Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.
(C) All Rights Reserved by Author.

Stereocontrolled Synthesis of Bicyclo[4.2.0]octadienes for SNF 4435 C and D Analogs, Bielschowskysin, and (+/-)-Kingianin A

A Dissertation Presented
by
Keunsoo Kim
to
The Graduate School
in Partial Fulfillment of the

Requirements
for the Degree of

Doctor of Philosophy

in

Chemistry

Stony Brook University

December 2011

Copyright by

Keunsoo Kim

Stony Brook University

The Graduate School

Keunsoo Kim

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend acceptance of this dissertation.

Professor Kathlyn A. Parker, Advisor Department of Chemistry

Professor Nancy S. Goroff, Chairman Department of Chemistry

Professor Dale G. Drueckhammer, Third Member Department of Chemistry

Professor Nicholas Carpino, Outside Member Department of Molecular Genetics and Microbiology

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Dissertation
 Stereocontrolled Synthesis of Bicyclo[4.2.0]octadienes for SNF 4435 C and D Analogs, Bielschowskysin, and (+/-)-Kingianin A

 by
Keunsoo Kim

Doctor of Philosophy

in

Chemistry

Stony Brook University

Despite a growing interest in biological activities of natural products that contain the bicyclo[4.2.0]octadiene ring system such as SNF 4435 C and SNF 4435 D, an asymmetric version of $8 \pi, 6 \pi$ electrocyclization has remained unattained. While investigating (2E,4Z,6Z,8E)tetraene substrates bearing amide- or oxazoline-based chiral auxiliaries, a rationally designed chiral 4,5-trans-diphenyl oxazoline auxiliary provided an impressive stereoselectivity (70 de\%) in the 8π ring closure. Confirmation of the major isomer from the diastereomeric bicyclooctadienes was determined based on X-ray structure analysis of a SNF analog bearing (S)-phenylglycinol moiety. This first example of chiral induction generated by the trans-4,5diphenyl oxazoline auxiliary in 8π electrocyclization directly affords enantiomeric carboxylic acids ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$) which are key intermediates for elaboration to stereochemically homogeneous analogs of the SNF multidrug-resistance reversal agents. On the other hand, asymmetric Shi
epoxidation and aspartate-catalyzed asymmetric epoxidation were adopted to convert racemic SNF analogs to their enantiomerically pure forms.

While synthesizing the highly substituted cyclobutane core of bielschowskysin, tetraene substrates with 1,2 -fused ring were cyclized to leading exclusively to endo products in the $8 \pi, 6 \pi$ electrocyclization. In addition, the double ring closure was critically influenced by the methyl group adjacent to the aryl group.

Progress toward the total synthesis of (+/-)-kingianin A, which is interested in its unique pentacyclic framework and potential biological activity, has been focused on model-based testing for $8 \pi, 6 \pi$ electrocyclization and cation radical catalyzed Diels-Alder reaction. This issue is currently under active investigation in our laboratory.

List of Contents

List of Abbreviations ix
List of Figures xii
List of Schemes xv
List of Tables xix
Acknowledgment xX
Chapter I
Asymmetric Induction in 8 $\boldsymbol{\pi}$ Electrocyclizations Toward Synthesis of SNF 4435 C \& D Analogs
1.1 Introduction 2
1.1.1. Background 2
1.1.2. A new approach for the preparation of chiral SNF analogs 12
1.2. Result and Discussion 15
1.2.1. Investigation of cross-coupling methods 15
1.2.2. Investigation of asymmetric 8π electrocyclization of tetraene substrates bearing newly designed chiral auxiliaries 17
1.2.2.1. Asymmetric induction by (S)-phenylglycinol based auxiliary 17
1.2.2.2. Asymmetric induction by TBS protected phenylglycinol based auxiliary 21
1.2.2.3. Asymmetric induction by phenylglycinol-derived tertiary amide auxiliary --- 22
1.2.2.4. Asymmetric induction by C2-symmetrized tertiary amide based auxiliary----- 25
1.2.2.5. Asymmetric induction by oxazolidinone based auxiliary 27
1.2.2.6. Asymmetric induction by non-C2 symmetrized oxazoline based auxiliary 29
1.2.2.7. Asymmetric induction by C 2 symmetrized oxazoline based auxiliary 31
1.2.2.8. Asymmetric induction by sterically more hindered oxazoline based auxiliary - 41
1.2.2.9. Asymmetric induction by trans-dinaphthyl oxazoline based auxiliary 43
1.2.2.10. Asymmetric induction by trans-ditolyl oxazoline based auxiliary 45
1.3. Conclusion 48
1.4. References 49
1.5. Experimental section 53
Chapter II
Shi Epoxidations Toward Preparation of Chiral SNF Analogues
2.1. Introduction 93
2.1.1. Background 93
2.1.2. Preparation of chiral SNF analogs by Shi asymmetric epoxidation 99
2.2. Result and Discussion 102
2.2.1. Shi asymmetric epoxidations of bicyclo[4.2.0]octadienes 102
2.2.2. Shi epoxidation of endo $\mathbf{1 2 8}$ and exo $\mathbf{1 2 9}$ 107
2.2.3. Bisepoxidation of monoepoxides 121a and 121b 110
2.3. Conclusion 111
2.4. References 112
2.5. Experimental section 113

Chapter III

Aspartate-Catalyzed Asymmetric Epoxidation Towards Preparation of Chiral SNF Analogues

3.1. Introduction 127
3.1.1. Background 127
3.1.2. Investigation of carbamate substrates to the epoxidation 129
3.1.3. Optimization of a tripeptide-based chiral catalyst 131
3.2. Result and Discussion 135
3.3. References 137
3.4. Experimental section 138
Chapter IV
Stereochemical Control in $8 \pi, 6 \pi$ Electrocyclizations by a Fused Ring: Studies Toward Total Synthesis of Bielschowskysin
4.1. Introduction 142
4.1.1. Background 142
4.1.2. Synthetic approaches toward total synthesis of bielschowskysin 143
4.2. Result and Discussion 148
4.3. Conclusion 151
4.4. References 152
4.5. Experimental Section 153

Chapter V

Progress Towards the Total Synthesis of (+/-)- Kingianin A

5.1. Introduction ---158
5.1.1. Background --158
5.1.2. Synthetic strategy to prepare pre-kingianin A --163
5.1.3. Cation radical catalyzed Diels-Alder reaction --167
5.2. Result and Discussion ---169
5.2.1. Synthetic approach towards preparation of pre-kingianin A ----------------------------169
5.2.2. Cation radical catalyzed Diels-Alder reaction ---174
5.3. Conclusion --175
5.4. References --177
5.5. Experimental section --179

Bibliography --187
Appendix ---196

List of Abbreviations

A	alpha
B	beta
Π	pi bond, or orbital
π^{*}	antibonding orbital
1°	primary
2°	secondary
3°	tertiary
Ac	Acetyl
AcOH	Acetic acid
$\mathrm{Ac}_{2} \mathrm{O}$	Acetic anhydride
aq.	Aqueous
Ar	Aryl
Bd	Broad doublet
Bn	Benzyl
Bs	Broad singlet
CSA	10-Camphorsulfonic acid
D	Doublet
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DILAL-H	Diisobutylaluminum hydride
DIPEA	Diisopropylethylamine
DMM	Dimethoxymethane
DMF	N,N-Dimethylformamide
ee	Enantiomeric excess
eq.	Equivalent
Et	Ethyl
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
EtOAc	Ethyl acetate

G	Gram
H	Hour(s)
HMPA	Hexamethylphosphoramid
Hz	Hertz
IC_{50}	Concentration for 50\% inhibition
$i \operatorname{Pr}$	Isopropyl
IR	Infrared spectroscopy
in vacuo	Under vacuum
J	First order coupling constant (NMR)
LAH	Lithium aluminum hydride
M	Multiplet
MDR	Multi drug resistance
Me	Methyl
Mg	Milligram
MHz	Megahertz
Min	Minute(s)
mL	Milliliter
Mmol	Millimole
Mol	Mole
Mp	Melting point
MS	Mass spectrometry
Ms	Methanesulfonyl
MTPACl	α-Methoxy- α-(trifluoromethyl)phenylacetyl chloride
m/z	Mass-charge ratio
NaHMDS	Sodium 1,1,1,3,3,3-hexamethyldisilazide
NMR	Nuclear magnetic resonance
Ph	Phenyl
Ppm	Parts per million
Py	Pyridine
Q	Quartet
R_{f}	Retention factor

Rt	Room temperature
S	Singlet
T	Time, or triplet (NMR)
TBAF	Tetra-N-butylammonium fluoride
TBS	tert-Butyldimethylsilyl
Tf	Trifluoromethane sulfonate
THF	Tetradydrofuran
TLC	Thin layer chromatography
TMS	Trimethylsilyl
Ts	para-Toluenesulfonyl (tosyl)
UV	Ultraviolet

List of Figures

Figure 1. Structure of SNF 4435 C (6) and SNF 4435 D (7) --3
Figure 2. Natural products containing the same backbone of the SNF compounds ---------- 7
Figure 3. Proposed transition states supported by endo and exo conformation -------------- 8
Figure 4. Two possible helical transition state conformations -------------------------------------10
Figure 5. Optimization of tetraene substrates to asymmetric 8π electrocyclization ---------- 13
Figure 6. New chiral auxiliaries based on two transition states; s-cis (A) and strans helical conformation (B) --14
Figure 7. Structure of a tetraene substrate bearing (S) -phenylglycinol 39 ----------------------17
Figure 8. Helmchen's hypothesis and examples of order of chromatographic elution of diastereomeric phenylglycinol amides --19

Figure 10. Structure of a tetraene substrate bearing TBS protected (S)-phenylglycinol 48-21
Figure 11. Structure of a tetraene substrate bearing N-methyl-O-TBS phenylglycinol 52 -- 22
Figure 12. Structure of a tetraene substrate bearing bis-phenylethylamine 62 ----------------- 25
Figure 13. Structure of a tetraene substrate bearing oxazolidinone 68 --------------------------- 27
Figure 14. Structure of a tetraene substrate bearing 4-phenyl-oxazoline 72 ------------------- 29
Figure 15. Preparation of oxazoline auxiliaries from phenylglycinol and its derivatives --- 30
Figure 16. Structure of a tetraene substrate bearing trans-4,5-diphenyl oxazoline 75 ------- 31
Figure 17. Structure of a tetraene substrate bearing gem-diphenyl and isopropyl oxazoline

Figure 18. Struture of a tetraene substrate bearing trans-4,5-dinaphthyl oxazoline 94 ------ 43
Figure 19. Structure of a tetraene substrate bearing trans-4,5-ditolyl oxazoline 100 45
Figure 20. Carbohydrate-based and related ketones 94
Figure 21. The chiral dioxirane derived from $\mathbf{1 1 2}$ mediated epoxidation pathways 95
Figure 22. Spiro and planar transition state for the dioxirane expoxidation of olefins 96
Figure 23. Transition states analysis in Shi asymmetric epoxidation 97
Figure 24. A strategy for obtaining chiral SNF analog 35 via Shi epoxidation 100
Figure 25. Structural relationship between monoepoxides $\mathbf{1 2 0}$ and $\mathbf{1 2 1}$ 101
Figure 26. Structure determination of $\mathbf{1 2 0 a}$ and $\mathbf{1 2 0 b}$ by nOe experiment 103
Figure 27. Comparison between Mosher esters 84a, 84b, and 123b 107
Figure 28. Steric effect anticipated by the methyl group in endo $\mathbf{1 2 8}$ 104
Figure 29. Structural geometry of exo 129 110
Figure 30. Epoxidation catalysis by an acid and peracid pair 127
Figure 31. Hypothetical transition state A: The peptide-catalyzed epoxidation of carbamate-tethered olefins 130
Figure 32. Hypothetical transition state B and C: Intermolecular hydrogen bonding involved by the peracid moiety 131
Figure 33. Structures of $\mathbf{1 4 1}$ and 142: Peptidomimetic catalyst analogs of $\mathbf{1 3 8}$ 131
Figure 34. Structure of 143: Olefinic replacement of the C-terminal amide in $\mathbf{1 3 8}$ 133
Figure 35. Structure of 144: Methyl replacement of the NHBoc group in $\mathbf{1 3 8}$ 134
Figure 36. Structure of bielschowskysin 142
Figure 37. Synthesis of bicyclooctadienes 187 and 188 150
Figure 38. (+/-)-Kingianin A: A new pentacyclic ring framework 158
Figure 39. Structure of all kingianins A - N 159
Figure 40. Origin of regio- and stereoselectivity in the formation of kingianin A 161

Figure 41. Endiandric acids D - G: Structural congeners of pre-kingianins --------------------163
Figure 42. Endiandric acids A, B, and C: The Diels-Alder products ----------------------------163
Figure 43. Structurally required framework for all pre-kingianins ------------------------------167

List of Schemes

Scheme $1.8 \pi, 6 \pi$ electrocyclization of 1,3,5,7-octateraenes 1a and 1b 2
Scheme 2. Computer-based investigation of stereoselectivity in 8π electrocyclization ----- 3
Scheme 3. Biomimetic synthesis of the two SNF compounds (6 and 7) from spectinabilin- 4
Scheme 4. Parker's total synthesis of SNF 4435 C and D 5
Scheme 5. Trauner's total synthesis of SNF 4435 C and D 5
Scheme 6. Baldwin's total synthesis of SNF 4435 C and D 6
Scheme 7. Possible $8 \pi, 6 \pi$ electrocyclization products from achiral tetrane 19 8
Scheme 8. Chiral induction in the 8π electrocyclization of tetraenic esters 22 9
Scheme 9. Modest levels of chiral induction in 8π electrocyclization by Paquette 11
Scheme 10. Torquoselective 8π electrocyclization in the formation of $\mathbf{3 2}$ 12
Scheme 11. Preparation of bicyclooctadiene 35 by Baldwin's method 15
Scheme 12. Synthetic attempt to afford (2Z,4E)-boronic ester 36 16
Scheme 13. Preparation of bicyclooctadiene 35 via Suzuki-Miyaura coupling 16
Scheme 14. Preparation of iododiene-amide 42 17
Scheme 15. Asymmetric 8π electrocyclization of the tetraene 39 18
Scheme 16. Strategy towards synthesis of chiral SNF analogs from 43a or 43b 20
Scheme 17. Preparation of iododiene-amide 50 21
Scheme 18. Asymmetric 8π electrocyclization of the tetraene 48 22
Scheme 19. Preparation of amine 56 23
Scheme 20. Direct coupling to generate the iododiene-amide 57 23
Scheme 21. Preparation of iododiene-amide 57 24
Scheme 22. Asymmetric 8π electrocyclization of the tetraene 52 25
Scheme 23. Preparation of iododiene-amide 66 26
Scheme 24. Asymmetric 8π electrocyclization of tetraene $\mathbf{6 2}$ 27
Scheme 25. Preparation of the iododiene-oxazolidinone 70 28
Scheme 26. Asymmetric 8π electrocyclization of tetraene 68 28
Scheme 27. Preparation of iododiene-oxazoline 73 30
Scheme 28. Asymmetric 8π electrocyclization of tetraene 72 31
Scheme 29. Preparation of iododiene-oxazoline 79 32
Scheme 30. Asymmetric 8π electrocyclization of tetraene $\mathbf{7 5}$ 33
Scheme 31. DMPU-promoted dearomatization by the 4,5-trans-diphenyloxazoline auxiliary 34
Scheme 32. Preparation of (S)-Mosher esters 84a and 84b 35
Scheme 33. Transformation of known 43a into 80a 36
Scheme 34. Hydrolysis of amide 86 37
Scheme 35. Determination of relative stereochemistry of $\mathbf{8 0 a}$ or $\mathbf{8 0 b}$ from $\mathbf{8 5 a}$ or $\mathbf{8 5 b}$ 37
Scheme 36. Preparation of SNF analogs 85a and 85b 38
Scheme 37. Reverse transformation of the 1:6 mixture 80a and 80b 39
Scheme 38. Determination of the relative stereochemistry of 80b 40
Scheme 39. Proposed mechanism to lead the major $\mathbf{8 0 b}$ 41
Scheme 40. Preparation of iododiene-oxazoline 92 42
Scheme 41. Asymmetric 8π electrocyclization of tetraene $\mathbf{8 9}$ 43
Scheme 42. Preparation of iododiene-oxazoline 98 45
Scheme 43. Asymmetric 8π electrocyclization of tetraene $\mathbf{9 4}$ 46
Scheme 44. Preparation of iododiene-oxazoline 106 47
Scheme 45. Asymmetric 8π electrocyclization of tetraene 100 48
Scheme 46. Examples of the first chiral ketone-catalyzed epoxidations 95
Scheme 47. Shi asymmetric epoxidation of 1,5-dimethyl-1,4-cyclohexadiene 113 97
Scheme 48. Shi asymmetric epoxidation of 1,4-dimethyl-1,4-cyclohexadiene 115 98
Scheme 49. Shi asymmetric epoxidation of dihydrosqualene 117 99
Scheme 50. mCPBA-derived epoxidation of bicyclooctadiene 35 102
Scheme 51. Shi expoxidation of $\mathbf{3 5}$ and in-process monitoring by TLC 103
Scheme 52. Mosher ester analysis of 120a 104
Scheme 53. Possible pathways for generating enantiomer 122a 106
Scheme 54. Synthetic attempt towards selective reduction of methyl ester in $\mathbf{1 2 0 b}$ 107
Scheme 55. Preparation of endo $\mathbf{1 2 8}$ and exo $\mathbf{1 2 9}$ 108
Scheme 56. Shi epoxidation of exo bicyclooctadiene $\mathbf{1 2 9}$ 108
Scheme 57. Shi epoxidation of endo bicycloctadiene $\mathbf{1 2 8}$ 109
Scheme 58. Epoxidation of monoepoxide 120a 110
Scheme 59. Epoxidation of monoepoxide 120b 110
Scheme 60. Epoxidation of $\mathbf{1 3 6}$ with per-aspartate derived from $\mathbf{1 3 5}$ 128
Scheme 61. Epoxidation of $\mathbf{1 3 6}$ with the tripeptide catalyst $\mathbf{1 3 8}$ 128
Scheme 62. Asymmetric epoxidation of olefins in the presence of catalyst 138 129
Scheme 63. Experimental evaluation of the proline carboxamide group in $\mathbf{1 3 8}$ 132
Scheme 64. Experimental evaluation of the C-terminal amide in 138 133
Scheme 65. Experimental evaluation of the NHBoc functionality in $\mathbf{1 3 8}$ 134
Scheme 66. Preparation of catalyst 138 135
Scheme 67. Preparation of bicyclooctadiene 151 136
Scheme 68. Synthetic attempt to afford monoepoxide 152 via the Asp-catalyzed epoxidation 136
Scheme 69. Proposed biogenesis to bielschowskyane skeleton 143
Scheme 70. Synthesis of enantiomeric tetracyclic core 160 144
Scheme 71. Synthesis of tricyclo[3.3.0]oxoheptane $\mathbf{1 6 3}$ 144
Scheme 72. Synthesis of the tricyclo[9.3.0.0]tetradecane core 167 145
Scheme 73. Retrosynthetic analysis proposed by Parker 146
Scheme 74. Endo selective $8 \pi, 6 \pi$ electrocyclization of trienyne $\mathbf{1 7 0}$ 147
Scheme 75. Preparation of enyne 177 148
Scheme 76. Preparation of iododiene 179 148
Scheme 77. Preparation of 1,2-annulated trienyne 180 149
Scheme 78. $8 \pi, 6 \pi$ electrocyclization of (E,Z,Z,E)-tetraene 181 149
Scheme 79. Litaudon's proposed biomimetic synthesis of kingianin A 159
Scheme 80. Possible four stereoisomeric pre-kingianins for kingianins A - F 161
Scheme 81. Possible synthetic routes for the preparation of pre-kingianin A 163
Scheme 82. Bicyclooctadiene 201: A key intermediate to generate 192 164
Scheme 83. Trienyne 206: A key intermediate to generate 192 165
Scheme 84. Tetraene 209: A key intermediate to generate 192 166
Scheme 85. Cation radical catalyzed Diels-Alder reaction of 1,3-cyclohexadiene 168
Scheme 86. Preparation of dihydroxymethyl-bicyclo[4.2.0]octadiene 201 169
Scheme 87. Rieke zinc reduction to generate pure (Z,Z)-diene 216 170

Scheme 88. Synthetic attempt to prepare (1Z,3E)-iododiene 203 ---------------------------------170
Scheme 89. Preparation of (1Z, 3E)-bromodiene 223 ---172
Scheme 90. Synthetic attempt to synthesize bicyclooctadienes 227 and 228 ------------------ 173
Scheme 91. Synthetic attempt to generate bicyclooctadienes 231 and 232 ---------------------174
Scheme 92. Synthetic attempt to prepare diastereomeric pentacyclic tetraols 233 and 234 via cation radical catalyzed Diels-Alder reaction -----------------------------------175

List of Tables

Table 1. Results of hydrolysis of 43a and 43b ---36

Acknowledgment

First, I would like to thank my research advisor Professor Kathlyn A. Parker for her endless support and encouragement in Ph. D. program. I never doubted that I am honored and privileged to have Professor Parker as my advisor. She was always there willing to listen and to give me valuable advice whenever I had a problem solving a question. She encouraged and taught me throughout my graduate studies and gave a lot of brilliant ideas and comments to accomplish the research goals. Her incredible enthusiasm and passion for organic synthesis is something that I will aspire to achieve in my career.

I also would like to express my deepest thank to the members of my committee. Professor Nancy S. Goroff, the chairman of my committee, gave me great guidance and support throughout my studies. Particularly, she asked me good questions and provided insightful comments in my first, third, and dissertation defense meeting. Professor Dale G. Drueckhammer, the third member of my committee, helped me immensely over my study in organic chemistry. And, I would like to thank Professor Nicholas Carpino for attending at my Ph. D. defense as an outside member. It was a big honor for me to invite him. Also, I am deeply grateful to Professor Joseph W. Lauher. Without his support for X-ray crystallography, we could not solve the stereochemistry in the asymmetric 8π electrocyclization.

I also want to express my appreciation to the professors who taught me in the courses and lectures: Professor Iwao Ojima, Professor Clare P. Grey and Professor Elizabeth Boon. I would like to thank Dr. James Merecek and Francis Picart for their generous assistance in NMR spectroscopy.

It has been a great pleasure to work with my group members. They were all open-mined and helped each other. I would like to thank Dr. Erik Stolarzewicz, Mattew Calder, Jungyong Lee, Hee Nam Lim, Daniel Elliot and Jonathan Hancewicz.

I would like to thank Katherine M. Hughes, Student Affairs Coordinator. She was always being so kind and she helped me in any way she could.

I appreciate Professor Sampson group members, Professor Ojima group members and Professor Lauher group members.

I would like to extent my sincere thanks to Dr. Ed O'Neal and Mrs. Ellen O’Neal. I will forever remember all of their generosity and kindness.

Finally, I want to thank all my family. My study could not have been completed without their support, caring, and love. My parents, Young Il Kim and Bok Sun Lee, and my parents-inlaw, Cha Gun Lee and Yoon Ho Yoon, helped me by warm-hearted encouragement and financial aid. I would like to deeply thank my wife, Eun Jung Lee. I could concentrate my whole mind upon study with her support and encouragement. Last, but my greatest thank goes to my daughter, Jae In Kim. She is the light of my life. I love you.
Once again, I give my heartfelt thanks to all of you.

Chapter I

> Asymmetric Induction in 8π Electrocyclizations Toward Synthesis of SNF 4435 C \& D Analogs

1.1. Introduction

1.1.1. Background

Marvell and Huisgen demonstrated that ring closures of 2,4,6,8-octatetraenes (1a, 1b) to cycloocta-1,3,5-trienes (2a, 2b), which are subsequently converted to bicyclo[4.2.0]octadienes $(\mathbf{3 a}, \mathbf{3 b})$, proceed by the stereospecific eight-electron conrotatory valence isomerization. Since that time, a great attention has been paid to reveal the mechanism and stereochemistry of the 8π, 6π electrocyclization (Scheme 1). ${ }^{1-5}$

Scheme 1. $8 \pi, 6 \pi$ electrocyclization of 1,3,5,7-octateraenes $\mathbf{1 a}$ and $\mathbf{1 b}$.

The notable idea of the double ring closure also marked a major contribution to developing the Woodward-Hoffman rules. However, until now there have been no examples of 1,3,5,7octatetraenes undergoing stereocontrolled double cyclization to produce enantiomerically pure bicyclo[4.2.0]octadienes or at least their enantioenriched forms.

In 1993, Houk and co-workers, for the first time, examined by ab initio and semi-empirical calculations the relative stereochemistry of the 8π conrotatory ring closure of $1,3,5,7-$ octatetraenes (4) to afford diastereomeric cyclooctatrienes 5a and 5b. ${ }^{6}$

Scheme 2. Computer-based investigation of stereoselectivity in 8π electrocyclization.

Bicyclooctadienes are desirable because they have been found in a number of natural products. In the early 1980's, Black and co-workers proposed that a biomimetic synthesis of the racemic endiandric acids might be performed via $8 \pi, 6 \pi$ double electrocyclization. ${ }^{7-11}$ The hypothesis was immediately adopted for the total syntheses of endiandric acids A - G by the Nicolaou group. ${ }^{12-15}$

In 2001, SNF $4435 \mathrm{C}(\mathbf{6})$ and SNF $4435 \mathrm{D}(\mathbf{7})$, congeners of spectinabilin (8), were isolated from the culture broth of Streptomyces spectabilis. ${ }^{16}$ The highly unsaturated polyketides showed potent immunosuppressive activity in vitro and selective suppression of B-cell proliferation versus T-cell proliferation with IC_{50} values of $0.8 \mu \mathrm{M}$ for SNF 4435 C and $0.2 \mu \mathrm{M}$ for SNF 4435 D. ${ }^{17}$ In addition, reversal of multidrug resistance (MDR) in tumor cells turned the natural products into high potential candidates for the development of anticancer drugs. ${ }^{18,19}$ The relative stereochemistry of the two SNF compounds was established on the basis of nOe experiments. These products are presented in Figure 1 and designated as SNF 4435 C (6) and SNF 4435 D (7).

SNF 4435 C (6)

SNF 4435 D (7)

Figure 1. Structure of SNF 4435 C (6) and SNF 4435 D (7).

Although the same chirality on the γ-pyrone moiety makes them diastereomers, the bicyclooctadiene frameworks in 6 and 7 have an enantiomeric relationship. Their unique stereoisomeric relationship attracts considerable attention not only because it can lead to understand different biological activity of the SNF compounds, but also because it may help to elucidate an origin of stereoselectivity observed in $8 \pi, 6 \pi$ electrocyclization (Scheme 3).

Scheme 3. Biomimetic synthesis of the two SNF compounds (6 and 7) from spectinabilin 8.

The proposed biosynthetic origin of the SNF compounds was synthetically supported by Parker, Trauner, and Baldwin independently. In Parker's synthesis, vinyl iodide 9 underwent cross-coupling with vinyl stannane $\mathbf{1 0}$ to provide tetraene $\mathbf{8 a}$, which then underwent a spontaneous $8 \pi, 6 \pi$ electrocyclization (Scheme 4). ${ }^{20}$

9

10

Scheme 4. Parker's total synthesis of SNF 4435 C and D.

The Trauner group performed stannylation of vinyl iodide 9 to generate vinyl stannane 11, which underwent the key cross-coupling with vinyl iodide 12 in high yield (Scheme 5). ${ }^{21}$

12

Scheme 5. Trauner's total synthesis of SNF 4435 C and D.

The Baldwin group focused on a total synthesis of spectinabilin (8), which subsequently underwent palladium-mediated isomerization followed by the double electrocyclization to yield the SNF compounds (Scheme 6). ${ }^{22}$

$$
[\mathbf{8 a}] \underset{23 \%}{\xrightarrow{8 \pi, 6 \pi}} \mathbf{6}+\mathbf{7}
$$

Scheme 6. Baldwin's total synthesis of SNF 4435 C and D.

Ocellapyrones $A(\mathbf{1 3})$ and $B(14)^{23}$, elysiapyrones $A(15)$ and $B(16)^{24}$, and shimalactones A (17) and B(18) ${ }^{25}$ were newly isolated with the same backbone of SNF 4435 C and D (Figure 2). Bicyclo[4.2.0]octadienes (14a, 15a and 16a) may be considered as key precursors to the ocellapyrone B and the elysiapyrones A and B. Ocellapyrones ($\mathbf{1 3}$ and 14) and elysiapyrones ($\mathbf{1 5}$ and 16) were isolated as enantiomerically pure forms. Like SNF 4435 C and D, shimalactones (17 and 18) were obtained as a diastereomeric mixture. Total syntheses of these SNF relatives ($\mathbf{1 3}$ to 18) presented in Figure 2 have been accomplished by synthetic strategies similar to those applied for the total synthesis of the the SNF 4435 compounds. ${ }^{26-28}$ Total syntheses of the natural products ($\mathbf{1 3}$ to $\mathbf{1 8}$) by the Trauner group produced racemic compounds. SNF compounds and shimalactones were prepared by total synthesis without presence of any supporting chiral appendage. For the ocellapyrones and elysiapyrones, a chiral source might contribute to their optical activities. Therefore, asymmetric version of $8 \pi, 6 \pi$ electrocyclization in the synthesis of those natural products may be necessary to lead to a solution.

Ocellapyrone A (13)

Ocellapyrone B (14)

14a

Elysiapyrone A (15)

15a

Elysiapyrone B (16)

16a

Shimalactone A (17)

Shimalactone B (18)

Figure 2. Natural products containing the same backbone of the SNF compounds.

The first synthesis for the SNF compounds was performed by Parker group. ${ }^{29}$ They investigated an unexpected high stereoselectivity in the 6π ring closure because only a single racemic bicyclooctadiene was produced from (E,Z,Z,E)-tetraene precursor 19 (Scheme 7).

Tetraene (19)

Endo-II

Exo-II

Scheme 7. Possible $8 \pi, 6 \pi$ electrocyclization products from achiral tetrane 19.

According to Parker, 6π electrocyclization could be controlled by the choice of a functionalized substituent which is oriented to endo or exo conformation (Figure 3). Endo conformer was designated in which the nitrophenyl substituent is tucked under the bicylooctadiene ring. Their experimental result showed that if R_{E} on $\mathbf{2 0}$ is introduced at the outward position on the terminal olefin and R_{Z} on $\mathbf{2 0}$ is H , endo products will predominate. As a result, they demonstrated that steric hindrance between the nitrophenyl group and the vicinal methyl substituent disfavors the transition state leading to exo product. On the other hand, a large R_{Z} group disfavors the endo conformation. Therefore, formation of the two products is totally dependent on the size of the R_{E} and R_{Z} group introduced.

Cyclooctatriene (20)

Figure 3. Proposed transition states supported by endo and exo conformation.

The impressive stereoselectivity controlled during the 6π electrocyclization provides a valuable advantage for the preparation of chiral bicyclooctadienes because product analysis could be simplified to the ratio of two endo diastereomers.

In 2006, chiral induction in the 8π electrocyclization of ($2 \mathrm{E}, 4 \mathrm{Z}, 6 \mathrm{Z}, 8 \mathrm{E}$)-octatetraene substrates 22 bearing Corey-Sarakinos sulfone-based chiral auxiliaries was investigated by the Parker group. ${ }^{30,31}$ In particular, they postulated that an effect of π stacking between an aromatic moiety in the auxiliaries and the unsaturated ester in the octatetraene substrate might produce stereospecificity in the process of 8π electrocyclization. However, the first 8π electrocyclization induced by chiral auxiliaries did not lead a large selectivity among diastereomers. The diastereomeric ratio (dr) hovered near 2:1 for 23a,b-II and 3:2 for 23a,b-I (Scheme 8).

9

21

32-38 \%

23b
22

23a,b-I (3:2)

23a,b-III (2:1)

23a,b-II (2:1)

23a,b-IV (2:1)

Scheme 8. Chiral induction in the 8π electrocyclization of tetraenic esters 22.

The relatively low diastereoselectivity is consistent with two nearly isoenergetic helical transition states, s-trans,syn 24a and s-cis, syn 24b (Figure 4).

24a

24b

Figure 4. Two possible helical transition state conformations.

For predominance of one diaseteromeric SNF analog, the energies of the two helical conformations $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$ should be significantly different. Then one direction of conrotatory 8π ring closure would be favored.

Despite the considerable attention to $8 \pi, 6 \pi$ electrocyclic reactions, it is rare to find examples where stereocontrolled $8 \pi, 6 \pi$ electrocyclization was applied to the synthesis of cyclic compounds including natural products. In 1998, Paquette and co-workers achieved modest levels of chiral induction in a related sequence which was carried out via stereocontrolled 8π electrocyclization and a transannular aldol cascade to $\mathbf{2 8} .^{32,33}$ High diastereoselectivity was observed in the 8π conrotatory ring closure. The source of chirality is in the precursor 25 (Scheme 9).

25
85% ee

THF, $-78^{\circ} \mathrm{C}$ to rt

28
28% (85% ee)

26b

27b

Scheme 9. Modest levels of chiral induction in 8π electrocyclization by Paquette.

Recently, in the synthesis of [4.6.4.6]fenestradienes 32, the Suffert group reported that tetraene 30, which was generated from trienyne 29 by P-2 $\mathrm{Ni}\left(\mathrm{Ni}(\mathrm{OAc})_{2} .4\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$ via cisselective semihydrogenation, underwent 8π electrocyclization to yield a single isomer 31 (Scheme 10). ${ }^{34,35}$ The authors proposed that the unusually high stereoselectivity results from torquoselectivity observed in the 8π electrocyclic cascade reaction.

Scheme 10. Torquoselective 8π electrocyclization in the formation of $\mathbf{3 2}$.

The asymmetric 6π electrocyclization has been actively investigated. Notable achievements were reported by the Hsung ${ }^{36,37}$, Trauner ${ }^{38}$, List 39, and Martin ${ }^{40,41}$ groups. However, similar strategies have not been applied to the 8π electrocyclization.

1.1.2. A new approach for the preparation of chiral SNF analogs

In order to develop new types of tetraene substrates, we reexamined tetraenic esters 22 because, to the best of our knowledge, the (E,Z,Z,E)-octatetraene substrates bearing chiral auxiliaries are considered as the most reliable method for the synthesis of chiral SNF analogs. Firstly, in an attempt to preserve the SNF framework, 4-nitrophenyl and 4,6,8-trimethyl moiety are required. The $(2 \mathrm{E}, 4 \mathrm{Z}, 6 \mathrm{Z}, 8 \mathrm{E})$-tetraene carbon skeleton should be maintained for endo selective 6π ring closure. Therefore, our interest automatically focuses on new chiral auxiliaries which can generate chiral induction in 8π electrocyclization. Specifically, new auxiliaries were designed to create a more rigid linker between the tetraene backbone and the auxiliaries compared to the ester linkage shown in 22 (Figure 5).

Figure 5. Optimization of tetraene substrates to asymmetric 8π electrocyclization.

Development of new synthetic routes for preparing ($2 \mathrm{E}, 4 \mathrm{Z}, 6 \mathrm{Z}, 8 \mathrm{E}$)-tetraene substrates also will be important. Baldwin's coupling method, ${ }^{42}$ which significantly accelerates reactivity in Stille coupling, is synthetically more efficient in terms of high yield and short reaction time. Also, if stannylation can be applied to a diene bearing 4-nitrophenyl group, we can vary its coupling partner and test a number of chiral auxiliaries. In addition, we can predict higher yield from the cross-coupling between 11 and iododiene-containing auxiliaries. (See Scheme 5.) Finally, alternative palladium-mediated cross-coupling reactions need to be examined, due to the well-known toxicity of the tin moiety used for Stille coupling.

Development of new chiral auxiliaries is mainly based on two transition states; s-cis (A) and s-trans helical conformation (B). Among potential auxiliary candidates are chiral phenylglycinol and its derivatives, especially because of the rigid nature of the amide (peptide) bond. In addition, they are desirable if they can be readily transformed to produce corresponding oxazoline auxiliaries via intramolecular cyclization. Presumably, introducing a C-2 symmetric or pseudo C-2 symmetric functional group on an oxazoline would favor one of the four possible transition states over the others.

A

B

Figure 6. New chiral auxiliaries based on two transition states; s-cis (A) and strans helical conformation (B).

The auxiliaries in bicyclooctadienes need to be readily hydrolyzed to corresponding carboxylic acids, which are key intermediates for the preparation of enantiomerically pure SNF analogs. Determination of absolute stereochemistry of chiral SNF analogs will be important due to the different biological activities shown in SNF 4435 C and D. Besides, it will be a great support to understand the stereochemistry in the process of 8π conrotatory ring closure.

1.2. Result and Discussion

1.2.1. Investigation of cross-coupling methods

The Stille coupling method (Cond. 1) developed by Baldwin afforded bicyclooctadiene $\mathbf{3 5}$ in higher yield and shorter reaction time compared to the previous coupling method (Cond. 2). (See Scheme 11.) Especially, stannylation on iodiene 9 was synthetically very useful because vinyl stannane 11, which is known, ${ }^{21}$ can be prepared by 3 steps from cheap 4-nitrobenzaldehyde.

33: $\mathrm{R}_{2}=\mathrm{I}$
34: $\mathrm{R}_{2}=\mathrm{Sn}(\mathrm{Me})_{3}$

Reagents and conditions: Cond. 1) 11, 33, $\mathrm{CsF}, \mathrm{CuI}(\mathrm{I}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, DMF, $45^{\circ} \mathrm{C}, 2 \mathrm{~h}$, dark; Cond. 2) 9, 34, $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$, DMF, rt, 16-20 h, dark

Scheme 11. Preparation of bicyclooctadiene 35 by Baldwin's method.

However, due to instability, toxicity, and relatively low yield of 11, we turned our focus into Suzuki-Miyaura coupling which might solve the problems generated under Stille coupling condition. ${ }^{43-47}$ A solution of iododiene 9 and pinacolatoboron was thoroughly deoxygenated before adding $\mathrm{PdCl}_{2}(\mathrm{dppf})$, and then stirred at $80^{\circ} \mathrm{C}$ for 3 h (Scheme 12). ${ }^{48}$

Scheme 12. Synthetic attempt to afford (2Z,4E)-boronic ester 36.

Instead of the desired 36, the reduced form $\mathbf{3 7}$ was afforded as a major product. Addition of dppf as an additive under the same reaction conditions did not improve the boronylation. Presumably, introduction of the boron moiety might be significantly interrupted, due to steric hindrance generated by the methyl group on the terminal carbon. Our assumption was supported by boronylation of the less hindered iododiene 33. Iododiene $\mathbf{3 3}$ was treated with tri-isopropylborate and n-butyllithium, followed by adding pinacol to afford boronic ester 38. ${ }^{43}$ However, the overall yield of this scheme was too low to replace the stannylation route. On the other hand, under general Suzuki-Miyaura coupling conditions, ${ }^{44} \mathbf{3 8}$ was successfully coupled with 9 to yield bicyclooctadiene 35 with 67% yield (Scheme 13).

33
 $-78^{\circ} \mathrm{C}$ to rt, $16 \mathrm{~h}, 39 \%$

benzene, reflux, $12 \mathrm{~h}, 67 \%$

35

Scheme 13. Preparation of bicyclooctadiene 35 via Suzuki-Miyaura coupling.

1.2.2. Investigation of asymmetric 8π electrocyclization of tetraene substrates bearing newly designed chiral auxiliaries

1.2.2.1. Asymmetric induction by (S)-phenylglycinol based auxiliary

Figure 7. Structure of a tetraene substrate bearing (S)-phenylglycinol 39.

Phenylglycinol is a widely used chiral auxiliary because its origin is based on the amino acid chiral pool. ${ }^{49}$ Iododiene-amide $\mathbf{4 2}$ was readily prepared by coupling between iododienoic acid 40, which was prepared by hydrolysis of $\mathbf{3 1}$ and coupling with (S)-phenylglycinol 41 in the presence of N, N^{\prime}-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). ${ }^{50}$ (See Scheme 14.)

Scheme 14. Preparation of iododiene-amide 42.

For Stille coupling, iododiene 9 was subjected to trimethylstannylation with hexamethylditin and $\mathrm{PdCl}_{2}(\mathrm{CN})_{2}$ in HMPA to produce vinyl stannane 11 in moderate yield. ${ }^{21}$ Due to its low stability, after purifying on a short pad of basic alumina, $\mathbf{1 1}$ was immediately subjected to the coupling-tandem cyclization. Coupling between $\mathbf{1 1}$ and $\mathbf{4 2}$ under Baldwin's modified coupling conditions ${ }^{11}$ generated tetraene substrate 39 which underwent $8 \pi, 6 \pi$ electrocyclization to afford a mixture of diastereomeric SNF analogs 43a and 43b (Scheme 15).

$\left\lvert\, \begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I}) \\ & \mathrm{DMF}, \mathrm{rt}, \text { dark, } 12 \mathrm{~h}, 39 \%\end{aligned}\right.$

Scheme 15. Asymmetric 8π electrocyclization of the tetraene 39.

Low stereoselectivity was observed with a diastereomeric ratio of $1: 2(\mathbf{4 3 a}: \mathbf{4 3 b})$ on the basis of ${ }^{1} \mathrm{H}$ NMR analysis. The expected driving force from both the amide linkage and the steric effect of the phenyl group on the auxiliary was not large. Interestingly, unlike any other diastereomeric SNF analogs, bicyclo[4.2.0]octadienes 43a and 43b were easily separated by flash column chromatography. According to Helmchen, ${ }^{51-55}$ the order of a pair of diastereomeric amides bearing chiral phenylglycinol on the liquid adsorption chromatography is consistent with the following model: The diastereomers in which both faces of the common plane have apolar substrates ($\mathbf{4 4}-\mathbf{R}$ and $\mathbf{4 5 - R}$) is eluted first, due to the weak affinity of both faces of the amide plane to the silica gel (Figure 7).

44-R

45-R
(R, R) : elutes first

44-S

45-S
(S,R) : elutes last

Figure 8. Helmchen's hypothesis and examples of order of chromatographic elution of diastereomeric phenylglycinol amides.

The postulate can further support a relationship between the planar conformation of α - or β substituted amide diastereomers and their absolute configurational assignment. ${ }^{56}$ However, since α-chirality in compounds $\mathbf{4 3 a}$ and $\mathbf{4 3 b}$ is continuous with the adjacent stereogenic centers on the cyclobutane ring, the rigid structure of the common plane $\left(\mathrm{CHCH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{NHCH}\right)$ is not so clearly adopted in 43a and 43b. Therefore, relative stereochemistry of either 43a or 43b needed to be determined by crystallographic analysis. Eventually, the slower moving isomer 43a was recrystallized from $\mathrm{CHCl}_{3} /$ n-hexane, and then slow evaporation from a solution in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ produced needles that were suitable for X-ray analysis. The relative stereochemistry of 43a was determined as shown (Figure 8).

Figure 9. X-ray crystal structure of chiral SNF analog 43a.

Although the phenylglycinol auxiliary did not boost stereoselectivity in the 8π electrocyclization, it may be a very useful system because of the notable separation ability. If either 43a or 43b can be smoothly converted into the corresponding acid, which is considered as a key SNF analog, it could provide a substantial milestone towards the preparation of chiral SNF analogs (Scheme 16).

(For the 43b; enantiomeric 46b and 47b)

Scheme 16. Strategy towards synthesis of chiral SNF analogs from 43a or 43b.

1.2.2.2. Asymmetric induction by TBS protected phenylglycinol based auxiliary

Figure 10. Structure of a tetraene substrate bearing TBS protected (S)-phenylglycinol 48.

In order to explore additional chiral auxiliaries, the TBS group was introduced on the phenylglycinol 41. The silyl-protected amine 49 was readily prepared with $\mathrm{TBS}-\mathrm{Cl}$ and triethylamine. ${ }^{57}$ Under the given conditions, compound 49 was coupled with carboxylic acid 40 to yield iododiene-amide 50 (Scheme 17).

Scheme 17. Preparation of iododiene-amide 50.

Coupling between 11 and 50 provided tetraene 48, and then the two inseparable diastereomeric SNF analogs 51a and 51b were afforded via $8 \pi, 6 \pi$ electrocyclization with 51% yield (Scheme 18).

11

50
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$ DMF, rt, dark, 14 h, 51 \%

51a
51b

Scheme 18. Asymmetric 8π electrocyclization of the tetraene 48.

1H NMR analysis indicated that 51a and 51b were produced in a ratio of $1: 1$. Evidently, the scis, syn and s-trans, syn transition state conformations during conrotatory 8π ring closure are nearly isoenergetic. As a result, chiral induction of tetraene substrate $\mathbf{4 8}$ was not impressive.

1.2.2.3. Asymmetric induction by phenylglycinol-derived tertiary amide auxiliary

Figure 11. Structure of a tetraene substrate bearing N-methyl-O-TBS phenylglycinol 52.

We thought that an amide linker, with a second substituent on the nitrogen, may disfavor either s-cis, syn or s-trans, syn transition state. For the preparation of the designed iododieneamide 57, (S)-(+)-2-phenylglycine 53 was treated with formic acid and acetic anhydride to provide formamide 54. Then, reduction afforded (S)- N-methyl-2-phenyl-2-aminoethanol 55. ${ }^{58}$ The TBS group was introduced under basic conditions to give the N-methyl-O-TBS amine $\mathbf{5 6}$ (Scheme 19).

Scheme 19. Preparation of amine 56.

Coupling between 40 and 56 was performed by treatment with DCC and DMAP. However, unlike coupling between 40 and 49 under the same reaction conditions, the reaction gave product 57 in low yield (Scheme 20).

Scheme 20. Direct coupling to generate the iododiene-amide 57.

Due to the low yield, the Michaelis-Arbuzov reaction and then Horner-Wadsworth-Emmons (HWE) reaction sequence were adopted as an alternate synthetic route. Chiral bromoacetamide

58 was readily prepared by the treatment of 56 with bromoacetyl bromide in 92% yield. Treatment with trimethylphosphite afforded chiral phosphonoacetamide 59. Finally, 57 was successfully prepared from HWE reaction with 59 and iodoaldehyde $\mathbf{6 0}$, which was generated in situ from the corresponding alcohol. Overall yield of 57 from 56 significantly increased to 70% with 3 steps (Scheme 21).

Scheme 21. Preparation of iododiene-amide 57.

Hoping to generate bias between the s-cis, syn or s-trans, syn transition state, we examined the asymmetric 8π electrocyclization of tetraene 52. Again, there was no preference for either diatereomer. An inseparable 1:1 mixture of two SNF analogs 61a and 61b was produced in 44% yield (Scheme 22).

11
$\left\lvert\, \begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I}) \\ & \mathrm{DMF}, \mathrm{rt}, \text { dark, } 14 \mathrm{~h}, 44 \%\end{aligned}\right.$

61a

61b

Scheme 22. Asymmetric 8π electrocyclization of the tetraene 52.

Due to the continued low stereoselectivity, we concluded that phenylglycinol 41 in itself and its derived auxiliaries $\mathbf{4 9}$ and $\mathbf{5 6}$ were inefficient to apply chiral induction to tetraene substrates in 8π electrocyclization.

1.2.2.4. Asymmetric induction by C2-symmetrized tertiary amide based auxiliary

Figure 12. Structure of a tetraene substrate bearing bis-phenylethylamine 62.

Besides a tertiary amide linkage, if we introduce C2-symmetrized moiety on an auxiliary, chiral induction in 8π electrocyclization of a tetraene substrate bearing the auxiliary might be superior to phenylglycinol-derived auxiliaries. We chose commercially available bis[(S)-1phenylethyl]amine 63 as a suitable candidate. Iododiene-amide 66 was prepared from the same reaction sequence applied to 57 . Michaelis-Arbuzov reaction of 63 provided amide 64. Then treatment with trimethylphosphite afforded chiral phosphonoacetamide 65. HWE reaction between 60 and 65 afforded 66 with 68% overall yield from 63 (Scheme 23).

Scheme 23. Preparation of iododiene-amide 66.

Coupling of iododiene 66 with the stannyl diene 11 gave two separable diastereomeric SNF analogs $67 \mathbf{a}$ and 67 b which were afforded in a ratio of $2: 3$ or $3: 2$. The faster moving isomer (27%) was obtained in slightly greater amounts compared to the slower moving isomer (18 \%). (See Scheme 24.)

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$ DMF, rt, dark, 13 h, 45 \%

67a

67b

Scheme 24. Asymmetric 8π electrocyclization of tetraene 62.

1.2.2.5. Asymmetric induction by oxazolidinone based auxiliary

Figure 13. Structure of a tetraene substrate bearing oxazolidinone 68.

We focused on dipole interactions that might favor one of the four possible transition states over the others. Evans oxazolidinones are commonly used as chiral auxiliairy sources. We anticipated a metal-chelated intermediate that might generate a preference for one of the helical
transition states in 8π electrocyclization. Therefore acid 40 was treated with pivaloyl chloride in the presence of triethylamine to generate the corresponding acid chloride in situ. Then, oxazolidinone 69, which was deprotonated with $\mathrm{n}-\mathrm{BuLi}$, was added to produce iododieneoxazolidinone 70 in 65% yield (Scheme 25).

Scheme 25. Preparation of the iododiene-oxazolidinone 70.

With 70 in hand, the coupling/ $8 \pi, 6 \pi$ electrocyclization was performed under the given reaction conditions. There was no preference for either of the diastereomeric SNF analogs 71a or 71b, which were obtained in a ratio of $1: 1$ in 36% overall yield (Scheme 26).

$$
\begin{aligned}
& \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I}) \\
& \mathrm{DMF}, \mathrm{rt}, \text { dark, } 16 \mathrm{~h}, 36 \%
\end{aligned}
$$

71b

Scheme 26. Asymmetric 8π electrocyclization of tetraene 68.

Again, the ring closure proved to be non-stereoselective. Probably, the expected metalchelate intermediate did not form. The poor dr indicated that amide linkages might not be effective to generate chiral induction in 8π electrocyclization of tetraene substrates.

1.2.2.6. Asymmetric induction by non-C2 symmetrized oxazoline chiral auxiliary

Figure 14. Structure of a tetraene substrate bearing 4-phenyl-oxazoline 72.

We returned to our attention to iododiene-amide $\mathbf{4 2}$ because we realized that the hydroxyl amide on 42 can be converted into the corresponding oxazoline moiety via an intramolecular cyclization. Furthermore, various kinds of oxazoline auxiliaries can be prepared from phenylglycinol derived amides (Figure 14). ${ }^{59}$ One more advantage expected from oxazolines is that they can be transformed easily into the corresponding carboxylic acid derivatives. Generally, cleavage of an amide bond needs harsher reaction conditions.

Figure 15. Preparation of oxazoline auxiliaries from phenylglycinol and its derivatives.

In order to support the idea that C2-symmetry on oxazoline-based auxiliary could reduce the number of possible transition states, we tested tetraene 72 as a control model. First, iododieneoxazoline 73 was prepared from amide $\mathbf{4 2}$ by an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ type cyclization, mediated by copper triflate and diisopropylcarbodiimide (DIC), in modest yield (Scheme 27).

Scheme 27. Preparation of iododiene-oxazoline 73.

As we expected, two inseparable diatereomeric SNF analogs 74a and 74b were produced in a ratio of $1: 1$ (Scheme 28).

11

73
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{CuI}(\mathrm{I})$ DMF, rt, dark, 16 h , 72 \% (crude)

74a

74b

Scheme 28. Asymmetric 8π electrocyclization of tetraene 72.

The result stressed that both the oxazoline ring and C2-symmetry on the auxiliary are required for chiral induction in 8π electrocyclization of a tetraene substrate.

1.2.2.7. Asymmetric induction by C2 symmetrized oxazoline based auxiliary

Figure 16. Structure of a tetraene substrate bearing trans-4,5-diphenyl oxazoline 75.

Commercially available (S,R)-1,2-diphenyl aminoalcohol 76 was chosen because it can generate trans-4,5-diphenyl moiety on oxazoline ring. Aminoalcohol 76 was coupled with $\mathbf{4 0}$ by the treatment with DCC and DMAP to afford iododiene-amide 77. Mesylation of 77 provided 78, and cyclization under basic conditions yielded iododiene-oxazoline 79 (Scheme 29)

Scheme 29. Preparation of iododiene-oxazoline 79.

The $8 \pi, 6 \pi$ electrocyclization of tetraene 75 , which was generated by Stille coupling between 11 and 79, afforded two inseparable diastereomeric SNF analogs 80a and 80b in 42% yield (Scheme 30).

11
$+$

79
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$ DMF, rt, dark, 14 h, 42 \%

Scheme 30. Asymmetric 8π electrocyclization of tetraene 75.

In this case, two diatereomeric bicyclooctadienes $\mathbf{8 0 a}$ and $\mathbf{8 0 b}$ were produced in a ratio of 1 : 6 on the basis of ${ }^{1} \mathrm{H}$ NMR analysis. However, it was not easy to calculate the exact stereoselectivity because 80a and 80b showed the same chemical shifts for all protons, except for those protons on one of the three CH_{3} group in the bicyclooctadiene skeleton. Presumably, due to effective C2-symmetry on the oxazoline, the hydrogens in 80a and 80b are exposed to very similar magnetic fields.

The only example using the same oxazoline auxiliary system in asymmetric synthesis was reported by the Clayden group at 2008. ${ }^{60}$ They adopted the auxiliary for the stereoselective dearomatizing addition of MeI to the benzene ring of $\mathbf{8 1}$. Treatment with excess 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) stereospecifically introduced both an isopropyl moiety from isopropyl lithium and methyl moiety to yield a single diastereomer 82. (Scheme 31).

Scheme 31. DMPU-promoted dearomatization by the 4,5-trans-diphenyloxazoline auxiliary.

According to Clayden, the configuration of $\mathbf{8 2}$ may arise from coordination of isopropyllithium to the basic nitrogen atom of the oxazoline, followed by 1,4-addition to the 2-position of the 4 methoxyphenyl ring from the face anti to the 4 -phenyl substituent of the oxazoline ring.

With the asymmetric 8π electrocyclization of tetraene 75 , accurate calculation of the diastereoselectivity in 80a and 80b was performed based on Mosher ester analysis. The inseparable mixture of 80a and 80b was treated with $\mathrm{Cbz-Cl}$ to be converted into the corresponding bicyclooctadienes 83a and 83b with 62 \% yield. ${ }^{61}$ Reduction by DIBAL-H, followed by introducing (R)-MTPA-Cl afforded corresponding (S)-Mosher esters 84a and 84b in 52% for the two steps (Scheme 32). ${ }^{61}$ The diastereomeric ratio observed in 84a and 84b confirmed that 80a and 80b were produced with $1: 6$ ratio. To the best of our knowledge, this is the first example of an asymmetric 8π electrocyclization influenced by a trans-4,5-diphenyl oxazoline auxiliary.

80a

80b
$\mathrm{Cbz}-\mathrm{Cl}, 5 \% \mathrm{aq}$. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, overnight, 62 \%;

83a

83b

1. DIBAL-H, toluene, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1.5 \mathrm{~h}$,
2. (R)-(+)-MTPACI, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, overnight, 52 \% (2 steps)

84b

Scheme 32. Preparation of (S)-Mosher esters 84a and 84b.

Determination of relative stereochemistry of the major isomer from 80a and 80b was equally as important as improvement of stereoselectivity in 8π electrocyclization, due to the significantly different biological activities shown in SNF 4435 C and D. In addition, the confirmed relative stereochemistry may support an understanding of helical transition states involved in the 8π ring closure. Our initial strategy focused on enantiomeric SNF analog 43a, the structure of which was determined using X-ray crystallography. Hydrolysis of 43a provides the
corresponding carboxylic acid 46a. Introduction of (S,R)-diphenylglycinol 76 to 46a would afford 85a, followed by cyclization to yield enatiomeric bicyclooctadiene 80a (Scheme 33). 1H NMR spectra of 80a should be exactly matched with that of one isomer from a mixture of $\mathbf{8 0 a}$ and 80b.

Scheme 33. Transformation of known 43a into 80a.

Despite much synthetic efforts, hydrolysis of both amides 43a and 43b was not successful. ${ }^{49,63-65}$ (See Table 1.)

Table 1. Results of hydrolysis of 43a and 43b.

Starting	Reaction conditions	
43a	$1 \mathrm{~N} a q \cdot \mathrm{HCl} / \mathrm{EtOH}$, reflux, 3 h	Result
	$1 \mathrm{~N} a q \cdot \mathrm{KOH} / \mathrm{EtOH}$, reflux, 3 h	Neither starting material nor product
	1 N aq. $\mathrm{NaOH} / \mathrm{EtOH}$, reflux, 2.2 h	
$\mathbf{4 3 b}$	$1 \mathrm{~N} a q \cdot \mathrm{NaOH} / \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}$	
	$1 \mathrm{~N} a q \cdot \mathrm{NaOH} / \mathrm{EtOH}, 70^{\circ} \mathrm{C}, 3 \mathrm{~h}$	Most starting material was recovered

Presumably, compounds 43a and 43b might be vulnerable under harsh acidic or basic conditions. Especially, high temperature might more provoke decomposition of the bicyclo[4.2.0]ocatadiene framework. Therefore, relatively mild hydrolysis conditions are needed for compounds 43a and

43b. A model compound 86 was treated with $p-\mathrm{TsCl}$ in pyridine solution to afford ester 87 (Scheme 34). ${ }^{66}$ Due to the low yield, however, this method could not apply to 43a or 43b.

Scheme 34. Hydrolysis of amide 86.

Our focus turned to the separation of $\mathbf{8 5 a}$ and $\mathbf{8 5 b}$. We cautiously predicted that like 43a and 43b, the two diastereomers $\mathbf{8 5 a}$ and $\mathbf{8 5 b}$ might show similar behavior on silica gel. If we were able to obtain either pure $\mathbf{8 5}$ a or $\mathbf{8 5 b}$, its relative stereochemistry could be determined by X-ray crystallography. Therefore, structural elucidation of the major isomer from 80a and 80b could be used to assign the relative stereochemisty of $\mathbf{8 5 a}$ or $\mathbf{8 5 b}$ (Scheme 35).

Scheme 35. Determination of relative stereochemistry of $\mathbf{8 0 a}$ or $\mathbf{8 0 b}$ from $\mathbf{8 5 a}$ or $\mathbf{8 5 b}$.

Two diastereomeric SNF analogs $\mathbf{8 5 a}$ and $\mathbf{8 5 b}$ were produced in a ratio of $1: 1$ under the given conditions (Scheme 36).

$$
\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})
$$

$$
\downarrow \text { DMF, rt, dark, } 17 \mathrm{~h}, 29 \%
$$

85a

85b

Scheme 36. Preparation of SNF analogs 85a and 85b.

Initially, the same TLC condition, which clearly separated 43a and 43b, applied to 85 a and $\mathbf{8 5 b}$. However, only single spot was observed under UV. A lot of trials slightly increased the ratio between 85a and 85b from $1: 1$ to $1: 2$.

We reexamined the first strategy shown in Scheme 33. We thought that if the dr between 80a and 80b is not changed throughout hydrolysis and coupling sequence, the relative stereochemistry of the major isomer from 80a and 80b can be indirectly determined by comparing with the known 43a (Scheme 37). The major isomer from 80a and 80b should correspond to 43a or its diastereomer 43b.

Scheme 37. Reverse transformation of the $1: 6$ mixture 80a and 80b.

Diastereomeric 83a and 83b, which was directly prepared from the $1: 6$ mixture of $\mathbf{8 0 a}$ and 80b, was hydrolyzed with LiOH in a mixture of methanol and THF to afford corresponding carboxylic acids 46a and 46b. ${ }^{67}$ Then, (S)-(+)-2-phenylglycinol 41 was introduced to racemic 46a and 46b by the treatment of N-hydroxybenzotriazole (HOBt) and 1-ethyl-3-(3dimethylaminopropyl)carbodiimide (EDC) to yield 43a and 43b (Scheme 38). ${ }^{62}$ TLC behavior of the major isomer was inconsistent with that of authentic 43a and consistent with that of authentic $\mathbf{4 3 b}$. Therefore, we were able to designate the major isomer from the $1: 6$ mixture as $\mathbf{8 0 b}$.

83a

83b

1. $\mathrm{LiOH}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt, 2 days, 95%
2. (S)-(+)-2-phenylglycinol, HOBt, EDC. HCl , $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, overnight, 67%

43a (Minor)

43b (Major)

Scheme 38. Determination of the relative stereochemistry of 80b.

Determination of the relative stereochemistry of 80b lends support to our original hypothesis. Due to the pseudo C2-symmetry, conformations ($\mathbf{A}: \mathbf{A}^{\prime}$ and $\mathbf{B}: \mathbf{B}$ ') generated from tetraene 75 are considered as almost equal in energy. It could reduce the number of possible conformations for the transition states from four to two (Scheme 39). In addition, we cautiously predict that helical transition state conformations of \mathbf{A} and \mathbf{A} ' would be more favorable than those of \mathbf{B} and \mathbf{B}^{\prime} because \mathbf{A} and \mathbf{A}^{\prime} may be interrupted by less steric hindrance between the 4nitrophenyl and either phenyl on the auxiliary in the state for conrotatory ring closure. Therefore, cyclooctatriene intermediate $\mathbf{8 8}$ is preferred and bicyclooctadiene $\mathbf{8 0 b}$ is produced as the major product.

A, s-cis

B, s-cis

88

80b; 70 de(\%)

Scheme 39. Proposed mechanism to lead the major $\mathbf{8 0 b}$.

1.2.2.8. Asymmetric induction by sterically more hindered oxazoline based auxiliary

Figure 17. Structure of a tetraene substrate bearing gem-diphenyl and isopropyl oxazoline $\mathbf{8 9}$.

With the confidence that $8 \pi(8 \pi, 6 \pi)$ electrocyclization can be stereochemically controlled, we thought that introducing an additional substituent on the oxazoline auxiliary would more greatly disfavor two of the transition states for closure but not after, substantially, the product ratio. Therefore, we tested the tetraene substrate bearing gem-diphenyl and isopropyl groups (89). For the preparation of iododiene-oxazoline 92, (S)-(-)-2-amino-3-methyl-1,1-diphenylbutan-1-ol 90, which is inexpensive and commercially available, and 40 were coupled under DCC and DMAP to produce iododiene-amide 91. Treatment of methanesulfonic acid of 91 directly afforded 92 with a modest yield (Scheme 40).

40

90

51 \%

91

51 \%

92

Scheme 40. Preparation of iododiene-oxazoline 92.

Vinly stannane 11 and iododiene-oxazoline 92 were coupled via Stille coupling reaction in the dark, and simultaneously cyclized to yield 33% of an inseparable mixture of diastereomeric SNF analogs 93a and 93b in a ratio of 3:1 or 1:3 (Scheme 41).

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
DMF, rt, dark, 12 h, 33\%

Scheme 41. Asymmetric 8π electrocyclization of tetraene 89.

Although a larger moiety was introduced on the oxazoline in the tetraene substrate $\mathbf{8 9}$, dr was not impressive. Presumably, the effect of the additional substituents is not simple. The rationally designed tetraene $\mathbf{7 5}$ might be an optimized system towards chiral induction of the 8π electrocyclization.

1.2.2.9. Asymmetric induction by trans-dinaphthyl based oxazoline auxiliary

Figure 18. Struture of a tetraene substrate bearing trans-4,5-binaphthyl oxazoline 94.

In order to improve the dr of tetraene 75, we investigated bigger aryl groups in the oxazoline auxiliary, which should have trans geometry. First, we designed a tetraene substrate bearing 4,5dinaphthyl oxazoline 94 (Figure 17). Commercially available chiral diol 95 was treated with thionyl chloride to form a cyclic sulfite, which was subsequently opened by the azide ion. Treatment of LiAlH_{4} converted the azide compound into aminoalcohol 96, followed by recrystallization. ${ }^{68}$ Then 96 and $\mathbf{4 0}$ were coupled in the presence of DCC and DMAP to afford iododiene-amide 97. Finally, methanesulfonyl chloride was used to convert alcohol 97 to mesylate, which was cyclized under basic conditions to afford iododiene-oxazolone 98 (Scheme 42).

Scheme 42. Preparation of iododiene-oxazoline 98.

Under the given reaction conditions, $\mathbf{1 1}$ and $\mathbf{9 8}$ were coupled, and then double cyclized to provide two diastereomeric SNF analogs 99a and 99b (Scheme 43). Unlike 80a and 80b, bicyclooctadienes 99a and 99b was unable to separate. In addition, we could not find any critical signals in the proton NMR.

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$ DMF, rt, dark, 15 h , 47% (crude)

99a

99b

Scheme 43. Asymmetric 8π electrocyclization of tetraene 94.

1.2.2.10. Asymmetric induction by trans-ditolyl based oxazoline auxiliary

Figure 19. Structure of a tetraene substrate bearing trans-4,5-ditolyl oxazoline 100.

Tetraene substrate $\mathbf{1 0 0}$ was designed to generate a bigger steric effect, which might improve stereoselectivity compared to tetraene 75. The known C2-symmetric diol $\mathbf{1 0 3}$ was prepared from the 1,2-diketone $\mathbf{1 0 1}$ via stereoreoselective oxazaborolidine-catalyzed $\mathbf{1 0 2}$ reduction with borane-methyl sulfide complex (BMS). ${ }^{69}$ Chiral diol 103 was treated with thionyl chloride to form a cyclic sulfite, which was subsequently opened by the azide ion. Treatment with LiAlH_{4} converted the azide into corresponding aminoalcohol 104, followed by recrystallization. ${ }^{67} 104$ and 40 were coupled in the presence of DCC and DMAP to afford iododiene-amide 105. Finally, the hydroxyl group in $\mathbf{1 0 5}$ was converted to corresponding mesylate, which was cyclized under basic conditions to afford iododiene-oxazoline 106 (Scheme 44).

101

 THF, $45^{\circ} \mathrm{C}, 16 \mathrm{~h}, 72 \%$

103

105
 reflux, 4
2 steps 106

Scheme 44. Preparation of iododiene-oxazoline 106.

Compounds 11 and 106 were coupled to produce the tetraene 100, which then cyclized to give two diastereomeric SNF analogs 107a and 107b (Scheme 45). However, like 99a and 99b, bicyclooctadienes 107a and 107b was unable to separate. In addition, we could not find any critical signals in the proton NMR.

11

106
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
DMF, rt, dark, 12 h ,
33 \% (crude)

107a

107b

Scheme 45. Asymmetric 8π electrocyclization of tetraene 100.

1.3. Conclusion

Preparation of optically pure SNF analogs was thoroughly examined by chiral induction in 8π electrocyclization of a series of ($2 \mathrm{E}, 4 \mathrm{Z}, 6 \mathrm{Z}, 8 \mathrm{E}$)-tetraene substrates bearing amide- and oxazoline-based chiral auxiliaries. The rationally designed chiral trans-4,5-diphenyl oxazoline auxiliary on the tetraene substrate 75 showed promising stereoselectivity (dr, 1 : 6) in asymmetric 8π electrocyclization. In addition, the first X-ray crystal structure of the chiral SNF analog 43a significantly contributed to determining absolute stereochemistry of the major isomer $\mathbf{8 0 b}$ from the asymmetric reaction. Assignment of absolute stereochemistry to $\mathbf{8 0 b}$ supported the hypothesis that the oxazoline auxiliary on the tetraene substrate $\mathbf{7 5}$ prefers one of the four helical transition states in the process of 8π conrotatory ring closure. To our knowledge, 8π electrocyclization of $\mathbf{7 5}$ is the first example of the exploitation of pseudo C-2 symmetry of trans-4,5-disubstituted oxazolines for asymmetric induction. This notable stereoselectivity observed in the 8π electrocyclization could directly lead to the development of analogs of the SNF multidrug resistance reversal agent.

1.4. Reference

(1) Marvell, E. N.; Seubert, J. J Am Chem Soc 1967, 89, 3377.
(2) Marvell, E. N.; Caple, G.; Schatz, B. Tetrahedron Lett 1965, 385.
(3) Huisgen, R.; Dahmen, A.; Huber, H. J Am Chem Soc 1967, 89, 7130.
(4) Huisgen, R.; Dahmen, A.; Huber, H. Tetrahedron Lett 1969, 1461.
(5) Vogel, E.; Grimme, W.; Dinne, E. Tetrahedron Lett 1965, 391.
(6) Thomas, B. E.; Evanseck, J. D.; Houk, K. N. J Am Chem Soc 1993, 115, 4165.
(7) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B. M. Aust J Chem 1981, 34, 1655.
(8) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B. M. Aust J Chem 1982, 35, 567.
(9) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. J Chem Soc Chem Comm 1980, 902.
(10) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. Aust J Chem 1982, 35, 557.
(11) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C.; Fallon, G. D.; Gatehouse, B. M. J Chem Soc Chem Comm 1980, 162.
(12) Nicolaou, K. C.; Petasis, N. A.; Uenishi, J.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5557.
(13) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5560.
(14) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J Am Chem Soc 1982, 104, 5555.
(15) Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J Am Chem Soc 1982, 104, 5558.
(16) Kurosawa, K.; Takahashi, K.; Tsuda, E. J Antibiot 2001, 54, 541.
(17) Takahashi, K.; Tsuda, E.; Kurosawa, K. J Antibiot 2001, 54, 548.
(18) Kurosawa, K.; Takahashi, K.; Fujise, N.; Yamashita, Y.; Washida, N.; Tsuda, E. J Antibiot 2002, 55, 71.
(19) Waldmann, H.; Wilk, W.; Kaiser, M. Bioorgan Med Chem 2009, 17, 2304.
(20) Parker, K. A.; Lim, Y. H. J Am Chem Soc 2004, 126, 15968.
(21) Beaudry, C. M.; Trauner, D. Org Lett 2005, 7, 4475.

Jacobsen, M. F.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E. Org Lett 2005, 7, 2473.
(23) Manzo, E.; Ciavatta, M. L.; Gavagnin, M.; Mollo, E.; Wahidulla, S.; Cimino, G. Tetrahedron Lett 2005, 46, 465.
(24) Cueto, M.; D'Croz, L.; Mate, J. L.; San-Martin, A.; Darias, J. Org Lett 2005, 7, 415.
(25) Wei, H.; Itoh, T.; Kinoshita, M.; Kotoku, N.; Aoki, S.; Kobayashi, M.

Tetrahedron 2005, 61, 8054.
(26) Miller, A. K.; Trauner, D. Angew Chem Int Edit 2005, 44, 4602.
(27) Barbarow, J. E.; Miller, A. K.; Trauner, D. Org Lett 2005, 7, 2901.
(28) Sofiyev, V.; Navarro, G.; Trauner, D. Org Lett 2008, 10, 149.
(29) Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.
(30) Parker, K. A.; Wang, Z. Y. Org Lett 2006, 8, 3553.
(31) Sarakinos, G.; Corey, E. J. Org Lett 1999, 1, 1741.
(32) Paquette, L. A.; Kuo, L. H.; Hamme, A. T.; Kreuzholz, R.; Doyon, J. J Org Chem 1997, 62, 1730.
(33) Paquette, L. A.; Tae, J. S. J Org Chem 1998, 63, 2022.
(34) Schreiner, P. R.; Hulot, C.; Amiri, S.; Blond, G.; Suffert, J. J Am Chem Soc 2009, 131, 13387.
(35) Suffert, J.; Hulot, C.; Blond, G. J Am Chem Soc 2008, 130, 5046.
(36) Hayashi, R.; Feltenberger, J. B.; Hsung, R. P. Org Lett 2010, 12, 1152.
(37) Hayashi, R.; Feltenberger, J. B.; Lohse, A. G.; Walton, M. C.; Hsung, R. P. Beilstein J Org Chem 2011, 7, 410.
(38) Bergman, R. G.; Bishop, L. M.; Barbarow, J. E.; Trauner, D. Angew Chem Int Edit 2008, 47, 8100.
(39) List, B.; Kampen, D.; Reisinger, C. M. Top Curr Chem 2010, 291, 395.
(40) Maciver, E. E.; Thompson, S.; Smith, M. D. Angew Chem Int Edit 2009, 48, 9979.
(41) Thompson, S.; Coyne, A. G.; Knipe, P. C.; Smith, M. D. Chem Soc Rev 2011, 40, 4217.
(42) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Chem-Eur J 2005, 11, 3294.
(43) Lautens, M.; Tseng, N. W. J Org Chem 2009, 74, 2521.

Ishiyama, T.; Murata, M.; Miyaura, N. J Org Chem 1995, 60, 7508.
Heuser, S.; Barrett, D. G.; Berg, M.; Bonnier, B.; Kahl, A.; De la Puente, M. L.;
Oram, N.; Riedl, R.; Roettig, U.; Gil, G. S.; Seger, E.; Steggles, D. J.; Wanner, J.;
Weichert, A. G. Tetrahedron Lett 2006, 47, 2675.
Miyaura, N.; Takahashi, K.; Takagi, J.; Ishiyama, T. Chem Lett 2000, 126.
Schenning, A. P. H. J.; Dudek, S. P.; Pouderoijen, M.; Abbel, R.; Meijer, E. W. J Am Chem Soc 2005, 127, 11763.

Jia, Y. X.; Bois-Choussy, M.; Zhu, J. P. Org Lett 2007, 9, 2401.
Wilson, P. D.; Pettigrew, J. D.; Freeman, R. P. Can J Chem 2004, 82, 1640.
Neises, B.; Steglich, W. Angewandte Chemie-International Edition in English 1978, 17, 522.

Helmchen, G.; Nill, G. Angewandte Chemie-International Edition in English 1979, 18, 65.

Helmchen, G.; Nill, G.; Flockerzi, D.; Schuhle, W.; Youssef, M. S. K. Angewandte Chemie-International Edition in English 1979, 18, 62.
Helmchen, G.; Nill, G.; Flockerzi, D.; Youssef, M. S. K. Angewandte ChemieInternational Edition in English 1979, 18, 63.

Helmchen, G.; Volter, H.; Schuhle, W. Tetrahedron Lett 1977, 1417.
Helmchen, G.; Sauber, K.; Ott, R. Tetrahedron Lett 1972, 3873.
Baek, D. J.; Daniels, S. B.; Reed, P. E.; Katzenellenbogen, J. A. J Org Chem 1989, 54, 3963.

Ziegler, F. E.; Lim, H. J Org Chem 1984, 49, 3278.
Huszthy, P.; Oue, M.; Bradshaw, J. S.; Zhu, C. Y.; Wang, T. M.; Dalley, N. K.; Curtis, J. C.; Izatt, R. M. J Org Chem 1992, 57, 5383.
Han Liu, Jiaxi.; Da-Ming Du. Org Lett 2007, 9, 4725.
Clayden, J.; Parris, S.; Cabedo, N.; Payne, A. H. Angew Chem Int Edit 2008, 47, 5060.
61) Barluenga, J.; Suarez-Sobrino, A. L.; Tomas, M.; Garcia-Granda, S.; SantiagoGarcia, R. J Am Chem Soc 2001, 123, 10494.

Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat Protoc 2007, 2, 2451.
Roth, B. L.; Cho, S. J.; Jensen, N. H.; Kurome, T.; Kadari, S.; Manzano, M. L.;

Malberg, J. E.; Caldarone, B.; Kozikowski, A. P. J Med Chem 2009, 52, 1885.
(64) Strekowski, L.; Visnick, M.; Battiste, M. A. J Org Chem 1986, 51, 4836.
(65) Deyo, D. T.; Aebi, J. D.; Rich, D. H. Synthesis-Stuttgart 1988, 608.
(66) Mobashery, S.; Yamaguchi, T.; Hesek, D.; Lee, M.; Oliver, A. G. J Org Chem 2010, 75, 3515.
(67) Rice, J. E.; Minhas, G. S.; Pilch, D. S.; Kerrigan, J. E.; LaVoie, E. J. Bioorg Med Chem Lett 2006, 16, 3891.
(68) Marks, T. J.; Hong, S. W.; Tian, S.; Metz, M. V. J Am Chem Soc 2003, 125, 14768.
(69) Prasad, K. R. K.; Joshi, N. N. J Org Chem 1996, 61, 3888.

1.5. Experimental section

General experimental methods

All air- and moisture-sensitive reactions were carried out under argon (Ar) atmosphere with freshly distilled solvents and oven-dried or flame-dried glassware. Handling of solvents and solutions for air- and moisture-sensitive reactions was performed by carefully dried glass syringe or cannula under a positive pressure of Ar atmosphere. Unless indicated otherwise, commercially available reagents were used as supplied without further purification. Tetrahedrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ for reactions were distilled from sodium-benzophenone ketyl and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from calcium hydride. Dimethylforamide (DMF), extra dried with molecular sieve, was purchased from ACROS and carefully maintained under a positive pressure. For Stille coupling- $8 \pi, 6 \pi$ electrocyclizations, the reaction mixture was thoroughly degassed with a stream of Ar both before and after adding tetrakis triphenylphosphine palladium. Then it was immediately wrapped with aluminum foil.

Chromatography was carried out with HPLC grade ethyl acetate (EtOAc), n-hexane, and methanol. All experiments were monitored by thin layer chromatography (TLC). Spots were visualized by exposure to ultraviolet (UV) light (254 nm) or staining with a 10% solution of phosphomolybdenic acid (PMA) in ethanol and then heating. Flash chromatography was carried out with Fisher brand silica gel (170-400 mesh). For diastereomeric bicyclooctadienes, preparative TLC was performed on Whatman ${ }^{\circledR}$ TLC plates ($1000 \mu \mathrm{~m}$). All ${ }^{1} \mathrm{H}$ NMR spectra for bicyclo[4.2.0]octadiene compounds were recorded with a Varian Inova-600 (600 MHz) instrument. Multiplicities are abbreviated as follows: $s=$ singlet, $d=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=$ broad singlet. All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian Inova-400 (100 MHz) spectrometer. Infrared spectra were collected with a Perkin-Elmer 1600 Series FT-IR instrument. High-resolution mass spectra were obtained on a Micromass QTof Ultima spectrometer at the University of Illinois at Urbana-Champaign. X-ray crystallography was performed on an Oxford Gemini X-Ray Diffractometer.

Diastereomeric excesse (\% de) for bicyclooctadienes were calculated on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra.

11

33

35

Racemic bicyclooctadiene $\mathbf{3 5}$ from Stille coupling. To a solution of vinyl stannane $\mathbf{1 1}$ (45 $\mathrm{mg}, 0.12 \mathrm{mmol}$) and iododiene $33(32 \mathrm{mg}, 0.12 \mathrm{mmol})$ in anhydrous DMF (1.7 mL) were added cesium fluoride, CsF ($40 \mathrm{mg}, 0.24 \mathrm{mmol}$) and copper iodide, $\mathrm{CuI}(\mathrm{I})(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ at rt under degassing with a stream of Ar. After adding tetrakis triphenylphosphine palladium, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(14 \mathrm{mg}, 0.01 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and was continued deoxygenating for further 5 min . The reaction mixture stirred for 16 h , and then diluted with EtOAc $(25 \mathrm{~mL})$. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), and the combined organic solution was dried over MgSO_{4}, and concentrated under vacuum. The residue was purified on silica gel with $\mathrm{EtOA}_{\mathrm{C}} / \mathrm{n}$-hexane (1/9) to give 32 mg (82%) of $\mathbf{3 5}$ as pale yellow oil.
$\mathrm{R}_{f}: 0.6$ (EtOAc/n-Hexane, 1/9). IR: v 2931, 1518, 1344, 1111, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.17$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ ($\mathrm{s}, 3 \mathrm{H}$), 1.61 ($\mathrm{s}, 3 \mathrm{H}), 1.25$ ($\mathrm{s}, 3 \mathrm{H}$).

* Spectroscopic properties were in agreement with literature values. ${ }^{1}$

33

[^0]Boronic ester 36. To a solution of iododiene $33(54 \mathrm{mg}, 0.21 \mathrm{mmol})$ and triisopropyl borate $(72 \mu \mathrm{~L}, 0.31 \mathrm{mmol})$ in a mixture of toluene $(1.7 \mathrm{~mL})$ and THF $(0.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-$ butyllithium, 1.6 M solution in hexanes ($190 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h and pinacol ($55 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) was added at the same temperature. The mixture was protected from light by aluminum foil and allowed to warm to rt and stirred for 16 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$, and then washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine. The organic layer was dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography ($\mathrm{Et}_{2} \mathrm{O}: n$-hexane, 1:9) to provide 21.4 mg (39 \%) of 36 as a yellow solid.
$\mathrm{R}_{f}: 0.34$ (EtOAc/n-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.23$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.98 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H})$.

9

36

35

Racemic bicyclooctadiene 35 via Suzuki-Miyaura coupling. To a solution of vinyl iodide $9(26.1 \mathrm{mg}, 0.08 \mathrm{mmol})$ and boronic ester $36(21.4 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dried benzene (3.0 mL) was added 2 M NaOEt in $\mathrm{EtOH}(90 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$. And then, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.1 \mathrm{mg}, 0.008 \mathrm{mmol})$ was added under Ar atmosphere. The reaction flask was immediately wrapped with aluminum foil and refluxed for 3 h . The reaction mixture was diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc: n-hexane, 1:9) afforded 17. 5 mg (67%) of 35 as pale yellow oil. *Spectroscopic properties of $\mathbf{3 5}$ from Suzuki-Miyaura coupling were in agreement with 35 values from the Stille coupling.

40

41
DCC, DMAP
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 4 h, 66 \%

42

Iododiene-amide 42. To a solution of (S)-(+)-2-phenylglycinol 41 ($132.1 \mathrm{mg}, 0.96 \mathrm{mmol}$) and dienoic acid $40(210.4 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was slowly added dicyclohexylcarbodiimide (DCC) ($197.2 \mathrm{mg}, 0.96 \mathrm{mmol}$) and 4 -(N, N-dimethylamino) pyridine (DMAP) ($13.1 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for further 4 h , the reaction mixture was filtered through a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:n-hexane, 1:1) to provide 210.3 mg (66 $\%$) of $\mathbf{4 2}$ as a white solid.
$\mathrm{R}_{f}: 0.30$ (EtOAc/n-hexane, 1/1); IR: 3390, 1646, 1600, $1417 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.53(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J$ $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 166.7,141.2,139.9$, $128.4,127.3,126.9,125.2,86.2,65.0,56.1,19.7$; $\mathrm{HRMS}(E S I-M S)$ Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{INO}_{2}[(\mathrm{M}+$ H) ${ }^{+}$358.0226, found 358.0297.

11

42
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
, DMF, rt, dark, 12 h, 39 \%

43b

SNF analogs 43a and 43b. To a solution of vinyl stannane 11 ($32.4 \mathrm{mg}, 0.088 \mathrm{mmol}$) and iododiene-amide 42 ($30.9 \mathrm{mg}, 0.087 \mathrm{mmol}$) in anhydrous DMF (3.6 mL) were added cesium fluoride, $\mathrm{CsF}(30.0 \mathrm{mg}, 0.197 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(3.8 \mathrm{mg}, 0.020 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10.2 \mathrm{mg}, 0.009 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and was continued deoxygenating for further 5 min . The reaction mixture was stirred for 12 h , and then diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc (3 x 25 mL), and the combined organic solution was dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc: n-hexane, 1:1) afforded $5.1 \mathrm{mg}(14 \%)$ of $\mathbf{4 3} \mathbf{a}$ and $9.5 \mathrm{mg}(25 \%)$ of 43 b in a ratio of $2: 3$.

43a (slower moving isomer)

$\mathrm{R}_{f}: 0.30(\mathrm{EtOAc} / n$-hexane, $1 / 1) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=11.4 \mathrm{~Hz}$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=9.6$ $\mathrm{Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$.

43b (faster moving isomer)

$\mathrm{R}_{f}: 0.40$ (EtOAc/n-hexane, $1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=11.4 \mathrm{~Hz}$,
$4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=9.3$ $\mathrm{Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.

TBS protected amine 49. To a stirring solution of (S)-(+)-2-phenylglycinol 41 ($98.1 \mathrm{mg}, 0.71$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added triethylamine ($180 \mu \mathrm{~L}, 1.29 \mathrm{mmol}$) followed by DMAP ($9.0 \mathrm{mg}, 0.07 \mathrm{mmol}$). After 5 min , tert-butyldiphenylchlorosilane (TBS-Cl) (214.5 mg , 0.78 mmol) was added in one portion. The reaction mixture was stirred for 16 h at rt , quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, $1: 3$ to $1: 2$) to provide $129.2 \mathrm{mg}(73 \%)$ of 49 as colorless oil.
$\mathrm{R}_{\mathrm{f}}: 0.66$ (EtOAc/n-hexane, 1/2); IR: 3388, 1603, 1257, $1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.47(\mathrm{~m}, 5 \mathrm{H}), 4.14(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=9.8 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (dd, $J=9.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.90(\mathrm{bs}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 128.6,127.6,127.2,57.9,26.2,18.6,-5.1$.

* Spectroscopic properties were in agreement with literature values. ${ }^{2}$

Iododiene-amide 50. To a solution of amine $49(49.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and dienoic acid 40 $(45.6 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was slowly added DCC ($47.6 \mathrm{mg}, 0.23 \mathrm{mmol}$) and

[^1]DMAP ($5.6 \mathrm{mg}, 0.05 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for further 8 h , the reaction mixture was filtered through a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:5) to provide 45.0 mg (50%) of $\mathbf{5 0}$ as viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.40$ (EtOAc/n-hexane, 1/5); IR: 3284, 3060, 1651, 1614, $1539 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.06(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{tt}, J=4.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 165.1,141.6,140.8,140.2,128.6,127.6,127.1,125.3,87.0,66.3$, 54.9, 26.1, 21.3, 18.5, -5.4; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{INO}_{2} \mathrm{Si}[(\mathrm{M}+\mathrm{H})]^{+}$472.1091, found 472.1173.

11

50
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
DMF, rt, dark, $14 \mathrm{~h}, 51 \%$

51a

51b

SNF analogs 51a and 51b. To a solution of vinyl stannane $11(12.4 \mathrm{mg}, 0.034 \mathrm{mmol})$ and iododiene-amide $50(16.2 \mathrm{mg}, 0.034 \mathrm{mmol})$ in anhydrous DMF $(1.2 \mathrm{~mL})$ were added cesium fluoride, $\operatorname{CsF}(10.5 \mathrm{mg}, 0.069 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(1.3 \mathrm{mg}, 0.007 \mathrm{mmol})$ at rt under degassing with a stream of Ar. After adding tetrakis triphenylphosphine palladium, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(4.0 \mathrm{mg}, 0.004 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min . The reaction mixture stirred for 14 h , and then
diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 x 25 mL). The combined aq. layers were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc:n-hexane, 1/5) afforded $9.7 \mathrm{mg}(51 \%)$ of an inseparable mixture of diastereomeric 51a and 51b in a ratio of $2: 3$ or $3: 2$. $\mathrm{R}_{f}: 0.47$ (EtOAc/n-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$,), 7.36 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.13(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 0.5 \mathrm{H})$, $5.48(\mathrm{~s}, 0.4 \mathrm{H}), 5.46(\mathrm{~s}, 0.6 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 0.4 \mathrm{H}), 4.45(\mathrm{~s}, 0.6 \mathrm{H}), 3.79-3.86(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.29(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.80(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 1.83(\mathrm{~s}, 1.25 \mathrm{H}), 1.74(\mathrm{~s}, 1.75 \mathrm{H}), 1.66(\mathrm{~s}, 1.25 \mathrm{H})$, $1.64(\mathrm{~s}, 1.75 \mathrm{H}), 1.23(\mathrm{~s}, 1.75 \mathrm{H}), 1.23(\mathrm{~s}, 1.25 \mathrm{H}), 0.75(\mathrm{~s}, 3.6 \mathrm{H}), 0.74(\mathrm{~s}, 6.4 \mathrm{H}), 0.14-0.20(\mathrm{~m}$, $6 \mathrm{H})$.

Formamide 54. To a stirred solution of S-(+)-2-amino-2-phenylacetic acid 53 (5.0 g, 0.17 mmol) in 40 mL of $80 \% \mathrm{HCO}_{2} \mathrm{H}$ was added dropwise acetic anhydride (21 mL) at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and at rt for 4 h , the reaction mixture was treated with 15 mL of water. The solvent was removed under reduced pressure and the residue was recrystallized from water to give 5.2 g (81%) of $\mathbf{5 4}$ as needles.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.91$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.06 ($1 \mathrm{H}, \mathrm{s}$), 7.31-7.38 (m, 5H), $5.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{\text {S }}$ Spectroscopic properties were in agreement with literature values. ${ }^{3}$

54
 56 \%

[^2]Amine 55. To a stirred suspension of $\mathrm{LiAlH}_{4}(890 \mathrm{mg}, 23 \mathrm{mmol})$ in 12 mL of dry and pure THF was added dropwise formamide 54 ($490 \mathrm{mg}, 3.24 \mathrm{mmol}$) dissolved in 4 mL of THF at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , at rt for 3 h and at reflux temperature for 9 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and 50 mL of 15% aqueous NaOH was slowly added, and then the solid was removed by filtration and washed with THF. The combined filtrate and washing solutions were dried over MgSO_{4}, and the solvent was removed under reduced pressure. The residue was purified on silica gel with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 7)$ to give 274 mg (56%) of 55 as a white solid.
$\mathrm{R}_{f}: 0.50\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 7\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 7.26-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.57-3.74$ $(\mathrm{m}, 3 \mathrm{H}), 2.36(3 \mathrm{H}, \mathrm{s})$. * Spectroscopic properties were in agreement with literature values. ${ }^{3}$

TBS protected amine 56.
To a stirring solution of amine 55 ($66 \mathrm{mg}, 0.44 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added triethylamine ($115 \mu \mathrm{~L}, 1.14 \mathrm{mmol}$) followed by DMAP (5.4 mg , 0.04 mmol). After 5 min , tert-butyldiphenylchlorosilane ($131 \mathrm{mg}, 0.87 \mathrm{mmol}$) was added in one portion. The reaction mixture was stirred at rt at 14 h and then neutralized with 1 N HCl . The filtrate was concentrated under reduced pressure. The crude compound was purified on silica gel with EtOAc/n-hexane (1/6) to give 87 mg (79%) of 56 as pale yellow oil.
$\mathrm{R}_{f}: 0.27$ (EtOAc/n-Hexane, 1/6). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 3.62(\mathrm{~m}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.029(\mathrm{~s}, 6 \mathrm{H})$.

Iododiene-amide 57. To a solution of N-methylamine $56(87.2 \mathrm{mg}, 0.33 \mathrm{mmol})$ and dienoic acid $40(83.1 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was slowly added dicyclohexyl-
carbodiimide (DCC) $(79.9 \mathrm{mg}, 0.39 \mathrm{mmol})$ and 4 - $(N, N$-dimethylamino) pyridine (DMAP) (6.0 $\mathrm{mg}, 0.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for 12 h , the reaction mixture was filtered through a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:1) to provide 30.4 mg (19%) of 57 as a white solid.
$\mathrm{R}_{\mathrm{f}}: 0.55$ (EtOAc/n-hexane, 1/6); IR: 2928, 2856, 1641, 1601, $1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.64(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.54(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.5 \mathrm{H}) 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 0.5 \mathrm{H}), 5.17(\mathrm{~s}, 0.5 \mathrm{H}), 4.16(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.14(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.92(\mathrm{~s}, 1.5 \mathrm{H}), 2.80(\mathrm{~s}$, 1.5 H), $2.02(\mathrm{~s}, 1.5 \mathrm{H}), 1.97(\mathrm{~s}, 1.5 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $168.5,143.0,142.0,141.2,138.2,129.0,128.7,128.3,127.6,127.2,124.0,122.8,86.6,85.8$, $62.1,57.6,26.0,21.4,18.3,-5.3$; $\mathrm{HRMS}(\mathrm{ESI}-\mathrm{MS})$ Calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{INO}_{2} \mathrm{Si}[(\mathrm{M}+\mathrm{H})]^{+}$ 486.1247, found 486.1320.

Bromoacetamides 58. To a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(108.0 \mathrm{mg}, 0.79 \mathrm{mmol})$ and amine 56 (151.0 $\mathrm{mg}, 0.56 \mathrm{mmol}$) in a $3: 2$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise bromoacetyl bromide ($120 \mu \mathrm{~L}, 1.38 \mathrm{mmol}$). The reaction mixture was allowed to warm to rt , stirred for further 4 h , and quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ mL), the combined organic extracts were dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:n-hexane, 1:1) to provide 280.0 mg (92%) of $\mathbf{5 8}$ as colorless viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.42$ (EtOAc/n-hexane, $1 / 3$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.77(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.16(\mathrm{dd}, J=9.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.35(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.90-4.20(\mathrm{~m}$, $3.5 \mathrm{H}), 2.92(\mathrm{~s}, 1.5 \mathrm{H}), 2.67(\mathrm{~s}, 1.5 \mathrm{H}), 0.90(\mathrm{~s}, 4.5 \mathrm{H}), 0.88(\mathrm{~s}, 4.5 \mathrm{H}), 0.08-0.11(\mathrm{~m}, 6 \mathrm{H})$.

Phosphonoacetamide 59. A mixture of $58(251.2 \mathrm{mg}, 0.65 \mathrm{mmol})$ and trimethylphosphite $(0.7 \mathrm{~mL}, 5.99 \mathrm{mmol})$ was heated for 3 h at $105-110^{\circ} \mathrm{C}$. The reaction mixture was allowed to cool to rt , and then evaporated to remove volatile compounds under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane: $\mathrm{CH}_{3} \mathrm{OH}, 5: 3: 2$) to provide 233.4 mg (87 $\%)$ of $\mathbf{5 9}$ as colorless viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.53$ (EtOAc/n-hexane/ $\mathrm{CH}_{3} \mathrm{OH}, 5 / 3 / 2$); IR: 2850, 1640, 1253, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.25(\mathrm{dd}, J=9.5 \mathrm{~Hz}, 3.6 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.00-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.83(\mathrm{~m}, 8 \mathrm{H}), 2.94(\mathrm{~s}, 1.5 \mathrm{H}), 2.69(\mathrm{~s}, 1.5 \mathrm{H}), 0.89(\mathrm{~s}, 4.5 \mathrm{H}), 0.88$ (s, 4.5H), 0.07-0.09 (m, 6H).

Iododiene-amide 57 via HWE reaction. To a stirred suspension solution of $\mathbf{5 9}$ (232.8 mg , 0.56 mmol), 1,8-diazabicyclo- [5.4.0]undec-7-ene (DBU) ($260.3 \mathrm{mg}, 1.71 \mathrm{mmol}$), and LiCl (72.1 $\mathrm{mg}, 1.70 \mathrm{mmol}$) in dry THF (24 mL) was added a solution of (Z)-3-iodo-2-methyl-propenal 60, which was prepared in situ from (Z)-3-iodo-2-methylprop-2-en-1-ol ($104.9 \mathrm{mg}, 0.53 \mathrm{mmol}$), in dry THF (6.0 mL) was added by syringe over 10 min at $0^{\circ} \mathrm{C}$ under Ar atmosphere. The resulting solution was allowed to warm to rt and completed by checking with TLC. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ and extracted with EtOAc (3 x 40 mL). The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:5) to provide 227.4 mg (89%) of 57 as colorless viscous oil. *Spectroscopic properties of 57 from DCC and DMAP coupling were in agreement with $\mathbf{5 7}$ values from HWE reaction.

11

57

DMF, rt, dark, 14 h, 44 \%

61b

SNF analogs 61a and 61b. To a solution of vinyl stannane $11(12.9 \mathrm{mg}, 0.035 \mathrm{mmol})$ and iododiene-amide $57(14.5 \mathrm{mg}, 0.030 \mathrm{mmol})$ in anhydrous DMF $(1.2 \mathrm{~mL})$ were added cesium fluoride, $\mathrm{CsF}(9.7 \mathrm{mg}, 0.064 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(1.2 \mathrm{mg}, 0.006 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min . The reaction mixture stirred for 14 h , and then diluted with EtOAc (10 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 10 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc/n-hexane, 1/5) afforded $7.3 \mathrm{mg}(44 \%)$ of an inseparable mixture of 61a and 61b in a ratio of $1: 1$.
$\mathrm{R}_{f:}: 0.52(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.53(\mathrm{~s}, 0.5 \mathrm{H}), 5.45(\mathrm{~s}, 0.5 \mathrm{H}), 4.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.52(\mathrm{~s}, 0.5 \mathrm{H}), 4.31(\mathrm{~s}$, $0.5 \mathrm{H}), 4.06-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.88(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 0.5 \mathrm{H}), 3.78(\mathrm{t}, J=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.73(\mathrm{t}, J=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.03(\mathrm{~s}, 1.5 \mathrm{H}), 2.96(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 0.5 \mathrm{H}), 2.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.76(\mathrm{~s}, 1.5 \mathrm{H}), 1.86(\mathrm{~s}, 1.5 \mathrm{H}), 1.66(\mathrm{~s}, 1.5 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 4.5 \mathrm{H}), 0.88(\mathrm{~s}, 4.5 \mathrm{H}),-0.06-0.08(\mathrm{~m}, 6 \mathrm{H})$.

Bromoacetamide 64. To a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(395.4 \mathrm{mg}, 2.90 \mathrm{mmol})$ and (S) - $(\alpha-$ methylbenzyl)benzylamine $63(445.0 \mathrm{mg}, 1.98 \mathrm{mmol})$ in a 3:2 mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added dropwise bromoacetyl bromide $(0.30 \mathrm{~mL}, 3.45 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2.5 h at rt , and then quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. After extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30 mL), the combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:n-hexane, $1: 3$) to provide $593.2 \mathrm{mg}(87 \%)$ of $\mathbf{6 4}$ as pale yellow sticky oil.
$\mathrm{R}_{\mathrm{f}}: 0.27$ (EtOAc/n-hexane, 3/7); IR: 2979, $1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.98-7.21$ (m, 10H), 5.17 (bs, 1H), 5.01 (bs, 1H), 3.94 (dd, $J=16.4 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78$ (bs, 3H), 1.71 (bs, 3H).

Phosphonoacetamide 65. A mixture of bromoacetamide $64(314.8 \mathrm{mg}, 0.91 \mathrm{mmol})$ and trimethylphosphite $(1.0 \mathrm{~mL}, 8.48 \mathrm{mmol})$ was heated for 7 h at $105-110{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to cool to rt, and then evaporated to remove volatile compounds under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane: $\mathrm{CH}_{3} \mathrm{OH}, 5: 4: 1$) to provide 295.2 mg (86%) of $\mathbf{6 5}$ as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.53$ (EtOAc/n-hexane/ $\mathrm{CH}_{3} \mathrm{OH}, 5 / 4 / 1$); IR: $1654,1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.10-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.40(\mathrm{bs}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=10.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.80-2.95$ (m, 2H), 1.79 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Iododiene-amide 66. A solution of phosphonoacetamide $\mathbf{6 5}(72.8 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry THF (8.0 mL) was treated with DBU ($90.6 \mathrm{mg}, 0.59 \mathrm{mmol})$ and $\mathrm{LiCl}(25.2 \mathrm{mg}, 0.59 \mathrm{mmol})$ at rt under Ar atmosphere. After stirring for 5 min , (Z)-3-iodo-2-methyl-propenal $\mathbf{6 0}$ in THF (1.5 mL), which was prepared in situ from (Z)-3-iodo-2-methylprop-2-en-1-ol ($43.2 \mathrm{mg}, 0.22 \mathrm{mmol}$), was added by syringe over 5 min . The reaction mixture stirred for 14 h at rt , quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL), and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ followed by brine (15 mL), dried over MgSO_{4} and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:5) to provide $77.1 \mathrm{mg}(91 \%)$ of $\mathbf{6 6}$ as colorless viscous oil. $\mathrm{R}_{\mathrm{f}}: 0.53$ (EtOAc/n-hexane, 1/5); IR: 2977, 1637, $1596 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20$ (d, 1H, $J=15.6 \mathrm{~Hz}), 7.09-7.39(\mathrm{~m}, 10 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{bs}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{bs}, 1 \mathrm{H}), 1.75(\mathrm{bs}, 6 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,141.5,141.3$, 128.6, 125.7, 86.0, 21.1; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{INO}[(\mathrm{M}+\mathrm{H})]^{+} 446.0903$, found 446.0983.

11

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
$\mathrm{DMF}, \mathrm{rt}$, dark, $13 \mathrm{~h}, 45 \%$

67a

67b

SNF analogs 67a and 67b. To a solution of vinyl stannane $11(37.5 \mathrm{mg}, 0.102 \mathrm{mmol})$ and iododiene-amide $66(47.8 \mathrm{mg}, 0.107 \mathrm{mmol})$ in anhydrous DMF (4.0 mL) were added cesium fluoride, $\mathrm{CsF}(33.1 \mathrm{mg}, 0.218 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(4.2 \mathrm{mg}, 0.022 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12.3 \mathrm{mg}, 0.011 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min . The reaction mixture stirred for 13 h , and then diluted with EtOAc (15 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 15 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc (3 x 15 mL), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc: n-hexane, 1:5) afforded $9.6 \mathrm{mg}(18 \%)$ of $\mathbf{6 7 a}$ or 67b and $14.5 \mathrm{mg}(27 \%)$ of $\mathbf{6 7 a}$ or $\mathbf{6 7 b}$ in a ratio of 2 (slower moving isomer) : 3 (faster moving isomer).

The slower moving isomer
$\mathrm{R}_{f}: 0.50(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-$ $7.19(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{bs}, 2 \mathrm{H}), 6.63(\mathrm{bs}, 2 \mathrm{H}), 5.56-5.59(\mathrm{bs}, 1 \mathrm{H}), 5.55(\mathrm{~s}$, $1 \mathrm{H}), 4.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{bs}, 3 \mathrm{H})$, 1.14 ($\mathrm{s}, 3 \mathrm{H}$).

The faster moving isomer

$\mathrm{R}_{f}: 0.55$ (EtOAc/ n-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{bs}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}$, $1 \mathrm{H}), 5.21(\mathrm{bs}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $8.7 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, $1.50(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$.

40

Iododiene-oxazolidinone 70. To a stirred solution of dienoic acid 40 ($200.5 \mathrm{mg}, 0.84 \mathrm{mmol}$) and triethylamine ($160 \mu \mathrm{~L}, 1.15 \mathrm{mmol}$) in dry THF $(12 \mathrm{~mL})$ was added pivaloyl chloride (112.4 $\mathrm{mg}, 0.93 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The resulting slurry solution was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$,
continued for further 45 min at $0^{\circ} \mathrm{C}$, and then the solution was again cooled to $-78{ }^{\circ} \mathrm{C}$. In a separate flask, a stirred solution of $(4 R, 5 S)$-4-methyl-5-phenyl-2-oxazolidinone $69(158.0 \mathrm{mg}$, 0.89 mmol) in dry THF (12 mL) was treated with n-butyllithium (2.0 M in n-hexane) (0.6 mL , 0.89 mmol) at $-78^{\circ} \mathrm{C}$, and the resulting metalated solution was added to the dienoate slurry by syringe over 10 min . The resulting viscous slurry was stirred for 20 min at $-78{ }^{\circ} \mathrm{C}$, and then allowed to warm to rt and stirred for 6 h . The reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and the organic solvent was removed under vacuum. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and washed successfully with portions of $0.5 \mathrm{~N} \mathrm{HCl}(25 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3},(25 \mathrm{~mL})$, and brine $(25 \mathrm{~mL})$. And then, the organic solution was dried over MgSO_{4} and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:n-hexane, 1:6) to provide 220.0 mg (65%) of 70 as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.33$ (EtOAc/ n-hexane, $1 / 6$); IR: $1779,1678,1605,1351 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.41(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 164.9,153.3,146.3,141.7,133.5,129.0,128.9,125.9,121.8,89.8,79.3,55.3,21.4$, 14.8; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{INO}_{3}[(\mathrm{M}+\mathrm{H})]^{+} 398.0175$, found 398.0260.

11

$\left\lvert\, \begin{aligned} & \mathrm{Pd}\left(\mathrm{PPH}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul(l)} \\ & \text { DMF, rt, dark, } 16 \mathrm{~h}, 36 \%\end{aligned}\right.$

71b

SNF analogs 71a and 71b. To a solution of vinyl stannane $11(34.0 \mathrm{mg}, 0.092 \mathrm{mmol})$ and iododiene-oxazolidinone $70(41.7 \mathrm{mg}, 0.107 \mathrm{mmol})$ in anhydrous DMF (3.0 mL) were added
cesium fluoride, $\mathrm{CsF}(27.4 \mathrm{mg}, 0.180 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(5.0 \mathrm{mg}, 0.026 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.5 \mathrm{mg}, 0.011 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min . The reaction mixture stirred for $12-16 \mathrm{~h}$, and then was diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined $a q$. layers were extracted with $\mathrm{EtOAc}(3 \times 25 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc: n-hexane, 1:6) afforded 15.7 mg (36%) of an inseparable mixture of 71a and 71b in a ratio of $1: 1$.
$\mathrm{R}_{f}: 0.42$ (EtOAc/n-hexane, $1 / 6$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.46(\mathrm{~m}, 7 \mathrm{H}), 5.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H})$, $5.51(\mathrm{~s}, 0.5 \mathrm{H}), 5.50(\mathrm{~s}, 0.5 \mathrm{H}), 5.13(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.11(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.76(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 0.5 \mathrm{H}), 4.41(\mathrm{~s}, 0.5 \mathrm{H}), 3.90(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.84(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $0.5 \mathrm{H}), 2.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.73(\mathrm{~s}, 1.5 \mathrm{H}), 1.69(\mathrm{~s}, 1.5 \mathrm{H}), 1.67$ $(\mathrm{s}, 1.5 \mathrm{H}), 1.67(\mathrm{~s}, 1.5 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H})$.

Iododiene-oxazoline 73. To a solution of iododiene-amide 42 ($92.0 \mathrm{mg}, 0.26 \mathrm{mmol}$)) and copper(II) trifluoromethanesulfonate, $\mathrm{Cu}(\mathrm{OTf})_{2}(9.1 \mathrm{mg}, 0.03 \mathrm{mmol})$ in 1,4-dioxane (4.0 mL) was added N, N^{\prime} 'diisopropylcarbodiimde (DIC) ($40 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) in one portion. The reaction solution was heated for 5 h at reflux. The resulting white precipitate was removed by filtration and washed with EtOAc (5 mL). The combined filtrate was concentrated in vacuum, and the oily residue was purified by silica gel column chromatography (EtOAc:n-hexane, 1:2) to provide 49.2 $\mathrm{mg}(57 \%)$ of $\mathbf{7 3}$ as viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.80$ (EtOAc/n-hexane, 1/1); IR: 3061, 3031, 2916, $1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}$, $J=9.9 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$.

11

73
$\left\lvert\, \begin{aligned} & \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul(l)} \\ & \mathrm{DMF}, \mathrm{rt}, \text {, dark, }, 16 \mathrm{~h}, \\ & 72 \% \text { (crude) }\end{aligned}\right.$

74a

74b

SNF analogs 74a and 74b. To a solution of vinyl stannane $11(17.8 \mathrm{mg}, 0.048 \mathrm{mmol})$ and iododiene-oxazoline 73 ($11.2 \mathrm{mg}, 0.033 \mathrm{mmol}$) in anhydrous DMF (1.0 mL) were added cesium fluoride, $\mathrm{CsF}(11.1 \mathrm{mg}, 0.073 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(2.1 \mathrm{mg}, 0.011 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.0 \mathrm{mg}, 0.005 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min. The reaction mixture stirred for 16 h , and then diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. Flash column chromatography (EtOAc: n-hexane, $1: 3$) afforded 9.8 mg (72 \%) of an inseparable mixture of crude 74a and 74b including byproduct in a ratio of $1: 1: 1$.
$\mathrm{R}_{f}: 0.37$ (EtOAc/n-hexane, $1 / 3$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.33 \mathrm{H}), 8.19$ (d, $J=8.4 \mathrm{~Hz}, 0.67 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.67 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.67 \mathrm{H}), 7.28-7.42(\mathrm{~m}$, $5.66 \mathrm{H}), 5.61(\mathrm{bs}, 1.34 \mathrm{H}), 5.58(\mathrm{~s}, 0.34 \mathrm{H}), 5.57(\mathrm{~s}, 0.33 \mathrm{H}), 5.47(\mathrm{~s}, 0.33 \mathrm{H}), 5.19(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1.34 \mathrm{H}), 4.87(\mathrm{dd}, J=6.3 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 0.34 \mathrm{H}), 4.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 0.34 \mathrm{H}), 4.79(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $0.34 \mathrm{H}), 4.52(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 0.34 \mathrm{H}), 4.48(\mathrm{~s}, 0.33 \mathrm{H}), 4.46(\mathrm{~s}, 0.34 \mathrm{H}), 4.41(\mathrm{~s}, 0.33 \mathrm{H}), 4.37(\mathrm{dd}, J$ $=7.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 0.33 \mathrm{H}), 4.30(\mathrm{~s}, 1.33 \mathrm{H}), 4.15(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 0.34 \mathrm{H}), 4.09(\mathrm{dd}, J=$ $9.9 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 0.34 \mathrm{H}), 3.74(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 0.34 \mathrm{H}), 3.51(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 0.34 \mathrm{H}), 3.35$ (d, $J=8.4 \mathrm{~Hz}, 0.34 \mathrm{H}$), 3.19 (bs, 0.34 H), 2.77 (d, $J=9.6 \mathrm{~Hz}, 0.34 \mathrm{H}), 1.82$ (s, 1H), 1.79 ($\mathrm{s}, 2 \mathrm{H}$), $1.68(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 1 \mathrm{H})$.

Iododiene-amide 77. To a solution of ($1 R, 2 R$)-2-amino-1,2-diphenylethanol 76 (154.3 mg, $0.72 \mathrm{mmol})$ and dienoic acid $40(189.7 \mathrm{mg}, 0.79 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was slowly added DCC ($159.0 \mathrm{mg}, 0.77 \mathrm{mmol}$) and DMAP ($10.6 \mathrm{mg}, 0.09 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 3 h at rt , filtered through a Celite ${ }^{\circledR}$, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:n-hexane, 2:3) to provide 196.8 mg (63%) of 77 as a white solid. $\mathrm{R}_{\mathrm{f}}: 0.57$ (EtOAc/n-hexane, 1/2); IR: 3364, 1646, 1610, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~m}, 4 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.05 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.39 (dd, $J=4.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7$, 142.2, 140.8, 139.9, 137.0, 128.1, 126.7, 124.8, 87.5, 59.9, 21.2.

Mesylate 78. To an ice-cooled solution of iododiene-amide $77(79.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ and triethylamine ($90 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ was added methanesulfonyl chloride $(30 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$ via syringe in one portion. The reaction mixture was allowed to warm to rt and stirred for 4 h . Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was poured into the reaction mixture and the organic layer was separated. The water layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 10 \mathrm{ml})$ and the combined organic extracts were dried over MgSO_{4} and concentrated under vacuum The residue
was purified by silica gel column chromatography (EtOAc: n-hexane, $1: 2.5$) to provide 50.0 mg (54%) of 78 as sticky oil.
$\mathrm{R}_{\mathrm{f}}: 0.64$ (EtOAc/n-hexane, 1:2.5); IR: 3285, 3056, 1715, 1625, 1326, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, 1.93 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,145.9,137.8,136.8,136.0,128.9,128.7$, 127.3, 117.4, 77.9, 62.8, 42.0, 12.7.

78

79

Iododiene-oxazoline 79. Mesylate $78(50.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in methanol (1.0 $\mathrm{mL})$ and a solution of $\mathrm{NaOH}(15.1 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added in one portion. After refluxing for 4 h , the reaction mixture was allowed to cool to rt and the solvent was concentrated under vacuum. After adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the $a q$. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{ml}$). The combined organic extracts were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:2.5) to provide 30.6 mg (74%) of 79 as a viscous oil. $\mathrm{R}_{\mathrm{f}}: 0.57$ (EtOAc/n-hexane, 1/2); IR: 3062, 3032, 2916, $1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.41(\mathrm{~m}, 10 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.3,142.0,141.5,140.3,129.0,128.1,126.0,119.3,89.1,86.9,78.7,21.1$; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{INO}[(\mathrm{M}+\mathrm{H})]^{+} 416.0433$, found 416.0504.

11
79

80a

80b

SNF analogs 80a and 80b. To a solution of vinyl stannane $11(29.4 \mathrm{mg}, 0.080 \mathrm{mmol})$ and iododiene-oxazoline $79(32.2 \mathrm{mg}, 0.077 \mathrm{mmol})$ in anhydrous DMF $(2.2 \mathrm{~mL})$ were added cesium fluoride, CsF ($27.4 \mathrm{mg}, 0.180 \mathrm{mmol}$) and copper iodide, $\mathrm{CuI}(\mathrm{I})(5.0 \mathrm{mg}, 0.026 \mathrm{mmol})$ at rt under deoxygenatingwith a stream of Ar. After adding $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.5 \mathrm{mg}, 0.008 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min . The reaction mixture stirred for $12-16 \mathrm{~h}$, and then diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc: n-hexane, 1/5) afforded 15.8 mg (42%) of an inseparable mixture of 80 a and $\mathbf{8 0 b}$ in a ratio of $1: 5$.
$\mathrm{R}_{f}: 0.38$ (EtOAc/n-hexane, 1/5); IR: 3054, 2916, 1660, 1599, 1520, 1348, $1265 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21$ (d, $\left.J=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.14$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.85 \mathrm{H}), 5.03(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 0.15 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.00+3.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96+$ $2.94(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 0.49 \mathrm{H}), 1.85(\mathrm{~s}, 2.51 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 147.2,145.6,133.7,131.5,129.2,128.5,128.4,127.1,126.5,126.0,123.9$,
$123.8,123.1,121.4,121.3,90.3,57.1,56.6,47.2,46.1,45.2,44.6,40.9,28.6,22.3,22.2,22.1$, 22.0; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[(\mathrm{M}+\mathrm{H})]^{+} 491.2256$, found 491.2344 .

80a

80b

83a

83b

SNF analogs 83a and 83b. To a solution of bicyclooctadienes 80a and 80b ($15.3 \mathrm{mg}, 0.031$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}), 5 \%$ aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$ and benzyl chloroformate $(\mathrm{Cbz}-\mathrm{Cl})$ $(9.7 \mathrm{mg}, 0.057 \mathrm{mmol})$ was added at rt and then stirred overnight. After addition of $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$, the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then the combined organic layers were washed first with $5 \% a q$. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, second with $\mathrm{H}_{2} \mathrm{O}$, and then dried over MgSO_{4}. The solvent was removed under vacuum and the residue was purified by preparative chromatography ($\mathrm{EtOAc} / \mathrm{n}$ hexane, 1:5) to provide 12.4 mg (62%) of an inseparable mixture of diastereomeric 83a and 83b as sticky oil.
$\mathrm{R}_{f}: 0.38$ (EtOAc/n-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16+8.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.37 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.35$ (m, 5H), $7.20(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.17 \mathrm{H}), 6.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.83 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.36+5.27(\mathrm{bs}, 1 \mathrm{H}), 5.10$ (s, 1H), $5.01(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.46(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.83 \mathrm{H}), 2.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.17 \mathrm{H}), 1.68+$ $1.66(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,155.8,147.1$, $145.6,138.3,136.7,136.4,134.3,131.4,128.5,128.3,127.2,123.8,123.6,121.3,121.1,94.6$, $77.9,67.2,56.8,46.1,45.5,45.3,44.5,28.7,22.3,21.6$.

84a

84b
(S)-Mosher esters 84a and 84b. To a stirred solution of bicyclooctadienes 83a and 83b (7.8 $\mathrm{mg}, 0.012 \mathrm{mmol}$) in dry toluene (0.5 mL) was added diisobutylaluminum hydride (DIBAL-H) (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 35 \mu \mathrm{~L}, 0.024 \mathrm{mmol}$) via syringe at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and then allowed to warm to rt. The reaction solution was again cooled to $0{ }^{\circ} \mathrm{C}$, quenched with EtOAc $(0.5 \mathrm{~mL})$, and allowed to warm to rt. After pouring $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ into the reaction solution, the $a q$. layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{ml})$ and the combined extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and brine. The organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum to afford 4.2 mg of crude bicyclo[4.2.0] octadiene substrate bearing methyl alcohol as yellow solid. The crude (4.2 mg , $0.014 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ solution was treated with DMAP ($3.6 \mathrm{mg}, 0.030 \mathrm{mmol}$). Then (R)-(-)- α-methoxy- α-trifluoromethylphenylacetyl chloride, (R)-MTPA-Cl, ($10 \mu \mathrm{~L}, 0.039 \mathrm{mmol}$)
was added via syringe and the reaction solution was stirred overnight. After removing volatile compounds under vacuum, the residue was purified by preparative chromatography ($\mathrm{EtOAc} / \mathrm{n}$ hexane, 1:5) to provide 3.2 mg (52% for the two steps) of an inseparable mixture of diastereomeric 84a and 84b in a ratio of 1: 6 .
$\mathrm{R}_{f}: 0.59$ (EtOAc$/ n$-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-$ $7.42(\mathrm{~m}, 7 \mathrm{H}), 5.42(\mathrm{~s}, 0.16 \mathrm{H}), 5.40(\mathrm{~s}, 0.84 \mathrm{H}), 4.48(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 0.86 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H})$, $4.32(\mathrm{~m}, 0.28 \mathrm{H}), 4.22(\mathrm{dd}, J=11.4 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 0.86 \mathrm{H}), 3.44(\mathrm{~s}, 2.56 \mathrm{H}), 3.41(\mathrm{~s}, 0.44 \mathrm{H}), 3.28(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.

* The inseparable mixture of diastereomeric $\mathbf{8 4 a}$ and $\mathbf{8 4 b}$ ($6: 1$ mixture) was prepared from bicyclooctadienes 83a and 83b using (S)-(+)- α-methoxy- α-trifluoromethylphenylacetyl chloride, (R)-MTPA-Cl

Ester 87. To a solution of amide $86(20.5 \mathrm{mg}, 0.09 \mathrm{mmol})$ in pyridine $(0.3 \mathrm{~mL})$ was added p toluenesulfonyl chloride, $\mathrm{TsCl}(43 \mathrm{mg}, 0.23 \mathrm{mmol})$ under Ar atmosphere. The reaction mixture was heated under reflux for 23 h . Then, the reaction mixture was allowed to cool to rt. After removing volatile compounds under vacuum, the residue was purified by silica gel column chromatography (EtOAc / n-hexane, $1: 4$) to provide 7.5 mg (22%) of $\mathbf{8 7}$ as pale yellow solid. $\mathrm{R}_{f:} 0.25$ (EtOAc/n-hexane, 1/4); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.10(\mathrm{~m}$, $5 \mathrm{H}), 5.11(\mathrm{~m}, 0.5 \mathrm{H}), 4.63(\mathrm{~m}, 0.5 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.24$ $(\mathrm{m}, 2 \mathrm{H}), 1.04(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1.5 \mathrm{H}), 0.81(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1.5 \mathrm{H})$.

11

77
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
DMF, rt, dark, $17 \mathrm{~h}, 29 \%$

85a

85b

SNF analogs 85a and 85b. To a solution of iododiene-amide $77(33.4 \mathrm{mg}, 0.077 \mathrm{mmol})$ and vinyl stannane 11 ($32.5 \mathrm{mg}, 0.088 \mathrm{mmol}$) in anhydrous DMF (2.0 mL) were added CsF (22.6 $\mathrm{mg}, 0.151 \mathrm{mmol})$ and $\mathrm{CuI}(\mathrm{I})(5.6 \mathrm{mg}, 0.029 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.3 \mathrm{mg}, 0.001 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for 5 min . The reaction mixture stirred for further 17 h , and then diluted with EtOAc (5 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 x 5 mL). The combined $a q$. layers were extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by preparative chromatography (EtOAc: n-hexane, 1:2) to provide $11.8 \mathrm{mg}(29 \%)$ of an inseparable mixture of diastereomeric 85a and 85b as a white solid.
$\mathrm{R}_{f}: 0.45(\mathrm{EtOAc} / n$-hexane, $1 / 2) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 0.5 \mathrm{H}), 5.43(\mathrm{~s}, 0.5 \mathrm{H}), 5.25(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 7.8$ $\mathrm{Hz}, 0.5 \mathrm{H}), 5.21(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.75(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.74(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.69(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.68(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.30(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.25(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $1.78(\mathrm{~s}, 1.5 \mathrm{H}), 1.65(\mathrm{~s}, 1.5 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 1.5 \mathrm{H}), 1.22(\mathrm{~s}, 1.5 \mathrm{H})$.

85a

80a

85b

1. $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 4 \mathrm{~h}$
2. $\mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$, reflux, $4 \mathrm{~h}, 59$ \% for 2 steps

SNF analogs 80a and 80b (1:1 mixture). To an ice-cooled solution of bicyclooctadienes 85a and $\mathbf{8 5 b}(11.8 \mathrm{mg}, 0.023 \mathrm{mmol})$ and triethylamine $(20 \mu \mathrm{~L}, 0.143 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added dropwise methanesulfonyl chloride ($5 \mu \mathrm{~L}, 0.065 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}$) via syringe. The reaction mixture was allowed to warm to rt and stirred overnight. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was poured into the reaction mixture and the organic layer was separated. The $a q$. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{ml})$ and the combined extracts were dried over MgSO_{4} and the solvent was removed under vacuum to afford $4.7 \mathrm{mg}(43 \%)$ of crude 80a and 80b as pale yellow solid. * Spectroscopic properties of authentic 80a and 80b (1:1 mixture) were in agreement with 80a and 80b (1:6 mixture) values.

83a

83b
$\mathrm{LiOH}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{THF}$,
$0^{\circ} \mathrm{C}$ to rt,
2 days, 95%

SNF analogs 46a and 46b. To a solution of bicyclooctadienes 83a and 83b ($12.4 \mathrm{mg}, 0.019$ $\mathrm{mmol})$ in dry THF $(1.0 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(0.5 \mathrm{~mL}), \mathrm{LiOH}(4.1 \mathrm{mg}, 0.171 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred 2 days at rt , and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined solution was acidified to $\mathrm{pH}=2$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic layers were dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by preparative chromatography (EtOAc: n-hexane, 1:2) provide $5.6 \mathrm{mg}(95 \%$) of 46a and 46b as a white solid.
$\mathrm{R}_{f}: 0.51$ (EtOAc/n-hexane, 1/2); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $179.3,147.1,145.6,134.2,131.4,128.3,123.7,122.8,122.7,121.3,121.2,56.1,46.0,45.8,44.5$, 28.6, 22.2, 21.7.

46a

46b
(S)-(+)-2-phenylglycinol, HOBt, EDC.HCI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, overnight, 67%

43a

43b

SNF analogs 43a and 43b (1:6 mixture). To a stirred solution of bicyclooctadienes 46a and 46b ($5.6 \mathrm{mg}, 0.018 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ were added (S)-(+)-2-phenylglycinol 41 (5.1 $\mathrm{mg}, 0.037 \mathrm{mmol}$), 1-hydroxybenzotriazole (HOBt) $(3.0 \mathrm{mg}, 0.023 \mathrm{mmol})$, and $1-(3-$ dimethylaminopropyl)-3-ethylcarbodiimide $\mathrm{HCl}(\mathrm{EDC} \cdot \mathrm{HCl})(6.9 \mathrm{mg}, 0.036 \mathrm{mmol})$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, allowed to warm to rt , and then followed overnight. The reaction mixture was washed with 5% aq. citric acid, saturated $a q . \mathrm{NaHCO}_{3}$, and saturated NaCl . Then, the organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum to provide crude 43a and 43b. $* \mathrm{R}_{\mathrm{f}}$ value on TLC of $\mathbf{4 3 b}$ was in agreement with that of authentic 43b.

Iododiene-amide 91. To a solution of (S)-(-)- α, α-diphenyl-2-pyrrolidine-methanol 90 (114.7 $\mathrm{mg}, 0.45 \mathrm{mmol})$ and dienoic acid $40(104.0 \mathrm{mg}, 0.44 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added DCC ($87 \mathrm{mg}, 0.42 \mathrm{mmol}$) and DMAP ($7.0 \mathrm{mg}, 0.06 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt . After stirring for further 5 h, the reaction mixture was filtered on a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:3) to provide 106.2 mg (51%) of 91 as a white solid.
$\mathrm{R}_{\mathrm{f}}: 0.42$ (EtOAc/n-hexane, 1/3); IR: 3416, 3291, 1641, 1609, $1127 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.17-7.49(\mathrm{~m}, 11 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.1,146.6,145.7,141.3,140.8,128.7,128.6,127.1,127.0,125.6,119.6$, 87.0, 82.4, 58.3, 29.5, 23.2, 21.3, 18.1.

91

51%

92

Iododiene-oxazoline 92. Methanesulfonic acid ($22 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$) was added dropwise to a solution of iododiene-amide $91(47 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt and stirred for further 18 h . The resulting solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10$ mL), and brine (10 mL). The residue was purified by silica gel column chromatography (EtOAc:n-hexane, 1:3) to provide 23.0 mg (51%) of 92 as a white solid.
$\mathrm{R}_{\mathrm{f}}: 0.65$ (EtOAc/n-hexane, 1/3); IR: 3059, 2959, 1651, 970, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.57(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.57(\mathrm{~m}, 10 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 162.2,145.3,141.6,140.6,128.6,128.1,128.0$, 127.6, 127.1, 126.3, 119.6, 93.0, 86.3, 79.7, 30.4, 22.2, 21.1, 17.1; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{INO}[(\mathrm{M}+\mathrm{H})]^{+} 458.0903$, found 458.0977.

11

92
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
DMF, rt, dark, $12 \mathrm{~h}, 33 \%$

93a

93b

SNF analogs 93a and 93b. To a solution of vinyl stannane $11(20.8 \mathrm{mg}, 0.057 \mathrm{mmol})$ and iododiene-oxazoline $92(22.9 \mathrm{mg}, 0.050 \mathrm{mmol})$ in anhydrous DMF (1.5 mL) were added cesium fluoride, $\mathrm{CsF}(18.2 \mathrm{mg}, 0.120 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(2.5 \mathrm{mg}, 0.013 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.9 \mathrm{mg}, 0.006 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min. The reaction mixture stirred for $12-16 \mathrm{~h}$, and then diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc:n-hexane, 1:5) afforded 8.9 mg (33%) of an inseparable mixture of diastereomeric 93a and 93b in a ratio of $1: 3$ or $3: 1$.
$\mathrm{R}_{f}: 0.50(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (d, $J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 8.15 $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 7.22-7.47(\mathrm{~m}, 12 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{br}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 0.75 \mathrm{H}), 4.49(\mathrm{~s}$, 0.25 H), 3.90 (br, 0.75 H), 3.78 (br, 0.25 H), 3.63 (bs, 1 H), 2.88 (bs, 0.25 H), 2.78 (bs, 0.25 H), 1.72 $(\mathrm{m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.75 \mathrm{H}), 0.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2.25 \mathrm{H}), 0.48$ (d, $J=6.6 \mathrm{~Hz}, 0.75 \mathrm{H}), 0.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2.25 \mathrm{H})$.

95

$3 \mathrm{~h} ; 34$ \% (for 3 steps)

96

Aminoalcohol 96. ${ }^{4}$ To a stirred solution of (S,S)-(-)-1,2-di(1-naphthyl)-1,2-ethane-diol 95 $(250 \mathrm{mg}, 0.80 \mathrm{mmol})$ and triethylamine $(0.44 \mathrm{~mL}, 3.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{SOCl}_{2}(85 \mu \mathrm{~L}, 1.19 \mathrm{mmol})$ dropwise under Ar atmosphere. After the reaction mixture was stirred for 15 min . at $0{ }^{\circ} \mathrm{C}$, the reaction was diluted with cold $\mathrm{Et}_{2} \mathrm{O}$ after the starting material was completely consumed by TLC. The resulting solution was washed with cold $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum to afford 253 mg of the crude cyclic sulfite as sticky pale yellow oil, which was used in the next step without further purification. A mixture of the crude cyclic sulfite ($253 \mathrm{mg}, 0.70 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(115$ $\mathrm{mg}, 1.77 \mathrm{mmol}$) in anhydrous DMF (4.0 mL) was stirred under Ar for 12 h at $100{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, and then concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:4) to provide 170 mg (63%) of azide compound as white solid. $\mathrm{R}_{\mathrm{f}}: 0.41$ ($\mathrm{EtOAc} / \mathrm{n}-\mathrm{Hexane}, 1 / 4$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96-7.57$ (m, 6H), $7.57-7.54$ (m, 2H), $7.54-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07 (bs, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.9,134.0,133.8,132.0,131.8,131.4,129.5$, $129.2,129.1,126.7,126.5,126.0,125.8,125.4,125.4,123.1,123.0,94.6,73.4,67.4,22.9$.

To a stirred suspension of $\mathrm{LiAlH}_{4}(20 \mathrm{mg}, 0.53 \mathrm{mmol})$ in dry THF $(4.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added the azide ($170 \mathrm{mg}, 0.50 \mathrm{mmol}$) under Ar atmosphere. The resulting green reaction mixture was allowed to warm to rt over a period of 3 h . And then, the dark gray suspension was diluted with THF and carefully quenched by sequential addition of $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.4 \mathrm{~mL})$, and again $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{~mL})$. The resulting solution was stirred at rt for a further 30 min , and a white precipitate was removed by filtration. The clear solution was extracted with EtOAc and $\mathrm{H}_{2} 0$ and the organic layer was dried over MgSO_{4} and concentrated under vacuum. The residue was purified by recrystallization (100% toluene) to afford 85 mg (54%) of 96 as needle crsystal.

[^3]$\mathrm{R}_{\mathrm{f}}: 0.30(\mathrm{EtOAc} / \mathrm{n}-\mathrm{Hexane}, 1 / 1) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.31$ $(\mathrm{m}, 8 \mathrm{H}), 5.87(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{bs}, 3 \mathrm{H})$.

Iododiene-amide 97. To a solution of aminoalcohol $96(67 \mathrm{mg}, 0.21 \mathrm{mmol})$ and dienoic acid $40(52 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added DCC ($45 \mathrm{mg}, 0.22 \mathrm{mmol}$) and DMAP ($4 \mathrm{mg}, 0.03 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for further 17 h , the reaction mixture was filtered through a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 2:3) to provide 79.7 mg (72%) of $\mathbf{9 7}$ as pale yellow solid.
$\mathrm{R}_{\mathrm{f}}: 0.72$ (EtOAc/n-Hexane, 2/3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~m}, 1 \mathrm{H}), 7.74-6.94(\mathrm{~m}$, $13 \mathrm{H}), 6.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d} / \mathrm{d}, J=5.6 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.9$, $142.2,140.9,135.9,133.6,133.5,133.4,132.0,129.0,128.9,128.5,128.4,128.2,128.2,126.6$, $126.0,126.0,125.5,125.0,124.2,122.9,122.9,87.6,72.3,53.3,21.2$.

Iododiene-oxazoline 98. To an ice-cooled solution of iododiene-amide 97 ($79.7 \mathrm{mg}, 0.15$ mmol) and triethylamine ($75 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added methanesulfonyl chloride ($25 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) via syringe in one portion. The reaction mixture was allowed to warm to rt and stirred for further 3 h . Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was poured into the reaction mixture and the organic layer was separated. The water layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$ and the combined organic extracts were dried over MgSO_{4} and concentrated under vacuum The residue was purified by silica gel column chromatography (EtOAc: n-hexane, $1: 2$) to provide 77.1 mg (84%) of crude mesiylate compound as yellow solid. The mesiylate ($77.1 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in methanol $(1.2 \mathrm{~mL})$ and a solution of $\mathrm{NaOH}(17.9 \mathrm{mg}$, $0.44 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ was added in one portion. After refluxing for 4 h , the reaction mixture was allowed to cool to rt and the solvent was concentrated under vacuum. After adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the $a q$. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:2) to provide 42.9 mg (54% for 2 steps) of $\mathbf{9 8}$ as pale yellow solid.
$\mathrm{R}_{\mathrm{f}}: 0.57$ (EtOAc/n-Hexane, 1/2). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.91(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.62$ $(\mathrm{m}, 11 \mathrm{H}), 7.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}$, $1 \mathrm{H}), 6.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 164.6,141.5,137.4,135.6,134.2,133.6,131.0,130.3,129.6,129.3,129.0$, $128.9,126.8,126.4,126.0,125.7,124.7,123.5 .119 .2,87.2,86.6,74.0,21.2,21.1$; HRMS(ESIMS) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[(\mathrm{M}+\mathrm{H})]^{+}$515.0711, found 515.0832.

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
DMF, rt, dark, 15 h, 47 \%

99a

99b

SNF analogs 99a and 99b. To a solution of vinyl stannane $11(20.8 \mathrm{mg}, 0.057 \mathrm{mmol})$ and iododiene-oxazoline 98 ($25.5 \mathrm{mg}, 0.048 \mathrm{mmol}$) in $1: 1$ mixture of anhydrous DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.7 \mathrm{~mL})$ were added cesium fluoride, $\mathrm{CsF}(17.0 \mathrm{mg}, 0.112 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(2.8$ $\mathrm{mg}, 0.014 \mathrm{mmol}$) at rt under deoxygenating with a stream of Ar. After adding tetrakis triphenylphosphine palladium, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(7.2 \mathrm{mg}, 0.006 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min . The reaction mixture stirred for 15 h , and then diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc (3 x 25 mL), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc: n-hexane, 1:5) afforded 17.0 mg of an inseparable crude mixture of diastereomeric 99a and 99b.
$\mathrm{R}_{f}: 0.56$ (EtOAc/n-hexane, 1/5) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.92(\mathrm{~m}, 14 \mathrm{H}), 6.06(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 2 \mathrm{H}),, 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.09$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H},), 3.89(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$, 1.35 ($\mathrm{s}, 3 \mathrm{H}$).

101

Borane-methyl sulfide complex Th, 16 h, 72 \%

103

Diol 103. To a stirred solution of (S)-diphenylprolinol 102 ($127 \mathrm{mg}, 0.50 \mathrm{mmol}$) in anhydrous THF (5.0 mL) was added 2 M borane-dimethylsulfied solution in toluene (5.0 mL , 10.0 mmol), and the reaction mixture was stirred while temperature was maintained at $45^{\circ} \mathrm{C}$ for 16 h to obtain a solution of the catalyst. The resulting mixture was treated dropwise over 10 min with a solution of 1,2 -diketone $101(2.95 \mathrm{~g}, 12.4 \mathrm{mmol})$ in THF $(6.0 \mathrm{~mL})$ at $45{ }^{\circ} \mathrm{C}$. After the addition, the mixture was stirred fro 5 min and quenched cautiously with $\mathrm{MeOH}(1.0 \mathrm{~mL})$ and stirred for an additional 30 min . Most of the sovent was evaporated and the residue was directly purified by silica gel column chromatography (EtOAc: n-hexane, 1:9), and further purified by recrystallization ($100 \% \mathrm{MeOH}$) to provide $2.12 \mathrm{~g}(72 \%)$ of $\mathbf{1 0 3}$ as needles.
$\mathrm{R}_{\mathrm{f}}: 0.59$ (EtOAc/n-Hexane, 1/29). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.05(\mathrm{~s}, 8 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 2.30$ $(\mathrm{s}, 6 \mathrm{H}) . *$ Spectroscopic properties were in agreement with literature values. ${ }^{5}$

103
 25% for 3 steps;

104

Aminoalcohol 104. To a stirred solution of (S,S)-diol $103(217 \mathrm{mg}, 0.90 \mathrm{mmol})$ and triethylamine $(0.60 \mathrm{~mL}, 4.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{SOCl}_{2}(135 \mu \mathrm{~L}, 1.89$ mmol) dropwise under Ar atmosphere. After the reaction mixture was stirred for 15 min . at $0{ }^{\circ} \mathrm{C}$, the reaction was diluted with cold $\mathrm{Et}_{2} \mathrm{O}$ after the starting material was completely consumed by TLC. The resulting solution was washed with cold $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum to afford 232.5 mg of the crude cyclic

[^4]sulfite as red solid, which was used in the next step without further purification. A mixture of the crude cyclic sulfite ($232.5 \mathrm{mg}, 0.81 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(130 \mathrm{mg}, 2.00 \mathrm{mmol})$ in anhydrous DMF $(4.6 \mathrm{~mL})$ was stirred under Ar for 13 h at $100{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, and then concentrated under vacuum to afford 144 mg of the crude azide as viscous pale yellow, which was used in the next step without further purification. $\mathrm{R}_{\mathrm{f}}: 0.68$ (EtOAc/n-Hexane, $1 / 4$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.26-7.15$ $(\mathrm{m}, 8 \mathrm{H}), 4.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H})$.
To a stirred suspension of $\mathrm{LiAlH}_{4}(22 \mathrm{mg}, 0.58 \mathrm{mmol})$ in dry THF $(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added the azide ($144 \mathrm{mg}, 0.54 \mathrm{mmol}$) under Ar atmosphere. The resulting green reaction mixture was allowed to warm to rt over a period of 3 h . And then, the dark gray suspension was diluted with THF and carefully quenched by sequential addition of $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.5 \mathrm{~mL})$, and again $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$. The resulting solution was stirred at rt for 30 min , and a white precipitate was removed by filtration. The clear solution was extracted with EtOAc. Then, the organic layer was dried over MgSO_{4} and concentrated under vacuum. The residue was directly purified by recrystallization (1 mL of 100% toluene) to afford 69.7 mg (32% for 3 steps) of $\mathbf{1 0 4}$ as needles.
$\mathrm{R}_{\mathrm{f}}: 0.29$ ($\mathrm{EtOAc} / \mathrm{n}-\mathrm{Hexane}, 1 / 4$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10-7.05(\mathrm{~m}, 8 \mathrm{H}), 4.81$ (bs, $2 \mathrm{H}), 4.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.0(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.8,138.1,137.6,137.4,129.2,129.6,127.5,127.2,78.1,61.8,21.3$.

40

104

105

Iododiene-amide 105. To a solution of aminoalcohol 104 ($104.1 \mathrm{mg}, 0.43 \mathrm{mmol}$) and dienoic acid $40(109 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$ was slowly added DCC ($100 \mathrm{mg}, 0.49$ mmol) and DMAP ($7.5 \mathrm{mg}, 0.06 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for further 14 h , the reaction mixture was filtered on a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue
was purified by silica gel column chromatography (EtOAc: n-hexane, 1:2) to provide 121.1 mg (63%) of $\mathbf{1 0 5}$ as a pale yellow solid.
$\mathrm{R}_{\mathrm{f}}: 0.73$ (EtOAc/n-Hexane, 2/3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-$ $6.92(\mathrm{~m}, 8 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 5.04$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,140.8$, 137.7, 137.7, 136.9, 134.2, 129.1, 128.9, 128.0, 126.8, 124.8, 87.6, 59.8, 21.3, 21.2.

Iododiene-oxazoline 106. To an ice-cooled solution of iododiene-amide $\mathbf{1 0 5}$ ($79.7 \mathrm{mg}, 0.15$ mmol) and triethylamine ($75 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added methanesulfonyl chloride ($25 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) via syringe in one portion. The reaction mixture was allowed to warm to rt and stirred for further 3 h . Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was poured into the reaction mixture and the organic layer was separated. The water layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$ and the combined organic extracts were dried over MgSO_{4} and concentrated under vacuum The residue was purified by silica gel column chromatography (EtOAc:n-hexane, $1: 2$) to provide $77.1 \mathrm{mg}(84 \%)$ of crude mesilate xxx as yellow solid. The mesilate (77.1 mg , $0.12 \mathrm{mmol})$ was dissolved in methanol $(1.2 \mathrm{~mL})$ and a solution of $\mathrm{NaOH}(17.9 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ was added in one portion. After refluxing for 4 h , the reaction mixture was allowed to cool to rt and the solvent was concentrated under vacuum. After adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the $a q$. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 10 \mathrm{ml})$. The combined organic extracts were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:2) to provide 42.9 mg (54% for 2 steps) of $\mathbf{1 0 6}$ as pale yellow solid.
$\mathrm{R}_{\mathrm{f}}: 0.59$ ($\mathrm{EtOAc} / \mathrm{n}-\mathrm{Hexane}, 1 / 2$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-$ $7.30(\mathrm{~m}, 8 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.9,141.5$,
$138.9,138.6,137.6,137.5,129.8,126.7,126.1,119.7,89.1,86.4,78.7,21.5,21.4,21.3,21.2$, 21.1; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[(\mathrm{M}+\mathrm{H})]^{+} 444.0736$, found 444.0830 .

11

107a

106
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$
DMF, rt, dark, 12 h , 33% (crude)

107b

SNF analogs 107a and 107b. To a solution of vinyl stannane $11(20.8 \mathrm{mg}, 0.057 \mathrm{mmol})$ and iododiene-oxazoline $106(22.9 \mathrm{mg}, 0.050 \mathrm{mmol})$ in anhydrous DMF (1.5 mL) were added cesium fluoride, $\operatorname{CsF}(18.2 \mathrm{mg}, 0.120 \mathrm{mmol})$ and copper iodide, $\mathrm{CuI}(\mathrm{I})(2.5 \mathrm{mg}, 0.013 \mathrm{mmol})$ at rt under deoxygenating with a stream of Ar. After adding $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.9 \mathrm{mg}, 0.006 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued deoxygenating for further 5 min . The reaction mixture stirred for $12-16 \mathrm{~h}$, and then diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. Preparative chromatography (EtOAc:n-hexane, 1:5) afforded 8.9 mg (33%) of a crude inseparable mixture of diastereomeric 107a and 107b.
$\mathrm{R}_{f}: 0.60(\mathrm{EtOAc} / n-\mathrm{Hexane}, 1 / 5){ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.45(\mathrm{~m}, 8 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.78+5.74(\mathrm{~d} / \mathrm{d}, J=21.6 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.50$
$(\mathrm{s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}),, 2.40+2.33$ (s, 3H), 1.77 ($\mathrm{s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.

Chapter II

Shi Epoxidations Toward Preparation of Chiral SNF Analogues

2.1. Introduction

2.1.1. Background

Preparing optically active epoxides from olefins is a very important problem in organic synthesis because the chiral epoxides can be converted into a number of enantiomerically pure molecules such as natural products. Various effective and powerful systems have been disclosed over the years for the preparation of chiral epoxides. ${ }^{1,2}$ Specifically, in the early 1980s, Sharpless discovered asymmetric epoxidations of allylic alcohols with chiral titanium catalyst, now known as "the Sharpless asymmetric epoxidation reaction". ${ }^{3,4}$ Chiral manganese (III)complexes that catalyze epoxidations of cis-olefins were investigated by the Jacobsen and Katsuki groups independently. ${ }^{5-7}$ Recently, using a vanadium catalyst, stereoselective epoxidations of homoallylic alcohols were successfully performed by the Yamamoto group. ${ }^{8}$

On the other hand, organocatalytic asymmetric epoxidations were examined by introducing chiral dioxirane catalysts derived from corresponding ketones to different types of olefins, particularly unfuctionalized trans and trisubstituted forms. In 1984, Curci and co-workers demonstrated that 1-methylcyclohexene $\mathbf{1 0 8}$ can be stereoselectively epoxidized to lead to the corresponding epoxide $\mathbf{1 1 1}$ via dioxirane intermediates derived from chiral ketone-catalysts ($\mathbf{1 0 9}$ or 110). ${ }^{9}$ (See scheme 46.)

Scheme 46. Examples of the first chiral ketone-catalyzed epoxidations.

Among a variety of chiral ketone-based dioxirane catalysts, a D-fructose-derived ketone 112 showed excellent regio- and steteroselectivity and broad functional group tolerance in epoxidation of olefins (Figure 19). ${ }^{10}$

Figure 20. Carbohydrate-based and related ketone catalysts.

Shi and co-workers demonstrated that epoxidation induced by the chiral oxirane, which is generated in situ from ketone 112, has unique advantages: (1) the stereogenic centers are close to the reacting center; (2) the presence of fused ring(s) or a quaternary center α to the carbonyl group minimizes the epimerization of the stereogenic centers; and (3) possible competing approaches of an olefin to the reacting dioxirane can be controlled by sterically blocking one face or using a $C 2$ - or pseudo-C2-symmetric element. According to Shi, optimized pH condition is very critical because at low pH , Oxone ${ }^{\circledR}$ is stable, but $\mathbf{1 1 2}$ rapidly decomposes. On the other hand, at high pH , Oxone ${ }^{\circledR}$ loses its function due to decomposition.

Figure 21. Dioxirane catalyst derived from 112 mediated epoxidation pathways.

As a result, pH 10.5 prepared with $\mathrm{K}_{2} \mathrm{CO}_{3}$ or KOH provides an optimized reaction condition. Asymmetric epoxidation mediated by the chiral ketone 112, is known as " the Shi asymmetric epoxidation reaction"(Figure 20). ${ }^{11}$

The high regio- and stereoselectivity observed in the Shi epoxidation can be explained on the basis of transition state analysis. Baumstark and co-workers proposed two extreme transition state geometries; spiro and planar. They demonstrated that a kinetic study of epoxidations of cisand trans-hexenes with dimethyldioxirane was consistent with the preference of spiro over planar transition states. ${ }^{12,13}$ Computational studies also supported that the stabilizing interaction of an oxygen lone pair with the π^{*} orbital of an olefin shown in TS-I may result in a predominant adduct via the spiro transition state. TS-II represents the relatively unfavorable planar transition state (Figure 21). ${ }^{14,15}$

Figure 22. Spiro and planar transition state for the dioxirane expoxidation of olefins.

Therefore, a preferable geometry would be afforded by minimizing steric hindrance between trisubstituted olefins and the dioxirane derived from 112. The transition state with the spiro geometry is considered more favorable than that with the planar geometry in the Shi system. The lowest energy spiro transition state should be Spiro TS-I (Figure 22). ${ }^{16}$

Spiro TS-I

Spiro TS-II

Spiro TS-III

Spiro TS-IV

Planar TS-I

Planar TS-II

Planar TS-III

Planar TS-IV

Figure 23. Transition state analysis in the Shi asymmetric epoxidation.

Numerous examples of epoxidations performed by the Shi group showed high regio- and stereoselectivity, probably resulting from a preferred spiro transition state. ${ }^{17-23}$ Among them were desymmetrization and kinetic resolution of 1,3-dimethyl-1,4-cyclohexadiene bearing a stereogenic center at the allylic position 113 and 1,4-dimethyl-1,4-cyclohexadiene 115. Shi epoxidations of $\mathbf{1 1 3}$ successfully produced enantioenriched monoepoxide $\mathbf{1 1 4}$ predominantly via spiro transition state (Scheme 47). ${ }^{16}$

Scheme 47. Shi asymmetric epoxidation of 1,5-dimethyl-1,4-cyclohexadiene 113.

Regio- and enantioselective epoxidation of $\mathbf{1 1 5}$ mediated by the chiral dioxirane derived from $\mathbf{1 1 2}$ provided enantioenriched monoepoxide 116 (Scheme 48). ${ }^{16}$

Scheme 48. Shi asymmetric epoxidation of 1,4-dimethyl-1,4-cyclohexadiene 115.

Shi asymmetric epoxidation has been introduced as a key strategy in the total synthesis of natural products and other complex molecules. ${ }^{24-28}$ Among them was progress towards the total synthesis of squalenoid glabrescol. For the construction of five chiral tetrahydrofuran rings in (R)-2,3-dihydroxy-2,3-dihydrosqualene 117, Xiong and Corey adopted the Shi method. Epoxidations of each of the trisubstituted double bonds in 117 were achieved with remarkable enantioselection using the Shi chiral dioxirane derived from 112 to lead to the pentaepoxide 118. Treatment with camphor-10-sulfonic acid (CSA) gave the pentaoxacyclic structure 119 (Scheme 49). ${ }^{28}$

117
$\downarrow \begin{aligned} & \text { Shi catalyst, Oxone, DMM, } \\ & \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 10.5,0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}\end{aligned}$

118
CSA, toluene, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$
31% (2 steps)

119

Scheme 49. Shi asymmetric epoxidation of dihydrosqualene 117.

2.1.2. Preparation of chiral SNF analogs by Shi asymmetric epoxidation

In challenges for preparing enantiomerically pure natural products, Shi asymmetric epoxidations of trisubstituted cis-olefins have provided enough potential to compete with other stereoselective epoxidations. Our particular interest in the Shi epoxidation focuses on preparation of enantiomerically pure monoepoxide $\mathbf{1 2 0}$ which might be elaborated to chiral SNF analog $\mathbf{3 5}$. Shi asymmetric epoxidation via kinetic resolution can be considered as a potentially efficient route to provide chiral SNF analogs (Figure 23).
Shi epoxidation
Racemate 35

Enantiomer 35 $\uparrow \quad \mathrm{Ar}=4$-nitrophenyl

$$
\mathrm{Ar}=4 \text {-nitrophenyl }
$$

Enantiomer 120

Figure 24. A strategy for obtaining chiral SNF analog 35 via Shi epoxidation.

The Shi epoxidation provided excellent regio- and stereoselectivity for the 1,5-dimethyl- or 1,3-dimethyl-1,4-cyclohexadiene substrates. (See Schemes 44 and 45.) The bicyclooctadiene 35 is considered as a suitable substrate because methyl ester 35 can be readily converted into corresponding carboxylic acid 46, which is a key intermediate for the construction of chiral analogs of the SNF multidrug resistance reversal agents. (See Scheme 13 in Chapter I.)

In principle, eight regio- and stereoisomeric monoepoxide isomers $\mathbf{1 2 0}$ and $\mathbf{1 2 1}$ can be produced from racemic bicyclooctadiene 35 (Figure 24).

Figure 25. Structural relationship between monoepoxides 120 and 121.

Due to the steric effect of the methyl group on the ring junction of 35, high regio- and stereoselectivity is anticipated that will lead predominantly to monoepoxides $\mathbf{1 2 0}$. The 4 nitrophenyl group is considered closer to the olefin, which is adjacent to the methyl group on the ring junction. Therefore, the dioxirane to the olefin might be unfavorable.

2.2. Result and Discussion

2.2.1. Shi asymmetric epoxidations of the bicyclo[4.2.0]octadiene 35 .

Bicyclooctadiene 35 was readily prepared from Stille coupling and tandem $8 \pi, 6 \pi$ electrocyclization. (See Scheme 11 in Chapter I.) ${ }^{29}$ For comparison of affinity and catalytic ability of the dioxirane catalyst derived from ketone 112, epoxidation of $\mathbf{3 5}$ was performed with 0.5 eq. of meta-chloroperoxybenzoic acid (mCPBA) (Scheme 50). As expected, four diastereomeric monoepoxides $\mathbf{1 2 0} / \mathbf{b}$ and $\mathbf{1 2 1 a} / \mathbf{b}$ were observed on the basis of ${ }^{1} \mathrm{H}$ NMR analysis. The ratio was $35: 5: 5: 55(\mathbf{1 2 0 a}: \mathbf{1 2 0 b}: 121 \mathrm{a}: \mathbf{1 2 1 b})$.

35

120a

121a

120b

121b

Scheme 50. mCPBA-derived epoxidation of bicyclooctadiene 35.

Shi asymmetric epoxidation of 35 was carried out in the presence of 0.5 eq. of Oxone ${ }^{\circledR}$ and $50 \mathrm{~mol} \%$ of the ketone $\mathbf{1 1 2}$ under monitoring by TLC. ${ }^{30}$ After adding 0.1 eq. of Oxone ${ }^{\circledR}$, two spots immediately appeared with similar intensity by analysis with UV and with 10 \% PMA solution in EtOH . The ratio of the two spots was preserved until 0.5 eq. of Oxone ${ }^{\circledR}$ was
consumed. Eventually, $\mathbf{3 5}$ was completely oxidized by addition of 1.0 eq. of Oxone ${ }^{\circledR}$ to yield two separable diastereomeric monoexpoxides 120a and 120b (Scheme 51).

Scheme 51. Shi expoxidation of 35 and in-process monitoring by TLC.

Monoepoxides 120a and 120b were produced in almost equal amounts. Their geometries were determined on the basis of nOe experiments (Figure 25).

Figure 26. Structure determination of $\mathbf{1 2 0 a}$ and $\mathbf{1 2 0 b}$ by NOE experiment.

Despite high regioselectivity and yield, the stereochemical communication between bicyclooctadiene $\mathbf{3 5}$ and the dioxirane catalyst derived from the ketone $\mathbf{1 1 2}$ was not efficient. Mosher ester analysis approach was adopted in order to determine stereochemistry of 120a and 120b. ${ }^{31}$ 120a was treated with NaBH_{4} in MeOH for selective reduction of the methyl ester moiety in the presence of epoxide moiety. ${ }^{32}$ Initially, 7.0 eq. of NaBH_{4} was used to convert ester 120a into corresponding hydroxyl compound 122a. To complete the reduction of 120a, an additional 7.0 eq. of NaBH_{4} was again added, but the conversion ratio was not improved. 122a was directly treated with R-(-)-Mosher's reagent to produce corresponding (S)-Mosher ester 123a (Scheme 52). Interestingly 123a exhibited a single set of peaks in the proton NMR spectra.

120a

122a

123a

Scheme 52. Mosher ester analysis of 120a.

The two geminal protons of the methylene attached to the ester linkage showed the same peak pattern as that of bicyclooctadiene 84b. According to Kobayashi, ${ }^{33}$ the absolute configuration of primary alcohols possessing a branched methyl group can be assigned on a basis of the chemical shift differences of the geminal protons. Presumably, the relative stereochemistry of (S)-Mosher ester 123a may be the opposite of (R)-Mosher ester 84a, whose absolute stereochemistry was already determined on the basis of X-ray crystallography of the SNF analog 43a. It may be
consistent with (S)-Mosher ester 84b. However, Kobayashi and co-workers also mentioned that this method could not be applied for C2-branched primary alcohols with a conjugated group or a consecutive chiral center at $\mathrm{C} 3 .{ }^{34}$ Therefore, it is not quiet obvious that the absolute configuration of monoepoxide (\mathbf{S})-123b is the same of that of bicyclooctadiene (\mathbf{S})-84b (Figure 26).

(S)-84b

(R)-84b

(S)-123a

Figure 27. Comparison between Mosher esters 84a, 84b, and 123b.

Two pathways can be considered to generate enantiomeric monoepoxide 120a. (See below Scheme 53).

Racemate 120a

Scheme 53. Possible pathways for generating the enantiomer 122a.

According to Route I, although Shi epoxidation of $\mathbf{3 5}$ yielded the two diastereomers 120a and 120b, monoepoxide 120a was produced as a single enantiomer. Reduction led directly to the corresponding hydroxyl compound 122a. Further study focused on reduction of the other diastereomer, compound 120b. Interestingly, the methyl ester group in 120b was not reduced despite treatment with an extremely large excess of NaBH_{4}. Instead, a small amount of $\mathbf{1 2 4 b}$ resulting from epoxide ring opening of 120b was produced. Introducing stronger reducing agents such as $\mathrm{LiAlH}_{4}{ }^{35,36}$ and DIBAL-H ${ }^{37}$ only afforded over-reduced diol 125b (Scheme 54).

Scheme 54. Synthetic attempt towards selective reduction of methyl ester in $\mathbf{1 2 0 b}$.

2.2.2. Shi epoxidation of endo bicyclooctadiene 128 and exo 129

Particular interest in endo bicyclooctadiene $\mathbf{1 2 8}$ was based on its unique structure, because the methyl group on the cyclobutane ring can generate steric hindrance against approach of the dioxirane catalyst to the top face (Figure 27).

128

Figure 28. Steric effect anticipated by the methyl group in endo 128.

The endo racemic bicyclooctadiene 128 along with exo $\mathbf{1 2 9}$ was prepared from Stille coupling between 11 and 130, and then tandem $8 \pi, 6 \pi$ electrocyclization (Scheme 55). ${ }^{38}$

128

129

Scheme 55. Preparation of endo 128 and exo 129.

Firstly due to structural similarity between diastereomeric bicyclooctadienes 128 and 129, we examined Shi epoxidation with exo 129. Under the given conditions, Shi asymmetric expoxidation of $\mathbf{1 2 9}$ afforded two diastereomeric monoepoxides 131a and 131b with 80% yield in a ratio of $1: 1$ (Scheme 56).

129

112
TBAHS, DMM, ACN,
$\xrightarrow[\text { aq. } \mathrm{K}_{2} \mathrm{CO}_{3} \text {, Oxone }]{\text { Buffer sol }}$ $\mathrm{O}^{\circ} \mathrm{C}, 1 \mathrm{~h}, 80 \%$

131b

Scheme 56. Shi epoxidation of exo bicyclooctadiene 129.

No significantly different phenomenon was observed compared to the epoxidation of 35 . Presumably, the methyl group in exo $\mathbf{1 2 9}$ which is not oriented toward the cyclohexadiene ring might not contribute to generating steric effect during the Shi epoxidation (Figure 28).

Figure 29. Structural geometry of exo 129.

Shi epoxidation of endo $\mathbf{1 2 8}$ was performed under the given reaction conditions (Scheme 57). A single monoepoxide 132 was produced on the basis of TLC and ${ }^{1} \mathrm{H}$ NMR analysis. Interestingly $\mathbf{1 3 2}$ showed exactly the same chemical shifts and splitting patterns for all protons as either monoepoxide 131a or 131b, which were afforded from exo 129. The experiment was repeated with the same result.

128

132

Scheme 57. Shi epoxidation of endo bicycloctadiene 128.
In order to investigate the unusual phenomenon observed in the epoxidation of endo 128, Shi epoxidation of a mixture of $\mathbf{1 2 8}$ and $\mathbf{1 2 9}$ was performed with 0.45 eq of Oxone ${ }^{\circledR}$ under a common set of reaction conditions. The crude ${ }^{1} \mathrm{H}$ NMR spectrum indicated that two monoepoxides were produced in a ratio of $1.00: 1.81$ (the faster moving isomer : the slower moving isomer). Chemical shifts and splitting patterns of the two monoepoxides were consistent with that of $\mathbf{1 3 1 a}$ and 131b. On the other hand, bicyclooctadienes $\mathbf{1 2 8}$ and $\mathbf{1 2 9}$ were recovered in a ratio of 1.00 : 1.35 (endo $\mathbf{1 2 8}$: exo 129). As starting materials, the ratio between $\mathbf{1 2 8}$ and $\mathbf{1 2 9}$
was 1.00 : 1.79 (endo 128 : exo 129). Interestingly, after performing preparative TLC, the ratio between the two monoepoxides was $1.00: 0.32$ (the faster moving isomer : the slower moving isomer). According to the ${ }^{1} \mathrm{H}$ NMR analysis, the ratio did not change after a 2-day standing.

2.2.3. Bisepoxidation of monoepoxides 120 a and 120 b

No bisepoxides were observed in the Shi epoxidations of bicyclooctadiene substrates tested. However, epoxidation of monoepoxide 120a with mCPBA successfully afforded diastereomeric bisepoxides 133a and 133b in the presence of mCPBA (Scheme 58). ${ }^{41}$

Scheme 58. Epoxidation of monoepoxide 120a.
Under the given reaction conditions, monoepoxide $\mathbf{1 2 0 b}$ also produced two diastereomeric bisepoxides 134a and 134b (Scheme 59).

Scheme 59. Epoxidation of monoepoxide 120b.

2.3. Conclusion

Shi epoxidation of racemic bicyclooctadiene substrates was examined to prepare corresponding enantiomeric monoepoxides which could be precursors of chiral SNF analogs. High regioselectivity and yield were observed, but any notable stereoselectivity was not obtained throughout Shi asymmetric epoxidation induced by the chiral dioxirane catalyst derived from ketone 112. Experimental results from the Mosher ester analysis of 120a and the Shi epoxidation of endo 128 and exo 129 may be supported by future experiments. Epoxidation of monoepoxides 121a and 121b envisioned high potential for preparing chiral 1,3-diepoxide moieties which could be applied to the total synthesis of elysiapyrones A and B.

2.4. Reference

(1) Besse, P.; Veschambre, H. Tetrahedron 1994, 50, 8885.
(2) Li, A. H.; Dai, L. X.; Aggarwal, V. K. Chem Rev 1997, 97, 2341.
(3) Katsuki, T.; Sharpless, K. B. J Am Chem Soc 1980, 102, 5974.
(4) Pfenninger, A. Synthesis-Stuttgart 1986, 89.
(5) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J Am Chem Soc 1990, 112, 2801.
(6) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J Am Chem Soc 1991, 113, 7063.
(7) Hosoya, N.; Irie, R.; Katsuki, T. Synlett 1993, 261.
(8) Yamamoto, H.; Makita, N.; Hoshino, Y. Angew Chem Int Edit 2003, 42, 941.
(9) Curci, R.; Fiorentino, M.; Serio, M. R. J Chem Soc Chem Comm 1984, 155.
(10) Tu, Y.; Wang, Z. X.; Shi, Y. J Am Chem Soc 1996, 118, 9806.
(11) Shi, Y.; Wong, O. A. Chem Rev 2008, 108, 3958.
(12) Baumstark, A. L.; Mccloskey, C. J. Tetrahedron Lett 1987, $28,3311$.
(13) Bach, R. D.; Andres, J. L.; Owensby, A. L.; Schlegel, H. B.; Mcdouall, J. J. W. J Am Chem Soc 1992, 114, 7207.
(14) Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J Am Chem Soc 1997, 119, 10147.
(15) Houk, K. N.; Jenson, C.; Liu, J.; Jorgensen, W. L. J Am Chem Soc 1997, 119, 12982.
(16) Shi, Y.; Lorenz, J. C.; Frohn, M.; Zhou, X. M.; Zhang, J. R.; Tang, Y.; Burke, C. J Org Chem 2005, 70, 2904.
(17) Shi, Y.; Burke, C. P. Angew Chem Int Edit 2006, 45, 4475.
(18) Shi, Y.; Goeddel, D.; Shu, L. H.; Yuan, Y.; Wong, A.; Wang, B. J Org Chem 2006, 71, 1715.
(19) Shi, Y.; Wang, B.; Shen, Y. M. J Org Chem 2006, 71, 9519.
(20) Shi, Y.; Wang, B.; Wong, O. A.; Zhao, M. X. J Org Chem 2008, 73, 9539.
(21) Shi, Y.; Wang, B.; Wu, X. Y.; Wong, O. A.; Nettles, B.; Zhao, M. X.; Chen, D. J. J Org Chem 2009, 74, 3986.
(22) Shi, Y.; Burke, C. P. J Org Chem 2007, 72, 4093.
(23) Shi, Y.; Burke, C. P.; Shu, L. J Org Chem 2007, 72, 6320.
(24) Wiemer, D. F.; Neighbors, J. D.; Mente, N. R.; Boss, K. D.; Zehnder, D. W. Tetrahedron Lett 2008, 49, 516.
(25) Morimoto, Y.; Nishikawa, Y.; Takaishi, M. J Am Chem Soc 2005, 127, 5806.
(26) Ready, J. M.; Bian, J. W.; Van Wingerden, M. J Am Chem Soc 2006, 128, 7428.
(27) Coster, M. J.; Magolan, J. J Org Chem 2009, 74, 5083.
(28) Corey, E. J.; Xiong, Z. M. J Am Chem Soc 2000, 122, 9328.
(29) Beaudry, C. M.; Trauner, D. Org Lett 2005, 7, 4475.
(30) Davies, S. G.; Fletcher, A. M.; Kurosawa, W.; Lee, J. A.; Poce, G.; Roberts, P.
M.; Thomson, J. E.; Williamson, D. M. J Org Chem 2010, 75, 7745.
(31) Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J Am Chem Soc 1997, 119, 11224.
(32) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat Protoc 2007, 2, 2451.
(33) Li, L. C.; Jiang, J. X.; Ren, J.; Ren, Y.; Pittman, C. U.; Zhu, H. J. Eur J Org Chem 2006, 1981.
(34) Tsuda, M.; Toriyabe, Y.; Endo, T.; Kobayashi, J. Chem Pharm Bull 2003, 51, 448.
(35) Hayashi, Y.; Shoji, M.; Imai, H.; Mukaida, M.; Sakai, K.; Kakeya, H.; Osada, H. J Org Chem 2005, 70, 79.
(36) Avdagic, A.; Cotarca, L.; Hamersak, Z.; Hollosi, M.; Majer, Z.; Ljubovic, E.; Suste, A.; Sunjic, V. Chirality 1997, 9, 512.
(37) Yoon, N. M.; Gyoung, Y. S. J Org Chem 1985, 50, 2443.
(38) Parker, K. A.; Lim, Y. H. J Am Chem Soc 2004, 126, 15968.
(39) Altenbach, H. J.; Block, O.; Klein, G.; Brauer, D. J. J Org Chem 2000, 65, 716.

2.5. Experimental section

Monoepoxides 120a/b and 121a/b. To a solution of bicyclooctadiene $\mathbf{3 5}$ ($20 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added mCPBA ($6.0 \mathrm{mg}, 0.03 \mathrm{mmol}$) at rt. After stirring for 3 h at rt , EtOAc was poured into the reaction mixture, and washed with saturated $\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine. The organic layers were concentrated under vacuum. The residue was purified by preparative chromatography to give $7.6 \mathrm{mg}(37 \%)$ of separable mixture of two monoepoxides 121b and 120a (6.4 mg) in a ratio of $3: 2$ and inseparable mixture of the other monoepoxides 121a and $\mathbf{1 2 0 b}(1.2 \mathrm{mg})$ in a ratio of $1: 1$. Also, $10.2 \mathrm{mg}(51 \%)$ of $\mathbf{3 5}$ was recovered.

121b
$\mathrm{R}_{f}: 0.60(\mathrm{EtOAc} / \mathrm{n}$-hexane, $1 / 6) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=9.9$
$\mathrm{Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$.

121a and 120b

$\mathrm{R}_{f}: 0.55(\mathrm{EtOAc} / \mathrm{n}$-hexane, $1 / 6) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15+8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22+7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.70+4.73(\mathrm{~s}, 1 \mathrm{H}), 3.69+3.70(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 8.4$ $\mathrm{Hz}, 0.5 \mathrm{H}), 3.47(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.43(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.15(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 9.6 \mathrm{~Hz}$,
$0.5 \mathrm{H}), 2.91(\mathrm{~s}, 0.5 \mathrm{H}), 2.90(\mathrm{~s}, 0.5 \mathrm{H}), 2.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 1.5 \mathrm{H}), 1.40(\mathrm{~s}, 1.5 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$.

120a

$\mathrm{R}_{f}: 0.50(\mathrm{EtOAc} / \mathrm{n}$-hexane, $1 / 6) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$.

35

120b

Monoepoxides 120a and 120b. To a solution of bicyclooctadiene 35 ($25 \mathrm{mg}, 0.076 \mathrm{mmol}$), catalyst $112(10 \mathrm{mg}, 0.039 \mathrm{mmol})$, and TBAHS ($2 \mathrm{mg}, 0.006 \mathrm{mmol}$) in DMM (1.5 mL), ACN $(0.8 \mathrm{~mL})$, and buffer solution $\left(0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right.$ in $4 \times 10^{-4} \mathrm{M} \mathrm{Na} \mathrm{Na}_{2}$-EDTA, 1.5 mL) were added a solution of Oxone ${ }^{\circledR}(51 \mathrm{mg}, 0.083 \mathrm{mmol})$ in aq. Na ${ }_{2}$ EDTA $\left(4 \times 10^{-4} \mathrm{M}, 1.5 \mathrm{~mL}\right)$ and a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(116 \mathrm{mg}, 0.853 \mathrm{mmol})$ in water $(1.5 \mathrm{~mL})$ separately at the same time at $0{ }^{\circ} \mathrm{C}$ over 40 min . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with n-pentane, washed with brine, dried over MgSO_{4}, filtered, concentrated, and purified by preparative chromatography to give $24 \mathrm{mg}(91 \%)$ of separable mixture of $\mathbf{1 2 0 a}$ and $\mathbf{1 2 0 b}$ in a ratio of $1: 1$ as pale yellow oil.

120a
$\mathrm{R}_{f}: 0.50(\mathrm{EtOAc} / \mathrm{n}$-hexane, $1 / 6) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.4, 145.9, 132.3, 128.8, 128.7, 123.6, 57.4, 55.0, 52.2, 50.7, 44.2, 43.3, 39.8, 31.1, 29.4, 23.8, 22.1.

120b

$\mathrm{R}_{f:}: 0.55$ (EtOAc/n-hexane, 1/6). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 173.5, 147.1, 145.1, 132.1, 128.5, 127.7, 123.8, 62.6, 58.4, 52.3, 51.2, 44.5, 42.9, 41.7, 29.7, 22.8, 19.8.

Difference NOE for 120a

<Selected NOE signals of 120a >

<Difference NOE chart of 120a >

Irradiated (saturate) peak	Enhanced peaks
3.18 ppm	$7.26 \mathrm{ppm}, 3.48 \mathrm{ppm}, 2.80 \mathrm{ppm}, 1.40 \mathrm{ppm}$
4.67 ppm	$7.26 \mathrm{ppm}, 2.80 \mathrm{ppm}, 1.32 \mathrm{ppm}$
2.91 ppm	$1.82 \mathrm{ppm}, 1.40 \mathrm{ppm}$
3.48 ppm	$7.26 \mathrm{ppm}, 3.18 \mathrm{ppm}, 1.32 \mathrm{ppm}$
1.32 ppm	$7.26 \mathrm{ppm}, 3.48 \mathrm{ppm}, 2.80 \mathrm{ppm}$
1.82 ppm	4.67 ppm
2.80 ppm	$3.48 \mathrm{ppm}, 3.18 \mathrm{ppm}, 1.40 \mathrm{ppm}, 1.32 \mathrm{ppm}$
1.32 ppm	$7.26 \mathrm{ppm}, 4.67 \mathrm{ppm}, 3.48 \mathrm{ppm}, 2.80 \mathrm{ppm}$

1.40 ppm	$3.18 \mathrm{ppm}, 2.91 \mathrm{ppm}, 2.80 \mathrm{ppm}$
8.18 ppm	7.26 ppm

Difference NOE for 120b

<Selected NOE signals of $\mathbf{1 2 0 b}$ >

<Difference NOE chart of $\mathbf{1 2 0 b}$ >

Irradiated (saturate) peak	Enhanced peaks
3.55 ppm	$7.31 \mathrm{ppm}, 3.44 \mathrm{ppm}, 2.69 \mathrm{ppm}$
4.71 ppm	$7.31 \mathrm{ppm}, 1.81 \mathrm{ppm}, 1.29 \mathrm{ppm}$
2.91 ppm	$7.31 \mathrm{ppm}, 1.81 \mathrm{ppm}, 1.51 \mathrm{ppm}$,
3.44 ppm	$7.31 \mathrm{ppm}, 3.55 \mathrm{ppm}, 2.69 \mathrm{ppm}, 1.29 \mathrm{ppm}$
1.29 ppm	$7.31 \mathrm{ppm}, 4.71 \mathrm{ppm}, 3.70 \mathrm{ppm}, 3.44 \mathrm{ppm}, 2.69 \mathrm{ppm}, 1.51 \mathrm{ppm}$
1.81 ppm	$4.71 \mathrm{ppm}, 2.91 \mathrm{ppm}$
2.69 ppm	$3.44 \mathrm{ppm}, 3.70 \mathrm{ppm}, 3.55 \mathrm{ppm}, 1.51 \mathrm{ppm}, 1.29 \mathrm{ppm}$
1.51 ppm	$2.91 \mathrm{ppm}, 2.69 \mathrm{ppm}, 1.29 \mathrm{ppm}$
2.91 ppm	$7.31 \mathrm{ppm}, 1.81 \mathrm{ppm}, 1.51 \mathrm{ppm}$,
8.15 ppm	7.31 ppm

120a

122a

Monoepoxide 122a. To a stirred solution of 120a ($4.2 \mathrm{mg}, 0.012 \mathrm{mmol}$) in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(2.7 \mathrm{mg}, 0.071 \mathrm{mmol})$ in three portions at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was allowed to warm to rt and stirred for 30 min . After monitoring the reaction by TLC, $\mathrm{NaBH}_{4}(2.5$ $\mathrm{mg}, 0.066 \mathrm{mmol}$) was again added in three portions at rt . The reaction mixture was concentrated under vacuum. The residue was purified by preparative chromatography to give 1.8 mg (47%) of $\mathbf{1 2 2 a}$ as pale yellow oil.
$\mathrm{R}_{f:}: 0.21$ (EtOAc/hexane, 1/3). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H})$, $2.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.

122a

123a
(S)-Mosher ester 123a. To a solution of monoepoxide 122a ($1.8 \mathrm{mg}, 0.006 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added DMAP ($3.2 \mathrm{mg}, 0.026 \mathrm{mmol}$) and pyridine $2.5 \mu \mathrm{~L}, 0.030 \mathrm{mmol}$) at rt. After (R$)-\mathrm{MTPA}-\mathrm{Cl}(4 \mu \mathrm{~L}, 0.021 \mathrm{mmol})$) was added in a one portion, the reaction mixture was stirred for 6 h at rt . The reaction mixture was filtered on a Celite ${ }^{\circledR}$ and then, the reaction mixture was concentrated under vacuum. The residue was purified by preparative chromatography to give $1.3 \mathrm{mg}(43 \%)$ of 123a as pale yellow oil.
$\mathrm{R}_{f}: 0.59$ (EtOAc/n-hexane, 1/3). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.4 \mathrm{~Hz}$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.

Alcohol 124b from $\mathbf{N a B H}_{4}$. To a stirred solution of monoepoxide 120b $(3.2 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(2.0 \mathrm{mg}, 0.053 \mathrm{mmol})$ in three portions at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was allowed to warm to rt and stirred for 30 min . After monitoring the reaction by TLC, $\mathrm{NaBH}_{4}(6.0 \mathrm{mg}, 0.159 \mathrm{mmol})$ was again added in three portions at rt during 1.5 h . The reaction mixture was concentrated under vacuum. The residue was purified by preparative chromatography to give $1.1 \mathrm{mg}(26 \%)$ of $\mathbf{1 2 4 b}$ as pale yellow oil.
$\mathrm{R}_{f}: 0.19$ (EtOAc/hexane, $1 / 3$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, J $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.41$ (s, 3H), 1.26 (s, 3H).

120b

125b

Diol 125b from LiAlH_{4}. To a solution of monoepoxide $\mathbf{1 2 0 b}(2.2 \mathrm{mg}, 0.007 \mathrm{mmol})$ in dry THF (0.6 mL) was added $\mathrm{LiALH}_{4}(0.94 \mathrm{mg}, 0.02 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2.5 h at rt , and quenched with EtOAc followed by 50% aqueous potassium sodium tartrate. The resulting solution was allowed to warm to rt and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were concentrated under vacuum. The residue was purified by preparative chromatography to give 0.6 mg (35%) of $\mathbf{1 2 5 b}$ as pale yellow oil.
$\mathrm{R}_{f}: 0.10$ (EtOAc/n-hexane, 1/3). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.

120b

125b

Diol 125b from DIBAL-H. To a solution of monoepoxide 120b ($1.8 \mathrm{mg}, 0.006 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added DIBAL-H (1.0 M of n-hexane, $40 \mu \mathrm{~L}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1.5 h at $-78{ }^{\circ} \mathrm{C}$, and quenched with EtOAc followed by 50% aqueous potassium sodium tartrate. The resulting solution was allowed to warm to rt and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were concentrated under vacuum. The residue was purified by preparative chromatography to give $0.8 \mathrm{mg}(47 \%)$ of $\mathbf{1 2 5 b}$ as pale yellow oil.
$\mathrm{R}_{f}: 0.10\left(\mathrm{EtOAc} / \mathrm{n}\right.$-hexane, 1/3). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.

11
130
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CsF}, \mathrm{Cul}(\mathrm{I})$,
DMF, $45^{\circ} \mathrm{C}$, dark, 72 \%

Endo 128 and Exo 129. To a solution of iododiene $130(62 \mathrm{mg}, 0.22 \mathrm{mmol})$ and vinyl stannane 11 ($84 \mathrm{mg}, 0.23 \mathrm{mmol}$) in anhydrous DMF (4.0 mL) were added CsF ($67 \mathrm{mg}, 0.42$ $\mathrm{mmol}), \mathrm{CuI}(8 \mathrm{mg}, 0.04 \mathrm{mmol})$ at rt under degassing with a stream of Ar. After adding $\mathrm{Pd}^{(}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ ($27 \mathrm{mg}, 0.02 \mathrm{mmol}$), the reaction flask was immediately wrapped with aluminum foil and continued degassing for further 5 min . The reaction mixture was stirred for 3 h at $45^{\circ} \mathrm{C}$, allowed to cool to rt, and then diluted with EtOAc (30 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 20 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by chromatography on silica gel (EtOAc/n-hexane, 1:8) to provide $57 \mathrm{mg}(72 \%)$ of separable mixture of $\mathbf{1 2 8}$ and $\mathbf{1 2 9}$ in a ratio of $3: 5$ as pale yellow oil.

Endo 128

$\mathrm{R}_{\mathrm{f}}: 0.5\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $\left.1 / 8\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H})$, $2.97(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.

Exo 129

$\mathrm{R}_{\mathrm{f}}: 0.45\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-pentane, $\left.1 / 8\right) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$.

* ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{1 2 8}$ and $\mathbf{1 2 9}$ were in agreement with reference. ${ }^{6}$

129

131a

131b

Monoepoxides 131a and 131b. To a solution of exo 129 ($3.0 \mathrm{mg}, 0.008 \mathrm{mmol}$), catalyst 112 $(1.1 \mathrm{mg}, 0.004 \mathrm{mmol})$, and TBAHS $(0.3 \mathrm{mg}, 0.001 \mathrm{mmol})$ in DMM ($170 \mu \mathrm{~L})$, ACN $(100 \mu \mathrm{~L})$, and buffer solution ($0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2}$-EDTA, $170 \mu \mathrm{~L}$) were added a solution of Oxone ${ }^{\circledR}(2.6 \mathrm{mg}, 0.008 \mathrm{mmol})$ in aq. Na_{2} EDTA $\left(4 \times 10^{-4} \mathrm{M}, 170 \mu \mathrm{~L}\right)$ and a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(12.4 \mathrm{mg}, 0.091 \mathrm{mmol})$ in water $(170 \mu \mathrm{~L})$ separately at the same time at $0{ }^{\circ} \mathrm{C}$ over 30 min. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with n-pentane, washed with brine, dried over MgSO_{4}, filtered, concentrated, and purified by preparative chromatography to give 2.5 $\mathrm{mg}(80 \%)$ of separable mixture of 131a and 131b in a ratio of $1: 1$ as pale yellow oil.

The slower moving isomer

$\mathrm{R}_{f}: 0.41$ (EtOAc/n-hexane, 1/6). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$.

The faster moving isomer
$\mathrm{R}_{f}: 0.46$ (EtOAc/n-hexane, 1/6). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=14.1 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 2 \mathrm{H}),, 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.91$

[^5]$(\mathrm{t}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25$ (s, 3H).

128

112 TBAHS, DMM, ACN, $\xrightarrow[\text { aq. } \mathrm{K}_{2} \mathrm{CO}_{3} \text {, Oxone }]{\text { Buffer sol }}$ $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 73 \%$

132

Monoepoxide 132. To a solution of endo $\mathbf{1 2 8}(3.2 \mathrm{mg}, 0.009 \mathrm{mmol})$, catalyst $\mathbf{1 1 2}(1.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, and TBAHS ($0.35 \mathrm{mg}, 0.001 \mathrm{mmol}$) in DMM (0.5 mL), ACN (0.2 mL), and buffer solution ($0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} .10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2}$-EDTA, 0.25 mL) were added a solution of Oxone ${ }^{\circledR}(180 \mu \mathrm{~L}, 0.009 \mathrm{mmol})$ in aq. $\mathrm{Na}_{2} \operatorname{EDTA}\left(4 \times 10^{-4} \mathrm{M}, 0.25 \mathrm{~mL}\right)$ and a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(13.2 \mathrm{mg}, 0.097 \mathrm{mmol})$ in water $(0.25 \mathrm{~mL})$ separately at the same time at $0{ }^{\circ} \mathrm{C}$ over 40 min . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with n-pentane, washed with brine, dried over MgSO_{4}, filtered, concentrated, and purified by preparative chromatography to give 2.4 mg (73 \%) of $\mathbf{1 3 2}$ as pale yellow oil.
$\mathrm{R}_{f:}: 0.46$ (EtOAc/hexane, 1/6), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=14.1 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.91$ $(\mathrm{s}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.25 (s, 3H).

Bisepoxides 133a and 133b. To a stirred solution of monoepoxide 120a ($5.4 \mathrm{mg}, 0.016$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$, mCPBA (70% assay, $3.8 \mathrm{mg}, 0.016 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ was
added at rt. After the reaction was completed by monitoring TLC, the reaction mixture was quenched with EtOAc, satd. NaHCO_{3}, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic solution was extracted with satd. NaHCO_{3}, satd. $\mathrm{NH}_{4} \mathrm{Cl}$, and brine. The organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by preparative chromatography to give 2.5 $\mathrm{mg}(44 \%)$ of separable mixture of 133a and 133b as pale yellow oil.

The faster moving isomer

$\mathrm{R}_{f}: 0.26(\mathrm{EtOAc} /$ hexane, $1 / 3) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}),, 3.56(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$.

The slower moving isomer

$\mathrm{R}_{f}: 0.11$ (EtOAc/hexane, $1 / 6$), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.61$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.

120b

134a

134b

Bisepoxides 134a and 134b. To a stirred solution of monoepoxide 120b ($3.0 \mathrm{mg}, 0.009$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$, mCPBA (70% assay, $8.4 \mathrm{mg}, 0.036 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{~mL})$ was added at rt . After the reaction was completed by monitoring TLC, the reaction mixture was quenched with EtOAc, satd. NaHCO_{3}, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic solution was extracted with satd. NaHCO_{3}, satd. $\mathrm{NH}_{4} \mathrm{Cl}$, and brine. The organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by preparative chromatography to give 1.1 mg (34%) of 134a and 134b as pale yellow oil.

The faster moving isomer

$\mathrm{R}_{f:} 0.26$ ($\mathrm{EtOAc} / \mathrm{hexane}, 1 / 3$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$) , $7.48(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{q}, J=8.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ $(\mathrm{s}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}),(\mathrm{s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.

Chapter III

Aspartate-Catalyzed Asymmetric Epoxidation
 Towards Preparation of Chiral SNF Analogs

3.1. Introduction

3.1.1. Background

Method development for the preparation of enantiomerically pure epoxides is one of the most important fields of asymmetric catalysis. ${ }^{1}$ Current methodology for the catalytic asymmetric epoxidation of olefins heavily depends on the use of chiral metal complexes ${ }^{2}$ or on the use of organocatalysts such as chiral ketones. ${ }^{3}$ Alternative methods to prepare enantiomerically pure epoxides are the addition of chiral sulfur ylides to aldehydes, ${ }^{4}$ or the peptide-catalyzed asymmetric epoxidation of enones (Julia-Colonna epoxidation). ${ }^{5}$

Since 2000, the Miller group has investigated highly enantioselective organocatalysts which result from the combination of short oligopeptides with catalytically active functional groups. ${ }^{6,7}$ A notable result was the development of acyl-transfer reactions that employ nucleophilic catalysis by N-methyl histidines. ${ }^{8}$ More recently, Miller and co-workers further expanded the role of peptide catalysts towards preparation of enantiomerically pure epoxides. The method is based on the generation of a percarboxylic acid from a carboxylic acid (Figure 29). ${ }^{9}$

Figure 30. Epoxidation catalysis by an acid and peracid pair.

In the early stage of their study, Miller and co-workers employed N-Boc-protected-aspartate benzyl ester 135 to establish optimal conditions for epoxidation catalysis based on multiple carboxylic acid-peracid interconversions. ${ }^{10}$ A combination of aqueous hydrogen peroxide, diisopropylcarbodiimide (DIC), and dimethylaminopyridine (DMAP) afforded almost 15 turnovers. The resulting epoxide $\mathbf{1 3 7}$ from 1-phenylcyclohexene $\mathbf{1 3 6}$ under the given conditions
was racemic, indicating that the per-aspartate derived from 135 in itself did not affect any significant asymmetric induction (Scheme 60). However, a control experiment established that the epoxidation actually proceeded through the acid/peracid pair as intended.

Scheme 60. Epoxidation of $\mathbf{1 3 6}$ with per-aspartate derived from 135.

Based on the previous result that hydrogen bonding between substrates and catalysts improved selectivity, Miller and co-workers introduced tripeptide catalyst $\mathbf{1 3 8}$ which was known to adopt β-turn-type structures that support enantioselectivity for other processes. ${ }^{8}$ However, while olefin 136 was a substrate for catalytic epoxidation with 138, the corresponding epoxide 137 was formed with 10 \%ee (Scheme 61).

Scheme 61. Epoxidation of $\mathbf{1 3 6}$ with the tripeptide catalyst 138.

Presumably, a relatively weak hydrogen bond between per-aspartate derived from 138 and olefin 136 in the transition state results in poor stereoselectivity.

3.1.2. Investigation of carbamate substrates to the epoxidation

Various kinds of carbamate moieties, which can improve hydrogen bond ability of catalyst 138, were introduced in olefin substrates. Good epoxide yields and remarkable enantioselectivities were achieved with this type of substrate. (See Scheme 62.) Interestingly, for substrates $\mathbf{1 3 9}$, lower reaction temperatures generally led to increased enantioselectivity and additional improvements resulted from the use of hydrogen peroxide/urea clathrathe (UHP) instead of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (epoxide 140a).

$99 \%, 8 \%$ ee
140d

$95 \%, 86 \%$ ee 140e

99 \%, 89 \% ee
$140 f$

Scheme 62. Asymmetric epoxidation of olefins in the presence of catalyst 138.

It also revealed that the pendant phenyl carbamate rendered the epoxidation of a cyclopentene and a butene derivative enantioselective (epoxides 140e and 140f). Para-fluoro- or para-methoxy-substituted phenyl rings did not lead to a significant change in the efficiency of the
reaction (epoxides $\mathbf{1 4 0 b}$ and $\mathbf{1 4 0 c}$). In contrast, elongation of the tether by only one methylene group was deleterious for stereoselectivity. For the epoxide 140d, only 8 \%ee was observed.

The need for a tethered carbamate and the high sensitivity of the enantioselectivity to the distance between the hydrogen-bonding moiety and the double bond to be epoxidized points to hydrogen bonding as the crucial feature of catalyst-substrate interaction. A number of arrangements can be expected in which the carbamate tether of the substrate may act as a hydrogen-bond donor or acceptor with the amide functional group of the tripeptide 138. Currently, there are no data available that might indicate a clear preference for possible arrangements. However, a hypothetical hydrogen-bonded transition states proposed by Miller and co-workers shows that the carbamate group of the substrate can be a hydrogen bond donor and the proline carboxamide group of per-aspartate is the acceptor (Figure 30).

Transition state A

Figure 31. Hypothetical transition state A: The peptide-catalyzed epoxidation of carbamatetethered olefin.

According to Miller, alternative arrangements may be expected in which intermolecular hydrogen bonding involves the peracid moiety. Transition state B and C are consistent with the "Henbest effect" that is the cis selectivity in the hydroxy-directed epoxidation of cyclic allylic alcohols with peracids (Figure 31). ${ }^{11}$

Transition state B

Transition state C

Figure 32. Hypothetical transition state B and C: Intermolecular hydrogen bonding involved by the peracid moiety.

Although the experimental evaluation of the modes of asymmetric induction is revealed yet, the limiting cases in transition states stress that the tether is necessary to generate stereoselectivity in the epoxidation of substrates in terms of hydrogen bonding.

3.1.3. Optimization of a tripeptide-based chiral catalyst

Further investigation of the Asp-catalyzed epoxidations done by the Miller group was focused on the optimization of a peptide-based chiral catalyst. For the functional evaluation of the Pro-d-Val amide, Miller and co-workers prepared alkene 141 and fluoroalkene 142 by replacement of the amide in $\mathbf{1 3 8}$ (Figure 32). Different hydrogen bond donor and acceptor strength between the catalysts and substrate plays a critical role in the formation of chiral epoxide.

141

142

Figure 33. Structures of 141 and 142: Peptidomimetic catalyst analogs of 138.

Under the given reaction conditions, epoxidation of 139a was performed in the presence of catalyst analogs, 141 and 142 (Scheme 63). ${ }^{12}$

Scheme 63. Experimental evaluation of the proline carboxamide group in 138.

Relatively low selectivities were observed with 141 and 142, even though conversion ratio was much higher than the case of 138. Probably, the significantly different stereoselectivity can be resulted from different strength of hydrogen bonding between the substrate and the catalysts. Therefore, it is reasonable that the amide moiety between proline and valine residue is required to asymmetric epoxidation.

Catalyst $\mathbf{1 4 3}$ was designed and synthesized ${ }^{12}$ by olefinic replacement of the C-terminal amide in 138 (Figure 33). In general, intramolecular hydrogen bonding in the Asp-Pro-Val sequence is well known to maintain a β-turn structure.

143

Figure 34. Structure of 143: Olefinic replacement of the C-terminal amide in 138.

Under the given reaction conditions, epoxidation of 139a was performed in the presence of the 143. ${ }^{12}$

Scheme 64. Experimental evaluation of the C-terminal amide in 138.

As expected, due to the inevitable removal of the β-turn structure, catalyst 143 led to poor selectivity (Scheme 64). This result strongly suggests an important functional role for the amide residue in the Asp-catalyzed epoxidations.

In addition to hydrogen bonding in the structure-function relationships, the NHBoc functionality is considered important enough to be evaluated. Therefore, the NHBoc group was replaced with a methyl group in compound 144 (Figure 34). ${ }^{12}$

144

Figure 35. Structure of 144: Methyl replacement of the NHBoc group in 138.

Under a common set of reaction conditions, epoxidation of 139 a with $\mathbf{1 4 4}$ afforded 88% ee, which is slightly higher compared to 138 (Scheme 65). ${ }^{12}$ The NHBoc group might not be required to generate hydrogen bonding interaction with the substrate. Nonetheless, due to the significantly reduced conversion ratio, $\mathbf{1 4 4}$ cannot be compatible with 138.

Catalyst	ee (e.r.)	Conversion
$\mathbf{1 3 8}$	$81(9.5: 1)$	63%
$\mathbf{1 4 4}$	$88(15.4: 1)$	26%

Scheme 65. Experimental evaluation of the NHBoc functionality in 138.

Based on thorough investigation of enantioselective epoxidations of olefin substrates with tripeptide catalysts done by Miller group, we think that the tripeptide catalyst $\mathbf{1 3 8}$ can afford high regio- and stereoselectivity for the preparation of a monoepoxide substrate that will be a precursor of chiral SNF analog.

3.2. Result and Discussion

Catalyst 138 was prepared, following Miller's procedure. ${ }^{10}$ Boc-D-Val-OH 145 and (R)-(+)-α-methylbenzylamine 146 was coupled with the presence of HOBt and EDC to afford 147. Deprotection of the Boc group in $\mathbf{1 4 7}$ by HCl followed by treatment with HOBt and EDC for coupling Boc-Pro-OH 148 produced Boc-protected dipeptide 149. The benzyl protected tripeptide 150 was obtained by treatment of 149 with HCl , followed by HOBt and EDCmediated coupling with the protected aspartate 135. Finally, deprotection of the benzyl group in tripeptide $\mathbf{1 5 0}$ provided the desired catalyst $\mathbf{1 3 8}$ (Scheme 66).

145

149
146

147

Scheme 66. Preparation of catalyst 138.

The racemic bicyclo[4.2.0]octadiene 151 was produced by coupling between carboxylic acid $\mathbf{4 6}$ and aniline in the presence of DCC and DMAP (Scheme 67).

Scheme 67. Preparation of bicyclooctadiene 151.
Under a common set of reaction conditions, bicyclooctadiene 151 was treated with catalyst 138 (Scheme 68).

151

138 (10 mol\%)
2.5 equiv aq. $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$
2.0 equiv DIC, 10 mol\% DMAP $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

152

Scheme 68. Synthetic attempt to afford monoepoxide 152 via the Asp-catalyzed epoxidation.

This reaction produced an inseparable mixture, observed in by ${ }^{1} \mathrm{H}$ NMR of the crude product, and it was not clear that monoepoxide 152 was produced. According to Miller, good epoxide yields and enantioselectivities can be only achieved with substrates which have both allylic alcohol moiety and carbamate tether. In addition, the hypothetical transition state A shown in Figure 30 reveals that optimized coordination between bicyclooctadiene 151 and catalyst 138 is very important to produce the corresponding chiral epoxide. Therefore, investigation of a suitable bicyclo[4.2.0]octadiene substrate is necessary to apply the Aspcatalyzed epoxidation.

3.3. Reference

(1) Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Chem Rev 2005, 105, 1603.
(2) McGarrigle, E. M.; Gilheany, D. G. Chem Rev 2005, 105, 1563.
(3) Shi, Y. Accounts Chem Res 2004, 37, 488.
(4) Aggarwal, V. K.; Winn, C. L. Accounts Chem Res 2004, 37, 611.
(5) Julia, S.; Guixer, J.; Masana, J.; Rocas, J.; Colonna, S.; Annuziata, R.; Molinari, H. J Chem Soc Perk T 1 1982, 1317.
(6) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481.
(7) Davie, E. A. C.; Mennen, S. M.; Xu, Y. J.; Miller, S. J. Chem Rev 2007, 107, 5759.
(8) Miller, S. J. Accounts Chem Res 2004, 37, 601.
(9) Berkessel, A. Angew Chem Int Edit 2008, 47, 3677.
(10) Peris, G.; Jakobsche, C. E.; Miller, S. J. J Am Chem Soc 2007, 129, 8710.
(11) Kocovsky, P.; Stary, I. J Org Chem 1990, 55, 3236.
(12) Jakobsche, C. E.; Peris, G.; Miller, S. J. Angew Chem Int Edit 2008, 47, 6707.

3.4. Experimental section

The tripeptide $\mathbf{1 3 8}$ was prepared according to Miller's procedure. ${ }^{7}$

145

150

Benzyl ester 150. Boc-D-Val-OH 145 ($1.08 \mathrm{~g}, 5.0 \mathrm{mmol}$), HOBt ($841 \mathrm{mg}, 5.5 \mathrm{mmol}$) and EDC ($1.05 \mathrm{~g}, 5.5 \mathrm{mmol}$) were suspended in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}, 0.2 \mathrm{M})$ and $(R)-(+)-\alpha-$ methylbenzylamine 146 (0.65 mL , 5.5 mmol) was added via syringe in one portion. The resulting clear, colorless solution was stirred at rt overnight. The reaction mixture was then diluted with 300 mLEtOAc , transferred to a separatory funnel and washed with 100 mL of a 0.5 M aqueous solution of citric acid and 100 mL of a saturated aqueous suspension of NaHCO_{3}.

[^6]The organic phase was dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the resulting crude mixture $147(1.55 \mathrm{~g}, 4.8 \mathrm{mmol})$. To a solution of the mixture (1.55 g , $4.8 \mathrm{mmol})$ in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, trifluoroacetic acid (8.0 mL) was added and stirred at rt for 1 hr . The excess reagent and solvent was removed under vacuum. The resulting mixture was neutralized by 2 N KOH , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$, and dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford sticky oil (670 mg). To the resulting crude mixture were added Boc-Pro-OH 148 ($1.13 \mathrm{~g}, 5.25 \mathrm{mmol}$), HOBt ($841 \mathrm{mg}, 5.5 \mathrm{mmol}$) and EDC (1.05 g , $5.5 \mathrm{mmol})$. This was suspended in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}, 0.2 \mathrm{M})$, and allowed to stir at rt for 5 minutes. To the resulting solution, distilled Et3N $(0.77 \mathrm{~mL}, 5.5 \mathrm{mmol})$ was syringed in, and the resulting solution was allowed to stir at rt overnight. The work up procedure was followed identical to that described above to yield 149. And, Boc removal was followed identical to that described above. To a solution of the Boc deprotected residue (456 mg) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL , 0.2 M), Boc-Asp(OBn)-OH 135 ($680 \mathrm{mg}, 2.2 \mathrm{mmol}$), HOBt ($460 \mathrm{mg}, 3.0 \mathrm{mmol}$) and EDC (520 $\mathrm{mg}, 2.7 \mathrm{mmol}$) were added into the reaction flask and allowed to stir at rt for 5 minutes. To the resulting solution, distilled $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.9 \mathrm{mmol})$ was syringed in, and the resulting solution was allowed to stir at rt overnight. The work up procedure was identical to that described above. The resulting residue was purified by flash column chromatography (7:3 hexanes:acetone) to yield 675 mg (22% for 5 steps) of $\mathbf{1 5 0}$ as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.18$ (Acetone/ n -Hexane, 3/7). ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{~m}$, $1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.73$ (dd, $J=16.1 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.43(\mathrm{dd}, J=16.1 \mathrm{~Hz}, 5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,171.1,171.0$, $170.2,155.1,143.4,135.4,128.8,128.7,128.4,127.4,126.4,80.6,67.1,61.1,59.5,48.8,47.7$, 37.3, 29.4, 28.8, 28.5, 28.4, 25.0, 21.7, 19.4, 17.9.

150

138

Acid 138. Benzyl ester $150(619 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in THF ($5.0 \mathrm{~mL}, 0.2 \mathrm{M}$), and the resulting solution was flushed with dry Ar for 5 minutes. Then, Pd on charcoal (10% wt, 130 mg) added in and a H_{2} balloon placed on the reaction flask. The resulting suspension was stirred at rt for 18 hours. The suspension was diluted with 120 mL of EtOAc and filtered through celite. The filtrate was concentrated under reduced pressure to afford $482 \mathrm{mg}(84 \%)$ of $\mathbf{1 3 8}$ as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.07$ (Acetone/ n-Hexane, 3/7). ${ }^{1} \mathrm{H}:\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.03(\mathrm{~m}, 9 \mathrm{H}), 5.19(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 3 \mathrm{H})$, 2.81 (dd, $J=15.7 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.7 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $1.80(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,171.6,155.1,142.9,128.8,127.6,126.4,80.5,60.6$, $60.0,47.8,38.0,30,28.5,28.4,24.7,21.8,19.6,18.4$.

Bicyclooctadiene 151. To a solution of acid $46(12.3 \mathrm{mg}, 0.04 \mathrm{mmol})$ and aniline (7.5 mg , $0.08 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$ was slowly added DCC ($9.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and DMAP $(1.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt . After stirring for further 15 h , the reaction mixture was filtered on a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:5) to provide $7.2 \mathrm{mg}(47 \%)$ of $\mathbf{1 5 1}$ as yellow solid. $\mathrm{R}_{\mathrm{f}}: 0.53$ ($\mathrm{EtOAc} / \mathrm{n}-\mathrm{Hexane}, 1 / 2$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.94 (dd, $J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.00(\mathrm{~m}, 5 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H})$, $4.49(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}$, $3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.6,145.7,140.8,134.4$, $133.2,131.2,129.3,128.5,123.9,119.9,55.9,49.5,46.2,44.5,34.6,22.2$.

Chapter IV

Stereochemical Control in $8 \pi, 6 \pi$ Electrocyclizations by a Fused Ring: Studies Toward Total Synthesis of Bielschowskysin

4.1. Introduction

4.1.1. Background

Bielschowskysin is a marine natural product isolated from the Caribbean gorgonian octocoral, Pseudopterogorgia kallos. ${ }^{1-4}$ Its skeleton is composed of the highly unprecedented tricyclo[9.3.0.0]tetradecane ring framework. In addition, there are a large number of oxygencontaining functional groups and 11 stereogenic centers on the ring (Figure 35). ${ }^{5}$

bielschowskysin (153)

Figure 36. Structure of bielschowskysin.

Its biological properties include antimalarial activity against Plasmodium falciparum $\left(\mathrm{IC}_{50}=10\right.$ $\mu \mathrm{g} \mathrm{mL}{ }^{-1}$) and potent and selective cytotoxicity against EKVX nonsmall lung cancer cells $\left(\mathrm{GI}_{50}<\right.$ 10 nm) and CAKI- 1 renal cancer cells $\left(\mathrm{GI}_{50}=510 \mathrm{~nm}\right) .{ }^{5}$ Therefore, bielschowskysin is to be ranked one of the most biologically and structurally interesting targets in terms of its complex framework including both challenging stereochemistry and promising biological activity.

According to the biogenesis proposed by Rodriguez, ${ }^{5}$ the tricyclo[9.3.0.0]tetradecane ring might be derived from a currently recognized diterpene ring system. Geranylgeranyl pyrophosphate (GGPP) 154 can be converted to the macrocyclic cembrane 155 via C1-C14 cyclization. Double cyclization (C7-C11 in 155 and C6-C12 in 156) would generate the backbone of bielschowskyane 157 (Scheme 69).

GGPP ((54)

bielschowskyane (157)

cyclization

C6-C12 cyclization

Scheme 69. Proposed biogenesis to bielschowskyane skeleton.

4.1.2. Synthetic approaches toward total synthesis of bielschowskysin

Total synthesis of the highly intriguing natural product has focused on the construction of the tricyclo[9.3.0.0]tetradecane ring framework. The first synthetic approach was performed by the Sulikowski group. Instead of following the proposed biogenesis described above, an intramolecular [2+2] photocycloaddition was adopted as a key strategy to afford the highly substituted cyclobutane in the tricyclo[9.3.0.0]tetradecane framework. The chiral ester 158, which was prepared from L-malic acid, served as a starting point for the synthesis. ${ }^{6}$ The stereoselective intramolecular [2+2] photocycloaddition of the 5-alkylidene-2(5H)-furanone 159 resulted in a single diastereomer 160. This concise and stereocontrolled assembly of the tetracyclic core was reported as a first effort towards total synthesis of the marine diterpene compound (Scheme 70). ${ }^{7}$

Scheme 70. Synthesis of enantiomeric tetracyclic core 160.

A similar synthetic strategy was independently adopted by the Lear group. They prepared allene-butenolide 162 as a key substrate from L-malic acid 161. The silylated 162 cleanly underwent a $[2+2]$ cycloaddition to afford a single diastereomeric photoadduct, tricyclo[3.3.0]oxoheptane 163 (Scheme 71). ${ }^{8}$

161 162

163

Scheme 71. Synthesis of tricyclo[3.3.0]oxoheptane 163.

Recently, Nicolaou and co-workers reported the synthesis of a highly functionalized tricyclo[9.3.0.0]tetradecane core 167. Macrocyclic precursor 166 was prepared with two simple building blocks 164 and 165 via a five-step enantioselective sequence. ${ }^{9}$ Finally, the novel
carbocyclic [9.3.0.0] core in bielschowskysin was constructed by an intramolecular [2+2] photocycloaddition (Scheme 72). This expedient synthesis of 167 can be notable for cascade sequences and efficiency.

photocycloaddition

167

Scheme 72. Synthesis of the tricyclo[9.3.0.0]tetradecane core 167.

Unlike the three approaches described above in Schemes 70, 71, and 72, the Parker strategy focused on the semihydrogenation of trienyne precursor 168 and $8 \pi, 6 \pi$ electrocyclization to afford a highly functionalized cyclobutane core in bielschowskysin. According to Parker, bicyclo[4.2.0]octadiene $\mathbf{1 6 9}$ can be prepared by $8 \pi, 6 \pi$ double ring closure of (E,Z,Z,E)-tetraene precursor (Scheme 73). ${ }^{10,11}$ Stereocontrolled 8π, 6π electrocyclization of $\mathbf{1 6 8}$ might directly control relative stereochemistry of the six substituents on the cyclobutane ring in bielschowskysin.

bielschowskysin (153)

bicyclo[4.2.0]octadiene (169) $\sqrt{\square}$

Scheme 73. Retrosynthetic analysis proposed by Parker.

Parker and Zhao designed and synthesized 1,2-annulated trienyne $\mathbf{1 7 0}$ which is a precursor to the corresponding (E,Z,Z,E)-tetraene bearing the 1,2-dihydropyran ring. ${ }^{12}$ For the cis-selective semihydrogenation of $\mathbf{1 7 0}$, zinc activated with copper (II) acetate and silver nitrate was provided as a reducing reagent. ${ }^{13}$ Under the given conditions, $\mathbf{1 7 0}$ was converted to the corresponding tetraene 171 followed by the double ring closure to bicyclooctadiene $\mathbf{1 7 2}$. The $8 \pi, 6 \pi$ electrocyclization of the tetraene intermediate was stereochemically controlled to provide only endo isomer 172 in which the 1,2-annulated tetrahydropyran was exo and the aryl substituent was endo to the bicyclo[4.2.0]octadiene ring (Scheme 74). ${ }^{14}$ The exo isomer $\mathbf{1 7 3}$ was not observed based on proton NMR data. ${ }^{12}$ This exclusively endo-selective $8 \pi, 6 \pi$ ring closure of trienyne $\mathbf{1 7 0}$ provides correctly matched stereochemistry on the cyclobutane ring for bielschowskysin.

170
171

172 (Endo)

173 (Exo)
(Not observed)

Scheme 74. Endo selective $8 \pi, 6 \pi$ electrocyclization of trienyne 170.

In spite of the high stereoselectivity, however, removal of the methyl group on the ring junction of bicyclooctadiene $\mathbf{1 7 2}$ would demand a lot of synthetic effort because bielschowskysin possesses hydrogen at the same position. In addition, the modest yield from the cis-selective semihydrogenation and $8 \pi, 6 \pi$ electrocyclization sequence needs to be improved.

4.2. Result and Discussion

The known 1,2-annulated enyne $\mathbf{1 7 7}$ was prepared following Zhao's synthesis. ${ }^{12}$ First, 3,4-(2H)-dihydropyran 174 was converted to aldehyde 175 via the Vilsmeier reaction. Then, under Corey-Fuchs reaction conditions, 175 was treated with tetrabromomethane $\left(\mathrm{CBr}_{4}\right)$ and triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ to form the dibromoalkene 176, which was then converted into alkyne 177 (Scheme 75). ${ }^{15}$

Scheme 75. Preparation of enyne 177.

Iododiene 179 was afforded from cinnamaldehyde 178 via the Stork-Zhao reaction (Scheme 76). ${ }^{16}$ Despite the modest yield, this procedure was a good one for our purpose because no (E,E)iododiene was observed based on in the proton NMR spectrum of $\mathbf{1 7 9}$.

Scheme 76. Preparation of iododiene 179.

Enyne 177 reacted smoothly with iododiene 179 to yield the desired 1,2-annulated trienyne 180 via Sonogashira coupling conditions (Scheme 77). ${ }^{17}$

$$
\xrightarrow[\mathrm{rt}, 20 \mathrm{~h}, 57 \% .]{\begin{array}{l}
\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cul}(\mathrm{I}), \\
\text { diisoporpylamine }
\end{array}}
$$

180

Scheme 77. Preparation of 1,2-annulated trienyne 180.

Next, trienyne 180 was stereoselectively reduced by activated zinc to yield (E,Z,Z,E)-tetraene intermediate 181. The $8 \pi, 6 \pi$ double ring closure of 181 generated the corresponding bicyclooctadiene under thermal conditions (Scheme 78). ${ }^{13}$ Endo bicyclooctadiene $\mathbf{1 8 2}$ was produced along with cyclooctatriene 183 in a $2: 3$ ratio. The exo isomer 184 was not observed in the proton NMR spectra.

Scheme 78. $8 \pi, 6 \pi$ electrocyclization of (E,Z,Z,E)-tetraene 181.

The isolation of $\mathbf{1 8 3}$ was not expected. Cyclooctatrienes have not been detected in the synthesis of SNF compounds or in the other natural products that contain the same framework. Recently, Moses and co-workers reported the $8 \pi, 6 \pi$ electrocyclization of (E,Z,Z,E)-tetraene $\mathbf{1 8 5}$ to the two diastereomeric mixture of $\mathbf{1 8 7}$ and 188, a putative precursors of pre-kingianin A (Figure 36). ${ }^{19}$ Interestingly, the (E,Z,Z,E)-tetraene $\mathbf{1 8 5}$ did not isolated after the Stille crosscoupling reaction between alkenyl bromide and alkenyl stannane.

187

188

Figure 37. Synthesis of bicyclooctadienes 187 and 188.

Despite having no methyl groups on the (E,Z,Z,E)-tetraene 185, the corresponding cyclooctatriene 186 was not detected after 8π, 6π electrocyclization. Therefore we can not attribute its isolation to the absence of methyl groups.

4.3. Conclusion

In the progress of studies toward total synthesis of bielschowskysin, we demonstrated that the tetraene substrate with 1,2-annulated fused ring $\mathbf{1 8 1}$ produced exclusively endo bicyclo[4.2.0]octadiene $\mathbf{1 8 2}$ in $8 \pi, 6 \pi$ electrocyclization along with cyclooctatriene $\mathbf{1 8 3}$. Further study suggests that the methyl group on the tetraene $\mathbf{1 8 1}$ promotes the $8 \pi, 6 \pi$ double ring closure. Nonetheless, the stereochemically controlled $8 \pi, 6 \pi$ electrocyclization of the 1,2 -annulated tetrapyran substrate $\mathbf{1 8 1}$ shows potential for the preparation of the highly substituted cyclobutane ring in bielschowskysin. This could lead to the construction of the tricyclo[9.3.0.0]tetradecane ring framework and eventually total synthesis of bielschowskysin.

4.4. Reference

(1) Look, S. A.; Burch, M. T.; Fenical, W.; Zheng, Q. T.; Clardy, J. J Org Chem 1985, 50, 5741.
(2) Rodriguez, A. D.; Marrero, J.; Baran, P.; Raptis, R. G. J Org Chem 2003, 68, 4977.
(3) Rodriguez, A. D.; Marrero, J.; Baran, P.; Raptis, R. G. Org Lett 2003, 5, 2551.
(4) Marrero, J.; Rodriguez, A. D.; Baran, P.; Raptis, R. G. Eur J Org Chem 2004, 3909.
(5) Rodriguez, A. D.; Marrero, J.; Baran, P.; Raptis, R. G.; Sanchez, J. A.; Ortega-Barria, E.; Capson, T. L. Org Lett 2004, 6, 1661.
(6) Saito, S.; Hasegawa, T.; Inaba, M.; Nishida, R.; Fujii, T.; Nomizu, S.; Moriwake, T. Chem Lett 1984, 1389.
(7) Doroh, B.; Sulikowski, G. A. Org Lett 2006, 8, 903.
(8) Lear, M. J.; Miao, R.; Gramani, S. G. Tetrahedron Lett 2009, 50, 1731.
(9) Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Angew Chem Int Edit 2011, 50, 5149.
(10) Parker, K. A.; Lim, Y. H. J Am Chem Soc 2004, 126, 15968.
(11) Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.
(12) Thesis from Hong Zhao.
(13) Paquette, L. A.; Chang, J. Y.; Liu, Z. S. J Org Chem 2004, 69, 6441.
(14) Fry, A. J. Tetrahedron 2008, 64, 2101.
(15) Lellouche, J. P.; Koeller, S. J Org Chem 2001, 66, 693.
(16) Trauner, D.; Beaudry, C. M. Org Lett 2002, 4, 2221.
(17) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett 1975, 4467.
(18) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5560.
(19) Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem Commun 2011, 47, 10605.

4.5. Experimental Section

The procedure of Hong Zhao ${ }^{8}$ was followed to prepare enyne 177.

Aldehyde 175. $\quad \mathrm{POCl}_{3}(4.2 \mathrm{~mL}, 45 \mathrm{mmol})$ was dissolved in dry DMF $(85 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The reaction mixture was agitated for 0.5 h and added dropwise via cannula to a precooled solution of 3, 4-dihydro-2H-pyran $174(3.0 \mathrm{~mL}, 33 \mathrm{mmol})$ in dry DMF (30 mL) at $0^{\circ} \mathrm{C}$ under Ar. The resulting solution was allowed to warm to rt, then stirred for further 4 h . After quenching with cautious addition of saturated aqueous NaHCO_{3} under ice-bath, the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc:n-hexane, 1:5) to provide $2.98 \mathrm{~g}(72 \%)$ of $\mathbf{1 7 5}$ as colorless liquid.
$\mathrm{R}_{f:}: 0.21(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 4.15$ $(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.7$, 165.3, 119.7, 68.7, 20.8, 16.8.

Dibromoolefin 176. To a solution of recrystallized triphenylphosphine, $\mathrm{PPh}_{3}(4.6 \mathrm{~g}, 17$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ carbon tetrabromide, $\mathrm{CBr}_{4}(2.9 \mathrm{~g}, 8.7 \mathrm{mmol})$ was added in one portion to at $0{ }^{\circ} \mathrm{C}$ under Ar. The reaction mixture was stirred for 5 min , and then a solution of aldehyde $\mathbf{1 7 5}(390 \mathrm{mg}, 3.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise over 3 min . at 0 ${ }^{\circ} \mathrm{C}$ under Ar. After stirring for further 10 min . at $0^{\circ} \mathrm{C}$, the dark reddish solution was concentrated

[^7]under vacuum. The residue was purified by silica gel chromatography (EtOAc: n-hexane, 1:5) to provide 763 mg (82%) of $\mathbf{1 7 6}$ as colorless oil.
$\mathrm{R}_{f}: 0.85(\mathrm{EtOAc} / n$-hexane, $1 / 3) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 3.99$ ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.51(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H})$.

Enyne 177. To a solution of dibromoolefine 176 ($210 \mathrm{mg}, 0.79 \mathrm{mmol}$) in dry THF (3.7 mL), n -BuLi (0.63 mL of a 2.5 M solution in n-hexane, 1.56 mmol) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ under Ar. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h , the resulting mixture was allowed to rt , stirred for further 1 h . After quenching with cautious addition of $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 5 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. The residue was distilled by Kugelrohr distillation to provide 58 mg (68%) of $\mathbf{1 7 7}$ as colorless liquid.
$\mathrm{R}_{f}: 0.26(\mathrm{EtOAc} / n$-hexane, $1 / 6) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=5.3$ $\mathrm{Hz}, 4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{dt}, J=6.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H})$.

Iododiene 179. To a stirred solution of the salt ($4.52 \mathrm{~g}, 8.3 \mathrm{mmol}$) in THF (80 mL) was added sodium hexamethyldisilazane, NaHMDS (5.0 mL of a 2.0 M solution in THF, 100 mmol) at $-20{ }^{\circ} \mathrm{C}$ under Ar. The resulting red solution was stirred for 5 min . and then a solution of cinnamal $178(0.95 \mathrm{~g}, 7.2 \mathrm{mmol})$ in THF (10 mL) was added dropwise over 15 min . by syringe under Ar. After 30 min , the dark brown solution was allowed to warm to rt, quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc: n-hexane, 1:10) to provide 857 mg (30%) of $\mathbf{1 7 9}$ as pale yellow solid.
$\mathrm{R}_{f}: 0.68$ (EtOAc/ n-hexane, $1 / 30$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23$7.33(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{dd}, J=12.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.2,134.6,131.3,128.9,128.8,128.2$, 126.8, 102.7, 34.3 .

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cul}(\mathrm{I})$, diisoporpylamine rt, 20 h, 57 \%.

180

Trienyne 180. To a solution of enyne $177(42 \mathrm{mg}, 0.39 \mathrm{mmol})$ and iododiene $\mathbf{1 7 9}$ (105 mg , $0.39 \mathrm{mmol})$ in diisopropylamine $(2.0 \mathrm{~mL})$ were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(48 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{I})$ $(6.7 \mathrm{mg}, 0.04 \mathrm{mmol})$ at rt under Ar. After stirring for 24 h , the resulting mixtured was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted 3 times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc:n-hexane, 1:30) to provide 56 mg (57%) of $\mathbf{1 8 0}$ as pale yellow sticky oil.
$\mathrm{R}_{f}: 0.47$ (EtOAc/ n-hexane, $1 / 30$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=13.5 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, $6.55(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H})$.

Bicyclooctadiene 182 and cyclooctatriene 183. To a stirred suspension of Zn dust (1.02 g) in $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{OAc})_{2}(112 \mathrm{mg})$ at rt under Ar. After $15 \mathrm{~min}, \mathrm{AgNO}_{3}(115 \mathrm{mg})$ was introduced and the mixture was stirred for 30 min , filtered, and washed sequentially with $\mathrm{H}_{2} \mathrm{O}(11 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{OH}(11 \mathrm{~mL})$, Acetone (11 mL), and $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$. The activated Zn was suspended in 50% aq. $\mathrm{CH}_{3} \mathrm{OH}(2 \mathrm{~mL})$ and a solution of trienyne $\mathbf{1 8 0}(24 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $1: 1$ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was introduced under Ar. The reaction mixture was stirred overnight at 20 h in the dark condition. The Zn was then filtered through Celite, washed with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was 3 times extracted with EtOAc. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over MgSO_{4}. The residue was purified by preparative chromatography (EtOAc: n-hexane, 1:25) to provide $11.1 \mathrm{mg}(44 \%)$ of an inseparable mixture of 182 and 183 in a ratio of $3: 2$ as pale yellow sticky oil.
$\mathrm{R}_{f:} 0.43$ (EtOAc/ n-hexane, $1 / 25$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=6.3 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 0.37 \mathrm{H}), 5.82(\mathrm{~d}, J=$ $18.6 \mathrm{~Hz}, 0.37 \mathrm{H}$), 5.77 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 0.37 \mathrm{H}), 5.65(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 0.64 \mathrm{H}), 4.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.64 \mathrm{H}), 4.46(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 7.8 \mathrm{~Hz}$, 0.37 H), 3.88 (dd, $J=7.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 0.63 \mathrm{H}$), 3.78 (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.70(\mathrm{~m}, 0.37 \mathrm{H}), 3.54$ (td, $J=11.4 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 0.37 \mathrm{H}), 2.98(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.64 \mathrm{H}), 2.48(\mathrm{~m}, 0.37 \mathrm{H}), 2.38(\mathrm{~m}, 0.63 \mathrm{H})$, $2.04(\mathrm{dt}, J=13.2 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 0.74 \mathrm{H}), 1.92(\mathrm{~s}, 1.11 \mathrm{H}), 1.71-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 1.89 \mathrm{H}), 1.59$ (dt, $J=13.2 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1.28 \mathrm{H}$).

Chapter V

Progress Towards the Total Synthesis of (+/-)- Kingianin \mathbf{A}

5.1. Introduction

5.1.1. Background

Recently, (+/-)-kingianin A (189), a biologically active and structurally interesting compound, was isolated from the trunk bark of Endiandra kingiana in the dense rainforest of Kuala Lipis in Malaysia (Figure 37). ${ }^{1}$ Although the carbon backbone of the natural product shares minimal structural similarity with the endiandric acids, kingianin A is considered to be produced via a biosynthetically similar pathway. ${ }^{2}$

(+/-)-kingianin A (189)

Figure 38. (+/-)-Kingianin A: A new pentacyclic ring framework.

During the writing of this document, thirteen analogs of kingianin A were reported by Litaudon and co-workers. Kingianins A - N contain the same pentacyclic skeleton and they represent the first members of a new chemical series. According to mass spectrometry and NMR spectroscopy, kingianins A-F are stereoisomers. Other analogs, G-L show structural similarity to one another. ${ }^{3}$ Interestingly, kingianins A - N were produced as racemic mixtures. Presumably, like endiandric acids, which were also formed as racemates, kingianins are produced by nonenzymatic electrocyclizations from achiral polyketide precursors. The pentacyclic framework within the kingianins possesses the same regio- and stereochemistry. In addition, the same piece,
which could be derived from safrole, is attached to the cyclobutane ring of kingianins despite the diversity of the other piece (Figure 38).

kingianin $\mathrm{A}: \mathrm{H}-1^{\prime} \beta, \mathrm{H}-8^{\prime} \alpha$ kingianin $\mathrm{B}: \mathrm{H}-1^{\prime} \alpha, \mathrm{H}-8^{\prime} \beta$

kingianin $\mathrm{C}: \mathrm{H}-1^{\prime} \beta, \mathrm{H}-8^{\prime} \alpha$ kingianin D : H-1' $\alpha, \mathrm{H}-8^{\prime} \beta$

kingianin E

kingianin F

kingianin $\mathrm{G}: \mathrm{n}=1, \mathrm{n}^{\prime}=3$
kingianin $\mathrm{H}: \mathrm{n}=\mathrm{n}^{\prime}=3$

-

kingianin $\mathrm{I}: \mathrm{n}=3, \mathrm{n}^{\prime}=1$
kingianin $\mathrm{J}: \mathrm{n}=\mathrm{n}^{\prime}=3$

Figure 39. Structure of all kingianins A - N.

In a binding test to the anti-apoptotic protein Bcl-xL, the kingianins showed promising and potent biological activities suggesting that the natural products could potentially be developed as new anti-cancer drug leads. ${ }^{4}$ Interestingly, (-)-enantiomeric kingianins G - L, which were separated by chiral HPLC, showed the most potent binding affinity for the $\mathrm{Bcl}-\mathrm{xL}$ with Ki values in the low $\mu \mathrm{M}$ range. ${ }^{3}$

According to Litaudon, ${ }^{1}$ kingianin A would be formed by a Diels-Alder reaction between two molecules of pre-kingianin A 192. Probably, (E,Z,Z,E)-tetraene 190 will undergo a $8 \pi, 6 \pi$ electrocyclization to produce 192 through cyclooctatriene 191 (Scheme 79).

conrotatory 8π $\xrightarrow{\text { electrocyclization }}$

190

192

Scheme 79. Litaudon's proposed biomimetic synthesis of kingianin A.

Due to steric hindrance generated between substituents located on the cyclobutane of prekingianin A , all cis-configuration at the ring junction may be unfavorable during the Diels-Alder reaction. Therefore, the last step of kingianin A biogenesis may proceed with anti-configuration of the cyclobutane rings. As a result, the regio- and stereochemically same carbon skeletons of the pentacyclic core shown in the kingianin A can be explained by effect of steric hindrance (Figure 39).

Cis-configuration

Anti-configuration

Figure 40. Origin of regio- and stereoselectivity in the formation of kingianin A.

The multiplicity of kingianins may be explained on the basis of a mechanism involved in 8π, 6π double ring closure. Due to non-stereocontrolled 8π electrocyclization, two enantiomers of cyclooctatriene 191a and 191b will be formed. In addition, unlike SNF 4435 C and D, which are afforded by endo selective 6π electrocyclization, both endo 192a and 192b and exo bicyclooctadienes 192a' and 192b' are generated (Scheme 78). ${ }^{5}$ Consequently, racemic kingianins A - F will be produced from four stereoisomeric pre-kingianins 192a/b and $192 \mathbf{a}^{\prime} / \mathbf{/ b}{ }^{\prime}$ via intermolecular Diels-Alder reaction.

190

191a
$\downarrow 6 \pi$

191b $\downarrow 6 \pi$

192b (endo)

192b' (exo)

Scheme 80. Possible four stereoisomeric pre-kingianins for kingianins A - F.

Litaudon's hypothesis ${ }^{1}$ is in accord with the biogenesis of endiandric acids proposed by Black. ${ }^{6-8}$ Interestingly, Nicolaou's biomimetic syntheses of endiandric acids are also focused on $8 \pi, 6 \pi$ electrocyclization and Diels-Alder reaction. ${ }^{9-12}$ Endiandric acids D - G are structurally similar to pre-kingianins 192a/b and 192a'/b’ (Figure 40). Endiandric acids D (193) and E (194) are stereoisomers of one another. Likewise, endiandric acids E (195) and F (196) are stereoisomers.

Endiandric acid D
193

Endiandric acid F
195

Endiandric acid E
194

Endiandric acid G
196

Figure 41. Endiandric acids D-G: Structural congeners of pre-kingianins.

Endiandric acids A (197) B (198) and C (199) were synthesized from their corresponding bicyclo[4.2.0]octadiene precursors, endiandric acids E, F, and G via intramolecular Diels-Alder reactions (Figure 41).

Endiandric acid A 197

Endiandric acid B 198

Endiandric acid C
199

Figure 42. Endiandric acids A, B, and C: The Diels-Alder products.

5.1.2. Synthetic strategy to prepare pre-kingianin A

In general, pre-kingianin A can be synthesized via three synthetic routes; semihydrogenation of enynes and 8π, 6π electrocyclization sequence (Route I or II) and palladium mediated crosscoupling reaction between two (Z,E)-dienes (Route III). (See Scheme 81.)

Scheme 81. Possible synthetic routes for the preparation of pre-kingianin A.

The synthetic route I: The known bicyclo[4.2.0]octadiene 201 has been prepared from via cisselective semihydrogenation of dienyne 200 and then $8 \pi, 6 \pi$ electrocyclization sequence. ${ }^{9}$ Therefore, this method developed by Nicolaou might be the most straightforward way to prepare pre-kingianin A 192 (Scheme 82). However, the procedure would require much effort to introduce two different moieties on the cyclobutane ring of 201.

192

Scheme 82. Bicyclooctadiene 201: A key intermediate to generate 192.

Cis-selective semihydrogenation and then $8 \pi, 6 \pi$ electrocyclization of an enyne precursor in final stage is a suitable synthetic strategy. (See the Route II.) Trienyne 206 can be readily afforded by Sonogashira coupling between iododiene 203 and enyne 205. The two building blocks can be prepared from commercially available sources, safrole 202 and pent-2-en-4-yn-1ol 204. Presumably, semihydrogenation of the monoacetylene in 206 would more efficiently generate a corresponding (E,Z,Z,E)-tetraene substrate compared to the diacetylene moiety in $\mathbf{2 0 0}$ (Scheme 83).

202

204

203

205

Sonogashira coupling

Scheme 83. Trienyne 206: A key intermediate to generate 192.

Palladium-mediated cross-coupling reaction is a well known method to prepare bicyclo[4.2.0]octadiene compounds. (See the Route III.) (Z,E)-metallated diene 208 can be prepared from commercial Z-iodo-acrylate 207. Coupling between 203 and 208 will afford a (E,Z,Z,E)-tetraene 209 which will provide corresponding bicyclooctadiene 210 via $8 \pi, 6 \pi$ electrocyclization. Finally, the methyl ester in $\mathbf{2 1 0}$ can be converted into desired homologated ethyl amide moiety to yield pre-kingianin A 192 (Scheme 84).

Scheme 84. Tetraene 209: A key intermediate to generate 192.

During the writing of this document, Moses and co-workers reported the first synthesis of the pre-kingianin A. ${ }^{13}$ Interestingly they adopted a synthetic approach similar to that described in Scheme 84.

Our synthetic route to pre-kingianin A 192 will be reasonable if we adopt one of the three pathways. Specifically, if we have bicyclooctadiene 210 in hand, it will be valuable enough because modification of the methyl ester in $\mathbf{2 1 0}$ can lead to all pre-kingianins A - N (Figure 42).

Figure 43. Structurally required framework for all pre-kingianins.

5.1.3. Cation radical catalyzed Diels-Alder reaction

Litaudon proposed that kingianin A is a Diels-Alder product between two pre-kingianin A. ${ }^{1}$ Nonetheless, there are no Diels-Alder reactions available to produce pentacyclic carbon skeleton of kingianin A. Recently, Moses group tried Diels-Alder reaction of pre-kingianin A to afford kingianin A. However, they did not obtain any desirable products under traditional Diels-Alder reaction conditions. Among a number of Diels-Alder reactions is cation radical catalyzed DielsAlder reaction. Bauld and co-workers showed that with radical cation catalysis, he could effect the dimerization of 1,3-cyclohexadiene 211. ${ }^{14}$ A mixture of tricyclics 212 and 213 was successfully affforded in the presence of tris(p-bromophenyl)aminium hexachloroantimonate 214 (Scheme 85). ${ }^{15}$

Scheme 85. Cation radical catalyzed Diels-Alder reaction of 1,3-cyclohexadiene.

Pre-kingianin A 192 contains the 1,3-cyclohexadiene functionality. Therefore, we strongly believe that if we have 192 in hand, total synthesis of kingianin A can be successfully performed via cation radical catalyzed Diels-Alder reaction. Furthermore, this same strategy could be applicable to prepare for the other kingianins, namely B-N.

5.2. Result and Discussion

5.2.1. Synthetic approach towards preparation of pre-kingianin A

Due to analytic and synthetic simplicity, dihydroxymethyl-bicyclo[4.2.0]octadiene 201 was adopted for the investigation of semihydrogenation and $8 \pi, 6 \pi$ electrocyclization reaction. The dienyne 200 was prepared by copper-mediated homocoupling of commercially available enyne 204. Recrystallization of 200 afforded needles. Under the given conditions, dienyne $\mathbf{2 0 0}$ was treated with Lindlar catalyst to transform into corresponding (2E,4Z, $6 \mathrm{Z}, 8 \mathrm{E}$)-tetraene intermediate which was spontaneously followed by $8 \pi, 6 \pi$ electrocyclization to yield 201 (Scheme 86). ${ }^{9}$

204
Lindlar cat., H_{2} $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / q u i n o l i n e$ (90:9.5:0.5) rt, dark, $14 \mathrm{~h}, 44 \%$ (crude)

201

Scheme 86. Preparation of dihydroxymethyl-bicyclo[4.2.0]octadiene 201.

Despite much experimentation, however, semihydrogenation of dienyne $\mathbf{2 0 0}$ did not cleanly yield bicyclooctadiene 201. Presumably, a mixture of over- and under-reduced products with mixed stereochemistry are produced. The Lindlar catalyst used in the total syntheses of endiandric acids may have a specific capability for cis-selective semihydrogenation of $\mathbf{2 0 0} .{ }^{9}$ Otherwise, Nicolaou and co-workers might not have been concerned about inseparable
byproducts because they could easily eliminate undesirable compounds after iodoetherification of 201. ${ }^{9}$ Previously reported claims supported our assumption. Sharma et al stressed that cisselective hydrogenation of dienynes was not well performed with commercial Lindlar catalyst. ${ }^{16}$ Very recently, the De Voss group also mentioned that semihydrogenation of dienyne 215 did not cleanly yield the corresponding (Z,Z)-diene 216 with Lindlar catalyst. De Voss demonstrated that semihydrogenation of $\mathbf{2 1 5}$ was successfully performed under the modified Rieke zinc reduction condition without a mixture of over- and under-reduced products (Scheme 87). ${ }^{17}$ In addition, high stereoselectivity and yield were observed throughout a variety of dienyne and monoenyne substrates tested.

215

Scheme 87. Rieke zinc reduction to generate pure (Z,Z)-diene 216.

Our focus, therefore, turned into semihydrogenation of trienyne substrates. (See Scheme 81.) First, we tried to prepare (Z,E)-iododiene 203 from commercially available and cheap 202. Olefin 202 was cleaved by NaIO_{4} in the presence of RuCl_{3} to afford aldehyde 217. ${ }^{18}$ Wittig homologation of 217 with (carboethoxymethylene)-triphenylphosphorane produced ester 218. Reduction to afford a corresponding alcohol by DIBAL-H and then, oxidation by PCC successfully generated aldehyde 219. Stork-Zhao olefination of 219 with phosphonium salt 221 gave an inseparable mixture of (Z,E)- 203 and (E,E)-isomer 221 in a ratio of $2: 1$ (Scheme 88). ${ }^{19}$

Scheme 88. Synthetic attempt to prepare (1Z,3E)-iododiene 203.

Due to the poor stereoselectivity observed in the Stork-Zhao olefination of 219, we adopted an alternate method to provide a highly (Z)-selective bromodiene 223. Aldehyde 219 was converted into dibromide $\mathbf{2 2 2}$ under Corey-Fuchs reaction conditions, and then stereoselectively debrominated by tribuyltin hydride in the presence of palladium to afford exclusively (Z, E)isomer 223 (Scheme 89). ${ }^{19}$

223

Scheme 89. Preparation of (1Z, 3E)-bromodiene 223.

Although the desirable iododiene 203 was mixed with corresponding (E, E)-isomer 221, we thought that the inseparable (E / Z) isomers might be a useful material because the undesired trienyne isomer 226, which is generated from 221, will be inactive in the process of $8 \pi, 6 \pi$ electrocyclization. A mixture of $\mathbf{2 0 3}$ and $\mathbf{2 2 1}$ were coupled with enyne $\mathbf{2 2 4}$ under a common set of Sonogashira coupling conditions. As expected, diastereomeric (Z,E)-trienynes 225 and 226 were produced in a ratio of $2: 1$. Unfortunately, trienynes 225 and 226 were inseparable. Then, mixture of $\mathbf{2 2 5}$ and $\mathbf{2 2 6}$ was reduced by Lindlar catalyst under dark conditions. According to ${ }^{1} \mathrm{H}$ NMR analysis, it was not clear that bicyclo[4.2.0]octadienes 227 and 228 were formed because purification for obtaining a mixture of inseparable 227 and 228 was very challenging. On the other hand, hydrogenation of $\mathbf{2 2 6}$ yielded (E,Z,E,E)-tetraene 229 (Scheme 90).

Scheme 90. Synthetic attempt to synthesize bicyclooctadienes 227 and 228.

With the preliminary result in hand, we returned to examine the semihydrogenation and 8π, 6π electrocyclization reaction with pure (Z,E)-bromodiene 223. Under the given Sonagashira coupling conditions, $\mathbf{2 2 3}$ coupled with enyne $\mathbf{2 0 4}$ to afford trienyne $\mathbf{2 3 0}$ in 61% yield. However, we could not obtain any pure bicyclo[4.2.0]octadienes $\mathbf{2 3 1}$ and $\mathbf{2 3 2}$ in the presence of Lindlar catalyst under the dark conditions (Scheme 91). The result gave us a lot more confidence that alternate semihydrogenation methods such as Rieke zinc method need to be applied to trienyne 230.

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \operatorname{Cul}(\mathrm{I})$ $\xrightarrow[\text { rt, } 16 \mathrm{~h}, 61 \%]{\text { diisoporpylamine }}$

230

Scheme 91. Synthetic attempt to generate bicyclo[4.2.0]octadienes 231 and 232.

5.2.2. Cation radical catalyzed Diels-Alder reaction

In spite of relatively low purity, bicyclooctadiene 201 was considered as a potentially informative Diels-Alder substrate because the product mixture will consist of a maximum of two diastereomeric dimers. In addition, we supposed that over- and underreduced forms will be inactive during the cation radical catalyzed Diels-Alder reaction. Bicyclooctadiene 201 was dimerized to provide two diastereomeric pentacyclic tetraols, 233 and 234, via cation radical catalyzed Diels-Alder reaction mediated by the catalyst 214 (Scheme 92).

201

214
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, $40 \mathrm{~min} .23 \%$

233

234

Scheme 92. Synthetic attempt to prepare diastereomeric pentacyclic tetraols 233 and $\mathbf{2 3 4}$ via cation radical catalyzed Diels-Alder reaction

Analytical data for inseparable tetraols 233 and 234 on the basis of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ESIMS, and IR clearly indicated that two double bonds, which are not conjugated each other and four hydroxymethyl groups exist. In addition, ESI- MS analysis revealed that a m/z 337.2 can be obtained by adding Na^{+}and losing one hydroxyl group from either 233 or 234. However, we could not confirm diastereomeric ratio between the two expected pentacyclic tetraols because critical protons could not be distinguished by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

5.3. Conclusion

We have studied the total synthesis of kingianin A. Synthetic efforts toward pre-kingianin A 192 have been based on the construction of bicyclo[4.2.0]octadiene core. Cation radical catalyzed Diels-Alder reaction between two identical bicyclooctadienes 201 afforded diastereomeric pentacyclic tetraols $\mathbf{2 3 3}$ and $\mathbf{2 3 4}$ that possess the same framework of kingianin A. To our knowledge, the cation radical catalyzed Diels-Alder reaction of $\mathbf{2 0 1}$ is considered as a first example for the construction of compounds that contain pentacyclic carbon skeleton. Further investigation will be focused on determining the stereochemistry of the pentacyclic tetraols 233 and 234. An asymmetric version of $8 \pi, 6 \pi$ electrocyclization of tetraene substrates will also be investigated to provide enantiomerically pure pre-kingianin A.

5.4. Reference

(1) Litaudon, M.; Leverrier, A.; Dau, M. E. T. H.; Retailleau, P.; Awang, K.;

Gueritte, F. Org Lett 2010, 12, 3638.
(2) Nkeng-Efouet, P. A.; Chouna, J. R.; Lenta, B. N.; Devkota, K. P.; Neumann, B.;

Stammler, H. G.; Kimbu, S. F.; Sewald, N. Phytochemistry 2009, 70, 684.
(3) Litaudon, M.; Leverrier, A.; Awang, K.; Gueritte, F. Phytochemistry 2011, 72, 1443.
(4) Czabotar, P. E.; Lessene, G. Curr Pharm Design 2010, 16, 3132.
(5) Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.
(6) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B. M. Aust J Chem 1981, 34, 1655.
(7) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. Aust J Chem 1982, 35, 557.
(8) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B. M. Aust J Chem 1982, 35, 567.
(9) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J Am Chem Soc 1982, 104, 5555.
(10) Nicolaou, K. C.; Petasis, N. A.; Uenishi, J.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5557.
(11) Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J Am Chem Soc 1982, 104, 5558.
(12) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5560.
(13) Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem Commun 2011, 47, 10605.
(14) Bellville, D. J.; Wirth, D. D.; Bauld, N. L. J Am Chem Soc 1981, 103, 718.
(15) Recently the same experiment was reproduced by our group member, Hee Nam Lim.
(16) Sharma, G. V. M.; Choudary, B. M.; Sarma, M. R.; Rao, K. K. J Org Chem 1989, 54, 2997.
(17) De Voss, J. J.; Matovic, N. J.; Hayes, P. Y.; Penman, K.; Lehmann, R. P. J Org Chem 2011, 76, 4467.
(18) Yuasa, Y.; Yuasa, Y.; Shibuya, S. Synthetic Commun 2003, 33, 3947.
(19) Moloney, M. G.; Bulger, P. G.; Trippier, P. C. Org Biomol Chem 2003, 1, 3726.

5.5. Experimental section

Dienyne 200. To a stirred solution of $\mathrm{NH}_{4} \mathrm{Cl}(8.2 \mathrm{~g}, 153 \mathrm{mmol})$ and $\mathrm{CuCl}(7.47 \mathrm{~g}, 76.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added pent-2-en-4-yn-1-ol 204 (distilled by Kugelrohr, $1.05 \mathrm{~g}, 12.8 \mathrm{mmol}$) over 10 min . at $55^{\circ} \mathrm{C}$. Then, air was bubbled through the red solution for 2.5 h . Repeated ethereal extraction afforded $631.7 \mathrm{mg}(67 \%)$ of $\mathbf{2 0 0}$ as dark yellow solid. * $\mathbf{2 0 0}$ was further purified by recrystallization (100% boiling $\mathrm{H}_{2} \mathrm{O}$) to provide white needles. $\mathrm{R}_{f:} 0.30$ (EtOAc/n-hexane, $1 / 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.42(\mathrm{dt}, J=15.6 \mathrm{~Hz}, 5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.86(\mathrm{dt}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{bs}, 2 \mathrm{H})$. * Spectroscopic properties were in agreement with literature values. ${ }^{9}$

200

201

Bicyclooctadiene 201. ${ }^{10}$ To a solution of dienyne $\mathbf{2 0 0}$ ($137 \mathrm{mg}, 0.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} /$ quinoline ($90: 9.5: 0.5$) was added Lindlar catalyst (38 mg) in one portion at rt under Ar. H_{2} was bubbled for 5 min into the reaction mixture. Then it was stirred 14 h under H_{2}. The reaction mixture was filtered through a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:nhexane: $\mathrm{CH}_{3} \mathrm{OH}, 7.5: 7.5: 0.5$) to provide $61 \mathrm{mg}(44 \%)$ of $\mathbf{2 0 1}$ and an inseparable mixture of under- and over-reduced products as colorless viscous oil.

[^8]$\mathrm{R}_{f}: 0.37$ (EtOAc: n-hexane: $\left.\mathrm{CH}_{3} \mathrm{OH}, 7.5 / 7.5 / 0.5\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.85(\mathrm{~m}, 2 \mathrm{H})$, 5.65 (m, 2H), 3.75 (m, 2H), 3.64 (m, 4H), 3.43 (td, $J=9.9 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ (bs, 4H), 2.26 $(\mathrm{m}, 4 \mathrm{H}), 2.00-2.17(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.61(\mathrm{~m}, 6 \mathrm{H})$.

202

218

Ester 218. To a solution of safrole $202(6.0 \mathrm{~g}, 37 \mathrm{mmol}), \mathrm{RuCl}_{3}$ (III) hydrate ($42 \mathrm{mg}, 0.20$ mmol), and benzyltriethyl- ammonium chloride, (BTEACl, $0.42 \mathrm{~g}, 1.85 \mathrm{mmol}$) in EtOAc (70 $\mathrm{mL}), \mathrm{NaIO}_{4}(39.1 \mathrm{~g}, 185 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(410 \mathrm{~mL})$ was added slowly for 1 h at rt . After stirring for further 1 h , EtOAc (200 mL) was poured into the resulting solution. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc: n-hexane, 1:20) to provide $2.66 \mathrm{~g}(44 \%)$ of 217 as colorless oil. *2.60 g of safrole was recovered from the column chromatography.
$\mathrm{R}_{f}: 0.13$ (EtOAc / n-hexane, $1 / 20$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.71(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.69(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$.

To a stirred solution of aldehyde $217(2.52 \mathrm{~g}, 15 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was added (carboethoxymethylene)triphenylphosphorane ($7.54 \mathrm{~g}, 22 \mathrm{mmol}$) in one portion at rt. The resulting solution was stirred overnight, concentrated under vacuum, redissolved in $10: 1$ petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}$ solution (v:v). After filtering the precipitated salt, the filtrate was concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc:nhexane, 1:5) to provide 2.01 g (61%) of $\mathbf{2 1 8}$ as colorless oil.
$\mathrm{R}_{f}: 0.47$ (EtOAc/n-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.06$ (dt, $J=15.5 \mathrm{~Hz}, 6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77-6.62(3 \mathrm{H}, \mathrm{m}), 5.94(2 \mathrm{H}, \mathrm{s}), 5.80(\mathrm{dt}, J=15.5 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.44(\mathrm{brd}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

* Spectroscopic properties were in agreement with literature values. ${ }^{11}$

[^9]

218

219

Aldehyde 219. To a stirred solution of ester $218(1.25 \mathrm{~g}, 5.68 \mathrm{mmol})$ in dry THF (30 ml) at $78^{\circ} \mathrm{C}$, DIBAL-H (15 mL of a 1.0 M solution in toluene, 15.0 mmol) was added dropwise over 20 min. The resulting solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$, and then for 1 h at $-10{ }^{\circ} \mathrm{C}$, before quenching by the cautious addition of $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{ml})$. The resulting solution was stirred at rt for 10 minutes until 2 clear phases were formed, then extracted with EtOAc (50 mL). The organic layer was washed with brine, dried over MgSO_{4} and concentrated under vacuum to provide $1.09 \mathrm{~g}(100 \%)$ of crude product as colorless oil, which was used without further purification for the next step. To a suspension of $\operatorname{PCC}(1.52 \mathrm{~g}, 7.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added a solution of $(1.09 \mathrm{~g}, 5.68 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ in one portion at rt . After 2 h , $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added, then the resulting solution was filtered through Celite, washed thoroughly with fresh $\mathrm{Et}_{2} \mathrm{O}$, filtered, and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc:n-hexane, 1:5) to provide 750 mg (69% for the 2 steps) of 219 as pale yellow oil.
$\mathrm{R}_{f:} 0.21$ (EtOAc/n-hexane, $1 / 4$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dt, $J=13.2 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.06$ (ddt, $J=13.2 \mathrm{~Hz}$, $6.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ (s, 2H), 3.53 (dd, $J=4.0 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 2 \mathrm{H}$).

* Spectroscopic properties were in agreement with literature values. ${ }^{12}$

Phosphonium salt 200 ${ }^{13}$ A solution of triphenylphosphine, $\mathrm{PPh}_{3}(50 \mathrm{~g}, 0.19 \mathrm{~mol})$ and diiodomethane, $\mathrm{CH}_{2} \mathrm{I}_{2}(20 \mathrm{~mL}, 0.25 \mathrm{mmol})$ in anhydrous toluene (250 mL) was heated to $50{ }^{\circ} \mathrm{C}$

[^10]and stirred for 4 days in the absence of light. The resulting solution was allowed to cool to rt, filtered, and washed with anhydrous toluene and $\mathrm{Et}_{2} \mathrm{O}$ to provide $23.6 \mathrm{~g}(45 \%)$ of as white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75-7.94(\mathrm{~m}, 15 \mathrm{H}), 5.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$.

219

203

221
(Z/E)-Iododienes 203 and 221. To a stirred suspension of (iodomethyl) triphenylphosphonium iodide $220(0.36 \mathrm{~g}, 6.6 \mathrm{mmol}) \mathrm{NaHMDS}(350 \mu \mathrm{~L}$ of a 2.0 M solution in THF, 7.0 mmol) was added dropwise at rt . After 5 min . the red solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Then a solution of aldehyde $219(65.1 \mathrm{mg}, 0.34 \mathrm{mmol})$ in dry THF (2.0 mL) was added at such a rate as to keep the internal temperature below $-70{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min , allowed to warm to rt and then stirred for further 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc: n-hexane, 1:20) to provide 35.2 mg (33%) of an inseparable mixture of 203 and 221 in a ratio of $2: 1(\mathrm{Z}: \mathrm{E})$ as viscous pale yellow oil.
$\mathrm{R}_{f}: 0.65$ (EtOAc$/ n$-hexane, $\left.1 / 1\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.01$ (dd, $J=12.3 \mathrm{~Hz}, 10.2 \mathrm{~Hz}$, $0.33 \mathrm{H}), 6.68-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.33 \mathrm{H}), 6.29$ (dd, $J=$ $13.2 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.23(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 0.33 \mathrm{H}), 6.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.06(\mathrm{dt}, J=$ $7.2 \mathrm{~Hz}, 0.67 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 0.33 \mathrm{H}), 3.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$.

219

223
(Z,E)-bromodiene 223. To a stirred solution of $\mathrm{CBr}_{4}(0.72 \mathrm{~g}, 2.16 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mL}), \mathrm{PPh}_{3}(1.13 \mathrm{~g}, 4.33 \mathrm{mmol})$ was added portionwise over 1 min . at $0{ }^{\circ} \mathrm{C}$. After 5 min , a solution of aldehyde $219(374 \mathrm{mg}, 1.97 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise over 5 min . The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , then washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, and then dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc: n-hexane, 1:15) to provide 522 mg (77%) of dibromide 222 as viscous dark yellow oil.

To a stirred solution of $222(522 \mathrm{mg}, 1.52 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(112 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dry benzene (11.0 mL) was added dropwise $\mathrm{Bu}_{3} \mathrm{SnH}(520 \mathrm{mg}, 1.78 \mathrm{mmol}$) over 3 min . at rt. After 3 $\mathrm{h}, \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The resulting solution was extracted with n-hexane, washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel chromatography (EtOAc:n-hexane, 1:20) to provide 133.5 mg (33%) of $\mathbf{2 2 3}$ as colorless oil.
$\mathrm{R}_{f}: 0.40(\mathrm{EtOAc} / n$-hexane, $1 / 10) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-$ $6.68(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~m}, 1 \mathrm{H}), 6.09(\mathrm{brd}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ $(\mathrm{dt}, J=15.0 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H})_{2} 5.93(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{brd}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$. * Spectroscopic properties were in agreement with literature values. ${ }^{14}$

203

225

221

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Cul}(\mathrm{I})$
diisoporpylamine
rt, 16 h, 73 \%

226

[^11]Trienyne 225 and 226. To a solution of enyne 224 ($7.0 \mathrm{mg}, 0.064 \mathrm{mmol}$) and the mixture of iododienes 203 and 221 ($12.2 \mathrm{mg}, 0.039 \mathrm{mmol}$) in diisopropylamine (0.5 mL) were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.0 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{I})$ (trace) at rt under Ar. After stirring for 16 h , the resulting mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted 3 times with EtOAc. The combined organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, and brine, and dried over MgSO_{4}, and then concentrated under vacuum. The dark brown solid was purified by preparative chromatography (EtOAc: n-hexane, 1:1) to provide 8.2 mg (73%) of an inseparable mixture of $\mathbf{2 2 5}$ and $\mathbf{2 2 6}$ in a ratio of $2: 1(\mathrm{Z}: \mathrm{E})$ as a yellow viscous oil.
$\mathrm{R}_{f}: 0.47$ (EtOAc / n-hexane, $1 / 9$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 6.95 (dd, $J=15.6 \mathrm{~Hz}, 2.7 \mathrm{~Hz}$, $0.67 \mathrm{H}), 6.89(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 0.33 \mathrm{H}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $0.33 \mathrm{H}), 6.58-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{t}, J=10.8 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.14$ (dd, J $=12.3 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 0.33 \mathrm{H}), 6.04(\mathrm{~m}, 0.67 \mathrm{H}), 5.98(\mathrm{~m}, 0.33 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 5.68(\mathrm{dd}, J=15.3$ $\mathrm{Hz}, 2.1 \mathrm{~Hz}, 0.33 \mathrm{H}), 5.53(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 0.67 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1.34 \mathrm{H}), 3.38$ (d, $J=7.2 \mathrm{~Hz}, 0.66 \mathrm{H})$.

Bicyclooctadienes 227 and 228 To a solution of 2:1 mxiture of trienynes 225 and 226 (8.2 $\mathrm{mg}, 0.023 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} /$ quinoline ($90: 9.5: 0.5,1.2 \mathrm{~mL}$) was added Lindlar catalyst $(4.1 \mathrm{mg})$ in one portion at rt under Ar. The reaction mixtrure was bubbled by H_{2} for 5 min , and then stirred 20 h under H_{2} condition. The reaction mixture was filtered on a Celite ${ }^{\circledR}$ and the
filtrate was concentrated under vacuum. The residue was purified by preparative chromatography (EtOAc: n-hexane, $1: 3$) to provide 3.6 mg (44%) of an inseparable 227 and 228 and 1.9 mg (23 \%) of 229.
For impure mixture of 227 and 228: R_{f} : 0.60 (EtOAc / n-hexane, $1 / 3$); ${ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, CDCl_{3}): 6.61-6.74 (m, 3H), 6.18-6.01 (m, 2H), 5.99-5.86 (m, 4H) $5.78(\mathrm{dd}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ $(\mathrm{td}, J=15.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~S}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=18.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.17-2.56(\mathrm{~m}$, $3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H})$.
For 229: $\mathrm{R}_{f}: 0.70$ (EtOAc/n-hexane, $1 / 3$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.76 (dd, $J=13.2 \mathrm{~Hz} 1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.61-6.74 (m, 4H), 6.29 (dd, $J=11.1 \mathrm{~Hz} 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (dd, $J=10.8 \mathrm{~Hz} 10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{dd}, J=11.1 \mathrm{~Hz} 10.8,1 \mathrm{H}), 5.85-5.94(\mathrm{~m}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76 (s, 3H), 3.73 (d, $J=11.4 \mathrm{~Hz}, 2 \mathrm{H}$).

223

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Cul}(\mathrm{I})$
diisoporpylamine
rt, 16 h, 61 \%

230

Trienyne $230{ }^{15}$ To a solution of pent-2-en-4-yn-1-ol $204(7.1 \mathrm{mg}, 0.086 \mathrm{mmol}$), which had been distilled by Kugelrohr, and bromodiene $223(11.5 \mathrm{mg}, 0.043 \mathrm{mmol})$ in diisopropylamine $(100 \mu \mathrm{~L})$ and ethyl acetate $(0.8 \mathrm{~mL})$ were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1.5 \mathrm{mg}, 0.002 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{I})$ (trace) at rt under Ar. After stirring for 23 h , the resulting mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted 3 times with EtOAc. The combined organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, and brine, and then dried over MgSO_{4}, and concentrated under vacuum. The dark brown solid was purified by preparative chromatography (EtOAc:n-hexane, 1:1) to provide 7.1 mg (61%) of 230 as colorless solid.
$\mathrm{R}_{f}: 0.57(\mathrm{EtOAc} / n$-hexane, $1 / 1) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}$, $1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$

[^12](dt, J = $13.2 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H})$, $5.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.

201

214
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 40 min. 23 \%

234

Pentacyclic tetraols 233 and 234 To a solution of catalyst 214 ($3.6 \mathrm{mg}, 0.004 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added bicyclooctadiene $201(11.8 \mathrm{mg}, 0.071 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. When complete by TLC, the reaction mixture was allowed to warm to rt and filtered through a Celite ${ }^{\circledR}$, and the filtrate was concentrated under vacuum. The residue was purified by preparative chromatography (EtOAc: n-hexane: $\mathrm{CH}_{3} \mathrm{OH}, 100: 50: 5$) to provide 5.5 mg (23%) of inseparable mixture of $\mathbf{2 3 3}$ and $\mathbf{2 3 4}$ as a colorless viscous oil.
$\mathrm{R}_{f}: 0.42$ (EtOAc: n-hexane: $\mathrm{CH}_{3} \mathrm{OH}, 100: 50: 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.94(\mathrm{~m}, 0.64 \mathrm{H}$), $5.86(\mathrm{~m}, 2.5 \mathrm{H}), 5.66(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 0.86 \mathrm{H}), 3.67(\mathrm{~m}, 5 \mathrm{H}), 3.46(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.57(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{br}, 1.3 \mathrm{H}), 2.62(\mathrm{~m}, 0.73 \mathrm{H}), 2.47(\mathrm{~m}, 0.73 \mathrm{H}), 2.40(\mathrm{~m}, 1.7 \mathrm{H})$, $2.27(\mathrm{bs}, 13 \mathrm{H}), 2.07(\mathrm{~m}, 10 \mathrm{H}), 1.88(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 2.5 \mathrm{H}), 1.40(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 131.5,131.1,130.2,129.2,49.5,45.4,36.3,35.3,35.1,34.4,33.6$, 30.0, 25.6, 24.7, 23.9, 23.9. IR: 3343, 3018, 2921. Mass (ESI positive ion mode): 337.2.

Bibliography

Chapter I

(1) Marvell, E. N.; Seubert, J. J Am Chem Soc 1967, 89, 3377.
(2) Marvell, E. N.; Caple, G.; Schatz, B. Tetrahedron Lett 1965, 385.
(3) Huisgen, R.; Dahmen, A.; Huber, H. J Am Chem Soc 1967, 89, 7130.
(4) Huisgen, R.; Dahmen, A.; Huber, H. Tetrahedron Lett 1969, 1461.
(5) Vogel, E.; Grimme, W.; Dinne, E. Tetrahedron Lett 1965, 391.
(6) Thomas, B. E.; Evanseck, J. D.; Houk, K. N. J Am Chem Soc 1993, 115, 4165.
(7) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B.
M. Aust J Chem 1981, 34, 1655.
(8) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B. M. Aust J Chem 1982, 35, 567.
(9) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. J Chem Soc Chem Comm 1980, 902.
(10) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. Aust J Chem 1982, 35, 557.
(11) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C.; Fallon, G. D.; Gatehouse, B. M. J Chem Soc Chem Comm 1980, 162.
(12) Nicolaou, K. C.; Petasis, N. A.; Uenishi, J.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5557.
(13) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5560.
(14) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J Am Chem Soc 1982, 104, 5555.
(15) Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J Am Chem Soc 1982, 104, 5558.
(16) Kurosawa, K.; Takahashi, K.; Tsuda, E. J Antibiot 2001, 54, 541.
(17) Takahashi, K.; Tsuda, E.; Kurosawa, K. J Antibiot 2001, 54, 548.
(18) Kurosawa, K.; Takahashi, K.; Fujise, N.; Yamashita, Y.; Washida, N.; Tsuda, E. J Antibiot 2002, 55, 71.
(19) Waldmann, H.; Wilk, W.; Kaiser, M. Bioorgan Med Chem 2009, 17, 2304.
(20) Parker, K. A.; Lim, Y. H. J Am Chem Soc 2004, 126, 15968.
(21) Beaudry, C. M.; Trauner, D. Org Lett 2005, 7, 4475.
(22) Jacobsen, M. F.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E. Org Lett 2005, 7, 2473.
(23) Manzo, E.; Ciavatta, M. L.; Gavagnin, M.; Mollo, E.; Wahidulla, S.; Cimino, G. Tetrahedron Lett 2005, 46, 465.
(24) Cueto, M.; D'Croz, L.; Mate, J. L.; San-Martin, A.; Darias, J. Org Lett 2005, 7, 415.
(25) Wei, H.; Itoh, T.; Kinoshita, M.; Kotoku, N.; Aoki, S.; Kobayashi, M. Tetrahedron 2005, 61, 8054.
(26) Miller, A. K.; Trauner, D. Angew Chem Int Edit 2005, 44, 4602.

Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.
(30) Parker, K. A.; Wang, Z. Y. Org Lett 2006, 8, 3553.
(31) Sarakinos, G.; Corey, E. J. Org Lett 1999, 1, 1741.
(32) Paquette, L. A.; Kuo, L. H.; Hamme, A. T.; Kreuzholz, R.; Doyon, J. J Org Chem 1997, 62, 1730.
(33) Paquette, L. A.; Tae, J. S. J Org Chem 1998, 63, 2022.
(34) Schreiner, P. R.; Hulot, C.; Amiri, S.; Blond, G.; Suffert, J. J Am Chem Soc 2009, 131, 13387.
(35) Suffert, J.; Hulot, C.; Blond, G. J Am Chem Soc 2008, 130, 5046.
(36) Hayashi, R.; Feltenberger, J. B.; Hsung, R. P. Org Lett 2010, 12, 1152.

Hayashi, R.; Feltenberger, J. B.; Lohse, A. G.; Walton, M. C.; Hsung, R. P. Beilstein J Org Chem 2011, 7, 410.
(38) Bergman, R. G.; Bishop, L. M.; Barbarow, J. E.; Trauner, D. Angew Chem Int Edit 2008, 47, 8100.
(39) List, B.; Kampen, D.; Reisinger, C. M. Top Curr Chem 2010, 291, 395.
(40) Maciver, E. E.; Thompson, S.; Smith, M. D. Angew Chem Int Edit 2009, 48, 9979.
(41) Thompson, S.; Coyne, A. G.; Knipe, P. C.; Smith, M. D. Chem Soc Rev 2011, 40, 4217.
(42) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Chem-Eur J 2005, 11, 3294.
(43) Lautens, M.; Tseng, N. W. J Org Chem 2009, 74, 2521.
(44) Ishiyama, T.; Murata, M.; Miyaura, N. J Org Chem 1995, 60, 7508.

Heuser, S.; Barrett, D. G.; Berg, M.; Bonnier, B.; Kahl, A.; De la Puente, M. L.; Oram, N.; Riedl, R.; Roettig, U.; Gil, G. S.; Seger, E.; Steggles, D. J.; Wanner, J.; Weichert, A. G. Tetrahedron Lett 2006, 47, 2675.

Miyaura, N.; Takahashi, K.; Takagi, J.; Ishiyama, T. Chem Lett 2000, 126.
Schenning, A. P. H. J.; Dudek, S. P.; Pouderoijen, M.; Abbel, R.; Meijer, E. W. J Am Chem Soc 2005, 127, 11763.
(48) Jia, Y. X.; Bois-Choussy, M.; Zhu, J. P. Org Lett 2007, 9, 2401.
(62) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat Protoc 2007, 2, 2451.

Wilson, P. D.; Pettigrew, J. D.; Freeman, R. P. Can J Chem 2004, 82, 1640.
Neises, B.; Steglich, W. Angewandte Chemie-International Edition in English 1978, 17, 522.

Helmchen, G.; Nill, G. Angewandte Chemie-International Edition in English 1979, 18, 65.

Helmchen, G.; Nill, G.; Flockerzi, D.; Schuhle, W.; Youssef, M. S. K. Angewandte Chemie-International Edition in English 1979, 18, 62. Helmchen, G.; Nill, G.; Flockerzi, D.; Youssef, M. S. K. Angewandte ChemieInternational Edition in English 1979, 18, 63.

Helmchen, G.; Volter, H.; Schuhle, W. Tetrahedron Lett 1977, 1417.
Helmchen, G.; Sauber, K.; Ott, R. Tetrahedron Lett 1972, 3873.
Baek, D. J.; Daniels, S. B.; Reed, P. E.; Katzenellenbogen, J. A. J Org Chem 1989, 54, 3963.

Ziegler, F. E.; Lim, H. J Org Chem 1984, 49, 3278.
Huszthy, P.; Oue, M.; Bradshaw, J. S.; Zhu, C. Y.; Wang, T. M.; Dalley, N. K.; Curtis, J. C.; Izatt, R. M. J Org Chem 1992, 57, 5383. Han Liu, Jiaxi.; Da-Ming Du. Org Lett 2007, 9, 4725.

Clayden, J.; Parris, S.; Cabedo, N.; Payne, A. H. Angew Chem Int Edit 2008, 47, 5060.

Barluenga, J.; Suarez-Sobrino, A. L.; Tomas, M.; Garcia-Granda, S.; SantiagoGarcia, R. J Am Chem Soc 2001, 123, 10494.

Roth, B. L.; Cho, S. J.; Jensen, N. H.; Kurome, T.; Kadari, S.; Manzano, M. L.; Malberg, J. E.; Caldarone, B.; Kozikowski, A. P. J Med Chem 2009, 52, 1885.
(64) Strekowski, L.; Visnick, M.; Battiste, M. A. J Org Chem 1986, 51, 4836.
(65) Deyo, D. T.; Aebi, J. D.; Rich, D. H. Synthesis-Stuttgart 1988, 608.
(66) Mobashery, S.; Yamaguchi, T.; Hesek, D.; Lee, M.; Oliver, A. G. J Org Chem 2010, 75, 3515.
(67) Rice, J. E.; Minhas, G. S.; Pilch, D. S.; Kerrigan, J. E.; LaVoie, E. J. Bioorg Med Chem Lett 2006, 16, 3891.
(68) Marks, T. J.; Hong, S. W.; Tian, S.; Metz, M. V. J Am Chem Soc 2003, 125, 14768.
(69) Prasad, K. R. K.; Joshi, N. N. J Org Chem 1996, 61, 3888.

Chapter II

(1) Besse, P.; Veschambre, H. Tetrahedron 1994, 50, 8885.
(2) Li, A. H.; Dai, L. X.; Aggarwal, V. K. Chem Rev 1997, 97, 2341.
(3) Katsuki, T.; Sharpless, K. B. J Am Chem Soc 1980, 102, 5974.
(4) Pfenninger, A. Synthesis-Stuttgart 1986, 89.
(5) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J Am Chem Soc 1990, 112, 2801.
(6) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J Am Chem Soc 1991, 113, 7063.
(7) Hosoya, N.; Irie, R.; Katsuki, T. Synlett 1993, 261.
(8) Yamamoto, H.; Makita, N.; Hoshino, Y. Angew Chem Int Edit 2003, 42, 941.
(9) Curci, R.; Fiorentino, M.; Serio, M. R. J Chem Soc Chem Comm 1984, 155.
(10) Tu, Y.; Wang, Z. X.; Shi, Y. J Am Chem Soc 1996, 118, 9806.
(11) Shi, Y.; Wong, O. A. Chem Rev 2008, 108, 3958.
(12) Baumstark, A. L.; Mccloskey, C. J. Tetrahedron Lett 1987, 28, 3311.
(13) Bach, R. D.; Andres, J. L.; Owensby, A. L.; Schlegel, H. B.; Mcdouall, J. J. W. J Am Chem Soc 1992, 114, 7207.
(14) Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J Am Chem Soc 1997,

119, 10147.
(15) Houk, K. N.; Jenson, C.; Liu, J.; Jorgensen, W. L. J Am Chem Soc 1997, 119, 12982.
(16) Shi, Y.; Lorenz, J. C.; Frohn, M.; Zhou, X. M.; Zhang, J. R.; Tang, Y.; Burke, C. J Org Chem 2005, 70, 2904.
(17) Shi, Y.; Burke, C. P. Angew Chem Int Edit 2006, 45, 4475.
(18) Shi, Y.; Goeddel, D.; Shu, L. H.; Yuan, Y.; Wong, A.; Wang, B. J Org Chem 2006, 71, 1715.
(19) Shi, Y.; Wang, B.; Shen, Y. M. J Org Chem 2006, 71, 9519.
(20) Shi, Y.; Wang, B.; Wong, O. A.; Zhao, M. X. J Org Chem 2008, 73, 9539.
(21) Shi, Y.; Wang, B.; Wu, X. Y.; Wong, O. A.; Nettles, B.; Zhao, M. X.; Chen, D. J. J Org Chem 2009, 74, 3986.
(22) Shi, Y.; Burke, C. P. J Org Chem 2007, 72, 4093.
(23) Shi, Y.; Burke, C. P.; Shu, L. J Org Chem 2007, 72, 6320.
(24) Wiemer, D. F.; Neighbors, J. D.; Mente, N. R.; Boss, K. D.; Zehnder, D. W. Tetrahedron Lett 2008, 49, 516.
(25) Morimoto, Y.; Nishikawa, Y.; Takaishi, M. J Am Chem Soc 2005, 127, 5806.
(26) Ready, J. M.; Bian, J. W.; Van Wingerden, M. J Am Chem Soc 2006, 128, 7428.
(27) Coster, M. J.; Magolan, J. J Org Chem 2009, 74, 5083.
(28) Corey, E. J.; Xiong, Z. M. J Am Chem Soc 2000, 122, 9328.
(29) Beaudry, C. M.; Trauner, D. Org Lett 2005, 7, 4475.
(30) Davies, S. G.; Fletcher, A. M.; Kurosawa, W.; Lee, J. A.; Poce, G.; Roberts, P. M.; Thomson, J. E.; Williamson, D. M. J Org Chem 2010, 75, 7745.
(31) Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J Am Chem Soc 1997, 119, 11224.
(32) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat Protoc 2007, 2, 2451.

Li, L. C.; Jiang, J. X.; Ren, J.; Ren, Y.; Pittman, C. U.; Zhu, H. J. Eur J Org Chem 2006, 1981.
(34) Tsuda, M.; Toriyabe, Y.; Endo, T.; Kobayashi, J. Chem Pharm Bull 2003, 51, 448.
(35) Hayashi, Y.; Shoji, M.; Imai, H.; Mukaida, M.; Sakai, K.; Kakeya, H.; Osada, H. J Org Chem 2005, 70, 79.
(36) Avdagic, A.; Cotarca, L.; Hamersak, Z.; Hollosi, M.; Majer, Z.; Ljubovic, E.; Suste, A.; Sunjic, V. Chirality 1997, 9, 512.
(37) Yoon, N. M.; Gyoung, Y. S. J Org Chem 1985, 50, 2443.
(38) Parker, K. A.; Lim, Y. H. J Am Chem Soc 2004, 126, 15968.
(39) Altenbach, H. J.; Block, O.; Klein, G.; Brauer, D. J. J Org Chem 2000, 65, 716.

Chapter III

(1) Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Chem Rev 2005, 105, 1603.
(2) McGarrigle, E. M.; Gilheany, D. G. Chem Rev 2005, 105, 1563.
(3) Shi, Y. Accounts Chem Res 2004, 37, 488.
(4) Aggarwal, V. K.; Winn, C. L. Accounts Chem Res 2004, 37, 611.
(5) Julia, S.; Guixer, J.; Masana, J.; Rocas, J.; Colonna, S.; Annuziata, R.; Molinari, H. J Chem Soc Perk T 1 1982, 1317.
(6) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481.
(7) Davie, E. A. C.; Mennen, S. M.; Xu, Y. J.; Miller, S. J. Chem Rev 2007, 107, 5759.
(8) Miller, S. J. Accounts Chem Res 2004, 37, 601.
(9) Berkessel, A. Angew Chem Int Edit 2008, 47, 3677.
(10) Peris, G.; Jakobsche, C. E.; Miller, S. J. J Am Chem Soc 2007, 129, 8710.
(11) Kocovsky, P.; Stary, I. J Org Chem 1990, 55, 3236.
(12) Jakobsche, C. E.; Peris, G.; Miller, S. J. Angew Chem Int Edit 2008, 47, 6707.

Chapter IV

(1) Look, S. A.; Burch, M. T.; Fenical, W.; Zheng, Q. T.; Clardy, J. J Org Chem 1985, 50, 5741.
(2) Rodriguez, A. D.; Marrero, J.; Baran, P.; Raptis, R. G. J Org Chem 2003, 68, 4977.
(3) Rodriguez, A. D.; Marrero, J.; Baran, P.; Raptis, R. G. Org Lett 2003, 5, 2551.
(4) Marrero, J.; Rodriguez, A. D.; Baran, P.; Raptis, R. G. Eur J Org Chem 2004, 3909.
(5) Rodriguez, A. D.; Marrero, J.; Baran, P.; Raptis, R. G.; Sanchez, J. A.; Ortega-Barria, E.; Capson, T. L. Org Lett 2004, 6, 1661.
(6) Saito, S.; Hasegawa, T.; Inaba, M.; Nishida, R.; Fujii, T.; Nomizu, S.; Moriwake, T. Chem Lett 1984, 1389.
(7) Doroh, B.; Sulikowski, G. A. Org Lett 2006, 8, 903.
(8) Lear, M. J.; Miao, R.; Gramani, S. G. Tetrahedron Lett 2009, 50, 1731.
(9) Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Angew Chem Int Edit 2011, 50, 5149.
(10) Parker, K. A.; Lim, Y. H. J Am Chem Soc 2004, 126, 15968.
(11) Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.
(12) Thesis from Hong Zhao.
(13) Paquette, L. A.; Chang, J. Y.; Liu, Z. S. J Org Chem 2004, 69, 6441.
(14) Fry, A. J. Tetrahedron 2008, 64, 2101.
(15) Lellouche, J. P.; Koeller, S. J Org Chem 2001, 66, 693.
(16) Trauner, D.; Beaudry, C. M. Org Lett 2002, 4, 2221.
(17) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett 1975, 4467.
(18) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5560.
(19) Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem Commun 2011, 47, 10605.

Chapter V

(1) Litaudon, M.; Leverrier, A.; Dau, M. E. T. H.; Retailleau, P.; Awang, K.; Gueritte, F. Org Lett 2010, 12, 3638.
(2) Nkeng-Efouet, P. A.; Chouna, J. R.; Lenta, B. N.; Devkota, K. P.; Neumann, B.; Stammler, H. G.; Kimbu, S. F.; Sewald, N. Phytochemistry 2009, 70, 684.
(3) Litaudon, M.; Leverrier, A.; Awang, K.; Gueritte, F. Phytochemistry 2011, 72, 1443.
(4) Czabotar, P. E.; Lessene, G. Curr Pharm Design 2010, 16, 3132.
(5) Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.
(6) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B. M. Aust J Chem 1981, 34, 1655.
(7) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. Aust J Chem 1982, 35, 557.
(8) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S.; Fallon, G. D.; Gatehouse, B. M. Aust J Chem 1982, 35, 567.
(9) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J Am Chem Soc 1982, 104, 5555.
(10) Nicolaou, K. C.; Petasis, N. A.; Uenishi, J.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5557.
(11) Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J Am Chem Soc 1982, 104, 5558.
(12) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J Am Chem Soc 1982, 104, 5560.
(13) Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem Commun 2011, 47, 10605.
(14) Bellville, D. J.; Wirth, D. D.; Bauld, N. L. J Am Chem Soc 1981, 103, 718.
(15) Recently the same experiment was reproduced by our group member, Hee Nam Lim.
(16) Sharma, G. V. M.; Choudary, B. M.; Sarma, M. R.; Rao, K. K. J Org Chem 1989, 54, 2997.
(17) De Voss, J. J.; Matovic, N. J.; Hayes, P. Y.; Penman, K.; Lehmann, R. P. J Org Chem 2011, 76, 4467.
(18) Yuasa, Y.; Yuasa, Y.; Shibuya, S. Synthetic Commun 2003, 33, 3947.
(19) Moloney, M. G.; Bulger, P. G.; Trippier, P. C. Org Biomol Chem 2003, 1, 3726.

Appendix

36

59

78

79

83a and 83b

	1	1	1	1	,	1	1	1	I	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

104

138

$\underbrace{n \sim 1}$

138

175

175

1	1	1			1	,	1		1		1	1	1	1	1	1	1			
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

[^0]: ${ }^{1}$ Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.

[^1]: ${ }^{2}$ Palomo, C; Aizpurua, J. M.; Balentova, Ea; Jimenez, A; Oyarbide, J; Fratila, R. M.; Miranda, J. I. Org Lett 2007, 9, 101.

[^2]: ${ }^{3}$ Huszthy, P.; Oue, M.; Bradshaw, J. S.; Zhu, C. Y.; Wang, T. M.; Dalley, N. K.; Curtis, J. C.; Izatt, R. M. J Org Chem 1992, 57, 5383.

[^3]: ${ }^{4}$ Marks, T. J.; Hong, S. W.; Tian, S.; Metz, M. V. J Am Chem Soc 2003, 125, 14768.

[^4]: ${ }^{5}$ Marks, T. J.; Hong, S. W.; Tian, S.; Metz, M. V. J Am Chem Soc 2003, 125, 14768.

[^5]: ${ }^{6}$ Parker, K. A.; Lim, Y. H. Org Lett 2004, 6, 161.

[^6]: ${ }^{7}$ Peris, G.; Jakobsche, C. E.; Miller, S. J. J Am Chem Soc 2007, 129, 8710.

[^7]: 8 Thesis from Hong Zhao: Part 4. Studies Towards Total Synthesis of Bielschowskysin.

[^8]: ${ }_{10}$ Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J Am Chem Soc 1982, 104, 5555.
 ${ }^{10}$ Although compound 196 is known, we could not obtain the spectroscopic properties.

[^9]: ${ }^{11}$ Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem Commun 2011, 47, 10605.

[^10]: ${ }^{12}$ Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem Commun 2011, 47, 10605.
 ${ }^{13}$ Ian Paterson,. S. B. Jennifer Kan and Lisa J. Gibson. Org. Lett., 2010, 12, 3724.

[^11]: ${ }^{14}$ Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem Commun 2011, 47, 10605.

[^12]: ${ }^{15}$ A. B. Lemay, K. S. Vulic, W. W. Ogilvie, J. Org. Chem., 2006, 71, 3615-3618.

