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Abstract of the Dissertation

Tractable Learning of Graphical Model Structures from Data

by

Jean Fausto Honorio Carrillo

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

Probabilistic graphical models (PGMs) provide a way to represent variables (nodes) along
with their conditional dependencies (edges) and therefore allow formalizing our knowledge
of the interacting entities in the real world. Structure learning aims to discover the topol-
ogy (and parameters) of a PGM that represents accurately a given dataset. Accuracy of
representation can be measured by the likelihood that the PGM explains the observed data,
which leads to maximum likelihood estimation (MLE).

From an algorithmic point of view, one challenge faced by structure learning is that
the number of possible structures is super-exponential in the number of variables. From a
statistical perspective, it is important to find good regularizers in order to avoid over-fitting
and to achieve better generalization performance. Regularizers aim to reduce the complexity
of the PGM, which can be measured by its number of parameters.

First, we present three regularizers for MLE of Gaussian Markov random fields (MRFs):
local constancy for datasets where variables correspond to a measurement in a manifold
(silhouettes, motion trajectories, 2D and 3D images); variable selection for finding few inter-
acting nodes from datasets with thousands of variables; and multi-task learning for a more
efficient use of data which is available for multiple related tasks. For these regularizers,
we show bounds of the eigenvalues of the optimal solution, convergence of block coordinate
descent optimization, and connections to the continuous quadratic knapsack problem and
the quadratic trust-region problem.

Second, we focus on learning sparse discrete MRFs through MLE. In this case, computing
the objective function as well as its gradient is NP-hard. We study the convergence rate of
stochastic optimization of exact NP-hard objectives, for which only biased estimates of the
gradient are available. We provide a convergence-rate analysis of deterministic errors and
extend our analysis to biased stochastic errors.

Third, we show general results for PGMs that allow understanding MLE with regularizers
on the differences of parameters (e.g. sparse structural changes, time-varying models), the
generalization ability of PGMs, and the use of PGM parameters as features in classification,

iii



dimensionality reduction and clustering. To this end, we show that the log-likelihood of
several PGMs is Lipschitz continuous with respect to the parameters, and derive bounds on
the Kullback-Leibler divergence, expected log-likelihood and Bayes error rate.

Finally, we formalize and study the problem of learning the structure of graphical games
from strictly behavioral data. We propose MLE of a generative model defined by the Nash
equilibria of the game. The formulation brings out the interplay between goodness-of-fit
and model complexity: good models capture the equilibrium behavior represented in the
data while controlling the true number of equilibria, including those potentially unobserved.
We provide a generalization bound for MLE. We discuss several optimization algorithms
including convex loss minimization, sigmoidal approximations and exhaustive search. We
formally prove that games in our hypothesis space have a small true number of equilibria,
with high probability; thus, convex loss minimization is sound.

We present experimental results on a wide range of real-world datasets: walking video
sequences, motion capture, cardiac MRI, brain fMRI, gene expression, stock prices, world
weather and congressional voting.

Regarding published work, under submission and soon to be submitted. Chapter
2 is based on published work [Honorio et al., 2009], additionally it includes bounds on the
eigenvalues of the optimal solution. Chapter 3 is based on published work [Honorio et al.,
2012]. Chapter 4 is based on published work [Honorio and Samaras, 2010] for the `1,∞
penalty, and work under submission [Honorio and Samaras, 2012] for the `1,2 penalty and
diagonal penalization. Chapter 6 is based on published work [Honorio, 2011]. Chapter 5 is
based on published work [Honorio, 2012]. Chapter 7 is based on work soon to be submitted
[Honorio and Ortiz, 2012].
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Chapter 1

Introduction

In this chapter, we provide a brief introduction to probabilistic graphical models and the
problems of inference and learning. Since we propose different priors for learning Gaussian
graphical models in Chapters 2, 3 and 4, here we provide the material that is common to
these chapters. We provide the material for discrete Markov random fields in Chapter 5.

1.1 Probabilistic Graphical Models

The availability of large amounts of real world data and the need of not only being able
to detect patterns but also to understand its underlying structure has pushed the develop-
ment of graphical models in the last years. When modeling real world data, a probabilistic
model must deal with uncertainty and complexity. Graphical models provide a way to rep-
resent variables along with their conditional dependencies and therefore allow formalizing
our knowledge of the interacting entities in the real world related to the problem at hand.
In computer vision, for instance, an image can be decomposed into its constituent objects,
lighting conditions, motion patterns, etc. Note however that even though knowledge about
the lighting conditions and their effect to the image is known, it is unobserved since it is not
usually recorded along with the data.

Inference algorithms must deal with uncertainty coming from different sources: the data,
the features which are most useful for processing the data, the relationship among vari-
ables, and the action which has to be taken as a result of inference [Frey and Jojic, 2005].
Probability theory offers two types of models when reasoning under uncertainty.

A discriminative model predicts the distribution of the desired output given the input
data P (output|input). In tasks such as supervised learning the output is the class label
and the likelihood P (input|output) is usually learnt. The posterior probability is computed
by the Bayes rule. On the other hand, a generative model allows modeling the data as a
joint probability distribution P (output, input). The posterior probability P (output|input) is
computed by marginalization and the Bayes rule.

However, sometimes our goal is not only to find a model which fits the training data,
but also that is consistent with prior knowledge. Graphical models provide a way to specify
prior knowledge about the variables and their topology (conditional dependencies). In the
presence of knowledge about the process which generated the data, they also allow defining
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Figure 1.1: Three types of graphical models representing the same conditional dependencies, (a) a
Bayesian network, (b) a Markov random field and (c) a factor graph.

hidden or unobserved variables which explain the observed data. This results in an extended
joint distribution of the form P (class, input, hidden).

1.2 Types of Graphical Models

Bayesian or belief networks [Bishop, 2006, Frey and Jojic, 2005, Lauritzen, 1996] are directed
acyclic graphs where each node is a random variable and each edge represents conditional
dependence of a variable with respect to its parent. More formally, a Bayesian network for
random variables x1, x2 . . . xN has one conditional probability function P (xn|φn) for each
variable xn given its set of parents φn. The joint probability distribution is given by the
product of all conditional probabilities P (x) =

∏
n P (xn|φn). For instance, in Figure 1.1(a)

we show a Bayesian network in which x4 depends on x1, x2 and x3, while x2 and x3 are
conditionally independent.

A Markov random field [Bishop, 2006, Frey and Jojic, 2005, Lauritzen, 1996] for random
variables x1, x2 . . . xN is an undirected graph with one potential function gm for each of the M
maximal cliques ϕm. The joint distribution is given by the product of all potential functions
P (x) = 1

Z

∏
m gm(ϕm) where Z is a normalization constant such that

∫
P (x)dx = 1. Figure

1.1(b) shows an example in which two cliques are defined.
Factor graphs [Bishop, 2006, Frey and Jojic, 2005] allow splitting a joint probability

distribution of several variables into a product of local functions of smaller sets of variables.
More formally, a factor graph is a bipartite graph where one set of nodes are the random
variables x1, x2 . . . xN while the other set are the local functions g1, g2 . . . gM . A function gm is
connected to the set variables of variables ϕm on which it depends on. The joint probability
distribution is given by the product of all local functions P (x) = 1

Z

∏
m gm(ϕm) where Z is a

normalization constant such that
∫
P (x)dx = 1. See Figure 1.1(c) for a graphical example.

Factor graphs subsume Bayesian networks and Markov random fields. Any Bayesian
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network or Markov random field can be converted to a factor graph. Furthermore, there
exist models whose independence relationships can only be expressed in a factor graph.

Markov blankets allow understanding the concept of independence in graphical models.
The Markov blanket of a node contains all the variables that shield the node from the rest
of the model. This means that the Markov blanket of a node is the only knowledge needed
in order to predict the behavior of that node. For Bayesian networks, the Markov blanket of
a node includes its parents, children and children’s parents. For Markov random fields, the
Markov blanket of a node includes all its neighbors, which is the set of maximal cliques the
node belongs to. For factor graphs, the Markov blanket of a node includes all its neighbors,
which are all local functions connected to it.

1.3 Inference and Learning

Two important tasks related to graphical models are inference and learning. Inference refers
to the problem of computing the value of a subset of nodes (hidden or unobserved variables)
given observed values in another subset (observed variables) [Bishop, 2006]. The hidden val-
ues are computed by maximization of the posterior P (hidden|input) which can be computed
by the Bayes rule. Exact inference by posterior maximization is computationally intractable
in most cases, for instance when some variables are discrete, all possible combinations have
to be tried in the search. Due to that, inference is performed by using an approximate and
simpler probability density function or by some heuristics. Several approximate inference
algorithms have been proposed [Frey and Jojic, 2005] such as iterated conditional modes,
expectation maximization, Monte Carlo methods, variational techniques as well as belief
propagation.

Parameter learning refers to the problem of computing the value of the parameters for a
graphical model with fixed topology. Structure learning, the topic of this thesis, refers to the
problem of learning the topology (and parameters) of the graphical model. In both cases, the
learning process uses a given dataset in order to estimate the parameters and/or structure.
Techniques on this area have a big impact in contexts with limited prior knowledge where
the existence of variables is known but not the conditional dependencies among them.

Even though some research in structure learning has been done for datasets with missing
values on some samples [Myers et al., 1999, Ramoni and Sebastiani, 1997] as well as for
hidden or unobserved variables [Elidan and Friedman, 2005, Friedman, 1997, 1998], we focus
on datasets without missing values and with observed variables only.

1.4 Learning Sparse Gaussian MRFs

We propose different priors for learning Gaussian graphical models in Chapters 2, 3 and 4.
In this section, we introduce Gaussian graphical models and discuss methods for learning
sparse models from data.

A Gaussian graphical model is a graph in which all random variables are continuous
and jointly Gaussian. This model corresponds to the multivariate normal distribution for
N variables with covariance matrix Σ ∈ RN×N . Conditional independence in a Gaussian
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graphical model is simply reflected in the zero entries of the precision matrix Ω = Σ−1

[Lauritzen, 1996]. Let Ω = {ωn1n2}, two variables n1 and n2 are conditionally independent
if and only if ωn1n2 = 0. The precision matrix representation is preferred because it allows
detecting cases in which two seemingly correlated variables, actually depend on a third
confounding variable.

For Gaussian graphical models, the number of parameters, the number of edges in the
structure and the number of non-zero elements in the inverse covariance or precision matrix
are equivalent measures of complexity. Therefore, several techniques focus on enforcing
sparseness of the precision matrix.

The concept of robust estimation by performing covariance selection was first introduced
in [Dempster, 1972] where the number of parameters to be estimated is reduced by setting
some elements of the precision matrix Ω to zero. Since finding the most sparse precision
matrix which fits a dataset is a NP-hard problem [Banerjee et al., 2006], in order to overcome
it, several `1-regularization methods have been proposed for learning Gaussian graphical
models from data.

Given a dense sample covariance matrix Σ̂ � 0, the problem of finding a sparse precision
matrix Ω by regularized maximum likelihood estimation is given by:

max
Ω�0

(
log det Ω− 〈Σ̂,Ω〉 − ρ‖Ω‖1

)
(1.1)

for ρ > 0. The term log det Ω − 〈Σ̂,Ω〉 is the Gaussian log-likelihood. The term ‖Ω‖1

encourages sparseness of the precision matrix or conditional independence among variables.
Covariance selection [Banerjee et al., 2006] computes small perturbations on the sam-

ple covariance matrix such that it generates a sparse precision matrix, which results in
a box-constrained quadratic programming. This method has moderate run time. The
Meinshausen-Bühlmann approximation [Meinshausen and Bühlmann, 2006] obtains the con-
ditional dependencies by performing a sparse linear regression for each variable, by using
lasso regression [Tibshirani, 1996]. This method is very fast but does not yield good esti-
mates for lightly regularized models, as noted in [Friedman et al., 2007b]. The constrained
optimization version of eq.(1.1) is solved in [Yuan and Lin, 2007] by applying a standard de-
terminant maximization with linear inequality constraints, which requires iterative lineariza-
tion of ‖Ω‖1. This technique in general does not yield the maximum likelihood estimator, as
noted in [Banerjee et al., 2008]. The graphical lasso technique [Friedman et al., 2007b] solves
the dual form of eq.(1.1), which results in a lasso regression problem. This method has run
times comparable to [Meinshausen and Bühlmann, 2006] without sacrificing accuracy in the
maximum likelihood estimator.

Structure learning through `1-regularization has been also proposed for different types
of graphical models: Markov random fields (MRFs) by a clique selection heuristic and ap-
proximate inference [Lee et al., 2006a]; Bayesian networks on binary variables by logistic
regression [Schmidt et al., 2007b]; Conditional random fields by pseudo-likelihood and block
regularization in order to penalize all parameters of an edge simultaneously [Schmidt et al.,
2008]; and Ising models, i.e. MRFs on binary variables with pairwise interactions, by logistic
regression [Wainwright et al., 2006] which is similar in spirit to [Meinshausen and Bühlmann,
2006].
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Table 1.1: Notation used in this thesis.

Notation Description
‖c‖1 `1-norm of c ∈ RN , i.e.

∑
n |cn|

‖c‖∞ `∞-norm of c ∈ RN , i.e. maxn |cn|
‖c‖2 Euclidean norm of c ∈ RN , i.e.

√∑
n c

2
n

Diag(c) ∈ RN×N matrix with elements of c ∈ RN on its diagonal
A � 0 A ∈ RN×N is symmetric and positive semidefinite
A � 0 A ∈ RN×N is symmetric and positive definite
‖A‖1 `1-norm of A ∈ RM×N , i.e.

∑
mn |amn|

‖A‖∞ `∞-norm of A ∈ RM×N , i.e. maxmn |amn|
‖A‖2 spectral norm of A ∈ RN×N , i.e. the maximum eigenvalue of A � 0
‖A‖F Frobenius norm of A ∈ RM×N , i.e.

√∑
mn a

2
mn

〈A,B〉 scalar product of A,B ∈ RM×N , i.e.
∑
mn amnbmn

A ◦B ∈ RM×N Hadamard or entrywise product of A,B ∈ RM×N , i.e. (A ◦B)mn = amnbmn
Diag(A) ∈ RN×N matrix with diagonal elements of A ∈ RN×N only
diag(A) ∈ RN vector with diagonal elements of A ∈ RN×N
vec(A) ∈ RMN vector containing all elements of A ∈ RM×N
∂f/∂c gradient of f with respect to c ∈ RN , i.e. ∂f/∂c ∈ RN
∂f/∂A gradient of f with respect to A ∈ RM×N , i.e. ∂f/∂A ∈ RM×N

|c| entrywise absolute value of c ∈ RN , i.e. (|c1|, |c2|, . . . , |cN |)T
J(A) ∈ RM×N zero structure operator of A ∈ RM×N , by using the Iverson bracket jmn(A) =

1[amn = 0]
A�B ∈ RM×N diagonal excluded product of A ∈ RM×N and B ∈ RN×N , i.e. A � B =

J(A)◦ (AB). It has the property that no diagonal entry of B is used in A�B

1.5 Notation

In this thesis, we use the notation in Table 1.1. For convenience, we define two new operators
that are used on Chapter 2: the zero structure operator and the diagonal excluded product.
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Chapter 2

Learning Independent Gaussian
MRFs: Local Constancy

Locality information is crucial in datasets where each variable corresponds to a measurement
in a manifold (silhouettes, motion trajectories, 2D and 3D images). Although these datasets
are typically under-sampled and high-dimensional, they often need to be represented with
low-complexity statistical models, which are comprised of only the important probabilistic
dependencies in the datasets. Most methods attempt to reduce model complexity by en-
forcing structure sparseness. However, sparseness cannot describe inherent regularities in
the structure. Hence, in this chapter we first propose a new prior for Gaussian graphical
models which, together with sparseness, imposes local constancy. Second, we propose an ef-
ficient algorithm which decomposes the strictly convex maximum likelihood estimation into
a sequence of problems with closed form solutions. We test our method in a wide range of
complex real-world datasets and demonstrate that it captures useful structures such as the
rotation and shrinking of a beating heart, motion correlations between body parts during
walking and functional interactions of brain regions.

2.1 Introduction

In this chapter, we propose local constancy as a prior for learning Gaussian graphical models,
which is natural for spatial datasets such as those encountered in computer vision [Crandall
et al., 2005, Felzenszwalb and Huttenlocher, 2005, Gu et al., 2007].

In datasets which are a collection of measurements for variables with some spatial ar-
rangement, one can define a local neighborhood for each variable or manifold. Such variables
correspond to points in silhouettes, pixels in 2D images or voxels in 3D images. Silhouettes
define a natural one-dimensional neighborhood in which each point has two neighbors on
each side of the closed contour. Similarly, one can define a four-pixel neighborhood for 2D
images as well as six-pixel neighborhood for 3D images. However, there is little research on
spatial regularization for structure learning. Some methods assume a one-dimensional spa-
tial neighborhood (e.g. silhouettes) and that variables far apart are only weakly correlated
[Levina et al., 2008], interaction between a priori known groups of variables as in [Duchi
et al., 2008a], or block structures as in [Mansinghka et al., 2006] in the context of Bayesian
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networks.
Our contribution in this chapter is two-fold. First, we propose local constancy, which

encourages finding connectivities between two close or distant clusters of variables, instead
of between isolated variables. It does not heavily constrain the set of possible structures,
since it only imposes restrictions of spatial closeness for each cluster independently, but not
between clusters. We impose an `1-norm penalty for differences of spatially neighboring
variables, which allows obtaining locally constant models that preserve sparseness, unlike `2-
norm penalties. Our model is strictly convex and therefore has a global minimum. Positive
definiteness of the estimated precision matrix is also guaranteed, since this is a necessary
condition for the definition of a multivariate normal distribution.

Second, since optimization methods for structure learning on Gaussian graphical models
[Banerjee et al., 2006, Friedman et al., 2007b, Meinshausen and Bühlmann, 2006, Yuan and
Lin, 2007] are unable to handle local constancy constraints, we propose an efficient algorithm
by maximizing with respect to one row and column of the precision matrix at a time. By
taking directions involving either one variable or two spatially neighboring variables, the
problem reduces to minimization of a piecewise quadratic function, which can be performed
in closed form.

We initially test the ability of our method to recover the ground truth structure from data,
of a complex synthetic model which includes locally and not locally constant interactions as
well as independent variables. Our method outperforms the state-of-the-art structure learn-
ing techniques [Banerjee et al., 2006, Friedman et al., 2007b, Meinshausen and Bühlmann,
2006] for datasets with both small and large number of samples. We further show that
our method has better generalization performance on real-world datasets. We demonstrate
the ability of our method to discover useful structures from datasets with a diverse nature
of probabilistic relationships and spatial neighborhoods: manually labeled silhouettes in a
walking sequence, cardiac magnetic resonance images (MRI) and functional brain MRI.

Section 2.2 introduces techniques for learning Gaussian graphical models from data. Sec-
tion 2.3 presents our sparse and locally constant Gaussian graphical models. Section 2.4
describes our structure learning algorithm. Experimental results on synthetic and real-world
datasets are shown and explained in Section 2.5. Main contributions and results are sum-
marized in Section 2.6.

2.2 Background

In Section 1.4, we introduced Gaussian graphical models as well as techniques for learn-
ing sparse Gaussian graphical models through `1 regularization, such as: covariance selec-
tion [Banerjee et al., 2006], graphical lasso [Friedman et al., 2007b] and the Meinshausen-
Bühlmann approximation [Meinshausen and Bühlmann, 2006].

There is little work on spatial regularization for structure learning. Adaptive banding
on the Cholesky factors of the precision matrix has been proposed in [Levina et al., 2008].
Instead of using the traditional lasso penalty, a nested lasso penalty is enforced. Entries at
the right end of each row are promoted to zero faster than entries close to the diagonal. The
main drawback of this technique is the assumption that the more far apart two variables
are the more likely they are to be independent. Grouping of entries in the precision matrix
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into disjoint subsets has been proposed in [Duchi et al., 2008a]. Such subsets can model for
instance dependencies between different groups of variables in the case of block structures.
Although such a formulation allows for more general settings, its main disadvantage is the
need for an a priori segmentation of the entries in the precision matrix.

Related approaches have been proposed for Bayesian networks. In [Mansinghka et al.,
2006] it is assumed that variables belong to unknown classes and probabilities of having edges
among different classes were enforced to account for structure regularity, thus producing
block structures only.

2.3 Sparse and Locally Constant Gaussian Graphical

Models

First, we describe our local constancy assumption and its use to model the spatial coherence
of dependence/independence relationships. Local constancy is defined as follows: if variable
xn1 is dependent (or independent) of variable xn2 , then a spatial neighbor xn′1 of xn1 is
more likely to be dependent (or independent) of xn2 . This encourages finding connectivities
between two close or distant clusters of variables, instead of between isolated variables. Note
that local constancy imposes restrictions of spatial closeness for each cluster independently,
but not between clusters.

In this chapter, we impose constraints on the difference of entries in the precision ma-
trix Ω ∈ RN×N for N variables, which correspond to spatially neighboring variables. Let
Σ̂ ∈ RN×N be the dense sample covariance matrix and D ∈ RM×N be the discrete derivative
operator on the manifold, where M ∈ O(N) is the number of spatial neighborhood relation-
ships. For instance, in a 2D image, M is the number of pixel pairs that are spatial neighbors
on the manifold. More specifically, if pixel n1 and pixel n2 are spatial neighbors, we include
a row m in D such that dmn1 = 1, dmn2 = −1 and dmn3 = 0 for n3 /∈ {n1, n2}. The following
penalized maximum likelihood estimation is proposed:

max
Ω�0

(
log det Ω− 〈Σ̂,Ω〉 − ρ‖Ω‖1 − τ‖D�Ω‖1

)
(2.1)

for some ρ, τ > 0. The first two terms model the quality of the fit of the estimated multivari-
ate normal distribution to the dataset. The third term ρ‖Ω‖1 encourages sparseness while
the fourth term τ‖D�Ω‖1 encourages local constancy in the precision matrix by penalizing
the differences of spatially neighboring variables.

In conjunction with the `1-norm penalty for sparseness, we introduce an `1-norm penalty
for local constancy. As discussed further in [Tibshirani et al., 2005], `1-norm penalties lead to
locally constant models which preserve sparseness, where as `2-norm penalties of differences
fail to do so.

The use of the diagonal excluded product for penalizing differences instead of the regular
product of matrices, is crucial. The regular product of matrices would penalize the difference
between the diagonal and off-diagonal entries of the precision matrix, and potentially destroy
positive definiteness of the solution for strongly regularized models.

In the following theorem, we show that the eigenvalues of the optimal solution of our
problem is bounded.
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Theorem 2.1. For ρ > 0, τ > 0, the optimal solution to the variable-selection structure
learning problem in eq.(2.1) is unique and bounded as follows:(

1

‖Σ̂‖2 +Nρ+
√
MN min(M,N)τ‖D‖F

)
I � Ω∗ �

(
N

ρ

)
I (2.2)

Proof. By using the following identities for dual norms ρ‖Ω‖1 = max‖A‖∞≤ρ 〈A,Ω〉 and
τ‖D�Ω‖1 = max‖B‖∞≤τ 〈B,D�Ω〉, and the fact that 〈B,D�Ω〉 = 〈B,J(D) ◦ (DΩ)〉 =
〈B ◦ J(D),DΩ〉 = 〈DT(B ◦ J(D)),Ω〉 in eq.(2.1), we get:

max
Ω�0

min
‖A‖∞≤ρ
‖B‖∞≤τ

(
log det Ω− 〈Σ̂ + A + DT(B ◦ J(D)),Ω〉

)
(2.3)

By virtue of Sion’s minimax theorem, we can swap the order of max and min. Furthermore,

note that the optimal solution of the inner equation is given by Ω = (Σ̂ + A + DT(B ◦ J(D)))
−1

.
By replacing this solution in eq.(2.3), we get the dual problem of eq.(2.1):

min
‖A‖∞≤ρ
‖B‖∞≤τ

(
− log det(Σ̂ + A + DT(B ◦ J(D)))−N

)
(2.4)

In order to find a lower bound for the minimum eigenvalue of Ω∗, note that ‖Ω∗−1‖2 =

‖Σ̂+A+DT(B◦J(D))‖2 ≤ ‖Σ̂‖2 +‖A‖2 +‖DT(B◦J(D))‖2 ≤ ‖Σ̂‖2 +N‖A‖∞+‖DT(B◦
J(D))‖F ≤ ‖Σ̂‖2 +N‖A‖∞ + ‖D‖F‖B ◦ J(D)‖F ≤ ‖Σ̂‖2 +N‖A‖∞ + ‖D‖F‖B‖F ≤ ‖Σ̂‖2 +

N‖A‖∞ +
√

min(M,N)‖D‖F‖B‖2 ≤ ‖Σ̂‖2 + N‖A‖∞ +
√
MN min(M,N)‖D‖F‖B‖∞ ≤

‖Σ̂‖2 +Nρ+
√
MN min(M,N)τ‖D‖F.

In order to find an upper bound for the maximum eigenvalue of Ω∗, note that, at optimum,
the primal-dual gap is zero:

−N + 〈Σ̂,Ω∗〉+ ρ‖Ω∗‖1 + τ‖D�Ω∗‖1 = 0 (2.5)

The upper bound is found as follows: ‖Ω∗‖2 ≤ ‖Ω∗‖F ≤ ‖Ω∗‖1 = (N − 〈Σ̂,Ω∗〉 −
τ‖D �Ω∗‖1)/ρ. Note that τ‖D �Ω∗‖1 ≥ 0, and since Σ̂ � 0 and Ω∗ � 0, it follows that

〈Σ̂,Ω∗〉 ≥ 0. Therefore, ‖Ω∗‖2 ≤ N
ρ

.

Even though the choice of the linear operator in eq.(2.1) does not affect the positive
definiteness properties of the estimated precision matrix or the optimization algorithm, in the
following Section 2.4, we discuss positive definiteness properties and develop an optimization
algorithm for the specific case of the discrete derivative operator D.

2.4 Coordinate-Direction Descent Algorithm

Positive definiteness of the precision matrix is a necessary condition for the definition of a
multivariate normal distribution. Furthermore, strict convexity is a very desirable property
in optimization, since it ensures the existence of a unique global minimum. Notice that
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the penalized maximum likelihood estimation problem in eq.(2.1) is strictly convex due to
the convexity properties of log det Ω on the space of symmetric positive definite matrices
[Boyd and Vandenberghe, 2006]. Maximization can be performed with respect to one row
and column of the precision matrix Ω at a time. Without loss of generality, we use the last
row and column in our derivation, since permutation of rows and columns is always possible.
Also, note that rows in D can be freely permuted without affecting the objective function.
Let:

Ω =

[
W y
yT z

]
, Σ̂ =

[
S u
uT v

]
, D =

[
D1 0M−L
D2 d3

]
(2.6)

where W,S ∈ RN−1×N−1, y,u ∈ RN−1, d3 ∈ RL is a vector with all entries different than
zero, which requires a permutation of rows in D, D1 ∈ RM−L×N−1 and D2 ∈ RL×N−1.

In term of the variables y, z and the constant matrix W, the penalized maximum likeli-
hood estimation problem in eq.(2.1) can be reformulated as:

max
Ω�0

(
log(z − yTW−1y)− 2uTy − (v + ρ)z − 2ρ‖y‖1 − τ‖Ay − b‖1

)
(2.7)

where ‖Ay − b‖1 can be written in an extended form:

‖Ay − b‖1 = ‖D1y‖1 + ‖vec(J(D2) ◦ (d3y
T + D2W))‖1 (2.8)

Intuitively, the term ‖D1y‖1 penalizes differences across different rows of Ω which affect
only values in y, while the term ‖vec(J(D2) ◦ (d3y

T + D2W))‖1 penalizes differences across
different columns of Ω which affect values of y as well as W.

It can be shown that the precision matrix Ω is positive definite since its Schur complement
z − yTW−1y is positive. By maximizing eq.(2.7) with respect to z, we get:

z − yTW−1y =
1

v + ρ
(2.9)

and since v > 0 and ρ > 0, this implies that the Schur complement in eq.(2.9) is positive.
Maximization with respect to one variable at a time leads to a strictly convex, non-

smooth, piecewise quadratic function. By replacing the optimal value for z given by eq.(2.9)
into the objective function in eq.(2.7), we get:

min
y∈RN−1

(
1
2
yT(v + ρ)W−1y + uTy + ρ‖y‖1 + τ

2
‖Ay − b‖1

)
(2.10)

Since the objective function in eq.(2.10) is non-smooth, its derivative is not continu-
ous and therefore methods such as gradient descent cannot be applied. Although coordinate
descent methods [Banerjee et al., 2006, Friedman et al., 2007b] are suitable when only sparse-
ness is enforced, they are not when local constancy is encouraged. As shown in [Friedman
et al., 2007a], when penalizing an `1-norm of differences, a coordinate descent algorithm can
get stuck at sharp corners of the non-smooth optimization function; the resulting coordinates
are stationary only under single-coordinate moves but not under diagonal moves involving
two coordinates at a time.

For a discrete derivative operator D used in the penalized maximum likelihood esti-
mation problem in eq.(2.1), it suffices to take directions involving either one variable g =
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(0, . . . , 0, 1, 0, . . . , 0)T or two spatially neighboring variables g = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)T

such that 1s appear in the position corresponding to the two neighbor variables. Finally,
assuming an initial value y0 and a direction g, the objective function in eq.(2.10) can be
reduced to find t in y(t) = y0 + tg such that it minimizes:

mint∈R
(

1
2
pt2 + qt+

∑
m rm|t− sm|

)
p = (v + ρ)gTW−1g , q = ((v + ρ)W−1y0 + u)

T
g

r =

[
ρ|g|
τ
2
|Ag|

]
, s =

[
−Diag(g)−1(y0)

−Diag(Ag)−1(Ay0 − b)

] (2.11)

For simplicity of notation, we assume that r, s ∈ RM use only non-zero entries of g and
Ag on its definition in eq.(2.11). We sort and remove duplicate values in s, and propagate
changes to r by adding the entries corresponding to the duplicate values in s. Note that
these apparent modifications do not change the objective function, but they simplify its
optimization. The resulting minimization problem in eq.(2.11) is convex, non-smooth and
piecewise quadratic. Furthermore, since the objective function is quadratic on each interval
[−∞; s1], [s1; s2], . . . , [sM−1; sM ], [sM ; +∞], it admits a closed form solution. More formally,
assume s0 = −∞ < s1 < s2 < · · · < sM < sM+1 = +∞, eq.(2.11) is equivalent to:

mint∈[sm−1;sm],m

(
1
2
pt2 + kmt+ lm

)
km1 =

(
q +

∑
m2<m1

rm2 −
∑

m2≥m1
rm2

)
lm1 = −

(∑
m2<m1

rm2sm2 −
∑

m2≥m1
rm2sm2

) (2.12)

which has the closed form solution:

t∗ = argmintm,m
(

1
2
pt2m + kmtm + lm

)
tm =


−km
p
, if sm−1 ≤ −km

p
≤ sm

sm−1, if
−km
p

< sm−1

sm, if
−km
p

> sm

(2.13)

Algorithm 2.1 shows the coordinate-direction descent method in detail. A careful imple-
mentation of the algorithm allows obtaining a time complexity of O(KN3) for K iterations
and N variables, in which W−1, W−1y and Ay are updated at each iteration. In our ex-
periments, the algorithm converges quickly in usually K = 10 iterations. The polynomial
dependency on the number of variables of O(N3) is expected since we cannot produce an al-
gorithm faster than computing the inverse of the sample covariance in the case of an infinite
sample.

Finally, in the spirit of [Banerjee et al., 2006], a method for reducing the size of the
original problem is presented. Given a P -dimensional spatial neighborhood or manifold (e.g.
P = 1 for silhouettes, P = 2 for a four-pixel neighborhood on 2D images, P = 3 for a
six-pixel neighborhood on 3D images), the objective function in eq.(2.10) has the maximizer
y = 0 for variables on which ‖u‖∞ ≤ ρ − Pτ . Since this condition does not depend on
specific entries in the iterative estimation of the precision matrix, this property can be used
to reduce the size of the problem in advance by removing such variables.
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Algorithm 2.1 Block Coordinate Descent for Local Constancy.
Input: Σ̂ � 0, ρ > 0, τ > 0, D
Initialize Ω = Diag(Σ̂)

−1

for each iteration 1, . . . ,K and each variable 1, . . . , N do
Split Ω into W,y, z and Σ̂ into S,u, v as described in eq.(2.6)
Update W−1 by using the Sherman-Woodbury-Morrison formula (Note that when iterating from one
variable to the next one, only one row and column change on matrix W, see Appendix B)
Transform local constancy regularization term from D into A and b as described in eq.(2.8)
Compute W−1y and Ay
for each direction g involving either one variable or two spatially neighboring variables do

Find t that minimizes eq.(2.11) in closed form
Update y← y + tg
Update W−1y←W−1y + tW−1g
Update Ay← Ay + tAg

end for
Update z ← 1

v+ρ + yTW−1y
end for
Output: Ω � 0

0.45

-0.35

0.4

�1 �2  �3  �4  �5  �6 �7  �8 �9  

(a) (b) (c) (d)

Figure 2.1: Synthetic model with locally constant interactions and learnt structures. (a) Ground
truth model on an open contour manifold. Spatial neighbors are connected with black dashed lines.
Positive interactions are shown in blue, negative interactions in red. The model contains two locally
constant interactions between (x1, x2) and (x6, x7), and between (x4, x5) and (x8, x9), a not locally
constant interaction between x1 and x4, and an independent variable x3; (b) colored precision
matrix of the ground truth, red for negative entries, blue for positive entries; learnt structure from
(c) small and (d) large datasets. Note that for large datasets all connections are correctly recovered.

2.5 Experimental Results

We begin with a small synthetic example to test the ability of the method for recovering the
ground truth structure from data, in a complex scenario in which our method has to deal
with both locally and not locally constant interactions as well as independent variables. The
ground truth Gaussian graphical model is shown in Figure 2.1 and it contains 9 variables
arranged in an open contour manifold.

In order to measure the closeness of the recovered models to the ground truth, we mea-
sure the Kullback-Leibler divergence, average precision (one minus the fraction of falsely
included edges), average recall (one minus the fraction of falsely excluded edges) as well as
the Frobenius norm between the recovered model and the ground truth. For comparison
purposes, we picked two of the state-of-the-art structure learning techniques: covariance
selection [Banerjee et al., 2006] and graphical lasso [Friedman et al., 2007b], since it has
been shown theoretically and experimentally that they both converge to the maximum like-
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Figure 2.2: Kullback-Leibler divergence with respect to the best method, average precision, recall
and Frobenius norm between the recovered model and the ground truth. Our method (SLCGGM)
outperforms the fully connected model (Full), Meinshausen-Bühlmann approximation (MB-or, MB-
and), covariance selection (CovSel), graphical lasso (GLasso) for small datasets (in blue solid line)
and for large datasets (in red dashed line). The fully independent model (Indep) resulted in relative
divergences of 2.49 for small and 113.84 for large datasets.

lihood estimator. We also test the Meinshausen-Bühlmann approximation [Meinshausen and
Bühlmann, 2006]. The fully connected as well as fully independent model are also included
as baseline methods.

Two different scenarios are tested: small datasets of four samples, and large datasets of
400 samples. Under each scenario, 50 datasets are randomly generated from the ground truth
Gaussian graphical model. It can be concluded from Figure 2.2 that our method outperforms
the state-of-the-art structure learning techniques both for small and large datasets. This is
due to the fact that the ground truth data contains locally constant interactions, and our
method imposes a prior for local constancy. Although this is a complex scenario which also
contains not locally constant interactions as well as an independent variable, our method can
recover a more plausible model when compared to other methods. Note that even though
other methods may exhibit a higher recall for small datasets, our method consistently recovers
a better probability distribution.

A visual comparison of the ground truth versus the best recovered model by our method
from small and large datasets is shown in Figure 2.1. The image shows the precision matrix
in which red squares represent negative entries, while blue squares represent positive entries.
There is very little difference between the ground truth and the recovered model from large
datasets. Although the model is not fully recovered from small datasets, our technique
performs better than the Meinshausen-Bühlmann approximation, covariance selection and
graphical lasso in Figure 2.2.

In the following experiments, we demonstrate the ability of our method to discover useful
structures from real-world datasets. Datasets with a diverse nature of probabilistic relation-
ships are included in our experiments: cardiac MRI, a walking sequence and functional brain
MRI. We used short-axis cardiac MRI collected by Deux et al. [2008]. The segmentation
of the myocarde at the end diastole performed by an expert was used for cropping. Pre-
processing of the dataset was performed in DROP (http://campar.in.tum.de/Main/Drop)
for computing the displacements of the pixels from the initial reference frame. The cardiac
MRI sequence contains 24 images of 100 × 100 pixels. After preprocessing, the number of
pixels that correspond to the heart was reduced to 122. We applied our algorithm with
sparseness parameter ρ = 0.35, local constancy parameter τ = 0.05 and K = 10 itera-
tions. We also used a walking sequence from the Human Identification at a Distance dataset
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(a) (b) (c) (d)

(e) (f)

Figure 2.3: Results on real-world datasets: cardiac MRI displacement (a) at full contraction and
(b) at full expansion, (c) 2D spatial manifold and (d) learnt structure, which captures contraction
and expansion (in red), and similar displacements between neighbor pixels (in blue); (e) silhou-
ette manifold and (f) learnt structure from a manually labeled walking sequence, showing similar
displacements from each independent leg (in blue) and opposite displacements between both legs
as well as between hands and feet (in red); and structures learnt from functional brain MRI in a
monetary reward task for (g) drug addicted subjects with more connections in the cerebellum (in
yellow) versus (h) control subjects with more connections in the prefrontal cortex (in green).

(http://www.cc.gatech.edu/cpl/projects/hid/). The silhouette consisting of 40 land-
marks was manually labeled in a video sequence of 79 frames. We applied our algorithm
with sparseness parameter ρ = 2.5, local constancy parameter τ = 0.25 and K = 10 it-
erations. Finally, we used functional brain MRI collected by Goldstein et al. [2007]. The
time series consists of 87 frames taken every 3.5 seconds. The dataset contains 28 subjects:
16 drug-addicted and 12 healthy non-drug-using control individuals. Preprocessing of the
dataset was performed in SPM2 (http://www.fil.ion.ucl.ac.uk/spm/), and it included
deforming all time series to the same spatial reference template (Talairach space), spatial
smoothing, cropping and regular sampling. Each subject has a sequence of 87 images of
53× 63× 46 voxels. After preprocessing, the number of voxels was reduced to 869. We ap-
plied our algorithm with sparseness parameter ρ = 0.15, local constancy parameter τ = 0.01
and K = 10 iterations.

From the cardiac MRI [Deux et al., 2008], our method recovers global deformation in the
form of rotation and shrinking; from the walking sequence, our method finds the long range
interactions between different parts; and from the functional brain MRI, our method recov-
ers functional interactions between different regions and discover differences in processing
monetary rewards between cocaine addicted subjects versus healthy control subjects. Each
dataset is also diverse in the type of spatial neighborhood: one-dimensional for silhouettes in
a walking sequence, two-dimensional for cardiac MRI and three-dimensional for functional
brain MRI.

Cross-validation was performed in order to measure the generalization performance of
our method in estimating the underlying distribution. Each dataset was randomly split into
five sets. On each round, four sets were used for training and the remaining set was used for
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Figure 2.4: Cross-validated log-likelihood on the testing set. Our method (SLCGGM) outper-
forms the Meinshausen-Bühlmann approximation (MB-and, MB-or), covariance selection (CovSel),
graphical lasso (GLasso) and the fully independent model (Indep). Bars marked with an asterisk
are not statistically significantly different from our method.

measuring the log-likelihood. We tested for statistical significance by using the likelihood
ratio test as follows: given the log-likelihood L1 of a model with κ1 parameters (number
of non-zero entries in the precision matrix), and the log-likelihood L0 of a simpler model
with κ0 < κ1 parameters, at significance level 1 − α = 0.95 we reject the simpler model if
2(L1 − L0) ≥ χ2

(α=0.05,DOF=κ1−κ0).
Figure 2.4 shows that our method consistently outperforms techniques that encourage

sparsity only. This is strong evidence that datasets that are measured over a spatial manifold
are locally constant, as well as that our method is a good regularization technique that avoids
over-fitting and allows for better generalization. Another interesting fact is that for the brain
MRI dataset, which is high dimensional and contains a small number of samples, the model
that assumes full independence performed better than the Meinshausen-Bühlmann approxi-
mation, covariance selection and graphical lasso. Similar observations has been already made
in [Domingos and Pazzani, 1997, Friedman et al., 1997] where it was found that assuming
independence often performs better than learning dependencies among variables.

2.6 Concluding Remarks

In this chapter, we proposed local constancy for Gaussian graphical models, which encourages
finding probabilistic connectivities between two close or distant clusters of variables, instead
of between isolated variables. We introduced an `1-norm penalty for local constancy into
a strictly convex maximum likelihood estimation. Furthermore, we proposed an efficient
optimization algorithm and proved that our method guarantees positive definiteness of the
estimated precision matrix. We tested the ability of our method to recover the ground truth
structure from data, in a complex scenario with locally and not locally constant interactions
as well as independent variables. We also tested the generalization performance of our
method in a wide range of complex real-world datasets with a diverse nature of probabilistic
relationships as well as neighborhood type.
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Chapter 3

Learning Independent Gaussian
MRFs: Variable Selection

In the previous chapter, we proposed a prior for learning structures which is suitable for
spatial datasets. In this chapter, we propose more general priors, not only for spatial datasets,
but for any dataset with a large number of variables.

We present a variable-selection structure learning approach for Gaussian graphical mod-
els. Unlike standard sparseness promoting techniques, our method aims at selecting the
most-important variables besides simply sparsifying the set of edges. Through simulations,
we show that our method outperforms the state-of-the-art in recovering the ground truth
model. Our method also exhibits better generalization performance in a wide range of com-
plex real-world datasets: brain fMRI, gene expression, NASDAQ stock prices and world
weather. We also show that our resulting networks are more interpretable in the context
of brain fMRI analysis, while retaining discriminability. From an optimization perspective,
we show that a block coordinate descent method generates a sequence of positive definite
solutions. Thus, we reduce the original problem into a sequence of strictly convex (`1,`p) reg-
ularized quadratic minimization subproblems for p ∈ {2,∞}. Our algorithm is well founded
since the optimal solution of the maximization problem is unique and bounded.

3.1 Introduction

In this chapter, we enforce a particular form of sparseness: that only a small number of
nodes in the graphical model interact with each other. Intuitively, we want to select these
“important” nodes. However, methods for sparsifying network structure [Banerjee et al.,
2006, Friedman et al., 2007b, Meinshausen and Bühlmann, 2006, Yuan and Lin, 2007] do
not directly promote variable selection, i.e. group-wise elimination of all edges adjacent to
an “unimportant” node. Variable selection in graphical models present several advantages.
From a computational point of view, reducing the number of variables can significantly
reduce the number of precision-matrix parameters. Moreover, group-wise edge elimination
may serve as a more aggressive regularization, removing all “noisy” edges associated with
nuisance variables at once, and potentially leading to better generalization performance,
especially if, indeed, the underlying problem structure involves only a limited number of
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“important” variables. Finally, variable selection improves interpretability of the graphical
model: for example, when learning a graphical model of brain area connectivity, variable
selection may help to localize brain areas most relevant to particular mental states.

It has been demonstrated that Gaussian graphical models can already achieve promising
predictive performance on mental-state prediction tasks [Cecchi et al., 2009] using a small
number of variables (voxels) pre-selected via a simple univariate ranking of each variable’s
relevance to the response (class label). Going beyond such univariate ranking, and embedding
variable-selection process into model-building guided by likelihood maximization, can result
into even more accurate models and identify even more informative subsets of variables (i.e.
brain regions).

Our contribution is to develop variable-selection in the context of learning sparse Gaussian
graphical models. To achieve this, we add an `1,p-norm regularization term to the maximum
likelihood estimation problem, for p ∈ {2,∞}. We optimize this problem through a block
coordinate descent method which yields sparse and positive definite estimates. We show that
our method outperforms the state-of-the-art in recovering the ground truth model through
synthetic experiments. We also show that our structures have higher test log-likelihood
than competing methods, in a wide range of complex real-world datasets: brain fMRI, gene
expression, NASDAQ stock prices and world weather. In particular, in the context of brain
fMRI analysis, we show that our method produces more interpretable models that involve
few brain areas, unlike standard sparseness promoting techniques which produce hard-to-
interpret networks involving most of the brain. Moreover, our structures are as good as
standard sparseness promoting techniques, when used for classification purposes.

Section 3.2 introduces techniques for learning Gaussian graphical models from data. Sec-
tion 3.3 sets up the `1,p-regularized maximum likelihood problem and discusses its properties.
Section 3.4 describes our block coordinate descent method. Experimental results are in Sec-
tion 3.5.

3.2 Background

In Section 1.4, we introduced Gaussian graphical models as well as techniques for learn-
ing sparse Gaussian graphical models through `1 regularization, such as: covariance selec-
tion [Banerjee et al., 2006], graphical lasso [Friedman et al., 2007b] and the Meinshausen-
Bühlmann approximation [Meinshausen and Bühlmann, 2006].

Besides sparseness, several regularizers have been proposed for Gaussian graphical mod-
els, for enforcing diagonal structure [Levina et al., 2008], spatial coherence [Honorio et al.,
2009], common structure among multiple tasks [Honorio and Samaras, 2010], or sparse
changes in controlled experiments [Zhang and Wang, 2010]. In particular, different group
sparse priors have been proposed for enforcing block structure for known block-variable as-
signments [Duchi et al., 2008a, Schmidt et al., 2009] and unknown block-variable assignments
[Marlin and K.Murphy, 2009, Marlin et al., 2009], or power law regularization in scale free
networks [Liu and Ihler, 2011].

Variable selection has been applied to very diverse problems, such as linear regression
[Tibshirani, 1996], classification [Chan et al., 2007, Lee et al., 2006b, Duchi and Singer,
2009a] and reinforcement learning [Parr et al., 2008].
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3.3 Preliminaries

In this section, we set up the problem and discuss some of its properties.

3.3.1 Problem Setup

We propose priors that are motivated from the variable selection literature from regression
and classification, such as group lasso [Yuan and Lin, 2006, Meier et al., 2008, Obozinski
et al., 2010] which imposes an `1,2-norm penalty, and simultaneous lasso [Turlach et al., 2005,
Tropp, 2006] which imposes an `1,∞-norm penalty.

Recall that an edge in a Gaussian graphical model corresponds to a non-zero entry in the
precision matrix. We promote variable selection by learning a structure with a small number
of nodes that interact with each other, or equivalently a large number of nodes that are
disconnected from the rest of the graph. For each disconnected node, its corresponding row
in the precision matrix (or column given that it is symmetric) contains only zeros (except
for the diagonal). Therefore, the use of row-level regularizers such as the `1,p-norm are
natural in our context. Note that our goal differs from sparse Gaussian graphical models, in
which sparseness is imposed at the edge level only. We additionally impose sparseness at the
node level, which promotes conditional independence of variables with respect to all other
variables.

Given a dense sample covariance matrix Σ̂ � 0, we learn a precision matrix Ω ∈ RN×N

for N variables. The variable-selection structure learning problem is defined as:

max
Ω�0

(
log det Ω− 〈Σ̂,Ω〉 − ρ‖Ω‖1 − τ‖Ω‖1,p

)
(3.1)

for ρ > 0, τ > 0 and p ∈ {2,∞}. The term log det Ω − 〈Σ̂,Ω〉 is the Gaussian log-
likelihood. ‖Ω‖1 encourages sparseness of the precision matrix or conditional independence
among variables. The last term ‖Ω‖1,p is our variable selection regularizer, and it is defined
as:

‖Ω‖1,p =
∑
n

‖(ωn,1, . . . , ωn,n−1, ωn,n+1, . . . , ωn,N)‖p (3.2)

In a technical report, Friedman et al. [2010] proposed an optimization problem that is
similar to eq.(3.1). The main differences are that their model does not promote sparseness,
and that they do not solve the original maximum likelihood problem, but instead build upon
an approximation (pseudo-likelihood) approach of Meinshausen and Bühlmann [2006] based
on independent linear regression problems. Finally, note that regression based methods such
as [Meinshausen and Bühlmann, 2006] have been already shown in [Friedman et al., 2007b]
to have worse performance than solving the original maximum likelihood problem. In this
chapter, we solve the original maximum likelihood problem.

3.3.2 Bounds

In what follows, we discuss uniqueness and boundedness of the optimal solution of our
problem.
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Lemma 3.1. For ρ > 0, τ > 0, the variable-selection structure learning problem in eq.(3.1)
is a maximization problem with concave (but not strictly concave) objective function and
convex constraints.

Proof. The Gaussian log-likelihood is concave, since log det is concave on the space of sym-
metric positive definite matrices, and since the linear operator 〈·, ·〉 is also concave. Both
regularization terms, the negative `1-norm as well as the negative `1,p-norm defined in eq.(3.2)
are non-smooth concave functions. Finally, Ω � 0 is a convex constraint.

For clarity of exposition, we assume that the diagonals of Ω are penalized by our variable
selection regularizer defined in eq.(3.2).

Theorem 3.2. For ρ > 0, τ > 0, the optimal solution to the variable-selection structure
learning problem in eq.(3.1) is unique and bounded as follows:(

1

‖Σ̂‖2 +Nρ+N1/p′τ

)
I � Ω∗ �

(
N

max(ρ, τ)

)
I (3.3)

where `p′-norm is the dual of the `p-norm, i.e. (p = 2, p′ = 2) or (p =∞, p′ = 1).

Proof. By using the identity for dual norms κ‖c‖p = max‖d‖p′≤κ dTc in eq.(3.1), we get:

max
Ω�0

min
‖A‖∞≤ρ
‖B‖∞,p′≤τ

(
log det Ω− 〈Σ̂ + A + B,Ω〉

)
(3.4)

where ‖B‖∞,p′ = maxn ‖(bn,1, . . . , bn,N)‖p′ . By virtue of Sion’s minimax theorem, we can
swap the order of max and min. Furthermore, note that the optimal solution of the inner

equation is given by Ω = (Σ̂ + A + B)
−1

. By replacing this solution in eq.(3.4), we get the
dual problem of eq.(3.1):

min
‖A‖∞≤ρ
‖B‖∞,p′≤τ

(
− log det(Σ̂ + A + B)−N

)
(3.5)

In order to find a lower bound for the minimum eigenvalue of Ω∗, note that ‖Ω∗−1‖2 =

‖Σ̂+A+B‖2 ≤ ‖Σ̂‖2+‖A‖2+‖B‖2 ≤ ‖Σ̂‖2+N‖A‖∞+N1/p′‖B‖∞,p′ ≤ ‖Σ̂‖2+Nρ+N1/p′τ .
(Here we used ‖B‖2 ≤ N1/p′‖B‖∞,p′ as shown in Appendix C)

In order to find an upper bound for the maximum eigenvalue of Ω∗, note that, at optimum,
the primal-dual gap is zero:

−N + 〈Σ̂,Ω∗〉+ ρ‖Ω∗‖1 + τ‖Ω∗‖1,p = 0 (3.6)

The upper bound is found as follows: ‖Ω∗‖2 ≤ ‖Ω∗‖F ≤ ‖Ω∗‖1 = (N − 〈Σ̂,Ω∗〉 −
τ‖Ω∗‖1,p)/ρ. Note that τ‖Ω∗‖1,p ≥ 0, and since Σ̂ � 0 and Ω∗ � 0, it follows that 〈Σ̂,Ω∗〉 ≥
0. Therefore, ‖Ω∗‖2 ≤ N

ρ
. In a similar fashion, ‖Ω∗‖2 ≤ ‖Ω∗‖1,p = (N−〈Σ̂,Ω∗〉−ρ‖Ω∗‖1)/τ .

(Here we used ‖Ω∗‖2 ≤ ‖Ω∗‖1,p as shown in Appendix C). Note that ρ‖Ω∗‖1 ≥ 0 and

〈Σ̂,Ω∗〉 ≥ 0. Therefore, ‖Ω∗‖2 ≤ N
τ

.
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3.4 Block Coordinate Descent Method

Since the objective function in eq.(3.1) contains a non-smooth regularizer, methods such as
gradient descent cannot be applied. On the other hand, subgradient descent methods very
rarely converge to non-smooth points [Duchi and Singer, 2009b]. In our problem, these non-
smooth points correspond to zeros in the precision matrix, are often the true minima of the
objective function, and are very desirable in the solution because they convey information
of conditional independence among variables.

We apply block coordinate descent method on the primal problem [Honorio et al., 2009,
Honorio and Samaras, 2010], unlike covariance selection [Banerjee et al., 2006] and graphical
lasso [Friedman et al., 2007b] which optimize the dual. Optimization of the dual problem
in eq.(3.5) by a block coordinate descent method can be done with quadratic programming
for p = ∞ but not for p = 2 (i.e. the objective function is quadratic for p ∈ {2,∞},
the constraints are linear for p = ∞ and quadratic for p = 2). Optimization of the primal
problem provides the same efficient framework for p ∈ {2,∞}. We point out that a projected
subgradient method as in [Duchi et al., 2008a] cannot be applied since our regularizer does
not decompose into disjoint subsets. Our problem contains a positive definiteness constraint
and therefore it does not fall in the general framework of [Yuan and Lin, 2006, Meier et al.,
2008, Obozinski et al., 2010, Quattoni et al., 2009, Turlach et al., 2005, Tropp, 2006] which
consider unconstrained problems only. Finally, more recent work of [Chen et al., 2011, Mairal
et al., 2010] consider subsets with overlap, but it does still consider unconstrained problems
only.

Theorem 3.3. The block coordinate descent method for the variable-selection structure learn-
ing problem in eq.(3.1) generates a sequence of positive definite solutions.

Proof. Maximization can be performed with respect to one row and column of all precision
matrices Ω at a time. Without loss of generality, we use the last row and column in our
derivation. Let:

Ω =

[
W y
yT z

]
, Σ̂ =

[
S u
uT v

]
(3.7)

where W,S ∈ RN−1×N−1, y,u ∈ RN−1.
In terms of the variables y, z and the constant matrix W, the variable-selection structure

learning problem in eq.(3.1) can be reformulated as:

max
Ω�0

(
log(z − yTW−1y)− 2uTy − (v + ρ)z
−2ρ‖y‖1 − τ‖y‖p − τ

∑
n ‖(yn, tn)‖p

)
(3.8)

where tn = ‖(wn,1, . . . , wn,n−1, wn,n+1, . . . , wn,N)‖p.
If Ω is a symmetric matrix, according to the Haynsworth inertia formula, Ω � 0 if and

only if its Schur complement z − yTW−1y > 0 and W � 0. By maximizing eq.(3.8) with
respect to z, we get:

z − yTW−1y =
1

v + ρ
(3.9)

and since v > 0 and ρ > 0, this implies that the Schur complement in eq.(3.9) is positive.
Finally, in our iterative optimization, it suffices to initialize Ω to a matrix known to be
positive definite, e.g. a diagonal matrix with positive elements.
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Theorem 3.4. The block coordinate descent method for the variable-selection structure learn-
ing problem in eq.(3.1) is equivalent to solving a sequence of strictly convex (`1,`1,p) regular-
ized quadratic subproblems for p ∈ {2,∞}:

min
y∈RN−1

(
1
2
yT(v + ρ)W−1y + uTy

+ρ‖y‖1 + τ
2
‖y‖p + τ

2

∑
n ‖(yn, tn)‖p

)
(3.10)

Proof. By replacing the optimal z given by eq.(3.9) into the objective function in eq.(3.8),
we get eq.(3.10). Since W � 0⇒W−1 � 0, hence eq.(3.10) is strictly convex.

Lemma 3.5. If ‖u‖∞ ≤ ρ + τ/(2(N − 1)1/p′) or ‖u‖p′ ≤ ρ + τ/2, the (`1, `1,p) regularized
quadratic problem in eq.(3.10) has the minimizer y∗ = 0.

Proof. Note that since W � 0 ⇒W−1 � 0, y∗ = 0 is the minimizer of the quadratic part
of eq.(3.10). It suffices to prove that the remaining part is also minimized for y∗ = 0, i.e.
uTy + ρ‖y‖1 + τ

2
‖y‖p + τ

2

∑
n ‖(yn, tn)‖p ≥ τ

2

∑
n tn for an arbitrary y. The lower bound

comes from setting y∗ = 0 in eq.(3.10) and by noting that (∀n) tn > 0.
By using lower bounds

∑
n ‖(yn, tn)‖p ≥

∑
n tn and either ‖y‖p ≥ ‖y‖1/(N − 1)1/p′ or

‖y‖1 ≥ ‖y‖p, we modify the original claim into a stronger one, i.e. uTy + (ρ + τ/(2(N −
1)1/p′))‖y‖1 ≥ 0 or uTy + (ρ + τ/2)‖y‖p ≥ 0. Finally, by using the identity for dual norms

κ‖y‖p = max‖d‖p′≤κ dTy, we have the condition max‖d‖∞≤ρ+τ/(2(N−1)1/p
′
) (u + d)Ty ≥ 0 or

the condition max‖d‖p′≤ρ+τ/2 (u + d)Ty ≥ 0, which proves our claim.

Remark 3.6. By using Lemma 3.5, we can reduce the size of the original problem by re-
moving variables in which this condition holds, since it only depends on the dense sample
covariance matrix.

Theorem 3.7. The coordinate descent method for the (`1, `1,p) regularized quadratic problem
in eq.(3.10) is equivalent to solving a sequence of strictly convex (`1, `p) regularized quadratic
subproblems:

min
x

(
1

2
qx2 − cx+ ρ|x|+ τ

2
‖(x, a)‖p +

τ

2
‖(x, b)‖p

)
(3.11)

Proof. Without loss of generality, we use the last row and column in our derivation, since
permutation of rows and columns is always possible. Let:

W−1 =

[
H11 h12

h12
T h22

]
, y =

[
y1

x

]
, u =

[
u1

u2

]
(3.12)

where H11 ∈ RN−2×N−2, h12,y1,u1 ∈ RN−2.
In terms of the variable x and the constants q = (v+ρ)h22, c = −((v+ρ)h12

Ty1+u2), a =
‖y1‖p, b = tn, the (`1, `1,p) regularized quadratic problem in eq.(3.10) can be reformulated
as in eq.(3.11). Moreover, since v > 0∧ρ > 0∧h22 > 0 ⇒ q > 0, and therefore eq.(3.11) is
strictly convex.

For p = ∞, eq.(3.11) has five points in which the objective function is non-smooth,
i.e. x ∈ {−max(a, b),−min(a, b), 0,min(a, b),max(a, b)}. Furthermore, since the objective
function is quadratic on each interval, it admits a closed form solution.
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For p = 2, eq.(3.11) has only one non-smooth point, i.e. x = 0. Given the objective
function f(x), we first compute the left derivative ∂−f(0) = −c− ρ and the right derivative
∂+f(0) = −c+ ρ. If ∂−f(0) ≤ 0∧∂+f(0) ≥ 0⇒ x∗ = 0. If ∂−f(0) > 0⇒ x∗ < 0 and we use
the one-dimensional Newton-Raphson method for finding x∗. If ∂+f(0) < 0 ⇒ x∗ > 0. For
numerical stability, we add a small ε > 0 to the `2-norms by using

√
x2 + a2 + ε instead of

‖(x, a)‖2.
Algorithm 3.1 shows the block coordinate descent method in detail. A careful imple-

mentation leads to a time complexity of O(KN3) for K iterations and N variables. In our
experiments, the algorithm converges quickly in usually K = 10 iterations. Polynomial de-
pendence O(N3) on the number of variables is expected since no algorithm can be faster
than computing the inverse of the sample covariance in the case of an infinite sample.

Algorithm 3.1 Block Coordinate Descent for Variable Selection.
Input: Σ̂ � 0, ρ > 0, τ > 0, p ∈ {2,∞}
Initialize Ω = Diag(Σ̂)

−1

for each iteration 1, . . . ,K and each variable 1, . . . , N do
Split Ω into W,y, z and Σ̂ into S,u, v as described in eq.(3.7)
Update W−1 by using the Sherman-Woodbury-Morrison formula (Note that when iterating from one
variable to the next one, only one row and column change on matrix W, see Appendix B)
for each variable 1, . . . , N − 1 do

Split W−1,y,u as in eq.(3.12)
Solve the (`1, `p) regularized quadratic problem in closed form (p = ∞) or by using the Newton-
Raphson method (p = 2)

end for
Update z ← 1

v+ρ + yTW−1y
end for
Output: Ω � 0

3.5 Experimental Results

We test with a synthetic example the ability of the method to recover ground truth structure
from data. The model contains N ∈ {50, 100, 200} variables. For each of 50 repetitions, we
first select a proportion of “connected” nodes (either 0.2,0.5,0.8) from the N variables. The
unselected (i.e. “disconnected”) nodes do not participate in any edge of the ground truth
model. We then generate edges among the connected nodes with a required density (either
0.2,0.5,0.8), where each edge weight is generated uniformly at random from {−1,+1}. We
ensure positive definiteness of Ωg by verifying that its minimum eigenvalue is at least 0.1.
We then generate a dataset of 50 samples. We model the ratio σ̄c/σ̄d between the standard
deviation of connected versus disconnected nodes. In the “high variance confounders” regime,
σ̄c/σ̄d = 1 which means that on average connected and disconnected variables have the same
standard deviation. In the “low variance confounders” regime, σ̄c/σ̄d = 10 which means
that on average the standard deviation of a connected variable is 10 times the one of a
disconnected variable. Variables with low variance produce higher values in the precision
matrix than variables with high variance. We analyze both regimes in order to evaluate the
impact of this effect in structure recovery.
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In order to measure the closeness of the recovered models to the ground truth, we mea-
sured the Kullback-Leibler (KL) divergence, sensitivity (one minus the fraction of falsely ex-
cluded edges) and specificity (one minus the fraction of falsely included edges). We compare
to the following methods: covariance selection [Banerjee et al., 2006], graphical lasso [Fried-
man et al., 2007b], Meinshausen-Bühlmann approximation [Meinshausen and Bühlmann,
2006] and Tikhonov regularization. For our method, we found that the variable selection pa-
rameter τ = 50ρ provides reasonable results, in both synthetic and real-world experiments.
Therefore, we report results only with respect to the sparseness parameter ρ.

First, we test the performance of our methods for increasing number of variables, mod-
erate edge density (0.5) and high proportion of connected nodes (0.8). Figure 3.1 shows the
ROC curves and KL divergence between the recovered models and the ground truth. In both
“low” and “high variance confounders” regimes, our `1,2 and `1,∞ methods recover ground
truth edges better than competing methods (higher ROC) and produce better probability
distributions (lower KL divergence) than the other methods. Our methods degrade less
than competing methods in recovering the ground truth edges when the number of variables
grows, while the KL divergence behavior remains similar.

Second, we test the performance of our methods with respect to edge density and the
proportion of connected nodes. Figure 3.2 shows the KL divergence between the recovered
models and the ground truth for the “low variance confounders” regime. Our `1,2 and `1,∞
methods produce better probability distributions (lower KL divergence) than the remaining
techniques. (Please, see Appendix D for results on ROC and the “high variance confounders”
regime.)

Our `1,2 method takes 0.07s for N = 100, 0.12s for N = 200 variables. Our `1,∞ method
takes 0.13s for N = 100, 0.63s for N = 200. Graphical lasso [Friedman et al., 2007b], the
fastest and most accurate competing method in our evaluation, takes 0.11s for N = 100,
0.49s for N = 200. Our `1,∞ method is slightly slower than graphical lasso, while our `1,2

method is the fastest. One reason for this is that Lemma 3.5 eliminates more variables in
the `1,2 setting.

For experimental validation on real-world datasets, we use datasets with a diverse nature
of probabilistic relationships: brain fMRI, gene expression, NASDAQ stock prices and world
weather. The brain fMRI dataset collected by Goldstein et al. [2007] captures brain function
of 15 cocaine addicted and 11 control subjects under conditions of monetary reward. Each
subject contains 87 scans of 53× 63× 46 voxels each, taken every 3.5 seconds. Registration
to a common spatial template and spatial smoothing was done in SPM2 (http://www.fil.
ion.ucl.ac.uk/spm/). After sampling each 4×4×4 voxels, we obtained 869 variables. The
gene expression dataset contains 8,565 variables and 587 samples. The dataset was collected
by Natsoulis et al. [2005] from drug treated rat livers, by treating rats with a variety of
fibrate, statin, or estrogen receptor agonist compounds. The dataset is publicly available
at http://www.ebi.ac.uk/. In order to consider the full set of genes, we had to impute
a very small percentage (0.90%) of missing values by randomly generating values with the
same mean and standard deviation. The NASDAQ stocks dataset contains daily opening and
closing prices for 2,749 stocks from Apr 19, 2010 to Apr 18, 2011 (257 days). The dataset was
downloaded from http://www.google.com/finance. For our experiments, we computed the
percentage of change between the closing and opening prices. The world weather dataset
contains monthly measurements of temperature, precipitation, vapor, cloud cover, wet days
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and frost days from Jan 1990 to Dec 2002 (156 months) on a 2.5×2.5 degree grid that covers
the entire world. The dataset is publicly available at http://www.cru.uea.ac.uk/. After
sampling each 5×5 degrees, we obtained 4,146 variables. For our experiments, we computed
the change between each month and the month in the previous year.

For all the datasets, we used one third of the data for training, one third for validation
and the remaining third for testing. Since the brain fMRI dataset has a very small number
of subjects, we performed six repetitions by making each third of the data take turns as
training, validation and testing sets. In our evaluation, we included scale free networks
[Liu and Ihler, 2011]. We did not include the covariance selection method [Banerjee et al.,
2006] since we found it is extremely slow for these high-dimensional datasets. We report the
negative log-likelihood on the testing set in Figure 3.3 (we subtracted the entropy measured
on the testing set and then scaled the results for visualization purposes). We can observe
that the log-likelihood of our method is remarkably better than the other techniques for all
the datasets.

Regarding comparison to group sparse methods, in our previous experiments we did not
include block structure for known block-variable assignments [Duchi et al., 2008a, Schmidt
et al., 2009] since our synthetic and real-world datasets lack such assignments. We did not
include block structure for unknown assignments [Marlin and K.Murphy, 2009, Marlin et al.,
2009] given their time complexity ([Marlin et al., 2009] has a O(N5)-time Gibbs sampler step
for N variables and it is applied for N = 60 only, while [Marlin and K.Murphy, 2009] has
a O(N4)-time ridge regression step). Instead, we evaluated our method in the baker’s yeast
gene expression dataset in [Duchi et al., 2008a] which contains 677 variables and 173 samples.
We used the experimental settings of Figure 3 in [Marlin and K.Murphy, 2009]. For learning
one structure, [Marlin and K.Murphy, 2009] took 5 hours while our `1,2 method took only
50 seconds. Our method outperforms block structures for known and unknown assignments.
The log-likelihood is 0 for Tikhonov regularization, 6 for [Duchi et al., 2008a, Marlin and
K.Murphy, 2009], 8 for [Schmidt et al., 2009], and 22 for our `1,2 method.

We show the structures learnt for cocaine addicted and control subjects in Figure 3.4,
for our `1,2 method and graphical lasso [Friedman et al., 2007b]. The disconnected variables
are not shown. Note that our structures involve remarkably fewer connected variables but
yield a higher log-likelihood than graphical lasso (Figure 3.3), which suggests that the dis-
carded edges from the disconnected nodes are not important for accurate modeling of this
dataset. Moreover, removal of a large number of nuisance variables (voxels) results into a
more interpretable model, clearly demonstrating brain areas involved in structural model
differences that discriminate cocaine addicted from control subjects. Note that graphical
lasso (bottom of Figure 3.4) connects most of the brain voxels in both populations, making
them impossible to compare. Our approach produces more “localized” networks (top of the
Figure 3.4) involving a relatively small number of brain areas: cocaine addicted subjects
show increased interactions between the visual cortex (back of the brain, on the left in the
image) and the prefrontal cortex (front of the brain, on the right in the image), while at the
same time decreased density of interactions between the visual cortex with other brain areas
(more clearly present in control subjects). The alteration in this pathway in the addict group
is highly significant from a neuroscientific perspective. First, the trigger for reward was a
visual stimulus. Abnormalities in the visual cortex was reported in [Lee et al., 2003] when
comparing cocaine abusers to control subjects. Second, the prefrontal cortex is involved in
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higher-order cognitive functions such as decision making and reward processing. Abnormal
monetary processing in the prefrontal cortex was reported in [Goldstein et al., 2009] when
comparing cocaine addicted individuals to controls. Although a more careful interpretation
of the observed results remains to be done in the near future, these results are encouraging
and lend themselves to specific neuroscientific hypothesis testing.

In a different evaluation, we used generatively learnt structures for a classification task.
We performed a five-fold cross-validation on the subjects. From the subjects in the training
set, we learned one structure for cocaine addicted and one structure for control subjects.
Then, we assigned a test subject to the structure that gave highest probability for his data.
All methods in our evaluation except Tikhonov regularization obtained 84.6% accuracy.
Tikhonov regularization obtained 65.4% accuracy. Therefore, our method produces struc-
tures that retain discriminability with respect to standard sparseness promoting techniques.

3.6 Concluding Remarks

In this chapter, we presented variable selection in the context of learning sparse Gaussian
graphical models by adding an `1,p-norm regularization term, for p ∈ {2,∞}. We presented
a block coordinate descent method which yields sparse and positive definite estimates. We
solved the original problem by efficiently solving a sequence of strictly convex (`1,`p) regu-
larized quadratic minimization subproblems.

The motivation behind this work was to incorporate variable selection into structure
learning of sparse Markov networks, and specifically Gaussian graphical models. Besides
providing a better regularizer (as observed on several real-world datasets: brain fMRI, gene
expression, NASDAQ stock prices and world weather), key advantages of our approach
include a more accurate structure recovery in the presence of multiple noisy variables (as
demonstrated by simulations), significantly better interpretability and same discriminability
of the resulting network in practical applications (as shown for brain fMRI analysis).
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Figure 3.1: ROC curves (first row) and KL divergence (second row) for the “high variance con-
founders” regime. ROC curves (third row) and KL divergence (fourth row) for the “low variance
confounders” regime. Left: N = 50 variables, center: N = 100 variables, right: N = 200 variables
(connectedness 0.8, edge density 0.5). Our proposed methods `1,2 (L2) and `1,∞ (LI) recover edges
better and produce better probability distributions than Meinshausen-Bühlmann with AND-rule
(MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS) and Tikhonov regularization
(TR). Our methods degrade less in recovering the ground truth edges when the number of variables
grows.
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Figure 3.2: Cross-validated KL divergence for structures learnt for the “low variance confounders”
regime (N = 50 variables, different connectedness and density levels). Our proposed methods
`1,2 (L2) and `1,∞ (LI) produce better probability distributions than Meinshausen-Bühlmann with
AND-rule (MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS) and Tikhonov
regularization (TR).
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Figure 3.3: Test negative log-likelihood of structures learnt for (a) addicted subjects and (b) con-
trol subjects in the brain fMRI dataset, (c) gene expression, (d) NASDAQ stocks and (e) world
weather. Our proposed methods `1,2 (L2) and `1,∞ (LI) outperforms the Meinshausen-Bühlmann
with AND-rule (MA), OR-rule (MO), graphical lasso (GL), Tikhonov regularization (TR) and scale
free networks (SF).

Figure 3.4: Structures learnt for cocaine addicted (left) and control subjects (right), for our `1,2
method (top) and graphical lasso (bottom). Regularization parameter ρ = 1/16. Positive in-
teractions in blue, negative interactions in red. Our structures are sparser (density 0.0016) than
graphical lasso (density 0.023) where the number of edges in a complete graph is ≈378000.
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Chapter 4

Learning Multiple Gaussian MRFs

In the previous chapters, we proposed priors for learning a single structure. In this chapter,
we propose priors for the simultaneous learning of multiple structures.

We present `1,p multi-task structure learning for Gaussian graphical models. We discuss
the uniqueness and boundedness of the optimal solution of the maximization problem. A
block coordinate descent method leads to a provably convergent algorithm that generates a
sequence of positive definite solutions. Thus, we reduce the original problem into a sequence
of strictly convex `p regularized quadratic minimization subproblems. We further show that
this subproblem leads to the continuous quadratic knapsack problem for p = ∞ and to a
separable version of the well-known quadratic trust-region problem for p = 2, for which very
efficient methods exist. Finally, we show promising results in synthetic experiments as well
as in two real-world datasets.

4.1 Introduction

Structure learning techniques are very useful for analyzing datasets for which probabilis-
tic dependencies are not known apriori. For instance, these techniques allow for modeling
interactions between brain regions, based on measured activation levels through imaging.
Suppose that we want to learn the structure of brain region interactions for one person. We
can expect that the interaction patterns in the brains of two persons are not exactly the
same. On the other hand, when learning the structure for one person, we would like to use
evidence from other persons as side information in our learning process. This becomes more
important in settings with limited amount of data and high variability, such as in functional
magnetic resonance image (fMRI) studies. Multi-task learning allows for a more efficient use
of training data which is available for multiple related tasks.

In this chapter, we consider the computational aspect of `1,p multi-task structure learning,
which generalizes the learning of sparse Gaussian graphical models to the multi-task setting
by replacing the `1-norm regularization with an `1,p-norm, also known as the simultaneous
prior [Turlach et al., 2005, Tropp, 2006] for p =∞ or the group-sparse prior [Yuan and Lin,
2006, Meier et al., 2008] for p = 2.

Our contribution in this chapter is three-fold. First, we present a block coordinate de-
scent method which is provably convergent and yields sparse and positive definite estimates.
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Second, we show the connection between our `1,p multi-task structure learning problem and
the continuous quadratic knapsack problem for p = ∞, which allows us to use existing
efficient methods [Helgason et al., 1980, Brucker, 1984, Kiwiel, 2007]. We also show the con-
nection between our multi-task structure learning problem and the quadratic trust-region
problem for p = 2, which can be efficiently solved by one-dimensional optimization. Third,
we discuss penalization of the diagonals of the precision matrices and experimentally show
that penalizing the diagonals does not lead to a better generalization performance, when
compared to not penalizing the diagonals.

Compared to our short conference version [Honorio and Samaras, 2010], we present a more
general framework which assumes p > 1, while [Honorio and Samaras, 2010] assumes p =∞.
We present a new algorithm for p = 2 and experimentally show that our method recovers
the ground truth edges and the probability distribution always better than the `1,2 method
of Varoquaux et al. [2010] for every regularization level. We discuss penalization of the
diagonals of the precision matrices which leads to additional optimization problems, namely
the continuous logarithmic knapsack problem for p =∞ and the separable logarithmic trust-
region problem for p = 2. We show that our method outperforms others in recovering the
topology of the ground truth model through synthetic experiments. In addition to the small
fMRI dataset used in [Honorio and Samaras, 2010], we include validation in a considerably
larger fMRI dataset. We experimentally show that the cross-validated log-likelihood of our
method is higher than competing methods in both real-world datasets.

Section 4.2 introduces techniques for learning Gaussian graphical models from data. Sec-
tion 4.3 sets up the `1,p multi-task structure learning problem and discusses some of its
properties. Section 4.4 describes our block coordinate descent method. Section 4.5 shows
the connection to the continuous quadratic knapsack problem. Section 4.6 shows the con-
nection to the quadratic trust-region problem. Section 4.7 presents our algorithm in detail.
Section 4.8 discusses penalization of the diagonals of the precision matrices. Experimental re-
sults are shown and explained in Section 4.9. Main contributions and results are summarized
in Section 4.10.

4.2 Background

In Section 1.4, we introduced Gaussian graphical models as well as techniques for learn-
ing sparse Gaussian graphical models through `1 regularization, such as: covariance selec-
tion [Banerjee et al., 2006], graphical lasso [Friedman et al., 2007b] and the Meinshausen-
Bühlmann approximation [Meinshausen and Bühlmann, 2006].

Besides sparseness, several regularizers have been proposed for Gaussian graphical models
for single-task learning, for enforcing diagonal structure [Levina et al., 2008], block struc-
ture for known block-variable assignments [Duchi et al., 2008a, Schmidt et al., 2009] and
unknown block-variable assignments [Marlin and K.Murphy, 2009, Marlin et al., 2009], spa-
tial coherence [Honorio et al., 2009], sparse changes in controlled experiments [Zhang and
Wang, 2010], power law regularization in scale free networks [Liu and Ihler, 2011], or variable
selection [Honorio et al., 2012].

Multi-task learning has been applied to very diverse problems, such as linear regres-
sion [Liu et al., 2009a,b], classification [Jebara, 2004], compressive sensing [Qi et al., 2008],
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reinforcement learning [Wilson et al., 2007] and structure learning of Bayesian networks
[Niculescu-Mizil and Caruana, 2007].

4.3 Preliminaries

In this section, we set up the problem and discuss some of its properties.

4.3.1 Problem Setup

We propose a prior that is motivated from the multi-task learning literature. Given K
arbitrary tasks, our goals are to learn one structure for each task that best explains the
observed data, and to promote a common sparseness pattern of edges for all tasks.

For a given task k, we learn a precision matrix Ω(k) ∈ RN×N for N variables. Our
multi-task regularizer penalizes corresponding edges across tasks (i.e. ω

(1)
n1n2 , . . . , ω

(K)
n1n2). Let

Σ̂(k) � 0 be the dense sample covariance matrix for task k, and T (k) > 0 be the number of
samples in task k. The `1,p multi-task structure learning problem is defined as:

max
(∀k) Ω(k)�0

(∑
k

T (k)(log det Ω(k) − 〈Σ̂(k),Ω(k)〉)− ρ‖Ω‖1,p

)
(4.1)

for regularization parameter ρ > 0 and `1,p-norm for p > 1. The term T (k)(log det Ω(k) −
〈Σ̂(k),Ω(k)〉) is the Gaussian log-likelihood for task k, while the term ‖Ω‖1,p is our multi-task
regularizer, and it is defined as:

‖Ω‖1,p =
∑
n1n2

‖(ω(1)
n1n2

, . . . , ω(K)
n1n2

)‖p (4.2)

We assume that p > 1, since for p = 1, the multi-task problem in eq.(4.1) reduces to K
single-task problems as in eq.(1.1), and for p < 1, eq.(4.1) is not convex. The number of
samples T (k) is a term that is usually dropped for covariance selection and graphical lasso as
in eq.(1.1). For the multi-task structure learning problem, it is important to keep this term
when adding the log-likelihood of several tasks into a single objective function.

The `1,2 multi-task structure learning problem was originally proposed in [Varoquaux
et al., 2010], where the authors minimize the original non-smooth objective function by
using a sequence of smooth quadratic upper bounds. Varoquaux et al. [2010] do not provide
any guarantee of positive definiteness, eigenvalue bounds or convergence. The `1,∞ multi-
task problem was originally proposed in Honorio and Samaras [2010]. In this chapter, we
analyze the computational aspects of the more general `1,p multi-task problem for p > 1.
While the `1,∞ multi-task problem of Honorio and Samaras [2010] leads to the continuous
quadratic knapsack problem, we show that the `1,2 multi-task problem leads to the quadratic
trust-region problem. Another multi-task penalty has been proposed in Guo et al. [2010],
however this penalty is non-convex.
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4.3.2 Bounds

In what follows, we discuss the uniqueness and boundedness of the optimal solution of the
multi-task structure learning problem.

Lemma 4.1. For ρ > 0 and p > 1, the `1,p multi-task structure learning problem in eq.(4.1)
is a maximization problem with a concave (but not strictly concave) objective function and
convex constraints.

Proof. The Gaussian log-likelihood is concave, since log det is concave on the space of sym-
metric positive definite matrices and 〈·, ·〉 is a linear operator. The multi-task regularizer
defined in eq.(4.2) is a non-smooth convex function. Finally, Ω(k) � 0 is a convex con-
straint.

Theorem 4.2. For ρ > 0 and p > 1, the optimal solution to the `1,p multi-task structure
learning problem in eq.(4.1) is unique and bounded as follows:

(∀k)

(
1

‖Σ̂(k)‖2 + Nρ
T (k)

)
I � Ω(k)∗ �

(
NK

ρ

)
I (4.3)

Proof. Let the `p′-norm be the dual of the `p-norm, i.e. 1
p

+ 1
p′

= 1. By using the identity for

dual norms ρ‖c‖p = max‖a‖p′≤ρ aTc in eq.(4.1), we get:

max
(∀k) Ω(k)�0

min
(∀n1n2) ‖an1n2‖p′≤ρ

∑
k

T (k)

(
log det Ω(k) − 〈Σ̂(k) +

A(k)

T (k)
,Ω(k)〉

)
(4.4)

where an1n2 = (a
(1)
n1n2 , . . . , a

(K)
n1n2)

T
and A(k) ∈ RN×N . By virtue of Sion’s minimax theorem,

we can swap the order of max and min. Furthermore, note that the optimal solution of the

inner equation is independent for each k and is given by Ω(k) = (Σ̂(k) + A(k)

T (k) )
−1

. By replacing
this solution in eq.(4.4), we get the dual problem of eq.(4.1):

min
(∀n1n2) ‖an1n2‖p′≤ρ

−
∑
k

T (k) log det

(
Σ̂(k) +

A(k)

T (k)

)
−NK (4.5)

In order to find a lower bound for the minimum eigenvalue of Ω(k)∗, note that ‖Ω(k)∗−1‖2 =

‖Σ̂(k) + A(k)

T (k) ‖2 ≤ ‖Σ̂(k)‖2 + ‖A(k)

T (k) ‖2 = ‖Σ̂(k)‖2 + 1
T (k)‖A(k)‖2 ≤ ‖Σ̂(k)‖2 + 1

T (k)‖A(k)‖F. Since

‖an1n2‖p′ ≤ ρ, it follows that |a(k)
n1n2 | ≤ ρ and therefore ‖A(k)‖F ≤ Nρ.

In order to find an upper bound for the maximum eigenvalue of Ω(k)∗, note that, at
optimum, the primal-dual gap is zero:

−NK +
∑
k

T (k)〈Σ̂(k),Ω(k)∗〉+ ρ‖Ω∗‖1,p = 0 (4.6)

The upper bound is found as follows: ‖Ω(k)∗‖2 ≤ ‖Ω(k)∗‖F ≤ ‖Ω(k)∗‖1 ≤ ‖Ω∗‖1,p =
NK−

∑
k T

(k)〈Σ̂(k),Ω(k)∗〉
ρ

and since Σ̂(k) � 0 and Ω(k)∗ � 0, it follows that 〈Σ̂(k),Ω(k)∗〉 ≥ 0.
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4.4 Block Coordinate Descent Method

In this section, we develop a block coordinate descent method for our `1,p multi-task structure
learning problem, and discuss some of its properties.

Since the objective function in eq.(4.1) contains a non-smooth regularizer, methods such
as gradient descent cannot be applied. On the other hand, subgradient descent methods very
rarely converge to non-smooth points [Duchi and Singer, 2009b]. In our problem, these non-
smooth points correspond to zeros in the precision matrix, are often the true minima of the
objective function, and are very desirable in the solution because they convey information
of conditional independence among variables.

We apply block coordinate descent method on the primal problem [Honorio et al., 2009,
Honorio and Samaras, 2010, Honorio et al., 2012], unlike covariance selection [Banerjee et al.,
2006] and graphical lasso [Friedman et al., 2007b] which optimize the dual. We choose to
optimize the primal because the dual formulation in eq.(4.5) leads to a sum of K terms
(log det functions) which cannot be simplified to a quadratic problem unless K = 1.

For clarity of exposition, we will first assume that the diagonals of Ω(1), . . . ,Ω(K) are not
penalized by our multi-task regularizer defined in eq.(4.2). In Section 4.8, we will discuss
penalization of the diagonals, for which an additional continuous logarithmic knapsack prob-
lem for p = ∞ or separable logarithmic trust-region problem for p = 2 needs to be solved.
We point out that all the following theorems and lemmas still hold in that case.

Lemma 4.3. The solution sequence generated by the block coordinate descent method is
bounded and every cluster point is a solution of the `1,p multi-task structure learning problem
in eq.(4.1).

Proof. The non-smooth regularizer ‖Ω‖1,p is separable into a sum of O(N2) individual func-

tions of the form ‖(ω(1)
n1n2 , . . . , ω

(K)
n1n2)‖p. These functions are defined over blocks ofK variables,

i.e. ω
(1)
n1n2 , . . . , ω

(K)
n1n2 . The objective function in eq.(4.1) is continuous on a compact level set.

By virtue of Theorem 4.1 in Tseng [2001], we prove our claim.

Theorem 4.4. The block coordinate descent method for the `1,p multi-task structure learning
problem in eq.(4.1) generates a sequence of positive definite solutions.

Proof. Maximization can be performed with respect to one row and column of all precision
matrices Ω(k) at a time. Without loss of generality, we use the last row and column in our
derivation, since permutation of rows and columns is always possible. Let:

Ω(k) =

[
W(k) y(k)

y(k)T
z(k)

]
, Σ̂(k) =

[
S(k) u(k)

u(k)T
v(k)

]
(4.7)

where W(k),S(k) ∈ RN−1×N−1, y(k),u(k) ∈ RN−1.
In terms of the variables y(k), z(k) and the constant matrix W(k), the multi-task structure

learning problem in eq.(4.1) can be reformulated as:

max
(∀k) Ω(k)�0

(∑
k T

(k)
(

log(z(k) − y(k)T
W(k)−1

y(k))− 2u(k)T
y(k) − v(k)z(k)

)
−2ρ

∑
n ‖(y

(1)
n , . . . , y

(K)
n )‖p

)
(4.8)
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If Ω(k) is a symmetric matrix, according to the Haynsworth inertia formula, Ω(k) � 0 if

and only if its Schur complement z(k) − y(k)T
W(k)−1

y(k) > 0 and W(k) � 0. By maximizing
eq.(4.8) with respect to z(k), we get:

z(k) − y(k)T
W(k)−1

y(k) =
1

v(k)
(4.9)

and since v(k) > 0, this implies that the Schur complement in eq.(4.9) is positive.
Finally, in an iterative optimization algorithm, it suffices to initialize Ω(k) to a matrix

that is known to be positive definite, e.g. a diagonal matrix with positive elements.

Remark 4.5. Note that eq.(4.9) defines the “diagonal update step” of the block coordinate

descent method. For each k we set z(k) to its optimal value, i.e. z(k)∗ = 1
v(k)

+y(k)T
W(k)−1

y(k).

Theorem 4.6. The “off-diagonal update step” of the block coordinate descent method for
the `1,p multi-task structure learning problem in eq.(4.1) is equivalent to solving a sequence
of strictly convex `1,p regularized quadratic subproblems:

min
(∀k) y(k)∈RN−1

(∑
k T

(k)
(

1
2
y(k)T

v(k)W(k)−1
y(k) + u(k)T

y(k)
)

+ρ
∑

n ‖(y
(1)
n , . . . , y

(K)
n )‖p

)
(4.10)

Proof. By replacing the optimal z(k) given by eq.(4.9) into the objective function in eq.(4.8),

we get eq.(4.10). Since W(k) � 0⇒W(k)−1 � 0, hence eq.(4.10) is strictly convex.

As we will show in Section 4.8, the Schur complement is still positive when we penalize

the diagonals, i.e. z(k)−y(k)T
W(k)−1

y(k) = ξ > 0. Note that in such case, ξ 6= 1
v(k)

in contrast
to eq.(4.9) but we can still perform the replacement in eq.(4.8), and therefore Theorem 4.6
still holds when penalizing the diagonals.

Lemma 4.7. Let the `p′-norm be the dual of the `p-norm, i.e. 1
p

+ 1
p′

= 1. If the `∞,p′ norm

maxn ‖(T (1)u
(1)
n , . . . , T (K)u

(K)
n )‖p′ ≤ ρ, the `1,p regularized quadratic problem in eq.(4.10) has

the minimizer (∀k) y(k)∗ = 0.

Proof. The problem in eq.(4.10) has the minimizer (∀k) y(k)∗ = 0 if and only if 0 belongs
to the subdifferential set of the non-smooth objective function at (∀k) y(k) = 0, i.e. (∃A ∈
RN−1×K) (T (1)u(1), . . . , T (K)u(K)) + A = 0 ∧maxn ‖(an1, . . . , anK)‖p′ ≤ ρ. This condition is

true for maxn ‖(T (1)u
(1)
n , . . . , T (K)u

(K)
n )‖p′ ≤ ρ.

Remark 4.8. By using Lemma 4.7, we can reduce the size of the original problem by re-
moving variables in which this condition holds, since it only depends on the dense sample
covariance matrix.

Theorem 4.9. The coordinate descent method for the `1,p regularized quadratic problem
in eq.(4.10) is equivalent to solving a sequence of strictly convex `p regularized separable
quadratic subproblems:

min
x∈RK

(
1

2
xTDiag(q)x− cTx + ρ‖x‖p

)
(4.11)
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Proof. Without loss of generality, we use the last row and column in our derivation, since
permutation of rows and columns is always possible. Let:

W(k)−1
=

[
H

(k)
11 h

(k)
12

h
(k)
12

T
h

(k)
22

]
, y(k) =

[
y

(k)
1

xk

]
, u(k) =

[
u

(k)
1

u
(k)
2

]
(4.12)

where H
(k)
11 ∈ RN−2×N−2, h

(k)
12 ,y

(k)
1 ,u

(k)
1 ∈ RN−2.

In terms of the variable x and the constants qk = T (k)v(k)h
(k)
22 , ck = −T (k)(v(k)h

(k)
12

T
y

(k)
1 +

u
(k)
2 ), the `1,p regularized quadratic problem in eq.(4.10) can be reformulated as in eq.(4.11).

Moreover, since (∀k) T (k) > 0 ∧ v(k) > 0 ∧ h(k)
22 > 0 ⇒ q > 0, and therefore eq.(4.11) is

strictly convex.

4.5 Continuous Quadratic Knapsack Problem

In this section, we show the connection between the multi-task structure learning problem
and the continuous quadratic knapsack problem, for which very efficient methods exist.

The continuous quadratic knapsack problem has been solved in several areas. [Helgason
et al., 1980] provides an O(K logK) algorithm which initially sort the breakpoints. [Brucker,
1984] and later [Kiwiel, 2007] provide deterministic linear-time algorithms by using medians
of breakpoint subsets. In the context of machine learning, [Duchi et al., 2008b] provides a
randomized linear-time algorithm, while [Liu et al., 2009a] provides anO(K logK) algorithm.
We point out that [Duchi et al., 2008b, Liu et al., 2009a] assume that the weights of the
quadratic term are all equal, i.e. (∀k) qk = 1. In this chapter, we assume arbitrary positive
weights, i.e. (∀k) qk > 0.

Theorem 4.10. For q > 0, ρ > 0, p = ∞, the `∞ regularized separable quadratic problem
in eq.(4.11) is equivalent to the separable quadratic problem with one `1 constraint:

min
‖r‖1≤ρ

(
1

2
(r− c)TDiag(q)−1(r− c)

)
(4.13)

Furthermore, their optimal solutions are related by x∗ = Diag(q)−1(c− r∗).

Proof. By Lagrangian duality, the problem in eq.(4.13) is the dual of the problem in eq.(4.11).
Furthermore, strong duality holds in this case.

Remark 4.11. In eq.(4.13), we can assume that (∀k) ck 6= 0. If (∃k) ck = 0, the partial
optimal solution is r∗k = 0, and since this assignment does not affect the constraint, we can
safely remove rk from the optimization problem.

Remark 4.12. In what follows, we assume that ‖c‖1 > ρ. If ‖c‖1 ≤ ρ, the unconstrained
optimal solution of eq.(4.13) is also its optimal solution, since r∗ = c is inside the feasible
region given that ‖r∗‖1 ≤ ρ.

Lemma 4.13. For q > 0, (∀k) ck 6= 0, ‖c‖1 > ρ, the optimal solution r∗ of the separable
quadratic problem with one `1 constraint in eq.(4.13) belongs to the same orthant as the
unconstrained optimal solution c, i.e. (∀k) r∗kck ≥ 0.
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Proof. We prove this by contradiction. Assume (∃k1) r∗k1ck1 < 0. Let r be a vector such
that rk1 = 0 and (∀k2 6= k1) rk2 = r∗k2 . The solution r is feasible, since ‖r∗‖1 ≤ ρ and
‖r‖1 = ‖r∗‖1 − |r∗k1 | ≤ ρ. The difference in the objective function between r∗ and r is

1
2
(r∗ − c)TDiag(q)−1(r∗− c)− 1

2
(r− c)TDiag(q)−1(r− c) = 1

2qk1
(r∗k1

2− 2ck1r
∗
k1

) >
r∗k1

2

2qk1
> 0.

Thus, the objective function for r is smaller than for r∗ (the assumed optimal solution),
which is a contradiction.

Theorem 4.14. For q > 0, (∀k) ck 6= 0, ‖c‖1 > ρ, the separable quadratic problem with
one `1 constraint in eq.(4.13) is equivalent to the continuous quadratic knapsack problem:

min
g≥0

1Tg=ρ

∑
k

1

2qk
(gk − |ck|)2 (4.14)

Furthermore, their optimal solutions are related by (∀k) r∗k = sgn(ck)g
∗
k.

Proof. By invoking Lemma 4.13, we can replace (∀k) rk = sgn(ck)gk, gk ≥ 0 in eq.(4.13).
Finally, we change the inequality constraint 1Tg ≤ ρ to an equality constraint since ‖c‖1 > ρ
and therefore, the optimal solution must be on the boundary of the constraint set.

Lemma 4.15. For q > 0, (∀k) ck 6= 0, ‖c‖1 > ρ, the continuous quadratic knapsack problem
in eq.(4.14) has the solution:

gk(ν) = max(0, |ck| − νqk) (4.15)

for some ν, and furthermore, the optimal solution fulfills the condition:

g∗ = g(ν)⇔ 1Tg(ν) = ρ (4.16)

Proof. The Lagrangian of eq.(4.14) is:

min
g≥0

(∑
k

1

2qk
(gk − |ck|)2 + ν(1Tg − ρ)

)
(4.17)

Both results can be obtained by invoking the Karush-Kuhn-Tucker optimality conditions on
eq.(4.17).

Remark 4.16. Note that gk(ν) in eq.(4.15) is a decreasing piecewise linear function with

breakpoint ν = |ck|
qk
> 0. By Lemma 4.15, finding the optimal g∗ is equivalent to finding ν in

a piecewise linear function 1Tg(ν) that produces ρ.

Lemma 4.17. For q > 0, (∀k) ck 6= 0, ‖c‖1 > ρ, the continuous quadratic knapsack problem
in eq.(4.14) has the optimal solution g∗k = max(0, |ck| − ν∗qk) for:

|cπk∗ |
qπk∗

≥ ν∗ =

∑k∗

k=1 |cπk | − ρ∑k∗

k=1 qπk
≥ |cπk∗+1

|
qπk∗+1

(4.18)

where the breakpoints are sorted in decreasing order by a permutation π of the indices

1, 2, . . . , K, i.e.
|cπ1 |
qπ1
≥ |cπ2 |

qπ2
≥ · · · ≥ |cπK |

qπK
≥ |cπK+1

|
qπK+1

≡ 0.
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Proof. Given k∗, ν∗ can be found straightforwardly by using the equation of the line. In

order to find k∗, we search for the range in which 1Tg
(
|cπk∗ |
qπk∗

)
≤ ρ ≤ 1Tg

( |cπk∗+1
|

qπk∗+1

)
.

Theorem 4.18. For q > 0, ρ > 0, p = ∞, the `∞ regularized separable quadratic problem
in eq.(4.11) has the optimal solution:

‖c‖1 ≤ ρ⇒ x∗ = 0
‖c‖1 > ρ ∧ k > k∗ ⇒ x∗πk =

cπk
qπk

‖c‖1 > ρ ∧ k ≤ k∗ ⇒ x∗πk = sgn(cπk)
∑k∗
k=1 |cπk |−ρ∑k∗
k=1 qπk

(4.19)

Proof. For ‖c‖1 ≤ ρ, from Remark 4.12 we know that r∗ = c. By Theorem 4.10, the optimal
solution of eq.(4.11) is x∗ = Diag(q)−1(c− r∗) = 0, and we prove the first claim.

For ‖c‖1 > ρ, by Theorem 4.10, the optimal solution of eq.(4.11) x∗πk = 1
qπk

(cπk −
r∗πk). By Theorem 4.14, x∗πk = 1

qπk
(cπk − sgn(cπk)g

∗
πk

). By Lemma 4.17, x∗πk =
cπk
qπk
−

sgn(cπk) max(0,
|cπk |
qπk
− ν∗).

If k > k∗ ⇒ |cπk |
qπk

< ν∗ ⇒ x∗πk =
cπk
qπk

, and we prove the second claim.

If k ≤ k∗ ⇒ |cπk |
qπk
≥ ν∗ ⇒ x∗πk = sgn(cπk)ν

∗, and we prove the third claim.

4.6 Separable Quadratic Trust-Region Problem

In this section, we show the connection between the `1,2 multi-task structure learning problem
and the separable quadratic trust-region problem, which can be efficiently solved by one-
dimensional optimization.

The trust-region problem has been extensively studied by the mathematical optimization
community [Forsythe and Golub, 1965, Moré and Sorensen, 1983, Boyd and Vandenberghe,
2006]. Trust-region methods arise in the optimization of general convex functions. In that
context, the strategy behind trust-region methods is to perform a local second-order ap-
proximation to the original objective function. The quadratic model for local optimization
is “trusted” to be correct inside a circular region (i.e. the trust region). Separability is
usually not assumed, i.e. a symmetric matrix Q is used instead of Diag(q) in eq.(4.11),
and therefore the general algorithms are more involved than ours. In the context of machine
learning, [Duchi and Singer, 2009b] provides a closed form solution for the separable version
of the problem when the weights of the quadratic term are all equal, i.e. (∀k) qk = 1. In this
chapter, we assume arbitrary positive weights, i.e. (∀k) qk > 0. A closed form solution is
not possible in this general case, but the efficient one-dimensional Newton-Raphson method
can be applied.

Theorem 4.19. For q > 0, ρ > 0, p = 2, the `2 regularized separable quadratic problem in
eq.(4.11) is equivalent to the separable quadratic trust-region problem:

min
‖r‖2≤ρ

(
1

2
(r− c)TDiag(q)−1(r− c)

)
(4.20)

Furthermore, their optimal solutions are related by x∗ = Diag(q)−1(c− r∗).
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Proof. By Lagrangian duality, the problem in eq.(4.20) is the dual of the problem in eq.(4.11).
Furthermore, strong duality holds in this case.

Remark 4.20. In eq.(4.20), we can assume that (∀k) ck 6= 0. If (∃k) ck = 0, the partial
optimal solution is r∗k = 0, and since this assignment does not affect the constraint, we can
safely remove rk from the optimization problem.

Remark 4.21. In what follows, we assume that ‖c‖2 > ρ. If ‖c‖2 ≤ ρ, the unconstrained
optimal solution of eq.(4.20) is also its optimal solution, since r∗ = c is inside the feasible
region given that ‖r∗‖2 ≤ ρ.

Lemma 4.22. For q > 0, (∀k) ck 6= 0, ‖c‖2 > ρ, the separable quadratic trust-region
problem in eq.(4.20) is equivalent to the problem:

min
λ≥0

(∑
n

c2
n

qn + λq2
n

+ ρ2λ

)
(4.21)

Furthermore, their optimal solutions are related by r∗ = Diag(1 + λ∗q)−1c.

Proof. By Lagrangian duality, the problem in eq.(4.21) is the dual of the problem in eq.(4.20).
Furthermore, strong duality holds in this case.

Corollary 4.23. For the special case q = 1 of Duchi and Singer [2009b], the trust-region

dual problem in eq.(4.21) has the closed form solution λ∗ = max
(

0, ‖c‖2
ρ
− 1
)

.

Proof. For q = 1, the problem in eq.(4.21) becomes minλ≥0

(
‖c‖22
1+λ

+ ρ2λ
)

. By minimizing

with respect to λ and by noting that λ ≥ 0, we prove our claim.

Theorem 4.24. For q > 0, ρ > 0, p = 2, the `2 regularized separable quadratic problem in
eq.(4.11) has the optimal solution:

‖c‖2 ≤ ρ⇒ x∗ = 0

‖c‖2 > ρ⇒ x∗ = λ∗Diag(1 + λ∗q)−1c
(4.22)

Proof. For ‖c‖2 ≤ ρ, from Remark 4.21 we know that r∗ = c. By Theorem 4.19, the optimal
solution of eq.(4.11) is x∗ = Diag(q)−1(c− r∗) = 0, and we prove the first claim.

For ‖c‖2 > ρ, by Theorem 4.19, the optimal solution of eq.(4.11) is (∀k) x∗k = 1
qk

(ck−r∗k).
By Lemma 4.22, x∗k = 1

qk
(ck − 1

1+λ∗qk
ck) = λ∗

1+λ∗qk
ck, and we prove the second claim.

4.7 Algorithm

Algorithm 4.1 shows the block coordinate descent method in detail. A careful implemen-
tation of the algorithm allows obtaining a time complexity of O(LN3K) for L iterations,
N variables and K tasks. In our experiments, the algorithm converges quickly in usually
L = 10 iterations. The polynomial dependence O(N3) on the number of variables is expected
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since we cannot produce an algorithm faster than computing the inverse of the sample co-
variance in the case of an infinite sample. For p =∞, the linear-time dependence O(K) on
the number of tasks can be accomplished by using a deterministic linear-time method for
solving the continuous quadratic knapsack problem, based on medians of breakpoint sub-
sets [Kiwiel, 2007]. A very easy-to-implement O(K logK) algorithm is obtained by initially
sorting the breakpoints and searching the range for which Lemma 4.17 holds. For p = 2, the
linear-time dependence O(K) on the number of tasks can be accomplished by using the one-
dimensional Newton-Raphson method for solving the trust-region dual problem in eq.(4.21).
In our implementation, we initialize λ = 0 and perform 10 iterations of the Newton-Raphson
method.

Algorithm 4.1 Block Coordinate Descent for Multi-task Learning.
Input: ρ > 0, for each k, Σ̂(k) � 0, T (k) > 0
Initialize for each k, Ω(k) = Diag(Σ̂(k))

−1

for each iteration 1, . . . , L and each variable 1, . . . , N do
Split for each k, Ω(k) into W(k),y(k), z(k) and Σ̂(k) into S(k),u(k), v(k) as described in eq.(4.7)
Update for each k, W(k)−1

by using the Sherman-Woodbury-Morrison formula (Note that when iterating
from one variable to the next one, only one row and column change on matrix W(k), see Appendix B)
for each variable 1, . . . , N − 1 do

Split for each k, W(k)−1
,y(k),u(k) as in eq.(4.12)

For p = ∞, solve the `∞ regularized separable quadratic problem by eq.(4.19), either by sorting the
breakpoints or using medians of breakpoint subsets. For p = 2, solve the `2 regularized separable
quadratic problem by eq.(4.22) by using the Newton-Raphson method for solving the trust-region
dual problem in eq.(4.21)

end for
Update for each k, z(k) ← 1

v(k)
+ y(k)TW(k)−1

y(k)

end for
Output: for each k, Ω(k) � 0

4.8 Penalizing the Diagonals

In this section, we discuss penalization of the diagonals of the precision matrices. It is
unclear whether diagonal penalization leads to better models with respect to structure as well
as generalization performance. For the single-task problem, covariance selection [Banerjee
et al., 2006] and graphical lasso [Friedman et al., 2007b] penalize the weights of the diagonal
elements. In contrast, the analysis of consistency in structure recovery of Ravikumar et al.
[2008] assumed that diagonals are not penalized.

Note that, when the diagonals are not penalized, the “diagonal update step” (Remark

4.5) reduces to setting for each k, z(k)∗ = 1
v(k)

+y(k)T
W(k)−1

y(k). Penalization of the diagonals
of the precision matrices is more involved, since it requires the solution of additional opti-
mization problems, namely the continuous logarithmic knapsack problem for p =∞ and the
separable logarithmic trust-region problem for p = 2. First, we discuss the general problem
for arbitrary p > 1.

Lemma 4.25. When penalizing the diagonals of the precision matrices, the “diagonal update
step” of the block coordinate descent method for the `1,p multi-task structure learning prob-
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lem in eq.(4.1) is equivalent to solving a sequence of strictly convex `p regularized separable
logarithmic subproblems:

max
(∀k) z(k)>bk

(∑
k

qk log(z(k) − bk)− cTz− ρ‖z‖p
)

(4.23)

where z = (z(1), . . . , z(K))
T

and q, c,b > 0. Moreover, the block coordinate descent method
generates a sequence of positive definite solutions.

Proof. When we choose to penalize the diagonals of the precision matrices Ω(1), . . . ,Ω(K),
eq.(4.8) contains an additional `p penalty, i.e. ρ‖z‖p. In terms of the variables y(k), z(k) and
the constant matrix W(k) introduced in eq.(4.7), the multi-task structure learning problem
in eq.(4.1) can be reformulated as:

max
(∀k) Ω(k)�0

(∑
k T

(k)
(

log(z(k) − y(k)T
W(k)−1

y(k))− 2u(k)T
y(k) − v(k)z(k)

)
−2ρ

∑
n ‖(y

(1)
n , . . . , y

(K)
n )‖p − ρ‖z‖p

)
(4.24)

Let qk = T (k) > 0, ck = T (k)v(k) > 0 and bk = y(k)T
W(k)−1

y(k) ≥ 0 since W(k) � 0 and
y(k) is an arbitrary vector (including the case y(k) = 0). We obtain eq.(4.23) by noting that
we are maximizing with respect to z and by enforcing (∀k) z(k) > bk since log(z(k) − bk) is
undefined for z(k) ≤ bk.

If Ω(k) is a symmetric matrix, according to the Haynsworth inertia formula, Ω(k) � 0 if

and only if its Schur complement z(k) − y(k)T
W(k)−1

y(k) > 0 and W(k) � 0. Note that the

Schur complement z(k) − y(k)T
W(k)−1

y(k) = z(k) − bk and therefore it is strictly positive for
every feasible solution given the constraints (∀k) z(k) > bk.

Finally, in an iterative optimization algorithm, it suffices to initialize Ω(k) to a matrix
that is known to be positive definite, e.g. a diagonal matrix with positive elements.

Lemma 4.26. For q, c,b > 0, ρ > 0, p > 1, the `p regularized separable logarithmic problem
in eq.(4.23) is equivalent to the separable logarithmic problem with one `p′ constraint:

min
r≥0
‖r‖p′=ρ

(
−
∑
k

qk log(rk + ck)− bTr

)
(4.25)

Furthermore, their optimal solutions are related by z(k)∗ = bk + qk
ck+r∗k

.

Proof. By Lagrangian duality, the problem in eq.(4.25) is the dual of the problem in eq.(4.23).
Furthermore, strong duality holds in this case.

The constraint r ≥ 0 comes from the fact that z > 0 since it is the diagonal of positive
definite matrices. Note that for a general z ∈ RK , we have ρ‖z‖p = max‖r‖p′≤ρ rTz. In order
to maximize this expression, r will take values on the non-negative orthant since z > 0.

We changed the inequality constraint ‖r‖p′ ≤ ρ to an equality constraint since the objec-
tive is separable and decreasing with respect to each rk and therefore, the optimal solution
must be on the boundary of the constraint set.
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In what follows, we focus on the case p = ∞ and show that this problem can be solved
by a combination of sorting and the Newton-Raphson method.

Lemma 4.27. For q, c,b > 0, ρ > 0, p = ∞, the separable logarithmic problem with one
`p′ in eq.(4.25) is the continuous logarithmic knapsack problem:

min
r≥0

1Tr=ρ

(
−
∑
k

qk log(rk + ck)− bTr

)
(4.26)

which has the solution:

rk(ν) =


+∞, ν ≤ bk
qk

ν−bk
− ck, bk < ν < qk

ck
+ bk

0, ν ≥ qk
ck

+ bk

(4.27)

for some ν, and furthermore, the optimal solution fulfills the condition:

r∗ = r(ν)⇔ 1Tr(ν) = ρ (4.28)

Proof. The Lagrangian of eq.(4.26) is:

min
r≥0

(
−
∑
k

qk log(rk + ck)− bTr + ν(1Tr− ρ)

)
(4.29)

Both results can be obtained by invoking the Karush-Kuhn-Tucker optimality conditions on
eq.(4.29).

Remark 4.28. Note that for ν ≤ bk, we have rk(ν) = +∞ in eq.(4.27), therefore 1Tr(ν)
is finite if and only if ν > maxk bk = ‖b‖∞. Additionally, for ν > ‖b‖∞ we have that rk(ν)
in eq.(4.27) is a decreasing piecewise inverse function with breakpoint ν = qk

ck
+ bk > 0. By

Lemma 4.27, finding the optimal r∗ is equivalent to finding ν in a piecewise inverse function
1Tr(ν) that produces ρ.

Similarly as in Lemma 4.17, we sort the breakpoints in decreasing order, i.e. we find a
permutation π of the indices 1, 2, . . . , K such that

qπ1

cπ1
+ bπ1 ≥

qπ2

cπ2
+ bπ2 ≥ · · · ≥

qπK
cπK

+ bπK ≥
qπK+1

cπK+1
+ bπK+1

≡ 0. Then, we search for the optimal breakpoint k∗ or equivalently we search

for the range in which 1Tr
(
qπk∗
cπk∗

+ bπk∗

)
≤ ρ ≤ 1Tr

(
qπk∗+1

cπk∗+1

+ bπk∗+1

)
. After finding k∗, ν∗

can be found by the Newton-Raphson method in order to fulfill the condition 1Tr(ν∗) = ρ
in Lemma 4.27. In our implementation, we initialize ν at one of the extremes of the optimal
range, i.e. ν = max(‖b‖∞+ε,

qπk∗
cπk∗

+bπk∗ ) for some small ε > 0. We then perform 10 iterations

of the Newton-Raphson method.
Next, we focus on the case p = 2 and show that this problem can be solved by the

Newton-Raphson method.
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Lemma 4.29. For q, c,b > 0, ρ > 0, p = 2, the separable logarithmic problem with one `p′
in eq.(4.25) is the separable logarithmic trust-region problem:

min
r≥0
‖r‖2≤ρ

(
−
∑
k

qk log(rk + ck)− bTr

)
(4.30)

which can be solved by one-dimensional optimization of:

max
λ≥0

(
−
∑
k

qk log(rk(λ) + ck)− bTr(λ) +
λ

2

(
r(λ)Tr(λ)− ρ2

))
(4.31)

where rk(λ) =
bk−λck+

√
(bk+λck)2+4λqk
2λ

.

Proof. By Lagrangian duality, the problem in eq.(4.31) is the dual of the problem in eq.(4.30).
Furthermore, strong duality holds in this case.

In our implementation, we initialize λ = 1
K

∑
k
qk+bk(ck+ρ)
ρ(ck+ρ)

and perform 10 iterations of
the Newton-Raphson method. Our initialization rule follows from using the average of the
k independently optimal values of λ. That is, we consider only one task k at a time from
eq.(4.31) which leads to maxλ≥0

(
−qk log(rk(λ) + ck)− bkrk(λ) + λ

2
(r2
k(λ)− ρ2)

)
. Then, we

compute the optimal value of λ under this setting, which is qk+bk(ck+ρ)
ρ(ck+ρ)

. Finally, we average
these optimal values for all k which leads to our initialization rule for λ.

4.9 Experimental Results

We begin with a synthetic example to test the ability of the method to recover the ground
truth structure from data. The model contains N = 50 variables and K = 5 tasks. For
each of 50 repetitions, we generate a topology (undirected graph) Υg ∈ {0, 1}N×N with
a required edge density (either 0.1,0.3,0.5). For each task k, we first generate a Gaussian

graphical model Ω
(k)
g with topology Υg where each edge weight is generated uniformly at

random from [−1; +1]. We ensure positive definiteness of Ω
(k)
g by verifying that its minimum

eigenvalue is at least 0.1. We then generate a dataset of T (k) = 50 samples.
In order to measure the closeness of the recovered models to the ground truth, we mea-

sured the Kullback-Leibler divergence, sensitivity (one minus the fraction of falsely excluded
edges) and specificity (one minus the fraction of falsely included edges). For comparison
purposes, we used the following single-task methods: covariance selection [Banerjee et al.,
2006], graphical lasso [Friedman et al., 2007b], Meinshausen-Bühlmann approximation [Mein-
shausen and Bühlmann, 2006] and Tikhonov regularization. We also compared our method
to the `1,2 multi-task upper bound method of Varoquaux et al. [2010].

Figure 4.1 shows the ROC curves and Kullback-Leibler divergence between the recovered
models and the ground truth. Note that both our `1,∞ and `1,2 multi-task methods recover the
ground truth edges remarkably better (higher ROC) than the comparison methods, including
the `1,2 multi-task upper bound method of Varoquaux et al. [2010]. Our `1,2 method always
produces better probability distributions (lower Kullback-Leibler divergence) than the `1,2
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Figure 4.1: ROC curves (top) and cross-validated Kullback-Leibler divergence (bottom) between
the recovered models and the ground truth for low (left), moderate (center) and high (right) edge
density. Both our `1,∞ (MI) and `1,2 (M2) multi-task methods recover the ground truth edges
remarkably better than the `1,2 multi-task upper bound method (U2), Meinshausen-Bühlmann
with AND-rule (MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS) and Tikhonov
regularization (TR). The Kullback-Leibler divergence of our `1,2 method is always lower than the
`1,2 upper bound method for all the regularization values.

upper bound method for all the regularization values. We did not observe a significant
difference in Kullback-Leibler divergence between penalizing the weights in the diagonals
versus not penalizing the diagonals for most regularization levels ρ < 0.19. For ρ ≥ 0.19,
diagonal penalization leads to a slightly worse Kullback-Leibler divergence. Furthermore,
the ROC curves for our methods with and without diagonal penalization were the same.
Therefore, we chose to report only the results without diagonal penalization.

In a second synthetic experiment, instead of producing the same topology Υg for the

models Ω
(k)
g for all tasks k, we assume a level of similarity between the graph topologies.

More specifically, a similarity of 1 means that the models Ω
(k)
g have the same topology for all

k, which is equivalent to our previous experiment. A similarity of 0 means that the models
Ω

(k)
g have different topology for all k. Figure 4.2 shows the ROC curves and Kullback-Leibler

divergence between the recovered models and the ground truth. For a similarity of 0.5, both
our `1,∞ and `1,2 multi-task methods recover the ground truth edges as accurately as (similar
ROC) the comparison methods. For higher similarity, our multi-task methods recover the
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Figure 4.2: ROC curves (top) and cross-validated Kullback-Leibler divergence (bottom) between
the recovered models and the ground truth for different levels of similarity across topologies. For
a similarity of 0.5, both our `1,∞ (MI) and `1,2 (M2) multi-task methods recover the ground truth
edges as accurately as `1,2 multi-task upper bound method (U2), Meinshausen-Bühlmann with
AND-rule (MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS) and Tikhonov
regularization (TR). For higher similarity, our multi-task methods outperform the comparison
methods. For lower similarity, the comparison methods outperform our multi-task methods. The
Kullback-Leibler divergence of our `1,2 method is always lower than the `1,2 upper bound method
for all the regularization values.

ground truth edges remarkably better (higher ROC) than the comparison methods. For
lower similarity, the comparison methods outperform our multi-task methods. The latter
behavior is expected given the small similarity of topologies in the ground truth models. As
we will show later, real-world datasets seem to exhibit high similarity since our `1,∞ and `1,2

multi-task methods outperform the comparison methods. Independently of the similarity of
topologies, our `1,2 method always produces better probability distributions (lower Kullback-
Leibler divergence) than the `1,2 upper bound method for all the regularization values.

For experimental validation on a real-world dataset, we first use a fMRI dataset that
captures brain function of cocaine addicted and control subjects under conditions of mone-
tary reward. The dataset collected by Goldstein et al. [2007] contains 16 cocaine addicted
subjects and 12 control subjects. Six sessions were acquired for each subject. Each ses-
sion contains 87 scans taken every 3.5 seconds. Registration of the dataset to the same
spatial reference template (Talairach space) and spatial smoothing was performed in SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). We extracted voxels from the gray matter only,
and grouped them into 157 regions by using standard labels (Please, see Appendix E), given
by the Talairach Daemon (http://www.talairach.org/). These regions span the entire
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Figure 4.3: Cross-validated log-likelihood of structures learnt for each of the six sessions on cocaine
addicted subjects (a) and control subjects (b). Both our `1,∞ (MI) and `1,2 (M2) multi-task meth-
ods have higher log-likelihood than the `1,2 multi-task upper bound method (U2), Meinshausen-
Bühlmann with AND-rule (MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS)
and Tikhonov regularization (TR). Our `1,2 method is always better than the `1,2 multi-task upper
bound method for all the regularization values.

brain (cerebellum, cerebrum and brainstem). In order to capture laterality effects, we have
regions for the left and right side of the brain.

First, we test the idea of learning one Gaussian graphical model for each of the six
sessions, i.e. each session is a task. We performed five-fold cross-validation on the subjects,
and report the log-likelihood on the testing set (scaled for visualization purposes). In Figure
4.3, we can observe that the log-likelihood of both our `1,∞ and `1,2 multi-task methods is
better than the comparison methods. Moreover, our `1,2 method is always better than the `1,2

multi-task upper bound method of Varoquaux et al. [2010] for all the regularization values.
We did not observe a significant difference in log-likelihood between penalizing the weights
in the diagonals versus not penalizing the diagonals for most regularization levels ρ < 0.19.
For ρ ≥ 0.19, diagonal penalization leads to a slightly worse log-likelihood. Therefore, we
chose to report only the results without diagonal penalization.

Second, we test the idea of learning one Gaussian graphical model for each subject, i.e.
each subject is a task. It is well known that fMRI datasets have more variability across
subjects than across sessions of the same subject. Therefore, our cross-validation setting
works as follows: we use one session as training set, and the remaining five sessions as
testing set. We repeat this procedure for all the six sessions and report the log-likelihood
(scaled for visualization purposes). In Figure 4.4, we can observe that the log-likelihood of
both our `1,∞ and `1,2 multi-task methods is better than the comparison methods. Moreover,
our `1,2 method is always better than the `1,2 multi-task upper bound method of Varoquaux
et al. [2010] for all the regularization values. Finally, both our `1,∞ and `1,2 methods are
more stable for low regularization levels than the other methods in our evaluation, which
perform very poorly.

In order to measure the statistical significance of our previously reported log-likelihoods,
we further compared the best parameter setting for each of the techniques. In Tables 4.1 and
4.2, we report the two sample Z-statistic for the difference of both our `1,∞ and `1,2 techniques
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Figure 4.4: Cross-validated log-likelihood of structures learnt for each subject on cocaine addicted
subjects (a) and control subjects (b). Both our `1,∞ (MI) and `1,2 (M2) multi-task methods have
higher log-likelihood than the `1,2 multi-task upper bound method (U2), Meinshausen-Bühlmann
with AND-rule (MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS) and Tikhonov
regularization (TR). Our `1,2 method is always better than the `1,2 multi-task upper bound method
for all the regularization values. For low regularization levels, our methods are more stable than
the comparison methods.

Table 4.1: Z-statistic for the difference of log-likelihoods between our `1,∞ technique and each
other method, for 16 cocaine addicted subjects. Except for few cases (marked with an asterisk),
our method is statistically significantly better (90%, Z > 1.28) than the `1,2 upper bound method
(U2), Meinshausen-Bühlmann with AND-rule (MA), OR-rule (MO), graphical lasso (GL), covari-
ance selection (CS) and Tikhonov regularization (TR). The `1,∞ and `1,2 (M2) methods are not
statistically significantly different.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
MA 27.4 14.7 9.1 12.0 18.9 10.4 9.0 19.6 9.6 8.1 8.5 17.2 23.2 19.2 19.5 10.3
MO 25.6 17.0 10.4 13.7 19.4 10.4 10.7 20.4 13.5 11.2 10.1 18.5 22.5 17.6 21.1 13.9
GL 2.0 2.7 1.9 1.5 0.7* 1.8 2.7 2.2 4.3 2.9 1.8 1.8 1.8 2.2 4.7 2.9
CS 2.0 2.6 1.9 1.5 0.7* 1.8 2.7 2.1 4.3 2.9 1.8 1.8 1.8 2.2 4.7 2.9
TR 15.4 5.1 3.6 6.3 10.3 6.7 3.5 12.0 3.2 2.2 3.7 8.8 8.8 11.4 8.0 5.0
U2 5.5 2.3 1.7 2.0 4.0 1.9 1.1* 4.3 1.3 0.7* 1.3 3.9 3.3 3.9 2.9 1.2*
M2 0.8* -0.3* 0.1* 0.3* 0.7* 0.5* -0.1* 1.0* -0.1* -0.2* -0.0* 0.8* 0.5* 1.1* 0.3* -0.3*

minus each competing method. Except for few subjects, the cross-validated log-likelihood of
both our `1,∞ and `1,2 methods is statistically significantly higher (90%, Z > 1.28) than the
comparison methods, including the `1,2 multi-task upper bound method of Varoquaux et al.
[2010]. Our `1,∞ and `1,2 multi-task methods are not statistically significantly different.

We show a subgraph of learnt structures for three randomly selected cocaine addicted
subjects in Figure 4.5. We can observe that the sparseness pattern of the structures produced
by our multi-task method is consistent across subjects.

Next, we present experimental results on a considerably larger real-world dataset. The
1000 functional connectomes dataset contains resting-state fMRI of over 1128 subjects col-
lected on several sites around the world. The dataset is publicly available at http://www.

nitrc.org/projects/fcon\_1000/. Resting-state fMRI is a procedure that captures brain
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Table 4.2: Z-statistic for the difference of log-likelihoods between our `1,2 technique and each other
method, for 16 cocaine addicted subjects. Except for few cases (marked with an asterisk), our
method is statistically significantly better (90%, Z > 1.28) than the `1,2 upper bound method
(U2), Meinshausen-Bühlmann with AND-rule (MA), OR-rule (MO), graphical lasso (GL), covari-
ance selection (CS) and Tikhonov regularization (TR). The `1,∞ (MI) and `1,2 methods are not
statistically significantly different.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
MA 27.1 15.2 9.2 11.9 18.6 10.2 9.3 19.0 9.9 8.4 8.7 16.7 23.1 18.5 19.5 10.9
MO 25.3 17.5 10.5 13.7 19.1 10.2 10.9 19.8 13.8 11.5 10.3 18.1 22.4 16.9 21.1 14.4
GL 1.3 3.0 1.8 1.2* 0.0* 1.4 2.9 1.3* 4.5 3.1 1.9 1.1* 1.4 1.2* 4.5 3.3
CS 1.3 2.9 1.8 1.2* 0.0* 1.4 2.9 1.2* 4.5 3.1 1.9 1.0* 1.4 1.3* 4.5 3.2
TR 14.9 5.5 3.6 6.2 9.7 6.4 3.7 11.1 3.4 2.5 3.8 8.1 8.5 10.3 7.9 5.4
U2 4.8 2.6 1.7 1.8 3.3 1.5 1.2* 3.4 1.5 0.9* 1.4 3.2 2.8 2.9 2.6 1.5
MI -0.8* 0.3* -0.1* -0.3* -0.7* -0.5* 0.1* -1.0* 0.1* 0.2* 0.0* -0.8* -0.5* -1.1* -0.3* 0.3*
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Figure 4.5: Subgraph of ten randomly selected brain regions from learnt structures for three ran-
domly selected cocaine addicted subjects, for (a) our `1,∞ multi-task method, (b) our `1,2 multi-
task method, (c) the `1,2 upper bound method and (d) graphical lasso. Regularization parameter
ρ = 0.01. Positive interactions are shown in blue, negative interactions are shown in red. Notice
that sparseness of our structures (a,b) are consistent across subjects, while the remaining methods
(c,d) fail to obtain a consistent sparseness pattern.

function of an individual that is not focused on the outside world, while his brain is at wake-
ful rest. Registration of the dataset to the same spatial reference template (Talairach space)
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Table 4.3: Number of subjects per collection site and number of scans per subject in the 1000
functional connectomes dataset.

Site Subjects Scans Site Subjects Scans Site Subjects Scans
AnnArbor a 23 295 Cleveland1 17 125 NewYorkA2 24 192
Baltimore 46 120 Cleveland2 14 125 NewYorkB 20 168
Bangor 20 256 Dallas 24 114 Newark 19 135
Beijing1 40 225 ICBM 42 128 Ontario 11 100
Beijing2 42 225 Leiden1 12 210 Orangeburg 20 162
Beijing3 41 225 Leiden2 19 210 Oulu1 57 243
Beijing4 30 225 Leipzig 37 192 Oulu2 47 243
Beijing5 45 225 NYU TRT1A 13 192 Oxford 22 175
Berlin 26 192 NYU TRT1B 12 192 PaloAlto 17 234
Cambridge1 48 117 NYU TRT2A 13 192 Queensland 18 189
Cambridge2 46 117 NYU TRT2B 12 192 SaintLouis 31 125
Cambridge3 49 117 NYU TRT3A 13 192 Taipei a 13 256
Cambridge4 55 117 NYU TRT3B 12 192 Taipei b 8 160
CambridgeWG 35 144 NewYorkA1 35 192

and spatial smoothing was performed in SPM2 (http://www.fil.ion.ucl.ac.uk/spm/).
We extracted voxels from the gray matter only, and grouped them into 157 regions by
using standard labels (Please, see Appendix E), given by the Talairach Daemon (http:
//www.talairach.org/). These regions span the entire brain (cerebellum, cerebrum and
brainstem). In order to capture laterality effects, we have regions for the left and right side
of the brain. Table 4.3 shows the number of subjects per collection site as well as the number
of scans per subject.

We learn one Gaussian graphical model for each of the 41 collection sites, i.e. each site is
a task. For each site, we used one third of the subjects for training, one third for validation
and the remaining third for testing. We performed six repetitions by making each third
of the subjects take turns as training, validation and testing sets. We report the negative
log-likelihood on the testing set in Figure 4.6 (we subtracted the entropy measured on the
testing set and then scaled the results for visualization purposes). We can observe that the
log-likelihood of both our `1,∞ and `1,2 multi-task methods is better than the comparison
methods. Moreover, our `1,2 method is better than the `1,2 multi-task upper bound method
of Varoquaux et al. [2010]. Our results also suggest that diagonal penalization does not
produce better generalization performance.

Additionally in Figure 4.6, we also tested our previous regularizers: local constancy from
Chapter 2 and `1,2 variable selection from Chapter 3. We speculate that variable selection
did not perform well because there seems to be a common structure across tasks (which is
captured by our multi-task regularizer) and because the number of variables is relatively
small (157 brain regions).

We show a subgraph of learnt structures for three randomly selected collection sites in
Figure 4.7. We can observe that the sparseness pattern of the structures produced by our
multi-task method is consistent across collection sites.
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Figure 4.6: Test negative log-likelihood of structures learnt for the 1000 functional connectomes
dataset. Differences between our multi-task methods and the rest are statistically significant (99%,
Z > 2.33). Both our `1,∞ (MI) and `1,2 (M2) multi-task methods (without diagonal penalization)
as well as our `1,∞ (DI) and `1,2 (D2) multi-task methods (with diagonal penalization), have
better log-likelihood than the `1,2 multi-task upper bound method (U2), Meinshausen-Bühlmann
with AND-rule (MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS), Tikhonov
regularization (TR) and scale free networks (SF). Our `1,2 method is better than the `1,2 multi-task
upper bound method. Our results also suggest that diagonal penalization does not produce better
generalization performance. Additionally, we also tested our previous regularizers: local constancy
(LC) and `1,2 variable selection (VS).

4.10 Concluding Remarks

In this chapter, we generalized the learning of sparse Gaussian graphical models to the
multi-task setting by replacing the `1-norm regularization with an `1,p-norm. We presented
a block coordinate descent method which is provably convergent and yields sparse and pos-
itive definite estimates. We showed the connection between our `1,∞ multi-task structure
learning problem and the continuous quadratic knapsack problem, as well as the connec-
tion between our `1,2 multi-task structure learning problem and the quadratic trust-region
problem. In synthetic experiments, we showed that our method outperforms others in re-
covering the topology of the ground truth model. The cross-validated log-likelihood of our
method is higher than competing methods in two real-world brain fMRI datasets. For the
`1,2 problem, our block coordinate descent method leads to better ground-truth recovery and
generalization when compared to the upper bound method of Varoquaux et al. [2010]. We
experimentally found that diagonal penalization does not lead to a better generalization per-
formance, when compared to not penalizing the diagonals. Our methods with and without
diagonal penalization recover the ground truth edges similarly well. Therefore, we believe
the negative impact of diagonal penalization is not on structure recovery but on parameter
learning.
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Figure 4.7: Subgraph of ten randomly selected brain regions from learnt structures for three ran-
domly selected collection sites, for (a) our `1,∞ multi-task method, (b) our `1,2 multi-task method,
(c) the `1,2 upper bound method and (d) covariance selection. Regularization parameter ρ = 0.0002.
Positive interactions are shown in blue, negative interactions are shown in red. Notice that sparse-
ness of our structures (a,b) are consistent across collection sites, while the remaining methods (c,d)
fail to obtain a consistent sparseness pattern.
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Chapter 5

Learning Discrete MRFs

In the previous chapters, we focused on learning structures for continuous and jointly Gaus-
sian variables. In this chapter, we focus on learning structures for discrete variables. In fact,
our results are far more general than the specific problem of structure learning. Our main
contribution is in the area of optimization, since we analyze the problem of biased stochastic
optimization.

We study the convergence rate of stochastic optimization of exact (NP-hard) objectives,
for which only biased estimates of the gradient are available. We motivate this problem
in the context of learning the structure and parameters of Ising models. We first provide
a convergence-rate analysis of deterministic errors for forward-backward splitting (FBS).
We then extend our analysis to biased stochastic errors, by first characterizing a family of
samplers and providing a high probability bound that allows understanding not only FBS,
but also proximal gradient (PG) methods. We derive some interesting conclusions: FBS
requires only a logarithmically increasing number of random samples in order to converge
(although at a very low rate); the required number of random samples is the same for the
deterministic and the biased stochastic setting for FBS and basic PG; accelerated PG is not
guaranteed to converge in the biased stochastic setting.

5.1 Introduction

One challenge of structure learning is that the number of possible structures is super-
exponential in the number of variables. For Ising models, the number of parameters, the
number of edges in the structure and the number of non-zero elements in the ferro-magnetic
coupling matrix are equivalent measures of model complexity. Therefore a computation-
ally tractable approach is to use sparseness promoting regularizers [Wainwright et al., 2006,
Banerjee et al., 2008, Höfling and Tibshirani, 2009].

One additional challenge for Ising models (and Markov random fields in general) is that
computing the likelihood of a candidate structure is NP-hard. For this reason, several re-
searchers propose exact optimization of approximate objectives, such as `1-regularized logis-
tic regression [Wainwright et al., 2006], greedy optimization of the conditional log-likelihoods
[Jalali et al., 2011], pseudo-likelihood [Besag, 1975] and a sequence of first-order approxi-
mations of the exact log-likelihood [Höfling and Tibshirani, 2009]. Several convex upper
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bounds and approximations to the log-partition function have been proposed for maximum
likelihood estimation, such as the log-determinant relaxation [Banerjee et al., 2008], the car-
dinality bound [El Ghaoui and Gueye, 2008], the Bethe entropy [Lee et al., 2006a, Parise
and Welling, 2006], tree-reweighted approximations and general weighted free-energy [Yang
and Ravikumar, 2011].

In this chapter, we focus on the stochastic optimization of the exact log-likelihood as
our motivating problem. The use of stochastic maximum likelihood dates back to [Geyer,
1991, Younes, 1988], in which Markov chain Monte Carlo (MCMC) was used for approxi-
mating the gradient. For restricted Boltzmann machines (a very related graphical model)
researchers have proposed a variety of approximation methods, such as variational approx-
imations [Murray and Ghahramani, 2004], contrastive divergence [Hinton, 2002], persistent
contrastive divergence [Tieleman, 2008], tempered MCMC [Salakhutdinov, 2009, Desjardins
et al., 2010], adaptive MCMC [Salakhutdinov, 2010] and particle filtering [Asuncion et al.,
2010].

Empirical results in [Marlin et al., 2010] suggests that stochastic maximum likelihood is
superior to contrastive divergence, pseudo-likelihood, ratio matching and generalized score
matching for learning restricted Boltzmann machines, in the sense that it produces a higher
test set log-likelihood, and more consistent classification results across datasets.

Learning sparse Ising models leads to the use of stochastic optimization with biased es-
timates of the gradient. Most work in stochastic optimization assumes the availability of
unbiased estimates [Duchi and Singer, 2009c, Duchi et al., 2010, Hu et al., 2009, Nemirovski
et al., 2009, Duchi and Singer, 2009c, Duchi et al., 2010, Hu et al., 2009, Nemirovski et al.,
2009, Langford et al., 2009, Shalev-Shwartz et al., 2007, Shalev-Shwartz and Tewari, 2009]
Additionally, other researchers have analyzed convergence rates in the presence of determin-
istic errors that do not decrease over time [d’Aspremont, 2008, Baes, 2009, Devolder et al.,
2011] and show convergence up to a constant level. Similarly, Devolder [2012] analyzed the
case of stochastic errors with fixed bias and variance and show convergence up to a constant
level.

Notable exceptions are the recent works of Schmidt et al. [2011], Friedlander and Schmidt
[2011], Duchi et al. [2011]. Schmidt et al. [2011] analyzed proximal-gradient (PG) methods
for deterministic errors of the gradient that decrease over time, for inexact projection steps
and Lipschitz as well as strongly convex functions. In our work, we restrict our analysis to
exact projection steps and do not assume strong convexity. Both assumptions are natural for
learning sparse models under the `1 regularization. Friedlander and Schmidt [2011] provides
convergence rates in expected value for PG with stochastic errors that decrease over time in
expected value. Friedlander and Schmidt [2011] proposes a growing sample-size strategy for
approximating the gradient, i.e. by picking an increasing number of training samples in order
to better approximate the gradient. In contrast, our work for is for NP-hard gradients and we
provide bounds with high probability, by taking into account the bias and the variance of the
errors. Duchi et al. [2011] analyzed mirror descent (a generalization that includes forward-
backward splitting) and show convergence rates in expected value and with high probability
with respect to the mixing time of the sampling distribution. We argue that practitioners
usually terminate Markov chains before properly mixing, and therefore we motivate our
analysis for a controlled increasing number of random samples.

Regarding our contribution in optimization, we provide a convergence-rate analysis of
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deterministic errors for three different flavors of forward-backward splitting (FBS): robust
[Nemirovski et al., 2009], basic and random [Duchi and Singer, 2009c]. We extend our
analysis to biased stochastic errors, by first characterizing a family of samplers (including
importance sampling and MCMC) and providing a high probability bound that is useful for
understanding the convergence of not only FBS, but also PG [Schmidt et al., 2011]. Our
analysis shows the bias/variance term and allow to derive some interesting conclusions. First,
FBS for deterministic or biased stochastic errors requires only a logarithmically increasing
number of random samples in order to converge (although at a very low rate). More interest-
ingly, we found that the required number of random samples is the same for the deterministic
and the biased stochastic setting for FBS and basic PG. We also found that accelerated PG
is not guaranteed to converge in the biased stochastic setting.

Regarding our contribution in structure learning, we show that the optimal solution of
maximum likelihood estimation is bounded (to the best of our knowledge, this has not been
shown before). Our analysis shows provable convergence guarantees for finite iterations and
finite number of random samples. Note that while consistency in structure recovery has been
established (e.g. Wainwright et al. [2006]), convergence rates of parameter learning for fixed
structures is up to now unknown. Our analysis can be easily extended to Markov random
fields with higher order cliques as well as parameter learning for fixed structures by using a
`2

2 regularizer instead.
Last but not least, it is important to mention that in the context of learning Markov

random fields, other techniques have been developed. Note that we are not developing a new
technique and our goal is not to prove the superiority of neither of the existing techniques, but
to analyze the convergence properties. That being said, another approach to learn Markov
random fields consist in iteratively performing conditional independence tests between pairs
of variables. Several heuristics have been proposed for the order of independence tests: edge
deletion method and the Markov blanket method in [Pearl, 1988] as well as the grow-shrink
method of [Bromberg et al., 2006]. One additional approach is the algorithm of Roy et al.
[2009] that learns the structure by finding the best neighborhood or Markov blanket for each
node, and that relies in the canonical parametrization of factor graphs [Abbeel et al., 2005].
Finally, a maximum entropy relaxation approach was proposed in [Johnson et al., 2007].

5.2 Our Motivating Problem

In this section, we introduce the problem of learning sparse Ising models and discuss its
properties. Our discussion will motivate a set of bounds and assumptions for a more general
convergence rate analysis.

5.2.1 Problem Setup

An Ising model is a Markov random field on binary variables with pairwise interactions. It
first arose in statistical physics as a model for the energy of a physical system of interacting
atoms [Ising, 1925, Koller and Friedman, 2009]. Formally, the probability mass function
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(PMF) of an Ising model parameterized by θ = (W,b) is defined as:

pθ(x) =
1

Z(W,b)
exTWx+bTx (5.1)

where the domain for the binary variables is x ∈ {−1,+1}N , W ∈ RN×N is symmetric with
zero diagonal (i.e. diag(W) = 0), b ∈ RN and partition function is defined as Z(W,b) =∑

x e
xTWx+bTx. For clarity of the convergence rate analysis, we also define θ ∈ RM where

M = N2.
In the physics literature, W and b are called ferro-magnetic coupling and external mag-

netic field respectively [Ising, 1925]. W defines the topology of the Markov random field, i.e.
the graph G = (V , E) is defined as V = {1, . . . , N} and E = {(n1, n2) | n1 < n2 ∧wn1n2 6= 0}.
It is well known that, for an Ising model with arbitrary topology, computing the partition
function Z is NP-hard [Barahona, 1982]. It is also NP-hard to approximate Z with high
probability and arbitrary precision [Chandrasekaran et al., 2008].

Conditional independence in an Ising model is simply reflected in the zero entries of the
ferro-magnetic coupling matrix W, i.e. two variables n1 and n2 are conditionally independent
if and only if wn1n2 = 0. The number of edges |E| or equivalently the cardinality (number of
non-zero entries) of W is a measure of model complexity, and it can be used as a regularizer
for maximum likelihood estimation. The main disadvantage of using such penalty is that it
leads to a NP-hard problem, regardless of the computational complexity of the log-likelihood.

Next, we formalize the problem of finding a sparse Ising model by regularized maximum
likelihood estimation. We replace the cardinality penalty by the `1-norm regularizer as in
[Wainwright et al., 2006, Banerjee et al., 2008, Höfling and Tibshirani, 2009].

Given a complete dataset with T i.i.d. samples x(1), . . . ,x(T ), and a sparseness parameter
ρ > 0 the `1-regularized maximum likelihood estimation for the Ising model in eq.(5.1)
becomes:

min
W,b
L(W,b) +R(W) (5.2)

where the negative (average) log-likelihood L(W,b) = − 1
T

∑
t log pθ(x

(t)) = logZ(W,b)−
〈Σ̂,W〉 − µ̂Tb, the empirical second-order moment Σ̂ = 1

T

∑
t x

(t)x(t)T − I, the empirical
first-order moment µ̂ = 1

T

∑
t x

(t) and the regularizer R(W) = ρ‖W‖1.
The objective function in eq.(5.2) is convex, given the convexity of the log-partition

function [Koller and Friedman, 2009], linearity of the scalar products and convexity of the
non-smooth `1-norm regularizer. As discussed before, computing the partition function Z is
NP-hard, and so is computing the objective function in eq.(5.2).

5.2.2 Bounds

In what follows, we show boundedness of the optimal solution and the gradients of the max-
imum likelihood problem. Both are important ingredients for showing convergence and are
largely used assumptions in optimization. In this chapter, we follow the original formulation
of the problem given in [Wainwright et al., 2006, Banerjee et al., 2008, Höfling and Tibshi-
rani, 2009], which does not regularize b. We found interesting to show that this problem has
bounds for ‖b∗‖1 unlike other stochastic optimization problems, e.g. SVMs [Shalev-Shwartz
et al., 2007].

54



First, we make some observations that will help us derive our bounds. The empirical
second-order moment Σ̂ and first-order moment µ̂ in eq.(5.2) are computed from binary

variables in {−1,+1}, therefore ‖Σ̂‖∞ ≤ 1 and ‖µ̂‖∞ ≤ 1.

Assumption 5.1. It is reasonable to assume that the empirical first-order moment of every
variable is not equal to −1 (or +1), since this would be equivalent to observe a constant
value −1 (or +1) for such variables in every sample in the dataset, i.e. (∃n) |µ̂n| = 1 ⇔
(∀t) x(t)

n = −1 ∨ (∀t) x(t)
n = 1. Therefore, we assume ‖µ̂‖∞ < 1⇔ (∀n)− 1 < µ̂n < +1.

Given those observations, we state our bounds in the following theorem. For clarity of
the convergence rate analysis, we also define the bound D of the optimal solution.

Theorem 5.2. The optimal solution θ∗ = (W∗,b∗) of the maximum likelihood problem in
eq.(5.2) is bounded as follows:

i. ‖W∗‖1 ≤ N log 2
ρ

ii. ‖b∗‖1 ≤ N log 2(ρ+1+‖Σ̂‖∞)
ρ(1−‖µ̂‖∞)

iii. ‖θ∗‖2 ≤ D

(5.3)

where D2 =
(
N log 2
ρ

)2
(

1 +
(
ρ+1+‖Σ̂‖∞

1−‖µ̂‖∞

)2
)

.

Proof. For proving Claim i, note that for Ising models (and in general for any discrete prob-
ability distribution) the negative log-likelihood in eq.(5.2) is non-negative, i.e. (∀x) pθ(x) ∈
[0; 1] ⇒ (∀x) log pθ(x) ≤ 0 ⇒ L(W,b) = − 1

T

∑
t log pθ(x

(t)) ≥ 0. Given that (W∗,b∗) is
the optimal solution, N log 2 = L(0,0)+R(0) ≥ L(W∗,b∗)+R(W∗) ≥ R(W∗) = ρ‖W∗‖1,
and we prove our claim.

For proving Claim ii, note that the regularizer R(W) is non-negative, therefore N log 2 =

L(0,0)+R(0) ≥ L(W∗,b∗)+R(W∗) ≥ L(W∗,b∗) ≥ log(
∑

x e
−‖W∗‖1+b∗Tx)−‖Σ̂‖∞‖W∗‖1−

µ̂Tb∗ = −‖W∗‖1 + log(
∑

x e
b∗Tx) − ‖Σ̂‖∞‖W∗‖1 − µ̂Tb∗ =

∑
n log(eb

∗
n + e−b

∗
n) − µ̂Tb∗ −

(1 + ‖Σ̂‖∞)‖W∗‖1 ≥ ‖b∗‖1 − µ̂Tb∗ − (1 + ‖Σ̂‖∞)‖W∗‖1 ≥ (1 − ‖µ̂‖∞)‖b∗‖1 − (1 +

‖Σ̂‖∞)‖W∗‖1. Recall that by Assumption 5.1, ‖µ̂‖∞ < 1. Therefore, ‖b∗‖1 ≤ (N log 2 +

(1 + ‖Σ̂‖∞)‖W∗‖1)/(1− ‖µ̂‖∞) and by using Claim i we prove our claim.
Claim iii follows from Claims i and ii and the fact that ‖θ∗‖2

2 = ‖W∗‖2
F + ‖b∗‖2

2 ≤
‖W∗‖2

1 + ‖b∗‖2
1.

If we choose to add the regularizer ρ‖b‖1 in eq.(5.2), it is easy to conclude that ‖W∗‖1 +
‖b∗‖1 ≤ N log 2

ρ
as in Claim i of Theorem 5.2.

The gradient of the objective function of the maximum likelihood problem in eq.(5.2) is
defined as:

i. ∂ logZ/∂W = EP [xxT]
ii. ∂ logZ/∂b = EP [x]

iii. ∂L/∂W = ∂ logZ/∂W − Σ̂
iv. ∂L/∂b = ∂ logZ/∂b− µ̂

(5.4)

where P is the probability distribution with PMF pθ(x). The expression in eq.(5.4) uses the
fact that EP [xxT] =

∑
x xxTpθ(x) and EP [x] =

∑
x xpθ(x).
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It is well known that computing the gradients ∂ logZ/∂W and ∂ logZ/∂b is NP-hard.
The complexity results in [Chandrasekaran et al., 2008] imply that approximating those
gradients with high probability and arbitrary precision is also NP-hard.

Next, we state some properties of the gradient of the exact log-likelihood. For clarity of
the convergence rate analysis, we also define the Lipschitz constant G.

Lemma 5.3. The objective function of the maximum likelihood problem in eq.(5.2) has the
following Lipschitz continuity properties:

i. ‖∂ logZ/∂W‖∞ , ‖∂ logZ/∂b‖∞ ≤ 1

ii. ‖∂L/∂W‖∞ ≤ 1 + ‖Σ̂‖∞
iii. ‖∂L/∂b‖∞ ≤ 1 + ‖µ̂‖∞
iv. ‖∂R/∂W‖∞ ≤ ρ
v. ‖∂L/∂θ‖2 , ‖∂R/∂θ‖2 ≤ G

(5.5)

where G2 = max(N2(1 + ‖Σ̂‖∞)2 +N(1 + ‖µ̂‖∞)2, N2ρ2).

Proof. For proving Claim i, note that the terms ∂ logZ/∂W and ∂ logZ/∂b in eq.(5.4) are
the second and first-order moment of binary variables in {−1,+1}.

Proving Claims ii and iii is straightforward from applying the above claims in eq.(5.4).
For proving Claim iv, recall that the subgradient ∂R/∂W = {G | ‖G‖∞ ≤ ρ∧〈G,W〉 =

‖W‖1}. Therefore, (∀G ∈ ∂R/∂W) ‖G‖∞ ≤ ρ.
Claim v follows from Claims ii to iv and the fact that ‖∂L/∂θ‖2

2 = ‖∂L/∂W‖2
F +

‖∂L/∂b‖2
2. Furthermore, for the first term ‖∂L/∂W‖F ≤ N‖∂L/∂W‖∞ ≤ N(1 + ‖Σ̂‖∞),

and for the second term ‖∂L/∂b‖2 ≤
√
N‖∂L/∂b‖∞ ≤

√
N(1+‖µ̂‖∞). Similarly, ‖∂R/∂θ‖2 =

‖∂R/∂W‖F ≤ N‖∂R/∂W‖∞ ≤ Nρ.

5.2.3 Approximating the Gradient of the Log-Partition Function

Suppose one wants to evaluate the expression EP [xxT] in eq.(5.4) which is the gradient of
the log-partition function. Let assume we know the distribution pθ(x) up to a constant
factor, i.e. p′θ(x) = exTWx+bTx. Importance sampling draws S samples x(1), . . . ,x(S) from a
trial distribution with PMF q(x), calculates the importance weights α(s) = p′θ(x

(s))/q(x(s))

and produces the estimate (
∑

s α
(s)x(s)x(s)T

)/
∑

s α
(s). On the other hand, MCMC generates

S samples x(1), . . . ,x(S) from the distribution pθ(x) based on constructing a Markov chain

whose stationary distribution is pθ(x). Thus, the estimate becomes 1
S

∑
s x(s)x(s)T

.
In what follows, we characterize a family of samplers that includes importance sampling

and MCMC as shown in [Peskun, 1973, Liu, 2001].

Definition 5.4. A (B, V, S,D)-sampler takes S random samples from a distribution Q and
produces biased estimates of the gradients of the log-partition function ∂ logZ/∂θ + ξ, with
error ξ that has bias and variance:

i. EQ[‖ξ‖2] ≤ B
S

+O( 1
S2 )

ii. VarQ[‖ξ‖2] ≤ V
S

+O( 1
S2 )

(5.6)

for B ≥ 0, V ≥ 0 and (∀θ) ‖θ‖2 ≤ D.
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Note that a (B, V, S,D)-sampler is asymptotically unbiased with asymptotically vanish-
ing variance, i.e. S → +∞ ⇒ B

S
→ 0 ∧ V

S
→ 0. Unfortunately, analytical approximations

of the constants B and V are difficult to obtain even for specific classes, e.g. Ising models.
The theoretical analysis implies that such constants B and V exist [Peskun, 1973, Liu, 2001]
for importance sampling and MCMC. We argue that this apparent disadvantage does not
diminish the relevance of our analysis, since we can reasonably expect that more refined
samplers lead to lower B and V .

Note that Definition 5.4 does not contradict the complexity results in [Chandrasekaran
et al., 2008] that show that it is likely impossible to approximate Z (and therefore its gradi-
ent) with probability greater than 1− δ and arbitrary precision ε in time polynomial in log 1

δ

and 1
ε
. Definition 5.4 assumes biasedness and a polynomial decay instead of an exponential

decay (which is a more stringent condition) and cannot be used to derive two-sided high
probability bounds that are both O(log 1

δ
) and O( 1

S
). Therefore, Definition 5.4 cannot be

used to obtain polynomial-time algorithms as the ones considered in [Chandrasekaran et al.,
2008].

Assumption 5.5. It is reasonable to assume that the estimates of the gradient of the log-
partition function are inside [−1; +1] since they are approximations of the second and first-
order moment of binary variables in {−1,+1}. Furthermore, it is straightforward to enforce
Lipschitz continuity (condition i of Lemma 5.3) for any sampler (e.g. importance sampling,
MCMC or any conceivable method) by limiting its output to be inside [−1; +1]. More for-
mally, we have:

i. ‖∂ logZ/∂θ + ξ‖∞ ≤ 1
ii. ‖∂L/∂θ + ξ‖2 ≤ G

(5.7)

5.3 Biased Stochastic Optimization

In this section, we analyze the convergence rates of forward-backward splitting. Our results
apply to any problem that fulfills the following largely used assumptions in optimization:

• the objective function is composed by a smooth function L(θ) and non-smooth regu-
larizer R(θ)
• the optimal solution is bounded, i.e. ‖θ∗‖2 ≤ D
• each visited point is at a bounded distance from the optimal solution, i.e. (∀k) ‖θ(k)−
θ∗‖2 ≤ D
• both L and R are Lipschitz continuous, i.e. ‖∂L/∂θ‖2 , ‖∂R/∂θ‖2 ≤ G
• the non-smooth regularizer vanishes at zero, i.e. R(0) = 0

We additionally require that the errors do not change the Lipschitz continuity properties,
i.e. ‖∂L/∂θ + ξ‖2 ≤ G (as discussed in Assumption 5.5).

5.3.1 Algorithm

We analyze forward-backward splitting [Duchi and Singer, 2009c] for deterministic as well as
biased stochastic errors, for non-increasing step sizes of the form ηk ∈ O( 1

kr
) for r > 0. This

method is equivalent to basic proximal gradient [Schmidt et al., 2011] for r = 0 (constant
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step size). We point out that FBS has O( 1√
K

) convergence for r = 1
2
, while basic PG has

O( 1
K

) convergence, and accelerated PG has O( 1
K2 ) convergence. Thus, PG methods have

faster convergence but they are more sensitive to errors.
FBS performs gradient descent steps for the smooth part of the objective function, and

(closed form) projection steps for the non-smooth part. Here we assume that at each iteration
k, we approximate the gradient with some (deterministic or biased stochastic) error ξ(k). For
our objective function in eq.(5.2), one iteration of the algorithm is equivalent to:

i. θ(k+ 1
2

) = θ(k) − ηk(g(k)
L + ξ(k))

ii. θ(k+1) = arg minθ(
1
2
‖θ − θ(k+ 1

2
)‖2

2 + ηk+1R(θ))
(5.8)

where g
(k)
L = ∂L

∂θ
(θ(k)), and ξ(k) is the error in the gradient approximation. Step ii is a

projection step for the non-smooth regularizer R(θ).
For the regularizer in our motivating problem R(W) = ρ‖W‖1, Step ii of eq.(5.8) de-

composes into N2 independent lasso problems [Tibshirani, 1996]. For clarity of exposi-

tion, we drop the subindices in the following equation. Let w ≡ wn1n2 , w
(k+ 1

2
) ≡ w

(k+ 1
2

)
n1n2 ,

w(k+1) ≡ w
(k+1)
n1n2 , λ ≡ ηk+1ρ. The lasso problem for Step ii of eq.(5.8) is:

w(k+1) = arg minw∈R

(
1

2
(w − w(k+ 1

2
))2 + λ|w|

)
(5.9)

for some λ > 0. The optimal solution of this problem is given by:

w(k+1) = lassoλ(w
(k+ 1

2
))

= sign(w(k+ 1
2

)) max(0, |w(k+ 1
2

)| − λ)
(5.10)

Note that eq.(5.10) can lead to sparse solutions, since whenever the absolute value of

w(k+ 1
2

) is smaller than λ, the optimal solution w(k+1) is set to zero. Algorithm 5.1 shows the
stochastic optimization method in detail.

Algorithm 5.1 Stochastic FOBOS for learning Ising models.
Input: empirical second-order moment Σ̂, first-order moment µ̂, sparseness parameter ρ > 0
Initialize W(1) = 0, b(1) = 0
for each iteration 1, . . . ,K do

Use a (B, V, S,D)-sampler to produce biased estimates of the gradients ∂ logZ/∂W + Ξ(k) and
∂ logZ/∂b + ξ(k) with error terms Ξ(k) and ξ(k)

Update W(k+ 1
2 ) ←W(k) − ηk(∂ logZ/∂W + Ξ(k) − Σ̂)

Update W(k+1) ← lassoηk+1ρ(W
(k+ 1

2 )), where lasso is equivalent to apply eq.(5.10) entrywise
Update b(k+1) ← b(k) − ηk(∂ logZ/∂b + ξ(k) − µ̂)

end for
Output: the weighted average of all visited points

∑
k ηkW

(k)∑
k ηk

,
∑
k ηkb

(k)∑
k ηk

, the average of all visited points∑
k W(k)

K ,
∑
k b(k)

K , or the last visited point W(K), b(K)

The following technical lemma is a building block for our analysis of convergence rates.
The technical lemma generalizes Lemma 1 of [Duchi and Singer, 2009c], here we assume a
sequence of deterministic errors.
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Lemma 5.6. For a sequence of deterministic errors ξ(1), . . . , ξ(K) and non-increasing step
sizes ηk, the objective function evaluated at each iteration is bounded as follows:

ηk(L(θ(k))− L(θ∗)) + ηk+1(R(θ(k+1))−R(θ∗))

≤ 1
2

(
‖θ(k) − θ∗‖2

2 − ‖θ(k+1) − θ∗‖2
2

+4Dηk‖ξ(k)‖2 + 8η2
kG

2

)
(5.11)

Proof. Let L(k) ≡ L(θ(k)), R(k) ≡ R(θ(k)), L∗ ≡ L(θ∗), R∗ ≡ R(θ∗) and a(k) ≡ ‖θ(k)−θ∗‖2
2.

As noted in [Duchi and Singer, 2009c], eq.(5.8) can be written as a single step:

θ(k+1) = θ(k) − ηk(g(k)
L + ξ(k))− ηk+1g

(k+1)
R (5.12)

where g
(k+1)
R ∈ ∂R

∂θ
(θ(k+1)). This follows from the fact that θ(k+1) minimizes Step ii of

eq.(5.8), if and only if 0 belongs to the subdifferential set of the non-smooth objective
function evaluated at θ(k+1).

By eq.(5.12), a(k+1) = ‖θ(k) − ηk(g
(k)
L + ξ(k)) − ηk+1g

(k+1)
R − θ∗‖2

2 = a(k) + 2ηkF1 +

2ηk+1F2 + 2ηk+1F3 + 2ηkF4 + F5 for F1 ≡ −〈g(k)
L ,θ(k) − θ∗〉, F2 ≡ −〈g(k+1)

R ,θ(k+1) − θ∗〉,
F3 ≡ 〈g(k+1)

R ,θ(k+1) − θ(k)〉, F4 ≡ −〈ξ(k),θ(k) − θ∗〉 and F5 ≡ ‖ηk(g(k)
L + ξ(k)) + ηk+1g

(k+1)
R ‖2

2.
By the definition of subgradients of convex functions, F1 ≤ L∗−L(k) and F2 ≤ R∗−R(k+1).
By eq.(5.12), the Cauchy-Schwarz inequality and Assumption 5.5, F3 = 〈g(k+1)

R ,−ηk(g(k)
L +

ξ(k))− ηk+1g
(k+1)
R 〉 ≤ ‖g(k+1)

R ‖2‖ηk(g(k)
L + ξ(k)) + ηk+1g

(k+1)
R ‖2 ≤ ‖g(k+1)

R ‖2(ηk‖g(k)
L + ξ(k)‖2 +

ηk+1‖g(k+1)
R ‖2) ≤ (ηk + ηk+1)G2.

By the Cauchy-Schwarz inequality, F4 ≤ ‖ξ(k)‖2‖θ(k) − θ∗‖2 ≤ D‖ξ(k)‖2, since by as-
sumption (∀k) a(k) ≤ D2.

By the Cauchy-Schwarz inequality and Assumption 5.5, F5 ≤ η2
k‖(g(k)

L +ξ(k))‖2
2+2ηkηk+1〈g(k)

L +

ξ(k),g
(k+1)
R 〉+η2

k+1‖g(k+1)
R ‖2

2 ≤ η2
k‖(g(k)

L +ξ(k))‖2
2+2ηkηk+1‖g(k)

L +ξ(k)‖2‖g(k+1)
R ‖2+η2

k+1‖g(k+1)
R ‖2

2 ≤
(η2
k + 2ηkηk+1 + η2

k+1)G2.
Putting everything together, a(k+1) ≤ a(k) + 2ηk(L∗ − L(k)) + 2ηk+1(R∗ − R(k+1)) +

2ηkD‖ξ(k)‖2+(η2
k+4ηkηk+1+3η2

k+1)G2. Finally, since ηk+1 ≤ ηk ⇒ (η2
k+4ηkηk+1+3η2

k+1)G2 ≤
8η2

kG
2.

5.3.2 Convergence Rates for Deterministic Errors

In what follows, we analyze three different flavors of forward-backward splitting: robust
which outputs the weighted average of all visited points by using the step sizes as in robust
stochastic approximation [Nemirovski et al., 2009], basic which outputs the average of all
visited points as in [Duchi and Singer, 2009c], or random which outputs a point chosen
uniformly at random from the visited points. Here we assume that at each iteration k, we
approximate the gradient with some deterministic error ξ(k). Our results in this subsection
will allow us to draw some conclusions regarding not only FBS but also proximal gradient.

Note that in our case, proving convergence of the best visited point as in the subgradient
method [Shor, 1985] or in the proximal-gradient method [Schmidt et al., 2011] (i.e. θ(k∗),
k∗ = arg mink(L(θ(k)) +R(θ(k)))) is not useful, since computing the partition function is
NP-hard. Despite this fact, such proof is elementary since the minimum value of the objective
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function from all visited points is less than or equal to the average (or weighted average) of
all visited points. Therefore, the bounds in Theorems 5.7 and 5.8 are also bounds for the
convergence of the best visited point.

In order to make our bounds more general for different choices of step size ηk ∈ O( 1
kr

) for

some r > 0, we use generalized harmonic numbers Hr,K =
∑K

k=1
1
kr

and therefore H0,K = K,

H1,K ≈ logK, Hr,K ≈ K1−r

1−r for 0 < r < 1 and Hr,K ≈ 1−K1−r

r−1
for r > 1.

Additionally, we define a weighted error term that will be used for our analysis of deter-
ministic as well as biased stochastic errors. Given a sequence of errors ξ(1), . . . , ξ(K) and a
set of arbitrary weights γk such that

∑
k γk = 1, the error term is defined as:

Aγ,ξ ≡
∑

k γk‖ξ(k)‖2 (5.13)

First, we show the convergence rate of robust FBS.

Theorem 5.7. For a sequence of deterministic errors ξ(1), . . . , ξ(K), step size ηk = β
Gkr

for

r > 0, initial point θ(1) = 0, the objective function evaluated at the weighted average of all
visited points converges to the optimal solution with rate:

L(θ) +R(θ)− L(θ∗)−R(θ∗) ≤ πη(K)

≤ D2G
2βHr,K

+ 2DAγ,ξ +
4βGH2r,K

Hr,K

(5.14)

where θ =
∑
k ηkθ

(k)∑
k ηk

, the weighted average regret πη(K) =
∑
k ηk(L(θ(k))+R(θ(k)))∑

k ηk
−L(θ∗)−R(θ∗),

the error term Aγ,ξ is defined as in eq.(5.13), and the error weights γk = 1/kr

Hr,K
such that∑

k γk = 1.

Proof. Let L(k) ≡ L(θ(k)), R(k) ≡ R(θ(k)), L∗ ≡ L(θ∗), R∗ ≡ R(θ∗) and a(k) ≡ ‖θ(k)−θ∗‖2
2.

By Jensen’s inequality L(θ)+R(θ) ≤∑k ηk(L(k) +R(k))/
∑

k ηk. Therefore L(θ)−L∗+
R(θ)−R∗ ≤ πη(K) ≤ (η1R(1) +

∑
k (ηk(L(k) − L∗) + ηk+1(R(k+1) −R∗)))/∑k ηk ≡ F , and

since θ(1) = 0⇒ R(1) = 0.
By Lemma 5.6 we know that ηk(L(k) − L∗) + ηk+1(R(k+1) − R∗) ≤ 1

2
(a(k) − a(k+1) +

4Dηk‖ξ(k)‖2+8η2
kG

2)⇒ (
∑

k ηk)F ≤ 1
2

∑
k (a(k) − a(k+1))+2D(

∑
k ηk‖ξ(k)‖2)+4(

∑
k η

2
k)G

2 ≤
a(1)

2
+ 2D(

∑
k ηk‖ξ(k)‖2) + 4(

∑
k η

2
k)G

2.

Since by assumption (∀k) a(k) ≤ D2 ⇒ (
∑

k ηk)F ≤ D2

2
+2D(

∑
k ηk‖ξ(k)‖2)+4(

∑
k η

2
k)G

2.

Finally, by replacing ηk = β
Gkr

, we prove our claim.

Second, we show the convergence rate of basic FBS.

Theorem 5.8. For a sequence of deterministic errors ξ(1), . . . , ξ(K), step size ηk = β
Gkr

for

r > 0, initial point θ(1) = 0, the objective function evaluated at the average of all visited
points converges to the optimal solution with rate:

L(θ) +R(θ)− L(θ∗)−R(θ∗) ≤ π(K)

≤ D2G(K+1)r

2βK
+ 21+rDAγ,ξ +

22+rβGHr,K
K

(5.15)

where θ =
∑
k θ

(k)

K
, the average regret π(K) =

∑
k (L(θ(k))+R(θ(k)))

K
− L(θ∗) −R(θ∗), the error

term Aγ,ξ is defined as in eq.(5.13), and the error weights γk = 1
K

such that
∑

k γk = 1.
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Proof. Let L(k) ≡ L(θ(k)), R(k) ≡ R(θ(k)), L∗ ≡ L(θ∗), R∗ ≡ R(θ∗) and a(k) ≡ ‖θ(k)−θ∗‖2
2.

By Jensen’s inequality L(θ)+R(θ) ≤∑k (L(k) +R(k))/K. Therefore L(θ)−L∗+R(θ)−
R∗ ≤ π(K) ≤ (R(1) +

∑
k (L(k) − L∗ +R(k+1) −R∗))/K ≡ F , and since θ(1) = 0⇒ R(1) =

0.
For using Lemma 5.6, note that since ηk+1 ≤ ηk ⇒ ηk+1(L(k) − L∗ + R(k+1) − R∗) ≤

ηk(L(k) − L∗) + ηk+1(R(k+1) −R∗) ≤ 1
2
(a(k) − a(k+1) + 4Dηk‖ξ(k)‖2 + 8η2

kG
2). Furthermore,

since ηk
ηk+1

≤ 2r ⇒ KF ≤ 1
2

∑
k
a(k)−a(k+1)

ηk+1
+ 21+rD(

∑
k ‖ξ(k)‖2) + 22+r(

∑
k ηk)G

2 ≤ a(1)

2η2
+

1
2

∑K
k=2

(
a(k)

ηk+1
− a(k)

ηk

)
+ 21+rD(

∑
k ‖ξ(k)‖2) + 22+r(

∑
k ηk)G

2.

Since by assumption (∀k) a(k) ≤ D2 we have KF ≤ D2

2

(
1
η2

+
∑K

k=2

(
1

ηk+1
− 1

ηk

))
+

21+rD(
∑

k ‖ξ(k)‖2) + 22+r(
∑

k ηk)G
2 ≤ D2

2ηK+1
+ 21+rD(

∑
k ‖ξ(k)‖2) + 22+r(

∑
k ηk)G

2. Finally,

by replacing ηk = β
Gkr

, we prove our claim.

Finally, we show the convergence rate of random FBS.

Theorem 5.9. For a sequence of deterministic errors ξ(1), . . . , ξ(K), step size ηk = β
Gkr

for

r > 0, initial point θ(1) = 0 and some confidence parameter 0 < ε < 1, the objective function
evaluated at a point k chosen uniformly at random from the visited points converges, with
probability at least 1− ε, to the optimal solution with rate:

L(θ(k)) +R(θ(k))− L(θ∗)−R(θ∗)

≤ 1
ε

(
D2G(K+1)r

2βK
+ 21+rDAγ,ξ +

22+rβGHr,K
K

) (5.16)

where the error term Aγ,ξ is defined as in eq.(5.13), and the error weights γk = 1
K

such that∑
k γk = 1.

Proof. Let L(k) ≡ L(θ(k)), R(k) ≡ R(θ(k)), L∗ ≡ L(θ∗), R∗ ≡ R(θ∗) and U the uniform
distribution for k ∈ {1, . . . , K}.

By Markov’s inequality, for a(k) = L(k)+R(k)−L∗−R∗ ≥ 0, we have PU [a(k) ≥ c] ≤ EU [a(k)]
c

.
Note that EU [a(k)] = 1

K

∑
k (L(k) +R(k)) − L∗ − R∗ = π(K). By Theorem 5.8, we know

that π(K) ≤ D2G(K+1)r

2βK
+ 21+rDAγ,ξ +

22+rβGHr,K
K

≡ F , therefore PU [a(k) ≥ c] ≤ F
c
. For

c = F
ε
⇒ PU [a(k) ≥ F

ε
] ≤ ε.

The convergence rates in Theorems 5.7, 5.8 and 5.9 lead to an error term Aγ,ξ that is
linear, while the error term is quadratic in the analysis of proximal gradient [Schmidt et al.,
2011]. In basic PG, the error term can be written as:

1
K

(
∑

k ‖ξ(k)‖2)2 = K(Aγ,ξ)
2 (5.17)

where the error weights γk = 1
K

such that
∑

k γk = 1. In accelerated PG, the error term can
be written as:

4
(K+1)2

(
∑

k k‖ξ(k)‖2)2 = K2(Aγ,ξ)
2 (5.18)

where the error weights γk = k/
(
K
2

)
so that

∑
k γk = 1.

Note that both PG methods contain terms K and K2, which are not in our analysis.
As noted in [Schmidt et al., 2011], errors have a greater effect on the accelerated method
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Table 5.1: Order of errors ‖ξ(k)‖2 required to obtain convergence of the error term for the deter-
ministic case: basic (PB) and accelerated (PA) proximal gradient, basic (FB) and robust (FR)
forward-backward splitting.

Method Convergence
for K→+∞ O( 1√

K
) O( 1

K ) O( 1
K2 )

PB O( 1
k1/2+ε ) O( 1

k3/4+ε ) O( 1
k1+ε ) -

PA O( 1
k1+ε ) O( 1

k5/4+ε ) O( 1
k3/2+ε ) O( 1

k2+ε )
FB (r= 1

2 ) O( 1
log k ) O( 1

k1/2+ε ) O( 1
k1+ε ) -

FR (r= 1
2 ) O( 1

log k ) O( 1
k1/2+ε ) - -

than on the basic method. This observation suggests that, unlike in the error-free case,
accelerated PG is not necessarily better than the basic method due to a higher sensitivity
to errors [Devolder et al., 2011].

Intuitively speaking, basic PG is similar to basic FBS in the sense that errors from all
iterations have the same effect on the convergence rate, i.e. γk is constant. In robust FBS,
errors in the last iterations have a lower effect on the convergence rate than errors in the
beginning, i.e. γk is decreasing. In accelerated PG, errors in the last iterations have a bigger
effect on the convergence rate than errors in the beginning, i.e. γk is increasing.

The analysis of Schmidt et al. [2011] for deterministic errors implies that in order to have
convergence, the errors must decrease at a rate ‖ξ(k)‖2 ∈ O( 1

k1/2+ε ) for some ε > 0 in the case
of basic PG, and O( 1

k1+ε ) for accelerated PG. In contrast, our analysis of FBS show that we
only need logarithmically decreasing errors O( 1

log k
) in order to have convergence. Regarding

O( 1√
K

) convergence of the error term Aγ,ξ, basic and robust FBS requires errors O( 1
k1/2+ε )

(the minimum required for convergence in basic PG). Table 5.1 summarizes the requirements
for different convergence rates of the error term Aγ,ξ of FBS as well as the error terms of
basic PG in eq.(5.17) and accelerated PG in eq.(5.18).

For an informal (and incomplete) analysis of the results in [Schmidt et al., 2011] for biased
stochastic optimization, consider each error bounded by its bias and variance ‖ξ(k)‖2 ≤
B/Sk + c

√
V/Sk for some c > 0 and an increasing number of random samples Sk that allows

to obtain decreasing errors. Without noting the possible need of “uniform convergence” of
the bound for all K iterations (making c a function of K), the number of random samples
must increase (at least) at a rate that is quadratic of the rate of the errors. For instance,
in order to have O( 1

K
) convergence, basic PG requires errors to be O( 1

k1+ε ) and therefore
it would require (at least) an increasing number of random samples Sk ∈ O(k2+ε) for some
ε > 0. Accelerated PG would require (at least) Sk ∈ O(k4+ε) in order to obtain O( 1

K2 )
convergence. If we include the fact that c is a function of K, then the required number
of random samples would be “worse than quadratic” of the required rate of the errors.
Fortunately, a formal analysis in the next subsection shows that this is not the case for all
methods except accelerated PG.

62



5.3.3 Bounding the Error Term for Biased Stochastic Optimiza-
tion

In what follows, we focus in the analysis of stochastic errors in order to see if better conver-
gence rates can be obtained than the ones informally outlined in the previous subsection. A
formal analysis of the error terms show that forward-backward splitting for biased stochastic
errors requires only a logarithmically increasing number of random samples in order to con-
verge, i.e. Sk ∈ O(log k). More interestingly, we found that the required number of random
samples is the same for the deterministic and the biased stochastic setting for FBS and basic
PG. On the negative side, we found that accelerated PG is not guaranteed to converge in
the biased stochastic setting.

Next, we present our high probability bound for the error term for biased stochastic opti-
mization. One way to bound the error term Aγ,ξ would be to rely on “uniform convergence”

arguments, i.e. to bound the error of each iteration ‖ξ(k)‖2 and then use the well-known
union bound. We chose to bound the error term itself, by using the fact that errors become
independent (but not identically distributed) conditioned to the parameters θ(1), . . . ,θ(K).
We also allow for a different number of random samples Sk for each iteration k.

Theorem 5.10. Given K (B, V, Sk, D)-samplers each producing estimates with an error
ξ(k), and given a set of arbitrary weights γk such that

∑
k γk = 1. For some confidence

parameter 0 < δ < 1, with probability at least 1− δ, the error term is bounded as follows:

Aγ,ξ ≤ λ1 + 2
√
M

3K
log 1

δ
+
√

2λ2 log 1
δ

+ 4M
9K2 log2 1

δ
(5.19)

where the bias term λ1 = min(2
√
M,B

∑
k
γk
Sk

) and the variance term λ2 = min(4M,V
∑

k

γ2
k

Sk
).

Proof. Let Qk be the distribution of the error for the k-th sampler, the joint distribution
Q ≡ {Q1, . . . ,QK}, T be the joint distribution of Θ ≡ {θ(1), . . . ,θ(K)}, the first-order
moment φk ≡ EQ[‖ξ(k)‖2] and the second-order moment ν2

k ≡ VarQ[‖ξ(k)‖2].
By Lemma 5.3 we know that ‖∂ logZ/∂θ‖∞ ≤ 1. By Assumption 5.5, for any sampler

we have ‖∂ logZ/∂θ + ξ(k)‖∞ ≤ 1 and therefore ‖ξ(k)‖∞ ≤ 2 in the worst case. Therefore
‖ξ(k)‖2 ≤

√
M‖ξ(k)‖∞ ≤ 2

√
M .

Given that the error is bounded, we have EQ[‖ξ(k)‖2] ≤ 2
√
M . By using the bounds in

Definition 5.4, the bias is at most φk ≤ min(2
√
M, B

Sk
).

Similarly, we have VarQ[‖ξ(k)‖2] = EQ[‖ξ(k)‖2
2] − EQ[‖ξ(k)‖2]2 ≤ EQ[‖ξ(k)‖2

2] ≤ 4M . By
using the bounds in Definition 5.4, the variance is at most ν2

k ≤ min(4M, V
Sk

).

Consider the variable zk = Kγk‖ξ(k)‖2. Note that the mean ẑ = 1
K

∑
k zk =

∑
k γk‖ξ(k)‖2 =

Aγ,ξ is the expression we want to upper-bound. The expected value φ = EQ[ẑ] =
∑

k γkφk ≤
min(2

√
M,B

∑
k
γk
Sk

) ≡ λ1. The average variance σ2 = 1
K

∑
k VarQ[zk] = K

∑
k γ

2
kν

2
k ≤

K min(4M
∑

k γ
2
k, V

∑
k

γ2
k

Sk
) ≤ K min(4M,V

∑
k

γ2
k

Sk
) ≡ Kλ2.

Our goal is to find an upper bound for F1 ≡ PQ[ẑ ≥ λ1 + ε]. By the definition of
marginal distribution F1 =

∫
Θ

PQ[ẑ ≥ λ1 + ε | Θ]pT (Θ) ≤
∫

Θ
PQ[ẑ ≥ φ+ ε | Θ]pT (Θ) ≡ F2.

By using the Bernstein inequality, F2 ≤
∫

Θ
e
− Kε2

2σ2+4
√
Mε/3pT (Θ) ≤

∫
Θ
e
− Kε2

2Kλ2+4
√
Mε/3pT (Θ) =
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Table 5.2: Random samples Sk required to obtain convergence of the error term for the biased
stochastic case: basic (PB) and accelerated (PA) proximal gradient, basic (FB) and robust (FR)
forward-backward splitting.

Method Convergence
for K→+∞ O( 1√

K
) O( 1

K ) O( 1
K2 )

PB O(k1/2+ε) O(k3/4+ε) O(k1+ε) -
PA - - - -
FB (r= 1

2 ) O(log k) O(k1/2+ε) O(k1+ε) -
FR (r= 1

2 ) O(log k) O(k1/2+ε) - -

e
− Kε2

2Kλ2+4
√
Mε/3

∫
Θ
pT (Θ) = e

− Kε2

2Kλ2+4
√
Mε/3 = δ. By solving for ε in the last equality, we prove

our claim.

It is interesting to note what happens for a fixed number of random samples Sk ∈ O(1).
In this case, the bias term λ1 ∈ O(1) and therefore FBS will not converge. For robust FBS,
the variance term λ2 ∈ O(H2r,K/(Hr,K)2) which for instance for r = 1

2
we have λ2 ∈ O( logK

K
).

For basic FBS, the variance term λ2 ∈ O( 1
K

). Therefore, for the constant number of random
samples, the lack of convergence of FBS is explained only by the bias of the sampler and not
its variance.

Table 5.2 summarizes the requirements for different convergence rates of the error term
Aγ,ξ of FBS as well as the error terms of basic PG in eq.(5.17) and accelerated PG in
eq.(5.18). Note that convergence for FBS is guaranteed for a logarithmically increasing
number of random samples Sk ∈ O(log k). Moreover, in order to obtain convergence rates of
O( 1√

K
) and O( 1

K
), the required number of random samples is just the inverse of the required

rate of the errors for the deterministic case, and not “worse than quadratic” as outlined in
our informal analysis of the previous subsection.

One important conclusion from Theorem 5.10 is that the upper bound of the error term
is Ω( 1

K
) independently of the bias term λ1 and the variance term λ2. This implies that the

error term is O( 1
K

) for any setting of error weights γk and number of random samples Sk.
The main implication is that the error term in accelerated PG in eq.(5.18) is constant and
therefore the accelerated method is not guaranteed to converge.

5.4 Experimental Results

We illustrate our theoretical findings with a small synthetic experiment (N = 15 variables)
since we want to report the log-likelihood at each iteration. We performed 10 repetitions.
For each repetition, we generate edges in the ground truth model Wg with a 50% density.
The weight of each edge is generated uniformly at random from [−1; +1]. We set bg = 0.
We finally generate a dataset of 50 samples. We used a “Gibbs sampler” by first finding the
mean field distribution and then performing 5 Gibbs iterations. We used a step size factor
β = 1 and regularization parameter ρ = 1/16. We also include a two-step algorithm, by first
learning the structure by `1-regularized logistic regression [Wainwright et al., 2006] and then
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Figure 5.1: Objective function for different settings of increasing number of random samples. Basic
(PB) and accelerated (PA) are noisier and require more samples than last point (FL), basic (FB) and
robust (FR) forward-backward splitting in order to converge, but they exhibit faster convergence.
Belief propagation (BP) does not converge.

learning the parameters by using FBS with belief propagation for gradient approximation.
We summarize our results in Figure 5.1.

Our experiments suggest that stochastic optimization converges to the maximum likeli-
hood estimate. We also show the Kullback-Leibler divergence to the ground truth, and more
pronounced effects for importance sampling (Please, see Appendix F).

5.5 Concluding Remarks

There are several ways of extending this research. Although we focused on Ising models, the
ideas developed in the current chapter could be applied to Markov random fields with higher
order cliques. Our analysis can be easily extended to parameter learning for fixed structures
by using a `2

2 regularizer instead. Although we show that accelerated proximal gradient is
not guaranteed to converge in our specific biased stochastic setting, necessary conditions for
its convergence needs to be investigated.
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Chapter 6

Lipschitz Parameterization of
Probabilistic Graphical Models

In the previous chapters, we proposed priors and methods for learning structures of prob-
abilistic graphical models. In this chapter, we focus on the theoretical properties of the
parametrization of graphical models.

We show that the log-likelihood of several probabilistic graphical models is Lipschitz
continuous with respect to the `p-norm of the parameters. We discuss several implications of
Lipschitz parametrization. We present an upper bound of the Kullback-Leibler divergence
that allows understanding methods that penalize the `p-norm of differences of parameters
as the minimization of that upper bound. The expected log-likelihood is lower bounded by
the negative `p-norm, which allows understanding the generalization ability of probabilistic
models. The exponential of the negative `p-norm is involved in the lower bound of the Bayes
error rate, which shows that it is reasonable to use parameters as features in algorithms
that rely on metric spaces (e.g. classification, dimensionality reduction, clustering). Our
results do not rely on specific algorithms for learning the structure or parameters. We show
preliminary results for activity recognition and temporal segmentation.

6.1 Introduction

Several methods have been proposed for learning the structure and parameters of graphical
models from data. We mention only a few references that follow a maximum likelihood
approach for Markov random fields [Lee et al., 2006a], Ising models [Höfling and Tibshirani,
2009], Gaussian graphical models [Banerjee et al., 2006, Friedman et al., 2007b] and Bayesian
networks [Guo and Schuurmans, 2006, Schmidt et al., 2007b]. One may ask whether the log-
likelihood is “well behaved”, i.e. small changes in the parameters produce small changes
in the objective function. Another natural question is whether the `p distance between the
learnt parameters and the ground truth provides some guarantee on their generalization
ability, i.e. the expected log-likelihood.

When learning multiple graphical models, several authors have proposed `p-norm reg-
ularizers from the difference of parameters between two models. Zhang and Wang [2010]
proposed a method that detects sparse structural changes of Gaussian graphical models in

66



controlled experiments between two experimental conditions. Kolar et al. [2010] proposed a
total variation regularizer for learning time-varying Ising models with sparse changes along
the time course. Kolar et al. [2009] proposed a similar method for Gaussian graphical mod-
els. One natural question is whether the `p-norm of the difference of parameters between
two graphical models is related to a measure of similarity between probability distributions,
i.e. the Kullback-Leibler divergence.

There are several experimental results where the parameters of graphical models were
used as features for classification and clustering. Classification of image textures from the
precision matrix of Gaussian graphical models as features was proposed in [Chellappa and
Chatterjee, 1985], and from parameters of Ising models in [Chen and Dubes, 1990]. The use
of the covariance matrix as features for detection of humans in still images was proposed
in [Tuzel et al., 2007]. Clustering by using the Gaussian graphical model parameters was
performed in [Kolar et al., 2009], where they show discriminability between different type
of imaginations from electroencephalography (EEG) recordings. One may ask whether the
parameters of graphical models approximately lie in an metric space (`p) that allows for clas-
sification and clustering. In other words, whether the `p-norm of the difference of parameters
between two graphical models is related to a measure of discriminability, i.e. the Bayes error
rate.

In this chapter, we define Lipschitz continuous parametrization of probabilistic models.
Through Lipschitz parametrization, we provide an upper bound of the Kullback-Leibler
divergence. Therefore, methods that penalize the `p-norm of differences of parameters [Kolar
et al., 2009, 2010, Zhang and Wang, 2010] are minimizing an upper bound of the Kullback-
Leibler divergence. We show that Lipschitz parametrization also allows understanding the
generalization ability of probabilistic models by providing a lower bound of the expected
log-likelihood. Finally, we provide a lower bound of the Bayes error rate that depends on the
`p-norm of the model parameters. This allows understanding the use of model parameters
as features for classification and clustering as in [Chellappa and Chatterjee, 1985, Chen and
Dubes, 1990, Tuzel et al., 2007, Kolar et al., 2009].

We believe that Lipschitz parametrization is a natural definition since it implies the
Lipschitz continuity of the sample log-likelihood, which might prove very useful for maxi-
mum likelihood estimation. Furthermore, we show which parametrization is Lipschitz. For
instance, in the case of discrete Bayesian networks, conditional probability tables are repre-
sented in an exponential space that resembles the softmax activation function.

6.2 Preliminaries

In this section, we introduce probabilistic graphical models and Lipschitz continuity.
We assume x ∈ RN for continuous random variables. For discrete random variables,

we assume x ∈ ×n{1, . . . , Xn}, i.e. (∀n) xn ∈ {1, . . . , Xn}. First, we define three general
classes of graphical models: Bayesian networks, Markov random fields and factor graphs. It
is well known that factor graphs subsume Bayesian networks and Markov random fields. Our
choice of analyzing all types of graphical models comes from the fact that we use different
parametrizations for each type.
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Definition 6.1. A Bayesian network [Koller and Friedman, 2009, Lauritzen, 1996] for ran-
dom variables x is a directed acyclic graph with one conditional probability function p(xn|xπn)
for each variable xn given its set of parents πn ⊆ {1, . . . , N}. The joint probability distribu-
tion is given by:

p(x) =
∏
n

p(xn|xπn) (6.1)

where (∀n,xπn)
∫
xn
p(xn|xπn) = 1 and therefore p(x) is valid, i.e.

∫
x
p(x) = 1.

Definition 6.2. A Markov random field [Koller and Friedman, 2009, Lauritzen, 1996] for
random variables x is an undirected graph with one potential function φc for each maximal
clique ϕc ⊆ {1, . . . , N}. The joint probability distribution is given by:

p(x) =
1

Z
∏
c

φc(xϕc) (6.2)

where the partition function Z =
∫

x

∏
c φc(xϕc) ensures that p(x) is valid, i.e.

∫
x
p(x) = 1.

Definition 6.3. A factor graph [Koller and Friedman, 2009] for random variables x is
a bipartite graph where one set of nodes are the random variables and the other set are
the local functions. Each local function φc is connected to the set variables of variables
ϕc ⊆ {1, . . . , N} on which it depends on. The joint probability distribution is given by:

p(x) =
1

Z
∏
c

φc(xϕc) (6.3)

where the partition function Z =
∫

x

∏
c φc(xϕc) ensures that p(x) is valid, i.e.

∫
x
p(x) = 1.

For completeness, we introduce Lipschitz continuity for differentiable functions.

Definition 6.4. Given the parameters Θ ∈ RM1×M2, a differentiable function f(Θ) ∈ R is
called Lipschitz continuous with respect to the `p-norm of Θ, if there exists a constant K ≥ 0
such that:

(∀Θ1,Θ2) |f(Θ1)− f(Θ2)| ≤ K‖Θ1 −Θ2‖p (6.4)

or equivalently:
(∀Θ) ‖∂f/∂Θ‖p ≤ K (6.5)

6.3 Lipschitz Parametrization and Implications

In this section, we define Lipschitz parametrization of probabilistic models and discuss its
implications.

6.3.1 Lipschitz Parametrization

We extend the Lipschitz continuity notion to the parametrization of probability distributions.
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Definition 6.5. A probability distribution P = p(·|Θ) parameterized by Θ ∈ RM1×M2 is
called (`p, K)-Lipschitz continuous if for all x, the log-likelihood f(Θ) = log p(x|Θ) is Lips-
chitz continuous with respect to the `p-norm of Θ with constant K(x).

Remark 6.6. Note that (`p, K)-Lipschitz continuity implies (`p′ , K
′)-Lipschitz continuity,

since all vector and matrix norms are equivalent, i.e. (∀Θ ∈ RM1×M2) α‖Θ‖p ≤ ‖Θ‖p′ ≤
β‖Θ‖p for some α, β > 0 and M1,M2 < +∞.

If we are interested in Euclidean spaces, we would need to prove Lipschitz continuity
with respect to the `2-norm for vectors or the Frobenius norm for matrices. Due to Remark
6.6, we can chose any particular norm for proving Lipschitz continuity.

6.3.2 Kullback-Leibler Divergence

We show that the `p-norm is an upper bound of the Kullback-Leibler divergence. Therefore,
methods that penalize the `p-norm of differences of parameters are minimizing an upper
bound of the Kullback-Leibler divergence.

We chose Kullback-Leibler divergence for being one of the most used, and because it
includes the “log p” term, which relates to our Lipschitz continuity definition. For this
reason, it is straightforward to derive similar bounds for the Jensen-Shannon and Jeffrey’s
divergences. Additionally, there are several lower bounds of the Kullback-Leibler divergence
(e.g. variational distance and Hellinger’s distance). Therefore, our upperbound on Kullback-
Leibler also upperbounds these other divergence measures.

Theorem 6.7. Given two (`p, K)-Lipschitz continuous distributions P1 = p(·|Θ1) and P2 =
p(·|Θ2), the Kullback-Leibler divergence from P1 to P2 is bounded as follows:

KL(P1||P2) ≤ K‖Θ1 −Θ2‖p (6.6)

with constant K = EP1 [K(x)].

Proof. By definition KL(P1||P2) = EP1 [log p(x|Θ1) − log p(x|Θ2)] ≤ EP1 [| log p(x|Θ1) −
log p(x|Θ2)|] ≡ B. Note that by Definitions 6.4 and 6.5, B ≤ EP1 [K(x)‖Θ1 − Θ2‖p] =
EP1 [K(x)]‖Θ1 −Θ2‖p = K‖Θ1 −Θ2‖p.

Remark 6.8. For identifiable distributions P1 = p(·|Θ1) and P2 = p(·|Θ2) (i.e. P1 = P2 ⇒
Θ1 = Θ2), the upper bound in Theorem 6.7 is tight since the Kullback-Leibler divergence is
zero if and only if the parameters are equal. More formally, KL(P1||P2) = 0⇔ P1 = P2 ⇔
Θ1 = Θ2 ⇔ ‖Θ1 −Θ2‖p = 0.

Remark 6.9. The upper bound in Theorem 6.7 also applies for every marginal distribution
by properties of the Kullback-Leibler divergence.

6.3.3 Expected Log-Likelihood

We show the importance of Lipschitz continuity for understanding the generalization ability
of probabilistic models, by showing that the negative `p-norm is a lower bound of the expected
log-likelihood.
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Theorem 6.10. Given two (`p, K)-Lipschitz continuous distributions P = p(·|Θ) and P∗ =
p(·|Θ∗), the expected log-likelihood (also called negative cross entropy) of the learnt distribu-
tion P with respect to the ground truth distribution P∗ is bounded as follows:

−H(P∗)−K‖Θ∗ −Θ‖p ≤ EP∗ [log p(x|Θ)] ≤ 0 (6.7)

with constant K = EP∗ [K(x)].

Proof. Since 0 = −H(P∗) − EP∗ [log p(x|Θ∗)] we have EP∗ [log p(x|Θ)] = EP∗ [log p(x|Θ)] −
H(P∗)−EP∗ [log p(x|Θ∗)] = −H(P∗)−EP∗ [log p(x|Θ∗)−log p(x|Θ)] = −H(P∗)−KL(P∗||P).
The upper bound follows from the non-negativity of the Kullback-Leibler divergence and
entropy.

For proving the lower bound, given that KL(P∗||P) ≤ K‖Θ∗−Θ‖p by Theorem 6.7, we
prove our claim.

In the following Section 6.4, we prove that for probabilistic models over discrete random
variables, (∀x) K(x) = 1 and therefore K = 1. For continuous random variables, given its
generality, the constant K(x) depends on x and therefore K is looser and does not have a
closed-form expression; except for specific cases, e.g. Gaussian graphical models.

6.3.4 Bayes Error Rate

We show the importance of Lipschitz continuity for discriminability, by showing that the
exponential of the negative `p-norm is involved in lower bound of the Bayes error rate. This
allows understanding the use of model parameters as features for classification and clustering.
We also motivate a distance measure similar to the Chernoff bound [Chernoff, 1952], i.e. the
negative log-Bayes error rate.

In the next theorem, given two classes $1 and $2 we assumed priors P ($1) = P ($2) = 1
2

for clarity of presentation. It is straightforward to state a more general result for arbitrary
P ($1) + P ($2) = 1.

Theorem 6.11. Given two classes $1 and $2 with priors P ($1) = P ($2) = 1
2

and their
corresponding (`p, K)-Lipschitz continuous distributions P1 = p(·|Θ1) and P2 = p(·|Θ2), the
Bayes error rate BE(Θ1,Θ2) = 1

2

∫
x

min(p(x|Θ1), p(x|Θ2)) is bounded as follows:

BB(Θ1,Θ2)

4
≤ BE(Θ1,Θ2) (6.8)

log 2 ≤ − logBE(Θ1,Θ2) ≤ log 4 + K̃‖Θ1 −Θ2‖p (6.9)

where BB(Θ1,Θ2) =
∑

c EPc [e−K(x)‖Θ1−Θ2‖p ] and K̃ = minc EPc [K(x)].

Proof. Let pc ≡ p(x|Θc). We can rewrite BE(Θ1,Θ2) = 1
2

∫
x

min
(

p1
p1+p2

, p2
p1+p2

)
(p1 + p2) =

1
2

∫
x
e

min
(

log
p1

p1+p2
,log

p2
p1+p2

)
(p1 + p2). We can also rewrite log p1

p1+p2
= − log

(
1 + p2

p1

)
= −`(z12),

where z12 = log p1 − log p2 and `(z) = log(1 + e−z) is the logistic loss. Similarly log p2
p1+p2

=

−`(−z12). Therefore min
(

log p1
p1+p2

, log p2
p1+p2

)
= min(−`(z12),−`(−z12)). Note that (∀z)−
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|z|− log 2 ≤ min(−`(z),−`(−z)). Since both P1 and P2 are (`p, K)-Lipschitz continuous, by

Definitions 6.4 and 6.5, we have −K(x)‖Θ1 −Θ2‖p − log 2 ≤ min
(

log p1
p1+p2

, log p2
p1+p2

)
.

For proving the lower bound in eq.(6.8), BE(Θ1,Θ2) ≥ 1
2

∫
x
e−K(x)‖Θ1−Θ2‖p−log 2(p1 + p2) =

1
4

∫
x
e−K(x)‖Θ1−Θ2‖p(p1 + p2) = 1

4
BB(Θ1,Θ2).

The lower bound of eq.(6.9) follows from the fact that BE(Θ1,Θ2) ≤ 1
2
. For proving

the upper bound of eq.(6.9), by Jensen’s inequality 1
4

∑
c e
−EPc [K(x)]‖Θ1−Θ2‖p ≤ BB(Θ1,Θ2)

4
≤

BE(Θ1,Θ2). Therefore, − logBE(Θ1,Θ2) ≤ log 4−log
∑

c e
−EPc [K(x)]‖Θ1−Θ2‖p . By properties

of the logsumexp function, we have − logBE(Θ1,Θ2) ≤ log 4 − maxc (−EPc [K(x)])‖Θ1 −
Θ2‖p = log 4 + minc EPc [K(x)]‖Θ1 −Θ2‖p.

6.4 Lipschitz Continuous Models

In this section, we show that several probabilistic graphical models are Lipschitz continuous.
This includes Bayesian networks, Markov random fields and factor graphs for discrete and
continuous random variables. Dynamic models such as dynamic Bayesian networks and
conditional random fields are also Lipschitz continuous.

6.4.1 Bayesian Networks

We show that a sufficient condition for the Lipschitz continuity of Bayesian networks is the
Lipschitz continuity of the conditional probability functions.

Lemma 6.12. For each variable xn, given a (`p, K)-Lipschitz continuous conditional prob-
ability function p(xn|xπn ,Θ), the Bayesian network p(x|Θ) =

∏
n p(xn|xπn ,Θ) is (`p, NK)-

Lipschitz continuous.

Proof. Let gn(Θ) = log p(xn|xπn ,Θ) and f(Θ) = log p(x|Θ) =
∑

n log p(xn|xπn ,Θ) =∑
n gn(Θ), and therefore ∂f/∂Θ =

∑
n ∂gn/∂Θ. By Definitions 6.4 and 6.5, we have

‖∂f/∂Θ‖p ≤
∑

n ‖∂gn/∂Θ‖p ≤ NK(x).

Remark 6.13. When comparing two Bayesian networks, the set of parents πn for each
variable xn is not necessarily the same for both networks. Since Lemma 6.12 does not use
the fact that the joint probability distribution p(x|Θ) is valid (i.e.

∫
x
p(x|Θ) = 1 which is

given by the acyclicity constraints), we can join the set of parents of both Bayesian networks

before comparing them. More formally, let π
(1)
n and π

(2)
n be the set of parents of variable

xn in Bayesian network 1 and 2 respectively. It is trivial to show that if p(xn|xπ(1)
n
,Θ) and

p(xn|xπ(2)
n
,Θ) are Lipschitz continuous, so is p(xn|xπ(1)

n ∪π
(2)
n
,Θ).

Given the previous discussion, in the sequel, we show Lipschitz continuity for the condi-
tional probability functions only.

6.4.2 Discrete Bayesian Networks

The following parametrization of Bayesian networks for discrete random variables is equiva-
lent to using conditional probability tables. We use a representation in an exponential space
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that resembles the softmax activation function in the neural networks literature [Duda et al.,
2001].

Lemma 6.14. Let xπn be one of the possible parent value combinations for variable xn, i.e.
xπn ∈ {1, . . . , Xπn} where Xπn =

∏
n′∈πn Xn′. The conditional probability mass function for

the discrete Bayesian network parameterized by Θ = {w(n,1), . . . ,w(n,Xπn )}n, (∀n, xπn) w(n,xπn ) ∈
RXn−1:

P[xn = i|xπn = j,Θ] =
ew

(n,j)
i 1[i<Xn]∑

xn
ew

(n,j)
xn + 1

(6.10)

is (`∞, 1)-Lipschitz continuous.

Proof. Let w ≡ w(n,xπn ). For i < Xn, let f(w) = log P[xn = i|xπn = j,Θ] = wi −
log(

∑
xn
ewxn + 1). By deriving ∂f/∂wi = 1 − ewi∑

xn
ewxn+1

= 1 − P[xn = i|xπn = j,Θ].

Since (∀i) 0 ≤ P[xn = i|xπn = j,Θ] ≤ 1, it follows that |∂f/∂wi| ≤ 1 and therefore
‖∂f/∂w‖∞ ≤ 1. By Definitions 6.4 and 6.5, we prove our claim.

The following parametrization of Bayesian networks for discrete random variables cor-
responds to the multinomial logistic regression. It reduces to logistic regression for binary
variables.

Lemma 6.15. Given a feature function with F features ψ(xπn) = (ψ1(xπn), . . . , ψF (xπn))T

such that (∀xπn) ‖ψ(xπn)‖∞ ≤ 1, the conditional probability mass function for the discrete

Bayesian network parameterized by Θ = {w(n)
(1) , . . . ,w

(n)
(Xn−1)}n, (∀n, xn) w

(n)
(xn) ∈ RF :

P[xn = i|xπn ,Θ] =
ew

(n)
(i)

T
ψ(xπn )1[i<Xn]∑

xn
ew

(n)
(xn)

T
ψ(xπn ) + 1

(6.11)

is (`∞, 1)-Lipschitz continuous.

Proof. Let w ≡ w(n). For i < Xn, let f(w) = P[xn = i|xπn ,Θ] = w(i)
Tψ(xπn) −

log(
∑

xn
ew(xn)

Tψ(xπn )+1). By deriving ∂f/∂w(i) = ψ(xπn)− e
w(i)

Tψ(xπn )
ψ(xπn )∑

xn
e
w(xn)

Tψ(xπn )
+1

= (1−P[xn =

i|xπn ,Θ])ψ(xπn). Since (∀i) 0 ≤ P[xn = i|xπn ,Θ] ≤ 1, it follows that ‖∂f/∂w(i)‖∞ ≤
‖ψ(xπn)‖∞ ≤ 1. By Definitions 6.4 and 6.5, we prove our claim.

Note that the requirement that (∀x) ‖ψ(xπn)‖∞ ≤ 1 is not restrictive, since the random
variables are discrete and we can perform scaling of the features.

6.4.3 Continuous Bayesian Networks

We focus on two types of continuous random variables: Gaussian and Laplace. For the
Gaussian Bayesian network, we assume that the weight vector w of linear regression has
bounded norm, i.e. ‖w‖2 ≤ β (please, see Appendix G). We also assume that the features
are normalized, i.e. the standard deviation is one.
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Lemma 6.16. Given a feature function with F features ψ(xπn) = (ψ1(xπn), . . . , ψF (xπn))T,
the conditional probability density function for the Gaussian Bayesian network parameterized
by Θ = {w(n)}n, (∀n) w(n) ∈ RF :

p(xn|xπn ,Θ) =
1√
2π
e−

1
2

(xn−w(n)Tψ(xπn ))2 (6.12)

is (`2, ‖ψ(xπn)‖2|xn|+ β‖ψ(xπn)‖2
2)-Lipschitz continuous.

Proof. Let w ≡ w(n) and f(w) = log p(xn|xπn ,Θ) = 1
2
(− log(2π)− (xn −wTψ(xπn))2). By

deriving ∂f/∂w = (xn−wTψ(xπn))ψ(xπn). Then ‖∂f/∂w‖2 ≤ |xn−wTψ(xπn)| ‖ψ(xπn)‖2 ≤
(|xn|+|wTψ(xπn)|) ‖ψ(xπn)‖2 ≤ (|xn|+‖w‖2‖ψ(xπn)‖2) ‖ψ(xπn)‖2. By noting that ‖w‖2 ≤
β and by Definitions 6.4 and 6.5, we prove our claim.

Remark 6.17. In Lemma 6.16, the expression K(x) = ‖ψ(xπn)‖2|xn| + β‖ψ(xπn)‖2
2 be-

comes more familiar for a linear feature function ψ(xπn) = xπn. In this case, note that
(∀πn) ‖ψ(xπn)‖2 = ‖xπn‖2 ≤ ‖x‖2 and (∀n) |xn| ≤ ‖x‖2. Therefore K(x) ≤ (1 + β)‖x‖2

2.

For the Laplace Bayesian network, we assume that the features are normalized, i.e. the
absolute deviation is one.

Lemma 6.18. Given a feature function with F features ψ(xπn) = (ψ1(xπn), . . . , ψF (xπn))T,
the conditional probability density function for the Laplace Bayesian network parameterized
by Θ = {w(n)}n, (∀n) w(n) ∈ RF :

p(xn|xπn ,Θ) =
1

2
e−|xn−w(n)Tψ(xπn )| (6.13)

is (`2, ‖ψ(xπn)‖2)-Lipschitz continuous.

Proof. Let w ≡ w(n) and f(w) = log p(xn|xπn ,Θ) = − log 2 − |xn − wTψ(xπn)|. The
subdifferential set of the non-smooth function f can be written as ∂f/∂w = ψ(xπn)s(xn −
wTψ(xπn)), where s(z) = +1 for z > 0, s(z) = −1 for z < 0 and s(z) ∈ [−1; +1] for z = 0.
Therefore ‖∂f/∂w‖2 ≤ ‖ψ(xπn)‖2. By Definitions 6.4 and 6.5, we prove our claim.

6.4.4 Discrete Factor Graphs

The following parameterization of factor graphs for discrete random variables includes Markov
random fields when the features depend on the cliques. A special case of this parametriza-
tion are Ising models (i.e. Markov random fields on binary variables with pairwise interac-
tions). The feature function ψ(x) = (vec(xxT),x) for Ising models with external field, and
ψ(x) = vec(xxT) without external field.

Lemma 6.19. Given a feature function with F features ψ(x) = (ψ1(x), ..., ψF (x))T such
that (∀x) ‖ψ(x)‖∞ ≤ 1, the discrete factor graph P = p(·|Θ) parameterized by Θ = w,
w ∈ RF with probability mass function:

p(x|Θ) =
1

Z(w)
ewTψ(x) (6.14)

where Z(w) =
∑

x e
wTψ(x) is (`∞, 2)-Lipschitz continuous.
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Proof. Let f(w) = log p(x|Θ) = wTψ(x)− log(
∑

x e
wTψ(x)). By deriving ∂f/∂w = ψ(x)−∑

x e
wTψ(x)ψ(x)∑
x e

wTψ(x)
= ψ(x) − EP [ψ(x)]. Since the expected value for discrete random variables

is a weighted sum with positive weights that add up to 1 and (∀x) ‖ψ(x)‖∞ ≤ 1 there-
fore ‖EP [ψ(x)]‖∞ ≤ 1. It follows that ‖∂f/∂w‖∞ ≤ ‖ψ(x)‖∞ + ‖EP [ψ(x)]‖∞ ≤ 2. By
Definitions 6.4 and 6.5, we prove our claim.

Note that the requirement that (∀x) ‖ψ(x)‖∞ ≤ 1 is not restrictive, since the random
variables are discrete and we can perform scaling of the features.

6.4.5 Continuous Factor Graphs

The following parameterization of factor graphs for continuous random variables includes
Markov random fields when the features depend on the cliques. A special case of this
parametrization are Gaussian graphical models (i.e. Markov random fields on jointly Gaus-
sian variables), in which the feature function ψ(x) = vec(xxT) and Θ � 0.

Lemma 6.20. Given a feature function with F features ψ(x) = (ψ1(x), ..., ψF (x))T such
that EP [‖ψ(x)‖p] ≤ α, the continuous factor graph P = p(·|Θ) parameterized by Θ = w,
w ∈ RF with probability density function:

p(x|Θ) =
1

Z(w)
ewTψ(x) (6.15)

where Z(w) =
∫

x
ewTψ(x) is (`p, ‖ψ(x)‖p + α)-Lipschitz continuous.

Proof. Let f(w) = log p(x|Θ) = wTψ(x) − log(
∫

x
ewTψ(x)). By deriving ∂f/∂w = ψ(x) −∫

x e
wTψ(x)ψ(x)∫
x e

wTψ(x)
= ψ(x) − EP [ψ(x)]. By Jensen’s inequality ‖EP [ψ(x)]‖p ≤ EP [‖ψ(x)‖p] ≤ α.

It follows that ‖∂f/∂w‖p ≤ ‖ψ(x)‖p + ‖EP [ψ(x)]‖p ≤ ‖ψ(x)‖p + α. By Definitions 6.4 and
6.5, we prove our claim.

The requirement that EP [‖ψ(x)‖p] ≤ α is also useful in deriving a close-form expresion
of the Kullback-Leibler divergence bound.

Lemma 6.21. Given two continuous factor graphs as in eq.(6.15), i.e. P1 = p(·|Θ1) and
P2 = p(·|Θ2), the Kullback-Leibler divergence from P1 to P2 is bounded as follows:

KL(P1||P2) ≤ 2α‖Θ1 −Θ2‖p (6.16)

Proof. By invoking Theorem 6.7, the Lipschitz constant K = EP1 [K(x)]. By invoking
Lemma 6.20, K(x) = ‖ψ(x)‖p+α and EP1 [‖ψ(x)‖p] ≤ α. Finally, EP1 [K(x)] = EP1 [‖ψ(x)‖p]+
α ≤ 2α.

74



6.4.6 Gaussian Graphical Models

A Gaussian graphical model [Lauritzen, 1996] is a Markov random field in which all random
variables are continuous and jointly Gaussian. This model corresponds to the multivariate
normal distribution.

We first analyze parametrization by using precision matrices. This parametrization is
natural since it corresponds to factors graphs as in eq.(6.15) and therefore conditional inde-
pendence corresponds to zeros in the precision matrix. We assume that the precision matrix
Ω has bounded norm, i.e. αI � Ω � βI or equivalently ‖Ω−1‖2 ≤ 1

α
and ‖Ω‖2 ≤ β. This

condition holds for Tikhonov regularization as well as for sparseness promoting (`1) methods
(please, see Appendix H).

Lemma 6.22. Given the precision matrix Ω � 0, the Gaussian graphical model parameter-
ized by Θ = Ω, Ω ∈ RN×N with probability density function:

p(x|Θ) =
(det Ω)1/2

(2π)N/2
e−

1
2
xTΩx (6.17)

is (`2,
‖x‖22

2
+ 1

2α
)-Lipschitz continuous.

Proof. Let f(Ω) = log p(x|Θ) = 1
2
(log det Ω − N log(2π) − xTΩx). By deriving ∂f/∂Ω =

1
2
(Ω−1 − xxT). Therefore ‖∂f/∂Ω‖2 ≤ 1

2
(‖Ω−1‖2 + ‖xxT‖2) = 1

2
(‖Ω−1‖2 + ‖x‖2

2) ≤ 1
2
( 1
α

+
‖x‖2

2). By Definitions 6.4 and 6.5, we prove our claim.

If we use Lemma 6.21, we will obtain a very loose bound of the Kullback-Leibler diver-

gence where the constant K = 2NβN/2

αN/2+1 (please, see Appendix I). Therefore, we analyze the
specific case of Gaussian graphical models.

Lemma 6.23. Given two Gaussian graphical models parameterized by their precision ma-
trices as in eq.(6.17), i.e. P1 = p(·|Ω1) and P2 = p(·|Ω2), the Kullback-Leibler divergence
from P1 to P2:

KL(P1||P2) =
1

2

(
log

det Ω1

det Ω2

+ 〈Ω−1
1 ,Ω2〉 −N

)
(6.18)

is bounded as follows:

KL(P1||P2) ≤ 1

α
‖Ω1 −Ω2‖2 (6.19)

Proof. First, we show that f(Ω1,Ω2) = KL(P1||P2) is Lipschitz continuous with respect to
Ω2. By deriving ∂f/∂Ω2 = 1

2
(−Ω−1

2 +Ω−1
1 ). Therefore ‖∂f/∂Ω2‖2 ≤ 1

2
(‖Ω−1

2 ‖2 +‖Ω−1
1 ‖2) ≤

1
2
( 1
α

+ 1
α

) = 1
α

.
Second, since f is Lipschitz continuous with respect to its second parameter, we have

(∀Ω) |f(Ω,Ω2)−f(Ω,Ω1)| ≤ 1
α
‖Ω2−Ω1‖2. In particular, let Ω = Ω1 and since f(Ω1,Ω1) =

0 and |f(Ω1,Ω2)| = f(Ω1,Ω2) by properties of the Kullback-Leibler divergence, we prove
our claim.

We also analyze parametrization by using covariance matrices (please, see Appendix J).
We point out to the reader that this parametrization does not correspond to factors graphs
as in eq.(6.15) and therefore conditional independence does not correspond to zeros in the
covariance matrix.
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6.4.7 Dynamic Models

The following lemma shows that dynamic Bayesian networks are Lipschitz continuous. Note
that dynamic Bayesian networks only impose constraints on the topology of directed graphs,
and therefore the extension to the dynamic case is trivial.

Lemma 6.24. Let x(t) be the value for variable x at time t, and let x(t,...,t−L) be a shorthand
notation that includes the current time step and the previous L time steps, i.e. x(t), . . . ,x(t−L).
Let the set of parents for x

(t)
n be πn ⊆ {1, . . . , N}×{0, . . . , L}. Given a (`p, K)-Lipschitz con-

tinuous conditional probability function p(x
(t)
n |x(t,...,t−L)

πn ,Θ) for each variable x
(t)
n , the L-order

Bayesian network p(x(t)|x(t−1), . . . ,x(t−L),Θ) =
∏

n p(x
(t)
n |x(t,...,t−L)

πn ,Θ) is (`p, NK)-Lipschitz
continuous.

Proof. Similar to proof of Lemma 6.12.

The following lemma establishes Lipschitz continuity for conditional random fields.

Lemma 6.25. Given a feature function with F features ψ(y,x) = (ψ1(y,x), ..., ψF (y,x))T,
the conditional random field parameterized by Θ = w, w ∈ RF with probability distribution:

p(y|x,Θ) =
1

Z(x,w)
ewTψ(y,x) (6.20)

where Z(x,w) =
∫

y
ewTψ(y,x) is (`p, K)-Lipschitz continuous.

Proof. Similar to proof of Lemma 6.19 for discrete random variables, or Lemma 6.20 for
continuous random variables.

6.5 Experimental Results

First, we show the similarities between the Kullback-Leibler divergence, test log-likelihood
and Frobenius norm for some probabilistic graphical models: Gaussian graphical models for
continuous data and Ising models for discrete data. Note that if we assume that the test
data is generated by a ground truth model, the expected value of the test log-likelihood is
the expected log-likelihood that we analyzed in Section 6.3.

Gaussian graphical models were parameterized by their precision matrices as in eq.(6.17).
We consider Ising models without external field. Therefore, in both cases conditional inde-
pendence corresponds to parameters of value zero. The ground truth model contains N = 50
variables for Gaussian graphical models. For Ising models, since computing the log-partition
function is NP-hard, we restrict our experiments to N = 10 variables. For each of 50
repetitions, we generate edges in the ground truth model with a required density (either
0.2,0.5,0.8), where each edge weight is generated uniformly at random from [−1; +1]. For
Gaussian graphical models, we ensure positive definiteness by verifying that the minimum
eigenvalue is at least 0.1. We then generate training and testing datasets of 50 samples
each. Gaussian graphical models were learnt by the graphical lasso method of Friedman
et al. [2007b], and Ising models were learnt by the pseudolikelihood method of Höfling and
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Figure 6.1: Kullback-Leibler divergence, negative test log-likelihood and Frobenius norm for Gaus-
sian graphical models (top) and Ising models (bottom), for low (left) moderate (center) and high
(right) graph density. Note that all the measurements behave similarly.

Tibshirani [2009]. Figure 6.1 shows that the Kullback-Leibler divergence, negative test log-
likelihood and Frobenius norm behave similarly.

Next, we test the usefulness of our theoretical results that enable us to perform classifica-
tion, dimensionality reduction and clustering from the parameters of graphical models. We
use the CMU motion capture database (http://mocap.cs.cmu.edu/) for activity recog-
nition and temporal segmentation. In both cases, we only used the Euler angles for the
following 8 markers: left and right humerus, radius, femur and tibia. Our variables measure
the change in Euler angles, i.e. the difference between the angle at the current time and 0.05
seconds before. Variables were normalized to have standard deviation one.

For activity recognition, we test whether it is possible to detect if a person is either
walking or running from a small window of 0.25 seconds (through the use of classification).
The CMU motion capture database contains several sequences per subject. We used the
first sequence labeled as “walk” or “run” from all available subjects (excluding 3 pregnant
and post-pregnant women). This led to 14 walking subjects and 10 running subjects (total
of 21 distinct subjects). From each subject we extracted 3 small windows of 0.25 seconds,
at 1/4, 2/4 and 3/4 of the whole sequence. Covariance and precision matrices of Gaussian
graphical models were learnt by Tikhonov regularization and the covariance selection method
of Banerjee et al. [2006]. Table 6.1 shows the leave-one-subject-out accuracy for a linear SVM
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Table 6.1: Leave-one-subject-out accuracy for walking vs. running on the CMU motion capture
database (chance = 58%).

Regularization level 0.001 0.01 0.1 1
`1 Covariance 78 78 74 76

Tikhonov Covariance 78 78 78 78
`1 Precision 96 93 90 75

Tikhonov Precision 97 96 93 92
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Figure 6.2: Clusters from a complex sequence of the CMU motion capture database. Each point
represents a Gaussian graphical model, the Kullback-Leibler divergence between two points is
bounded by the distance between them.

classifier with the parameters of the Gaussian graphical models as features.
For temporal segmentation, we test whether it is possible to separate a complex sequence

that includes walking, squats, running, stopping, stretching, jumping, drinking and punch-
ing (through dimensionality reduction and clustering). We used the sequence 2 of subject
86 from the CMU motion capture database. We extracted small windows of 0.75 seconds,
taken each 0.125 seconds. Each window was labeled as the action being executed in the
middle. Precision matrices of Gaussian graphical models were learnt by Tikhonov regular-
ization with regularization level 0.1. We first apply PCA by using the parameters of the
Gaussian graphical models as features and then perform k-means clustering with the first
3 eigenvectors. Figure 6.2 shows the resulting clusters and Table 6.2 shows the confusion
matrix of assigning each window to its cluster.

6.6 Concluding Remarks

One of our contributions was to show that methods that penalize the `p-norm of differences of
parameters [Kolar et al., 2009, 2010, Zhang and Wang, 2010] are minimizing an upper bound
of the Kullback-Leibler divergence. Along this line, we can further discuss the role of the `1-
regularization (e.g. [Banerjee et al., 2006, Friedman et al., 2007b, Lee et al., 2006a, Schmidt
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Table 6.2: Confusion matrix for temporal segmentation from a complex sequence of the CMU
motion capture database. Ground truth labels on each row, predicted labels on each column (each
row add up to 100%).

walk squats run stop stretch jump drink punch
walk 93 1 2 4

squats 87 7 6
run 13 83 4

stop 6 73 3 3 15
stretch 70 30

jump 4 96
drink 6 4 1 78 11

punch 16 4 80

et al., 2007b, Wainwright et al., 2006]), which has been used for promoting sparseness and
that it is equivalent to a Laplacian prior. We can argue that `1-regularization imposes a prior
that reduces the Kullback-Leibler divergence between the learnt model and the independent
model. For instance, in the case of factor graphs, assume a learnt model with weights b for
unitary potentials, and weights W for non-unitary potentials (e.g. pairs, triplets), then the
Kullback-Leibler divergence between the learnt model (W,b) and the independent model
(0,b) is bounded by a term that is O(‖(W,b)− (0,b)‖1) = O(‖W‖1).

There are several ways of extending this research. Lipschitz continuity for the parame-
terization of other probability distributions (e.g. mixture models) needs to be analyzed. We
hope that our preliminary results will motivate work on proving other theoretical properties
as well as on learning probabilistic graphical models by using optimization algorithms that
rely on Lipschitz continuity of the log-likelihood as the objective function. Finally, while
Lipschitz continuity defines an upper bound of the derivative, lower bounds of the deriva-
tive will allow for finding a lower bound of the Kullback-Leibler divergence as well as upper
bounds for the Bayes error and the expected log-likelihood.
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Chapter 7

Learning Linear Influence Games

In the previous chapters, we focused on probabilistic graphical models, in which graphs
encode conditional dependence relationships. In this chapter, we focus on graphical games,
in which graphs encode strategic dependence relationships.

We formalize and study the problem of learning the structure and parameters of graphical
games from strictly behavioral data. We cast the problem as a maximum likelihood estima-
tion based on a generative model defined by the pure-strategy Nash equilibria of the game.
The formulation brings out the interplay between goodness-of-fit and model complexity:
good models capture the equilibrium behavior represented in the data while controlling the
true number of equilibria, including those potentially unobserved. We provide a generaliza-
tion bound for maximum likelihood estimation. We discuss several optimization algorithms
including convex loss minimization, sigmoidal approximations and exhaustive search. We
formally prove that games in our hypothesis space have a small true number of equilibria,
with high probability; thus, convex loss minimization is sound. We illustrate our approach,
show and discuss promising results on synthetic data and the U.S. congressional voting
records.

7.1 Introduction

Graphical games [Kearns et al., 2001] were one of the first and most influential graphical
models for game theory. It has been about a decade since their introduction to the AI
community. There has also been considerable progress on problems of computing classical
equilibrium solution concepts such as Nash [Nash, 1951] and correlated equilibria [Aumann,
1974] in graphical games (see, e.g., Kearns et al. [2001], Vickrey and Koller [2002], Ortiz
and Kearns [2002], Blum et al. [2006], Kakade et al. [2003], Papadimitriou and Roughgarden
[2008], Jiang and Leyton-Brown [2011] and the references therein). Indeed, graphical games
played a prominent role in establishing the computational complexity of computing Nash
equilibria in general normal-form games (see, e.g., Daskalakis et al. [2009] and the references
therein).

Relatively less attention has been paid to the problem of learning the structure of graph-
ical games from data. Addressing this problem is essential to the development, potential use
and success of game-theoretic models in practical applications.
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Indeed, we are beginning to see an increase in the availability of data collected from
processes that are the result of deliberate actions of agents in complex system. A lot of this
data results from the interaction of a large number of individuals, being people, companies,
governments, groups or engineered autonomous systems (e.g. autonomous trading agents),
for which any form of global control is usually weak. The Internet is currently a major source
of such data, and the smart grid, with its trumpeted ability to allow individual customers to
install autonomous control devices and systems for electricity demand, will likely be another
one in the near future.

We present a formal framework and design algorithms for learning the structure and
parameters of graphical games [Kearns et al., 2001] in large populations of agents. We
concentrate on learning from purely behavioral data. We expect that, in most cases, the
parameters quantifying a utility function or best-response condition are unavailable and hard
to determine in real-world settings. The availability of data resulting from the observation
of an individual public behavior is arguably a weaker assumption than the availability of
individual utility observations, which are often private.

Our technical contributions include a novel generative model of behavioral data in Sec-
tion 7.4 for general games. We define identifiability and triviality of games. We provide
conditions which ensures identifiability among non-trivial games. We then present the maxi-
mum likelihood problem for general (non-trivial identifiable) games. In Section 7.5, we show
a generalization bound for the maximum likelihood problem as well as an upper bound of
the VC-dimension of influence games. In Section 7.6, we approximate the original problem
by maximizing the number of observed equilibria in the data, suitable for a hypothesis space
of games with small true number of equilibria. We then present our convex loss minimiza-
tion approach and a baseline sigmoidal approximation for (linear) influence games. We also
present exhaustive search methods for both general as well as influence games. In Section
7.7, we define absolute-indifference of players and show that our convex loss minimization
approach produces games in which all players are non-absolutely-indifferent. We provide a
distribution-free bound which shows that linear influence games have small true number of
equilibria with high probability.

7.2 Related Work

Our work complements the recent line of work on learning graphical games [Vorobeychik
et al., 2005, Ficici et al., 2008, Duong et al., 2009, Gao and Pfeffer, 2010, Ziebart et al.,
2010, Waugh et al., 2011]. With the exception of Ziebart et al. [2010], Waugh et al. [2011],
previous methods assume that the actions as well as corresponding payoffs (or noisy sam-
ples from the true payoff function) are observed in the data. Another notable exception
is a recently proposed framework from the learning theory community to model collective
behavior [Kearns and Wortman, 2008]. The approach taken there considers dynamics and
is based on stochastic models. Our work differs from methods that assume that the game is
known [Wright and Leyton-Brown, 2010]. The work of Vorobeychik et al. [2005], Gao and
Pfeffer [2010], Wright and Leyton-Brown [2010], Ziebart et al. [2010] present experimental
validation mostly for 2 players only, 7 players in Waugh et al. [2011] and up to 13 players
in Duong et al. [2009].

81



In this chapter, we assume that the joint-actions is the only observable information. To
the best of our knowledge, we present the first techniques for learning the structure and
parameters of large-population graphical games from joint-actions only. Furthermore, we
present experimental validation in games of up to 100 players. Our convex loss minimization
approach could potentially be applied to larger problems since it is polynomial-time.

There has been a significant amount of work for learning the structure of probabilistic
graphical models from data. We mention only a few references that follow a maximum
likelihood approach for Markov random fields [Lee et al., 2006a], bounded tree-width distri-
butions [Chow and Liu, 1968, Srebro, 2001], Ising models [Wainwright et al., 2006, Banerjee
et al., 2008, Höfling and Tibshirani, 2009], Gaussian graphical models [Banerjee et al., 2006],
Bayesian networks [Guo and Schuurmans, 2006, Schmidt et al., 2007b] and directed cyclic
graphs [Schmidt and Murphy, 2009].

Our approach learns the structure and parameters of games by maximum likelihood
estimation on a related probabilistic model. Our probabilistic model does not fit into any of
the types described above. Although a (directed) graphical game has a directed cyclic graph,
there is a semantic difference with respect to graphical models. Structure in a graphical
model implies a factorization of the probabilistic model. In a graphical game, the graph
structure implies strategic dependence between players, and has no immediate probabilistic
implication. Furthermore, our general model differs from Schmidt and Murphy [2009] since
our generative model does not decompose as a multiplication of potential functions.

7.3 Background

In classical game-theory (see, e.g. Fudenberg and Tirole [1991] for a textbook introduction),
a normal-form game is defined by a set of players V (e.g. we can let V = {1, . . . , n} if
there are n players), and for each player i, a set of actions, or pure-strategies Ai, and a
payoff function ui : ×j∈VAj → R mapping the joint-actions of all the players, given by
the Cartesian product A ≡ ×j∈VAj, to a real number. In non-cooperative game theory
we assume players are greedy, rational and act independently, by which we mean that each
player i always want to maximize their own utility, subject to the actions selected by others,
irrespective of how the optimal action chosen help or hurt others.

A core solution concept in non-cooperative game theory is that of an Nash equilibrium.
A joint-action x∗ ∈ A is a pure-strategy Nash equilibrium of a non-cooperative game if, for
each player i, x∗i ∈ arg maxxi∈Aiui(xi,x

∗
−i); that is, x∗ constitutes a mutual best-response, no

player i has any incentive to unilaterally deviate from the prescribed action x∗i , given the
joint-action of the other players x∗−i ∈ ×j∈V−{i}Aj in the equilibrium.

In what follows, we denote a game by G, and the set of all pure-strategy Nash equilibria
of G by:

NE(G) ≡ {x∗ | (∀i ∈ V ) x∗i ∈ arg maxxi∈Aiui(xi,x
∗
−i)} (7.1)

A (directed) graphical game is a game-theoretic graphical model [Kearns et al., 2001]. It
provides a succinct representation of normal-form games. In a graphical game, we have a
(directed) graph G = (V,E) in which each node in V corresponds to a player in the game.
The interpretation of the edges/arcs E of G is that the payoff function of player i is only a
function of the set of parents/neighbors Ni ≡ {j | (i, j) ∈ E} in G (i.e. the set of players
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corresponding to nodes that point to the node corresponding to player i in the graph). In
the context of a graphical game, we refer to the ui’s as the local payoff functions/matrices.

Linear influence games [Irfan and Ortiz, 2011] are a sub-class of graphical games. For
linear influence games, we assume that we are given a matrix of influence weights W ∈ Rn×n,
with zero diagonal (i.e. diag(W) = 0), and a threshold vector b ∈ Rn. For each player i,
we define the influence function fi(x−i) ≡

∑
j∈Ni wijxj − bi = wi,−i

Tx−i − bi and the payoff
function ui(x) ≡ xifi(x−i). We further assume binary actions: Ai ≡ {−1,+1} for all i. The
best response x∗i of player i to the joint-action x−i of the other players is defined as:

wi,−i
Tx−i > bi ⇒ x∗i = +1,

wi,−i
Tx−i < bi ⇒ x∗i = −1 and

wi,−i
Tx−i = bi ⇒ x∗i ∈ {−1,+1}

⇔ x∗i (wi,−i
Tx−i − bi) ≥ 0 (7.2)

Hence, for any other player j, wij ∈ R can be thought as a weight parameter quantifying
the “influence factor” that j has on i, and bi ∈ R as a threshold parameter to the level of
“tolerance” that player i has for playing −1.

As discussed in Irfan and Ortiz [2011], linear influence games are also a sub-class of poly-
matrix games [Janovskaja, 1968]. Furthermore, in the special case of b = 0 and symmetric
W, a linear influence game becomes a party-affiliation game [Fabrikant et al., 2004].

Figure 7.3 provides a preview illustration of the application of our approach to congres-
sional voting.

7.4 Preliminaries

Our goal is to learn the structure and parameters of a graphical game from observed joint-
actions. Note that our problem is unsupervised, i.e. we do not know a priori which joint-
actions are equilibria and which ones are not. If our only goal were to find a game G in
which all the given observed data is an equilibrium, then a “dummy” influence game with
G = (W,b),W = 0,b = 0 would be the optimal solution since |NE(G)| = 2n. In this
section, we present a probabilistic formulation that allows finding games that maximize the
empirical proportion of equilibria in the data while keeping the true proportion of equilibria
as low as possible. Furthermore, we show that trivial games such as W = 0,b = 0, obtain
the lowest log-likelihood.

7.4.1 On the Identifiability of Games

Several games with different coefficients can lead to the same Nash equilibria set. As a simple
example that illustrates the issue of identifiability, consider the three following influence
games with the same Nash equilibria sets, i.e. NE(Wk,0) = {(−1,−1,−1), (+1,+1,+1)}
for k = 1, 2, 3:

W1 =

 0 0 0
1/2 0 0
0 1 0

 , W2 =

 0 0 0
2 0 0
1 0 0

 , W3 =

 0 1 1
1 0 1
1 1 0


Clearly, using structural properties alone, one would generally prefer the former two models
to the latter, all else being equal (e.g. generalization performance). A large number of the
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Figure 7.1: 110th US Congress’s Linear Influence Game (January 3, 2007-09): We pro-
vide an illustration of the application of our approach to real congressional voting data. Irfan and
Ortiz [2011] use such LIGs to address a variety of computational problems, including the identifica-
tion of most influential senators. We show the graph connectivity of a LIG learnt by independent
`1-regularized logistic regression (see Sect. 7.6.5). We highlight some characteristics of the graph,
consistent with anecdotal evidence. First, senators are more likely to be influenced by members of
the same party than by members of the opposite party (the dashed green line denotes the sepa-
ration between the parties). Republicans were “more strongly united” (tighter connectivity) than
Democrats at the time. Second, the current US Vice President Biden (Dem./Delaware) and McCain
(Rep./Arizona) are displayed at the “extreme of each party” (Biden at the bottom-right corner,
McCain at the bottom-left) eliciting their opposite ideologies. Third, note that Biden, McCain, the
current US President Obama (Dem./Illinois) and US Secretary of State Hillary Clinton (Dem./New
York) have very few outgoing arcs; e.g., Obama only directly influences Feingold (Dem./Wisconsin),
a prominent senior member with strongly liberal stands. One may wonder why do such prominent
senators seem to have so little direct influence on others? A possible explanation is that US Presi-
dent Bush was about to complete hist second term (the maximum allowed). Both parties had very
long presidential primaries. All those senators contended for the presidential candidacy within their
parties. Hence, one may posit that those senators were focusing on running their campaigns and
that their influence in the day-to-day business of congress was channeled through other prominent
senior members of their parties.

econometrics literature concerns the issue of identifiability of models from data. In typical
machine-learning fashion, we side-step this issue by measuring the quality of our data-induced
models via their generalization ability and invoke the principle of Ockham’s razor to bias
our search toward simpler models using well-known and -studied regularization techniques.
In particular, we take the view that games are identifiable by their Nash equilibria. Hence
our next definition.

Definition 7.1. We say that two games G1 and G2 are equivalent if and only if their Nash
equilibria sets are identical, i.e.: G1 ≡NE G2 ⇔ NE(G1) = NE(G2).
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7.4.2 Generative Model of Behavioral Data

We propose the following generative model for behavioral data based strictly in the context
of “simultaneous”/one-shot play in non-cooperative game theory. Let G be a game. With
some probability 0 < q < 1, a joint-action x is chosen uniformly at random from NE(G);
otherwise, x is chosen uniformly at random from its complement set {−1,+1}n − NE(G).
Hence, the generative model is a mixture model with mixture parameter q corresponding
to the probability that a stable outcome (i.e. a Nash equilibrium) of the game is observed.
Formally, the probability mass function (PMF) over joint-behaviors {−1,+1}n parametrized
by (G, q) is:

p(G,q)(x) = q
1[x ∈ NE(G)]

|NE(G)| + (1− q) 1[x /∈ NE(G)]

2n − |NE(G)| (7.3)

where we can think of q as the “signal” level, and thus 1− q as the “noise” level in the data
set.

Remark 7.2. Note that in order for eq.(7.3) to be a valid PMF for any G, we need to enforce
the following conditions |NE(G)| = 0 ⇒ q = 0 and |NE(G)| = 2n ⇒ q = 1. Furthermore,
note that in both cases (|NE(G)| ∈ {0, 2n}) the PMF becomes a uniform distribution. On
the other hand, if 0 < |NE(G)| < 2n then setting q ∈ {0, 1} leads to an invalid PMF.

Let π(G) be the true proportion of equilibria in the game G relative to all possible joint-
actions, i.e.:

π(G) ≡ |NE(G)|/2n (7.4)

Definition 7.3. We say that a game G is trivial if and only if |NE(G)| ∈ {0, 2n} (or
equivalently π(G) ∈ {0, 1}), and non-trivial if and only if 0 < |NE(G)| < 2n (or equivalently
0 < π(G) < 1).

The following propositions establish that the condition q > π(G) ensures that the prob-
ability of an equilibrium is strictly greater than a non-equilibrium. The condition also
guarantees identifiability among non-trivial games.

Proposition 7.4. Given a non-trivial game G, the mixture parameter q > π(G) if and only
if p(G,q)(x1) > p(G,q)(x2) for any x1 ∈ NE(G) and x2 /∈ NE(G).

Proof. Note that p(G,q)(x1) = q/|NE(G)| > p(G,q)(x2) = (1 − q)/(2n − |NE(G)|) ⇔ q >
|NE(G)|/2n and given eq.(7.4), we prove our claim.

Proposition 7.5. Let G1 and G2 be two non-trivial games. For some mixture parameter
q > max(π(G1), π(G2)), G1 and G2 are equivalent if and only if they induce the same PMF
over the joint-action space {−1,+1}n of the players, i.e.: G1 ≡NE G2 ⇔ (∀x) p(G1,q)(x) =
p(G2,q)(x).

Proof. Let NEk ≡ NE(Gk). First, we prove the ⇒ direction. By Definition 7.1, G1 ≡NE
G2 ⇒ NE1 = NE2. Note that p(Gk,q)(x) in eq.(7.3) depends only on characteristic functions
1[x ∈ NEk]. Therefore, (∀x) p(G1,q)(x) = p(G2,q)(x).

Second, we prove the ⇐ direction by contradiction. Assume (∃x) x ∈ NE1 ∧ x /∈ NE2.
p(G1,q)(x) = p(G2,q)(x) implies that q/|NE1| = (1−q)/(2n−|NE2|)⇒ q = |NE1|/(2n+|NE1|−
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|NE2|). Since q > max(π(G1), π(G2)) ⇒ q > max(|NE1|, |NE2|)/2n by eq.(7.4). Therefore
max(|NE1|, |NE2|)/2n < |NE1|/(2n + |NE1|− |NE2|). If we assume that |NE1| ≥ |NE2| we
reach the contradiction |NE1| − |NE2| < 0. If we assume that |NE1| ≤ |NE2| we reach the
contradiction (2n − |NE2|)(|NE2| − |NE1|) < 0.

Remark 7.6. Recall that a trivial game induces a uniform PMF by Remark 7.2. Therefore,
a non-trivial game is not equivalent to a trivial game since by Proposition 7.4, non-trivial
games do not induce uniform PMFs.

7.4.3 Learning the Structure of Games via Maximum Likelihood
Estimation

The learning problem consists on estimating the structure and parameters of a graphical
game from data. We point out that our problem is unsupervised, i.e. we do not know a
priori which joint-actions are equilibria and which ones are not. We based our framework on
the fact that games are identifiable with respect to their induced PMF by Proposition 7.5.

First, we introduce a shorthand notation for the Kullback-Leibler (KL) divergence be-
tween two Bernoulli distributions parametrized by 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1:

KL(p1‖p2)≡ KL(Bernoulli(p1)‖Bernoulli(p2))
= p1 log p1

p2
+ (1− p1) log 1−p1

1−p2
(7.5)

Using this function, we can derive the following expression of the maximum likelihood esti-
mation problem.

Lemma 7.7. Given a dataset D = x(1), . . . ,x(m), let π̂(G) be the empirical proportion of
equilibria, i.e. the proportion of samples in D that are equilibria of G:

π̂(G) ≡ 1
m

∑
l 1[x(l) ∈ NE(G)] (7.6)

the maximum likelihood estimation problem for the probabilistic model in eq.(7.3) can be
expressed as:

max
(G,q)∈Υ

L̂(G, q) , L̂(G, q) = KL(π̂(G)‖π(G))−KL(π̂(G)‖q)− n log 2 (7.7)

where H is the class of games of interest, Υ = {(G, q) | G ∈ H ∧ 0 < π(G) < q < 1} is
the hypothesis space of non-trivial identifiable games, π(G) is defined as in eq.(7.4) and the
optimal mixture parameter q̂ = min(π̂(G), 1− 1

2m
).

Proof. LetNE ≡ NE(G), π ≡ π(G) and π̂ ≡ π̂(G). First, for a non-trivial G, log p(G,q)(x
(l)) =

log q
|NE| for x(l) ∈ NE , and log p(G,q)(x

(l)) = log 1−q
2n−|NE| for x(l) /∈ NE . The average log-

likelihood L̂(G, q) = 1
m

∑
l log pG,q(x

(l)) = π̂ log q
|NE| + (1 − π̂) log 1−q

2n−|NE| = π̂ log q
π

+ (1 −
π̂) log 1−q

1−π −n log 2. By adding 0 = −π̂ log π̂+ π̂ log π̂− (1− π̂) log(1− π̂)+(1− π̂) log(1− π̂),

this can be rewritten as L̂(G, q) = π̂ log π̂
π

+(1− π̂) log 1−π̂
1−π − π̂ log π̂

q
− (1− π̂) log 1−π̂

1−q −n log 2,

and by using eq.(7.5) we prove our claim.
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Note that by maximizing with respect to the mixture parameter q and by properties of
the KL divergence, we get KL(π̂‖q̂) = 0⇔ q̂ = π̂. We define our hypothesis space Υ given
the conditions in Remark 7.2 and Propositions 7.4 and 7.5. For the case π̂ = 1, we “shrink”
the optimal mixture parameter q̂ to 1− 1

2m
in order to avoid generating an invalid PMF as

discussed in Remark 7.2.

Remark 7.8. Recall that a trivial game (e.g. G = (W,b),W = 0,b = 0, π(G) = 1) induces
a uniform PMF by Remark 7.2, and therefore its log-likelihood is −n log 2. Note that the
lowest log-likelihood for non-trivial identifiable games in eq.(7.7) is −n log 2 by setting the
optimal mixture parameter q̂ = π̂(G) and given that KL(π̂(G)‖π(G)) ≥ 0.

Furthermore, eq.(7.7) implies that for non-trivial identifiable games G, we expect the true
proportion of equilibria π(G) to be strictly less than the empirical proportion of equilibria
π̂(G) in the given data. This is by setting the optimal mixture parameter q̂ = π̂(G) and the
condition q > π(G) in our hypothesis space.

7.5 Generalization Bound and VC-Dimension

In this section, we show a generalization bound for the maximum likelihood problem as
well as an upper bound of the VC-dimension of linear influence games. Our objective is to
establish that with probability at least 1 − δ, for some confidence parameter 0 < δ < 1,
the maximum likelihood estimate is within ε > 0 of the optimal parameters, in terms of
achievable expected log-likelihood.

Given the ground truth distribution Q of the data, let π̄(G) be the expected proportion
of equilibria, i.e.:

π̄(G) = PQ[x ∈ NE(G)] (7.8)

and let L̄(G, q) be the expected log-likelihood of a generative model from game G and mixture
parameter q, i.e.:

L̄(G, q) = EQ[log p(G,q)(x)] (7.9)

Note that our hypothesis space Υ in eq.(7.7) includes a continuous parameter q that
could potentially have infinite VC-dimension. The following lemma will allow us later to
prove that uniform convergence for the extreme values of q implies uniform convergence for
all q in the domain.

Lemma 7.9. Consider any game G and, for 0 < q′′ < q′ < q < 1, let θ = (G, q), θ′ = (G, q′)
and θ′′ = (G, q′′). If, for any ε > 0 we have |L̂(θ)− L̄(θ)| ≤ ε/2 and |L̂(θ′′)− L̄(θ′′)| ≤ ε/2,

then |L̂(θ′)− L̄(θ′)| ≤ ε/2.

Proof. Let NE ≡ NE(G), π ≡ π(G), π̂ ≡ π̂(G), π̄ ≡ π̄(G), and E[·] and P[·] be the expecta-
tion and probability with respect to the ground truth distribution Q of the data.

First note that for any θ = (G, q), we have L̄(θ) = E[log p(G,q)(x)] = E[1[x ∈ NE ] log q
|NE|+

1[x /∈ NE ] log 1−q
2n−|NE| ] = P[x ∈ NE ] log q

|NE| + P[x /∈ NE ] log 1−q
2n−|NE| = π̄ log q

|NE| + (1 −
π̄) log 1−q

2n−|NE| = π̄ log
(

q
1−q ·

2n−|NE|
|NE|

)
+ log 1−q

2n−|NE| = π̄ log
(

q
1−q · 1−π

π

)
+ log 1−q

1−π − n log 2.
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Similarly, for any θ = (G, q), we have L̂(θ) = π̂ log
(

q
1−q · 1−π

π

)
+log 1−q

1−π −n log 2. So that

L̂(θ)− L̄(θ) = (π̂ − π̄) log
(

q
1−q · 1−π

π

)
.

Furthermore, the function q
1−q is strictly monotonically increasing for 0 ≤ q < 1. If

π̂ > π̄ then −ε/2 ≤ L̂(θ′′)− L̄(θ′′) < L̂(θ′)− L̄(θ′) < L̂(θ)− L̄(θ) ≤ ε/2. Else, if π̂ < π̄, we

have ε/2 ≥ L̂(θ′′) − L̄(θ′′) > L̂(θ′) − L̄(θ′) > L̂(θ) − L̄(θ) ≥ −ε/2. Finally, if π̂ = π̄ then

L̂(θ′′)− L̄(θ′′) = L̂(θ′)− L̄(θ′) = L̂(θ)− L̄(θ) = 0.

The following theorem shows that the expected log-likelihood of the maximum likelihood
estimate converges in probability to that of the optimal, as the data size m increases.

Theorem 7.10. Let θ̂ = (Ĝ, q̂) be the maximum likelihood estimate in eq.(7.7) and θ̄ =

(Ḡ, q̄) be the maximum expected likelihood estimate, i.e. θ̂ = arg maxθ∈ΥL̂(θ) and θ̄ =
arg maxθ∈ΥL̄(θ), then with probability at least 1− δ:

L̄(θ̂) ≥ L̄(θ̄)−
(

log max(2m, 1
1−q̄ ) + n log 2

)√
2
m

(
log d(H) + log 4

δ

)
(7.10)

where H is the class of games of interest, Υ = {(G, q) | G ∈ H ∧ 0 < π(G) < q < 1} is the
hypothesis space of non-trivial identifiable games and d(H) ≡ |∪G∈H{NE(G)}| is the number
of all possible games in H (identified by their Nash equilibria sets).

Proof. First our objective is to find a lower bound for P[L̄(θ̂)−L̄(θ̄) ≥ −ε] ≥ P[L̄(θ̂)−L̄(θ̄) ≥
−ε + (L̂(θ̂) − L̂(θ̄))] ≥ P[−L̂(θ̂) + L̄(θ̂) ≥ − ε

2
, L̂(θ̄) − L̄(θ̄) ≥ − ε

2
] = P[L̂(θ̂) − L̄(θ̂) ≤

ε
2
, L̂(θ̄)− L̄(θ̄) ≥ − ε

2
] = 1− P[L̂(θ̂)− L̄(θ̂) > ε

2
∨ L̂(θ̄)− L̄(θ̄) < − ε

2
].

Let q̃ ≡ max(1− 1
2m
, q̄). Now, we have P[L̂(θ̂)−L̄(θ̂) > ε

2
∨L̂(θ̄)−L̄(θ̄) < − ε

2
] ≤ P[(∃θ ∈

Υ, q ≤ q̃) |L̂(θ) − L̄(θ)| > ε
2
] = P[(∃θ,G ∈ H, q ∈ {π(G), q̃}) |L̂(θ) − L̄(θ)| > ε

2
]. The last

equality follows from invoking Lemma 7.9.
Note that E[L̂(θ)] = L̄(θ) and that since π(G) ≤ q ≤ q̃, the log-likelihood is bounded

as (∀x) − B ≤ log p(G,q)(x) ≤ 0, where B = log 1
1−q̃ + n log 2 = log max(2m, 1

1−q̄ ) + n log 2.

Therefore, by Hoeffding’s inequality, we have P[|L̂(θ)− L̄(θ)| > ε
2
] ≤ 2e−

mε2

2B2 .
Furthermore, note that there are 2d(H) possible parameters θ, since we need to con-

sider only two values of q ∈ {π(G), q̃}) and because the number of all possible games in H
(identified by their Nash equilibria sets) is d(H) ≡ |∪G∈H{NE(G)}|. Therefore, by the union

bound we get the following uniform convergence P[(∃θ,G ∈ H, q ∈ {π(G), q̃}) |L̂(θ)−L̄(θ)| >
ε
2
] ≤ 4d(H)P[|L̂(θ) − L̄(θ)| > ε

2
] ≤ 4d(H)e−

mε2

2B2 = δ. Finally, by solving for δ we prove our
claim.

The following theorem establishes the complexity of the class of linear influence games,
which implies that the term log d(H) of the generalization bound in Theorem 7.10 is only
polynomial in the number of players n.

Theorem 7.11. LetH be the class of linear influence games. Then d(H) ≡ |∪G∈H{NE(G)}| ≤
2n

n(n+1)
2

+1 ≤ 2n
3

.
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Proof. The logarithm of the number of possible pure-strategy Nash equilibria sets supported
by H (i.e., that can be produced by some game in H) is upper bounded by the VC-dimension
of the class of neural networks with a single hidden layer of n units and n+

(
n
2

)
input units,

linear threshold activation functions, and constant output weights.
For every linear influence game G = (W,b) in H, define the neural network with a

single layer of n hidden units, n of the inputs corresponds to the linear terms x1, . . . , xn
and

(
n
2

)
corresponds to the quadratic polynomial terms xixj for all pairs of players (i, j),

1 ≤ i < j ≤ n. For every hidden unit i, the weights corresponding to the linear terms
x1, . . . , xn are −b1, . . . ,−bn, respectively, while the weights corresponding to the quadratic
terms xixj are −wij, for all pairs of players (i, j), 1 ≤ i < j ≤ n, respectively. The weights of
the bias term of all the hidden units are set to 0. All n output weights are set to 1 while the
weight of the output bias term is set to 0. The output of the neural network is 1[x /∈ NE(G)].
Note that we define the neural network to classify non-equilibrium as opposed to equilibrium
to keep the convention in the neural network literature to define the threshold function to
output 0 for input 0. The alternative is to redefine the threshold function to output 1 instead
for input 0.

Finally, we use the VC-dimension of neural networks [Sontag, 1998].

From Theorems 7.10 and 7.11, we state the generalization bounds for linear influence
games.

Corollary 7.12. Let θ̂ = (Ĝ, q̂) be the maximum likelihood estimate in eq.(7.7) and θ̄ =

(Ḡ, q̄) be the maximum expected likelihood estimate, i.e. θ̂ = arg maxθ∈ΥL̂(θ) and θ̄ =
arg maxθ∈ΥL̄(θ), then with probability at least 1− δ:

L̄(θ̂) ≥ L̄(θ̄)−
(

log max(2m, 1
1−q̄ ) + n log 2

)√
2
m

(
n3 log 2 + log 4

δ

)
(7.11)

where H is the class of linear influence games and Υ = {(G, q) | G ∈ H∧ 0 < π(G) < q < 1}
is the hypothesis space of non-trivial identifiable linear influence games.

7.6 Algorithms

In this section, we approximate the maximum likelihood problem problem by maximizing
the number of observed equilibria in the data, suitable for a hypothesis space of games with
small true proportion of equilibria. We then present our convex loss minimization approach.
We also discuss baseline methods such as sigmoidal approximation and exhaustive search.

First, we discuss some negative results that justifies the use of simple approaches. Count-
ing the number of Nash equilibria is NP-hard for influence games, and so is computing the
log-likelihood function and therefore maximum likelihood estimation. This is not a disadvan-
tage relative to probabilistic graphical models, since computing the log-likelihood function
is also NP-hard for Ising models and Markov random fields in general, while learning is
also NP-hard for Bayesian networks. General approximation techniques such as pseudo-
likelihood estimation do not lead to tractable methods for learning linear influence games.
From an optimization perspective, the log-likelihood function is not continuous because of
the number of equilibria. Therefore, we cannot rely on concepts such as Lipschitz continuity.
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Furthermore, bounding the number of equilibria by known bounds for Ising models leads to
trivial bounds. (Formal proofs and discussion are included in Appendix K.)

7.6.1 An Exact Quasi-Linear Method for General Games: Sample-
Picking

As a first approach, consider solving the maximum likelihood estimation problem in eq.(7.7)
by an exact exhaustive search algorithm. This algorithm iterates through all possible Nash
equilibria sets, i.e. for s = 0, . . . , 2n, we generate all possible sets of size s with elements
from the joint-action space {−1,+1}n. Recall that there exists

(
2n

s

)
of such sets of size s and

since
∑2n

s=0

(
2n

s

)
= 22n the search space is super-exponential in the number of players n.

Based on few observations, we can obtain an O(m logm) algorithm for m samples. First,
note that the above method does not constrain the set of Nash equilibria in any fashion.
Therefore, only joint-actions that are observed in the data are candidates of being Nash
equilibria in order to maximize the log-likelihood. This is because the introduction of an
unobserved joint-action will increase the true proportion of equilibria without increasing
the empirical proportion of equilibria and thus leading to a lower log-likelihood in eq.(7.7).
Second, given a fixed number of Nash equilibria k, the best strategy would be to pick the
k joint-actions that appear more frequently in the observed data. This will maximize the
empirical proportion of equilibria, which will maximize the log-likelihood. Based on these
observations, we propose Algorithm 7.1.

Algorithm 7.1 Sample-Picking for General Games.

Input: Dataset D = x(1), . . . ,x(m)

Compute the unique samples y(1), . . . ,y(U) and their frequency p̂(1), . . . , p̂(U) in the dataset D
Sort joint-actions by their frequency such that p̂(1) ≥ p̂(2) ≥ · · · ≥ p̂(U)

for each unique sample k = 1, . . . , U do
Define Gk by the Nash equilibria set NE(Gk) = {y(1), . . . ,y(k)}
Compute the log-likelihood L̂(Gk, q̂k) in eq.(7.7) (note that q̂k = π̂(G) = 1

m(p̂(1) + · · ·+ p̂(k)),
π(G) = k

2n )
end for
Output: The game G

k̂
such that k̂ = arg maxkL̂(Gk, q̂k)

As an aside note, the fact that general games do not constrain the set of Nash equilibria,
makes the method more likely to over-fit. On the other hand, influence games will potentially
include unobserved equilibria given the linearity constraints in the search space, and thus
they would be less likely to over-fit.

7.6.2 An Exact Super-Exponential Method for Influence Games:
Exhaustive Search

Note that in the previous subsection, we search in the space of all possible games, not only
the linear influence games. First note that sample-picking for linear games is NP-hard, i.e. at
any iteration of sample-picking, checking whether the set of Nash equilibria NE corresponds
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to an influence game or not is equivalent to the following constraint satisfaction problem
with linear constraints:

min
W,b

1

s.t. (∀x ∈ NE) x1(w1,−1
Tx−1 − b1) ≥ 0 ∧ · · · ∧ xn(wn,−n

Tx−n − bn) ≥ 0
(∀x /∈ NE) x1(w1,−1

Tx−1 − b1) < 0 ∨ · · · ∨ xn(wn,−n
Tx−n − bn) < 0

(7.12)

Note that eq.(7.12) contains “or” operators in order to account for the non-equilibria. This
makes the problem of finding the (W,b) that satisfies such conditions NP-hard for a non-
empty complement set {−1,+1}n − NE . Furthermore, since sample-picking only consider
observed equilibria, the search is not optimal with respect to the space of influence games.

Regarding a more refined approach for enumerating influence games only, note that in
an influence game each player separates hypercube vertices with a linear function, i.e. for
v ≡ (wi,−i, bi) and y ≡ (xix−i,−xi) ∈ {−1,+1}n we have xi(wi,−i

Tx−i− bi) = vTy. Assume
we assign a binary label to each vertex y, then note that not all possible labelings are linearly
separable. Labelings which are linearly separable are called linear threshold functions (LTFs).
A lower bound of the number of LTFs was first provided in Muroga [1965], which showed
that the number of LTFs is at least α(n) ≡ 20.33048n2

. Tighter lower bounds were shown later
in Yamija and Ibaraki [1965] for n ≥ 6 and in Muroga and Toda [1966] for n ≥ 8. Regarding
an upper bound, Winder [1960] showed that the number of LTFs is at most β(n) ≡ 2n

2
. By

using such bounds for all players, we can conclude that there is at least α(n)n = 20.33048n3

and at most β(n)n = 2n
3

influence games (which is indeed another upper bound of the VC-
dimension of the class of influence games; the bound in Theorem 7.11 is tighter and uses
bounds of the VC-dimension of neural networks). The bounds discussed above would bound
the time-complexity of a search algorithm if we could easily enumerate all LTFs for a single
player. Unfortunately, this seems to be far from a trivial problem. By using results in Muroga
[1971], a weight vector v with integer entries such that (∀i) |vi| ≤ β(n) ≡ (n+ 1)(n+1)/2/2n is
sufficient to realize all possible LTFs. Therefore we can conclude that enumerating influence

games takes at most (2β(n) + 1)n
2 ≈ (

√
n+1
2

)
n3

steps, and we propose the use of this method
only for n ≤ 4.

For n = 4 we found that the number of influence games is 23,706. Experimentally, we
did not find differences between this method and sample-picking since most of the time, the
model with maximum likelihood was an influence game.

7.6.3 From Maximum Likelihood to Maximum Empirical Propor-
tion of Equilibria

We approximately perform maximum likelihood estimation for influence games, by maxi-
mizing the empirical proportion of equilibria, i.e. the equilibria in the observed data. This
strategy allows us to avoid computing π(G) as in eq.(7.4) for maximum likelihood estima-
tion (given its dependence on |NE(G)|). We propose this approach for games with small
true proportion of equilibria with high probability, i.e. with probability at least 1 − δ, we
have π(G) ≤ κn

δ
for 0 < κ < 1. Particularly, we will show in Section 7.7 that for influence

games we have κ = 3/4. Given this, our approximate problem relies on a bound of the
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Figure 7.2: KL divergence (blue) and bounds derived in Lemma 7.13 (red) for π = (3/4)n where
n = 9 (left), n = 18 (center) and n = 36 (right). Note that the bounds are very informative when
n→ +∞ (or equivalently when π → 0).

log-likelihood that holds with high probability. We also show that under very mild condi-
tions, the parameters (G, q) belong to the hypothesis space of the original problem with high
probability.

First, we derive bounds on the log-likelihood function.

Lemma 7.13. Given a non-trivial game G with 0 < π(G) < π̂(G), the KL divergence in the
log-likelihood function in eq.(7.7) is bounded as follows:

−π̂(G) log π(G)− log 2 < KL(π̂(G)‖π(G)) < −π̂(G) log π(G) (7.13)

Proof. Let π ≡ π(G) and π̂ ≡ π̂(G). Note that α(π) ≡ limπ̂→0KL(π̂‖π) = 0 and β(π) ≡
limπ̂→1KL(π̂‖π) = − log π ≤ n log 2. Since the function is convex we can upper-bound it by
α(π) + (β(π)− α(π))π̂ = −π̂ log π.

To find a lower bound, we find the point in which the derivative of the original function
is equal to the slope of the upper bound, i.e. ∂KL(π̂‖π)

∂π̂
= β(π)− α(π) = − log π, which gives

π̂∗ = 1
2−π . Then, the maximum difference between the upper bound and the original function

is given by limπ→0−π̂∗ log π −KL(π̂∗‖π) = log 2.

Note that the lower and upper bounds are very informative when π(G) → 0 (or in our
setting when n → +∞), since log 2 becomes small when compared to − log π(G), as shown
in Figure 7.2.

Next, we derive the problem of maximizing the empirical proportion of equilibria from
the maximum likelihood estimation problem.

Theorem 7.14. Assume that with probability at least 1−δ we have π(G) ≤ κn

δ
for 0 < κ < 1.

Maximizing a lower bound (with high probability) of the log-likelihood in eq.(7.7) is equivalent
to maximizing the empirical proportion of equilibria:

max
G∈H

π̂(G) (7.14)

furthermore, for all games G such that π̂(G) ≥ γ for some 0 < γ < 1/2, for sufficiently large
n > logκ (δγ) and optimal mixture parameter q̂ = min(π̂(G), 1 − 1

2m
), we have (G, q̂) ∈ Υ,

where Υ = {(G, q) | G ∈ H ∧ 0 < π(G) < q < 1} is the hypothesis space of non-trivial
identifiable games.
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Proof. By applying the lower bound in Lemma 7.13 in eq.(7.7) to non-trivial games, we have

L̂(G, q̂) = KL(π̂(G)‖π(G))−KL(π̂(G)‖q̂)− n log 2 > −π̂(G) log π(G)−KL(π̂(G)‖q̂)− (n +

1) log 2. Since π(G) ≤ κn

δ
, we have− log π(G) ≥ − log κn

δ
. Therefore L̂(G, q̂) > −π̂(G) log κn

δ
−

KL(π̂(G)‖q̂)− (n+ 1) log 2. Regarding the term KL(π̂(G)‖q̂), if π̂(G) < 1⇒ KL(π̂(G)‖q̂) =
KL(π̂(G)‖π̂(G)) = 0, and if π̂(G) = 1 ⇒ KL(π̂(G)‖q̂) = KL(1‖1 − 1

2m
) = − log(1 − 1

2m
) ≤

log 2 and approaches 0 when m → +∞. Maximizing the lower bound of the log-likelihood
becomes maxG∈H π̂(G) by removing the constant terms that do not depend on G.

In order to prove (G, q̂) ∈ Υ we need to prove 0 < π(G) < q̂ < 1. For proving the first
inequality 0 < π(G), note that π̂(G) ≥ γ > 0, and therefore G has at least one equilibria.
For proving the third inequality q̂ < 1, note that q̂ = min(π̂(G), 1 − 1

2m
) < 1. For proving

the second inequality π(G) < q̂, we need to prove π(G) < π̂(G) and π(G) < 1 − 1
2m

. Since

π(G) ≤ κn

δ
and γ ≤ π̂(G), it suffices to prove (3/4)n

δ
< γ ⇒ π(G) < π̂(G). Similarly we

need to prove (3/4)n

δ
< 1 − 1

2m
⇒ π(G) < 1 − 1

2m
. Putting both together, we have (3/4)n

δ
<

min(γ, 1− 1
2m

) = γ since γ < 1/2 and 1− 1
2m
≥ 1/2. Finally, (3/4)n

δ
< γ ⇔ n > logκ (δγ).

7.6.4 A Non-Concave Maximization Method: Sigmoidal Approx-
imation

A very simple optimization approach can be devised by using a sigmoid in order to approx-
imate the 0/1 function 1[z ≥ 0] in the maximum likelihood problem of eq.(7.7) as well as
when maximizing the empirical proportion of equilibria as in eq.(7.14). We use the following
sigmoidal approximation:

1[z ≥ 0] ≈ Hα,β(z) ≡ 1
2
(1 + tanh( z

β
− arctanh(1− 2α1/n))) (7.15)

The additional term α ensures that for G = (W,b),W = 0,b = 0 we get 1[x ∈ NE(G)] ≈
Hα,β(0)n = α. We perform gradient ascent on these objective functions that have many local
maxima. Note that when maximizing the “sigmoidal” likelihood, each step of the gradient
ascent is NP-hard due to the “sigmoidal” true proportion of equilibria. Therefore, we propose
the use of the sigmoidal maximum likelihood only for n ≤ 15.

In our implementation, we add an `1-norm regularizer −ρ‖W‖1 where ρ > 0 to both
maximization problems. The `1-norm regularizer encourages sparseness and attempts to
lower the generalization error by controlling over-fitting.

7.6.5 Our Proposed Approach: Convex Loss Minimization

From an optimization perspective, it is more convenient to minimize a convex objective
instead of a sigmoidal approximation in order to avoid the many local minima.

Note that maximizing the empirical proportion of equilibria in eq.(7.14) is equivalent to
minimizing the empirical proportion of non-equilibria, i.e. minG∈H (1− π̂(G)). Furthermore,
1 − π̂(G) = 1

m

∑
l 1[x(l) /∈ NE(G)]. Denote by ` the 0/1 loss, i.e. `(z) = 1[z < 0]. For

influence games, maximizing the empirical proportion of equilibria in eq.(7.14) is equivalent
to solving the loss minimization problem:

min
W,b

1

m

∑
l

max
i
`(x

(l)
i (wi,−i

Tx
(l)
−i − bi)) (7.16)
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We can further relax this problem by introducing convex upper bounds of the 0/1 loss.
Note that the use of convex losses also avoids the trivial solution of eq.(7.16), i.e. W =
0,b = 0 (which obtains the lowest log-likelihood as discussed in Remark 7.8). Intuitively
speaking, note that minimizing the logistic loss `(z) = log(1 + e−z) will make z → +∞,
while minimizing the hinge loss `(z) = max (0, 1− z) will make z → 1 unlike the 0/1 loss
`(z) = 1[z < 0] that only requires z = 0 in order to be minimized. In what follows, we
develop four efficient methods for solving eq.(7.16) under specific choices of loss functions,
i.e. hinge and logistic.

In our implementation, we add an `1-norm regularizer ρ‖W‖1 where ρ > 0 to all the
minimization problems. The `1-norm regularizer encourages sparseness and attempts to
lower the generalization error by controlling over-fitting.

Independent Support Vector Machines and Logistic Regression. We can relax the
loss minimization problem in eq.(7.16) by using the loose bound maxi `(zi) ≤

∑
i `(zi). This

relaxation simplifies the original problem into several independent problems. For each player
i, we train the weights (wi,−i, bi) in order to predict independent (disjoint) actions. This leads
to 1-norm SVMs of Bradley and Mangasarian [1998], Zhu et al. [2003] and `1-regularized
logistic regression. We solve the latter with the `1-projection method of Schmidt et al. [2007a].
While the training is independent, our goal is not the prediction for independent players but
the characterization of joint-actions. The use of these well known techniques in our context is
novel, since we interpret the output of SVMs and logistic regression as the parameters of an
influence game. Therefore, we use the parameters to measure empirical and true proportion
of equilibria, KL divergence and log-likelihood in our probabilistic model.

Simultaneous Support Vector Machines. While converting the loss minimization prob-
lem in eq.(7.16) by using loose bounds allow to obtain several independent problems with
small number of variables, a second reasonable strategy would be to use tighter bounds at
the expense of obtaining a single optimization problem with a higher number of variables.

For the hinge loss `(z) = max (0, 1− z), we have maxi `(zi) = max (0, 1− z1, . . . , 1− zn)
and the loss minimization problem in eq.(7.16) becomes the following primal linear program:

min
W,b,ξ

1

m

∑
l

ξl + ρ‖W‖1

s.t. (∀l, i) x(l)
i (wi,−i

Tx
(l)
−i − bi) ≥ 1− ξl , (∀l) ξl ≥ 0

(7.17)

where ρ > 0.
Note that eq.(7.17) is equivalent to a linear program since we can set W = W+ −W−,

‖W‖1 =
∑

ij w
+
ij + w−ij and add the constraints W+ ≥ 0 and W− ≥ 0. We follow the

regular SVM derivation by adding slack variables ξl for each sample l. This problem is a
generalization of 1-norm SVMs of Bradley and Mangasarian [1998], Zhu et al. [2003].

By Lagrangian duality, the dual of the problem in eq.(7.17) is the following linear pro-
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gram:

max
α

∑
li

αli

s.t. (∀i) ‖∑l αlix
(l)
i x

(l)
−i‖∞ ≤ ρ , (∀l, i) αli ≥ 0

(∀i) ∑l αlix
(l)
i = 0 , (∀l) ∑i αli ≤ 1

m

(7.18)

Furthermore, strong duality holds in this case. Note that eq.(7.18) is equivalent to a linear
program since we can transform the constraint ‖c‖∞ ≤ ρ into −ρ1 ≤ c ≤ ρ1.

Simultaneous Logistic Regression. For the logistic loss `(z) = log(1 + e−z), we could
use the non-smooth loss maxi `(zi) directly. Instead, we chose a smooth upper bound, i.e.
log(1 +

∑
i e
−zi) (Discussion is included in Appendix L.) The loss minimization problem in

eq.(7.16) becomes:

min
W,b

1

m

∑
l

log(1 +
∑

i e
−x(l)

i (wi,−iTx
(l)
−i−bi)) + ρ‖W‖1 (7.19)

where ρ > 0.
In our implementation, we use the `1-projection method of Schmidt et al. [2007a] for

optimizing eq.(7.19). This method performs a limited memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) step in an expanded model (i.e. W = W+−W−, ‖W‖1 =

∑
ij w

+
ij + w−ij)

followed by a projection onto the non-negative orthant to enforce W+ ≥ 0 and W− ≥ 0.

7.7 True Proportion of Equilibria

In this section, we justify the use of convex loss minimization for learning the structure
and parameters of influence games. We define absolute indifference of players and show
that our convex loss minimization approach produces games in which all players are non-
absolutely-indifferent. We then provide a bound of the true proportion of equilibria with
high probability. Our bound only assumes independence of weight vectors among players.
Our bound is distribution-free, i.e. we do not assume a specific distribution for the weight
vector of each player. Furthermore, we do not assume any connectivity properties of the
underlying graph.

Parallel to our analysis, Daskalakis et al. [2011] analyzed a different setting: random
games which structure is drawn from the Erdős-Rényi model (i.e. each edge is present
independently with the same probability p) and utility functions which are random tables.
The analysis in Daskalakis et al. [2011], while more general than ours (which only focus on
influence games), it is at the same time more restricted since it assumes either the Erdős-
Rényi model for random structures or connectivity properties for deterministic structures.

7.7.1 Convex Loss Minimization Produces Non-Absolutely- Indif-
ferent Players

First, we define the notion of absolute indifference of players. Our goal in this subsection
is to show that our proposed convex loss algorithms produce influence games in which all
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players are non-absolutely-indifferent and therefore every player defines constraints to the
true proportion of equilibria.

Definition 7.15. Given an influence game G = (W,b), we say a player i is absolutely indif-
ferent if and only if (wi,−i, bi) = 0, and non-absolutely-indifferent if and only if (wi,−i, bi) 6=
0.

Next, we concentrate on the first ingredient for our bound of the true proportion of
equilibria. We show that independent and simultaneous SVM and logistic regression produce
games in which all players are non-absolutely-indifferent except for some “degenerate” cases.
The following lemma applies to independent SVMs for c(l) = 0 and simultaneous SVMs for
c(l) = max(0,maxj 6=i (1− x(l)

j (wi,−i
Tx

(l)
−i − bi))).

Lemma 7.16. Given (∀l) c(l) ≥ 0, the minimization of the hinge training loss ̂̀(wi,−i, bi) =
1
m

∑
l max(c(l), 1− x(l)

i (wi,−i
Tx

(l)
−i − bi)) guarantees non-absolutely-indifference of player i ex-

cept for some “degenerate” cases, i.e. the optimal solution (w∗i,−i, b
∗
i ) = 0 if and only if (∀j 6=

i)
∑

l 1[x
(l)
i x

(l)
j =1]u(l) =

∑
l 1[x

(l)
i x

(l)
j =−1]u(l) and

∑
l 1[x

(l)
i =1]u(l) =

∑
l 1[x

(l)
i =−1]u(l) where

u(l) is defined as c(l) > 1⇔ u(l) = 0, c(l) < 1⇔ u(l) = 1 and c(l) = 1⇔ u(l) ∈ [0; 1].

Proof. Let fi(x−i) ≡ wi,−i
Tx−i − bi. By noting that max(α, β) = max0≤u≤1 (α + u(β − α)),

we can rewrite ̂̀(wi,−i, bi) = 1
m

∑
l max0≤u(l)≤1 (c(l) + u(l)(1− x(l)

i fi(x
(l)
−i)− c(l))).

Note that ̂̀has the minimizer (w∗i,−i, b
∗
i ) = 0 if and only if 0 belongs to the subdifferential

set of the non-smooth function ̂̀at (wi,−i, bi) = 0. In order to maximize ̂̀, we have c(l) > 1−
x

(l)
i fi(x

(l)
−i)⇔ u(l) = 0, c(l) < 1−x(l)

i fi(x
(l)
−i)⇔ u(l) = 1 and c(l) = 1−x(l)

i fi(x
(l)
−i)⇔ u(l) ∈ [0; 1].

The previous rules simplify at the solution under analysis, since (wi,−i, bi) = 0⇒ fi(x
(l)
−i) = 0.

Let gj(wi,−i, bi) ≡ ∂ ̂̀
∂wij

(wi,−i, bi) and h(wi,−i, bi) ≡ ∂ ̂̀
∂bi

(wi,−i, bi). By making (∀j 6= i) 0 ∈
gj(0, 0) and 0 ∈ h(0, 0), we get (∀j 6= i)

∑
l x

(l)
i x

(l)
j u

(l) = 0 and
∑

l x
(l)
i u

(l) = 0. Finally, by

noting that x
(l)
i ∈ {−1, 1}, we prove our claim.

Remark 7.17. Note that for independent SVMs, the “degenerate” cases in Lemma 7.16
simplify to (∀j 6= i)

∑
l 1[x

(l)
i x

(l)
j = 1] = m

2
and

∑
l 1[x

(l)
i = 1] = m

2
.

The following lemma applies to independent logistic regression for c(l) = 0 and simulta-

neous logistic regression for c(l) =
∑

j 6=i e
−x(l)

j (wi,−iTx
(l)
−i−bi).

Lemma 7.18. Given (∀l) c(l) ≥ 0, the minimization of the logistic training loss ̂̀(wi,−i, bi) =
1
m

∑
l log(c(l) + 1 + e−x

(l)
i (wi,−iTx

(l)
−i−bi)) guarantees non-absolutely-indifference of player i ex-

cept for some “degenerate” cases, i.e. the optimal solution (w∗i,−i, b
∗
i ) = 0 if and only if

(∀j 6= i)
∑

l

1[x
(l)
i x

(l)
j =1]

c(l)+2
=
∑

l

1[x
(l)
i x

(l)
j =−1]

c(l)+2
and

∑
l

1[x
(l)
i =1]

c(l)+2
=
∑

l
1[x

(l)
i =−1]

c(l)+2
.

Proof. Note that ̂̀ has the minimizer (w∗i,−i, b
∗
i ) = 0 if and only if the gradient of the

smooth function ̂̀ is 0 at (wi,−i, bi) = 0. Let gj(wi,−i, bi) ≡ ∂ ̂̀
∂wij

(wi,−i, bi) and h(wi,−i, bi) ≡
∂ ̂̀
∂bi

(wi,−i, bi). By making (∀j 6= i) gj(0, 0) = 0 and h(0, 0) = 0, we get (∀j 6= i)
∑

l

x
(l)
i x

(l)
j

c(l)+2
= 0

and
∑

l
x
(l)
i

c(l)+2
= 0. Finally, by noting that x

(l)
i ∈ {−1, 1}, we prove our claim.
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Remark 7.19. Note that for independent logistic regression, the “degenerate” cases in
Lemma 7.18 simplify to (∀j 6= i)

∑
l 1[x

(l)
i x

(l)
j = 1] = m

2
and

∑
l 1[x

(l)
i = 1] = m

2
.

Based on these results, after termination of our proposed algorithms, we fix cases in which
the optimal solution (w∗i,−i, b

∗
i ) = 0 by setting b∗i = 1 if the action of player i was mostly

−1 or b∗i = −1 otherwise. We point out to the careful reader that we did not include the
`1-regularization term in the above proofs since the subdifferential of ρ‖wi,−i‖1 vanishes at
wi,−i = 0, and therefore our proofs still hold.

7.7.2 Bounding the True Proportion of Equilibria

In what follows, we concentrate on the second ingredient for our bound of the true proportion
of equilibria. We show that for a game with a single non-absolutely-indifferent player, the
true proportion of equilibria is bounded by 3/4.

Lemma 7.20. Given an influence game G = (W,b) with non-absolutely-indifferent player
i and absolutely-indifferent players ∀j 6= i, the following statements hold:

i. x ∈ NE(G)⇔ xi(wi,−i
Tx−i − bi) ≥ 0

ii. |NE(G)| = 2n−1 +
∑

x−i
1[wi,−i

Tx−i − bi = 0]

iii. 1
2
≤ π(G) ≤ 3

4

(7.20)

Proof. Let fi(x−i) ≡ wi,−i
Tx−i − bi. For proving Claim i, note that 1[x ∈ NE(G)] =

minj 1[xjfj(x−j) ≥ 0] = 1[xifi(x−i) ≥ 0] minj 6=i 1[xjfj(x−j) ≥ 0]. Since all players except
i are absolutely-indifferent, we have (∀j 6= i) (wj,−j, bj) = 0 ⇒ fj(x−j) = 0 which implies
that minj 6=i 1[xjfj(x−j) ≥ 0] = 1. Therefore, 1[x ∈ NE(G)] = 1[xifi(x−i) ≥ 0].

For proving Claim ii, by Claim i we have |NE(G)| =
∑

x 1[xifi(x−i) ≥ 0]. We can
rewrite |NE(G)| =

∑
x 1[xi = +1]1[fi(x−i) ≥ 0] +

∑
x 1[xi = −1]1[fi(x−i) ≤ 0] or equiva-

lently |NE(G)| = ∑x−i
1[fi(x−i) ≥ 0] +

∑
x−i

1[fi(x−i) ≤ 0] = 2n−1 +
∑

x−i
1[fi(x−i) = 0].

For proving Claim iii, by eq.(7.4) and Claim ii we have π(G) = |NE(G)|
2n

= 1
2
+ 1

2n
α(wi,−i, bi),

where α(wi,−i, bi) ≡
∑

x−i
1[wi,−i

Tx−i − bi = 0]. This proves the lower bound π(G) ≥ 1
2
.

Geometrically speaking, α(wi,−i, bi) is the number of vertices of the (n − 1)-dimensional
hypercube that are covered by the hyperplane with normal wi,−i and bias bi. Recall that
(wi,−i, bi) 6= 0. If wi,−i = 0 and bi 6= 0 then α(wi,−i, bi) =

∑
x−i

1[bi = 0] = 0 ⇒ π(G) = 1
2
.

If wi,−i 6= 0 then as noted in Aichholzer and Aurenhammer [1996] a hyperplane with n− 2
zeros on wi,−i (i.e. a (n− 2)-parallel hyperplane) covers exactly half of the 2n−1 vertices, the

maximum possible. Therefore, π(G) = 1
2

+ 1
2n
α(wi,−i, bi) ≤ 1

2
+ 2n−2

2n
= 3

4
.

Next, we present our bound for the true proportion of equilibria of games in which all
players are non-absolutely-indifferent.

Theorem 7.21. If all players are non-absolutely-indifferent and if the rows of an influence
game G = (W,b) are independent (but not necessarily identically distributed) random vec-
tors, i.e. for every player i, (wi,−i, bi) is independently drawn from an arbitrary distribution
Pi, then the expected true proportion of equilibria is bounded as follows:

(1/2)n ≤ EP1,...,Pn [π(G)] ≤ (3/4)n (7.21)
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furthermore, the following high probability statement holds:

PP1,...,Pn [π(G) ≤ (3/4)n

δ
] ≥ 1− δ (7.22)

Proof. Let yi ≡ 1[xi(wi,−i
Tx−i − bi) ≥ 0], P ≡ {P1, . . . ,Pn} and U the uniform distribu-

tion for x ∈ {−1,+1}n. By eq.(7.4), EP [π(G)] = EP [ 1
2n

∑
x

∏
i yi] = EP [EU [

∏
i yi]] =

EU [EP [
∏

i yi]]. Note that each yi is independent since each (wi,−i, bi) is independently dis-
tributed. Therefore, EP [π(G)] = EU [

∏
i EPi [yi]]. Similarly each zi ≡ EPi [yi] is indepen-

dent since each (wi,−i, bi) is independently distributed. Therefore, EP [π(G)] = EU [
∏

i zi] =∏
i EU [zi] =

∏
i EU [EPi [yi]] =

∏
i EPi [EU [yi]]. Note that EU [yi] is the true proportion of equi-

libria of an influence game with non-absolutely-indifferent player i and absolutely-indifferent
players ∀j 6= i, and therefore 1/2 ≤ EU [yi] ≤ 3/4 by Claim iii of Lemma 7.20. Finally, we
have EP [π(G)] ≥∏i EPi [1/2] = (1/2)n and similarly EP [π(G)] ≤∏i EPi [3/4] = (3/4)n.

By Markov’s inequality, given that π(G) ≥ 0, we have PP [π(G) ≥ c] ≤ EP [π(G)]
c
≤ (3/4)n

c
.

For c = (3/4)n

δ
⇒ PP [π(G) ≥ (3/4)n

δ
] ≤ δ ⇒ PP [π(G) ≤ (3/4)n

δ
] ≥ 1− δ.

Remark 7.22. Under the same assumptions of Theorem 7.21, it is possible to prove that

with probability at least 1 − δ we have π(G) ≤ (3/4)n + 3/8
√

2 log 1
δ

by using Hoeffding’s

lemma. We point out that such a bound is not better than the Markov’s bound derived above.

7.8 Experimental Results

For learning influence games we used our convex loss methods: independent and simultane-
ous SVM and logistic regression. Additionally, we used the (super-exponential) exhaustive
search method only for n ≤ 4. As a baseline, we used the sigmoidal maximum likelihood
(NP-hard) only for n ≤ 15 as well as the sigmoidal maximum empirical proportion of equi-
libria. Regarding the parameters α and β our sigmoidal function in eq.(7.15), we found
experimentally that α = 0.1 and β = 0.001 achieved the best results.

We compare learning influence games to learning Ising models. For n ≤ 15 players,
we perform exact `1-regularized maximum likelihood estimation by using the FOBOS algo-
rithm [Duchi and Singer, 2009b,c] and exact gradients of the log-likelihood of the Ising model.
Since the computation of the exact gradient at each step is NP-hard, we used this method
only for n ≤ 15. For n > 15 players, we use the Höfling-Tibshirani method [Höfling and Tib-
shirani, 2009], which uses a sequence of first-order approximations of the exact log-likelihood.
We also used a two-step algorithm, by first learning the structure by `1-regularized logistic
regression [Wainwright et al., 2006] and then using the FOBOS algorithm [Duchi and Singer,
2009b,c] with belief propagation for gradient approximation. We did not find a statistically
significant difference between the test log-likelihood of both algorithms and therefore we only
report the latter.

Our experimental setup is as follows: after learning a model for different values of the
regularization parameter ρ in a training set, we select the value of ρ that maximizes the log-
likelihood in a validation set, and report statistics in a test set. For synthetic experiments,
we report the Kullback-Leibler (KL) divergence, average precision (one minus the fraction
of falsely included equilibria), average recall (one minus the fraction of falsely excluded
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equilibria) in order to measure the closeness of the recovered models to the ground truth.
For real-world experiments, we report the log-likelihood. In both synthetic and real-world
experiments, we report the number of equilibria and the empirical proportion of equilibria.

We first test the ability of the proposed methods to recover the ground truth structure
from data. We use a small first synthetic model in order to compare with the (super-
exponential) exhaustive search method. The ground truth model Gg = (Wg,bg) has n = 4
players and 4 Nash equilibria (i.e. π(Gg)=0.25), Wg was set according to Figure 7.3 (the
weight of each edge was set to +1) and bg = 0. The mixture parameter of the ground truth
qg was set to 0.5,0.7,0.9. For each of 50 repetitions, we generated a training, a validation
and a test set of 50 samples each. Figure 7.3 shows that our convex loss methods and sig-
moidal maximum likelihood outperform (lower KL) exhaustive search, sigmoidal maximum
empirical proportion of equilibria and Ising models. Note that the exhaustive search method
which performs exact maximum likelihood suffers from over-fitting and consequently does
not produce the lowest KL. From all convex loss methods, simultaneous logistic regression
achieves the lowest KL. For all methods, the recovery of equilibria is perfect for qg = 0.9
(number of equilibria equal to the ground truth, equilibrium precision and recall equal to 1).
Additionally, the empirical proportion of equilibria resembles the mixture parameter of the
ground truth qg.

Next, we use a relatively larger second synthetic model with more complex interactions.
We still keep the model small enough in order to compare with the (NP-hard) sigmoidal
maximum likelihood method. The ground truth model Gg = (Wg,bg) has n = 9 players and
16 Nash equilibria (i.e. π(Gg)=0.03125), Wg was set according to Figure 7.4 (the weight
of each blue and red edge was set to +1 and −1 respectively) and bg = 0. The mixture
parameter of the ground truth qg was set to 0.5,0.7,0.9. For each of 50 repetitions, we
generated a training, a validation and a test set of 50 samples each. Figure 7.4 shows that
our convex loss methods outperform (lower KL) sigmoidal methods and Ising models. From
all convex loss methods, simultaneous logistic regression achieves the lowest KL. For convex
loss methods, the equilibrium recovery is better than the remaining methods (number of
equilibria equal to the ground truth, higher equilibrium precision and recall). Additionally,
the empirical proportion of equilibria resembles the mixture parameter of the ground truth
qg.

In the next experiment, we show that the performance of convex loss minimization im-
proves as the number of samples increases. We used random graphs with slightly more vari-
ables and varying number of samples (10,30,100,300). The ground truth model Gg = (Wg,bg)
contains n = 20 players. For each of 20 repetitions, we generate edges in the ground truth
model Wg with a required density (either 0.2,0.5,0.8). For simplicity, the weight of each edge
is set to +1 with probability P (+1) and to −1 with probability 1−P (+1). Hence, the Nash
equilibria of the generated games does not depend on the magnitude of the weights, just on
their sign. We set the bias bg = 0 and the mixture parameter of the ground truth qg = 0.7.
We then generated a training and a validation set with the same number of samples. Figure
7.5 shows that our convex loss methods outperform (lower KL) sigmoidal maximum empiri-
cal proportion of equilibria and Ising models (except for the synthetic model with high true
proportion of equilibria: density 0.8, P (+1) = 0, NE> 1000). The results are remarkably
better when the number of equilibria in the ground truth model is small (e.g. for NE< 20).
From all convex loss methods, simultaneous logistic regression achieves the lowest KL.
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Figure 7.3: Closeness of the recovered models to the ground truth synthetic model for different
mixture parameters qg. Our convex loss methods (IS,SS: independent and simultaneous SVM,
IL,SL: independent and simultaneous logistic regression) and sigmoidal maximum likelihood (S1)
have lower KL than exhaustive search (EX), sigmoidal maximum empirical proportion of equilibria
(S2) and Ising models (IM). For all methods, the recovery of equilibria is perfect for qg = 0.9
(number of equilibria equal to the ground truth, equilibrium precision and recall equal to 1) and
the empirical proportion of equilibria resembles the mixture parameter of the ground truth qg.

In the next experiment, we evaluate two effects in our approximation methods. First,
we evaluate the impact of removing the true proportion of equilibria from our objective
function, i.e. the use of maximum empirical proportion of equilibria instead of maximum
likelihood. Second, we evaluate the impact of using convex losses instead of a sigmoidal
approximation of the 0/1 loss. We used random graphs with varying number of players and
50 samples. The ground truth model Gg = (Wg,bg) contains n = 4, 6, 8, 10, 12 players. For
each of 20 repetitions, we generate edges in the ground truth model Wg with a required
density (either 0.2,0.5,0.8). As in the previous experiment, the weight of each edge is set to
+1 with probability P (+1) and to −1 with probability 1− P (+1). We set the bias bg = 0
and the mixture parameter of the ground truth qg = 0.7. We then generated a training and a
validation set with the same number of samples. Figure 7.6 shows that in general, convex loss
methods outperform (lower KL) sigmoidal maximum empirical proportion of equilibria, and
the latter one outperforms sigmoidal maximum likelihood. A different effect is observed for
mild (0.5) to high (0.8) density and P (+1) = 1 in which the sigmoidal maximum likelihood
obtains the lowest KL. In a closer inspection, we found that the ground truth games usually
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Figure 7.4: Closeness of the recovered models to the ground truth synthetic model for different
mixture parameters qg. Our convex loss methods (IS,SS: independent and simultaneous SVM,
IL,SL: independent and simultaneous logistic regression) have lower KL than sigmoidal maximum
likelihood (S1), sigmoidal maximum empirical proportion of equilibria (S2) and Ising models (IM).
For convex loss methods, the equilibrium recovery is better than the remaining methods (number
of equilibria equal to the ground truth, higher equilibrium precision and recall) and the empirical
proportion of equilibria resembles the mixture parameter of the ground truth qg.

have only 2 equilibria: (+1, . . . ,+1) and (−1, . . . ,−1), which seems to present a challenge
for convex loss methods. It seems that for these specific cases, removing the true proportion
of equilibria from the objective function negatively impacts the estimation process, but note
that sigmoidal maximum likelihood is not computationally feasible for n > 15.

We used the U.S. congressional voting records in order to measure the generalization
performance of convex loss minimization in a real-world dataset. The dataset is publicly
available at http://www.senate.gov/. We used the first session of the 104th congress (Jan
1995 to Jan 1996, 613 votes), the first session of the 107th congress (Jan 2001 to Dec 2001,
380 votes) and the second session of the 110th congress (Jan 2008 to Jan 2009, 215 votes).
Following on other researchers who have experimented with this data set (e.g. Banerjee et al.
[2008]), abstentions were replaced with negative votes. Since reporting the log-likelihood
requires computing the number of equilibria (which is NP-hard), we selected only 20 senators
by stratified random sampling. We randomly split the data into three parts. We performed
six repetitions by making each third of the data take turns as training, validation and testing
sets. Figure 7.7 shows that our convex loss methods outperform (higher log-likelihood)
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Figure 7.5: KL divergence between the recovered models and the ground truth for datasets of
different number of samples. Each chart shows the density of the ground truth, probability P (+1)
that an edge has weight +1, and average number of equilibria (NE). Our convex loss methods (IS,SS:
independent and simultaneous SVM, IL,SL: independent and simultaneous logistic regression) have
lower KL than sigmoidal maximum empirical proportion of equilibria (S2) and Ising models (IM).
The results are remarkably better when the number of equilibria in the ground truth model is small
(e.g. for NE< 20).

sigmoidal maximum empirical proportion of equilibria and Ising models. From all convex
loss methods, simultaneous logistic regression achieves the lowest KL. For all methods, the
number of equilibria (and so the true proportion of equilibria) is low.

We apply convex loss minimization to larger problems, by learning structures of games
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Figure 7.6: KL divergence between the recovered models and the ground truth for datasets of
different number of players. Each chart shows the density of the ground truth, probability P (+1)
that an edge has weight +1, and average number of equilibria (NE) for n = 2;n = 14. In general,
simultaneous logistic regression (SL) has lower KL than sigmoidal maximum empirical proportion
of equilibria (S2), and the latter one has lower KL than sigmoidal maximum likelihood (S1). Other
convex losses behave the same as simultaneous logistic regression (omitted for clarity of presenta-
tion).

from all 100 senators. Figure 7.8 shows that simultaneous logistic regression produce struc-
tures that are sparser than its independent counterpart. The simultaneous method better
elicits the bipartisan structure of the congress. We define the influence of player j to all other
players as

∑
i |wij| after normalizing all weights, i.e. for each player i we divide (wi,−i, bi) by
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Figure 7.7: Statistics for games learnt from 20 senators from the first session of the 104th congress,
first session of the 107th congress and second session of the 110th congress. The log-likelihood of
our convex loss methods (IS,SS: independent and simultaneous SVM, IL,SL: independent and si-
multaneous logistic regression) is higher than sigmoidal maximum empirical proportion of equilibria
(S2) and Ising models (IM). For all methods, the number of equilibria (and so the true proportion
of equilibria) is low.

‖wi,−i‖1 + |bi|. Note that Jeffords and Clinton are one of the 5 most directly-influential as
well as 5 least directly-influenceable (high bias) senators, in the 107th and 110th congress
respectively. McCain and Feingold are both in the list of 5 most directly-influential senators
in the 104th and 107th congress. McCain appears again in the list of 5 least influenciable
senators in the 110th congress.

We test the hypothesis that influence between senators of the same party are stronger
than senators of different party. We learn structures of games from all 100 senators from the
101th congress to the 111th congress (Jan 1989 to Dec 2010). The number of votes casted
for each session were average: 337, minimum: 215, maximum: 613. Figure 7.9 validates
our hypothesis and more interestingly, it shows that influence between different parties is
decreasing over time. Note that the influence from Obama to Republicans increased in the
last sessions, while McCain’s influence to Republicans decreased.

7.9 Discussion

It is important to point out that our work is not in competition with the work in probabilistic
graphical models, e.g. Ising models. Our goal is to learn the structure and parameters of
games from data, and for this end, we propose a probabilistic model that is inspired by
the concept of equilibrium in game theory. While we illustrate the benefit of our model in
the U.S. congressional voting records, we believe that each model has its own benefits. If
the practitioner “believes” that the data at hand is generated by a class of models, then
the interpretation of the learnt model allows obtaining insight of the problem at hand. Note
that none of the existing models (including ours) can be validated as the ground truth model
that generated the real-world data, or as being more or less “realistic” with respect to other
model. While generalization in unseen data is a very important measurement, a model
with better generalization is not the “ground truth model” of the real-world data at hand.
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Figure 7.8: Matrix of influence weights for games learnt from all 100 senators, from the first
session of the 104th congress (left), first session of the 107th congress (center) and second session
of the 110th congress (right), by using our independent (a) and simultaneous (b) logistic regression
methods. A row represents how every other senator influence the senator in such row. Positive
influences are shown in blue, negative influences are shown in red. Democrats are shown in the
top/left corner, while Republicans are shown in the bottom/right corner. Note that simultaneous
method produce structures that are sparser than its independent counterpart. Partial view of
the graph for simultaneous logistic regression (c). Most directly-influential (d) and least directly-
influenceable (e) senators. Regularization parameter ρ = 0.0006.

Finally, while our model is simple, it is well founded and we show that it is far from being
computationally trivial. Therefore, we believe it has its own right to be analyzed.
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Figure 7.9: Direct influence between parties and influences from Obama and McCain. Games were
learnt from all 100 senators from the 101th congress (Jan 1989) to the 111th congress (Dec 2010)
by using our simultaneous logistic regression method. Direct influence between senators of the
same party are stronger than senators of different party, which is also decreasing over time. In the
last sessions, influence from Obama to Republicans increased, and influence from McCain to both
parties decreased. Regularization parameter ρ = 0.0006.

The special class of graphical games considered here is related to the well-known linear
threshold model (LTM) in sociology [Granovetter, 1978], recently very popular within the
social network and theoretical computer science community [Kleinberg, 2007]. LTMs are
usually studied as the basis for some kind of diffusion process. A typical problem is the
identification of most influential individuals in a social network. An LTM is not in itself
a game-theoretic model and, in fact, Granovetter himself argues against this view in the
context of the setting and the type of questions in which he was most interested [Granovetter,
1978]. To the best of our knowledge, subsequent work on LTMs has not taken a strictly
game-theoretic view either. Our model is also related to a particular model of discrete
choice with social interactions in econometrics (see, e.g. Brock and Durlauf [2001]). The
main difference is that we take a strictly non-cooperative game-theoretic approach within
the classical “static”/one-shot game framework and do not use a random utility model. In
addition, we do not make the assumption of rational expectations, which is equivalent to
assuming that all players use exactly the same mixed strategy. As an aside note, regarding
learning of information diffusion models over social networks, [Saito et al., 2010] considers
a dynamic (continuous time) LTM that has only positive influence weights and a randomly
generated threshold value.

There is still quite a bit of debate as to the appropriateness of game-theoretic equilib-
rium concepts to model individual human behavior in a social context. Camerer’s book on
behavioral game theory [Camerer, 2003] addresses some of the issues. We point out that
there is a broader view of behavioral data, beyond those generated by individual human
behavior (e.g. institutions such as nations and industries, or engineered systems such as
autonomous-response devices in residential or commercial properties that are programmed
to control electricity usage based on user preferences). Our interpretation of Camerer’s posi-
tion is not that Nash equilibiria is universally a bad predictor but that it is not consistently
the best, for reasons that are still not well understood. This point is best illustrated in
Chapter 3, Figure 3.1 of Camerer [2003]. Quantal response equilibria (QRE) has been pro-
posed as an alternative to Nash in the context of behavioral game theory. Models based
on QRE have been shown superior during initial play in some experimental settings, but
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most experimental work assume that the game’s payoff matrices are known and only the
“precision parameter” is estimated, e.g. Wright and Leyton-Brown [2010]. Finally, most of
the human-subject experiments in behavioral game theory involve only a handful of players,
and the scalability of those results to games with many players is unclear.

In this work we considered pure-strategy Nash equilibria only. Note that the univer-
sality of mixed-strategy Nash equilibria does not diminish the importance of pure-strategy
equilibria in game theory. Indeed, a debate still exist within the game theory commu-
nity as to the justification for randomization, specially in human contexts. We decided to
ignore mixed-strategies due to the significant added complexity. Note that we learn exclu-
sively from observed joint-actions, and therefore we cannot assume knowledge of the internal
mixed-strategies of players. We could generalize our model to allow for mixed-strategies by
defining a process in which a joint mixed strategy P from the set of mixed-strategy Nash equi-
librium (or its complement) is drawn according to some distribution, then a (pure-strategy)
realization x is drawn from P that would correspond to the observed joint-actions.

In this chapter we considered a “global” noise process, which is governed with a probabil-
ity q of selecting an equilibrium. Potentially better and more natural “local” noise processes
are possible, at the expense of producing a significantly more complex generative model than
the one considered in this chapter. For instance, we could use a noise process that is formed
of many independent, individual noise processes, one for each player. As an example, con-
sider a the generative model in which we first select an equilibrium x of the game and then
each player i, independently, acts according to xi with probability qi and switches its action
with probability 1 − qi. The problem with such a model is that it leads to a significantly
more complex expression for the generative model and thus likelihood functions. This is
in contrast to the simplicity afforded us by the generative model with a more global noise
process defined above.

7.10 Concluding Remarks

There are several ways of extending this research. We can extend our approach to ε-
approximate pure-strategy Nash equilibria. In this case, for each player instead of one
condition, we will have two best-response conditions which are still linear in W and b.
Additionally, we can extend our approach to a broader class of graphical games and non-
Boolean actions. Note that our analysis does not rely on binary actions, but on binary
features of one player 1[xi = 1] or two players 1[xi = xj]. We can use features of three play-
ers 1[xi = xj = xk] or of non-Boolean actions 1[xi = 3, xj = 7]. This kernelized version is
still linear W and b. These extensions are possible since our algorithms and analysis rely on
linearity and binary features, additionally the VC-dimension can be modified by changing
the inputs of the neural networks.

More sophisticated noise processes as well as mixed-strategy Nash equilibria need to be
considered and studied. Different upper bounds for the 0/1 loss (e.g. exponential, smooth
hinge) need to be analyzed. Our approach can be easily extended to parameter learning for
fixed structures by using a `2

2 regularizer instead. Finally, topic-specific and time-varying
versions of our model would elicit differences in preferences and trends.
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Chapter 8

Conclusions and Future Work

8.1 Learning Gaussian MRFs

We presented three regularizers for maximum likelihood estimation of Gaussian MRFs: local
constancy for datasets where variables correspond to a measurement in a manifold (silhou-
ettes, motion trajectories, 2D and 3D images) in Chapter 2; variable selection for finding
few interacting nodes from datasets with thousands of variables in Chapter 3; and multi-
task learning for a more efficient use of data which is available for multiple related tasks
in Chapter 4. For these regularizers, we showed bounds of the eigenvalues of the optimal
solution, convergence of block coordinate descent optimization, and connections to the con-
tinuous quadratic knapsack problem and the quadratic trust-region problem. We presented
experimental results on a wide range of complex real-world datasets with a diverse nature
of probabilistic relationships: walking video sequences, motion capture, cardiac MRI, brain
fMRI, gene expression, stock prices, world weather.

There are several ways of extending this research. Regarding our local constancy prior,
although the positive definiteness properties of the precision matrix as well as the optimiza-
tion algorithm still hold when including operators such as the Laplacian for encouraging
smoothness, benefits of such a regularization approach need to be analyzed.

In practice, our techniques converge in a small number of iterations, but a more precise
analysis of the rate of convergence needs to be performed. We could generalize our results
on different priors for any non-negative convex regularizer. In this general setting, we could
analyze the convergence rates for block coordinate descent optimization for learning Gaussian
MRFs, similar to the work on the cyclic coordinate descent method for general objectives
with an `1 regularizer [Saha and Tewari, 2010]. Regarding bounds of the eigenvalues of
the optimal solution, we can use the concept of conjugate functions for understanding the
relationship between the primal and dual problems.

Additionally, we can analyze conditions for which the recovered edges and parameters
approximate the ground truth, similar to the work on edge recovery of Ravikumar et al.
[2008] and consistency of the Frobenius norm of Rothman et al. [2008]. Note that given
the results of Chapter 6, consistency of the Frobenius norm implies a good generalization
performance (expected log-likelihood).

Regarding our multi-task prior, we experimentally found that diagonal penalization does
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not lead to a better generalization performance, when compared to not penalizing the di-
agonals. On the other hand, our methods with and without diagonal penalization recover
the ground truth edges similarly well. Note that the consistency analysis of edge recovery in
[Ravikumar et al., 2008] considers the single-task problem without diagonal penalization. It
would be interesting to theoretically analyze whether diagonal penalization hurts either edge
recovery, consistency of the Frobenius norm or generalization performance. Additionally, we
hope the connection to the quadratic knapsack and trust-region problems will be useful for
other multi-task problems, e.g. regression.

8.2 Learning Discrete MRFs

In Chapter 5, we focused on learning sparse discrete MRFs through maximum likelihood
estimation. In this case, computing the objective function as well as its gradient is NP-hard.
We studied the convergence rate of stochastic optimization of exact NP-hard objectives, for
which only biased estimates of the gradient are available. We provided a convergence-rate
analysis of deterministic errors and extend our analysis to biased stochastic errors.

There are several ways of extending this research. Although we focused on Ising models,
the ideas developed in Chapter 5 could be applied to Markov random fields with higher order
cliques. Our analysis can be easily extended to parameter learning for fixed structures by
using a `2

2 regularizer instead.
Although we show that accelerated proximal gradient is not guaranteed to converge in

our specific biased stochastic setting, necessary conditions for its convergence needs to be
investigated.

Note that our analysis used very little knowledge regarding the specifics of the (B, V, S,D)-
sampler, e.g. MCMC. In fact, the results of [Peskun, 1973] apply to estimates where all the
samples are generated by a single MCMC simulation, and therefore the samples are not inde-
pendent. On the other hand, practitioners perform several MCMC simulations and use only
the last sample from each of the simulations. It is clear that the results of [Peskun, 1973] for
the dependent samples approach provides a worst case bound for the independent samples
approach. It is probable that tighter results can be obtained by revisiting this problem.
Besides this, we believe that by using more knowledge of the MCMC sampler (e.g. burn-in
time, dependence between iterations in forward-backward splitting) we could obtain tighter
and more informative convergence rates.

As we mentioned in Chapter 5, analytical approximations of the bias and variance con-
stants (B and V ) seem to be difficult to obtain even for specific classes, e.g. Ising models.
More work needs to be performed along this line.

8.3 General Ideas for Learning Gaussian or Discrete

MRFs

In a real-world scenario, practitioners usually mix different priors in the learning process.
Block coordinate descent methods, forward-backward splitting and projected gradient meth-
ods rely on a closed-form step at each iteration. Typically, this closed-form step would need
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to be specifically derived for each particular mixture of priors. We wonder whether it is
possible to produce a more general algorithm that guarantees convergence and, at the same
time, does not require these analytical derivations. A reasonable approach would be to se-
quentially apply the closed-form step for the different priors in the mixture, although this
seems to be a non-trivial problem since the order in which the priors are applied might affect
the final solution.

Another very interesting line of research would be to produce algorithms for learning
graphical models with continuous and discrete variables.

For real-world data, we used the test log-likelihood in order to measure the generaliza-
tion performance and the test classification accuracy to measure the discriminability of the
models. For synthetic data, we used ROC curves to measure the quality of edge recovery.
From a methodological point of view, we wonder whether it is possible to devise a method
to measure the quality of edge recovery in real-world data.

8.4 Lipschitz Parameterization of Probabilistic Graph-

ical Models

In Chapter 6, we showed general results for graphical models that allow understanding maxi-
mum likelihood estimation with regularizers on the differences of parameters, the generaliza-
tion ability of graphical models, and the use of model parameters as features in classification,
dimensionality reduction and clustering. To this end, we showed that the log-likelihood of
several graphical models is Lipschitz continuous with respect to the parameters, and derived
bounds on the Kullback-Leibler divergence, expected log-likelihood and Bayes error rate.

There are several ways of extending this research. We hope that our preliminary results
will motivate work on proving other theoretical properties as well as on learning probabilistic
graphical models by using optimization algorithms that rely on Lipschitz continuity of the
log-likelihood as the objective function. Finally, while Lipschitz continuity defines an upper
bound of the derivative, lower bounds of the derivative will allow for finding a lower bound of
the Kullback-Leibler divergence as well as upper bounds for the Bayes error and the expected
log-likelihood.

8.5 Learning Linear Influence Games

In Chapter 7, we formalized and studied the problem of learning the structure of graphical
games from strictly behavioral data. We proposed maximum likelihood estimation of a gen-
erative model defined by the Nash equilibria of the game. We showed a generalization bound
for maximum likelihood estimation. We discuss several optimization algorithms including
convex loss minimization, sigmoidal approximations and exhaustive search. We formally
prove that games in our hypothesis space have a small true number of equilibria, with high
probability; thus, convex loss minimization is sound. Finally, we provided experimental
results on the U.S. congressional voting records.

There are several ways of extending this research. We can easily extend our approach to ε-
approximate pure-strategy Nash equilibria. In our analysis, we used interactions between two
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players and binary actions. We can extend our approach to a broader class of graphical games
and non-Boolean actions. This broader class of graphical games can include interactions of
more than two players and general discrete actions. As we argued in Chapter 7 our analysis
only relies on binary “features” and linearity of the payoff function with respect to the model
parameters, therefore a kernelized version of our approach is very likely to work.

More sophisticated noise processes as well as mixed-strategy Nash equilibria need to be
considered and studied. Different upper bounds for the 0/1 loss (e.g. exponential, smooth
hinge) need to be analyzed. Our approach can be easily extended to parameter learning for
fixed structures by using a `2

2 regularizer instead. Finally, topic-specific and time-varying
versions of our model would elicit differences in preferences and trends.
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Poincaré, 1988.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society, 2006.

M. Yuan and Y. Lin. Model Selection and Estimation in the Gaussian Graphical Model.
Biometrika, 2007.

B. Zhang and Y. Wang. Learning Structural Changes of Gaussian Graphical Models in
Controlled Experiments. UAI, 2010.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm Support Vector Machines. NIPS,
2003.

B. Ziebart, J. Bagnell, and A. Dey. Modeling Interaction via the Principle of Maximum
Causal Entropy. ICML, 2010.

121



Appendix A

`1-norm Versus Squared `2-norm for
Local Constancy

In order to show why we use the `1-norm penalty encouraging local constancy, we use an
example borrowed from [Tibshirani et al., 2005]. This example is a simpler problem than
structure learning for Gaussian graphical models, but it is tightly related and it allows us to
acquire a visual grasp on comparing the use of `1-norm versus `2-norm for local constancy.

Given N = 9, we want to find the most sparse and locally constant profile y ∈ RN

that resembles the values ŷ ∈ RN as close as possible. Let D ∈ RN−1×N be the matrix
corresponding to the differential operator. Using the `1-norm or squared `2-norm penalty
for encouraging local constancy, we obtain:

miny∈RN
(

1
2
‖y − ŷ‖2

2 + ρ‖y‖1 + τ‖Dy‖1

)
for the `1 − norm

or
miny∈RN

(
1
2
‖y − ŷ‖2

2 + ρ‖y‖1 + τ‖Dy‖2
2

)
for the `2 − norm

for some ρ, τ > 0. The first term ‖y−ŷ‖2
2 models the quality of the fit, the second term ρ‖y‖1

encourages sparseness while the third term τ‖Dy‖1 or τ‖Dy‖2
2 encourages local constancy.

Figure A.1 shows that `1-norm penalties for local constancy lead to locally constant
models which preserve sparseness, where as squared `2-norm penalties of differences fails to
do so.
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ρ=0.40,τ=0 ρ=0.40,τ=0.1 ρ=0.40,τ=0.2 ρ=0.40,τ=0.3 ρ=0.40,τ=0.4

ρ=0.40,τ=0.5 ρ=0.40,τ=0.6 ρ=0.40,τ=0.7 ρ=0.40,τ=0.8 ρ=0.40,τ=0.9

Figure A.1: Use of `1-norm penalty for local constancy (in blue solid line) versus squared `2-norm
penalty for local constancy (in red dashed line) for resembling known values (black circles) with a
sparse and locally constant profile. Note that the squared `2-norm penalty for differences does not
produce a locally (piecewise) constant solution
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Appendix B

Sherman-Woodbury-Morrison
Formula

Algorithms 2.1, 3.1 and 4.1 update W−1 by using the Sherman-Woodbury-Morrison formula.
Note that when iterating from one variable to the next one, only one row and column

change on matrix W. Without loss of generality, let assume such row and column is the
last one. The change in W due to the update of that row and column is denoted as BCT.
The Sherman-Woodbury-Morrison formula for computing the inverse of the updated matrix
W + BCT becomes:

(W + BCT)
−1

= W−1 − (W−1B)(I + CTW−1B)(CTW−1)

B =


δ1 0
δ2 0
...

...
δN−1 0
δN 1

 , C =


0 δ1

0 δ2
...

...
0 δN−1

1 δN

 , BCT =


0 0 · · · 0 δ1

0 0 · · · 0 δ2
...

...
. . .

...
...

0 0 · · · 0 δN−1

δ1 δ2 · · · δN−1 2δN


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Appendix C

Technical Lemma for Variable
Selection

In Theorem 3.2, we use four matrix norm inequalities that are less common in the literature.
In this section, we prove them in detail.

Lemma C.1. For A ∈ RN×N , the following conditions hold:

i. ‖A‖2 ≤
√
N‖A‖∞,2

ii. ‖A‖2 ≤ N‖A‖∞,1
iii. ‖A‖2 ≤ ‖A‖1,2

iv. A � 0⇒ ‖A‖2 ≤ ‖A‖1,∞

(C.1)

Proof. Claim i follows from ‖A‖2 ≤ ‖A‖F ≤
√
N‖A‖∞,2. The last inequality is equivalent

to ‖A‖2
F ≤ N‖A‖2

∞,2 ⇒
∑

n1n2
a2
n1n2
≤ N maxn1 (

∑
n2
a2
n1n2

). Let |cn1| =
∑

n2
a2
n1n2

, we get∑
n1
|cn1| ≤ N maxn1 |cn1|. This is equivalent to ‖c‖1 ≤ N‖c‖∞, and we prove our claim.

Claim ii follows from ‖A‖2 ≤ ‖A‖F ≤ ‖A‖1 ≤ N‖A‖∞,1. The last inequality is equiv-
alent to

∑
n1n2
|an1n2| ≤ N maxn1 (

∑
n2
|an1n2|). Let |cn1| =

∑
n2
|an1n2|, we get

∑
n1
|cn1| ≤

N maxn1 |cn1|. This is equivalent to ‖c‖1 ≤ N‖c‖∞, and we prove our claim.
Claim iii follows from ‖A‖2 ≤ ‖A‖F ≤ ‖A‖1,2. The last inequality is equivalent to√∑
n1n2

a2
n1n2
≤ ∑n1

√∑
n2
a2
n1n2

. Let c2
n1

=
∑

n2
a2
n1n2

, we get
√∑

n1
c2
n1
≤ ∑n1

√
c2
n1

=∑
n1
|cn1|. This is equivalent to ‖c‖2 ≤ ‖c‖1, and we prove our claim.

Claim iv further assumes that A is symmetric and positive definite. In this case the
spectral radius is less than or equal to any induced norm, specifically the `∞,1-norm also
called the max absolute row sum norm. The inequality we want to prove is ‖A‖2 ≤ ‖A‖∞,1 ≤
‖A‖1,∞. The last inequality is equivalent to maxn1 (

∑
n2
|an1n2|) ≤

∑
n1

(maxn2 |an1n2|),
which follows from the Jensen’s inequality.
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Appendix D

Additional Experimental Results for
Variable Selection

In what follows, we test the performance of our methods with respect to edge density and the
proportion of connected nodes. The following results complement Figure 3.2 which reported
KL divergence between the recovered models and the ground truth for the “low variance
confounders” regime. Figures D.1 and D.2 show the ROC curves and KL divergence between
the recovered models and the ground truth for the “high variance confounders” regime. Our
`1,2 and `1,∞ methods recover ground truth edges better than competing methods (higher
ROC) when edge density among connected nodes is moderate (0.5) to high (0.8), regardless
of the proportion of connected nodes. Our proposed methods get similarly good probability
distributions (comparable KL divergence) than the other techniques. In the “low variance
confounders” regime reported in Figures D.3 and 3.2, our proposed methods produce better
probability distributions (lower KL divergence) than the remaining techniques. The behavior
of the ROC curves is similar to the “high variance confounders” regime.
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Figure D.1: ROC curves for structures learnt for the “high variance confounders” regime (N = 50
variables, different connectedness and density levels). Our proposed methods `1,2 (L2) and `1,∞
(LI) recover the ground truth edges better than Meinshausen-Bühlmann with AND-rule (MA),
OR-rule (MO), graphical lasso (GL) and covariance selection (CS), when the edge density among
the connected nodes is moderate (center) to high (right).
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Figure D.2: Cross-validated KL divergence for structures learnt for the “high variance confounders”
regime (N = 50 variables, different connectedness and density levels). Our proposed methods `1,2
(L2) and `1,∞ (LI) produce similarly good probability distributions than Meinshausen-Bühlmann
with AND-rule (MA), OR-rule (MO), graphical lasso (GL), covariance selection (CS) and Tikhonov
regularization (TR).
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Figure D.3: ROC curves for structures learnt for the “low variance confounders” regime (N = 50
variables, different connectedness and density levels). Our proposed methods `1,2 (L2) and `1,∞
(LI) recover the ground truth edges better than Meinshausen-Bühlmann with AND-rule (MA),
OR-rule (MO), graphical lasso (GL) and covariance selection (CS), when the edge density among
the connected nodes is moderate (center) to high (right).
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Appendix E

List of Brain Regions for Multi-Task
Learning Experiments

Next, we present the 157 regions used in Section 4.9. In order to not make the list unnec-
essarily long, we use regular expressions, e.g. “(Left |Right) Amygdala” indicates that we
used two regions: “Left Amygdala” and “Right Amygdala”.

• Cerebellum: Cerebellar Lingual
• Cerebellum: (Culmen |Declive |Pyramis |Tuber |Uvula) of Vermis
• Cerebellum: (Left |Right) (Cerebellar Tonsil |Culmen |Declive |Dentate |Fastigium
| Inferior Semi-Lunar Lobule |Nodule |Pyramis |Tuber |Uvula)
• Cerebrum: Hypothalamus
• Cerebrum: (Left |Right) (Amygdala |Claustrum |Hippocampus |Pulvinar |Putamen)
• Cerebrum: (Left |Right) (Anterior |Lateral Dorsal |Lateral Posterior |Medial Dor-

sal |Midline |Ventral Anterior |Ventral Lateral |Ventral Posterior Lateral |Ventral
Posterior Medial) Nucleus
• Cerebrum: (Left |Right) Brodmann area (1 | 2 | . . . | 47)
• Cerebrum: (Left |Right) Caudate (Body |Head |Tail)
• Cerebrum: (Left |Right) (Lateral |Medial) Globus Pallidus
• Brainstem: (Left |Right) (Mammillary Body |Red Nucleus | Substantia Nigra | Sub-

thalamic Nucleus)
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Appendix F

Additional Experimental Results for
Discrete MRFs

First, we complement the results in Figure 5.1. We show the Kullback-Leibler divergence to
the ground truth in Figure F.1.

Note that we assumed a “zero field” regime for Figures 5.1 and F.1 where bg = 0. We
also report results in Figures F.2 and F.3 for the “non-zero field” regime where each entry
of bg is generated uniformly at random from [−1; +1].

We also evaluate a “mean field sampler” by first finding the mean field distribution and
then performing importance sampling with the mean field trial. We report results for the
“zero field” regime in Figures F.4 and F.5, and for the “non-zero field” regime in Figures
F.6 and F.7.
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Figure F.1: Kullback-Leibler divergence to the ground truth for different settings of increasing
number of random samples for the “zero-field” regime and “Gibbs sampler”. Basic (PB) and
accelerated (PA) are noisier and require more samples than last point (FL), basic (FB) and robust
(FR) forward-backward splitting in order to generalize well, but they exhibit faster convergence.
Belief propagation (BP) does not generalize well.
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Figure F.2: Objective function for different settings of increasing number of random samples for
the “non-zero field” regime and “Gibbs sampler”. Basic (PB) and accelerated (PA) are noisier
and require more samples than last point (FL), basic (FB) and robust (FR) forward-backward
splitting in order to converge, but they exhibit faster convergence. Belief propagation (BP) does
not converge.
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Figure F.3: Kullback-Leibler divergence to the ground truth for different settings of increasing
number of random samples for the “non-zero field” regime and “Gibbs sampler”. Basic (PB) and
accelerated (PA) are noisier and require more samples than last point (FL), basic (FB) and robust
(FR) forward-backward splitting in order to generalize well, but they exhibit faster convergence.
Belief propagation (BP) does not generalize well.
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Figure F.4: Objective function for different settings of increasing number of random samples for
the “zero-field” regime and “mean field sampler”. Basic (PB) and accelerated (PA) are noisier
and require more samples than last point (FL), basic (FB) and robust (FR) forward-backward
splitting in order to converge, but they exhibit faster convergence. Belief propagation (BP) does
not converge.
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Figure F.5: Kullback-Leibler divergence to the ground truth for different settings of increasing
number of random samples for the “zero-field” regime and “mean field sampler”. Basic (PB) and
accelerated (PA) are noisier and require more samples than last point (FL), basic (FB) and robust
(FR) forward-backward splitting in order to generalize well, but they exhibit faster convergence.
Belief propagation (BP) does not generalize well.
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Figure F.6: Objective function for different settings of increasing number of random samples for
the “non-zero field” regime and “mean field sampler”. Basic (PB) and accelerated (PA) are noisier
and require more samples than last point (FL), basic (FB) and robust (FR) forward-backward
splitting in order to converge, but they exhibit faster convergence. Belief propagation (BP) does
not converge.
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Figure F.7: Kullback-Leibler divergence to the ground truth for different settings of increasing num-
ber of random samples for the “non-zero field” regime and “mean field sampler”. Basic (PB) and
accelerated (PA) are noisier and require more samples than last point (FL), basic (FB) and robust
(FR) forward-backward splitting in order to generalize well, but they exhibit faster convergence.
Belief propagation (BP) does not generalize well.
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Appendix G

Norm Bound for Linear Regression

We show that the weight vector w of the linear regression has bounded norm, i.e. ‖w‖2 ≤ β.
Given the dependent variable for T samples y ∈ RT and the matrix of N regressors for

each of the T samples X ∈ RN×T , the Tikhonov regularized linear regression problem is
given by:

min
w∈RN

‖y −wTX‖2
2 + ρ‖w‖2

2 (G.1)

for ρ > 0. It is well known [Boyd and Vandenberghe, 2006] that the optimal solution of
the above problem is w∗ = (XXT + ρI)−1Xy. Let X = UDVT be the singular value
decomposition of X, where UTU = I, VTV = I and D is a diagonal matrix with diagonal
entries (∀n) dn ≥ 0 (i.e. the non-negative singular values). Then the optimal solution can be
written as w∗ = VD′UTy, where D′ is a diagonal matrix with diagonal entries (∀n) dn

d2n+ρ
> 0.

In order to find an upper bound for ‖D′‖2, we need to find the maximum possible value
of f(dn) = dn

d2n+ρ
. By deriving with respect to dn we can find that the optimal value is d∗n =

√
ρ and therefore f(d∗n) = 1

1+
√
ρ
. Finally, ‖w∗‖2 ≤ ‖V‖2‖D′‖2‖U‖2‖y‖2 ≤ ‖D′‖2‖y‖2 ≤

1
1+
√
ρ
‖y‖2 = β.
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Appendix H

Norm Bound for Gaussian MRFs

We show that the precision matrix Ω has bounded norm, i.e. αI � Ω � βI. Similarly, since
the covariance matrix is the inverse of the precision matrix, we show that the covariance
matrix Σ has bounded norm, i.e. 1

β
I � Σ � 1

α
I.

Given a dense sample covariance matrix Σ̂ � 0, consider the Tikhonov regularized pre-
cision matrix Ω = (Σ̂ + ρI)−1. Note that the minimum eigenvalue of Σ̂ + ρI is ρ and the

maximum eigenvalue is ‖Σ̂‖+ ρ. Therefore, α = 1

‖Σ̂‖+ρ
and β = 1

ρ
.

Similar bounds can be obtained for sparseness promoting (`1) methods. The problem of
finding a sparse precision matrix Ω by regularized maximum likelihood estimation is given
by:

max
Ω�0

(
log det Ω− 〈Σ̂,Ω〉 − ρ‖Ω‖1

)
(H.1)

for ρ > 0. Banerjee et al. [2006] proved that the optimal solution to the above problem is
bounded by α = 1

‖Σ̂‖2+Nρ
and β = N

ρ
.
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Appendix I

Loose Kullback-Leibler Bound for
Gaussian MRFs

If we use Lemma 6.21 for factor graphs, we will obtain a loose bound of the Kullback-
Leibler divergence for Gaussian graphical models. More specifically EP [‖ψ(x)‖p] for ψ(x) =

vec(xxT) and p = 2 becomes EP [‖x‖2
2] = EP [xTx] =

∫
x

(det Ω)1/2

(2π)N/2
e−

1
2
xTΩxxTx ≡ B. Since

det Ω ≤ βN and (∀x) xTΩx ≥ αxTx, we have B ≤ βN/2

(2π)N/2

∫
x
e−

α
2

xTxxTx = NβN/2

αN/2+1 .

Finally, the bound in Lemma 6.21 becomes K = 2NβN/2

αN/2+1 .
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Appendix J

Parametrization of Gaussian MRFs
by Covariance Matrices

In Section 6.4, we analyzed parametrization of Gaussian graphical models by using precision
matrices. Here, we also analyze parametrization by using covariance matrices. Similarly,
since the covariance matrix is the inverse of the precision matrix, we assume that the co-
variance matrix Σ has bounded norm, i.e. 1

β
I � Σ � 1

α
I or equivalently ‖Σ−1‖2 ≤ β and

‖Σ‖2 ≤ 1
α

.

Lemma J.1. Given the covariance matrix Σ � 0, the Gaussian graphical model parameter-
ized by Θ = Σ, Σ ∈ RN×N with probability density function:

p(x|Θ) =
1

(2π)N/2(det Σ)1/2
e−

1
2
xTΣ−1x (J.1)

is (`2,
β2‖x‖22

2
+ β

2
)-Lipschitz continuous.

Proof. Let f(Σ) = log p(x|Θ) = 1
2
(− log det Σ−N log(2π)−xTΣ−1x). By deriving ∂f/∂Σ =

1
2
(−Σ−1 + Σ−1xxTΣ−1). Therefore ‖∂f/∂Ω‖2 ≤ 1

2
(‖Σ−1‖2 + ‖Σ−1‖2‖xxT‖2‖Σ−1‖2) =

1
2
(‖Σ−1‖2+‖Σ−1‖2

2‖x‖2
2) ≤ 1

2
(β+β2‖x‖2

2). By Definitions 6.4 and 6.5, we prove our claim.

Lemma J.2. Given two Gaussian graphical models parameterized by their covariance ma-
trices as in eq.(J.1), i.e. P1 = p(·|Σ1) and P2 = p(·|Σ2), the Kullback-Leibler divergence
from P1 to P2:

KL(P1||P2) =
1

2

(
log

det Σ2

det Σ1

+ 〈Σ1,Σ
−1
2 〉 −N

)
(J.2)

is bounded as follows:
KL(P1||P2) ≤ β‖Σ1 −Σ2‖2 (J.3)

Proof. First, we show that f(Σ1,Σ2) = KL(P1||P2) is Lipschitz continuous with respect to
Σ1. By deriving ∂f/∂Σ1 = 1

2
(−Σ−1

1 +Σ−1
2 ). Therefore ‖∂f/∂Σ1‖2 ≤ 1

2
(‖Σ−1

1 ‖2 +‖Σ−1
2 ‖2) ≤

1
2
(β + β) = β.

Second, since f is Lipschitz continuous with respect to its first parameter, we have
(∀Σ) |f(Σ1,Σ)−f(Σ2,Σ)| ≤ β‖Σ1−Σ2‖2. In particular, let Σ = Σ2 and since f(Σ2,Σ2) =
0 and |f(Σ1,Σ2)| = f(Σ1,Σ2) by properties of the Kullback-Leibler divergence, we prove
our claim.
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Appendix K

Negative Results for Linear Influence
Games

Counting the Number of Equilibria is NP-hard.

Here we provide a proof that establishes NP-hardness of counting the number of Nash equi-
libria, and thus also of evaluating the log-likelihood function for our generative model. A
#P-hardness proof was originally provided by Irfan and Ortiz [2011], here we present a re-
lated proof for completeness. The reduction is from the set partition problem for a specific
instance of a single non-absolutely-indifferent player.

Recall the set partition problem: given a multiset of n positive numbers {a1, . . . , an},
SetPartition(a) answers “yes” if and only if it is possible to partition the numbers into two
disjoint subsets S1 and S2 such that S1 ∩ S2 = ∅, S1 ∪ S2 = {1, . . . , n} and

∑
i∈S1 ai −∑

i∈S2 ai = 0; otherwise it answers “no”. The set partition problem is equivalent to the
subset sum problem, in which given a set of positive numbers {a1, . . . , an} and a target sum
c > 0, SubSetSum(a, c) answers “yes” if and only if there is a subset S ⊂ {1, . . . , n} such
that

∑
i∈S ai = c; otherwise it answers “no”. The equivalence between set partition and

subset sum follows from SetPartition(a) = SubSetSum(a, 1
2

∑
i ai).

For clarity of exposition, we drop the subindices in the following lemma. Let w ≡ wi,−i ∈
Rn−1 and b ≡ bi ∈ R.

Lemma K.1. The problem of counting Nash equilibria considered in Claim ii of Lemma 7.20
reduces to the set partition problem. More specifically, given (∀i) wi > 0, b = 0, answering
whether

∑
x 1[wTx− b = 0] > 0 is equivalent to answering SetPartition(w).

Proof. Let S1(x) = {i|xi = +1} and S2(x) = {i|xi = −1}. We can rewrite
∑

x 1[wTx− b = 0]
as a sum of set partition conditions, i.e.

∑
x 1[
∑

i∈S1(x)wi −
∑

i∈S2(x) wi = 0]. Therefore, if

no tuple x fulfills the condition, the sum is zero and SetPartition(w) answers “no”. On the
other hand, if at least one tuple x fulfills the condition, the sum is greater than zero and
SetPartition(w) answers “yes”.
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Computing the Pseudo-Likelihood is NP-hard.

We show that evaluating the pseudo-likelihood function for our generative model is NP-hard.
First, consider a non-trivial influence game G in which eq.(7.3) simplifies to p(G,q)(x) =

q 1[x∈NE(G)]
|NE(G)| + (1 − q) 1[x/∈NE(G)]

2n−|NE(G)| . Furthermore, assume the game G = (W,b) has a single

non-absolutely-indifferent player i and absolutely-indifferent players ∀j 6= i. Let fi(x−i) ≡
wi,−i

Tx−i − bi. By Claim i of Lemma 7.20, we have 1[x ∈ NE(G)] = 1[xifi(x−i) ≥ 0] and

therefore p(G,q)(x) = q 1[xifi(x−i)≥0]
|NE(G)| + (1 − q)1−1[xifi(x−i)≥0]

2n−|NE(G)| . Finally, by Lemma K.1 comput-

ing |NE(G)| is NP-hard even for this specific instance of a single non-absolutely-indifferent
player.

Counting the Number of Equilibria is not (Lipschitz) Continuous.

We show that small changes in the parameters G = (W,b) can produce big changes
in |NE(G)|. For instance, consider two games Gk = (Wk,bk), where W1 = 0,b1 =
0, |NE(G1)| = 2n and W2 = ε(11T − I),b2 = 0, |NE(G2)| = 2 for ε > 0. For ε → 0,
any `p-norm ‖W1 −W2‖p → 0 but |NE(G1)| − |NE(G2)| = 2n − 2 remains constant.

The Log-Partition Function of an Ising Model is a Trivial Bound
for Counting the Number of Equilibria.

Let fi(x−i) ≡ wi,−i
Tx−i − bi, |NE(G)| =

∑
x

∏
i 1[xifi(x−i) ≥ 0] ≤ ∑

x

∏
i e
xifi(x−i) =∑

x e
xTWx−bTx = Z(1

2
(W + WT),b), where Z denotes the partition function of an Ising

model. Given convexity of Z [Koller and Friedman, 2009] and that the gradient vanishes at
W = 0,b = 0, we know that Z(1

2
(W + WT),b) ≥ 2n, which is the maximum |NE(G)|.
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Appendix L

Simultaneous Logistic Loss

Given that any loss `(z) is a decreasing function, the following identity holds maxi `(zi) =
`(mini zi). Hence, we can either upper-bound the max function by the logsumexp function
or lower-bound the min function by a negative logsumexp. We chose the latter option for the
logistic loss for the following reasons: Claim i of the following technical lemma shows that
lower-bounding min generates a loss that is strictly less than upper-bounding max. Claim
ii shows that lower-bounding min generates a loss that is strictly less than independently
penalizing each player. Claim iii shows that there are some cases in which upper-bounding
max generates a loss that is strictly greater than independently penalizing each player.

Lemma L.1. For the logistic loss `(z) = log(1+e−z) and a set of n > 1 numbers {z1, . . . , zn}:

i. (∀z1, . . . , zn) maxi `(zi) ≤ ` (− log
∑

i e
−zi) < log

∑
i e
`(zi) ≤ maxi `(zi) + log n

ii. (∀z1, . . . , zn) ` (− log
∑

i e
−zi) <

∑
i `(zi)

iii. (∃z1, . . . , zn) log
∑

i e
`(zi) >

∑
i `(zi)

(L.1)

Proof. Given a set of numbers {a1, . . . , an}, the max function is bounded by the logsumexp
function by maxi ai ≤ log

∑
i e
ai ≤ maxi ai + log n [Boyd and Vandenberghe, 2006]. Equiva-

lently, the min function is bounded by mini ai − log n ≤ − log
∑

i e
−ai ≤ mini ai.

These identities allow us to prove two inequalities in Claim i, i.e. maxi `(zi) = `(mini zi) ≤
` (− log

∑
i e
−zi) and log

∑
i e
`(zi) ≤ maxi `(zi) + log n. To prove the remaining inequality

` (− log
∑

i e
−zi) < log

∑
i e
`(zi), note that for the logistic loss ` (− log

∑
i e
−zi) = log(1 +∑

i e
−zi) and log

∑
i e
`(zi) = log(n+

∑
i e
−zi). Since n > 1, strict inequality holds.

To prove Claim ii, we need to show that ` (− log
∑

i e
−zi) = log(1+

∑
i e
−zi) <

∑
i `(zi) =∑

i log(1 + e−zi). This is equivalent to 1 +
∑

i e
−zi <

∏
i (1 + e−zi) =

∑
c∈{0,1}n e

−cTz =

1 +
∑

i e
−zi +

∑
c∈{0,1}n,1Tc>1 e

−cTz. Finally, we have
∑

c∈{0,1}n,1Tc>1 e
−cTz > 0 because the

exponential function is strictly positive.
To prove Claim iii, it suffices to find set of numbers {z1, . . . , zn} for which log

∑
i e
`(zi) =

log(n +
∑

i e
−zi) >

∑
i `(zi) =

∑
i log(1 + e−zi). This is equivalent to n +

∑
i e
−zi >∏

i (1 + e−zi). By setting (∀i) zi = log n, we reduce the claim we want to prove to n + 1 >
(1+ 1

n
)n. Strict inequality holds for n > 1. Furthermore, note that limn→+∞ (1 + 1

n
)n = e.
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