questions remain about the 

convergence of the unbound state results in both carbohydrates and protein.  These terms are 

difficult to accurately compute because there is a lack of convergence due to transitions between 

glycosidic-bond dihedrals and protein side chain torsions that are rarely seen.  The molecular 

dynamic simulations performed here may not be able to capture all degrees of freedom in these 

regions, thus cannot accurately capture the energetics. 

 The objective of this section was to define a protocol to accurately and efficiently 

estimate the contributions to the protein−carbohydrate calculations.  Although the current data 

shows noise (likely due to a lack of convergence) which limits the value in making quantitative 

predictions; it still does help explain where certain energetic differences are coming from.  

Hence, further detailed investigation of these methodologies is ongoing in our laboratory. 

5.4 Application of Current Methods to a New Lectin Model 

 In an earlier chapter, it was mentioned that one way to prevent HIV infection was to 

target the glycan shield of surface envelope proteins for HIV to inhibit membrane fusion and 

infection [12].  The initial steps leading to viral entry include binding of the HIV surface 

envelope glycoprotein gp120 to cellular receptors CD4 and CXCR4 or CCR5, followed by gp41-

mediated membrane fusion [114].  This display of glycans functions as a barrier to protect the 

virus from recognition by the human immune system [57].  To exploit this barrier as a 

therapeutic target, carbohydrate-binding proteins, known as lectins, have emerged as promising 



 

74 

 

anti-HIV agents [12, 65].  One that has been mentioned earlier in this dissertation was 

cyanovirin-N.  While CVN was originally thought to be an orphan lectin with little homology to 

any other known protein family [60], a family of CVN homologs (CVNH), has been described 

[115, 116].  Some members of this family are found in multicellular ascomycetous fungi and in 

ferns and share a 3-dimensional fold [116].  A CVNH of the toxin-producing cyanobacterium, 

Microcystis aeruginosa also binds high mannose-type glycans and is involved in cell–cell 

attachment of Microcystis [117].  Defining the glycan binding specificity and mode of action for 

virucidal lectins may help to develop new therapeutic approaches directed at combating viral 

infections. 

 The cyanobacterial protein, microvirin (MVN) [117] is an attractive candidate for 

microbicide development; when compared with its well-studied homolog cyanovirin-N (CVN), it 

is reported to show comparable potency in HIV-1 neutralization assays but with notably reduced 

toxicity profiles [118].  Recently, Shahzad-ul-Hussan, et al. [119] has solved the solution 

structure of MVN free and in complex with its ligand Man--(1,2)Man, and compared 

specificity with CVN.  They also showed by NMR and analytical ultracentrifugation that MVN 

is monomeric in solution and demonstrate by NMR that Man--(1,2)Man-terminating 

carbohydrates interact with a single carbohydrate-binding site.    Although MVN is a member of 

the CVN family of lectins, it possesses distinct structural characteristics compared with CVN 

that accounts for its low toxicity and narrow antiviral profile.  We will implement the same 

methods mentioned in earlier chapters to the MVN system and use these techniques to 

understand the structural and energetic differences between CVN and MVN.  

 The initial structure for all simulations originated from a solution structure of MVN 

bound to dimannose in a single binding pocket (PDB 2YHH), as shown in Figure 5-5.   

 

Figure 5- 5.  Figure of dimannose bound to MVN.  Domain A (gray) contains residues 38−93 and domain B 

(blue) contains residues 1−37 and 94−108. 
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The reducing mannopyranose ring is positioned in a deep pocket formed by two  turns (one 

around residues 81–84 and residues 44–47).  It has been shown the hydrophobic interactions 

govern the binding to this site by the methyl group on M83 making van der Waals contacts with 

H2, H3, and H5 protons of the sugar ring.  There is another methyl group positioned at T59 

making van der Waals contacts with H4 and H6 of one ring and H5 of another ring.  The 

carbohydrate moiety can only be bound to one site because proline introduces a steric clash with 

the dimannose.  Histidine is facing away from the binding site, losing hydrogen bond interactions 

with the mannose.  Residues 101-104 in domain B obstruct the binding site space (residues 45-48 

in domain A position away from the binding site) as shown in Figure 5-6. 

 

 

 

Figure 5- 6.  Structures of MVN bound to Man-(1,2)Man showing the inability of Man-(1,2)Man to 

bind through domain B.  Domain A (gray) contains residues 38−93 and domain B (blue) contains residues 

1−37 and 94−108.  The dimannose (orange licorice) is bound in domain A.  Residues shown in the figures 

depict the inability of Manα-(1,2)Man to bind through domain B.  In domain B, Pro 2 introduces steric clash 

with the disaccharide and is positioned on the polar face of the mannopyranose ring, and the side chain of His 

6 is directed away from the binding site removing hydrogen bonding interactions with the terminal ring.  The 

corresponding residues in domain A (Gln 54 and Glu 58) do not encounter this.  In addition residues 101–104 

of domain B block the space that is used for carbohydrate binding and the corresponding residues in domain A 

do not (residues 45-48). 

 

Table 5- 7.  Computed energetic results compared to experimental binding analysis for 

MVN. 

Carbohydrate G
vdw G

h G
elec G

cvdW
 G

comp 

-1,2)Man2 17.6 (0.1) 2.1 (0.1) 7.4 (0.1) +19.2 7.9 (0.1) 

-1,2)--1,2)Man3 20.7 (0.1) 2.4 (0.1) 6.9 (0.1) +22.5 7.5 (0.1) 

-1,2)--1,6)Man3 20.5 (0.1) 2.4 (0.1) 6.5 (0.1) +22.2 7.2 (0.1) 
All energies are in kcal/mol. 

Pro 2 

His 6 

Gln 54 

Glu 58 

Residues  

101−104 

Residues  

45−48 
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Figure 5- 7.  Comparison of computed and experimental binding free energies with continuum van der 

Waals calculations for CVN and MVN.  , CVN (Domain A);  CVN (Domain B); , MVN.  The black 

line represents the linear best-fit line for all data, excluding the terminal orientation of Man-(1,2)Man- 

(1,2)Man). 

  

 Structures of disaccharide and two trimannoses (Man-(1,2)Man-(1,2)Man, and Man-

(1,2)Man-(1,6)Man) were built by extending the dimannose model by one unit from the 

anomeric carbon of the reducing sugar.  All these manipulations were done using the CHARMM 

software package, [33] and default conformations were used for the newly-built portions of each 

molecule.  A short minimization (100 steps) was performed on all the newly built structures to 

avoid any clashes.  The binding affinities for each MVN complex were calculated and results are 

shown in Table 5-7 and Figure 5-7.  An addition to the binding affinity calculation, an 

electrostatic and van der Waals component analysis were performed. 

 When the MVN results were compared to the CVN analysis, the data for the CVN 

models were energetically more favorable.  To start evaluating the MVN complexes and 

comparing them to the CVN complexes, we first looked at components that had favorable 

energies greater than −0.2 kcal/mol, and those residues are listed in Tables 5-8 and 5-9.  In the 

analysis, many components that were energetically conserved in all the CVN models were also 

conserved in the corresponding residues in the MVN systems.   

 If we first look at the electrostatic determinants, components that were energetically 

conserved in both CVN and MVN models mainly came from the backbone atoms and one side 

chain.  These residues mainly made interactions with the core dimannose molecule (backbone: 

G
comp

(kcal/mol) 

G
exp

(kcal/mol) 
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Asn 42, Asp 44, Ser 52, Asn 53, Lys 74; side chain: Thr 57).  The components that contributed to 

CVN being more favorable than MVN are from side chain groups: Glu 41, Asp 44, Arg 76, and 

Gln 78.  The corresponding residues in the MVN system made either no or unfavorable 

interactions.  There was only one component that made more favorable interaction in MVN (Asp 

53) and not in CVN (Pro 51).  The van der Waals component analysis showed more residues that 

contributed to the binding energy.  The van der Waals energetics were similar in both systems 

and the largest contributors in both systems came from side chain groups (Lys 74, Arg 76, and 

Gln 78).     

 Although this analysis is in its preliminary stages, we can start to see the similarities and 

differences between the two systems energetically and structurally.  The residues that contribute 

more in CVN than MVN come from charged side chain groups, while in MVN it is not.  Further 

work needs to be done to fully understand these models. 

 Table 5- 8.  CVN and MVN determinants – electrostatic energy. 

Residue -(1,2)Man2 -(1,2),-(1,2)Man3
b
 -(1,2),-(1,6)Man3 

Amino    

N42/ N44 −1.5/ −1.4 −1.4/ −1.3 −1.5/ −1.4 

D44/ D46 −1.6/ −1.9 −2.2/ −2.2 −2.0/ −2.2 

F54/  F56 −0.3/ −0.3 −0.3/ −0.3 −0.3/ −0.3 

T75/ T82 −0.3/ −0.4 −0.5/ −0.4 −0.4/ −0.4 

Carbonyl    

E41/ G43 −0.7/ −1.0 −0.7/ −0.9 −0.7/ −0.9 

N42/ N44 −1.0/ −1.5 −1.9/ −1.8 −1.4/ −1.7 

V43/ I45 −0.8/ −0.8 −0.9/ −1.0 −0.8/ −1.0 

D44/ D46 −0.5/ −0.5 −0.6/ −0.7 −0.6/ −0.7 

S52/ F54 −1.2/ −1.3 −1.3/ −1.3 −1.1/ −1.2 

N53/ N55 −2.8/ −2.7 −2.8/ −2.7 −2.8/ −2.6 

E56/ E58 −0.3/ −0.3 −0.3/ −0.3 −0.3/ −0.3 

T57/ T59 −0.2/ −0.3 −0.3/ −0.3 −0.3/ −0.3 

K74/ Q81 −2.3/ −2.9 −3.4/ −2.8 −2.8/ −2.7 

T75/ T82 −0.6/ −0.4 −0.3/ −0.3 −0.4/ −0.3 

Side chain    

E41/ G43 −2.3/   0.0 −2.6/   0.0 −2.6/   0.0 

D44/ D46 −2.9/ +0.7 −0.8/ +1.0 −0.8/ +0.9 

P51/ D53   0.0/ −2.8   0.0/ −2.8   0.0/ −2.8 

E56/ E58 −0.4/ −0.5 −0.3/ −0.4 −0.5/ −0.3 

T57/ T59 −1.7/ −1.7 −1.7/ −1.5 −1.7/ −1.6 

R76/ M83 −0.8/ −0.1 −4.3/ −0.2 −0.7/ −0.2 

Q78/ G85 −0.3/   0.0 −0.7/   0.0 −0.5/   0.0 
All energies are in kcal/mol. 

b
 The -(1,2), -(1,2)Man3-linked sugar is bound in the terminal orientation, and 

the two values given are those from the CVN and MVN simulations, respectively. 
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Table 5- 9.  CVN and MVN determinants – van der Waals energy. 

Residue -(1,2)Man2 -(1,2),-(1,2)Man3
b
 -(1,2),-(1,6)Man3 

Amino    

E41/ G43 −0.3/ −0.3 −0.3/ −0.3 −0.3/ −0.3 

N42/ N44 −0.4/ +0.1 −0.6/ −0.1 −0.4/ +0.1 

V43/ I45 −0.3/ −0.1 −0.2/ −0.4 −0.3/ −0.1 

G45/ G47 −0.4/ −0.4 −0.6/ −0.5 −0.4/ −0.5 

S52/ Q54 −0.3/ −0.4 −0.3/ −0.4 −0.3/ −0.4 

N53/ N55 −0.5/ −0.4 −0.5/ −0.5 −0.5/ −0.5 

F54/  F56 −0.7/ −0.7 −0.7/ −0.7 −0.7/ −0.7 

E56/ E58 −0.3/ −0.3 −0.3/ −0.3 −0.3/ −0.3 

T57/ T59 −0.6/ −0.6 −0.6/ −0.6 −0.6/ −0.6 

K74/ Q81 −0.3/ −0.3 −0.3/ −0.3 −0.3/ −0.3 

T75/ T82 −0.5/ −0.6 −0.6/ −0.6 −0.5/ −0.6 

R76/ M83 −0.9/ −0.9 −1.3/ −1.2 −0.9/ −1.2 

Carbonyl    

E41/ G43 −0.4/ −0.4 −0.4/ −0.4 −0.5/ −0.4  

V43/ I45 −0.4/ −0.4  −0.4/ −0.4 −0.5/ −0.4 

D44/ D46 −0.3/ −0.3 −0.3/ −0.3 −0.5/ −0.3 

F54/ F56 −0.5/ −0.5 −0.6/ −0.5 −0.5/ −0.5 

T75/ T82 −0.5/ −0.5 −0.6/ −0.7 −0.5/ −0.5 

R76/ M83 −0.2/ −0.2 −0.6/ −0.5 −0.5/ −0.5 

Side chain    

N42/ N44 −2.0/ −2.1 −2.1/ −2.2 −2.0/ −2.0 

V43/ I45 −0.3/ −0.7 −0.5/ −0.8 −0.4/ −0.9 

D44/ D46 +0.6/ −0.4 −0.6/ −0.5 −0.1/ −0.5 

N53/ N55 −1.1/ −0.7 −1.0/ −0.6 −1.0/ −0.7 

F54/ F56 −0.3/ −0.3 −0.3/ −0.3 −0.3/ −0.3 

E56/ E58 −0.6/ −0.5 −0.5/ −0.5 −0.5/ −0.5 

T57/ T59 −1.5/ −1.8 −1.7/ −1.9 −1.7/ −1.7 

K74/ Q81 −1.0/ −0.3 −1.1/ −0.5 −1.0/ −0.6 

R76/ M83 −2.7/ −1.9 −4.8/ −3.8 −3.4/ −3.5 

Q78/ G85 −0.4/   0.0 −0.5/   0.0 −0.3/   0.0 

All energies are in kcal/mol. 
b
 The -(1,2),-(1,2)Man3-linked sugar is bound in the terminal orientation, and 

the two values given are those from the CVN and MVN simulations, respectively. 

 

5.5 Conclusion 

 While the results presented here go a long way towards explaining the details of specific 

carbohydrate recognition by CVN and MVN, it does provide near quantitative reproduction of 

relative binding free energies in many cases.  However, the results are not perfect.  In the CVN 

model, Man-(1,2)Man-(1,2)Man bound in domain B is a notable outlier.  The computed 

stabilization of this complex is dominated by contributions from a single amino acid, Arg 76. 
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Arginine is one of most naturally occurring amino acids, with four dihedral degrees of freedom; 

as a result, the formation of persistent interactions by an arginine may be expected to be 

accompanied by significant entropic costs.  These data strongly suggest that side chain entropy is 

a major contribution to the overprediction of the stability of this complex.  The computed 

binding energies from the models gave reasonable accuracy to experimental trend.  Component 

analysis is a useful technique to find where the observed interactions are coming from.  The 

inclusion of solute-solvent vdW interactions improves the predictive power of the calculations. 
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Chapter 6 

General Conclusions 
 

 As stated in the introduction of this dissertation, the characterization of the 3-dimensional 

structures of oligosaccharides is particularly challenging for traditional experimental methods.  

Computational methods and, in particular, molecular dynamics simulations provide 

complementary tools to augment both X-ray and NMR data and are particularly well suited to 

the characterization of the structure and dynamics of glycans and glycoconjugates.  Molecular 

simulation methods provide a basis for interpreting sparse experimental data and for 

independently predicting conformational and dynamic properties of glycans.  

 One important issue affecting the quality of MD simulations is conformational sampling.  

In the early years of biomolecular simulations, MD simulations were limited to small biological 

systems and ran for very short time frames.  From the standpoint of today’s technical 

achievements, advances in computer technology and software algorithms enable us today to 

sample the conformational space of biomolecular systems on the order of hundreds of 

nanoseconds.  With the availability of NY Blue, large-scale molecular dynamics simulations 

were performed and the studies presented in this dissertation provided examples of validating the 

application of continuum electrostatic models to carbohydrate–protein association.  We have 

been able to explain a number of important features of CVN.  With the availability of a 

supercomputer, we were able to observe a rare cis-peptide bond in the monomeric state.    

 Carbohydrate–protein interactions are intrinsically more dynamic than many other 

protein–ligand complexes, and their affinity and specificity arises from electrostatic, hydrogen 

bonding, and hydrophobic interactions between the protein, the solvent, and the carbohydrate, 
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which result in significant changes in both enthalpy and entropy upon binding.  We have 

demonstrated that the two domains of CVN, while highly homologous in sequence, recognize 

certain oligosaccharide targets with distinct binding modes.  The results from component 

analysis identified several key interactions throughout all the carbohydrate models. 

 Although it has been technically possible to simulate the structure of a carbohydrate–

protein complex for more than a decade, the accurate prediction of binding affinity remains a 

challenging task.  In this dissertation, we were able to demonstrate the contribution of continuum 

electrostatic models and molecular dynamics simulations to dissect the protein−carbohydrate 

interactions.  The observed variations in binding affinity were mainly due to electrostatic effects.  

The electrostatic analysis showed important information for affinity and  

specificity for the various CVN complexes.  Although the computational approach to  

calculating the binding free energies gave values significantly larger than the experimental 

results, the observed trends were present.  The electrostatic analysis for all preferred models in 

domain B revealed strong electrostatic effects from Glu 41, which is known to be important for 

specificity.  The electrostatic interactions from the N and C termini of the preferred Man-

(1,2)Man-(1,2)Man in domain A gave a favorable affinity over the other models in that domain. 

 In general, there might be significant changes in entropy and indeed, entropic 

contributions have been implicated as a major factor in determining carbohydrate-binding 

affinity.  In addition to entropy, solvent plays an important role.  To answer all this, this 

dissertation begins to take account for these factors.  Although the quantitative calculations still 

need further development, the present method allows us to begin to understand more where the 

energetic differences are coming from and obtain values closer to the experimental results.  Once 

again, these methods allowed us to observe more of the effects coming from Arg 76.  

 In the future, we can apply the methods used in chapter 4 to other lectins involved with 

HIV infection, as well as studying larger saccharide molecules (e.g. gp120) and get a better 

understanding on how the mechanism work between protein and carbohydrates.  In addition, we 

can take the information from the electrostatic analysis and apply it towards the design of 

mutants to alter affinity and specificity. 
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Appendix A. 

Time Dependent Computed Energies for Trisaccharide−CVN 

Bound Models 
 

The following sections show figures of time-dependent plots of computed energies from doubly 

and singly bound simulations in both domain A and domain B.  All figures are based on 

simulations starting from 50 ns.  (Top left)  A plot of energy versus time for every snapshot 

(1500 snapshots).  The red line represents the running average of all 1500 snapshots.  The slope 

(a) and the y-intercept (b) is computed above the plot.  (Top right)  A histogram of the data.  The 

blue line represents the density of the data and the red line represents the normal distribution of 

the data.  The average of the energy and standard deviation is computed above the histogram.  

(Middle left) A plot of the quantile-quantile.  (Middle right)  A plot of the autocorrelation for 

every 100 ps.  (Bottom left)  A plot of the autocorrelation for every 1 ns.  (Bottom right)  A plot 

of the autocorrelation for every 10 ns.   
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A.1 Doubly Bound Simulations (Domain A). 
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A.2 Doubly Bound Simulations (Domain B). 
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A.3 Singly Bound Simulations (Domain A). 
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A.4 Singly Bound Simulations (Domain B). 
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