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Abstract of the Dissertation 

Invasion of Centaurea nigrescens, Tyrol knapweed, in North America 

 by  

Rebecca Ann Grella 

 Doctor of Philosophy  

in 

 Ecology and Evolution 

 Stony Brook University  

2012 

Centaurea nigrescens is a native plant in Europe that was introduced to North America in the 
1800s.  This dissertation focuses on the introduction and spread of C. nigrescens across North 
America using herbaria records and genetic differences between native and non-native 
populations to construct likely invasion routes.  Herbarium records and the results of a Minimum 
Cost Arborescence model coupled with chloroplast DNA analysis support the hypothesis that 
there was an initial introduction of C. nigrescens near Worcester, Massachusetts in 1830.  
Significant haplotype differences between the populations from the northeastern and the 
northwestern US support the hypothesis that there was a second, independent introduction of C. 
nigrescens in the Pacific northwest, USA.  To compare the performance of plants from the native 
and non-native range of C. nigrescens, seeds from 8 European (native) and 8 North American 
(non-native) populations were collected.  Germination and early developmental stages were 
assessed by studying germination rates, time to germination, time to first leaf, and time to second 
and third leaf formation at 18°C and 28°C.  Seeds from non-native populations had a greater 
germination rate than those from native populations at both temperatures.  However, there was 
no difference in time to germination or developmental rates between plants from native and non- 
native populations at 18°C or 28°C.  Three greenhouse experiments were used to assess traits 
that could affect the competitive ability of C. nigrescens when exposed to low and high light, 
low and high water, and low and high nutrients.  Surprisingly there were relatively few traits that 
differed between plants from native and non-native populations in any of the three experiments.  
Plants from the non- native populations were capable of adapting to the different treatments by 
differences in resource allocation.  For the non-native plants in the light and water experiments, 
leaf structure changed significantly without affecting specific leaf area, a trait associated with 
competitive ability.  There was no difference in specific leaf area between native and non- native 
populations in any of the treatments in any of the experiments.  By incorporating the history of 
invasion, early life history traits, and responses to resources, this dissertation research provides 
important knowledge about the introduction of an invader, and indicates the importance of 
studies that include many different factors that affect the introduction and success of new 
invaders. 
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Introduction 
 

The genus Centaurea (Asteraceae) has about 300 species (Garcia-Jacas et al. 2006), all of 

which are native to Eurasia, and many that have been introduced outside of their native range 

and are now considered invasive.  In this dissertation, invasive plants are defined as those that 

have a negative impact on communities they invade and/or negative human impacts.  In North 

America 34 species of Centaurea are reported to have been successfully introduced 

(http://plants.usda.gov/), and 14 of these are considered noxious weeds in one or more U.S. 

states.  Species of Centaurea that have spread and become pests in areas outside their native 

range include spotted knapweed C. stoebe, star thistle C. solstitialis, diffuse knapweed C. diffusa, 

squarrose knapweed C. virgata, and Russian knapweed C. repens (Sheley and Petroff 1999; 

LeJeune and Seastedt 2000; DiTomaso 2000; Marrs and Hufbauer 2006; Hufbauer and Sforza 

2008; Marrs et al. 2008).  Centaurea nigrescens (Figure 1) is within the section Jacea-

Lepteranthus of the Circum-Mediterranean and Eurosiberian Clade of Centaurea (Garcia-Jacas 

et al. 2006).  Centaurea nigrescens, commonly known as tyrol-knapweed or short fringed 

knapweed, is poorly studied relative to its congeners.  It is a weed that was introduced in the 

United States in the 1800s from Europe (Chapter 2).  It is not yet known whether C. nigrescens 

will become an aggressive pest like other introduced species of Centaurea that are successful 

invaders. 

Centaurea nigrescens is a rosette forming herbaceous perennial that generally grows 30-

150 cm in height, and has 1 to 50 erect flowering stems (Efloras 2008). Populations of C. 

nigrescens are typically found along roadsides and in highly disturbed sites (personal 

observation).  This species can spread both by clonal growth via rhizomes as well as by seeds.  It 

germinates in the spring and summer and can flower in its first year.  In general, it over winters 

as a rosette, bolts and sends up stalks with floral buds in the spring (June), flowers and fruits in 

mid-late summer, and dies back above ground by late autumn (personal observation).  Flowers 

are self-incompatible and each plant can produce up to 25 seeds per capitulum when fertilized 

(Efloras 2008).    

The native range of this species is in Europe (Figure 1).  Introduced populations in North 

America are primarily in the east, with a few populations in the west (Figure 2).  Other species of 

Centaurea are proposed to have been introduced into the US through soil in the ballasts of ships 

and contaminants in alfalfa seed and hay for cattle (Maddox 1979).  It is reasonable to assume 
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that C. nigrescens was introduced in a similar manner.  To date, investigations have not been 

conducted on the history, ecology, and evolution of Tyrol knapweed in North America.  

The focus of this dissertation was to unearth the history of the introduction and spread, 

ecology and evolution of C. nigrescens in the United States.  Herbarium archive records and a 

computer algorithm were used to reconstruct the most parsimonious likely invasion route for C. 

nigrescens (Chapter 2).  To address the differences in growth and development between native 

and non-native populations, seeds were collected from 8 European sites and 8 North American 

sites.  A germination study (Chapter 3) was used to assess whether there are differences in the 

time to germination and the timing different early developmental stages between plants grown 

from native and non-native seeds.   

There are many factors that affect invasion success.  A greenhouse study was conducted 

to compare the effects that the critical abiotic factors of light, water, and nutrients have on the 

growth and morphology of plants from native and non-native populations of C. nigrescens 

(Chapter 4).  

Population genetic analysis coupled with ecological studies can be a powerful approach 

for studying biological invasions (Hufbauer and Sforza 2008).  Therefore, questions regarding 

whether multiple introductions have occurred and if the genetic diversity in introduced 

populations is similar to those found in the native range can be addressed with chloroplast DNA 

(cpDNA) (Chapter 5).  Sequence data were used to resolve haplotypes found in plants in the 

native and non-native range, and to infer the source of introductions in the non-native range. 

Information obtained from a comprehensive study of the invasion of C. nigrescens will 

provide critical information needed for understanding the initial stages of invasion: introductory 

history, local adaptation and traits that may enhance local competition.  
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Figure 1.  Centaurea nigrescens in flower in July.   
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Figure 2.  US States where C. nigrescens has been found.  Data for map obtained from the 
United States Department of Agriculture.  
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Figure 3.  European countries where Centaurea nigrescens has been found.  Data for map 
obtained from Flora Italia. 
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Introduction 

 The genus Centaurea (Asteraceae) has about 300 species (Garcia-Jacas 

et al. 2006), all of which are native to Europe, and many of which have become invasive across 

the globe.  In North America 34 species of Centaurea are reported to have been successfully 

introduced (http://plants.usda.gov/), 14 of which are currently considered noxious weeds in one 

or more U.S. states.  Very little work has been done to document the early stages of invasion of 

any of the species of Centaurea.  

 Reconstructing the invasion pathways of introduced species represents a major challenge 

for the field of invasion biology.  Many studies have used temporal and spatial information 

gleaned from herbarium specimens to infer invasion routes (Aikio et al. 2011; Delsile et al. 2003; 

Miller et al. 2009; Wu et al. 2010; Fonseca et al. 2006; Fuentes et al. 2008; Barney et al. 2008) 

and, although these efforts have some limitations, they often provide the only means for 

historical reconstructions (Delisle et al. 2008).  

 Recently, another approach, the Minimum Cost Arborescence (MCA) model, has been 

developed to predict likely spatial pathways of introduced species over time (Hordijk and 

Broennimann 2012). The MCA reconstructs the most parsimonious routes of spread given a 

directed graph, a unique root vertex, and a cost function (Figure 1).  In a directed graph, vertices 

are connected using vectors and the root vertex, the initial point of introduction, is assigned.  All 

other points come from the root vertex and a cost function is used to establish which point is 

most likely to be next.  The cost function determines the minimum cost of traveling to the next 

point.  The invasion route then follows the pathway of minimum cost.  The MCA model uses 

locations and dates of collections from herbarium records as the points along a directed path.  

Therefore, with the use of an MCA algorithm, it is possible to reconstruct plausible invasion 

routes as well as the timing of spread.  The goal of the present study was to use the MCA model 

to construct a plausible invasion route in North America for C. nigrescens, a close relative of the 

species, C. stoebe, spotted knapweed, which was the focus of the Hordijk and Broennimann 

(2012) study, that was introduced to North America about the same time.  In addition, I asked if 

the spread of C. nigrescens corresponded with the introduction and spread of C. stoebe.   
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Methods 

Centaurea nigrescens herbarium data 

Data on the current distribution of C. nigrescens (Figure 3) were obtained from the 

USDA PLANTS database (http://plants.usda.gov/java/profile?symbol=CENI3).  For states where 

C. nigrescens was reported to have been found, state herbaria were contacted to determine if they 

had records of Centaurea nigrescens.  If online images of recorded specimens were available and 

accurate identification could be made, records were included in the study.  For records that were 

not online, specimens were shipped or scanned and I reviewed specimens for accuracy and 

proper species identification (Table 1).  Each record included the date and county where 

collected.  If the record contained geographic coordinates, they were used.  If geographic 

coordinates were not available on the voucher, the approximate center of the county where the 

plant was collected from (determine by using Google Earth Google Earth, Version 

5.1.3533.1731, Mountain View, CA: Google Inc.) was used as the geographic coordinate for that 

specimen.  If there were multiple records within a county, first occurrence in each county was 

used for the modeling of most likely route of invasion.    

 Counties were used as the unit of spatial resolution for the distribution and spread of this 

species.  Before using the MCA model, I used ArcGIS (ArcGIS Desktop, ver.10) to plot 

specimen locations and the first date of collection for each herbarium record in each county.  A 

total of 133 records were found, 52 of which were duplicate records within a county, leaving a 

total of 81 records used in the MCA model.  

Minimum Cost Arborescence Model: MCA Algorithm 

MCA (acquired from O. Broennimann, R 2.14, R Development Core Team 2012, 

Appendix I), was then used to construct a possible pathway of invasion for C. nigrescens.  For 

the simulation 81 herbarium records from 55 counties in 18 states were used.  The spatial 

resolution of the output was reported at the county-level.  Euclidean distance between two points 

was used as the cost function c(e).  The vertex, the initial point and time of introduction, was 

assigned to be Worcester, MA, 1830, the first documented voucher of C. nigrescens in North 

America.  

The model was run for 100 iterations, and a bootstrap value was assigned to each 

hypothesized path of travel.  Paths with different Bootstrap values, with higher numbers 
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indicating the most support are plotted in Figure 5.  I then overlaid the output for C. nigrescens 

onto the likely invasion routes of C. stoebe (provided by O. Broennimann). 

Results 

Most herbarium records for C. nigrescens were from herbaria in the northeastern and mid 

western US.  The earliest record was from 1830 from Worcester County, Massachusetts, and 

therefore was used as the vertex for the MCA model.  Figure 6 illustrates the year-by-year 

occurrence of C. nigrescens in the US based on first occurrence herbarium records.  Figure 7 

illustrates the counties within major geographic regions of the US where C. nigrescens was 

initially introduced and then spread to nearby counties. 

After its initial introduction to Massachusetts in 1830, C. nigrescens did not appear to 

spread for 60 years.  The results of the MCA model (Figure 5) was that the most likely path of 

spread from its initial introduction in Worcester MA was to the north to Maine (1890, 75-100% 

bootstrap support).  Records later indicate the presence of C. nigrescens in Hartford County 

Connecticut in 1904 (75-100% bootstrap support).  This species then spread south to Washington 

DC (1915, 75-100% bootstrap support), and then expanded to the midwest to Washtenaw 

County, Michigan in 1917 (75-100% bootstrap support), and into Lancaster County, Nebraska in 

1933 (75-100% bootstrap support)..  It appears that there was a second introduction into Douglas 

County, Oregon in the early 1900s (75-100% bootstrap support).  From there, C. nigrescens 

spread to Klickitat, Washington State (1985) and Humboldt County, California (1961), but did 

not spread further east from there. 

Discussion 

Understanding the early stages of the spread of an invader following initial introduction, 

is of critical importance for developing a general understanding of invasion and preventing 

spread of unwanted species.  Historical records, including herbarium records, can provide 

important data that allow us to reconstruct the spread of introduced species, and may help us in 

predicting the spread of future invaders.  Previous methods that have used herbarium records to 

reconstruct invasion history require much more data than are available for C. nigrescens (Aikio 

et al. 2011; Delsile et al. 2003; Miller et al. 2009; Wu et al. 2010; Fonseca et al. 2006; Fuentes et 

al. 2008; Barney et al. 2008).  The use of the MCA method, however, produces likely invasion 

routes when fewer herbarium records are available.  Centaurea nigrescens appears to be in the 
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early stages of invasion.  It has only been recorded from 55 counties in 18 states, but is likely to 

be more widespread in the future. 

Many immigrants arrived in the early and mid 1800s with seeds to sow crops (Mack 

2003).  In addition to the deliberate introduction of agricultural species, it is likely that the seed 

stocks they carried were contaminated with unintentional species of European plants such as C. 

nigrescens.  Another plausible mechanism of introduction for this species is through 

contamination of cattle feed (e.g., hay) during cattle importation.  Although, a large majority of 

cattle were imported from Europe during the 1600’s (Bowling 1942), cattle continued to be 

imported throughout the 1800s.  

As C. nigrescens populations were becoming established in Massachusetts from 1830 to 

1890, a rail system was being built to connect Worcester with ports in Boston (Boston and Maine 

Railroad, Boston and Lowell Railroad Corporation, 1904) and other northeastern cities.  By 1890 

C. nigrescens had spread to Maine followed by a much more rapid expansion to Connecticut in 

1904, and Washington, D.C. in 1915 (Boston and Maine Railroad, Boston and Lowell Railroad 

Corporation, 1904).  By the 1890’s the rail system was more widespread, which likely allowed 

for the rapid expansion of range into the Midwest.  It would be interesting to use the MCA model 

with the cost function determined by the distance along rail lines, to see if the same or different 

paths were more likely.  Using Euclidian distances for the cost function assumes that spread 

occurs by natural dispersal or animal vectors, which are equally likely to move in all directions 

from a source.  If, however, human transport was the most likely vector for transport, then the 

distances of travel would be along transportation routes, which at that time would be railroads or 

wagon routes, especially to the west.  

The hypothesized route of invasion by C. nigrescens is very similar to that proposed for 

C. stoebe (Hordijk and Broennimann 2012).  It is most similar for the northeast and midwest.  

However, C. stoebe has a greater range, particularly in the south, than C. nigrescens (Figure 8). 

Understanding the characteristics and determinants of invasion routes has important 

practical applications, including the design and implementation of quarantine strategies, and 

anticipation of conservation actions such as preventing establishment of new focal populations or 

eliminating them, rather than just focusing on established invasion fronts (Miller et al. 2005; 

Handley et al. 2011).  This study shows that MCA is a useful approach to reconstruct invasion 

routes when a limited number of records exit, making it a useful tool for many new invaders.  
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Additionally, the output of such models provides a framework for further studies on particular 

invasions, allowing a researcher to investigate causality of spread in an invasion and in so doing, 

furthering the development of our understanding of the processes by which biological invasions 

occur.   
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Table 1.  List of herbaria providing records for the construction of invasion routes using  
a MCA model.   
State Herbarium 
Wisconsin 
 

Robert W. Freckman Herbarium 
Wisconsin State Herbaria 
 

Missouri 
 

Missouri Botanical Garden 
 

Oregon 
 

Consortium of Pacific Northwest Herbaria 
Intermountain Herbarium 
Western Illinois University 
 

California 
 

Consortium of California Herbaria 
 

West Virginia 
 

WVA  (West Virginia University Herbarium) 
 

Massachusetts 
 

Amherst College at Massachusetts 
 

Michigan 
 

Michigan State University 
Bloomington Fields Herbarium 
WUD 
 

Indiana 
 

Kriebel Herbarium, Purdue University 
NHA 
 

Connecticut 
 

University of Massachusetts 
Academy of Natural Sciences in Philadelphia 
 

Maine 
 

Harvard University Herbaria 
 

New Jersey 
 

Rutgers University Chrysler Herbarium 
Chrysler Herbarium (CHRB) 

 
Nebraska 
 

United States Herbarium 
 

Illinois 
 

Morton Arboretum Herbarium 
 

Virginia 
 

Virginia Polytechnic Institute & State University 
VTB 
 

Washington 
 
 

New York Botanical Garden 
Otis Douglas Hyde Herbarium, University of Washington 
 

Ohio 
 

Smithsonian Institution 
 

Idaho 
New York 
 

Consortium of Pacific Northwest Herbaria 
Consortium of Pacific Northwest Herbaria 
 

Montana Consortium of Pacific Northwest Herbaria 
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Figure 1.  Minimal spanning tree showing an initial point A, followed by sub graphs with 
successive nodes.  A cost function (determined by Euclidian distance among points) determines 
the path at which the next point will be found.  The cost function directs the algorithm to the 
most parsimonious location in a graph directed space.  Point A on tree indicates vertex or origin 
ti initial point for which all other points span.  In this case, ti represents the earliest recorded 
herbarium record with subsequent sites of travel (B-I).  
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Figure 2.  Centaurea nigrescens in flower, July 2011.  Flower is approximately 3 cm in width.   
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Figure 3.  Distribution of C. nigrescens in North America.  Data for map obtained from the 
United States Department of Agriculture.   
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Figure 4.  Records of C. nigrescens from state herbaria.  The samples represented in the graph 
include multiple specimens collected in a given year.  The records used to create this graph were 
obtained from the herbaria listed in Table 1.     
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Figure 5.  United States map illustrating invasion routes for C. nigrescens from MCA simulation 
in R 2.14.  A) Initial node of introduction used for Algorithm is denoted by a black dot, ti was 
1830 located in Worchester County, Massachusetts.  B) Suggested route for mid west 
introduction.  C) Suggested route for Pacific Northwest introduction.  Dark lines indicate high 
bootstrap support; lighter lines indicate lower level of support 75-100% (thick Line), 50-75% 
(thin line) and 25-50% (lightest line).   
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Figure 6.  Year of first records of C. nigrescens within counties.  Multiple dots in a county 
represent multiple records collected.  For the MCA model only first occurrence reported for the 
county was used.    
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Figure 7.  Counties within major geographic regions of the US where C. nigrescens was initially 
introduced and then spread to nearby counties.  A) The initial point of introduction of C. 
nigrescens, Worchester, Massachusetts 1830.  B) Midwestern invasion in Washtenaw, Michigan 
in 1917.  C) Western introduction in Douglas County Oregon 1909.  Pop outs show the counties 
with herbaria records of C. nigrescens 
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Figure 8.  Centaurea nigrescens invasion pathway in red and the invasion of C. stoebe in black.  
Weak bootstrap support values are inferred by hashed lines.  The hashed lines from the Midwest 
to the West coast have low support <25-50%.   
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Chapter 3 
 

The potential role of differences in germination in native and introduced Centaurea 
nigrescens (Tyrol Knapweed) for invasion success 
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Introduction 

Biological invasions are considered to be a major threat to global biodiversity (e.g., Elton 

1958; Williamson 1996; McNeely et al. 2001; Sakai et al. 2001; Mack 2005; but see Gurevitch 

and Padilla 2004; Davis et al. 2011).  Characteristics of species that allow them to become 

important invaders has been one of the most studied topics in invasion ecology (reviewed in 

Rejmánek et al. 2005).  However, to date, few studies have examined the initial stages of plant 

invasion, including establishment in a new environment even though it is crucial for invasion 

success (e.g., Williamson 1996; Kowarik 2003; Pyšek and Hulme 2005).   

Germination and early seedling development are key to the establishment of a plant when 

introduced, and may determine the success of a plant species establishing in the new region 

(Moravcová et al. 2006).  In some genera of plants, differences among congeners in germination 

characteristics separate species that have and have not had successful introductions outside of 

their native range (Forcella et al. 1986; Dreyer et al. 1987; Vilà and D’Antonio 1998; Mandák 

2003). 

Within species, seed mass frequently correlates with both germination characteristics and 

seedling traits (Vange 2004).  Often, larger seeds have higher germination rates than smaller 

seeds (Schaal 1984; Simons and Johnston 2000), but the opposite has also been observed (Dolan 

1984; Susko and Lovett-Doust 2000).  Heavier seeds generally have a higher probability of 

emergence than lighter seeds within species (Dolan 1984; Stanton 1984; Winn 1991), and 

develop into seedlings with superior competitive ability (Stanton 1984; Houssard and Escarré 

1991), higher survival (Simons and Johnston 2000), and better performance in later life stages 

(Wulff 1986; Vaughton and Ramsey 2001).  Emerging early may provide a competitive 

advantage because early individuals can monopolize resources and attain sufficient biomass for 

successful establishment (Miller 1987; Wilson 1988; Verdú and Traveset 2005).     

 The genus Centaurea (Asteraceae) has about 300 species (Garcia-Jacas et al. 2006), 

many of which have been introduced globally and have become invasive (negatively impact 

humans or ecosystems) in areas where introduced (Clements et al. 2010).  For over 50 years a 

variety of introduced species of Centaurea have posed problems for agriculture and grazing land 

in the United States (Marrs et al. 2008; Hufbauer and Sforza 2008; Clements et al. 2010).  In 

North America 34 species of Centaurea are reported to have been successfully introduced, 14 of 
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which are currently considered noxious weeds (having negative impacts on livestock and 

agriculture) in one or more US states (USDA, NRCS 2010)   

Seed germination studies have been conducted on several species of Centaurea (Figure 

1).  The earliest study was conducted by Schirman (1981), who suggested that a limited number 

of seeds were required to produce dense monocultures of Centaurea.  Many additional studies on 

seed germination in a variety of species of Centaurea followed (Weiner et al. 1997; Pitccairn et 

al. 2002; Gerlach and Rice 2003; Young et al. 2005; Widmer et al. 2007; Turkoglu et al. 2009; 

Henery et al. 2010; Hierro et al. 2009; Clements et al. 2010).  These studies have assessed how 

life history (Gerlach and Rice 2003), optimal germination temperatures (Pitccairn et al. 2002; 

Widmer et al. 2007; Turkoglu et al. 2009; Clements et al. 2010), and rates of germination differ 

for seeds from the native range and the non-native range of different species (Hierro et al. 2009), 

and the effects of predation on germination variability (Weiner et al. 1997).   

 The purpose of this study was to examine seed and early seedling characteristics in an 

emerging invasive species (just starting to spread widely and have negative impacts), Centaurea 

nigrescens Willd (Tyrol knapweed).  Centaurea nigrescens was introduced to North America 

from Europe during the 19th century (Chapter 2).  Although it is now becoming more common in 

many areas in the United States, and has been declared a class A noxious weed species in 

Colorado, and Washington state (USDA, NRCS 2010), ecological research on this species has 

been very limited.  I conducted germination experiments at two temperatures (28°C and 18°C), 

representing the average maximum and minimum temperature in the northern and southern limit 

in both the native and introduced range during July-September seeds of C. nigrescens collected 

from plants from multiple populations within the native (European) and nonnative (North 

American) range of this species.  I tested whether there were differences in seed mass between 

seeds from population in the native and non native rage, whether seed mass affected the time to 

germination, whether there were temperature-dependent differences in germination success 

between seeds from the two regions, and whether there were temperature-dependent differences 

in the timing of the production of first, second and third leaves during early development of C. 

nigrescens.       

Methods 

Study System 

Centaurea nigrescens (Figure 2a) is a member of the section Jacea-Lepteranthus of the 
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Circum-Mediterranean and Eurosiberian Clade (Garcia-Jacas et al. 2006).  Centaurea nigrescens 

is a herbaceous perennial, 30-150 cm in height with from 1 to 50 erect flowering stems (Efloras 

2008).  It was introduced into North America in the 1800s (Chapter 1), and is presently found 

across the northern U.S. (Chapter 1). 

During the juvenile stage, C. nigrescens forms a rosette with a central crown and fibrous 

root.  At maturity, C. nigrescens produces a single upright stem 0.3–1 m tall, with numerous 

spreading branches.  Seed heads are solitary or born in clusters of 2–3 at the ends of branches.  

This species spreads by both clonal growth via rhizomes and by seeds.  The flowering period for 

this species is from June through November.  Flowers are self-incompatible and plants produce 

up to 25 achenes, or seeds (Figure 2b), per capitulum when fertilized (Efloras 2008). 

Seed Collection and Experimental Setup 

Seeds were collected from 8 native populations, 4 in Italy and 4 in Switzerland, and 8 

non-native populations in the United States from August-November 2010.  Populations were 

selected to cover a broad range of habitats where this species was found in both the native and 

non-native range, and where I had access to material (Table 1, Figure 3).  Seeds were collected 

from fertile stems and leaf rosettes from a minimum of 20 plants per population.  To insure that 

individual plants were not clones, collections were made from plants that were well separated (> 

1 m) from other individuals.  Seeds from each plant were sorted and stored at room temperature 

in coin envelopes.   

Growth chamber experiments  

A growth chamber experiment was used to test for differences in germination rates of 

seeds from native and non-native populations.  Although it would have been ideal to test the 

effects of both temperature treatments at the same time, because of limited access to chambers, 

the 28°C and 18°C treatments were conducted at different times.  The experiment at 28°C was 

conducted from June 26 to July 25, 2011, and the 18°C treatment from July 25 to August 24, 

2011.  Because the potential for germination and growth was not expected to change over such a 

short period of time, these two treatments were considered part of the same experiment.  In total, 

seeds from 20 different plants in 16 populations were used.  Chambers were lit with 160 Watt 

Phillips AgroGro bulbs (600 nmol) and kept at a 12/12 hr day/night cycle.   

Seeds were weighed with a microbalance (+/- 0.0001 g) and placed systematically into 9 

cm petri dishes containing 1% agarose such that observations throughout development could be 
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tracked for individuals.  For each of the 16 populations, 80 seeds (20 parent plants from each 

population, 4 seeds from each parent) were plated onto a single petri dish.  Seeds from each plant 

were placed in different petri dishes.  The only exceptions to this experimental set-up were native 

populations 13, 15 and 16, for which seeds were collected from less than 20 different maternal 

plants (Table 1).  Low collection numbers were the result of small population sizes in 

Switzerland.  In total there were 64 plates (16 populations x 4 replicates) for each temperature 

treatment.  

The number and location of each of seed germinating and germination stage of each seed 

in each petri dish was documented daily (Figure 4) for 31 days.  The following data for each seed 

were collected over the course of the two experiments: 1) initial mass, 2) time from planting to 

radicle emergence (germination), 3) time from planting to formation of first leaf, 4) time from 

planting to formation of second leaf, and 4) time from planting to formation of third leaf.    

Measurements and Statistical Analysis 

Analysis of Variance (ANOVA; JMP ver. 10, SAS Institute 2012) was used to test for 

differences in seed mass between native and introduced populations.  Data were checked for 

normality using a Shapiro-Wilk test.  No deviations from normality were found.  Mean 

population seed mass was used in the ANOVA because there were not 20 plants from each 

population available, creating an unbalanced design (Table 1).  In this model, source was a fixed 

factor (i.e., native or non-native).  Mean seed mass within populations was then regressed against 

mean time to germination at each treatment temperature.   

Percent germination data were collected by population.  Data were arcsin transformed 

and a two-way factorial ANOVA was used to determine differences among treatments.  A post-

hoc Tukey test was performed to determine differences among specific treatments.  

To test for differences in time to germinate and each successive stage of development, 

failure time analysis was used (JMP version 10, SAS Institute 2012).  The Survival platform was 

used to generate the product-limit survival estimates to examine the proportional hazards 

assumption, which assumes all groups have an identical hazard function (time to germination).  

Four failure time models were used to assess differences within and among groups.  Because the 

major hypotheses that were of interest related to the associations of seed source and time to 

event, I used a similar approach for modeling each of the ‘time to’ stages with Cox regression 

modeling.  For both within and among populations, the following two models were used: 1) 
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model 1, time to germination was assessed at each of the studied treatment temperatures, and 2) 

model 2, time to first leaf, second leaf and third leaf from planting was assessed at each of the 

studied treatment temperatures.   

To graphically illustrate the associations between germination or developmental stages 

for plants from native and non-native populations grown at each of the two temperatures, 

Kaplan-Meir survival curves were plotted from the proportional hazards model for native and 

non-native populations for each growth temperature.  All comparisons between the groups were 

made using failure time statistics.  Kaplan-Meir product-limit survival curves were plotted for 

native and introduced populations at 18°C and 28°C.  Wilcoxon Chi-square statistics were used 

to test for homogeneity of estimated survival functions across groups and were used to assess 

differences between groups.  

Results 

Seed mass 

Seed mass was not significantly different between the non-native populations and the 

native populations (P = < 0.329, Table 2, Figure 5).  Mean seed mass for non-native populations 

was 0.0019 g (+/-0.00002) and 0.0020 g (+/-0.00002)) for seeds from native populations (Figure 

6, 7).  Additionally, there was no significant correlation between the time to germination and 

mean seed mass for seeds from either native or non-native populations at each temperature (18°C 

- P = 0.465, r2 =0.039, 28°C - P = 0.911, r2 = 0.001, Figure 6).   

Germination Rate 

Results of full factorial analysis indicate that there was a significant difference in 

germination rate for seeds from native and non-native populations, but no effect of temperature 

on germination rate or a significant interaction term (Table 3).  Germination rate was 

significantly lower for seeds from the native range at both temperatures, (Tukey Test, P =0.525, 

Figure 7).  At 18°C, 39.48% (+/- 7.37) of the seeds from native populations (N = 8 populations) 

germinated, and at 28°C they had a mean germination rate of 35.05% (+/- 4.27).  For seeds from 

the non-native populations (N = 8), the germination rate at 18°C was 56.56% (+/- 4.6) and 

69.84% (+/- 5.32) at 28°C.  

Time to germination, first and second leaf 

Germination 

There was a significant effect of temperature on time to germination for the non-native 
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populations.  At 18°C, the mean time to germination was 8.51 (+/- 0.2786) days and at 28°C it 

was 7.44 days (+/-0.300) (P < 0.001, Table 4, Figure 8).  There was no significant difference for 

the native populations in time to germination for the two temperatures (P = 0.06, Table 4). At 

18°C the mean time to germination was 8.17days (+/- 0.278), and at 28°C it was 8.01 days (+/-

0.495).  There was no significant difference in time to germination at 18۫°C between seeds from 

native and nonnative plants (P = 0.337, Table 4).  Similarly, there was no significant difference 

in the time to germination between the seeds from native and non-native plants at 28°C  (P = 

0.713, Table 4).  

Development times  

Time to formation of first leaf:  For populations from the native region, the time from 

germination to formation of the first leaf did not significantly differ between 18°C and 28°C 

(Table 5, Figure 9).  Mean time to development at 18°C was 10.88 days (+/- 0.596) and 9.52 

days (+/- 0.602) at 28°C (P = 0.1656, Table 5).  For non-native populations, there was a 

significant decrease in time to formation of the first leaf at the higher temperature (P = 0.003).  

The mean time to formation of the first leaf was 10.77 days (+/- 0.382) at 28°C and at 12.10 days 

(+/- 0.357) at 18۫°C, (Figure 9, Table 5).   

Time to formation of second leaf:  For seeds from the native population, the time from 

germination to the development of the second leaf was significantly different between 18°C and 

28°C (P = 0.013).  Mean time to development of second leaf was 16.72 days (+/- 0.65) at 18°C 

and 15.05 days (+/- 0.75) at 28°C.  For seeds from non-native populations, the time to the 

development of the second leaf was significantly different between 18°C and 28°C (P = 0.048, 

Table 6, Figure 10).  Mean time to second leaf was 18.72 days (+/- 0.32) at 18°C and 16.22 days 

(± 0.29) at 28°C.   

Time to third leaf:  For native populations, the mean time from germination to the 

development of the third leaf was not significantly different between 18°C and 28°C (P = 0.091, 

Table 7, Figure 11).  Mean time to the third leaf was 16.72 days (+/- 0.654) at 18°C and 15.05 

days (+/-0.749) at 28°C.  For seeds from non-native populations there was also a significant 

difference in the time to formation of the third leaf between the two temperatures (P < 0.0001).  

The time for formation of the third leaf was longer at 18°C (18.74 days +/-0.3235) than at 28°C 

(16.22 days +/- 0.293), (Table 7, Figure 11). 

 



	
   32	
  

Discussion  

Successful invasion may result from the combination of several mechanisms that lead to 

success at different stages in the invasion process (Seastedt et al. 2005).  Early life stages, 

especially germination success, may play a critical role in allowing plants to successfully 

produce populations in new environments, and can influence ultimate competitive interactions 

with other plants (Schemske 1984; Baskin and Baskin 1981; Hierro et al. 2009).  Additionally, 

for many species of plants, the proportion of seeds germinating among populations has been 

linked to specific characteristics of environmental quality and risk, including the total annual 

precipitation and the inter-annual variation in precipitation (Philippi 1993; Clauss and Venable 

2000; Venable 2007; Hierro et al. 2009). 

For Centaurea nigrescens germination rate was markedly higher for seeds from non-

native populations than for seeds from native populations.  This increased rate of germination 

may contribute to successful establishment of the non-native seeds in the novel environment.   

There were observable differences in the timing of developmental stages between plants 

from native and non-native seeds at each of the treatment temperatures.  For seeds from non-

native populations there was a significant decrease in time to formation of the first leaf at the 

higher temperatures, but for plants from the native seeds, time to formation of the first leaf did 

not significantly differ between 18°C and 28°C.  For plants from both the native and non-native 

region, the time to the development of the second leaf was significantly faster at 28°C.  

Development time of the third leaf was not affected by temperature for plants from the native 

region, but was affected for plants from the non-native region.  For those plants, the third leaf 

developed faster with an increase in temperature. 

The higher germination rate of non-native C. nigrescens at both 18°C and 28°C and the 

lack of difference between germination at the two temperatures imply that there are not stringent 

temperature requirements for germination.   

In some species, large seeds have higher germination success than small seeds (Tripathi 

and Khan, 1990; Khan and Uma Shanker 2001), while for others, small seeds germinate at a 

higher rate than large seeds (Marshell 1986).  In other cases, germination has been found to be 

independent of seed size (Gross and Kromer, 1986; Perez-Garcia et al. 1995).  The production of 

seeds of different mass is commonly related to differences in other properties of the seeds, such 

as germination potential, competitive ability, dispersal or ability to emerge following burial 
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(Venable 1992).  Although there were significant differences in germination rate and time to 

germination, the seeds of C. nigrescens from native and non-native populations did not differ 

significantly in mass, and there was no relationship between mass of a seed and time to 

germination.  This lack of difference in mass between natives and non-natives could be due to a 

lack of genetic differences in traits that control the mass of seeds for plants from the native and 

introduced range (Stanton 1984b; Temme 1986).  This lack of difference could also be due to 

selection to keep seed mass constant in C. nigrescens (Cohen 1966; Venable and Brown 1988; 

Evans and Cabin 1995; Donohue et al. 2005; Venable 2007), especially if there is a seed number 

– seed mass trade off (Stanton 1984a; Lalonde and Roitberg 1989; Venable 1992).  It also 

suggests that any differences in the environments of the maternal plants did not result in 

consistent differences in seed mass between native and non-natives populations. 

The post germination stages examined in this research may be important in understanding 

how establishment occurs in non-natives, and the role of early developmental stages for invasion 

success.  The findings in this study contrast with those Turkoglu et al. (2009), who found that for 

three species of Centaurea, C. virgata, C. iberca, and C. balsamita, an increase in temperature 

had a positive effect on germination speed.  Like the present study, Hierro et al. (2009) found 

that there was no observable difference in germination time for seeds collected seeds from native 

(Turkey, Georgia) and non-native populations (California) of C. solstitialis.  Hierro et al. (2009) 

investigated local weather patterns variation at each of the collected sites and found that 

germination in C. solstitialis is lower in both native and non-native populations experiencing 

greater variation in winter precipitation.  Seeds collected from those same populations from time 

periods exposed to drier conditions showed an increase in germination.  It remains unknown how 

local environmental factors may affect the time to germination in C. nigrescens.  Local 

differences in rainfall or environmental variability may be factors contributing to the observed 

increase in percent germination of seeds from the native range and should be explored.   
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Table 1.  Locations of populations where seeds were collected in the United States (1-8, 
introduced range), Italy (9-12, native range) and Switzerland (13-16, native range).  These sites 
were selected because of access and because they covered a wide range of habitat types where 
Centaurea nigrescens is found.  The number of seeds (N) used per experiment at each 
temperature is noted.  Four replicates were used for each population at each of the treatment 
temperatures. 
  
 
Population 
 

 
Location  

 
Latitude 

 
Longitude  

N seeds  
at 18°C 

N seeds 
at 28°C 

1 Bronx, NY 40.51 73.49 80 80 
2 Greenport, NY 41.05 72.23 80 80 
3 Middlesex, NJ 40.25 74.31 80 80 
4 Blacksburg, Virginia 37.13 80.26 80 80 
5 West Anandale, 

PA 
40.38 74.58 80 80 

6 Route 66, Virginia 38.53 77.33 80 80 
7 Bethpage, NY 40.46 73.26 80 80 
8 Pauling, NY 41.33 73.35 80 80 
9 Campetti Italy 45.79 9.97 80 80 
10 Del Capo, Italy 45.79 9.98 80 80 
11 Roco Pino, Italy 45.23 7.77 80 80 
12 Valmagore, Italy 45.78 9.98 80 80 
13 Giubiasco, Switzerland 46.10 9.03 66 72 
14 Negrentino, Switzerland 46.15 8.49 80 80 
15 Pree, Switzerland 46.31 8.49 50 56 
16 Somazzo, Switzerland 45.52 8.99 18 24 
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Table 2.  Results of an ANOVA used to test for differences in population seed mass between 
populations from the native and non-native range.  
 
  SS DF MS F P 
       
Status      8.44e-8 1 8.44e-8 1.045 0.3239 
Error       1.13e-6 14 0.0267   
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Table 3.  A full factorial ANOVA was used to test for differences in the percent of seeds from 
native and non-native plants that germinated at 18°C and 28°C.  Both temperature and status 
(native or non-native) were fixed effects.  
 
  SS DF MS F P 
       
Status      0.901 1 0.901 33.510 0.000 
Temp    0.094 1 0.0938 3.486 0.0724 
Status*Temperature  0.011 1 0.0111 0.414 0.525 
Error       0.753 28 0.0267   
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Table 4.  The effect of temperature on time to germination and time to each developmental 
stage.  Values shown represent the mean in days for 4 replicates for each of the 16 populations (8 
non-native, populations 1-8, and 8 native populations 8-16, at 18°C and 28°C).  Differences were 
assessed within native, non-native and between native and non-natives with Wilcoxon test.      
 
 

  
 

Time to germination     
  Mean SE P 
Native 18°C 8.17 0.037 0.0587 
 28°C 8.01 0.495  
Non-native 18°C 8.51 0.279 <0.0001 
 28°C 7.44 0.300  
Native vs. Non-native 18°C   0.337 
 28°C   0.713 
Time to first Leaf     
  Mean SE P 
Native 18°C 10.88 0.596 0.166 
 28°C 9.52 0.602  
Non-native 18°C 12.10 0.357 0.003 
 28°C 10.77 0.382  
Native vs. Non-native 18°C   0.059 
 28°C   0.076 
Time to second leaf     
  Mean SE P 
Native 18°C 12.14 0.638 0.008 
 28°C 10.11 0.672  
Non-native 18°C 13.81  <0.0001 
 28°C 10.94   
Native vs. Non-native 18°C   0.013 
 28°C   0.048 
Time to third leaf     
  Mean SE P 
Native 18°C 16.72 0.654 0.091 
 28°C 15.05 0.749  

Non-native 18°C 18.74 0.324 <0.0001 
 28°C 16.220 0.293  
Native vs. Non-native 18°C   0.337 
 28°C   0.713 
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Figure 1.  Flowers of species of Centaurea that have been used for germination studies.  A) 
Centaurea stoebe (Spotted knapweed), B) C. diffussa (Diffuse knapweed), C) C. solistalsis 
(Yellow star-thistle), D) C. melitensis (Maltese star-thistle), E) C. balsmita F) C. sulphurea  
(Sulfur Knapweed), G) C. calcitropa (mouse thorn).   
 

 
  



	
   39	
  

Figure 2.  A) Centaurea nigrescens in flower July, 2011 Greenport, NY (Flower head 
approximately 3 cm).  B) Achene (seed) harvested from flower head in an agar plate (scale bar = 
2 mm). 
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Figure 3.  A) Collection locales in the United States (non-native) and B) Italy and Switzerland 
(native).  At each location, seeds were collected from 20 maternal plants > 1m apart to avoid 
multiple samples from a single clone.   
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Figure 4.  Stages of germination for C. nigrescens: A) radicle emergence (Germination), B) 
second leaf emergence, and C) elongation along axial lines emergence of cotyledons and 
formation of third leaf. 
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Figure 5.  Mean seed mass from each of the sampled populations (1-16).  Populations 1-8 are 
from the native range, and populations 9-16 are from the introduced range of C.  
nigrescens.  Symbols are the means for each population and whiskers extend one standard error 
from the mean.  
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Figure 6.  Linear regression of population mean time to germination versus seed mass for each 
treatment temperature: A) 18°C and B) 28°C.  A line of best fit, using ordinary least squares, and 
r2 values are reported on each of the graphs.    
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Figure 6. Linear regression of population mean time to germination by seed mass at each 
treatment temperature: A) 18°C and B) 28°C.  A line of best fit and r2 values are reported 
on each of the graphs.    
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Figure 7.  Effect of temperature on germination rates for seeds from native and non-native 
populations of C. nigrescens.  The seeds from the non-native range had a higher germination rate 
at both temperatures than those from the native populations.  There was no significant effect of 
temperature (18°C vs. 28°C) for seeds from either source populations (P = 0.525).   
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Figure  7. Effect of temperature on germination in native and non-native seeds of C. 
nigrescens.  Percent germination of seeds at 19°C and 28°C. There was no significant 
difference between the means P = 0.525.   
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Figure 8.  Failure plots for time to germination for A) native populations of C. nigrescens at 
18°C and 28°C, B) non-native populations of C. nigrescens at 28°C.  For each experimental 
temperature the number of plants reaching the studied stage are reported (N) and the number of 
days (mean) to each stage are reported with test statistics (Table 4).   
 

 

 
 
 
 
 
 
 
 
 
 
  

!

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 s
ee

ds
 g

er
m

in
at

in
g

0 5 10 15 20 25
Time to germination (days)

!

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 s
ee

ds
 g

er
m

in
at

in
g

0 5 10 15 20 25 30
Time to germination (days)

A)# B)#

!

18C
28C

!

18C
28C



	
   46	
  

Figure 9.  Failure plots for time to germination for A) native populations and non-native 
populations of C. nigrescens at 18°C, and B) native and non-native populations of C. nigrescens 
at 28°C.  For each experimental temperature the number of plants reaching the studied stage are 
reported (N) and the number of days (mean) to each stage are reported with test statistics (Table 
4).   
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Figure 10.  Failure plots for formation of first leaf, A) native populations of C. nigrescens at 
18°C and 28°C, B) non-native populations of C. nigrescens at 18°C and 28°C.  For each 
experimental temperature the number of plants reaching the studied stage are reported (N) and 
the number of days (mean) to each stage are reported with test statistics (Table 5).   
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Figure 11.  Failure plots for formation of second leaf, A) native populations of C. nigrescens at 
18°C and 28°C, B) non-native populations of C. nigrescens at 18°C and 28°C.  For each 
experimental temperature the number of plants reaching the studied stage are reported (N) and 
the number of days (mean) to each stage are reported with test statistics (Table 6).   
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Figure 12.  Failure plots for formation of third leaf, A) native populations of C. nigrescens at 
18°C and 28°C, B) non-native populations of C. nigrescens at 18°C and 28°C.  For each 
experiment the number of plants failed in total are reported and the number of days (mean) to 
each stage are reported with test statistics (Table 7).   
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Chapter 4 
 

Responses to light, water and nutrient enrichment in native and nonnative populations of 
the weed species Centaurea nigrescens (Tyrol Knapweed) 
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Introduction 

An important topic in invasion ecology is whether certain traits of species are generally 

associated with invasion success and can therefore be used to predict and, ultimately, prevent 

biological invasions (Rejmánek et al. 2005b; Pyšek and Richardson 2007).  The ability of 

successful invasive plants to attain higher densities in their introduced range compared to 

conspecifics in their native range suggests that they may grow more vigorously in their new 

environment, have fewer competitors, or fewer enemies (Elton 1958; Crawley 1987; Thebaud 

and Simberloff 2001; Leger and Rice 2003; Jakobs et al. 2004; Bossdorf et al. 2005).  Some 

studies have demonstrated that when native or non-invasive aliens (here defined as introduced 

non-problematic species, species that have no demonstrated negative environmental or human 

impacts) are compared with invasive aliens (here defined as introduced problematic species, with 

demonstrated negative environmental or human impacts), the invasive plants grow faster, have 

higher leaf nutrients, higher specific leaf areas, shorter life cycles, devote more resources to 

reproduction and produce more seeds that disperse farther and germinate faster (Grotkopp et al. 

2002; Grotkopp and Rejmanek 2007; van Kleunen et al. 2010; Thompson and Davis 2011).  

High relative growth rate (RGR; the total mass increase per above ground biomass per 

day) has been found to be an important characteristic of invasive plant taxa in disturbed or open 

areas, especially in nutrient rich environments (e.g., Roy 1990; Rejmánek and Richardson 1996; 

Williamson and Fitter 1996; Reichard and Hamilton 1997; Pattison et al. 1998; Grotkopp et al. 

2002).  Rejmajek et al. (2005) found that for Pinus the RGR of invasive species is significantly 

higher than that of introduced non-invasive pines.  Differences in RGR are primarily determined 

by leaf area ratio (LAR; total leaf area per total plant dry mass), and that LAR is primarily 

determined by specific leaf area (SLA; leaf area per leaf biomass).  In Pinus, successful invaders 

have significantly higher specific leaf area than species that are not invasive, and there is a 

highly significant positive relationship between RGR and invasiveness in this genus (Grotkopp 

and Rejmanek 2007).  Other work suggests that for introduced species, increased relative growth 

rates (RGR) is generally associated with lower root to shoot ratios (RSR; dry below ground 

biomass relative to dry above ground biomass), higher specific leaf areas (SLA), leaf area ratios 

(LAR) and higher net CO2 assimilation (A) as well as lower respiration costs (RD) (Pattison et 

al. 1998; Baruch and Goldstein 1999; Durand and Goldstein 2001; Smith and Knapp 2001; 

Grotkopp et al. 2002; McDowell 2002; Ehrenfeld 2003; Wilsey and Polley 2006).  
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Greenhouse studies have been particularly useful for identifying the phenotypic traits that 

can give successful invaders an advantage and for testing whether there are functional trait 

differences between non-native invasive and native plants (Siemann and Rogers 2001; Leger and 

Rice 2003; Wolfe et al. 2004; Erfmeier and Bruelheide 2005; Güsewell et al. 2006).  DeWalt et 

al. (2004) conducted a greenhouse study with the tropical shrub Clidemia hirta, which revealed 

that, contrary to expectations, introduced Hawaiian and native Costa Rican populations of this 

shrub displayed no significant differences in RGR, Amax (leaf maximum net photosynthetic 

rate) or SLA when grown under similar conditions.  In studies with species in the Brassicaceae, 

experimental studies have found significant but not always consistent differences in growth and 

reproductive characteristics between plants from their native and introduced ranges (Buschmann 

et al. 2005).  In Solidago, Güsewell et al. (2006) found that introduced European plants produced 

a greater number of shoots than their native counterparts in North America.  However, other 

traits such as shoot size, leaf traits and litter decomposition were not different between native and 

introduced populations of different species of Solidago.  In a 4-month greenhouse experiment 

with Lythrum salicaria, Bastlová and Kvêt (2002) found that total leaf area (TLA) and SLA were 

significantly greater for plants from invasive populations than from native populations, but found 

no significant differences in LAR or A.   

Centaurea solstitialis is native to Europe, but has been introduced to California.  

Graebner et al. (2012) found that there were significant differences in a variety of traits between 

plants from populations in the non-native range of California versus those from the native range 

in Spain.  Plants from the introduced range had greater competitive resistance, larger seed size, 

and larger seedling mass than plants from the native range, indicating that these differences may 

be the result of selection on traits that contribute to competitive success and affect growth and 

competitive ability.  Graebner et al. (2012) also found that introduced populations of Centaurea 

solstitialis had the highest relative growth rates when grown in competition with other species 

within its introduced range.   

 Differences among the results from studies on traits that influence the success of 

invasives may reflect the fact that successful invasion could be the consequence of complex trait 

interactions between the invader and the environment rather than specific traits of plants that are 

successful invaders (Muth and Pigliucci 2007).  

The purpose of this study was to compare a variety of traits and the performance of plants 
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from native and non-native populations of Centaurea nigrescens under a variety of conditions 

expected to influence invasion success.  This plant was introduced into the United States in the 

1800’s (Chapter 1).  It is uncertain if this species is in the incipient stages of invasion (i.e. rapid 

spread will occur in the near future), or if it will become an aggressive invader like other species 

of Centaurea.  I conducted 3 separate greenhouse experiments with seedlings from 8 native and 

8 non-native populations to test whether there are differences in traits that affect competitive 

ability in the introduced range of this species.  In this study, I tested the hypothesis that non-

native C. nigrescens from North America are better able to cope with drought, nutrient limitation 

and light limitation than native (European) populations of this plant species by examining 

differences in traits and the relative performance of plants.  I compared a variety of 

morphological features expected to impact plant performance when plants were growth under 

low versus high nutrients, low versus high light, and low versus high water availability.   

Methods  

Study System 
Centaurea nigrescens, Tyrol knapweed or short-fringed knapweed, is a flowering plant 

species introduced to North America from Europe in the 19th century.  It is a herbaceous 

perennial, 30-150 cm in height with erect flowering stems numbering from 1 to as many as 50 

(Efloras 2008).  This species reproduces and spreads by both clonal growth via rhizomes and 

seeds.  Populations are typically found along roadsides and in highly disturbed sites in Italy and 

Switzerland as well as in the United States (Wagenitz 1955; Chapter 1).  The flowering period 

for this species is from June through November.  Centaurea nigrescens forms a rosette during 

winter, bolts, and sends up stalks with floral buds in the spring, flowers and fruits in mid-late 

summer, and above ground biomass dies back by end of late autumn.  Flowers are self-

incompatible and plants produce up to 25 seeds per capitulum when fertilized (Efloras 2008).  

Seed Collection  

Achenes (referred to here as seeds), were collected from August-November 2010 from 8 

native populations, 4 in Italy and 4 in Switzerland, and 8 non-native populations in the United 

States, from a broad range of habitats (Table 1).  Seeds were collected from a minimum of 20 

maternal plants per population.  To insure plant selection included individuals that were not 

clones, seeds were collected from fertile stems and leaf rosettes that were well separated (> 1 m) 

from other individuals.  Seeds from each parental plant were sorted and stored in coin envelopes 
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at room temperature.   

Seeds were washed with distilled water and planted in 115 mm plastic pots.  The top of 

the pots were filled with 1 cm of Sunshine mix No:1 (SUNGRO, Horticulture, Bellevue, WA 

98008 ) and the rest of the pots were filled with Turface clay medium (PROFILE Products LLC, 

Buffalo Grove, IL 60089).  Turface was used so that the roots could be completely recovered at 

the end of the experiments (e.g., Dudley 1996).  Initially, plants were grown in a growth chamber 

at temperatures of 28°C with a maximum photosynthetic photon flux density (PPFD) of 

approximately 900 µm-2 s-1.  When plants were 28 days old they were transferred to a 

greenhouse, which was kept at approximately 28/25°C day/night air temperatures, and a 16-h 

photoperiod using supplemental lighting provided by (6) X 425W metal halide lamps (PPFD = 

400 mmol photons m-2 s-1 at sun down).  Plants were acclimated to greenhouse conditions for 16 

days prior to the beginning of the experiments.  

Pre-experimental measurements 

To control for differences in initial plant size the following traits on each individual plant 

were measured prior to initiation of experiment: initial leaf number, initial length of longest leaf, 

initial plant height, and initial diameter of the basal rosette.   

Greenhouse experiments 

Three different experiments were conducted under greenhouse conditions to test for 

differences in the response of plants from native and non-native populations of C. nigrescens to 

light, water, and nutrients.  Five maternal plants from each of the 16 collected populations were 

randomly selected for use in the experiment.  For each treatment, five blocks were set up, and 

half of each block was assigned at random to either the control or to the experimental treatment. 

Plants were assigned at random from each population from each source area (native versus non-

native range, 14-16 plants per treatment per block) to one of the two treatments in each of the 

five blocks.  This was done for each of the three experiments (high versus low light, high versus 

low nutrient availability, high versus low water availability).  Day length during the experiment 

was 16 h and light conditions in the greenhouse ranged from 400–600 mmol photons m-2 s-1 

(LiCor LI-250A light meter, LiCor Biosciences) and the air temperature ranged from 18.3 to 

28.0°C.  There was a total of approximately 12-16 plants from each population in each treatment 

of each block.   
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Effects of High and Low Nutrient Conditions  

The low and high nutrient treatments were designed to be a reasonable approximation of 

low and high soil nutrient levels that would be encountered under natural field conditions.  In the 

low nutrient (LN) treatment 100 ppm of fertilizer was applied, whereas in the high nutrient (HM) 

treatment 400 ppm of fertilizer was applied.  Stock solutions for nutrients were prepared using 

Jacks Water Soluble Fertilizer 15-5-15 (AM Leonard, 241 Fox Drive Piqua, OH 45356-9265), 

which is 15% total nitrogen, 5% phosphorous, and 15% potassium.  Nitrogen was in the form of 

12.00% nitrate and 3.00% ammonia.  In addition, the solution contained minor nutrients: 

Calcium 4.00%, Magnesium 2.00%, Boron 0.0150%, Copper 0.0075%, Iron 0.0750%, 

Manganese 0.0375%, Molybdenum 0.0075%, and Zinc 0.0375%.  All stock concentrations were 

prepared for a Dosatron injector (15 gallon upright, Dosatron, 2090 Sunnydale Blvd. Clearwater, 

FL 33765).  Over the course of the two-month experiment, all plants were watered every other 

day to full capacity and the fertilizer nutrient solution was added to the treatments every 5 days.   

Effects of high and low light 

Plants in the low light treatment were placed inside 90 cm x 90 cm x 102 cm cages 

surrounded by shade cloth to simulate edge of forest habitat (K PRO Supply Co., Inc. Sarasota 

Florida).  Light levels inside the shade cages were measured 15 times over the course of the 

experiment to calculate light levels in the cages and outside of the light cages.  Light inside the 

shade cage varied from 195 ± 5.7 to 305 ± 4.8 mmol m-2 s-1 (mean ± SD, n = 15), depending on 

cloud cover on the day measurements were taken.  Plants receiving the high light treatment were 

placed on the bench top 2.5 m from the light cage so that light was not obstructed by the shade 

case.  Plants in the high light treatment experienced light levels ranging from 400 ± 4.5 to 600 ± 

3.2 mmol m-2 s-1 (mean ± SD, n = 15).  Greenhouse temperature records ensured that the plants 

in the high and low light environments experienced similar temperatures over the course of the 

experiment.  Liquid nutrients were applied two weeks prior to the start of the experiment.  All 

plants were watered every other day to full capacity, and no nutrients were applied over the 

course of the experiment.   

Effects of High and Low Water Availability 

The two water treatments were intended to represent continuously moist conditions (HW; 

pots watered every other day) and intermittent drought (LW; pots watered every five days, which 

was when soil medium was dry).  The conditions of low water treatment with drought 
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represented roadside conditions.  No plants were treated with nutrients over the experiment; 

liquid nutrients were applied two weeks prior to the start of the experiment.  All plants had full 

light exposure throughout the experiment. 

Plant Harvesting  

For each of the three experiments all plants were harvested after 2 months of growth 

under treatment conditions (November 16, 2011, four months of total growth).  Harvested plant 

material was divided into leaves, support tissues (stem and petiole) and roots.  Leaf area was 

measured using a leaf area meter (Model LI- 3000, Li-Cor Inc. Lincoln, NE, with and conveyor 

belt assembly Model LI-3050, Li-Cor Inc. Lincoln, NE).  All plant material was dried in an oven 

at 70°C for 48 hours.  After drying, samples were weighed on a microbalance (± 0.0001 g).  

Specific leaf area (cm2g-1) was calculated for the longest leaf (LL), and a mid-sized rosette leaf 

and mid-sized stem (MS) if flowers were present on the plant. 

Statistical Analysis 

For each experiment, the effect of treatment on native and non-native plants was analyzed 

with a split-plot design.  A mixed model with fixed and random effects was constructed in R 

2.14 (R Development Core Team 2011) using the lme 4 package.  The mixed-effects model was 

used to test for each response and assess differences between native and non-native source 

populations.  Source effects, treatment effects and an interaction were assessed for 31 traits.  The 

model constructed fits a regression between the response (e.g., biomass) as a function of the 

fixed effects (i.e., status and treatment), and accounts for the variance due to random effects (i.e., 

population and block).  The model was fit using REML (restricted maximum likelihood).  This 

method is recommended when there is an unbalanced design, in this case, due to many missing 

data points (Littell 2002).  MCMC (Markov chain Monte Carlo method) was used to report p-

values.  All data were checked separately for nonlinearities.  In no case did a nonlinear 

formulation improve the model fit significantly. 
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Results  

Nutrient experiment 

Assessment of plant randomization 

At the start of the experiment, initial leaf number in native and non-native plants differed 

significantly between plants assigned to each treatment (P = 0.019, Table 2, Figure 2).  At the 

start of the experiment, in high nutrient treatment, native population had 12.10 leaves (± 1.50) 

and non-native plants had 9.18 (± 0.51).  In the low nutrient treatment, native plants had fewer 

leaves, 9.57 (± 0.91), as compared to non-native plants with 10.39 (± 0.52).  There was no 

significant difference between plants from the two source regions (Table 2) for initial leaf length 

or initial plant height. 

Post-treatment measurements 

Area of leaf 

A significant difference existed between non-native plants and native plants in area of the 

mid-sized rosette leaf (P = 0.014, Table 2, Figure 3).  Non-native plants in high nutrient 

treatment had a larger area of mid-sized rosette leaves (avg. = 55.67 cm2 ± 3.66) than native 

plants (avg. = 44.94 cm2 ± 2.96).  In the low nutrient treatment the non-native plants also had a 

larger leaf number (avg. = 56.84 cm2 ± 2.41) as compared to native populations (avg. = 47.83 

cm2 ± 2.89).  There was no significant difference in the area of the longest leaf on plants (P = 

0.349) or the area of a mid-sized stem leaf (P = 0.932) for the different treatments.  

Leaf width 

A significant difference was found between non-native and native plants in the maximum 

width of longest leaf (P = 0.030, Table 2, Figure 4).  Non-native plants in the high nutrient 

treatment had a larger length of longest leaf (avg. = 5.71cm ± 0.22) than the native populations in 

the high nutrient treatment (avg. = 5.05 cm ± 0.22).  In the low nutrient treatment, non-native 

populations also had a higher width of longest leaf (avg. = 5.41cm ± 0.25) than native 

populations in the low nutrient treatment (avg. = 5.20 cm ± 0.18).  Mid-sized rosette leaves were 

also significantly different between native and non-native populations (P = 0.001; Table 2, 

Figure 5).  In the high nutrient treatment mid-sized rosette leaves were larger in non-native 

populations (avg. = 4.84 cm ± 0.23) compared to native plants (avg. = 3.82 cm ± 0.22).  The non-

native populations also had a larger maximum leaf width in the low nutrient treatment, (avg. = 
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4.78 cm ± 0.19) as compared to native populations in the same treatment (avg. = 4.01cm ± 0.19; 

Figure 5).    

Leaf Mass 

A significant difference was found between native and non-native plants in the mass of 

the longest plant leaf (P = 0.016, Table 3, Figure 6).  In the high nutrient treatment, the mass of 

non-native plants was larger (avg. = 0.16g ± 0.01) than for native plants in that treatment (avg.= 

0.12g ± 0.01).  In the low nutrient treatment the mass of longest leaf was larger in non-native 

plants (avg.= 0.15g ± 0.01) than native populations (avg. = 0.12g ± 0.01).   

A significant difference was also observed in the mass of mid-sized rosette leaves (P = 

0.001, Table 3, Figure 6).  In both high and low nutrient treatments mid-sized rosette leaves were 

larger in non-native populations.  In the high nutrient treatment, non-native populations had a 

larger mass (avg.= 0.12 g ± 0.01) than native populations (avg. = 0.08g ± 0.01).  In the low 

nutrient treatment the observed mass of mid-sized rosette leaves was also larger in non-native 

populations (avg. = 0.11g ± 0.01) than native populations in the same treatment (avg.= 0.08g ± 

0.01, Figure 6).    

There was no significant difference between native plants and non-native plants for mass 

of mid-sized stem leaves (Figure 6).   

Additional trait measurements 

There was no significant effect of the nutrient treatment, source region or light by source 

region interaction for the following traits: total leaf number, plant height, branch number, 

presence of flowers, capitula number, flower number, shoot length, root length, root to shoot 

ratio, area of longest leaf, area of mid-sized stem leaf, maximum width of mid-sized stem leaf, 

maximum length of longest leaf, maximum length of mid-sized rosette leaf, mass mid-sized stem 

leaf, specific leaf are of longest leaf, specific leaf area of mid-sized rosette, specific leaf area of 

mid-sized stem, root mass, shoot mass, total dry biomass (Table 2).   

Light experiment 

Assessment of plant randomization 

At the start of the experiment, initial plant height was significantly larger in the native 

populations in the high light treatment (P = 0.027, Table 3, Figure 7).  However, final plant 

height was not significantly different between the native and non-native plants in either treatment 

(P = 0.484, Table 3, Figure 7).  
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Post-treatment measurements 

Branch number 

Branch number in both high light and low light treatment was significantly greater in the 

non-native plants (P = 0.032, Table 3, Figure 8).  Branching number in non-native populations in 

high light was greater (avg. = 1.56 ± 0.54) than native populations in the same treatment (avg.= 

0.48 ± 0.24).  In the low light treatment the non-native populations also exhibited greater 

branching (avg. 0.51 ± 0.20) than the native populations (avg. = 0.12 ± 0.12).  The maximum 

number of branches observed was 16 branches on a non-native plant in the high light treatment.  

Excluding zeros, the minimum number of branches was 3, which was observed on a single native 

plant.   

Leaf mass 

Treatment effects were observed for native and non-native plant leaf mass (P = 0.004, 

Table 3).  Source effects were also observed as the mass of the longest leaf was significantly 

larger in non-native populations (avg. = 0.16g ± 0.01) than native populations (avg. = 0.12g ± 

0.01) in the high light treatment (P = 0.038, Table 3, Figure 9).  The mass of mid-sized rosette 

leaves (avg.= 0.11g ± 0.01) was significantly larger in non-native plants (P = 0.039, Table 3, 

Figure 9) than native plants in the same treatment (avg. = 0.08g ± 0.01).  

Maximum length of mid-sized rosette 

There was a significant interaction between source and light treatment for the length of 

mid-sized rosette leaves (P = 0.019 Table, 3 Figure 10).  In the high light treatment non-native 

plants had smaller rosette leaves (avg. = 102.12 cm ± 6.91) than native plants (avg. = 124.63 cm 

± 2.69).  In the low light treatment, non-native plants had a larger mid-sized rosette leaves (avg. 

= 129.27 cm ± 10.37) than the native plants (avg. = 105.86 cm ± 7.77). 

Additional trait measurements 

There was no significant effect of the light treatment, source region or light by source 

region interaction for the following traits: presence of flower(s), capitula number, flower 

number, root length, root to shoot ratio, area of longest leaf, area of mid-sized rosette, area of 

mid-sized stem, maximum width of mid-sized rosette, maximum width mid-sized stem, 

maximum length of longest leaf, maximum length of mid-sized stem leaf, mass mid-sized stem 

leaf, and specific leaf area mid-sized stem (Table 3). 
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Water Experiment 

Assessment of plant randomizations 

Initial plant height was significantly larger (P = 0.035, Table 4) for the native populations 

(10.65 cm ± 1.34) as compared to the non-native plants (10.06 cm ± 1.06) in the high water 

treatment.  However final plant height was not significantly different between the groups (P = 

0.272, Table 4, Figure 11).   

Post-treatment measurements 

Total leaf number  

A significant difference was found for total leaf number between native and non-native 

populations at the end of the experiment (P = 0.011, Table 4, Figure 12).  In the high water 

treatment non-native plants had a greater number of leaves (avg. = 40.54 ± 5.98) than native 

plants (avg. = 24.95 ± 3.52).  In the low water treatment, non-native plants also had a greater leaf 

number (avg. = 24.05 ±3.02) than native plants in the same treatment (avg. = 19.0 ± 2.15).  

Shoot Mass 

Shoot mass was significantly greater in non-native populations in the high and low water 

treatments (P = 0.0007, Table 4, Figure 13).  In the high water treatment non-native shoot mass 

was greater (avg. = 1.82 g ± 0.203) than for native populations in the same treatment (avg. = 1.10 

g ± 0.17).  Shoot mass was also greater in the low water treatment for non-native populations 

(avg.= 1.30g ± 0.12) than for native populations in the same treatment (avg.= 0.88g ± 0.11).  

Leaf width  

A significant difference in maximum leaf width for the longest leaf was found between 

native and non-native plants in both the high water and low water treatments f(P = 0.003), the 

maximum width of medium sized rosette leaves (P = 0.001) and the maximum width of mid-

sized stem leaves (P = 0.043, Table 4, Figure 14).  In the high water treatment, non-native 

populations had a larger maximum width of longest leaf (avg. = 5.30 ± 0.02) than native 

populations (avg. = 4.66 ± 0.27).  In the low water treatment, leaf width was also larger for non-

native (avg. = 4.70 ± 0.15) than native populations in that same treatment (avg. = 4.02 ± 0.26).  

Non-native populations in high water treatment had a larger maximum width of mid-sized rosette 

leaves (avg. = 4.59 ± 0.23) than native populations in the same treatment (avg.= 4.01 ± 0.019).  

In the low water treatment non-native mid-sized rosette leaves were also larger (avg. = 3.73 ± 

0.15) than native populations (avg. = 3.29 ± 0.20).  In high water mid-sized stem leaves were 
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larger in native populations (avg. = 3.82 ± 0.53) than non-native populations (avg. = 2.95 ± 0.21) 

in the same treatment.  In low water the mid-sized stem the native populations was larger (avg. = 

2.87 ± 0.30) than for non-native plants (avg. = 2.07 ± 0.13).   

Mass of longest leaf 

A significant treatment effect (P = 0.034) and source effect (P = 0.044) were observed in 

mass of longest leaf for both native and non-native plants in high water treatment (P = 0.0347, 

Table 4, Figure 15).  In the high water treatment, leaf mass was greater for the non-native (avg.= 

0.14g ± 0.01) than native populations (avg.= 0.12g ± 0.01).  In low water treatment leaf mass 

was greater in non-native populations (avg. = 0.12 ± 0.01) than native plants (avg. = 0.09  ± 

0.01) in the same treatment.  

Additional trait measurements 

There was no significant effect of the water treatment, source region or light by source 

region interaction for:  initial leaf number, initial length of longest leaf, initial diameter, plant 

height, branch number, presence of flowers, capitula number, flower number, root length, area of 

longest leaf, area of mid-sized rosette, and area of mid-sized stem (Table 4).   

There was no significant effect of the water treatment or the interaction, but there was a 

significant effect of source population for the mass of the shoot (Table 4). 

There were significant treatment effects and a significant interaction for maximum width 

of longest leaf, maximum width of mid-sized rosette leaves, maximum width of mid-sized stem, 

and mass of longest leaf (Table 4).      

There was a significant effect of the water treatment and source, but no significant 

interaction for specific leaf area of longest leaf, specific leaf area of mid-sized rosette (Table 4).   

There was a significant effect of water treatment, but no effect of source region and no 

significant interaction for: shoot length, maximum length of longest leaf, maximum length of 

mid-sized rosette, maximum length of mid-sized stem, mass of mid-sized rosette leaf, mass mid-

sized stem leaf, specific leaf area mid-sized stem, mass root, and biomass (Table 4).  

Discussion 

Although trait differences were expected between plants from the introduced range and 

native range of C. nigrescens in response to differences in light, water, and nutrient, I found 

relatively few differences between the native and non-native populations.  In addition, there was 

no trait that consistently differed among the three experiments.  However, some traits did differ 
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significantly in the direction one would expect for greater performance of plants from the 

introduced range of this species. 

Nutrient Experiment 

Past research suggests that among species, increased resource availability should favor 

the relative performance of non-native species (Harrison 1999; Smith and Knapp 1999; Smith 

and Knapp 2001: Knochel et al.2010a; 2010b).  In this study, non-native plants had a 

significantly larger maximum leaf length and a greater maximum width.  Additionally, mid-sized 

rosette leaves were also significantly wider in non-native populations in both treatment 

conditions.  For each of these leaves, there was a significant increase in leaf mass in each of the 

treatments.  Larger leaf area is a trait associated with faster growing species (Remkes 1990; Duru 

et al. 1996).  Additionally, non-native plants had a significantly greater number of leaves in the 

low nutrient treatment, but not in the high nutrient treatment.  Increased leaf number is also 

correlated with increased growth rate (Poorter and Lambers 1992), suggesting that C. nigrescens 

can allocate resources to the production of leaves even under lower nutrient conditions.  Unlike 

other species of Centaurea that slow down the allocation of resources in resource-limited 

environments (C. stoebe; LeJeune et. al 2005), introduced plants of C. nigrescens do not appear 

to do so.  In a competition experiment, He et al. (2012) showed that for C. stoebe simulated N 

deposition enhanced growth and relative competitive advantage over native North American 

plants.  Additional experiments with C. nigrescens should be conducted to assess nutrient 

allocation when in an environment with competitors.    

The combination of an increased leaf number and an increased area of rosette leaf make 

C. nigrescens an opportunistic capturer of solar energy.  Opportunistic resource acquisition for 

growth and reproduction appears to be one of the key mechanisms important for invasion success 

(Davis et al. 2000; Burns 2004, 2006; Leishman and Thomson 2005; Blumenthal 2005).  In order 

to confirm these findings it would be necessary to perform an experiment over a range of nutrient 

concentrations as it is possible that the treatment conditions of 100 ppm and 400 ppm did not 

represent a large enough range of nutrient availability.   

Light experiment 

The ability of a plant to develop extensive above ground branching allows it to produce 

many leaves for carbohydrate production during the growing season, and results in an increased 

number of flowers, thereby increasing fitness (Baker 1965).  There was a significant increase in 
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branch number in non-native populations in both the high light and the low light treatments.  

Increased branching has been observed in other non-native species (Sasek and Strain 1991).  In 

the present study, the change in branch number in response to light availability could give C. 

nigrescens and advantage over other plants and allow it to overtop neighboring plants.  However, 

the lack of increased flower number is contrary to the findings of Gerlach and Rice (2003) who 

found differences in inflorescence number in invasive C. solstitialis.  My findings with C. 

nigrescens support the study by Muth and Pigliucci (2006), which found no significant 

difference in inflorescence number between invasive and non-invasive species of Centaurea.  

My study, however, was relatively short term, so it is unknown if a difference would emerge had 

the plants been allowed to grow longer and complete flowering.  

Interestingly, in the high light treatment non-native plants had smaller rosette leaves than 

native plants, however in the low light treatment, non-native plants had larger mid-sized rosette 

leaves.  The shift in development of larger rosette leaves may be a critical factor in C. 

nigrescens’ ability to grow under shaded conditions, unlike C. stoebe, which thrives in a variety 

of open, disturbed habitats (DeJeune et al. 2007).  Additionally, the mass of the longest leaf was 

significantly larger in non-native populations than native populations under high light treatment.  

The mass of mid-sized rosette leaves was also significantly greater in non-native plants in high 

light.  This again could indicate an opportunistic resource acquisition for growth and 

reproduction as well as an important shift in resource allocation in response to stress (Davis et al. 

2000; Burns 2004, 2006; Blumenthal 2005; Leishman and Thomson 2005). 

The ability of C. nigrescens to increase allocation of resources to the organs responsible 

for the uptake of whatever resource is limiting, e.g., the development of larger rosette leaves 

when light is limiting, may be an important mechanism allowing this invader to cope with 

changing conditions.  It would be interesting to conduct a similar study with C. nigrescens grown 

in shade and then in light to simulate the opening of a gap forest, or suitable invasion habitat.  

Water Experiment  

In low water conditions, plants typically respond to drought by producing fewer leaves 

(Prasad et al. 2008).  However, in this study the non-native plants in both the high and low water 

treatment had a significantly greater number of leaves and a greater overall shoot mass.  The 

increased leaf number in each of these treatments could be an opportunistic adaptation to 

obtaining resources and providing protection during high stress conditions.  
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The width of the longest leaf and the leaf mass were greater in non-native plants in both 

the high and low water treatments.  Additionally, the mid-sized rosette leaves and the mid-sized 

stem leaves were significantly larger in the non-native plants in both treatments.  Other studies 

have also shown that some invasive species are more phenotypically plastic than native species 

in response to drought stress (Stratton and Goldstein 2001; Hill and Germino 2005).   

The lack of response to water stress in C. nigrescens is intriguing.  From other work it 

was predicted that C. nigrescens would reduce the number of leaves produced under water stress.  

Hill and Germino (2005) showed that physiological activity declined in C. stoebe when water 

stress was induced.  Additionally, Wooley et al. (2011) found that when water-stressed, L. 

minutus also had reduced performance in physiological traits.  

Conclusions 

The overall behavior of native and non-native C. nigrescens in response to each of the 

treatments, light, water and nutrients, is crucial for uncovering whether there are in fact 

particular differences in morphology and resource allocation between native and non-native 

plants.  The differences observed in the current study may provide further insight on whether 

stressors such as low nutrient, low light and low water availability are important for invasion 

success in other species of Centaurea.  In future studies it will be imperative to focus on such 

attributes as leaf morphology and leaf shape.  Additionally, it has been shown that C. stoebe 

polyploids respond differently to stress (Mraz et al. 2011).  It is therefore important to assess 

ploidy in C. nigrescens.  Tertraploids have been documented in C. stoebe, and this trait may be 

responsible for the large impacts seen in the invasive range.   

My study with C. nigrescens focused on the traits of native and non-native species in a 

greenhouse experiment, providing an assessment of life history traits that may promote invasion 

success under controlled conditions.  Further studies of this kind, testing many more contrasts, 

will be important to elucidate and understand differences in life-history patterns of introduced 

plant species.  We need to learn more about the relationship between resource availability and 

invasion, especially resources that negatively impact invaders.  Once we know more about 

extrinsic stressors, they may be used to control invaders, essentially becoming a form of 

“chemotherapy” for invaded habitats (Alpert et al. 2000). 
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Table 1.  Locations of populations where seeds were collected in the United States (1-8, 
introduced range), Italy (9-12, native range) and Switzerland (13-16, native range).   
 
Population Location Latitude Longitude  

1 Bronx, NY 40.51 73.49 
2 Greenport, NY 41.05 72.23 
3 New Jersey, NY 40.25 74.31 
4 Blacksburg, Virginia 37.13 80.26 
5 West Anandale, PA 40.38 74.58 
6 Route 66, Virginia 38.53 77.33 
7 Round Swamp, NY 40.46 73.26 
8 Pauling, New York 41.33 73.35 
9 Campetti Italy 45.79 9.97 
10 Del Capo, Italy 45.79 9.98 
11 Roco Pino, Italy 45.23 7.77 
12 Valmagore, Italy 45.78 9.98 
13 Giubiasco, Switzerland 46.10 9.03 
14 Negrentino, Switzerland 46.15 8.49 
15 Pree, Switzerland 46.31 8.49 
16 Somazzo, Switzerland 45.52 8.99 
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Table 2.  Table of P-values for treatment effects (high or low nutrients), source effects (native or 
introduced populations) and interactions for all measured traits in the nutrient experiment.  
Significant effects are in bold.  
 
NUTRIENT EXPERIMENT     
Response Variable  Treatment Status Interaction 
Pre-treatment     
Initial leaf number   0.020  
Initial length of longest leaf (cm)   0.722  
Initial plant height (cm)   0.081  
Initial diameter (cm)   0.876  
Post-treatment     
Total leaf number  0.924 0.960 0.115 
Plant height (cm)  0.126 0.944 0.116 
Branch number  0.579 0.484 0.105 
Presence of flower(s)  0.269 0.237 0.241 
Capitula number  0.333 0.168 0.096 
Flower number  0.276 0.394 0.259 
Shoot length (cm)  0.780 0.219 0.467 
Root length (cm)  0.188 0.445 0.291 
Root to shoot ratio  0.093 0.226 0.219 
Area longest leaf (cm2)  0.975 0.349 0.282 
Area mid-sized rosette leaf (cm2)  0.540 0.014 0.783 
Area mid-sized stem leaf (cm2)  0.227 0.932 0.283 
Maximum width longest (cm)  0.654 0.031 0.303 
Maximum width mid-sized rosette (cm)  0.567 0.001 0.563 
Maximum width mid-sized stem (cm)  0.842 0.783 0.080 
Maximum length longest leaf (cm)  0.439 0.862 0.060 
Maximum length mid-sized rosette (cm)  0.271 0.819 0.969 
Maximum length mid-sized stem (cm)  0.033 0.886 0.345 
Mass longest leaf (g)  0.949 0.016 0.672 
Mass mid-sized rosette leaf (g)  0.779 0.002 0.613 
Mass mid-sized stem leaf (g)  0.840 0.093 0.063 
Specific leaf area longest-leaf (cm2 g−1)  0.721 0.872 0.869 
Specific leaf area mid-sized rosette leaf (cm2 
g−1)  0.968 0.219 0.491 

Specific leaf area mid-sized stem leaf (cm2 
g−1)  0.576 0.169 0.058 

Mass root (g)  0.728 0.424 0.706 
Mass shoot (g)  0.965 0.207 0.752 
Biomass(g)  0.796 0.263 0.893 
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Table 3.  Table of P-values for treatment effects (high or low light), source effects (native or 
introduced populations) and interactions for all measured traits in the light experiment.  
Significant effects are in bold. 
 

LIGHT EXPERIMENT     
Response Variable  Treatment Status Interaction 
Pre-treatment     
Initial leaf number   0.406  
Initial length of longest leaf (cm)   0.807  
Initial plant height (cm)   0.027  
Initial diameter (cm)   0.180  
Post-treatment     
Total leaf number  0.041 0.440 0.749 
Plant height (cm)  0.005 0.484 0.496 
Branch number  0.496 0.032 0.339 
Presence of flower(s)  0.256 0.475 0.643 
Capitula number  0.061 0.521 0.950 
Flower number  0.204 0.694 0.654 
Shoot length (cm)  0.010 0.556 0.324 
Root length (cm)  0.472 0.222 0.091 
Root to shoot ratio  0.058 0.838 0.957 
Area longest leaf (cm2)  0.912 0.528 0.332 
Area mid-sized rosette leaf (cm2)  0.222 0.931 0.532 
Area mid-sized stem leaf (cm2)  0.599 0.588 0.174 
Maximum width longest (cm)  0.009 0.141 0.641 
Maximum width mid-sized rosette (cm)  0.159 0.371 0.799 
Maximum width mid-sized stem (cm)  0.422 0.610 0.617 
Maximum length longest leaf (cm)  0.367 0.924 0.881 
Maximum length mid-sized rosette (cm)  0.199 0.099 0.019 
Maximum length mid-sized stem (cm)  0.772 0.529 0.139 
Mass longest leaf (g)  0.004 0.038 0.857 
Mass mid-sized rosette leaf (g)  0.001 0.039 0.272 
Mass mid-sized stem leaf (g)  0.748 0.922 0.634 
Specific leaf area longest-leaf (cm2 g−1)  0.000 0.588 0.380 
Specific leaf area mid-sized rosette leaf (cm2 
g−1)  0.001 0.502 0.839 

Specific leaf area mid-sized stem leaf (cm2 
g−1) 0.200 0.644 0.618 

Mass root (g)  <0.001 0.803 0.739 
Mass shoot (g)  <0.001 0.211 0.497 
Biomass(g)  <0.001 0.441 0.741 
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Table 4.  Table of P-values for treatment effects (high or low water), source effects (native or 
introduced populations) and interactions for all measured traits in the water experiment.  
Significant effects are in bold. 
 
WATER EXPERIMENT     
Response Variable  Treatment Status Interaction 
Pre-Treatment     
Initial leaf number   0.966  
Initial length of longest leaf (cm)   0.493  
Initial plant height (cm)   0.035  
Initial diameter (cm)   0.865  
Post-treatment     
Total leaf number  0.476 0.011 0.239 
Plant height (cm)  0.055 0.272 0.573 
Branch number  0.703 0.343 0.801 
Presence of flower(s)  0.127 0.683 0.833 
Capitula number  0.380 0.533 0.575 
Flower number  0.106 0.933 0.754 
Shoot length (cm)  0.020 0.125 0.914 
Root length (cm)  0.500 0.431 0.631 
Root to shoot ratio  0.015 0.821 0.204 
Area longest leaf (cm2)  0.259 0.216 0.971 
Area mid-sized rosette leaf (cm2)  0.541 0.095 0.394 
Area mid-sized stem leaf (cm2)  0.639 0.646 0.913 
Maximum width longest (cm)  0.003 0.004 0.703 
Maximum width mid-sized rosette (cm)  0.001 0.006 0.951 
Maximum width mid-sized stem (cm)  0.043 0.035 0.908 
Maximum length longest leaf (cm)  0.000 0.238 0.853 
Maximum length mid-sized rosette (cm)  0.000 0.910 0.073 
Maximum length mid-sized stem (cm)  0.020 0.254 0.693 
Mass longest leaf (g)  0.035 0.044 0.512 
Mass mid-sized rosette leaf (g)  0.001 0.218 0.184 
Mass mid-sized stem leaf (g)  0.017 0.169 0.309 
Specific leaf area longest-leaf (cm2 g−1)  0.000 0.173 0.024 
Specific leaf area mid-sized rosette leaf 
(cm2 g−1)  0.002 0.841 0.015 

Specific leaf area mid-sized stem leaf (cm2 
g−1) 0.023 .0.2127 0.549 

Mass root (g)  0.007 0.232 0.308 
Mass shoot (g)  0.151 0.001 0.524 
Biomass(g)  0.022 0.117 0.930 



	
   74	
  

Figure 1.  Shade boxes constructed for low light treatment from ¼ inch PVC and covered with 
50% shade cloth.   
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Figure 2.  Initial leaf number at the start of the experiment differed for native and non-native 
plants in the treatment.  There were significant differences between treatments for status (P = 
0.019) and a significant interaction between status and treatment (P = 0.036).  Error bars indicate 
one standard error from the mean.   
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Figure 3.  A significant difference existed between non-native and native plants in area of the 
mid-sized rosette leaf (P =0.014).  Non-native plants in high nutrient treatment had a larger area 
of mid-sized rosette leaves (55.67 cm2 ±3.66) than native plants in the low nutrient treatment 
(44.94cm2 ±2.96).  Error bars indicate one standard error from the mean.   
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Figure 4.  Maximum width of longest leaf was significantly larger in non-native plants in the 
low nutrient treatment (P = 0.031).  Error bars represent one standard error from the mean.   
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Figure 5.  There was a significant effect of treatment on mid-sized stem leaf width (P = 0.033), 
in both native and non-native populations.  Error bars indicate one standard error from the mean.   
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Figure 6.  There was a significant difference between native and non-native populations for the 
mass of the longest plant leaf (P = 0.016).  Error bars indicate one standard error from the mean.   
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Figure 7.  Plant height was significantly larger in native plants in the high light and low light 
treatment at the start of the experiment  (P = 0.027).  Final plant height was not significantly 
different between the groups (P = 0.484).  A significant treatment effect was observed for both 
native and non-native plants exposed to high light (P = 0.005).  Error bars indicate one standard 
error from the mean.   
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Figure 8.  Increased branch number was observed in both high light and low light treatments for 
non-native plant populations (P = 0.032).  Error bars indicate one standard error from the mean.   
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Figure 9.  In both high light and low light treatments non-native plants had significantly larger 
leaf mass (P = 0.038).  Significant treatment effects were observed for both native and non-
native plants (0.004).  Error bars represent one standard error from the mean.   
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Figure 10.  A significant interaction existed in the length of mid-sized rosette leaves between 
source and treatment (P = 0.019).  In high light conditions native populations had a larger 
maximum length of longest leaf.  In low light conditions, the non-native populations had a larger 
maximum length of longest leaf.  Error bars represent one standard error from the mean.   
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Figure 11.  Initial plant height was significantly larger in native plants in high water experiment 
testing the effects of water availability (P = 0.035).  Error bars indicate one standard error from 
the mean.   
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Figure 12.  A significant difference was found for total leaf number between native and non-
native at the end of experiment (P = 0.011).  Plants from non-native populations had more leaves 
in both treatments.  Error bars indicate one standard error from the mean.   
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Figure 13.  Shoot mass was significantly larger in native populations in both the high and low 
water treatments (P = 0.001).  Error bars indicate one standard error from the mean. 
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Figure 14.  A significant difference in maximum leaf width was found between native and non-
native in the high water and low water treatments (P = 0.003).  Error bars indicate one standard 
error from the mean.   
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Figure 15.  A significant treatment effect was found for the mass of longest leaf for both native 
and non-native plants in high water treatment (P = 0.035).  Mass of longest leaf was significantly 
larger in non-native populations in both the high and low water treatments (P = 0.044).  Error 
bars indicate one standard error from the mean. 
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Introduction 

When a species is introduced and establishes in a new environment genetic variation can 

increase, decrease or remain the same.  Genetic changes from source populations can occur for 

several reasons.  Introductions can involve few propagules, resulting in a loss of genetic diversity 

relative to the native populations (Ellstrand and Schierenbeck 2000; Kolbe et al. 2004; 

Lockwood et al. 2005; Novak and Mack 2005; Lavergne and Molofsky 2007).  Outcrossing and 

hybridization in the new environment can produce increased diversity (Allendorf and Lundquist 

2003; Müller-Schärer et al. 2004 Nevo 1988; Williamson 1996; Lee et al. 2004).  Genetic studies 

on plant introductions have found that when a species is transported to a new environment 

adaptation can occur in 20 generations or less, indicating that such evolutionary processes can 

influence invasion success (Prentis 2008).  Multiple introductions from different source regions 

can also result in greater diversity in introduced ranges of plants relative to the diversity see in 

native populations (Abbott, 1992; Ellstrand and Schierenbeck, 2000; Hänfling and Kollmann, 

2002; Callaway and Maron, 2006; Marrs et al. 2008).  Some of these processes can result in 

performance differences for plants in the introduced range versus those from the native range as 

new combinations of genes not found in native populations arise.  These changes can result in 

the ability of introduced plants to establish and spread into new habitats, including novel habitats 

not found in the native range.  Alternatively, reduced genetic diversity could limit the ability of 

an introduced plant to adapt, or limit its ability to spread to new environments.  

When introduction is the result of a small number of individuals, bottlenecks in 

population size, founder effects, and evolution via genetic drift can contribute to reductions in 

genetic variation (Nei et al. 1975; Husband and Barrett 1991).  Species that have entered and 

quickly spread into a new area via a small number of introduction events may also show lower 

genetic diversity in the introduced range (Ellstrand and Schierenbeck 2000; Kolbe et al. 2004; 

Lockwood et al. 2005; Novak and Mack 2005; Lavergne and Molofsky 2007).  Dlugosch and 

Parker’s (2006; 2008) study on the invasive shrub Hypericum canariense demonstrates the 

severe genetic effects of a bottleneck in decreasing diversity during founder events.  Data from 

these studies show a 50% decline in molecular genetic variation relative to native populations.  

Okada et al. (2009) showed that introduced populations of Cortaderia jubata have decreased 

levels of variation compared to populations in the native range, which is the result of a 

bottleneck.  Meimberg et al. (2006) found reduced genetic variation in populations in the invaded 
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range of the invasive grass Aegilops triuncialis L.  Their results showed strong evidence for an 

extreme bottleneck in this species as only three multilocus genotypes were detected in California 

compared to 36 genotypes in Eurasia.   

Genetic variation can be maintained in introduced populations when there is outcrossing 

and hybridzation.  Brown and Marshall (1981) found that populations of bull grass (Bromus 

mollis) do not suffer a decrease in diversity as a result of colonization.  High levels of genetic 

diversity are proposed to be maintained by outcrossing.  Interspecific hybridization is now 

recognized as a major mechanism of evolution in the plant kingdom, and such hybridizations 

between introduced species and related species have been implicated as a driving force of 

evolutionary processes in invasions (Abbott 1992; Ellstrand and Schierenbeck 2000; Hänfling 

and Kollmann 2002; Callaway and Maron 2006).  Hybridization may increase genetic diversity 

in introduced taxa and provide the genetic material on which selection and genetic drift may act 

to promote population differentiation. 

Multiple introductions are posed as the key factor in influencing genetic diversity in the 

introduced range of an invasive species (Warwick et al. 1987; Novak and Mack 1993, 2005; 

Meekin 2001; Maron 2004; Durka et al. 2005; Sun et al. 2005; Lavergne and Molofsky 2007; 

Marrs et al. 2008; Hufbauer and Sforza 2008).  Multiple independent introductions of a species 

can introduce novel variants into the population, increasing genetic diversity and decreasing 

founder effects (Dlugosch and Parker 2008).   Lavergne and Molofsky’s (2007) study on the 

invasive wetland grass reed canary grass, Phalaris arundinacea L., illustrated that canary grass 

had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its 

native range.  Lavergne and Molofsky cite this as evidence of multiple and uncontrolled 

introductions into North America.  In Centaurea stoebe, Marrs et al. 2008 found invasive 

Centaurea stoebe micrathos did not suffer from a severe demographic bottleneck or founder 

effects during its introduction.  Hufbauer and Sforza (2008) found a similar pattern using cpDNA 

sequence data: haplotype diversity did not differ significantly between North America and 

Europe, supporting the notion that C. stoebe micranthos was not subjected to a severe genetic 

bottleneck when introduced to North America. 

 Centaurea nigrescens is a plant introduced from Europe in the 1800’s (Chapter 1).  This 

species is closely related to C. stoebe, a class A noxious weed (USDA).  It is not certain if C. 

nigrescens is expanding or is limited to its current distribution.  The purpose of this study was to 
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use chloroplast DNA (cpDNA) analysis to determine if there is reduced, increased, or unchanged 

genetic diversity in introduced populations, relative to native populations of this species.  

Methods 

Study species 

The genus Centaurea L. (Asteraceae) contains approximately 300 species (Garcia-Jacas 

et al. 2006), many of which are indistinguishable morphologically (Ochsmann 2000).  In North 

America, 34 species of Centaurea have been introduced (USDA Natural Resources. 

Conservation Service Plants Database), 14 of which are defined as noxious weeds in one or more 

states.  Centaurea nigrescens, Tyrol knapweed, was introduced to North America from Europe in 

the 19th century.  It is a herbaceous perennial, 30-150 cm in height with erect flowering stems 

numbering from 1 to as many as 50 (eFloras 2008).  This species spreads by both clonal growth 

via rhizomes and seeds.  Populations are typically found along roadsides and in highly disturbed 

waste sites in Italy and Switzerland as well as in the United States (Wagenitz 1955, efloras 2008; 

Chapter 1)  

Sample collection and preparation 

Samples were obtained from 9 European populations and 17 North American locations 

for cpDNA analyses.  In all cases, plants that were sampled were at least 1 m apart to reduce the 

chance of sampling siblings, and increase the potential range of genetic variation present at each 

site.  Leaf tissue samples were processed from 2-4 individuals from the 26 populations for a total 

of 96 samples (Table 1).  

All leaf tissue samples were dried and stored with silica desiccant until DNA extraction, 

following Hufbauer and Sforza (2008).  Genomic DNA was extracted from desiccated leaves 

with the Dneasy Plant Mini Kit from QIAGEN (Valencia, CA) according to manufacturer’s 

instructions.  Genomic DNA was stored at -20○C until PCR amplification was performed.  

Methodology for amplifying and sequencing cpDNA  

Using the methods of Taberlat et al. (1991) and Hufbauer and Sforza (2008), three 

regions of the cpDNA genome, trnL, trnT-trnL, and trnL-trnF, were amplified with the primers 

listed in Table 2, using standard protocols (Taberlat et al. 1991; Hufbauer and Sforza 2008).  

Polymerase chain reaction (PCR) products were then sent for purification and sequencing to the 

University of Washington High Throuput Genomics Facility (University of Washington, Seattle, 

Washington).  Sequencing was performed on Applied Biosystems Sequencer primed with the 
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PCR primers (Table 2) for each corresponding cpDNA region.  All sequences were exported into 

FASTA format for sequence analysis.   

Multiple sequence alignment 

Forward and reverse contigs were aligned from the three cpDNA regions using MySSP 

(Rosenberg, 2005) according to methods provided by Rosenberg (2005a).  Sequences were 

trimmed and sequences below 90% quality threshold and less than 300 bp were deleted.  

Sequences were then visually inspected and exported to FASTA and NEXUS format for 

haplotype analysis and Genbank submission. 

Sequence Analysis Statistics 

 DnaSP ver 5.0 (Librado and Rozas, 2009) was used to analyze polymorphic data in 

cpDNA samples.  To detect the genetic differentiation among subpopulations DnaSP implements 

several statistics based on the number of haplotypes and nucleotide changes (sequence based 

statistics) (Hudson et al., 1992; Hudson 2000).  A haplotype is simply the set of polymorphic 

alleles that co-occur on a chromosome.  Haplotypes were estimated statistically for the SNPs in 

each gene using DNAsp, Nucleotide substitution rate П was also reported.   

Results 

The sequences from the TrnL loci were not of a quality that was useable, or were missing 

a forward or reverse read.  Therefore, these loci were not included in analyses. 

Haplotypes of TrnT-trnL 

trnT-trnL haplotype diversity in the Native European Range 

Analysis of 35 native samples representing 5 populations from Italy and 4 populations 

from Switzerland yielded 8 distinct haplotypes of trnL-TrnF.  Haplotypes 1 and 2 were 

dominant, representing 95% of all haplotypes in Italy and 93.3% of haplotypes in Switzerland 

(Table 3.).  Overall, haplotype 2 showed the highest frequency distribution in the native range 

with 70% of populations from Italy and 93.3% of populations from Switzerland having that 

genotype.  Haplotype 1 did not occur in the Swiss samples.  Haplotype 4 occurred in 6.67% of 

the samples from Switzerland was not present in Italy (Table 3.)  Figure 2 illustrates the 

distribution of haplotypes from the sampled populations in Switzerland, showing very little 

haplotype variation in this sampled range.  
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trnT-trnL haplotype diversity in the Non-Native North American Range 

In the non-native range 7 distinct haplotypes were observed from the analysis of 56 

samples representing 17 populations.  The dominant haplotypes among this group were 

haplotype 1 and 2 with a combined frequency of 83.93%.  As is shown in Table 3, Haplotype 1 

was found in 48.21% of samples and haplotype 2 in 35.71% of the samples analyzed.  

Haplotypes 4 and 7 were each found in 5.36% of samples followed by Haplotypes 3, 5, and 8 

which were each found in 1.79% of samples.  The relative frequency of haplotypes across North 

America is shown in Figure 3. 

For the trnT-trnL loci, haplotype diversity (h) was 0.601 plants from Europe and 0.598 

for plants from North America.  Nucleotide substitution (П) was estimated to be 0.00157 for 

plants from Europe and 0.00148 for plants from North America.   

Haplotypes of trnL-trnF  

trnL-trnF haplotype diversity in the native European range 

Nine distinct haplotypes of trnL-trnF were resolved from the 26 native samples that were 

tested (representing 5 populations from Italy and 4 populations from Switzerland).  In both Swiss 

and Italian samples, the dominant haplotypes were found to be haplotypes 1 and 3.  In Italy these 

two haplotypes combined to represent the genotype of 66.7% of the samples tested while in 

Switzerland the combined frequency was found to be 54.6% (Table 4).  In Switzerland both 

haplotypes had similar frequencies of 28% for haplotype 1 and 36% for haplotype 3 while in 

Italy, haplotype 3 had a much higher frequency than haplotype 1 with frequencies of 60% and 

6.7% respectively.  Two other haplotypes of trnL-trnF were observed in the native samples, 

Haplotype 6 and 8.  These haplotypes showed distinctly different frequencies in Switzerland 

versus Italy.  In Italy, haplotype 8 had a frequency of 26.7% and haplotype 6 had a frequency of 

6.7%, while haplotype 6 had the higher frequency at 32% in Switzerland compared to haplotype 

8 with a frequency of 4.0% there.  Figure 3 shows the distributions and the frequencies of 

various haplotypes in Switzerland and Italy. 

trnL-trn F haplotype diversity in the non-native North American range 

Among the 57 non-native samples tested (representing 17 populations), 9 distinct 

haplotypes were resolved having frequencies ranging from 4.55% to 22.72%, as seen in Table 3.  

Thus no truly dominant haplotype appears to be present in these samples.  Just as seen in the 

native range, haplotypes 1 and 3 had the highest frequencies of 22.72% and 19.69% respectively.  
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The 7 other haplotypes observed all had similar frequencies of 4.55%-12.12%.  The distribution 

of the various haplotypes and the frequencies of haplotypes are shown in Figure 4. 

Haplotype diversity (h) was 0.76 for plants from Europe and 0.69 for plants from North 

America.  Nucleotide substitution (П) was estimated to be 0.00062 for plants from Europe and 

0.00055 for plants from North America.  

Discussion 

 The dominant haplotypes observed in the introduced range were found to be the same as in 

the native range, suggesting that the C. nigrescens populations sampled in the North America are 

genetically similar to those in the native range.  The results for haplotype diversity of C. 

nigrescens parallel the findings for C. stoebe (Hufbauer and Sforza 2008).  In C. stoebe several 

haplotypes are found in the introduced range and genetic variation is proposed to be maintained 

through multiple introductions.  Unlike studies that indicate a loss of variation upon introduction 

(Ellstrand and Schierenbeck 2000; Kolbe et al. 2004; Lockwood et al. 2005; Novak and Mack 

2005; Meimberg et al. 2006; Lavergne and Molofsky 2007; Dlugosch and Parker 2008; Okada et 

al. 2009), C. nigrescens has maintained genetic diversity in the introduced range like the that of 

C. stoebe, the aggressive rangeland invader.    

 Furthermore, haplotype analysis suggests that multiple introductions of C. nigrescens into 

North America have occurred.  The samples from the Pacific northwest of the United States, 

although limited in number, appear to be an independent introduction as the haplotype variation 

is not consistent with samples from the east coast, but is more similar to the haplotype variation 

in Italy and Switzerland.  This finding is consistent with herbarium records for the timing of 

introduction on the west coast (Chapter 2), which suggests an introduction in that region in the 

1900’s.  These findings are similar to those for the introductions of Centaurea diffusa and C. 

stoebe micranthos, as they were also first recorded in the USA in Washington State in the early 

1900s (Maddox 1979; Hufbauer and Sforza 2008).  It is proposed that these species were 

introduced from Eurasia as contaminants of alfalfa seed or in ballast (Maddox, 1979).  The 

patterns of haplotype diversity found by Hufbauer and Sforza (2008) for C. stoebe and C. diffusa 

is analogous to what is shown for C. nigrescens.  Additionally the data found here support the 

herbarium reconstruction findings of C. nigrescens (Chapter 2) suggesting two separate 

introductions to North America; one in the Pacific northwest and the other in the northeastern 

United States. The reconstruction of invasion routes for C. stoebe by Hordjik and Broennimann 
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(2012) also support the findings of Hufbauer and Sforza (2008), suggesting multiple 

introductions for C. stoebe.    

The greatest haplotype diversity for C. nigrescens is found in the northeast region of the 

United States.  The high genetic variation associated with the haplotypes in the east coast region 

suggests that the region includes a sufficient number of large populations to maintain genetic 

variation.  High haplotype diversity in concurrence with low nucleotide diversity has been linked 

to population growth after a period of low effective population size (Grant and Bowen 1998). 

Taxonomically similar species are thought to invade in similar manners (Daehler and 

Strong 1993, Harris 2009), and rapidly evolving weeds are predicted to be successful invaders 

wherever they are introduced (Baker 1965).  Centaurea stoebe, which is a close relative of C. 

nigrescens, is an important and detrimental invader in North America.  Because the genetic 

diversity of C. nigrescens appears to remain the same as it does in the native range, it is still 

unknown if this species will become as noxious an invader as C. stoebe.  Additionally, it remains 

unknown if ploidy levels have changed between the introduced and native range C. nigrescens 

like they have for C. stoebe (Treier et al. 2009).  With C. nigrescens, maintenance of genetic 

diversity in the introduced range may also reflect a change in ploidy level (Treier et al. 2009).  It 

has been suggested that polyploidy can increase the spread, and thus the success of alien plant 

species (Verlaque et al. 2002, Pandit 2006, Pandit et al. 2006).  It remains unknown whether or 

not the samples in this study differ in ploidy level in the native and non-native range.  

Insights obtained by studying the genetics of invasive species can provide evidence for 

the specific invasion patterns of introduced populations (e.g., of multiple introductions, Hufbauer 

and Sforza 2008) or of single founding events (Grapputo et al. 2005).  Specific information on 

levels of variation in these populations can potentially guide control efforts as well as provide a 

better understanding invasion dynamics.  Understanding variation in newly founded plant 

populations requires that we study the population genetics responsible for maintaining or 

eliminating variation in a population.  Increasing efforts have been made at understanding the 

ecology of invasion history, however we still know relatively little about the post introduction 

evolutionary dynamics of the species themselves (Sakai et al 2001; Novak and Mack 2005; Lee 

2002) as well as how these species change genetically.  Studying invasion biology from 

historical, ecological and genetic perspectives represents an excellent opportunity to examine the 

multi-faceted nature of invasion.  The present work supports the findings of reconstructing an 
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invasion route for C. nigrescens using Minimum Cost Arborescence, which suggested that there 

were two independent introduction events, one in the northeast US and the other in the west 

(Chapter 2).  The answer to the question of how rapidly an invasive plant can evolve remains on 

the forefront of evolutionary ecological research into plant invasions.  Coupling ecological 

studies such as seed germination and greenhouse studies with population genetic studies may 

provide us with the answers to some of these questions leading to future studies on incipient 

populations.   
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Table 1.  Sampling locations of Centaurea nigrescens in both the native (European) and non-
native (North American) range.  N = the number of individuals sampled from each population. 
 
 
 

Population 
Location 

Code N 
 

Sample numbers 

European 
Populations 

   

Giobasco, Italy GB 4 1-4 
Campetti, Italy CP 4 5-8 
Bergamo, Italy BG 4 9-12 
Rocolino, Italy RO 4 14-17 
Valmaggiore, Italy VM 4 18-21 
Claro, Switzerland CL 4 22-25 
Claro, Switzerland C2 3 26-28 
Biasco, Switzerland B1 4 29-32 
Biasco, Switzerland B2 4 33-36 
North American 
Populations 

   

Klickitat, WA, USA KL 4 37-40 
Alleghany County, 
NC 

AC 5 41-45 

RT 66, Virginia RT 4 46-49 
NJ US1, Middlesex MI 4 50-53 
Rhiner Farm, RT 8 
NY 

RH 4 54-57 

Bay Shore, NY, 
USA 

BS 2 58-59 

Blacksburg, VA_1 BB 4 60-63 
Blacksburg, VA_ 2 B2 4 64-67 
Greenport, NY GP 4 68-71 
Anondale, PA AN 4 72-75 
East Setauket, NY ES 4 76-79 
Old Bethpage, NY OB 4 80-83 
Bronx, NY, USA BR 4 84-87 
Pauling, NY, USA PA 4 88-91 
Fishkill, NY, USA FK 4 92-95 
NY_55_2, NY, USA N5 1 96 
Nebraska NE 1 13 

 
 



	
   104	
  

Table 2.  Primer codes and cpDNA region of study, primer A and B were used to sequence trnT-
trnL, primer C and D were used for the trnL region and primer trnL-trnF was sequenced using 
primer E and F.   
 
Name Primer 

Code 
cpDNA 
Region 

Bp 
Size 

Sequence 5’---3’ 

A B48557 trnT-trnL 500 CATTACAAATGCGATGCTCT 
B A49291 trnT-trnL  TCTACCGATTTCGCTACG 
C B49317 trnL 485 CGAAATCGGTAGACGCTACG 
D B49855 trnL  GGGGATAGAGGGACTTGAAC 
E B49873 trnL-trnF 450 GGTTCAAGTCCCTCTATCCC 
F A50272 trnL-trnF  ATTTGAACTGGTGACACGAG 
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Table 3.  Frequencies of haplotypes of trnT-trnL in non-native (North American) populations. In 
North America, 8 different haplotypes were found.  N = the total number of individuals with 
each haplotype and Frequency is the % of individuals with that haplotype. 
 
  

trnT-trnL North 
America 

 Italy  Switzerland 

Haplotype N %  N %  N % 
hap 1 27 48.21  5 25.00    
hap 2 20 35.71  14 70.00  14 93.33 
hap 3 1 1.79       
hap 4 3 5.36     1 6.67 
hap 5 1 1.79       
hap 6    1 5.00    
hap 7 3 5.36       
hap 8 1 1.79       
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Table 4.  Frequencies of haplotypes of trnL-trnF in nonnative (North American) populations.  
The frequency corresponds to the number of samples in the region sampled expressing that 
haplotype.  In North America, 8 different haplotypes were found.  N = the total number of 
individuals with each haplotype and Frequency is the % of individuals with that haplotype. 
 
trnL-trnF North America  Italy  Switzerland 
Haplotype N %  N %  N % 
hap 1 15 22.72  1 6.67  1 9.10 
hap 2 5 7.55       
hap 3 13 19.69  9 60.00  5 45.50 
hap 4 8 12.12       
hap 5 6 9.09       
hap 6 6 9.09  1 6.67  1 9.10 
hap 7 5 7.58       
hap 8 5 7.58  4 26.67  4 36.40 
hap 9 3 4.55       
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Figure 1.  Positions and directions of universal primers used to amplify three non-coding regions 
of cpDNA, from Taberlat et al. (1991).   
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Figure 2.  A) Haplotype distributions of trnT-trnL region in North America.  B) Frequency 
distribution of haplotype (Table 3).        
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 Figure 3.  A) Haplotype distributions of trnT-trnL region in Switzerland, B) frequency 
distribution of haplotype in Switzerland (Table 3), C) haplotype distribution in Italy and D) 
frequency distribution in Italy.   
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Figure 4.  A) Haplotype distributions of trnL-trnF region in North America and B) frequency 
distribution of haplotype (Table 4). 
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Figure 5.  A) Haplotype distributions of trnL-trnF region in Switzerland, B) frequency 
distribution of haplotype in Switzerland (Table 4), C) haplotype distribution in Italy and D) 
frequency distribution in Italy.   
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Chapter 6 

 
Conclusions 
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Understanding the traits of what makes an invasive species successful in an introduced 

environment has been a central theme of research in invasion ecology.  Although many 

hypotheses have been proposed to explain invasion success, a predictable set of characteristics of 

species that successfully invade new communities has yet to be developed (Lonsdale 1999; 

Williamson 1999; Gurevitch et al. 2011).  

The results of the Minimum Cost Arborescence model of the likely routes of invasion for 

C. nigrescens in the United States are consistent with the findings from the chloroplast DNA.  

Both suggest that there were two independent introductions of C. nigrescens in North America, 

one in the northeast and one, later, in the northwest.  The cpDNA haplotype diversity of C. 

nigrescens is very similar in the US compared to populations in the native range in Europe.  

However, there does seem to be some significant differences in plants in the invaded range as 

compared to those in the native range.  North American C. nigrescens have a higher germination 

rate across different temperatures.  In addition, in the greenhouse study I found that when under 

stress of low nutrients, low light or low water, plants from the introduced range had traits that are 

likely to influence competitive performance in acquisition of the resources that are limited.  

Future work should examine possible differences in branching and flower production between 

plants in the native range versus those that have been introduced.  A longer greenhouse study, or 

better, a field experiment, would provide useful information about potential performance 

differences between plants from North America and those from European populations.  
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Appendix 
 
Appendix 1.  Source code for Minimum Cost Arborescence model in R.   
 
source("mdr.R") 
library(maps) 
library(raster) 
mean.date.error<-0.01 
fixed.sources.rows<-order(data$date)[1] 
obs<-mdr(data=data,xcol=2,ycol=1,datecol=3,mode="observed",rep=100,mean.date 
.error=0.01,fixed.sources.rows) 
col<-gray(1-obs[[1]]$bootstrap.value) 
x11();plot(obs[[1]][,3:4],type="n",xlab="longitude",ylab="latitude") 
arrows(obs[[1]][,1],obs[[1]][,2],obs[[1]][,3],obs[[1]][,4],length = 
0.05,col=col) 
map(add=T) 
points(data[fixed.sources.rows,2:1],pch=19,col="red") 
title(paste("total routes length : ",round(obs[[2]],2)," D°","\n","median dispersal rate : 
",round(obs[[3]],2)," D°/year","\n","number of outcoming nodes : ",obs[[4]])) 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 


