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Abstract of the Dissertation

Quantum Effects in Condensed Matter
Systems in Three, Two, and One Dimensions

by

Sriram Ganeshan

Doctor of Philosophy

in

Physics

Stony Brook University

2012

The quantum nature of matter not only results in exotic proper-

ties of strongly correlated condensed matter systems, but is also

responsible for remarkable properties of ubiquitous systems like

water. In this thesis, we study the role of quantum effects in di-

verse condensed matter systems. In the first part of the thesis, we

develop a computationally inexpensive alternative method to the

path integral (PI) formalism that is capable of including vibrational

zero-point quantum effects in classical molecular dynamics (MD)

simulations. Our idea is based on the concept of thermostats, used

for temperature control in MD. We combine Nose-Hoover (NH)

and Generalized Langevin thermostats (GLE) to equilibrate differ-

ent dynamical modes to their zero point temperature. We applied

our thermostat (NGLE) to a flexible liquid water force field, and

structural properties are in good agreement with PIMD with frac-
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tion of its computation time. Our NGLE is simple and involves

much less parameters to optimize than in standard GLE without

NH. We also used NGLE to gain deeper insight into the struc-

ture of water by probing how different modes are correlated to one

another.

In the second part of the thesis, we study how quantum interference

affects transport in vortex state of d-wave superconductors. The

order parameter (gap) in high-Tc cuprate superconductors exhibits

d-wave symmetry. Near each of four gap nodes, quasiparticles be-

have like massless relativistic particles. In this work, we consider

low-temperature thermal transport in the 2D cuprate plane, and

we study the scattering of these quasiparticles from magnetic vor-

tices. We calculate the exact differential scattering cross section

of massless Dirac quasiparticles scattered due to the regularized

Berry phase effect of vortices, and we show that it is the dominant

scattering contribution in the longitudinal transport.

Next, we considered quantum interferometers made of 1D edge

states of Fractional Quantum Hall (FQH) System. FQH states ex-

hibit some of the most striking effects of strong electronic correla-

tions. These correlations also lead to a novel dynamics at the edges

of FQH systems, modeled by 1D chiral Luttinger liquid which is the

conformal field theory of free chiral Bosons. Tunneling is modeled

by sum of two Boundary Sine-Gordon terms. In this work, we show

that by properly including compactness of chiral Bosons in path

integral, we can construct a local theory of two point tunneling

that can describe both weak and strong (quasiparticle) tunneling

regimes. Our work also provides formal insight into how compact-

ness influences chiral Boson propagators.
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Chapter 1

Introduction

1.1 Quantum effects in condensed matter sys-

tems

The advent of quantum mechanics in the early 20th century has revolution-

ized the way we understand matter. One of the main successes of quantum

physics was the explanation of microscopic properties of matter. By the first

half of the 20th century, quantum physics provided a firm foundation towards

understanding “conventional solid state” and “soft matter” systems. Most of

the new physics (such as diamagnetism, low temperature specific heat) was

built on the quantum nature of independent particles (electrons) subjected to

the Pauli exclusion principle. Amazingly, the quantum mechanical treatment

of electrons even at the crude level (ignoring Coulomb interactions) resulted

in the successful explanation of many previously puzzling problems. The dis-

covery of superconductivity by Kamerlingh Onnes was the first instance where

properties of many-electron systems differed drastically from their individual

constituents. The discovery of subtle collective effect responsible for supercon-

ductivity had to wait for development of field theoretical methods. With the

success of BCS theory (Bardeen, Cooper, Schrieffer 1957), the second half of

the 20th century saw a new paradigm in the form of Condensed Matter (CM)

that metamorphosed into a branch of physics in itself. CM is the study of

the physical properties of many-particle systems under the influence of pre-
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sumably known interactions. In many instances, a quantum description at

the atomic or molecular scale can be formulated based on the independent-

electron approximation with a mean field treatment of interactions (such as

in Density Functional Theory). In this sense, a distinction is made between

quantum condensed-matter systems that can be studied within the mean field

approximation (weakly correlated) and strongly correlated systems for which a

mean field description may or may not exist. Many properties of weakly corre-

lated systems (such as phase transitions) can in general already be understood

by effective classical models. However, an exception being low temperature

phase transitions like the order-disorder transition in hexagonal ice (→ ice

XI). The reason why a classical description works in some cases is the exis-

tence of (broken) symmetries and conservation laws which are independent

of the underlying classical or quantum nature of the system. In the case of

water, a classical description looks sufficient, but it turns out that quantum

mechanics plays a vital role in determining many of its microscopic and macro-

scopic properties. In this thesis we study quantum effects in diverse condensed

matter systems. The manifestation of Quantum effects is completely different

in all these systems. The first chapter of this thesis deals with how quan-

tum zero point (QZP) effects determine the microscopic structure of liquid

water at room temperature. In the second and third chapter of this thesis we

study quantum interference effects in strongly correlated electron systems like

cuprate superconductors and quantum Hall state.

1.2 Quantum effects in 3-D: Liquid water

Molecules like water have vibrational modes with zero point energy well above

room temperature. As a consequence, classical molecular dynamics simula-

tions of their liquids largely underestimate the kinetic energy of the ions,

which translates into an underestimation of covalent interatomic distances.

Zero point effects can be recovered using path integral molecular dynamics

simulations, but these are computationally expensive, making their combina-

tion with ab initio molecular dynamics simulations a challenge. As an al-

ternative to path integral methods, from a computationally simple perspec-
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tive, one would envision the design of a thermostat capable of equilibrating

and maintaining the different vibrational modes at their corresponding zero

point temperatures. Recently, Ceriotti et al. [Phys. Rev. Lett. 102, 020601

(2009)] introduced a framework to use a custom-tailored Langevin equation

with correlated-noise that can be used to include quantum fluctuations in clas-

sical molecular-dynamics simulations. The parameters when tailored appropri-

ately allow the effective simulation of nuclear quantum effects through a purely

classical dynamics. One of the interesting applications of these thermostats is

that, such a framework can be used to selectively damp normal modes whose

frequency falls within a prescribed, narrow range using GLE with delta-like

memory kernels [2]. In this work we use a modified delta-like memory kernel

that samples canonical distribution and apply it in combination with Nose-

Hoover(NH) [3, 4] thermostat. We call it Nose GLE thermostating scheme

or NGLE. We apply NGLE to a flexible force field model [5](q-TIP4P/F), a

model that is explicitly fitted with the lack of zero- point ionic vibrations. In

this work we show that it is possible to use the generalized Langevin equa-

tion (non-Markovian dynamics) with suppressed noise in combination with

NH thermostats to achieve an efficient zero-point temperature of independent

modes. We address the question of whether thermostating each mode to its

zero point temperature is enough to simulate nuclear quantum effects in water.

We use the NGLE thermostating scheme with GLE strongly coupled to the

intermolecular modes and almost no coupling to the intramolecular modes.

We set the GLE temperature (enforced by generalized fluctuation dissipation

relation) very low compared to high NH temperature. Our method is a power-

ful tool to understand the quantum mechanical role of each mode towards the

overall structure of liquid water. The structure of liquid water obtained using

NGLE is in good agreement with PIMD (Path Integral Molecular Dynamics)

simulations. We also provide detailed analysis of the dynamical properties of

modes at their zero-point temperature using mode-decomposed spectral den-

sity and clearly demonstrate the competing quantum effects or the competing

anharmonicities that govern the structural and dynamical properties of liquid

water.
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1.3 Quantum effects in 2-D: d-wave supercon-

ductors

In this work we consider quantum interference effects in a strongly correlated

electron system. My research in this field is focused towards understanding the

low energy excitation of cuprates (YBCO) in the overdoped regime. Experi-

ments [6] have now established that the order parameter (gap) in the high-Tc

cuprate superconductors exhibits d-wave symmetry, vanishing at four nodal

points on the Fermi surface. Near each of these four gap nodes, quasiparti-

cles are easily excited and behave more like massless relativistic particles than

electrons in a metal. The thermal Hall conductivity provides the most direct

measure of low temperature quasiparticle transport in a d − wave supercon-

ductor. In the vortex state, low-temperature transport properties, such as the

longitudinal thermal conductivity and the thermal Hall conductivity [7, 8], can

be explained by studying the scattering of these quasiparticles from magnetic

vortices.

The massless relativistic quasiparticles satisfy Bogoliubov de-Gennes (BdG)

equations. Within the linearized approximation, the BdG equation reduces to

a massless Dirac equation in 2+1 D. Dirac quasiparticles are scattered from

magnetic vortices via a combination of two basic mechanisms: effective poten-

tial scattering due to the superflow swirling about the vortices, and Aharonov-

Bohm scattering due to the Berry phase acquired by a quasiparticle upon cir-

cling a vortex. We perform a singular-gauge transformation that encodes the

Berry phase effect in the form of an antiperiodic boundary condition on the

wave function spinor. This is the key for isolating these two scattering contri-

butions. We consider the Berry phase contribution (without superflow), which

results in branch cuts between neighboring vortices across which the quasipar-

ticle wave function changes sign. Here, the simplest problem that captures

the physics is that of scattering from a single finite branch cut that stretches

between two vortices. Elliptical coordinates are natural for this two-center

problem and we proceed by separating the massless Dirac equation in elliptical

coordinates. The separated second order equations take the form of the (little

4



known) Whittaker-Hill equations (WHE), which we solve to obtain radial and

angular eigenfunctions. Working within this non-trivial elliptical geometry, we

constructed exact formulae for the differential scattering cross section due to

the Berry phase. This enables us to directly compare the Berry phase and

superflow transport cross sections. Our results shows that the Berry phase

effect dominates the scattering process for the strong magnetic field and low

temperature regime. This is an important result in the context of quasiparticle

transport physics, as it clearly quantifies the effect of two different mechanisms

in an analytically exact framework. Our work not only helps understanding

the Berry phase and the superflow effect on quasiparticle scattering but also

provides a general framework to solve relativistic scattering problems (like two

center scatterers) in elliptical coordinate systems. The mathematics of scat-

tering involving WHE was developed originally in this work. For example, an

exact relativistic plane wave expansion form in terms of the eigenfunctions of

WHE was discovered and solutions in the asymptotic limit for the full wave

function were also written for the first time.

1.4 Quantum effects in 1-D: Fractional Quan-

tum Hall Edge

In this work our fundamental motivation is the physics of the fractional quan-

tum Hall (FQH) states, which exhibit some of the most striking effects of

strong electronic correlations. These are perhaps most evident in the unusual

fractionally charged FQH quasiparticles that obey fractional statistics. These

correlations also lead to a novel dynamics at the edges of FQH systems which is

that of one dimensional chiral Luttinger liquids(χLL). My goal in this project

was to describe and analyze a device, the two point-contact interferometer,

between two FQH droplets of arbitrary filling factors ν1 and ν2, in both weak

and strong tunneling regimes. Interferometers can be classified in two cate-

gories based on their geometry, 1) Mach Zehnder interferometer (MZI)-When

the tunneling occurs between the edges of same chirality. 2) Fabry-Perot inter-

ferometer (FPI)- When the tunneling occurs between the edges of two different

droplets of opposite chirality. Through rotation of fields, we have managed to
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unify the action of both interferometer geometries for arbitrary filling factors

with single parameter a ( a = ±(ν1±ν2)/(ν1+ν2) for FPI and a = ±1 for MZI).

Sign of the parameter a represents the direction of propagation with a = 0

being the non-chiral case. The point contact tunneling for the intereferometer

is described by sum of two boundary Sine-Gordon terms. Bosonic fields are

free everywhere except at the point of tunneling. We proceed by integrating

out free part of the fields except at points of tunneling and obtain two point

Caldeira-Leggett (CL) action. a = 0 is the simplest case of FPI when the

field theory of two counterpropagating chiral fields of same filling factors can

be reduced to effective non-chiral bosonic field theory. This case has been

studied for both weak and strong tunneling regimes [9]. For different filling

factors (a 6= 0), the two-point CL action has non-local terms in the different

point correlators. In the strong tunneling regime this issue manifests itself into

non-causal and chirality violating currents for the non-perturbative instanton

calculation. In strong tunneling regime this is the result of an ambiguity in the

inverse of Green’s function with non-local terms. Thus, it is important that

this ambiguity be taken care of before taking the strong tunneling limit. In

this work we show that by taking compactness of chiral bosons in path integral

formalism, we can resolve this ambiguity and get physical results in the strong

tunneling regime. Compactness plays a vital role in non-chiral field theory and

is an important component of Kosterlitz-Thouless transition (see Ref. ( [10])).

We give general expressions for currents in both weak and strong tunneling

limits for general interferometer geometries. We obtain electron periodicity

with adiabatic variations of flux in both weak and strong tunneling limits.

1.5 Additional project I: Fluctuation theorems

in mesoscopic systems far from equilib-

rium

Transport in the quantum regime is inherently probabilistic. Hence non-

thermal current fluctuations contain information about the nature of the un-

derlying transport mechanism. However, the complete information on the
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statistics of transport can only be obtained from all correlators of the current.

This was noted by Levitov and Lesovik [11] who obtained the famous deter-

minant formula for the generating function for non interacting systems, and

coined the term full counting statistics (FCS). FCS is therefore of fundamen-

tal interest, which can be used to calculate non-equilibrium particle transfer

statistics in terms of a generating function. From the symmetries and analyt-

ical properties of generating function one can extract universal laws in non-

equilibrium systems also known as ‘fluctuation theorems ’. In application to

electric circuits, fluctuation theorems predict that the probability distribution

P[q] of observing a charge q passed between two lead contacts with a voltage

difference V satisfies the law: P [q]/P [−q] = eFq, F = V/kBT . Surprisingly,

recent experimental work [12] has shown that the FTs can fail in an electric

circuit, but could be salvaged under the experimental conditions of Ref. ( [12])

if the parameter F is suitably renormalized by a factor 10−1. Motivated by this

new experimental result we discovered new class of fluctuation relations called

Fluctuation Relations for Current Components(FRCCs) [13]. Unlike standard

fluctuation theorems, FRCCs were discovered by us from the seemingly trivial

fact that to know statistics of particle currents, it is sufficient to know only

statistics of single particle geometric trajectories while the information about

time moments, at which particles make transitions along such trajectories, is

irrelevant. FRCCs have a similar structure as standard FTs but the parameter

F is a function of system parameters. In spite of this, we show that FRCCs are

universal in the sense that they do not depend on some basic types of electron

interactions and importantly are robust against quantum coherence effects.

1.6 Additional project II: Electrostatic inter-

action between a water molecule and an

ideal metal surface

In this work [14] we studied the hydrogen bond interaction between water

molecules adsorbed on a Pd − 〈111〉 surface, a nucleator of two dimensional

ordered water arrays at low temperatures, using density functional theory
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calculations. We analyzed the role of the exchange and correlation density

functional in the characterization of both the hydrogen bond and the water-

metal interaction. We found that the choice of this potential is critical in

determining the cohesive energy of water-metal complexes. We show that the

interaction between water molecules and the metal surface is as sensitive to

the density functional choice as hydrogen bonds between water molecules are.

The reason for this is that the two interactions are very similar in nature. We

make a detailed analogy between the water-water bond in the water dimer

and the water-Pd bond at the Pd− 〈111〉 surface. Our results show a strong

similarity between these two interactions and based on this we describe the

water-Pd bond as a hydrogen bond type interaction.

My main contribution to this work was to analytically calculate the electro-

static energy between the water molecule and metal surface using full charge

distribution deduced from the wave function obtained from Density Functional

Theory (DFT) using SIESTA. We also compute this electrostatic energy as a

function of the orientation of the single water molecule, with respect to the

metal plane using method of images. We were able to identify vertical align-

ment (with Hydrogen atoms facing up) as the most stable configuration of

the water molecule under the constraint of electrostatic interactions with the

metal surface. We also have shown that the full charge distribution provides

a much more complex interaction energy landscape as compared to the point

charge model, where the lone pairs of the oxygen contribute to minimize the

interaction energy for an intermediate alignment.
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Chapter 2

Quantum effects in 3-D: Liquid

water

2.1 Introduction

Understanding how large are zero point nuclear quantum effects (NQE) both

in water[5, 15–17] and ice [18] is an active area of research. How much the

structure of liquid water is dependent on the classical treatment of the ionic

degrees of freedom in ab initio molecular dynamics (MD) simulations is an

open question[16, 19]. Even if a number of path integral molecular dynam-

ics studies have addressed the issue [5, 15–17, 19], a definite answer has not

yet been provided. The problem is subtle, due to the complex nature [20] of

the OH–O hydrogen bond (Hbond) in water. It is well known that hydro-

gen bonded materials show an anti-correlation [21] between the high energy,

stretching frequencies and the librational frequencies of the molecules. Re-

cently [18], we have shown that this anti-correlation is the origin of negative

grüneisen parameters of the high energy vibrational modes in ice. These are

large enough to cause an anomalous isotope effect in the volume of ice, making

the volume per molecule of heavy or D2O ice larger than that of normal or H2O

ice. This anomaly is not captured by flexible and/or polarizable force-fields,

due to their underestimation of the anti-correlation effect [18]. Nonetheless,

we choose to use in this study the q-TIP4P/F [5] force field. Even if it has
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been shown to fail in the description of the anomalous isotope effect of ice

[18], it provides a good qualitative description of the anharmonicities of all

the modes in liquid water. In classical MD simulations of force field models,

all the modes are equilibrated at a given constant temperature. This equiparti-

tion of temperature is a classical description of liquid water which lacks NQE.

Recently, Ceriotti et al.[2, 22–26] have shown that the key features of path

integral molecular dynamics (PIMD) simulations of liquid water can be re-

produced using custom tailored thermostats based on generalized Langevin

dynamics (GLE). In their work, they were able to enforce the ω-dependent

effective temperature T (ω) = ~ω
2kB

coth ~ω
2kBT

simultaneously on different nor-

mal modes, without any explicit knowledge of the vibrational spectrum. The

tailoring aspect of their thermostat involves complicated optimization to in-

dependently tune the drift and diffusion parameters of the GLE dynamics. In

this work we introduce a new thermostating scheme with very few, and easy to

tune parameters that can equilibrate modes to different temperatures. In our

scheme we couple both Nose-Hoover (NH) and GLE dynamics to the system.

We use GLE kernels that satisfy the fluctuation-dissipation (FD) condition

which can be derived from a well defined harmonic bath model. We suppress

the noise term in GLE dynamics by setting the GLE temperature close to 0.

In this limit, the dynamics is almost deterministic. The frequency dependent

equilibration is achieved through the independent tuning of NH and the fre-

quency dependent friction profile. Microscopic details of the full dynamics are

presented in Sec. (2.2.1). We sacrifice transferability of parameters between

different systems in exchange for simplicity in their optimization against the

known vibrational spectrum of the system. This thermostat acts on the sys-

tem within a deterministic regime and hence our method can be thought as a

deterministic frequency dependent thermostat or phonostat [27]. The goals of

this study are two sided. On the methodological side, after rigorously deriving

the thermostat equations, we evaluate its performance , by comparing it with

PIMD simulations of q-TIP4P/F water. In addition, we address the ques-

tion of competing quantum effects [5] or competing anharmonicities in water

[18] using a quantified, temperature-dependent approach. To achieve this we

reformulate the idea of NQE in terms of the zero point energy of individual

10



modes.

2.2 Nose-Hoover thermostats in presence of

GLE kernel

Figure 2.1: Schematic of thermostating in MD simulation

In this work, we construct a new frequency dependent thermostating scheme.

This scheme involves use of two thermostats. We use the standard NH chain

thermostats which is the gold standard of thermostats. To achieve frequency

dependent equilibration, we use GLE to modify the NH action. Recently, Ce-

riotti and Parinello [2, 22–26] developed an extensive thermostating scheme

based on GLE dynamics. We choose a particular form of GLE dynamics and

use it in conjunction with the NH dynamics to enforce frequency dependent

thermostating. We call this new scheme NGLE (for Nose-GLE) thermostating.

2.2.1 Microscopic derivation of NGLE dynamics

In this section we start with the microscopic model for NGLE thermostat

starting from a system-bath coupling model. The full extended Hamiltonian

of the system can be written as,

Htotal = Hsys(
pi
s
, qi) +HNH(ps, s) +HGLE(pi,xk , xi,k) (2.1)
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Where,

Hsys =
3N∑
i=1

p2
i

2Mis2
+ V (q1....q3N) (2.2)

HNH =
p2
s

2Q
+ (3N + 1)kBTNH log s

HGLE =
3N∑
i=1

H i
GLE (2.3)

H i
GLE =

g∑
k=1

(
p2
i,xk

2m
+

1

2
mω2

k

(
xi,k +

β qi
mω2

k

)2
)

(2.4)

s is the parameter that modifies the effective dynamics and enforces constant

temperature ensemble on the rescaled momenta (p
s
). Q is the NH mass. This

rescaled dynamics is also coupled to a harmonic bath that enforces generalized

Langevin dynamics. This is achieved by coupling each system degree of free-

dom to g harmonic oscillators of mass m and frequency ωk. β is the coupling

strength of the oscillator to the system degree of freedom. pi,xk is the momen-

tum conjugate to the kth oscillator position xi,k (index i corresponds to the

system degree of freedom). Hamilton Jacobi equations for the total dynamics

for the system degrees of freedom can be written as,

q̇i =
pi

Mis2
(2.5)

ṗi = −∂V (q)

∂qi
−
∑
k

β2

mω2
k

qi −
∑
k

βxi,k (2.6)

The dynamics of NH degrees of freedom is given as,

ṡ =
ps
Q

ṗs =
3N∑
i

p2
i

Mis3
− (3N + 1)kBTNH

s
(2.7)
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We can further simplify NH dynamics in Eq. (2.7) by rescaling time and mo-

menta. We perform dt → dt
s

in Eq. (2.6). The resulting equations can be

written in terms of the rescaled momenta pi → pi
s

η̇ =
pη
Q

ṗη =
[ N∑

i

p2
i

Mi

− (3N + 1)kBTNH

]
(2.8)

Where η = log s.

The dynamics of GLE bath degrees of freedom is given by.

ẋi,k =
pi,xk
mk

(2.9)

ṗi,xk = −βqi −mω2
kxi,k (2.10)

The above equations for the GLE bath can be solved exactly and can be

substituted in Eq. (2.6). The resulting system’s dynamics in presence of NH

chains and the GLE bath[28, 29] can be written in the following form,

q̇i =
pi
Mi

(2.11)

ṗi = −∂V
∂qi
−
ˆ t

−∞
K(t− t′)pi(t′)dt′ + ζ(t)− pi

pη
Q

(2.12)

where the last term is the NH term that is coupled to the system. The memory

kernel K(t) has an exact expression in terms of the bath parameters,

K(t) =
∑
k

(
β√
mωk

)2

cos(ωkt) (2.13)

The ‘random’ force ζ(t) can also be completely determined in terms of the

bath degrees of freedom. ζ(t) is connected to the memory kernel through

the FD theorem as 〈ζ(t)ζ(t′)〉 = kBTGLE K(t − t′) with 〈ζ(t)〉 = 0. Note
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that the temperature enforced by the FD condition is different from the NH

temperature. We can rewrite Eq. (2.12) by absorbing the NH term into the

time integral.

ṗi = −∂V
∂qi
−
ˆ t

−∞
K̃(t, t′)pi(t

′)dt′ +
√

2MikBTGLE ζ̃(t)

(2.14)

Where we have defined,

K̃(t, t′) = K(t− t′) + δ(t− t′)pη(t
′)

Q
, 〈ζ̃(t)ζ̃(0)〉 = K(t) (2.15)

Now consider Eq. (2.14) in the case when TGLE → 0,

ṗi = −∂V
∂qi
−
ˆ t

−∞
K̃(t, t′)pi(t

′)dt′ (2.16)

In this case the noise term is completely suppressed and we have a GLE dy-

namics that involves only a nonlocal friction profile and the deterministic NH

term that provides constant temperature TNH to the system. The conserved

energy for this modified dynamics can be written as,

H ′ = Hsys(p, q) +
p2
η

2Q
+ (3N + 1)kBTNHη +

∑
i

∆KEi

(2.17)

The last term in the above equation is the change in kinetic energy for each

GLE action summed over all past trajectories [24, 30]. In this work we achieve

frequency dependent equilibration as a result of the competition between the

NH dynamics and the damping action of nonlocal friction profile with sup-

pressed noise.
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2.2.2 Delta-like memory kernels

The friction term in Eq. (2.12) is linear in the system momentum, and the

friction coefficient K(t) is a simple function of the frequencies ωk and the

coupling constants β√
m

. This generalized Langevin equation is exact and its

validity is not restricted to small departures from thermal equilibrium. Now we

consider the case of infinite number of oscillators with continuous distribution

of frequencies ωk. In this limit the summation in Eq. (2.13) can be replaced

by an integral with some distribution function (
∑
→ N

´
dωg(ω)).

K(t) = N

ˆ
dω g(ω)

(
β√
mω

)2

cos(ω t) (2.18)

Since we have control over the bath degrees of freedom we choose the coupling

constant to be, β√
m

=

√
γ(∆ω2+ω2

0)

N
. We are free to choose the distribution of

frequencies of the oscillators to enforce desired memory kernel on the system.

To design delta like memory kernels K(t) introduced in Ref. ([2]), we choose

the frequency distribution function of the oscillators to be,

g(ω) =
ω2

∆ω2 + (ω − ω0)2
(2.19)

The above distribution of the continuum oscillator frequencies results in the

effective delta like friction profile of Ref. ([2]) which is the essential component

of frequency dependent thermostating scheme. The memory kernel obtained

is given by,

K(ω) = γ

(
∆ω2 + ω2

0

∆ω

)(
∆ω

∆ω2 + (ω − ω0)2

+
∆ω

∆ω2 + (ω + ω0)2

)
(2.20)

K(t) = γ

(
∆ω2 + ω2

0

∆ω

)
e−|t|∆ω cosω0t (2.21)
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In the memory kernel defined above, γ is the friction coefficient (or coupling

strength to the harmonic bath). ω0 is the frequency at which the delta shaped

memory kernel has maximum friction value or maximum strength of coupling.

∆ω is the width of the friction profile. Notice that all the parameters related to

the GLE thermostat are completely independent of the force field parameters.

All we need to know is the position of the peaks of modes that we can obtain

from the spectral density of the system in consideration. Non-Markovian dy-

namics can be mapped to Markovian dynamics in higher dimensional space[24]

by adding auxiliary momentum degrees of freedom1. The modified higher di-

mensional dynamics can be implemented in the form of following dynamical

equations,

q̇ =
p

m
(2.22)(

ṗ

ṡ

)
=

(
−∂V

∂x

0

)
−A

(
p

s

)
+ Bξ(t) (2.23)

Matrices A and B are the drift and diffusion matrices respectively. ξ is

the uncorrelated Markovian noise, and s is the vector of additional momentum

degrees of freedom. The drift and diffusion matrices may be constrained by

the generalized FD theorem

(A + AT) = MkBTGLEBBT (2.24)

The matrix A has the form

(
app aps

aT
ps a

)
. One can obtain functional form

of the memory kernel from the matrix A.

K(t) = 2appδ(t)− apse
−|t|aaT

ps (2.25)

The drift matrix A for that produces delta like friction profile in Eq. (2.20) is

1Note that the prescription to write Eq. (2.12) as higher dimensional Markovian process
is a separate procedure and the auxiliary momenta s do not have any connection to the
bath degrees of freedom (in this analysis). The auxiliary momenta s are introduced only for
implementation purposes.
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given by,

A =


0

√
γ(

∆ω2+ω2
0

2∆ω
)

√
γ(

∆ω2+ω2
0

2∆ω
)

−
√
γ(

∆ω2+ω2
0

2∆ω
) ∆ω ω0

−
√
γ(

∆ω2+ω2
0

2∆ω
) −ω0 ∆ω

 (2.26)

2.2.3 Simulation Details

In this section we describe the implementation of NGLE thermostat. We

begin by writing the classical evolution for the full dynamics. The infinitesimal

evolution operator is given as,

U(∆t) = ei∆t(Lsystem+LNHC+LGLE) (2.27)

≈ ei
∆t
2

(LGLE+LNHC)ei∆tLsystemei
∆t
2

(LGLE+LNHC)

(2.28)

Where L is the Liouville operator. The integrators for MD can be obtained

from the Trotter factorization of Liouville propagators. The corresponding

Liouville operators for NH and GLE are given in detail in Refs. ([24, 31])

respectively. The evolution of NH and GLE is updated at ∆t/2 before and

after the velocity-verlet routine for system evolution. As pointed out by Bussi

and Parinello[30] there is a significant drift in the conserved quantity of the

GLE dynamics for strong friction coefficient (γ−1 ∼ 10 fs). This is mainly

due to the error introduced by the approximate integrator for GLE when

γ∆t is not negligible. This error arises from the integration of the Hamilton

equations and not from the friction itself. This problem can be solved by

choosing a smaller time step for the simulation. In our simulation NGLE C

(see Table. (2.1)) we use strong friction coefficient for zero point equilibration.

For a stable conserved energy H ′ in Eq. (2.17), we perform this simulation

with a time step of 0.05 fs. All the other simulations in this work are done

with 0.5 fs time step.

As described in section 2.2.1 we have two thermostats acting on the sys-

tem and they compete to enforce their respective temperatures. The strength
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of the GLE thermostat varies with the frequency and is strongest for the

modes in the range ≈ ω0 ± ∆ω. The result of this competition is that the

modes in the range ≈ ω0 ±∆ω are thermostated at an effective temperature

Teff < TNH . Depending on the strength of the friction coefficient (height of

K(ω) peak), the effective temperature of the specific modes can lie anywhere

between 0 ≤ T (ω)eff ≤ TNH . Temperature of all the other modes are equili-

brated at T ∼ TNH as the K(ω) ∼ 0 for ω /∈ (ω0 −∆ω, ω0 + ∆ω). Hence we

can control the effective temperature of a particular normal mode using NGLE

dynamics. Our system consists of 256 water molecules with a density of 0.997

g/cm3 modeled by the flexible force field model q-TIP4P/F[5]. This model has

been used in many isotope effects studies both for water and ice[15, 17, 32], and

therefore is an excellent model to evaluate the performance of our approach.

We now demonstrate effects of damping of narrow range of modes using NGLE

thermostats. This example will establish the spirit in which we intend to use

NGLE thermostats. We use in house developed code for the force field and MD

implementations. In Fig. 2.2 we show the vibrational density of states (ob-

tained from the Fourier transform of the velocity autocorrelation function) for

the q-TIP4P/F model. The three peaks corresponds to translation+rotations

(400 − 1000 cm−1), bending (∼ 1600 cm−1) and stretching (∼ 3600 cm−1)

modes. We also plot the projected temperature of translation, rotation and

intramolecular vibrational modes(see Fig. (2.8(a))). Mode-projected temper-

atures is an important parameter to monitor NGLE action on the system.

We calculate these projections by defining new molecular subspaces along the

center of mass (for the translations), molecular main three moment of inertia

axis (for the rotations) and the three vibrational normal modes of the iso-

lated molecule. These projections act as a guide to tune NGLE parameters

for designing a frequency dependent temperature control. For GLE implemen-

tation we base our code on codes developed by Ceriotti et al.2. We see that

without the GLE action all the modes are equilibrated to the temperature set

by NH thermostats. We code the memory kernels to overlap with the vibra-

tional spectrum of the system and tailor them to our requirement. We select

a memory profile of very narrow width sharply peaked at some frequency, ω0

2http://gle4md.berlios.de
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Figure 2.2: Spectral density plot of q-TIP4P/F liquid water equilibrated with
NH thermostats at 300 K

which vanishes rapidly away from it. NH chains are set to 300 K. GLE is

much more strongly coupled to the system than the NH chains at selective

modes (ω0 ±∆ω). In the expression of memory kernel, Eq. (2.20), we set the

peak position ω0 = 3600 cm−1, peak width ∆ω = 5 cm−1 and the strength of

coupling γ−1 = 1000 ps (see Fig. 2.3). We now extend this method to study

how the structure of liquid water changes when modes are kept at different

temperatures.

Figure 2.3: Spectral density plot of q-TIP4P/F liquid water at 300 K with
NGLE, black line. Red line, delta-Like peak frequency depdendent friction
profile.
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2.3 NGLE applied to q-TIP4P/F water

Using NGLE to simulate liquid water to non-equilibrium distribution of tem-

peratures, we can analyze how the structure of q-TIP4P/F water depends on

the temperature of individual modes. This way we can establish the influence

of each individual mode in the structure of the water. Also one can study how

the different dynamical modes are connected to each other.

2.3.1 Weak damping of intramolecular modes

We damp the intramolecular modes and study their influence on the overall

structure of liquid water, using a damping profile as shown in Fig. (2.4). For

this simulation (NGLE A) parameters are described in Table 2.1. Projected

temperatures plot (Fig 2.8(b)) show that the intramolecular modes are kept

are relatively lower temperatures for the full simulation run.

Figure 2.4: Spectral density plot. The black line is for of q-TIP4P/F liquid
water at 300 K, the solid red line is for the NGLE A (see Table 2.1). The red
dashed line shows the frequency dependent friction profile.

We also plot the radial distribution function (rdf) for NGLE A. This rdf

clearly shows a local softening of the first two O-O peaks. On the other

hand the first peak of the O-H rdf as expected is much sharper. The higher

order peaks, linked to the Hbond network have also become softer. A more

frozen covalent bond results in a loss of structure of liquid water. This is

a consequence of the previously mentioned anticorrelation. The Hbond is
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weakened by strengthening the O-H covalent bond.

Figure 2.5: Radial distribution function plots of q-TIP4P/F liquid water for
NVT simulation (black) at 300 K and NGLE damped OH stretching (red).
Top: O-O rdf. Bottom: O-H rdfs, the inset shows a zoom into the first peak.

2.3.2 Weak damping of intermolecular modes

In this section we analyze whether a more fluctuating O-H covalent bond

induces a local structuring of liquid water. To answer this question we now

damp the low energy intermolecular modes. We couple GLE to low energy

modes with almost no coupling to intramolecular modes. The parameters for

this simulation (NGLE B) are described in Table 2.1 The Results are shown

in Figs. (2.6,2.8).

The action of damping low energy modes results in relatively higher tem-
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Figure 2.6: Spectral density plot. The black line is for of q-TIP4P/F liquid
water at 300 K, the solid red line is for the NGLE B (see Table 2.1). The red
dashed line shows the frequency dependent friction profile.

perature of vibrational modes (see Fig. 2.8(c)). Consequently, we see more

structure in the O-O rdf (see Fig. 2.7). This establishes the well know anti-

correlation [18] between inter and intramolecular modes in liquid water. Hence

we demonstrate that the strengthening of the water structure (by more frozen

Hbonds) implies a more delocalized O-H intramolecular bond, i.e. a soften-

ing of the stretching OH vibration. In Table (2.1) we present normal mode-

projected temperatures for translations, rotations and vibration modes.

Table 2.1: Temperature distribution among individual modes
TNH(K) Trans(K) Rot(K) Vib(K) ω0 (cm−1) ∆ω (cm−1) γ−1 (ps) TGLE(K)

NVT 300 299 300 302 - - - -
NGLE A 300 295 325 240 3600 800 0.9 0.0001
NGLE B 300 295 270 325 700 300 0.2 0.0001
NGLE C 1600 600 800 2200 700 650 0.006 0.0001

2.3.3 Modes close to their zero point temperature

None of the results shown in the previous sections were surprising, they are

a confirmation of the anti-correlation effect. This effect is a manifestation of

the strong anharmonicity of the vibrational modes, which strongly couple to

the rotational modes when Hbonds are formed. However, when all the normal

modes are equilibrated at their corresponding zero point temperatures, the two
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Figure 2.7: Radial distribution function plots of q-TIP4P/F liquid water for
NVT simulation (black) at 300 K and NGLE damped intermolecular stretching
(red). Upper panel: O-O rdf. Lower panel : O-H rdfs, the inset shows a zoom
into the first peak.

opposite effects we just described should balance out. As shown by Habershon

et al. [5], this competion results in an overall minimization of quantum effects

on the structure of liquid water. To evaluate this using our method, we set

the NH-temperature close to the zero point temperature of vibrational modes

and damp intermolecular modes so that the effective temperature of the low

energy modes are close to their effective zero point temperature. The shape of

the tailored frequency dependent memory profile is shown in Fig. (2.9). The

advantage we have is that very few parameters are used to achieve this non

equilibrium T distribution.

We plot the rdfs of liquid water for this case (see Fig. (2.10)) and compare
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Figure 2.8: Temperature of translational (black), rotational (red) and vibra-
tional (green) modes in liquid water plotted as a function of time. This mode
projected temperature is plotted for (a) NVT simulation at 300 K. (b) NGLE
A simulation with damped intramolecular OH stretching . (c) NGLE B simula-
tion with damped intermolecular modes. (d) NGLE C simulation with modes
close to effective zero point temperature. See Table (2.1) for temperature
values.

them with those obtained from a “classical” and a PIMD simulation, both of

an identical system. By “classical” we mean a standard NV T MD simulation

at T=300 K, with the use of a NH thermostat (without any GLE). The PIMD

simulation was performed using the same method as described in Ref. ( [15]),

using a polymer ring of P=32 beads. Fig. (2.10) clearly demonstrates that

using NGLE (with NGLE-C parameters, see Table (2.1)) we can equilibrate

modes to their average zero point temperature and the obtained rdfs are in

good agreement with PIMD results.

2.3.3.1 Vibrational spectrum

Since NGLE is a deterministic thermostat, one of the advantages of this

method is that dynamical properties are described with the same accuracy

as in NH simulations. This allows us to study the changes on the vibrational

spectrum induced by the new distribution of normal mode temperatures. In

other words, it allows us to evaluate the intrinsic anaharmonicities of liquid wa-
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ter (which strongly depend on the underlying model) at the correct zero-point

temperature distribution.

Figure 2.9: Spectral density plots, decomposed into different vibrational con-
tributions. Total spectrum (top left panel). Projection onto translations (top
right), rotations (bottom left) and vibrations (bottom right). Solid black line,
NVT simulation at T=300 K. Red solid line, NGLE C (see Table (2.1)) sim-
ulation. The red dashed line shows the frequency dependent friction profile
used in NGLE C.

In order to accurately evaluate how each region of the vibrational spectrum

changes, we have obtained the spectral density projected onto translational,

rotational and vibrational modes separately. The procedure is straightforward

once the cartesian coordinates are projected onto the normal mode coordi-

nates. The spectral density is obtained by computing the Fourier transform of

the velocity-velocity autocorrelation function within each independent normal

mode subspace. Results are presented in Fig. (2.9). The figure shows both

the changes to the total spectrum (top left panel), and to the translations (top

right), rotations (bottom left) and vibrations (bottom right).

The partition of the spectrum helps on identifying which are the modes

that undergo major frequency shifts upon addition of quantum effects. The

largest, and more interesting changes occur in the translational and rotational

regions of the spectrum. While the lowest frequency translational motions

remain unaffected, those modes with classical frequencies above ≈200 cm−1
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are strongly blue shifted. These are modes associated to the Hbond stretch-

ing. The rotational peak also undergoes a large blue shift, although some of

the modes also remain unaffected. The shifted rotational modes most likely

correspond to those associated to Hbond bendings. In both cases, the shift is

a consequence of the large temperature NGLE imposes on the intramolecular

vibrational modes. Indeed, as seen in Table (2.1), label “NGLE C” and in

Fig. 2.8 (d), the net T of the vibrational modes is 2200 K. This large blue

shift confirms the strong coupling between inter and intra molecular modes,

or a strong intrinsic anharmonicity. This shift also modifies their correspond-

ing zero point temperature. To account for this zero point shift, our NGLE

parameters are tuned to equilibrate intermolecular modes to 600 K (trans) 800

K (rotations) whereas intramolecular modes are equilibrated at 2200 K.

The strong coupling between the different modes makes it difficult to fully

determine the actual quantum vibrational spectrum of the model. How much

a given model’s vibrational spectrum should be modified upon consideration of

NQE is an open question, not easy to address within a thermostated simulation

[33, 34]. Nonetheless, our scheme is particularly suited to extract dynamical

information. First of all, the method ensure the absence of zero-point leakage,

as seen in the conservation of mode-projected temperatures through the sim-

ulation length. Secondly, due to the suppression of GLE noise, we do not add

any more diffusion to the system, other than that associated to the NH ther-

mostat. A first principles MD simulation of liquid water and its vibrational

spectrum under the action of our NGLE thermostat will help to gain insight

into the model-dependence of the NGLE spectrum.

2.4 Analysis and Discussion

In this section we present analysis of our results of selective mode thermostat-

ing of liquid water. Based on our results we are in a position to provide deeper

insight into the role of individual modes contributing to the overall structure

of liquid water.
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2.4.1 Emergence of water structure from stretching modes

The results for zero point simulation using NGLE can also be interpreted from

a different view point. In this section we compare classical simulation done at

600 K to our effective zero point simulation done at 600 K (translations), 800

K (rotations) and 2200 K (vibrations) (“NGLE C” in Table (2.1)).

Fig. (2.11) shows that for a classical simulation equilibrated at 600 K the

liquid water structure is completely lost, as expected for such a high temper-

ature. Indeed at this T the liquid is at a supercritical state, because we do

not allow the volume of our simulation cell to change. The O-O rdf in red is a

liquid water structure that emerges completely due to the higher temperature

imposed on the stretching modes. This comparison clearly points out that

zero point temperature of O-H stretching modes plays a dominant role in the

structuring of liquid water.

2.4.2 Role of individual modes from PIMD simulations.

So far in this work we have demonstrated how quantum effects corresponding

to individual modes effect the overall structure of liquid water. In this section

we try to extract this information from PIMD simulations. Recent work of

Habershon et al. [5] established the idea of competing quantum effects by un-

derstanding the role of intramolecular stretching modes. They observe reduced

quantum to classical ratio of diffusion coefficient when the O-H stretching is

allowed. This is due to the anharmonicity of the stretching mode, which cou-

ples it to the rotational and translational modes. This is in agreement with

our results. However in this work we aim to understand this effect in terms

of the zero point temperature of competing modes. In PIMD simulations, we

map the zero point temperature on individual modes to the number of beads.

The quantum limit is achieved with P → ∞, P being the number of beads

employed for the discretization of the path integral. A PIMD simulation with

finite P at temperature T implies a high-temperature approximation, i.e. the

partition function of the system is considered to be classical at a higher tem-

perature given by the product PT . Usually the value of P is chosen so that

the product PT is several times larger than the zero point temperature of the
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Figure 2.10: Radial distribution plots. Top: O-O rdf. Middle O-H rdf. Bottom
H-H rdf. Black line: NVT simulation at 300 K. Red line: Zero-point NGLE
simulation (NGLE C, in Table (2.1)). Blue line: PIMD simulation with 32
beads.

highest frequency.

We study the structure of liquid water as a function of P . We plot the
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Figure 2.11: O-O Radial distribution function. Red line: NGLE C (see Ta-
ble (2.1)) with a temperature distribution of: 600 K translations, 800 K rota-
tions and 2200 K vibrations. Black line: NVT simulation equilibrated at 600
K.

rdf obtained from PIMD for O-O and O-H pairs, for a 256 molecules water

simulation of 250 ps length and density 0.997 g/cm3 (see Fig. 2.12).

Based on the plots in Fig. (2.12) we can analyze how the zero point effects

of each mode influences the structure of liquid water. To understand the struc-

ture we introduce an order parameter which is the ratio of the first maxima to

the first minima of the O-O rdf. The increasing value of this ratio is related

to the increasing structure of liquid water. We plot this ratio as a function of

P . For the O-H rdf we plot the height of the first peak as a function of P (see

Fig. (2.13)).

In Fig. (2.13) we observe that for P ≤ 10, i.e. for PT ≤ 3000K goo(r)

looses structure compared to the classical (P=1 bead) case. This can be at-

tributed to the fact that using only a few beads, the zero point temperature of

intermolecular modes is well captured and they tend to unstructure the liquid.

However for small P the PIMD simulation is not able to describe the zero point

vibration of the O-H stretching modes. We have already mentioned that the

temperature PT must be several times larger that the zero point temperature

for a reasonable approximation of the quantum limit in a PIMD simulation..

As we further increase no. of beads we see that goo(r) starts gaining structure.

This gain in structure is due to the better and better description of zero point

effects of intramolecular modes. This gain in structure saturates when the
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Figure 2.12: Radial distribution function plots for PIMD simulations as a
function of the number of beads. Top: O-O rdf. The two insets are zoomed
into the first peak and the first minima. Bottom: O-H rdf

intramolecular modes are kept close to their zero point temperature. Hence

using P as a control parameter for quantum effects, we can understand the

competition between intra and intermolecular modes. We also see a crossover

from unstructuring to structuring in goo(r) (Fig. (2.12)) as we increase the

no. of beads. A model with too little anticorrelation as the one used here

[18], will not structure above the classical level, independently of the number

of beads used.

2.5 Conclusions

In this work, we have combined NH and GLE thermostats to create a pow-

erful selective mode thermostating scheme, that we coin NGLE. Using NGLE
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Figure 2.13: Order parameter as a function of the number of beads in PIMD
simulations. Top: ratio of the height of first maxima to first minima. Bottom:
height of first peak of the O-H rdf. The points are the actual data and the
solid line is a fourth order interpolation.

we were able to equilibrate vibrational modes to different temperatures, en-

suring the maintenance of the NGLE-imposed non-equilibrium temperature

distribution for any simulation time length. The GLE noise is suppressed by

setting the GLE temperature close to zero, making the thermostat dynamics

deterministic. We have applied NGLE to a flexible force field model of wa-

ter (q-TIP4P/F). Our results show that the structure of liquid water changes

when intramolecular modes are equilibrated to a different temperature than

that of intermolecular modes. We showed that equilibrating vibrations at

slightly lower temperature than other modes results in the loss of structure in

liquid water. Conversely water is more structured if we equilibrate vibrations
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to slightly higher temperature. This simple exercise verifies the well known

anticorrelation effect [18] in terms of the temperature of individual modes.

Simply changing NGLE parameters we can set all modes to their correspond-

ing zero point temperature. Equilibrating the intramolecular modes close to

their zero point temperature (∼ 2200 K) results in blue shift in the peak of

the intermolecular (translation+rotation) modes. This indicates the large in-

trinsic anharmonicity of the vibrational modes in liquid water. Our zero point

estimates of translations and rotations prove to be correct as NGLE simula-

tions reproduce O-O, O-H and H-H rdf obtained from PIMD simulation with

32 beads. Finally, we have analyzed selective mode behavior as a function

of their zero point temperature in PIMD. To this aim we showed that by a

systematic increase of the number of beads P in PIMD simulations, the dif-

ferent vibrational modes of water can be successively tuned from a classical

to a quantum limit. The height of first peak of the O-H rdf continuously de-

creased as a function of P . This effect is similar to adding more zero point

temperature on vibrations. For P ≤ 10, there is drastic softening of long

range structure as seen in the O-O rdf. This is the case when the temper-

ature of low energy modes are close to their zero point temperature but the

vibration temperature is still far away from its zero point. For P > 10 we

observe an increase of structure in the O-O rdf that asymptotically saturates

with P . This is a consequence of intramolecular modes equilibrated to their

zero point temperature. In summary, we successfully introduced a selective

mode thermostating scheme (NGLE), which can be easily tuned to include

quantum zero point effects, producing results in good agreement with PIMD.

We used it to study how the structure of liquid water responds to different

temperatures, unveiling the existence of large intrinsic anharmonicities in the

vibrational modes of liquid water.
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Chapter 3

Quantum effects in 2-D:

Transport in d-wave

superconductors

3.1 Introduction

The low-energy excitations of a d-wave superconductor are the Bogoliubov

quasiparticles that reside in the vicinity of the four gap nodes at which the

order parameter vanishes. The physics of these quasiparticles can be probed

experimentally via a variety of low-temperature electrical and thermal trans-

port measurements. Since quasiparticles are part electron and part hole, their

energy is well defined but their charge is not. Thus, it is thermal current

that follows quasiparticle current. Since T � Tc, we are well within the

superconducting state. Since T � ∆0 (the gap maximum), transport is

dominated by quasiparticles excited in the vicinity of the gap nodes. (The

quasiparticle dispersion is therefore given by the anisotropic Dirac spectrum,

E = (v2
fk

2
1 + v2

2k
2
2)1/2,where vf is the Fermi velocity, v2 is the slope of the gap,

and k1 and k2 are defined locally about each node. We shall choose our axes

such that gap nodes are located at ±pF x̂ and ±pF ŷ in momentum space.) Fur-

thermore, the temperatures of interest are low enough that sources of inelastic

scattering are frozen out. This is what we mean by low-temperature quasiparti-
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cle transport. In the mixed state, the remaining energy scales are the impurity

scattering rate, Γ0, the vortex scattering rate, Γv, and the temperature. We

will focus on the weak-field high-temperature regime where Γv � T and T

is the dominant energy scale. In this regime, the quasiparticles responsible

for transport are thermally generated rather than impurity-induced [35–37] or

magnetic field-induced [38–40].(Note that thermal transport in the opposite,

low T , regime has been discussed frequently in the literature [41–45].) In this

high T regime, the physical situation is relatively simple, thermally excited

quasiparticles carry the heat current. To understand the thermal transport,

we only need to understand how they scatter from magnetic vortices. Experi-

ments by Ong et. al ([7, 8])(See. Fig. (3.1)) have been successful in isolating

the quasiparticle contribution by thermal Hall measurements. The longitu-

dinal conductivity κxx is generally plagued by contributions from phonons.

Hence, by measuring the transverse conductivity one can isolate the quasipar-

ticle contribution as phonons are not skew scattered by vortices. In the vortex

Figure 3.1: (Left) Thermal hall transport measurement schematic. (Right)
Thermal hall conductivity (κxy) vs magnetic fields H0(T ) and longitudinal
thermal conductivity (κxx)(inset) plotted vs temperature. Images taken from
N. P. Ong’s website.

state, low-temperature transport properties, such as the longitudinal thermal

conductivity and thermal Hall conductivity, can be explained by studying the

scattering of these quasiparticles from magnetic vortices. Since H � Hc2,

the vortices are dilute, separated by distances large compared to the quasi-

particle de Broglie wavelength. Quasiparticles scatter from vortices via two

basic mechanisms: a circulating superflow and a Berry phase factor of (-1)
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acquired upon circling a vortex. Scattering due to superflow current in a sin-

gle vortex (without the Berry phase effect) has been calculated in Refs. [46]

and [1]. Although the transport properties calculated in Ref. [46] capture the

essential physics qualitatively, the Berry phase effect becomes important for

the higher field (lower temperature) regime where the deBroglie wavelength

is comparable to the distance between vortices. It is therefore of interest to

consider the effect of Berry phase on the quasiparticle scattering. The influ-

ence of the Aharonov-Bohm (AB) effect due to an isolated vortex line on the

quasiparticle states has been studied in the Refs [47] and [48]. Ref [47] also

obtains the quasiparticle wavefunction and density of states at distances from

the vortex large compared to the pentration depth (r >> λ). In this work,

we consider (r << λ) and work in the limit λ → ∞, such that the magnetic

field is constant across the sample. This limit permits the application of a

singular gauge transformation that encodes the Berry phase effect in the form

of anti-periodic boundary conditions on the quasiparticle wave function. In

contrast to conventional superconductors, the density of states at low energies

in d-wave systems is dominated by contributions from the regions far from the

cores [38] which are associated with extended quasiparticle states with mo-

menta close to the nodal directions. This allows us to neglect the vortex core

physics by zeroing the coherence length (ξ → 0). This conclusion, based on

the semiclassical approach [47, 49], has been confirmed by numerical analysis

[50] of the BdG equations for a single isolated vortex line (in the limit λ→∞).

Note that the calculations presented in [50] also point to the absence of truly

localized core states or any resonant levels in the pure d-wave case, though

such states were observed in numerical simulations [51]. The AB effect on

quasiparticle excitations in macroscopic superconducting rings has been stud-

ied in detail in Refs [52] and [53]. In this work, we now calculate the scattering

contribution due to the Berry phase effect. We take the following path. As dis-

cussed in Ref. [1] and summarized in Appendix 3.2, we apply a singular gauge

transformation to the Bogoliubov-de Gennes equation and shift the origin of

momentum space to the location of one of the gap nodes. This reduces the

problem to that of an (anisotropic) Dirac fermion scattering from an effective

non-central potential (due to the superflow) in the presence of antiperiodic
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boundary conditions (a consequence of our gauge choice). For simplicity, we

neglect the anisotropy of the Dirac dispersion by taking vf = v2. Since we

are only interested in the Berry phase contribution, we neglect the presence

of the effective non-central potential, which further reduces the problem to

that of a massless Dirac fermion scattering due to the antiperiodic boundary

conditions. Within the single-vortex approximation, the antiperiodic bound-

ary condition manifests itself as a semi-infinite branch cut terminating at the

vortex core. In Sec. 3.3 we study the single vortex scattering of quasiparticles

due to this semi-infinite branch cut (without superflow current) and obtain

a divergent differential cross section in the forward direction. The divergent

nature of this cross section is unphysical and requires that we regularize this

semi-infinite branch cut. In real situations these branch cuts terminate on the

cores of the neighboring vortices and are finite in nature. Thus, considering a

pair of vortices as our scatterer captures the finite branch cut and regularizes

the Berry phase effect. Elliptical coordinates serve as a natural choice for this

problem with two vortex cores. The presence of a finite branch cut between

the two vortices manifests itself as a boundary condition on the wave function

spinor across the line segment joining the two foci of the ellipse. In elliptical

coordinates (µ, ν), we simply write

ψ(µ,−ν) |µ=0= (−1)B ψ(µ, ν) |µ=0 (3.1)

We can impose the Berry phase condition using parameter B (B = 0, 1). When

B=0, there is no branch cut between the vortex cores. We can turn on the

Berry phase (branch cut) between the vortex cores by setting B=1. Thus,

neglecting the anisotropy of the gap nodes, our problem reduces to that of the

scattering of massless Dirac quasiparticles due to this finite branch cut. A sim-

ilar setup for the scattering of quasiparticles due to the Berry phase has been

considered by Melikyan and Tesanovic in Ref. [54]. Their approach was to con-

struct scattering solutions to the 2d Dirac equation in elliptical coordinates

from solutions to the Klein-Gordon equation (separated in elliptical coordi-

nates) using self-adjoint extensions. But in going from Klein-Gordon to Dirac,

the solutions are not separated in elliptical coordinates anymore. This results
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in not being able to construct all the self-adjoint extensions. In this work, we

avoid the issue of self-adjoint extensions by taking a different approach. We

directly separate the (2+1)d Dirac equation in elliptical coordinates [55, 56].

The separation of variables is done in Sec. 3.5. The separated equations are

Whittaker Hill equations (WHE) [55, 57]. In Sec. 3.6 we solve the separated

equations to obtain eigenfunctions [58–66]. In Sec. 3.7, we develop an expan-

sion for the incident plane wave (representing quasiparticle current) in terms

of the separated solutions of WHE. In Sec. 3.8 we construct the scattering am-

plitude (as a sum of partial waves) from the asymptotic form of the scattered

wave. We impose the boundary condition Eq. (3.1) on the full wavefunction

spinor and calculate the phase shifts for each partial wave. We show that for

B=0 (no branch cut) there is no quasiparticle scattering. In Sec 3.10, we turn

on the Berry phase by setting B=1 (with branch cut between cores) and obtain

a non-zero scattering cross section. Results and an analysis of the quasipar-

ticle scattering cross section in the presence of Berry phase are presented in

Sec. 3.11. Conclusions are discussed in Sec. 3.12.

3.2 Bogoliubov-de Gennes Equation

The setup for this problem is described in detail in Ref. [1, 67]. We summa-

rize here. Consider the Bogoliubov-de Gennes (BdG) equation for a d-wave

superconductor in the presence of a constant perpendicular magnetic field,

A = 1
2
Hrφ̂, and with an order parameter that winds once about the origin,

∆(r) = ∆0e
iφ:

H ′Ψ = EΨ H ′ =

(
Ĥ ′e ∆̂′

∆̂′∗ −Ĥ ′∗e

)
(3.2)

Ĥ ′e =
1

2m

(
p− e

c
A
)2

− EF (3.3)

∆̂′ =
1

p2
F

{p̂x, {p̂y,∆(r)}} − i

4p2
F

∆(r)(∂x∂yφ) (3.4)

Here p = −i~∇, {a, b} = (ab + ba)/2, and E is the quasiparticle energy. The

form of the gap operator enforces the d-wave symmetry [44, 68]. Upon circling
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an hc/2e vortex, the quasiparticle acquires a Berry phase factor of (-1). This

fact is encoded within the complex differential form of the gap operator, ∆̂.

We simplify the Hamiltonian by effectively stripping the gap function, ∆(r),

of its phase. This is done by applying the singular gauge transformation

U =

(
e−iφ/2 0

0 eiφ/2

)
Φ(r) = U−1Ψ(r) H = U−1H ′U. (3.5)

In this gauge, known as the Anderson gauge,

HΦ = EΦ (3.6)

H = τ3
vf

2pF

[
(p + τ3Ps)

2 − p2
F

]
+ τ1

v2

2pF
[2pxpy] (3.7)

where

Ps(r) =
~
2
∇φ− e

c
A =

~
2

(
1

r
− r

R2

)
φ̂ (3.8)

is the gauge invariant superfluid momentum (superflow), vf = pF/m, v2 =

∆0/pF , and R ≡
√
~c/eH. In effect, the Berry phase contribution has been

extracted from the Hamiltonian and encoded in the antiperiodic boundary

conditions imposed on the wave function. While the original wave function

was defined with periodic boundary conditions, Ψ(r, φ) = Ψ(r, φ + 2π), the

transformed wave function is not single-valued and has antiperiodic boundary

conditions, Φ(r, φ) = −Φ(r, φ+ 2π). Hence, we have introduced a branch cut

such that with each trip around the origin, the wave function changes sign.

Note that the Berry phase effect is not a consequence of the choice of gauge.

We have used the singular gauge transformation to extract the Berry phase

contribution from the Hamiltonian and encode it in the boundary conditions

of the wave functions. By definition, all observables, such as differential cross

section or transport coefficients, are independent of this gauge choice. For

other problems, other gauge choices are optimal. A nice discussion of this is

provided for the case of vortex lattice by Franz and Tesanovic [50] and Vafek

et al [69]. We can further simplify our Hamiltonian by shifting the origin of

38



momentum space to the location of one of the nodes. Shifting to node 1

px → pF + px py → py (3.9)

we find that

H = HD +HC (3.10)

HD = vf [pxτ3 + αpyτ1 + Psx] (3.11)

HC =
vf

2pF

[
(p2 + P 2

s )τ3 + 2Ps · p + α2pxpyτ1

]
(3.12)

where α = v2/vf and we have used the fact that Ps = Ps(r)φ̂ to commute p

with Ps. Here H is written as the sum of a linear (Dirac) Hamiltonian, HD,

and a quadratic (curvature) Hamiltonian, HC . The second (curvature) term

is smaller than the first by a factor of E/EF . We will focus on the dominant

term, HD. In order to study the quasiparticle scattering from vortices, we

must consider the nature of the quasiparticle current in a d-wave supercon-

ductor. Since the incident and scattered currents will be considered in the far

field where the quasiparticles are free, we wish to determine the quasiparticle

current as a functional of Φ for Ps = 0. Setting Ps = 0 in Eq. (3.7) we find

that the BdG Hamiltonian becomes

H =

(
Ĥe ∆̂

∆̂∗ −Ĥ∗e

)
Ĥe = − vf

2pF
∇2 − EF ∆̂ = − v2

2pF
2∂x∂y (3.13)

Following Refs. [1] and [70], we can write down the quasiparticle current cor-

responding to the BdG Hamiltonian. Once again, it is convenient to shift the

origin of momentum space to a nodal point. Shifting to node 1 yields

j = jD + jC (3.14)

jD = vfΦ
†(τ3x̂ + ατ1ŷ)Φ (3.15)

jC =
vf
pF

Im

[
Φ†(τ3x̂ + ατ1ŷ)

∂Φ

∂x
+ Φ†(τ3ŷ + ατ1x̂)

∂Φ

∂y

]
(3.16)
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where α = v2/vf . In what follows, we will focus on the dominant term jD

corresponding to the Hamiltonian HD.

To proceed, we must obtain a general form for the scattering cross sec-

tion. We consider a plane wave, with quasiparticle current in the incident

direction, scattering off a vortex as a radial wave, with quasiparticle current in

the scattered direction. If the incident momentum is k = (k, θ) and the final

momentum is k′ = (k, φ), then the incident direction is the direction of the

group velocity at momentum k and the scattered direction is the direction of

the group velocity at momentum k′. For general, anisotropic nodes, the group

velocity need not be parallel to the momentum. However, for the isotropic

case that we consider

vG(k) =
∂Ek
∂k

= vf
εk
Ek

x̂ + v2
∆k

Ek
ŷ = vf (cos θx̂ + sin θŷ) = vf k̂ (3.17)

and the group velocity and momentum are parallel. Therefore, if Φi denotes

the incident wave function and Φs denotes the scattered wave function, then

we require

jD[Φi] ∼ (cos θx̂ + sin θŷ) ∼ k̂ jD[Φs] ∼ (cosφx̂ + sinφŷ) ∼ k̂′ ∼ r̂.

(3.18)

Inspection of the form of the current functional, jD = vfΦ
†(τ3x̂+τ1ŷ)Φ reveals

that the appropriate incident plane wave is

Φi(r) = eik·r

(
cos θ

2

sin θ
2

)
(3.19)

Note that outside the vortex, quasiparticles are subject to neither an order

parameter phase gradient nor a magnetic field. Thus, the incident wave func-

tion is a plane wave. This is consistent with the well-known results of Franz

and Tesanovic [50] who showed that the low-energy quasiparticle states of a

d-wave superconductor in the vortex state are Bloch waves of massless Dirac

fermions rather than Landau Levels. (For a discussion of the analysis that led

to this important result, the reader is referred to Refs. [50, 71–73].)
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jD[Φi] = vf

[(
cos2 θ

2
− sin2 θ

2

)
x̂ +

(
2 sin

θ

2
cos

θ

2

)
ŷ

]
= vf k̂. (3.20)

Note also that this form solves the BdG equation, as it must in the absence of

the vortex. The appropriate scattered radial wave is then given by

Φs(r) = ei
φ
2 f(φ, θ)

eikr√
r

(
cos φ

2

sin φ
2

)
(3.21)

jD[Φs] = vf
|f |2

r

[(
cos2 φ

2
− sin2 φ

2

)
x̂ +

(
2 sin

φ

2
cos

φ

2

)
ŷ

]
= vf

|f |2

r
r̂.

(3.22)

Here f(φ, θ) is the scattering amplitude and the eiφ/2 prefactor has been added

to make the wave function single-valued.

3.3 Berry Phase Scattering of Incident Plane

Wave in Single Vortex Approximation (With-

out Superflow)

Quasiparticles scatter from vortices via both the circulating superflow and the

Berry phase factor of (-1) acquired upon circling the vortex. This phase is

encoded in the antiperiodic boundary conditions imposed on quasiparticles in

our chosen gauge (see Appendix 3.2 for details). In this section, we neglect the

superflow by setting Ps = 0 and consider only the Berry phase contribution.

That is, we consider the scattering of quasiparticles due only to the presence

of antiperiodic boundary conditions. Furthermore, we neglect the anisotropy

of the Dirac dispersion and take vf = v2 (α = 1). As we shall see, the

antiperiodic boundary conditions yield the Aharonov-Bohm interference effect

of an enclosed π-flux citedurstthesis,sriramberry.

We consider the isotropic Dirac Hamiltonian

H = vf [τ3px + τ1py] (3.23)
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and seek solutions to the Bogoliubov-de Gennes equation, HΦ = EΦ. We

express the quasiparticle wave function as a linear combination of angular

momentum eigenstates which satisfy JΦµ = µΦµ. Since we have neglected

the superflow, there is no effective potential and the general solution is easily

found to be

Φ =
∑
µ

[
(AµJµ− 1

2
+ BµYµ− 1

2
)ei(µ−

1
2

)φ

(
1

i

)

+ i(AµJµ+ 1
2

+BµYµ+ 1
2
)ei(µ+ 1

2
)φ

(
1

−i

)]
(3.24)

where Aµ and Bµ are complex constants and Jµ± 1
2

and Yµ± 1
2

are Bessel func-

tions of argument ρ = kr. However, rather than imposing periodic boundary

conditions by requiring that µ = n + 1/2 with n = integer, here we shall

impose antiperiodic boundary conditions,

Φ(r, φ+ 2π) = −Φ(r, φ) (3.25)

by requiring that µ = integer. The radial functions are therefore half-integer

Bessel functions rather than integer Bessel functions. The coefficients, Aµ and

Bµ, are determined by satisfying boundary conditions at both long and short

distances.

At long distances, we require an asymptotic wave function that is equal to

the sum of an incident plane wave, Φi, and an outgoing radial wave, Φs. In

terms of the current functional discussed in Appendix 3.2, j[Φ] = vfΦ
†(τ3x̂ +

τ1ŷ)Φ, we require that j[Φi] ∼ k̂ and j[Φs] ∼ r̂. In the presence of antiperiodic

boundary conditions, we seek an incident wave of the form

Φi(r) = eiγ
ϕ
2 eik·r

(
cos θ

2

sin θ
2

)
γ = ±1 (3.26)

and a scattered wave of the form

Φs(r) = f(ϕ)
eikr√
r

(
cos φ

2

sin φ
2

)
(3.27)
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where k = (k, θ), r = (r, φ), and ϕ = φ − θ. In analogy with the problem

of Aharonov-Bohm [74] scattering from an enclosed magnetic flux, we can say

that γ = −1 corresponds to an effective π-flux while γ = +1 corresponds to an

effective (−π)-flux. Since these two cases are equivalent, the choice of γ = ±1

is arbitrary. In the asymptotic limit, the half-integer Bessel functions take the

form

Jµ− 1
2
(ρ) = ηµ

√
2

πρ
cos(ρ− |µ|π/2) Yµ− 1

2
(ρ) = ηµ

√
2

πρ
sin(ρ− |µ|π/2)

(3.28)

where ηµ = 1 for µ > 0 and ηµ = (−1)µ for µ ≤ 0. Proceeding along the

lines of Ref. [1], we can plug these asymptotic expressions into Eq. (3.24),

reorganize terms, and thereby obtain a suggestive (yet still general) form for

the quasiparticle wave function. Doing so, we find that

Φ = eiγ
ϕ
2 eik·r

(
cos θ

2

sin θ
2

)
+ f(ϕ)

eikr√
r

(
cos φ

2

sin φ
2

)
− iγg(ϕ)

e−ikr√
r

(
− sin φ

2

cos φ
2

)
(3.29)

where

f(ϕ) ≡
√

2

πk

∑
µ

bµe
iµϕ g(ϕ) ≡

√
2

πk

∑
µ

aµe
iµϕ (3.30)

and aµ and bµ are complex constants defined via

Aµ − iBµ ≡ iµe−iµθ
(
e−i

π
4 /2 + bµ

)
(3.31)

Aµ + iBµ ≡ −γiµe−iµθ
(
ei
π
4 /2 + (−1)µaµ

)
. (3.32)

If the plane wave is to be the only incident wave, we must eliminate the incident

radial wave by requiring that aµ = 0 for all µ. With this restriction, Bµ and

bµ are related to Aµ via

Bµ = i
(
Aµ + iγ A0

µ

)
bµ = e−i

π
4

(
Aµ
A0
µ

− 1− iγ
2

)
(3.33)

where A0
µ ≡ iµ−1/2e−iµθ/2. The asymptotic wave function then takes the de-
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sired form

Φ = eiγ
ϕ
2 eik·r

(
cos θ

2

sin θ
2

)
+ f(ϕ)

eikr√
r

(
cos φ

2

sin φ
2

)
(3.34)

and the differential cross section is given by

dσ

dϕ
= |f(ϕ)|2 =

2

πk

∣∣∣∣∣∑
µ

bµe
iµϕ

∣∣∣∣∣
2

. (3.35)

We can now determine the bµ by imposing appropriate boundary conditions

at the origin. As discussed in Ref. [1], the most restrictive condition is that

the current through the origin (a point of zero area) must be zero. More

precisely, we consider a semicircle of radius ε, oriented about the θ̂ direction,

and require that the total current passing through it, Iθ, vanish as ε → 0. If

Φ(ρ → 0) ∼ ρα, then Iθ ∼ ε2α+1. Thus, to ensure that Iθ does not diverge

at the origin, we must eliminate all terms in Eq. (3.24) which diverge faster

than ρ−1/2 as ρ→ 0. Since the half-integer Bessel functions exhibit the small-

argument behavior, Jµ± 1
2
∼ ρµ±

1
2 and Yµ± 1

2
∼ ρ−µ∓

1
2 , this clearly requires

that

Bµ = 0 for µ > 0 Aµ = 0 for µ < 0 (3.36)

The condition for µ = 0 is more subtle. Enforcing the above, the resulting

wave function is dominated, as ρ → 0, by the terms which diverge exactly as

ρ−1/2. We therefore find that

Φ(ρ→ 0) =

√
2

πρ

[
(A0 − iB0)

(
cos θ

2

sin θ
2

)
+ i(A0 + iB0)

(
− sin θ

2

cos θ
2

)]
.

(3.37)

From Eq. (3.33), we know that A0 + iB0 = −iγA0
0 where A0

0 = e−iπ/4/2.

Furthermore, we can define a complex constant, β, such that A0 − iB0 ≡
−iγA0

0β. With this definition, the current density near the origin takes the

form

j(ρ→ 0) =
vf

2πρ

[(
|β|2 − 1

)
r̂ + 2 Im[β]φ̂

]
. (3.38)
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Explicitly computing the current through the origin, we find that

Iθ = lim
ε→0

ˆ θ+π/2

θ−π/2
ε dφ j(ε) · θ̂ = vf

ˆ
dφ

2π

[(
|β|2 − 1

)
r̂ · θ̂ + 2 Im[β]φ̂ · θ̂

]
(3.39)

which must be set to zero for all directions θ̂. This requires that β = ±1.

Putting everything together yields the values of our original coefficients

Aµ = −iγA0
µ


1 µ > 0

1+β
2

µ = 0

0 µ < 0

 Bµ = −γA0
µ


0 µ > 0

1−β
2

µ = 0

1 µ < 0

 (3.40)

where γ = ±1 and β = ±1. The Z2 ambiguity in γ and β is a consequence of

the equivalence of a π-flux with a (−π)-flux, which cannot affect observable

quantities. For β = γ = ±1,

bµ =
1√
2

{
i γµ > 0

−1 γµ ≤ 0

}
. (3.41)

Plugging this into Eq. (3.35) and summing over µ (with a convergence factor

e−|µ|0
+

), yields
dσ

dϕ
=

1

2πk sin2(ϕ/2)
− γ 2

k

δ(ϕ)

ϕ
. (3.42)

The same result is obtained for β = −γ. Note, however, that the above is only

valid for ϕ 6= 0. As discussed (for the electron scattering case) in the original

paper by Aharonov and Bohm [74], as well as in an excellent review by Olariu

and Popescu [75], our asymptotic approximations are only valid away from

the forward direction. Thus, the second term above, which is only nonzero

for ϕ = 0 and is an artifact of our casual treatment of the forward direction,

can be dropped. (For a detailed treatment of the Aharonov-Bohm scattering

of an electron in the forward direction, see the paper by Stelitano [76]. Our

differential cross section therefore takes the form

dσ

dϕ
=

1

2πk sin2(ϕ/2)
(3.43)
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which is exactly the differential cross section for the Aharonov-Bohm scattering

of an electron from an enclosed π-flux. As expected, this result is independent

of our choice of γ = ±1 and β = ±1 and is the same for quasiparticles about

any of the four gap nodes. Due to the infinite range of the Berry phase effect,

the total cross section diverges. However, the transport cross section is finite

and given by σ‖ = 1/πk. Since left-right symmetry is not broken in the

absence of a superflow, the skew cross section is zero. In the zero-superflow

case considered above, it was easy enough to neglect the subtleties associated

with forward scattering in the presence of antiperiodic boundary conditions.

However, if we were to consider the superflow and the Berry phase effects

together, it would be necessary to treat such nuances more carefully. The first

step towards that is to regularize the calculation of the cross section due to

the Berry phase effect. This is the goal of the remainder of this chapter.

3.4 Regularization of Berry Phase in Double

vortex Setup

Figure 3.2: Single vortex with semi-infinite branch cut and double vortex with
finite branch cut due to the Berry phase

The infinite range of the Berry phase effect is solely due to the isolated

treatment of the single vortex (see Fig. 3.2). In reality these vortices are not

isolated and the Berry phase effect terminates at the neighboring vortices,

thereby resulting in a finite branch cut. The simplest object containing a

finite branch cut is a pair of vortices separated by some distance as shown in

Fig. 3.2. Elliptical coordinates are a natural setting for studying two-center
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problems. We define elliptical coordinates via

x = R coshµ cos ν (3.44)

y = R sinhµ sin ν (3.45)

The presence of a finite branch cut between the two vortex cores can be im-

posed as a boundary condition at µ = 0 (line separating foci) on the full

wavefunction spinor in the following way

ψ(µ,−ν) |µ=0= (−1)B ψ(µ, ν) |µ=0 (3.46)

The parameter B is defined to take values 0 or 1. For B=0, there is no branch

cut between the pair of vortices (or foci) and the condition reduces to a trivial

continuity condition at µ = 0 of the elliptical coordinate system. Setting B=1,

we turn on the Berry phase effect via non-trivial boundary condition. The

presence of the branch cut captures the fact that when a quasiparticle passes

between the vortex cores, it acquires a phase factor of (-1), which on its own

can scatter quasiparticles. Our task for the rest of this work is to capture the

scattering of quasiparticles due to a finite branch cut between two vortices.

We will follow the same prescription that we applied to the single vortex

case to calculate the scattering cross section. The first step is to separate the

(2+1)d Dirac equation in elliptical coordinates. The second step is to solve the

separated equations to get the eigenfunctions for the separation parameter. the

third step is to construct the incoming plane wave and the outgoing scattered

wave in terms of phase shifts from the separated eigenfunctions. The fourth

and final step is to impose the boundary condition for the branch cut on the

full wavefunction spinor and calculate the scattering amplitude and differential

scattering cross section.
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3.5 Separation of the Dirac equation in Ellip-

tical Coordinates

In this section we separate the Dirac equation in elliptical coordinates [55]. The

detailed calculation for separation of variables can be found in Appendix A.1.

The dirac equation in (2+1)d is given as

[γ0∂t + γ1∂x + γ2∂y]ψ = 0 (3.47)

We define the Dirac matrix representation to be γ0 = τ2, γ1 = iτ1 and γ2 =

−iτ3 , where τi’s are the Pauli matrices. We define elliptical coordinates via

x = f(µ, ν) = R coshµ cos ν (3.48)

y = g(µ, ν) = R sinhµ sin ν (3.49)

Here µ is the radial coordinate and ν is the angular coordinate. Here, we di-

rectly define the transformations that separate the Dirac equation in elliptical

coordinates and leave the rigorous details to Appendix A.1.

TS−1[γ0∂t +
γ̃1(µ, ν)

h
∂µ +

γ̃2(µ, ν)

h
∂ν ]ST (ST )−1ψ = 0 (3.50)

The product of transformation matrices S and T can be explicitly written out

as

ST =
1

(cosh µ+ cos ν)

(
cos ν

2
cosh µ

2
− sin ν

2
sinh µ

2

sin ν
2

sinh µ
2

cos ν
2

cosh µ
2

)
(3.51)

ψ = ST Y (3.52)

Y is the transformed wavefunction spinor and is given by

Y =

(
α(µ)B(ν)

iβ(µ)A(ν)

)
(3.53)
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Each component of Y satisfies separable second order equation. We define a

separation constant λ2 such that

(∂2
ν − ikR cos ν + k2R2 sin2 ν + λ2)A(ν) = 0 (3.54)

(∂2
ν + ikR cos ν + k2R2 sin2 ν + λ2)B(ν) = 0 (3.55)

(∂2
µ − ikR coshµ+ k2R2 sinh2 µ− λ2)α(µ) = 0 (3.56)

(∂2
µ + ikR coshµ+ k2R2 sinh2 µ− λ2)β(µ) = 0 (3.57)

which is equivalent to four coupled first-order equations that connect the upper

and lower components of the wave function spinor

(∂ν − ikR sin ν)A(ν) = iλB(ν) (3.58)

(∂ν + ikR sin ν)B(ν) = iλA(ν) (3.59)

(∂µ − ikR sinhµ)α(µ) = λβ(µ) (3.60)

(∂µ + ikR sinhµ)β(µ) = λα(µ) (3.61)

The separated equations Eq. (3.54), (3.55), (3.56), and (3.57) are known as the

radial and angular Whittaker Hill equations (WHE) and the upper and lower

components of the spinor are connected via first order coupled equations.

3.6 Solutions to the Whittakker Hill Equation

(WHE)

We transform the radial and angular WHE by using the following functional

transform,

A(ν) = y1e
−ikR cos ν (3.62)

where y1 satisfies the differential equation known as the Ince equation [58–

60, 65] .

y
′′

1 + 2ikR sin ν y
′

1 + λ2y1 = 0 (3.63)
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We do similar transformations for the radial WHE

α(µ) = x2e
ikR cosh µ (3.64)

to obtain

x
′′

2 + 2ikR sinh µx
′

2 − λ2x2 = 0 (3.65)

B(ν) and β(µ) are calculated from the first-order coupled equations. Now we

will try to solve all the Ince equations as an eigenvalue problem using a matrix

method. We write a general form of the Ince equation from which we can

deduce Ince equations (3.63) and (3.65) and try to find the recursions for the

general equation [58].

d2ψ

dθ2
+ 2i ω sin θ

dψ

dθ
+ (λ2 + ω(ρ+ i) cos θ)ψ = 0 (3.66)

ψ = y1, θ = ν, ρ = −i and ω = kR will yield Eq. (3.63).

ψ = x2, θ = iµ, ρ = −i and ω = −kR will yield Eq. (3.65).

3.6.1 Solutions to angular WHE (Matrix method)

As often happens in the solution of differential equations with periodic coef-

ficients, the solutions fall into four classes corresponding to the four types of

Fourier series. They may be even or odd functions of θ and may have 2π as

their period or antiperiod. The four possible solutions to Eq. (3.66) are

ψ1
m(θ) =

∞∑
r=0

amr cos rθ, ψ2
m(θ) =

∞∑
r=0

bmr sin rθ (3.67)

ψ3
m(θ) =

∞∑
r=0

amr cos(r +
1

2
)θ, ψ4

m(θ) =
∞∑
r=0

bmr sin(r +
1

2
)θ(3.68)

We know that the full wave function has to have 2π periodicity in ν. In

order to obtain this we have to choose the solutions of the Ince equations to

be 2π antiperiodic in ν. This is so because the transformation matrix (ST)

multiplying the wave function spinor is 2π antiperiodic in ν (see Appendix A.1
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for details of the transformation matrix),and hence the product of antiperiodic

spinor and antiperiodic transformation matrix will yield 2π periodicity in ν.

Hence the possible solutions are Eq. (3.68). Now we substitute these solutions

in Eq. (3.66) and get recursion relations for the coefficients. Reducing WHE

to Ince equations has the advantage that the Ince equation has only three

term recursion relations as opposed to the five term recursions for WHE. The

eigenvalue equation for the even solution is

a0(λe2 − 1

4
+
ωρ

2
) + a1

ω

2
(ρ− 2i) = 0 (r = 0)

ω

2
(ρ+ 2r i)ar−1 + (λe2 − (r +

1

2
)2)ar +

ω

2
(ρ− 2(r + 1)i)ar+1 = 0 (r ≥ 1)

(3.69)

The eigenvalue equation for the odd solution is

b0(λo2 − 1

4
− ωρ

2
) + b1

ω

2
(ρ− 2i) = 0 (r = 0)

ω

2
(ρ+ 2r i)br−1 + (λo2 − (r +

1

2
)2)br +

ω

2
(ρ− 2(r + 1)i)br+1 = 0 (r ≥ 1)

(3.70)

We can see that the coefficients of a0 and b0 are different in the recursions for

even and odd parity solutions. This implies that the cosine-type series solution

and sine-series solution have different eigenvalues (λe2
m and λo2

m where m is

the eigenvalue index) and they turn out to be complex conjugates of each

other. The complex eigenvalue is a consequence of the non-Hermiticity of the

Whittaker Hill equation. These recursions can be written in a matrix form.

The solutions can be expressed as an infinite trigonometric series and we may

truncate it at a point where the extra terms are not significant. We can obtain

the eigenvalues and eigenvectors of the matrix which will provide the complete

solutions to the Ince equations that are used in the solution to Whittaker Hill
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equations. Summarizing the angular solutions we can write

Aem(ν) = e−ikR cos ν

∞∑
r=0

amr cos(r +
1

2
)ν (3.71)

Aom(ν) = e−ikR cos ν

∞∑
r=0

bmr sin(r +
1

2
)ν (3.72)

Aem(ν) and Aom(ν) are solutions for the angular factor of the lower com-

ponent of the separated spinor. Using the first order coupled equation (3.58)

we can obtain the upper component angular eigenfunctions,

Bem(ν) =
1

iλem
(∂ν − ikR sin ν)Aem(ν) (3.73)

Bom(ν) =
1

iλom
(∂ν − ikR sin ν)Aom(ν) (3.74)

Bem(ν) and Bom(ν) are of the opposite parity to Aem(ν) and Aom(ν) due to

the above operation and are given as

Bem(ν) =
1

iλem
e−ikR cos ν

∞∑
r=0

amr(−r −
1

2
) sin(r +

1

2
)ν (3.75)

Bom(ν) =
1

iλom
e−ikR cos ν

∞∑
r=0

bmr(r +
1

2
) cos(r +

1

2
)ν (3.76)

Note that for the sake of notation, we always classify eigenfunctions according

to the eigenvalues λe2
m and λo2

m. Functions corresponding to λe2
m get the suffix

”e” and corresponding to λo2
m get the suffix ”o”.

3.6.2 Solutions to the radial WHE

Since we have obtained the eigenvalues by solving the angular equations, the

eigenvalues can be used as parameters in the radial differential equations.

The first method to evaluate the radial solutions is to replace ν → iµ and

(kR→ −kR) in the angular solutions (which is the same transformation that

connects radial and angular WHE), the regular periodic (in iµ) solutions are
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denoted by Je and Jo.

Jem(µ) = eikR cosh µ

∞∑
r=0

cmr sinh(r +
1

2
)µ (3.77)

Jom(µ) = eikR cosh µ

∞∑
r=0

dmr cosh(r +
1

2
)µ (3.78)

The lower component of the spinor can be obtained from coupled radial Eqs. (3.60)

and (3.61). We denote the lower component radial solution with primes and

keep this notation for all the lower component radial solutions. Note that

prime does not imply derivative but is defined by the following operator act-

ing on the upper component solutions.

Je′m(µ) =
1

λem
(∂µ − ikR sinhµ)Jem(µ) (3.79)

Jo′m(µ) =
1

λom
(∂µ − ikR sinhµ)Jom(µ) (3.80)

The second linearly independent solution that is non-periodic in (iµ) is given

as

Nem(µ) = Ce
m(kR)µJem(µ) + Ce

m(kR)
∞∑
r=0

fmr cosh(r +
1

2
)µ (3.81)

Nom(µ) = Co
m(kR)µJom(µ) + Co

m(kR)
∞∑
r=0

gmr sinh(r +
1

2
)µ (3.82)

where the presence of factor of µ ensures the non-periodicity of the second

solutions in iµ. Note that it is of opposite parity to the regular Je and Jo.

This approach is similar to the calculation of non-periodic second solutions of

the modified Mathieu equation [77]. Ce,o
m (kR) are the normalization constants.

The second method to calculate the radial solutions is the power series

method. In this method we simply do a power series analysis in µ for the second

order radial Ince equation (3.65) (note that such solutions do not capture the

complex periodicity of the hyperbolic functions). We then immediately get

the two independent solutions of even and odd parity with the predetermined

53



eigenvalues from the angular solutions acting as a parameter characterizing

the different radial solutions.

Jem(µ) = eikR cosh µ

∞∑
r=0

cr µ
2r+1 , Nem(µ) = eikR cosh µ

∞∑
r=0

fr µ
2r

(3.83)

Jom(µ) = eikR cosh µ

∞∑
r=0

dr µ
2r, Nom(µ) = eikR cosh µ

∞∑
r=0

gr µ
2r+1

(3.84)

We are interested in studying the scattering problem which requires the radial

solutions to have a well-defined asymptotic form. We can evaluate the radial

solutions as power series in µ and in series of sinhµ and coshµ as described

in the above mentioned methods. But these forms of solution diverge at large

µ and therefore do not yield proper asymptotic forms. Fortunately, the radial

solutions to Whittaker Hill equations can be written as series of confluent

hypergeometric functions [61–63, 66] which converge for all µ. We follow the

procedure described in Ref. ([61]),and start with radial Ince equation (3.65)

α
′′
(µ) + 2ikR sinh µα

′
(µ)− λ2α(µ) = 0 (3.85)

and then make the transformation z = cosh2 µ
2
. The resulting equation takes

the form

z(z − 1)α
′′
(z) + (4ikR z2 − 4ikR z + z − 1

2
)α
′
(z)− λ2α(z) = 0 (3.86)

To extract the even and odd parity of solutions, we make the following func-

tional transformations to the above equation,

α(z) =
√
z αe(z) (for even parity), α(z) =

√
z − 1 αo(z) (for odd parity)

(3.87)

Making these transformations, we get the following differential equations for
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αe(z) and αo(z).

z(z − 1)αe
′′
(z) +

1

2
(8ikR z(z − 1) + 4z − 3)αe

′
(z)

+ (2ikR (z − 1) +
1

4
− λe2)αe(z) = 0 (3.88)

z(z − 1)αo
′′
(z) +

1

2
(8ikR z(z − 1) + 4z − 1)αo

′
(z)

+ (2ikR (z) +
1

4
− λo2)αo(z) = 0 (3.89)

We have classified the eigenvalues as λe2 and λo2 for the even parity solutions

and the odd parity solutions respectively (we know the eigenvalues from the

angular eigenvalue Eqs. (3.69,3.69) and Eqs. (3.70,3.70). Solutions to the above

equations can be expressed in terms of confluent hypergeometric functions

αem(z) =
∞∑
n=0

cem nM(n+ 1/2, n+ 2,−4ikR z) (3.90)

αom(µ) =
∞∑
n=0

com nM(n+ 1/2, n+ 2,−4ikR z) (3.91)

where the M are the regular hypergeometric functions satisfying the Kummer

differential equation [78]

zM ′′(z) + (b− z)M ′(z)− aM(z) = 0 (3.92)

The three term recursion relations for the coefficients cem and com are

cem n−14ikR(n− 1

2
)2 + cem n[n(n+ 1) + 4ikR n+

1

4
− λe2

m]

+ (n+ 1)cem n+1 = 0 (3.93)

com n−14ikR(n− 1

2
)(n+

1

2
) + com n[n(n+ 1) + 4ikR (n+

1

2
) +

1

4
− λo2

m]

+ (n+ 1)com n+1 = 0 (3.94)

and the full solution to the radial WHE (from the solution to the Ince equation)
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can be written as

Jom(µ) = eikR cosh µ

√
cosh2 µ

2

∞∑
n=0

cem nM(n+
1

2
, n+ 2,−4ikR cosh2 µ

2
)

(3.95)

Jem(µ) = eikR cosh µ

√
cosh2 µ

2
− 1

∞∑
n=0

com nM(n+
1

2
, n+ 2,−4ikR cosh2 µ

2
)

(3.96)

The second linearly independent solution can be obtained from the first solu-

tion using the following method,

Feym(µ) = Jem(µ)

µˆ

µ0

1

Jem(µ′)2
dµ′ (3.97)

Geym(µ) = Jom(µ)

µˆ

µ0

1

Jom(µ′)2
dµ′ (3.98)

Fey and Gey are the second linearly independent solutions corresponding to

Je and Jo. The lower component of the spinor can be evaluated by using the

coupled equations (3.60).

Fey′m(µ) =
1

λem
(∂µ − ikR sinhµ)Feym(µ) (3.99)

Gey′m(µ) =
1

λom
(∂µ − ikR sinhµ)Geym(µ) (3.100)

(3.101)

Solutions to the radial WHE for both upper component (αem(µ), αom(µ)) and

lower component (βem(µ), βom(µ)) can be summarized in the combination of
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two linearly independent solutions as,

αem(µ) = AemJem(µ) +Be
mFeym(µ) (3.102)

βem(µ) = AemJe
′
m(µ) +Be

mFey
′
m(µ)) (3.103)

αom(µ) = AomJom(µ) +Bo
mGeym(µ) (3.104)

βom(µ) = AomJo
′
m(µ) +Bo

mGey
′
m(µ)) (3.105)

Aem, B
e
m and Aom, B

o
m are the undetermined coefficients and for notation

sake we classify undetermined coefficients according to eigenvalues correspond-

ing to λe2
m or λo2

m. We identify undetermined coefficients with superscript ”e”

and ”o” corresponding to the eigenvalues. A normalized choice for the unde-

termined coefficients would be

Aem = cos δem Aom = cos δom (3.106)

Be
m = sin δem Bo

m = sin δom (3.107)

Such a choice is helpful in formulating the scattering cross section in terms of

phase shifts in the scattering amplitude with δem an δom being the phase shifts.

Armed with all the solutions to the individual components of the separated

Dirac spinor, we can now write the full solution to the free Dirac equation as

a superposition of all the eigenstates of the separated equations

ψ(µ, ν) = (ST )
∑
m

(
αem(µ)Bem(ν) + αom(µ)Bom(ν)

i(βem(µ)Aem(ν) + βom(µ)Aom(ν))

)
(3.108)

3.7 Expansion of Incoming Plane Wave Spinor

in terms of Whittaker Hill Eigenfunctions

The form of the incoming plane wave (see Appendix 3.2 Eq. (3.19)) is given as

ei
~k·~r

(
cos θ

2

sin θ
2

)
(θ is the angle of incidence of the quasiparticle current). One

of the requirements to construct the scattering cross section is to expand the

incident plane wave in terms of eigenfunctions of the free Dirac equation which
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satisfy the following continuity condition (3.109) at µ = 0.

ψ(µ,−ν) |µ=0= ψ(µ, ν) |µ=0 (3.109)

To write the plane wave expansion we take the following path. We write

the free solution of the Dirac equation in elliptical coordinates as a linear

combination of the eigenstates. One specific superposition of these eigenstates

represents the plane wave spinor. Our aim in this section is to obtain these

linear combination coefficients which represent the plane wave spinor. We can

see that applying condition (3.109) to ψ(µ, ν) is the same as applying it to

Y (µ, ν) (see Eq. (3.53)). This is because the transformation matrix which

connects ψ to Y cancels on both sides of the Eq. (3.109).

Y (µ,−ν) |µ=0= Y (µ, ν) |µ=0 (3.110)

Applying the above condition, we can find the following constraint on the two

undetermined constants (per eigenstate) appearing in the radial solutions due

to the overall parity of the eigenfunctions.

Be
m = Bo

m = 0 (3.111)

Thus we see that the radial functions with constraint at µ = 0 do not depend

on Fey, Gey . Hence, the plane wave term only has Je and Jo terms which is

analogous to the plane wave expansion in terms of Bessel functions in polar

coordinates (see Ref. [78]) which only contains regular J Bessel functions.

Applying the appropriate boundary conditions on Y, we find the plane wave

solution to be:

ψ = (ST )
∑
m

(
(AemJemBem(ν) + AomJomBom(ν))

(i AemJe
′
mAem(ν) + i AomJo

′
mAom(ν))

)
(3.112)

The above solution with arbitrary constants Aem and Aom is an arbitrary super-

position of eigenstates. We need to calculate the linear combination coefficients

(as a function of θ) for which the expansion represents a plane wave spinor
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(3.19). We write down the following expansion for the plane wave incident at

an angle θ with respect to the x-axis. This step is important since we would

like to control the angle of incidence of the incoming quasiparticle current.

ei
~k·~r

(
cos θ

2

sin θ
2

)
= (ST )

{∑
m

nemBem(θ)

(
JemBem

i Je
′
mAem

)

+
∑
m

nomBom(θ)

(
JomBom

i Jo
′
mAom

)}
(3.113)

For details of the calculation of the plane wave expansion coefficients nem and

nom refer to Appendix A.3.

3.8 Scattering Amplitude and Phase Shifts

To study the scattering problem one requires well defined asymptotic forms

of the full wavefunction spinor. The asymptotic form of the wavefunction

determines the scattering amplitude in terms of the phase shifts of each partial

wave with respect to the partial waves in the incident quasiparticle current.

Thus, we consider the asymptotic limit µ → ∞ for the full wave function

spinor ψ = (ST )Y ,

ψ(µ, ν) =
1

(cosh µ+ cos ν)

(
cos ν

2
cosh µ

2
− sin ν

2
sinh µ

2

sin ν
2

sinh µ
2

cos ν
2

cosh µ
2

)

×
∑
m

(
αem(µ)Bem(ν) + αom(µ)Bom(ν)

i(βem(µ)Aem(ν) + βom(µ)Aom(ν))

)
(3.114)

. To proceed further, we need to use asymptotic forms for the radial functions.

As µ → ∞, the asymptotic form (see Appendix A.2) for the radial functions
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is given as

αem(µ) ∼
√

1

πkR
e−i

π
4 (cos δem + i sin δem)ei

kR
2
eµ (3.115)

βem(µ) ∼
√

1

πkR
e−i

π
4 (cos δem − i sin δem)e−i

kR
2
eµ (3.116)

αom(µ) ∼
√

1

πkR
e−i

π
4 (cos δom + i sin δem)ei

kR
2
eµ (3.117)

βom(µ) ∼
√

1

πkR
e−i

π
4 (cos δom − i sin δem)e−i

kR
2
eµ (3.118)

For compact notation, we can write eµ = 2r
R

, where R is half the distance

between the foci of the elliptical coordinates and r is the polar radial coordinate

in the limit where the angular elliptical coordinate ν approaches the polar angle

φ. In large µ limit elliptical coordinates reduce to polar coordinates.

αem(r) ∼
√

1

πkR
e−i

π
4 ei(kr+δ

e
m) (3.119)

βem(r) ∼
√

1

πkR
e−i

π
4 e−i(kr+δ

e
m) (3.120)

αom(r) ∼
√

1

πkR
e−i

π
4 ei(kr+δ

o
m) (3.121)

βom(r) ∼
√

1

πkR
e−i

π
4 e−i(kr+δ

o
m) (3.122)

The asymptotic form of the ST transformation matrix can also be evaluated.

As µ → ∞, coshµ + cos ν ∼ coshµ and coshµ ∼ sinhµ ∼ eµ

2
= r

R
. Applying

these limits in the ST matrix of Eq. (3.51) gives

ST ∼
√
R√
r

(
cos ν

2
− sin ν

2

sin ν
2

cos ν
2

)
(3.123)
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We can then substitute the asymptotic forms of the radial solutions back into

the full solution spinor of Eq. (3.108) to obtain

ψ = (ST )

√
1

πkR
e−i

π
4

∑
m

{
eikr(eiδ

e
mBem(ν) + eiδ

o
mBom(ν))

(
1

0

)

+ e−ikri(e−iδ
e
mAem(ν) + e−iδ

o
mAom(ν))

(
0

1

)}
(3.124)

We would like to write the full wave function in the two suggestive parts

requisite to set up the scattering problem

ψ = ψplanewave + ψscattered (3.125)

The plane wave expanded in terms of the separated eigenstates Eq. (3.113) in

the large µ limit takes the form

ψplanewave = (ST )

√
1

πkR
e−i

π
4

∑
m

eikr(nemBem(θ)Bem(ν)

+ nomBom(θ)Bom(ν))

(
1

0

)

+ (ST )

√
1

πkR
e−i

π
4

∑
m

e−ikri(nemBem(θ)Aem(ν)

+ nomBom(θ)Aom(ν))

(
0

1

)
(3.126)

Now we construct the outgoing radial wave with the appropriate asymptotic

form.

ψscattered = (ST )
∑
m

(demn
e
mBem(θ)Bem(ν)Hem(µ)

+ domn
o
mBom(θ)Bom(ν)Hom(µ))

(
1

0

)
(3.127)

Hem(µ) and Hom(µ) are the linear combinations of two linearly independent

solutions to the radial WHE (Jem(µ), Feym(µ)) and (Jom(µ), Geym(µ)) which
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have the behavior of an outgoing radial wave (Hem(r) ∼ Hom(r) ∼ eikr)

in the asymptotic limit. They play the role of Hankel functions [78] (linear

combination of Bessel J and Bessel Y) which appear in the study of scattering

problems in polar coordinates. dem and dom are the undetermined coefficients.

The asymptotic form of the scattered wave is given as

ψscattered(µ→∞) = (ST )

√
1

πkR
e−i

π
4 eikr

∑
m

(demn
e
mBem(θ)Bem(ν)

+ domn
o
mBom(θ)Bom(ν))

(
1

0

)
(3.128)

Now we compare our full wave function spinor, Eq. (3.108) and with the wave

functions written in a suggestive form in the asymptotic limit. eikr and e−ikr

multiplied by the angular functions in ν are independent functions. Hence we

can equate their coefficients in Eq. (3.125) and Eq. (3.124). We get four equa-

tions for the undetermined coefficients corresponding to the four independent

angular functions.

eiδ
e
m = (1 + dem)nemBem(θ) (3.129)

eiδ
o
m = (1 + dom)nomBom(θ) (3.130)

e−iδ
e
m = (nem)Bem(θ) (3.131)

e−iδ
o
m = (nom)Bom(θ) (3.132)

Solving the above four equations, we can write dem and dom (which are the

undetermined coefficients of the scattered wave) in terms of the phase shifts

δemand δom.

dem = (e2iδem − 1) , dom = (e2iδom − 1) (3.133)
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To write the full form of the scattering amplitude, we multiply the scattered

wave by the ST transformation matrix in its asymptotic form.

ψscattered =

√
1

πk
e−i

π
4

∑
m

(demn
e
mBem(θ)Bem(ν)

+ domn
o
mBom(θ)Bom(ν))

eikr√
r

(
cos ν

2

sin ν
2

)
(3.134)

(
cos ν

2

sin ν
2

)
represents the quasiparticle current going in the radial direc-

tion (see Eq. (3.22)). The scattering amplitude can be extracted from the

asymptotic form of the scattered wave as

f(θ, ν) =

√
1

πk
e−i

π
4 (
∑
m

(e2iδem − 1)nemBem(θ)Bem(ν)

+ (e2iδom − 1) nomBom(θ)Bom(ν)) (3.135)

Hence, we were successful in constructing the scattering amplitude (anal-

ogous to the general form of scattering amplitude (Eq. (3.21)) in elliptical

coordinates. The only thing that remains is to calculate the phase shifts δem

and δom, and for that we need to impose the conditions for the branch cut on

the full wave function spinor, Eq. (3.108).

3.9 Scattering Cross Section without Branch

Cut (Berry Phase Parameter B=0)

Before going on to the case with the branch cut, we make a quick check on our

scattering amplitude for the case of no branch cut or B=0 in Eq. (3.1). We

expect this trivial case to yield no scattering of quasiparticles. For the case of

no branch cut between the foci of the ellipse (µ = 0), we impose the following

condition on the wave function spinor

ψ(µ,−ν) |µ=0= ψ(µ, ν) |µ=0 (3.136)
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At µ = 0, we have the following behavior for Jem(µ), Je′m(µ), Jom(µ) and

Jo′m(µ)

Jom(0) 6= 0, Jem(0) = 0 (3.137)

Je′m(0) 6= 0, Jo′m(0) = 0 (3.138)

At µ = 0, the second independent solutions are all nonzero,

Feym(0) 6= 0, Geym(0) 6= 0 (3.139)

Fey′m(0) 6= 0, Gey′m(0) 6= 0 (3.140)

Applying condition (3.136), all the terms containing even parity angular eigen-

functions cancel out and we can write the remaining terms as(
(cos δemJem(0) + sin δemFeym(0))Bem(ν)

i (cos δomJo
′
m(0) + sin δomGey

′
m(0))Aom(ν)

)
=

(
0

0

)

Substituting for the values of the radial functions at µ = 0, we have(
(sin δemFeym(0))Bem(ν))

i (sin δomGey
′
m(0))Aom(ν)

)
=

(
0

0

)

From the boundary condition at the origin we get the following constraints on

the undetermined coefficients,

sin δom = 0, sin δem = 0 (3.141)

The above expression gives phase shifts as δem = 0 and δom = 0. Putting the

obtained phase shifts back into Eq. (3.135) for the scattering amplitude, we

obtain

f(θ, ν) = 0 (3.142)

Hence, we recover our trivial result that without the branch cut (and without

superflow) there is no scattering. Now we move to the interesting case of

quasiparticle scattering with the branch cut.
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3.10 Scattering Cross Section due to a Branch

cut (B=1)

For the case with a branch cut between the foci of the ellipse (µ = 0), we

set the Berry phase parameter B=1, which sets the condition imposed on the

wave function spinor Eq. (3.108) to,

ψ(µ,−ν) |µ=0= −ψ(µ, ν) |µ=0 (3.143)

Applying the above condition and using the values of the radial eigenfunctions

at µ = 0, all the terms containing odd angular eigenfunctions cancel out and

we can write the remaining terms as(
(cos δomJom(0) + sin δomGeym(0))Bom(ν)

i (cos δemJe
′
m(0) + sin δemFey

′
m(0))Aem(ν)

)
=

(
0

0

)

From the boundary condition at the origin we get the following constraints on

the undetermined coefficients,

cos δomJom(0) = − sin δomGeym(0), cos δemJe
′
m(0) = − sin δemFey

′
m(0)

(3.144)

In other words

tan δem = − Je′m(0)

Fey′m(0)
(3.145)

tan δom = − Jom(0)

Geym(0)
(3.146)

Since tan δem and tan δom are complex conjugates of each other we have to

account for the relative sign between δem and δom while calculating the inverse

tangent in the above relation. Substituting for δem and δom in the definitions of
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the phase shifts, Eq. (3.133) we obtain

(e2iδem − 1) =
−2Je′m(0)

Je′m(0) + i Fey′m(0)
(3.147)

(e2iδom − 1) =
−2Jom(0)

Jom(0)− i Geym(0)
(3.148)

Using Eq. (3.147) and Eq. (3.148) we can completely evaluate the scattering

amplitude and the differential cross section for quasiparticle scattering due to

branch cut without the superflow.

f(θ, ν) =

√
4

πk
e−i

π
4

∑
m

(
Je′m(0)

Je′m(0) + i Fey′m(0)

)
nemBem(θ)Bem(ν)

+

(
Jom(0)

Jom(0)− i Geym(0)

)
nomBom(θ)Bom(ν) (3.149)

We can write the exact differential cross section for the quasiparticle scattering

in terms of ϕ = ν − θ,

dσ

dϕ
=

4

πk

∣∣∣∣∣∑
m

(
Je′m(0)

Je′m(0) + i Fey′m(0)

)
nemBem(θ)Bem(ϕ+ θ)

+

(
Jom(0)

Jom(0)− i Geym(0)

)
nomBom(θ)Bom(ϕ+ θ)

∣∣∣∣∣
2

(3.150)

Recall that at the outset of this calculation, we shifted the origin of mo-

mentum space to the center of node 1. Thus, in the discussions that followed,

we have been considering quasiparticles scattered from one state in the vicinity

of node 1 to another state in the vicinity of node 1. The resulting cross section

is therefore only the cross section for these node-1 quasiparticles. However,

given a quasiparticle current in any particular direction, quasiparticles from all

four nodes will contribute equally. Thus to obtain the physical cross section,

we must average over the cross sections for quasiparticles at each of the four

nodes. Our results for node 1 can be easily generalized to node j = {1, 2, 3, 4}
by transforming coordinates to those appropriate to node j. In accordance

with the d-wave structure of the gap, we can define a local coordinate system
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at each of the four nodes with a k̂1 axis pointing along the direction of increas-

ing εk and a k̂2 axis pointing along the direction of increasing ∆k. Note that

while nodes 1 and 3 define right-handed coordinate systems, nodes 2 and 4

define left-handed coordinate systems. We can therefore transform from node

1 to node j simply by rotating our incident and scattered angles (θ and ν) and

then changing the sign of these angles to account for the handedness of the

local coordinate system.

Node 1: θ1 = θ ν1 = ν ϕ1 = ν1 − θ1 = ϕ

Node 2: θ2 = −(θ − π
2
) ν2 = −(ν − π

2
) ϕ2 = ν2 − θ2 = −ϕ

Node 3: θ3 = θ + π ν3 = ν + π ϕ3 = ν3 − θ3 = ϕ

Node 4: θ4 = −(θ + π
2
) ν4 = −(ν + π

2
) ϕ4 = ν4 − θ4 = −ϕ

(3.151)

Thus, to obtain results for quasiparticles about node j, we need only input

each θj and take the output as a function of (−1)j+1ϕ. Then the physical

cross sections are

dσ

dϕ
=

1

4

4∑
j=1

(
dσ

dϕ

)
j

σ‖ =
1

4

4∑
j=1

σj‖ (3.152)

3.11 Differential Cross Section Results for Berry

Phase Scattering

In this section we plot the differential cross section for quasiparticle scattering

from branch cut (no superflow) for several cases. We define the distance be-

tween the two vortices by the dimensionless parameter kR. The incident angle

for the current is described by θ as shown in Fig. 3.3. The thick dots on the foci

of the ellipse depict the vortex cores and the thick line joining the cores denotes

the branch cut and is also the µ=0 line in elliptical coordinates. The wiggly

arrows represent the incident quasiparticle current. The angle of incidence is

θ with respect to the x-axis. The plane wave spinor representing quasiparticle

current is incident on the vortex cores and part of it acquires a Berry phase

factor of (-1) between the vortex cores. The scattering contribution is entirely
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due to this effect.

Figure 3.3: Schematic of scattering of quasiparticles due to the Berry phase
effect. The Berry phase effect is denoted by the finite branch cut shown by
the thick line joining the dots. The dots represent the vortex cores coinciding
with the foci. Wiggly lines denote the incident quasiparticle current. θ is the
incident angle of the quasiparticle current with respect to the x-axis.

For very small inter vortex separation (kR=0.1), the ellipse looks like a

circle (see Fig. 3.4). In this limit we expect near-circular symmetry in the

plots of the differential cross section. We see that the quasiparticles see a

relatively small branch cut which results in the differential cross section being

almost independent of the incident angle θ (see Fig. 3.4). Note that this is

not a very good limit physically since we can no longer ignore the presence of

other vortices in the sample. When we stretch the vortex cores apart (kR=1),

the scatterer becomes more elliptical (see Fig. 3.5). This is reflected in the

elliptical symmetry we see in the cross section plots as we rotate the incident

angle of the quasiparticle current (see Fig. 3.5). We see that we get the same

plots for differential cross section if we rotate the incident angle by π, which

reflects the symmetry of the scatterer (symmetric under π rotation).

As we increase the inter-vortex separation further to kR=3.0, we obtain
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Figure 3.4: Vortex cores (foci of ellipse) are depicted by dots and the line
joining them is the branch cut. Vortex cores are separated by dimensionless
length kR=0.1. θ is the angle of incidence of the quasiparticle current. For
small inter-vortex separation, the ellipse looks like a circle which indicates
near-circular symmetry in the scatterer. We plot the single-node differential
scattering cross section for quasiparticle current incident at different angles θ.
The plots of the scattering cross section emphasize the near-circular symmetry
with respect to the incident angle θ due to small inter vortex separation.

the case of a highly elliptical scatterer. For this case the magnitude of the scat-

tering cross section increases as compared to the case of kR=1 (see Fig. 3.6).

We observe the scattered current sweeping closer to the forward direction for

higher kR. For kR=1 and kR=3, we see maximum scattering for the case of

θ = π/2. At this angle the quasiparticle current is normally incident on the

branch cut and results in maximum exposure to the Berry phase effect. Mirror

symmetry about θ = π/2 is seen in the cross section plots. Thus our results

for the scattering cross section are consistent with the geometry of the scat-

terer. We note that the scattering is reflectionless, or in other words, there is

no backscattering of the quasiparticle current. The absence of backscattering

due to the Berry phase has been previously reported in the literature for the

case of carbon nanotubes (see Ref. [79]).

We must now average over the scattering contribution due to quasiparticles

from all four nodes. The four node average has been performed as prescribed

in Eq. (3.151) and Eq. (3.152). After averaging over four nodes, we still see
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Figure 3.5: Vortex cores are further apart with dimensionless length kR=1.0.
With the increase in inter-vortex separation the scatterer becomes more ellip-
tical and plots show expected elliptical symmetry in the single node differential
scattering cross section. Also note the increased magnitude of scattering cross
section which can be attributed to the increase in the length of branch cut. In
other words, more quasiparticles hit the branch cut

Figure 3.6: Vortices are further apart with kR=3.0. The plots of the single
node scattering cross section show elliptical symmetry. We also see increase in
the magnitude of scattering cross section as compared to the case of kR=1.0

θ dependence in the differential cross section (see Fig. 3.7). The resulting

cross section is π/2 periodic with respect to θ. This is a consequence of the

definition of θ at each node (see Eq. (3.151)). We should keep in mind that in

the setup that we consider (cuprate sample), the pair of vortices is not always
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aligned along the x-axis as shown in Fig. 3.3.

Figure 3.7: Four node average differential cross section. We plot differential
cross section averaged over the contributions of quasiparticles from all four gap
nodes, for quasiparticle current incident at various angles θ and for inter-vortex
separation kR=3.0. Results are π/2 periodic with respect to θ.

Figure 3.8: kσ‖ plotted versus increasing inter vortex separation, averaged
over the incident angle θ. The solid curve shows the transport cross section
for the Berry Phase scattering case. The dashed curve shows the transport
cross section for the superflow scattering. Inset shows kσ‖ plot for the case of
superflow scattering of quasiparticles plotted for very high kR values [1].

In Fig. 3.8, we plot the total transport cross section, kσ‖ as a function of
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inter-vortex separation kR.

kσ‖ =

ˆ π

−π
dϕ

dσ

dϕ
(1− cosϕ) (3.153)

We notice that the transport cross section goes to 0 as kR→0. This is expected

since the Berry phase effect (branch cut) is negligible for very small values of

kR. With the increase in kR, the longitudinal cross section increases rapidly

and then saturates for kR > 1. On the basis of the transport cross section

plots obtained for the case of superflow and Berry phase scattering, one can

make an intuitive comparison of these two effects. In the superflow paper

[1], we have neglected the Berry phase effect by applying periodic boundary

conditions to the quasiparticle wave functions. This amounts to scattering

of quasiparticles from vortices with superflow potential with the strength of

two vortices. To calculate the transport cross section for the case of a branch

cut between the two vortices, we have neglected the superflow contribution.

Hence we have neatly isolated the scattering contributions due to these two

effects, which gives us an opportunity to compare these two effects. Before

such a comparison, we must treat the case of the Berry phase scattering on an

equal footing with the superflow scattering. Due to the two-center nature of

the regularized Berry phase effect, we are dealing with elliptical geometry in

this case. Upon performing the four-node average, we see that this elliptical

symmetry shown in the differential cross section plots (See Fig. 3.6) has been

reduced to near circular symmetry even for the highly elliptical case of kR=3

(Fig. 3.7). Also, since there is no preferred orientation of the branch cut, one

can average over the alignment of the branch cut with respect to the x-axis.

The final DCS averaged over this alignment will have no elliptical symmetry

or skew scattering. Based on the above arguments, we may directly compare

the transport cross section due to superflow potential of two vortices of radii

kR on top of each other to the Berry phase scattering due to two vortices

separated by the distance kR (averaged over incident angle θ). In both cases,

kR parameterizes the dimensionless energy of incident quasiparticles. kR also

determines the size of the vortex for the case of superflow scattering and the

length of the branch cut for the case of Berry phase scattering. For the super-
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flow case, we see a steep increase in the transport cross section (after averaging

over 4 nodes) followed by saturation for kR > 5. For the case of Berry phase

scattering, the increase in transport cross section is steeper than for the su-

perflow case. For the Berry phase scattering the magnitude of kσ‖ saturates

for kR > 1. This shows that the Berry phase is the more important effect of

the two for kR < 5 (high field low temperature regime). The magnitudes of

transport cross sections for higher kR (weak field high temperature regime)

are similar for both the superflow and Berry phase processes. On the basis of

the plots of transport cross section for both cases, one can conclude that the

transport cross section due to the branch cut dominates for kR < 5, and is of

similar order to the superflow contribution for kR > 5.

3.12 Conclusions

In this chapter, we calculated the Berry phase contribution to the scattering

of quasiparticles from vortices in a d-wave superconductor. We simplified the

Bogoliubov-de Gennes Hamiltonian by applying a singular gauge transforma-

tion. This transformation extracts the phase from the gap function and en-

codes it in the antiperiodic boundary conditions imposed on the wave function.

Within the single-vortex approximation, this antiperiodic boundary condition

(Berry phase) manifests itself as a semi-infinite branch cut such that with

each trip around the origin, the wave function changes sign. We neglected

the superflow contribution and considered the scattering of quasiparticles due

only to the presence of this antiperiodic boundary condition. We found the

scattering cross section for this case to be divergent in the forward direc-

tion. In order to regularize the Berry phase effect, we considered the two

vortex problem (two Aharonov-Bohm half fluxes) which has a finite branch

cut between its cores. To solve this two-center problem, we chose to work in

elliptical coordinates,which provide an advantage in implementing the branch

cut condition on the wave function spinor. We can turn on the Berry phase

effect by simply imposing the boundary condition (see Eq. (3.1)) on the wave

function spinor. We separated the (2+1)d Dirac equation in elliptical coordi-

nates and found that the separated equations were Whittaker Hill equations
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(WHE). We solved the eigenvalue problem for the angular WHE. With the

calculated eigenvalue as a parameter, we obtained the two linearly indepen-

dent radial solutions with well-defined asymptotic behavior. We developed a

plane wave expansion for the incident quasiparticle current in terms of the

separated solutions of the WHE. Using a partial wave analysis, we expressed

the scattering amplitude and differential cross section in terms of phase shifts.

We obtained the phase shifts by imposing the branch cut condition (Berry

phase effect) on the full wave function spinor. We analyzed the scattering

cross section due to the Berry phase effect for different separations of the vor-

tex cores. We have also presented the variation of the total transport cross

section as a function of the inter-vortex separation. We have also given a

qualitative comparison of transport cross sections for the Berry phase and the

superflow scattering mechanisms in Sec. 3.11. The Berry phase scattering of

quasiparticles discussed here is not restricted to the case of d-wave supercon-

ductors. With some modifications of the incident plane wave, our problem

becomes that of general relativistic scattering in two dimensions due to two

Aharonov-Bohm half fluxes. In this work, we have neglected the superflow

contribution. Single vortex scattering due to a circulating superflow is con-

sidered in a separate paper [1]. The problem that we have considered in both

the manuscripts is a simplified version of a more complicated scattering pro-

cess. We have made a series of approximations [1] to tackle the problem in its

simplest form. This work should be treated as a first step forward to under-

stand the complicated and important issue of scattering of quasiparticles from

vortices. Deviating from the analytical setup, we can improve the model by

considering the anisotropic Dirac spectrum, internodal scattering, and an even

more rigorous description of plane waves. All these effects become important

once we move away from the weak-field limit. The linearized version of the

BdG equation is limited to low energy quasiparticle excitations and one must

use the full BdG equation and solve it numerically for higher energy cases.

One way to include the above mentioned effects is to consider a sea of vortices

in a lattice model. Such a vortex lattice calculation has been considered by

Melikyan and Tesanovic [54]. In the appendix of their paper, they have set

up the two vortex scattering problem in elliptical coordinates. In this chapter,
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we have successfully obtained the exact scattering solutions to the two vortex

problem in elliptical coordinates. The results of our calculations along with

the vortex lattice calculations provide a greater insight into the bigger picture

of quasiparticle scattering from vortices. To this end, our simplified model of

double vortex scattering in an analytical framework is an important result.

Our next step will be to consider both effects within the double vortex model

by including the superflow that circulates around the vortices in the presence

of the branch cut that lies between them. We expect that this analysis, left

for future research, will provide insight about not only the relative importance

of the two contributions but also the interference between them.
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Chapter 4

Quantum effects in 1D:

Fractional Quantum Hall Edge

Interferometry

4.1 Introduction

Quantum Hall devices are realized in Gallium-Arsenide heterostructures, in

which the the electrons are confined to the two-dimensional interface between

a layer of doped AlxGa1−xAs and undoped GaAs. The doped layer is a semi-

conductor, while the undoped one is an insulator. By applying a confining

electric field perpendicular to the interface (gate voltage), a 2DEG is formed

at the interface. In order for an incompressible (Hall) state of the 2DEG

to emerge, the device is brought into a strong magnetic field transversal to

the interface. A voltage drop Vy may be applied inside the interface so as to

generate an electric current Iy. Due to the Lorentz force acting on the electrons

that carry the current, a voltage drop Vx in the direction perpendicular to the

current is then observed. Fundamental properties of quantum Hall system

can be understood in terms of standard electrodynamics. We write down the

electrodynamics of the incompressible Hall fluid. The following section is based

on the review article by Bieri and Fröhlich [80].
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4.1.1 Electrodynamics of incompressible Hall liquid

Consider a 2DEG confined to a planar region and in presence of strong, uni-

form external magnetic field ~B0 perpendicular to (X, Y ) plane. Due to the

mobility gap in the bulk (or RL = 0), we have a incompressible quantum hall

fluid. On slowly varying the em fields ( ~Btotal = ~B0 + ~B(~x), we study the the

orbital dynamics of electrons in the planar region. This dynamics only de-

pends on Btotal
z = ( ~B0 + ~B(−→x )) · ~ez and ~E‖ = E(x) = (E1(~x), E2(~x)). The

electromagnetic field tensor in 2+1 dimensions can be written as,

(Fµν) =

 0 E1 E2

−E1 0 −B
−E2 B 0

 . (4.1)

Electrodynamics of Quantum hall state can be written in terms of following

equations.

jk(~x) = σHε
klEl(~x) (4.2)

which is Hall’s law (for RL = 0). The electric current is perpendicular to the

electric field. Charge- and current density in Λ satisfy the continuity equation

given by
∂

∂t
ρ(~x) +∇ · j(~x) = 0 . (4.3)

From Faraday’s induction law we can write,

∂

∂t
Btotal
z (~x) +∇×E(~x) = 0 . (4.4)

Based on the above written equations we arrive at

∂

∂t
ρ = −∇ · j = −σH∇×E = σH

∂

∂t
Btotal
z . (4.5)

We integrate Eq. (4.5) in time, with integration constants chosen such that

j0(~x) = ρ(~x) + en ,

Btotal
z (~x) = B(~x) +B0 ,

(4.6)
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where −en is the charge density of a homogenous 2DEG in a constant mag-

netic field ~B0. We then arrive at the Chern-Simons Gauss Law [81]

j0(~x) = σHB(~x) . (4.7)

In terms of the electromagnetic field tensor, we can write Faraday’s induction

law as

∂[µFνλ] = 0 , (4.8)

which in turn can be written in terms of vector potential,

Fµν = ∂[µAν] . (4.9)

In compact notation we can write the current as,

jµ(x) =
σH
2
εµνλFνλ(x) (4.10)

= σH ε
µνλ∂νAλ(x) . (4.11)

Whenever σH is constant, the current (4.10) satisfies the continuity equation

(ii), i.e.,

∂µj
µ =

1

2
σHε

µνλ∂µFνλ
(4.8)
= 0 . (4.12)

At the boundary of the sample Σ, the value of σH jumps (across the boundary

seperating the Hall state and the insulator) and the current (4.10) is not

conserved (violates continuity equation)

∂µj
µ(~x) =

1

2
εµνλ(∂µσH)Fνλ 6= 0 , for x ∈ Σ , (4.13)

In order to resolve this contradiction, we need to define a total current that has

an edge component added at the boundary of this discontinuity. Hence we can

derive the edge dynamics from the requirement of consistency of continuity
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condition. with

∂µj
µ
total = 0 ,

jµtotal = jµbulk + jµedge , ,

jedge ·∇σH = 0 .

Equation (4.13) for the bulk current (4.10) then implies that, on the “edge”

Σ,

∂µj
µ
edge = −∂µjµbulk = ∆σHE‖|Σ , (4.14)

where E‖|Σ denotes the electric field “parallel” to Σ (i.e., the component of

E|Σ parallel to the contour lines of σH) and ∆σH is the discontinuity of σH

across Σ. This non-conservation of the edge current is called chiral anomaly

in 1 + 1 dimensions. The chiral anomaly (in 3 + 1 dimensions) is a well-known

phenomenon in gauge theories of elementary particles. In the following section

we exploit this anomaly to write the gauge invariant form of the edge action.

4.2 Effective action of Hall liquid confined in

infinite strip

Figure 4.1: Fractional Quantum Hall in infinite strip.

Based on the idea of chiral anomaly we write down gauge invariant effective
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action that gives the current in Eq. (4.10).

S[A] =
ν

4π

ˆ
D

d3rεµνλAµ∂νAλ (4.15)

. This action is the well known Chern-Simons action in (2+1)D [82]. For

an infinitely extended Hall droplet this action is gauge invariant. But for a

finite domain this action is gauge non-invariant due to the boundary terms.

We now derive the effective edge action designed to cancel this anomaly. We

write the effective edge action in a gauge non-invariant form where we can

manipulate the two edges independently (see Fig. (4.1)). The gauge invariant

action describing incompressible FQH droplet in infinite strip is given by

S = Sbulkcs [Aµ] + SedgeL (aLµ) + SedgeR (aRµ )

S =
ν

4π

ˆ
D

d3rεµνλAµ∂νAλ

+
1

4π

L,R∑
i

ˆ
dxdt[γiDtφ

iDxφ
i − v(Dxφ

i)2 + κiε
µνaiµ∂νφ

i] (4.16)

where we have defined the gauge invariant covariant derivative as,

Dµφ
i = ∂µφ

i + γiκia
i
µ. (4.17)

Here γi = ±1 is the chirality of the edge and κi is the normalization constant

and is fixed by the anomaly cancellation. We have also defined the vector

potentials aR,Lµ = γR,LAµ|∂DR,L as the boundary definitions of Aµ on the two

edges of the infinite FQH strip. The definition of two “independent” bound-

aries allows us to manipulate the edges via different boundary gauge fields.

Now we show that the overall action is gauge invariant. We make the trans-

formation Aµ → Aµ + ∂µβ, aiµ + ∂µβ
i and φi → φi − γiκiβi on S. Individual
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terms in S are not gauge invariant and transform as follows,

S = S + δSbulkcs [Aµ] + δ[SedgeL (aLµ) + SedgeR (aRµ )]

= S +

R,L∑
i

ν

4π

ˆ
∂Di

d2rγiε
µνβi∂µAν |∂Di −

1

4π

R,L∑
i

γiκ
2
i

ˆ
dxdtβiεµν∂µa

i
ν

(4.18)

S becomes gauge invariant if we set the normalization κ2
i = ν.

S =
1

4π

L,R∑
i

ˆ
dxdt[γiDtφ

iDxφ
i − v(Dxφ

i)2 + κiε
µνaiµ∂νφ

i] (4.19)

Expanding the definition of covariant derivatives we obtain,

S =
1

4π

L,R∑
i

ˆ
dx dt[−φi(γi∂t∂x − v∂2

x)φ
i

+ κ2
i (γia

i
0a
i
1 − v(ai1)2)− 2κiφ

i∂x(a
i
0 − vγiai1)] (4.20)

Our goal in the above action is to shift the field φi in such a way that it cancels

the linear terms in φi. In order to do that, we use the following parametrization

of the gauge fields.

ai0 = α̇i − vβix, ai1 = αix −
1

v
β̇i (4.21)

We can rewrite the above expression in an alternative form,

2βi = (∂xa
i
0 − ∂tai1) (4.22)

2αi = (
1

v
∂ta

i
0 − v∂xai1) (4.23)

Where we define the D’ Alembertian operator as 2 = 1
v
∂2
t−v∂2

t . Expanding the

covariant derivative in the Eq. (4.19) and writing it in terms of parameterized
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gauge potentials.

S =
1

4π

L,R∑
i

ˆ
dxdt[−φi(γi∂t∂x − v∂2

x)φ
i − 2κiγiφ

i∂x(γi∂t − v∂x)(αi + γiβ
i)

+ κ2
i (α

i
x −

1

v
β̇i)(γi∂t − v∂x)(αi + γiβ

i) + κ2
i (γia

i
0a
i
1 − v(ai1)2)] (4.24)

Now we shift the fields φi → φi − γiκi(αi + γiβ
i). Under this shift the action

in Eq. (4.24) transforms as,

S =
1

4π

L,R∑
i

ˆ
dxdt[−φi(γi∂t∂x − v∂2

x)φ
i + κ2

i γiβ
i2(αi + γiβ

i)] (4.25)

We can now write the fields in terms of the vector potentials.

S =
1

4π

L,R∑
i

ˆ
dxdt[−φi(γi∂t∂x − v∂2

x)φ
i

+ κ2
i γi(∂xa

i
0 − ∂tai1)(∂t − vγi∂x)−1(ai0 − γivai1)] (4.26)

Now we choose a gauge where ai0 = 0 and ∂ta
i
1 = Ei(x, t)

S =
1

4π

L,R∑
i

ˆ
dxdt

[
−φi(γi∂t∂x − v∂2

x)φ
i + vκ2

i

ai1∂ta
i
1

(∂t − vγi∂x)

]
(4.27)

In the above action the left and right edges are completely decoupled and can

be manipulated independently using different gauge fields. In other words the

edges that do not participate in the tunneling process can be integrated out

from the partition function. To make contact with interferometers made out

of these edges, we write edges as φ1 and φ2 and their chirality is determined

by γ1 and γ2 which also determines the geometry of the interferometers (Fabry

Perot or Mach-Zehnder). Note that our description allows us to consider each

edge of the infinite FQH strip independently. The gauge fields coupled to them

can also be varied independently. We consider system of two FQH strips with

two tunneling point contacts between any two edges of different droplets (see

Fig. (4.2)).
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Figure 4.2: 2 point contact Fabry Perot(left) and Mach Zehnder(Right) inter-
ferometers made of two FQH edges.

4.2.1 Interferometer Currents from Generalized Gauge

Fields

We construct interferometers (see Fig. (4.2)) from these decoupled edges with

point contact tunneling described by two boundary Sine-Gordon terms.

S =
1

4π

2∑
i=1

ˆ
dxdt∂xφi(γi∂t − vi∂x)φi

+

ˆ
dt
∑
j

DUj
π

cos

(
φ1(xj, t)√

ν1

− φ2(xj, t)√
ν2

+ āj(t)

)

+
1

4π

2∑
i=1

ˆ
dxdt vκ2

i

(
ai1∂ta

i
1

∂t − viγi∂x

)
(4.28)

where κi =
√
νi

āj(t) = aj(t) +
∑
i

(−1)iγi(α
i(xj, t) + γiβ

i(xj, t)) (4.29)

We define aj(t) as the integrated vector potential responsible for tunneling

from one edge to another via jth point contact. Varying the action with

respect to aj(t) gives the tunneling current from the point contact j. ai1(x, t) is

the vector potential corresponding to the ith edge. Varying the action through

ai1(x, t) gives current at any point x on the ith edge. The shift term in the
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fields can be written as

(αi + γiβ
i) = −viγi

ˆ ˆ
dx′dt′Qi(x− x′, t− t′)ai1(x′, t′) (4.30)

where we have defined the retarded kernel Q as,

Qi(x− x′, t− t′) =

ˆ ˆ
dωdk

eik(x−x′)−iω(t−t′)

i(ω + γivik + i0)

Qi(x− x′, t− t′) = θ(t− t′)δ(x− x′ + γivi(t− t′)) (4.31)

Substituting the kernel we can obtain expressions for αi + γiβ
i:

(αi + γiβ
i) = −viγi

ˆ t

−∞
dt′ai1(x+ γivi(t− t′), t′) (4.32)

The point contact tunneling current is given as,

Ij(t) =
δS[φ1, φ2, a1, a2, a

1
1, a

2
1]

δaj(t)

=
−DUj
π

sin

(
φ1(xj, t)√

ν1

− φ2(xj, t)√
ν2

+ āj(t)

)
(4.33)

The current at any point on the ith edge is given by,

I i(x, t) =
δS[φ1, φ2, a1, a2, a

1
1, a

2
1]

δai1

=
vi νi
2π

ˆ 0

−∞
dt′Ei(x+ γivit

′, t) +
∑
j

θ(γi(x− xj))Ij(t) (4.34)

In the next part of this chapter we calculate explicit expressions for current in

both weak and strong tunneling limits. We show that including compactness

of chiral boson theory in the path integral formalism is important for obtaining

physical results in the strong tunneling limit.

84



4.3 Field Theory of Two Point Contact Inter-

ferometers of Arbitrary Filling Factors.

Introduction. The defining feature of quantum Hall states is the existence

of topologically protected massless edge states. These states are believed to

be effectively described by a theory of chiral bosons also known as the one-

dimensional chiral Luttinger Liquid (χLL) [82, 83] (for review see [84]). The

tunneling experiments provide one of the natural ways to probe these edge

states [84]. The theory of tunneling into FQHE edge was extensively developed

over last two decades [82, 84–102]

The simplest model which is believed to universally describe the tunneling

into the FQHE edge is the model of two chiral bosons coupled by a tunneling

cosine term. If both chiral edges are identical, the model can be mapped to

an integrable boundary sine-Gordon model and analyzed both in the limit of

weak and strong tunneling between the edges [85]. In the limit of strong tun-

neling the charge transfer between chiral edges can be described by instanton

configurations of the model. The corresponding instanton expansion can be

understood as a weak coupling expansion of a dual model [9, 103].

The subject of this work is the system of chiral edges coupled via sev-

eral tunneling contacts. The presence of several tunneling points allows for

quantum interference between several paths of charge propagation in coher-

ent regime. Unfortunately, the model with several tunneling contacts is not

integrable and cannot be solved by Bethe Ansatz.

Model. Let us start by defining the field theory model for FQHE interfer-

ometers. In this chapter we focus on the case of a two point-contact inter-

ferometer leaving generalizations to a multiple-point-contact case for future.

We consider two chiral FQH edges corresponding to filling factors ν1,2. The

Lagrangian for two FQH edges in imaginary time formalism can be written in

the bosonized form as

L0 =
2∑

σ=1

νσ
4π

(∂xφσ)(iγσ∂τ − vσ∂x)φσ (4.35)
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where the fields φ1,2 are compact (φσ ≡ φσ + 2π) chiral bosonic fields describ-

ing two propagating chiral edge modes with velocities v1,2 respectively. The

sign factors γ1,2 = ±1 determine the direction of propagation of chiral fields

(right/left), so that γ1γ2 = −1 and γ1γ2 = 1 represent the cases of Fabry-Perot

and Mach-Zehnder interferometers respectively. Each point contact tunneling

can be modeled as a boundary Sine-Gordon term driven by the integrated

vector potential Φj (j = 1, 2) [104]

Ltunn = −
2∑
j=1

Uj
δ

cos
(
ϕ(xj, τ) + Φj(τ)

)
, (4.36)

where

ϕ(x, τ) = φ1(x, τ)− φ2(x, τ) , (4.37)

Uj are tunneling amplitudes and δ represents the microscopic (ultraviolet)

scale. The overall action of the system is

S =

ˆ
dx dτ (L0 + Ltunn) (4.38)

and the partition function of the interferometer is given by

Z[Φj] =

ˆ
Dφ1Dφ2 e

−S[φ1,φ2,Φj ] . (4.39)

It is a functional of the e/m potentials Φj(t) which encodes electromagnetic

responses of the interferometer. [104] Namely, the variation of (4.39) with

respect to Φj gives the tunneling current Ij(τ) through the contact j. A func-

tional integration in (4.39) is taken over the compact bose fields φj ≡ φj + 2π.

We have chosen the normalization of the fields such that the electron operator

on the edge j is proportional to ∼ eiφj In this work we pay special attention

to the compactness of the Bosonic fields φj. In the theory of non-chiral boson

the compactness is known to be important. In the path integral formulation

the compactness requirement is equivalent to allowing for instanton (vortex)

configurations and might lead to the Kosterlitz-Thouless transition (see e.g.,

[10]). In the present context of chiral fields the proper treatment of compact-
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ness is crucial for obtaining correct results in the limit of strong tunneling

Uj →∞. Indeed, in the limit of strong tunneling it is natural to assume that

the values of the bose field at tunneling points ϕ(xj) are pinned to the minima

of the cosine in (4.36) and the expansion in the number of instantons corre-

sponding to the transitions between these minima will result in the expansion

in 1/Uj. It turns out however that this expansion is plagued by non-localities

and being applied without caution produces unphysical results [92, 96, 105].

A work around solution to the problem was found by V. Ponomarenko and

Averin [92, 95] who introduced auxiliary “zero modes” designed to kill pesky

nonlocal terms to produce physically meaningful result. The main goal of this

work is to show that the correct treatment of the compactness of the bosonic

field ϕ makes the use of auxiliary modes unnecessary and produces physical

results identical to Ref. [95].

Green’s function. The tunneling part of the model (4.36) depends only on a

difference ϕ of bose fields (4.37). We can take advantage of this fact replacing

φ1 → ϕ + φ2 and then integrating out the field φ2. This leaves us with the

partition function (4.39) given by Z[Φj] =
´
Dϕ exp {S0 + Stunn} where the

tunneling part of the action is given by Stunn =
´
dτ Ltunn with (4.36) while

the free part of the action is given in Fourier representation by

S0[ϕ] = −
ˆ

d2k

(2π)2
ϕ∗G̃−1ϕ , (4.40)

where

G̃(ω, k) =
8π

ν

ṽ − iaω/k
(v1k − iγ1ω)(v2k − iγ2ω)

. (4.41)

Here we defined

ν−1 =
ν−1

1 + ν−1
2

2
, ṽ =

ν1v1 + ν2v2

ν1 + ν2

, a =
γ1ν1 + γ2ν2

ν1 + ν2

. (4.42)

We can think of ν−1, ṽ and a as of average inverse filling factor, velocity

and chirality of edges. Let us remark here the Mach-Zehnder interferometer

case corresponds to a = ±1, the Fabry-Perot interferometer with ν1 = ν2

corresponds to a = 0. All other values of the parameter a are between −1 and
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1 and correspond to an asymmetric Fabry-Perot interferometer.

In the limit of weak coupling the generating function Z[Φj] can be written

as a series expansion in Uj using the correlation function (4.41) rewritten as

G̃(ω, x) =
πi

ω

ˆ
dk

2π
eikx
[

2aγ1γ2

νk
−

2∑
σ=1

γσ/νσ
k − iγσ

vσ
ω

]
.

(4.43)

We can split this propagator into local and non-local contributions G̃ = G̃nl +

G̃loc. The non-local contribution coming from the first term in Eq. 4.43 can

be written as

G̃|nl(τ, x) = i
πaγ1γ2

ν
sgn(τ) sgn(x) . (4.44)

Since aγ1γ2/ν = (γ1ν
−1
1 + γ2ν

−1
2 )/2 is strictly integer number, it contributes

only as an overall phase to the correlation function of corresponding vertex

operators 〈eiϕ(0,0)e−iϕ(τ,x)〉 = eiπ
a
ν exp{−Gloc(τ, x)}. The only non-trivial con-

tribution comes from the local part of the correlation function given by the

second term in (4.43)

G̃loc(ω, x) =
2∑

σ=1

π

νσ|ω|
e−|ω

x
vσ θ(ωγσ

x

vσ
) , (4.45)

At coinciding points we understand (4.45) as a limit x→ 0+ with θ(0+) = 1/2.

Our goal is to find the partition function of the model (4.38,4.36,4.40) in the

limit of strong tunneling Uj →∞. First of all, following previous approaches

[103, 106] we are going to integrate our the degrees of freedom corresponding

to the one-dimensional bulk and leave an effective action of Caldeira-Leggett

type (CL) depending only at the values of fields at the tunneling contacts.

4.4 Effective Caldeira-Leggett Model.

The action of the tunneling model is quadratic except for the tunneling part

(4.36) localized at tunneling point. To integrate out the bulk field we impose
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the following constraint

ϕ(xj, τ) = ϕj(τ) mod 2π. (4.46)

by inserting

1 =

ˆ
Dϕj

∏
j

δP (ϕ(xj)− ϕj). (4.47)

into the path integral. Here we introduced new “contact” fields φj(τ) which

are constrained to be the values of the ϕ(x, τ) field at contact points x = xj.

The notation δP is chosen for the periodic version of the Dirac’s delta function

defined as

δP (ϕj(τ)) =
∑
αj(τ)

ei
´
dταj(τ)ϕj(τ) , (4.48)

where the sum is taken over the integer-valued fields αj(τ). 1 The periodicity

of the constraint (4.46) is the key point of our derivation. It is very important

for the following and is a direct manifestation of the compactness of ϕ which

is ultimately related to the discreteness of electric charge.

Inserting (4.47) into the partition function and using (4.48) we can integrate

out the field ϕ and obtain

Z[Φj] =

ˆ
[Dϕj] exp {−SCL[φj]− Stunn[φj,Φj]} , (4.49)

Stunn =

ˆ
dτ
∑
j

Uj
δ

cos
(
ϕj(τ) + Φj(τ)

)
(4.50)

SCL = − log

ˆ
[Dαj]e

∑
ω α
∗
iGijαje−i

∑
ω α
∗
jϕj . (4.51)

Here the latter formula is written in frequency representation and we assumed

the summation over tunneling points i, j. The CL matrix Green’s function is

defined in terms of (4.45) as

Gij(ω) = G̃(ω, xi − xj) . (4.52)

1One should think of αj(τ) as of integer number defined for every slice of imaginary
time.
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Notice that we dropped here the nonlocal part of the Green’s function (4.44).

This is allowed as the α fields are integer-valued and the contribution to the

first factor in (4.51) is the overall phase.

After dropping the oscillatory non-local part of the propagator we assume

that the path integral (4.51) is dominated by large fluctuations of α fields. We

replace the functional summation over discrete α fields by Gaussian integration

in (4.51) and obtain

SCL =
1

4

∑
ω

ϕ∗i (G
−1)ijϕj . (4.53)

Indeed, the dominant fluctuations of α fields can be estimated from
∑

ω δα
2
i (ω) ≈∑

ω Gii(ω) ≈
∑

ω |ω|, which is a huge number controlled by the ultraviolet

cutoff of the problem. The partition function can be written as (4.49) with

(4.50,4.53), where (G−1)ij is given by the matrix inversion of (4.52).

Current in weak tunneling limit. To calculate the tunneling current in the

limit of weak tunneling we need the correlators of vertex operators given by2

〈eiϕj(τ)e−iϕk(0)〉 = e4
∑
ω e

iωτGjk

= K(ξ1
jk, iτ)K(ξ2

jk, iτ) . (4.54)

where the propagation time between the contacts is defined as

ξσjk = γσ
xj − xk
vσ

. (4.55)

Here we defined K as,

K(ξσjk, iτ) =


[

1
vσ(ξσjk+iτ)

] 1
νσ

(T = 0)

[
πT

vσ sinhπT (ξσjk+iτ)

] 1
νσ
, (T 6= 0)

(4.56)

Using the correlation function (4.54,4.56) we obtain the tunneling current

2Note here that one could use instead of (4.52) the Green’s function including the non-
local term (4.44). This would not change the correlation functions for vertex operators.
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through the j-th point contact in the lowest order of perturbation theory as

[9, 103]

Ij(t) =
∑
i

UiUj
2δ2

ˆ t

−∞
dt1 sin(Φi(t1)− Φj(t))

× Im

(
2∏

σ=1

K(ξσij, t1 − t− i0)

)
. (4.57)

In fact, it is easy to write down the expression for the current at any point on

the interferometer as a function of real time

Iσ(x, t) = Ics(Eσ) +
∑
j

θ(γσ(x− xj))Ij(t) (4.58)

where Ics = vσ νσ
2π

´ 0

−∞ dt
′Eσ(x+γσvσt

′, t) is the current due to the electric field

Eσ along the edge due to the contribution of the bulk Hall current [104].

4.5 Interference in weak tunneling regime

In this section we calculate explicit expressions for tunneling current at point

contacts as a function of applied bias and flux. In this section we assume that

the only vector potential applied is across the tunneling contacts by setting

Φj = V τ . Eq. (4.57) can be used to generalize for arbitrary gauge potentials.

Z =

ˆ
D[ϕ1, ϕ2]e−

∑
ω,ij ϕ

∗
iG
−1
ij ϕj+

∑
j

Uj
δ

´
dτ cos(ϕj(τ)+Φj(τ)) (4.59)

In the weak tunneling limit for small Uj, we expand the tunneling term. Re-

taining terms till first order we obtain,

Z = Z0[1 +
1

4

∑
ij

UiUj
δ2

ˆ
dτ1dτ2 cos(Φi(τ1)− Φj(τ2))

× K(ξ1
ij, iτ1 − iτ2)K(ξ2

ij, iτ1 − iτ2) + ....] (4.60)
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From the above expression for partition function we can calculate current using

〈Ik(τ)〉 = δ log(Z)
δΦk(τ)

.

〈I(τ)〉 =
1

2

∑
ij

UiUj
δ2

ˆ
dτ1 sin(Φi(τ1)− Φj(τ))K(ξ1

ij, iτ1 − iτ)K(ξ2
ij, iτ1 − iτ)

(4.61)

We analytically continue the expression for current in Eq. (4.61) to real time

along Kadanoff-Baym contour (t0 to t and t to t0 + iβ)[107]. Out of the three

branches of the contour, the vertical imaginary contribution is 0 if we ignore the

initial correlations by letting t0 → −∞. The remaining two contributions come

from the forward and backward branches of the real time Keldysh contour.

〈I(t)〉 =
∑
ij

UiUj
2δ2

ˆ t

−∞
dt1 sin(Φi(t1)− Φj(t))

×− i
[
K(ξ1

ij, t1 − t)K(ξ2
ij, t1 − t)|> −K(ξ1

ij, t1 − t)K(ξ2
ij, t1 − t)|<

]
(4.62)

Where the > (<) symbol represents contour ordered correlations living on the

upper (lower) branch of the Keldysh contour. The differ by an infinitesimal

imaginary term +(−)iε. Hence we directly arrive at retarded Green’s functions

using Keldysh trick. We define the vector potential as Φi(t1)−Φj(t) = V (t1−
t) + κij. κ = κi − κj is the flux responsible for the interference between the

tunneling currents. Physically this means we have applied constant bias across

the two tunneling contacts with a flux between the two tunneling contacts.

Experimentally this scenario can be realised when one FQH droplet is kept at

a constant higher bias than the other. After performing shift t1 → t1 − t, we

get

〈I〉 =
∑
ij

UiUj
2iδ2

ˆ 0

−∞
dt sin(V t+ κij)

×

[
K(ξ1

ij, t)K(ξ2
ij, t)− (K(ξ1

ij, t)K(ξ2
ij, t))

∗

]
(4.63)
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Average total current in real time can be expressed as a sum of individual

currents and interference current.

〈I〉 =
∑
j

〈Īj〉+ 〈∆I(ξ12)〉 (4.64)

In real time two point chiral correlation K can be expressed as,

K(ξσij, t) =
[ πT

vσ sinhπT (ξσij − t− i0)

] 1
νσ

(4.65)

K(ξσij, t) =
[ πT

vσ sinhπT (|ξσij − t|)

] 1
νσ
ei

π
2νσ

Sgn(ξσij−t) (4.66)

Here we have to keep in mind that νσ is a analytically continued to complex

plane. We will analytically continue it back to real axis at the after evaluating

the integral. We can and order the point contacts such that x2 − x1 = L > 0

and thus ξσ = γσL
vσ

. Total average current can be expressed in terms of a

common integral,

〈I〉 =
∑
j

U2
j

2δ2
Im[fV (0, 0, 0)] +

D2U1U2

δ2
Im[fV (ξ1, ξ2, κ21)] (4.67)

Integral in the above expression can be written as,

fV (ξ1, ξ2, κ12) = (πT )
2
νP.V.

ˆ ∞
−∞

ei(V t+κ21) sin
[
π
2

(
sgn(ξ1−t)

ν1
+ sgn(ξ2−t)

ν2

)]
[sinh(πT |ξ1 − t|)]

1
ν1 [sinh(πT |ξ2 − t|)]

1
ν2

(4.68)

Detailed result of this integral is given in the Appendix (B.2).

4.6 Strong Tunneling Limit from Compact CL

Model

Let us illustrate here the role of compactness of bosonic fields using the limit

of infinitely strong tunneling. In the limit of strong tunneling Uj → ∞ the
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path integral in (4.49) will be dominated by fields pinned to the minima of

tunneling cosine term (4.50) so that the optimal field configurations are given

by

ϕj(τ) = 2πnj − Φj(τ) , (4.69)

where nj are arbitrary integer numbers. The calculation of the generating

functional (4.49) in this limit amounts to substitution of the optimal field con-

figurations (4.69) into (4.49,4.50,4.51). It is very important that although the

nonlocal contribution to Green’s function (4.44) would be of no consequence

in calculating (4.51) and in (4.54) it is vital to use only the local expression

(4.52,4.45) if one calculates the value of Caldeira-Leggett action using (4.53).

We start from the partition function for CL model given in Eq. (4.59). Where

inverse (G−1)ij can be written in a compact form,

(G−1)ij =


ν|ω|
π

1
D(ω)

(i = j)

−
∑2

σ=1
ν2|ω|
πνσ

e−|ωξ
σ |θ(ωξσji)

1
D(ω)

, (i 6= j)

(4.70)

where we defined the resonance term

D(ω) = (1− (1− a2)e−
∑
σ |ωξσ |) (4.71)

. a is given by expression 4.42. Note that the resonance is absent for the

case of MZI where a = ±1 as both the edges have same chirality. D(ω) = 0

corresponds to resonance that occurs for the only case of FPI (a = 0, γ1γ2 =

−1) when ν1 = ν2, ω → 0. As Uj → ∞, the tunneling part of the action

dominates free action and classical solutions in Euclidean space corresponds

to 4.72. In the limit U < ∞, to the first order, we allow for fields to change

their values to 2π(nj ± 1). elj = ± corresponds to instanton/anti-instanton

tunneling events to the neighboring minima for the jth point contact. In this

case instanton configuration of ϕj(τ) is given by,

ϕj = 2πnj − Φj(τ) + 2π
∑
l

eljθ(τ − τlj) (4.72)
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In ω space we can write

ϕj(ω) = 2πnjδ(ω)− Φj(ω) + 2πi
∑
l

elj
eiωτlj

ω
. (4.73)

We substitute 4.72 in the free CL action S = 1
4

∑
ω ϕi(−ω)(G−1)ijϕj(ω) which

leads to

S =
1

4

∑
ω

∑
ij

{
Φ∗i (G

−1)ijΦj

+ 4πi
∑
l

(Φ∗i − 2πniδ(ω))elj(G
−1)ij

eiωτlj

ω

+
∑
ll′

el′ielj(2π)2(G−1)ij
eiω(τlj−τl′i)

ω2

}
. (4.74)

We can rewrite the above action in terms of a dual model in strong tunneling

limit that reproduces the above expansion in perturbatively.

S [Θ1,Θ2,Φ
d
1,Φ

d
2] =

1

4

∑
ω,ij

Θ∗iM
−1
ij Θj +

1

4

∑
ω,ij

Φd∗
i M

−1
ij Φd

j

−
∑
j

Wj

δ

ˆ
dτ cos

(
Θj(τ) + Φd

j (τ)
)

(4.75)

We have defined the dual propagator M and dual vector potential Φd
j as,

Mij =

[(
2π

ω

)2

G−1
ij

]
(4.76)

Φd
j (ω) =

ω

π

∑
i

Mij(ω)(Φi(ω)− 2πniδ(ω)) (4.77)

We now write the partition function for the dual model that reproduces the

strong tunneling instanton expansion. While writing the partition function of

the model one has to sum over n1, n2 to account for the degenerate minima
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of the potential.

Z

Z0

= e−
1
4

∑
ω,ij Φd∗i M−1

ij Φdj

[
1 +

1

4

∑
n1,n2

∑
ij

WiWj

δ2

×
ˆ
dτ1dτ2 cos(Φd

i (τ1)− Φd
j (τ2))〈eiΘj(τ1)e−iΘk(τ2)〉

]
(4.78)

Tunneling amplitude Wj ∼ 1
Uj

is the small parameter around which we do per-

turbation in the dual regime. This scale is set by the smearing of the instanton

switching time scale. The quadratic term in vector potential corresponds to

the zeroth order instanton expansion (U = ∞). Before calculating current

due to first order in instantons, in the following section we calculate current

in U =∞ limit.

4.7 Current in U =∞ limit

In this section we calculate the tunneling current for interferometers in strong

tunneling regime when the tunneling amplitude U = ∞. In this limit fields

are pinned to their minima and there is no instanton contribution. The

action for this case is given by Eq. (4.69). Partition function is given by

Z =
∑

n1,n2
e−

1
4

∑
ω,ij Φd∗i M−1

ij Φdj . Let us substitute Eq. (4.69) in to Eq. (4.53)

and neglect fluctuations around the optimal configurations (4.69). The terms

coming from nj do not contribute to the tunneling current and hence can be

dropped. In this regime the action and the partition function can be written

as

S0 =
1

4

∑
ω,ij

Φ∗i (G
−1)ijΦj (4.79)
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By taking variation with respect to Φ∗k and analytically continuing to real time
3 we obtain current through point contact

I∞k (ω) =
1

2

∑
j

(G−1)kj|retΦj. (4.80)

We have defined ξtot =
∑

σ ξ
σ. For the vector potential Φj(t) = V tθ(t)

(Φj(ω) = −iV
(ω+i0)2 ) Now we can write the current expression as

I∞k (t) =
1

2

ˆ
dω

2πi
e−iωt

V

(ω + i0)2

∑
j

(G−1
ω+i0)kj (4.81)

.

I∞k (t) =
νV

2π

ˆ
dω

2πi
e−iωt

ω + i0

(ω + i0)2

1−
∑2

σ=1
ν
νσ
eiωξ

σ
θ(ωξσj 6=k)

(1− (1− a2)e
∑
σ iωξ

σ
)

(4.82)

I∞k (t) =
νV

2π

ˆ
dω

2πi
e−iωt

1

(ω + i0)

1−
∑2

σ=1
ν
νσ
eiωξ

σ
θ(ωξσj 6=k)

(1− (1− a2)eiω
∑
σ ξ

σ
)

(4.83)

We now define ξtot =
∑

σ ξ
σ Now we expand the exponential in the denom-

inator (note that the ω in the exponential is regulated by a positive imaginary

part that allows us to expand) and write the expression for the current as,

I∞k (t) =
νV

2π

∞∑
n=0

(1− a2)n
ˆ

dω

2πi

e−iω(t−nξtot) −
∑2

σ=1
ν
νσ
e−iω(t−ξσ−nξtot)θ(ωξσj 6=k)

(ω + i0)

(4.84)

After performing the contour integral, we obtain the result for current as,

I∞k (t) =
νV

2π

∞∑
n=0

(1− a2)n

(
θ(t− nξtot)−

2∑
σ=1

ν

νσ
θ(t− ξσ − nξtot)θ(ωξσj 6=k)

)
(4.85)

We note that the current completely switches directions from one point contact

3To obtain the retarded Green’s function (G−1)jk|ret we should analytically continue
iω → ω + i0 which amounts to |ω| → iω and θ(ωξσij)→ θ(ξσij) in 4.70
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to another.

4.8 Current in U <∞ limit

To calculate first order instanton contribution to the current we expand the

resonance function appearing in the quasiparticle propagator in the following

form,
1

D(ω)
=

∞∑
m=0

(1− a2)m e−m
∑
σ |ωξσ | (4.86)

. Two point quasiparticle correlators can be written as,

〈eiΘj(τ)e−iΘk(0)〉 = e4
∑
ω e

iωτ( 2π
ω )

2
G−1
jk

=
∞∏
m=0

Kqp(χ1
jk(m), iτ)Kqp(χ2

jk(m), iτ)

(4.87)

We have defined

χσjk(m) =

(
ξσjk
vn

+m sgn(ξσjk)ξtot

)
, ξtot =

∑
σ

|ξσ| (4.88)

Kqp(χσjk(m), iτ) =


[

1
χσjk(m)+iτ)

] ν2(1−a2)m

νσ
(T = 0)

[
πT

vσ sinhπT (χσjk(m)+iτ)

] ν2(1−a2)m

νσ
, (T 6= 0)

(4.89)

Quasiparticle correlators in the above expression is general for both FP and

MZ interferometers. Different geometries are classified by the parameter a.

The current at any point on the edge in the dual picture is only modified by

the point contact tunneling current in Eq. (4.58). In the dual limit tunneling
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current at a point contact can be calculated by I = δ log Z
δΦd

∥∥∥ δΦd

δΦ

∥∥∥.

Ik(t) =
∑
n1,n2

∑
i

WiWk

2δ2

ˆ t

−∞
dt1

∥∥∥∥δΦd

δΦ

∥∥∥∥ sin
(
Φd
i (t1)− Φd

k(t)
)

× Im

(
∞∏
m=0

2∏
σ=1

Kqp(χσik(m), t1 − t− i0)

)
+ I∞k (4.90)

4.8.1 Tunneling Current for the Mach Zehnder Inter-

ferometer

The tunneling current for the MZI in the dual limit simplifies as D(ω) = 1.

For this case, the tunneling current receives contribution from m = 0 term of

the quasiparticle correlators. In other words, the quasiparticle interferometer

model is self-dual to its electron counterpart up to a change of ν � 1
ν
. This is

because of the beam splitter geometry of MZI, where both the edges propagate

in the same direction as shown in Fig. (4.2). Hence, for this case we can borrow

results for current from weak tunneling and replace ν → 1
ν
.

4.8.2 Tunneling current for the Fabry-Perot Interfer-

ometer

For the FPI geometry as shown in Fig. (4.2), one of the edges carries backward

propagation of current. Due to this, part of the current is stuck in the loop

between two contacts. This feature manifests itself in the quasiparticle corre-

lation function as an infinite product over m cycles (see Eq. (4.87)). Hence

the expression of current is proportional to this infinite product over cycles.

This product can be simplified by considering currents calculated over some

finite cycles of propagation. This is justified as the time scale of measurement

can be chosen such that higher order feedbacks are not important.
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4.8.3 Resonant tunneling current for the Fabry-Perot

Interferometer (a=0, ν1 = ν2)

When we have two counterpropagating edges of the same filling factor, there

is no effective chiral mode that kicks out current from the Fabry-Perot loop.

This case reduces to an effective non-chiral action. In the strong-tunneling

limit, the applied flux can also be tuned to resonance condition. This case was

considered by Kim and Fradkin. A detailed analysis for tunneling currents

in coherent and incoherent regimes is derived in Ref. [9]. Our model can be

reduced to the effective non chiral model they consider by setting a = 0 in CL

action.

4.9 Conclusions

In this chapter, we considered interferometer made of fractional quantum Hall

edge state. In Sec. (B.1), we started from the Chern-Simons theory in an

infinite strip. We construct gauge invariant form of the Chern-Simons theory

which required two topologically protected massless (R, L) edge degrees of

freedom. This construction enabled independent coupling of the gauge fields

to each edge of the strip. We constructed interferometer by considering two

FQH strip with two tunneling point contacts between them (given by bound-

ary Sine-Gordon terms). As shown in the Fig. (4.2) depending on the chirality

of the edges involved in the tunneling process, they can be classified into Mach-

Zehnder and Fabry-Perot geometry. Edge excitations can be represented as

chiral bosons. In Sec. (4.4) we construct Caldeira-Leggett (CL) type model

for two point contact tunneling with careful treatment of compactness. We

show that by taking compactness of chiral bosons in the path integral formal-

ism, we can calculate the tunneling currents in both weak and strong tunneling

regimes. The compactness condition resolves ambiguity involved in the matrix

inversion of CL Greens function. We give general expressions for the current

in both weak and strong tunneling limits for MZI and FPI. We obtain electron

periodicity with adiabatic variations of flux in both weak and strong tunnel-

ing limits. Our results are in agreement with Averin and Ponomarenko who
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used auxiliary fields to cancel ambiguous terms in chiral boson correlators. In

the future, we will extend our analysis to construct and analyze topological

quantum circuits made out of Caldeira-Leggett (CL) points on FQH edges.

Current injection and measurement can be done using the generalized Chern-

Simons gauge fields(see Sec. (B.1)) . We can realize non-trivial geometry of

FQH edge networks and reconnections by simply allowing some CL points to

be strong tunneling points. Our work can be easily extended to the Jain frac-

tions that involve multiple edge modes. The interesting direction of future

research would be to gain formal insight into how compactness affects chiral

boson theory.
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Chapter 5

Additional Project I:

Fluctuation relations for current

components in open electric

circuits

In this work we derive a new class of fluctuation relations, to which we refer as

Fluctuation Relations for Current Components (FRCCs). FRCCs can be used

to estimate system parameters when complete information about nonequilib-

rium many-body electron interactions is unavailable. We show that FRCCs

are often robust in the sense that they do not depend on some basic types

of electron interactions and some quantum coherence effects. This chapter is

based on the publication [13].

5.1 Introduction

Fluctuation theorems [108–112] are fundamental results in the nonequilibrium

statistical mechanics. Their discovery led to optimism that they might serve

as universal laws that had long been missing from the study of nonequilibrium

systems. Fluctuation relations for currents [113–119] play a special role in

the physics of non-equilibrium transport. Measurements of statistics of heat
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production generally involve tracing stochastic trajectories of the complete

system. This is often an experimentally challenging problem. Measurements

of currents are relatively simple. Formally, a current can be found just from

the knowledge about an initial and a final state of a system, and no separation

of the measured system from the heat bath is required. Moreover, experi-

mental studies of fluctuation theorems typically need large statistics of events

because any Gaussian distribution of any variable trivially satisfies a standard

fluctuation relation. Hence, nontrivial fluctuation relations can be identified

only if statistics of events are obtained beyond the domain of Gaussian fluc-

tuations. Non-Gaussian statistics in nanoscale conductors is due to the shot

noise of electrons at non-equilibrium conditions [120, 121]. Recently, it became

possible to experimentally study such non-Gaussian fluctuations in mesoscopic

electric circuits [122, 123]. In application to an electric circuit with two lead

contacts, the Fluctuation Theorem predicts that the probability distribution

P [q] of observing a charge q passed between two lead contacts with a voltage

difference V satisfies the law [113]:

P [q]/P [−q] = eFq, (5.1)

where F = V/kBT . Here T is the temperature, and kB is Boltzmann’s con-

stant. Eq. (5.1) is expected to be universal, i.e. it should be valid indepen-

dently of the type of electron interactions in a conductor. Surprisingly, recent

experimental work [12] has shown that the law (5.1) can fail in an electric

circuit, but could be salvaged under the experimental conditions of [12] if the

parameter F is suitably renormalized by a factor ∼ 10−1.

The need to modify (5.1) was qualitatively explained in [12] by the presence

of a feedback between measured and measuring circuits. For example, in the

experiment [12], the nanoscale circuit was connected to a read-out circuit

made of an additional tunnel junction, which was coupled to its own leads.

When interactions between measured and measuring currents are involved, the

fluctuation theorem is applicable only to the total system that includes both

the studied circuit and the measuring one but this does not imply (5.1) for a

single current component any more.
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This argument only partly explains the experimental result in [12] because

it makes unclear why, after considerable renormalization of parameters, an

individual current through a specific lead contact again satisfies (5.1). For

example, according to Crook’s equality, the heat W , dissipated by a complete

system, satisfies the relation

P [W ]/P [−W ] = exp (W/kBT ) . (5.2)

We can introduce the vectors, q and V , whose components are, respectively,

the numbers of electrons passed through individual lead contacts, and individ-

ual voltages at corresponding leads, whereby the number of vector components

is equal to the number of independent lead contacts in the circuit. The dis-

sipated heat can then be expressed as W = V ·q, which corresponds to the

standard fluctuation relation for multicomponent current [113–119]:

P [q]/P [−q] = exp (V · q/kBT ) . (5.3)

Apparently, a specific current component qk is not proportional to the dissipa-

tion function W because the latter depends on all current components. Con-

sequently, although the full vector of currents satisfies Eq.(5.3) there seems to

be no reason why an individual current through a specific lead contact should

satisfy a fluctuation relation (5.1) in a multicomponent system.

The appearance of fluctuation relations (5.1) for specific current compo-

nents at renormalized values of parameters remains poorly understood. Re-

cent studies [124] showed that Fluctuation Relations for Current Components

(FRCC)s, i.e. for currents through specific links of a circuit, can appear in

some limits of a model that corresponds to a 4-state Markov chain kinetics.

However, generalizations of this result have been unknown. Another possibil-

ity to explain experimentally observed FRCC was based on a separation of

time scales [12], i.e. if one current component is macroscopic in comparison to

another one, the former can be considered as part of environment so that one

can introduce an effective dissipation function for the second, microscopic, cur-

rent component. Such an explanation, however, can be justified only in very
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specific limits and for relatively simple circuit geometries.

In this chapter, we prove that there are, in fact, general conditions un-

der which FRCCs should hold for currents through certain links in complex

mesoscopic electric circuits coupled to multiple lead contacts. Unlike stan-

dard fluctuation theorems, there is no direct relation between FRCCs and the

dissipated heat in a system. Instead, we will show that FRCCs follow from

the observation that statistics of particle currents depends only on the prob-

abilities of single-particle geometric trajectories while the information about

time moments, at which particles make transitions along such trajectories, is

irrelevant. Then, there can be purely topological constraints on contributions

of geometric trajectories to currents through some links of a circuit. For ex-

ample, if a link does not belong to any loop of a graph, and if transitions

through this link in opposite directions are counted with opposite signs, then

any geometric trajectory can make only ±1 or 0 valued currents through such

a link. We will show that this restricts the statistics of currents through this

link to satisfy Eq. (5.1) even when there are no detailed balance constraints on

kinetic rates. Another interesting topological constraint appears when there is

only one reservoir that supplies/absorbs particles to/from the system. Then

all single particle geometric trajectories have to be cyclic, and one can make

a correspondence between currents through links and independent cycles that

a trajectory makes. Probabilities of independent cycles are known to satisfy

relations of type (5.1) [113–119], which eventually results in FRCCs in such a

circuit. We will also show that FRCCs are robust against adding important

many-body interactions because the latter influence timing but do not change

relative probabilities of geometric trajectories.

The structure of this chapter is as follows. In Section 2, we will illustrate

FRCCs in the model of a chaotic cavity, shown in Fig. 5.1, which frequently ap-

pears in studies of counting statistics [125, 126]. In Section 3, we will increase

the complexity of the electric circuit geometry to demonstrate the ubiquity

of FRCCs in mesoscopic electronics. Sections 4 and 5 play a supplementary

role. They explore both the presence and absence of FRCCs in specific models,

which statistics of currents can be studied in detail. They demonstrate that

exactly solvable models produce results in agreement with the more general
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Figure 5.1: Chaotic cavity coupled to N electron reservoirs at different poten-
tials and temperatures.

theory developed in Sections 2 and 3.

5.2 The model of chaotic cavity coupled to N

lead contacts

The model assumes that N large reservoirs at different potentials exchange

electrons with a mesoscopic conducting region (cavity), in which the electron

motion is randomized and is influenced by exclusion interactions due to the

Pauli principle and Coulomb interactions [125, 126]. The model also assumes

that time-scales for self-averaging are much faster than the time-scale at which

the number of electrons in a cavity changes with time so that we can treat

interactions within a mean field approximation. Electrons enter the cavity

through the lead contacts with kinetic rates, kin
i (Q) = higif1(Q), and leave

the cavity with rates kout
i (Q) = gif2(Q), where i = 1, . . . , N . The parameter

hi depends on thermal equilibrium conditions in the i-th reservoir, gi is a

strength of the cavity coupling to the i-th contact, and Q is the instantaneous

number of electrons in the cavity. The functions f1(Q) and f2(Q) describe the

effect of many-body interactions on kinetic rates.

We assume that all parameters, as well as functions f1 and f2, may de-
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pend on constant temperatures and potentials at reservoirs. As an exam-

ple, first consider that the cavity is small (the quantum dot limit), so that

it has only a single electron level at energy E. Coulomb interactions forbid

to have more than one electron inside. The kinetic rate of escape of elec-

tron from this cavity into the ith contact can be estimated by the golden

rule: kout
i = 2πQρi(E)|Ti(E)|2(1 − 1/[1 + e(E−Vi)/(kBT )]), where Q = 1 or

Q = 0 depending on the presence or absence of an electron inside the quan-

tum dot. Ti(E) is the element of the scattering matrix between the state

inside the quantum dot and a state in the reservoir at the same energy E,

ρi(E) is the density of energy levels inside the ith contact near energy E,

and the factor 1 − 1/[1 + e(E−Vi)/(kBT )] is due to the Pauli principle that for-

bids transitions into the filled states of the reservoir. Similarly, the kinetic

rate of transitions from the ith reservoir into the quantum dot can be esti-

mated as kout
i = 2π(1 − Q)ρi(E)|Ti(E)|2(1/[1 + e(E−Vi)/(kBT )]). We can then

identify gi = 2πρi(E)|Ti(E)|2(1 − 1/[1 + e(E−Vi)/(kBT )]), hi = e−(E−Vi)/(kBT ),

f1 = (1 − Q), and f2 = Q. Another limit of the cavity model corresponds to

a large cavity with kinetic rates induced by thermal over-barrier transitions

and number of states inside the cavity that is much larger than the number

of electrons. In such a classical limit, kinetic rates are given by the Arrhenius

form kin
i ∼ e(Vi−Wi)/kBT , and kout

i ∼ e(µ(Q)−Wi)/kBT , where Wi is the size of the

barrier that separates the cavity from the ith reservoir and µ(Q) is the chemi-

cal potential of electrons inside the cavity. Then we can identify gi = e−Wi/kBT ,

hi = eVi/kBT , f1 = 1 and f2 = eµ(Q)/kBT . Note that, in both cases, at constant

temperature, the parameters hi satisfy the relation

hi/hj = exp{(Vi − Vj)/kBT}, (5.4)

which guarantees the presence of the standard fluctuation relation (5.3). This

restriction, however, will not play any role in our following discussion.

Let

Z(χ) ≡ eS(χ) =
∑
q

P (q)eq·χ (5.5)

be the generating function of currents through all leads. Here components
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of the N -vector, q, are the number of electrons that pass through the cor-

responding contacts during the observation time. In the rest of the chapter,

all introduced vectors will correspond to sets of elements indexed by the in-

dices of the corresponding reservoirs, e.g. χ = (χ1, . . . χN) is the vector of

counting parameters. S(χ) is called the cumulant generating function because

its knowledge corresponds to the knowledge of all cumulants of the current

distribution, e.g.

〈qi〉 = (∂S/∂χi)χ=0, var(qi) = (∂2S/∂χ2
i )χ=0, etc. (5.6)

We will detect FRCCs by setting all χi, where i 6= k for some k ∈ 1, . . . , N , to

zero and observing the symmetry,

S(0, ..., 0, χk, 0, ..., 0) = S(0, ..., 0,−χk + Fk, 0, ..., 0), (5.7)

where Fk, for a given k, is a constant parameter. By applying the inverse

Legendre transform, one can verify that (5.7) leads to the FRCC,

P (qk)/P (−qk) = exp(qkFk). (5.8)

Let us calculate the probability, pij, of that the nearest entering electron

will have a geometric trajectory that enters the cavity via the contact i and

leaves the cavity via the contact j. Kinetic rates for this particle depend on

Q, which may change with time arbitrarily, however, the ratio of either two

in-going or two outgoing kinetic rates for the given particle remains constant,

which means that the probability of the geometric trajectory for this particle

can be found explicitly:

pij =
higi∑N
k=1 hkgk

× gj∑N
r=1 gr

. (5.9)

Let P (n) be the probability that during a large observation time exactly n

electrons enter the cavity via any node. The probability of a geometric trajec-

tory in (5.9) is independent of n and of other particle’s trajectories, such that
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the generating function Z(χ) is given by

Z(χ) =
∞∑
n=0

P (n)

(
N∑

i,j=1

pije
χi−χj

)n

. (5.10)

Although it is impossible to derive an explicit expression for P (n), one can

check that the symmetry (5.7) is the symmetry of each term in (5.10) with

Fk = ln

(∑N
i 6=k gihi

hk
∑N

i 6=k gi

)
, k = 1, . . . , N, (5.11)

which proves the FRCC for the cavity model.

Note that the parameters F depend not only on the lead characteristics

h, which can be externally controlled, but also on the coupling parameters g.

The latter may nontrivially depend on voltages due to appearance of screening

charges in the vicinity of components of the nanoscale circuit at nonequilib-

rium conditions [127]. Estimation of parameters g from knowledge of lowest

current cumulants may be difficult because functions f1(Q) and f2(Q) influ-

ence lowest current cumulants. Surprisingly, the FRCCs do not depend on

interactions encoded in functions f1(Q) and f2(Q) at all. Hence measure-

ments of FRCCs can provide us with a unique approach to measure the vector

g in a nonequilibrium regime irrespective of many-body interactions inside the

cavity.

We also note that our derivation of the generating function is valid only

for a very large observation time, so that we could disregard the trajectories

of electrons that entered but did not leave the cavity. Thus, FRCCs must be

understood only in the sense of the dominating exponent (also known as the

Large Deviation Function) of the probability distribution of a current.

5.3 Stochastic transport on networks

To explore general principles that lead to FRCCs, we consider a generalization

of the cavity model to a network of chaotic cavities coupled to lead contacts

and to each other, e.g. as shown in Fig. 5.2. Electrons enter cavities through
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the reservoirs (with the rate higi for the i-th cavity). If two cavities (graph

nodes) i and j are connected, each electron in the node i can make a transition

to node j with rate gij; generally, gij 6= gji. Eventually, electrons leave the

network through one of the contacts. The physics of incoherent effects due to

the shot noise and thermal Johnson-Nyquist noise in continuous conductors

can be obtained from the continuous limit of such network models [128, 129].

For simplicity, we assume that all electrons are non-interacting, i.e. f i1 = 1

and f i2 = Qi for all cavities, although generalizations to local interactions

(f i2(Qi) 6= Qi) are possible because such interactions do not change the relative

probabilities of the geometric trajectories [130]. It was shown in [130] that

finding statistics of currents in such a model reduces to solving a finite set of

coupled linear algebraic equations. Although explicit solutions are bulky and

not illuminating, we used them to check the presence/absence of an FRCC for

any link of a network numerically, as we explain in Section 5. As expected,

we did not find an FRCC when there was no previously mentioned topological

constraints on geometric trajectories. However, FRCCs were obtained in two

wide classes of links with such constraints.

5.3.1 Links that do not belong to any loop of the net-

work

These links represent lead contacts and also internal links of the network that

on removal break the network into disjoint components. We marked such

links by green color in Fig. 5.2. Suppose that we can trace the geometric

trajectory of a single electron. When the electron enters the network, it makes

a single transition through a lead contact in the positive direction and then

makes one transition through one of the leads in the negative direction when

it leaves the network. Let pkj be the probability that the electron that enters

through the contact k leaves the network through the contact j. If an electron

enters through the contact k, then the moment-generating function of currents

through the contact k that this electron produces during its life-time is given
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by

Zk(χk) = pkk +
∑
j 6=k

pkje
χk . (5.12)

The generating function of currents in the contact k, which is produced by an

electron that enters from contact j, j 6= k, is given by

Zj(χk) =
∑
j′ 6=k

pjj′ + pjke
−χk . (5.13)

Figure 5.2: Circuit of coupled chaotic cavities and electron reservoirs. the
green color marks links that carry currents that satisfy FRCCs. The red color
marks links with currents that violate FRCCs.

Let Pq1,...,qN (t) be the probability that during time t exactly q1, . . . , qN

particles enter the network through the contacts 1, . . . , N . Since particles

enter independently, this distribution is, in fact, Poissonian, and its generating

function is given by

ZP (s) ≡
∑
q

Pqe
sq = exp

(
N∑
i=1

higit(e
si − 1)

)
. (5.14)

Since electrons do not interact,the probabilities Pq1,...,qN (t) and pkj are not

correlated. The statistics of currents through the contact k during the whole
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process is then given by

Z(χk) =
∑
q

Pq1,...,qNZ
q1
1 · . . . · Z

qN
N , (5.15)

where we used the fact that the generating function of a sum of independent

processes is the product of generating functions of the individual processes.

The latter expression shows that Z(χk) coincides with ZP (s) up to a change

of variables esi → Zi(χk) for any i. This fact and the explicit expressions for

ZP (s) and Zi(χk) lead us to the conclusion that the total generating function

of currents depends on χk only through the combination, hkgk
∑

j 6=k pkje
χk +∑

j 6=k hjgjpjke
−χk , which has the symmetry under the change of variables,

χk → −χk + Fk, where

Fk = ln

(∑
j 6=k hjgjpjk

hkgk
∑

j 6=k pkj

)
. (5.16)

The case with a link that connects two otherwise disjoint components, α and γ,

is proved similarly: Let pα be the probability that a given particle that enters

the network in the components α leaves the network through some contact in

another graph component γ. The generating function of currents through the

link that connects such components is Zα(χ) = (1 − pα) + pαe
χ. The rest of

the proof is the same as for the currents through lead contacts, where instead

of contact indices k and j we write component indices α and γ.

5.3.2 Quantum coherence among trajectories

So far we assumed the lack of quantum interference among particle trajec-

tories. The arguments leading to (5.7) and (5.16) for a particle’s motion on

a network, however, do not refer to any classical or thermodynamic reason.

For example, one can imagine that the distribution of electrons in the leads is

not at equilibrium and that the probabilities pij are influenced by the quan-

tum interference of different trajectories that connect nodes i and j. We just

should assume that (a) events of particle’s escapes into reservoirs destroy co-

herence, (b) particles enter the network according to the Poisson statistics, and
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(c) the transition probabilities pij are constant. Such conditions are realized

in the quantum regime when the single-electron scattering amplitude, sij(E),

between any pair of different reservoirs i and j in a channel with any energy

E, is small, i.e. |sij(E)| � 1. In this limit, we can disregard simultaneous

multi-electron scattering processes, although purely quantum effects, such as

quantum interference of trajectories, can still influence sij.

The generating function for N terminals and non-interacting fermions was

derived by Levitov and Lesovik [11]. In their determinant formula for the

generating function, we can set only a single counting parameter, χk, to be

non-zero. Then, for an arbitrary scattering matrix, the cumulant generating

function of a current through a corresponding reservoir is given by

S(χk) = ln

(∏
E

(Ck(E) + Ak(E)eχk +Bk(E)e−χk)

)
, (5.17)

where Ak, Bk, and Ck are constants that depend on multielectron scattering

amplitudes and channel populations. According to the golden rule, in the limit

of weak transmission, coefficients Ak and Bk can be approximated to first order

in |sjk|2 as

Ak(E) =
∑
j 6=k

nk(E)(1− nj(E))|skj|2 (5.18)

and

Bk(E) =
∑
j 6=k

(1− nk(E))nj(E)|sjk|2. (5.19)

Here ni(E) is population of the channel with energy E in the i-th contact.

Moreover, in this limit, we can use ln(1 + x) ≈ x to approximate

S(χk) ≈
∑
j 6=k

∑
E

|skj|2(1− nk)nj(e−χk − 1) +∑
j 6=k

∑
E

|skj|2nk(1− nj)(eχk − 1). (5.20)

Hence, the counting statistics of individual contact currents of non-interacting
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electrons is equivalent to a sum of two Poisson processes,

S(χk) = Ak(e
χk − 1) +Bk(e

−χk − 1). (5.21)

This generating function is symmetric under exchange χk → −χk + Fk and

leads to an FRCC with

Fk = ln

(∑
E(1− nk(E))

∑
j 6=k |skj(E)|2nj(E)∑

E nk(E)
∑

j 6=k |skj(E)|2(1− nj(E))

)
. (5.22)

5.3.3 Networks connected to a single reservoir

A circuit that is coupled to a single particle reservoir, such as shown in

Fig. 5.3(a,b), is another class of systems that show FRCCs for currents through

some links that, in contrast to the previous case, belong to loops of the graph.

Such networks can be used to describe the statistics of single molecule events

[131]. For example, the graph in Fig. 5.3(a) corresponds to the kinetics of a

biological enzyme [131] where the external link corresponds to the process of

enzyme creation/degradation [130]. The probabilities of geometric trajectories

in such open networks depend only on kinetic rates and not on time moments

of individual transitions through links [130]. Consider, for example, the model

Figure 5.3: (a) and (b): Networks coupled to a single reservoir. Green links
carry currents that satisfy FRCC and red links carry currents that generally
do not satisfy FRCC. (c), (d) and (e): Distinct cycles of the graph. Cyclic
arrows define ”+” directions of cycles.

in Fig. 5.3(a) where we will be interested in currents through the link that
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connects nodes 4 and 1. The arguments in Section 3A lead for this model to

a conclusion that it is sufficient to prove the FRCC for currents produced by

a single particle during its life-time because the symmetry of a single particle

generating function becomes the symmetry of the full counting statistics of

currents when there is only one external particle reservoir. Consider a particle

that just appeared on the node 1 on a graph in Fig. 5.3(a). Let r be the kinetic

rate of the transition of this particle from node 1 to the reservoir and let kij

be kinetic rates of transitions between a pair of nodes, i and j. From the node

1, the particle can return to the reservoir with probability

pesc = r/(r + k12 + k16 + k14), (5.23)

producing no currents in the system, or it can move into another node. In the

latter case, we know that the particle must eventually return to the node 1

because it is the only place from which it can escape from the network, and our

measurement time is assumed to be much larger than the particle’s life-time

on the graph.

Each particle’s return to node 1 corresponds either to making none or one

of three possible cycles [131], shown in Fig. 5.3(c,d,e). Each cycle can be

passed in two directions, that we will mark ”+” or ”−”. Let p0, η1±, η2±, and

η3± be probabilities of such return events, where indices 1, 2, 3 correspond to

cycles in Fig. 5.3, respectively, (c), (d), and (e). These probabilities depend

only on kinetic rates, i.e. they are constants [130]. The generating function

of currents through the link (4, 1), produced by all geometric trajectories that

make exactly one return to node 1 is then given by

Z1(χ41) = (1− pesc)pesc[p0 + η3 + η−3 +

(η1 + η−2)eχ41 + (η−1 + η2)e−χ41 ]. (5.24)

After each return to the node 1 the process starts over. Hence the generating

function produced by all trajectories that make exactly n returns to the node
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1 is given by

Zn(χ41) = pesc[(1− pesc)(p0 + η3 + η−3 +

(η1 + η−2)eχ41 + (η−1 + η2)e−χ41)]n. (5.25)

The total single particle generating function is the sum over current generating

functions, induced by all geometric trajectories, i.e.

Z(χ41) =
∞∑
n=0

Zn(χ41), (5.26)

which explicitly can be written in a form

Z(χ41) = pesc/[1− (1− pesc)(Ae
χ41 +Be−χ41 + C)], (5.27)

where A = η1 + η−2, B = η−1 + η2, C = p0 + η3 + η−3. Eq. (5.27) is invariant

under change of variables, χ41 → −χ41 + F41, where

F41 = ln([η−1 + η2]/[η1 + η−2]), (5.28)

which completes our derivation of the FRCC for the link (4, 1). One can easily

extend our arguments to all green links in Figs. 5.3(a,b).

5.4 Exactly solvable models

In this section, we derive an explicit expression for the generating function of

currents in the cavity model in several important limits and check the presence

of FRCC explicitly. We show that the results are in full agreement with the

symmetry described by (5.7) and (5.11).
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5.4.1 Stochastic path integral solution of the chaotic

cavity model

To derive FRCCs for the model in Fig. 5.1, we will employ the stochastic path

integral technique [125, 126, 132, 133] that was previously applied to calcula-

tions of current cumulants and studies of standard fluctuation theorems in the

cavity model. This approach is applied to the case of a cavity with mesoscopic

size so that typically we have Q � 1. Following this approach, the counting

statistics at a steady state is S(χ) = Ht, where H = H(χ, Qc(χ), χc(χ)) is

given by

H =
N∑
i=1

kin
i (Qc)(e

χi+χc − 1) + kout
i (Qc)(e

−χi−χc − 1), (5.29)

where Qc and χc are expressed through χ by solving steady state ”Hamiltonian

equations”,

∂H/∂Qc = 0, ∂H/∂χc = 0. (5.30)

To explore those equations, it is convenient to introduce combinations of pa-

rameters,

a(χ) =
N∑
i=1

higiexp(χi), (5.31)

b(χ) =
N∑
i=1

giexp(−χi). (5.32)

The Hamiltonian equations then explicitly lead to the relations

exp(χc) = [bf2/af1]1/2, (5.33)

f ′1(
√
ab
√
f2/f1 − a(0)) + f ′2(

√
ab
√
f1/f2 − b(0)) = 0, (5.34)

where the functions f1 and f2 were defined in Section 2. Generally, such

nonlinear equations cannot be solved explicitly to determine Qc and χc, but

they do imply that Qc, as well as combinations aeχc and be−χc , and hence

H and S depend on counting parameters only via the product, a(χ)b(χ).
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It is then straightforward to verify that the symmetry, S(0, . . . , χk, . . . , 0) =

S(0, . . . ,−χk + Fk, 0, . . .), is also the symmetry of a(χ)b(χ) with

Fk = ln

(∑N
i 6=k gihi

hk
∑N

i 6=k gi

)
, k = 1, . . . , N, (5.35)

which proves the FRCC for the cavity model in the limit of mesoscopic cavity

size.

The scope of the path integral technique is limited to mesoscopic systems.

However, we could explicitly verify that the FRCC holds true in two exactly

solvable limits. In the following subsections, we show exactly that Eq. (5.11)

is satisfied for a cavity with exclusion interactions (f1 = Qmax − Q, f2 = Q),

and in the classical limit in which the number of available states in the cavity

is much larger than the number of electrons so that in-going rates are not

influenced by the Pauli principle (f1 = 1 and arbitrary f2(Q)).

5.4.2 Exact solution of cavity model with exclusion in-

teractions

Here we consider the cavity model with N lead contacts. Electrons do not

interact with each other except via the exclusion interactions due to the Pauli

principle. Electrons enter the cavity through a lead contact i (i = 1, . . . , N)

with a kinetic rate, kin
i (Qc) = higi(Qmax−Qc), and leave the cavity with a rate

kout
i (Qc) = giQc. The latter rate is proportional to the number of electrons Qc

in the cavity. This corresponds to non-interacting case. We are interested in

the statistics of currents through a specific lead contact, k. Our exact solution

of this model is based on the observation that the model is equivalent to the

model of independent currents through Qmax quantum dots [133, 134]. Each

dot can have either zero or maximum one electron inside. If there is no electron

in the dot then with rates higi, where i = 1, . . . , N , an electron jumps into

the dot. If the dot has an electron inside, then with rates gi, i = 1, . . . , N , it

leaves to one of the leads. The calculation of the cumulant generating function

at steady state in such a two-state model is straightforward and was discussed
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in a number of publications, e.g. [135–138] with a minor difference that here,

we assume many lead contacts. Following e.g. [137], the cumulant generating

function is given by the larger eigenvalue of the matrix

H =


−
∑N

i=1 higi

(∑N
i 6=k gi

)
+ gke

−χk

(∑N
i 6=k higi

)
+ hkgke

χk −
∑N

i=1 gi

 . (5.36)

Its eigenvalue, λ0, can be explicitly written as

λ0 =
1

2
(−K +

√
K2 + 4gk(hkgk + e−χkA+ eχkhkB), (5.37)

where A =
∑N

i 6=k higi, B =
∑N

i 6=k gi, and K is independent of χk constant.

Since the model of the cavity with exclusion interactions is equivalent to Qmax

independent processes, each having counting statistics λ0(χ)t, the cumulant

generating function for the complete model is given by

S(χk) = Qmaxλ0(χk)t. (5.38)

Obviously, λ0(χ) is symmetric under exchange χk → −χk + Fk, where Fk is

given by

Fk = ln

(∑N
i 6=k gihi

hk
∑N

i 6=k gi

)
, (5.39)

in agreement with (5.11).

5.4.3 Exact solution of the cavity model for stochastic

transitions with local interactions

Another exactly solvable model corresponds to a system of locally interacting

particles performing stochastic transitions through a cavity connected to N

reservoirs (See Fig. 5.1) with constant in-going kinetic rates. Let a state

vector, |Qc〉, be determined by an occupation number Qc, associated with the
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cavity. Kinetic rates for transitions from the cavity to the i-th reservoir is

given by

kout
i = Qcfc(t, Qc)gi, (5.40)

where fc(Qc) describes arbitrary local repulsive interactions inside the cavity

that influence the out-going kinetic rates by renormalizing the single electron

free energy in the mean field approximation. The in-going kinetic rate through

the i-th reservoir is

kin
i = higi. (5.41)

Here, for generality, we can also allow an arbitrarily prescribed explicit peri-

odic time-dependence of h = (h1, h2, . . . hN) with period τ , keeping the other

parameters constant. A particle distribution function P (Qc) can be written

as a state vector

Ψ =
∑
Qc

P (Qc)|Qc〉 (5.42)

that satisfies the master equation

∂Ψ/∂t = L̂Ψ. (5.43)

To derive the counting statistics of currents, we should consider an evolution

with a twisted master operator, L̂χ that can be obtained from the operator L̂

by multiplying its off-diagonal elements by factors e±χi to count transitions

from/to reservoir i. For details see Refs. [130, 136]. Following those rules, for

our cavity model, we obtain the form of the twisted master operator:

L̂χ = −
∑
j

gj[â
†
c(fc(Q̂c)âc− h je

χj) (5.44)

+hj − fc(Q̂c)âc e −χj ], Q̂c = â†câc, (5.45)

where we have used the ”second quantized” version of the master equation

with

â†c|Qc〉 = |Qc + 1〉, âc|Qc〉 = Qc|Qc − 1〉 (5.46)
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being the creation/annihilation operators. Here we note that the operator

L̂χ in (5.44) is generally non-quadratic in â†c and âc, which is the result of

many-body interactions inside the cavity. For the case with local particle

interactions, it becomes easier to obtain the solutions for the master equation

by looking not at evolutions of the ket-vector but rather at the backward in

time evolution of the bra-vector 〈Ψχ(t)| given by [130]

∂〈Ψχ|
∂t

= −〈Ψχ|L̂χ(t), 〈Ψχ(t+ τ)| = 〈Ψχ(t)|e−S(τ). (5.47)

According to [130, 136, 137], the largest S(τ) in (5.47) coincides with the

cumulant generating function (CGF) of currents per period of the parameter

evolution in the t → ∞ limit. Following [130], we will search for the solution

of (5.47) in the form of a coherent state bra-vector

〈Ψχ(t)| = 〈0| exp(ζcâc)e
−S(t), (5.48)

and substitute this ansatz in Eq. (5.47). Using the property that

〈Ψχ(t)|â†c = 〈Ψχ(t)|ζc, (5.49)

and then grouping separately terms near 〈Ψχ(t)|fc(Q̂c)âc and separately the

remaining functions that multiply 〈Ψχ(t)|, we find that Eq. (5.47) is satisfied

if

ζc =

∑
j gje

−χj∑
j gj

, (5.50)

dS/dt =
∑
j

gjhj(t)(e
χjζc − 1). (5.51)

Only the parameters hj in (5.51) are time-dependent. It is then trivial to

integrate (5.51) to find

S(τ,χ) =
∑
j

gjh̄j(e
χjζc − 1), (5.52)
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where we defined h̄j ≡
´ τ

0
h(t′)dt′. We can now write S(τ,χ) explicitly as

S(τ, χk) =

∑
jk h̄kgkgj(e

−χj+χk − 1)∑
j gj

. (5.53)

To illustrate the presence of the FRCC, we write S(τ,χ) for individual

counting fields by setting χj = 0 for j 6= k, then

S(τ, χk) = C +Bke
−χk + Ake

χk , (5.54)

where C =
∑
jk h̄jgkgj∑

j gj
, and

Ak =
h̄kgk

∑
j 6=k gj∑

j gj
, Bk =

gk
∑

j 6=k h̄jgj∑
j gj

. (5.55)

The form of CGF in Eq. (5.54) has the symmetry under the exchange of

χk → −χk + Fk, where Fk is given by

Fk = ln

(∑N
j 6=k gjh̄j

h̄k
∑N

j 6=k gj

)
. (5.56)

This expression for Fk is the same as (5.11).

5.5 Numerical Check of the FRCC for Net-

works

In this section, we consider more complex networks and analyze the validity

of the FRCC for any particular link numerically.

5.5.1 Network with loops and backbone link

Consider a graph that is coupled to external particle reservoirs and has loops

and a backbone link as shown in Fig. 5.2. For numerical check we restrict

ourselves to models with only one reservoir per node. Generalizing the cavity

model we define additional parameters that are the kinetic rates of transitions

122



Figure 5.4: Numerical plots for the solution contours of S(χ)−S(−χ+F ) = 0
for currents in geometry of Fig. 5.2. Parameters were set to numerical values:
g12 = 0.3854, g13 = 0.6631, g15 = 0.5112, g35 = 0.6253, g24 = 0.17483, g26 =
0.02597, g46 = 0.931946, gij = gji, g1 = 0.5379, g2 = 0.004217, g3 = 0.8144,
g4 = 0.8396, g5 = 0.1765, g6 = 0.8137, h1 = 8.7139, h2 = 8.8668, h3 = 4.6144,
h4 = 8.1632, h5 = 7.6564, and h6 = 8.01407.

from node i to node j, given by kij = Qifigij. The twisted master operator

for this case can be written as [130]

L̂χ =
∑
jk

gjkâ
†
j(e

χjkfkâk − fj âj)

−
∑
j

gj[â
†
j(fj âj − hjeχj) + hj − fj âje−χj ], (5.57)

where we introduced additional parameters χij to count currents through in-

ternal links (i, j). Following the prescription for the case of the single cavity

(node) model we obtain the CGF, S(χjk, χk), which reads:

S(τ,χ) =
∑
j

gjh̄j(e
χjζj − 1), (5.58)
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where parameters ζ ′js can be obtained by the solving following set of linear

equations: ∑
j

gjk(e
χjkζj − ζk)− gk(ζk − e−χk) = 0. (5.59)

Explicit functional form of S, even for a circuit of a moderate size in

Fig. 5.2, is quite bulky to be shown here. In any case, it is difficult to ob-

serve the presence of an FRCC just by looking at an analytical expression for

a generating function. To demonstrate the presence of an FRCC, we resort to

a numerical solution of (5.58), (5.59). We set all but one counting parameters

in (5.58) and (5.59) to be zero. The presence of an FRCC can be checked by

looking at the solution contours of the equation S(χ)−S(−χ+F ) = 0 plotted

as a function, F (χ). An FRCC occurs for the link k if there exists a solution

contour for which Fk is independent of χk. In other words, if we plot all pairs,

(χk, Fk), that satisfy equation, S(χk) − S(−χk + Fk) = 0, in plane with axes

χk and Fk, then if an FRCC holds, the curve must be a horizontal line, which

is parallel to the χk-axis.

The plot in Fig. 5.4 shows a solution Fij(χij), where (i, j) runs through all

internal links of the network in Fig. 5.2. It clearly shows that only for the link

(1, 2) we have F12 = const. For all other links, solution contours are nontrivial

functions (Fij(χij) 6= const). The FRCC is upheld by the links that do not

belong to any loop. Such a link in our example is the (1, 2) link, and this is

the only link that supports FRCC, which is in agreement with our discussion

in the main text.

5.5.2 Numerical check for networks coupled to a single

reservoir

In this subsection, we numerically analyze the class of networks with loops.

Particles can enter and leave only via a single reservoir. Figs. 5.3(a,b) show

networks, in which all internal links belong to some loops of a graph. Detailed

balance on kinetic rates is not assumed. The twisted master operator for this
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case is

L̂χ =
∑
jk

gjkâ
†
j(e

χjkfkâk − fj âj)

− gn[â†n(fnân − hneχn) + hn − fnâne−χn ]. (5.60)

Figure 5.5: Numerical plots for the solution contours of S(χ)−S(−χ+F ) = 0
for all internal links in Fig. 5.3(a). We consider parameters having the following
values: g12 = 0.4557, g21 = 0.6282, g23 = 0.97782, g32 = 0.04859, g34 = 0.9432,
g43 = 0.7787, g45 = 0.9622, g54 = 0.4298, g56 = 0.3023, g65 = 0.3856, g61 =
0.4667, g16 = 0.06163, g41 = 0.2779, g14 = 0.09021, g1 = 4.7019, h1 = 8.7658.

To account for the lack of a detailed balance condition we simply allow

gij 6= gji. In Eq. (5.60) the index ”n” corresponds to the only node in the

cyclic network that is connected to the reservoir. Similarly to the previous

example, we obtain the following cumulant generating function for the case of

the networks in Figs. 5.3(a,b),

S(τ,χ) = gnh̄n(eχnζn − 1), (5.61)

where the average occupation number of the node ζj can be obtained by solving

the following set of linear equations,∑
j

gjk(e
χjkζj − ζk)− δk,ngk(ζk − e−χk) = 0. (5.62)
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Figure 5.6: Numerical plots for the solution contours of S(χ)−S(−χ+F ) = 0
for all internal links in Fig. 5.3(b). The network parameters for this case are:
g12 = 4.5654, g21 = 7.83, g23 = 8.6823, g32 = 0.6629, g34 = 7.0427, g43 =
7.4394, g45 = 7.95, g54 = 0.1431, g56 = 0.4052, g65 = 2.5126, g61 = 9.5782,
g16 = 0.08372 ,g41 = 9.0737, g14 = 0.81007, g2 = 5.5299, and h2 = 8.2477.

The numerical check for this case is done by inspecting the solution con-

tours of S(χ)− S(−χ+ F ) = 0, as described in previous subsection.

We consider two different cases:

(a) when the reservoir is connected to the central node 1, and

(b) when the reservoir is connected to a non-central node (e.g. the node

2).

We first consider case (a). According to the plot (see Fig. 5.5), all the links

have solution contours that are independent of χ. Hence the FRCC holds for

all the links when the reservoir is attached to the three link junction 1. The

degeneracies in the values of F are due to the charge conservation. Currents

through the links (1, 2), (2, 3) and (3, 4) are the same which leads to the same

value of F . This degeneracy is also seen for the links (4, 5), (5, 6) and (6, 1).

Hence, in Fig. 5.5 we see only three sets of degenerate horizontal lines.

We perform a similar numerical analysis for the case (b) when the reservoir

is connected to node 2. The solution contours for S(χ) − S(−χ + F ) = 0

are shown in Fig. 5.6. For this case we obtain degenerate constant lines of

F = const for the links (1, 2), (2, 3) and (3, 4), thereby satisfying an FRCC.
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All the other links do not satisfy an FRCC.

5.6 Conclusion

We demonstrated that FRCCs appear in fundamental models of nanoscale

electric circuits. Many-body electron interactions, including Coulomb inter-

actions and exclusion interactions, do not break the FRCC prediction in the

model of a chaotic cavity coupled to several leads. This robustness can be used

to extract information about relative sizes of single particle tunnelling barriers

independently of electron interactions. To the best of our knowledge this is

a unique example in which measurements of fluctuation relations can provide

quantitative information that cannot be easily obtained by measuring lowest

current cumulants at given voltages. We also demonstrated that the FRCCs

extend to the quantum regime of coherence among electron trajectories. FR-

CCs can be exacted even when generating functions cannot be derived. This

reflects the fact that FRCCs follow from the properties of single particle geo-

metric trajectories that separately show profound symmetries even when the

complete stochastic evolution of a system is very complex.

An unusual property of FRCCs is that they are not directly related to the

system’s dissipation function. This distinguishes them from a vast number

of previously found fluctuation relations for currents, entropy, heat and work.

Instead, the fact that FRCCs follow from constraints on geometric trajectories

relates them to the principle of Geometric Universality of Currents [130] and

the class of exact results in non-equilibrium physics called ”no-pumping theo-

rems” [130, 139–143]. On the other hand, the similarity between FRCCs and

standard fluctuation relations suggests that there can be a more fundamental

theory in the background of both fluctuation and no-pumping relations.

Our results should stimulate further theoretical and experimental studies of

fluctuation relations, including the search for unifying fundamental principles

in non-equilibrium statistical mechanics and new measurement techniques that

are enabled by FRCCs.

Recently, we have learned of another work that obtained a large class of

FRCCs [144] that do not directly relate to the dissipation functional of the total
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system. Unlike our results, their FRCCs apply to a closed network topology

without external particle reservoirs.
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Chapter 6

Additional Project II:

Electrostatic interaction

between a water molecule and

an ideal metal surface

6.1 Introduction

In this work we study the role of the electrostatic interaction between a single

water molecule and an ideal metal surface. Our aim is to understand how the

water molecule orients itself under the constraint of the electrostatic interac-

tion energy due to an infinite metal surface [145]. We calculate the electrostatic

interaction energy of the water molecule on top of an infinite metal surface. We

employ method of images of point charges [146] to calculate the electrostatic

interaction energy as a function of different orientations of the molecule. For

a set of three charges we use a round up number, based on the water molecule

Mulliken atomic charges obtained with siesta (O=-1C,H=0.5C,H=0.5C). We

define the initial position of the molecule to lie in the Y-Z plane with Hydrogen

atoms facing up away from the image plane. We define θ = 0 for the initial

position see Fig. 6.1, this would be the so called vertical configuration in this

main chapter. θ = π/2 is the horizontal position of the water molecule parallel
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to the metal surface. We rotate the water molecule about the Y-axis fixed at

the center of charge of the water molecule. The center of charge coordinate
~XCC is defined as ~XCC =

∑
qi~xqi/

∑
qi. The center of charge corresponds

to the center of the point dipole obtained from any given charge distribution.

This can be easily realized by the action of a rotation matrix about Y-axis

followed by translation along Z-axis. We fix the center of charge to be at a

height z above the metal surface. xo

yo

zo

 =

 − r
2

cos α
2

sin θ

0

z − r
2

cos α
2

cos θ

 (6.1)

We can similarly obtain the most general coordinates of the hydrogen atoms xh1

yh1

zh1

 =


r
2

cos α
2

sin θ

r sin α
2

z + r
2

cos α
2

cos θ

 (6.2)

 xh2

yh2

zh2

 =


r
2

cos α
2

sin θ

−r sin α
2

z + r
2

cos α
2

cos θ

 (6.3)

The coordinates of the image of charges can be easily obtained by a reflection
of the z coordinate through the x-y plane.

(xio, yio, zio) = (−r
2

cos
α

2
sin θ, 0 ,− z +

r

2
cos

α

2
cos θ)

(xih1, yih1, zih1) = (
r

2
cos

α

2
sin θ, r sin

α

2
,−z − r

2
cos

α

2
cos θ)

(xih2, yih2, zih2) = (
r

2
cos

α

2
sin θ, −r sin

α

2
,−z − r

2
cos

α

2
cos θ)

In the coordinates described in Fig. 6.1, α is the angle between the two

arms of the water molecule and is a known constant (α = 105o). θ is the

angle made by the plane containing the water molecule with the vertical. “z”

is the distance between the metal surface and the center of charge of the

water molecule. The X-Y plane is the reflecting metal surface about which we

perform method of images.
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Figure 6.1: Schematics showing the water molecule and its image where the
rotation of the molecule is described about center of charge. The molecule is
rotated about the Y-axis fixed across its center of charge. θ is the angle of
rotation as a function of which we calculate the total electrostatic energy of
the system.

The total electrostatic energy of the system (metal +monomer) can be

written as

Uelectrostatic = Urr + Uir (6.4)

where Urr is the interaction energy of the real charges and Uir is the interaction
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energy of the real and image charges.

Urr =
1

4πε0

3∑
i=1

3∑
j 6=i=1

qiqj√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

Uir(θ) =
1

4πε0

3∑
i=1

3∑
j=1

qiq
image
j√

(xi − xij)2 + (yi − yij)2 + (zi − zij)2

Urr is the electrostatic self-energy of the molecule and is independent of

the orientation of the molecule so the equilibrium configuration only depends

on the interaction of the water molecule with its image. To obtain the most

favorable configuration of the water molecule due to electrostatic interactions,

we minimize Uir(θ) with respect to the orientation angle θ. We plot the electro-

static potential energy landscape of Uir(θ) for four distances z from the metal

surface as a function of θ. On the basis of the total electrostatic interaction

Å
Å
Å
Å

Figure 6.2: Uir(θ) vs θ for four distances from the metal surface. For all
the distances we see that the vertical configurations are more stable than the
parallel configuration.

energy landscape for the water molecule as a function of orientation angle θ,

we make the following observations.

• The absolute minimum energy configuration of the water molecule is

when θ = 0 with respect to the the vertical, when the molecule about
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the center of charge and θ = π when the molecule is rotated about a

fixed oxygen atom (for smaller distances) .

• θ = 0 or the vertical configuration with Hydrogen atoms pointing up is

more favored than the θ = π
2

parallel configuration in both the cases.

• We see a clear asymmetry in the θ = 0 and the θ = π configurations

for distances z = 2 − 2.5Å which will not be seen if an extended dipole

approximation of the water molecule is used to model the system.

• With increasing distance from the metal surface, the water molecule can

be approximated as a point dipole for which all the orientations will have

almost same energy value.

6.1.1 Validity of the dipole approximation.

Based on the above observations we emphasize the fact that a permanent

dipole approximation does not distinguish between the cases where the hydro-

gen atoms point up or down. This picture yields the same energy for both

the configurations due to the symmetry in the dipole. On the other hand, ac-

counting for the full charge density distribution of the water molecule clearly

distinguishes between the configuration where hydrogen atoms are pointing

up or pointing down. Also the permanent dipole approximation of the wa-

ter molecule is only valid for the case when the water molecule is sufficiently

far away from the metal surface in comparison to the O-H bond length. The

distance at which the water molecules are adsorbed on the metal surface is

roughly 2.5Å, which is not much greater than the water molecule bond lengths

(of the order of 1Å). The more realistic approach is to do a full electrostatic

interactions of the water molecule .

6.1.2 Electrostatic energy for the full charge density of

the water molecule.

Motivated by our previous calculations it will be worth calculating the metal-

water molecule interaction energy using the full charge density function of the
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water molecule. Our electronic charge distribution is obtained using the Kohn-

Sham eigenstates of an isolated water molecule obtained from a previous DFT

calculation using the siesta [147] code. These Kohn-Sham wave functions are

linear combinations of atomic orbitals, we used a single-ζ polarized basis set.

We obtain the linear combination coefficients from a self-consistent DFT cal-

culation and use them to compute the Kohn-Sham wave functions of the water

molecule and with them the analytical charge density distribution function.

The charge density distribution depends the orientation angle θ. For the core

and the nuclear charge we use highly localized Gaussian functions centered

at the coordinate position of the atoms. These coordinates are defined in the

same way as for the point charges which allow for the θ rotation about the

Y-axis. We define the charge density in the following way

ρ(−→r , Ri(z, θ)) = q

∣∣∣∣∣ ∑
i ε atom

4∑
n=1

CnlmYlm(−̂→r −Ri)R(|−→r −
−→
Ri|)

∣∣∣∣∣
2

(6.5)

Ylm are the spherical harmonics and R(|−→r −
−→
Ri|) is the radial function, which

in our case is a set of truncated Gaussian functions we fitted to match the

original, confined, siesta radial functions. The vector
−→
Ri gives the most gen-

eral position for each atom as given in the equation 6.1, 6.2, and 6.3. q is the

total charge in each eigenstate of the basis. Cnlm is the linear combination

coefficients obtained from the siesta calculation. We can also write the core

charge distribution using a localized Gaussian function

ρcore(
−→r , Ri(z, θ)) =

∑
i ε atom

qi | e−κ(|−→r −
−→
Ri|2) |2 (6.6)

where κ = 1
R2
c
. Rc is the radius of the core (Rc = 0.61Å for oxygen and

Rc = 0.21Å for hydrogen). Since we have chosen localized atomic orbitals as
the basis set for the full wave function, we can rigid-rotate the full charge dis-
tribution by rotating the water molecule as described for the point charge case.
The atomic orbitals rotate with its atomic center. Hence we can calculate the
electrostatic energy between the full charge distribution of the water molecule
and the full image charge distribution as a function of orientation angle θ and
z (distance of the center of charge from the image plane). We define the full
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charge distribution of the water molecule and its image in the following way

ρtotal(
−→r ,Ri(z, θ)) = ρcore(

−→r ,Ri(z, θ)) + ρ(−→r ,Ri(z, θ)) (6.7)

ρimage(
−→r ,Ri(z, θ)) = ρtotal(

−→r ,Ri(−z, π − θ)) (6.8)

Once we establish a charge distribution as a function of atomic positions we
can easily rotate the water molecule about the Y-axis fixed at the center of
charge and calculate the electrostatic interaction energy [146] with the image
charge distribution as a function of orientation angle θ.

Uir(z, θ) =
−1

8πε0

¨
ρtotal(

−→r ,Ri(z, θ))ρimage(−→r ,Ri(z, θ))
| −→r −

−→
r′ |

−→
dr
−→
dr′ (6.9)

We plot the electrostatic energy for the full charge distribution and its

image as a function of θ (see Fig. 6.3) for z = 3.12Å. We compare it to

the plot for the three point charge model. According to the plot we observe

that θ = 0 (vertical) is the most stable configuration. We also observe that

the electrostatic energy for the full charge distribution increases compared to

the three-point charge model. It is very interesting to notice how the energy

dependence of the full charge distribution is much more complex than a simple

dipole or the three point charges model. In particular, we can see that there is

an inflection point at θ = π
4
, which coincides with the angular direction of the

O lone pairs. In conclusion, we were able to calculate the electrostatic energy

between the water molecule with metal for three point charge model, and full

charge distribution calculated from siesta. We were able to identify vertical

alignment (with hydrogen atoms facing up) as the most stable configuration of

the water molecule under the constraint of electrostatic interactions with the

metal surface. we also have shown that the full charge distribution provides

a much more complex interaction energy landscape, where the lone pairs of

the oxygen contribute to minimize the interaction energy for an intermediate

alignment.
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Figure 6.3: Uir(θ) vs θ for 3.12Å from the metal surface (Top) For three point
charge model. (Bottom) For full charge distribution of water molecule.
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Appendix A

Appendix for chapter 3

A.1 Separation of Variables for massless spin-

1/2 2D Dirac equation in elliptical coor-

dinates

We present here the details of the steps (see Sec. 3.5) leading to the separation

of variables in elliptical coordinates of a two-dimensional Dirac equation for

massless spin-1/2 fermions. This calculation is in the spirit of work done in

Ref. [55]. An alternate method can also be found in Ref. [56]. The 2-D Dirac

equation is given by

[γ0∂t + γ1∂x + γ2∂y]ψ = 0 (A.1)

where the γ’s satisfy the following anticommutation relations

{γα, γβ} = 2gαβ (A.2)

with Minkowski metric given by g = diag(1,−1,−1). In order to rewrite the

Dirac equation in curved coordinates, let us introduce the following coordinate

transformation

x = f(µ, ν), y = g(µ, ν), t = t. (A.3)

The reader should note that the transformations are kept general and the

choice of elliptical coordinates will be made when required. The general trans-
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formations given by f(µ, ν) and g(µ, ν) must satisfy the condition that f + ig

is holomorphic or complex differentiable in the u+ iv plane which leads to the

following Cauchy-Riemann equations,

fµ = gν , gµ = −fν (A.4)

Using Eq. (A.3) and Eq. (A.4) in Eq. (A.1), one can easily write the dirac

equation in curved coordinates as

[γ0∂t +
γ̃1

h
∂µ +

γ̃2

h
∂ν ]ψ = 0 (A.5)

where

γ̃1 =
1

h
(fµγ

1 − fνγ2) (A.6)

γ̃2 =
1

h
(fνγ

1 + fµγ
2) (A.7)

with the Lame Metric given by h =
√
f 2
µ + g2

µ. We introduce the following

transformation matrices:

S =
1√
h

(e
φ
2
γ1γ2

), S−1 =
√
h(e−

φ
2
γ1γ2

) (A.8)

with φ = arctan( gµ
fµ

). We use Eq. (A.8) in transforming the Dirac equation,

That is we perform

S−1[γ0∂t +
γ̃1

h
∂µ +

γ̃2

h
∂ν ]SS

−1ψ = 0 (A.9)

which results in

[∂t +
γ0γ1

h
∂µ +

γ0γ2

h
∂ν ]Φ = 0 (A.10)

where the transformed spinor satisfies

Φ = S−1ψ (A.11)
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To separate the time variable we introduce the following operator definitions.

k̂2 ≡ ∂t, k̂1 ≡ (
γ0γ1

h
∂µ +

γ0γ2

h
∂ν) (A.12)

The Hamiltonian Eq. (A.10) will read

[k̂2 + k̂1]Φ = 0 (A.13)

with k̂1 and k̂2 satisfying the commutation relation

[k̂2, k̂1] = 0 (A.14)

To separate the time variable, we introduce k such that

k̂2Φ = −ikΦ (A.15)

which immediately gives

k̂1Φ = ikΦ (A.16)

Here, we make the following choice for a two-dimensional representation of the

Dirac matrices,

γ0 = τ2, γ1 = iτ1 , γ2 = −iτ3 (A.17)

In this representation, Eq. (A.16) reads

[τ3∂µ + τ1∂ν − ikh]Φ = 0 (A.18)

The presence of h in Eq. (A.18) forbids us to write Eq. (A.18) as sum of

two commuting differential operators. Therefore we will introduce a similarity

transformation T (µ, ν) acting on the Dirac operator and the spinor.

T = eβeiατ2 (A.19)

with

αµ = −βν , αν = βµ (A.20)
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To be more explicit, we do the T-transformation on Eq. (A.18) in the following

way

T [τ3∂µ + τ1∂ν − ikh]TT−1Φ = 0 (A.21)

which after some algebra gives,

[τ3∂µ + τ1∂ν − ikhei2ατ2 ]Y = 0 (A.22)

with

Y = T−1Φ (A.23)

It should be noted that because α(µ, ν) in Eq. (A.19) is arbitrary we choose

it to be of the following structure,

ei2ατ2 =
[a(µ) + ib(ν)τ2]

h
(A.24)

This specific form of the transformation matrix T cancels the factor h (Lame

metric) in the Dirac equation which mixes the µ and ν variables. It is trivial

to check that a(µ)2 + b(ν)2 = h2 and the structure for β(µ, ν) can be obtained

using Eq. (A.20). At this point we move to elliptical coordinates with Eq. (A.3)

taking the form

x = f(µ, ν) = R coshµ cos ν (A.25)

y = g(µ, ν) = R sinhµ sin ν (A.26)

From (A.25, A.26) we get

h2 = R2 sinh2 µ+R2 sin2 ν (A.27)

Using above (A.27) along with the fact that a(µ)2 + b(ν)2 = h2 gives us by

comparison the following

a(µ) = R sinhµ, b(ν) = R sin ν (A.28)
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Now we introduce the following operators

L̂1 = τ3∂µ − ika(µ) (A.29)

L̂2 = τ3∂ν − ikb(ν) (A.30)

Y = [L̂2 + iτ2L̂1]Z (A.31)

Using Eqs. (A.29), (A.30), and (A.31) we can finally express the Dirac equation

Eq. (A.22) as

[(∂2
µ − ikτ3aµ + k2a2) + (∂2

ν − ikτ3bν + k2b2)]Z = 0 (A.32)

Defining

Z =

(
α(µ)A(ν)

β(µ)B(ν)

)
(A.33)

and introducing a separation constant λ gives us four 2nd order ordinary dif-

ferential equations.

(∂2
µ − ikaµ + k2a2 − λ2)α(µ) = 0 (A.34)

(∂2
µ + ikaµ + k2a2 − λ2)β(µ) = 0 (A.35)

(∂2
ν − ikbν + k2b2 + λ2)A(ν) = 0 (A.36)

(∂2
ν + ikbν + k2b2 + λ2)B(ν) = 0 (A.37)

After putting back a = R sinhµ, aµ = R coshµ, b = R sin ν, and bν = R cos ν

we obtain

(∂2
ν − ikR cos ν + k2R2 sin2 ν + λ2)A(ν) = 0 (A.38)

(∂2
ν + ikR cos ν + k2R2 sin2 ν + λ2)B(ν) = 0 (A.39)

(∂2
µ − ikR coshµ+ k2R2 sinh2 µ− λ2)α(µ) = 0 (A.40)

(∂2
µ + ikR coshµ+ k2R2 sinh2 µ− λ2)β(µ) = 0 (A.41)
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which are equivalent to 4 coupled first order equations that connect the upper

and lower components of the wave function spinor

(∂ν − ikR sin ν)A(ν) = iλB(ν) (A.42)

(∂ν + ikR sin ν)B(ν) = iλA(ν) (A.43)

(∂µ − ikR sinhµ)α(µ) = λβ(µ) (A.44)

(∂µ + ikR sinhµ)β(µ) = λα(µ) (A.45)

Thus we have reduced the 2D massless Dirac equation in elliptical coordinates

to a problem of four decoupled ordinary differential equations. These sepa-

rated radial and angular equations are known as the Whittaker Hill equations

(WHE).

The explicit form of the transformation matrices can be evaluated. Using

Eq. (A.31) we have

Y =

(
α(µ)B(ν)

iβ(µ)A(ν)

)
(A.46)

We write below a more transparent and dimensionless form for S (Eq. (A.8))

and T (Eq. (A.19))

S =

√
R√
h

(
cos φ

2
− sin φ

2

sin φ
2

cos φ
2

)
(A.47)

T = eβ

(
cosα sinα

− sinα cosα

)
(A.48)

which immediately gives ST as

ST =
√
R
eβ√
h

(
cos(α− φ/2) sin(α− φ/2)

− sin(α− φ/2) cos(α− φ/2)

)
(A.49)
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In elliptical coordinates, α, β, and φ take the following form,

α =
1

2
tan−1(

sin ν

sinh µ
) (A.50)

β = −1

2
tanh−1(

cos ν

cosh µ
) (A.51)

φ = tan−1(coth µ tan ν) (A.52)

(A.53)

and we can rewrite β using the log formula for tanh−1.

β = ln(
cosh µ+ cos ν

cosh µ− cos ν
)−1/4 (A.54)

eβ√
h

=
1√

(cosh µ+ cos ν)
(A.55)

(A.56)

After using some trigonometric identities, these expressions for α and φ satisfy

the following relations

α− φ

2
=

tan−1( sin ν
sinh µ

)− tan−1(coth µ tan ν)

2
(A.57)

2(α− φ

2
) = tan−1(

− sin ν sinh µ

cos ν cosh µ+ 1
) (A.58)

To evaluate ST we need to calculate its components in terms of elliptical

coordinate variables. Tangent, sine and cosine of the double angle can be

evaluated as

tan(2(α− φ

2
)) =

− sin ν sinh µ

cos ν cosh µ+ 1

sin(2(α− φ

2
)) =

− sin ν sinh µ

cos ν + cosh µ

cos(2(α− φ

2
)) =

cos ν cosh µ+ 1

cos ν + cosh µ

Using the half angle formulae we can finally evaluate the components of the
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transformation matrix in terms of the coordinate variables. While reducing

the components to half angle there is arbitrariness in the choice of the sign

of the trigonometric functions in each quadrant. We make a choice of signs

such that our final transformation matrix is 4π periodic in angular coordi-

nate ν. We could as well make a choice which would result in 2π periodicity

of transformation matrix. Any choice can be compensated by choosing the

periodicity of the angular solutions accordingly. For example, we choose 4π

periodic eigenstates for the angular WHE (see Sec. 3.6).

sin(α− φ

2
) = −

sin ν
2

sinh µ
2√

cos ν + cosh µ
(A.59)

cos(α− φ

2
) =

cos ν
2

cosh µ
2√

cos ν + cosh µ
(A.60)

(A.61)

Using Eqs. (A.49, (A.55), (A.59), and (A.60) along with the fact that ψ =

ST Y , we have

ψ =
1

(cosh µ+ cos ν)

(
cos ν

2
cosh µ

2
− sin ν

2
sinh µ

2

sin ν
2

sinh µ
2

cos ν
2

cosh µ
2

)(
α(µ)B(ν)

iβ(µ)A(ν)

)

A.2 Asymptotic form for radial solutions

To study the scattering cross section, we have to calculate the phase shifts

of the scattered wave function at large radial distances where the detector is

placed. Hence, the asymptotic form of the radial solutions is an important

piece of information in setting up the scattering cross section. In this section

we give the asymptotic form of the first and second radial solutions to WHE. In

the Sec. 3.6.2 we expand radial solutions in terms of confluent hypergeometric

functions (CHF) (see Eqs. (3.88) and (3.89)). We now write the asymptotic

form of these solutions. As µ→∞ in the series of CHF, only the leading term
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in the sum contributes

Jom(µ) ≈ eikR coshµ cosh
µ

2
M(

1

2
, 2,−4ikR cosh2 µ

2
) (A.62)

Jem(µ) ≈ eikR coshµ sinh
µ

2
M(

1

2
, 2,−4ikR cosh2 µ

2
) (A.63)

The asymptotic form of the CHF is well known [78] and is given as

M(
1

2
, 2,−4ikR cosh2 µ

2
) ≈ 1

Γ(1
2
)

√
1

4ikR cosh2 µ
2

(A.64)

At large distances, we have coshµ ∼ sinhµ∼eµ = 2r
R

, the elliptic coordinate

ν is reduced to the ordinary polar angle φ, and therefore the full asymptotic

form of the solutions become

Jom(r) ≈
√

1

πkR
ei(kr−

π
4

) (A.65)

Jem(r) ≈
√

1

πkR
ei(kr−

π
4

) (A.66)

From inspection of the large µ behavior of the second solutions we find the

asymptotic form to be

Feym(r) ≈
√

1

πkR
ei(kr+

π
4

) (A.67)

Geym(r) ≈
√

1

πkR
ei(kr+

π
4

) (A.68)
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Similarly we can also determine the asymptotic forms for the lower component

radial solutions

Jo
′

m(r) ≈
√

1

πkR
e−imπe−i(kr+

π
4

) (A.69)

Je
′

m(r) ≈
√

1

πkR
e−imπe−i(kr+

π
4

) (A.70)

Fey
′

m(r) ≈
√

1

πkR
e−imπe−i(kr−

π
4

) (A.71)

Gey
′

m(r) ≈
√

1

πkR
e−imπe−i(kr−

π
4

) (A.72)

A.3 Plane wave expansion coefficients

In this section we calculate the plane wave expansion coefficients nem and nom

appearing in Eq. (3.113).

ei
~k·~r

(
cos θ

2

sin θ
2

)
= (ST )

{∑
m

nemBem(θ)

(
JemBem

i Je
′
mAem

)

+
∑
m

nomBom(θ)

(
JomBom

i Jo
′
mAom

)}
(A.73)

In elliptical coordinates a unidirectional plane wave is described in terms of

the incident direction θ in the following way,

~k = (cos θx̂+ sin θŷ), ~r = R(coshµ cos ν x̂+ sinhµ sin ν ŷ) (A.74)

~k · ~r = kR(coshµ cos ν cos θ + sinhµ sin ν sin θ) (A.75)
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Multiplying both sides by the transformation matrix (ST )−1,

ei
~k·~r(ST )−1

(
cos θ2
sin θ

2

)
=

{∑
m

nemBem(θ)

(
JemBem

i Je
′
mAem

)

+
∑
m

nomBom(θ)

(
JomBom

i Jo
′
mAom

)}
(A.76)

ei
~k·~r

(
cos ν2 cosh µ

2 cos θ2 + sin ν
2 sinh µ

2 sin θ
2

cos ν2 cosh µ
2 sin θ

2 − sin ν
2 sinh µ

2 cos θ2

)
=

{∑
m

nemBem(θ)

(
JemBem

i Je
′
mAem

)

+
∑
m

nomBom(θ)

(
JomBom

i Jo
′
mAom

)}
(A.77)

For brevity of notation, we write(
cos ν

2
cosh µ

2
cos θ

2
+ sin ν

2
sinh µ

2
sin θ

2

cos ν
2

cosh µ
2

sin θ
2
− sin ν

2
sinh µ

2
cos θ

2

)
≡

(
fup(µ, ν, θ)

fd(µ, ν, θ)

)
(A.78)

We also have the following bi-orthogonal properties for the angular Whittaker

Hill functions.

2πˆ

0

Ao∗sBemdν = kmδms ,

2πˆ

0

Ae∗sBomdν = k∗mδms (A.79)

2πˆ

0

Ae∗sBemdν = 0,

2πˆ

0

Ao∗sBomdν = 0 (A.80)

where km is the normalization constant. Operating on both sides with row

vector
(
Ao∗s(θ)Ao

∗
s(ν), Ao∗s(θ)Bo

∗
s(ν)

)
, integrating over ν and θ from 0 to

2π, and applying the bi-orthogonality relations, we get
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2πˆ

0

2πˆ

0

ei kR(coshµ cos ν cos θ+sinhµ sin ν sin θ)Ao∗s(θ)(Ao
∗
s(ν)fup(µ, ν, θ)

+ Bo∗s(ν)fd(µ, ν, θ))dν dθ =
{
nes k

2
s(Jes + iJe

′

s)
}

(A.81)

Putting µ = µ0 in the above expression yields

nes =
( 2πˆ

0

2πˆ

0

ei kR(coshµ0 cos ν cos θ+sinhµ0 sin ν sin θ)Ao∗s(θ)(Ao
∗
s(ν)fup(µ0, ν, θ)

+ Bo∗s(ν)fd(µ0, ν, θ))dν dθ

)/
k2
s(Jes(µ0) + iJe

′

s(µ0)) (A.82)

Similarly, we can calculate nos by operating on both sides with row vector(
Ae∗s(θ)Ae

∗
s(ν), Ae∗s(θ)Be

∗
s(ν)

)

nos =
( 2πˆ

0

2πˆ

0

ei kR(coshµ0 cos ν cos θ+sinhµ0 sin ν sin θ)Ae∗s(θ)(Ae
∗
s(ν)fup(µ0, ν, θ)

+ Be∗s(ν)fd(µ0, ν, θ))dνdθ
)/

(k∗s)
2(Jos(µ0) + iJo

′

s(µ0)) (A.83)

We have checked that nes and nos are independent of the value of µ0.
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Appendix B

Appendix for chapter 4

B.1 Chiral Bosons Coupled to Gauge Fields

from non-Chiral Bosons

In this section we derive a gauge invariant action for chiral bosons coupled to

gauge fields. Our starting point is non-chiral bosonic theory in the presence

of gauge fields. This exercise is another way to derive chiral bosons coupled

to gauge fields and how is coupled to the original non-chiral boson.

Z[ãµ] =

ˆ
Dφe

i
´
dxdt
[

( 1
v

(φ̇)2−vφ2
x)+κεµν ãµ∂µφ

]
(B.1)

Now we add auxiliary θ fields in the partition function in the following form,

Z[ãµ] =

ˆ
DφDθeiS[φ,θ,ãµ] (B.2)

S =

ˆ
dxdt

[
φ̇(θx + 2κã1)− v

2
(θx + 2κã1)2

− v

2
φ2
x + 2κ(ã0φx − ã1φ̇)

]
(B.3)
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In the above action we make the following change of variables,

θ = φR − φL, φ = φR + φL (B.4)

The new action in terms of φR, φL takes the form,

S =

R,L∑
i

ˆ
dxdt

[
− φi(γi∂x∂t − v∂2

x)φ
i − vκ2a2

1

+ 2κφix(ã0 − γivã1)
]

(B.5)

Now we aim to perform a gauge transformation on the action in Eq. (B.5). In

order to do this we use the parametrization introduced in .

ã0 = α̇− vβx, ã1 = αx −
1

v
β̇ (B.6)

We now write the action in terms of these new parameters,

S =

R,L∑
i

ˆ
dxdt

[
− φi(γi∂x∂t − v∂2

x)φ
i

− 2γiκφ
i(γi∂x∂t − v∂2

x)(α + γiβ)− vκ2(αx −
1

v
β̇)2
]

(B.7)

In the action given in B.7 we make the following shift,

φi = φi − γiκ(α + γiβ) (B.8)

We obtain the new action as,

S =

R,L∑
i

ˆ
dxdt

[
− φi(γi∂x∂t − v∂2

x)φ
i + κ2β2β

]
, (B.9)

where we define the D’ Alembertian operator as 2 = 1
v
∂2
t −v∂2

t . The last term

in the action can be identified as the term coming from the chiral anomaly

between the two edges. Following the calculations in the previous section we
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can obtain the expression for β in the gauge ã0 = 0 and ∂tã1 = E(x, t):

S =

R,L∑
i

ˆ
dxdt

[
− φi(γi∂x∂t − v∂2

x)φ
i + vκ2 (∂tã1)2

2

]
(B.10)

Now we can calculate the current between the edges and along the edges for

the interferometer model. Following a similar procedure as in Sec. (4.2.1) we

get the same result for the current between the edges through point contact.

Notice that we get different result for current along the edge. Current at any

point on the ith edge is given by,

I i(x, t) =
δS[φ1, φ2, a1, a2, ã1]

δã1

=
vi νi
2π

ˆ 0

−∞
dt′[Ei(x+ γivit

′, t) + Ei(x− γivit′, t)]

+
∑
j

θ(γi(x− xj))Ij(t) (B.11)

Hence we see that the current at any point on the edge depends on response due

both the chiral components. This was expected since we did not completely

decouple the two edges and they are connected together by the anomaly term.

B.2 Integrals Involved in the Calculation of

the Current

In this Appendix we solve the integral in Eq. (B.12).

fV (ξ1, ξ2, κ12) = (πT )
2
νP.V.

ˆ ∞
−∞

ei(V t+κ21) sin
[
π
2

(
sgn(ξ1−t)

ν1
+ sgn(ξ2−t)

ν2

)]
[sinh(πT |ξ1 − t|)]

1
ν1 [sinh(πT |ξ2 − t|)]

1
ν2

(B.12)

Note that the principal value in front of the integral is taken into account

using by analytically continuing the filling factors to complex plane. The

integrals correspond to Beta functions and their generalizations defined on a

complex contour [148]. We split the interval of integration in three parts.
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fV = f1 + f2 + f3

f =

{[ ˆ ξ1

−∞
dt−

ˆ ∞
ξ2

dt
]

sin
(π1

ν

)
+

ˆ ξ2

ξ1

dt sin
(πλ2

−

2

)}

× (πT )
2
ν sin(V t− κ)

[sinh(πT |ξ1 − t|)]
1
ν1 [sinh(πT |ξ2 − t|)]

1
ν2

(B.13)

Here we have defined parameter λ− =
√

ν1−ν2

ν1ν2
. Consider the first integral

(call it f1) in the above expression. We make the shift t = ξ1 − t.

f1 = Im

{ˆ ∞
0

dt
ei(V ξ

1−κ)e−iV t(πT )
2
ν sin

(
π
ν

)
[sinh(πTt)]

1
ν1 [sinh(πT |t+ ξ2 − ξ1|)]

1
ν2

}
(B.14)

We make the transformation s = e−2πTt and z = e−2πT |ξ2−ξ1| in the above

integral. The resulting expression can be written as

f1 = (2πT )
2
ν
−1 sin

(π
ν

)
z1/ν2Im

{ˆ 1

0

du
ei(V ξ

1−κ)u
1
ν

+ iV
2πT
−1

[1− u]
1
ν1 [1− zu]

1
ν2

}
(B.15)

using the definition of Hypergeometric functions, we can write,

f1 = (2πT )
2
ν
−1z

1
2ν2 Im

{
ei(V ξ

1−κ) Γ( 1
ν

+ iV
2πT

)

2Γ(1− λ2
−
2

+ iV
2πT

)Γ( 1
ν1

)

× 2F1(
1

ν
+

iV

2πT
,

1

ν2

, 1−
λ2
−

2
+

iV

2πT
; z)
}

(B.16)

(B.17)

Similarly, the second term in the integral (f2) can be written as

f2 = (2πT )
2
ν
−1 sin

(π
ν

)
z1/ν1Im

{ˆ 1

0

du
e−i(V ξ

2−κ)u
1
ν

+ iV
2πT
−1

[1− u]
1
ν2 [1− zu]

1
ν1

}
(B.18)
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f2 = (2πT )
2
ν
−1z

1
2ν1 Im

{
e−i(V ξ

2−κ) Γ( 1
ν

+ iV
2πT

)

2Γ(1 +
λ2
−
2

+ iV
2πT

)Γ( 1
ν2

)

× 2F1(
1

ν
+

iV

2πT
,

1

ν2

, 1 +
λ2
−

2
+

iV

2πT
; z)
}

(B.19)

The third term in the integral can be written as,

f3 = −Im

{ˆ ξ1−ξ2

0

dt
ei(V ξ

1−κ)e−iV t(πT )
2
ν sin

(
πλ2
−

2

)
[sinh(πTt)]

1
ν1 [sinh(πT |t+ ξ2 − ξ1|)]

1
ν2

}

We make the following transformation to integral f3, u = e2πTt−1

e2πT |ξ2−ξ2|−1
, to obtain

f3 = −Im

{
ei(V ξ

1−κ)(2πT )
2
ν
−1e

π T
ν2
|ξ2−ξ1|

(e
π T
ν2
|ξ2−ξ1| − 1)

2
ν
−1

× F̃1(1− 1

ν1

;
1

2ν2

; 1− 1

ν
+
iV

2π
T ; 2− 2

ν
− 1

ν2

; 1; 1− eπT |ξ2−ξ1|)

}
(B.20)
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