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Abstract of the Dissertation 
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by 
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in 
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2011 

 

The errors-in-variables (EIV) regression model, being more realistic by accounting for 

measurement errors in both the dependent and the independent variables, is widely used in 

econometrics, chemistry, medical, and environmental sciences, etc. The traditional EIV model 

estimators, however, can be highly biased by outliers and other departures from the underlying 

assumptions. In this work, we propose two novel nonparametric estimation approaches - the least 

sine squares (LSS) and the robust compound regression (RCR) analysis methods for the robust 

estimation of EIV models.  

The RCR method, as a natural extension and combination of the new LSS method and the 

compound regression analysis method developed in our own group (Leng and Zhu 2009), 

provides the robust counterpart of the entire class of the traditional maximum likelihood 

estimation (MLE) solutions of the EIV model, in a 1-1 mapping. The advantages of both new 

approaches lie in their intuitive geometric interpretations, their distribution free property, their 
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independence to the ratio of the error variances, and most importantly their robustness to outlier 

contamination and other violations of distribution assumptions. Monte Carlo studies are 

conducted to compare these new robust EIV model estimation methods to other nonparametric 

regression analysis methods including the least squares (LS) regression analysis method, the 

orthogonal regression (OR) analysis method, the geometric mean regression (GMR) analysis 

method, and the robust least median of squares (LMS) regression analysis method. Guidelines on 

which regression methods are suitable under what circumstances are provided through these 

simulation studies as well. Real-life examples are provided to further illustrate and motivate 

these new approaches. 
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Chapter 1 

Introduction 

 

Regression analysis includes many different approaches for modeling and analyzing the 

relationship between the dependent and the independent variables of interest. Among all 

approaches available, however, there is little doubt that the least squares (LS) regression analysis 

method, also referred to as the ordinary least squares method, is the most widely used one despite 

its often unrealistic and untenable assumption that only the dependent variable is a random 

variable while the independent variables are not. To take into account the randomness of the 

independent variables, the orthogonal regression (OR) analysis method, the geometric mean 

regression (GMR) analysis method, and the more general errors-in-variables (EIV) modeling 

approach were subsequently introduced. A good monograph on traditional EIV models and 

results is provided by Fuller (1987), and the more recent development and applications of the 

EIV model can be found in Van Huffel and Lemmerling (2002). 

Furthermore, both the classic regression with the dependent variable random only and the 

traditional EIV model estimating methods, can behave poorly in the presence of contaminated 

data or violations of the underlying assumptions (Brown 1982, Carroll and Gallo 1982, Zamar 

1989, Cheng and Vanness 1992). Of note, non-degenerate EIV models have a sharply increased 

chance to be subject to contaminations because the independent variables are also random. 

Therefore, robust EIV model estimation approaches are highly desired. In this work, we have 
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developed two novel nonparametric approaches – the least sine squares (LSS) regression and the 

robust compound regression (RCR) analysis methods for the robust estimation of EIV models. 

These robust regression approaches also apply to the classic regression models with non-random 

independent variables as they can be treated as a special case of the EIV models.  

The rest of this thesis is organized as follows. In Chapter 2, we introduce the existing 

traditional non-robust and robust estimation approaches for the EIV models, as well as the 

existing approaches for the computations of OR and GMR in high dimensional case. In Chapter 

3, by introducing the robust ‘least angle’ criterion, we propose the first new robust regression 

approach – the LSS regression, and derive the multivariate LSS estimator. In Chapter 4, we 

present the second new robust regression approach – the RCR analysis method, which as a 

natural extension and combination of the new LSS method and the compound regression analysis 

method developed in our own group (Leng and Zhu 2009), provides the robust counterpart of the 

entire class of the traditional MLE solutions of the EIV model, in a 1-1 mapping. A new robust 

regression efficiency concept and the high breakdown outlier diagnostics based on our new 

approaches are also presented there. In chapter 5, the novel LSS and RCR estimators are 

compared to other classic as well as robust regression estimators, and the performance of the 

RCR estimator is thoroughly calibrated through a series of Monte Carlo studies. Three real-life 

examples are provided to further illustrate and motivate our new approaches in Chapter 6, and 

finally in Chapter 7 we conclude and discuss the advantages and disadvantages of our new 

approaches on the robust estimation of EIV models and propose the future work directions. 
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Chapter 2  

Current EIV Model Estimation Approaches 

 

2.1   Traditional Regression Analysis Methods 

 

The classical simple linear regression model is defined by Y = α + βX + ε, where the 

predictor X is considered as non-random and only the response variable Y is subject to random 

error ε. It is well known that when this assumption is satisfied, the least squares (LS) estimator is 

the best linear unbiased estimator (BLUE) by the Gauss-Markov theorem. 

 The objective of the LS regression of the response variable Y on the predictor X is to 

minimize the sum of squared Y variable prediction errors, which is to minimize                          

          ∑     ̂  
 

 

   

 

Here Yi is the observed response value, and  ̂  is the corresponding predicted value of Y for a 

given Xi. Similarly, the LS regression of X on Y, where X is assumed to be random but Y fixed, 

aims to minimize the sum of squared prediction errors of the response variable X 

          ∑     ̂  
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However, the ordinary LS estimators are biased and inconsistent under the circumstances 

of regression with errors in variables (Fuller 1987). Instead of minimizing sum of squared 

vertical (or horizontal) distances, the orthogonal regression (OR) takes the middle ground by 

minimizing the sum of squared orthogonal distances,  

     ∑    

 

 

 ∑
     ̂  

 

    

 

 

where     
 is the distance from the observed data points to the regression line or to the hyper-

plane in higher dimensions. The resulting slope estimator is as follows (Jackson and Dunlevy 

1988) 

 ̂   
        √               

 

    
 

 

 

Figure 2.1 Geometrically, the LS regression with Y (or X) as the response variable minimizes the 

squared vertical (or horizontal) distances, while the OR takes the middle ground by minimizing 

the sum of squared orthogonal distances from the observation point to the regression line. 
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Another traditional approach is the geometric mean regression (GMR) approach. The 

slope estimator of GMR is the geometric mean of the slope estimate from the LS regression of Y 

on X and the reciprocal of the slope estimate from the LS regression of X on Y.  

 ̂             √ ̂             ̂                       √
   

   
 

In bivariate case, the GMR minimizes the sum of the triangular areas formed by 

connecting the measured data points to the estimated line with lines parallel to the coordinate 

axes (Harvey and Mace 1982, Barker et al. 1988). That is to minimize 

       
 

 
      ̂ ∑     ̂       ̂  

 

   

 

One advantage of the GMR solution is its natural symmetry if the roles of X and Y are 

reversed, and this symmetry is obvious as interchange of the X and Y axes leaves the areas 

unchanged (Draper 1992). The GMR also has its downside in the sense that it is not easy to 

conduct tests or construct confidence intervals on the parameters (Creasy 1956), and the GMR 

estimator is known to be inconsistent when the sample size is large.

 

 

 

 

 

Figure 2.2 Geometrically, the GMR minimizes sum of the triangular area bounded by the 

regression line and the vertical and horizontal lines through each observation point. 

( , )i ix y
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2.2   OR and GMR in Higher Dimensions 

 

It is known that there is a close relationship between the OR estimation approach and the 

principle component analysis (PCA) (Jackson and Dunlevy 1988). Since the largest eigenvalue 

of the sample covariance matrix   [
      

      
]  of regression variables (X, Y) is   

        √                       
  

 
, and the eigenvector corresponding to this eigenvalue is 

     
        √                       

  

 
 , the slope of the first principle component is 

        √                       
  

    
, which is exaclty the same as the slope estimator from the OR 

approach. Intuitively, the first principle component is the line passing through the greatest 

dimension of the concentration ellipse and it explains the maximum variance of a scatter of 

points (Morrison 1976). Of course, this connection between OR and PCA also holds in the high 

dimensional case. 

 

Figure 2.3 OR plane in 3D with orthogonal distance deviations. The OR aims to minimize the 

sum of squared orthogonal distances from each observation to the regression plane. 
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An alternative and computationally more efficient way to compute the OR estimate in 

higher dimensions is by using the singular value decomposition (SVD) (Golub and Van Loan 

1996), though the computation of OR via PCA in high dimensional case is analytically tractable 

as well. In the context of matrix computations, the linear regression model estimation problem 

can be formed as solving the equation Xβ = Y for β, where X is n-by-p and Y is n-by-1. Here n is 

the number of observations and p is the number of predictor variables. 

That is, we seek to find β that minimizes error matrices E and F for X and Y respectively: 

argminE,F||[E F]||f, s.t. (X + E) β = Y + F 

where [E F] is the augmented matrix with E and F side by side and ||.||f  is the Frobenius norm, 

the square root of the sum of the squares of all entries in a matrix. This can be rewritten as 

[(X + E) (Y + F)] [
 

   
] = 0 

where Ik is the k x k identity matrix. The goal is then to find [E F] that reduces the rank of [X 

Y] by k. Define [U][Σ][V   to be the SVD of the augmented matrix [X Y].  

[X Y] = [UX UY][
   
   

] [
      

      
]   =  [UX UY][

   
   

] [
        

        
] 

where V is partitioned into blocks corresponding to the shape of X and Y. 

The rank is reduced by setting some of the singular values to zero. That is, we want 

[(X + E) (Y + F)] = [UX UY][
   
     

] [
      

      
]   

so by linearity, we have 

[E F] = -[UX UY][
     
   

] [
      

      
]   

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Augmented_matrix
http://en.wikipedia.org/wiki/Frobenius_norm
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We can then remove blocks from the U and Σ matrices, simplifying to 

[E F] = -UX ΣY [
   

   
]
 

       [
   

   
] [

   

   
]   

This provides E and F so that 

[(X + E) (Y + F)] [
   

   
] = 0 

Now if VYY is nonsingular, which is not always the case (note that the behavior of OR 

when VYY is singular is not well understood yet), we can then right multiply both sides by     
    

to bring the bottom block of the right matrix to the negative identity. 

[(X + E) (Y + F)] [
       

  

       
  ]              [

 
   

] = 0 

and so β =        
   is the orthogonal regression coefficient estimates, which extends the OR 

estimation approach to the higher dimensions. 

The computation of GMR estimates in higher dimensions is finally realized by solving a 

quadratic convex programming problem (Draper and Yang 1997). By defining the squared 

vertical deviation in the Y direction    

      ∑      
 
       

  and in the Xl direction 

    

  
    ∑      

 
       

 

  
 , we consider a composite measure of deviations in all directions. 

       

     

     

      

   
 

   ⁄    
 

   ⁄  

Algebraically, it is the geometric mean of all the squared deviations; and geometrically, it 

depends on the volume Vi created by drawing, from each point, lines parallel to all the axes to the 

fitted hyper-plane. 
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Figure 2.4 GMR plane in 3D with volume deviations. The volume Vi is created by drawing, 

from each point, lines parallel to all the axes to the fitted plane.    

 

When k = 1, Gi = Vi is equivalent to the right-angled triangle area, which means the 

generalized criterion is equivalent to the definition of GMR in simple linear regression. In fact 

when k > 1, Gi is the extension of this area in higher dimensions. The minimization of ∑     can 

be further simplified to be a quadratic problem as follows  

           subject to           &      

where S is the sample covariance matrix, and                 is a column vector with 

   
  

 ∏   
 
   

 
 
 

. 

 

2.3   Structural EIV Modeling Approach 

  

The simple linear EIV model assumes there exists an underlying linear relationship η = α 

+ βξ between two latent variables η and ξ. Instead of observing the latent variables, one observes 

Y = η + ε and X = ξ + δ, where the corresponding measurement errors ε ~ N(0, σε
2
) and δ ~ N(0, 
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 ) are independent to the unobserved variable ξ (Sprent 1969). The variables enter the EIV 

model in a symmetric manner from a distributional point of view, but we generally choose to 

identify one variable as the response variable Y. 

There are two well-established EIV modeling approaches - the functional and the 

structural approaches. The difference between them is whether to consider the underlying 

variable ξ as a non-random (functional approach) or random variable with mean μ and variance 

τ
2 

(structural approach). In this work, we will mainly focus on the more general structural 

approach, in which situation X and Y will follow a joint bivariate normal distribution. 

(
 
 
)  ((

 
    )  (

     
    

          
 
)) 

Subsequently, we can obtain the MLE of the slope coefficient, which depends on the ratio of the 

two error variances     
    

  (Lindley 1947, Wong 1989). 

 ̂  
         √                 

 

    
 

It is known that, given the bivariate normality assumption, the three traditional 

nonparametric regression methods - LS, OR and GMR, are special cases of the MLE solutions, 

each corresponding to a unique value of λ. The LS regression of X on Y is the MLE solution of 

structural EIV model when λ = 0 (error variance of Y is 0, i.e. Y is not random); while the LS of Y 

on X is equivalent to the MLE solution when λ =   (error variance of X is 0, i.e. X is not 

random). The orthogonal regression (OR) is the MLE solution when λ = 1 which means that the 

OR is suitable when the error variances are equal. The geometric mean regression (GMR) is 

equivalent to the MLE solution when           (Sprent and Dolby 1980). This means that the 
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GMR approach is suitable when the randomness from X and Y are from the random errors only. 

That is, when we take the functional analysis approach by assuming that ξ is not random (Leng et 

al. 2007).  

Unfortunately, the MLE approach for the EIV model estimation is unattainable, because it 

depends on the normality assumption, and furthermore the λ ratio of the error variances, which is 

usually unknown and unable to be estimated from the data alone. If the λ is known, the use of 

MLE solution is probably best, but it is suggested to use the GMR estimator otherwise, if the 

assumption that            is unreasonable (Draper 1992, Draper and Smith 1998). 

The multiple linear regression EIV model, analogous to the simple linear EIV model, 

assumes a linear relationship between p latent variables ∑     
 
     , which is uniquely 

defined by imposing the constraint β’β = 1. One only obverses Xj = ξj + εj with the random errors 

            
  , j = 1, 2, ..., p, where the non-negative ratios of the error variances    are 

specified. As a result, the error vector is ε ~ Np(0, σ
2
Λ) with                   .  

Similar to the simple structural EIV model defined earlier, the multivariate structural EIV 

approach assumes                 being independent of ε will follow a p-variate normal 

distribution        . Then the MLE solution of the structural EIV model with Λ non-singular is 

given by 

 ̂    ̂ 
     ̂  

 
 
   

 
  ̂  

where  ̂  is the normalized eigenvector associated with the smallest eigenvalue of   
 

    
 

 , and 

S is the sample covariance matrix of the observations X = (X1, X2, ..., Xp) (Patefield 1981). 
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2.4   Compound Regression Analysis Method 

 

 

 

 

 

 

 

 

 

Figure 2.5 Geometric demonstration of the compound regression approach. 

 

When both Y and X are random, one would naturally wish to find a regression line that 

will minimize variations in both directions. The compound regression (CR) (Leng and Zhu 

2009), being a direct generalization of the ordinary least squares method, is designed to minimize 

the weighted average of the sum of squared vertical and horizontal distances as follows: 

                     ∑      ̂  
 

       ∑      ̂  
 

  

                                           ∑           
 

       ∑     
    

 
  

        where       

In the same manner as the traditional regressions being special cases of the MLE solution 

of EIV models (Casella and Berger 2002), the three classic regressions are reduced to special 

cases of the compound regression model as well. At the two extremes, the CR model is 

equivalent to the LS regression of Y on X when γ = 1, while γ = 0 corresponds to the LS 

Y X  

ˆ i
i

Y
X








iHd

ˆ
i iY X  
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regression of X on Y. For the OR and GMR approaches, the corresponding γ’s in the CR 

framework are determined from each specific dataset. 

For each γ   [0, 1], the minimization of     requires solving the equations 
    

  
   and 

    

  
   simultaneously. Straight-forward derivation shows that the estimators  ̂ and  ̂ would 

satisfy: 

   ̅    ̅       (1) 

                                         (2) 

The solutions can be obtained using any standard numerical software.  

It is shown that there exists a monotonic relationship between γ and  ̂, and a monotonic 

relationship between λ and  ̂  as well. Moreover, since the Equation (2) can be rewritten as 

  
   ̃  ̂   ̃

   ̃  ̂   ̃  ̂    ̃  ̂    ̃
, and the MLE solution of structural EIV approach presented in the last 

section can be expressed in the form of   
 ̂       

        ̂
 ̂, it has been further shown that there is a 1-

1 correspondence between each CR regression line and each MLE solution of the structural EIV 

regression model in that each particular value of γ corresponds to a unique value of λ, and vice 

versa. 

In high dimensional case, the multivariate CR takes account of all the prediction errors 

with different weights, and aims to minimize the following weighted average of sum of squares 

function 

      ∑     ̂  
 

 

   

   ∑      ̂   
 

 

   

     ∑      ̂   
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The equivalence between the CR approach and the structural EIV approach in higher 

dimensions, and the fact that the OR is the same as the MLE when all the errors are equal (Λ = I), 

have been proven as well (Leng and Zhu 2009). 

 

2.5   Robust Estimation of EIV Models 

 

Since both the MLE approach for EIV models and its nonparametric counterpart - the 

compound regression analysis method weigh each observation equally, and thus are very 

sensitive to outliers and influential observations, it is necessary to develop robust estimators of 

EIV models that will not only down-weigh observations with large residuals but also account for 

measurement errors in both dependent and independent variables.  

We will firstly introduce several major robust ordinary regression estimators that are not 

originally developed for EIV models, but we should be aware that even the robust ordinary 

regressions are useful in providing a robust estimation of the EIV models (Ketellapper and 

Weisbeek 1983, Ketellapper and Ronner 1984).  

The least absolute deviations (LAD) regression also called L1–norm regression leads to 

minimizing the sum of absolute deviations in the response variable Y direction ∑ |    ̂ |
 
   , 

while the general class of Lp–norm regressions will minimize the sum of the pth power of the 

absolute deviations ∑ |    ̂ |
  

   . It is suggested that a value of p = 1.5 could be a good choice 

for the LAD method (Forsythe 1972) as it is known to be non-robust to gross outliers. The 

‘maximum likelihood type’ M-estimators (Maronna 1976) suppose the errors are independently 

and identically distributed as f(ε), and then the MLE of β is given by maximizing the likelihood 
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function ∏        
    

   . However, it is known that the M-estimators are not resistant to 

outliers in the explanatory variable, which are so called leverage points in analogy to the notion 

of leverage in mechanics. The following figure will graphically interpret the difference between 

the two basic types of outliers in simple linear regression. 

 

 

 

 

                    (a)                                                                          (b) 

Figure 2.6 (a) An outlier in the Y-direction has its Y coordinate lying out of the Y range of the 

main bulk of ‘good’ points; (b) an outlier in the X-direction (leverage point) has its X coordinate 

lying out of the X range of the main bulk of ‘good’ points. 

 

The best known and most widely used robust ordinary regression technique is the least 

median of squares (LMS) regression (Erickson et al. 2006). The LMS regression aims to find the 

regression line or hyper-plane that will minimize the median of squared response variable Y 

residuals, i.e., to minimize                 ̂  
  (Rousseeuw 1984). Graphically, by finding 

the narrowest strip (in Y-axis direction) that covers “half” of the observations, the simple LMS 

line lies at the center of this band as shown in the figure below. One important property about the 

LMS is that, different from the parametric or nonparametric regression approaches we mentioned 

earlier, the LMS line or hyper-plane is not determined to pass through the ‘center of mass’ of the 

target dataset. 

Y 

X O X O 

Y 
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Figure 2.7 LMS’s advantage over LS on robustness to leverage points. The LMS line lies at the 

center of the narrowest strip (in vertical direction) covering half of the observations. Unlike the 

traditional methods, the LMS line does not necessarily pass through the center of the whole 

dataset. 

 

The most important property of the LMS lies in its robustness to outliers with the highest 

possible breakdown point of 50%. In the context of robust regression, the definition of a 

breakdown point is as follows. Let Z represent the sample of n data points (z1, ..., zn), and let T be 

a regression estimator. Consider Z’ be all possible corrupted samples that are obtained by 

substituting any subset of size m of the original data points by arbitrary values, the maximum 

bias that can be caused from such a contamination is denoted by                  ‖     

     ‖, where the supremum is taken over all possible Z’. Then the finite-sample breakdown 

point is defined as   
       

 

 
                (Donoho and Huber 1983), which does not 

depend on the underlying distribution. Intuitively, the   
  is at most 50%, if it is larger than 50%, 

one could build a configuration of outliers which is just a translation image of the “good” data 

points (Rousseeuw and Leroy 1987). 
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In addition, the LMS estimator is regression-, scale-, and affine- equivariant, which 

corresponds to the three basic types of equivariance for regression estimators, ranked from 

higher to lower priority. An estimator is called regression equivariant if  

  {                   }    {               }    

where V is any column vector. This ensures the validity of the phrase ‘without loss of generality, 

let β = 0’ at the beginning of many proofs of asymptotic properties or descriptions of Monte 

Carlo studies. An estimator is said to be scale equivariant if  

  {                }     {               }  

for any constant c. It implies that the fit is essentially independent of the choice of measurement 

unit for the response variable Y. And a regression estimator is called affine equivariant if  

  {                }       {               }  

for any nonsingular square matrix A. This allows us to use another coordinate system for the 

explanatory variables, without affecting the estimated  ̂  (Rousseeuw and Leroy 1987). The 

ordinary LS estimator, on which the LMS is based, is also regression-, scale-, and affine- 

equivariant, but the OR does not show any of these equivariances, while the GMR is scale- 

equivariant only (see Theorem 1 in the Appendix). 

On the other hand, gold cannot be pure and the LMS method cannot be perfect. First of 

all, there exists the high computing complexity to compute the LMS estimate (Erickson et al. 

2006), which makes the computational time of the LMS to be abnormally more than that of the 

traditional regressions. Secondly, the median of squared residuals lacks a smooth squared 

residual function and takes a long time to converge, and the asymptotic convergence rate of the 
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LMS as of   
 

 , which is much slower than that of the usual approaches as of   
 

  (Martin 2002). 

Last but not the least, the LMS performs poorly for small samples.  

Although the robust ordinary regression methods discussed above are not designed for 

the situations of regression with errors in variables, the approaches to obtain the robust estimates 

of the EIV models are in many ways analogous to these approaches. The robust w-estimator was 

first developed by applying robust ordinary regression techniques to the EIV model (Brown 

1982). For the detection of influential observations, Kelly (1984) derived the influence function 

of the orthogonal regression. Zamar (1989) proposed the robust orthogonal regression M-

estimators (ORM) and S-estimators that are adapted to the EIV problems, and it was shown his 

methods outperforms the corresponding robust ordinary regression methods. Later on, the robust 

orthogonal generalized M-estimators (Cheng and Vanness 1992) were proposed to generalize the 

methods proposed by Zamar (1989). Recently, a quantile regression (QR) approach was provided 

by He and Liang (2000) to account for the presence of heavier-tailed errors rather than the 

Gaussian errors in a class of linear EIV models. By combining the orthogonal regression with the 

robust M-, S-, and MCD- estimators, a class of robust weighted orthogonal regression estimators 

was newly developed as well (Fekri and Ruiz-Gazen 2004).  

Additionally, when Rousseeuw (1984) made the groundbreaking work by proposing his 

distinctive LMS regression, he also pointed out the idea to generalize the LMS by minimizing 

the median of the squared orthogonal residuals (Rousseeuw and Leroy 1987), but failed to 

provide a thorough development of this idea. Several researchers seized the importance of this 

insight to the robust estimation of EIV models, and developed the orthogonal least median of 

squares regression (Hartmann et al. 1997, Sarabia et al. 1997) and the analogous orthogonal least 

trimmed squares regression (Jung 2007). It has been viewed that the performance of these new 
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approaches is still largely restricted by the computational low efficiency of the underlying LMS 

kernel, and we ought to acknowledge that all robust estimators sacrifice some of their efficiency 

in order to reduce their sensitivity to contamination or violation of the assumptions. 
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Chapter 3 

Least Sine Squares Regression 

 

3.1   Introduction of Angular Regression 

 

Instead of using different kinds of distance measures as adopted in the existing regression 

methods to gauge the discrepancy between the fitted data from model and the original data, the 

angular regression (AR), from a novel point of view, makes use of the angular measure to build 

up its best-line-of-fit criterion as illustrated by Figure 3.1.  

 

Figure 3.1 Geometric illustration of angular regression. The primary goal of linear regression 

analysis is to find the best regression line with slope       , or equivalently to find the 
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corresponding best angle θ relative to the X-positive direction to represent the underlying data.  

Intuitively, the neighborhood around the best angle shall cover the highest density of data points 

to make the fitted line the most representative. To search for the best angle, suppose a radar 

station is set up at the center of dataset, when the radar beam sweeps its angle θ from 0 to π, we 

will find one angle denoted as θL having the highest density of data points under the radar beam 

coverage. In the same manner, as searching the angle from π to 2π, we will observe another peak 

at angle θR. As the difference between θR and θL is approximately π, the estimated angle of the 

AR line is defined to be  ̂  
       

 
.  

 

The conceptually simple AR approach is not only distribution free, but also robust to 

outliers and influential observations. The AR line is more determined by the data points near the 

true regression line, but less sensitive to noisy points that are relatively far away. 

 

Figure 3.2 Scatter plot of the two normal mixture data. The slope β = 1, ξ ~ U(0, 100), and the 

data is a mixture of n1 = 100 points with random errors εX & εY ~ N(0, 100), and n2 = 200 points 

with random errors εX & εY ~ N(0, 0.25). 

 

To have a better understanding on the robustness property of AR, a motivational 

simulation study is provided in the following part. We set up the simple linear EIV model with 
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the true slope β = 1 and observations Y = ξ + εY and X = ξ + εX, where ξ ~ U(0, 100) distribution. 

Then the data with a sample size of n1 + n2 is generated as a mixture of two components. In the 

more noisy component of n1 = 100 points, the random errors εY and εX both follow N(0, 100) 

distribution, while for the less noisy component of n2 = 200 points, the random errors both come 

from the N(0, 0.25) distribution. Figure 3.2 is the scatter plot of the two normal mixture data set 

generated, and the empirical probability density functions (EPDF) estimated from each 

component and their mixture are shown in the Figure 3.3.  

 

 

 

Figure 3.3 EPDF of each normal component and their mixture. The vertical-axis represents the 

number of data points covered by every one degree of the angle θ when sweeping from 0 to 2π, 

which serves as an EPDF with respect to the angle θ. Intuitively, for any data with a linear trend 
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in general positions, its EPDF has only two peaks as can be seen. Top panel: the smoothed EPDF 

of n1 = 100 points with random errors follow N(0, 100); Middle panel: the smoothed EPDF of n2 

= 200 points with noise follow N(0, 0.25); Bottom panel: the smoothed EPDF of the mixture of 

the same n1 = 100, n2 = 200 points. 
 

 By comparing the three panels presented in Figure 3.3 simultaneously, it is not hard to 

find that the bottom panel is an approximate superposition of the above two, and the peaks can 

be easily detected even after the combination of the more noisy component (top panel) and the 

less noisy component (middle panel), which indicates the peaks of the EPDF of the mixture is 

mainly determined by the more peaky less noisy component. Put it in another way, we can draw 

a conclusion that the critical angles θL and θR to obtain the AR estimate are mainly determined by 

the less noisy component, which dramatically enhances the robustness of the AR estimator. 

To further illustrate the robustness of the AR estimator, we will compare it with the most 

widely used LS estimator. The simulation results based on 1000 replications of generated data 

with a sample size of n1 + n2 = 200 are summarized in Figure 3.4, where  the mixture proportion 

of less noisy component ranges from 0 to 100 percent. 
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(b) 

Figure 3.4 Illustration of the advantage of the AR compared to the LS in terms of the (a) mean  ̅̂ 

and (b) standard error   ̂ of their slope estimates for a dataset of n1 + n2 = 200 points with a 

changeable mixture portion of the less noisy component n2 / (n1 + n2). 

 

 Our simulation studies indicate that the AR estimator is always less biased to the true 

slope β = 1 compared to the LS estimator. Meanwhile, the standard error of the AR slope 

estimate is smaller than that of the LS when the mixture proportion of less noisy component 

exceeds 15% in this simulation case. The simulation results again substantiate our argument that 

more concerns on the angular regression concept are deserved in robust regression analysis. 

 

3.2   LSS Regression 

 

As can be seen, the AR approach represents a promising direction in developing new 

robust regression methods from the angular measure point of view. Since the AR estimator is not 

analytically tractable, in order to increase its efficiency, we hereby propose the novel least sine 

squares (LSS) regression analysis method. The objective of the LSS is to minimize the sum of 

squared sine distances: 
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      ∑      

 

   

 ∑
    

 

  
 

 

   

 

where    is the angle between the line connecting a data point with the ‘center of mass’ ( ̅  ̅) 

and the fitted regression line.     
 represents the orthogonal distance from each point to the 

regression line, and Ri is the distance from each observation to the ‘center of mass’.  

 

 

Figure 3.5 Geometric interpretation of the least sine squares (LSS) regression approach. The 

LSS projects each orthogonal distance     
 into the corresponding sine(φi) distance, the distance 

from the intersection point of the dotted arrow line and the unite circle centered at the mean 

  ̅  ̅  to the regression line. The LSS minimizes the sum of squared sine distances ∑         

∑
    

 

  
  , where    is the acute angle formed by the fitted regression line and the line connecting 

the mean   ̅  ̅  and the observation (Xi, Yi), and Ri denotes the distance between the ith 

observation and the mean. 
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The intuitive geometric representation of the LSS approach is illustrated through Figure 

3.5. Each observation (Xi, Yi) is firstly projected, along the Ri directing from each observation to 

the mean   ̅  ̅ , onto the unit circle centered at the mean, and the orthogonal distance is then 

transformed into the corresponding sine(φi) distance from the projection point to the regression 

line, where    is the acute angle formed by the fitted regression line and the line connecting the 

mean   ̅  ̅  and the observation (Xi, Yi). According to the angular regression concept, the line of 

best fit should be the one having as many small      as possible, and equivalently that is the line 

rendering the quantity of sum of        to be a minimum. 

As one observes that the objective of the OR approach is to minimize      ∑     

 
 , 

while the LSS regression aims to minimize       ∑
    

 

  
 

 
   , the LSS can be regarded as the 

weighted OR with a weighting parameter 
2

1

iR
 imposed to each orthogonal residual. 

Consequently, the LSS as a robust weighted version of the OR not only accounts for 

measurement errors from both the dependent and independent variables but also down-weighs 

observations with large orthogonal residuals. 

Inspired from this point of view, the generalized LSS (GLSS) is defined to minimize 

         ∑
    

 

  
 

 
    (k is any non-negative integer), where     

 
|        |

√     
 is the orthogonal 

distance from each observation point to the regression plane, and 

   √     ̅      ̅        ̅  
 is the distance from each observation to the ‘center of 

mass’. When k = 0 it is the objective function of the OR, which works well for data without 

outliers, and when k = 2 it is equivalent to the LSS. The specific case with k = 1 is so called 

GLSS-1 regression, which is a compromise of the OR and LSS approaches. Further 
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investigations are needed to settle down a general good choice of k in balancing the robustness 

and efficiency of the GLSS-k estimator. 

 

3.3   LSS in Higher Dimensions 

 

LSS also has an extension to the high dimensional case. The problem is formed as we are 

fitting a regression model of a response Y in terms of the predictors X1, X2, …, Xp. Since the 

orthogonal distance from the ith observation (X1i, X2i, …, Xpi, Yi) to the regression hyper-plane 

     ∑     
 
    is     

 
|      ∑      

 
   |

√  ∑   
  

   

 and the distance from the ith observation to the 

data set mean is    √∑ (     ̅ )
  

         ̅  , the LSS regression will minimize 

∑
    

 

  
 

 
    ∑

       ∑      
 
     

(  ∑   
  

   
) ∑ (     ̅ )

  
   

      ̅   

 
     

From the insight of a close relationship between the OR approach and the PCA, we have 

shown that the LSS estimate is the eigenvector associated to the smallest eigenvalue of the robust 

weighted sample covariance matrix: 

 ̃  [

 ̃    
  ̃    

   
 ̃    

  ̃    

]

   

  

where  ̃    
 ∑

      ̅        ̅  

  
 

 
   , j, k = 1, …, p (see Theorem 2 in the Appendix). 
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For instance in simple linear regression, assume the robust sample covariance matrix  ̃ 

for the regression of two variables X and Y is 

 ̃  [
 ̃   ̃  

 ̃   ̃  

]  

[
 
 
 
 ∑

     ̅  

  
 

 

∑
     ̅      ̅ 

  
 

 

∑
     ̅      ̅ 

  
 

 

∑
     ̅  

  
 

 ]
 
 
 
 

 

Depending on the robust sample covariance matrix  ̃, the LSS estimator 

 ̂    
 ̃     ̃   √  ̃     ̃        ̃  

 

  ̃  

 

has exactly the same form as the OR estimator which is based on the usual sample covariance 

matrix S. 

 Furthermore, analogous to the computation of OR in higher dimensions, the more 

computationally efficient way to compute the LSS hyper-plane in high dimensional case is 

through the SVD of the robust weighted augmented matrix [ ̃  ̃]: 

  ̃  ̃    ̃   ̃     ̃   ̃  

[
 
 
 
 
 
     ̅ 

  
 

     ̅ 

  
 

   
     ̅ 

  
 

     ̅ 

  

    ̅

  

 

 
    ̅

  ]
 
 
 
 
 

       

 

Define [ ̃][ ̃][ ̃   to be the SVD of the augmented matrix [ ̃  ̃] 

  ̃  ̃    ̃   ̃  [
 ̃  

  ̃ 

] [
 ̃   ̃  

 ̃   ̃  

]    

It is easy to have  ̂      ̃   ̃  
   as the LSS estimator in higher dimensions.  
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Chapter 4 

Robust Compound Regression 

 

4.1   RCR Approach 

 

Robust compound regression (RCR), as a natural extension and combination of the new 

LSS approach and the compound regression analysis method, is defined to minimize the 

weighted average of the sum of squared weighted vertical and horizontal distances as follows: 

             ∑
     ̂  

 

  
        ∑

     ̂  
 

  
   

                ∑
          

 

  
        ∑

    
    

 
  

  
                    

Analogous to the compound regression situation, when γ = 1 the RCR model reduced to 

the robust LS (RLS) regression of Y on X, while γ = 0 is equivalent to the RLS regression of X on 

Y. Just as the compound regression (CR) contains the OR and GMR as special cases, the RCR 

contains the robust OR (i.e. the LSS) and robust GMR (RGMR) as special cases too. 

Similar as the generalization from the LSS to the GLSS, the generalized RCR can be 

defined to minimize      ∑
     ̂  

 

  
        ∑

     ̂  
 

  
  , where k can be any nonnegative 

integer. 
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Figure 4.1 Geometric interpretation of the robust compound regression (RCR) approach. The 

RCR transforms the usual horizontal (   
) and vertical residuals (   

) into the corresponding 

transformed residuals    

  and    

  respectively, in the same way as the LSS transforms the usual 

orthogonal distance into the sine distance as described in Figure 3.5. 

 

For each γ   [0, 1], we can obtain the least squares estimators of the regression 

parameters by solving 
    

  
   and 

    

  
   simultaneously. Straight-forward derivations show 

that the least squares estimators of the regression coefficients,  ̂ and   ̂ would satisfy: 

   ̅    ̅       (a) 
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    ̃       ̃           ̃          ̃           (b) 

where  ̃   ∑
     ̅  

  
    ̃   ∑

     ̅      ̅ 

  
    ̃   ∑

     ̅  

  
  . From Equation (b), for each 

RCR slope estimator  ̂, we have the corresponding  

  
   ̃  ̂   ̃

   ̃  ̂   ̃  ̂    ̃  ̂    ̃
      (*) 

If one approach is a special case of the RCR, there should be a corresponding γ   [0, 1] to the 

estimated  ̂ in Equation (*). 

 Similar to the generalization of LSS, we have the generalized RCR in the following form: 

     ∑
     ̂  

 

  
 

 

      ∑
     ̂  

 

  
 

 

 

where the power k can be any nonnegative integer. When k=0, it corresponds to sum of squares 

function of compound regression, while it corresponds to the ordinary robust compound 

regression when k=2. 

The multivariate RCR takes account of all the prediction errors with different weight and 

obtains the estimators of the regression parameters by minimizing the following sum of squares 

function 

      ∑
     ̂  

 

  
 

 

   

   ∑
      ̂   

 

  
 

 

   

     ∑
      ̂   
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subject to ∑   
 
     , where p is the number of predictor variables. For the higher dimension 

case, the estimation for RCR can be carried out in the same way. The above objective function 

can be simplified to 

      ∑
(    ̂ )

 

  
 

 

   

 ∑
  

  
 

 

   

∑
(    ̂ )

 

  
 

 

   

 (   ∑
  

  
 

 

   

)∑
[    ̅  ∑   (     ̅ )

 
   ]

 

  
 

 

   

 (   ∑
  

  
 

 

   

)   ̃   ∑ ∑      ̃    

 

   

 

   

  ∑   ̃   

 

   

  

Estimators of the RCR regression coefficients can be obtained by solving the system of equations 

    ̃

   
  ,  j = 1, 2, …, p simultaneously, where for any l in j = 1, 2, …, p, and we have: 

    

   
  

   

  
 ( ̃   ∑ ∑      ̃    

 

   

 

   

  ∑   ̃   

 

   

)

 (   ∑
  

  
 

 

   
)

(

 
 

 ∑   ̃    

 

   
   

     ̃    
   ̃   

)

 
 

   

The RCR includes the robust counterpart of the LS, OR, and GMR as special cases. For 

instance, the RLS regression of Y on X is defined to minimize       ∑
     ̂  

 

  
  , and plugging 

its corresponding slope estimate  ̂      
 ̃  

 ̃  
 into (*) will yield         . Similarly, the RLS 

regression of X on Y will minimize       ∑
     ̂  

 

  
  , and plugging the slope estimate 
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 ̂      
 ̃  

 ̃  
 into Equation (*) gives us         . Furthermore, it has been shown that there is a 

monotonic relationship between γ and  ̂ (see Theorem 3 in the Appendix). 

 As can be seen, the robust OR is the alias of the LSS, which is defined to minimize 

∑
    

 

  
  . From Equation (*) we know that the corresponding compound parameter for the LSS is  

     
   ̃   ̂      ̃

   ̃   ̂      ̃   ̂   
 
   ̃   ̂   

 
   ̃

 

By Cauchy-Schwarz inequality, we know that  ̃  
   ̃   ̃  . Based on this fact, straight-forward 

derivations show that  ̂    is always bounded by  ̂      and  ̂     , that is when  ̃     we 

have 
 ̃  

 ̃  
  ̂    

 ̃     ̃   √  ̃     ̃        ̃  
 

  ̃  
 

 ̃  

 ̃  
. Otherwise, when  ̃     we have 

 ̃  

 ̃  
  ̂    

 ̃  

 ̃  
. Meanwhile, because of the monotonic relationship between γ and  ̂, we must 

have         , which indicates the LSS belongs to the RCR framework. 

The robust GMR (RGMR) for simple linear regression is defined to minimize        

 
 

 
       ∑

     ̂       ̂  

  
  . As we know that the RGMR line must pass through the mean of all 

data points ( ̅,  ̅), hence the sum of squares can be restated as 

         
 

 
       ∑

      ̅  
 

 
     ̅        ̅        ̅  

  
   

By solving 
       

  
  , we obtain the RGMR slope estimate  ̂           ̃   √

 ̃  

 ̃  
. From 

Equation (*), it is easy to find the corresponding       as well. Similarly, by Cauchy-Schwarz 
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inequality, we can easily proof that 
 ̃  

 ̃  
  ̂     √

 ̃  

 ̃  
 

 ̃  

 ̃  
 if  ̃    , and 

 ̃  

 ̃  
  ̂     

 √
 ̃  

 ̃  
 

 ̃  

 ̃  
 if  ̃    . Therefore, because of the monotonic relationship between γ and  ̂, we 

know that          , which implies that  the RGMR also belongs to the RCR. 

For the higher dimension case, we can prove that both the LSS and the RGMR are special 

cases of the RCR (see Theorem 2 for the proof on LSS, and Theorem 4 for the proof on RGMR 

in the Appendix). 

 

4.2   RCR Efficiency and Constrained RCR 

 

The RCR efficiency with respect to a specific regression variable is defined as the ratio of 

the minimized to the observed sum of robust weighted squared residuals along the corresponding 

coordinate direction. 

 

 

 

 

From the estimates of each regression approach, we can calculate the corresponding 

regression efficiencies with respect to each regression variable. A general goodness-of-fit 
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criterion we suggest is that, when all the variables involved are considered equally important, the 

higher the sum of regression efficiencies    ∑    

 
   , the better the fitted model is.  

In terms of the RCR efficiency, for a given c  [0,1], the constrained RCR will maximize 

eY subject to eX   c if we want the prediction accuracy of X to be no less than a critical threshold. 

Symmetrically, one may set the desired prediction accuracy of Y to be at least c and obtain the 

best regression line that will maximize eX subject to eY   c. 

In simple linear regression situation, it has been shown that the RGMR will always yield 

the equal eY and eX, and furthermore the maximum sum of regression efficiencies eY + eX (see 

Theorem 5 in the Appendix). 

 

4.3   High Breakdown Outlier Diagnostics 

 

There are generally two ways to deal with outliers in regression analysis. For the priori 

outlier treatment, one may down-weigh the potential influence of outliers by directly applying 

the robust regression techniques; one could transform the data by using Box-Cox transformation, 

delta method etc. to achieve linearity, normality and homogeneity assumptions; and one can 

simply get rid of what he/she believes as the ‘bad’ points, and compare the magnitude of the 

change of parameter estimates before and after the removal.  

On the other hand, for the posterior outlier diagnostics, one point we ought to emphasize 

here is that the diagnostics through LS residuals is non-robust as the LS always tries to avoid 

large residuals which may even lead to the misidentification of outliers. Another class of 
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diagnostics is based on the principle of deleting single/multiple cases at a time. Then the 

difference between the regression coefficient estimates with or without the ith case gives the 

extent to which the presence of the ith case affects the regression fit. However, when sample size 

is large the computations involved are infeasible as there are so many combinations of subsets to 

be considered.  

The high breakdown outlier diagnostics by utilizing the residuals obtained from robust 

fits is powerful to detect all the outliers present in the data. Our new robust approaches, of 

course, can be used to formulate two new high breakdown diagnostics. Since the LSS gives a 

robust fit based on orthogonal residuals         
 

    ̂ ∑  ̂    
 
   

√  ∑  ̂ 
  

   

, the outlier diagnostics can be 

carried out by examining the plot of standardized orthogonal residuals versus the fitted response 

values of Yi. Moreover, the RGMR diagnostics is based on inspecting the standardized GMR 

residuals from each observation to the RGMR regression hyper-plane 

         
 

    ̂  ∑  ̂    
 
   

 ∏  ̂ 
 
    

 
   

 

The standardized residual plot lends us a visual screening tool to detect all observations 

for which the diagnostic exceeds its cutoff. The 95% cut-off  √      
        2.2414 is 

usually recommended for the diagnostics of standardized residuals (Rousseeuw and Leroy 1987).  
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Chapter   5 

Simulation Studies 

 

A shortcoming of real data analyses using the EIV models is that it is hard to ‘prove’ 

which regression method yields the best fit without knowing the truth. A popular alternative is 

the Monte Carlo simulations, because at that time one knows the true parameters for the data 

generated. 

The estimated coefficients from a specific regression method may be incorrect if its 

underlying model assumptions are not met. Two factors in particular that may result in incorrect 

estimates are: measurement errors of the independent variable and presence of outliers in the data 

analysis.  

To show the property of each method and the advantage of our new approaches, we 

examine the performance of several estimators on the simulated dataset simultaneously. Since all 

the analysis methods except the robust LMS has the assumption that the lines will pass through 

the ‘center of mass’ ( ̅,  ̅), the fitted regression lines can be expressed in point-slope form as                           

   ̅   ̂    ̅ , we will thus focus solely on the estimation of the slope parameter β. 

Simulation studies are conducted by setting up a simple linear structural EIV model with 

a true linear relationship η = 1 + ξ defined on two latent variables η and ξ, and one only observes 

Y = η + ε and X = ξ + δ as the observations, where the underlying ξ ~ N(0, 100), the random 
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errors δ ~ N(0, σδ
2
), and ε ~ N(0, σε

2
). In our simulations, we perform 10,000 replications of a 

sample size of 200 for all data-generation situations. 

 

5.1   Comparison of the New Approaches to Existing Approaches 

 

In this section, we dedicate the first three cases to examine the performance of each 

analysis method on uncontaminated data with various ratios of the error variances, and we expect 

our new approaches should perform fairly well compared to the optimal one in each situation. 

Then in the last two cases we test the robustness of each estimator when dealing with outliers. 

Based on the above settings, the Monte Carlo experiments are designed as follows: 

Table 5.1 λ ratio settings for Monte Carlo experiments in Section 5.1 

Settings (a) (b) (c) 

X noise-to-signal σ
2

δ/σ
2

ξ 20% 10% 5% 

Y noise-to-signal σ
2

ε/σ
2

η (0,5,10,15,20)% (0,5,10,15,20)% (5,10,15,20, 25)% 

ratio λ = σ
2

ε/σ
2

η 0, 
 

 
, 

 

 
, 

 

 
, 1 0, 

 

 
,1, 

 

 
, 2 1, 2, 3, 4, 5 

 

We will compare five different estimates from the LS, OR, GMR, and the LSS and 

RGMR to the MLE when λ is assumed known for the simulations purposes. (Of course, in real 

data analysis situation, λ is usually unknown which renders the MLE method obsolete.) The 

efficiency of each method will be summarized in terms of the mean  ̅̂  
 

 
∑  ̂ 

 
   , the standard 
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error   ̂  √
 

   
∑   ̂   ̅̂   

   , and the root mean squared error (RMSE) based on the MLE 

    ( ̂)  √
 

 
∑   ̂   ̂    

   
    of the slope estimate  ̂ over the r = 10,000 runs. 

 

Case 1: Test the optimality of OR 

To verify the optimality of the OR approach when the two error variances are equal, we tune the 

noise-to-signal ratios over several critical values from small to large with the constraint λ = 1. 

The mean  ̅̂ , standard error   ̂ , and  RMSE(  ̂ ) over the 10,000 runs from five different 

regression approaches are visually summarized through Figure 5.1. We can clearly see that, all 

estimators except the LS seem unbiased, and meanwhile the small standard error of the LS 

estimate double confirms its inconsistency when dealing with the EIV problems. In terms of 

RMSE, the OR as expected is the most efficient one as it is the MLE in this situation. That is, the 

OR is optimal when the two error variances are equal. 

 

Table 5.2 Cross reference of the true λ and the sample SYY/SXX for Figure 5.1 

Noise-to-signal level 5% 10% 15% 20% 25% 30% 35% 

Mean(SYY/SXX) 1 1 1 1 1 1 1 

Std(SYY/SXX) 0.04 0.06 0.07 0.08 0.09 0.09 0.10 
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(a)

(b) 

 

(c) 

Figure 5.1 Comparison of five different estimators with the MLE when λ = 1, β = 1, n = 200 

with 10,000 replications. We clearly see that from (a) bias: (LS > LSS > GMR > RGMR > OR), 

all methods except the LS seem unbiased, and from (b) standard error: (LSS > OR > RGMR > 
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GMR > LS), the small standard error of the LS estimates double confirms its inconsistency in 

EIV models. In terms of (c) RMSE of  ̂: (LS > LSS > RGMR > GMR > OR), the OR as 

expected is the most efficient one as it is the MLE in this situation, that is the OR is optimal 

when the two error variances are equal. 

 

Case 2 : Test the optimality of GMR 

To verify the optimality of the GMR approach when the noises of the data come from the 

random errors only, the functional EIV model is utilized where ξ is not random. In this case, we 

first generate one set of ξ ~ U(0, 100), and then noise-to-signal settings (b) from Table 5.1 is 

used to tune the λ ratio from small to large. Of note, the true slope is set to be √  in order to meet 

our assumption that   
   

   
. The bias  ̅̂   ̂   , standard error   ̂ , and  RMSE( ̂) over the 

10,000 runs from five different approaches are summarized through Figure 5.2. We can see that, 

the GMR is unbiased with a small standard error which indicates its consistency. In terms of 

RMSE, the GMR as expected is the most efficient one as theoretically it is the MLE in this 

situation, and the table summarizing the true λ ratio and the corresponding sample variance ratio 

SYY/SXX is as follows. 

 

Table 5.3 Cross reference of the true λ and the sample SYY/SXX for Figure 5.2 

λ 0.5 1 1.5 2 2.5 3 3.5 4 

Mean(SYY/SXX) 0.5 1 1.5 2 2.5 3 3.5 4 

Std(SYY/SXX) 0.02 0.03 0.05 0.06 0.08 0.09 0.11 0.12 
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(a) 

 

(b) 

 

(c) 

Figure 5.2 Comparison of five different estimators with the MLE when λ = SYY/SXX (functional 

approach ξ is not random), β = √ , n = 200 with 10,000 replications. We see that from (a) bias: 

(RGMR > LS > OR > LSS > GMR), the GRM is the most unbiased while the RGMR is highly 
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biased in this case, and from (b) standard error: (LSS > RGMR > OR > GMR > LS), the small 

standard error of the GMR estimator meanwhile indicates its consistency. In terms of (c) RMSE 

of  ̂: (RGMR > LSS > LS > OR > GMR), the GMR as expected is the most efficient one as 

theoretically it is the MLE in this situation, that is the GMR is optimal when the noises are from 

random errors only.  

 

Case 3: Performance on uncontaminated EIV data 

To examine the performance of each method in more general situations, we conduct 

simulations under the structural EIV model approach with various λ ratios of the error variances. 

Refer to the noise-to-signal Table 5.1, settings (a) for simulations in Figure 5.3, (b) for Figure 5.4, 

and (c) for Figure 5.5 are used respectively. To sum up these three figures, we notice that the LS 

estimates are always highly biased and inconsistent in EIV problems, while all other approaches 

seem unbiased when the λ ratio equals to 1. Furthermore in terms of RMSE, we view that the 

GMR is generally the optimal one that is good for a wide range of λ in EIV models, and the OR 

is near optimal when the λ ratio of the error variances is around the range of (0.5, 3). In addition, 

the RGMR always perform better than the LSS for uncontaminated data. Generally speaking, the 

results for simulation case 3 suggest one to preferably choose the traditional EIV model 

estimation methods rather than the robust methods when there are no outliers. 

 

Table 5.4 Cross reference of the true λ and the sample SYY/SXX for Figure 5.3 

λ 0 0.25 0.5 0.75 1 

Mean(SYY/SXX) 0.83 0.88 0.92 0.96 1 

Std(SYY/SXX) 0.05 0.06 0.06 0.07 0.08 
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(a) 

 
(b) 

 
  

(c) 

Figure 5.3 Comparison of five different estimators with the MLE when 0   λ   1 is known, β = 

1, n = 200 with 10,000 replications. We see that from (a) bias: (LS > OR > LSS > GMR > 

RGMR), the RGRM is relatively less biased compared to others while the LS is highly biased in 

0.8

0.85

0.9

0.95

1

1.05

-0.25 0 0.25 0.5 0.75 1 1.25
λ=σ2

ε/σ
2
δ 

MLE

LS

OR

LSS

GMR

RGMR

0

0.02

0.04

0.06

0.08

0.1

-0.25 0 0.25 0.5 0.75 1 1.25

λ=σ2
ε/σ

2
δ 

MLE

LS

OR

LSS

GMR

RGMR

0

0.04

0.08

0.12

0.16

0.2

-0.25 0 0.25 0.5 0.75 1 1.25

R
M

S
E

(β
) 

λ=σ2
ε/σ

2
δ 

LS

OR

LSS

GMR

RGMR

̂

ˆS




 

45 

 

this case, and from (b) standard error: (LSS > RGMR > OR > LS > GMR), it seems one 

disadvantage of the LSS estimator is its standard error higher than the others. In terms of (c) 

RMSE of  ̂: (LS > LSS > RGMR > OR > GMR), the GMR in general is the optimal one in this 

simulation case.  

 

 

Table 5.5 Cross reference of the true λ and the sample SYY/SXX for Figure 5.4 

 

λ 0 0.5 1 1.5 2 

Mean(SYY/SXX) 0.91 0.96 1 1.05 1.09 

Std(SYY/SXX) 0.04 0.05 0.06 0.07 0.08 

 

  
(a) 

 
(b) 

0.9

0.94

0.98

1.02

1.06

-0.5 0 0.5 1 1.5 2 2.5

λ=σ2
ε/σ

2
δ 

MLE

LS

OR

LSS

GMR

RGMR

0

0.02

0.04

0.06

0.08

-0.5 0 0.5 1 1.5 2 2.5
λ=σ2

ε/σ
2
δ 

MLE

LS

OR

LSS

GMR

RGMR

̂

ˆS




 

46 

 

  
(c) 

Figure 5.4 Comparison of five different estimators with the MLE when 0   λ   2 is known, β = 

1, n = 200 with 10000 replicates. We see that from (a) bias: (LS > OR > LSS > GMR > RGMR), 

(b) standard error: (LSS > RGMR > OR > LS > GMR), and (c) RMSE of  ̂: (LS > LSS > 

RGMR > OR > GMR), we can draw the similar conclusion as from Figure 5.3 that the GMR in 

general is the optimal one in this simulation case. 

 

 

 

Table 5.6 Cross reference of the true λ and the sample SYY/SXX for Figure 5.5 

λ 1 2 3 4 5 

Mean(SYY/SXX) 1.00 1.05 1.10 1.15 1.19 

Std(SYY/SXX) 0.04 0.05 0.06 0.07 0.08 
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(b) 

  
(c) 

Figure 5.5 Comparison of five different estimators with the MLE when 1  λ   5 is known, β = 

1, n = 200 with 10,000 replications. We see that from (a) bias: (LSS > OR > LS > GMR > 

RGMR), the RGRM relatively less biased compared to others, and from (b) standard error: (LSS > 

RGMR > OR > LS > GMR), it seems one disadvantage of the LSS estimator is its standard error 

higher than the others. In terms of (c) RMSE of  ̂: (LSS > OR > RGMR > LS > GMR), again the 

GMR is generally the optimal one in this simulation case. 

 

As we have developed two new robust estimation approaches, it is more important to 

compare the robustness of different estimators in the presence of outliers. Although the well-
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known LMS robust estimator is specifically designed for the ordinary regressions, we ought to 

compare its performance with our new approaches for regressions with errors in variables. Due 

to the severe computational complexity of the LMS, we hereby only simulate 1000 replications. 

There are basically two types of outlier contaminations in linear regression analysis. One 

is the outliers in the response variable direction, and the other is the leverage points outlying 

from the predictor variables domain. From the simulation point of view, one can view the 

random errors of the outlier contaminated data as data coming from a mixture of the assumed 

random error distributions. In terms of distribution functions this can be written as this mixture 

normal form 

Ndata = α Nassumed + (1 - α) Ncontamination,   0 < α << 1 

 

Case 4: Performance on EIV data with outliers in Y direction 

We replace 5% of the ‘good’ points with outliers having contaminated εc ~ N(50, σ
2

ε) in 

the Y direction, and the noise-to-signal settings (b) in Table 5.1 is incorporated here. The mean 

 ̅̂ , standard error   ̂ , and  RMSE( ̂ ) over the 1000 runs from six different approaches are 

summarized through Figure 5.6. Of note, the MLE used for the calculation of RMSE of each 

method is obtained based on the uncontaminated part of data. 

The results show that both the OR and the GMR estimates are highly biased and badly 

influenced by the outliers, but the LS estimator performs much better than them. From my 

humble opinion, the reason for the unexpectedly fair performance of the non-robust LS estimator 

is that, under this simulation experiment, the outliers with high Y values happen to be balanced 
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with the usually attenuated LS slope estimates. The RGMR not only has the smallest bias but the 

smallest standard error among all the estimators concerned here. In terms of RMSE, the RGMR 

is the most robust in this simulation. 

 

Table 5.7 Cross reference of the true λ and the sample SYY/SXX for Figure 5.6 

 

λ 0 0.5 1 1.5 2 

Mean(SYY/SXX) 2.01 2.05 2.10 2.15 2.18 

Std(SYY/SXX) 0.19 0.20 0.20 0.22 0.22 
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(c) 

Figure 5.6 Comparison of six different estimators with the MLE when λ = σ
2

ε/σ
2

δ is known, on 

contaminated data with 5% outliers εc ~ N(50, σ
2

ε): β = 1, n = 200 with 10,000 replications. We 

can see that from (a) bias: (OR > GMR > LSS > LMS > LS > RGMR), the OR, GMR estimators 

are highly biased but the LS estimator performs much better than them, and from (b) standard 

error: (OR > LS > LMS > LSS > GMR > RGMR), the RGMR has the smallest bias and standard 

error among all the estimators concerned here. In terms of RMSE: (OR > GMR > LSS > LS > 

LMS > RGMR), hence the RGMR is the most robust estimator. 

 

Case 5: Performance on EIV data with leverage points in X direction 

Similarly, we replace 5% of the ‘good’ points with leverage points having contaminated 

δc ~ N(50, σ
2

δ) in the X direction, and the noise-to-signal settings (b) in Table 5.1 is again 

utilized. The mean  ̅̂, standard error   ̂, and  RMSE( ̂) over the 1000 runs from six different 

approaches are summarized through Figure 5.7. 

The RGMR is still the most robust, and the near optimal LSS outperforms the classic 

robust LMS approach, which implies that the LSS performs particularly well in the presence of 

leverage points. By contrast, the OR and GMR estimators are badly influenced by the outlier, 

and not to mention the worst estimation from the LS approach. 
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Table 5.8 Cross reference of the true λ and the sample SYY/SXX for Figure 5.7 

 

λ 0 0.5 1 1.5 2 

Mean(SYY/SXX) 0.44 0.46 0.48 0.50 0.52 

Std(SYY/SXX) 0.04 0.05 0.05 0.05 0.06 
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(c) 

Figure 5.7 Comparison of six different estimators with the MLE when λ = σ
2

ε/σ
2

δ is known, on 

contaminated data with 5% leverage points δc ~ N(50, σ
2

δ): β = 1, n = 200 with 10,000 replications. 

We view that from (a) bias: (LS > OR > GMR > LSS > LMS > RGMR), the traditional 

nonrobust LS, OR, GMR estimators are highly biased and badly influenced by the outliers, from 

(b) standard error: (LMS > LSS > OR > RGMR > GMR > LS), the RGMR has the smallest 

standard error among all the robust estimators concerned here. In terms of RMSE: (LS > OR > 

GMR > LMS > LSS > RGMR), it confirms that the RGMR is the most robust estimator in this 

simulation.  

 

5.2   Calibration of RCR through Efficiency Plot 

 

 In this section, we did some simulation study to test how well our model estimates the 

underlying true model. The data are generated in the same way, using the structural EIV model 

assumptions, as described at the beginning of this chapter except we only have one single dataset 

in each of the following simulation. In addition, since there are so many scenarios of 

combinations of λ ratios and different kinds of contaminations, for the purpose of a clear 

illustration, we will fix λ = σ
2

ε/σ
2

δ = 1 with a moderate (σ
2

ε/σ
2

η = 10%) noise-to-signal level of Y 

and a moderate (σ
2

δ/σ
2

ξ = 10%) noise-to-signal level of X. 
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Case 1: Performance on uncontaminated EIV data 

Model fitting:  

We fit the data by our RCR approach and we have the following efficiency plot 

(Horizontal-axis: the compound parameter γ, vertical-axis: RCR efficiency). In this simulated 

dataset, we eyeball that the γ range from 0.45 to 0.55 is presumably the optimal solution we 

desire (in this situation, both eY and eX is above 0.825). From the efficiency plot, we can get the 

rough idea of obtaining the corresponding γ to make sure the efficiency for both variables would 

be enough high. The constrained RCR gives us the resulting                 in which range 

both efficiencies would be at least 0.825. 

The RCR approach gives us the alternative selection method when we do not know the 

error variances ratio. Since the structural approach assumptions are satisfied in this case, the OR 

estimate of  ̂ = 1.001 (the MLE when λ = 1) should be suitable here, and the GMR estimate 

gives  ̂ = 1.001 as well. This means our model with selected  ̂ varying from 0.997 to 1.034 is 

close to the existing suitable model, even when we have no information on the λ ratio. In 

addition, the LSS estimate  ̂  = 1.022 with corresponding γ = 0.478 falls inside the selected 

interval, while the LMS estimate  ̂ = 0.899 is quite biased. 
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(a)                                                                          (b) 

Figure 5.8 (a) RCR efficiency plot for simulation case 1 when λ = 1 for the uncontaminated data. 

If we set both eY and eX to be no less than 0.825, the corresponding γ interval would be [0.455, 

0.530], and the corresponding slope estimate  ̂  varies from 0.997 to 1.034. The cross point 

corresponds to the RGMR estimate of  ̂ = 1.015 with γ = 0.493. The LSS estimate is  ̂ = 1.022 

with the γ = 0.478 included in the selected γ interval. (b) 95% C.I. of RCR slope coefficient 

estimator. The true β = 1 always lies in the 95% C.I. of the selected RCR estimates. 

 

Resampling: 

 Since for our nonparametric RCR we cannot conduct theoretical inference on the slope 

estimate, we will use the bootstrap resampling (1000 replicates) to obtain the 95% confidence 

interval (C.I.) of  ̂ . From panel (b) of Figure 5.8, we can see that the C.I. when 

                covers the MLE  ̂ = 1.001. 

 

Case 2: Performance on EIV data with outliers in Y direction 

Exactly the same as the introduce of outliers in Section 5.1, we replace 5% of the ‘good’ 

points with outliers having contaminated εc ~ N(50, σ
2

ε) in the Y direction. From the following 

RCR efficiency plot, we can see that if we want both eY and eX to be no less than 0.75, we can 
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limit the range of γ inside the interval of                . In this case, the MLE/OR  ̂=1.881 

is highly biased due to the outlier contamination. The LSS estimate  ̂=1.004 with corresponding 

γ=0.496 falls inside the selected interval, while the LMS estimate  ̂=0.925 is biased. The true 

β=1 always lies in 95% C.I. of selected  ̂ as can be seen from panel (b) of Figure 5.9.  

 

(a)                                                                          (b) 

Figure 5.9 (a) RCR efficiency plot for simulation case 2 when λ = 1 having 5% outliers. If we 

set both eY and eX to be no less than 0.75, the corresponding γ interval would be [0.471, 0.526], 

and the corresponding slope estimate  ̂ varies from 0.98 to 1.05. The cross point corresponds to 

the RGMR estimate of  ̂ = 1.002 with γ = 0.499. The LSS estimate is  ̂ = 1.004 with the γ = 

0.496 included in the selected γ interval. (b) 95% C.I. of RCR slope coefficient estimator. The 

true β = 1 is always covered by the 95% C.I. of the selected RCR estimates. 

 

Case 3: Performance on EIV data with leverage points in X direction 

Similarly, we now replace 5% of the ‘good’ points with leverage points having 

contaminated δc ~ N(50, σ
2

δ) in the X direction. From the following efficiency plot, we can limit 

the range                 to make both eY and eX be at least 0.775. In this case, the MLE/OR 

 ̂ = 0.566 is highly biased due to the outlier contamination. The LSS estimate  ̂ = 1.020 with 

corresponding γ = 0.481 does fall inside the selected interval, while the LMS estimate  ̂ = 0.891 
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is biased. The true β = 1 always is always inside the 95% C.I. of selected  ̂ as can be seen from 

the following confidence interval plot. 

 

(a)                                                                          (b) 

Figure 5.10 (a) RCR efficiency plot for simulation case 3 when λ = 1 having 5% leverage points. 

If we set both eY and eX to be no less than 0.775, the corresponding γ interval would be [0.428, 

0.561], and the corresponding slope estimate  ̂  varies from 0.975 to 1.050. The cross point 

corresponds to the RGMR estimate of  ̂ = 1.012 with γ = 0.494. The LSS estimate is  ̂ = 1.020 

with the γ = 0.481 included in the selected γ interval. (b) 95% C.I. of RCR slope coefficient 

estimator. The true β = 1 is always covered by the 95% C.I. of the selected RCR estimates. 

 

An advantage of our RCR approach is that it is distribution-free, which means our 

approach should provide decent estimate even if we encounter data which do not follow normal 

distribution. 

 

Case 4: Performance on uniformly distributed EIV data 

Here we let random latent variable ξ ~ U(0, 100) distribution, and random errors ε and δ 

also follow the uniform distribution with mean 0 such that σ
2

ε/σ
2

η = σ
2

δ/σ
2
ξ = 10% i.e. λ = 1. From 

the following efficiency plot, we can limit the range                 to make both eY and eX 

be at least 0.875. In this case, the MLE as of  ̂ = 1.021 is not the optimal any more due to the 
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violation of the underlying normality assumption. The GMR estimate  ̂ = 1.019 is close to our 

RCR estimates with selected  ̂ varying from 0.997 to 1.016, however. The LSS estimate  ̂ = 

1.009 with corresponding γ = 0.491 does fall inside the selected interval, while the LMS estimate 

 ̂ = 0.910 is quite biased. The true β = 1 always is always inside the 95% C.I. of selected  ̂ as 

can be seen from the following confidence interval plot. 

 

(a)                                                                          (b) 

Figure 5.11 (a) RCR efficiency plot for simulation case 4 when data follows uniform 

distribution. If we set both eY and eX to be no less than 0.875, the corresponding γ interval would 

be [0.472, 0.522], and the corresponding slope estimate  ̂ varies from 0.997 to 1.016. The cross 

point corresponds to the RGMR estimate of  ̂ = 1.007 with γ = 0.496. The LSS estimate is  ̂ = 

1.009 with the γ = 0.491 included in the selected γ interval. (b) 95% C.I. of RCR slope 

coefficient estimator. The true β = 1 always lies in the 95% C.I. of the selected RCR estimates. 

 

Case 5: Performance on t(3) (heavy-tail) distributed EIV data 

In this case, we set the random latent variable ξ ~ √      distribution, and the random 

errors ε and δ both follow the student’s t(3) distribution such that σ
2

ε/σ
2

η = σ
2

δ/σ
2

ξ = 20% i.e. λ = 

1. From the following efficiency plot, we can limit the range                 to make both eY 

and eX to be no less than 0.725. Again, the MLE  ̂ = 1.033 cannot be treated as the optimal 

estimate here due to the violation of the underlying normality assumption. The GMR estimate  ̂ 
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= 1.026 is included in our selected RCR estimates with  ̂ varying from 0.998 to 1.056, however. 

The LSS estimate  ̂ = 1.055 with corresponding γ = 0.447 barely falls inside the selected γ 

interval, while the LMS estimate  ̂ = 0.953 does not. The true β = 1 always is always inside the 

95% C.I. of the selected RCR estimates  ̂ as can be seen from the following confidence interval 

plot. 

 

(a)                                                                          (b) 

Figure 5.12 (a) RCR efficiency plot for simulation case 5 when data follows student’s t 

distribution. If we set both eY and eX to be no less than 0.725, the corresponding γ interval would 

be [0.445, 0.529], and the corresponding slope estimate  ̂ varies from 0.998 to 1.056. The cross 

point corresponds to the RGMR estimate of  ̂ = 1.027 with γ = 0.487. The LSS estimate is  ̂ = 

1.055 with the γ = 0.447 included in the selected γ interval. (b) 95% C.I. of RCR slope 

coefficient estimator. The true β = 1 always lies in the 95% C.I. of the selected RCR estimates. 

 

To sum up the calibration results of our RCR approach, we can conclude that, the 

selected RCR estimates are close to the suitable MLE solution in all situations including (1) 

when there is no violations of underlying model assumptions, (2) in the presence of outlier 

contamination, and (3) for the uniformly distributed data, and (4) for the heavy-tail t(3) 

distributed data. 
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Chapter   6 

Real-life Examples 

 

6.1   Data from Method Comparison Studies 

  

Table 6.1 Serum kanamycin levels in blood samples drawn simultaneously from an umbilical 

catheter and a heel venapuncture in twenty babies  

Baby Heelstick (X) Catheter (Y)  Baby Heelstick (X) Catheter (Y) 

1 23.0 25.2  11 26.4 24.8 

2 33.2 26.0  12 21.8 26.8 

3 16.6 16.3  13 14.9 15.4 

4 26.3 27.2  14 17.4 14.9 

5 20.0 23.2  15 20.0 18.1 

6 20.0 18.1  16 13.2 16.3 

7 20.6 22.2  17 28.4 31.3 

8 18.9 17.2  18 25.9 31.2 

9 17.8 18.8  19 18.9 18.0 

10 20.0 16.4  20 13.8 15.6 

 

In order to illustrate our method, let us consider a simple example which is given by 

(Kelly 1984) and reanalyzed by (Zamar 1989) in the context of EIV models. The data in Table 

6.1 on simultaneous pairs of measurements of serum kanamycin levels in blood samples drawn 

from twenty babies. One of the measurements was obtained by a heelstick method (X), the other 

by using an umbilical catheter (Y). The question was whether the two methods are systematically 
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different and so that one could be substituted for the other after correction for bias. It seems 

reasonable to assume that both methods are subject to measurement errors with equal variances 

(Kelly 1984). To better illustrate the behavior of different approaches in the presence of outliers, 

we change the original value (33.2, 26.0) of case 2 to (39.2, 32.0) as in the numerical example 

given by (Zamar 1989). The case 2 is clearly separated from others in the upper right-hand 

corner of Figure 6.1. 

 

Figure 6.1 Different fitted regression lines for Example 1. The ratio of sample variances is 

SYY/SXX = 0.954. It seems that the LSS and the ORM estimators have the best fit to the main bulk 

of data, and the slope estimates from other approaches are greatly attenuated by the outlier in the 

upper right-hand corner. Of note, we also observe that the OR and the GMR gives almost same 

slope estimates that are close to 1, while the robust LMS estimate is badly influenced by the 

outlier in this situation.  

 

The different regression estimates of the simple linear model  ̂   ̂   ̂   are presented 

in the form of fitted regression lines in Figure 6.1. We observe that the LSS and the ORM 

estimators have the best fit to the main bulk of data, and the slope estimates from other 

approaches are greatly attenuated by the outlier in the upper right-hand corner. Of note, we also 

observe that the OR and the GMR gives almost same slope estimates that are close to 1, while 

the robust LMS estimate is badly influenced by the outlier in this situation. To illustrate our new 
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methods, we will perform the RCR approach on this dataset as well. The selected robust 

compound regression results are tabulated in Table 6.2, and we can see that RGMR has the 

largest summation of regression efficiencies which indicates it is the best among all RCR 

estimates. 

Table 6.2 Selected RCR results for Example 1 

______________________________________________________________________________________ 

γ  α β ∑
     ̂  

 

  
    ∑

     ̂  
 

  
   eY eX  eY + eX 

___________________________________________________________________________ 

0  -20.79 2.00 16.04  4.02  0.443 1.000 1.443   

0.10  -12.68 1.61 10.94  4.20  0.650 0.957 1.607 

0.16 (LSS) -10.77 1.52 10.05  4.33  0.708 0.928 1.636 

0.20  -9.66 1.47 9.59  4.43  0.742 0.908 1.650 

0.30  -7.67 1.38 8.85  4.67  0.803 0.861 1.664 

0.36 (RGMR) -6.68 1.33 8.54  4.83  0.833 0.833 1.666 

0.40  -6.10 1.30 8.37  4.93  0.850 0.815 1.665 

0.50  -4.75 1.24 8.01  5.22  0.887 0.770 1.657 

0.60  -3.50 1.18 7.74  5.56  0.919 0.723 1.642 

0.70  -2.27 1.12 7.51  5.98  0.947 0.673 1.620 

0.80  -0.97 1.06 7.33  6.53  0.970 0.616 1.586 

0.90  0.55 0.99 7.19  7.36  0.989 0.546 1.535 

1.00  2.72 0.89 7.11  9.07  1.000 0.443 1.443   

___________________________________________________________________________ 

 

One advantage of the RCR approach is that it gives users the flexibility to choose their 

desired regression line from the entire class of RCR lines from the RCR efficiency plot in Figure 

6.2. Suppose we want the desired line to be at least 95% efficient for the estimation of Y, we can 

clearly see that when eY = 0.95, we have the compound parameter γ = 0.714 and eX = 0.67. In 

most situations, we do not have a preference on either variable of the analyzed data. For 

example, if we set both eY and eX be no less than 0.825, from the RCR efficiency plot, the 

satisfied γ interval would be [0.344, 0.379], and the corresponding  ̂ varies from 1.32 to 1.34. 
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Figure 6.2 RCR efficiency plot for Example 1. Suppose we want the desired line to be at least 

95% efficient for the estimation of Y, that is, eY ≥ 0.95, the corresponding compound parameter γ 

= 0.714 with the corresponding efficiency for estimating X to be eX = 0.67. If we set both eY and 

eX to be no less than 0.825, the corresponding γ interval would be [0.344, 0.379], and the 

corresponding slope estimate  ̂ varies from 1.32 to 1.34. The cross point corresponds to the 

RGMR estimate of  ̂ = 1.330 with γ = 0.361. The LSS estimate is  ̂ = 1.524 with γ = 0.157. 

 

Figure 6.3 95% C.I.s of RCR slope coefficient estimator for Example 1. The null hypothesis of α 

= 0 and β = 1, that is, the two method are equivalent, are always covered by the 95% C.I. of the 

selected RCR estimates under the criterion that both efficiencies eY and eX are no less than 0.825. 

 

To detect individual cases that may differ from the bulk of the data, we performed the 

diagnostics in Figure 6.4 based on the residuals from the usual LS, the robust LMS, and our new 

robust approaches - LSS and RGMR respectively. The LS diagnostics firstly detects cases 18 and 
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12 as potential outliers before finding the gross outlier case 2, which is misleading. Of note, the 

robust LMS approach performs even worse. By contrast, both the new high breakdown LSS and 

RGMR diagnostics successfully detect case 2 as a gross outlier. 

 

                            (a)                                                                    (b) 

 

                            (c)                                                                    (d) 

Figure 6.4 Outlier diagnostics for Example 1. (a) The usual LS diagnostics fails to detect the 

outlier - case 2; (b) the robust LMS diagnostics treat ‘good’ points as outliers; (c) the new LSS 

diagnostics and (d) the new RGMR diagnostics both show the case 2 as a gross outlier. 

 

As we confirmed the presence of such a gross outlier, case 2 should be deleted. Assume 

the sample variations come from the random errors only, i.e.  ̂  
   

   
      , the GMR would 

be the MLE solution here.  We now apply the GMR estimator (i.e. the MLE) to the remainder, 
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and the GMR gives the fitted line in Figure 6.5 with slope 1.26 and intercept -4.52. Moreover, 

the bootstrap 95% confidence intervals (0.97, 1.57) for  ̂    and (-10.93, 1.35) for  ̂    support 

the null hypotheses that α = 0 and β = 1. As can be seen, compared to the optimal GMR 

estimates, the RCR estimate is the most robust one, better than Zamar’s ORM estimate, when 

exposed to the contamination of case 2. Furthermore, the values α = 0 and β = 1 are always 

covered by the 95% C.I. of the selected optimal RCR estimates as shown in Figure 6.3, which 

also concludes that the two methods of measurement are not significantly different. 

 

Figure 6.5 Reanalysis of Example 1 after outlier removal. The case 2 in the upper right-hand 

corner is deleted from the analysis, then we have the fitted LS line:  ̂              ; the OR 

line:  ̂              ; the GMR line:  ̂              . 

 

6.2   Brain vs. Body Weights Data 

 

The data in Table 6.3 on brain and body weights of 28 animals is given by Rousseeuw 

and Leroy (1987) and reanalyzed by He and Liang (2000) in the context of EIV models. Here the 

predictor X is the body weight (in kilograms), and the response Y is the brain weight (in grams). 
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The logarithmic transformation was necessary to make the data look more linear and less 

heteroscedastic (Rousseeuw and Leroy 1987). We also take the view that both weights are 

assumed to be measured with error (He and Liang 2000). The question we are interested in is 

whether a larger brain is required to govern a heavier body, or from another perspective, whether 

the brain weight increases linearly as the body weight increases. 

Table 6.3 Body and Brain Weight for 28 Animals 

Index 

(i) 
Species 

Body 

Weight 

(Xi) 

Brain 

Weight 

(Yi) 

 
Index 

(i) 
Species 

Body 

Weight 

(Xi) 

Brain 

Weight 

(Yi) 

1 Mountain beaver 1.350 8.100  15 African elephant 6654.00 5712.00 

2 Cow 465.000 423.000  16 Triceratops 9400.00 70.00 

3 Gray wolf 36.330 119.500  17 Rhesus monkey 6.800 179.000 

4 Goat 27.660 115.000  18 Kangaroo 35.000 56.000 

5 Guinea pig 1.040 5.500  19 Hamster 0.120 1.000 

6 Diplodocus 11700.0 50.0  20 Mouse 0.023 0.400 

7 Asian elephant 2547.00 4603.00  21 Rabbit 2.500 12.100 

8 Donkey 187.100 419.000  22 Sheep 55.500 175.000 

9 Horse 521.000 655.000  23 Jaguar 100.000 157.000 

10 Potar monkey 10.000 115.000  24 Chimpanzee 52.160 440.000 

11 Cat 3.300 25.600  25 Brachiosaurus 87000.0 154.5 

12 Giraffe 529.000 680.000  26 Rat 0.280 1.900 

13 Gorilla 207.000 406.000  27 Mole 0.122 3.000 

14 Human 62.00 1320.00  28 Pig 192.000 180.000 

 

The scatter plot of the data along with different fitted regression lines are shown in Figure 

6.6. The three animals clearly identified on the right side break the whole dataset into two parts. 

The three animals are categorized as dinosaurs, whereas the 25 remaining animals are all 

mammals. By visual inspection of the fitted lines in Figure 6.6, we see that the LMS and the QR 

estimators have the best fit to the main bulk of data, and the LSS having a relatively good fit as 

well compared to the attenuated LS, OR, and GMR estimates. We also want to point out that, 

obviously from the data in Figure 6.6, a curve that will flat out when the body weight passes 

beyond a certain threshold may be most reasonable. 
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Figure 6.6 Different fitted regression lines for Example 2. The ratio of sample variances is 

SYY/SXX = 0.405. It seems that the LMS and the QR estimators have the best fit to the main bulk 

of data, and the LSS having a relatively good fit as well compared to the attenuated LS, OR, and 

GMR estimates. However, obviously from the data, a curve that will flat out when the body 

weight passes beyond a certain threshold may be most reasonable. 

 

Table 6.4 Selected RCR results for Example 2 

             ____________________________________________________________________________________________ 

γ  α β ∑
     ̂  

 

  
    ∑

     ̂  
 

  
   eY eX  eY + eX 

___________________________________________________________________________ 

0  -1.20 1.49 26.44  11.90  0.296 1.000 1.296   

0.10  -0.03 1.18 17.10  12.24  0.457 0.972 1.429 

0.20  0.41 1.06 14.39  12.70  0.544 0.937 1.481 

0.30  0.71 0.99 12.82  13.21  0.610 0.900 1.510 

0.40  0.95 0.92 11.72  13.80  0.667 0.862 1.529 

0.50  1.16 0.87 10.87  14.50  0.720 0.820 1.540 

0.60 (RGMR) 1.36 0.81 10.15  15.38  0.770 0.774 1.544 

0.70  1.57 0.76 9.52  16.56  0.821 0.718 1.539 

0.80  1.79 0.70 8.94  18.34  0.875 0.649 1.524 

0.82 (LSS) 1.84 0.68 8.82  18.83  0.886 0.632 1.518 

0.90  2.09 0.62 8.36  21.75  0.935 0.547 1.482 

1.00  2.76 0.44 7.82  40.22  1.000 0.296 1.296   

___________________________________________________________________________ 

 

The selected robust compound regression results are tabulated in the above table, and the 

RGMR is again verified having the largest sum of regression efficiencies which indicates it is the 

best among all the RCR estimates. Figure 6.7 is the corresponding RCR efficiency plot. Suppose 

we want the desired line to be at least 95% efficient for the estimation of X, we can clearly see 
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that when eX = 0.95, we have the compound parameter γ = 0.163 and eY = 0.515. If both variables 

are treated as equally important, we set both eY and eX be no less than 0.75, the satisfied γ interval 

would be [0.560, 0.645], and the corresponding  ̂ varies from 0.79 to 0.83. 

 

Figure 6.7 RCR efficiency plot for Example 2. If we set both eY and eX to be no less than 0.75, 

the corresponding γ interval would be [0.560, 0.645], and the corresponding slope estimate  ̂ 

varies from 0.79 to 0.83. The cross point corresponds to the RGMR estimate of  ̂ = 0.811 with γ 

= 0.603. The LSS estimate is  ̂ = 0.684 with γ = 0.820. 

 

Although the outliers are obvious in this example, we still perform the outlier diagnostics 

to test the power of each approach in detecting the three gross outliers. While the LSS barely 

detects the outliers near the 95% cut-off, the high breakdown diagnostics – the robust LMS, and 

the new LSS and RGMR all detect the cases 6, 16, and 25 as gross outliers. 
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(a)                                                                          (b) 

 

(c)                                                                           (d) 

Figure 6.8 Outlier diagnostics for Example 2. (a) The usual LS diagnostics barely detects the 

three outliers near the 95% cut-off; (b) the robust LMS diagnostics (c) the new LSS diagnostics 

and (d) the new RGMR diagnostics all detect the cases 6, 16, and 25 as gross outliers. 

 

After the three dinosaurs are excluded from the analysis of the rest of the mammals, the 

traditional LS, OR, and GMR analysis methods all perform well as shown in Figure 6.9. Assume 

the sample variations come from the random errors only, i.e.  ̂  
   

   
      , the GMR is the 

MLE solution here. As can be seen, the RCR estimates  ̂   (0.79, 0.83) is close to the GMR  ̂ = 

0.78, and is totally covered by the 95% bootstrap C.I. (0.72, 0.85) of the GMR slope estimate. 
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Since a significant positive slope is confirmed, we can draw the conclusion that a larger brain is 

required to govern a heavier body. 

 

Figure 6.9 Reanalysis of Example 2 after outlier removal. The cases 2, 16, and 25 are deleted 

from the analysis, then we have the fitted LS line:  ̂             ; the OR line:  ̂       

      ; the GMR line:  ̂             . 

 

6.3   Galton’s Family Heights Data 

 

Galton’s family heights data have been a preeminent historical dataset in regression 

analysis, and the original model and basic results on this dataset have survived the close scrutiny 

of statisticians for 125 years. Using Galton’s data as a benchmark for different regression 

approaches including our newly developed robust approaches – LSS and RCR, we elucidated 

that the ordinary least squares regression has a strong bias leading to otherwise alternative 

conclusions on the true relationships between the heights of the child and his or her parents. 

The statistical terminology of ‘regression’ was coined by Sir Francis Galton beyond 

dispute, while the family heights data was formally introduced in his study on Regression 

towards Mediocrity in Hereditary Stature (Galton 1886, 1889). Fortunately, the researchers were 
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still able to retrieve Galton’s family heights data from his firsthand notebook reserved at 

University College London despite the elapsing of more than a century (Hanley 2004). It consists 

of the records from 205 families with 962 adult children in total, among which 486 are sons and 

476 are daughters. However, after excluding the non-numerical entries (tall, medium, short, etc.), 

the preprocessed data in our article is eventually formed from the records of 481 sons and 453 

daughters as well as their parents. 

 

6.3.1   Regression of Child on Mid-parent 

 

The regression of child on mid-parent was of greater scientific interest (Hanley 2005). All 

the heights in Galton’s data are assumed to be subject to random measurement errors, which is 

suitable for our study of EIV models. Assume there exists the simple linear relationship Yi = α + 

βXi + εi, i = 1, 2, ..., 934, where Yi is the height of each child (son or daughter), and Xi is the mid-

parent height (the average height of father and mother).  

 

Figure 6.10 Different fitted regression lines for Example 3 part 1. From the large discrepancies 

between the regression estimates from different approaches, we view that the target dataset is 
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quite noisy. But when we eyeball the barely linear trend, we find the GMR among all others 

fairly represents the trend. 

 

From the above scatter plot with different fitted regression lines, we can clearly see the 

target dataset is quite noisy and there is a very week linear relationship with a correlation 

coefficient as of     = 0.323. However, our previous simulations give us the ‘rule of thumb’ to 

choose the GMR estimates as the most trustable result when there is no evidence of gross 

outliers, which is confirmed from the outlier diagnostics in Figure 6.11. 

  

Figure 6.11 Outlier diagnostics for Example 3 part 1. There seems no appearance of gross 

outliers presented by the diagnostics from either the LS residuals or the GMR residuals.  

 

From the EIV modeling point of view, if we classify the height problem as a pure 

functional EIV model where the variation should come from the errors only – then the GMR is 

the most suitable in the absence of outliers. To compare the MLE of the function EIV model with 

the GMR result, we need firstly estimate the error variances ratio λ from the data, which is 

feasible in the following sense. By the assumption of functional EIV models, the estimated λ can 

be obtained as  ̂  
   

   
      . On the other hand, for general EIV problems, we are able to 
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estimate λ when we find there are many identical values observed in both variables. In this 

dataset, the random error σε
2
 of child’s height can be estimated from the ‘repeated measurements’ 

of child’s height for the same mid-parent’s height, and similarly we can estimate the random 

error σδ
2
 of mid-parent’s height. Hence we have  ̂   ̂ε

2  ̂δ
2
 = 4.346  

   

   
, which substantiates 

our claim that the sample variations are from the random errors only. The MLE is  ̂    = 2.065 

when we assume λ=4.265. We can see that it is consistent with the GMR estimate stated earlier. 

However, the normality assumption of the MLE approach is not attainable when we perform the 

residuals diagnostics (p = 0.016 under the Shapiro-Wilk test, and the data is light-tailed), which 

implies the parametric MLE approach is questionable but the distribution free GMR approach is 

still feasible. 

As there are hardly any outliers here, we first perform the compound regression analysis 

on this dataset. From the CR efficiency plot of Figure 6.12, if we set both eY and eX be no less 

than 0.65, the selected               with corresponding  ̂ varies from 2.039 to 2.093. The 

corss point corresponds to the GMR esimate γ = 0.19 &  ̂ = 2.065.  

 

Figure 6.12 CR efficiency plot for Example 3 part 1. If we set both efficiencies eY and eX to be 

no less than 0.65, the corresponding γ interval would be [0.18, 0.20], and the corresponding slope 



 

73 

 

estimate  ̂ varies from 2.039 to 2.093. The cross point corresponds to the GMR estimate of  ̂ = 

2.065 with γ = 0.19. The OR estimate is  ̂ = 5.091 with γ   0. 

 

On the other hand, in order to illustrate our new RCR estimation approach, we will 

compare our robust RCR estimates with the reasonable GMR estimate. From the RCR efficiency 

plot of Figure 6.13, if we set both eY and eX be no less than 0.55, the selected                 

with corresponding  ̂ varies from 1.566 to 1.650, which compared to other estimates is the most 

close to the GMR result. Especially, if eX > 0.70 is desired, we find γ = 0.116 &  ̂ = 2.067 is 

surprisingly close to the GMR estimate.  

 

Figure 6.13 RCR efficiency plot for Example 3 part 1. If we set both eY and eX to be no less than 

0.55, the corresponding γ interval would be [0.257, 0.302], and the corresponding slope estimate 

 ̂ varies from 1.566 to 1.650. The cross point corresponds to the RGMR estimate of  ̂ = 1.608 

with γ = 0.279. Suppose we want the desired efficiency for the estimation of X to be at least 70%, 

that is, eX ≥ 0.70, the corresponding compound parameter γ = 0.116, the regression efficiency of 

Y eY = 0.42, with the corresponding slope estimate  ̂ = 2.067 that is very close to the GMR 

estimate  ̂ = 2.065. While The LSS estimate gives  ̂ = 7.764 with γ   0. 

 



 

74 

 

Upon comparing these two analysis approaches, we view that the CR approach is 

preferable when there is no evidence of gross outliers in the data, and the CR efficiency plot 

shows a higher efficiency for the GMR rather than the RCR efficiency for the RGMR. All in all, 

the reasonable slope estimate should be  ̂           which can be interpreted as an average 

one inch advantage in the mid-parent height will benefit their child about two inches taller than 

other children. 

 

6.3.2   Estimation and Inference on Gender-specific Models 

 

In reality, it is natural to raise the curiosity questioning whether the stature of the 

offspring inherits more from the father or the mother. In order to address this question, we 

proposed the pair of gender-specific multiple linear regression models (1) & (2) as we are 

interested in discriminating the model for sons from that for daughters. 

                         (1) 

                         (2) 

The random variables of paternal height X11 and the maternal height X12 are bundled with the 

son’s height Y1 in model (1), while the daughter’s height Y2 together with the heights of her 

father X21 and her mother X22 are involved in model (2), where    and    are the corresponding 

error terms. 

Table 6.5 above tabulates the regression analyses results of the gender-specific models on 

the 481 sons’ and 483 daughters’ datasets respectively. It clearly demonstrate that the LS slope 
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estimates are always much smaller than that from the other regressions configured for EIV 

models, due to the nature that the LS will underestimate the regression slopes when the 

predictors are contaminated with measurement errors. Of note, referring to the estimated 

regression slopes for the model on daughters’ heights, the LS slopes relative to the others are in a 

reverse pattern. To judge the goodness-of-fit of each method, I used the sum of regression 

efficiency as a general criterion for different methods. The reason is because we are trying to 

uncover a true linear relationship but not for the purposes of prediction of any variable, and thus 

all the regression variables are treated as equally important in the regression model. In terms of 

SRE, the OR is the most efficient method for the estimation of the first model, while the GMR 

estimate is most efficient for the second model. 

Table 6.5 Results from different regressions for gender-specific models 

Methods 
                                               

 ̂   ̂    ̂   SRE
1
   ̂   ̂    ̂   SRE

2
 

LS 
19.2182 

(3.7420) 

0.4187 

(0.0431) 

0.3290 

(0.0454) 

1.1978 

(0.0313) 

 18.1594 

(3.8485) 

0.3753 

(0.0381) 

0.3109 

(0.0447) 

1.2341 

(0.0373) 

          

OR 
-43.271 

(10.940) 

0.9811 

(0.1522) 

0.6976 

(0.1488) 

1.3053 

(0.0454) 

 -21.889 

(7.1581) 

0.6142 

(0.0700) 

0.6773 

(0.1067) 

1.4142 

(0.0496) 

          

GMR 
-53.162 

(5.9810) 

0.9471 

(0.0534) 

0.8888 

(0.0502) 

1.2974 

(0.0470) 

 -41.522 

(4.4929) 

0.7674 

(0.0396) 

0.8179 

(0.0441) 

1.4393 

(0.0512) 

          

LSS 
-49.569 

(15.227) 

1.0727 

(0.1935) 

0.6969 

(0.2437) 

1.3021 

(0.0470) 

 -41.185 

(11.137) 

0.6924 

(0.0917) 

0.8936 

(0.1413) 

1.4301 

(0.0534) 

          

RGMR 
-60.192 

(4.7406) 

0.9945 

(0.0423) 

0.9474 

(0.0419) 

1.2923 

(0.0472) 

 -57.657 

(4.4220) 

0.8811 

(0.0372) 

0.9467 

(0.0422) 

1.4367 

(0.0521) 

Mean and standard error (in parentheses) of regression coefficients by B=5,000 bootstraps; SRE 

stands for the sum of robust regression efficiency with respect to each variable 

 

Furthermore, we care about whether the identified patterns of unequal contributions from 

parents are statistically significant or merely occur by chance. Due to the violation of the 
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normality assumption for the gender-specific models, our precedent insight of parametric 

hypotheses testing is questionable. Meanwhile, even if the underlying assumptions for 

parametric tests are fulfilled, it is still complicated for the inference based on the asymptotically 

estimated covariance matrix for regression coefficients of multivariate EIV models (Patefield 

1981). Hence, we will take advantage of the prevailing non-parametric technique - the bootstrap 

(Efron 1979, 1982, Efron and Tibshirani 1993) to test the hypotheses.  

Presumably, the parents are in equal roles to the stature of the offspring, our hypotheses 

would be for the model on the sons’ heights, H01: β11=β12 versus Ha1: β11 > β12 i.e. the father 

rather than the mother has significantly larger influence on the height of their son; for the model 

on the daughters’ heights, H02: β21=β22 versus Ha2: β21 < β22; i.e. the mother has significantly 

more contribution to their daughter than the father does. Under each null hypothesis, since both 

terms from father and mother in the regression model will be ultimately merged into one single 

term, it is therefore feasible to set up a permutation test by randomly swapping the father’s and 

the mother’s heights within each family.  

If the observed positive differences of slopes in gender-specific models are denoted as 

 ̂    ̂ 11 -  ̂ 12 and  ̂   ̂ 22 -  ̂ 21 respectively, the corresponding resampled differences of 

 ̂ 
    ̂  

 
 -  ̂  

  and  ̂ 
    ̂  

 
 -  ̂  

  will then be hypothetically generated through the resampling 

procedures. Consequently, the permutation achieved significance level (ASL) of each hypothesis 

test is defined to be the permutation probability of observing at least that large a difference when 

the null hypothesis is true, that is the permutation probability that  ̂  exceeds  ̂. Hence, 

           
( ̂ 

   ̂ )   { ̂ 
   ̂ }   

                
( ̂ 

    ̂ )   { ̂ 
    ̂ }   
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where there are B = 1,000,000 permutation replications for each test. If the ASL is smaller than 

the specified significance level say α = 0.05, we reject the null hypothesis as there is a little 

chance the null hypothesis holds based on the data we already obtained. 

Table 6.6 The ASL of hypotheses test on the unequal slope coefficients 

 

Methods ASLSon ASLDaughter 

LS 0.004697* 0.989513 

OR 0.000000* 0.071841 

GMR 0.063362 0.070548 

LSS 0.000000* 0.000019* 

RGMR 0.104749 0.024111* 

              B=1,000,000; * Significant at α=0.05 

 

From the above table, we can conclude that at the significance level of 0.05, the LS, the OR, 

and the new LSS approaches from the first column show the father has significantly larger 

influence on the son’s height rather than the mother does; to the daughter’s height, both two new 

approaches - the LSS and the RGMR indicates the mother’s contribution is significantly more 

than the father’s. 
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Chapter   7 

 

Discussion 

 

In this thesis, we proposed two novel nonparametric approaches – the least sine squares 

(LSS) regression and the robust compound regression (RCR) analysis methods for the robust 

estimation of errors-in-variables (EIV) models. The RCR including the LSS as a special case 

provides the robust counterpart for every EIV regression line in a 1-1 mapping. We not only 

verified the robust least squares (RLS), the robust orthogonal regression (alias of the LSS), and 

the robust geometric mean regression (RGMR) are special members of the robust compound 

regression (RCR) family, but also proved the optimality of the RGMR in the respect of 

maximizing the sum of regression efficiencies in simple linear regression. Moreover, we 

provided the generalized versions of both new approaches for the further investigation, and 

proposed to use the sum of regression efficiencies as a general goodness-of-fit criterion to 

compare the estimates from different regression approaches in real data analysis. 

The first advantage of both new approaches lies in their intuitive geometric 

interpretations, by minimizing the sum of squares of the projected orthogonal distances for the 

LSS, and the sum of weighted average of squares of the projected vertical and horizontal 

distances for the RCR. Meanwhile, both methods are distribution free, being direction 

generalizations of the nonparametric orthogonal regression analysis method and the 

nonparametric compound regression analysis method respectively. Moreover, both estimation 

approaches are independent to the ratio of the error variances, which is not the case for the usual 
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MLE approach of EIV models. Furthermore, their estimators are robust to outliers and other 

departures from the underlying assumptions. Although the LSS and RCR approaches are mainly 

designed for the robust estimation of EIV models, they are also good for robust estimation of the 

degenerated EIV model where only the response variable is random while the predictor variables 

are fixed. Of note, one particular merit of the LSS approach is because its estimator is 

analytically tractable by using either the principle component analysis (PCA) or the singular 

value decomposition (SVD), which makes the runtime of the LSS for high-dimensional and large 

datasets be at the same order of the runtime of the ordinary LS and OR estimation approaches, 

about 1000 times less than the runtime of the robust LMS approach. 

Nevertheless, the common disadvantage for both methods is that their regression lines 

must pass through the center of the target dataset which will to some extent restrict their 

robustness performance. Additionally, another downside of the LSS is that it is only a special 

case of the RCR framework, and hence the LSS is not always the optimal choice as each 

situation has its unique optimal solution. In contrary, the RCR approach is advantageous in that it 

can provide a class of optimal robust estimators for the entire class of EIV model in a 1-1 

mapping. The regression efficiency concept and the efficiency plots will aid us in searching for 

the optimal RCR for each data set analyzed.  

In the future, we will consider extending more theoretical properties of the compound and 

constrained regression analysis methods (Leng and Zhu 2009) to the new RCR analysis approach 

in the high dimensional case. Secondly, we will search for a robust location (‘center of mass’) 

estimator from the data depth point of view (Liu 1990, Liu et al. 1999) to further enhance the 

robustness of our methods. Thirdly, it is worthwhile for us to explore the generalization of RCR 

by making a win-win partnership between the compound regression analysis method and any 
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existing robust regression technique including the notable least median of squares method, which 

represents a promising direction for the development of other systematic classes of robust 

estimation methods like the RCR paradigm for the EIV models. Finally, we can develop a 

system of robust MLE estimators for the EIV models based on our RCR concept as well. 
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Appendix: Proof of Results 

 

Theorem 1: The ordinary least squares (LS) estimator is also regression-, scale-, and affine- 

equivariant; the OR does not show any of these three equivariances; and the GMR is scale- 

equivariant only. 

Proof.  

For the LS, this follows from 

 ∑                      ∑          
 , 

 ∑                  ∑          
 , 

and ∑                    ∑          
 , respectively. 

For the OR, for any column vector V, any constant c, and any nonsingular square matrix A, in 

generally we do not see any equivariance as 

∑                     

             
 

∑          
 

     
 

∑               

           
     

∑          
 

     
 

∑         
            

               
 

∑          
 

     
 

For the GMR, for any column vector V, and any nonsingular square matrix A, in generally we do 

not view the regression-, and affine- equivariance as 

∑                     

 ∏ (     )
  

    
 

   

 
∑          

 

 ∏   
  

    
 

   

 

 

∑                   
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∑          
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But for any constant c, we always have the scale- equivariance for the GMR 
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∑               

 ∏ (   )
  

    
 

   

  
 

   
∑          

 

 ∏   
  

    
 

   

 

 

Theorem 2: The least sine squares (LSS) slope estimate is the eigenvector corresponding to the 

smallest eigenvalue of the robust sample covariance matrix, and the LSS is a special case of the 

robust compound regression (RCR). 

Proof. (1)  

Without loss of generality, we form the multivariate regression model as ∑     
 
      

or in matrix form Xβ=0 for the centered data, where X=[X1, X2, …, Xp] is a n by p matrix of 

observations, and β is a p by 1 column vector of regression coefficients. This linear relationship 

is uniquely specified by imposing the constraint β’β=1.  

As we know, there is a close relationship between the principle component analysis 

(PCA) and the orthogonal regression (OR) (Jackson and Dunlevy 1988). Since the LSS is the 

robust analogy of the OR, we want to prove the LSS slope estimate can also be obtained through 

the principle component analysis on the robust sample covariance matrix. 

We first define  ̃    ̃   ̃     ̃   

[
 
 
 
   

  
 

   

  

   
   

  
 

   

  ]
 
 
 

   

 as the n by p transformed 

matrix of observations, where    √∑    
  

    is the distance from the ith observation to the 

origin. Then the LSS is defined to minimize  

      ( ̃ )
 
( ̃ )     ̃  ̃      ̃  ̃      ̃  

where  ̃ is the p by p robust sample covariance matrix 

 ̃  [

 ̃ 
  ̃   ̃ 

  ̃ 

   
 ̃ 

  ̃   ̃ 
  ̃ 

]

   

 

 We define the eigenvectors of  ̃ as (α1, α2, …, αp) in the order of descending eigenvalue 

(λ1, λ2,…, λp). Assume  ̃ is non-singular, the eigenvectors can expand the p-dimensional space, 

and then the slope estimate β can be expressed as a linear combination l1α1+ l2α2+…+ lpαp 

subject to ∑   
 
     . Hence, the minimization of SSLSS is equivalent to the minimization of 

(l1α1+ l2α2+…+ lpαp)   ̃ (l1α1+ l2α2+…+ lpαp) 

 Since as we know that the eigenvectors are orthogonal and     ̃     , the problem 

becomes the minimization of ∑     
 
   . Under the constraints ∑   

 
      and         
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  , the minimum is achieved when we set lp=1 and thus β=αp. That is the eigenvector 

corresponding to    - the smallest eigenvalue of  ̃. 

(2)   

It was already shown that the OR in higher dimensions is a special case of the structural 

approach and thus a special case of the compound regression (CR) by the equivalence between 

the structural approach and CR under the normality assumption (Leng and Zhu 2009).  

In the context of principle component analysis, as we also know that the OR estimate is 

the eigenvector associated with the smallest eigenvalue of the ordinary sample covariance matrix 

S, the OR estimate can be written as  ̂  =g(S), where g corresponds to the standard matrix 

manipulations to find the eigenvector of the smallest eigenvalue of any non-singular matrix. 

Similarly, as already shown in part (1), the LSS estimate can be expressed as  ̂   =g ( ̃) with the 

identical matrix manipulations g as well. 

On the other hand, in the context of compound regression analysis, given a set of     

satisfying ∑   
 
     , we can obtain the OR estimate  ̂       |   , where f is a function of 

the sample covariance matrix S after solving a system of equations. Meanwhile, from section 4.1, 

we have shown that the estimation of RCR approach is also simplified to solve a system of 

equations simultaneously as follows.  

 

 

 

We can see that the system of equations is exactly the same as in the CR except the S is replaced 

by  ̃. Suppose we are using the same set of     for the estimation of RCR, we obtain  ̂  

 ( ̃)|   . Now we want to show that this RCR estimate is indeed the LSS estimate.  

 Since the OR estimate should be the same in the context of different analyses, we have 

 ̂       |        . Hence, by induction we can easily draw the conclusion that  ̂  

 ( ̃)|     ( ̃)   ̂   . This implies the LSS is a special case of the RCR with the      

exactly the same as the     in the compound regression. 

 

Theorem 3: There is a monotonic relationship between γ and  ̂ in robust compound regression. 

Proof.  

The equation (b) in Section 4.1 can be rewritten as 
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We first denote 

  

When  ̃     and    ̂       ̂   ̂     , we have    ̂     and 
 

 ̂     as  ̂  , thus γ is 

a decreasing function of  ̂ and vice versa; 

When  ̃     and    ̂       ̂   ̂     , we have  ( ̂)     and 
 

 ̂     as  ̂  , thus γ is 

an increasing function of  ̂ and vice versa. 

Thus, we have proven the theorem. 

 

Theorem 4: The robust geometric mean regression (RGMR) is a special case of the robust 

compound regression (RCR). 

Proof.  

We have already proved this for the simple linear regression analysis. In the higher 

dimension case, a multivariable criterion for estimating the geometric mean regression (GMR) is 

given by Draper and Yang (1997). Consider the multivariate linear regression model defined in 

Theorem 3, their criterion can be written as 

      
         

 ∏   
  

   
 
 
 

 
 

 ∏   
  

   
 
 
 

              (1) 

where S is the sample covariance matrix, and                 with    
  

 ∏   
 
   

 
 
 

. 

 Lemma 1. If all of the p LS regression solutions which use in turn each of the p variables 

as a dependent variable lie in the same hyper-octant, then for the ratio of error variances matrix 

Λ non-singular, the maximum likelihood estimator (as described in Section 2.2) of multivariate 

structural EIV model is a convex combination of the p LS solutions (Patefield 1981, Fuller 

1987). 

 Based on the general conclusion in lemma 1, the following lemma 2 was proposed for the 

multivariate GMR. 

Lemma 2. Assume the sample covariance matrix S is non-singular, if all of the p LS 

solutions lie in the same hyper-octant, there is unique solution  ̂    to the quadratic problem 

described in (1), and it lies within the simplex defined by the p LS solutions (Draper and Yang 

1997). 

For the RGMR, we can its multivariate criterion as minimizing 

       
  ̃     ̃  

 ∏   
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_ _

_

_

ˆ ˆ( )ˆ ˆ( )
ˆ ˆ( )

XY RLS X RLS Y

RLS Y

XX RLS Y

S
f

S

 
 

 


  





 

89 

 

where the robust sample covariance matrix  ̃ was defined in the same way as in Theorem 3. 

 Before we propose our corollary as the natural analogies of Lemmas 1 and 2, it is 

necessary for us to firstly define the robust least squares (RLS) regression of Xl on (Xl, …, Xl-1, 

Xl+1, …, Xl) as to solve the problem  ̃ 
        

  ̃ , where  ̃ 
    ̃     ̃     ̃       ̃   is 

defined to be the complementary matrix of column vector  ̃ . Then we can easily know that the 

corresponding RLS solution is  ̂      
   ̃ 

  
 ̃ 

     ̃ 
  

 ̃ . 

Corollary. When all of the p RLS solutions        
, l = 1, 2, …, p lie in the same hyper-

octant, the set of feasible values for the βi, i = 1, 2, …, p is a convex combination of the p RLS 

solutions, and if the robust sample covariance matrix  ̃ is non-singular, there is a unique RGMR 

solution  ̂     to the quadratic problem defined in (2), which lies within the simplex defined by 

the p RLS solutions. 

Hence, by the above corollary, we know that each RCR estimates is a convex 

combination of the p RLS solutions, and meanwhile since the compound parameter γ=(γ1, γ2, …, 

γp) is continuously defined on the (p-1) dimension hyper-plane ∑   
 
     , the RCR estimates 

by a 1-1 mapping ought to continuously expand and form the feasible set for the βi, i = 1, 2, …, 

p., which include the unique RGMR solution. Therefore, the theorem has been proved. 

 

Theorem 5: In simple linear regression, the robust geometric mean regression (RGMR) will 

always yield the equal eY and eX, and the maximum sum of regression efficiencies eY + eX. 

Proof. (1)  

As we know the RGMR line passes through the mean ( ̅,  ̅), we can write 

 

 Based on the RGMR slope estimate                                          , we obtain 
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Hence, we have shown that eY = eX for the RGMR. 

(2)  

For any regression estimate  ̂, we have 
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The maximum of Σ is achieved when 
  

  ̂
  , and by straight-forward derivations it can be 

simplified as  ̂  
 ̃  

 ̃  
 

When  ̃    , Σ = eY + eX is unimodal and maximized at  ̂  √
 ̃  

 ̃  
     ( ̃  )√

 ̃  

 ̃  
 

 ̂    ; while when  ̃    , Σ is unimodal and maximized at  ̂   √
 ̃  

 ̃  
       ̃   √

 ̃  

 ̃  
 

 ̂    .   

Therefore, we have proven that the sum eY + eX is maximized for the RGMR. 


