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Abstract of the Dissertation 

The bivariate normal mixture distribution: A power study of bootstrap test 

by 

Tingting He 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

 Univariate analysis has been commonly used in the studies of disease-related 

phenotypes. The need for multivariate analysis on linkage studies of complex 

disease/traits has grown with the increasing use of multiple phenotypes.  This research 

extends the model for testing a single bivariate normal distribution versus a two 

component bivariate normal mixture distribution.  Previous research restricted the two 

variables to have equal means and variance.  Our study considers the more general case 

with no restrictions on these parameter values.  Simulations are used to conduct a power 

study of bootstrap test under different combinations of parameter values. We note that 

samples of sample size n = 200 or more and an average mixture effect size of 2.5 or more 

is needed with mixing proportions between 0.1 and 0.9 to achieve reasonable power. 

Regression models of LRT statistic values are also fitted to calculate the type I error rate 

and power.  Finally the bootstrap method is shown to be a reliable approach for 

evaluating the LRT statistics. 
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Chapter 1 
 

Introduction and Review of Literature  

 

1.1 Introduction 

 

During the last decades finite mixture distributions have been a boost to the 

statistical modeling of heterogeneity.  Numerous studies have been conducted on various 

practical and theoretical aspects.  A finite mixture distribution is a weighted sum of 

several distributions.  There are monographs written by Everitt and Hand (1981) [18], 

Titterington et al. (1985) [51], McLachlan and Basford (1988) [36], and Peel (2000) [38] 

on finite mixture model problems.  Nowadays, normal mixture models are most 

commonly applied in many areas, such as economics (Arcidiacono and Jones (2003) [4]), 

human genetics (Schork et al. (1996) [47]), and astronomy (Kriessler and Beers (1997) 

[31]).                  

Pearson (1894) [39] first introduced mixture models in the late 1800’s.  He fitted a 

two component normal mixture distribution with unequal means and variances to Naples 

crabs body-length data provided by Weldon (1893) [52].  After that many researchers 

made their contributions to the univariate normal mixture model.  In the genetic statistics 

field, the need for multivariate analysis in linkage studies of complex disease/traits has 

grown with the increasing number of multiple phenotypes recorded.   He et al. (2006) [28] 
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used a multivariate normal mixture model to detect differential gene expression on 

microarray data.  Consequently, bivariate models have been extensively studied as well.  

Chatterjee and Shih (2001) [9] proposed a bivariate model for the lifetime risk of two 

individuals and the age at onset between two susceptible individuals.  Motivated by the 

work of Chatterjee and Shih, Wienke et al. (2003) [53] suggested a cure-mixture model to 

analyze bivariate time-to-event data obtained in twins.  They used a one-stage estimation 

procedure to estimate the size of the susceptible fraction and the correlation between the 

frailties of the twin partners.  Kang et al. (2004) [29] applied a bivariate t mixture 

distribution to Single-Nucleotide Polymorphism data and compared the proposed 

approach to the K-means algorithm. 

Chuang and Mendell (1997) [8] developed a mixture likelihood approach to perform 

maximum likelihood estimation for the parameters of two component bivariate normal 

mixture distribution.  They considered the special case in which the mixture parameter 

values for both variables were equal.  Their hypotheses were stated as 
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They concluded that the null distribution of the likelihood ratio test statistic converges to 

a chi-squared distribution with 2 degrees of freedom very slowly.  In other words, one 

needs a sample size of 5000 or more for the 2
2χ  critical values to be valid.  They also 

suggested a “Pseudo chi-squared” distribution with n/8.22+  degrees of freedom for 
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the null distribution of the likelihood ratio test statistic of their special single bivariate 

normal distribution versus a two component bivariate normal mixture distribution. 

 

1.2 Literature Review 

 

1.2.1 Estimation of Parameters 

The estimation of parameters for finite mixture distributions has been a research 

topic for a long time.   Cohen (1967) [10] proposed to estimate the parameters of a 

mixture of two normal distributions with different means and standard deviations based 

on Pearson’s (1894) [42] moment method.  Day (1969) [11] discussed moment, minimum 

chi-square and Bayesian methods and found that all of them were inferior to maximum 

likelihood estimation in the multivariate normal mixture distribution case.  Since the 

1960s, maximum likelihood has been popular in the fitting of finite mixture models.  

Wolfe (1967,1970) [54] [55] used the computations of maximum likelihood to estimate 

the parameters of multivariate normal mixture distributions.  Computational difficulties 

existed when he calculated maximum likelihood estimates.  Some general iterative 

methods, such as Newton’s method and quasi-Newton methods, were considered for 

computing an approximate solution for the likelihood equations.  Dempster et al.(1977) 

[12] published the Expectation-Maximization (EM) algorithm for computing maximum 

likelihood estimates from incomplete data. Their algorithm led to simplification of the 

estimation of parameters. They noted that the finite mixture distribution is an example for 

which the EM directly applied.  This is because the data from a mixture distribution can 

be treated as incomplete data.  In this dissertation we focus on developing the EM 
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algorithm for our mixture case.  Quandt and Ramsey (1978) [43] introduced a moment 

generating function estimator for finite mixtures of normal distributions.  Render and 

Walker (1984) [45] discussed the theoretical and practical properties of the EM algorithm.  

The EM algorithm was found to be competitive as a general iterative method to find 

optimum maximum likelihood estimates.  Titterington (1984a) [50] introduced a 

recursive procedure to estimate the parameters with incomplete data.  Aitkin and Rubin 

(1985) [2] applied the EM algorithm to estimate the unknown parameters of the mixture 

distribution based on the prior distribution of the mixing proportion.  McLachlan and 

Basford (1988) [36] demonstrated the use of the EM algorithm, especially for the 

univariate normal mixture case.  Lindsay and Basak (1993) [32] proposed a moment 

method to obtain estimates that used fewer iterations to converge.  Another approach was 

taken from Diebolt and Robert (1994) [13], who considered Bayesian sampling to solve 

the problem of estimation for finite mixture distributions.  At the same time, software 

programs were developed.  McLachlan et al. (1999) [37] developed EMMIX software to 

fit general multivariate normal mixture model without constraints on the means and 

covariance matrix and a t-distribution mixture model.   Chen and Tan (2009) [7] applied 

the EM algorithm to get penalized maximum likelihood estimations (PMLE) and proved 

that PMLE is more accurate than regular MLE by a simulation study. 

The issue of choosing a set of good initial parameter values plays a major role in the 

use of the EM algorithm.  Fowlkes (1979) [23] proposed a Q-Q plot method for setting 

the initial values of parameters in a normal mixture distribution.  Following the 

initializations suggested by Engelman and Hartigan (1969) [17], Thode et al. (1988) [49] 

set the initial values for the mixing proportion equal to 1/n, (n-1)/n, 1/4, and 3/4.   
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McLachlan and Basford (1988) [36] used posterior probabilities to cluster scatter plot of 

the observed values in the multivariate mixture case and obtained the initial values of 

parameters based on the clusters. 

Finch et al. (1989) [22] proposed the following idea to get the initial values of a two 

component normal mixture distribution with common variance.  They first obtained a 

random starting value for the mixing proportion, 
)0(∧

π , from a uniform distribution with 

interval 0 to 1.  Then they ordered the observed values of iX , i.e. )()2()1( ,..., nxxx ≤≤  and 

divided the values into two groups (consisting of )1(x  to 
])([

)0(∧
πn

x  in one group and 

)1]([
)0(

+
∧
πn

x   to )(nx  in the other).  Finally the initial values of the remaining parameters 

were 
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Karlis and Xekalaki (2003) [30] examined the performance of eight methods which were 

defined in the literature on the choice of initial values of parameters for EM algorithm by 

conducting simulation study in a two component and a three component normal mixture 

with common variance case.  They concluded that the moment estimates method was the 

superior method but it required more computation to converge.  
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1.2.2 Bootstrap Method 

The bootstrap method is a modern re-sampling approach for making statistical 

inferences, which is also computer-intensive.  It was first suggested by Efron (1979a, b, 

1982) [14] [15] [16] in the late 1970s.  Aitkin et al.(1981) [1] were the first to apply this 

resampling method  to assess the null distribution of the likelihood ratio test statistic.  The 

simplest form of the bootstrap is random resampling with replacement from the original 

sample observations x1,…, xn and then constructing a number of resample sets.  Then the 

statistics of interest can be calculated from the new sample set.  This is sometimes 

referred to as the nonparametric bootstrap.  Alternatively one can generate parametric 

bootstrap sample sets from the parametric model under the null hypothesis.  If the 

distribution of the parametric model is known, this approach is equivalent to the Monte 

Carlo procedure with the parameters replaced by MLEs of the parameters under the null 

hypothesis.  McLachlan (1987) [35] used a parametric bootstrap to access the null 

distribution of log likelihood ratio test statistics for single univariate normal distribution 

versus two-component univariate normal mixture distribution with common variance.  He 

found that the simulated power increased as the distance of component mean 1 2| |μ μ
σ

−Δ =  

and the number of bootstrap samples increase.  Even when the number of bootstrap 

samples became indefinitely large, reasonable power could not be generated for a small 

distance between component means.  Feng and McCulloch (1996) [20] noted that the 

bootstrap confidence procedure was better than the confidence region based on 

theoretical distribution of likelihood ratio test 2
1χ  for solving the problem of the number 

of components in a univariate normal mixture with known mean, variance and unknown 

mixing proportion.  To obtain a bootstrap confidence procedure was recommended from a 
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justified bootstrap likelihood ratio method.  Schlattmann (2005) [46] compared 

parametric bootstrap and non parametric bootstrap methods to test the number of 

components of Poisson mixture regression model. 

 

1.2.3 Testing the Number of Components of Mixture Model 

The likelihood ratio test (LRT) is a general statistical approach to access the test of a 

hypothesis and decide the number of components in a finite mixture model problem. 

Wolfe (1970, 1971) [55] [56] considered the theoretical asymptotic distribution of a 

revised likelihood ratio test statistic. That is, he suggested that the quantity 

2

1ln)2)(2(
L
Lkn

n
−−−=λ  has an approximate 2

2kχ  distribution, where k is equal to the  

number of parameters.  Based on Wolfe’s result, Everitt (1981) [19] performed a 

simulation study to test the null hypothesis of the single multivariate normal distribution 

against the alternative of two component multivariate normal mixture distribution.  

According to his simulation results, the argument that Wolfe’s λ  was asymptotically 

distributed as 2
2kχ  appeared valid for those cases when the sample size n was at least ten 

times as large as the number of parameter values.  Based on the power curves, he noted 

that the power of the test was pretty low when the generalized distance between the two 

components )()( 21
1'

21 μμμμ −∑−=Δ −  was smaller than 2.5.  Hartigan (1985a,b) [26] 

[27] investigated the LRT of single normal distribution under the null hypothesis against 

two component normal mixture distribution under the alternative hypothesis with 

unknown mixing proportion, known common variance and mean.  He found the 

asymptotic null distribution of -2 log λ was zero with probability 0.5 and, with the same 
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probability, was distributed as chi-squared with one degree of freedom.  This could be 

expressed  -2 log λ ~ 2
1

2
0 2

1
2
1 χχ + .  Thode et al. (1988) [49] gave the simulated 

percentage points for the null distribution of the likelihood ratio test of the null 

hypothesis of single univariate normal distribution against the alternative of two 

component univariate normal mixture distribution with different component means and a 

common variance.  They conducted 2500 simulation samples for each of 13 different 

sample sizes and found no obvious convergence to the asymptotic distribution 2
2χ .  Their 

simulation result supported Hartigan’s (1977) [25] conjecture which the asymptotic null 

distribution of 21 /ln2 LL−  was between 2
1χ  and 2

2χ .  Quinn et al. (1987) [44] proved the 

asymptotical distribution of LRT was not a chi-square distribution.  Feng and McCulloch 

(1994) [20] performed a simulation study on univariate normal mixture distributions with 

unequal variance.  They concluded the reference distribution of LRT could be different 

when they chose 20106 10,10,10 −−−  as the convergence criteria when estimating the 

variance, i.e. the distribution of λlog2−  was between 2
4χ  and 2

5χ  when the criteria was 

610− ;  the distribution of λlog2−  was between 2
5χ  and 2

6χ  when the criteria was 1010− .  

Berdai and Garel (1996) [6] found the asymptotic distribution of the LRT in testing a 

single versus two component univariate normal approached the 2
2χ  distribution when the 

distance between component means was restricted.  Lo et al. (2001) [33] documented that 

the asymptotic null distribution for the likelihood ratio statistic when testing whether a 

random sample was drawn from a k0-component normal mixture distribution or from a 

k1-component normal mixture distribution was a weighted sum of independent chi-

squared random variables with one degree of freedom.  They suggested the Kullback-
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Leibler information criterion for estimation of these weights.  More recently, Lo (2005) 

[34] performed simulation studies in the case of a single univariate normal versus a two 

component normal mixture distribution with unequal variances.  He reported the power 

results at each parameter setting based on the null distribution of a modified likelihood 

ratio statistic that followed a weighted sum of 7 independent 2
1χ  distribution.  He 

compared it with bootstrap test and posterior predictive check test.  There was no 

compelling evidence that showed any of these methods as being better than the other two.  

Mendell et al. (1991) [41] demonstrated the power and sample size requirements for LRT.  

Mendell et al. (1993) [40] compared the power of the likelihood ratio test and other tests 

to detect a two component mixture univariate normal distribution with different means 

but equal variance.  They pointed out that the likelihood ratio test had the best power at 

most mixing proportion values. 

Another approach based on clustering analysis to determine the number of 

components of mixture model was proposed by Fraley and Raftery (1998) [24].  They 

defined the model types by covariance structure and used the BIC value to decide the 

number of components. 

 

1.3 Summary of our study 

 

In genetics, the major gene model for a single quantitative trait has been a three 

component mixture distribution with each genotype having a separate mean.  A 

pleiotropic locus, that is, a major gene that determines two traits would result in a 

bivariate normal mixture.  In the special case where the same allele is dominant for 
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both of these quantitative traits, we would have a bivariate two component normal 

mixture.                 

This dissertation extends the work of Chuang and Mendell’s (1997) [8] for the 

case of a single bivariate normal distribution versus two component bivariate normal 

mixture distribution.  Instead of restricting the mixture for the two variables to have 

equal means, variance and shift parameters applicable to two correlated traits with a 

common cause, the variables have different scales.  Hence, the mean and variance 

resulting in distance between the two components may not be equal.  We will apply the 

EM algorithm to get maximum likelihood estimates for all unknown parameters and 

use the bootstrap technique to investigate whether the data is taken from a single 

bivariate normal distribution or from a two component bivariate normal mixture 

distribution.  We will conduct a power study for this technique by using simulation and 

compare the power for different combinations of parameters.  Then we will model the 

values of the LRT statistics and obtain some fitted model results. 

In summary, we define our problem and present an EM algorithm to compute   

maximum likelihood estimates in Chapter 2.  Evaluation of the algorithm is also 

discussed.  In Chapter 3, the likelihood ratio test is discussed, and the parametric 

bootstrap technique is proposed for our problem.  In Chapter 4, a simulation study is 

conducted to determine the power of bootstrap test. The precision of the maximum 

likelihood estimates is discussed as well.  In Chapter 5, we attempt to model the null and 

alternative distribution of the LRT based on the empirical findings of our simulations.  

The dissertation is concluded with Chapter 6 with summary remarks and discussions on 

our study. 
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Chapter 2 

Maximum Likelihood Estimation for the 

Parameters of A Bivariate Normal Mixture 

 

2.1 The Problem Statement 

 

Let nXXX ,...,, 21  
be 2-dimensional random variables having probability density 

function (pdf) which we denote as )(Xg .  And nxxx ,...,, 21  
denote the observed values of 

random variables.  We commonly want to identify whether these variables on two traits 

come from an underlying two component normal mixture distribution or a single 

component normal distribution.  Our null hypothesis is 

                                                 0 0 0 0: ( ; ) ( ; , )H g X N Xθ μ= ∑                                                  (2.1.1) 

and the alternative hypothesis is 

                                         1 1 1 1 2 2: ( ; ) ( ; , ) (1 ) ( ; , )H g X N X N Xθ π μ π μ= ∑ + − ∑                     (2.1.2) 

where ∈X , X  denotes a 2×1 vector random variable with entries )2,1( =jX j , 0μ  

denotes a 2×1 vector with entries )2,1(0 =jjμ , 1μ denotes a 2×1 vector with entries 

)2,1(1 =jjμ , 2μ  
denotes a 2×1 vector with entries )2,1(2 =jjμ , 0∑ denotes a covariance 

matrix with entries )(2
00 kjjjk ==σσ , and 0 0 0 0jk j kσ ρ σ σ=  ( ), , 1,2j k j k≠ = .  In the 
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mixture distribution, ∑ denotes a common covariance matrix with entries

)(2 kjjjk ==σσ , 2,1,),( =≠= kjkjkjjk σρσσ , and π  is the mixing proportion or 

probability that X   has the distribution ),;( 11 ∑μXN (as opposed to ),;( 22 ∑μXN ).  0θ  

is the vector of unknown parameters under the null hypothesis; and 1θ  
is the vector of 

unknown parameters under the alternative hypothesis.  All of the unknown parameters are 

estimated from a random sample of size n with observed values 1 2, ,..., .nx x x  

     Without loss of generality, we assume 1121 μμ ≥ and reparameterize with

0,, 1
2

1222
2

1

1121
1 >

−
=

−
= DDD

σ
μμ

σ
μμ .  The problem then is to test 

                              

2
01 01 0 01 02

0 0 2
02 0 01 02 02

: ( ; ) ( ; , )H g X N X
μ σ ρ σ σ

θ
μ ρ σ σ σ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                 (2.1.3) 

 

versus the unique alternative 

2
11 1 1 2

1 1 1 2
12 1 2 2

: ( ; ) ( ; , )H g X N X
μ σ ρσ σ

θ π
μ ρσ σ σ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠  

                                  

2
11 1 1 1 1 2

2 2
12 2 2 1 2 2

(1 ) ( ; , )
D

N X
D

μ σ σ ρσ σ
π

μ σ ρσ σ σ
+ ⎛ ⎞⎛ ⎞

+ − ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠
                     (2.1.4) 

 

In particular, there are five unknown parameters under the null hypothesis H0; i.e.

),,,,( 0020102010 ρσσμμθ = .  There are eight unknown parameters under the alternative 

hypothesis H1; i.e. ),,,,,,,( 212112111 ρσσμμπθ DD= , where 0 < π < 1, D1≥0, −∞ < D2 < 

∞, σ1 > 0, σ2 > 0, −1 < ρ < 1. 
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2.2 Bivariate Normal Mixture Distribution 

 

2.2.1 Definition 

Under the alternative hypothesis, we allow unequal values for the means and 

variances of the two variables. Therefore, the standardized differences between the two 

component means for the two variables might not be equal.  A standardized example of 

one of our alternative hypotheses could be  

01211 == μμ , 121 ==σσ , 

31 =D , 52 =D , 5.0=ρ , 5.0=π  

This bivariate normal mixture distribution is shown in Figure 2.1. 

 

Figure 2.1 Scatter plot of two-component bivariate normal mixture distribution with parameter 
values 5.0,5.0,5,3,1,0,400 21211211 ========= πρσσμμ DDn . 

 

2.2.2 Correlation Between two Random Variables  

To investigate the relationship between two random variables taken from a two-

-3 -2 -1 0 1 2 3 4 5 6
-4
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8

X1

X
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component bivariate normal mixture distribution, we calculate the correlation based on 

the methods demonstrated in Appendix A. 

Under different average values of mixture effect size 
2

21 DDD +
= , where 

)2,1( =iDi  are defined in equation (2.1.4), we consider combinations of mixing 

proportion 5.0=π or 0.9 with two different values of within component correlation, 

0.0=ρ  or 0.9.  Table 2.1 illustrates the values of the correlation of different 

combinations of within component ρ  and average mixture effect size D .  As shown in 

the table, for each mixing proportion value, the correlation between the two variables 

increases as the average effect size increases when the within component correlation 

0=ρ .  However, the correlation decreases as the average mixture effect size increases 

when the within component correlation ρ is very large.  We also note that in the case of 

even a small average mixture effect size 2=D , the correlation between two random 

variables
21XXρ  is greater than 0.25. 

 

Table 2.1 – ρπ ,,D and corresponding correlation for bivariate normal mixture 
21XXρ  

 

Mixing proportion π  
Within component 

correlation ρ  Average effect size D  Correlation 
21 XXρ  

0.5 

 
       0.0 

2 0.5 
2.5 0.59 
3 0.63 

 
0.9 

2 0.95 
2.5 0.94 
3 0.92 

0.9 (0.1) 

 
0.0 

2 0.26 
2.5 0.34 
3 0.40 

 
0.9 

2 0.93 
2.5 0.92 
3 0.89 
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2.3 Maximum Likelihood Estimators 

 

Under the null hypothesis 0H , if a 2-dimensional data set of n values nxxx ,...,, 21

is a random sample from a population with single bivariate normal distribution function

);( 0θXg , the likelihood function is defined as  

0 0 1 2 0
1

2 21 01 1 01 2 02 2 02
22

1 0 01 01 02 0201 02 0

( ; ) ( ; , ,..., ) ( ; )

)1 1exp{ [( ) 2 ( )( ) ( ) ]}
2(1 )2 1

n

i i
i

n
i i i i

i

L X L x x x g x

x x x x

θ θ θ

μ μ μ μρ
ρ σ σ σ σπσ σ ρ

=

=

= =

− − − −
= − − +

−−

∏

∏

  (2.3.1) 

The maximized likelihood function can be written as );();( 0
1

0

∧

=

∧

∏= θθ
n

i
ixgXL ,  and 

the maximum likelihood estimator of the unknown parameters 
∧

0θ can be easily computed 

based on the above equation.  The detailed calculation is provided in Appendix B. 

Under the alternative hypothesis 1H , if a 2-dimensional data set of n values

nxxx ,...,, 21 is a random sample from a population with two-component bivariate normal 

mixture distribution function );( 1θXg , the likelihood function is  

                                 1 1 1 2 1
1

( ; ) ( ; , ,..., ) ( ; )
n

i i
i

L X L x x x g xθ θ θ
=

= =∏                    (2.3.2) 

So the maximized likelihood function is );();( 1
1

1

∧

=

∧

∏= θθ
n

i
ixgXL  and the maximum 

likelihood estimator of the unknown parameters 
∧

1θ  can be computed by the EM 
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algorithm method, which is described in section 2.4. 

 

2.4 The EM Algorithm to Obtain the MLE 

 

2.4.1 Description of Equations 

Now we obtain the MLE of the parameters ),,,( 21 ∑= μμπθ for the bivariate 

mixture defined in section 2.3.  We first convert the problem into an incomplete-data 

problem by introducing a new indicator variable iz as a “missing variable” and set 

),( XZY =  as the sample observe values ),(),...,,(),,( 222111 nnn xzyxzyxzy === , where 

iz is a 2-dimensional vector with ( ) 1mi i mz z= =
 
or 0.  The indicator 1=miz  if the i th 

observation comes from the m th component of the mixture normal model while 0=miz  

if the i th observation does not come from the m th component of the mixture normal 

model ),...,2,1( ni = .  Then T
iii zzz ),( 21= , nzz ,...,1  is a sample from a multinomial 

distribution consisting of one draw from two categories with the respective probabilities π 

and 1 – π; i.e. 1 2,..., (1, )n m
iidz z Mult π , T

m )1,( πππ −= .  We are interested in maximizing 

the incomplete-data likelihood function (2.3.2) with the observed data generated given 

the model parameters θ .  This can be solved by Expectation Maximization (EM) 

algorithm. 

 

The log function of the complete-data likelihood for θ  is given by: 
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(2.4.1) 

The EM algorithm starts from an initial value )0(θ  and performs two-step iterations until 

convergence to a maximum. During E-step, assume )(kθ is the value of θ  which is 

calculated after k iterations of the EM algorithm.  Then on the )1( +k th iteration, given 

the observed data x  and the current value θ , the conditional expectation of )(log θcL  

can be written as  

                        
]|)([log);( )(

)( xLEQ c
k

k θθθ
θ

=                                        (2.4.2) 

The current conditional expectation of miZ  given the observed data x , where miZ  is 

the random variable corresponding to miz  , is calculated as: 

)1();1|()1();1|(

)1();1|(

);|1()|(

2211 )()(

)(

)()(

==+==

==
=

==

iiiiii

mimii

imimi

zpzxpzpzxp

zpzxp

xzpxzE

kk

k

kk

θθ

θ

θ

θθ

θ

θθ

             (2.4.3) 

We define 

             ),;()1(),;(
),;(

)|();(
2211

11
1

)(
1 )(

∑−+∑

∑
==

μπμπ
μπ

θτ
θ

ii

i
i

k
i xNxN

xN
xzEx k

          
   (2.4.4) 
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Since the unobservable data )2,1( =mzmi  is a linear term in the function )(log θcL , the 

conditional expectation of )(log θcL  can be further computed as 

)]},;(log)1)[log(;()],;(log)[log;({);( 22
)(

211
)(

1
1

)( ∑+−+∑+=∑
=

μπθτμπθτθθ i
k

ii
k

i

n

i

k xNxxNxQ
                             

(2.4.6) 

Then we come to the “M-step”.  The M-step on the )1( +k th iteration requires the global 

maximization of );( )(kQ θθ with respect to θ  over the whole parameter space to yield the 

updated estimate )1( +kθ .  In our problem we maximize it with respect to ∑,, mμπ .  

Differentiating equation (2.4.1) with respect to 1μ  we get 
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(2.4.7) 

 

We set equation (2.4.7) to 0.  Then the updated value of the estimate of the first 
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component means 1μ  is 
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Similarly, the updated value of the estimate of the second component means 

2μ is 
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Differentiating equation (2.4.1) with respect to ∑-1 we get 
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Similarly we set equation (2.4.10) to 0.  The updated value of the estimate of the 

component common covariance matrix ∑ is 
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Finally, by differentiating equation (2.4.6) with respect to π  we get 
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We also set equation (2.4.12) to 0.  The updated value of the estimate of the mixing 

proportion π  is 

n

x
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∑
=+ = 1

)(
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)1(
);( θτ

π
                                               

(2.4.13)
 

We perform the E-step and the M-step iteratively until the difference )()( )()1( kk ll θθ −+  

reduces below an arbitrarily small amount (here 510− ).  

 

2.4.2 Initial Values for the EM Algorithm 

To ensure convergence to the global maximum, it is critical to choose a set of 

good initial values. Usually we first choose an initial value for the mixing proportion π(0), 

and then use it to decide the values for the other unknown parameters. Since our sample 

observed values are two dimensional, we may not simply order the observed values as 

suggested for the univariate case.  In this dissertation, we propose the following 

procedure to compute the initial parameter values.  First we select a random value from a 

uniform distribution with interval 0 to 1 and set this value as initial value for the mixing 

proportion π, denoted by 
)0(∧

π . Then we select n random values ),...,2,1( niUi =  from a 

uniform distribution with interval 0 to 1.  If 
)0(∧

≤ πiU , the value of iX is assigned to the 

first component of the mixture distribution, A ; otherwise the first variable iX  is 
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assigned to the second component of the mixture distribution, B .  Finally we have two 

groups of iX as 
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  Using equations given in Appendix A, the initial estimates of the remaining 

parameters are computed as follows: 
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In order to get our unique mixture distribution, we restrict 
(0)

1D
∧

 to be positive, i.e. if 

(0)

1 0D
∧

<  , then 
∧∧

−= 00 1 ππ , 
)0(

21

)0(

11

∧∧

= μμ , 
)0(

22

)0(

12

∧∧

= μμ , 
)0(

1

)0(

1

∧∧

−= DD , 

)0(

2

)0(

2

∧∧

−= DD . 

 

2.5 Evaluation of the EM Algorithm 

 

2.5.1 Choosing the Number of Random Starting Points 

  One of the difficulties is that we can only obtain local maxima, but we cannot 

guarantee that we have found the global maximum in EM algorithm even if we had good 

initial values.  One solution is to generate several initial values and choose the “best” one 

which most likely to be global maximum.  We also need to determine the optimal number 

of sets of initial values needed, since there is a trade-off between confidence that the 

global maximum has been found and computation resources.  For a given sample, we 

consider a number of sets of random starting points and compute the maximum log 

likelihood value for each set of random starting points.  We then calculate the difference 

between maximum log likelihood values among these sets of random starting points.  The 

maximum log likelihood will be considered as the ‘global’ maximum once the differences 

between a pair of converge to an arbitrary small amount, i.e. 510− .  This can be an 

effective approach to ensure convergence to global maximum.  In order to find the 

optimal number of random starting points in this dissertation, we generate 20 replications 

each with sample size 200=n from bivariate normal mixture distribution.  The parameter 
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values of the generating bivariate normal mixture are ,0,0,5.0 1211 ==== ρμμπ

1,2 2121 ==== σσDD .  For each replicate, we consider 5, 20, 45, 60, 120 and 240 sets 

of random starting points.  We then (1) obtain a total of 240 values of maximum log 

likelihood.  We define )max(il to denote the maximum value over the values from 1st to thi  

set of random starting points.  For instance, )30max(l is the maximum value over 30 values 

of maximum log likelihood calculated from 1st to th30 set of random starting points.  (2) 

Calculate the difference between maximum value of a set size and the next smallest set 

size (ie. )20max()30max( ll −  ).  We consider )max(il  being the global maximum log likelihood if 

)(10 5
)max()max( ijll ij >≤− −  for all replicates.  

Table 2.2 shows the change in the differences of maximum log likelihoods for 

specified numbers of random starting points, where the specified numbers are 5, 10, 20, 

30, 45, 60, 120 and 240.  When the number sets of random points is 60 and 120, the 

differences in the maximum log likelihoods appear to be consistently a very small 

number (less than 10-5) in all replicates.  Hence, we are successful getting the global 

maximum with 60 or above random starting points.  For this reason we choose 60 as the 

optimal number sets of random starting points. 
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Table 2.2 Change in observed maximum log likelihood with increasing numbers of random starting points

replicates 

Difference between random starting points

)5max()10max( ll −   )10max()20max( ll −   )20max()30max( ll −   )30max()45max( ll −   )45max()60max( ll −   )60max()120max( ll −
 

)120max()240max( ll −
 

 

1  0  1.4E‐06  0  7.6E‐06  0  0  0 

2  6E‐07  7.5E‐05  0  0  0  0  0 

3  2.4E‐06  2.4E‐06  0  0  0  5E‐07  3.56E‐05 

4  5E‐07  0  3.87E‐05  0  0  0  1E‐07 

5 2.5E‐06  0 0 1E‐07 0 1E‐07 1.94E‐05

6 9.56E‐05  0.709207 0 0 0 0 4.6E‐06

7  0.099067  2.718332  3E‐07  1E‐07  0  5E‐07  0 

8  3.6E‐06  3.27E‐05  0  0  0  0  0 

9  0  0.000133  0  0  0.000107  0  0 

10 0  0.000248 0 0 0 0 0

11 1.746202  0 0 0 0 0 1E‐06

12 0  0 0 0 1E‐06 2E‐06 0

13 2.2E‐06  0 0 0.000124 0 2.01E‐05 0

14 2.2E‐06  0.862634 0 1E‐07 0 0 0

15  1.2E‐06  0.996454  0  0  0  0  1.5E‐05 

16  0.937037  0  0  0  0  0  0 

17  0  4E‐07  0  0  0  1.26E‐05  0 

18 0  0 0 0 0 0 7.09E‐05

19 4.225813  0 0 0 0 4.31E‐05 0

20  0.79643  0  4.3E‐06  2.4E‐06  0  7.2E‐06  8.3E‐06 
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2.5.2 Distribution of MLE of Mixing Proportion  

Another way to evaluate the EM algorithm is to investigate the null distribution of 

the MLEs.  In particular we would expect the null distribution of mixing proportion to be 

symmetric about 5.0=π , possibly with this modes  at  ε  and ε−1 . 

We generate 1000 samples under the null hypothesis at various sample size (n=50, 

100, 200, 500, 1000).  In this evaluation procedure, three different values for correlation 

coefficient 0ρ (0, 0.5 and 0.9) are considered with 00201 == μμ , 10201 ==σσ  in our 

bivariate normal distribution case.  Table 2.3 shows our findings on these MLEs.  The 

skewness is close to 0 and the median of sample is very close to 0.5 for each sample size.  

The standard error of skewness is 0.08.  Thus we conclude that the distribution of the 

MLE of the mixing proportion is symmetric.  Figure 2.2 shows the histogram of the MLE 

of the mixing proportion with sample size n=500 and n=1000.  Of interest in the 

distribution of the MLE of the mixing proportion for n=1000 and 00 =ρ .  It appears to 

be symmetrical about 0.5 which is expected ( 951.0,14.12
5 =−= valuepχ ). 

Table2.3 Skewness and median of the MLE of the mixing proportion 

 
Note: The MLE of the mixing proportion are based on 1000 replicates for each sample size with parameter value. 
 

 

Sample size 
00 =ρ  5.00 =ρ  9.00 =ρ  

skewness median skewness median skewness median 

50=n  -0.0339 0.5074 -0.0159 0.5097 0.0542 0.4857 

100=n  -0.0150 0.5088 0.0070 0.5021 -0.0241 0.5045 

200=n  0.0415 0.4824 -0.0434 0.5129 -0.0152 0.4998 

500=n  0.0649 0.4775 -0.0543 0.5228 0.0082 0.4934 

1000=n  -0.0203 0.5015 0.0103 0.4984 -0.0350 0.5264 
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Figure 2.2 Histogram of the MLE of the mixing proportion under the null hypotheses  
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Chapter 3 

  

Statistical Methods 

 

3.1 Likelihood Ratio Test 

 

The likelihood ratio test (LRT) is a general method which is designed to test 

model assumptions and is related to the maximum likelihood estimators.  The LRT has 

been widely applied to statistics based on the maximum likelihood estimation.   

The likelihood ratio test compares the likelihood of the data under the alternative 

hypothesis to the likelihood of the data under the null hypothesis.  First we consider the 

likelihood ratio (LR). Let Θ denote the entire parameter space and define );(sup XL θ
Θ

 

and );(sup
0

XL θ
Θ

as the maxima of the likelihood for each of the hypotheses.  The 

likelihood ratio λ for testing 0H : 0Θ∈θ versus 1H : c
0Θ∈θ is  

                                      );(

);(
);(sup

);(sup
)( 00

XL

XL
XL

XL
X ∧

∧

Θ

Θ ==
θ

θ
θ

θ
λ

                                   

 (3.1.1) 

 

where 
∧

θ  is an MLE of θ  obtained by performing an unrestricted maximization of 

);( XL θ ; and 
∧

0θ is the MLE of θ  obtained by performing a restricted maximization of 
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);( XL θ .  The rejection region of the likelihood ratio test is })(:{ cXX ≤λ , where c is 

any number that satisfies 0 1.  Since )(Xλ  might be a complicated function of X , 

it may be difficult to express c  in the inequality. 

In this dissertation, the issue is to distinguish between the null hypothesis (data 

taken from single component bivariate normal distribution) and the alternative hypothesis 

(data taken from two component bivariate normal mixture distribution).  Instead of the 

above λ  statistic, we may equivalently consider the following likelihood ratio test (LRT) 

statistic: 

                               )]()([2

)];(log);([log2

);(

);(
log2log2

01

0011

11

00

∧∧

∧∧

∧

∧

−=

−=

−=−

θθ

θθ

θ

θ
λ

ll

XLXL

XL

XL

                             

(3.1.2) 

 

where 
∧

1θ and 
∧

0θ  denote the MLE of θ  calculated under the alternative hypothesis and 

the null hypothesis respectively. 

     Under some regularity conditions, the asymptotic null distribution of the 

likelihood ratio test has a chi-squared distribution whose degrees of freedom is equal to 

the difference of the number of parameters being estimated under the alternative 

hypothesis and the null hypothesis.  In our case, this difference is 3.  That is if the 

regularity conditions held the null distribution of -2logλ would be a chi-squared 

distribution with 3 degrees of freedom.  However, since both the mixing proportion (π ) 

and effect size values ( 21,DD ) are on the boundary of the parameter space under the null 
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hypothesis, the regularity conditions do not hold in our mixture model case.  Hence the 

chi-squared distribution may not be a reasonable approximation to the asymptotic 

distribution of the likelihood ratio test. 

 

3.2 Parametric Bootstrap Method of Inference 

 

The parametric bootstrap method is employed to get the critical values of the 

observed LRT statistic.  For a simulated data set, we can calculate the estimated values of 

the unknown parameters and obtain a large number of bootstrap samples based on them.  

Consider a data set of size n , the basic steps in the parametric bootstrap procedure are: 

Step 1: Simulate a data set nxxx ,...,, 21 ; 

Step 2: Fit a single component bivariate normal and a two component bivariate normal 

mixture model to the data nxxx ,...,, 21 , and use the EM algorithm to get MLE 
∧

0θ  and 
∧

1θ

respectively; 

Step 3: Calculate the statistic of interest, the log likelihood ratio statistic λlog22 −=G , 

denoted as G2
obs; 

Step 4: From the maximum likelihood estimates of parameters computed under the null 

hypothesis, 
∧

0θ , draw a data set of size n.  This is a single bootstrap data set; 

Step 5: Fit a single component bivariate normal and a two component bivariate normal 

mixture model to the bootstrap data set, and then compute the corresponding log 

likelihood ratio statistic λlog22 −=G , for this bootstrap data sample, yielding *2
1G ; 
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Step 6: Repeat steps 4and 5 independently B times, where B is a large number, in order to 

create B bootstrap samples and obtain their corresponding values of *2
iG , Bi ,...,2,1= ; 

Step 7: Count the number of 22*
obsi GG ≥ , for i=1, 2, …, B. Then we can calculate the p-

value using the bootstrap as 

       
}{1

1

2*2∑
=

≥=
B

i
obsiB GGI

B
p

                                               
(3.1.3) 

where }{AI =1, if {A} occurs; }{AI =0, otherwise 

If Bp  is less than the given significance level of α , we reject the null hypothesis at the 

α level of significance. 

    The above steps for bootstrap procedure can be simply expressed by Figure 3.1. 

 

 

 

 

Typically  

 

 

Figure 3.1: Flow chart of p-value calculation for bootstrap test 
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Chapter 4  

 

Power Study and Simulation Results 

 

4.1 Estimating the Power of the Bootstrap Test 

 

In this section we examine the power of the parametric bootstrap test (defined in 

Section 3.2) for detecting whether the data is a random sample from a single bivariate 

normal distribution or from a two component bivariate normal mixture distribution.  We 

investigate how well the bootstrap test performs when the simulated data are generated 

from the alternative hypothesis.  For a given significance level α , the power of the test is 

a function of the sample size, the mixing proportion, the within component correlation 

and the distance between component means. 

 

4.1.1 Data Simulation 

In our power study, samples are simulated from the two component bivariate normal 

mixture distribution.  We considered 36 combinations of parameter values along with 4 

different sample size values (n = 50, 100, 200 and 500).   This yields 144 combinations in 

total.  For each setting, we ran )1000( =ss NN  simulations.  The parameter values used 

to simulate the data are listed below: 
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                                          11 12 0μ μ= = , 1 2 1σ σ= = , 
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⎛
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, 

                                          5.0=π , 0.7, 0.9, and 

                                          0=ρ , 0.5, 0.9. 

The procedure to generate a random sample from the two component bivariate normal 

mixture with joint pdf  

),;()1(),;();( 22111 ∑−+∑= μπμπθ XNXNXg                        (4.1.1)              

Step 1: Generate a uniform random number ),...,2,1( niUi =  between 0 and 1.  If π≤iU , 

proceed to Step 2; otherwise, execute Step 3. 

Step 2: Generate variable iX  from bivariate normal distribution ),;( 11 ∑μXN . 

Step 3: Generate variable iX  from bivariate normal distribution ),;( 12 ∑μXN . 

The steps to generate the variable iX  from a single bivariate normal distribution are 

summarized in Figure 4.1.  Simulations of data can also be obtained by using a 

subroutine in the GNU scientific library (GSL) and other math software.  

 

 

 

 

                   

Figure 4.1: Variable generation from a bivariate normal distribution   
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4.1.2 Power Study of the Parametric Bootstrap Test 

 First, we randomly draw 1000 samples under different parameter combination 

settings.  For each sample, we calculate the LRT, which are defined as iLRT , 

1000,...,2,1=i .  Furthermore, the maximum likelihood estimates for unknown parameters  

),,,,( 0020102010

∧∧∧∧∧∧

= iiiiii ρσσμμθ
 
under the null hypothesis are obtained as well.  Second, 

we perform the parametric bootstrap study, which is described in Section 3.2, under the 

parameter values 
∧

i0θ .  The values Bij NjLRT ,...,2,1, = , are obtained for each bootstrap 

sample, where BN  also equals to 1000.  For each simulated sample, the p-value can be 

computed by counting the number of times that iij LRTLRT ≥ :  

           )1000,...,1(
#

=
≥

= i
N

LRTLRT
p

B

iij
i                                (4.1.2) 

With a chosen significance level α  (e.g. 0.05, 0.01), we can decide whether to reject or 

accept the null hypothesis 0H  according to the bootstrap p-value.  Then we count the 

number of rejections of the null hypothesis 0H  among )1000( =ss NN  samples and use 

the following expression to compute the power: 

  |    

S

N

i
i

N

pI
S

∑
=

<
= 1

)( α

                                                 
(4.1.3)

 

Table 4.1 contains the values of power results of the bootstrap test based on the 

simulated data with 36 parameter settings for sample size 200=n .  The power results of 

the bootstrap test based on the simulated data for 36 parameter settings with sample size 
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n = 50, 100, 500 can be found in Appendix D.  Figure 4.2, 4.3, 4.4, and 4.5 illustrate the 

power results of the parametric bootstrap test for each sample size for comparison 

purpose.  We can see that the power of bootstrap test increases as the sample size n  

increases and the average of the two mixture effect sizes, D  , increases.  The power of 

bootstrap test is slightly sensitive to π  in the range 9.05.0 ≤≤ π  (which is equivalent to 

9.01.0 ≤≤ π ).  The power is low when the sample size 100≤n and the average of 

mixture effect size 2=D .  Additionally, sample size 100=n  or above is needed to 

obtain a reasonable power ( 80.0≥ ) for those mixtures with 5.2≥D  and 5.00 ≤≤ ρ .  

When the sample size 50=n , a larger average standardized distance between the two 

component means, i.e. “ mixture effect size = 3.0” is needed to obtain a reasonable power.  

When the average of the two mixture effect sizes, 2=D , reasonable power cannot be 

achieved even with a sample size of 500.  When  D  is greater or equal to 3, the power of 

bootstrap test is essentially 1.0 for all samples of 50 or more regardless mixing proportion 

π and within component correlation ρ .  The results are similar for significance level 

0.01 (See Appendix D). 
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Table 4.1 The empirical power of the bootstrap test for sample size 200=n  

Mixing proportion Mean of effect size 
within 

component 
correlation 

Power( 05.0=α ) Power( 01.0=α ) 

0.5 

2 
0 0.946 0.844 
0.5 0.496 0.314 
0.9 0.257 0.114 

2.5 
0 0.995 0.995 
0.5 0.975 0.941 
0.9 0.995 0.995 

3 
0 0.995 0.995 
0.5 0.990 0.990 
0.9 0.995 0.995 

3.5 
0 1.000 1.000 
0.5 0.995 0.995 
0.9 0.993 0.993 

0.7 

2 
0 0.968 0.906 
0.5 0.605 0.368 
0.9 0.351 0.193 

2.5 
0 1.000 1.000 
0.5 1.000 0.990 
0.9 1.000 1.000 

3 
0 1.000 1.000 
0.5 1.000 1.000 
0.9 1.000 1.000 

3.5 
0 1.000 1.000 
0.5 1.000 1.000 
0.9 1.000 1.000 

0.9 

2 
0 0.906 0.820 
0.5 0.580 0.319 
0.9 0.336 0.178 

2.5 
0 1.000 1.000 
0.5 0.988 0.948 
0.9 0.998 0.985 

3 
0 1.000 1.000 
0.5 1.000 1.000 
0.9 1.000 1.000 

3.5 
0 1.000 1.000 
0.5 1.000 1.000 
0.9 1.000 1.000 

 
Note: 1. The power results are based on 1000 bootstrap samples and 1000 replicates. 

          2. Significance level of α =0.05, 0.01. 
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Figure 4.2: Power results of the parametric bootstrap test for sample size 50=n  
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Note: 1. The power results are based on 1000 bootstrap test and 1000 replicates. 
           2. Significance level  05.0=α . 
           3. D=the average of the two mixture effect sizes, rho=within component correlation. 
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Figure 4.3: Power results of the parametric bootstrap test for sample size 100=n  

 

 

 
 
 
 
Note: 1. The power results are based on 1000 bootstrap test and 1000 replicates. 
           2. Significance level  05.0=α . 
           3. D=the average of the two mixture effect sizes, rho=within component correlation. 
 

5.0=π   7.0=π   9.0=π  

0.0

0.2

0.4

0.6

0.8

1.0

2 2.5 3 3.5

po
w
er

D

rho=0

rho=0.5

rho=0.9

0.0

0.2

0.4

0.6

0.8

1.0

2 2.5 3 3.5

po
w
er

D

rho=0

rho=0.5

rho=0.9

0.0

0.2

0.4

0.6

0.8

1.0

2 2.5 3 3.5

po
w
er

D

rho=0

rho=0.5

rho=0.9



 

38 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Power results of the parametric bootstrap test for sample size 200=n  

 

 
                                                    
 
 
Note: 1. The power results are based on 1000 bootstrap test and 1000 replicates. 
           2. Significance level  05.0=α . 
           3. D=the average of the two mixture effect sizes, rho=within component correlation. 
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Figure 4.5: Power results of the parametric bootstrap test for sample size 500=n  
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Note: 1. The power results are based on 1000 bootstrap test and 1000 replicates. 
           2. Significance level  05.0=α . 
           3. D=the average of the two mixture effect sizes, rho=within component correlation. 
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4.2 Precision of the MLEs under the Alternative Hypothesis 

 

In order to understand how well our algorithm program works, we examine the 

summary statistics of the MLEs.  Parameter values defined in section 4.1.1 for various 

sample size ( =n 50, 100, 200, 500) are considered.  

  For each given sample size, we generate data from a two component bivariate 

normal mixture distribution with specified parameter values.  Then the MLEs of 

parameters are obtained using the EM algorithm described in Section 2.3.  This is 

repeated for 500 simulated samples generated under the alternative hypothesis.  Table 4.2 

contains the mean and standard error of the MLEs of the parameters under the alternative 

hypothesis when mixing proportion 5.0=π .  The mean MLEs of π  are close to 0.5, and 

the mean of the MLEs of others parameters are close to their parameter settings.  

Meanwhile, the MLEs seem to converge to their true values with decreasing standard 

errors as sample size increases.  Another way to evaluate the difference between 

estimated value and the true value is to calculate the mean square error (MSE) of the 

estimator.  Clearly, it will be preferable to have very small values of MSE, i.e. 0.0.  For a 

given estimate 
∧

θ  of the parameter θ , the MSE is calculated as 

                                        
2

2

))(()(

))(()(

θθθ

θθθ

−+=

−=
∧∧

∧∧

EVar

EMSE

                                   

(4.2.1) 

The results of MSE of MLEs are also reported in Table 4.2.  As expected, the MSE of the 

MLEs decrease as sample size and the distance between component means increases.  In 
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addition, higher within component correlation is associated with larger MSE of the MLEs 

in most cases.  The MSE values are associated with the standard error.  For example, one 

can see in table that for the MLE of mixing proportion with an item within component 

correlation of 0.0 and a sample of 100, the MSE decreases from 0.011 to 0.003 when 2D  

increases from 2.0 to 3.0.  The respective standard error for this MLE also decreases from 

0.005 to 0.003.  In the extreme scenario, the MSEs of 
∧

π  and 
∧

ρ  are very close to zero 

which implied that 
∧

π  and 
∧

ρ  are good estimators of their true values.  Similar results 

hold under other mixing proportion settings (results not shown in the table).  Armed with 

this information, our estimation procedure seems to work very well in estimating the 

MLEs of all parameters at all parameter settings. 
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Table 4.2 Mean MLEs with the standard error and MSE when 5.0=π  in two component bivariate normal mixture model 

1D   2D  ρ  n 
mean MLEs(SE) MSE 

( ) 

MSE 
( 1D̂ ) 

MSE 
( 2D̂ ) 

MSE 
( )  1D̂  2D̂   

2  2 

0.0 

50 0.488(0.007) 1.843(0.039) 1.805(0.039) 0.118(0.015) 0.025 0.767 0.806 0.122 

100 0.503(0.005) 1.946(0.026) 1.941(0.026) 0.060(0.009) 0.011 0.340 0.349 0.048 

200 0.498(0.003) 2.006(0.011) 1.974(0.014) 0.008(0.005) 0.004 0.063 0.092 0.014 

500 0.501(0.003) 1.962(0.013) 1.941(0.017) 0.018(0.005) 0.004 0.091 0.155 0.014 

0.5 

50 0.488(0.009) 1.741(0.040) 1.745(0.041) 0.613(0.010) 0.041 0.846 0.907 0.061 

100 0.504(0.008) 1.854(0.035) 1.827(0.033) 0.561(0.008) 0.030 0.626 0.589 0.037 

200 0.504(0.005) 1.930(0.021) 1.930(0.022) 0.531(0.005) 0.012 0.233 0.239 0.016 

500 0.504(0.004) 1.909(0.020) 1.923(0.020) 0.520(0.004) 0.010 0.204 0.212 0.008 

0.9 

50 0.502(0.010) 1.734(0.038) 1.763(0.037) 0.922(0.003) 0.047 0.786 0.734 0.004 

100 0.497(0.009) 1.777(0.033) 1.744(0.034) 0.920(0.002) 0.040 0.590 0.631 0.002 

200 0.498(0.008) 1.818(0.028) 1.818(0.029) 0.914(0.002) 0.028 0.411 0.457 0.001 

500 0.496(0.006) 1.874(0.021) 1.875(0.021) 0.908(0.001) 0.017 0.246 0.245 0.001 

2  3 

0.0 

50 0.503(0.004) 1.956(0.022) 2.928(0.027) 0.033(0.010) 0.008 0.242 0.359 0.055 

100 0.502(0.003) 1.989(0.010) 2.999(0.012) 0.007(0.005) 0.003 0.049 0.076 0.015 

200 0.499(0.002) 1.991(0.007) 3.001(0.007) 0.008(0.004) 0.002 0.022 0.023 0.006 

500 0.500(0.003) 1.960(0.015) 2.938(0.020) 0.015(0.005) 0.004 0.116 0.200 0.013 

0.5 

50 0.501(0.006) 1.907(0.028) 2.767(0.036) 0.545(0.009) 0.017 0.389 0.705 0.040 

100 0.495(0.003) 2.003(0.014) 2.976(0.015) 0.497(0.005) 0.006 0.103 0.106 0.013 

200 0.499(0.002) 2.013(0.009) 3.009(0.009) 0.497(0.003) 0.002 0.041 0.037 0.005 

500 0.505(0.004) 1.948(0.015) 2.907(0.022) 0.511(0.004) 0.006 0.113 0.250 0.006 

0.9 

50 0.488(0.005) 1.974(0.020) 2.919(0.025) 0.896(0.002) 0.012 0.205 0.324 0.003 

100 0.501(0.003) 2.005(0.012) 3.004(0.010) 0.897(0.001) 0.004 0.067 0.054 0.001 

200 0.499(0.002) 2.000(0.008) 3.003(0.010) 0.899(0.001) 0.002 0.028 0.045 0.000 

500 0.505(0.003) 1.984(0.008) 2.954(0.016) 0.901(0.001) 0.004 0.034 0.125 0.000 
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2  4 

0.0 

50 0.497(0.003) 1.985(0.014) 4.005(0.013) 0.008(0.008) 0.006 0.092 0.086 0.028 

100 0.497(0.002) 1.979(0.009) 3.989(0.009) 0.000(0.005) 0.003 0.040 0.039 0.011 

200 0.500(0.002) 2.011(0.006) 4.003(0.006) 0.001(0.003) 0.001 0.020 0.020 0.006 

500 0.502(0.003) 1.975(0.014) 3.926(0.023) 0.017(0.005) 0.004 0.093 0.273 0.012 

0.5 

50 0.505(0.004) 1.988(0.016) 3.977(0.016) 0.494(0.006) 0.006 0.128 0.126 0.020 

100 0.499(0.002) 1.978(0.010) 3.987(0.010) 0.500(0.003) 0.003 0.052 0.047 0.009 

200 0.499(0.002) 2.014(0.009) 4.000(0.013) 0.499(0.003) 0.002 0.037 0.085 0.004 

500 0.503(0.003) 1.957(0.015) 3.916(0.025) 0.505(0.003) 0.004 0.107 0.315 0.004 

0.9 

50 0.498(0.003) 1.994(0.013) 4.000(0.013) 0.898(0.002) 0.005 0.088 0.085 0.001 

100 0.499(0.002) 2.009(0.009) 4.011(0.009) 0.899(0.001) 0.002 0.039 0.042 0.000 

200 0.502(0.002) 2.000(0.006) 3.997(0.006) 0.900(0.001) 0.001 0.020 0.020 0.000 

500 0.499(0.003) 1.982(0.010) 3.929(0.020) 0.900(0.000) 0.004 0.047 0.214 0/001 

3  4 

0.0 

50 0.500(0.003) 2.991(0.013) 3.967(0.012) -0.003(0.007) 0.005 0.078 0.078 0.023 

100 0.500(0.002) 2.995(0.009) 4.010(0.009) 0.000(0.005) 0.003 0.043 0.042 0.011 

200 0.499(0.002) 2.996(0.006) 4.004(0.007) 0.005(0.003) 0.001 0.019 0/021 0.005 

500 0.500(0.002) 2.963(0.014) 3.947(0.022) 0.009(0.005) 0.003 0.093 0.243 0.011 

0.5 

50 0.501(0.003) 2.977(0.015) 3.982(0.017) 0.503(0.006) 0.006 0.117 0.139 0.016 

100 0.503(0.002) 2.993(0.009) 3.997(0.010) 0.494(0.004) 0.003 0.044 0.047 0.008 

200 0.497(0.002) 3.001(0.007) 3.987(0.011) 0.502(0.003) 0.002 0.026 0.061 0.003 

500 0.503(0.002) 2.959(0.015) 3.944(0.020) 0.505(0.003) 0.002 0.120 0.201 0.004 

0.9 

50 0.500(0.003) 2.982(0.016) 3.977(0.017) 0.899(0.002) 0.006 0.135 0.139 0.001 

100 0.498(0.002) 3.020(0.008) 4.019(0.008) 0.898(0.001) 0.003 0.035 0.036 0.000 

200 0.501(0.002) 3.003(0.007) 4.002(0.006) 0.900(0.001) 0.001 0.022 0.021 0/000 

500 0.501(0.002) 2.975(0.010) 3.956(0.016) 0.901(0.001) 0.002 0.049 0.132 0/000 

Note: All values are based on 500 replications on each parameter combination setting. 

 

 

Table 4.2 Mean MLEs with the standard error and MSE when 5.0=π  in two component bivariate normal mixture model (continued) 
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Chapter 5  
 
Modeling LRT statistics 
 
5.1 Empirical Null Distribution 

 

In the previous chapters, all simulations were conducted under the alternative 

hypothesis.  In a common hypothesis testing scenario, the null distribution of the test 

statistic is known.  Thus we can conduct the statistical inference with this null 

distribution.  While at the time when the theoretical null is unknown, it is necessary to 

estimate the null distribution through simulation and yield an “empirical null”. In this 

section, we discuss how to obtain the empirical null distribution of LRT for various 

parameter settings. 

 

5.1.1 Data simulation 

In our null hypothesis study, we simulate samples from the single bivariate 

normal distribution with 15 different parameter combination settings.  For each setting, 

we run )1000( =ss NN  simulations.  The parameter values used to simulate the data 

for sample size n = 50, 100, 200, 500, 1000 are: 

00201 == μμ , 10201 ==σσ , and 

=0ρ 0, 0.5, 0.9. 

The procedure to simulate observation from a single bivariate normal distribution is 
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same as described in Section 4.1.1. 

 

5.1.2 The Null distribution of LRT 

The framework of the LRT calculation under the null hypothesis is given in 

Figure 5.1.  iX  denote a simulated sample under the null distribution specified by the 

parameter combination and sample size.  The simulation results for the LRT under the 

null hypothesis are shown in Tables 5.1, 5.2 and 5.3 respectively.  As the first step of 

analysis, the means, standard deviations, and selected percentiles at each parameter 

combination setting for each sample size reveal information about the distribution of 

the LRT under the null hypothesis.  After examination of the three tables, we believe 

that the mean of the LRT decreases as sample size increases for each correlation 

coefficient setting.  Also the selected percentile of the LRT decreases as sample size 

increases.  Next, a transformation of LRT is performed to study the value of LRT. 

 

 

 

 

 

                     

            Figure 5.1 LRT calculation chart under the null hypothesis 

 

 

Each parameter combination  

 setting for each sample size 

1000X  1X   2X    

LRT1  LRT2  LRT1000 
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Table 5.1 Simulation results of LRT under the null hypothesis when correlation coefficient 

0.00 =ρ  

Sample 
size 

Mean of 
LRT SD of LRT 

Percentiles of LRT 

25 50 75 90 95 99 

n=50 5.7161 2.9001 3.5831 5.1463 7.3446 9.6514 11.1028 14.6090 

n=100 5.4001 2.9012 3.3158 4.8474 7.0471 9.2645 11.2678 14.5561 

n=200 5.2448 2.8506 3.1836 4.7676 6.6480 8.9409 10.4113 14.2156 

n=500 4.9943 2.8454 3.0306 4.4006 6.3299 8.6716 10.2290 14.3296 

n=1000 4.7176 2.7750 2.7649 4.1855 6.1597 8.4727 10.0951 12.5591 

 
Note: All LRT statistic values are based on 1000 replicates 

 

 

Table 5.2 Simulation results of LRT under the null hypothesis when correlation coefficient 

5.00 =ρ  

Sample 
size 

Mean of 
LRT SD of LRT 

Percentiles of LRT 

25 50 75 90 95 99 

n=50 5.6242 2.6892 3.5796 5.1648 7.2231 9.3483 10.7222 13.4451 

n=100 5.2890 2.7348 3.2482 4.9006 6.7299 8.8973 10.6193 13.9617 

n=200 5.2759 2.7392 3.2343 4.7343 6.8760 9.1204 10.3667 13.3782 

n=500 5.0299 2.8359 3.0263 4.5058 6.3992 8.6458 10.4202 14.1423 

n=1000 4.8458 3.0307 2.6980 4.2627 6.2772 8.9385 10.3526 14.9373 

 
Note: All LRT statistic values are based on 1000 replicates 
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Table 5.3 Simulation results of LRT under the null hypothesis when correlation coefficient 

9.00 =ρ  

Sample 
size 

Mean of 
LRT SD of LRT 

Percentiles of LRT 

25 50 75 90 95 99 

n=50 5.7436 2.9061 3.6891 5.1811 7.1253 9.3564 11.5273 15.5504 

n=100 5.4305 2.7444 3.3588 4.8785 7.0793 8.9788 10.5205 13.3610 

n=200 5.2680 2.8273 3.2370 4.7191 6.6237 9.0477 10.7774 14.2209 

n=500 4.8295 2.6862 2.8004 4.3333 6.2346 8.4840 10.1762 13.1974 

n=1000 4.7523 2.8748 2.7787 4.1945 6.1061 8.7556 10.3406 13.7168 

 
Note: All LRT statistic values are based on 1000 replicates 
 
 
 
 
 

5.1.3 Modeling the LRT under the null hypothesis 

A linear regression model is used to model the distribution of the LRT under the 

null hypothesis.  Since the values of the LRT are apparently not normally distributed, 

directly using the LRT values as the dependent variable violate the normality 

assumption of the linear regression model.  Our solution is to perform a cube root 

transformation on LRT due to the fact that the distribution of the cube root of a chi-

square random variable is closer to a normal distribution.  Then we retest the 

normality after performed cube root transformation on LRT for each parameter 

combination settings.    Figure 5.2 shows the Q-Q plot of 3 LRT  with sample size n = 

500.  Most points fall on the straight line in the plot, which shows that the distribution 

of the cube root of LRT is closer to a normal distribution.  
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Figure 5.2 Normal Q-Q plot of 3 LRT  at sample size n =500  

Note: 1. All values of 
3 LRT  are based on 1000 replicates; 

          2. Parameter settings are 00201 == μμ , 10201 ==σσ . 

 

In our regression analysis, the independent variables are the sample size n   and 

the correlation coefficient ρ0.  The dependent variable is the mean of the value of 

3 LRT  for each sample size and correlation coefficient, which can be expressed as 

errornfLRTE += ),()( 0
3 ρ .  We measure each factor’s contribution to the null 

distribution of the LRT statistic by performing a balanced two-way ANOVA for 
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comparing the means of the observed values.  The sample size n  has five levels, and 

the correlation coefficient 0ρ  has three levels. There are 1000 replicates per 

contribution.  Table 5.4 contains the ANOVA table for comparing the means of 

3 LRT .  The sample size n  is significant, while neither the correlation coefficient 0ρ  

nor the interaction term n×0ρ  are significant with 743.0,214.0=− valuesp  

respectively. Therefore, the mean of 3 LRT  appears to be only a function of sample 

size.  In addition, to test the linearity assumption of regression analysis, we have 

plotted the dependent variable against independent variables and notice that there is 

not a straight line relationship between the value of 3 LRT and sample size n.  Hence, 

we consider transforming sample size n to log n, which become our independent 

variables. 

Table 5.4 ANOVA table for comparing the means of 3 LRT  
Source SS df MS F Prob>F 

sample size n 31.99 4 7.99748 77.01 0.000 

correlation 
coefficient 0ρ  

0.32 2 0.16013 1.54 0.214 

n×0ρ  0.53 8 0.06671 0.64 0.7426 

Error 1556.26 14985 0.10385   

Total 1589.11 14999    

Note: All values of 3 LRT  are based on 1000 replicates. 

 

Table 5.5 reports the linear regression results of the mean of 3 LRT . The 

coefficient results for the independent variable give us the following regression model:  

nLRTE ln)004.0(042.0)022.0(901.1)(3 −=                         (5.1.1) 
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with R-square equal to 0.973, which indicates the model has good of fit.  Table 5.6 

reports summary statistics of observed 
3 LRT  and fitted 

3 LRT .  The estimated 

standard deviation of 
3 LRT  is   

322.0
5

2

== ∑∧
is

σ
 

 
The estimated standard error is 0.01. 

Table 5.5 Linear regression results for the mean of 
3 LRT  

Model 
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

(Constant) 
Log n 

1.901 .022  85.377 .000 

-.042 .004 -.987 -10.450 .002 

 

Table 5.6 Summary statistics of 
3 LRT  and Type I error rate      

n 0ρ  
observed 

mean 
3 LRT  

Fitted 
mean 

3 LRT  

observed 
sd 

3 LRT  

type I error rate 
Fitted null 
distribution 
(α = 0.05) 

Bootstrap 
null distribution 

(α = 0.05) 

Fitted null 
distribution 
(α = 0.01) 

Bootstrap  
null distribution 

(α = 0.01) 

50 

0.0 1.723 

1.737 

0.291 0.036 0.063 0.002 0.020 

0.5 1.739 0.309 0.052 0.061 0.014 0.021 

0.9 1.743 0.303 0.053 0.064 0.012 0.023 

100 

0.0 1.6967 

1.707 

0.295 0.029 0.060 0.008 0.017 

0.5 1.704 0.313 0.049 0.057 0.012 0.017 

0.9 1.694 0.298 0.033 0.059 0.008 0.021 

200 

0.0 1.689 

1.678 

0.295 0.053 0.053 0.007 0.016 

0.5 1.683 0.305 0.045 0.054 0.013 0.013 

0.9 1.688 0.302 0.046 0.057 0.010 0.020 

500 

0.0 1.642 

1.640 

0.312 0.046 0.053 0.006 0.014 

0.5 1.643 0.331 0.057 0.057 0.015 0.016 

0.9 1.653 0.331 0.053 0.054 0.009 0.017 

1000 

0.0 1.589 

1.611 

0.372 0.052 0.050 0.011 0.012 

0.5 1.594 0.380 0.061 0.051 0.011 0.015 

0.9 1.618 0.378 0.071 0.053 0.019 0.014 

Note:  Fitted results are based on 3000 values for each sample size 
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We use the following expression to calculate the p-value estimated by the linear 

regression model:   

                                            ))((1
3

∧

∧
∧ −

≤=−
σ

μ nLRTZPp                                       (5.1.2) 

where )(n
∧

μ  are the fitted mean of 3 LRT  with sample size 50=n , 100, 200, 500 and 

1000 and 322.0=
∧

σ .  Based on 1000 observed 3 LRT  values per parameter with 

each sample size, we obtain 1000 p-values from (5.1.2).  The type I error rate on α  

level is 

                                            Type I error = 
1000

)(
1000

1
∑
=

∧

≤
i

ipI α
                                      (5.1.3) 

       

Also we calculate a critical value for each sample size with α  significance level as  

                                              Critical value = 
∧∧

+ )(nz μσα                                      (5.1.4) 

We include the critical values of 3 LRT  at each sample size in Table 5.7, which will 

be used to calculate the fitted power by modeling the LRT under the alternative 

hypothesis in the next section.   

 

Table 5.7 Critical values of 3 LRT  based on regression model  

α  level 
Sample size n  

50 100 200 500 1000 

0.05 2.367 2.337 2.308 2.270 2.241 

0.01 2.566 2.536 2.507 2.469 2.440 
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We also calculate the Type I error rates using the bootstrap method described in 

section 3.2 when we simulated data under the null hypothesis.  Table 5.6 includes the 

Type I error rates of the fitted null distribution and bootstrap null distribution for each 

α  level. As we expect, the Type I error rates are close to the nominal level 0.05 and 

0.01 respectively. Figures 5.3 and 5.4 compare the Type I error rates from the 

regression model critical values with the Type I error rates obtained by bootstrap 

method.  However, one special case is when 00 =ρ  at sample size 100.  The fitted 

null distribution Type I error rate (0.029) is significantly smaller than the nominal 

level (0.05).  This is because the regression model does not fit the values of 3 LRT  

very well at sample size 100=n .  Therefore, for Type I error rates of fitted null 

distribution, whether the Type I error rates are close to desired value only depends on 

the reliability of the fit of the model.  For Type I error rates of bootstrap null 

distribution, the results show that the proximity of the significance level to the 

nominal level depends not only on sample sizes but also on the correlation coefficient. 

The Type I error rates from the bootstrap method in large sample size is slightly closer 

to the nominal level than it is for a small sample size. Apparently, bootstrap methods 

are more reliable than our linear regression model in estimation of the Type I error.  

However, in general our fitted null distribution appears to work very well for samples 

of 200 or more.  
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Figure 5.3 Comparison of Type I error rate using regression model and bootstrap method 
( 05.0=α ) 

 

 
Figure 5.4 Comparison of Type I error rate using regression model and bootstrap method 
( 01.0=α ) 
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5.2 Distribution of LRT under the alternative hypothesis 

 

 We next consider the distribution of LRT under the alternative hypothesis. 

Table 5.8 presents the simulation results of this consideration. 

 
Table 5.8: Simulation results of LRT under the alternative hypothesis when 5.0=π , 

5.2~2=D  

D  ρ  n  Mean 
LRT 

SD 
LRT 

Percentile of LRT 

5 10 50 

2 

0 

50 9.622 4.888 3.351 4.395 8.491 
100 13.797 6.104 5.422 6.989 12.891 
200 23.374 8.760 9.940 12.452 22.843 
500 51.151 15.785 27.107 34.320 51.377 

0.5 

50 6.951 3.371 2.696 3.216 6.447 
100 8.838 4.276 3.172 4.028 8.032 
200 11.976 5.943 4.453 5.550 10.866 
500 22.443 9.803 5.599 10.328 22.284 

0.9 

50 6.478 3.597 2.366 2.886 5.702 
100 6.917 3.564 2.164 2.998 6.296 
200 8.843 4.639 2.560 3.629 7.957 
500 14.448 7.197 3.370 5.767 13.832 

2.5 

0 

50 16.352 6.790 7.070 8.410 15.429 
100 28.296 9.205 14.062 17.232 27.049 
200 52.009 13.357 32.376 35.123 51.447 
500 124.601 26.740 93.262 102.624 126.086 

0.5 

50 10.889 4.953 4.123 5.088 10.059 
100 17.287 7.206 7.033 8.559 16.641 
200 30.976 9.842 16.891 19.395 29.731 
500 68.005 20.450 39.661 47.890 69.557 

0.9 

50 14.224 5.793 6.785 7.656 13.425 
100 24.413 8.483 11.807 13.903 23.757 
200 44.381 12.142 26.283 29.329 43.439 
500 101.906 23.289 71.246 80.008 103.177 

 

A similar analysis is performed with LRT under the null hypothesis.  In the case of the 

study of the distribution of the LRT under the alternative, we have a multi-factor 
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design.  The variables are sample size n , mixing proportion π , the average of the 

two mixture effect size D  and within component correlation ρ .  Since the linear 

model has the assumption of normality of errors, we check whether the value of LRT 

under the alternative hypothesis is normal distributed before we are doing analysis.   

Unfortunately, the values of LRT under the alternative hypothesis are in fact not 

approximately normally distributed.  Hence, we look for an appropriate 

transformation of these values that have a distribution that is closer to the normal 

distribution using the Box-Cox transformation.  

From the Box-Cox transformation, we found the transformation power 

0488.0=λ .  Since the value of λ  is close to 0, we can choose natural logarithm of 

LRT values under the alternative hypothesis as the transformation.  Then we obtain 

transformed values for LRT statistics under the alternative hypothesis.  Figure 5.5 

shows a selected Q-Q plot of the log of the LRT.  It illustrates that these transformed 

LRT values are approximately normal distributed.  We then model the mean of the log 

of the LRT considering parameters and the sample sizes.  The model also include all 

two factor interactions:   

errorDDnDnnDnfLRTE += )*,*,*,*,*,*,,,,()(log ρρππρπρπ     

 

 

 

 

 



 

56 
 

Figure 5.5 Selected Q-Q plot of LRTlog  with sample size n = 100 

 

 

 

   

 

 

 

 

 

Table 5.9: ANOVA table for the mean of LRTlog  

Source DF ANOVA SS Mean Square F value Pr > F 

π  2 1.015 0.507 60.37 <.0001 

D  3 113.050 37.683 4483.20 <.0001 

ρ  2 7.191 3.595 427.74 <.0001 

n  3 110.445 36.815 4379.91 <.0001 

D*π  6 0.160 0.027 3.18 0.0069 

ρπ *  4 0.007 0.002 0.20 0.9369 

n*π  6 0.184 0.031 3.65 0.0026 

ρ*D  6 8.334 1.389 165.26 <.0001 

nD*  9 5.103 0.567 67.46 <.0001 

n*ρ  6 0.382 0.064 7.58 <.0001 

 

 Table 5.9 reports the ANOVA table for the mean of LRTlog .  It shows that 

each main effect was significant with 0001.0<− valuep .  For the interaction 

variables, only the interaction of the mixing proportion and within component 

 

                   2,0,5.0 === Dρπ                            2,9.0,7.0 === Dρπ                      5.2,5.0,9.0 === Dρπ  

   Note: All values of  LRTlog  are based on 1000 replicates. 
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correlation is not significant with 9369.0=− valuep .  As a result, we can include all 

main effects and interaction effects except ρπ * .  We consider the transformation of 

sample size nlog  and average of effect sizes D  in our model.  The regression 

results of the model are reported in Table 5.10.  Our model for mean of LRTlog  can 

be written as below with R-square equal to 0.889: 

ρπρ

πρπ

*454.1*927.0log*121.0

log*816.0log*209.0096.2028.0248.0log586.005.0)(log

DDn

nDnDnLRTE

+−−

++−++−=

            (5.2.1) 

 The same procedure is performed to standard deviation of logLRT.  The final 

model for SD of LRTlog  is below with R-square equal to 0.526: 

ρπ

πρπ

*121.0*094.0

log*039.0log*675.024.022.0352.3log515.0409.1)(log

DD

nDnDnLRTsd

−−

−−+−++−=

          
 (5.2.2)
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Table 5.10: Regression results for mean of LRTlog  under alternative hypothesis 

Model 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

 

(Constant) .050 2.426  .021 .983 

nlog  -.586 .395 -.457 -1.483 .141 

π  .248 2.190 .037 .113 .910 

D  .028 1.376 .004 .020 .984 

ρ  -2.096 .971 -.706 -2.158 .033 

π*logn  .209 .226 .195 .926 .356 

Dn*log  .816 .217 1.233 3.767 .000 

ρ*logn  -.121 .100 -.211 -1.204 .231 

D*π  -.927 1.131 -.251 -.820 .414 

ρ*D  1.454 .502 .819 2.898 .004 

 

 

 

Since the mean and standard deviation of log(LRT) are known, we can use the above 

regression model to calculate the power of fitted model.  From Table 5.6, we obtain 

the critical values of LRTlog for each sample size and significance level.  The 

equation for computing fitted power is: 

)
),,,(

),,,(log(1

)
),,,(

),,,(log

),,,(

),,,(log(

)log(log

∧

∧
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∧
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(5.2.3) 
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Table 5.11 Summary statistics of LRTlog  and fitted power  with sample size n=200 

π  D  ρ  
Observed 

mean 
LRTlog  

Observed 
SD 
LRTlog  

Fitted 
mean 

LRTlog  

Fitted 
SD 
LRTlog  

Fitted 
power 

( 05.0=α ) 

Fitted 
power 

( 01.0=α ) 

difference between 
fitted and observe 
power 

(0.05)Δ   (0.01)Δ  

0.5 

2 
0 3.074 0.413 3.161 0.572 0.873 0.760 -0.073 -0.094 

0.5 2.363 0.501 2.839 0.572 0.518 0.357 0.186 0.203 
0.9 2.031 0.580 2.582 0.572 0.351 0.180 0.243 0.226 

2.5 
0 3.917 0.268 3.779 0.483 0.996 0.983 0.002 -0.009 

0.5 3.379 0.346 3.579 0.483 0.987 0.956 0.009 0.009 
0.9 3.753 0.291 3.419 0.483 0.970 0.915 -0.037 -0.104 

3 
0 4.577 0.175 4.337 0.402 1.000 1.000 0.005 0.005 

0.5 4.260 0.272 4.247 0.402 1.000 1.000 0.010 0.010 
0.9 5.038 0.122 4.175 0.402 1.000 1.000 0.005 0.005 

3.5 
0 4.855 0.141 4.851 0.328 1.000 1.000 0.000 0.000 

0.5 4.374 0.217 4.862 0.328 1.000 1.000 0.005 0.005 
0.9 4.421 0.182 4.870 0.328 1.000 1.000 0.007 0.007 

0.7 

2 
0 3.172 0.404 3.114 0.496 0.888 0.764 -0.059 -0.118 

0.5 2.435 0.589 2.792 0.496 0.716 0.528 0.108 0.158 
0.9 2.163 0.507 2.535 0.496 0.421 0.227 0.156 0.132 

2.5 
0 4.004 0.244 3.732 0.407 0.999 0.992 -0.001 -0.005 

0.5 3.472 0.324 3.532 0.407 0.994 0.972 -0.006 -0.019 
0.9 3.811 0.280 3.372 0.407 0.983 0.935 -0.024 -0.081 

3 
0 4.612 0.166 4.290 0.326 1.000 1.000 0.000 0.000 

0.5 4.316 0.209 4.200 0.326 1.000 1.000 0.000 0.000 
0.9 5.059 0.113 4.128 0.326 1.000 1.000 0.000 0.000 

3.5 
0 4.866 0.147 4.804 0.252 1.000 1.000 0.000 0.000 

0.5 4.411 0.190 4.815 0.252 1.000 1.000 0.000 0.000 
0.9 4.448 0.185 4.823 0.252 1.000 1.000 0.000 0.000 

0.9 

2 
0 3.024 0.439 3.067 0.420 0.908 0.769 0.039 0.014 

0.5 2.375 0.576 2.745 0.420 0.613 0.389 0.170 0.220 
0.9 2.039 0.609 2.488 0.420 0.480 0.261 0.179 0.129 

2.5 
0 3.805 0.317 3.685 0.331 1.000 0.997 0.000 -0.001 

0.5 3.286 0.385 3.485 0.331 0.998 0.986 0.011 0.040 
0.9 3.635 0.366 3.325 0.331 0.993 0.957 -0.007 -0.037 

3 
0 4.420 0.226 4.243 0.250 1.000 1.000 0.000 0.000 

0.5 4.122 0.269 4.153 0.250 1.000 1.000 0.000 0.000 
0.9 4.861 0.170 4.081 0.250 1.000 1.000 0.000 0.000 

3.5 
0 4.701 0.191 4.757 0.175 1.000 1.000 0.000 0.000 

0.5 4.213 0.250 4.768 0.175 1.000 1.000 0.000 0.000 
0.9 4.275 0.244 4.776 0.175 1.000 1.000 0.000 0.000 

 

 

 The results of fitted power are also reported in Table 5.11.  We compare fitted 

power and the observed power of the bootstrap test.  Figures 5.6 and 5.7 show 

comparison of the power results of fitted and observed for each parameter 

combination setting and each sample size with significance level of 0.05 and 0.01 

respectively.  It appears most points fall close to the x=y line, which indicates that the 
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fitted power is close to the bootstrap power.  Most fitted and observed powers 

estimates are roughly equal as the power increases.  However, it does not tell any 

quantitative information on how well fitted power is.  In order to investigate it, we 

compute the values of the difference between the powers for each method.  Figure 5.8 

illustrates these values of the difference for 36 parameter combination settings and 

each sample size with significance level of 0.05.  It shows the value of the difference 

decreases as sample size increases from the red trend line, which indicates the fitted 

power value gets closer to observed power value when sample size increases.  When 

the sample size 100≤n , most fitted powers are under estimated based on the 

corresponding observed power.  However, the largest difference of 0.32 corresponds 

to the case where the mixing proportion equals 0.7 and sample size equals 50 should 

be looked into.  Additionally, the power difference corresponds to the case where the 

mixing proportion equals 0.5 even sample size equals 500 is consistently large.  The 

reason is that the mean and SD of LRTlog  from regression model do not fit very well 

in these parameter settings.   
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Figure 5.6: Comparison of fitted and observed power at significance level 05.0=α  

 

 

Figure 5.7: Comparison of fitted and observed power at significance level 01.0=α  
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Figure 5.8: Power difference between fitted and observed at 05.0=α  

Note:  1. Model number = number of parameter combination settings (36) * number 

              of sample size (4) (total 144) (Appendix E). 

      2. Fitted power = power calculation under regression model. 
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Chapter 6 
 

Discussion and Conclusion 
 

The research in this dissertation include the power analysis of the parametric 

bootstrap test to detect a two component bivariate normal mixture distribution and 

modeling the distribution of the LRT statistic under null and alternative hypothesis 

using simulated data sets of various parameter combination settings.  The analysis of 

the LRT statistic is based on MLEs of unknown parameters obtained using EM 

algorithm.  In the process, software programs have been developed for a simulation 

study of the power of the bootstrap statistic based on the LRT in this dissertation. 

The alternative hypothesis is a two component bivariate normal mixture 

distribution.  As expect, the power of the parametric bootstrap test was sensitive to 

sample size, average mixture effect size, and slightly sensitive to mixing proportion.  

We also note that power depends on the within component correlation.  The power to 

detect a bivariate normal mixture increases as sample size increases and the average 

mixture effect sizes increases.  As the mixing proportion approaches 0.5, the power 

slightly increases in some cases.  Power increases as the within component correlation 

gets closer to 0.0 and is significantly lower when the within component correlation.  

We think the reason for this is that if the mixture accounts for all of the correlation.  

The power is high with zero within component correlation.  Conversely when the 

within component correlation is high then the mixture accounts for a small proportion 
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of the correlation between the two variables.  To obtain a reasonable power ( power

%80≥ ), one needs a sample size of 200 or more, average of the two mixture effect 

size, D , of 2.5 or more and 9.01.0 ≤≤ π  to detect a bivariate mixture. When the 

average of the two mixture effect size D  is 3.0 or greater, the power is essentially 1.0 

regardless of sample size and the remaining parameter values. 

The null hypothesis is a single bivariate normal distribution.  The mean of LRT 

under the null hypothesis is only sensitive to the sample size.  The distribution of the 

test appears to be insensitive to the within component correlation under the null 

hypothesis.  We use the mean of the cube root transformation of LRT as the dependent 

variable to fit a simple linear regression model on nlog .  We obtain the following 

expression for mean of 3 LRT : nLRTE ln)004.0(042.0)022.0(901.1)(3 −= .  Thus, 

the pdf of 3 LRT  is approximated by a normal distribution with mean of 3 LRT  and 

variance 0.3222.  We use this property of LRT statistic under the null hypothesis to 

calculate the estimated p-value and observed that this approach resulted in the 

satisfactory estimate of the type I error rate. 

For the LRT statistics under the alternative hypothesis, the mean and the standard 

deviation of LRT is sensitive to all parameter settings.  We use log transformation of 

LRT as dependent variable to fit regression model which included the significant two 

factor interaction effects.  Then we have our final model for the mean and SD of

LRTlog .  Based on the critical values of LRT under the null distribution, we compute 

our fitted power.  Most fitted and observed powers estimates are roughly equal as the 

power increases. However, it is not accurate enough that one would use it in practice 
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( there are several situations where the error of the fitted power is greater than 0.05).  

The equations for obtaining fitted power work better as sample size increased, i.e. 

sample size n=500 and mixing proportion is greater than 0.5. 

From our experience with examples in which there is evidence of a bivariate 

mixture resulting from a major gene affecting the phenotype, the mixing proportion 

estimates probably between 0.8 and 1.0 (or equivalently, 0.0 and 0.2), and the within 

component correlation is unequal to 0.  For this reason, we propose to consider these 

ranges of parameter values. 

The parametric bootstrap method has been used in this dissertation. We expect 

that this would be the method of choice for evaluating the likelihood ratio test as 

applied to the null and alternative considered here.  It would be interesting to compare 

the power of the method used to other methods. Alternative methods to consider 

might be the nonparametric bootstrap or a permutation test.   

In this dissertation, one would expect that the assumption of equal mixing 

proportion for both traits implies that the mixture results from two correlated traits  

determined by a common factor that has not been measured in the individual subjects.  

Thus this would be an appropriate alternative, for example for two quantitative traits 

determined by a common gene and also for the joint distribution of a quantitative trait 

in a pairs of identical twins.  This common factor could however be some unrecorded 

common environmental factor.  It is possible and often the case that different factors 

determine two correlated traits.  In this case the marginal distribution of both traits 

would be a mixture and the mixing proportions would not be equal.  In fact one of the 
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traits might have a mixture distribution, and the other have a trait with a single 

component normal distribution.  It would be interesting to consider all of these 

situations in the context of nested hypotheses.  In the case of testing for a common 

factor for both traits vs. different factors with (unequal marginal mixing proportions) 

for each trait for each trait, one could consider the following two hypotheses. 
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Appendices 

 

Appendix A. Derivation of the correlation coefficient for the bivariate 

normal mixture 

Let X ~ Bivariate normal mixture with joint pdf 
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Next we calculate the expected value of the product to be 
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Finally, we can express the correlation coefficient for the bivariate normal mixture 
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Appendix B. The derivatives equations of maximum likelihood 

estimation for the bivariate normal distribution 

The maximum likelihood function is  
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Then the log of the maximum likelihood function is  
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Differentiating the above equation with respect to 0μ we get 

1
0

1

00
010

0

)(

)]}()[(
2
1{

);(log

−

=

=

∧

∑−=

−∑−
∂
∂

−=
∂

∂

∑

∑

T
n

i
i

i
T

i

n

i

x

xx
XL

μ

μμ
μμ

θ

 

We set the equation equal to 0, then the 
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Appendix C. The expansion of updated values of unknown 

parameters in EM algorithm 
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Appendix D. The empirical power results of the bootstrap test  

Table D. 1 The empirical power of the bootstrap test for sample size 50=n  

Mixing 
proportion 

Mean of effect 
size 

within 
component 
correlation 

Power( 05.0=α ) Power( 01.0=α ) 

0.5 

2 
0 0.264 0.121 
0.5 0.141 0.040 
0.9 0.104 0.030 

2.5 
0 0.738 0.501 
0.5 0.630 0.202 
0.9 0.388 0.385 

3 
0 0.990 0.933 
0.5 0.958 0.780 
0.9 0.909 0.857 

3.5 
0 1.000 0.985 
0.5 0.963 0.859 
0.9 0.956 0.869 

0.7 

2 
0 0.363 0.114 
0.5 0.151 0.052 
0.9 0.099 0.032 

2.5 
0 0.807 0.533 
0.5 0.667 0.237 
0.9 0.447 0.344 

3 
0 0.980 0.928 
0.5 0.935 0.765 
0.9 0.916 0.810 

3.5 
0 1.000 0.988 
0.5 0.990 0.862 
0.9 0.968 0.877 

0.9 

2 
0 0.259 0.111 
0.5 0.111 0.047 
0.9 0.081 0.042 

2.5 
0 0.585 0.395 
0.5 0.538 0.148 
0.9 0.316 0.275 

3 
0 0.975 0.775 
0.5 0.899 0.625 
0.9 0.815 0.751 

3.5 
0 0.980 0.936 
0.5 0.942 0.681 
0.9 0.852 0.731 
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Table D.2 The empirical power of the bootstrap test for sample size 100=n  

Mixing 
proportion 

Mean of effect 
size 

within 
component 
correlation 

Power( 05.0=α ) Power( 01.0=α ) 

0.5 

2 
0 0.620 0.356 
0.5 0.254 0.119 
0.9 0.143 0.049 

2.5 
0 0.975 0.826 
0.5 0.973 0.590 
0.9 0.798 0.489 

3 
0 1.000 1.000 
0.5 0.990 0.990 
0.9 1.000 0.995 

3.5 
0 0.998 0.998 
0.5 1.000 1.000 
0.9 1.000 1.000 

0.7 

2 
0 0.691 0.486 
0.5 0.264 0.104 
0.9 0.153 0.062 

2.5 
0 0.998 0.973 
0.5 0.973 0.686 
0.9 0.847 0.801 

3 
0 1.000 1.000 
0.5 0.998 0.998 
0.9 1.000 1.000 

3.5 
0 1.000 1.000 
0.5 1.000 1.000 
0.9 1.000 1.000 

0.9 

2 
0 0.551 0.365 
0.5 0.242 0.094 
0.9 0.123 0.047 

2.5 
0 0.928 0.837 
0.5 0.886 0.546 
0.9 0.736 0.458 

3 
0 1.000 0.998 
0.5 0.973 0.938 
0.9 1.000 1.000 

3.5 
0 1.000 1.000 
0.5 0.995 0.975 
0.9 0.990 0.983 
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Table D.3 The empirical power of the bootstrap test for sample size 500=n  

Mixing 
proportion 

Mean of effect 
size 

within 
component 
correlation 

Power( 05.0=α ) Power( 01.0=α ) 

0.5 

2 
0 0.921 0.921 

0.5 0.874 0.810 
0.9 0.647 0.477 

2.5 
0 0.904 0.904 

0.5 0.928 0.919 
0.9 0.923 0.923 

3 
0 0.960 0.960 

0.5 0.941 0.941 
0.9 0.956 0.956 

3.5 
0 0.946 0.946 

0.5 0.923 0.921 
0.9 0.921 0.919 

0.7 

2 
0 1.000 1.000 

0.5 0.983 0.943 
0.9 0.832 0.679 

2.5 
0 1.000 1.000 

0.5 1.000 1.000 
0.9 1.000 1.000 

3 
0 1.000 1.000 

0.5 1.000 1.000 
0.9 1.000 1.000 

3.5 
0 0.998 0.998 

0.5 1.000 1.000 
0.9 0.998 0.998 

0.9 

2 
0 1.000 0.998 

0.5 0.938 0.857 
0.9 0.763 0.556 

2.5 
0 1.000 1.000 

0.5 1.000 1.000 
0.9 0.998 0.998 

3 
0 1.000 1.000 

0.5 1.000 1.000 
0.9 1.000 1.000 

3.5 
0 0.998 0.998 

0.5 1.000 1.000 
0.9 0.998 0.998 
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                 Figure D.1: Power results of the parametric bootstrap test for sample size 200=n  

 

   Figure D.1: Power results of the parametric bootstrap test for sample size 200=n  

 

     
                                                5.0=π                                                                              7.0=π                                                                     9.0=π  
 
 
Note: 1. The power results are based on 1000 bootstrap test and 1000 replicates. 
     2. Significance level  01.0=α . 
     3. D=the average of the two mixture effect sizes, rho=within component correlation. 
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Appendix E.  Model Number Reference 

Table E.1 The model numbers at sample size 50=n  

mixing proportion mean of effect 
size 

within component 
correlation model number 

0.5 

2 
0 1 

0.5 2 
0.9 3 

2.5 
0 4 

0.5 5 
0.9 6 

3 
0 7 

0.5 8 
0.9 9 

3.5 
0 10 

0.5 11 
0.9 12 

0.7 

2 
0 13 

0.5 14 
0.9 15 

2.5 
0 16 

0.5 17 
0.9 18 

3 
0 19 

0.5 20 
0.9 21 

3.5 
0 22 

0.5 23 
0.9 24 

0.9 

2 
0 25 

0.5 26 
0.9 27 

2.5 
0 28 

0.5 29 
0.9 30 

3 
0 31 

0.5 32 
0.9 33 

3.5 
0 34 

0.5 35 
0.9 36 

 


