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Abstract of the Dissertation

Transport Processes in
High Temperature QCD Plasmas

by

Juhee Hong

Doctor of Philosophy

in

Physics

Stony Brook University

2012

The transport properties of high temperature QCD plasmas can be
described by kinetic theory based on the Boltzmann equation. In
a leading-log approximation, the Boltzmann equation is reformu-
lated as a Fokker-Planck equation. First, we compute the spectral
densities of T µν and Jµ by perturbing the system with weak grav-
itational and electromagnetic fields. The spectral densities exhibit
a smooth transition from free-streaming quasi-particles to hydro-
dynamics. This transition is analyzed with hydrodynamics and
diffusion equation up to second order. We determine all of the first
and second order transport coefficients which characterize the lin-
ear response in the hydrodynamic regime. Second, we simulate the
wake of a heavy quark moving through the plasmas. At long dis-
tances, the energy density and flux distributions show sound waves
and a diffusion wake. The kinetic theory calculations based on the
Boltzmann equation at weak coupling are compared to the strong
coupling results given by the AdS/CFT correspondence.
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By using the hard-thermal-loop effective theory, we determine the
photon emission rate at next-to-leading order (NLO), i.e., at or-
der g2mD/T . There are three mechanisms which contribute to the
leading-order photon emission: 2 ↔ 2 elastic scatterings, 1 ↔ 2
collinear bremsstrahlung, and 1 ↔ 1 quark-photon conversions due
to soft fermion exchange. At NLO, these three mechanisms are not
completely independent. For instance, the 2 ↔ 2 Compton process
smoothly matches onto the 1 ↔ 2 bremsstrahlung rate when the
external gluon is soft. Similarly, bremsstrahlung reduces to quark-
photon conversion process when the photon carries most of the in-
coming momentum. Therefore, the rates should be matched to de-
termine the wide-angle NLO correction. Collinear bremsstrahlung
can be accounted for by solving an integral equation which corre-
sponds to summing ladder diagrams. With O(g) corrections in the
collision kernel and the asymptotic mass of quarks, we determine
the NLO correction from collinear processes.
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Chapter 1

Introduction

1.1 High Temperature QCD Plasmas

The Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) produce high energy-density matter which is called the Quark-Gluon
Plasma (QGP) [1, 2]. This phase of matter is similar to what is believed to
exist in the early universe. At sufficiently high temperature (well above the
phase transition temperature Tc ≈ 160MeV), the description based on non-
interacting quasi-particles can be a starting point to study thermodynamics
and kinetics of the QGP. As it expands, the plasma cools down, and at Tc,
experiences a phase transition from the QGP to hadronic gas. In the hadronic
gas, quarks and gluons are no longer freely moving, and they are confined.
One of the goals in heavy ion collisions is to create the “little bang” and study
the properties and transition dynamics of the QCD matter. There has been
much progress in investigating the matter, but it is not fully understood today.

The strong interaction of quarks and gluons can be described by quantum
chromodynamics (QCD). The Lagrangian of QCD is given by1 [3]

L = −
∑

q

ψ̄q,i(γ
µ∂µδij − igγµtaijA

a
µ +mqδij)ψq,j −

1

4
Ga

µνG
a,µν , (1.1)

with the field tensor

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν . (1.2)

Here ψq,i is a spinor for a quark with mass mq, a color index i = 1, 2, 3 for
Nc = 3, Aa

µ corresponds to a gluon field, taij is a generator of the SU(3) group,

1There is an additional CP-violating term, θ αs

8π Ga
µνG̃a,µν , where G̃a

µν ≡ 1
2εµνσρG

a,σρ is
the dual of the gluon field tensor.
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Figure 1.1: The QCD running coupling αs = g2/4π. Due to the asymptotic
freedom, the coupling decreases logarithmically at high energy. This plot is
from Ref. [3].

and fabc is the structure constant obeying [ta, tb] = ifabct
c.

Due to the asymptotic freedom, the QCD coupling constant g decreases
logarithmically at high energy. Specifically, at one-loop g is running according
to

αs(µ
2) ≡ g2(µ2)

4π
=

1

β0 ln(µ2/Λ2
QCD)

. (1.3)

Here µ is a relevant energy scale, the QCD scale ΛQCD ≈ 200MeV, and
β0 = (11CA− 4NfTF )/12π (where CA = Nc = 3 and TF = 1/2). At high tem-
perature compared to ΛQCD, the coupling g is small (see Fig. 1.1). Therefore,
perturbative calculations are applicable to describe the properties of weakly
coupled plasmas.

In weakly coupled plasmas, there are momentum scales of T , gT , and
g2T [4, 5]. The first momentum scale ∼ T is called “hard”, the second scale
∼ gT is called “soft”, and the third scale ∼ g2T is called “ultra-soft”. The
distance between hard particles is ∼ 1/T , and the pressure (at zeroth order)
due to hard particles is given by the free gas limit. The hard and soft scales
can be studied by a perturbative setup, whereas the ultra-soft scale is non-
perturbative. In particular, the soft sector of the Debye scale ∼ gT needs to
be treated with special care. Bare perturbation theory breaks down at this
order due to infrared divergences. However, in real plasmas there are no such
divergences, since potential induced by the presence of charged particles is
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screened at long distance ∼ 1/gT .
Braaten and Pisarski proposed the hard-thermal-loop (HTL) resumma-

tion which takes account for the screening effect at the Debye scale [4, 6].
By using the HTL effective theory, there have been many achievements in
perturbative gauge theories. For example, transport coefficients have been
computed at leading order [7]. In ultra-relativistic plasmas where quarks and
gluons are non-interacting, bremsstrahlung is as important as collisions to
determine transport dynamics. Due to multiple scatterings, radiation is sup-
pressed, which is known as the Landau-Pomeranchuk-Migdal (LPM) effect.
Calculation of the leading order transport coefficients requires counting both
hard scatterings and collinear bremsstrahlung involving the LPM effect.

To describe the properties of high temperature plasmas, we would like to
compute physical quantities as a function of coupling g and temperature T .
Among them, equilibrium quantities are under control and well-understood.
By using the electrostatic QCD (EQCD) with dimensional regularization, pres-
sure has been computed up to order of g6 ln g [8]. The perturbative result is
consistent with the lattice data at somewhat high temperature ∼ 5Tc [9]. On
the other hand, real-time quantities such as transport coefficients are not well
understood beyond leading order. The only dynamic quantity which has been
computed at next-to-leading order is the heavy quark diffusion constant [10].

In heavy ion collisions, the temperature of the plasmas is rather low (as
THIC ≈ 300MeV) than we discussed above [11]. Thus, THIC is not high enough
compared to ΛQCD so that perturbative expansions may or may not be ap-
plicable. Now an important question is that how much then we can trust
perturbative calculations to explain collective phenomena in the QGP. To re-
spond to this question, we will address the following points in this thesis:

• Point I - The evolution of heavy ion collisions can be characterized by
viscous hydrodynamics [1, 2]. Hydrodynamics is valid when the time
between collisions is short compared to the time during the Bjorken ex-
pansion, η/sTv2

th � τ . With estimated experimental condition τo ≈ 1fm
and To ≈ 300MeV, we find that the hydrodynamic expansion is a good
approximation for η/s . 0.3 [11]. For instance, the elliptic flow data
can be described by the second order hydrodynamics. Fig. 1.2 shows
simulation results for v2(pT ) which is the second coefficient in harmonic
expansions of the particle distribution. By comparing the simulation to
the non-flow corrected data, we can estimate the validity limit for the
shear viscosity as η/s ≈ 0.08 ↔ 0.16.
In order to analyze the onset of the hydrodynamic limit, we consider the
response of equilibrium plasmas to external perturbations. The trans-
port properties of this high temperature plasma are described by kinetic
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theory. By solving the Boltzmann equation, we study how the system
evolves and equilibrates. At long wavelength limit, the solutions of the
Boltzmann equation are consistent with hydrodynamic solutions. By
comparing the kinetic theory results with hydrodynamics up to second
order, we determine the validity regime for the macroscopic theory.

• Point II - In realistic plasmas, the coupling is not particularly small
(αs ≈ 0.5). It is not clear that the QGP is weakly coupled or strongly
coupled. Therefore, we need to compare weakly coupled theories with
strongly coupled theories. In order to find out the difference between
kinetic theory at weak coupling and the AdS/CFT at strong coupling,
we investigate the jet-medium interaction with a heavy quark probe in
two theories.

• Point III - To see how well perturbative expansions work in heavy ion
collisions, it is important to calculate transport coefficients. For ex-
ample, we need to know the drag coefficient to understand the energy
loss in jets. Plus, viscous hydrodynamic simulations require the value
of the shear viscosity. The computation of the shear viscosity involves
all the details of perturbation theories including screening and collinear
bremsstrahlung.
As a warm-up problem, we compute the photon emission rate at next-
to-leading order (NLO). The computation of the photon emission rate
has some, but not all, of the difficulties in computing the shear viscosity
at NLO. In addition to the theoretical motivation, direct photons are
measured at PHENIX (see Fig. 1.3 (a)) [13]. There are various sources
of photons. Depending on the temperature scale, thermal photons are
produced from hadronic gas and QGP. Also, there are prompt photons
from p+p collisions. Roughly speaking, prompt photons are dominant
at high transverse momentum qt > 3GeV, fit with power-law function
(see the green short-dashed line in Fig. 1.3 (b)). At low momentum
qt < 2 − 3GeV, thermal photons are dominant with exponential yield
(see the blue long-dashed line and the red dashed-dotted line in Fig. 1.3
(b)). In particular, the leading order photon emission rate from the QGP,
which was computed in Ref. [109] and shown as the red dashed-dotted
line in Fig. 1.3 (b), is currently being used to compare with experimental
data [14]. We compute the O(g) correction to this leading order result.
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FIG. 8: (Color online) Comparison of hydrodynamic models to experimental data on charged hadron integrated (left) and
minimum bias (right) elliptic flow by PHOBOS [4] and STAR [5], respectively. STAR event plane data has been reduced by
20 percent to estimate the removal of non-flow contributions [5, 6]. The line thickness for the hydrodynamic model curves
is an estimate of the accumulated numerical error (due to, e.g., finite grid spacing). The integrated v2 coefficient from the
hydrodynamic models (full lines) is well reproduced by 1

2
ep (dots); indeed, the difference between the full lines and dots gives

an estimate of the systematic uncertainty of the freeze-out prescription.

Initial condition η/s Ti [GeV] Tf [GeV] τ0 [fm/c] a [GeV−1]

Glauber 10−4 0.340 0.14 1 2

Glauber 0.08 0.333 0.14 1 2

Glauber 0.16 0.327 0.14 1 2

CGC 10−4 0.310 0.14 1 2

CGC 0.08 0.304 0.14 1 2

CGC 0.16 0.299 0.14 1 2

CGC 0.24 0.293 0.14 1 2

TABLE I: Summary of parameters used for the viscous hydrodynamics simulations

Figure 1.2: The elliptic flow depending on the shear viscosity. The simulation
results should be compared to the non-flow corrected data. This plot is from
Ref. [12].

(a) (b) 

Figure 1.3: (a) Invariant yield of direct photons at PHENIX. The red dotted
line is a theoretical calculation from Ref. [14]. This plot is from Ref. [13]. (b)
Integrated photon emission spectra from central Au+Au collisions at RHIC.
The blue long-dashed line indicates thermal hadron gas, the red dashed-dotted
line indicates thermal QGP radiation computed in Ref. [109], the green short-
dashed line indicates photons from primordial N+N collisions, and the purple
solid line indicates the total direct photon yield. This plot is from Ref. [14].
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1.2 Outline of This Thesis

To answer the three points mentioned in the last section, this thesis is
organized as follows.

In chapter 2, we formulate the linearized Boltzmann equation at a leading-
log approximation. We specify the appropriate boundary conditions (which
are determined by collinear bremsstrahlung discussed above), and explain the
physical significance of the boundary conditions. The formulation is mainly
given for pure glue theory and is extended to including fermions. This Boltz-
mann equation is used in the following two chapters to compute spectral den-
sities and investigate jet-medium interactions.

In chapter 3, we calculate the spectral densities of T µν and Jµ by perturb-
ing the system with weak gravitational and electromagnetic fields. From the
slope of spectral densities at ω = 0, we extract all the first and second order
transport coefficients. In particular, with the shear viscosity η and a second
order hydrodynamic coefficient τπ known, hydrodynamic solutions are deter-
mined up to second order in gradient expansions. By comparing kinetic theory
results with hydrodynamic solutions, we analyze the hydrodynamic limit to
answer the Point I.

In chapter 4, to answer the Point II, we simulate the wake of a heavy quark
moving through plasmas with two different theories: kinetic theory based on
the Boltzmann equation at weak coupling, and the AdS/CFT correspondence
at strong coupling. A comparison between the kinetic theory results and the
AdS/CFT results is given. At long distances, the energy density and flux
distributions are compared with hydrodynamic solutions in both theories.

To respond to the Point III, in chapter 5 we compute the photon emission
rate at next-to-leading order, i.e., at order g2mD/T . First, we summarize
the leading order results on the photon emission rate. Then we discuss all
the possible corrections of O(g) to the leading order results. The matching
processes of the rates (among two particle elastic scattering, bremsstrahlung,
and quark-photon conversion) are explained in detail.

Finally, in chapter 6 we conclude.
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Chapter 2

Boltzmann Equation

2.1 Introduction

To describe the linear response in the gas of quarks and gluons, we use
kinetic theory based on the Boltzmann equation. In this chapter, we will
formulate the linearized Boltzmann equation at a leading-log approximation.
As will be discussed in Section 2.2.1, the Boltzmann equation is not simple
due to the particle number-changing process near p = 0. This formulation will
be used to compute spectral densities and simulate jet-medium interactions in
the following two chapters.

At weak coupling, the kinetics of high temperature plasmas consists of sev-
eral processes [15, 16]. First, random walks of hard particles causes momentum
diffusion. Second, collisions affect the lifetimes of quasi-particle excitations.
Finally, bremsstrahlung is important in the equilibration of high momentum
modes. By using kinetic theory, we can study the dynamical properties of
the plasmas. For instance, transport coefficients of high temperature plasmas
can be computed [7, 17, 18], and equilibration in heavy ion collisions can be
described [19, 20, 21, 22]. There has been considerable progress in under-
standing the dynamics of the soft background gauge fields out of equilibrium
[23, 24, 25]. Ultimately, one can simulate heavy ion collisions and jet-medium
interactions using the kinetic theory based on the Boltzmann equation.

The Boltzmann equation is a transport equation which describes statis-
tical distributions of particles. In general, particles in plasmas are out of
equilibrium. The distribution functions of particles depend on position and
momentum, f(t,x,p). In the presence of weak perturbations, we can linearize
the equation around equilibrium. Then the equation is reformulated as a
Fokker-Planck equation to describe diffusion process. This analysis is limited
to a leading-logarithmic order of the coupling constant g, where hard collisions
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and collinear bremsstrahlung are neglected1.
In this chapter, we discuss how to formulate the linearized Boltzmann

equation in a leading-log approximation [26]. We start with a pure glue theory
and extend to including fermions. For transport coefficients, the Boltzmann
equation is usually solved as a variational problem [27]. However, when solving
for the spectral functions described in Chapter 3, it is easier to discretize
momentum space and solve the equation directly. The full numerical solutions
capture the transition from Landau damping to hydrodynamics. In particular,
we use an absorptive boundary condition at low momentum which reflects the
flux of particles from the hard momentum scale ∼ T to the soft momentum
scale ∼ gT [18]. Due to this boundary condition, the particle number changes
during the evolution, whereas the energy and momentum are conserved.

Throughout, we will denote a four-dimensional vector with a capital letter
P , and use p for three-dimensional vector, Ep for the energy component, and
p = |p|. Our metric convention is ηµν = diag(−1,+1,+1,+1), so that uµu

µ =
−1. We use units of c = ~ = 1.

2.2 Linearization with Pure Glue

In this section, we linearize the Boltzmann equation at a leading-log order.
For simplicity, we consider the pure glue theory, where all the particles are
gluons as in Fig. 2.1. The extension to including fermions will be discussed in
Section 2.3.

The Boltzmann equation is given by2(
∂

∂t
+ vp ·

∂

∂x

)
f(t,x,p) = C[f,p] , (2.1)

where vp = p̂ for massless particles. We linearize the particle distribution
function f(t,x,p) around equilibrium

f(t,x,p) = nB
p + δf(t,x,p) . (2.2)

1Bremsstrahlung determines the boundary condition at low momentum, but otherwise
can be neglected (see Section 2.2.1 for details).

2In general, there is a force term which is neglected here.

8



(a)

K

P

K ′

P ′

Figure 2.1: The pure glue t-channel 2 ↔ 2 Feynman diagram which con-
tributes at a leading-log order. External particles have momentum ∼ T and
internal momentum is ∼ gT . Double curly lines denote hard gluons and a
single curly line denotes a soft gluon. Time runs from left to right.

Here the equilibrium distribution nB
p is the Bose-Einstein statistics for gluons3

nB
p ≡

1

eEp/To − 1
, (2.3)

where Ep = p for massless particles and To is constant temperature. C[f,p]
in Eq. (2.1) is the collision term which is given by4

C[f,p] = −
∫

kp′k′

1

2
|M |2(2π)4δ4(Ptot)

[
f(p)f(k)[1 + f(p′)][1 + f(k′)]

− f(p′)f(k′)[1 + f(p)][1 + f(k)]
]
. (2.4)

Here, |M |2 is the scattering amplitude of the process P + K → P ′ + K ′ and
δ4(Ptot) = δ4(P +K−P ′−K ′). In a leading-log order, the only contribution is
from t-channel 2 ↔ 2 scatterings, where two external particles are hard with
momentum ∼ T and the momentum exchange is soft ∼ gT (see Fig. 2.1). In
order to simplify the collision kernel, we define

δf(t,x,p) ≡ np(1 + np)χ(t,x,p) . (2.5)

At this order, the collision term is dominated by small angle scatterings, and

3We will drop the superscript B (or F ) when the appropriate statistics is clear from
context.

4Momentum space integrals are abbreviated as
∫

p
≡
∫

d3p/(2π)3.
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the linearized Boltzmann equation can be written (see Appendix A for details)(
∂

∂t
+ vp ·

∂

∂x

)
δf = TµA

∂

∂pi

[
np(1 + np)

∂χ

∂pi

]
+ (gain terms) . (2.6)

Here µA and the Debye mass (for pure glue) are given by5

µA ≡
g2CAm

2
D

8π
ln

(
T

mD

)
, (2.7)

m2
D =

g2CA

dA

νg

∫
p

np(1 + np)

T
=
g2T 2

3
Nc . (2.8)

Except the gain terms, Eq. (2.6) is a Fokker-Planck equation describing ran-
dom walks of hard particles. As a result, particles lose their energy and mo-
mentum to plasmas. In this sense, we call the first term of the right-hand
side in Eq. (2.6), the “loss” term. However, there are additional “gain” terms
which compensate the lost energy and momentum. We discuss how the energy-
momentum conservation works in the following.

Eq. (2.6) is a kind of diffusion equation. In this diffusion process, the
momentum-space current is given by

jp = −TµAnp(1 + np)
∂χ

∂p
. (2.9)

Multiplying both sides of Eq. (2.6) by energy Ep and integrating over the phase
space, the work on particles (per time, degree of freedom, and volume) can be
found in terms of the current:

dE

dt
≡
∫

p

p̂ · jp . (2.10)

Similarly, the momentum transfer (per time, degree of freedom, and volume)
is

dP

dt
≡
∫

p

jp . (2.11)

If there were no gain terms in Eq. (2.6), particles lose their energy and mo-
mentum to the plasmas through the diffusion process. However, there are
gain terms which are exactly given by the energy-momentum transfers (see

5The dimension and the Casimir of the adjoint representation are dA = N2
c − 1 and

CA = Nc. For the fundamental representation, dF = Nc and CF = (N2
c −1)/2Nc. νg = 2dA

and νq = 2dF count the spin and color degrees of freedom for gluons and quarks, respectively.
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Appendix A for details):

(gain terms) =
1

ξB

[
1

p2

∂

∂p
p2np(1 + np)

]
dE

dt
+

1

ξB

[
∂

∂p
np(1 + np)

]
· dP

dt
.

(2.12)
Here, we defined ξB ≡

∫
p
np(1 + np) = T 3/6. Multiplying Eq. (2.6) by pµ and

integrating over the phase space, it is straightforward to verify that the total
energy and momentum are conserved. With this formulation, however, the
number of particles fluctuates, which will be discussed in the next section.

2.2.1 Boundary Conditions

The Boltzmann equation is an integro-differential equation. Without ap-
propriate boundary conditions, they are not well-defined. In this section, we
discuss physical boundary conditions at low and high momentum. Boundary
conditions are non-trivial especially at p = 0, where the particle number-
changing process is present.

To determine an appropriate boundary condition at high momentum, we
reexpress Eq. (2.6) as a Fokker-Planck equation (without gain terms)(

∂

∂t
+ vp ·

∂

∂x

)
δf = −µA(1 + 2np)p̂ ·

∂δf

∂p
+ TµA∇2

pδf . (2.13)

Then the motion of the particle excess can be described by the Langevin
equation:

dp

dt
= −µA(1 + 2np)p̂ + ξ(t) , (2.14)

where µA(1+2np) ' µA is the drag coefficient of a high momentum gluon and
ξ(t) is stochastic noise satisfying

〈ξi(t)ξj(t′)〉 = 2TµAδ
ijδ(t− t′) . (2.15)

At high momentum, drag is dominant, and the noise can be neglected in
Eq. (2.13): (

∂

∂t
+ vp ·

∂

∂x

)
δf = −µAp̂ · ∂δf

∂p
. (2.16)

This equation is first order in derivatives, and can be used as a boundary
condition at high momentum.

In order to determine the appropriate boundary condition at low momen-
tum, we consider the excess of soft gluons within a small ball of radius ∆p ∼ gT
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centered at p = 0:∫ p=∆p

p=0

d3p

(2π)3
np(1 + np)χ(p) ' T 2

2π2
χ(0)∆p . (2.17)

Since it is easy to emit a soft gluon, the excess should vanish, and it is intuitive
to have the boundary condition [18]

χ(p)
∣∣
p→0

= 0 . (2.18)

This absorptive boundary condition will be justified in the following.
At a leading-log approximation, bremsstrahlung and soft 1 ↔ 2 scatterings

can be neglected for momenta ∼ T . However, near p → 0 limit inelastic
processes are important for arbitrarily small coupling constant. Specifically,
the total rate for hard particles to absorb (or emit) a gluon from the ball of
radius ∆p ∼ gT is [18]

Γ1↔2 ∼ g4T

∫ ∆p dp

p
f(p) ∼ g4T 2

∫ ∆p dp

p2
, (2.19)

where we used f(p) ' T/p for p ∼ gT . By using the thermal mass of gluon
m ∼ gT as the infrared cutoff, the rate is given by

Γ1↔2 ∼
g4T 2

m
∼ g3T . (2.20)

The time scale of the Fokker-Planck evolution is T/µA ∼ 1/g4T ln(1/g) which
is large compared to the time scale of bremsstrahlung, 1/Γ1↔2 ∼ 1/g3T . The
ratio of these two scales gives the order of χ(p ∼ gT ) in the excess Eq. (2.17):

χ(p ∼ gT ) ∼ g . (2.21)

The boundary condition in Eq. (2.18) is the leading result in the weak coupling
limit g → 0. Therefore, it is verified that we have the absorptive boundary
condition at p = 0. A consequence of this boundary condition is that gluon
number is not conserved during the Fokker-Planck evolution. We will discuss
this in the next section.

2.2.2 Evolution

We formulated the linearized Boltzmann equation and determined appro-
priate boundary conditions. To show how Boltzmann solutions evolve and
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what the physical consequences are, we consider simple cases with arbitrary
perturbations.

We solve the Boltzmann equation with some initial condition. Then the
solution δf(t,x,p) will eventually reach the hydrodynamic form. Specifically,
the form is described by a temperature excess δT (t,x) (or equivalently the
energy density fluctuation) and flow velocity Uµ =

(
1,u(t,x)

)
:

feq(t,x,p) =
1

exp
[
− P · U(t,x)/[To + δT (t,x)]

]
− 1

,

' np + np(1 + np)

[
pδT (t,x)

T 2
o

+
p · u(t,x)

To

]
. (2.22)

By using the definition Eq. (2.5), χ(t,x,p) should approach to the equilibrium
value at late times:

χeq(t,x,p) =
pδT (t,x)

T 2
o

+
p · u(t,x)

To

. (2.23)

Here, the first and the second terms correspond to l = 0 and l = 1 partial
waves, respectively.

As we discussed earlier, in this formulation, the total energy and momen-
tum of the system are conserved during the Fokker-Planck evolution, whereas
the particle number is not. Now, we examine how the total number of par-
ticles equilibrates. For simplicity, we ignore any spatial dependence of δf .
The excess number of gluons is obtained by integrating δf(t,p) over the phase
space

δNFP =

∫
p

δf(t,p) . (2.24)

By integrating both sides of Eq. (2.6), the rate of excess number is

∂δNFP

∂t
= lim

p→0

1

(2π)3

∫
p2dΩ · jp +

−T 2

2π2ξB

dE

dt
, (2.25)

where Ωp is an outward-directed solid angle. The first term represents a diffu-
sion flux of gluons with momentum p ∼ T to momentum p ∼ gT . The second
term gives the number of gluons disturbed from equilibrium per unit time by
the random walk of the excess, δf . In general, these two terms have different
rates and the number changes accordingly. In equilibrium, however, the two
rates are equal and the excess number of gluons reach a constant. Specifically,
by substituting the equilibrium distribution Eq. (2.22) to Eq. (2.25), we find
that the net loss and gain of the excess gluons are same (with the opposite
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sign):

lim
p→0

1

(2π)3

∫
p2dΩ · jp

∣∣∣∣
eq

= −TµAδT

2π2
, (loss) , (2.26)

−T 2

2π2ξB

dE

dt

∣∣∣∣
eq

= +
TµAδT

2π2
, (gain) . (2.27)

Thus, the particle number does not change at equilibrium.
The flux of particles can be obtained by taking the p → 0 limit of Eq. (2.6).

At low momentum, l = 0 and l = 1 terms are dominant in a spherical harmonic
expansion of χ:

χ(t,p) =
dχ00(t,p)

dp

∣∣∣∣
p=0

p+
dχ1m(t,p)

dp

∣∣∣∣
p=0

· p . (2.28)

Here we ignored the spatial dependence of χ for simplicity. By substituting
this form into Eq. (2.6), the rate is

∂χ(t,p)

∂t
= −2T p̂

p
·

(
µA

dχ1m(t)

dp

∣∣∣∣
p=0

+
1

TξB

dP

dt

)
, (2.29)

which is divergent as p → 0. Thus, the slope at p = 0 will satisfy the following
condition to maintain the balance:

dχ1m(t)

dp

∣∣∣∣
p=0

= − 1

TµAξB

dP

dt
. (2.30)

As a result, the flux (p2jp) at low momentum is determined by the momentum
transfer to the hard particle by the bath. It is straightforward to verify that
Eq. (2.23) satisfies this balance condition.

In order to demonstrate how the solutions of the Boltzmann equation ap-
proach to the equilibrium, we consider two simple cases:

χ(t,p) = χ00(t, p)H00(p̂) , (2.31)

χ(t,p) = χ10(t, p)H10(p̂) . (2.32)

Here H00(p̂) = 1/
√

4π and H10(p̂) =
√

3/4π cos θ are the l = 0 and l = 1
spherical harmonics. For the initial condition at time t0 = 0, we take

p2np(1 + np)χ00(p, t0)
p2np(1 + np)χ10(p, t0)

}
∝
∑
s=±

se−(p−sp0)2/2σ2

, (2.33)
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Figure 2.2: Evolution of an initial condition towards equilibrium in the
linearized Boltzmann equation. (a) A spherically symmetric (l = 0) initial
condition and (b) an initial condition proportional to the first spherical har-
monic H10(p̂) approaching to equilibrium. The solid lines show time steps
in units of 1.0T/µA and the dotted lines show time steps of 0.2T/µA, where
µA = g2CAm

2
D ln(T/mD)/8π.

with p0 = 3To and σ2 = To. The numerical procedure for solving Eq. (2.6)
for the l partial waves is as follows. The momentum space is discretized, and
an implicit scheme is used to perform the update step. Then the equation is
written as a matrix equation form. By using the conjugate gradient algorithm,
we invert the matrix to solve the equation. Fig. 2.2 shows how the two initial
conditions evolve as a function of time. Ultimately, the two solutions approach
to the equilibrium distribution Eq. (2.23), where δT and u are determined by
the total energy and momentum in the initial state:

δT =
νgT

4eo

∫
p

Epnp(1 + np)χ(to,p) , (2.34)

u =
νg

eo + Po

∫
p

pnp(1 + np)χ(to,p) . (2.35)

Here eo =
∫

p
Epnp is the equilibrium energy density and Po = eo/3 is the

pressure. We have verified that the total energy and momentum of the system
are conserved during the evolution, whereas the particle number changes due
to the boundary conditions.
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Figure 2.3: The rest t-channel 2 ↔ 2 Feynman diagrams which contribute at
a leading-log order, besides the pure glue diagram (a) in Fig. 2.1. External
particles have momentum ∼ T and internal momentum is ∼ gT . Double solid
lines denote hard quarks, single solid lines denote soft quarks, double curly
lines denote hard gluons, and single curly lines denote soft gluons. Time runs
horizontally, either way.

2.3 Extension to Multi-component Plasmas

So far, we have discussed a pure glue theory. In QCD, quarks carry nearly
half of the entropy, and it is important to extend the analysis to include quarks
(see Fig. 2.3). The distribution function of fermions is6

nF
p ≡

1

e(Ep−µ)/To + 1
. (2.36)

For simplicity, we consider only zero chemical potential, µ = 0. Similar to
Eq. (2.5), each species is expanded as follows:

δfa = np(1± np)χ
a(p) , (2.37)

where ± corresponds to bosons and fermions, respectively.
In the presence of fermions, the collision operator is best expressed in

terms of the sum of fermion and anti-fermion distribution functions, δf q+q̄ ≡
δf q + δf q̄, and the corresponding difference, δf q−q̄ ≡ δf q − δf q̄. To describe
distribution functions of gluons and fermions in Fig. 2.1 and Fig. 2.3, we need
the following collision terms (see Appendix A for details):

• The diagrams (a)-(c) in Fig. 2.1 and Fig. 2.3 contribute Fokker-Planck

6We define ξF ≡
∫

p
nF

p (1− nF
p ) = T 3/12.
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processes. The Fokker-Planck evolution loss term is given by

Ca
FPloss[χ,p] = Tµa

∂

∂pi

(
np(1 + np)

∂

∂pi

[
δfa

np(1 + np)

])
. (2.38)

Here the drag coefficient depends on species7

dp

dt
= −µap̂ with µa =

g2CRam
2
D

8π
ln

(
T

mD

)
, (2.39)

and the Debye mass is given by [29]

m2
D =

gf f̄∑
a

g2CRa

dA

νa

∫
p

na
p(1± na

p)

T
=
g2T 2

3

(
Nc +

Nf

2

)
. (2.40)

• The Fokker-Planck gain terms are

Ca
FPgain =

g2CRa

Tm2
DdA

[
1

p2

∂

∂p
p2np(1 + np)

]
dE

dt

+
g2CRa

Tm2
DdA

[
∂

∂p
np(1 + np)

]
· dP

dt
. (2.41)

Here dE/dt and dP /dt are the total work and momentum transfer per
volume on hard particles similar to Eqs. (2.10) and (2.11), except that
the total diffusion current reads

jp = −
∑

a

νaTµan
a
p(1± na

p)
∂χa(p)

∂p
. (2.42)

• The diagrams (d) and (e) in Fig. 2.3 contribute to the sum of fermion
and anti-fermion distributions. The collision term is

Cq
qg + C q̄

qg = −2γ
nF

p (1 + nB
p )

p
[χq(p) + χq̄(p)− 2χg(p)] , (2.43)

where we defined

γ ≡ g4C2
F ξBF

4π
ln(T/mD) , ξBF ≡

∫
k

nF
k (1 + nB

k )

k
=
T 2

16
. (2.44)

7CRa
is the Casimir of particle a.
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The analogous gluon collision term is given by

Cg
qg = −

f∑
q

νq

νg

(Cq
qg + C q̄

qg) , (2.45)

where the sum is over the light quark flavors.

• For the difference between fermion and anti-fermion, the collision term
is (from diagrams (d) and (e) in Fig. 2.3)

(Cq
qg − C q̄

qg) = −2γ
nF

p (1 + nB
p )

p
[χq(p)− χq̄(p)]

+
2γ

ξBF

nF
p (1 + nB

p )

p

∫
k

nF
k (1 + nB

k )

k
[χq(k)− χq̄(k)] , (2.46)

where the first line is the loss term and the second line is the gain term.

With these collision operators, the distribution functions of gluon, the fermion
sum, and the fermion difference are governed by(

∂

∂t
+ vp ·

∂

∂x

)
δf g(t,x,p) = Cg

FPloss + Cg
FPgain + Cg

qg , (2.47)(
∂

∂t
+ vp ·

∂

∂x

)
δf q+q̄(t,x,p) = (Cq

FPloss + C q̄
FPloss)

+ (Cq
FPgain + C q̄

FPgain) + (Cq
qg + C q̄

qg) , (2.48)(
∂

∂t
+ vp ·

∂

∂x

)
δf q−q̄(t,x,p) = (Cq

FPloss − C
q̄
FPloss) + (Cq

qg − C
q̄
q̄g) . (2.49)

Here we note that for the fermion difference, the Fokker-Planck evolution is
same as before, but the gain terms cancel.

2.4 Summary

We reformulated the leading-log Boltzmann equation as a Fokker-Planck
equation. The work and momentum transfer during the diffusion process ap-
pear as additional gain terms which are essential to conserve energy and mo-
mentum. In a leading-log order, we have only t-channel 2 ↔ 2 scatterings
of hard particles, and bremsstrahlung does not contribute except the p → 0
limit. At low momentum, an absorptive boundary condition should be used,
and consequently the number of particles changes during the Fokker-Planck
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evolution. Fig. 2.2 shows a sample evolution of non-equilibrium distributions,
ultimately approaching to equilibrium.

The formulation presented in this chapter will be used to compute spectral
densities and simulate the jet-medium response in the following two chapters.
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Chapter 3

Spectral Densities

3.1 Introduction

Phenomenologically, the Quark-Gluon Plasma (QGP) is believed to behave
like nearly perfect fluid [28]. To investigate the properties of the plasma, lattice
QCD solves the theory non-perturbatively from first principles. The main
goal of lattice QCD simulations is to compute correlation functions which
are related to spectral densities. Many properties of the QGP dynamics are
reflected in spectral densities. For instance, spectral densities are important to
study the spectrum of photons and dileptons, and their slopes at zero frequency
give information about transport coefficients.

Specifically, lattice QCD simulations estimate Euclidean correlators of con-
served currents, 〈J(τ,x)J(0,0)〉. The relation between these correlators and
the spectral densities of the corresponding operators is given by the following
integral transformation [29]:∫

d3x eik·x 〈J(τ,x)J(0,0)〉 =

∫
dω

2π
ρJJ(ω,k)

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (3.1)

The lattice data have been analyzed for non-perturbative information about
transport [30, 31, 32, 33, 34, 35], but the information from the Euclidean
measurements are limited [36, 37]. In order to characterize the properties
completely, a number of lattice groups have begun to simulate the current-
current correlators at finite spatial momentum [38, 39].

At zero spatial momentum, the shear, bulk modes of the T µν spectral
densities and current spectral densities have been determined previously at
leading order [40, 41]. With the Boltzmann equation formulated in the last
chapter, we can compute spectral densities for finite frequency and momentum.
In the presence of weak gravitational and electromagnetic fields, the spectral
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densities of T µν and Jµ are determined at small frequency and momentum
ω,k ∼ g4T [26].

In this chapter, we will discuss all possible modes of the spectral densities of
T µν and Jµ. The numerical results of spectral densities exhibit a smooth tran-
sition from free-streaming quasi-particles to hydrodynamics. This transition
will be analyzed with conformal, non-conformal hydrodynamics and diffusion
equation up to second order in gradient expansions. To respond to the Point I
mentioned in Chapter 1, we will determine the valid regime for the macroscopic
theory as

ω, ck <∼ 0.35

[
η

(eo + Po)c2s

]−1

(first hydro) , (3.2)

ω, ck <∼ 0.7

[
η

(eo + Po)c2s

]−1

(second hydro) . (3.3)

Ultimately, these perturbative spectral densities can be compared to the lattice
data and the AdS/CFT with a model for the high frequency continuum [42]. In
kinetic theory, there is a clear distinction between the inverse temperature ∼
1/T and the relaxation time ∼ 1/g4T . In contrast, there is no such distinction
in strongly coupled theories. This difference will be reflected by the fact that
there is no visible transport peak in the AdS/CFT spectral densities [43, 44].
By using a simple model for the QCD spectral densities, we will compare the
kinetic theory results with the AdS/CFT spectral densities in Section 3.7.

3.2 Spectral Densities of T µν

To compute the spectral densities of T µν , we turn on weak gravitational
fields in the flat space. Then we measure the linear response to the perturba-
tion by solving the Boltzmann equation derived in Chapter 2. This response
will be analyzed with hydrodynamics and free-streaming solutions in two ex-
treme limits.

Spectral densities of T µν are given by the imaginary part of the associated
retarded Green’s function:

ρµναβ(ω,k) = −2 ImGµναβ
R (ω,k) . (3.4)

To compute the correlation function, we turn on weak gravitation fields. Then
the metric is

gµν(t,x) = ηµν + hµν(t,x) , (3.5)

where ηµν = diag(−1,+1,+1,+1) is the flat metric and hµν(t,x) is linear
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disturbance. With the perturbation, the action is linearly perturbed

S(gµν) ' So +
1

2

∫
d4X T µν(X)hµν(X) , (3.6)

and the interaction Hamiltonian is

Hint(t) = −
∫

d3xLint = −1

2

∫
d3xTαβ(X)hαβ(X) . (3.7)

By using the linear response theory, the averaged energy-momentum tensor is

〈T µν(X)〉hαβ
= T µν

eq (X)−−i
2

∫
d4Y θ(X0−Y 0)

〈[
T µν(X), Tαβ(Y )

]〉′
hαβ(Y ) .

(3.8)
Here T µν

eq (X) = [e(T )+P(T )]uµ(X)uν(X)+P(T )gµν(X), and ′ indicates that
the average is over the partition function in flat space. In Fourier space,
Eq. (3.8) reads

〈T µν(ω,k)〉hαβ
=
∂T µν

eq

∂hαβ

∣∣∣∣
h=0

hαβ(ω,k)− 1

2
Gµναβ

R (ω,k)hαβ(ω,k) , (3.9)

where the associated retarded Green’s function is

Gµναβ
R (ω,k) = −i

∫ ∞

−∞
dt

∫ ∞

−∞
dx e+iωt−ik·x θ(t)

〈[
T µν(t,x), Tαβ(0,0)

]〉′
.

(3.10)
In order to classify the relevant correlators, we choose k along z-axis. Then

there are four possible modes according to their transformation properties
under the rotation around z-axis:

• Shear Mode – Gzxzx
R (ω, k) ,

• Sound Mode – Gzzzz
R (ω, k) ,

• Transverse Tensor Mode – Gxyxy
R (ω, k) ,

• Bulk Mode – ηµνηαβG
µναβ
R (ω, k) .

3.2.1 Shear, Sound, and Transverse Tensor Mode

In this section, we compute the shear, sound, and transverse tensor modes
of the T µν spectral densities by turning on spatial perturbations. Then the high
frequency behaviors are analyzed with the free-streaming Boltzmann solutions.
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In the curved spacetime, we need the Boltzmann equation in the covariant
form:

1

Ep

(
P µ ∂

∂Xµ
− Γλ

µνP
µP ν ∂

∂P λ

)
f(t,x,p) = C[f,p] , (3.11)

where

Γλ
µν =

1

2
gλρ (∂νgρν + ∂νgµρ − ∂ρgµν) . (3.12)

In Eq. (3.11), ∂f/∂Ep should be understood as zero. Except in the bulk mode,
the metric is perturbed only in the spatial components:

gij(t,x) = ηij + hij(t,x) . (3.13)

Specifically, we turn on hzx(t, z), hzz(t, z), and hxy(t, z) for the shear, sound,
and transverse tensor mode, respectively.

We linearize the Boltzmann equation around the equilibrium distribution
which now depends on the background metric:

f(t,x,p) = nh
p + δf(t,x,p) , (3.14)

nh
p =

1

exp
[√

pi(ηij + hij)pj/T
]
− 1

. (3.15)

By substituting Eq. (3.14) into Eq. (3.11) and linearizing with respect to hij,
the Boltzmann equation becomes(

∂

∂t
+ vp ·

∂

∂x

)
δf + np(1 + np)

pipj

2EpT

∂hij

∂t
= C[δf,p] . (3.16)

In Fourier space, this equation reads

(−iω + ivp · k)δf(ω,k, p)− iωnp(1 + np)
pipj

2EpT
hij(ω,k)

= TµA
∂

∂pi

(
np(1 + np)

∂χ(p)

∂pi

)
+ (gain terms) . (3.17)

Without the gain terms, this is a linear elliptic partial differential equation. It
can be discretized to be a matrix equation, and can be solved by the matrix
inversion. We use the conjugate gradient method to solve the equation in
Fourier space (see Appendix B for details).

After solving for δf(ω,k), the energy-momentum tensor can be computed
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from kinetic theory:

T ij(ω,k) = νg

∫
d3p

√
−g

(2π)3

pipj

2Ep

[
nh

p + δf(ω,k)
]
,

= −Pohij(ω,k) +

[
νg

∫
d3p

(2π)3

pipj

2Ep

δf(ω,k)

hij(ω,k)

]
hij(ω,k) . (3.18)

By comparing with Eq. (3.9), the square bracketed term in the second line
gives the Green’s function: −Gzxzx

R (ω, k), −1
2
Gzzzz

R (ω, k), and −Gxyxy
R (ω, k) for

the shear, sound, and transverse tensor modes, respectively.
The numerical results for the spectral densities are shown as solid lines in

Fig. 3.1 (a)-(c). They exhibit a smooth transition from free-streaming quasi-
particles at high momentum to hydrodynamics at small momentum. In the
following, we will compare the high frequency behaviors with free-streaming
solutions.

At high frequency, the spectral densities are determined by the free-streaming
Boltzmann equation:(

∂

∂t
+ vp ·

∂

∂x

)
δf + np(1 + np)

pipj

2Ep

∂hij

∂t
= 0 . (3.19)

By solving for δf , the solution is

δf(ω,k) =
pipj

2Ep

−ωhijnp(1 + np)

ω − vp · k + iε
, (3.20)

where we introduced the +iε in order to specify the retarded response. With
Im [1/(x+ iε)] = −πδ(x), we take the imaginary part of the response function
to determine the spectral densities from the free theory:

ρzxzx(ω, k)

2ω
=
νgπ

3

30

ω2

k3

(
1− ω2

k2

)
θ(k − ω) (ω and k large) , (3.21)

ρzzzz(ω, k)

2ω
=
νgπ

3

15

1

k

(ω
k

)4

θ(k − ω) (ω and k large) , (3.22)

ρxyxy(ω, k)

2ω
=
νgπ

3

120

1

k

[
1−

(ω
k

)2
]2

θ(k − ω) (ω and k large) , (3.23)

where θ(k−ω) is the unit step function. The free solutions are shown as dotted
lines in Fig. 3.1 (a)-(c). They are consistent with the Boltzmann results at
large ω and k except near the light cone ω = k.
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Figure 3.1: The spectral density ρ(ω) = −2 ImGR(ω, k) for (a) the shear
mode Gzxzx

R (ω, k), (b) the sound mode Gzzzz
R (ω, k), (c) the transverse tensor

mode Gxyxy(ω, k), and (d) the bulk mode ηµνηαβ G
µναβ
R (ω, k). The solid lines

show the complete results, while the dotted lines show the expectations of
the free-streaming Boltzmann equation. The variables ω and k are measured
in units of µA/T , with µA = g2CAm

2
D ln(T/mD)/8π. The shear viscosity

is η/(eo + Po) = 0.4613T/µA so that ω̄ = 0.5, 1.0, 2.0, 4.0 corresponds to
ω η/[(eo + Po)c

2
s] ' 0.7, 1.4, 2.8, 5.6, as chosen in Fig. 3.3.
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3.2.2 Bulk Mode

In this section, we determine the bulk mode of the T µν spectral densities.
This mode involves temporal perturbations, and needs to be treated with
special care.

In the bulk mode, the metric is perturbed in the following form:

gµν(X) = [1 +H(X)]ηµν . (3.24)

If the gravitational perturbation is independent of time, hydrostatic equilib-
rium will be reached when T (x)

√
−g00(x) = (const). Motivated by this ob-

servation, we assume for the time-dependent perturbation

TH(X)
√
−g00(X) = (const) (3.25)

at equilibrium. Then we will show that the equilibrium distribution is given
by

nH
p (t,x,p) =

1

exp
[
− P (X) · UH(X)/TH(X)

]
− 1

, (3.26)

where

TH(X) = To

[
1−H(X)/2

]
, (3.27)

Uµ
H(X) =

(
1/
√
−g00(X), 0, 0, 0

)
. (3.28)

Since P µP νgµν = −m2[TH(X)], the combination −P (X) · UH(X) in the dis-
tribution function is

−P (X) · UH(X) = − Ep(X)√
−g00(X)

,

=
√
pi [δij +H(X)δij] pj +m2[TH(X)] . (3.29)

With a non-trivial dispersion relation, the Boltzmann equation is given by
[45]

1

Ep

(
P µ ∂

∂Xµ
− 1

2

∂m2(X)

∂Xµ

∂

∂Pµ

− Γλ
µνP

µP ν ∂

∂P λ

)
f(t,x,p) = C[f,p] ,

(3.30)
where the mass term can be understood as a force term

− 1

2Ep

∂m2(X)

∂Xµ

∂f

∂Pµ

= −∂Ep

∂x

∂f

∂p
. (3.31)
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The mass depends on the distribution function [16]

m2(X) =
2νg

dA

g2CA

∫
d4P µ

√
−g

(2π)4
θ(Ep) 2πδ(−P 2)fp . (3.32)

In equilibrium, m2 = g2CAT
2/6.

We linearize the distribution around the equilibrium Eq. (3.26)

f(t,x,p) = nH
p (t,x,p) + δf(t,x,p) , (3.33)

where δf will be verified to be of order (c2s − 1/3) ∼ g4. Therefore, δf is
neglected when determining the gluon mass at leading order. The mass is
then simply the time-dependent equilibrium mass

m2[TH(X)] ' m2(T0)− T 2∂m
2

∂T 2

∣∣∣∣
To

H(X) . (3.34)

With this observation, we substitute Eq. (3.33) into Eq. (3.30). After
careful algebra, the Boltzmann equation becomes

(∂t + vp · ∂x) δf − np(1 + np)
m̃2

2EpT
∂tH = C[δf,p] , (3.35)

where

m̃2 ≡ m2 − T 2∂m
2

∂T 2

∣∣∣∣
T=To

= −CAβ(g)
T 2

o

6
. (3.36)

Here we used the definition of the beta function

β(g) ≡ µ2∂g
2(µ2)

∂µ2
= − g4

16π2

(
11CA

3
− 4

3
NfTF

)
. (3.37)

Since the source term in Eq. (3.35) is proportional to the beta function, the
equilibrium distribution nH

p (t,x,p) is an exact solution of the Boltzmann equa-
tion in a conformal theory. In the presence of weak conformal breaking, δf is
of order (c2s − 1/3) ∼ g4, and we can solve Eq. (3.35) for δf/g4H.

Once δf is determined, the stress tensor can be computed [16, 45, 46]

T µ
µ(X) = −e(TH(X)) + 3P(TH(X))− νg

∫
d3p

(2π)3

m̃2

Ep

δf(X) (3.38)
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In Fourier space, the stress tensor is

T µ
µ(ω, k) = −1

2
T
∂

∂T
(−e+ 3P)

∣∣∣∣
To

H(ω, k)

− 1

2

[
νg

∫
d3p

(2π)3

m̃2

Ep

δf(ω, k)

H(ω, k)/2

]
H(ω, k) , (3.39)

where the term in square brackets is ηµνηαβG
µναβ
R (ω, k). Due to the factor m̃2,

the correlator is of order (c2s − 1/3)2. Fig. 3.1 (d) shows the numerical results
of the bulk spectral densities.

Since the bulk mode is sensitive to the soft momenta, the free-streaming
Boltzmann equation does not provide a good description at large ω and k. If
we neglect the collision term in Eq. (3.35), the free-streaming solution is

δf(ω, k) =
m̃2

2EpT

ωHnp(1 + np)

ω − vp · k + iε
. (3.40)

This solution does not obey the boundary condition χ(p)
∣∣
p→0

= 0 in Eq. (2.18),

and T µ
µ is infrared divergent. Thus the free solution is not shown in Fig. 3.1

(d).

3.3 Linearized Hydrodynamics

Fig. 3.1 shows rich hydrodynamic structures at low frequency and momen-
tum limit. In this section, we will construct the linearized hydrodynamics and
determine all the transport coefficients up to second order. To analyze the hy-
drodynamic limit, the spectral densities of the sound mode will be compared
with hydrodynamic solutions. For the bulk mode, non-conformal hydrody-
namics will be also discussed.

Hydrodynamics is an effective theory at long distances compared to mean
free path. In the absence of external force, it is given by a conservation law

∇µT
µν
hydro = 0 , (3.41)

with a constituent relation

T µν
hydro = T µν

ideal + πµν + Π∆µν . (3.42)

Here πµν is the traceless part for the conformal limit, whereas Π is the non-
conformal part with the projector ∆µν = gµν + uµuν . In the ideal hydrody-

28



namics, we have only equilibrium energy-momentum tensor:

T µν
ideal =

[
e(T ) + P(T )

]
gµν + P(T )gµν , (3.43)

where e(T ) is energy density and P(T ) is pressure at temperature T . In the
presence of perturbation, energy density and flow velocity are disturbed away
from equilibrium

e(t,x) ' eo + ε(t,x) and uµ(t,x) ' (1,u(t,x)) , (3.44)

where ε(t,x) and u(t,x) are the linearized disturbance. The strains are ex-
panded as derivatives of ε (or equivalently δT ) and u

πµν = πµν
1 + πµν

2 + · · · , (3.45)

Π = Π1 + Π2 + · · · . (3.46)

Depending on the order, we will provide the explicit expressions of the strains
in the following.

In the first order hydrodynamics, the gradient expansion yields

πµν
1 = −η〈∇µuν〉 and Π1 = −ζ∇µu

µ . (3.47)

Here η is the shear viscosity and ζ is the bulk viscosity. The angle brackets
denote the symmetric, traceless, and spatial component of the tensor

〈Aµν〉 =
1

2
∆µα∆νβ

(
Aαβ + Aβα −

2

3
gαβA

γ
γ

)
. (3.48)

The dissipative part of the stress tensor, which is conformally invariant and
the second order in derivatives, is given by [47]

πµν
2 = ητπ

[
2uαR

α〈µν〉βuβ − 2 〈∇µ∇ν lnT 〉
]
+ κ

[
R〈µν〉 − 2uαR

α〈µν〉βuβ

]
,

(3.49)
where Rαµνβ (Rµν) is the Riemann (Ricci) tensor. τπ and κ are the second
order transport coefficients which will be determined numerically in the for-
mulation of the Boltzmann equation. The equation of motion Eq. (3.41) with
the constituent relation Eq. (3.49) gives the “static” hydrodynamic solutions.
By using the lowest order equations of motion, Eq. (3.49) can be rewritten as
a dynamic equation for πµν :

πµν = πµν
1 − τπ 〈Dπµν〉+ κ

[
R〈µν〉 − 2uαR

α〈µν〉βuβ

]
. (3.50)

This equation is similar to the phenomenological model of Israel and Stewart
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[48, 49]. The non-linear generalization of these equations are used to simulate
heavy ion collisions. The “dynamic” hydrodynamics consists of the equation
of motion Eq. (3.41) and the constituent relation Eq. (3.50).

In non-conformal limit, the strains up to the second order can be written
[50]

πµν = πµν
1 + ητπ 〈Dσµν〉+ κ

[
R〈µν〉 − 2uαR

α〈µν〉βuβ

]
+ κ∗2uαR

α〈µν〉βuβ ,
(3.51)

Π = Π1 + ζτΠD(∇ · u) + ξ5R + ξ6uαuβR
αβ , (3.52)

where σµν = 2 〈∇µuν〉. τΠ, κ∗, ξ5, and ξ6 are the non-conformal second or-
der hydrodynamic coefficients and will be determined numerically. In the
linearized hydrodynamics, we can neglect terms in the second order of u in
Eqs. (3.49)-(3.52).

3.3.1 First Order Hydrodynamics

At low frequency, spectral densities are described by hydrodynamics. In
the shear, sound, and transverse tensor modes, there are only spatial metric
perturbations, gij = ηij + hij. In the first order disturbance, the constituent
relation is

T ij = Po

(
δij − hij

)
+c2s εδ

ij−2η
〈
∂iuj

〉
−ζδij∂lu

l−η∂t 〈hij〉−
3

2
ζδij∂th , (3.53)

where h = hll/3. From Eq. (3.41), the linearized equations of motion are

∂tε+ (eo + Po)∂iu
i = −3

2
(eo + Po)∂th , (3.54)

(eo + Po)∂tu
i + ∂jT

ji = −Po ∂jhji . (3.55)

For the shear mode, the only non-zero component of the metric perturba-
tion is hzx(t, z). The equations of motion are easily solved in Fourier space,
yielding

ε(ω, k) = 0, (3.56)

uz(ω, k) = 0, (3.57)

(eo + Po)u
x(ω, k) =

ωkη

−iω + ηk2

eo+Po

. (3.58)

By substituting these solutions into the constituent relation Eq. (3.53), we
determine the retarded Green’s function in the first order hydrodynamic ap-
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proximation:

T zx(ω, k) = −Pohzx(ω, k)−Gzxzx
R (ω, k)hzx(ω, k) , (3.59)

Gzxzx
R (ω, k) =

−ηω2

−iω + ηk2

eo+Po

. (3.60)

The imaginary part of this retarded Green’s function describes the behavior
at small ω and k in Fig. 3.1 (a):

ρzxzx(ω, k)

2ω
=

ω2η

ω2 +
(

ηk2

eo+Po

)2 (ω and k small) . (3.61)

The similar procedure applies to the sound and transverse tensor modes
to determine the hydrodynamic solutions. In the sound mode, we have the
non-zero metric perturbation hzz(ω, k) in Fourier space. The hydrodynamic
prediction is

T zz(ω, k) = −Pohzz(ω, k)−
1

2
Gzzzz(ω, k)hzz(ω, k) , (3.62)

Gzzzz
R (ω, k) = (eo + Po)

c2sω
2 − iΓsω

3

ω2 − c2sk
2 + iΓsk2ω

, (3.63)

where Γs = (4
3
η + ζ)/(eo + Po). In the transverse tensor mode, the non-zero

metric perturbation is hxy(ω, k) and the solution is

T xy(ω, k) = −Po hxy(ω, k)−Gxyxy
R (ω, k)hxy(ω, k) , (3.64)

Gxyxy
R (ω, k) = −iωη . (3.65)

In the bulk mode, the hydrodynamic solution is found as follows. Around
the equilibrium, there are small disturbances ε and u:

e(t,x) = e(TH(X)) + ε(t,x) ' eo −
1

2
TcV H(t,x) + ε(t,x) , (3.66)

Uµ(X) = Uµ
H(X) + δUµ(X) '

(
1− 1

2
H(t,x), ui(t,x)

)
. (3.67)

The stress tensor is given by the equilibrium tensor plus a small correction

T µν(X) =
[
e(TH(X))+P(TH(X))

]
Uµ

HU
ν
H +P(TH(X))gµν(X)+δT µν , (3.68)
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where

δT µν =

∫
p

pµpν

Ep

δf . (3.69)

Substituting these expressions into the conservation law Eq. (3.41) yields the
linearized equations of motion:

∂tε+ (eo + Po)∂iu
i =

1

2
Tcv ∂tH

(
1− 3c2s

)
, (3.70)

(eo + Po)∂tu
i + ∂jτ

ji = 0. (3.71)

Here the tensor τ ij is

τ ij = c2s εδ
ij − 2η

〈
∂iuj

〉
− ζδij ∂lu

l − 3

2
ζ∂tH δij , (3.72)

and we used the relation c2s = (eo + Po)/Tcv. In solving these equations, we
can work to lowest order in the deviation from conformality, (c2s − 1/3). By
noting ζ ∼ (c2s−1/3)2 [18], while ε and u are of order (c2s−1/3), we determine
T µ

µ to leading order in (c2s − 1/3):

T µ
µ(ω, k) = −1

2
T
∂

∂T
(−e+ 3P)

∣∣∣∣
To

H(ω, k)

+ (−1 + 3c2s)ε(ω, k) +
9

2
iωζH(ω, k). (3.73)

Then we solve for ε(t,x) from Eqs. (3.70) and (3.71), substitute the solution
into T µ

µ, and compare with Eq. (3.39) to determine the hydrodynamic predic-
tion:

ηµνηαβG
µναβ
R (ω, k) = (1− 3c2s)

2 Tcv
−ω2 − iΓsωk

2

ω2 − (csk)2 + iΓsωk2
− 9iωζ . (3.74)

By using the thermodynamic result

(1− 3c2s)
2 Tcv =

(
3s

∂

∂s
− T

∂

∂T

)
(−e+ 3P) , (3.75)

the imaginary part can be written

ηµνηαβ
ρµναβ(ω, k)

2ω
=

(
3s

∂

∂s
− T

∂

∂T

)
(−e+3P)

(csk)
2Γsk

2

(ω2 − c2sk
2)2 + (ωΓ2

sk
2)2

+9ζ .

(3.76)
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As k → 0, the first term approaches to a delta function [51]:

ηµνηαβ
ρµναβ(ω, k)

2ω
=(

3s
∂

∂s
− T

∂

∂T

)
(−e+ 3P)

[π
2
δ(ω − csk) +

π

2
δ(ω + csk)

]
+ 9ζ . (3.77)

This explains the sharp sound pole seen in Fig. 3.1 (d).

3.3.2 Conformal Second Order Hydrodynamics in Sound
Mode

At leading order in the coupling, the microscopic dynamics described by
kinetic theory is conformal. Thus the conformal hydrodynamics can be used
to describe the correlators in the long wavelength limit [47, 52]. In this section,
we focus on the second order hydrodynamics in the conformal limit to analyze
the sound mode.

By following the similar procedure in the first order hydrodynamics, we
solve the equation of motion with the conformal constituent relation (up to
second order in gradient expansions) to determine the hydrodynamic predic-
tion. With the external field hxy(t, z), the Green’s function of the transverse
tensor mode is given by [47]

Gxyxy
R (ω, k) = −iηω + τπηω

2 − 1

2
κ(ω2 + k2) . (3.78)

When ω = 0, the source term of the Boltzmann equation in Eq. (3.17) is
zero, while Gxyxy(0, k) = −κk2/2. Therefore, κ = 0 in a theory based on the
conformal Boltzmann equation to this order [52]. Indeed, κ is determined by
the k dependence of the static susceptibility:

Gxyxy
R (0, k) = −i

∫
d4X eik·xθ(t) 〈[T xy(t,x), T xy(0,0)]〉′ = −1

2
κk2 . (3.79)

For pure glue theory, κ = dAT
2/18 [51]. However, κ is of order T 2, and is

significantly smaller than the other second order transport coefficient, ητπ ∼
T 2/g8, which can be determined by the linearized Boltzmann equation at a
leading-log order. Specifically, we extract ητπ by examining the real part of
the response function in the limit ω → 0 at k = 0. For Nc = 3 and various
numbers of flavors, the coefficient is numerically determined:

Nf 0 2 3
τπ/(η/sT ) 6.32 6.65 6.46

.
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τπ has been determined previously in a complete leading order calculation in
Ref. [52].

With the coefficients κ and τπ known, we can calculate the retarded Green’s
function of the sound mode in two different ways: static hydrodynamics and
dynamic hydrodynamics. With the external field hzz(t, z), the conservation
law in Eq. (3.41) yields

∂tε+ (eo + Po)∂zu
z = −1

2
(eo + Po)∂thzz , (3.80)

(eo + Po)∂tu
z + c2s∂zε+ ∂zπ

zz = 0 . (3.81)

In the static hydrodynamics, the constituent relation in Eq. (3.49) gives

πzz = −4

3
η∂zu

z− 2

3
η∂thzz +

2

3
ητπ∂

2
t hzz−

4

3
ητπ

c2s
(eo + Po)

∂2
z ε−

1

3
κ∂2

t hzz . (3.82)

With the relation, we solve Eqs. (3.80) and (3.81) to determine the static
solution:

Gzzzz
R (ω, k) =

(eo + Po)
c2sω

2 − iΓsω
3 + τπΓsω

4 + τπΓsc
2
sk

2ω2 − 2
3
κ/(eo + Po)ω

4

ω2 − c2sk
2 + iΓsωk2 − τπΓsc2sk

4

(static) . (3.83)

The dynamic theory has the constituent relation in Eq. (3.50):

τπ∂tπ
zz + πzz = −2

3
η∂thzz −

4

3
η∂zu

z − 1

3
κ∂2

t hzz , (3.84)

and solving the equations of motion gives

Gzzzz
R (ω, k) = (eo + Po)

c2sω
2 − iΓsω

3 − iτπc
2
sω

3 − 2
3
κ/(eo + Po)ω

4

ω2 − c2sk
2 + iΓsωk2 + iτπc2sωk

2 − iτπω3

(dynamic) . (3.85)

The dispersion relations for the static and the dynamic theories are

ω2 − c2sk
2 + iΓsωk

2 − τπΓsc
2
sk

4 = 0 (static) , (3.86)

ω2 − c2sk
2 + iΓsωk

2 + iτπc
2
sωk

2 − iτπω
3 = 0 (dynamic) . (3.87)
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Figure 3.2: The (a) real and (b) imaginary parts of the retarded Green’s
function in the sound mode, Gzzzz

R (ω, k). The thick solid lines show the full
numerical results from the Boltzmann equation, the thin dashed-dotted lines
show the prediction of the first order hydrodynamics, the dashed lines show
the prediction of the second order static theory (where πµν is determined by
the constituent relation Eq. (3.49)), and the dotted lines show the prediction
of the second order dynamic theory (where πµν is determined by a relaxation
equation Eq. (3.50)). The shear viscosity is η/(eo +Po) = 0.4613T/µA so that
ω̄ = 0.1, 0.2, 0.3, 0.5 corresponds to ω η/[(eo + Po)c

2
s] ' 0.14, 0.28, 0.42, 0.7.

In the static theory, the dispersion relation has only two solutions

ω = ±csk −
i

2
Γsk

2 ∓ Γs

2

(
Γs

4cs
− τπcs

)
k3 +O(k4) . (3.88)

On the other hand, the dispersion relation in the dynamic theory has the two
physical solutions of Eq. (3.88) and an extra solution

ω = − i

τπ
+O(k2) . (3.89)

Since ω remains constant as k → 0, this extra solution lies beyond the hydro-
dynamic approximation [47].

Fig. 3.2 compares the full spectral density of the sound mode with the
first and the second order hydrodynamics. Roughly, at low frequencies and
momentum of

ω, ck <∼ 0.35

[
η

(eo + Po)c2s

]−1

(first hydro) , (3.90)
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the first order hydrodynamics does a reasonable job in capturing the dynamics.
The second order theory describes the Boltzmann results better until

ω, ck <∼ 0.7

[
η

(eo + Po)c2s

]−1

(second hydro) . (3.91)

For larger k, the second order dynamic theory becomes too reactive, whereas
the static theory becomes too diffusive. Nevertheless, the dynamic theory
seems to capture some aspects of the high frequency response better than the
static theory. In heavy ion collisions, all hydrodynamic simulations so far have
been based on the dynamical theory, which is hyperbolic and causal [11].

3.3.3 Non-conformal Second Order Hydrodynamics in
Bulk Mode

Beyond the leading order in the coupling, there are corrections to the ki-
netic theory which break the scale invariance. Thus a non-conformal hydro-
dynamics must be used to describe the long wavelength response [50]. In the
bulk mode, we determined the subleading non-conformal corrections to kinetic
theory due to the scale dependence of gluon mass, and used this result to com-
pute the bulk spectral function. In this section, we analyze the bulk mode to
determine the non-conformal transport coefficients through the second order
in gradient expansions.

Similar to the conformal coefficient κ, the non-conformal hydrodynamic
coefficients κ∗, ξ5, and ξ6 in Eqs. (3.51) and (3.52) are determined by static
susceptibilities. We turn on a static gravitational field of the following form:

gµν(x) = [1 +H(x)]ηµν + diag(0, h(x), h(x), h(x)) . (3.92)

By substituting this form into the hydrodynamic equations, we compute a
particular combination of the stress-energy tensor components

〈2T zz(k)− [T xx(k) + T yy(k)]〉 = 2κ∗k2H(k) + κk2h(k) . (3.93)

Similarly, we define (following Ref. [45])

Obulk(t,x) ≡ 3c2sT
0
0(t,x) + T i

i(t,x) , (3.94)

and note that in the static gravitational field of Eq. (3.92)

〈Obulk(k)〉 =

(
9 ξ5k

2 − 3

2
ξ6k

2

)
H(k) + 6 ξ5k

2h(k) . (3.95)
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Then all the coefficients are related to the static susceptibilities:

−i
∫

d4X eik·xθ(t) 〈[2T zz(t,x)− T xx(t,x)− T yy(t,x) , T µ
µ(0,0)

]〉′
= 2κ∗k2 ,

(3.96)

−i
∫

d4X eik·x θ(t)
〈[
Obulk(t,x) , T µ

µ(0,0)
]〉′

= 9 ξ5k
2 − 3

2
ξ6k

2 , (3.97)

−i
∫

d4X eik·x θ(t)
〈[
Obulk(t,x) , T i

i(0,0)
]〉′

= 6 ξ5k
2 . (3.98)

Since T µ
µ = β(g)

2g2 GµνG
µν [53], every insertion of T µ

µ brings at least two powers
of g. Thus we estimate that

κ∗ = ξ5 = ξ6 = 0 +O(g2) (3.99)

In the Boltzmann equation, this must be considered as zero to the order we
are working. Indeed, from Eqs. (3.16) and (3.35) the sources of δf induced by
H(x) and h(x),

− np(1 + np)
m̃2

2EpT
∂tH and np(1 + np)

p2

2EpT
∂th , (3.100)

vanish for static gravitational fields.
To determine the coefficient τΠ, we turn on a gravitational field gµν =

[1 +H(t,x)]ηµν and compute

〈Obulk(ω, k)〉 = −1

2
ηµνG

Oµν
R (ω, k)H(ω, k) , (3.101)

where

ηµνG
Oµν
R (ω, k) = −i

∫
d4X eiωt−ik·xθ(t)

〈[
Obulk(t,x), T µ

µ(0,0)
]〉
. (3.102)

At k = 0, we substitute gµν = [1 + H(t)]ηµν into the second order non-
conformal hydrodynamic equations. Then

〈Obulk(ω, 0)〉 = −1

2

[
− 9iζω + 9ζτΠω

2
]
H(ω, 0) , (3.103)

where we used ξ5 = ξ6 = 0. The quantity in square brackets is the hydro-
dynamic prediction for the response function. In kinetic theory, we turn on
gµν = [1 + H(t,x)]ηµν and measure the response Obulk(ω,k) as described in
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Section 3.2.2:

Obulk(ω, k) = −1

2

[
νg

∫
d3p

(2π)3

3c2sm̃
2 − (1− 3c2s)p

2

Ep

δf(ω, k)

H(ω, k)/2

]
H(ω, k) .

(3.104)
By comparing the functional form of our numerical results from kinetic theory
to the hydrodynamic form at k = 0, we determine τΠ:

Nf 0 2 3
τΠ/τπ 0.510 0.548 0.554

. (3.105)

Here we see that the relaxation time of bulk perturbations is similar to that
of shear perturbations.

3.4 Extension to Multi-component Plasmas

So far, we computed the spectral densities of T µν for the pure glue theory.
In this section, we extend the discussion to multi-component plasmas.

In Section 2.3, we formulated the Boltzmann equation in the presence of
fermions. The spectral densities in multi-component plasmas can be computed
by solving Eqs. (2.47)-(2.49) (see Appendix B for details). When the response
functions are expressed in terms of appropriately scaled kinematic variables,

ω̄ = ω
η

(eo + Po)c2s
and k̄ = ck

η

(eo + Po)c2s
, (3.106)

the spectral densities are essentially unchanged in all modes. Fig. 3.3 (a)
shows the bulk spectral density in terms of these scaled variables for pure glue
and three flavors. The relative agreement between these curves indicates the
dominance of the Fokker-Planck evolution.

In the next section, we will discuss the spectral densities of Jµ, where a
similar scaling is observed in all modes. In Fig. 3.3 (b), we plot the longitudinal
spectral density for pure glue and Nf = 3. With the scaled variables,

ω̄ = ω
D

c2
and k̄ = k

D

c
, (3.107)

the spectral density does not change.
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Figure 3.3: (a) The bulk spectral function for three flavors compared to the
pure glue theory. In this figure, η/(eo + Po) is 0.917T/µA for Nf = 3 and
0.461T/µA for Nf = 0, so that the k values for Nf = 0 coincide with Fig. 3.1.
(b) The longitudinal current-current spectral function for three flavors and
the quenched approximation. In this figure D = 0.944T/µF for Nf = 3, while
D = 0.852T/µF for Nf = 0, so that the k values for Nf = 0 coincide with
Fig. 3.4. The results are similar in the other modes.

3.5 Spectral Densities of Jµ

In this section, we compute the spectral densities of Jµ by turning on weak
gauge fields. The spectral densities exhibit a smooth transition from free-
streaming solutions at high frequency to diffusion equation at low frequency.
This transition will be analyzed with the second order diffusion equation.

For simplicity, we compute the current-current correlator of net strangeness.
Since in a leading-log approximation the susceptibilities and correlators are
diagonal in flavor space, the flavor and electromagnetic spectral densities are
trivially related to this result. To determine the strangeness response function,
we turn on gauge fields Aµ = (0,A). Then the interaction Hamiltonian and
the current are

Hint = −
∫
d3x JµAµ and Jµ(X) =

δS

δAµ(X)
. (3.108)

By using the linear response, the average current is

〈Jµ(X)〉A = +i

∫
d4Y θ(X0 − Y 0) 〈[Jµ(X), Jν(Y )]〉Aν(Y ) . (3.109)
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In Fourier space, it reads

〈Jµ(ω,k)〉A = −Gµν
R (ω,k)Aν(ω,k) , (3.110)

where the corresponding retarded Green’s function is

Gµν
R (ω,k) = −i

∫
d4X eiωt−ik·xθ(t) 〈[Jµ(t,x), Jν(0, 0)]〉 . (3.111)

By taking k along the z-direction, there are two independent correlators:

• Longitudinal Mode – Gzz
R (ω, k) ,

• Transverse Mode – Gxx
R (ω, k) .

In the presence of the gauge fields coupled to the current, there is the
Lorentz force acting on a charged particle:

F i = QaF
i
µv

µ , (3.112)

where Qs is one for strange quarks, minus one for anti-strange quarks, and
zero for all other species. Then the Boltzmann equation with the force term
for the strangeness excess is given by

1

Ep

(
pµ∂µ +QaF

µνpν
∂

∂pµ

)
fa = Ca[f,p] . (3.113)

In Fourier space, the equation becomes

(−iω + ivp · k)δfa(ω,k)− iωnp(1± np)QaAi
pi

Ep

= Ca[δf,p] . (3.114)

The gauge field does not disturb the fermion sum δf q+q̄, and only disturbs the
fermion difference:

(−iω + ivp · k)δf s−s̄(ω,k)− iωnp(1− np) 2QsAi
pi

Ep

= Cs−s̄[δf,p] , (3.115)

where Cs−s̄ is given by Eq. (2.46). The numerical procedure to solve for δf s−s̄

is explained in Appendix B. After solving for δf , the current can be computed
by

J i = Qs νs

∫
d3p

(2π)3

pi

Ep

δf s−s̄ . (3.116)

By comparing with Eq. (3.110), the current-current response function is de-
termined (see Fig. 3.4).
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Figure 3.4: The current-current correlator for Nc = 3 and Nf = 0 in the (a)
longitudinal and (b) transverse modes. Nf = 0 corresponds to the quenched
approximation. µF ≡ g2CFm

2
D ln(T/mD)/8π is the drag coefficient of a quark

in a leading-log approximation. The diffusion coefficient is D = 0.852T/µF ,
so ω̄ = 0.5, 1.0, 2.0, 4.0 corresponds to ωD/c2 ' 0.42, 0.85, 1.7, 3.4, as chosen
in Fig. 3.3. The thin dotted lines show the results from the free-streaming
Boltzmann equation.

The free-streaming solution of the Boltzmann equation describes the re-
sponse at large ω and k. By following the procedure presented in Section 3.2.1,
we find:

ρzz(ω, k)

2ω
=
πQ2

sνs

12

ω2

k3
θ(k − ω) (ω and k large) , (3.117)

ρxx(ω, k)

2ω
=
πQ2

sνs

24

1

k

(
1− ω2

k2

)
θ(k − ω) (ω and k large) . (3.118)

These free solutions are shown as dotted lines in Fig. 3.4.

3.6 Second Order Diffusion Equation

In the long wavelength limit, the current-current correlator is described
by the diffusion equation. The current is expressed in terms of gradients
of the net strangeness ns(t,x) and the gauge field A(t,x). For a linearized
theory invariant under parity, the current to the second order in the derivative
expansion must have the following form:

J i
s = −D∂ins + σEi − (στJ) ∂tE

i + κB (∇×B)i . (3.119)
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Here D is the diffusion coefficient, σ is the conductivity, and τJ and κB are new
transport coefficients which will be determined numerically in the Boltzmann
equation. In writing this expression, we neglected εijkujBk and µ ∂iT which
would appear in the magneto-hydrodynamics [54] (where Bi is not small) or
at finite background chemical potential (where µ is not small). Similarly,
we neglected the non-linear term nsu

i, where ns(t,x) and ui(t,x) are small
fluctuations. We also used lower order equations of motion to recognize that
∂t∂

in is actually third order in the derivative expansion.
The diffusion coefficient and the conductivity are related to each other.

To see this, we first rewrite the constituent relation in terms of the chemical
potential, and include one higher order term

J i
s = −Dχs ∂

iµ+ σEi − (στJ) ∂tE
i + κB (∇×B)i

+
[
c1χs∂t∂

iµ+ other higher order terms
]
,

where χs is the static susceptibility

χs =
dns

dµs

= 2Q2
sνs

1

T

∫
p

np(1− np) = Q2
sνs

T 2

6
. (3.120)

Then we note that a perturbation of the form

µ(X) + A0(X) = (const) (3.121)

does not disturb the system away from equilibrium, i.e. e−β(H−µN) is constant.
Thus all gradients in the constituent relation should involve the combination
∂i(µ + A0). This requirement forces a relation between the conductivity and
the number diffusion coefficient

χsD = σ , (3.122)

and specifies the coefficient of one higher order term, c1 = DτJ .
Since the constituent relation is specified, the conservation law ∂µJ

µ = 0
can be solved for J0(ω, k). By comparing the constituent relation Eq. (3.119)
and linear response Eq. (3.110), the solution determines the current-current
correlator at small momenta:

Gzz(ω, k) =
−σω2 − i (στJ)ω

3

−iω +Dk2
, (3.123)

Gxx(ω, k) =− iωσ + (στJ)ω
2 − κBk

2 . (3.124)

When ω = 0, the source term in Eq. (3.115) is zero, while Gxx(0, k) = −κBk
2.
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Figure 3.5: The real part of the retarded current-current correlator for Nc = 3
and Nf = 0. The thin dotted lines show the predictions of the first order dif-
fusion equation, while the thick dashed lines show the prediction of the second
order theory, Eq. (3.123). Both are compared to the full Boltzmann equation.
ω and ck are in units of τ−1

J = 0.312µF/T . Thus kτJ = 0.15, 0.3, 0.6, 1.2 cor-
responds to ωT/µF ' 0.045, 0.09, 0.18, 0.36 in Fig. 3.4, i.e. smaller than the
first value in Fig. 3.4.

Therefore, κB = 0 in a theory based on the Boltzmann equation. This coeffi-
cient may be non-zero at higher order. In the limit of ω → 0 and k = 0, the
real part of the Green’s function gives the value of τJ . For Nc = 3 and vari-
ous numbers of flavors, we tabulate this transport coefficient in a leading-log
approximation:

Nf 0 2 3
τJ/D 3.776 3.756 3.748

.

The real part of the full Boltzmann result is compared with the first and the
second order diffusion equation in Fig. 3.5. The second order solution captures
some aspects of the high frequency behavior.

Eq. (3.119) is the “static” version of the second order diffusion equation.
By using the first order expression J i

s = σEi − D∂ins, the equation can be
rewritten as the “dynamic” form:

J i
s = −D∂ins + σEi − τJ ∂tJ

i
s . (3.125)

This is the canonical form of the telegraph equation [55, 56]. In principle, we
can use this relation to make the dynamic prediction, but this prediction will
not be discussed in this thesis.
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Figure 3.6: One-loop diagram contributing to the free spectral density of T µν

for high frequency ω ∼ T in pure glue theory. Curly lines denote gluons and
dashed lines denote gravitons.

3.7 Comparison with AdS/CFT

So far, we calculated the spectral densities at small frequency and momen-
tum, ω, k ∼ g4T ln(1/g). At weak coupling, there is scale difference between
the relevant time scale ∼ 1/g4T ln(1/g) and the inverse temperature ∼ 1/T
[15, 57]. In contrast, in the AdS/CFT correspondence at strong coupling,
there is no such distinction in the time scales. This difference is reflected by
the fact that there is no visible transport peak in strongly coupled spectral
densities [43, 44].

To compute the free spectral densities at high frequency ∼ T in QCD, we
need to consider one-loop diagram shown in Fig. 3.6. After the frequency sum,
the spectral densities consist of two parts, low frequency contribution and high
frequency contribution [37]:

ρ(ω, k) = ρ(ω, k)
∣∣∣
low

+ ρ(ω, k)
∣∣∣
high

. (3.126)

In particular, these free spectral densities have been computed in Ref. [58].
For example, the shear mode at k = 0 is given by

ρzxzx(ω)

2ω
=

4π3

225
dAT

4δ(ω) +
dA

160π

ω3

tanh(ω/4T )
. (3.127)

Here the δ(ω) part corresponds to the transport peak at the low frequency and
the second term is the high frequency contribution. The free spectral densities
in the shear mode are shown in Fig. 3.1 (a) as dotted lines, and they become
a delta function at k = 0 limit. In the presence of interactions, this delta
function is smeared and becomes the Boltzmann result shown as the dashed
line1. In order to compare the QCD spectral densities at weak coupling with

1Solving the Boltzmann equation is equivalent to summing ladder diagrams [59].
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(b) The shear spectral density given by the AdS/CFT at strong coupling
(η/s = 1/4π). There is no transport peak. The numerical result is from
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the AdS/CFT results at strong coupling, we make a model for full spectral
densities in QCD [60]:

(QCD spectral density) = (Boltzmann) + (continuum) . (3.128)

Here the Boltzmann numerical results are used as a function of T/µA (or η/sT ),
and the continuum part is given by the high frequency contribution (for the
shear mode, the second term of Eq. (3.127)). For several values of η/s, the
numerical results of the QCD model are shown in Fig. 3.7 (a). According
to this model, we can estimate that kinetic theory is valid for η/s & 3/4π,
where the transport peak is visible. Fig. 3.7 (b) shows the corresponding
spectral density given by the AdS/CFT at strong coupling. In the AdS/CFT,
η/s = 1/4π and there is no transport peak2 [44].

3.8 Summary and Discussions

By solving the Boltzmann equation with weak gravitational and electro-
magnetic fields, we computed the spectral densities of T µν and Jµ shown in
Fig. 3.1 and Fig. 3.4, respectively. The spectral densities exhibit a smooth

2Spectral densities in the weak coupling N = 4 SYM are similar to those in the weak
coupling QCD [61].
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transition from free-streaming quasi-particles to hydrodynamics (or diffusion
equation). The pure glue results are extended to including fermions in Fig. 3.3.
With the appropriately scaled ω and k, the spectral densities do not change,
indicating the dominance of the Fokker-Planck evolution.

Hydrodynamics describes the low frequency behaviors of spectral densities.
From the slope of spectral densities at ω = 0, we extracted all the first and
second order transport coefficients which characterize the linear response in
the hydrodynamic regime. With the shear viscosity η and a second order
coefficient τπ, the hydrodynamic solutions are determined up to second order.
In Fig. 3.2, the sound spectral density is compared with hydrodynamics to
analyze the valid limit of the macroscopic theory. The first and second order
hydrodynamics are valid roughly up to

ω, ck <∼ 0.35

[
η

(eo + Po)c2s

]−1

(first hydro) , (3.129)

ω, ck <∼ 0.7

[
η

(eo + Po)c2s

]−1

(second hydro) . (3.130)

For higher momentum, the second order static solutions are too diffusive,
whereas the dynamic theory becomes too reactive.

At high frequency, the spectral densities are compared with free-streaming
solutions which are shown as dotted lines in Fig. 3.1 and Fig. 3.4. Near the light
cone ω = k, the free solutions have the sharp structure, but smeared shapes
describe the Boltzmann results fairly well. When frequency and momentum
are higher ∼ T , we can calculate continuum result from one-loop diagram.
In Section 3.7, we made a model for QCD spectral density by combining the
continuum and the Boltzmann numerical result as a function of η/s. Roughly
for η/s & 3/4π, we can see a transport peak which is characteristic of kinetic
theory. On the other hand, there is no visible peak in the spectral density
given by the AdS/CFT, where the quasi-particle description is not applicable.
This difference between kinetic theory and the AdS/CFT can be important to
characterize the properties of the QGP in the lattice data.

The analysis and numerical work presented in this chapter will be continued
to the next chapter in simulating the jet-medium response.
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Chapter 4

Wake of a Heavy Quark Moving
through Plasmas

4.1 Introduction

The quark-gluon plasma (QGP) is believed to be strongly coupled near
the phase transition temperature Tc ≈ 160MeV. Hydrodynamic simulations
indicate that the shear viscosity to entropy density ratio is remarkably small
[11, 63, 64, 65, 66, 67, 68]:

η

s
∼ 1 ↔ 5

4π
~ . (4.1)

This ratio is close to the AdS/CFT prediction, η/s = ~/4π [69, 70]. At weak
coupling, it is not easy to explain this ratio with a quasi-particle picture of
plasmas. However, there is agreement of lattice data and resummed pertur-
bation theory in pressure at somewhat high temperatures ∼ 5Tc [9]. This
agreement suggests that a quasi-particle picture might be an appropriate the-
oretical tool to describe the properties of the QGP close to Tc [9, 71, 72]. The
goal of this chapter is to compare the medium response to an energetic probe
in the weakly coupled plasmas and strongly coupled plasmas.

Since the problem of determining spectral densities has been reformulated
as a definite initial value problem in the last chapter, the resulting numeri-
cal procedure can be used to simulate jet-medium interactions. To respond
to the Point II mentioned in Chapter 1, we investigate the steady state re-
sponse of non-abelian plasmas to a heavy quark probe, at weak coupling and
strong coupling [73]. When a heavy quark moves supersonically through the
plasmas, the energy density and flux are redistributed. At long distances,
the non-equilibrium disturbance produces sound waves and a diffusion wake,
which are the so-called “Mach cone” structure. The original motivation for
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investigating the Mach cone was the unusual structure of two particle corre-
lations measured in heavy ion collisions [74, 75]. Today, these correlations
are understood as the hydrodynamic response to fluctuations in the initial
geometry [76, 77, 78, 79, 80]. Nevertheless, the interaction of a heavy quark
with equilibrium plasma is the simplest way to analyze the plasma response
to an energetic probe [81, 82, 83, 84, 85, 86, 87]. The goal of this study is
not to explain current measurements, but rather to examine the differences
between weak coupling and strong coupling, and to investigate the approach
to hydrodynamics in both cases. The medium response to energetic partons is
currently being studied by all the experimental collaborations in various ways
[88]. Thus, this calculation, which analyzes the “jet” medium interaction pre-
cisely and determines a hydrodynamic source through second order in gradient
expansions, may be useful for phenomenology in further studies.

In the strongly coupled theory, the stress tensor induced by a heavy quark
was computed using the AdS/CFT correspondence [83, 85]. The approach to
hydrodynamics and the short distance behavior were analyzed [84, 86, 89]. In
particular, we will follow the hydrodynamic analysis of Ref. [86] to determine
a hydrodynamic source through second order for weakly coupled and strongly
coupled theories. In the AdS/CFT calculation, the v → 1 limit was not
analyzed due to various technical complications. (Here and below, v is the
velocity of the heavy quark in units of c.) As discussed in Appendix E, it is
possible to set v = 1 throughout the calculation by choosing a different set of
gauge invariants.

At weak coupling, the appropriate source for kinetic theory was deter-
mined in Ref. [87], and several estimates have been given for how this kinetic
source is transformed through the relaxation process to hydrodynamics [90].
We have simplified the source for kinetic theory considerably and determined
the plasma response at large distances by solving the linearized kinetic the-
ory. After comparing the hydrodynamic solution at large distances to the full
(leading-log) kinetic theory results, the appropriate source at each order in the
hydrodynamic expansion can be computed. As a by-product of the spectral
densities, we determined the first and second order transport coefficients in
the last chapter. These coefficients will be used to precisely determine the
hydrodynamic source through second order.

This work is limited to the analysis of the kinetics for a single heavy quark
moving from past infinity. It would be interesting to follow the evolution of
a parton shower initiated at time t = 0 and the subsequent hydrodynamic
response at late times [91, 92, 93].
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Figure 4.1: A schematic picture of a heavy quark (qH) moving through the
plasmas. There are sound waves and a diffusion wake behind the quark.

4.2 Kinetic Theory with a Heavy Quark Probe

We consider a heavy quark moving through a stationary high temperature
plasmas from past infinity (see Fig. 4.1). In the presence of the heavy quark,
the energy and momentum of the medium are redistributed, producing sound
waves and a diffusion wake. In this section, we compute the energy density
and flux distributions by solving the Boltzmann equation with the heavy quark
source.

At weak coupling, kinetic theory determines the medium response to the
heavy quark. For simplicity, we restrict the pure glue1 QCD in a leading-log
approximation. QCD in this limit is conformal, and the background stress
tensor is

T µν
o = diag(eo,Po,Po,Po) , (4.2)

where eo = 3Po. The heavy quark induces non-equilibrium response, δT µν . By
assuming that the quark moves in the z-direction, δT 00 and δT 0z are functions
of comoving transverse and longitudinal coordinates, xT and xL:

xT =
√
x2 + y2 and xL = z − vt . (4.3)

The rotational symmetry around the z-axis determines δT 0x and δT 0y in terms
of δT 0xT :

δT 0x(t,x) = δT 0xT (xL, xT ) cosφr , (4.4)

δT 0y(t,x) = δT 0xT (xL, xT ) sinφr , (4.5)

1Including fermions would only lead to minor changes to our results as can be seen from
Fig. 3.3.
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S(p)

Figure 4.2: The Feynman diagram corresponding to the heavy quark source.
Double curly lines denote hard gluons, a single curly line denotes a soft gluon,
and a double solid line with arrows denotes a heavy quark. Time runs from
left to right.

where φr = tan−1(y/x).
To determine the non-equilibrium response, we use the linearized Boltz-

mann equation:(
∂

∂t
+ vp ·

∂

∂x

)
δf(t,x,p) = C[f,p] + S(t,x,p) . (4.6)

Here S(t,x,p) is the source of non-equilibrium gluons produced by the heavy
quark moving through plasmas, which will be discussed in the next paragraph.
In the last chapter, we determined the shear viscosity η and a second order
hydrodynamic coefficient τπ in terms of µA:

η

eo + Po

= 0.4613
T

µA

and
τπ

η/(eo + Po)
= 6.32 . (4.7)

These coefficients will be used in the hydrodynamic analysis. The shear vis-
cosity that we obtained agrees with the prior results [17, 27]. The fact that
τπ is somewhat large ∼ 6 compared to the viscous length is a generic result
of kinetic theory [47, 52]. Finally, we note that µA records the transverse mo-
mentum broadening of a bath particle due to the soft scatterings. It is related
to the soft part of jet-quenching parameter q̂, q̂soft/2 = 2TµA [94]. Thus, the
leading-log limit provides a concrete relation between η/s and q̂.

In the presence of a heavy quark moving at a constant velocity v, the
particles in equilibrium are scattered, producing the source around the quark
(see Fig. 4.2):

S(t,x,p) = S(p)δ3(x− vt) . (4.8)

The source term is computed in Appendix C. When v = 1, it is simplified at
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a leading-log order:

S(p) =
µF

2dAξB
np(1 + np)

[
−2

p
+

(1 + 2np)

T
+

(1 + 2np)

T
p̂ · v̂

]
. (4.9)

Here µF is the drag coefficient in a leading-log approximation

µF (v) =
g2CFm

2
D

8π
ln

(
T

mD

)[
1

v2
− (1− v2)

2v3
ln

(
1 + v

1− v

)]
,

⇒ g2CFm
2
D

8π
ln

(
T

mD

)
for v = 1 . (4.10)

In the last line, we implicitly took the coupling constant to zero before taking
the v → 1 limit, so that radiative energy loss can be neglected2. The leading-
log energy loss of the heavy quark was computed in Refs. [96, 97]. The energy
and momentum transferred to the medium per time (i.e. minus the drag force)
are

dP µ

dt
=

(
dE

dt
,
dp

dt

)
= µF (v)

(
v2,v

)
. (4.11)

By multiplying the source Eq. (4.9) by pµ and integrating over the phase space,
it is straightforward to verify that the stress tensor satisfies

∂µδT
µν =

dP ν

dt
δ3(x− vt) . (4.12)

Our strategy to determine the non-equilibrium stress tensor is the following.
We take the Fourier transform of the Boltzmann equation in Eq. (4.6),

(−iω + ivp · k)δf(ω,k,p) = C[δf,p] + 2πS(p)δ(ω − v · k) , (4.13)

and solve the equation for δf(ω,k,p) in Fourier space. We use the same
numerical formulation as in the previous chapter. Then we calculate the stress
tensor in Fourier space using kinetic theory

δT 0µ(ω,k) = 2dA

∫
p

pµδf(ω,k,p) . (4.14)

By Fourier transforming the stress tensor back to coordinate space

δT 0µ(t,x) =

∫
ω,k

e−iωt+ik·xδT 0µ(ω,k) , (4.15)

2For a small but finite coupling constant, radiative energy loss is suppressed when the
Lorentz factor of the heavy quark is not too large, γ <∼ mD

Tαs
∼ 1/g [95].
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we determine energy and momentum density distributions. Additional details
about this procedure are given in Appendix D.

4.3 Comparison between Kinetic Theory and

AdS/CFT

At strong coupling, we use the AdS/CFT correspondence to determine
the non-equilibrium response. Roughly speaking, a heavy quark is described
in the five dimensional AdS space with a trailing string (see Appendix E for
details). As the heavy quark moves through the plasmas, the energy and
momentum gained by the medium are again given by Eq. (4.11). However,
the drag coefficient µF (v) is found by determining the energy and momentum
flowing down the string into the black hole [98, 99, 100]:

µF (v) =
π

2

√
λT 2

√
1− v2

. (4.16)

The stress tensor in the strongly coupled theory also satisfies Eq. (4.12) with
the energy and momentum transfer given by the corresponding strong coupling
formulas. The corresponding transport coefficients for the AdS/CFT are [47,
69, 70]

η

eo + Po

=
1

4πT
and

τπ
η/(eo + Po)

= 4− 2 ln 2 . (4.17)

For v = 1, we compare the medium response to the heavy quark probe
in two asymptotic coupling limit: pure glue QCD at asymptotically weak
coupling and N = 4 SYM at asymptotically strong coupling. By noting the
difference in the shear viscosities in Eqs. (4.7) and (4.17), we measure all length
scales in units of the shear length:

Lo ≡
4
3
ηc

(eo + Po)c2s
, (4.18)

where c2s is the speed of sound squared. Lo is proportional to the mean free
path in kinetic theory and equal to 1/πT for the AdS/CFT. At long dis-
tances where hydrodynamics is applicable, the amplitude of the disturbance
is proportional to the strength of the energy loss. Thus, we divide the re-
sponse by the corresponding drag coefficient µF for each theory, Eqs (4.10)
and (4.16), respectively. With these rescalings, two theories produce identical
stress tensors at asymptotically long distances, but differ in their approach to
the hydrodynamic limit.
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Fig. 4.3 and Fig. 4.4 compare the non-equilibrium stress in kinetic theory
and the AdS/CFT. At long distances, both theories produce similar struc-
tures of sound waves and a diffusion wake. However, the distributions are
distinguishable near the heavy quark at origin.

For the quantitative comparison, we plot angular distributions of the stress
tensor in concentric circles of radius R around the head of the quark. Specifi-
cally, we define the energy density distribution

dER

dθR

= 2πR2 sin θR δT
00(R) . (4.19)

Here R = xT x̂T +xLẑ and the polar angle is measured from the z-axis, where
the heavy quark is moving along:

ẑ
R

θR

. (4.20)

Similarly, the angular distribution of the energy flux is defined by

dSR

dθR

= 2πR2 sin θR R̂
iδT 0i(R) ,

= 2πR2 sin θR

[
cos θR δT

0z(R) + sin θR δT
0x(R)

]
. (4.21)

Numerical results for the angular distributions of the energy density and flux
at several scaled distances R ≡ R/Lo are shown in Fig. 4.5. There is a
dramatic change in the AdS/CFT curves between R = 5 and R = 1, indicating
a transition from hydrodynamic behavior to quantum dynamics. Since this
quantum dynamics lies beyond the semi-classical Boltzmann approximation,
no transition is seen in the kinetic theory curves.

There are limitations on the length scales that can be meaningfully studied
in both theories. In kinetic theory, the resulting stress tensor is valid for
distances, R � 1/(g2T ln g−1). For distances shorter than 1/(g2T ln g−1),
the collisionless non-abelian Vlasov equation should be used to describe the
medium response [5, 101]. Similarly, the AdS/CFT calculation is limited to
distances xL, xT � 1/

√
γπT . For distances much less than 1/

√
γπT , the

structure of stress tensor has been analyzed in detail [84, 89, 102]. In Fig. 4.5
where distances are xL, xT ∼ 1/πT , the physics associated with these very
short scales is not visible.

We are examining two extreme limits, infinitely weak and infinitely strong
coupling at comparatively long distances. With this approach, some of the
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Figure 4.3: The energy density (in scaled units) times R =
√
x2

T + x2
L that is

induced by a heavy quark probe in weakly coupled QCD and strongly coupled
N = 4 SYM. Here Lo is the shear length and µF is the drag coefficient for
each case.
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Figure 4.4: The magnitude of the Poynting vector |T 0i| (in scaled units) times
R =

√
x2

T + x2
L that is induced by a heavy quark probe in weakly coupled QCD

and strongly coupled N = 4 SYM. Here Lo is the shear length and µF is the
drag coefficient for each case.
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Figure 4.5: The angular distribution of (a) the energy density [dER/dθR]/µF

and (b) the energy flux [dSR/dθR]/µF given by kinetic theory and gauge gravity
duality at distances R = 1, 5, 10, 20, and 40. Here Lo is the shear length and
µF is the drag coefficient for each case.

marked differences between the weakly coupled QCD and the AdS/CFT corre-
spondence at short distances are not visible [103]. However, the hydrodynamic
response at long distances can be clearly compared.

4.4 Hydrodynamic Analysis

At long distances in Fig. 4.3 and Fig. 4.4, the energy density and flux
distributions exhibit sound waves and a diffusion wake which are characteristic
of hydrodynamics. In this section, we compare the distributions with the
hydrodynamic solutions. By following Ref. [86] in part, we will determine the
hydrodynamic source order by order in gradient expansions.

To determine the hydrodynamic solutions in two different ways, we consider
the static and dynamic constituent relations given in Eqs. (3.49) and (3.50),
respectively. Since the microscopic dynamics is conformal, linearized, and only
conserves energy and momentum (and not particle number), τπ is the only
second order hydrodynamic coefficient that appears to this order. Specifically,
the stress tensor in Eq. (3.42) is

T µν
hydro = (e+ P)uµuν + Pgµν + πµν , (4.22)
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where the dissipative parts of static and dynamic theories are

πij = −2η
〈
∂iuj

〉
− 2ητπ

〈
∂i∂j lnT

〉
(static) , (4.23)

πij = −2η〈∂iuj〉 − τπ∂tπ
ij (dynamic) . (4.24)

With the constituent relations, we solve the equation of motion in Eq. (4.12).
At long distances from the heavy quark, the stress tensor is described by

T µν
hydro up to terms suppressed by inverse powers of the distance. Since the

hydrodynamic form of the stress tensor is irregular, we express the full stress
tensor as the sum of hydrodynamic term and a correction τ ij which is analytic
for ω,k → 0:

T ij = T ij
hydro[T

00, T 0i] + τ ij , (4.25)

where we emphasized that T ij
hydro is a functional of T 00 and T 0i. Then the

equation of motion in Fourier space becomes

− iω δT 0j + iki δT ij
hydro = Sj

hydro(ω,k) , (4.26)

where

Sj
hydro(ω,k) ≡ dpj

dt
2πδ(ω − v · k)− ikiτ ij . (4.27)

Here we note that−ikiτ ij acts as an additional source term for hydrodynamics.
For the steady state problem, τ ij can be written with three functions pro-

portional to the symmetric tensors consisting of v and k:

τ ij(ω, k2) ≡ 2πµF δ(ω − v · k)

[ (
vivj − 1

3
v2δij

)
φ1(ω, k

2)

+

(
ivikj + ikivj − i

2

3
vlk

lδij

)
φ2(ω, k

2) +
(
kikj − 1

3
k2δij

)
φ3(ω, k

2)

]
, (4.28)

where φ1, φ2 and φ3 are regular for ω,k → 0. Since τ ij is localized, we can
expand it for small ω and k. For example, by using the Taylor’s series

φ1(ω, k
2) ' φ

(0,0)
1 + φ

(1,0)
1 (−iω) +

1

2!

[
φ

(2,0)
1 (−iω)2 + φ

(0,2)
1 (ik)2

]
+O(k3) ,

(4.29)
where φn,m

1 means differentiating φ1 by ω, n times and by k2, m times. The
full source for hydrodynamics through second order can be expressed in terms
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φ
(0,0)
1 /Lo φ

(1,0)
1 /Lo

2 φ
(0,0)
2 /Lo

2

Boltzmann 0 0 0.484
AdS/CFT -1 -0.34 -0.33

Table 4.1: Hydrodynamic source coefficients. The equations of motion are
given by second order hydrodynamics with a source term Eq. (4.27). The
source term is expanded to second order in ω and k in Eq. (4.30) which defines

these coefficients. The first coefficient φ
(0,0)
1 was computed analytically in the

AdS/CFT case [86]. Here Lo is the shear length.

of three coefficients φ
(0,0)
1 , φ

(1,0)
1 , and φ

(0,0)
2 :

Shydro = 2πµF δ(ω − v · k)

[(
1− iωφ

(0,0)
1 − φ

(1,0)
1 ω2 + φ

(0,0)
2 k2

)
︸ ︷︷ ︸

≡φv

v

+
(

1
3
v2φ

(0,0)
1 − 1

3
v2φ

(1,0)
1 iω − 1

3
φ

(0,0)
2 iω

)
︸ ︷︷ ︸

≡φk

ik

]
+O(k3) , (4.30)

where we defined the source similarly:

Shydro ≡ 2πµF δ(ω − v · k)
[
φv(ω, k

2)v + φk(ω, k
2)ik

]
. (4.31)

τ ij can be determined by comparing the full numerical solution for T ij

to T ij
hydro. By fitting the forms in Eqs. (4.28) and (4.30), we can extract the

three coefficients φ
(0,0)
1 , φ

(1,0)
1 , and φ

(0,0)
2 for the Boltzmann equation and the

AdS/CFT correspondence. These coefficients specify the hydrodynamic source
of a heavy quark through second order. Appendix F gives sample fits to
our numerical results, and the fit coefficients are collected in Table 4.1. The
quality of the fits given in Appendix F indicates that τ ij is well described by
a polynomial at small ω and k, and justifies the analysis of this section. We
notice that in the Boltzmann case the expansion coefficients proportional to
φ1 vanish. In fact, φ1(ω, k

2) vanishes to all orders in ω and k. This is due to
the rotational symmetry around the k axis and the special form of the kinetic
theory source in Eq. (4.9) at a leading-log approximation.

With the source functions φv(ω, k
2) and φk(ω, k

2) as known numerically,
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for v = 1 the hydrodynamic equation of motion reads

−iω δT 0z′ + c2(k) ikδT 00 + Γsk
2 δT 0z′ = [cos θ φv + ik φk] 2πµF δ(ω − v · k) ,

(4.32)

−iω δT 0x′ +Dk2 δT 0x′ = sin θ φv 2πµF δ(ω − v · k) , (4.33)

where z′ points along the k axis and x′ is perpendicular to k (see Appendix
D for details). In these equations, the sound attenuation length is Γs =
(4η/3)/(eo + Po), the diffusion constant is D = η/(eo + Po), and the speed
of sound (squared) is c2(k) = c2s(1 + τπΓsk

2). By using these approximate
expressions and the exact equation,

− iω δT 00 + ik δT 0z′ = 2πµF δ(ω − v · k) , (4.34)

in Fourier space the second order static solutions are given by

δT 00(ω,k) =
i [ω + k cos θ φv]− k2 [Γs + φk]

ω2 − c2(k) k2 + iΓs ωk2
2πµF δ(ω − k cos θ) , (4.35)

δT 0x′(ω,k) =
i sin θ φv

ω + iD k2
2πµF δ(ω − k cos θ) , (4.36)

δT 0z′(ω,k) =
i [ω cos θ φv + c2(k) k ]− kω φk

ω2 − c2(k) k2 + iΓs ωk2
2πµF δ(ω − k cos θ) . (4.37)

The solutions can also be used for the first order hydrodynamics provided
the wave speed c2(k) and the source functions φv and φk are truncated at

leading order: c2(k) → c2s and φ1(ω, k
2) ' φ

(0,0)
1 . Similarly, the hydrody-

namic solutions for the dynamic theory takes the same functional forms as
Eqs. (4.35)-(4.37) with the replacements:

c2(k) → c2s , (4.38)

Γs → Γs(ω) ≡ Γs

1− iτπω
, (4.39)

D → D(ω) ≡ D

1− iτπω
. (4.40)

Given these hydrodynamic solutions and the hydrodynamic source func-
tions tabulated in Table 4.1, the hydrodynamic stress tensor in coordinate
space can be computed by using numerical Fourier transforms. The stress
tensor of the first and second order (static) hydrodynamics (with the corre-
sponding source) is compared to the full kinetic theory stress tensor in Fig. 4.6.
Fig. 4.7 presents the analogous AdS/CFT results. Finally, a comparison be-
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Figure 4.6: The angular distribution of (a) the energy density [dER/dθR]/µF

and (b) the energy flux [dSR/dθR]/µF given by the Boltzmann equation at
distances R = 10, 20, and 40. The Boltzmann results are compared with the
first order and second order static hydrodynamics. Here Lo is the shear length
and µF is the heavy quark drag coefficient for kinetic theory.
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Figure 4.7: The angular distribution of (a) the energy density [dER/dθR]/µF

and (b) the energy flux [dSR/dθR]/µF given by the AdS/CFT correspondence
at distances R = 5, 10, and 20. The AdS/CFT results are compared with the
first order and the second order static hydrodynamics. Here Lo = 1/πT is the
shear length and µF = γ

√
λπT 2/2 is the heavy quark drag coefficient for the

AdS/CFT.
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Figure 4.8: The angular distribution of (a) the energy density [dER/dθR]/µF

and (b) the energy flux [dSR/dθR]/µF in kinetic theory. The angular dis-
tribution of (c) the energy density [dER/dθR]/µF and (d) the energy flux
[dSR/dθR]/µF in AdS/CFT. The kinetic theory curves are plotted at distances
R = 20, 40 while the AdS/CFT curves are plotted at distances R = 10, 20.
The Boltzmann and AdS/CFT results are compared to the static and dynamic
implementations of second order hydrodynamics. The differences between the
static and dynamic results reflects the size of neglected third order terms. Here
Lo is the shear length and µF is the drag coefficient for each theory.
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tween the static and dynamic theories of the second order hydrodynamics is
given in Fig. 4.8. The difference between the static and dynamic results pro-
vides an estimate of higher order terms in the hydrodynamic expansion.

4.5 Summary and Discussions

We simulated the wake of a heavy quark moving through the plasmas
in two theories: kinetic theory based on the Boltzmann equation at weak
coupling and N = 4 SYM given by the AdS/CFT correspondence at strong
coupling. At long distances, in both theories the energy density and flux
distributions exhibit sound waves and a diffusion wake which are characteristic
of hydrodynamics, shown in Fig. 4.3 and Fig. 4.4. However, their behaviors
are distinguishable by the approach to the hydrodynamic limit. In particular,
the Boltzmann results are considerably “less diffuse” than the AdS/CFT. The
short distance response in kinetic theory is reactive, and the sharp band of
free-streaming quasi-particles seen in kinetic theory is absent in AdS/CFT of
Fig. 4.4.

To compare two different theories, we measured all distances in terms of
the shear length Eq. (4.18) which is given by a combination of hydrodynamic
parameters. In each theory, we divided the stress tensor by the correspond-
ing heavy quark drag coefficient µF so that the rescaled stress tensors are
equal at long distances where hydrodynamics is applicable. Fig. 4.5 shows the
direct comparison between two theories for the angular distributions of the
energy density and flux. Both theories show a smooth transition from non-
equilibrium at short distances to equilibrium at long distance, except R = 1 for
the AdS/CFT. There is a dramatic change between R = 1 and R = 5 for the
AdS/CFT, indicating a transition from quantum dynamics to hydrodynamics.
This transition is not visible in the semi-classical Boltzmann curves. It would
be interesting to calculate the stress tensor in this region perturbatively to
understand the difference of two theories at short distances.

At long distances, the energy density and flux distributions can be de-
scribed by hydrodynamics. However, the appropriate source for hydrodynam-
ics must be found by matching the numerical results to the hydrodynamic
theory. By using the transport coefficients determined in the previous chap-
ter, we compared the Boltzmann results to the hydrodynamic solutions up
to second order in Fig. 4.6. In particular, we used the hydrodynamic source
appropriate for the first and second order hydrodynamics. Generally, the sec-
ond order static hydrodynamics provides minor improvement to the first order
hydrodynamics until R >∼ 40. Indeed, the behavior of the second order theory
seems rather unphysical for R <∼ 10 due to the violation of causality. This
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shows the limitations of second order hydrodynamics. On the other hand, the
AdS/CFT results are much better described by hydrodynamics at relatively
short distances in Fig. 4.7. Even the first order hydrodynamics does a fair
job, and the second order hydrodynamics with the source correction works
perfectly for R = 20.

We should mention that we used the static second order hydrodynamics in
Fig. 4.6 and Fig. 4.7. With the dynamic form of the constituent relation, the
stress tensor is slightly better described than the static form (see Fig. 4.8). Al-
though the dynamic theory gives causal solutions, in kinetic theory at R <∼ 20,
it develops spurious shocks which are not reproduced by the full result. The
difference between the static and dynamic theories gives an estimate of higher
order terms, and this difference is smaller in AdS/CFT than in kinetic theory
at same distance.

Clearly, the convergence to the hydrodynamic limit is significantly faster
in the AdS/CFT than in kinetic theory. We note that in kinetic theory the
second order hydrodynamic parameter τπ is a factor of 2.4 greater in scaled
units than the corresponding AdS/CFT parameter:

τπ
η/(eo + Po)

= 6.32 , (Kinetic Theory) (4.41)

τπ
η/(eo + Po)

= 4− 2 ln 2 ' 2.61 . (AdS/CFT) (4.42)

Based on these coefficients, it is natural to expect that the convergence to the
hydrodynamic limit is faster in the AdS/CFT than in kinetic theory. In the-
ories with quasi-particles, the value of τπ seems to be generic [52]. Therefore,
due to the factor of 2.4 we expect that theories without quasi-particles ap-
proach to the hydrodynamic limit faster than theories based on quasi-particle
description.
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Chapter 5

Photon Emission Rate

5.1 Introduction

So far, we have worked at a leading-log approximation in the coupling
constant g. At this order, typical particles have momentum ∼ T , and only
the t-channel exchange with momentum ∼ gT contributes. In this chapter,
we will work at next-to-leading order (NLO) to compute the thermal photon
emission rate in the Quark-Gluon Plasma (QGP).

In perturbative gauge theories, it is important to calculate real time quanti-
ties beyond leading order (LO). In particular, we are interested in computing
transport coefficients at NLO. The only NLO dynamic quantity which has
been computed so far is the heavy quark diffusion constant (which does not
involve collinear bremsstrahlung) [10]. Computing the photon emission rate
involves some issues including hard collisions, collinear bremsstrahlung, and
screening effects. But the calculation is easier than other problems such as
gluon emission rate, where gluons interact with the medium. In this sense, the
NLO computation of the photon emission rate is a good warm-up problem for
further research.

The photon emission rate is given by [29]

(2π)3 dΓ

d3k
=

1

2k

∑
a=1,2

εµ∗(a)(k)εν(a)(k)W<
µν(K) . (5.1)

Here a = 1, 2 correspond to the transverse polarizations and W<
µν(K) is the

Wightman electromagnetic current-current correlator:

W<
µν(K) =

∫
d4Xe−iK·X 〈Jµ(0)Jν(X)〉 . (5.2)
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At NLO, soft particles with momentum ∼ gT play an important role. Bare
perturbation theory with only hard particles gives αs ∼ g2 expansions. How-
ever, in the presence of soft bosonic fields, there is the O(g) Bose enhancement
from the occupation number

nB
p '

T

p0
∼ 1

g
(p0 small) . (5.3)

Then by using the hard-thermal-loop (HTL) effective theory, we can compute
the O(g) correction to the LO photon emission rate.

In experiments, there are various sources of photons: hard scattering pho-
tons, fragmentation photons, jet-induced photons, and thermal photons. Some
of them are thermal and others are non-thermal. It is not easy to distinguish
the sources. However, in current simulations of photons with all the sources,
there is a window at p⊥ ∼ 2GeV ∼ 10Tc, where thermal photons are most
important.

In this chapter, we will focus on the thermal photons with hard momentum.
We will start with a review on the LO photon emission rate in the QGP. Then
we calculate the photon emission rate at NLO, i.e. at order g2mD/T to respond
to the Point III mentioned in Chapter 1 [107].

5.2 LO Photon Emission Rate

The photon emission rate has been computed at leading order (LO) in
Refs. [108, 109, 110]. There are three mechanisms which contribute to LO:

(i) 2 ↔ 2 Processes – Compton Scattering, Elastic Pair Annihilation,

(ii) 1 ↔ 1 Processes – Quark-Photon Conversion,

(iii) 1 ↔ 2 Processes – Bremsstrahlung, Inelastic Pair Annihilation.

Let us discuss each of these mechanisms in turn.

(i) 2 ↔ 2 processes: The 2 ↔ 2 elastic collisions contribute to the LO
photon emission rate [111, 112]. The quark-gluon Compton-like scattering
and quark-antiquark pair annihilation correspond to this mechanism. These
processes are shown in Fig. 5.1, and can be understood as the cut diagrams
of two-loop diagrams shown in Fig. 5.2. By summing the four diagrams in
Fig. 5.2, the emission rate from hard momentum q2

⊥ > µ2
⊥ (where Q ≡ P −K
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Figure 5.1: 2 ↔ 2 processes. (a) The Compton scattering in the s-channel, (b)
Compton scattering in the t-channel, (c) pair annihilation in the t-channel, and
(d) pair annihilation in the u-channel. The square of these diagrams can be
understood as two-loop diagrams shown in Fig. 5.2. Double solid lines denote
hard quarks, double wiggly lines denote hard photons, and double curly lines
denote hard gluons. Time runs from left to right.

(a) (b) (c) (d) 

Figure 5.2: Two-loop cut diagrams contributing to the LO photon emission
rate. These cut diagrams can be understood as 2 ↔ 2 processes, the Compton
scattering and pair annihilation shown in Fig. 5.1. Double solid lines denote
hard quarks, double wiggly lines denote hard photons, and double curly lines
denote hard gluons.
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in the process P + P ′ → K +K ′) is given by [111, 112]

(2π)3 dΓLO

d3k

∣∣∣∣
hard

=
1

2k

∫
p,p′,k′

1

2p2p′2k′
(2π)4δ4(Ptot)[

nF
p n

B
p′(1− nF

k′)|M |2comp + nF
p n

F
p′(1 + nB

k′)|M |2pair

]
,

= A(k)

[
1

2
ln

(
T 2

µ2
⊥

)
+ Chard (k/T )

]
. (5.4)

Here the matrix elements are

|M |2comp = 16e2
∑

s

q2
sdFCFg

2

(
− t
s
− s

t

)
, (5.5)

|M |2pair = 8e2
∑

s

q2
sdFCFg

2

(
u

t
+
t

u

)
, (5.6)

where qs is the quark charge in units of the electric charge e and the Mandel-
stam variables are

s ≡ −(P + P ′)2 , t ≡ −(P −K)2 , u ≡ −(P −K ′)2 . (5.7)

µ2
⊥ is an infrared cutoff which screens the soft quark exchange in Fig. 5.1

(b), (c), and (d). The dependence on µ2
⊥ will be canceled when the soft

contribution is added to this rate. Chard(k/T ) is the hard contribution to the
photon emission rate, as a function of k/T (the numerical LO results will
be presented later). The front factor is defined by (following the notation of
Ref. [109])

A(k) ≡ 1

8π
e2
∑

s

q2
sdFCFg

2T 2n
F
k

k
. (5.8)

(ii) 1 ↔ 1 processes: There is 1 ↔ 1 processes, which we call “quark-
photon conversion”. In this process, a hard quark interacts with the medium
to produce a hard photon having almost same momentum of the incoming
quark, with a soft quark (see Fig. 5.3 (a)). The square of Fig. 5.3 (a) is
Fig. 5.3 (b), where the soft fermion line is evaluated in HTL approximation.
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Figure 5.3: 1 ↔ 1 processes. (a) Quark-photon conversion, where a hard quark
undergoes soft momentum exchange to become a hard photon with K ' P .
(b) The photon self-energy cut diagram. The square of (a). Double wiggly
lines denote hard photons, double solid lines denote hard quarks, and single
solid lines (with arrows) denote soft quarks. Time runs from left to right.

The LO photon emission rate from conversion is

(2π)3 dΓLO

d3k

∣∣∣∣
soft

=
Π<(K)

2k

= e2
∑

s

q2
sdF

nF
k

k

∫
dq2

⊥
2(2π)

m2
∞

q2
⊥ +m2

∞

= A(k)
1

2
ln

(
µ2
⊥

m2
∞

)
, (5.9)

where in the second line we evaluated the photon self-energy shown in Fig. 5.3
(b) using a sum rule derived in Section 5.6.1. By adding this result to the hard
contribution in Eq. (5.4), the emission rate is

(2π)3 dΓLO

d3k

∣∣∣∣
hard+soft

= A(k)

[
ln

(
T

m∞

)
+ Chard (k/T )

]
. (5.10)

Here the ultraviolet cutoff dependence on µ2
⊥ in Eq. (5.9) was canceled by the

infrared cutoff dependence in Eq. (5.4). This result was thought to be the
answer for the LO photon emission rate until we realized that 1 ↔ 2 processes
also contributed to LO.

(iii) 1 ↔ 2 processes: The inelastic 1 ↔ 2 processes including collinear
bremsstrahlung and pair annihilation also contribute to photon emission at
LO (see Fig. 5.4). These processes are seemingly higher order in perturbative
expansions, but the collinear enhancement effect makes them contribute to
the same order as the 2 ↔ 2 processes. Since the formation time of photon
is comparable to the time between collisions, we need to consider multiple
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(a) (b) (c) (d)

Figure 5.4: 1 ↔ 2 processes. (a)(b) Bremsstrahlung and (c)(d) inelastic pair
annihilation. Double solid lines denote hard quarks, double wiggly lines denote
hard photons, and single curly lines denote soft gluons.

scatterings (see Section 5.3). Including these multiple scatterings suppresses
the naive bremsstrahlung rate, which is known as the Landau-Pomeranchuk-
Migdal (LPM) effect. This effect can be accounted for by summing ladder
diagrams and solving an integral equation, which will be discussed in Sec-
tion 5.3. At LO, the photon emission rate from these inelastic processes is
given by

(2π)3 dΓLO

d3k

∣∣∣∣
brem+annih

= A(k)
[
Cbrem(k/T ) + Cannih(k/T )

]
. (5.11)

The total photon emission rate at LO is given by the sum of hard, soft,
and inelastic contributions in Eqs. (5.4), (5.9), and (5.11), respectively. By
following the notion of Ref. [109]1, the LO photon emission rate is

(2π)3 dΓLO

d3k

∣∣∣∣
hard+soft+brem+annih

= A(k)

[
ln

(
T

m∞

)
+

1

2
ln(2k/T )+C2→2(k/T )

+ Cbrem(k/T ) + Cannih(k/T )

]
. (5.12)

1Chard(k/T ) = 1
2 ln(2k/T ) + C2→2(k/T )
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Figure 5.5: The total LO photon emission rate in Eq. (5.12) for αs = 0.05,
0.15, 0.3 and for Nf = 2, 3, 4, 5. The numerical results are from Ref. [109].

A parameterization of numerical results is given in Ref. [109]:

C2→2(k/T ) ' 0.041T

k
− 0.3615 + 1.01e−1.35k/T , (5.13)

Cbrem(k/T ) + Cannih(k/T ) '
√

1 +
Nf

6

[
0.548 ln(12.28 + T/k)

(k/T )3/2

+
0.133 k/T√
1 + k/16.27T

]
, (5.14)

where Nf is the number of quark flavors. Fig. 5.5 shows the total LO photon
emission rate for αs = 0.05, 0.15, 0.3 and Nf = 2, 3, 4, 5.

At NLO, the three mechanisms of photon emission are not completely
independent. For instance, when gT � p⊥ �

√
gT , it is difficult to distinguish

the Compton process (with a soft gluon) from wide-angle bremsstrahlung (see
Fig. 5.6 (a) and (b)). The matrix elements should be matched onto the 2 → 3
process to produce the finite NLO correction. Similarly, there is a matching
process between bremsstrahlung and quark-photon conversion process when
the photon carries most of the incoming quark momentum (see Fig. 5.6 (c)
and (d)). In Section 5.5, we will do these calculations explicitly to determine
the wide-angle NLO photon emission rate.
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(a) 

× 

(b) (c) 

× × 

(d) 

Figure 5.6: (a) The Compton scattering with a soft gluon and (b) wide-
angle bremsstrahlung. When gT � p⊥ � √

gT , it is difficult to distin-
guish the Compton scattering from wide-angle bremsstrahlung. (c) Asym-
metric bremsstrahlung and (d) quark-photon conversion. When the photon
carries most of the incoming quark momentum, it is difficult to distinguish
bremsstrahlung from quark-photon conversion. Double solid lines denote hard
quarks, double wiggly lines denote hard photons, single curly lines denote soft
gluons, and single solid lines denote soft quarks.

5.3 Collinear Bremsstrahlung

As discussed in the last section, the three mechanisms of the LO photon
emission are smoothly matched to determine the wide-angle NLO correction.
Besides these wide-angle processes, collinear bremsstrahlung and pair annihi-
lation also contribute to the NLO photon emission rate. Collinear processes
can be accounted for by solving an integral equation which corresponds to
summing ladder diagrams [108]. In this section, we will discuss the collinear
photon emission rate through NLO. For completeness, we will present the
numerical results from the forthcoming work [107].

Since there is coherent interaction between incoming and scattering waves,
it takes some time (called the “formation” time) to complete the photon
production. Therefore, it is not correct to count only single scattering in
bremsstrahlung and inelastic pair annihilation as in Fig. 5.4. We need to con-
sider multiple scatterings which are shown in Fig. 5.7. The interference of
multiple scatterings can be accounted for by summing ladder diagrams shown
in Fig. 5.8. This calculation can be performed by solving an integral equation,
which will be discussed in this section. We will explain LO and NLO photon
emission from collinear processes. When gT � p⊥ �

√
gT , there is an overlap

region between bremsstrahlung and the Compton scattering. In this region,
the integral equation will be solved perturbatively.

The formation time is the time over which quark and photon are in phase
in a process. To estimate this time scale, we consider a bremsstrahlung process

71



(a) (b) (c) (d)

Figure 5.7: Multiple scatterings in (a)(b) bremsstrahlung and (c)(d) inelastic
pair annihilation. The square of these diagrams can be understood as ladder
diagrams shown in Fig. 5.8. Double solid lines denote hard quarks, double
wiggly lines denote hard photons, and single curly lines denote soft gluons.

Figure 5.8: A ladder diagram including bremsstrahlung and inelastic pair an-
nihilation with multiple scatterings. The lowest order of this ladder diagram
corresponds to the two-loop diagrams shown in Fig. 5.2. Double solid lines
denote hard quarks, double wiggly line denote hard photons, and single curly
lines denote soft gluons.
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q → γ + q, where q is quark and γ is photon, with the following momenta:

P → K +K ′ . (5.15)

We assume the photon with momentum K is emitted in the z-direction. With
the splitting constant 0 < z < 1, the momentum splitting can be expressed in
terms of the incoming quark momentum:[

p = (pz,p⊥)
]
→
[
k = ((1− z)pz,0)

]
+
[
k′ = (zpz,p⊥)

]
, (5.16)

where2 pz ∼ T and gT . p⊥ �
√
gT . With this order of momentum compo-

nents, the energy of the emitted quark is

k′0 =
√

(zpz)2 + p2
⊥ +m2

∞ ' zpz +
p2
⊥ +m2

∞
2zpz

, (5.17)

and similarly for p0 and k0 formulas. Then the energy change δE ≡ k0+k′0−p0

is

δE ' (1− z)pz +

(
zpz +

p2
⊥ +m2

∞
2zpz

)
−
(
pz +

p2
⊥ +m2

∞
2pz

)
,

' (1− z)(p2
⊥ +m2

∞)

2zpz
. (5.18)

By neglecting the masses of quarks, the formation time of the photon is

tform ∼ 1

δE
∼ 2zpz

(1− z)p2
⊥
. (5.19)

The time between soft collisions can be estimated as follows:

tcoll ∼
1

nσ
∼ 1

g2T
. (5.20)

Here n ∼ T 3 is the number density of particles, and σ ∼ g2/T 2 is the soft
scattering cross-section. In computing the photon emission rate, the time
between collisions should be compared to the formation time which depends
on the order of p⊥. When p⊥ ∼ gT in the collinear limit, Eq. (5.19) yields

tform ∼ 1

g2T
, (5.21)

2The order of momenta in light-cone coordinates will be discussed in the next section.
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and the formation time is comparable to the time between collisions. There-
fore, we need to consider multiple scatterings shown in Fig. 5.7. Taking the
squared matrix elements of the processes in Fig. 5.7 corresponds to summing
ladder diagrams shown in Fig. 5.8. By summing ladder diagrams, we obtain
the following integral equation [108, 113]:

2p⊥ = iδE(p⊥, p
z,k)f(p⊥, p

z,k)

+

∫
d2p′⊥
(2π)2

C[p′⊥]
[
f(p⊥, p

z,k)− f(p⊥ + p′⊥, p
z,k)

]
. (5.22)

Here the solution f(p⊥, p
z,k) is related to the current-current correlator in

Eq. (5.41). In the above equation, the collision kernel records the soft collision
rate

C[p⊥] ≡ (2π)2 dΓ

d2p⊥
,

=

∫
dp0dpz

(2π)2
2πδ(pz − p0)

T

p0
ρµν(p0,p⊥, p

z)vµvν , (5.23)

where vµ ≡ (1, 0, 0, 1) is the unit vector in the z-direction.
We define the Wightman functions iG>

µν(P ) and iG<
µν(P ) for subsequent

use:

iG>
µν(P ) ≡

∫
P

e−iP ·X
〈
Âµ(X)Âν(0)

〉
,

≡ 〈〈Aµ(P )Aν〉〉 , (5.24)

and similarly

iG<
µν(P ) ≡

∫
P

e−iP ·X
〈
Âν(0)Âµ(X)

〉
,

≡ 〈〈AνAµ(P )〉〉 . (5.25)

According to the fluctuation dissipation theorem, for soft P

iG>
µν(P ) = [1 + nB

p (P )]ρµν(P ) ' T

p0
ρµν(P ) . (5.26)

74



Here

ρµν(P ) = iG>
µν(P )− iG<

µν(P ) ,

=

∫
P

e−iP ·X
〈[
Âµ(X), Âν(0)

]〉
(5.27)

is the spectral density. With these definitions, the collision kernel can be
written in terms of the gauge field correlation function:

C[p⊥] =

∫
dp0

2π
〈〈A+(P )A+〉〉

∣∣∣∣
pz=p0

, (5.28)

where we defined A+ ≡ −A0 + Az.
There are two sources of NLO corrections in the photon emission rate from

bremsstrahlung (and inelastic pair annihilation) in the strictly collinear limit,
p⊥ ∼ gT :

(i) Corrections to C[p⊥] and δm2
∞,

(ii) Wide-angle Bremsstrahlung and Pair Annihilation.

We discuss these sources in turn.

(i) Corrections to C[p⊥] and δm2
∞: There are corrections to the collision

kernel, C[p⊥] and the asymptotic mass of quarks, m2
∞ (which will be used in

the integral equation Eq. (5.22) and the emission rate Eq. (5.43)):

m2
∞ → m2

∞ + δm2
∞ , (5.29)

C[p′⊥] ' C[p′⊥]LO + C[p′⊥]NLO . (5.30)

Here the fermion asymptotic mass is defined by

m2
∞ ≡

g2CF

π2

∫ ∞

0

dp p(nB
p + nF

p ) =
g2CFT

2

4
, (5.31)

and its O(g) correction is [114, 115]

δm2
∞ = −g

2CFTmD

2π
. (5.32)

The LO collision kernel is known as the Aurenche-Gelis-Zaraket (AGZ) sum
rule [113]

C[p⊥]LO =
g2CFTm

2
D

p2
⊥(p2

⊥ +m2
D)

, (5.33)
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and its NLO correction was computed in Ref. [116]

C[p⊥]NLO = g4T 2CFCA

 7

32p3
⊥
−

3mD +
2(p2

⊥−m2
D)

p⊥
tan−1

(
p⊥
mD

)
4π(p2

⊥ +m2
D)2

+
mD −

(p2
⊥+4m2

D)

2p⊥
tan−1

(
p⊥

2mD

)
8πp4

⊥
−

tan−1
(

p⊥
mD

)
2πp⊥(p2

⊥ +m2
D)

+
tan−1

(
p⊥

2mD

)
2πp3

⊥
+

mD

4π(p2
⊥ +m2

D)

(
3

p2
⊥ + 4m2

D

− 1

p2
⊥

)]
. (5.34)

With these corrections, the NLO correction to the LO collinear emission rate
is expanded as

(2π)3 dδΓNLO

d3k

∣∣∣∣
collin

= A(k)

[
δm2

∞
m2
∞
Cδm

collin(k/T ) +
g2CAT

mD

CδK
collin(k/T )

]
. (5.35)

Here Cδm
collin(k/T ) is the correction from mass δm2

∞, and CδK
collin(k/T ) is the

correction from kernel C[p⊥]NLO. The numerical results will be presented in
Section 5.7.2 for completeness. The full discussion regarding these collinear
processes will be appeared in the forthcoming paper [107].

(ii) Wide-angle bremsstrahlung and pair annihilation3: We have identified
another kinematic region for bremsstrahlung and inelastic pair annihilation,
which gives NLO correction (discussed in detail in the next section). In this
region, the transverse momentum between photon and quark is ∼ √gT . From
Eq. (5.19), the formation time for bremsstrahlung with this p⊥ is

tform ∼ 1

gT
. (5.36)

This is short compared to the time between collisions (∼ 1/g2T ), and the LPM
effect can be neglected. By noting

δE ∼ 1

tform
∼ gT and p′2⊥C[p′⊥] ∼ 1

tcoll
∼ g2T , (5.37)

we can solve the integral equation Eq. (5.22) perturbatively

f(p⊥, p
z,k) = f (0)(p⊥, p

z,k) + f (1)(p⊥, p
z,k) + · · · . (5.38)

3The second source of NLO corrections involves wide-angle bremsstrahlung and pair
annihilation, and this is the principal result of the current chapter.
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The solution without any interaction is

f (0)(p⊥, p
z,k) =

2p⊥
iδE(p⊥, pz,k)

, (5.39)

and the next solution f (1)(p⊥, p
z,k) can be obtained by solving

iδE(p⊥, p
z,k)f (1)(p⊥, p

z,k)

= −
∫

d2p′⊥
(2π)2

C[p′⊥]

[
2p⊥

iδE(p⊥, pz,k)
− 2(p⊥ + p′⊥)

iδE(p⊥ + p′⊥, p
z,k)

]
. (5.40)

After solving the integral equation Eq. (5.22) for f(p⊥, p
z,k), the current-

current correlator in Eq. (5.2) can be computed [108]

W<,µν
brem (K) =

∫
p

nF
p+k(1− nF

p )

2pz(pz + k)
(2P µ +Kµ) Re f ν(p⊥, p

z,k) . (5.41)

By substituting the perturbative solution f ' f (0) + f (1), the correlator is

∑
a=1,2

εµ∗(a)(k)εν(a)(k)W<
µν,brem(K) '

∫
p

nF
p+k(1− nF

p )

2pz(pz + k)
Re

∫
p′⊥

C[p′⊥][
4p2

⊥
[δE(p⊥, pz,k)]2

− 4p⊥ · (p⊥ + p′⊥)

δE(p⊥, pz,k)δE(p⊥ + p′⊥, p
z,k)

]
. (5.42)

Therefore, from Eq. (5.1) the photon emission rate is [109]

(2π)3 dΓ

d3k

∣∣∣∣
brem+annih

=
A(k)

4m2
∞n

F
k

∫ ∞

−∞
dpz [(pz)2 + (pz + k)2]

(pz)2(pz + k)2
nF

p+k(1− nF
p )∫

p⊥

Re[2p⊥ · f(p⊥, p
z,k)] ,

=
A(k)

m2
∞n

F
k

∫ ∞

−∞
dpz [(pz)2 + (pz + k)2]

(pz)2(pz + k)2
nF

p+k(1− nF
p ) Re

∫
p⊥,p′⊥

C[p′⊥][
p2
⊥

[δE(p⊥, pz,k)]2
− p⊥ · (p⊥ + p′⊥)

δE(p⊥, pz,k)δE(p⊥ + p′⊥, p
z,k)

]
. (5.43)

This perturbative emission rate is same as the rate by summing the two-
loop diagrams in Fig. 5.2 with a soft gluon (see Appendix G for details). By
noting that the two-loop diagrams are lowest order of ladder diagrams shown
in Fig. 5.8, we can understand how the perturbative solution works. In the
overlap region gT � p⊥ �

√
gT , the LO bremsstrahlung rate in Eq. (5.43) is
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Figure 5.9: (a)(b) Plasmon scattering with time-like gluons and (c)(d) the
extension to space-like gluons. It is difficult to distinguish (c)(d) from
bremsstrahlung. Double solid lines denote hard quarks, double wiggly lines
denote hard photons, and single curly lines denote soft gluons.

consistent with the NLO result in Section 5.5.

5.4 Plasmon4 Scattering

To motivate wide-angle bremsstrahlung discussed in the previous section,
we consider plasmon scattering shown in Fig. 5.9 (a) and (b)

P + P ′ → K +K ′ . (5.44)

For simplicity, the emitted photon has only hard momentum K ∼ T . When
the gluon is soft (P ′ ∼ gT ) and quarks are hard (P,K ′ ∼ T ), we expect the
O(g) correction to the LO emission rate.

We assume that the photon is emitted in the z-direction, then it is conve-
nient to use light-cone coordinates:

P µ = (p+, p−,p⊥) , (5.45)

where p⊥ is perpendicular to the z-axis and

p+ ≡ p0 + pz ' 2pz , (5.46)

p− ≡ p0 − pz . (5.47)

For hard particles, p+ ∼ T . The photon has K = (k+, k−,k⊥) = (k+, 0,0)

4By ”plasmon” we mean both longitudinal and transverse poles in the gluon spectral
density, δ(p′0 − ωL) and δ(p′0 − ωT ).
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which is taken along the z-axis. Hard particles are almost on-shell:

P 2 = −p+p− + p2
⊥ = −m2

∞ ∼ g2T 2 , (5.48)

and the minus coordinate for on-shell modes is

p− =
p2
⊥ +m2

∞
p+

. (5.49)

For the soft gluon, we take all four components of momentum ∼ gT :

P ′µ = (p′+, p′−,p′⊥) ∼ (gT, gT, gT ) . (5.50)

The energy-momentum conservation yields

p+ + p′+ = k+ + k′+ , (5.51)

p− + p′− = k′− , (5.52)

p⊥ + p′⊥ = k′⊥ . (5.53)

From the minus conservation

p− ∼ k′− ∼ p′− ∼ gT , (5.54)

which requires, since p− ∼ p2
⊥/p

+, that

p⊥ ∼ k′⊥ ∼
√
gT . (5.55)

So the four components of hard particle momentum scale as

(p+, p−,p⊥) ∼ (T, gT,
√
gT ) . (5.56)

With this power counting, we define the momentum fraction z as we did
in bremsstrahlung:

k+ ≡ (1− z)p+ and k′+ ≡ zp+ . (5.57)

Since p′⊥ is O(
√
g) smaller than the others in Eq. (5.53), k′⊥ ' p⊥ and

k′− =
(k′⊥)2 +m2

∞
k′+

' (p⊥)2 +m2
∞

zp+
=

1

z
p− , (5.58)

p′− = k′− − p− ' (1− z)

z
p− . (5.59)
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In terms of the light-cone coordinates, the Mandelstam variables are

s ' p+p′− , t ' −zp+p′− , u ' −(1− z)p+p′− . (5.60)

When the gluon momentum P ′ is soft, it is straightforward to calculate the
squared matrix elements. It has the splitting function:

|M |2 ∼ −s
t
− t

s
=

1 + z2

z
(fermion splitting) . (5.61)

The photon emission rate can be obtained by integrating the squared ma-
trix elements over the phase space. In the light-cone coordinates, the measure
and the delta function are defined by

d4P ≡ dp+

2
dp−d2p⊥ , (5.62)

(2π)4δ4(P ) ≡ 2(2π)4δ(p+)δ(p−)δ2(p⊥) . (5.63)

The phase space integration is

(2π)3 d(PS)

d3k
≡
∫

p,P ′,k′

1

2p2k′2k
(2π)4δ4(P + P ′ −K −K ′) ,

=

∫
p,P ′

1

2p2k′2k
(2π)δ(p− + p′− − k′−) , (5.64)

where in the last line we used δ(p+ + p′+ − k+ − k′+)δ2(p⊥ + p′⊥ − k′⊥) to
integrate over k′. By using Eqs. (5.47), (5.49), and (5.58), the phase space is

(2π)3 d(PS)

d3k
'
∫

p+,p⊥,P ′

1

p+k′+2k
2πδ

(
p′0 − p′z − (1− z)p2

⊥
zp+

)
,

=

∫
p+,p⊥,p′

1

p+k′+2k

∣∣∣∣
p′0=p′z+δE

, (5.65)

where, neglecting m2
∞, we fixed

p′0 = p′z + δE with δE ≡ (1− z)p2
⊥

zp+
. (5.66)

Here the energy change δE = k0 + k′0 − p0 is same as the difference in the
minus momenta.
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(a) (b) (c) (d) 

Figure 5.10: Two-loop cut diagrams contributing to the NLO photon emission
rate. These cut diagrams can be understood as plasmon scattering with time-
like gluons and its extension to space-like gluons shown in Fig. 5.9. Double
solid lines denote hard quarks, double wiggly lines denote hard photons, and
single curly lines denote soft gluons.

5.5 Wide-angle Bremsstrahlung

In the previous section, we motivated a particular kinematic region by
considering plasmon scattering. In this section, we will determine the full
squared matrix elements for photon emission in this kinematic window. The
four relevant cut diagrams are shown in Fig. 5.10. The gluons are soft with
momenta P ′ = (p′+, p′−, p′⊥) ∼ (gT, gT, gT ) and the quarks are hard with
P,K ′ ∼ (T, gT,

√
gT ). When the gluon momenta P ′ is time-like, these graphs

correspond to plasmon scattering in Fig. 5.9 (a) and (b)5. For space-like
momenta, these four graphs correspond to bremsstrahlung and are shown in
Fig. 5.9 (c) and (d). As discussed in Section 5.2, it is difficult to distinguish
these processes from bremsstrahlung. For the collinear emission discussed in
Section 5.3, the angle between photon and quark is

δθ ∼ p⊥
p
∼ g (collinear) . (5.67)

In Fig. 5.9, the angle is

δθ ∼ p⊥
p
∼ √

g (wide-angle) . (5.68)

Thus, we refer to this scattering mechanism as “wide-angle” bremsstrahlung.
However, it must be understood that this wide-angle bremsstrahlung include
plasmon scattering.

5There are also corresponding pair annihilation processes. For space-like momenta, it is
difficult to distinguish them from inelastic pair annihilation.
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5.5.1 Matrix Elements

To compute the matrix elements, we use the HTL effective theory [5, 29],
and choose the Coulomb gauge for simplicity. For the soft gluon, the HTL
propagators are

iGR
00(p

0,p) =
−iη00

p2 + ΠL(x)
, (5.69)

iGR
ij(p

0,p) =
−i(δij − p̂ip̂j)

−(p0)2 + p2 + ΠT (x)
, (5.70)

iGR
0i(p

0,p) = GR
i0(p

0,p) = 0 . (5.71)

Here x = p0/p and the HTL self-energies are6

ΠL(x) = m2
D

[
1− x

2
ln

(
x+ 1

x− 1

)]
, (5.72)

ΠT (x) =
m2

D

2

[
x2 +

x(1− x2)

2
ln

(
x+ 1

x− 1

)]
. (5.73)

At zero frequency p0 = 0, the self-energies are

ΠL(0,p) = m2
D and ΠT (0,p) = 0, (5.74)

and the HTL propagators simplify to

iGR
00(0,p) =

−iη00

p2 +m2
D

and iGR
ij(0,p) =

−i(δij − p̂ip̂j)

p2
, (5.75)

which are also known as the electrostatic QCD (EQCD) propagators. The
imaginary part of the retarded Green’s function gives the spectral density,
ρµν ≡ iGR

µν − iGA
µν . The longitudinal and transverse components are

ρL(P ) = 2πzL(P )
[
δ
(
p0 − ωL(p)

)
− δ
(
p0 + ωL(p)

)]
+ βL(P ) θ

(
p2 − (p0)2

)
,

(5.76)

ρT (P ) = 2πzT (P )
[
δ
(
p0 − ωT (p)

)
− δ
(
p0 + ωT (p)

)]
+ βT (P ) θ

(
p2 − (p0)2

)
.

(5.77)

6The HTL self-energies correspond to the free spectral densities of Jµ correlators,
Eqs. (3.117) and (3.118).
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Here zL(P ) and zT (P ) are the residues of the longitudinal and transverse
poles, and βL(P ) and βT (P ) correspond to the cut contributions for space-like
momentum.

The fermion propagator can be written in the form of

iSR(P ) =
h+(p̂)

p0 − p− Σ+(P )
+

h−(p̂)

p0 + p− Σ−(P )
, (5.78)

where we defined the chiral projection

h±(p̂) ≡ − i
2
(−γ0 ± γ · p̂) . (5.79)

The fermion self-energies are

Σ+(x) =
m2
∞

2p

[
1 +

1

2
(1− x) ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣ ]− iπ
m2
∞

4p
(1− x) θ(1− x2) , (5.80)

Σ−(x) = −m
2
∞

2p

[
1− 1

2
(1 + x) ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣ ]− iπ
m2
∞

4p
(1 + x) θ(1− x2) , (5.81)

which can be neglected for hard momentum. We can verify that only h+ part
contributes to the matrix elements in the order we are working. With these
propagators, it is straightforward to compute the squared matrix elements. In
the Coulomb gauge, the longitudinal and the transverse parts are

|M |2LρL(P ′) ' 16e2
∑

s

q2
sdFCFg

2 1 + z2

z

p′2⊥
2(p′−)2

ρL(P ′) , (5.82)

|M |2TρT (P ′) ' 16e2
∑

s

q2
sdFCFg

2 1 + z2

z

[
1−

m2
g sin2 θ

2(p′−)2

]
ρT (P ′) , (5.83)

where m2
g = (p′0)2 − p′2 and sin2 θ = p′2⊥/p

′2. The LO bare contribution of the
matrix elements is

|M |2bare ρ
bare(P ′) = 16e2

∑
s

q2
sdFCFg

2 1 + z2

z
ρbare(P ′) , (5.84)

where

ρbare(P ′) =
2π

2p′

[
δ(p′0 − p′) + δ(p′0 + p′)

]
. (5.85)

The matrix elements in Eqs. (5.82) and (5.83) can be understood in terms
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of the Wightman correlator. We define the field strength

Fa+(P ′) ≡ ip′aA+(P ′)− ip′+Aa(P
′) , (5.86)

where a = x, y for transverse components. Fa+ corresponds to the transverse
force acting on a quark which moves and radiates in the z-direction. With this
force, the matrix elements can be written7

T

p′0

[
|M |2LρL + |M |2TρT

]
= 16e2

∑
s

q2
sdFCFg

2 1 + z2

z

1

2(p′−)2
〈〈Fa+(P ′)Fa+〉〉 ,

(5.87)
where we used nB

p′ ' T/p′0 and the following relations:

p′ap
′
a〈〈A+(P ′)A+〉〉 = p′2⊥

(
〈〈A0(P ′)A0〉〉+ 〈〈Az(P ′)Az〉〉

)
= p′2⊥(ρL + sin2 θρT ) ,

(5.88)

p′+p
′
a〈〈Aa(P

′)A+〉〉 = p′+pa〈〈Aa(P
′)Az〉〉 = −p′zp′+ sin2 θρT , (5.89)

p′+p
′
+〈〈Aa(P

′)Aa〉〉 = p′2+(2− sin2 θ)ρT . (5.90)

5.5.2 Phase Space Integration

The photon emission rate is obtained by integrating the matrix elements
(with statistical factors) over the phase space Eq. (5.65):

(2π)3 dΓ

d3k

∣∣∣∣wide

brem

=

∫
p+,p⊥,p′

1

p+k′+2k
nF

p (1−nF
k′)

T

p′0

[
|M |2LρL+|M |2TρT

]∣∣∣∣
p′0=p′z+δE

.

(5.91)
In order to get the NLO correction, we subtract the LO bare contribution:

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem

=

∫
p+,p⊥,p′

1

p+k′+2k
nF

p (1− nF
k′)

T

p′0

[
|M |2LρL + |M |2TρT − |M |2bare ρ

bare
]∣∣∣∣

p′0=p′z+δE

, (5.92)

7In general, the force-force correlator is convoluted with the Wilson line〈
F a

µν(X)Wab(X)F b
αβ(0)

〉
, where Wab(X) ≡ Peig

R
AµdXµ ' δab + O(g). At the order we

are working, only δab contributes. Therefore, the correlator in Eq. (5.87) is gauge-invariant.
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where we used δΓNLO to emphasize that it is the O(g) correction to the LO
result. By using the rotational symmetry of perpendicular momenta,∫

p⊥

=
(2π)

2(2π)2

∫
dp2

⊥ , (5.93)

the emission rate is

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem

=

∫ ∞

k

dpz

2π

∫ ∞

0

dp2
⊥

2(2π)

∫ ∞

0

dp′2⊥
2(2π)

1

2p2k′2k
nF

p (1− nF
k′)∫ ∞

−∞

dp′z

2π

T

p′0

[
|M |2LρL + |M |2TρT − |M |2bare ρ

bare
]∣∣∣∣

p′0=p′z+δE

. (5.94)

The p′z integration can be handled by contour integration. By taking the
residue at p′0 = 0 with the EQCD propagators in Eq. (5.75), the integration
yields [116]∫ ∞

−∞

dp′z

2π

T

p′0

[
|M |2LρL + |M |2TρT

]∣∣∣∣
p′0=p′z+δE

= 16e2
∑

s

q2
sdFCFg

2 1 + z2

z
T

[
p′2⊥

2(δE)2

−1

p′2 +m2
D

+

(
1 +

p′2 sin2 θ

2(δE)2

)
1

p′2

] ∣∣∣∣
p′z=−δE

.

(5.95)

Similarly, the bare contribution is∫ ∞

−∞

dp′z

2π

T

p′0
|M |2bareρ

bare = 16e2
∑

s

q2
sdFCFg

2 1 + z2

z
T

1

p′2

∣∣∣∣
p′z=−δE

. (5.96)

Therefore,∫ ∞

−∞

dp′z

2π

T

p′0

[
|M |2LρL + |M |2TρT − |M |2bareρ

bare
]∣∣∣∣

p′0=p′z+δE

= 16e2
∑

s

q2
sdFCFg

2 1 + z2

z

T

2(δE)2

m2
Dp

′2
⊥

(p′2 +m2
D)p′2

∣∣∣∣
p′z=−δE

. (5.97)

Fig. 5.11 shows a sample integrand of Eq. (5.97) for δE = 0.5 and p′2⊥ = 0.7.
The integrand consists of a continuous cut part and two peaks. Wide-angle
bremsstrahlung contributes to the continuous part. The peaks correspond
to plasmons: the longitudinal pole δ

(
p′0 − ωL(p′)

)
and the transverse pole

δ
(
p′0 − ωT (p′)

)
. We note that in Eq. (5.97) the integrand is a complicated
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Figure 5.11: A sample integrand of Eq. (5.97) with δE = 0.5 and p′2⊥ = 0.7.
The continuous part corresponds to the cut contribution and the two peaks to
the longitudinal and transverse poles.

function of p′z, but the integrated result is simple. This integration generalizes
the AGZ sum rule with finite energy transfer.

In wide-angle bremsstrahlung (and plasmon collisions), we started with
p⊥ ∼

√
gT . When this transverse momentum becomes soft gT � p⊥ �

√
gT ,

this process reduces to the LO collinear bremsstrahlung. At wide angle, the
LPM effect can be neglected since the formation time is short. By taking the
limit p⊥ → 0, δE = p′− → 0 and the matrix elements become

[
|M |2LρL + |M |2TρT

]∣∣∣∣
p′0=p′z+δE

→ 16e2
∑

s

q2
sdFCFg

2 1 + z2

z

p′2⊥
2(δE)2

(
ρL + ρT sin2 θ

)
. (5.98)

Here ρL + ρT sin2 θ = ρµνvµvν is same as the LO result in Eq. (5.23) (see also
Eq. (G.19) in Appendix G). In order to obtain the NLO correction, we subtract
the LO bremsstrahlung contribution which is given by

16e2
∑

s

q2
sdFCFg

2

∫ ∞

k

dpz

2π

∫ ∞

0

dp2
⊥

2(2π)

∫ ∞

0

dp′2⊥
2(2π)

1

2p2k′2k
nF

p (1− nF
k′)

1 + z2

z

∫ ∞

−∞

dp′z

2π

T

p′0
p′2⊥

2(δE)2
(ρL + ρT sin2 θ)

∣∣∣∣
p′0=p′z

. (5.99)
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Performing the contour integration over p′z yields∫ ∞

−∞

dp′z

2π

T

p′0
p′2⊥

2(δE)2
(ρL +ρT sin2 θ)

∣∣∣∣
p′0=p′z

=
T

2(δE)2

m2
D

(p′2⊥ +m2
D)

∣∣∣∣
p′z=0

. (5.100)

By subtracting Eq. (5.99) from Eq. (5.94) (after integrating over p′z), the
NLO correction is

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem

= 16e2
∑

s

q2
sdFCFg

2

∫ ∞

k

dpz

2π

1

2p2k′2k

1 + z2

z
nF

p (1− nF
k′)∫ ∞

0

dp2
⊥

2(2π)

∫ ∞

0

dp′2⊥
2(2π)

T

2(δE)2

[
m2

Dp
′2
⊥

(p′2 +m2
D)p′2

− m2
D

(p′2⊥ +m2
D)

] ∣∣∣∣
p′z=−δE

. (5.101)

The rest of the integrations can be done as follows. To get the splitting function
factored out, we change the integration variable from p2

⊥ to δE:∫
p2
⊥

→ 2zpz

(1− z)

∫
δE

, (5.102)

and integrate over δE and p′2⊥∫ ∞

0

d(δE)

2(2π)

∫ ∞

0

dp′2⊥
2(2π)

T

2(δE)2

[
m2

Dp
′2
⊥

(p′2 +m2
D)p′2

− m2
D

(p′2⊥ +m2
D)

] ∣∣∣∣
p′z=−δE

= −mDT

16π
. (5.103)

By recalling the splitting function

1 + z2

z
=

pz

pz − k
+
pz − k

pz
, (5.104)

we have

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem

=
2

π
e2
∑

s

q2
sdFCFg

2 1

k2

(
−mDT

16π

)
∫ ∞

k

dpz

(
pz

pz − k
+
pz − k

pz

)
nF

p (1− nF
p−k) . (5.105)
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Figure 5.12: The NLO correction to the photon emission rate from (a)
wide-angle bremsstrahlung, Cwide

brem(k/T ) and (b) wide-angle pair annihilation,
Cwide

annih(k/T ).

We note that Eq. (5.105) is logarithmically divergent when pz → k:∫ ∞

k+µz

dpz

(
pz

pz − k
+
pz − k

pz

)
nF

p (1−nF
p−k) =

knF
k

2
ln

(
T

µz

)
+(finite) , (5.106)

where gT � µz � T is a cutoff. By separating the logarithmically divergent
part, we obtain a finite result for wide-angle bremsstrahlung:

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem

= − 1

8π2
e2
∑

s

q2
sdFCFg

2mDT
nF

k

2k

[
ln

(
T

µz

)
+ Cwide

brem(k/T )

]
.

(5.107)
Here Cwide

brem(k/T ) is independent of µz. With the notation of Ref. [109], the
NLO correction to the photon emission rate from wide-angle bremsstrahlung
is

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem

= −mD

2πT
A(k)

[
ln

(
T

µz

)
+ Cwide

brem(k/T )

]
. (5.108)

The numerical result of Cwide
brem(k/T ) is shown in Fig. 5.12 (a). It becomes

negative for higher photon momentum k/T > 12.
Similarly, wide-angle pair annihilation contributes to the photon emission
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rate at NLO (see Appendix H for details):

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

annih

= −mD

2πT
A(k)

[
ln

(
T

µz

)
+ Cwide

annih(k/T )

]
. (5.109)

The numerical result of Cwide
annih(k/T ) is shown in Fig. 5.12 (b). The infrared

cutoff dependence on µz in Eqs. (5.108) and (5.109) will cancel the ultraviolet
dependence later when adding the quark-photon conversion contribution.

5.6 Quark-Photon Conversion

In the previous section, we computed the photon emission rate from wide-
angle bremsstrahlung and wide-angle pair annihilation. They are logarith-
mically divergent, and we regularized it with the infrared cutoff µz. As dis-
cussed earlier, when the photon carries most of the incoming quark momentum,
bremsstrahlung reduces to quark-photon conversion. The photon emission rate
from quark-photon conversion (see Fig. 5.13 (a)) can be calculated by using the
HTL propagator in the t-channel exchange. The µz dependence in Eqs. (5.108)
and (5.109) will be canceled by the ultraviolet cutoff of the quark-photon con-
version contribution. In this section, we derive the “sum rule” (which gener-
alize the AGZ result [113]) at LO and intuitively generalize it to NLO. The
verification of the NLO sum rule will be given in the forthcoming work [107].

5.6.1 Sum Rule

The photon emission rate is related to the photon self-energy by [29]

(2π)3 dΓ

d3k

∣∣∣∣
convs

=
1

2k
Π<(K) . (5.110)

The cut diagram in Fig. 5.13 (b) can be calculated by using the cutting rules
[5, 29]

Π<(K) = 2e2
∑

s

q2
sdF

∫
P−K

Tr
[
S>(P −K) γa S<

bare(P ) γa

]
, (5.111)

where S> is the HTL dressed fermion propagator and S<
bare is the bare fermion

propagator. For simplicity, we change the variable of the soft momentum
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Figure 5.13: (a) Quark-photon conversion, where a hard quark undergoes soft
momentum exchange to become a hard photon with K ' P . (b) The photon
self-energy cut diagram. The square of (a). Double wiggly lines denote hard
photons, double solid lines denote hard quarks, and single solid lines (with
arrows) denote soft quarks. Time runs from left to right.

P −K ≡ Q, then the self-energy is8

Π<(K) = 2e2
∑

s

q2
sdF

∫
Q

Tr
[
S>(Q) γa S<

bare(Q+K) γa

]
. (5.112)

Here the dressed fermion propagator is written in terms of spectral densities:

iS>(Q) = (1− nF
q )
[
h+(q̂) ρ+(Q) + h−(q̂) ρ−(Q)

]
. (5.113)

For the fermion cut line, we use the positive energy part of

iS<
bare(Q+K) ' −i 2π

2Eq+k

nF
q+kk

+γ+ δ(q
0 + k0 − Eq+k)

+ i
2π

2Eq+k

nF
−q−kk

+γ+ δ(q
0 + k0 + Eq+k) , (5.114)

where we used (/Q + /K) ' k+γ+. With Eq+k ' qz + k + (q2
⊥ + m2

∞)/2k, the
delta function can be approximated as

δ(q0 + k0 − Eq+k) ' δ
(
q0 − qz +O(g2)

)
. (5.115)

8The trace part can be also written as Tr [γ+S<(Q)], where γ+ = −γ0 + γz.
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IR 

Figure 5.14: The contour for the integration of IR in the upper-half plane. C
corresponds to the counterclockwise semi-circle part.

By approximating nF
q ' 1/2 and nF

q+k ' nF
k , the self-energy is

Π<(K) ' 2e2
∑

s

q2
sdFn

F
k

2π

4k

∫
Q

δ(q0 − qz)

k+
[

Tr [h+γ
aγ+γa]ρ

+ + Tr [h−γ
aγ+γa]ρ

−
]
,

= 2e2
∑

s

q2
sdFn

F
k

∫
d2q⊥
(2π)2

∫
dqz

2π

[(
1− qz

q

)
ρ+ +

(
1 +

qz

q

)
ρ−
] ∣∣∣∣

q0=qz

.

(5.116)

The integral over qz can be handled with contour integrations. By recalling
the definition of spectral densities ρ± = iSR

± − iSA
±, we define

IR ≡
∫

dq2
⊥

2(2π)

∫
dqz

2π

[
i(1− qz/q)

q0 − q − Σ+(Q)
+

i(1 + qz/q)

q0 + q − Σ−(Q)

] ∣∣∣∣
q0=qz

, (5.117)

IA ≡
∫

dq2
⊥

2(2π)

∫
dqz

2π

[
i(1− qz/q)

q0 − q − Σ∗
+(Q)

+
i(1 + qz/q)

q0 + q − Σ∗
−(Q)

] ∣∣∣∣
q0=qz

. (5.118)

Then the self-energy can be written

Π<(K) = 2e2
∑

s

q2
sdFn

F
k (IR − IA) . (5.119)

The integrand of IR is analytic in the upper-half plane, and we consider
the contour shown in Fig. 5.14. Since there is no pole inside the contour, we
can change the real qz integration into the contour integral at C which is the
semi-circle of qz →∞. By noticing

q0 = qz and q ' qz +
q2
⊥

2qz
, (5.120)
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x → 1 when qz → ∞. So, the fermion self-energy in Eqs. (5.80) has a simple
form

Σ+(Q) ' m2
∞

2q
, (5.121)

and Σ−(Q) can be neglected. Now the integral is straightforward to calculate:

IR '
∫

dq2
⊥

2(2π)

∫
C

dqz

2π

i

qz

[
q2
⊥

q2
⊥ +m2

∞
− 1

]
, (5.122)

=
1

2

∫
dq2

⊥
2(2π)

m2
∞

q2
⊥ +m2

∞
, (5.123)

where we changed the integral
∫

C
dqz/qz into i

∫ π

0
dθ. Similarly, the integrand

of IA is analytic in the lower half-plane, and the integral yields

IA = −1

2

∫
dq2

⊥
2(2π)

m2
∞

q2
⊥ +m2

∞
. (5.124)

Therefore, the LO photon emission rate from quark-photon conversion is given
by9

(2π)3 dΓLO

d3k

∣∣∣∣
convs

= e2
∑

s

q2
sdF

nF
k

k

∫
dq2

⊥
2(2π)

m2
∞

q2
⊥ +m2

∞
,

= e2
∑

s

q2
sdF

nF
k

k

m2
∞

4π
ln

(
µ2
⊥

m2
∞

)
, (5.125)

where we used the ultraviolet cutoff µ2
⊥. As discussed in Section 5.2, this cutoff

dependence is canceled by the infrared one in 2 ↔ 2 scattering with a hard
gluon at LO.

In deriving the sum rule in Eq. (5.125), there was no explicit use of HTL.
We only used the definition of the asymptotic mass, m2

∞ = 2qRe Σ+|q→∞.
Although it is not obvious, the sum rule is generalized to NLO with the re-
placement of m2

∞ by m2
∞ + δm2

∞ [107]. Then the NLO correction is found by

9By neglecting the screening, we can get the leading-log emission rate (2π)3 dΓLLog
d3k =

e2
∑

s q2
sdF

nF
k

k

∫ dq2
⊥

2(2π)
m2
∞

q2
⊥

= e2
∑

s q2
sdF m2

∞
nF

k

4πk ln (1/g). Here the coefficient corresponds to
γ in Eq. (2.43) (after changing one of gluons into photon).
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taking the difference between LO and NLO:

(2π)3 dδΓNLO

d3k

∣∣∣∣
convs

= e2
∑

s

q2
sdF

nF
k

k

∫
dq2

⊥
2(2π)[

m2
∞ + δm2

∞
q2
⊥ +m2

∞ + δm2
∞
− m2

∞
q2
⊥ +m2

∞

]
,

=
1

4π
e2
∑

s

q2
sdF

nF
k

k
δm2

∞

[
ln

(
µ2
⊥

m2
∞

)
− 1

]
. (5.126)

5.6.2 Cutoff

In wide-angle bremsstrahlung and pair annihilation process, we used the
infrared cutoff µz for the z-component of momentum, while in the conver-
sion process the ultraviolet divergence was regulated by cutting off the trans-
verse momentum integrals with µ2

⊥. Therefore, we need to relate µz with µ2
⊥.

When the photon carries most of the incoming quark momentum, wide-angle
bremsstrahlung reduces to quark-photon conversion. In order to compute the
contribution, we return to the integral Eq. (5.101) in the limit pz → k:

(2π)3 dδΓNLO

d3k

∣∣∣∣
cut

' 16e2
∑

s

q2
sdFCFg

2n
F
k

k

∫ µz

0

dk′z

2π

1

16(k′z)2

∫ ∞

µ2
⊥

dp2
⊥

2(2π)∫ ∞

0

dp′2⊥
2(2π)

T

2(δE)2

[
m2

Dp
′2
⊥

(p′2 +m2
D)p′2

− m2
D

(p′2⊥ +m2
D)

] ∣∣∣∣
p′z=−δE

. (5.127)

Here we used∫ k+µz

k

dp→
∫ µz

0

dk′ ,
1 + z2

z
' pz

k′z
, nF

p (1− nF
k′) '

nF
k

2
. (5.128)

By changing the integration variable from k′z to δE ' p2
⊥/2k

′z∫ µz

0

dk′z

2π
→
∫ ∞

p2
⊥/2µz

d(δE)

2π

2(k′z)2

p2
⊥

, (5.129)

and assuming µ2
⊥ � mDµz, the NLO correction is given by

(2π)3 dδΓNLO

d3k

∣∣∣∣
cut

' −mD

2πT
A(k) ln

(
2mDµz

µ2
⊥

)
. (5.130)
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We add this contribution to the wide-angle bremsstrahlung result Eq. (5.108)
to relate µz with µ2

⊥. This addition amounts to the replacement of the loga-
rithmic part

ln

(
T

µz

)
→ ln

(
2mDT

µ2
⊥

)
. (5.131)

5.7 Summary and Discussions

5.7.1 NLO Correction at Wide Angle

The NLO correction at wide angle is given by the sum of contributions from
wide-angle bremsstrahlung, wide-angle pair annihilation, and quark-photon
conversion. In this section, we will focus on the wide-angle NLO correction to
the LO photon emission rate. By comparing with the LO results and apply-
ing several values of the coupling constant g, we will interpret the numerical
results.

By adding the soft contribution Eq. (5.130) to wide-angle bremsstrahlung
rate Eq. (5.108) and pair annihilation Eq. (5.109), the NLO corrections are

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem

=
δm2

∞
4m2

∞
A(k)

[
ln

(
2mDT

µ2
⊥

)
+ Cwide

brem(k/T )

]
, (5.132)

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

annih

=
δm2

∞
4m2

∞
A(k)

[
ln

(
2mDT

µ2
⊥

)
+ Cwide

annih(k/T )

]
. (5.133)

From Eq. (5.126), quark-photon conversion contributes

(2π)3 dδΓNLO

d3k

∣∣∣∣
convs

=
δm2

∞
2m2

∞
A(k)

[
ln

(
µ2
⊥

m2
∞

)
− 1

]
. (5.134)

The sum of three results reads

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem+annih+convs

=
δm2

∞
2m2

∞
A(k)

[
ln

(
2mDT

m2
∞

)
+

1

2
Cwide

brem(k/T ) +
1

2
Cwide

annih(k/T )− 1

]
. (5.135)

We note that the µ2
⊥ infrared dependencies in Eqs. (5.132) and (5.133) were

canceled by the µ2
⊥ ultraviolet dependence in Eq. (5.134), and the rate is finite.
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Figure 5.15: The wide-angle NLO Cwide
NLO(k/T ) in Eq. (5.136) and the LO

CLO(k/T ) in Eq. (5.138) for the number of flavors Nf = 2, 3, 4, and 5. They
are independent of the coupling constant g. Note that the NLO contribution
has the factor δm2

∞/2m
2
∞ relative to LO.

By defining the “wide-angle” contribution

Cwide
NLO(k/T ) ≡ ln

(
2mD

m∞

)
+

1

2
Cwide

brem(k/T ) +
1

2
Cwide

annih(k/T )− 1 , (5.136)

we rewrite the wide-angle NLO correction Eq. (5.135) as

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

brem+annih+convs

=
δm2

∞
2m2

∞
A(k)

[
ln

(
T

m∞

)
+ Cwide

NLO(k/T )

]
,

(5.137)
Similarly, for the LO photon emission rate, we define (following the notation
of Ref. [109])

CLO(k/T ) ≡ 1

2
ln(2k/T ) + C2→2(k/T ) + Cbrem(k/T ) + Cannih(k/T ) , (5.138)

and the LO result is

(2π)3 dΓLO

d3k

∣∣∣∣
hard+soft+brem+annih

= A(k)

[
ln

(
T

m∞

)
+ CLO(k/T )

]
. (5.139)

CLO(k/T ) and Cwide
NLO(k/T ) are independent of the coupling constant g. Fig. 5.15

shows the comparison, and the shapes of CLO(k/T ) and Cwide
NLO(k/T ) are simi-

lar. However, we should note that the NLO emission rate has a relative factor
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Figure 5.16: The ratio of the wide-angle NLO correction to the LO photon
emission rate for Nf = 2, 3, 4, and 5 (see Eq. (5.140)). (a) For αs = 0.05,
the wide-angle NLO correction is almost 25 ∼ 30% of LO depending on the
number of flavors. (b) For αs = 0.15, the wide-angle NLO correction is al-
most 40 ∼ 50% of LO. (c) For αs = 0.3, the wide-angle NLO correction is
almost 50 ∼ 60% of LO. The ratio decreases at low k/T and high k/T � 12
due to bremsstrahlung and inelastic pair annihilation contributions at LO,
respectively.
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δm2
∞/2m

2
∞.

To see the size of the NLO correction, we consider the ratio of the wide-
angle NLO correction to the LO emission rate:

(2π)3 dδΓwide
NLO

d3k

(2π)3 dΓLO

d3k

=

δm2
∞

2m2
∞

[
ln
(

T
m∞

)
+ Cwide

NLO(k/T )
]

[
ln
(

T
m∞

)
+ CLO(k/T )

] . (5.140)

The numerical results of the ratio is shown in Fig. 5.16 for several values of
the coupling constant g, specifically αs = g2/4π ' 0.05, 0.15, and 0.3. The
wide-angle NLO correction is almost 25 ∼ 30% of LO at αs ' 0.05, and more
at larger αs.

We expect that there will be more contributions from inelastic processes.
From the LO parameterization in Eqs. (5.13)and (5.14), we see Cbrem(k/T ) +
Cannih(k/T ) ∝

√
k/T and C2→2(k/T ) ∝ (const) for high k/T . So, inelastic

pair annihilation is dominant for high k/T . Since we did not include these
contributions at NLO, the ratio between LO and NLO approaches to zero
for high k/T . Although it is not shown in the Fig. 5.16, the ratio goes to
zero for k/T � 12. Indeed, the total LO result CLO(k/T ) ∝

√
k/T , whereas

Cwide
NLO(k/T ) ∝ ln(k/T ) for high k/T . At low k/T , the collinear bremsstrahlung

contribution is dominant, and the ratio also decreases.

5.7.2 Total NLO Photon Emission Rate

The total NLO correction of the photon emission rate is given by the sum
of the wide-angle contribution in Eq. (5.137) and the collinear contribution in
Eq. (5.35):

(2π)3 dδΓNLO

d3k

∣∣∣∣
tot

= A(k)

[
δm2

∞
2m2

∞
ln

(
T

m∞

)
+
δm2

∞
2m2

∞
Cwide

NLO(k/T )

+
δm2

∞
m2
∞
Cδm

collin(k/T ) +
g2CAT

mD

CδK
collin(k/T )

]
. (5.141)

For the comparison, we present the total LO rate in Eq. (5.139)

(2π)3 dΓLO

d3k

∣∣∣∣
tot

= A(k)

[
ln

(
T

m∞

)
+ CLO(k/T )

]
. (5.142)

Fig. 5.17 shows the collinear corrections Cδm
collin(k/T ) and CδK

collin(k/T ) from
δm2

∞ and C[p⊥]NLO, respectively. In Eq. (5.141), Cδm
collin(k/T ) is multiplied

by δm2
∞/m

2
∞, whereas CδK

collin(k/T ) is multiplied by g2CAT/mD. By noting
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Figure 5.17: The comparison between Cδm
collin(k/T ) and CδK

collin(k/T ) for Nf =
2, 3, 4, and 5. They are independent of the coupling constant g. We note
that Cδm

collin(k/T ) is multiplied by δm2
∞/m

2
∞, while CδK

collin(k/T ) is multi-
plied by g2CAT/mD in Eq. (5.141). By noticing the numerological equality
−δm2

∞/m
2
∞ = g2CAT/πmD for Nf = Nc = 3, Cδm

collin(k/T ) can be compared to
πCδK

collin(k/T ).

the numerological equality −δm2
∞/m

2
∞ = g2CAT/πmD for Nc = Nf = 3,

Cδm
collin(k/T ) should be compared to πCδK

collin(k/T ).
To see the size of the collinear NLO correction, in Fig. 5.18 we plot the

ratio of the sum of two collinear NLO corrections to the LO photon emission
rate:

(2π)3 dδΓcollin
NLO

d3k

(2π)3 dΓLO

d3k

=

[
δm2

∞
m2
∞
Cδm

collin(k/T ) + g2CAT
mD

CδK
collin(k/T )

]
[
ln
(

T
m∞

)
+ CLO(k/T )

] . (5.143)

Depending on αs, k/T , and the number of flavors, the collinear NLO cor-
rection is up to 80% of the LO result, which might indicate a breakdown of
perturbation theory for αs & 0.3.

In Fig. 5.19, the wide-angle and collinear NLO corrections scaled by A(k)
are compared with the LO photon emission rate for αs = 0.05, 0.15, 0.3 and
Nf = 2, 3, 4, 5. Since the signs of the wide-angle and collinear contributions
are opposite, there is cancellation in the total NLO correction.

The size of the total NLO correction is shown in Fig. 5.20, where we plot
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Figure 5.18: The ratio of the collinear NLO correction to the LO photon
emission rate for αs = 0.05, 0.15, 0.3 and Nf = 2, 3, 4, 5 (see Eq. (5.143)).
(a) For αs = 0.05, the collinear NLO correction is almost 20% of LO. (b) For
αs = 0.15, the collinear NLO correction is almost 40% of LO. (c) For αs = 0.3,
the collinear NLO correction is almost 60 ∼ 80% of LO depending on k/T and
the number of flavors.
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Figure 5.19: The wide-angle NLO correction (long-dashed lines), the collinear
NLO correction (short-dashed lines), and the LO photon emission rate (solid
lines) scaled by A(k) for αs = 0.05, 0.15, 0.3 and Nf = 2, 3, 4, 5. Note that
the signs of the wide-angle and collinear contributions are opposite. Therefore,
there is cancellation in the total NLO correction.
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the ratio of the total NLO correction to the LO emission rate:

(2π)3 dδΓNLO

d3k

(2π)3 dΓLO

d3k

=

[
δm2

∞
2m2

∞
ln
(

T
m∞

)
+ δm2

∞
2m2

∞
Cwide

NLO(k/T ) + δm2
∞

m2
∞
Cδm

collin(k/T ) + g2CAT
mD

CδK
collin(k/T )

]
[
ln
(

T
m∞

)
+ CLO(k/T )

] .

(5.144)

Due to the cancellation, the NLO correction is at most 10%, 5%, and 30% of
the LO rate for αs = 0.05, 0.15, and 0.3, respectively. This kind of cancellation
is typical of perturbative calculations, and we should be careful to interpret
the numerical results. Since both of the NLO corrections from wide-angle and
collinear processes are greater than the sum, the error of the total correction
could be greater than what we naively expect by considering only the sum.

Finally, we plot the LO photon emission rate and the NLO photon emis-
sion rate (which is the sum of the LO rate and the total NLO correction)
in Fig. 5.21. Accidentally, the NLO rate is comparable to the LO rate at
αs = 0.15. Even at αs = 0.3, the convergence of the NLO result is not as bad
as in the NLO heavy quark diffusion constant [10].
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Figure 5.21: The LO and NLO photon emission rates scaled by A(k) for
αs = 0.05, 0.15, 0.3 and Nf = 2, 3, 4, 5. Solid lines indicate the LO photon
emission rate, and dashed lines indicate the sum of the LO rate and the total
NLO correction.
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Chapter 6

Conclusions and Outlook

In Introduction, we mentioned Point I, II, III that we would like to address
in this thesis. By responding to the points, we summarize the topics discussed
in previous chapters and suggest extensions of the studies.

In Chapter 2, the linearized Boltzmann equation was formulated in a
leading-log approximation. The equation was written down as a Fokker-Planck
equation to describe diffusion process. It was shown that given arbitrary per-
turbations, the numerical solution of the Boltzmann equation ultimately ap-
proached to equilibrium. With this setup, in Chapter 3 we computed spectral
densities of T µν and Jµ in the presence of weak gravitational and electromag-
netic fields. As expected, the spectral densities exhibit a smooth transition
from free streaming quasi-particles to hydrodynamics. This transition was an-
alyzed with hydrodynamics and diffusion equation to investigate the macro-
scopic theory limit. To respond to the Point I, we determined the validity
regime for hydrodynamics:

ω, ck <∼ 0.35

[
η

(eo + Po)c2s

]−1

(first hydro) , (6.1)

ω, ck <∼ 0.7

[
η

(eo + Po)c2s

]−1

(second hydro) . (6.2)

In particular, in the second order diffusion equation we ignored terms related
to magneto-hydrodynamics. Recently, there have been many efforts to under-
stand the plasma response in the presence of strong magnetic fields. With
non-negligible magnetic fields, it would be interesting to study the magneto-
hydrodynamic response in high temperature-density plasmas.

In Chapter 4, we compared weakly coupled theories with strongly coupled
theories to answer the Point II. With a heavy quark probe, we simulated the
jet-medium interaction in high temperature QCD plasmas and N = 4 SYM
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plasmas. In both cases, we compared the energy density and flux distributions
with hydrodynamic solutions at long distances. In contrast to the kinetic the-
ory results, the AdS/CFT results converged to the hydrodynamic regime much
faster at relatively short distances. We argued that this difference seemed to be
related to the transport coefficient τπ which was relatively greater in theories
based on quasi-particle description. At short distances, there are limitations
for the comparison in both theories. In the AdS/CFT, high momentum be-
haviors have been studied, and new scales of order 1/γ1/2πT and 1/γ3/2πT
appear [84, 89, 117, 118]. On the other hand, in kinetic theory this quan-
tum physics can not be described by the semi-classical Boltzmann equation.
We should compute the stress tensor at short distances by using finite tem-
perature perturbation theory to better compare the difference between two
coupling limits.

This jet-medium simulation was focused on the study of a single heavy
quark moving from past infinity forever. More related to heavy ion collisions,
it would be interesting to generate a parton shower which would be initiated at
past finite time and thermalized after a while [91, 92, 93]. Since the Boltzmann
equation has been verified that the solutions approach to hydrodynamic ones,
it would be interesting to compare the numerical results to experimental data
which are characterized by hydrodynamics. It would be also nice to compare
simulations of the energy density and flux distributions from the heavy quark
with this parton shower.

To respond to the Point III, in Chapter 5 we computed the photon emission
rate at next-to-leading order (NLO), i.e. at order g2mD/T . We discussed all
the possible corrections of O(g) to the leading order results and how the rates
were matched to obtain finite results. The final photon emission rate at NLO
depends on the coupling constant g. At somewhat large value of αs = 0.3, the
NLO correction is roughly 30% at most, depending on the number of flavors.
This correction is less than we expected, considering that there is accidental
cancellation between the wide-angle corrections and collinear corrections. One
should be careful when comparing the NLO results with experimental data.
Since both wide-angle contributions and collinear contributions are greater
(with opposite signs) than the sum of two, the error might be greater than
what we naively expect with the final result. There need systematic methods
to analyze the data and estimate errors of the NLO photon emission rate.

The photon emission rate was a warm-up problem in order to compute
transport coefficients, especially the shear viscosity at NLO. By using the
HTL perturbation theory, it is desirable to compute spectral densities and
extract hydrodynamic coefficients as we did in Chapter 3. Photon emission
can be also studied in the basis of the Boltzmann equation [5]. At a leading-log
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approximation, the Boltzmann equation has only t-channel 2 ↔ 2 scatterings
in the collision term. By including 1 ↔ 2 processes, we can study energy loss
problems in jets. There are two types of energy loss: collisional energy loss
and radiative energy loss. At high momentum, we expect that radiative energy
loss will be more important. In particular, at NLO we suspect that there will
be similar matching processes of rates as in the photon emission computation.

In conclusion, we studied transport processes of high temperature QCD
plasmas by using kinetic theory based on the Boltzmann equation and hy-
drodynamic analysis. This work has many phenomenological applications in
heavy ion collisions. The transport coefficients determined in this thesis are
useful in viscous hydrodynamic simulations, and the NLO photon emission
rate can be compared with experimental data. We would like to mention
that this research may be useful for further studies in other areas as well as
heavy ion physics. With minor modifications, it can be applicable to any high
temperature-density plasmas such as existed in the early universe.
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Appendix A

Collision Integral of Boltzmann
Equation

This appendix closely follows Refs. [26, 27] to derive the leading-log Boltz-
mann equation. We first consider the pure glue case and then extend to
multi-component plasmas.

A.1 Pure Glue

In this section, we derive the collision term for pure glue.
By substituting the linearized distribution function Eq. (2.2) (with the

definition Eq. (2.5)) into Eq. (2.4), the collision term is linearized1

C[f,p] = −
∫

kp′k′

1

2
|M |2 (2π)4δ4(Ptot)npnk(1 + np′)(1 + nk′)[

χ(p) + χ(k)− χ(p′)− χ(k′)
]
. (A.1)

In the pure glue theory, the only relevant diagram is t−channel gluon exchange,
the diagram (a) of Fig. 2.1. This collision term can be written as a variational
problem

C[f,p] = −(2π)3 δ

δχ(p)
I[χ] , (A.2)

1The matrix elements are summed over spins and colors associated with k,p′,k′ and
averaged over the spins and colors associated with p. The distribution function fp is defined
so that the total number of gluons is 2dA

∫
p

fp.
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where

I[χ] ≡ 1

16

∫
pkp′k′

|M |2 (2π)4δ4(Ptot)npnk(1 + np′)(1 + nk′)[
χ(p) + χ(k)− χ(p′)− χ(k′)

]2
. (A.3)

We classify the integral as loss and gain terms, I[χ] = I[χ]loss + I[χ]gain, with

I[χ]loss ≡
1

8

∫
pkp′k′

|M |2 (2π)4δ4(Ptot)npnk(1 + np′)(1 + nk′)
[
χ(p)− χ(p′)

]2
,

(A.4)

I[χ]gain ≡
1

8

∫
pkp′k′

|M |2 (2π)4δ4(Ptot)npnk(1 + np′)(1 + nk′)[
χ(p)− χ(p′)

][
χ(k)− χ(k′)

]
. (A.5)

By expanding in the momentum transfer q ≡ p′ − p, the integrals are given
by2

I[χ]loss =

∫
pk

np(1 + np)
∂χ(p)

∂pi

∂χ(p)

∂pj
nk(1 + nk)I

ij(p,k) , (A.6)

−I[χ]gain =

∫
pk

np(1 + np)
∂χ(p)

∂pi

∂χ(k)

∂kj
nk(1 + nk)I

ij(p,k) , (A.7)

where

I ij(p,k) =
1

4

∫
p′k′

(2π)4δ4(P +K − P ′ −K ′) |M |2 qiqj . (A.8)

We note that the matrix elements are symmetric in p and k, and I ij(p,k)
must have the following form:

I ij(p,k) = a1

(
p̂ip̂j + k̂ik̂j

)
+ a2

(
p̂ik̂j + k̂ip̂j

)
+ a3δ

ij , (A.9)

where a1, a2, and a3 are coefficients of the symmetric bases. In order to com-
pute the coefficients, we contract I ij with p̂ip̂j, p̂ik̂j and δij. The computation
can be done as follows.

We use the three momentum delta function to perform the k′ integral, and
shift the integral over p′ to an integral over q. Then we set p along the z-axis

2We assumed that t ≡ −(P − P ′)2 is small. For identical particles, there is an equal
contribution from the phase space where u ≡ −(P − K ′)2 is small. This factor of two is
included in the definition of Iij .
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and k in the zx plane:

p = (0, 0, p) , (A.10)

k = (k sin θpk, 0, k cos θpk) , (A.11)

q = (q sin θqp cosφ, q sin θqp sinφ, q cos θqp) . (A.12)

The energy conservation δ-function can be written

δ(p+ k − p′ − k′) =
1

q

1− cos θpk

(1− cos θpk)2 + sin θ2
pk cos2 φ

δ

(
cos θpq −

sin θpk cosφ[
(1− cos θpk)2 + sin θ2

pk cos2 φ
]1/2

)
, (A.13)

where we used p′ ' p + q cos θqp and k′ ' k + k cos θkq. The averaged matrix
element in a leading-log approximation is

1

νg

∑
s,c

|M |2 =
1

16p2k2νg

|M|2 with |M|2 =
4ν2

gg
4C2

A

dA

s2

t2
. (A.14)

Here the Mandelstam variables are

s ≡− (P +K)2 = 2pk(1− cos θpk) ,

t ≡− (P ′ − P )2 = −q2 (1− cos θpk)
2

(1− cos θpk)2 + sin θ2
pk cosφ2

. (A.15)

Thus p̂iI ijp̂j is given by

p̂iI ij(p,k)p̂j =
1

4

∫
d3q

(2π)3
|M |2 2πδ(p+ k − p′ − k′) p̂ · q p̂ · q ,

=
νg g

4C2
A

8πdA

∫
dq

q

∫
dφ

2π

sin θ2
pk

1− cos θpk

cos2 φ ,

=
νg g

4C2
A

16πdA

ln (T/mD) (1 + cos θpk) . (A.16)
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The remaining contractions p̂iI ijk̂j and I ii are computed similarly, yielding

p̂iI ijp̂j =
TµA

2ξB
(1 + cos θpk) = a1(1 + cos2 θpk) + 2a2 cos θpk + a3 , (A.17)

p̂iI ijk̂j =
TµA

2ξB
(1 + cos θpk) = 2a1 cos θpk + a2(1 + cos2 θpk) + a3 cos θpk ,

(A.18)

I ii =
TµA

2ξB
(3− cos θpk) = 2a1 + 2a2 cos θpk + 3a3 . (A.19)

By solving for a1, a2, and a3, I
ij is written

I ij(p,k) =
TµA

2ξB

(
p̂ik̂j + k̂ip̂j

)
+
TµA

2ξB
(1− p̂ · k̂)δij . (A.20)

The loss term can be obtained by substituting I ij into Eq. (A.6)

I[χ]loss =
1

2
TµA

∫
p

np(1 + np)
∂χ(p)

∂pi

∂χ(p)

∂pi
, (A.21)

where we used the rotational invariance of nk(1+nk) and the definition of ξB.
Similarly, the gain term is given by

−I[χ]gain =
TµA

2ξB

[∫
p

np(1 + np) p̂ · ∂χ(p)

∂p

]2

+
TµA

2ξB

[∫
p

np(1 + np)
∂χ(p)

∂pi

]2

+
TµA

2ξB

∫
pk

npnk(1 + np)(1 + nk)[
p̂j k̂i∂χ(p)

∂pi

∂χ(k)

∂kj
− p̂ · k̂

(
∂χ(p)

∂pi

)(
∂χ(k)

∂ki

)]
, (A.22)

where the last line is in fact zero. In order to show this, we note that for the
rotationally invariant nk(1 + nk), we have∫

k

nk(1 + nk)

k

[
ki∂χ(k)

∂kj
− kj ∂χ(k)

∂ki

]
= −

∫
k

[(
ki ∂

∂kj
− kj ∂

∂ki

)
nk(1 + nk)

k

]
χ(k) = 0 . (A.23)

This result can be used to interchange i and j in ki∂χ(k)/∂kj in I[χ]gain.
By taking the variation of the loss and gain terms, the linearized Boltzmann
equation can be obtained as in Eq. (2.6).
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A.2 Extension to Multi-component Plasmas

In this section, we derive the collision term for multi-component plasmas.
The discussion follows from the pure glue case and will be brief.

The collision term of the Boltzmann equation is written as a variational
form:

Ca[f,p] = −(2π)3

νa

δ

δχa(p)
I[χ] , (A.24)

where3

I[χ] ≡
∑
abcd

1

16

∫
pkp′k′

|M cd
ab |2 (2π)4δ4(Ptot)n

a
pn

b
k(1± nc

p′)(1± nd
k′)[

χa(p) + χb(k)− χc(p′)− χd(k′)
]2
. (A.25)

The collision integral is classified with loss and gain terms as in the previous
section. The t-channel exchange diagrams (a)-(c) in Fig. 2.1 and Fig. 2.3 yield

I[χ]
(a)−(c)
loss =

∑
ab

∫
pkp′k′

|M |2 (2π)4δ4(Ptot)n
a
pn

b
k(1± na

p′)(1± nb
k′)

1

4
[χa(p)− χa(p′)]

2
, (A.26)

where the invariant matrix elements are∣∣Mab
ab

∣∣2 = 4νaνb
g4CRaCRb

dA

s2

t2
. (A.27)

Expanding the matrix elements gives

I[χ]
(a)−(c)
loss =

Tm2
D

16π
ln(T/mD)

∑
a

g2CRaνa

∫
p

na
p(1± na

p)

(
∂χa(p)

∂pi

)2

, (A.28)

where we used the definition of the Debye mass Eq. (2.40). The gain terms

3In the last section, the matrix elements were averaged over the spins and colors of the
particle a. Here the matrix elements are summed over the spins and colors of particle a.
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are handled as in the previous section:

− I[χ]
(a)−(c)
gain =

ln(T/mD)

16πdA

[∑
a

g2CRaνa

∫
p

na
p(1± na

p) p̂ · ∂χ
a(p)

∂p

]2

+
ln(T/mD)

16πdA

[∑
a

g2CRaνa

∫
p

na
p(1± na

p)
∂χa(p)

∂pi

]2

. (A.29)

When fermions are included, there are also pair annihilation process and a
Compton-like scattering. The pair annihilation diagram (d) in Fig. 2.3 yields

I[χ]
(d)
loss =

f∑
q

8

16

∫
pkp′k′

∣∣M gg
qq̄

∣∣2 (2π)4δ4(Ptot)n
q
pn

q̄
k(1 + ng

p)(1 + ng
k)[

[χq(p)− χg(p)]2 + [χq̄(k)− χg(k)]2
]
, (A.30)

I[χ]
(d)
gain =

f∑
q

8

16

∫
pkp′k′

∣∣M gg
qq̄

∣∣2 (2π)4δ4(Ptot)n
q
pn

q̄
k(1 + ng

p)(1 + ng
k)[

2[χq(p)− χg(p)][χq̄(k)− χg(k)]

]
. (A.31)

The invariant matrix element is∣∣Mgg
qq̄

∣∣2 = 4νqC
2
Fg

4
(u
t

)
. (A.32)

Then

I[χ]
(d)
loss =

1

2

f f̄∑
a

∫
pk

nF
p (1 + nB

p )nF
k (1 + nB

k )
[
χa(p)− χg(p)

]2
I(p,k) , (A.33)

with

I(p,k) =

∫
q

|M |2 2πδ(P 0
tot) =

νqC
2
Fg

4

4πpk
ln(T/mD) . (A.34)

This integral is performed by using the parameterization given in the previous
section. Thus

I[χ]
(d)
loss =

1

2
γ

f f̄∑
a

νa

∫
p

nF
p (1 + nB

p )

p

[
χa(p)− χg(p)

]2
. (A.35)
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The gain term is

I[χ]
(d)
gain =

f∑
a

νaγ

ξBF

∫
k

nF
k (1 + nB

k )

k

[
χā(k)− χg(k)

]
∫

p

nF
p (1 + nB

p )

p

[
χa(p)− χg(p)

]
. (A.36)

The Compton scattering diagram (e) in Fig. 2.3 yields

I[χ]
(e)
loss =

f f̄∑
a

1

2

∫
pkp′k′

∣∣Mag
ga

∣∣2 (2π)4δ4(Ptot)n
F
p n

B
k (1 + nB

p )(1− nF
k )[

χa(p)− χg(p)
]2
, (A.37)

I[χ]
(e)
gain =

f f̄∑
a

1

2

∫
pkp′k′

∣∣Mag
ga

∣∣2 (2π)4δ4(Ptot)n
F
p n

B
k (1 + nB

p )(1− nF
k )[

[χa(p)− χg(p)][χg(k)− χa(k)]

]
. (A.38)

where the matrix element is∣∣Mqg
gq

∣∣2 = −4νqC
2
Fg

4 s

t
. (A.39)

The integrals are simplified to

I[χ]
(e)
loss =

1

2
γ

f f̄∑
a

νa

∫
p

nF
p (1 + nB

p )

p
[χa(p)− χg(p)]2 , (A.40)

I[χ]
(e)
gain = −1

2

γ

ξBF

f f̄∑
a

νa

[∫
p

nF
p (1 + nB

p )

p
(χa(p)− χg(p))

]2

. (A.41)

Taking a variation of Eqs. (A.28), (A.29), (A.35), (A.36), (A.40), and (A.41)
yields the collision terms given in Section 2.3.
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Appendix B

Numerical Solution of
Boltzmann Equation

In this appendix, we provide all the details of numerical solutions and pro-
cedures to solve the Boltzmann equation. The pure glue case will be considered
first, and then the extension to including fermions will be discussed.

B.1 Pure Glue

The problems we are working in this thesis are symmetric around an az-
imuthal angle. Therefore, it is convenient to use a real spherical harmonic
basis:

Hlm(p̂) = NlmPl|m|(cos θp)×


1 for m = 0√

2 cosmφp for m > 0√
2 sin |m|φp for m < 0

. (B.1)

Here Nlm is the normalization factor

Nlm =

[
2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2

, (B.2)

and Pl|m|(cos θp) is the associated Legendre polynomial. We note the equality

p̂x =

√
4π

3
H11(p̂) , p̂y =

√
4π

3
H1,−1(p̂) , p̂z =

√
4π

3
H10(p̂) . (B.3)

In the harmonic basis, the left-hand-side (LHS) of Eq. (3.17), after multi-
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plied by p2, is

p2(LHS) = (−iωδll′ + ikCm
ll′ )N(p)χl′m − iωN(p)HSlm(p) . (B.4)

Here we defined
N(p) = p2np(1± np) , (B.5)

and recorded the Clebsch Gordan coefficients

Cm
ll′ = δl+1,l′

Nlm

Nl+1,m

(
l − |m|+ 1

2l + 1

)
+ δl−1,l′

Nlm

Nl−1,m

(
l + |m|
2l + 1

)
. (B.6)

In the source term, H is one of the following:

H = hzx,
hzz

2
, hxy, CAβ(g)T 2H

2
, (B.7)

corresponding to the shear, sound, transverse tensor, and bulk modes, respec-
tively. By examining the source terms in Eq. (3.17) (for the first three modes)
and Eq. (3.35) (for the bulk mode), Slm(p)’s in the harmonic basis are

−iω pzpz

2EpT
N(p)hzz ⇒ Szz

lm(p) =

(
δl2δm0 2

√
4π

5
+ δl0δm0

√
4π

)
p

3T
, (B.8)

−iω p
zpx

EpT
N(p)hzx ⇒ Szx

lm(p) = δl2δm1

√
4π

15

p

T
, (B.9)

−iω p
xpy

EpT
N(p)hxy ⇒ Sxy

lm(p) = δl2δm,−2

√
4π

15

p

T
, (B.10)

+iω
m̃2

2EpT
N(p)H ⇒ SH

lm(p) = δl0δm0

(
− m̃2

√
4π

CAβ(g)Tp

)
, (B.11)

where m̃2/T 2CAβ(g) will be given by Eq. (B.49). Then Eq. (3.17) reads

(
− iωδll′ + ikCm

ll′

)
N(p)χl′m − iωN(p)HSlm(p)

= TµA

[
∂

∂p
N(p)

∂

∂p
− l(l + 1)

p2
N(p)

]
χlm +

δl0δm0

ξB

√
4π

[
−∂N(p)

∂p

](
−dE

dt

)
+

δl1δmm′

ξB

√
4π

3

[
−∂N(p)

∂p
+

2

p
N(p)

](
−dP

dt

)
1m′

. (B.12)

We discretize the momentum space so that solving the Boltzmann equation
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for χlm(pn) reduces to solving a system of linear equations

Aijxj = bi . (B.13)

To this end, the radial momenta are discretized, pn = 0.5 ∆p + n∆p with
n = 0 . . .M − 1. For numerical purposes, we define

Flm ≡
χlm

−iwH
, w ≡ Tω

µA

, k ≡ Tk

µA

, (B.14)

and set T = 1 from now on. Then the equation of motion becomes

(−iwδll′ + ikCm
ll′ )N(p)Fl′m +N(p)Slm(p)

=

[
∂

∂p
N(p)

∂

∂p
− l(l + 1)

p2
N(p)

]
Flm−

δl0δm0

ξB,E

√
4π

[
−∂N(p)

∂p

](
1

−iwHµA

dE

dt

)
− δl1δmm′

ξB,P

√
4π

3

[
−∂N(p)

∂p
+

2

p
N(p)

](
1

−iwHµA

dP

dt

)
1m′

, (B.15)

where we use a second order difference approximation for the second derivative

∂

∂p
N(p)

∂F (pn)

∂p
=

1

(∆p)2

[
N(pn+1/2)[F (pn+1)− F (pn)]

−N(pn−1/2)[F (pn)− F (pn−1)]

]
. (B.16)

For the gain terms, we use a midpoint rule:(
1

−iwHµA

dE

dt

)
=
√

4π
∑

n

∆p

(2π)3
pn

∂

∂p
N(pn)

∂F00(pn)

∂p
, (B.17)(

1

−iwHµA

dP

dt

)
1m

=

√
4π

3

∑
n

∆p

(2π)3
pn[

∂

∂p
N(pn)

∂F1m(pn)

∂p
− 2

p2
n

N(pn)F1m(pn)

]
. (B.18)
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ξB’s are defined so that energy and momentum are conserved:

ξB,E = 4π
∑

n

∆p

(2π)3
pn

[
−∂N(pn)

∂p

]
' 1

6
, (B.19)

ξB,P =
4π

3

∑
n

∆p

(2π)3
pn

[
−∂N(pn)

∂p
+

2

pn

N(pn)

]
' 1

6
, (B.20)

and the derivative of N(p) is

∂N(pn)

∂p
=
N(pn+1/2)−N(pn−1/2)

∆p
. (B.21)

The boundary conditions of the difference operator in Eq. (B.16) need to
be specified. The absorptive boundary condition χ(p)|p=0 = 0 in Section 2.2.1
means that we take F00(p−1) = −F00(p0), F1m = −F1m(p0), and Flm(p−1) =
Flm(p0) for l ≥ 2. At high momentum, we use the first order differential
equation Eq. (2.16). In the spherical harmonic basis, this equation reads

(−iwδll′ + ikCm
ll′ )N(p)Fl′m(p) +N(p)Slm(p)

= −N(p)
∂Flm

∂p
− δl0δm0

ξB,E

√
4πN(p)

(
1

−iwHµA

dE

dt

)
− δl1δmm′

ξB,P

√
4π

3
N(p)

(
1

−iwHµA

dP

dt

)
1m′

. (B.22)

This first order differential equation leads to the update rule for the upper
boundary:

Flm(pM) = Flm(pM−1)−∆p (−iw + ikCm
ll′ )Fl′m(pM−1)

−∆p Slm(pM−1)−∆p
δl0δm0

ξB,E

√
4π

(
1

−iwHµA

dE

dt

)
−∆p

δl1δmm′

ξB,P

√
4π

3

(
1

−iwHµA

dP

dt

)
1m′

. (B.23)

We now write the discretized form as the matrix equation, Ax = b. By
examining the discretized update rules in Eqs. (B.15) and (B.16), and the
boundary condition in Eq. (B.23), we see that the appropriate vector bnlm is

bnlm = N(pn)Slm(pn) + δn,M−1
1

(∆p)
N(pn+1/2)Slm(pn) . (B.24)
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We note that the last δn,M−1 piece arises because in Eq. (B.22) we specified
the first derivative of the distribution function at high momentum.

In order to solve the system of linear equations, we use BiCGSTAB algo-
rithm which generalizes the conjugate gradient algorithm to non-symmetric
matrices [62]. In addition to performing the multiplication Ax, a typical
BiCGSTAB implementation requires ATx. In the present case, ATx involves
simply the replacement w → −w and k → −k in the equations. As the pre-
conditioner, we take the diagonal parts of the matrix elements:

Aprecond = δnlm,n′l′m′

[
−2N(pn)

(∆p)2
− l(l + 1)

p2
N(pn)

]
. (B.25)

After solving for Flm, the stress tensor is easily found. For example,

Gzxzx(ω, k)

−iω
µA

dAT 5
=
δT zx(ω,k)

+iωhzx

µA

dAT 5
, (B.26)

= −2

√
4π

15

∑
n

∆p

(2π)3
N(pn) pn F21(pn) , (B.27)

⇒ η
µA

dAT 5
, (B.28)

where the overall factor of two is the spin, and the arrow (⇒) indicates the
limit ω → 0, k = 0.

We record the final expressions for iGR(ω)/ω for the sound mode, the
transverse tensor mode, and the bulk mode, respectively:

δT zz(ω, k)

iω(hzz/2)

µA

dAT 5
= −2

∑
n

∆p

(2π)3
N(pn)

pn

3

(
2

√
4π

5
F20(pn) +

√
4πF00(pn)

)
,

(B.29)

⇒ 4

3
η
µA

dAT 5
, (B.30)

δT xy(ω, k)

iωhxy

µA

dAT 5
= −2

∑
n

∆p

(2π)3
N(pn)

(
pn

√
4π

15

)
F2,−2(pn) , (B.31)

⇒ η
µA

dAT 5
, (B.32)
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δT µ
µ(ω, k)

iω(H/2)

µA

dAT 5C2
Aβ(g)2

= −2
∑

n

∆p

(2π)3
N(pn)

(
−m̃2

√
4π

CAβ(g) pn

)
F00(pn) ,

(B.33)

⇒ 9ζ
µA

dAT 5C2
Aβ(g)2

. (B.34)

B.2 Multi-component Plasmas

The discussion for the pure glue case is extended to multi-component plas-
mas. The current-current correlators will be considered in the next section.

For multi-component plasmas, we introduce a rescaled Debye mass:

m̂2
D =

m2
D

g2CA

=

g,(q+q̄)/2∑
a

ν̂aĈa

∫
p

np(1± np) =
1

3

(
1 +

NfTF

Nc

)
. (B.35)

Here we also rescaled the quadratic Casimir and the number of degrees of
freedom:

Ĉa =
CRa

CA

and ν̂a =
νa

dA

. (B.36)

Explicitly, we have ν̂A = 2, ν̂q = 2Nf
dF

dA
, and ν̂(q+q̄)/2 = 4NfdF/dA.

Then the total work and momentum transfer per volume are(
1

−iwHµAdA

dE

dt

)
=

g,(q+q̄)/2∑
a

ν̂aĈa

√
4π
∑

n

∆p

(2π)3
pn

∂

∂p
N(pn, sa)

∂F a
00(pn)

∂p
,

(B.37)

(
1

−iwHµAdA

dP

dt

)
1m

=

g,(q+q̄)/2∑
a

ν̂aĈa

√
4π

3

∑
n

∆p

(2π)3
pn[

∂

∂p
N(pn, sa)

∂F a
1m(pn)

∂p
− 2

p2
n

N(pn, sa)F
a
1m(pn)

]
. (B.38)

The rescaled Debye masses read

m̂2
D,E ≡

g,(q+q̄)/2∑
a

ν̂aĈa 4π
∑

n

∆p

(2π)3
pn

[
−∂N(pn, sa)

∂p

]
' m̂2

D , (B.39)

m̂2
D,P ≡

g,(q+q̄)/2∑
a

ν̂aĈa
4π

3

∑
n

∆p

(2π)3
pn

[
−∂N(pn, sa)

∂p
+

2

pn

N(pn, sa)

]
' m̂2

D .

(B.40)
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The equations of motion for a = g and a = (q + q̄)/2 are

(−iwδll′ + ikCm
ll′ )N(p, sa)F

a
l′m +N(p, sa)S

a
lm(p)

= Ĉa

[
∂

∂p
N(p, sa)

∂

∂p
− l(l + 1)

p2
N(p, sa)

]
F a

lm

− δl0δm0Ĉa

m̂2
D,E

√
4π

[
−∂N(p, sa)

∂p

](
1

−iwHµAdA

dE

dt

)
− δl1δmm′Ĉa

m̂2
D,P

√
4π

3

[
−∂N(p, sa)

∂p
+

2

p
N(p, sa)

](
1

−iwHµAdA

dP

dt

)
1m′

+
p2Ca

qg

−iwHµA

. (B.41)

To specify the Ca
qg terms, we define

γ̂ ≡ γ

µA

= 2

(
CF

CA

)2
ξBF

m̂2
D

, (B.42)

ξBF ≡
1

16
, (B.43)

NBF ≡ pnF
p (1 + nB

p ) . (B.44)

Then the collision terms are

p2

−iwHµA

C(q+q̄)/2

qg = −γ̂NBF (pn)
[
2F (q+q̄)/2

lm (pn)− 2F g
lm(pn)

]
, (B.45)

p2

−iwHµA

Cg
qg =

ν̂(q+q̄)/2

ν̂g

γ̂NBF (pn)
[
2F (q+q̄)/2

lm (pn)− 2F g
lm(pn)

]
. (B.46)

Finally, the expressions for the stress tensor remain valid with the appropriate
modifications. For example, Eq. (B.33) becomes

δT µ
µ(ω, k)

iω(H/2)

µA

dAT 5C2
Aβ(g)2

= −
g,(q+q̄)/2∑

a

ν̂a

∑
n

∆p

(2π)3
N(pn, sa)

(
−m̃2

a

√
4π

CAβ(g) pn

)
F a

00(pn) , (B.47)

⇒ 9ζ
µA

dAT 5C2
Aβ(g)2

, (B.48)
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where the scaled masses are

m̃2
(q+q̄)/2

CAβ(g)T 2
= −ĈF

4
and

m̃2
g

CAβ(g)T 2
=−

(
1

6
+
ν̂(q+q̄)/2Ĉ(q+q̄)/2

24

)
. (B.49)

In solving the equations, the transpose is also needed. When multiplying by
ATx, it must be realized that the matrix implied by Eqs. (B.45) and (B.46)
is not symmetric, and the transpose of this equation should be used. Alterna-
tively, Eqs. (B.45) and (B.46) can be made symmetric by rescaling F a

lm with√
νa and changing the formulas of this section appropriately.

B.3 Current

In this section, we discuss a numerical procedure to solve Eq. (3.115).
Multiplying by p2, the left hand side becomes

p2(LHS) = (−iωδll′ + ikCm
ll′ )N(p)χl′m(p)− iωN(p)ASlm(p) . (B.50)

Here A is one of the following:

A =
2QsAz

T
,

2QsAx

T
, (B.51)

corresponding to the longitudinal and transverse modes, respectively. In this
section, N(p) = p2np(1 − np) and we dropped the s − s̄ label on χs−s̄

lm . From
Eq. (3.115), the sources in the harmonic basis are

−iωnp(1− np)2QsAz
pz

EpT
⇒ Sz

lm =

√
4π

3
δl1δm0 , (B.52)

−iωnp(1− np)2QsAx
px

EpT
⇒ Sx

lm =

√
4π

3
δl1δm1 . (B.53)

For the net strangeness, we define Flm(p) ≡ χ
−iwA . Then Eq. (3.115) becomes

(−iwδll′ + ikCm
ll′ )N(p)Fl′m(p) +N(p)Slm(p)

= ĈF

[
∂

∂p
N(p)

∂

∂p
− l(l + 1)

p2
N(p)

]
Flm(p)

− 2γ̂NBF (p)Flm(p)− δl0δm0

ξBF,Q

√
4πNBF (p)

(
1

−iwA
dQ

dt

)
, (B.54)
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where the charge transfer rate is

1

−iwA
dQ

dt
= −2γ̂

√
4π
∑

n

∆p

(2π)3
NBF (pn)F00(pn) . (B.55)

We define ξBF so that the strange charge is exactly conserved:

ξBF,Q = 4π
∑

n

∆p

(2π)3
NBF (pn) . (B.56)

Finally, from Eq. (3.116) and the susceptibility in Eq. (3.120), we determine
the longitudinal and transverse current-current correlators:

Jz

iωAz

µF

Tχs

= −ĈF

ξF

∑
n

∆p

(2π)3
N(pn)

(√
4π

3
F10(pn)

)
⇒ D

µF

T
, (B.57)

Jx

iωAx

µF

Tχs

= −ĈF

ξF

∑
n

∆p

(2π)3
N(pn)

(√
4π

3
F11(pn)

)
⇒ D

µF

T
. (B.58)
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Appendix C

Heavy Quark Source in Kinetic
Theory

To compute the heavy quark source, we consider the process g + qH →
g + qH , where g is non-equilibrium gluon and qH is a heavy quark moving at
a constant velocity v (see Fig. 4.2). The squared matrix element is

|M|2 = 16
g4CFNc

2dA

[
2(K · P )2

Q4
− M2

Q2
+

M2

4(K · P )2

]
. (C.1)

Here K is the heavy quark momentum, P is the gluon momentum, Q = P ′−P
is the four momentum transferred to the gluon, and we averaged over the
colors and spins of the external gluon. In a leading-log approximation, we
keep only the first term of the right hand side in Eq. (C.1). The source term
is produced around the quark, and is given by another Boltzmann collisional
integral corresponding to the process:

S(t,x,p) =S(p)δ3(x− vt) ,

=−
∫

kp′k′

|M|2

16k0k′0pp′
(2π)4δ4(Ptot)

[
fpfk(1 + fp′)(1 + fk′)

− fp′fk′(1 + fp)(1 + fk)
]
. (C.2)

Here the heavy quark distribution fk = (2π)3δ3(k − kH)δ3(x − vt) is out of
equilibrium.

We expand the source in a spherical harmonic basis in the laboratory co-

129



ordinate system (x, y, z):

S(p) =
∑
l,m

Slm(p)Hlm(p̂; zx) =

√
2l + 1

4π

∑
l

Sl0(p)Pl(cos θpk) . (C.3)

We note that the Slm vanishes for non-zero m due to the azimuthal symme-
try of the problem. By following the phase space integration with kinematic
approximations in Ref. [95] and using the orthogonality of Pl(cos θpk), the
expansion coefficients can be computed:

Sl0(p) = −
√

2l + 1

4π

∫ ∞

0

dq

∫ vq

−vq

dω

v

∫
dφ

2π
Pl(cos θpk)

|M|2

16p2(k0)2
[fp(1 + fp+ω)− fp−ω(1 + fp)] . (C.4)

Here ω is the energy transfer, q = p′−p is the three momentum transfer, and
φ is the azimuthal angle. In this parameterization, the matrix elements are

|M|2

16p2(k0)2
=
g4CFNc

2dA

2(1− v cos θkp)2

(q2 − ω2)2
, (C.5)

where cos θkp is expressed in terms of ω, q, and φ [95]. Now we consistently
expand the integrand to quadratic order in ω/T and q/T . This includes three
types of terms: an expansion of the distribution functions to quadratic order,
an expansion of the angle cos θpk to linear order in q/T , and an expansion
of the Legendre polynomial to linear order, Pl(x + δx) ' Pl(x) + P ′

l (x) δx.
With the full expansion, we explicitly integrate over the azimuthal angle φ
and the energy ω, by observing that all harmonics vanish for l > 1 when
v = 1. Further, the l = 0 and l = 1 terms can be computed analytically
yielding Eq. (4.9):

S00(p) =
1√

4πT 2

[
g4CFNc

2dA

]
log

(
T

mD

)
fp(1 + fp)

(
−2T

p
+ 1 + 2fp

)
,

(C.6)

S10(p) =
1√

12πT 2

[
g4CFNc

2dA

]
log

(
T

mD

)
fp(1 + fp)(1 + 2fp) . (C.7)
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Appendix D

Numerical Details in Kinetic
Theory with a Heavy Quark
Probe

In this appendix, we give numerical details of how the stress tensor is com-
puted in kinetic theory with a heavy quark probe. The linearized Boltzmann
equation in Fourier space reads

(−iω + ivp · k)δf(ω,k,p) = C[δf,p] + 2πS(p)δ(ω − v · k) . (D.1)

Here k in the laboratory coordinate system is

k = (kx, ky, kz) = k(sin θk cosϕk, sin θk sinϕk, cos θk) . (D.2)

In order to solve Eq. (D.1) in Fourier space, we introduce the Fourier coordi-
nate system (x′, y′, z′):

x̂′ =
k

kT

k̂ × (v̂ × k̂) , (D.3)

ŷ′ =
k

kT

v̂ × k̂ , (D.4)

ẑ′ = k̂ . (D.5)

We reexpress the source and ultimately the solution δf in terms of real spher-
ical harmonics in Fourier coordinate system. We note that the unit vector p̂
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has the following components:

p̂x′ =

√
4π

3
H11(p̂; z′x′) , (D.6)

p̂y′ =

√
4π

3
H1,−1(p̂; z′x′) , (D.7)

p̂z′ =

√
4π

3
H10(p̂; z′x′) . (D.8)

Since the distribution function δf is independent of the azimuthal angle of k
with respect to the (x, y, z) coordinate system, we choose ϕk = 0 so that k lies
in the xz plane. Then in the (x′, y′, z′) coordinate system

v̂ = (vx′ , vy′ , vz′) = (sin θ, 0, cos θ) , (D.9)

and

v̂ · p̂ =

√
4π

3

[
cos θ H10(p̂; z′x′) + sin θ H11(p̂; z′x′)

]
. (D.10)

The solution to the linearized Boltzmann equation is expanded in the real
spherical harmonics:

δf(ω,k,p) =
∑
lm

2πδ(ω − v · k)np(1 + np)χlm(p,k)Hlm(p̂; z′x′) . (D.11)

The Boltzmann equation for χlm is

(−iωδll′ + ikCm
ll′ ) p

2np(1 + np)χl′m = Clm[δf,p] +Hp2np(1 + np)
µA

T
Slm(p, θ) ,

(D.12)

where the index m is not summed over. In the above equation, Cm
ll′ is a

Clebsch Gordan coefficient, Clm[δf,p] is the collision integral in this basis, the
normalization coefficient is

H =
µF

T 3dAµA

, (D.13)

and the source is

Slm(p, θ) =
1

2ξB/T 3

[(−2T

p
+ 1 + 2np

)√
4πδl0δm0

+

√
4π

3
(1 + 2np) (δl1δm0 cos θ + δl1δm1 sin θ)

]
. (D.14)
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For each value of (kx, kz), the linear equations are solved for Flm ≡ χlm/H.
Due to rotational symmetry of the collision term around the k axis, the matrix
equation does not mix harmonics with different values ofm. Thus, the collision
operator is diagonal in m, and the equation is solved for m = 0 and m = 1
separately.

After solving for δf(ω,k,p), we use kinetic theory to compute the energy
and momentum excess:

δT 0µ(ω,k) = 2dA

∫
d3p

(2π)3
pµδf(ω,k,p) . (D.15)

Here since T 0µ(ω,k) is proportional to 2πδ(ω − v · k), we define

δT 0µ(ω,k) ≡ 2πδ(ω − v · k)T̃ 0µ(kz, kT ) . (D.16)

The relationship between (x, y, z) and (x′, y′, z′) coordinate systems is

δT 0x(ω,k) = cos θ δT 0x′(ω,k)− sin θ δT 0z′(ω,k) , (D.17)

δT 0y(ω,k) = 0 , (D.18)

δT 0z(ω,k) = sin θ δT 0x′(ω,k) + cos θ δT 0z′(ω,k) . (D.19)

δT 0x and δT 0y can be expressed in terms of δT 0kT :

δT̃ 0x(k) =δT̃ 0kT (kz, kT ) cosϕk , (D.20)

δT̃ 0y(k) =δT̃ 0kT (kz, kT ) sinϕk . (D.21)

Since we chose ϕk = 0, it is sufficient to determine T 0kT (kz, kT ).
Once the stress tensor is tabulated in the (kz, kT ) plane, we take the Fourier

transforms to compute the stress tensor in coordinate space:

δT 0µ(t,x) =

∫ ∞

−∞

dω

2π

∫
d3k

(2π)3
e−iωt+ik·x δT 0µ(ω,k) . (D.22)

By using the identity

eikT xT cos(ϕr−ϕk) = J0(kTxT ) + 2
∑

n

inJn(kTxT ) cos(n(ϕr − ϕk)) , (D.23)
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we can show that

δT 00(xL, xT ) =

∫ ∞

0

kT dkT

2π
J0(kTxT )

∫ ∞

−∞

dkz

2π
eikzz δT̃ 00(kz, kT ) , (D.24)

δT 0xT (xL, xT ) =

∫ ∞

0

kT dkT

2π
J1(kTxT )

∫ ∞

−∞

dkz

2π
eikzzi δT̃ 0kT (kz, kT ) , (D.25)

δT 0z(xL, xT ) =

∫ ∞

0

kT dkT

2π
J0(kTxT )

∫ ∞

−∞

dkz

2π
eikzz δT̃ 0k(kz, kT ) . (D.26)

These Fourier integrals diverge at high momentum. In order to get a conver-
gent result, we first multiply the numerical data by a window function which
eliminates the high frequency contributions. For kinetic theory, a sample win-
dow function is

W (k) =
1

2

[
1− erf ((k − kmax)/σ)

]
, (D.27)

with kmax = 7.5µA/T and σ = 3.5µA/T . For the AdS/CFT, kmax and σ are
considerably larger: for instance, kmax = 80πT and σ = 60πT .
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Appendix E

AdS/CFT with a Heavy Quark
Probe

For completeness, we provide details on the response of the N = 4 SYM
plasma to a heavy quark probe, following the notations and conventions of
Refs. [85, 104]. We should mention that the calculations for v = 1 were done
by P. Chesler in Ref. [73] as an extension of Ref. [85].

According to the AdS/CFT correspondence, the strongly coupled N = 4
SYM is dual to the five dimensional AdS-Schwarzschild geometry [105]. The
five dimensional metric is

ds2 =
L2

u2

[
−f(u)dt2 + dx2 +

du2

f(u)

]
. (E.1)

Here u is the radial coordinate of the AdS geometry with u = 0 corresponding
to the boundary, L is the AdS curvature radius, f(u) = 1− u4/u4

h with uh =
1/πT , and T is the Hawking temperature of the plasma and dual geometry. A
heavy quark in the SYM plasma is dual to a string in the AdS-Schwarzschild
geometry, with the string ending at u = 0 [106]. In the large Nc limit, the five
dimensional gravitational constant κ2

5 = 4πL3/N2
c is small, and the equation

of motion can be solved perturbatively. A heavy quark moving at constant
velocity v is described by the trailing string [98, 100]:

xstring(t, u) = v

[
t+

uh

2

(
tan−1 u

uh

+
1

2
ln
uh − u

uh + u

)]
. (E.2)
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The corresponding five dimensional stress tensor has the following components:

t0i = −viF , tij = vivjF , t00 =
u4v2 + u4

hf

u4
h

F ,

t05 = −u
2v2

u2
hf
F , ti5 =

u2vi

u2
hf
F , t55 =

v2 − f

f 2
F . (E.3)

Here

F =
u
√
λ

2πL3
√

1− v2
δ3(x− xstring) , (E.4)

and λ is the ’t Hooft coupling.
The string perturbs the background geometry linearly

GMN ≡ G
(0)
MN +

L2

u2
HMN , (E.5)

where G
(0)
MN is the background metric (E.1) and HMN is the perturbation. By

taking the Fourier transform

HMN(t,x, u) =

∫
dω

2π

d3k

(2π)3
HMN(ω,k, u)e−iωt+ik·x, (E.6)

we find two convenient diffeomorphism invariant fields [86, 104]:

Z0 ≡
4f

ω
kiH ′

0i −
4f ′

ω
kiH0i −

2f ′

k2
kikjHij + 4ifkiHi5

− (2uk2−f ′)
k2

(
k2δij−kikj

)
Hij +

4k2f

iω
H05 −

8κ2
5f

iω
t05 , (E.7)

Z1 ≡ (H ′
0i − iω Hi5) ε̂a . (E.8)

Here sums over repeated indices are implied with i, j running from 1 to 3 and
a running from 1 to 2, ′ denotes differentiation with respect to u, and

ε̂1 =
k

k⊥
k̂ × (v̂ × k̂) and ε̂2 =

k

k⊥
v̂ × k̂ . (E.9)

The field Z0 transforms as a scalar under rotations, and Z1 transforms as a
vector under rotations1.

The equations of motion for Z0 and Z1 are straightforward to derive from

1A complete set of gauge invariants also includes a field which transforms as a traceless
symmetric tensor under rotations [86]. This tensor mode is not necessary here.
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the linearized Einstein equations:

Z ′′
0 + A0Z

′
0 +B0Z0 = κ2

5S0 , (E.10)

where

A0 ≡ −
24 + 4k2u2 + 6f + k2u2f − 30f 2

uf (u2k2 + 6− 6f)
, (E.11)

B0 ≡
ω2

f 2
+
k2u2(14−5f−k2u2) + 18(4−f−3f 2)

u2f (k2u2 + 6− 6f)
, (E.12)

S0 ≡
8

f
t′00 +

4 (k2u2+6−6f)

3uk2f
(k2δij−3kikj)tij (E.13)

+
8iω

f
t05 +

8u [k2 (k2u2+6)− f (12k2−9f ′′)]

3f 2 (k2u2 − 6f + 6)
t00 −

8k2u

3
t55 − 8ikiti5 ,

and
Z ′′

1 + A1 Z ′
1 +B1 Z1 = κ2

5S1 , (E.14)

where

A1 ≡
uf ′ − 3f

uf
, (E.15)

B1 ≡
3f 2 − u (uk2 + 3f ′) f + u2ω2

u2f 2
, (E.16)

S1 ≡
2

f

[
t′0i + iω ti5

]
ε̂a . (E.17)

Since the string stress tensor in Eq. (E.3) only depends on time through the
combination x−vt, the string stress tensor in Fourier space is proportional to
2πδ(ω−v ·k). Consequently, the fields Zs are also proportional to 2πδ(ω−v ·
k). Moreover, because the string stress tensor in Eq. (E.3) is proportional to
1/
√

1− v2 and Eqs. (E.10) and (E.14) are linear, we define Zs = Z̃s/
√

1− v2

and solve for Z̃s in the v → 1 limit.
By assuming that the boundary geometry is flat, near the boundary the

fields Zs have the asymptotic expansions:

Z̃s(u) = Z̃(2)
s u2 + Z̃(3)

s u3 + Z̃(4)
s u4 + · · · . (E.18)

The cubic expansion coefficients Z̃
(3)
s determine the SYM energy density δT 00
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and the energy flux δT 0i [86, 104]:

δT 00 =− L3

8κ2
5

1√
1− v2

Z̃
(3)
0 , (E.19)

δT 0i =− L3

2κ2
5

1√
1− v2

[
Z̃

(3)i
1 +

ωki

4k2
Z̃

(3)i
0

]
− ikiµF (v)v2

k2
2πδ(ω − v · k) .

(E.20)
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Appendix F

Hydrodynamic Source in
AdS/CFT and Kinetic Theory

In this appendix, we explain in detail how the coefficients given in Table 4.1
are computed for both AdS/CFT and kinetic theory. In the process, we will
exhibit several fits. The quality of these fits indicates that the deviation of the
stress tensor from the hydrodynamic form at small ω and k is well described by
a multivariate polynomial. We will first discuss the AdS/CFT correspondence
and then indicate how the analysis can be applied to kinetic theory.

F.1 AdS/CFT

After computing the exact stress tensor of the AdS/CFT correspondence,
we determine the functions φv(k) and φk(k) in Eqs. (4.36) and (4.37). This
would seem to be simply a reparametrization of the original numerical data
on δT 0x′ and δT 0z′ with two functions φv(k) and φk(k). However, as we will
see, the functions φv(k) and φk(k) are analytic functions of k while the orig-
inal data have poles. Hydrodynamics describes the location of these poles in
expansions of k`mfp, where `mfp is mean free path. The first order hydrody-
namics determines the pole location to the linear order in k`mfp, but neglects
higher order terms. The pole shift is a consequence of modifying the hydro-
dynamic equations of motion by powers of k`mfp rather than modifying the
source. Since the ideal solution has a hydrodynamic pole at ω = csk, modi-
fying the equations of motion does not simply correct the solution by simple
powers of k`mfp close to the pole.

We determine the source functions φv(k) and φk(k) by using the first and
second order hydrodynamics1. Since φv(k) and φk(k) are functions of k and

1We note that φv is the same for the first and second order hydrodynamics. Only φk is
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ω = k cos θ, we can expand these functions in Fourier series:

φv(k, cos θ) ≡ φv;0(k) + 2φv;1(k) cos θ + 2φv;2(k) cos 2θ + · · · , (F.1)

πTφk(k, cos θ) ≡ φk;0(k) + 2φk;1(k) cos θ + 2φk;2(k) cos 2θ + · · · . (F.2)

In Fig. F.1 (a), we plot the terms of the Fourier series φv;n(k) and φk;n(k), and
fit these functions with a simple power law, Ckα, where C is a constant. As
we see from the fit, φv is well described by a quadratic polynomial at small k:

φv;0(k) = 1− 0.1643

(
k

πT

)2

, (F.3)

φv;1(k) = 0.5i

(
k

πT

)
, (F.4)

φv;2(k) = 0.0870

(
k

πT

)2

. (F.5)

The numerical result for φv;1 is consistent with the first order analytic result
in Ref. [85].

Now we examine kφk by using the first and second order hydrodynamics2.
When the first order hydrodynamics is used, the source function is not well
described by a polynomial (see Fig. F.1 (b)). However, we see that kφk de-
creases faster than k (as k1.52 for n = 1), and therefore kφk can be neglected in
the first order hydrodynamic analysis. When the second order hydrodynamics
is used, kφk is well described by the quadratic polynomial (see the linear fit in
Fig. F.1 (c) for φk;1). Numerically, we find

φk;0(k) = −1

3
and φk;1(k) = 0.11i

(
k

πT

)
, (F.6)

up to non-analytic terms that fall faster than k2. These non-analytic terms
could be removed by pushing the hydrodynamic analysis to the third order.
By using the fits in Eqs. (F.3)-(F.6) (with the relation between φv, φk and
φ1,φ2 in Eq. (4.30)), we parametrize the source by three numbers to second
order which are given in Table 4.1.

affected by non-zero τπ.
2We discuss kφk instead of simply φk since the source for hydrodynamics is kφk(k) in

Eq. (4.31).
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Figure F.1: Hydrodynamic fits to the AdS/CFT source functions φv ≡ 1 +
∆φv and πTφk = −1

3
+ ∆φk at small k. The Fourier coefficients displayed

in this figure have been multiplied by a factor indicated in parentheses to
increase visibility, and are fit with the functional form Ckα. The dotted lines
and open circles have non-integer fit-powers and lie beyond the description
of hydrodynamics to the specified order, i.e. the fit is not expected to work.
(a) The n = 0, n = 1, and n = 2 Fourier coefficients of φv. (b) The n = 0,
n = 1, and n = 2 Fourier coefficients of φk, when φk is extracted by using
the first order hydrodynamics. (c) Same as (b), but for the second order
hydrodynamics.
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Figure F.2: (a) A polynomial fit to the kinetic theory source function φv;0.
The fit result is recorded in Eq. (F.7). (b) By using the fit coefficient from (a),
a prediction is made for φk;1 (see Eq. (F.8)).

F.2 Kinetic Theory

As in the AdS/CFT, we determine the source functions φv(k) and φk(k)
from the numerical data by using Eqs. (4.36) and (4.37). Then we expand these
functions in Fourier series as in Eqs. (F.1) and (F.2), but with the appropriate
unit µA/T in place of πT . The Fourier coefficients are fit with a polynomial
(see Fig. F.2):

φv;0(k) = 1 + 1.66(1)

(
kT

µA

)2

, (F.7)

φk;1(k) = −1

6
1.66(1)i

(
kT

µA

)
. (F.8)

The other Fourier coefficients of φv and kφk decrease faster than k2. The fact
that φv;0 and φk;1 have the same fit coefficient (up to a symmetry factor of
1/6) is a consequence of the hydrodynamic analysis in Section 4.4.

By comparing fits with Eq. (4.30), we determine the coefficients φ
(0,0)
1 ,

φ
(1,0)
1 , and φ

(0,0)
2 which are recorded in Table 4.1. As discussed in Section 4.4,

φ1(ω, k
2) vanishes to all orders in ω and k, which can be understood as follows.

For a given k, we expect that there is a non-zero component of T ij(ω,k) which
transforms as a spin two tensor under rotations around the k axis. This spin
two component determines the term

[
vivj − 1

3
v2δij

]
φ1 in Eq. (4.28). Since

the kinetic theory source in Eq. (4.9) does not have m = 2 harmonics and
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the Boltzmann equation does not mix harmonics of different spins, the spin
two component of the stress tensor vanishes. Therefore, φ1 vanishes. This
approximate symmetry is specific to the simplified form of the source in a
leading-log approximation, and is not expected to hold more generally.
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Appendix G

Two-loop Diagrams

In this appendix, we compute the squared matrix elements for the two loop
diagrams in Fig. 5.10. We use the following cutting rules:

• For hard quark retarded propagators,

−i /P
P 2 +m2

∞ − iεp0
=

i/vp

2
[
p− − (p2

⊥+m2
∞)

p+ + iε
] . (G.1)

• For vertices with a soft gluon,

ig2P µAµ(P ′) = igp+vp · A(P ′) . (G.2)

• For hard quark cut lines running through the cut, we use the positive
energy part of

iS<
bare(P ) = −i 2π

2Ep

nF
p
/Pδ(p0 − Ep) + i

2π

2Ep

nF
−p
/Pδ(p0 + Ep) ,

→ −i2π
2
nF

p /vpδ
(
p− − (p2

⊥ +m2
∞)

p+

)
, (G.3)

whereas for cut lines running against the cut,

iS>
bare(P ) → −i2π

2
(1− nF

p )/vpδ
(
p− − (p2

⊥ +m2
∞)

p+

)
. (G.4)
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Figure G.1: A two-loop diagram with a soft gluon in Fig. 5.10 (a). Double
solid lines denote hard quarks, double wiggly lines denote hard photons, and
a single curly line denotes a soft gluon.

To compute the diagram (a) in Fig. 5.10, we consider the momenta drawn in
Fig. G.1:

(a) =
1

16

∫
P,P ′

nF
p+k(1− nF

p ) Tr [γa/vpγµ/vp+p′γa/vp+k+p′γν/vp+k]

2π
(
p− − (p2

⊥ +m2
∞)

(p+ + k+)

)
2π
(
p− + p′− − [(p⊥ + p′⊥)2 +m2

∞]

p+

)
1(

p− − (p2
⊥+m2

∞)

p+ + iε
) 1(

p− + p′− − [(p⊥+p′⊥)2+m2
∞]

(p++k+)
+ iε

) . (G.5)

By using the Eikonal approximation

vp ' vp+p′ and vp+k ' vp+k+p′ , (G.6)

and integrating over p− and p′− with the delta functions,

(a) = g2

∫
p+,p⊥,p′+,p′⊥

nF
p+k(1− nF

p )[vp · A(P ′)][vp+k · A(−P ′)]

〈p + p′|Jµ(K)|p + k + p′〉 〈p + k|Jν(−K)|p〉
1

[−δE(p⊥) + iε]

1

[δE(p⊥ + p′⊥) + iε]
. (G.7)
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Here the energy changes are

δE(p⊥) =
k+(p2

⊥ +m2
∞)

p+(p+ + k+)
, (G.8)

δE(p⊥ + p′⊥) =
k+[(p⊥ + p′⊥)2 +m2

∞]

p+(p+ + k+)
. (G.9)

With vp ' vp+k, the correlation of gauge fields yields the collision kernel

g2

∫
p′+

[vp · A(P ′)][vp+k · A(−P ′)]

∣∣∣∣
p′−=0

'
∫

p′+

T

p′0
ρµν(P ′)vµvµ

∣∣∣∣
p′−=0

,

= C[p′⊥] , (G.10)

and the diagram (a) is

(a) = −
∫

p+,p⊥,p′⊥

nF
p+k(1− nF

p )
C[p′⊥]

δE(p⊥)δE(p⊥ + p′⊥)

〈p + p′|Jµ(K)|p + k + p′〉 〈p + k|Jν(−K)|p〉 . (G.11)

Similarly, the diagrams (b)-(d) in Fig. 5.10 can be computed:

(b) = −
∫

p+,p⊥,p′⊥

nF
p+k(1− nF

p )
C[p′⊥]

δE(p⊥)δE(p⊥ + p′⊥)

〈p|Jµ(K)|p + k〉 〈p + k + p′|Jν(−K)|p + p′〉 , (G.12)

(c) =

∫
p+,p⊥,p′⊥

nF
p+k(1− nF

p )
C[p′⊥]

[δE(p⊥ + p′⊥)]2

〈p + p′|Jµ(K)|p + k + p′〉 〈p + k + p′|Jν(−K)|p + p′〉 , (G.13)

(d) =

∫
p+,p⊥,p′⊥

nF
p+k(1− nF

p )
C[p′⊥]

[δE(p⊥)]2

〈p|Jµ(K)|p + k〉 〈p + k|Jν(−K)|p〉 . (G.14)

With
〈p|Jµ(K)|p + k〉∗ = 〈p + k|Jµ(−K)|p〉 , (G.15)
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the diagram (b) is the complex conjugate of (a), and the sum of four diagrams
is

(a)+(b)+(c)+(d) = Re

∫
p+,p⊥,p′⊥

nF
p+k(1− nF

p )C[p′⊥][
| 〈p|Jµ(K)|p + k〉 |2

[δE(p⊥)]2
+
| 〈p + p′|Jµ(K)|p + k + p′〉 |2

[δE(p⊥ + p′⊥)]2

−2 〈p|Jµ(K)|p + k〉∗ 〈p + p′|Jν(K)|p + k + p′〉
δE(p⊥)δE(p⊥ + p′⊥)

]
. (G.16)

By using the translation invariance p → p− p′,

(a)+(b)+(c)+(d) ' 2 Re

∫
p+,p⊥,p′⊥

nF
p+k(1− nF

p )C[p′⊥][
| 〈p|Jµ(K)|p + k〉 |2

[δE(p⊥)]2
− 〈p|Jµ(K)|p + k〉∗ 〈p + p′|Jν(K)|p + k + p′〉

δE(p⊥)δE(p⊥ + p′⊥)

]
.

(G.17)

This sum yields the same photon emission rate as Eq. (5.43) which was com-
puted by the perturbative solution, by noting

〈p|Jµ(K)|p + k〉 ∝ 2p⊥

√
(pz)2 + (pz + k)2

pz(pz + k)
. (G.18)

To see that the sum of four diagrams yields the matrix elements of the LO
bremsstrahlung, we drop all masses. Then the integrand (without statistical
factors) in Eq. (G.16) gives

C[p′⊥]
16

k

pz(pz + k)

k

1 + z2

z

[
1

p2
⊥

+
1

(p⊥ + p′⊥)2
− 2p⊥ · (p⊥ + p′⊥)

p2
⊥(p⊥ + p′⊥)2

]
' C[p′⊥]

16

k

pz(pz + k)

k

1 + z2

z

p
′2
⊥

p4
⊥
, (G.19)

which agrees with Eq. (5.98) up to factors.
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Appendix H

Wide-angle Pair Annihilation

In this appendix, we compute the photon emission rate from the wide-
angle pair annihilation process, P +P ′ → K +K ′. Now the gluon momentum
is K ′ (not P ′) which is soft. The calculations are parallel to those in wide-
angle bremsstrahlung, except that we have different population factors and
momentum “joining” (rather than splitting).

• The momentum joining is given by

p+ = (1− z)k+ and p′+ = zk+ , (H.1)

where 0 < z < 1. By using the joining factor and the conservation of
the minus momenta, we express the minus coordinates in term of p−:

p′− =
(1− z)

z
p− and k′− =

1

z
p− . (H.2)

The Mandelstam variables are

s = k+k′− , t = −zk+k′− , u = −(1− z)k+k′− . (H.3)

• The matrix elements of pair annihilation have a joining function:

|M |2 ∼ u

t
+
t

u
=

(1− z)2 + z2

z(1− z)
(fermion joining) . (H.4)

148



With the twice smaller degrees of freedom, they are given by

|M |2LρL(K ′) ' 8e2
∑

s

q2
sdFCFg

2 (1− z)2 + z2

z(1− z)

k′2⊥
2(k′−)2

ρL(K ′) ,

(H.5)

|M |2TρT (K ′) ' 8e2
∑

s

q2
sdFCFg

2 (1− z)2 + z2

z(1− z)

[
1−

m2
g sin2 θ

2(k′−)2

]
ρT (K ′) ,

(H.6)

|M |2bareρ
bare(K ′) ' 8e2

∑
s

q2
sdFCFg

2 (1− z)2 + z2

z(1− z)
ρbare(K ′) . (H.7)

• The phase space integration is defined by

(2π)3 d(PS)

d3k
≡
∫

p,p′,K′

1

2p2p′2k
(2π)4δ4(P + P ′ −K ′ −K) ,

=

∫
p+,p⊥,k′

1

p+p′+2k

∣∣∣∣
k′0=k′z+δE

, (H.8)

where we fixed k′0 as

k′0 = k′z + δE with δE ≡ 1

z

p2
⊥
p+

. (H.9)

• After subtracting the LO result, the NLO correction is given by

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

annih

=

∫
p+,p⊥,k′

1

p+p′+2k
nF

p n
F
p′

T

k′0

[
|M |2LρL + |M |2TρT − |M |2bare ρ

bare
]∣∣∣∣

k′0=k′z+δE

, (H.10)

where we used 1 + nB
k′ ' T/k′0 for soft K ′. When p2

⊥ → 0, this process
becomes the LO collinear pair annihilation process whose contribution
must be subtracted to obtain the NLO correction. As in Section 5.5, we
perform the contour integral over k′z, change the variable from p2

⊥ to δE,
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and do the integrations over δE and p′2⊥ to get

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

annih

= − 1

16π2
e2
∑

s

q2
sdFCFg

2mDT

1

k2

∫ k

0

dpz

(
pz

k − pz
+
k − pz

pz

)
nF

p n
F
k−p . (H.11)

Here we used the joining factor

(1− z)2 + z2

z(1− z)
=

pz

k − pz
+
k − pz

pz
. (H.12)

• The emission rate is logarithmically divergent when pz → 0 or pz → k.
After regularization, the NLO correction from wide-angle pair annihila-
tion is

(2π)3 dδΓNLO

d3k

∣∣∣∣wide

annih

= − 1

16π2
e2
∑

s

q2
sdFCFg

2mDT
nF

k

k

[
ln

(
T

µz

)
+ Cwide

annih(k/T )

]
, (H.13)

where Cwide
annih(k/T ) is independent of the cutoff µz.
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