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Abstract of the Dissertation 

Regulation of Dimerization and Activation of the 

Thrombopoietin Receptor  
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in 
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2012 

 

The thrombopoietin receptor (TpoR) is an indispensable receptor that regulates 

megakaryocytopoiesis and platelet formation in response to its ligand, thrombopoietin (Tpo).  

Mutations in TpoR result in an increased or decreased number of platelets, leading to various 

platelet disorders, such as essential thrombocythemia (ET) and primary myelofibrosis (PMF). 

Most of the clinically relevant mutations of TpoR are found in the transmembrane (TM) domain 

and juxtamembrane (JM) region of the receptor, suggesting that the TM-JM region may play a 

critical role in regulation of TpoR activity. However, the precise molecular mechanism by which 

this region affects the TpoR conformation and the resultant receptor activity remains elusive. To 

better understand the role of the TM-JM region in activation of TpoR, we focused on a mutation 

at Ser505 (S505N) in the TM domain of the receptor and several mutations at Trp515 within the 

intracellular (IC) JM region. We chose these mutations because S505N, as well as diverse 

mutations at Trp515 such as W515K and W515L, are known to constitutively activate TpoR, 

causing myeloproliferative neoplasms in human. We analyzed how these mutations affect the 

structure of TpoR and its downstream signaling by various biophysical approaches. Using 

sedimentation equilibrium analytical ultracentrifugation and deuterium magic angle spinning 

NMR spectroscopy, we showed that peptides corresponding to the wild-type TpoR TM-JM 
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sequence do not dimerize strongly in detergent micelles or lipid bilayer membranes. On the other 

hand, TM-JM peptides containing the constitutively active S505N mutation undergo strong 

homodimerization, suggesting that TM-TM interactions may control a transition between the 

active and inactive states of TpoR. Consistent with these results, the S505N mutation enhanced 

the dimerization and activity of the full-length TpoR in vivo. Furthermore, we demonstrated that 

the W515 residue plays a critical role in maintaining of the inactive receptor state by inhibiting 

dimerization of the TpoR TM helix. Our polarized attenuated total reflection Fourier transform 

infrared (ATR-FTIR) experiments revealed that W515, which resides at the boundary between 

the TM and IC domains, acts to increase the helix tilt angle relative to the membrane bilayer 

normal, thereby preventing the formation of stable TM dimer contacts. In contrast, the W515K 

mutation reduced the TpoR TM helix tilt angle, leading to formation of a strong TM-TM 

interaction. The effect of these constitutively active mutations on the TM helix tilt angle was 

reversed by addition of a tryptophan residue at positions 514 or 516 (i.e., R514W and Q516W). 

Consistent with this observation, R514W and Q516W reverted the constitutively active 

phenotype of the W515K and W515L mutant receptors, restoring wild type-like ligand-induced 

downstream signaling. Based on these observations, we propose a novel receptor activation 

mechanism, in which a change in the tilt angle of the TpoR TM helix is induced by ligand 

binding and facilitates TM-TM interactions within a TpoR dimer.  The TM-TM interactions, in 

turn, re-orient the receptor-associated kinase. 
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Chapter 1. Introduction 

1.1 Thrombopoietin receptor (TpoR)  

1.1.1 Biology of TpoR 

Thrombopoietin receptor (TpoR) is a cytokine receptor that regulates megakaryocytopoiesis and 

platelet formation in response to its ligand, thrombopoietin (Tpo). This transmembrane protein is 

a polypeptide of 635 amino acids composed of an extracellular (EC) domain, a single 

transmembrane (TM) domain, and an intracellular (IC) domain (1) (Figure 1.1). TpoR belongs 

to the Type I cytokine receptor family, which is characterized by the presence of the cytokine 

receptor homology module (CRM) in the EC domain. The CRM contains conserved cysteine 

residues and a tryptophan-serine-X-tryptophan-serine (WSXWS) motif (1-3). The EC domain of 

TpoR possesses two CRMs, while the IC domain contains the Box 1 and Box 2 motifs, which 

serve as a docking site for the Janus Kinase 2 (JAK2) tyrosine kinase (4-7). Interaction of TpoR 

with JAK2 is essential for activation of downstream signaling because TpoR itself does not 

possess an intrinsic kinase domain.  
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Figure 1.1: Schematic representation of the wild-type TpoR and the v-mpl-encoded mutant TpoR. The total 
length of TpoR (left) is 635 amino acids. The extracellular (EC), transmembrane (TM), and intracellular (IC) 
domains are composed of 465, 23, 122 amino acids, respectively. TpoR has two cytokine receptor homology 
modules (CRMs), each of which is composed of approximately 200 amino acids (1). This module is further divided 
into the N- and C-terminal cytokine receptor domains called CR-D1 and CR-D2, respectively. Each CR-D 
subdomain is comprised of two anti-parallel β-sheets, and closely related to the fibronectin Type III (FBNIII) 
domain (8). Each CRM has two pairs of conserved cysteine residues as well as a conserved C-terminal WSXWS (for 
tryptophan-serine-X-tryptophan-serine) motif. The TpoR IC domain contains Box 1 and Box 2 domains, which are 
highly conserved among cytokine receptors (1). TpoR has two unique motifs that are not found in other cytokine 
receptors: a 50-amino acid stretch in the EC domain (CRM1- CR-D2) and a 5-amino acid stretch (RWQFP) right 
below the TM domain. The total length of the v-mpl-encoded mutant TpoR (right) is 262 amino acids. Its EC, TM, 
and IC domains are composed of 99, 23, and 119 amino acids, respectively. The EC domain is composed of an 
envelope protein of the myeloproliferative leukemia virus and 43 amino acids derived from the TpoR EC domain. 
The TM and IC domains of v-mpl are the same as those of TpoR (2). 

 
TpoR is encoded by the c-mpl (myeloproliferative leukemia virus) gene, the cellular 

homolog of the v-mpl oncogene. As its gene name suggests, TpoR was originally found through 

the studies of the myeloproliferative leukemia virus, an oncogenic retrovirus that induces 

overgrowth of hematopoietic cells (2, 9, 10). It has been demonstrated that this disease is caused 
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by the v-mpl gene of the myeloproliferative leukemia virus, which encodes a truncated form of 

TpoR (2). The v-mpl-encoded receptor lacks a large portion of the EC domain but retains the TM 

and IC domains, which exert a dominant-negative effect on TpoR-mediated 

megakaryocytopoiesis and platelet development. After this discovery, Tpo was identified as the 

ligand of TpoR (11) (Figure 1.1).  

TpoR mainly functions in the hematopoietic cell lineage, including hematopoietic stem 

cells (HSCs), megakaryocytes and platelets (12-16) (Figure 1.2). Megakaryocytes originate from 

HSCs, which are mostly found in the bone marrow. During their maturation, megakaryocytes 

replicate their nuclear DNA without cytokinesis, developing into very large cells. Typically, a 

matured megakaryocyte is 50-100 µm in diameter, and contains DNA content of up to 64N (17). 

Ultimately, 1,000~1,500 platelets per megakaryocyte are produced by budding off from the 

matured megakaryocytes and circulate in the blood (18). 
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Figure 1.2: Overview of the hematopoietic lineage: Platelets formation from a hematopoietic stem cell (HSC). 
Platelets are differentiated from a hematopoietic stem cell (HSC) via a megakaryopoiesis pathway involving four 
major intermediate cell types: megakaryoblast, promegakaryocyte (not shown), granular megakaryocyte (not shown), 
and mature megakaryocyte (19).  

 
Platelets, once referred to as “dust” particles in blood, drew little attention when they were 

discovered in blood more than 100 years ago (20, 21). However, the importance of platelets for 

human life is now unquestionable. The major function of platelets is to form blood clots and 

prevent bleeding from a ruptured blood vessel. A deficiency in platelets leads to an increased risk 

of hemorrhage, while overproduction of platelets restricts blood flow by forming clots in 

uninjured vessels. Thus, the development and number of platelets in blood needs to be tightly 

controlled. TpoR plays an essential role in platelet homeostasis by regulating platelet 
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development. Mutations in this receptor are known to cause a diverse array of blood disorders, 

depending on which domains or residues of TpoR are affected (summarized in Table 1.1). These 

TpoR-associated blood diseases are classified into two major groups: thrombocytopenia (low 

platelet count) and thrombocythemia (high platelet count). Thrombocytopenia is considered to be 

one of the most deleterious and most common hematologic disorders (22). Congenital 

amegakaryocytic thrombocytopenia (CAMT), a type of thrombocytopenia, is caused by different 

mutations in the c-mpl gene. CAMT patients are known to encode TpoR with various types of 

truncation or a point mutation in the EC domain (23-26). As a result, CAMT patients cannot 

properly respond to Tpo, manifesting thrombocytopenia symptoms (27). In addition, a recent 

study revealed a strong link between another type of thrombocytopenia, familial aplastic anemia 

(AA), and a proline-to-serine mutation at position 394 of TpoR (28). AA is characterized by a 

deficiency in all types of blood cells, including red blood cells, white blood cells, and platelets, 

due to the near-total absence of hematopoietic precursor cells (22).  

 Like thrombocytopenia, thrombocythemia is also a fundamental problem affecting many 

patients. Thrombocythemia, characterized by an increased platelet count, can be either a 

primary (essential) or secondary (reactive) effect of a certain disorder. Recent studies revealed 

that patients with myeloproliferative neoplasms (MPNs) possess various mutations in TpoR (23, 

29, 30). The MPNs are a group of diseases characterized by abnormal myeloid proliferation, 

and classified into several categories, including chronic myeloid leukemia (CML), 

polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), 

chronic eosinophilic leukemia (CEL), and chronic myelomonocytic leukemia (CMML), and 

systemic mastocytosis (SM) (31). Among them, at least 4.5% of ET and 5% of PMF patients 
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are known to possess mutations, most of which are found in the TM domain and the 

juxtamembrane (JM) region of TpoR (29, 30, 32, 33). The known mutations in the TpoR of ET 

and PMF patients include an amino acid substitution of serine for asparagine at position 505 

(S505N) and a substitution of tryptophan for either leucine, lysine, alanine, or arginine at 

position 515 (W515L, W515K, W515A, and W515R) (30, 32, 34). These mutations are 

believed to cause overproduction of hematopoietic cells in the megakaryopoiesis lineage, 

including platelets (35-38). These TpoR mutations and the resulting disease symptoms further 

emphasize the importance of TpoR in platelet development. Furthermore, the characterized 

TpoR mutations can serve as great resources to understand the TpoR activation mechanism, 

which remains largely unknown. 
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1.1.2 JAK2-STAT signaling pathway 

Although the precise activation mechanism of TpoR remains to be determined, the consequence 

of the TpoR activation is relatively well understood; upon binding of Tpo, the TpoR activates the 

JAK2 - STAT (Signal Transducer and Activator of Transcription) signaling pathway (56, 57). 

JAK2 is a tyrosine kinase, and the STATs are transcription factors (58). Binding of Tpo to the 

EC domain of TpoR triggers the autophosphorylation of JAK2 (59), which is pre-associated with 

the TpoR IC domain. The phosphorylated JAK2 in turn phosphorylates several tyrosine residues 

of TpoR (60, 61). Subsequently, the phosphorylated TpoR recruits STATs to the TpoR/JAK2 

complex, leading to JAK2-mediated phosphorylation of STATs (58). Finally, the phosphorylated 

STATs dimerize (62) and translocate into the cell nucleus, where they bind to the STAT-

responsive promoters to initiate transcription of target genes.  

JAK2 is a non-receptor tyrosine kinase that belongs to the JAK family. JAK2 is a relatively 

large protein of 130 kDa in molecular weight, composed of seven Janus homology domains (JH1 

to 7) (Figure 1.3) (63). JH1 is a functional kinase domain that contains two conserved tyrosine 

residues (Y1007 and Y1008) in the activation loop. The JH1 domain is closely related to the 

kinase domain of the epidermal growth factor (EGF) receptor family (64). JH2 also shares 

considerable homology with the kinase domain of the EGF receptor family (65). However, 

unlike JH1, JH2 lacks several critical amino acids required for the kinase activity (65), indicating 

that JH2 represents a pseudokinase domain. The JH3, JH4, and JH5 domains constitute the Src-

homology 2 (SH2)-like domain, the function of which remains unknown. The JH6 and JH7 

domains serve as the FERM (Band-4.1, Ezrin, Radizin, Moesin) domain, through which JAK2 

interacts with the Box 1 and Box 2 motifs of TpoR. Upon binding of Tpo to TpoR, two JAK2 
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molecules, each of which is pre-associated with one TpoR molecule within a TpoR dimer, induce 

auto/trans-phosphorylation of two tyrosine residues, Y1007 and Y1008, on the activation loop of 

the JH1 domain (59). In addition, JAK2 phosphorylates other tyrosine residues, such as Y221, 

Y570, and Y831 (66, 67). 

 
Figure 1.3: Schematic representation of the JAK2 structure. JAK2 is composed of FERM, SH2-like, 
pseudokinase, and kinase domains. Alternatively, the primary structure of JAK2 can be divided into seven Janus 
homology (JH) domains. JAK2 interacts with several cytokine receptors via the FERM domain. The kinase domain, 
in concert with the pseudokinase domain, catalyzes tyrosine phosphorylation of several cytokine receptors and their 
downstream signaling components. In addition, JAK2 autophosphorylates multiple tyrosine residues, including 
Y1007 and Y1008, both of which are found in the activation loop of the kinase domain (63). The schematic diagram 
is adapted from (63). 

 
The activated JAK2 is known to phosphorylate at least Y78, Y112, and Y117 of TpoR. (60, 

61). These phosphorylated tyrosine residues in TpoR serve as the docking sites of STATs, such 

as STAT3 and STAT5, and bring these transcription factors into close proximity of JAK2. In 

addition, many other molecules, including phosphoinositol-3-kinase (PI3K) and mitogen-

activated protein kinases (MAPKs), are recruited to the TpoR/JAK2 complex, thereby 

modulating the JAK2-STAT signaling pathway.  

The phosphorylated STAT molecules undergo homodimerization in the cytoplasm, and the 

STAT dimer then translocates to the cell nucleus. The nuclear STATs promote transcription of 

many genes critical for cell cycle regulation and cell survival control, such as cyclin D1, cyclin-

dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor 1B (p27KIP1), and 
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BCL2-like 1 (Bcl-XL) (68, 69). These STAT-induced dynamic gene expression changes 

orchestrate megakaryopoiesis and platelet development. 

The Tpo/TpoR-induced signaling eventually needs to be terminated. Termination is 

mediated by at least four mechanisms: receptor internalization, dephosphorylation of JAK2, 

masking of the phosphorylated residues on the TpoR/JAK2 complex, and inhibition of the STAT 

activity. In the first mechanism, the activated TpoR is rapidly removed from the cell membrane 

by clathrin-dependent endocytosis (70). The second mechanism exploits tyrosine phosphatases, 

such as Src Homology Phosphatase 1 (SHP 1). These phosphatases are recruited to the 

TpoR/JAK2 complex and dephosphorylate the activated JAK2 (68, 71). The third mechanism 

involves the suppressor of cytokine signaling (SOCS) proteins, which are induced by cytokines 

(72). For instance, SOCS1, one of the SOCS proteins, directly binds to the phosphorylated JAK2, 

thereby masking the docking sites for the JAK2 target proteins (73). The fourth mechanism is 

mediated by transcriptional inhibitors that abrogate the DNA binding activity of STATs. For 

example, PIAS3 (for protein inhibitor of activated STAT3) has been shown to inhibit the 

transcriptional activity of STAT3 (74).  Over the past few decades, a great deal has been learned 

about the complexity of the TpoR downstream signaling (Figure 1.4). However, the molecular 

mechanism underlying the TpoR-mediated JAK2 activation, the very first step of TpoR signaling, 

remains an enigma.   
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Figure 1.4: Schematic representation of the JAK2-STAT signaling pathway. Binding of Tpo to the TpoR EC 
domains induces the auto/trans-phosphorylation of JAK2. The phosphorylated JAK2 then phosphorylates the IC 
domains of TpoR. The phosphorylated residues on the TpoR/JAK2 complex serve as docking sites for the 
downstream signaling components, such as STAT3 and STAT5. The phosphorylated STATs undergo dimerization 
and enter the cell nucleus, in which they bind to the STAT-responsive promoters to initiate transcription of the target 
genes, such as Bcl-XL, p21, and p27KIP1. As a negative regulator of the JAK2-STAT signaling, SHP1 
dephosphorylates JAK2. In addition, PIAS3 directly binds to STAT3 and inhibits its transcription activity. 
Furthermore, SOCS1 binds to the phosphorylated JAK2, thereby masking the docking sites for the JAK2 target 
proteins. 

1.2 Type I-Group 1 cytokine receptors form ligand-independent dimers 

 
The key to understanding the TpoR activation mechanism may lie in other Type I cytokine 

receptors that are structurally similar to TpoR. The Type I cytokine receptors can be further 

classified into five subgroups (i.e., Group 1 to 5) based on their sequence and structural 

homology as well as the type of cytokine ligands (3). TpoR belongs to Group 1, which is 

characterized by a relatively short IC domain and the absence of additional, functional modules, 

other than CRMs, in the EC domain (3) (Figure 1.1). Furthermore, the Type I-Group 1 cytokine 

receptors are known to form homodimers upon ligand binding (75). Group 1 is comprised of four 



Chapter 1 
 

13 
 

functional receptor members: TpoR, the erythropoietin receptor (EpoR), the growth hormone 

receptor (GHR), and the prolactin receptor (PRLR) (Figure 1.5). Increasing evidence suggests 

that these Type I-Group 1 cytokine receptors form homodimers even in the absence of the 

ligands (i.e., ligand-independent dimers or pre-formed dimers). For example, a study using 

antibody-mediated immunofluorescence co-patching showed that EpoR can oligomerize even 

without its ligand (76). In this study, the murine EpoR was fused to either the hemagglutinin 

(HA) or Myc tag, and their co-localization at the surface of live cells was detected by two 

fluorescently labeled antibodies. Consistent with this observation, a crystal structure of the EpoR 

EC domain showed that the EC domain interacts with each other in the absence of the ligand 

(77). Similarly, GHR also seems to form a ligand-independent dimer. Indeed, studies using 

various methods, such as co-immunoprecipitation (Co-IP), fluorescence resonance energy 

transfer (FRET), and bioluminescence resonance energy transfer (BRET), clearly demonstrated 

that GHR undergoes dimerization in the absence of the ligand binding (78, 79). Furthermore, 

studies using Co-IP and BRET experiments revealed the presence of ligand-independent dimers 

of PRLR (80, 81). By analogy, it is tempting to speculate that TpoR, another Type I-Group 1 

cytokine receptor, also exists as a ligand-independent dimer.  

EpoR, the closest relative of TpoR, is likely to form a ligand-independent dimer via the 

TM domain. A domain swapping study showed that at least the intact TM domain is necessary 

for EpoR dimerization and that the EpoR TM domain cannot be functionally replaced by the 

PRLR TM domain (76). The idea that the EpoR TM domain can associate was further 

augmented by two independent studies: one using analytical ultracentrifugation sedimentation 

equilibrium (SE-AUC) and another using the ToxR-transcriptional reporter assay (82, 83). The 
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SE-AUC analysis demonstrated that the TM domain of EpoR most likely interacts with each 

other at a 1:1 stoichiometric ratio in detergent micelles (82). Furthermore, the ToxR reporter 

system, in which dimerization of tested transmembrane proteins induces the homodimerization 

of the ToxR transcription factor and the resultant transcription activation, showed that the EpoR 

TM domain undergoes self-interaction within the Escherichia coli cell membrane.  

In contrast to EpoR, the mechanism underlying the ligand-independent dimerization of 

GHR remains inconclusive. A study using Co-IP, FRET, and BRET assays suggests that the TM 

and JM regions of GHR mediate the receptor dimerization (78). This model was further 

supported by a more recent study using a cysteine cross-linking experiment and the ToxR 

bacterial reporter system (84). However, another study using the ToxR system failed to detect 

self-dimerization of the GHR TM domain (83). In addition, a chimeric GHR with its TM domain 

replaced by that of the human low-density lipoprotein receptor (LDLR) was still able to form a 

ligand-independent dimer, suggesting that the TM domain may not be involved in the GHR 

dimerization (79). 

Similarly, it remains inconclusive how PRLR forms a ligand-independent dimer. It has 

been shown that deletion of either the EC or IC domain of PRLR does not affect the receptor 

dimerization, suggesting that the TM domain of PRLR is critical for dimerization of PRLR (81). 

However, replacement of the EC or IC domain of PRLR with the corresponding domain of EpoR 

abolished the ligand-independent dimerization of PRLR even though the chimeric PRLR retains 

the TM domain (76). Thus, unlike EpoR, the ligand-independent dimers of PRLR and GHR may 

be stabilized by a relatively complex mechanism. 
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Figure 1.5: Schematic representations of the Type I-Group 1 cytokine receptor structures. The Type I-Group 1 
cytokine receptor family is comprised of four members: TpoR, EpoR, GHR, and PRLR. The total length of these 
receptors is approximately 500-600 residues. TpoR possesses the largest extracellular (EC) domain with a unique 
50-amino acid stretch, which is not found in the other receptors (2). The TpoR EC domain is composed of two 
cytokine receptor homology modules (CRMs), while the other receptors have only one CRM. The TpoR has the 
shortest intracellular (IC) domain with a unique motif of five amino acids (RWQFP). All the Type I-Group 1 
cytokine receptors interact with JAK2 through their Box 1 and Box 2 domains. The number shown on the right side 
of each schematic receptor represents the number of amino acids in the corresponding region. 

 

1.3 Type I-Group 1 cytokine receptors are activated by TM helix 

rotation 

 
In conventional models, most transmembrane receptors are believed to be activated by 

dimerization upon ligand binding. However, several Type I-Group 1 cytokine receptors already 
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exist as dimers before ligand binding. Thus, the ligand-induced dimerization model cannot 

explain the activation mechanism of these Type I-Group 1 cytokine receptors. Instead, their 

activation may be mediated by an internal conformational change within the dimers, rather than 

the dimerization itself. Consistent with this notion, the crystal structure of the EC domain of 

EpoR suggests that EpoR undergoes “scissor-like rotation” within the dimer in response to Epo 

(Figure 1.6) (77, 85). This conformational change of the EpoR EC domain should affect the 

conformation or orientation of the TM and IC domains, which may be important for receptor 

activation. 

 
Figure 1.6: Comparison between the EC domain of the unliganded and liganded EpoR structures. (A) The EC 
domain of the unliganded EpoR (PDB ID: 1ERN) (77). (B) The EC domain of the EpoR with an Epo mimetic 
agonist (PDB ID: 1EBP) (8). Ligand binding induces the CR-D1 domain to position itself parallel to the membrane 
plane. At the same time, the CR-D2 domain rearranges its structure perpendicular to the membrane plane upon 
ligand binding. The CR-D1 and CR-D2 domains of one EpoR EC domain are shown in magenta and orange, 
respectively. The CR-D1 and CR-D2 of the other EpoR EC domain are shown in green and blue, respectively.  The 
ligand is shown in black.  

 
In addition, several studies suggest that a distinct set of residues lining the TM-TM 

interaction interface is critical for the EpoR activation (83, 86-89). It has been proposed that 
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binding of the ligand to EpoR induces rotation of the TM domain on its helical axis (α, α’), 

bringing a different set of amino acid residues into the dimerization interface (Figure 1.7). 

 
Figure 1.7: Ligand-induced rotation of TM helices within a pre-formed receptor dimer. Within a pre-formed 
dimer of a single-pass transmembrane receptor, such as EpoR, ligand binding may induce rotation of the TM 
domains on their helical axes (α, α’). This conformational change may bring a different set of amino acid residues 
into the dimerization interface, resulting in formation of the active receptor structure. The TM helices are 
represented as cylinders (A and A’). Red and blue bars highlight the relative orientation of the TM helices after 
~100° rotation. 

 
This model was supported by a study using the Put3 helix rotational tag (86, 90). In this 

study, an EpoR dimer lacking the EC domains was tethered to the extracellular Put3 dimer tag, 

and the TM domain of EpoR was artificially rotated on its helical axis by removing variable 

numbers of amino acids from the TM domain at the Put3-TM junction. Removal of one amino 

acid at the Put3-TM junction forces a rotation of the TM helix by ~100°. By sequentially 

removing up to seven amino acids from the Put3-TM junction, all possible TM-TM interfaces 

can be generated (86) (Figure 1.8). Out of seven possible helical orientations, only one activated 

the EpoR downstream signaling pathway, suggesting that a specific dimerization interface 

defines the active conformation of EpoR (86).  
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Figure 1.8: Helical-wheel diagram showing a coiled-coil structure composed of two TM helices. Within a pre-
formed receptor dimer, two TM domains may form a coiled-coil structure, in which amino acids reside on seven 
different structural positions (a−g). These seven residues, called a heptad repeat, constitute exactly two helical turns 
in each helix. The diagrams show the top views of a TM helix dimer before (left) or after (right) ligand binding. 
Before ligand binding, the two TM helices may interact with each other at a specific interface (e.g., positions a and 
d) (left). Upon ligand binding to the receptor, the TM helices may rotate ~100° on their helical axes, bringing a 
different set of amino acids into the interaction surface (e.g., positions c and g) (right).  

 
 Similarly, another study also artificially rotated the TM helix of EpoR by inserting an 

alanine in the juxtamembrane (JM) region and found that a specific helical orientation is 

important for the downstream signaling (87). The helix rotation of a receptor TM domain may be 

indispensable for activation of not only EpoR, but also another Type I-Group 1 cytokine receptor, 

GHR. Indeed, a helix rotation study using alanine insertions suggests that a GHR dimer can be 

activated when a specific set of amino acids in the TM domain is brought to the dimerization 

interface by re-orientation of the TM helices (78).  

To examine whether the TpoR activation is also mediated by the TM helix rotation, a 

recent study using the Put3 system changed the helical orientation of the TpoR TM domain. 

Unlike EpoR, six out of seven engineered helical orientations were able to activate the TpoR 

downstream signaling although their activation levels were variable (91). On the other hand, only 

one helical orientation rendered TpoR completely inactive (91). This result suggests that TpoR 

may adopt six different active states, each of which is determined by a distinct set of amino acid 
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residues lined up in the TM-TM interaction interface. However, it should be noted that this 

model was based on an assumption that the TM domain constitutes the interaction interface of a 

ligand-independent TpoR dimer. If this is not the case, we cannot rule out the possibility that the 

helical re-orientation of the TM domain may play only a minor role in the TpoR activation.  

 

1.4 Clinically relavant mutations in TpoR 

 
In addition to studies on other Type I-Group 1 cytokine receptors, clinically relevant mutations 

in TpoR are a useful resource to understand the molecular mechanism underlying TpoR 

activation. As shown in Table 1.1, a majority of the clinically relevant TpoR mutations are found 

in the TM domain and its adjacent region. Within this region, S505 and W515 are most 

frequently mutated, suggesting that these residues play a critical role in regulation of the TpoR 

activity. 

1.4.1 Clinically relevant mutation at S505 of TpoR 

 
The S505N mutation, which resides in the middle of the TpoR TM domain, is associated with 

familial ET (34-36, 92). It has been demonstrated that S505N constitutively activates the JAK2-

STAT signaling pathway, resulting in an increased number of platelets (35). The TpoR mutant 

containing S505N can form a ligand-independent dimer (38). The dimerization and the resulting 

receptor activation of the mutant TpoR is not abrogated by deletion of its EC domain, suggesting 

that either the IC or TM domain is essential for the ligand-independent dimerization and the 

activation of the mutant receptor (38). Interestingly, amino acid substitution within the TM 

domain is known to cause constitutive activation of other single-pass transmembrane receptors. 
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For example, the human epidermal growth factor receptor 2 (HER2) is constitutively activated 

by substitution of valine for glutamic acid at position 664 (V664E), which is located in the 

middle of the TM domain (93). The V664E mutation was suggested to stabilize the dimer 

structure of HER2 by forming two hydrogen bonds: one with the backbone carbonyl of A661 

and another with the side chain of T662 (94). Similarly, the fibroblast growth factor receptor 3 

(FGFR3) is constitutively activated by substitution of alanine for glutamic acid at position 391 

(A391E), a mutation in the TM domain. The E391 might form a hydrogen bond between two 

interacting TM helices, thereby stabilizing the active conformation of the FGFR3 dimer (95). By 

analogy, the S505N mutation may enhance the TpoR activity by stabilizing TM-TM interactions 

within a pre-formed TpoR dimer and/or rearranging the receptor dimer into the active 

conformation.  

1.4.2 Clinically relevant mutation at W515 of TpoR 

 
At least 4.5% of ET and 5% of PMF patients are known to possess a mutation of the tryptophan 

residue at position 515 (W515) of TpoR, which resides at the boundary between the TM domain 

and the intracellular side of the JM region (IC-JM) (50). At least six types of clinical mutations at 

this residue (W515K, W515L, W515R, W515A, W515S, and W515G) have been identified from 

ET and PMF patients (34). All of these mutations constitutively activate TpoR, resulting in an 

increased number of platelets (34). However, the molecular mechanism by which these 

mutations at W515 cause constitutive receptor activation remains largely unclear. Considering 

the high frequency of W515 mutations in TpoR, the 514RWQFP motif surrounding W515 may 

play an essential role in regulation of the TpoR activity. Consistent with this notion, the RWQFP 
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motif in the IC-JM is highly conserved among the TpoR homologs from many other species 

(Figure 1.9A). On the other hand, the RWQFP motif is specific to TpoR, and not found in the 

other Type I-Group 1 cytokine receptors (Figure 1.9B). This suggests that the RWQFP 

possesses a TpoR-specific function in the control of receptor activation. 

 

Figure 1.9: Sequence alignment of the TpoR TM-JM regions.  (A) The amino acid sequence of the 
human TpoR TM-JM region including the Box 1 motif was aligned with the corresponding sequence of other 
primate TpoR receptors. The RWQFP motif, highlighted in red, is conserved throughout different species. (B) The 
human TpoR sequence was aligned with that of the other cytokine Type I-Group 1 receptors. Note that the RWQFP 
motif is unique to TpoR. Regions highlighted in blue and bold black indicate the predicted TM domains and the Box 
1 motifs, respectively. 

 
Furthermore, a study using the murine TpoR has demonstrated that deletion of the 

amphipathic motif (508KWQFP), which corresponds to the human 514RWQFP, constitutively 

activates TpoR (96). This constitutive activation resulted in activation of the JAK2-STAT 

signaling pathway, as well as induction of hematopoietic myeloid differentiation even in the 

absence of Tpo (96). Thus, these observations suggest that 514RWQFP motif is required for 

maintaining the inactive state of the TpoR when the ligands are not bound to the receptor.   

1.5 Models for the activation mechanism of TpoR 

 
Increasing evidence suggests that several Type I-Group 1 cytokine receptors likely form ligand-

independent dimers. By analogy, TpoR, another Type I-Group 1 cytokine receptor, may also 
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exist as a dimer in the absence of the ligand (Figure 1.10). The putative TpoR dimer may be 

stabilized by TM-TM interactions as is the case for EpoR, the closest relative of TpoR. Binding 

of Tpo to a TpoR dimer may alter the helical orientation of the two pre-associated TM domains, 

leading to a receptor conformation more favorable for JAK2 activation (Figure 1.10). The 

constitutively active TpoR mutants may force this TM helical orientation change in a ligand-

independent manner, causing constitutive activation of the JAK2-STAT signaling pathway. For 

example, one of the clinical mutations in TpoR, S505N, might cause intermolecular hydrogen 

bonding between the associated TM domains, thereby mimicking the TM-TM orientation of the 

activated TpoR. However, we cannot exclude the possibility that, unlike EpoR, the TM domains 

do not interact with each other unless Tpo is bound to TpoR. If this is the case, the activation of 

TpoR may be mediated by a different mechanism. For instance, TpoR may exist as a monomer 

or form a dimer through a region other than the TM domain, and binding of Tpo to the EC 

domain of TpoR may promote the TM-TM interaction, resulting in the active receptor 

conformation. Based on this alternative model, we predict that several clinical mutations could 

constitutively activate the JAK2-STAT signaling by enhancing the ligand-independent TM-TM 

interaction.  
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Figure 1.10: Potential models for the TpoR activation mechanism. (A) Ligand-independent dimerization of 
TpoR is mediated by TM-TM interaction, and inactive JAK2 kinases are associated with the intracellular (IC) 
domains of the receptor dimer (left). Once the ligand, Tpo, binds to the extracellular (EC) domains of the receptor 
dimer, the two TM helices are forced to rotate on their helical axes, bringing a distinct set of residues into the TM-
TM interaction interface (right). This rotation of the TM helices rearranges the structure of the IC domain as well as 
the pre-associated JAK2 kinase. As a result, JAK2 becomes activated and promotes downstream signaling. An 
ellipse in the EC domain represents one cytokine receptor module (CRM). (B) In this model, the unliganded 
(inactive) receptor may exist as a monomer. The ligand binding mediates the dimerization of the receptor, leading to 
the activation of the receptor. 

 

1.6 Summary and objectives 

 

Despite the apparent importance of TpoR in megakaryocytopoiesis and platelet development, the 

molecular mechanism underlying the TpoR activation remains unclear. To better understand the 
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conformational change that TpoR undergoes upon the ligand binding, we ask the following 

questions: 

• Like other Type I-Group 1 cytokine receptors, does TpoR dimerize in the absence of its 

ligand? 

• Do the TM domain of TpoR and its adjacent JM region play a role in receptor 

dimerization and activation? 

• How do mutations in the TM-JM domain of TpoR cause constitutive activation of the 

receptor? 

 

Specifically, we focus on the TM-JM region of TpoR because many mutations in this region are 

known to constitutively activate the receptor. In addition, we examine the effect of several 

clinically relevant mutations on the dimerization and activity of the full-length receptor. The 

work on the full-length TpoR has been a collaborative effort with the research group of Prof. 

Stefan Constantinescu (Ludwig Institute for Cancer Research).  The outline of the thesis is as 

follows.   

 

Chapter 2 presents the methods used in this work.  

The principal methods we used at Stony Brook University were as follows: 

• Sedimentation equilibrium analytical ultracentrifugation (SE-AUC) 

This assay was used to measure the TpoR TM-TM helix interaction in detergent 

micelles. SE-AUC is a useful method particularly for determining membrane protein 

interactions because it allows for direct observation of protein self-association without 

considering the mass of micelles.  

•  Deuterium magic angle spinning (MAS) NMR spectroscopy 
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This assay was used to measure the TpoR TM-TM helix interaction in lipid bilayer 

membranes. The deuterium MAS NMR spectroscopy is beneficial for studying the TM-

TM interaction of membrane proteins because this technique makes it possible to study 

membrane proteins in model cell membranes. 

• Polarized infrared spectroscopy 

This assay was used to measure the secondary structure and helix orientation of the 

TpoR TM domain in lipid bilayer membranes.  

 

The studies and approaches that were completed in the laboratory of Prof. Stefan Constantinescu 

were as follows: 

• Split Gaussia princeps luciferase complementation assay – Dr. Vitalina Gryshkova 

This assay was used to measure the dimerization state of the full-length wild-type TpoR 

as well as its mutants in the absence of ligand. The luciferase complementation system 

is a highly sensitive analysis that does not require overexpression of the proteins to be 

tested. Thus, in this assay, proteins can be expressed at or near their endogenous levels, 

which should lower the risk of false positive protein interactions.  

• Dual luciferase reporter assay – Dr. Jean-Philippe Defour 

This assay was routinely used to analyze the TpoR activity in vivo. We utilized the 

STAT-responsive promoter fused to the luciferase gene and determined the JAK2-

STAT signaling activity in cells expressing various TpoR mutants. 

 

In Chapter 3, we address the propensity of the wild-type TM domain to dimerize. It remains 

elusive whether TpoR undergoes ligand-independent dimerization via its TM domain. To address 

this question, we first use SE-AUC and deuterium NMR, and examine whether the TM-JM 

peptide of TpoR can self-associate. Our results show that, unlike EpoR, the TM-JM peptide of 

TpoR does not possess a strong propensity to dimerize in detergent micelles or lipid bilayer 

membranes. We then extend this study to the full-length receptor in collaboration with the 

laboratory of Stefan Constantinescu. Our split luciferase complementation assay shows that the 
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full-length TpoR can dimerize in a ligand-independent manner despite the lack of TM-TM 

interactions.   

 

In Chapter 4, we extend the results presented in Chapter 3 on the wild-type TpoR to the 

S505N mutant receptor. The S505N mutation, which resides in the TM domain of TpoR, 

constitutively activates the receptor and its downstream signaling. Thus, this mutation is a useful 

tool to analyze the effect of the TM domain on the receptor conformation and the resultant 

activation. We first analyze the effects of the S505N mutation on self-interaction of the TpoR 

TM-JM peptide using SE-AUC and deuterium NMR. Then, we examine the effect of S505N on 

the dimerization and activation of the full-length TpoR in collaboration with the Constantinescu 

laboratory. Our results show that S505N is a gain-of-function mutation that enhances TM-TM 

interaction, receptor dimerization, and receptor activity. 

 

In Chapter 5, we focus on W515, the mutations of which are known to constitutively 

activate TpoR. The W515 residue, which is part of a unique five-residue motif (RWQFP), is 

located at the intracellular TM-JM boundary. We first analyze the effects of various known 

mutations at W515 on the receptor activity as well as the receptor dimerization. Our data, which 

were obtained in collaboration with the Constantinescu laboratory, suggest that a tryptophan 

residue in the TpoR JM region is critical to maintain TpoR in an inactive conformation. We then 

utilize SE-AUC, deuterium NMR and polarized IR to examine in more detail how W515 

stabilizes the inactive receptor conformation.   

Finally, in Chapter 6, we discuss possible models of the TpoR activation mechanisms based 

on the results presented in Chapters 3-5.  
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Chapter 2. Materials and Methods 

2.1 Synthetic TpoR transmembrane and juxtamembrane (TM-JM) 

peptides 

2.1.1 Peptide synthesis 

The wild-type human TpoR TM-JM peptide (E488 to W529) and the mutant peptides containing 

either S505N, W515K, W515K/Q516K, or R514A/W515A were synthesized using solid-phase 

methods at the W.M. Keck Peptide Synthesis Facility at Yale University (Figure 2.1). The 

mutant TpoR TM-JM peptide containing R514W/W515K was synthesized using the same 

method by Takeshi Sato at Osaka University (Figure 2.1). Three arginine residues were added at 

the N-terminus of human TpoR TM-JM peptides to increase the solubility of the peptides and to 

prevent protein aggregation, such as head-to-tail non-specific binding. Deuterated (5,5,5-d3) 

leucine and deuterium depleted water were obtained from Cambridge Isotope Laboratories. 

Solid-phase synthesis for hydrophobic peptides has been described previously (97, 98). 
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Figure 2.1: Synthetic TpoR TM-JM peptides used in this study. All synthesized peptides except W515A/Q516W 
cover the TpoR amino acid sequence from E488 to W529 and are fused to three arginine residues at their N-termini 
to increase peptide solubility. The W515A/Q516W mutant peptide contains the sequence from T481 to H520. 
Putative TM domains and the RWQFP motif are highlighted in blue and red, respectively. Mutated residues are 
highlighted in green. 

2.1.2 Synthetic peptide purification 

Crude peptides from solid-state synthesis were purified using reverse-phase HPLC, which is a 

widely-used technique for purifying hydrophobic peptides (99). Around 5 mg of crude peptides 

were dissolved in TFE and loaded onto a C4 reversed-phase semi-preparatory HPLC column 

(Higgins Analytical). The C4 reverse phase column was equilibrated with 30% solvent A (12% 

acetonitrile, 18% isopropanol, and 0.1% TFA) and 70% solvent B (40% acetonitrile, 60% 

isopropanol, and 0.1% TFA). Peptide was eluted using a linear concentration gradient of solvent 

B (from 95%) over 45 minutes at a flow rate of 2.5–3 mL/min. The HPLC trace was monitored 

by the optical absorbance at 220 nm and 280 nm. Peptide peaks were collected and checked by 

mass spectrometry for purity. Typically, the yield of pure peptides per crude peptide weight is 

~10–20% with a C4 column (97). Pure peptides were lyophilized and stored at −80 ºC until 

further experiments, such as reconstitution into detergent micelles or lipid bilayers. 

2.2 Recombinant TpoR TM-JM peptides 

2.2.1 Peptide expression in bacteria 

The DNA constructs for the wild-type and various mutants of the human and murine TpoR were 

provided by Dr. Stefan Constantinescu. The TM-JM region (i.e., T481 to H520) of the TpoR 
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sequence was PCR-amplified and inserted into the ligation-independent cloning (LIC) site of the 

His-MBP-TEV expression vector, which was obtained from Dr. Tim Cross (100, 101). Five 

TpoR TM-JM fusion constructs (wild-type, W515K, W515K/Q516K, R514W/W515K, and 

W515A/Q516W) were generated (Figure 2.2). All of the plasmid constructs were verified by 

sequencing.  

 
Figure 2.2: Recombinant TpoR TM-JM peptides used in this study. All recombinant peptides cover the TpoR 
amino acid sequence from T481 to H520. Note that three non-native amino acid residues (SNA) derived from the 
linker sequence remain attached to the N-terminus of the recombinant peptide after cleavage of an N-terminal His-
MBP (maltose binding protein) tag. Putative TM domains and the RWQFP motif are highlighted in blue and red, 
respectively. Mutated residues are highlighted in green. 

 

The TpoR TM-JM fusion protein constructs were then introduced into chemically 

competent Escherichia coli BL21(DE3) cells. Transformed E. coli cells were incubated in 25 mL 

of LB broth containing 100 µg/ml ampicillin overnight at 37 °C. Cells were harvested by 

centrifugation at 6,000 x g for 20 minutes at 4 °C. Harvested cells were washed with M9 medium 

twice, and resuspended with 10 mL of M9 medium after the centrifugation. Resuspended cells 

were grown at 37 °C with shaking (200 rpm) for approximately 6 hrs until the optical absorbance 

at 600 nm (A600) reached 0.5–0.6. Then, isopropyl β-D-1-thiogalactopyranoside (IPTG) was 

added into the cell culture to a final concentration of 0.4 mM, and the cells were grown overnight 

(12–16 hrs) at 23 °C to induce protein expression. Cells were harvested by centrifugation at 

4,000 x g for 30 min at 4 °C. Cells were resuspended in 10 mL of binding buffer (20 mM Tris-

HCl, 500 mM NaCl, 5 mM imidazole, pH 8.0) and frozen at − 20 °C until ready for extraction.  
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2.2.2 Recombinant peptide purification 

Purification of the His-MBP TpoR TM-JM fusion protein was done using the Ni-NTA agarose 

method. Frozen resuspended cells were thawed by incubating in a water bath at 37 °C for 15 min 

and lysed using 2 µl benzonase (Novagen) and a French press. Lysates were centrifuged at 

25,000 x g for 25 min at 4 °C and incubated with 200 mg of n-octyl-β -D-glucopyranosid (β-OG) 

(Sigma-Aldrich) for 5 min at room temperature. This lysate-detergent mixture and 20 mL of 50% 

Ni-NTA agarose slurry (10 mL bed volume), which was pre-equilibrated with 100 to 150 mL 

binding buffer, were loaded into a Ni-NTA agarose column (QIAGEN) and mixed by nutating 

overnight at 4 °C. After the flow-through was collected by gravity flow, 160 mL washing buffer 

(20 mM Tris-HCl, 500 mM NaCl, 50 mM imidazole, pH 8.0) was loaded onto the column (40 

mL at a time) to remove non-specific binding proteins. Fusion proteins were eluted in 1 mL of 

elution buffer (20 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole, pH8.0) several times until 

the A280  reached 0.05. Elution fractions with an A280 of > 0.1 were collected (50–60 mL total 

volume). Protein yields were typically 100–120 mg/L. The flow-through, all washes and eluted 

fractions were analyzed using 15 or 18% SDS-PAGE gels.  

In the next step, the His-MBP tag was removed from the TpoR TM-JM fusion protein by 

the Tobacco Etch Virus (TEV) protease. Briefly, N-dodecyl-β-D-maltoside (DDM) (Sigma-

Aldrich) was added to elutants to a final concentration of 0.2% (w/v). Approximately, 50–60 mL 

(~0.2 mg/mL) of His-tagged TEV protease was added to the elutants at a 1:1 (v/v) ratio and 

nutated for 32–40 hrs at room temperature to cleave the His-MBP off from the TpoR TM-JM 

peptide. The cleavage was verified using 15 or 18% SDS-PAGE gels. His-tagged TEV protease 

was expressed in BL21(DE3) and purified using the same purification steps as described for the 
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TpoR TM-JM peptide without any detergents. Elutants and sterilized glycerol were mixed in a 

1:1 (v/v) ratio. In addition, dithiothrietol (DTT) and ethylenediamine tetraacetic acid (EDTA) 

were added to final concentrations of 5 mM and 1 mM, respectively. The yield for the TEV 

protease was typically 17–22 mg/L culture.  

Further purification was done to remove the His-MBP tag and His-TEV as well as 

uncleaved His-MBP-TpoR TM-JM peptides. After the TEV protease cleavage, all proteins were 

precipitated by 6% (w/v) trichloroacetic acid (TCA). Precipitates were collected by 

centrifugation at 9,000 x g for 20 min at 4 °C. After two washes with ddH2O, precipitates were 

lyophilized overnight.  

As a final purification step, organic extraction was performed to extract only TpoR TM-JM 

peptide. Lyophilized proteins were rehydrated with 10 mL methanol-chloroform solution (9:1, 

v/v) for 2 hrs at room temperature with nutating. Supernatants were filtered through 0.2 µm 

PTEE syringe filter to remove TCA precipitates. The filtered sample was dialyzed against 2 

changes of 2 L methanol-chroloform solution (9:1, v/v) to remove any residual glycerol and 

immidazole from TEV cleavage and TCA precipitation steps. The purity was verified by 18% 

SDS-PAGE gels and mass-spectrometry. Final peptide concentrations were calculated based on 

the A280 and the molar extinction coefficient using Beer’s Law (A=εbc). Typical yields of the 

TpoR TM-JM peptide were 1–2 mg/L. 
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2.3 Reconstitution of the TpoR TM-JM peptides 

2.3.1 Reconstitution of peptides in detergent micelles 

Membrane protein sample reconstitution in detergent micelles for sedimentation equilibrium 

analytical ultracentrifugation (SE-AUC) was based on the protocol provided in Kochendoerfer et 

al. and Sulistjo et al. (102, 103). Synthesized TpoR TM-JM peptides were dissolved in 

hexafluoroisopropanol (HFIP) or TFE. For the recombinant TM-JM peptides, samples that were 

subjected to organic extraction were purified using HPLC and lyophilized to obtain pure peptide 

powder. Then, pure peptides were dissolved in HFIP or TFE. Three different peptide 

concentrations were prepared based on the optical absorbance (A280 = ~0.3, ~0.5 and ~0.8). 

Dodecylphosphocholine (DPC) (Anatrace) was dissolved in 100 µl water to a final concentration 

of 15 mM and added drop-wise to 150 µl of peptide solutions. Additional 0.4–0.5 mL of water 

was added to the DPC-peptide mixture drop-wise while stirring the sample until the detergent 

bubbles do not immediately pop after sample agitation. Samples were frozen and lyophilized 

under the same conditions as the NMR sample preparation. Lyophilized samples were rehydrated 

with 150 µl of Tris buffer (50 mM Tris-HCl, 0.1 M NaCl pH 7.5) containing 52.5% D2O, which 

achieves density match for accounting the buoyancy of DPC micelles (103). Sample 

concentrations were calculated based on the A280 and the molar extinction coefficient using 

Beer’s Law (A=εbc). Typically, the concentration ranged from ~15 µM to 100 µM.  

2.3.2 Reconstitution of peptides in lipid bilayers 

Two kinds of lipids, 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-

Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) (Avanti Polar Lipids), were mixed in 2 mL 
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of HFIP at a ratio of 10:3 (w/w). Then, a detergent, β-OG, was added to a final concentration of 

5–10% (v/w) in the lipid mixture. Lipid-detergent mixture was frozen by liquid nitrogen and 

lyophilized overnight. Dried samples were rehydrated by 1 mL of water. Approximately, 5 mg 

(~1–2 µmol) pure synthesized peptides were dissolved in 1 mL of HFIP or TFE. Lipid-detergent 

solution was added to the peptide solution at a lipid/peptide molar ratio of 50:1. In addition, 

typically, 2–3 mL of water was added to lipid-detergent-peptide solution while stirring until 

bubbles form. Protein-lipid mixtures were frozen and further lyophilized. Lyophilized samples 

were rehydrated with 4 mL of phosphate buffer (10 mM phosphate, 50 mM NaCl pH7.0). 

Rehydrated samples were dialyzed ~5–8 times against 2 L of phosphate buffer over 48 hrs (104). 

A fraction of the dialyzed samples (100 µl, ~200–400 µM) was analyzed by Fourier transform 

infrared (FTIR) spectroscopy. The rest of the dialyzed samples were centrifuged at 228,556 x g 

for 1 hr at 4 °C. Pellets were lyophilized and rehydrated with 50% weight deuterium depleted 

water (Cambridge Isotope Laboratories) overnight at 37 °C. 

2.4 Sedimentation equilibrium a nalytical ultracentrifugation (SE-

AUC) 

 
SE-AUC experiments were performed using a Beckman XL-I analytical ultracentrifuge. 

Absorbance at 280 nm was measured radially across the centrifuge cell. Data points were 

collected in radial increments of 0.001 cm, with each data point representing the average of 10 

replicates. Three different peptide concentrations (ranging from ~15 µM to 100 µM) were used 

to improve the quality of the data. Each peptide sample was separated into its potential 

oligomeric states by centrifugation at 35k, 40k, or 48k rpm for 20–24 hrs. All the data were 



Chapter 2 
 

 
34

analyzed by non-linear least-squares global curve fitting using the UltraScanII (version 9.9) data 

analysis software developed by B. Demeler (http://www.ultrascan.uthscsa.edu/). The analysis 

software can fit the experimental data to different functional models, such as a single component 

fit (Figure 2.3A) and a monomer-dimer equilibrium fit (Figure 2.3B), to calculate 

thermodynamic properties of peptide samples. The analysis uses the solvent density ρ = 1.0580 

and the partial specific volume of the wild-type TpoR (0.7645 cm3/g) and mutants at 20 °C as 

calculated by SEDNTERP software for input (105). 

 
Figure 2.3: Single component and monomer-dimer equilibrium models for SE-AUC analyses. Two exponential 
functions were used to analyze the experimental data. X = radius, Xr = reference radius, A = amplitude, e = 
extinction coefficient, M = molecular weight, l = path length, K1 = monomer-dimer equilibrium constant, D = 
density, R = gas constant, T = temperature, B = baseline 

2.5 Polarized attenuated total reflection (ATR) Fourier transform 

infrared (FTIR) analysis 

 
ATR-FTIR spectroscopy was used to monitor two properties of the reconstituted peptide: 1) the 

secondary structure and 2) the TM orientation (106). Parallel and perpendicular polarized light is 

absorbed in the region of amide I vibration (1600–1690 cm-1) (107). The amide I vibration 

frequency is especially sensitive to the global secondary structure of protein and the orientation 

of the helix relative to the plane of the membrane (107). Frequencies in the 1660-1650 cm-1 
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region are assigned to α-helices, 1640–1620 cm-1 to β-sheets, and 1695-1660 cm-1 to β-sheets 

and β-turns (107). Random coil is assigned to broad bands centered at ~1650 cm-1 (107).  

One hundred microliters of the TpoR TM-JM peptides (~200–400 µM) reconstituted in 

DMPC/DMPG were layered on a germanium internal reflection element using a slow flow of air 

directed at an oblique angle to the IR plate to form an oriented multilamellar lipid-peptide film. 

Spectra were obtained using both parallel and perpendicular polarized light. For each 

polarization, 1000 scans were acquired and averaged at a resolution of 4 cm-1. Typically, a range 

between ~1695 and 1610 cm-1 (α-helix amide I region) was integrated using Bruker OPUS 

software (version 5.0). The dichroic ratio (RATR) was obtained as the ratio of the absorption of 

parallel (A||) to that of perpendicular (A⊥) polarized light. The TM helix tilt angle was 

determined by the dichroic ratio and the following equations (Figure 2.4). It should be noted that 

the measurement of the dichroic ratio is also a useful, rapid approach to confirm that TM 

peptides are properly inserted into the lipid bilayers (107, 108). 
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Figure 2.4: Equations to determine a TM helix tilt angle. The dichroic ratio is obtained experimentally. The 
values used for electric field amplitudes and order parameters are previously described in (108-110). 

2.6 Deuterium magic angle spinning (MAS) nuclear magnetic 

resonance (NMR) spectroscopy 

 
The reconstituted peptide samples were packed into 4 mm NMR rotors for solid-state NMR 

structural analysis. Deuterium MAS NMR was done to obtain structural information of the wild-

type TpoR TM-JM and its mutants.  

Deuterium MAS NMR spectroscopy can be used to characterize the dynamic properties of 

membrane proteins (111, 112). Combining MAS NMR with selective deuterium isotopic 

labeling at specific amino acids allows us to probe amino acid side chain motions of 
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reconstituted proteins in membranes (113). Liu et al. (114) demonstrated in detail how deuterium 

MAS NMR spectra are correlated with side chain motions in different surfaces of TM helices in 

membranes. Typically, the methyl groups of aliphatic amino acids (valine, methionine, leucine or 

isoleucine) were deuterated during sample preparation. With this labeling scheme, amino acids in 

the dimer interface show a broader lineshape relative to those oriented towards lipids. 

Deuterium MAS NMR spectra were obtained at a 2H frequency of 55.26 MHz on 360 MHz 

or 500 MHz using a Bruker AVANCE spectrometer with a MAS frequency of 3 kHz. A 3–7.5 

µsec single 90° pulse was applied, and the data were collected after 4.5 µsec delay. The 

repetition delay was set to 0.25 sec. A 100 Hz exponential line broadening function was used to 

process each spectrum, which was averaged of the 600,000–1,500,000 transients. Spectra were 

acquired at 25 °C. 

2.7 Computational simulations 

 
CHI is a computational search program for determining low-energy conformations of helix 

dimers with improved packing interactions between helices (115). Computational searches were 

carried out on the TpoR TM (I492 to L513) and TpoR TM-JM (I492 to P518) sequences. Input 

parameters, such as the peptide sequence, the separation between helices, and sampling step size, 

were defined, and two canonical helices were generated. Each helix was rotated relative to one 

another from 0° to 360° with a sampling step size of 45° at helix separations of 9.0 Å to 10.5 Å 

to find low energy conformations of helix dimers. Both right-handed and left-handed 

conformations were searched. The crossing angles and rotations were variable. Energy 

minimized conformations were first placed on an initial grid. When there were more than five 
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structures with a root mean square deviation of 1 Å or less, these conformations can form a 

“cluster” and the individual minimized structures in each low energy cluster were averaged and 

re-minimized. The computational search was done under vacuum conditions (dielectric constant 

ε=1) to mimic the low dielectric environment within the hydrophobic core of bilayer membranes.  

2.8 In vivo analyses of the TpoR activation mechanism  

2.8.1 Plasmids 

Construction of the retroviral vectors pMX-JAK2-IRES-CD4 and pMX-HA-TpoR-IRES-GFP, 

which harbor the human JAK2 (accession No. O60674) and the human TpoR (accession No. 

P40238), respectively, has been described (91, 116). Retroviral vectors containing a mutant 

TpoR coding DNA sequence (CDS) were generated by the Quickchange site-directed 

mutagenesis kit (Stratagene) using pMX-HA-TpoR-IRES-GFP as a template. For dual luciferase 

reporter assays, the pGRR5-Luc vector (117), which expresses the firefly luciferase reporter 

under the control of the STAT-responsive promoter, was used. This promoter contains five 

copies of the STAT-responsive element, which is found in the IFN-γ-responsive region (GRR) of 

the FcγRI gene promoter (117). As an internal control, pRL-TK (Promega), which constitutively 

expresses the Renilla luciferase reporter under the control of the thymidine kinase (TK) promoter, 

was used. For split Gaussia princeps luciferase complementation assays, the human TpoR CDS 

was PCR-amplified and cloned in frame at its C-terminus, eliminating the stop codon, with either 

the N-terminal half (hGluc1) or C-terminal half (hGluc2) of the G. princeps luciferase into the 

NotI-ClaI sites of pcDNA3.1/Zeo vector (Invitrogen), resulting in pcDNA3.1/Zeo-TpoR-hGluc1 

and pcDNA3.1/Zeo-TpoR-hGluc2, respectively (118). Mutant TpoR CDSs were generated by 
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the Quickchange site-directed mutagenesis kit (Stratagene) using pcDNA3.1/Zeo-TpoR-

hGluc1/2 as a template. 

2.8.2 Cell lines 

To generate TpoR-expressing stable cell lines, the retroviral vector pMX-HA-TpoR-IRES-GFP 

(wild-type or mutant) was transfected into the BOSC packaging cell (119). The resulting virus 

supernatants were harvested and used to infect γ-2A cells after 24 hrs of transfection. The γ-2A 

cell line corresponds to JAK2-deficient human fibrosarcoma cells (120). The host cells were co-

infected with the pMX-JAK2-IRES-CD4 virus, which was produced in the BOSC packaging cell. 

Cells that stably express TpoR were selected based on expression levels of the GFP marker by 

fluorescence-activated cell sorting (FACS). Expression of HA-TpoR was also confirmed by 

Western blotting with anti-HA antibodies. All of the γ-2A-derived cells were cultured in 

Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum and appropriate 

antibiotics. 

2.8.3 Dual luciferase reporter assay 

Reporter vectors, pGRR5-Luc and pRL-TK, were transiently co-transfected into TpoR-

expressing γ-2A cells using Lipofectamine (Invitrogen) (116). Bioluminescence from the firefly 

luciferase reporter (FF) and the Renilla luciferase reporter (RL) were detected by the Victor X 

light analyzer (Perkin-Elmer) 24 hrs after transfection. The signal intensity of FF was normalized 

to that of RR.   
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2.8.4 Split Gaussia princeps luciferase complementation assay 

A pair of split luciferase constructs, pcDNA3.1/Zeo-TpoR-hGluc1 and pcDNA3.1/Zeo-TpoR-

hGluc2, were transiently co-transfected into HEK293 cells at a 1:1 ratio (1 µg of DNA for each 

construct) using Lipofectamine (Invitrogen). After 48 hrs of transfection, cells were harvested by 

centrifugation at 4 ºC for 1 min and lysed by freeze-thaw. Bioluminescence derived from 

luciferase reconstitution was analyzed using the Victor X light analyzer (Perkin-Elmer).  
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Chapter 3. Oligomerization status of wild-
type TpoR in the absence of the ligand 

3.1 Introduction  

 
The key to understanding the TpoR activation mechanism may lie in other Type I-Group 1 

cytokine receptors, such as the erythropoietin receptor (EpoR), the growth hormone receptor 

(GHR), and the prolactin receptor (PRLR). As discussed in detail in Chapter 1.2, studies using 

various methods, such as Co-IP, FRET, and BRET, demonstrated that GHR, PRLR, and EpoR 

exist as dimers even in the absence of the ligand binding (i.e., ligand-independent dimers or pre-

formed dimers) (76, 78, 80). The EpoR, the closest relative of TpoR, has a strong propensity to 

dimerize through its TM domain (76, 82, 83). Similarly, we speculate that the TM domain of 

TpoR has a propensity to undergo self-interaction. Our analytical ultracentrifugation analysis and 

deuterium MAS NMR spectroscopy using the TpoR TM-JM peptide showed that, unlike EpoR, 

the TM domain of the TpoR did not interact with each other in a 1:1 stoichiometric ratio. 

Furthermore, to analyze the oligomerization state of the full-length TpoR in the absence of Tpo, 

we performed a Gaussia princeps luciferase complementation assay in collaboration with the 
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laboratory of Stefan Constantinescu. This analysis revealed that, like other Type I-group 1 

cytokine receptors, at least some fraction of the full-length TpoR undergoes ligand-independent 

homodimerization. Together, our data suggest that TpoR may possess a unique dimerization 

mechanism among the Type I-group 1 cytokine receptor family. 

3.2 Results 

3.2.1 The TpoR TM-JM peptide does not dimerize in detergent micelles 

 
At least two cytokine Type I-Group 1 receptors, EpoR and GHR, are known to dimerize via their 

TM-JM domains (76, 78). Similarly, the TM-JM domain of TpoR may also contribute to the 

homodimerization of TpoR. To test this hypothesis, we utilized two approaches: sedimentation 

equilibrium analytical ultracentrifugation (SE-AUC) and deuterium magic angle spinning (MAS) 

NMR spectroscopy. For an SE-AUC analysis, we used recombinant or synthetic TM-JM 

peptides of TpoR (Figure 3.1). As a positive control, we used the EpoR TM-JM region, which is 

known to interact with each other and stabilize the EpoR dimer (76, 82, 121-123).  

 
Figure 3.1: Recombinant and synthetic wild-type TpoR TM-JM peptides used for SE-AUC and deuterium 
MAS NMR spectroscopy. For the recombinant peptide, the TpoR TM-JM region containing the Box 1 motif was 
fused to an N-terminal His-MBP (maltose binding protein) tag. The recombinant peptide was expressed in 
Escherichia coli cells and purified using Ni-NTA agarose. After cleavage of the His-MBP tag, the TM-JM peptides 
were further purified by organic extraction and the subsequent HPLC. Note that three non-native amino acid 
residues (SNA) derived from the linker sequence remain attached to the N-terminus of the recombinant peptide. For 
the synthetic peptide, the TpoR TM-JM region (from E488 to W529) was conjugated to an N-terminal tag of three 
arginine residues to prevent protein aggregation. Putative TM domains and the RWQFP motif are highlighted in 
blue and red, respectively. The Box 1 motif is indicated in bold black.  

 
The EpoR TM-JM peptides were dissolved in dodecylphosphocholine (DPC) detergent 

micelles at three different peptide concentrations, and were analyzed by SE-AUC using three 
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different centrifugation speeds (for details, see Methods). The SE-AUC analysis on the EpoR 

TM-JM peptide resulted in two kinds of graphs (top and bottom) (Figure 3.2). In the bottom 

graph, the x-axis is a radius across the centrifuge cell and the y-axis is optical density at A280. In 

the top graph, the x-axis corresponds to the radius across the centrifuge cell and the y-axis shows 

the distribution of residuals, which indicate how well the experimental data fit to a functional 

model (evenly distributed residuals around the zero line across the x-axis indicates that the 

experimental results are consistent with a given functional model). The experimental data of the 

EpoR TM-JM peptide were analyzed using a monomer-dimer equilibrium model (Figure 3.2). 

The calculated molecular weight (MW) of the EpoR peptide oligomer is 11680 Da, while the 

MW of the peptide monomer is 5922 Da (Table 3.1). This result shows that the TM-JM peptide 

of EpoR exists as a homodimer in micelles as previously reported (82), indicating that our SE-

AUC analysis is reliable for detecting TM-TM association. 
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Figure 3.2: The EpoR TM-JM peptide forms homodimers. The bottom graph shows the absorbance profiles at 
280 nm when the samples were centrifuged at 40k rpm. Plots derived from three different peptide concentrations (60 
µM, 70 µM, and 180 µM) are shown as representative data. DPC detergent (15 mM) was used to solubilize the 
peptide. The experimental data were analyzed using a monomer-dimer equilibrium model, and the top graph shows 
how well the experimental data fit the model. 

 
Using the same SE-AUC assay, we analyzed the oligomeric state of the synthetic TpoR 

TM-JM peptide lacking the Box 1 motif (Figure 3.1) in DPC micelles. The experimental data of 

the synthetic TpoR TM-JM peptide were analyzed using a single component model (Figure 3.3). 

Based on this model and the obtained SE-AUC spectrum, the MW of the predominant form of 

the peptide was calculated to be 6,960 Da (Figure 3.3, Table 3.1). Considering that the MWs of 

the monomeric and dimeric TpoR TM-JM peptides are 5,360 Da and 10,720 Da, respectively, 

our result indicate that the TM-JM domain of TpoR does not have a strong propensity to undergo 

dimerization. 
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Figure 3.3: The TpoR TM-JM peptide lacking the Box 1 motif does not form a homodimer in DPC micelles. 
The bottom graph shows the absorbance profiles at 280 nm when the samples were centrifuged at 35k, 40k, and 48k 
rpm. Plots derived from one peptide concentration (35 µM) are shown as representative data.  DPC detergent (15 
mM) was used to solubilize the peptide. The experimental data were analyzed using a single component model, and 
the top graph shows how well the experimental data fit the model. 

 

Similarly, the single component model predicted that the recombinant TM-JM peptide 

containing the Box 1 motif (Figure 3.1) does not interact with each other (Figure 3.4). After 

centrifugation, the TpoR TM-JM peptides were found mostly in a fraction with an estimated 

MW of 7,500 Da, which is very close to the MW of the peptide monomer (7,400 Da) (Table 3.1). 

Together, our data suggest that, unlike EpoR, TpoR does not form ligand-independent TM-TM 

interactions.  
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Figure 3.4: The TpoR TM-JM peptide containing the Box 1 motif does not form a homodimer in DPC 
micelles. The bottom graph shows the absorbance profiles at 280 nm when the samples were centrifuged at 35k and 
40k rpm. Plots derived from one peptide concentration (48 µM) are shown as representative data. Fifteen mM DPC 
detergent was used to solubilize the peptide. The experimental data were analyzed using a single component model, 
and the top graph shows how well the experimental data fit the model. 

 

Table 3.1: Summary of SE-AUC analysis. 

MW MW (fit)

EpoR TM-JM 5922 11680

TpoR TM-JM 5360 6960

TpoR TM-Box1 7400 7519  

3.2.2 The TpoR TM-JM peptide does not dimerize in lipid bilayers 

 
The SE-AUC analyses demonstrated that the TM-JM peptide of TpoR favors a monomeric state. 

However, we cannot exclude the possibility that the DPC micelles used in this assay may hinder 

stable TM-TM dimerization. Thus, we next utilized deuterium MAS NMR spectroscopy and 

examined the oligomerization status of the TpoR TM-JM domain within synthetic lipid bilayer 

membranes, which more closely mimic natural cell membranes. In this analysis, we deuterated 

the methyl group of the leucine residue at positions 510, 511, 512 or 513 of the synthetic TpoR 
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TM-JM peptide. As a control, we also deuterated the methyl group of the leucine residue at 

positions 239, 240, or 241 of the synthetic EpoR TM-JM peptide. Each deuterated peptide was 

reconstituted into 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-

glycero-3-[phospho-rac-(1-glycerol)] (DMPG) lipid bilayers at a lipid/peptide molar ratio of 50:1. 

We chose this molar ratio because this ratio has been experimentally shown to prevent non-

specific peptide aggregation (106). Then, the potential oligomeric states of each TM peptide 

were determined by deuterium MAS NMR spectroscopy. Deuterium MAS NMR has been a 

useful method for characterizing dynamic properties of membrane proteins (113). The basis of 

this method is that the methyl groups of aliphatic amino acids (i.e., valine, methionine, leucine, 

and isoleucine) are sensitive to molecular motion. Deuteration of such methyl groups and the 

following NMR analysis result in a deuterium line shape that reflects the molecular motion of the 

peptide sample. In general, any local environmental changes around the deuterated methyl group 

affect the resultant deuterium line shape. For instance, when a TM-JM peptide forms a 

homodimer, the motion of the site-specific methyl-deuterated leucine in the peptide is restricted, 

giving rise to an increase in the overall width of the deuterium MAS side band pattern. Figure 

3.5 shows the deuterium MAS NMR spectra of the wild-type TpoR TM-JM peptide and the 

EpoR TM-JM peptide. The x-axis is the frequency between 20 kHz to -20 kHz, where the 

quadruple splitting of rapid methyl rotation can be observed. An intense peak at zero frequency 

is residual water (HDO) peak. Consistent with the SE-AUC result, the EpoR TM-JM peptide 

gave rise to characteristic deuterium line shapes with a rotational side band pattern, the 

indication of TM-TM association (Figure 3.5B). On the other hand, we did not detect the 

rotational side band pattern from the TpoR TM-JM peptide (Figure 3.5C). This complete 
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absence of the rotational side band pattern is unusual. One possible explanation for this 

phenomenon is that the rotational motion of the peptide occurs on the time scale of MAS, and 

thus interferes with averaging by MAS.  To test this idea, it is possible to slow the rotational 

motion of the peptide by lowering the temperature of the sample. As Figure 3.6 shows, a 

distinctive pattern of rotational side bands appeared in the NMR spectra of the TpoR TM-JM 

peptide when the experiments were done at low temperatures (288K and 273K) that reduce the 

mobility of the surrounding lipids and, hence, the embedded TM peptide. Thus, the absence of 

the MAS side bands in the TpoR sample (Figure 3.5C) demonstrates that the TpoR TM-JM 

peptide does not undergo dimerization in lipid bilayers. 
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Figure 3.5: Deuterium MAS NMR of TpoR and EpoR. (A) The wild-type EpoR and TpoR TM-JM peptides used 
in deuterium MAS NMR spectroscopy. The predicted TM domains are highlighted in blue. Leucine residues 
deuterated in this study are underlined. The TM-JM peptides of TpoR and EpoR were reconstituted in 
DMPC:DMPG and DMPC lipid bilayer membranes, respectively. The NMR spectra were obtained using single 
pulse excitation at a deuterium frequency of 55.26 MHz with a spinning speed of 3 kHz. Each spectrum represents 
the average of the 600,000-1,500,000 transients. Spectra were obtained at 25 °C. The sharp peak at 0 frequency is 
residual deuterated water in the sample. (B) Deuterium MAS NMR spectra of the EpoR TM-JM peptide. (C) 
Deuterium MAS NMR spectra of the TpoR TM-JM peptide.  
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Figure 3.6: Lowering temperature of the sample restricted the rapid methyl rotational motion. Deuterium 
MAS NMR was performed on the TpoR TM-JM peptide in which the methyl group of the leucine residue at position 
512 was deuterated. A series of different temperatures, 298K, 288K, and 273K were used to modulate the lipid 
rigidity. As the temperature decreased, spinning side bands appeared, suggesting that the rotational motion was 
exactly at the time scale of MAS at 298K. 

 

3.2.3 The full-length wild-type TpoR forms a pre-formed dimer in vivo 

 
To investigate whether the full-length TpoR can also dimerize in vivo, we used a split Gaussia 

princeps luciferase complementation assay. In this assay, the full-length TpoR was fused to 

either the N-terminal (hGluc1) or C- terminal (hGluc2) fragment of the G. princeps luciferase 

(Figure 3.7A). Interaction between TpoR-hGluc1 and TpoR-hGluc2 in HEK293 cells is 

expected to bring the two luciferase fragments within proximity and reconstitute the luciferase 

reporter.  



Chapter 3 
 

 
51

As shown in Figure 3.7B, co-expression of TpoR-hGluc1 and TpoR-hGluc2 in HEK293 

cells led to reconstitution of the luciferase even in the absence of Tpo, giving rise to 

bioluminescence. On the other hand, almost no luminescence was detected when only TpoR-

hGluc-1 or TpoR-hGluc-2 alone was expressed. Thus, as is the case for other cytokine Type I-

Group 1 receptors, at least some fraction of the wild-type TpoR is likely to form a pre-formed 

dimer.  

 
Figure 3.7: The full-length TpoR can form a dimer in the absence of the ligand. (A) Schematic diagram of the 
split Gaussia princeps luciferase complementation assay. The N-terminal half (hGluc1) or C-terminal half (hGluc2) 
of the G. princeps luciferase was fused to the C-terminus of TpoR. The resultant TpoR-hGluc1 and TpoR-hGluc2 
were co-expressed in HEK293 cells, and the dimerization was detected by bioluminescence derived from the 
chemical reaction mediated by the reconstituted luciferase and its substrate, luciferin. (B) The full-length TpoR can 
dimerize in vivo. Co-expression of TpoR-hGluc1 and TpoR-hGluc2 resulted in emission of bioluminescence. 
Expression of TpoR-hGluc1 or TpoR-hGluc2 alone was used as a negative control. This experiment was carried out 
by Dr. Vitalina Gryshkova. 

3.3 Discussion 

 
Type I-Group 1 cytokine receptors, such as EpoR, GHR, and PRLR, form ligand-independent 

dimers. In the case of EpoR, receptor dimerization is mediated by its TM domain. However, our 

SE-AUC and deuterium MAS NMR analyses revealed that the TM domain of TpoR cannot 

interact with each other. Using the G. princeps luciferase complementation assay, we showed 

that the full-length wild-type TpoR can undergo dimerization in a ligand-independent manner in 
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vivo (Figure 3.7). However, it should be noted that this ligand-independent dimerization of 

TpoR was relatively weak compared with that of EpoR (approximately 2.5-3 fold weaker, 

unpublished observations). This weak dimerization may be due to the lack of a TM-TM 

interaction in the TpoR dimer. 

            Based on these observations, we refine the ligand-independent receptor dimerization 

model, one of the two proposed models for the TpoR activation mechanism (Figure 1.10A).  In 

the refined model (Figure 3.8A), at least some fraction of TpoR forms a ligand-independent 

dimer, the dimerization of which may be mediated by the EC or IC domain instead of the TM 

domain. A TM-TM interaction within a TpoR dimer does not occur in the absence of Tpo. 

However, binding of Tpo to TpoR induces an internal conformational change in the receptor 

dimer, leading to a TM-TM interaction. This specific receptor conformation in turn reorients the 

TpoR-associated kinase JAK2 into an active position, resulting in activation of the JAK2-STAT 

signaling pathway (Figure 3.8). Our model predicts that the TpoR TM domain plays a critical 

role not only in the receptor activation, but also in maintenance of the inactive receptor state.  
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Figure 3.8: Revised models for the TpoR activation mechanisms. (A) Ligand-independent dimerization of TpoR 
may be mediated by an interaction between two extracellular (EC) domains or between two intracellular (IC) 
domains. In this pre-formed dimer, the TM domains do not interact with each other. In this schematic model, the IC 
domain-mediated dimerization is shown as an example. (B) Ligand-induced dimerization model, which was 
explained in Figure 1.10, is still valid because this model does not require the TM-TM interaction. In either ligand-
independent dimerization (A) or ligand-induced dimerization (B) models, binding of the ligand, Tpo, to the EC 
domains induces an internal structural rearrangement in the receptor dimer, leading to a TM-TM interaction. This 
specific receptor conformation in turn reorients the JAK2 into an active position, resulting in activation of the JAK2-
STAT signaling transduction. 

 
The question is, however, how the pre-formed TpoR dimer can be stabilized. Because the 

TpoR TM domain does not seem to be involved in the dimer stabilization, either the EC or IC 

domain should fulfill this role. Although the IC domains have never been implicated for 

dimerization of any Type I-Group 1 cytokine receptor, several studies on the epidermal growth 

factor receptor (EGFR), a single-pass transmembrane receptor, revealed the importance of the IC 

domain for ligand-independent EGFR dimerization (124-126). For example, Co-IP experiments 
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showed that a truncated EGFR lacking its EC domain can still form a dimer with a full-length 

EGFR (125). Furthermore, a chimeric EGFR with its IC domain replaced by that of EpoR was 

unable to undergo self-interaction in the absence of the ligand, suggesting that the intact IC 

domain is necessary for the EGFR dimerization. Consistent with this notion, a crystal structure of 

an inactive EGFR dimer showed that the two IC domains interact with each other in a symmetric 

manner within an EGFR dimer (126). Similarly, TpoR may dimerize via its IC domain, resulting 

in a pre-formed dimer. 

However, we cannot exclude the possibility that ligand-independent dimerization of TpoR 

is mediated by its EC domain. A study using Co-IP revealed that the wild-type GHR as well as a 

chimeric GHR with its TM domain replaced by that of the low-density lipoprotein receptor 

(LDLR) can interact with the GHR mutant lacking its IC domain, suggesting that neither the TM 

domain nor the IC domain is required for the GHR dimerization (79). Another study using a 

series of truncated EC domains of the vascular endothelial growth factor receptor FLT-1 

(VEGFR-1) showed that the fourth immunoglobulin-like loop in the EC domain is critical for 

mediating the receptor dimerization (127). By analogy, the EC domain might play a role in the 

TpoR dimer formation. It is also possible that both the EC and IC domains cooperatively 

facilitate the ligand-independent TpoR dimerization. To examine these possibilities, further 

analyses, such as a domain-swapping study, will be needed. 

Our data revealed a striking difference between TpoR and EpoR in terms of the 

dimerization mechanism even though these two receptors share the highest sequence homology 

among the Type I-Group 1 cytokine receptor family (3). It is well known that the TM domain of 

EpoR possesses a strong propensity for self-interaction (82). Within a pre-formed EpoR dimer, 
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two TM α helices most likely form a left-handed coiled coil (LHCC) (Figure 3.9) (86, 128-130). 

Although the canonical pitch of a standard α helix is 3.6 residues per turn, the number of residues 

per turn in the helical region that constitutes the interaction interface of a LHCC structure is 

reduced to 3.5. As a result, the pattern of side chain interactions between the two intertwined 

helices repeats exactly every seven residues. This repetitive sequence with a period of seven 

residues is called a heptad repeat, and is usually labeled as “a−g”. In such a dimerization 

interface, two residues that are separated by three residues (e.g., positions a and d) are always 

located at the same molecular surface of the α helix (Figure 3.9) (131). In the case of the TM 

helices in a EpoR dimer, such a LHCC structure positions small amino acid residues (serine, 

alanine, and threonine) at the same molecular surface of each α helix (Figure 3.9). These small 

amino acids may be essential for a stable TM-TM interaction within a pre-formed EpoR dimer 

because at least serine and threonine residues are known to contribute to the tight packing of 

LHCC dimers (132). Consistent with this notion, the study using the Put3 system predicted that 

the TM surface comprised of those small residues is favored as the TM-TM interaction interface 

of the inactive EpoR dimer (86). More recently, a study using solution NMR spectroscopy 

showed that the TM dimer interface of the murine EpoR is comprised of S231, V235, S238, 

T242, and A245 (Brett et al., unpublished data). 



Chapter 3 
 

 
56

 
Figure 3.9: Schematic overview of a LHCC structure comprised of two TM helices of EpoR. (A) Side view of 
the interaction interface of a LHCC structure. Amino acid residues that constitute heptad repeats are labeled as 
“a−g”. In this figure, residues at positions a and d are located within the dimerization interface. (B) Helical-wheel 
diagram of the LHCC comprised of two EpoR TM helices. Ser231, Ser238, and Ala245 are located at position a, 
while Val235 and Thr242 are located at position d. (C) The lowest energy structure of an EpoR TM dimer based on 
a CHI simulation. The simulation suggests that small residues, such as alanine, serine, and threonine, line the TM-
TM interaction interface. 

 
On the other hand, our SE-AUC and deuterium MAS NMR analyses suggest that the TM 

domain of TpoR is not likely to interact with each other. Why does not the TpoR TM domain 

undergo self-interaction? A possible explanation is that the amino acid sequence of the TpoR TM 

helix may not be suitable for formation of a TM-TM interaction interface. A comparison 

between the predicted TM sequence of EpoR and that of TpoR shows that the TpoR TM domain 

contains not only small amino acids, but also long-side chain amino acids, such as leucine 

(Figure 3.10). As a result, at least two long-side chain amino acids are always located at any 

possible TM dimer interface (i.e., positions a−d). 
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226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

LEU ILE LEUTHRLEUSERLEU ILE LEUVALLEU ILE SERLEULEULEUTHRVALLEUALALEULEU
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

ILE SERLEUVALTHRALALEU HIS LEUVALVALGLYGLYSERALA VALLEUGLYLEULEULEULEU

EpoR

TpoR
 

Figure 3.10: Side-by-side sequence comparison between the EpoR and TpoR TM domains. Residues 
highlighted in red represent one of the potential TM dimer interfaces. Note that a TpoR TM dimer interface contains 
leucine (long-side chain amino acid), which may inhibit TM-TM interaction. 

  

Furthermore, a computational simulation predicted a hypothetical LHCC composed of two 

TpoR TM helices in their the lowest energy state and revealed that its interaction surface 

contains bulky and long side chain residues, such as histidine and leucine (Figure 3.11) (91). 

The molecular nature of this potential interaction surface, which is certainly not small residue-

rich, may be the reason why the TpoR TM domains do not possess a strong affinity for self-

interaction.  

 
Figure 3.11: The TpoR TM dimer interface predicted by a CHI simulation. A computational search for the 
lowest energy dimer structures of the TpoR TM region (Ile492 to Leu513) was performed using with variable 
distances between two TM helices (9.5 Å to 10.5 Å). Regardless of the interface distance used in the simulation, the 
lowest energy TpoR TM dimer structure was the same, and this structure locates long and bulky side chain amino 
acids, such as leucine and histidine, in the dimer interface. The residues in the dimer interface are indicated as (a) 
and (d).  
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Alternatively, the RWQFP motif (KWQFP in murine), which resides just below the TM 

domain of TpoR, may play a critical role in inhibition of a TM-TM interaction. It has been 

shown that deletion of this TpoR-specific motif induces activation of downstream signaling by 

possibly stabilizing the TM-TM association in the receptor dimer (91, 96, 133) Thus, the 

RWQFP motif may function as a “gimmick” that keeps the two TM helices apart in a TpoR 

dimer. We will further discuss the roles of the RWQFP motif in Chapter 5. 

Most single-pass transmembrane receptors have long been thought to undergo dimerization 

upon ligand perception (134, 135). However, this ligand-induced dimerization model cannot 

fully explain the activation mechanism of several receptors. For example, Type I-Group 1 

cytokine receptors, including EpoR, GHR, and PRLR, already exist as pre-formed dimers even 

in the absence of ligand binding (76, 78, 80). Thus, another type of regulation, rather than ligand-

induced dimerization, is required to modulate the activity of these receptors. Is this ligand-

independent receptor dimerization only unique to certain receptors, or more general among 

single-pass transmembrane receptors? Although the ligand-independent dimerization of TpoR 

was relatively weak, this receptor may serve as a good model to decipher the complexity of the 

receptor activation mechanisms. In the following chapters, we will focus on several clinically 

relevant mutations of TpoR and discuss a more detailed molecular mechanism underlying the 

TpoR activation. 
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3.4 Conclusion 

 
• TpoR can form a ligand-independent dimer. 

• Unlike EpoR, the TM domain of TpoR does not have a strong propensity to self-interact.  

• The role of the TpoR TM domain in the receptor activity control is different from that of 

the EpoR TM domain. 
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Chapter 4. TM-TM interaction regulates 
the TpoR activity  

 

4.1 Introduction 

 
Increasing evidence indicates that EpoR, the closest relative of TpoR, forms a ligand-

independent dimer (i.e., pre-formed dimer) (76, 77). Within a pre-formed EpoR dimer, two TM 

domains interact with each other, thereby stabilizing the receptor dimer (76, 82, 83). It has been 

proposed that ligand binding to a pre-formed EpoR dimer induces rotation of each TM helix on 

its helical axis, bringing a distinct set of amino acids into the TM-TM interaction interface 

(Figure 3.9) (86). This switching of the TM-TM interaction surface has been suggested to 

regulate EpoR activity (86). However, the same scenario may not be applicable to TpoR. Unlike 

EpoR, the TpoR dimerization does not seem to be mediated by the TM domain. Indeed, our SE-

AUC and deuterium MAS NMR analyses showed that the TM domain of TpoR does not 

dimerize strongly as compared with that of EpoR. Thus, despite their sequence similarity, TpoR 
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and EpoR may control their dimerization and activation by different molecular mechanisms. To 

better understand the mechanism of receptor activation, we now focus on several constitutively 

active mutants of TpoR. These constitutively active receptors supposedly mimic the active state 

of TpoR, more specifically, the active dimer. We reason that a comparison between the wild-type 

TpoR and such constitutively active mutants should provide us with useful information on how 

TpoR undergoes the transition between the inactive and active conformations. In this chapter, we 

specifically focus on an amino acid substitution of serine for asparagine at position 505 (S505N), 

which renders TpoR constitutively active. 

The S505N mutation has been found in some patients with familial essential 

thrombocythemia (ET) (34-36, 92). Familial ET is a rare hereditary chronic myeloproliferative 

disorder that causes excessive proliferation of megakaryocytes and platelets in the bone marrow 

(22, 35). Considering that S505 is located in the middle of the TpoR TM domain (Figure 2.1), 

the TM domain may play a critical role in the regulation of the TpoR activity. The importance of 

a TM domain for receptor activation has been implicated in several single-pass transmembrane 

receptors. For instance, the TM domain of the human epidermal growth factor receptor 2 (HER2) 

is known to be critical for its activation control. Substitution of valine for glutamic acid at 

position 664 (V664E), a mutation in the middle of the HER2 TM domain, has been shown to 

constitutively activate the receptor (93). This observation suggests that V664 of HER2 is 

necessary to maintain the inactive receptor conformation. On the other hand, the V664E 

mutation has been proposed to stabilize the active HER2 dimer conformation by forming 

hydrogen bonds between two TM domains of the receptor dimer (94).  
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In addition to HER2, the activity of the fibroblast growth factor receptor 3 (FGFR3) may 

also be controlled by its TM domain. Substitution of alanine for glutamic acid at position 391 

(A391E), which resides in the TM domain, leads to constitutive activation of FGFR3, resulting 

in a skeletal disorder called Crouzon syndrome (136). Like the V664E mutation of HER2, 

A391E might stabilize the active FGFR3 dimer structure by forming a hydrogen bond between 

two associated TM helices (95). It is tempting to speculate that a similar mechanism may be 

involved in the S505N-induced constitutive activation of TpoR. 

To elucidate the effect of the TpoR TM domain on the receptor conformation and activity, 

we utilized the TpoR TM-JM peptides containing the S505N mutation and analyzed the effect of 

the mutation on TM association. Our sedimentation equilibrium analytical ultracentrifugation 

(SE-AUC) and deuterium magic angle spinning (MAS) NMR spectroscopy analyses 

demonstrated that unlike the wild-type TpoR, the TM domain containing S505N can form a 

stable TM dimer in both detergent micelles and lipid bilayer membranes. We also analyzed the 

effect of S505N on JAK2-STAT signaling activity using a dual luciferase reporter assay in 

collaboration with the laboratory of Stefan Constantinescu. As expected, S505N was found to 

upregulate JAK2-STAT signaling even in the absence of Tpo. Finally, we asked if S505N 

mediates full-length TpoR dimerization using a split G. princeps luciferase reporter assay. We 

found that the S505N mutant receptor exhibited a stronger propensity to undergo ligand-

independent dimerization than the wild-type receptor. This enhanced dimerization and 

constitutive activation may be due to the increased self-interaction of the S505N-containing TM 

domain. Together, our data suggest that incorporation of a polar residue, such as asparagine, into 
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the TpoR TM domain stabilizes the active dimer conformation by facilitating TM-TM interaction, 

which does not occur in the wild-type TpoR.  

 

4.2 Results 

4.2.1 The S505N TM-JM peptide forms a homodimer in detergent micelles 

 
It is plausible that the S505N-containing TM domain has a strong tendency to associate with 

each other. To examine this possibility, we utilized a synthetic peptide covering the TM domain 

and its juxtamembrane region (i.e., TM-JM peptide; Figure 2.1) of S505N TpoR and analyzed 

homodimerization of the TM-JM peptide by two approaches: SE-AUC and deuterium MAS 

NMR spectroscopy.  

We first examined the molecular nature of the S505N TM-JM peptide (Figure 2.1) using 

SE-AUC. To this end, three different samples were prepared by dissolving the S505N TM-JM 

peptide in n-dodecylphosphocholine (DPC) micelles (for details, see Methods). The oligomeric 

states of the peptides were determined by measuring absorbance at 280 nm (A280).  The data 

obtained were further analyzed by AUC software, UltraScanII (137). The analysis revealed that, 

unlike the wild-type TpoR TM domain, the S505N TM-JM peptide exists as a dimer (Figure 

4.1). The majority of the mutant peptides were accumulated in a fraction with an estimated 

molecular weight (MW) of 11850 Da, which is close to 10783 Da, the expected MW of the TM-

JM peptide homodimer (Figure 4.1). This result suggests that the S505N mutation stabilizes a 

TM-TM interaction within a TpoR dimer.  
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Figure 4.1: The TpoR TM-JM peptide containing the S505N mutation undergoes homodimerization. The 
bottom graph shows the absorbance profiles at 280 nm when the samples were centrifuged at 35k, 40k, and 48k rpm. 
Plots derived from one peptide concentration (30 µM) are shown as representative data. DPC detergent (15 mM) 
was used to solubilize the peptide. The data were analyzed using a single component equilibrium model, and the top 
graph shows how well the experimental data fit the model. The calculated MW of the predominant peptide based on 
this SE-AUC analysis was 11850 Da, while the MW of the peptide monomer is 5391 Da. 

4.2.2 The S505N TM-JM peptide forms a homodimer in lipid bilayers  

The SE-AUC analysis revealed that the TM-JM peptide of S505N TpoR favors the dimeric state 

in contrast to the wild-type, which favors the monomeric state. However, we cannot exclude the 

possibility that the S505N-induced TM association might be an artifact caused by the DPC 

micelles used in this assay. Thus, we next utilized deuterium MAS NMR spectroscopy and 

examined the multimeric states of the S505N TM-JM peptide within synthetic lipid bilayer 

membranes, which more closely mimic the natural cell membranes. In this analysis, we 

deuterated the methyl group of the leucine residue at position 510, 511, 512, or 513 of the 

synthetic TpoR TM-JM peptide. Each deuterated peptide was reconstituted into 1,2-dimyristoyl-

sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 

(DMPG) lipid bilayers at a lipid/peptide molar ratio of 50:1. As described in Chapter 3, the 
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deuterium MAS NMR spectrum exhibits a characteristic deuterium line shape when formation of 

the TM-TM homodimer restricts the fast rotational motion of deuterated methyl groups (Figure 

3.5). Compared with the wild-type TM-JM peptide (Figure 4.2B), the S505N TM-JM peptide 

gave rise to an intense deuterium line shape (Figure 4.2C), suggesting that the TM helices 

associate. It should be noted that the spectrum obtained from deuteration of L513 in the S505N 

TM-JM peptide showed a lower side-band intensity between -20 kHz and 20 kHz as compared 

with the spectra obtained from deuteration of L510, L511 and L512. This low intensity may be 

due to a greater flexibility at the lipid membrane boundary where L513 is likely to reside. 
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Figure 4.2: Deuterium MAS NMR of the S505N TpoR. (A) The wild-type and mutant TpoR TM-JM peptides 
used in deuterium MAS NMR spectroscopy. The S505N mutation, a substitution of Ser505 for Asn, is highlighted in 
red. The predicted TM domains are highlighted in blue. Leucine residues deuterated in this study (Leu510-513) are 
underlined. (B, C) The TM-JM peptides of the wild-type (B) or S505N (C) TpoR were reconstituted in 
DMPC:DMPG lipid bilayer membranes. The NMR spectra were obtained using single pulse excitation at a 
deuterium frequency of 55.26 MHz with a spinning speed of 3 kHz. Each spectrum represents the average of 
600,000-1,500,000 transients. Spectra were obtained at 25 °C. The sharp peak at 0 frequency is residual deuterated 
water in the sample. The MAS NMR spectra derived from the wild-type peptide showed no rotational side band 
pattern, suggesting that the wild-type TM-JM peptide exists as a monomer. On the other hand, the MAS NMR 
spectra derived from the S505N mutant peptide showed characteristic deuterium line shapes with a rotational side 
band pattern, an indication of the peptide homodimerization. 
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4.2.3 The S505N mutation enhances ligand-independent receptor dimerization 

 
To confirm the effect of the S505N mutation on the TpoR downstream signaling, we examined 

activation of the JAK2-STAT pathway using a dual luciferase reporter assay. In this assay, the 

firefly luciferase reporter gene was fused to the STAT-responsive elements found in the 

promoter of the FcγRI gene, a known target of STAT3/5. As an internal control, the Renilla 

luciferase gene was incorporated downstream of the thymidine kinase gene promoter in a 

separate vector. We first prepared the γ-2A cells that stably express the wild-type or S505N 

mutant TpoR. Then, these cells were transfected with the dual luciferase reporter system, and the 

luminescence derived from the firefly luciferase (FF) and the Renilla luciferase (RL) was 

determined. Compared with wild-type TpoR, the S505N mutant receptor was found to upregulate 

STAT-mediated gene expression by about three-fold even in the absence of Tpo (Figure 4.3). 

This high activity of the JAK2-STAT signaling was not significantly altered by addition of Tpo 

to the cell culture (Figure 4.3). These results clearly indicate that the S505N mutation indeed 

causes constitutive activation of TpoR in our experimental system.  
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Figure 4.3: The S505N mutation constitutively activates the JAK2-STAT signaling pathway. The wild-type or 
S505N mutant TpoR was expressed in γ-2A cells. The JAK2-STAT signaling activity was determined based on the 
firefly luciferase (FF) reporter fused to the STAT-responsive promoter. As an internal control, the Renilla luciferase 
(RL) reporter was expressed under the control of the thymidine kinase gene promoter. The FF bioluminescence was 
normalized to the RL bioluminescence (Ratio FF/RL). All quantified data are means ± SD (n = 3 independent 
experiments). This experiment was carried out by Dr. Jean-Philippe Defour. 

  

We next asked whether the S505N mutation affects ligand-independent dimerization of 

TpoR using the split Gaussia princeps luciferase complementation assay. As expected, the full-

length TpoR containing the S505N mutation was also able to form a dimer in a ligand-

independent manner (Figure 4.4). Interestingly, the S505N mutant receptor gave rise to 

approximately two-fold higher luminescence compared with the wild-type TpoR (Figure 4.4), 

indicating that the S505N mutation enhances TpoR dimerization in living cells. 
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Figure 4.4: The S505N enhanced ligand-independent dimerization in the absence of the ligand. The effect of 
the S505N mutation on the receptor dimerization was determined by a split Gaussia princeps luciferase 
complementation assay. The N-terminal half (hGluc1) or the C-terminal half (hGluc2) of the G. princeps luciferase 
was fused to the C-terminus of TpoR. The resultant TpoR-hGluc1 and TpoR-hGluc2 constructs were co-expressed 
in HEK293 cells, and the dimerization was detected by bioluminescence derived from the chemical reaction 
mediated by the reconstituted luciferase and its substrate, luciferin. S505N enhanced ligand-independent 
dimerization of TpoR by more than two-fold based on the luminescence level. This experiment was carried out by 
Dr. Vitalina Gryshkova. 

4.3 Discussion 

 
Consistent with previous reports (35, 138), our dual luciferase reporter assay showed that the 

S505N mutation activates the JAK2-STAT signaling pathway in a ligand-independent manner. 

This constitutive activation of TpoR and its downstream signaling is likely to be a major cause of 

the S505N-associated familial ET, a disease characterized by abnormal platelet proliferation (34, 

36, 92). The G. princeps luciferase complementation assay revealed that the S505N mutation in 

the TpoR TM domain enhanced ligand-independent dimerization of TpoR (Figure 4.4). This 

enhanced dimerization is likely due to the strong propensity of the S505N-containing TM helix 

to undergo self-interaction. Indeed, our SE-AUC and deuterium MAS NMR experiments 

indicated that the S505N TM domain preferably exists as a dimer rather than a monomer. These 
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observations support our TpoR activation model, in which the TM-TM association/dissociation 

regulates receptor activity (Figure 3.8).  

It is well known that asparagine can serve as a hydrogen bond acceptor/donor. Thus, the 

S505N mutation may stabilize the active dimer conformation by forming hydrogen bonds 

between two TM helices (Figure 4.5). The stabilizing effect of an asparagine residue on TM-TM 

interaction has also been implicated by several studies using artificial TM peptides (139-142). 

For example, using artificial TM peptides, Degrado and his co-workers showed that the presence 

of asparagine, but not valine, on the potential TM-TM interaction surface augments 

homodimerization (141). This observation suggests that asparagine can provide a strong driving 

force (most likely hydrogen bonds) for boosting a TM-TM helix interaction within a receptor 

dimer.  

A similar model has been proposed for a glutamate mutation in the TM domain of HER2, a 

single-pass transmembrane receptor. An amino acid substitution of valine for glutamic acid at 

position 664, which is located in the middle of the TM domain, is known to constitutively 

activate HER2 and its downstream signaling, leading to oncogenic tumor formation in the rat 

model (93, 143). It has been suggested that this glutamic acid residue stabilizes the active HER 

dimer via inter-helical hydrogen bonding between two TM helices (94, 144). Furthermore, a 

glutamic acid mutation in the TM domain of another single-pass transmembrane receptor, 

FGFR3, has been shown to activate in a ligand-independent manner (144). In a fashion similar to 

the V664E mutation in HER2, the substitution of alanine for glutamate at position 391 of FGFR3 

is likely to stabilize a TM-TM interaction within an FGFR3 dimer via hydrogen bonding (95). 

These results suggest that not only asparagine but also other polar residues in any receptor TM 
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domain can enhance TM-TM interaction within a receptor dimer. Thus, theoretically, 

substitutions of the TpoR S505 for other polar residues, such as glutamate, should also stabilize 

the active dimer state. To examine this possibility, it will be interesting to see whether 

replacement of S505 to any other polar residue affects the TpoR activity as well as the active 

receptor conformation. 

 
Figure 4.5: Asparagine mediates the TM interaction by forming hydrogen bonds. The side view (A) and top 
view (B) of the dimerization interface of two TM helices. The dotted line represents a potential hydrogen bond 
between two asparagine residues. 

 

Although the role of asparagine in the TpoR TM domain is now clear, it remains an open 

question whether the specific location of an asparagine mutation is relevant for stabilization of 

the receptor dimer. Among known clinically related mutations in the TpoR TM domain, such an 

asparagine mutation only occurs at position 505 (Table 1.1). Is this just a coincidence, or do 

asparagine substitutions in other positions within the TM domain also cause constitutive 

activation of TpoR? One possibility is that position 505 is located on the TM-TM interaction 

surface of a TpoR dimer. In this scenario, only asparagine mutations at specific positions in the 

TM sequence will be able to stabilize the active receptor conformation. To test this hypothesis, 

asparagine-scanning mutagenesis in the TpoR TM domain will be needed. 
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Our data highlights the importance of the TpoR TM domain for receptor activation. In 

addition, we provide the potential molecular mechanism by which the S505N mutation 

constitutively activates the TpoR dimer. However, it is not likely that S505 is the only essential 

residue that controls TM-TM interaction and the resultant receptor activation. Indeed, other 

motifs or regions in TpoR have been suggested to play a critical role in the receptor activity 

modulation. In the next chapter, we will focus on other clinically relevant mutations and discuss 

a more detailed molecular mechanism underlying TpoR activation. 

4.4 Conclusions 

 
• The S505N TpoR mutant constitutively activates the JAK2-STAT downstream 

signaling. 

• S505N enhances ligand-independent dimerization of TpoR.  

• The S505N-containing TM domain has a strong propensity for self-interaction. 

• The S505N mutation may constitutively activate TpoR by forming hydrogen bonds 

between two TM helices within a pre-formed TpoR dimer.  
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Chapter 5. W515 in the RWQFP motif of 
TpoR maintains the receptor inactive state by 
inhibiting the TM-TM interaction 

5.1 Introduction 

 
In the previous chapters, we elucidated both common features and differences between TpoR and 

its close relative, EpoR, in terms of their control of receptor activity. We found that, like EpoR, 

some, but not all, TpoR molecules can undergo ligand-independent dimerization (Chapter 3). 

However, unlike EpoR, the two TM domains do not appear to interact with each  other (Chapter 

3). Thus, the TM helix rotation model, which has been suggested for the EpoR activation 

mechanism, does not apply to TpoR because this model requires a ligand-independent TM-TM 

interaction. Instead, we proposed that TpoR is activated at least partly by ligand-induced TM-

TM interaction within the dimer (Chapter 3). Consistent with this model, the S505N mutation 

was shown to stabilize a TM-TM interaction, thereby constitutively activating TpoR and its 

downstream signaling (Chapter 4). This observation suggests that the TM domain and/or its 

surrounding region play an indispensable role in the regulation of the TpoR activity. To further 
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investigate the function of the TpoR TM domain, we next focus on a series of mutations of 

tryptophan at position 515 (W515), which is located at the boundary between the TM domain 

and its intracellular juxtamembrane (IC-JM) region of TpoR. 

Mutations at W515 have been found in 4.5% and 5% of essential thrombocythemia (ET) 

and primary myelofibrosis (PMF) patients, respectively (50). Both ET and PMF disorders are 

characterized by abnormal proliferation of megakaryocytes and platelets in the bone marrow 

(145). At least six different amino acid substitutions of W515 (W515K, W515L, W515R, 

W515A, W515S, and W515G) have been identified from patients with myeloproliferative 

neoplasms (MPNs), including ET and PMF (34) (Table 1.1). All of these clinically related 

mutations are thought to constitutively activate TpoR (34). However, the precise effects exerted 

by these mutations on the TpoR conformation remain largely unknown. 

It should be noted that W515 resides within the 514RWQFP motif, an amino acid sequence 

that is unique to TpoR and not found in the other Type I-Group 1 cytokine receptors (Figure 

1.9B). This TpoR-specific region seems to be critical for the control of receptor activity as an 

insertion-deletion mutation in this motif (RWQFP to RKT) causes a MPN disorder (34, 55). 

Moreover, a study using the murine TpoR has shown that deletion of the corresponding motif 

(508KWQFP) leads to constitutive activation of TpoR (96). Considering the relatively high 

mutation frequency at W515 in TpoR-related MPN patients (Table 1.1), this specific residue 

may be the key regulator that controls receptor dimerization and activation.  

To better understand the role of W515 and the RWQFP motif, we first examined JAK2-

STAT signaling in cells expressing the W515-related mutant receptors by a dual luciferase 

reporter assay. As expected, all of the clinically relevant mutants (W515K, W515L, W515R, 
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W515A, W515S, and W515G) activated STAT-mediated gene expression even in the absence of 

Tpo, suggesting that these mutations force the dimerization and the resultant activation of TpoR. 

This constitutive activation phenotype was reverted by incorporation of a tryptophan residue at 

position 514 or 516, suggesting that the presence of tryptophan in the IC-JM region is critical for 

maintaining the inactive receptor state. Our sedimentation equilibrium analytical 

ultracentrifugation (SE-AUC) as well as deuterium magic angle spinning (MAS) NMR analyses 

demonstrated that the TM domain containing a revertant mutation (R514W/W515K or 

W515K/Q516W) does not undergo self-interaction. On the other hand, the TM domain 

containing the constitutively active mutation (W515K) strongly interacted with each other. 

Furthermore, polarized attenuated total reflection Fourier transform infrared (ATR-FTIR) 

spectroscopy showed that the constitutively active receptor mutants have a smaller tilt angle with 

respect to the bilayer normal than the wild-type and the revertant mutants. These observations 

suggest that the tryptophan residue in the RWQFP region controls the tilt angle of the TM helix, 

thereby inhibiting TM-TM interactions in the unliganded, inactive receptor.  

5.2 Results 

5.2.1 Clinically relevant mutants at W515 constitutively activate the JAK2-STAT 

signaling pathway  

 

To analyze the in vivo activity of the clinically known TpoR mutants (W515K, W515L, W515R, 

W515A, W515G, and W515S), we first examined the activation level of JAK2-STAT signaling 

by a dual luciferase reporter assay in γ-2A cells that stably express the wild-type or mutant TpoR. 

In this assay, the firefly luciferase (FF) reporter gene was fused to the STAT-responsive 
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elements. As an internal control, the Renilla luciferase (RL) gene was incorporated downstream 

of the thymidine kinase gene promoter in a separate vector. These dual reporter vectors were co-

transfected into the TpoR-expressing γ-2A cells, and JAK2-STAT activity was determined based 

on the luminescence derived from the luciferase. Compared with the wild-type TpoR, all of the 

tested clinical TpoR mutants led to strong activation of the JAK2-STAT pathway even in the 

absence of Tpo (Figure 5.1). This ligand-independent JAK2-STAT activation was slightly 

enhanced by addition of Tpo in all mutants except W515A. Our data indicate that an amino acid 

substitution at W515 of TpoR modulates the receptor activity. 

 
Figure 5.1: Clinically relevant mutations at W515 cause constitutive activation of JAK2-STAT signaling. 
TpoR variants containing clinically relevant mutations at W515 were expressed in γ-2A cells. Mutated residues in 
the RWQFP motif are highlighted in red. The JAK2-STAT signaling activity was determined based on the firefly 
luciferase (FF) reporter fused to the STAT-responsive promoter. As an internal control, the Renilla luciferase (RL) 
reporter was expressed under the control of the thymidine kinase gene promoter. The FF bioluminescence was 
normalized to the RL bioluminescence (ratio FF/RL). All quantified data are means ± SD (n = 3 independent 
experiments). ** P<0.01 (Student’s t-test). This experiment was carried out by Dr. Jean-Philippe Defour. 

5.2.2 Replacement of W515 with an aromatic residue is not sufficient to maintain 

the TpoR inactive state 

 
The six known amino acid substitutions at W515 (i.e., K, L, A, G, S and R) do not share a 

common chemical property in their amino acid side chains. Thus, the constitutively active 
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mutations at W515 may be loss-of-function mutations that abrogate the ability to maintain the 

inactive receptor state. To examine this possibility, we next asked whether the role of W515 can 

be replaced by other aromatic residues. To this end, we substituted W515 of TpoR with another 

aromatic residue, either tyrosine or phenylalanine (i.e., W515Y or W515F), and examined the 

effect of these mutations on JAK2-STAT activity using the dual luciferase reporter assay. 

 Compared with the wild-type TpoR, both the W515Y and W515F mutants led to higher 

activity of JAK2-STAT signaling in the absence of Tpo (Figure 5.2). This result suggests that 

the role of W515 in maintenance of the TpoR inactive state cannot be fully replaced by other 

aromatic amino acids. However, addition of Tpo to cells expressing either W515Y or W515F 

increased the JAK2-STAT activity almost two-fold (Figure 5.2). Thus, unlike the constitutively 

active TpoR mutants, which only marginally enhanced the JAK2-STAT activity upon addition of 

Tpo (Figure 5.1), W515Y and W515F can at least partly control the TpoR activity in a ligand-

responsive manner (Figure 5.2). Together, these results suggest that an aromatic residue at 

position 515 is necessary, but not sufficient, to fully maintain the inactive TpoR state. 
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Figure 5.2: W515Y and W515F mutants can activate the JAK2-STAT signaling in response to Tpo. TpoR 
variants containing the W515Y or W515F mutation were expressed in γ-2A cells. Mutated residues in the RWQFP 
motif are highlighted in red. The JAK2-STAT signaling activity was determined based on the firefly luciferase (FF) 
reporter fused to the STAT-responsive promoter. As an internal control, the Renilla luciferase (RL) reporter was 
expressed under the control of the thymidine kinase gene promoter. The FF bioluminescence was normalized to the 
RL bioluminescence (Ratio FF/RL). All quantified data are means ± SD (n = 3 independent experiments). *** 
P<0.001 (Student’s t-test). This experiment was carried out by Dr. Jean-Philippe Defour. 

 
 

5.2.3 Incorporation of a tryptophan residue at position 514 or 516 reverts the 

constitutive activation phenotype of W515K, W515L and W515A mutants  

 
That phenylalanine or tyrosine could not fully replace the role of W515 suggests that tryptophan 

per se, rather than just its aromaticity, is important for TpoR. This notion prompted us to ask 

whether incorporation of a tryptophan residue in the RWQFP region can reverse the 

constitutively active phenotype of the W515-related mutant receptors. To examine this 

possibility, we substituted R514 or Q516 for tryptophan in three constitutively active mutants 

(W515K, W515L, and W515A), resulting in six different double mutants: R514W/W515K, 

W515K/Q516W, R514W/W515L, W515L/Q516W, R514W/W515A, and W515A/Q516W. The 

W515K and W515L mutants were selected because these mutations occur at a high frequency in 

TpoR-associated MPN patients (Table 1.1). The W515A mutation is relatively rare among the 



  Chapter 5 
 

 
79

MPN patients, but we included this mutant in our assays because W515A led to the strongest 

activation of JAK2-STAT signaling (Figure 5.1). 

All of the double mutants were independently expressed in γ-2A cells and their effect on 

JAK2-STAT signaling was analyzed by the dual luciferase reporter assay. In the absence of Tpo, 

the receptor activity of all the double mutants except W515A/Q516W was almost 

indistinguishable from that of the wild-type TpoR, and only basal levels of the reporter 

expression were observed in these mutants (Figure 5.3). In cells expressing these revertant 

mutants, JAK2-STAT activity was enhanced upon addition of Tpo, as was the case for the wild-

type TpoR (Figure 5.3). For example, addition of Tpo increased JAK2-STAT activity about 2-3 

fold in R514W/W515K and W515K/Q516W, while the original mutant, W515K, showed little 

increase (< 1.1-fold) in signaling activity in the presence of Tpo (Figure 5.3). These 

observations suggest that a tryptophan residue at position 514 or 516 can functionally mimic 

W515 and inhibit constitutive receptor activation. 
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Figure 5.3: Incorporation of tryptophan at position 514 or 516 reverts the effect of the constitutively active 
mutations on the TpoR activity. TpoR variants containing a constitutively active mutation and a revertant 
mutation were expressed in γ-2A cells. The constitutively active mutations and second-site mutations in the RWQFP 
motif are highlighted in red and blue, respectively. JAK2-STAT signaling activity was determined based on the 
firefly luciferase (FF) reporter fused to the STAT-responsive promoter. As an internal control, the Renilla luciferase 
(RL) reporter was expressed under the control of the thymidine kinase gene promoter. The FF bioluminescence was 
normalized to the RL bioluminescence (ratio FF/RL). All quantified data are means ± SD (n = 3 independent 
experiments). NS: not significant (Student’s t-test). This experiment was carried out by Dr. Jean-Philippe Defour. 

 

5.2.4 Mutations in the RWQFP motif affect the dimerization of full-length TpoR 

 

We next asked whether the constitutively active mutation (W515K) and the revertant mutation 

(W515K/W516Q) affect ligand-independent dimerization of TpoR using the split Gaussia 

princeps luciferase complementation assay. As expected, the full-length TpoR containing the 

W515K mutation was able to form a dimer in a ligand-independent manner (Figure 5.4). As 
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observed in the S505N mutant receptor (Figure 4.4), W515K gave rise to approximately two-

fold higher luminescence compared with the wild-type TpoR (Figure 5.4). The double mutant 

receptor, W515K/W516Q, also formed a ligand-independent dimer. However, like the wild-type 

TpoR, the dimerization affinity of this double mutant was relatively weak (Figure 5.4), further 

indicating that Q516W is a revertant mutation of W515K. Together, our observations suggest 

that a tryptophan residue in the TpoR JM region plays a critical role in stabilization of the 

inactive receptor state by controlling the dimerization strength.  

 

 

Figure 5.4: Ligand-independent dimerization of the W515K and W515K/Q516W TpoR 
mutants. The full-length wild-type and mutant TpoR were fused to either the N-terminal half 
(hGluc1) or C-terminal half (hGluc2) of the Gaussia princeps luciferase. The hGluc1- and 
hGluc2-tagged TpoR were co-expressed in HEK293 cells. The levels of TpoR ligand-
independent dimerization were measured by the bioluminescence derived from the luciferase 
reconstitution. The W515K mutant enhanced the ligand-independent dimerization. However, the 
double mutant (W515K/W516W) restored the dimerization level back to the wild-type level. All 
quantified data are means ± SD (n = 3 independent experiments). **P < 0.001 (one-way analysis of variance). This 
experiment was carried out by Dr. Vitalina Gryshkova.  
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5.2.5 W515 and its surrounding region modulate TM-TM interaction in detergent 

micelles 

 
To further investigate the role of W515 in the TpoR activity control, we next asked whether a 

tryptophan residue in the TpoR JM region affects TM-TM interaction within a TpoR dimer. To 

this end, we prepared synthetic TM-JM peptides containing various W515-related mutations 

(Figure 2.1). These peptides include W515K (constitutively active), W515K/Q516W (revertant), 

R514W/W515K (revertant), and W515A/Q516W (constitutively active). We also generated a 

TM-JM peptide lacking the RWQFP motif (∆RWQFP), the deletion of which is known to cause 

constitutive activation of the murine TpoR (96). The generated TM-JM peptides were solubilized 

in n-dodecylphosphocholine (DPC) micelles at three different peptide concentrations, and were 

analyzed by SE-AUC using three different centrifugation speeds (for details, see Methods). The 

oligomeric states of the peptides were determined by measuring absorbance at 280 nm (A280). 

The resultant spectra were further analyzed by an AUC software, UltraScanII (137), using a 

single component or monomer-dimer equilibrium model (for details, see Methods).  The results 

are summarized in the Table 5.1. As expected, both the single component model and the 

monomer-dimer equilibrium model predicted that the TM-JM domains of the constitutively 

active TpoR mutants (W515K, ∆RWQFP, and W515A/Q516W) preferably exist as a dimer 

(Table 5.1). Indeed, the majority of the constitutively active mutant peptides were accumulated 

in a fraction with an expected molecular weight (MW) at least twice as large as that of the 

corresponding peptide monomer (Table 5.1). These results suggest that the constitutively active 

mutations enhance ligand-independent dimerization of TpoR by stabilizing a TM-TM interaction 

within the receptor dimer. 
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Table 5.1: Potential oligomeric states of the wild-type and mutant TM-JM peptides of TpoR determined by 

SE-AUC. 

MW
MW               

(100% dimer)

MW              

(AUC: S)

MW           

(AUC: M-D)

wild-type: RWQFP 5360 10720 6960 4737

∆RWQFP 4650 9300 12760 8532

W515K (RKQFP) 5306 10612 10630 8182

R514W/W515K (WKQFP) 5364 10728 8303 6629

W515K/Q516W (RKWFP) 5365 10730 7535 5962

W515A/Q516W (RAWFP) 3989 7978 8558 7967  
S: single component model; M-D: monomer-dimer equilibrium model. Note that our SE-AUC data from all of the 
TpoR TM-JM peptides, except the wild-type and ∆RWQFP peptides, equally fit both the single component model 
and the monomer-dimer equilibrium model. The SE-AUC data from the wild-type TM-JM peptides better fit the 
single component model, as manifested by a more even distribution of the data residuals (data not shown). On the 
other hand, the SE-AUC data from the constitutively active mutant, ∆RWQFP, better fit the monomer-dimer 
equilibrium model (data not shown). 

 
On the other hand, the TM-JM peptides containing a revertant mutation (W515K/Q516W 

and R514W/W515K) did not possess a strong propensity to undergo self-interaction, as was the 

case for the wild-type TM-JM peptide (Table 5.1). This suggests that R514W and Q516W 

reversed the effect of W515K on the TpoR activity by inhibiting a TM-TM interaction.  

5.2.6 W515 and its surrounding region modulate TM-TM interaction in lipid 

bilayers 

 
The SE-AUC analysis revealed that the TpoR TM-JM peptides with the constitutively active 

mutations favor a dimeric state while the wild-type and revertant mutant peptides favor a 

monomeric state. However, we cannot exclude the possibility that the observed dimerization 

might be an artifact caused by the micelles used in the SE-AUC experiment. Thus, as a parallel 

approach, we also utilized a deuterium MAS NMR spectroscopy to assess the oligomeric states 

of the mutant TpoR TM-JM peptides in a synthetic lipid bilayer membrane, which more closely 
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reflects the characteristics of the biological cell membranes. In this analysis, we deuterated the 

methyl group of the leucine residue at position 512 of the five different synthetic TpoR TM-JM 

peptides (W515K, W515K/Q516W, ∆RWQFP, R514W/W515K, and W515A/Q516W). Each 

peptide was reconstituted into 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-

dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) lipid bilayers at a lipid/peptide 

molar ratio of 50:1. Dimerization of the TM-JM peptides was detected by deuterium MAS NMR 

(114, 146). Compared with the wild-type peptide, the constitutively active mutants (W515K, 

∆RWQFP, and W515A/Q516W) showed intense rotational side bands that appeared at intervals 

of 3 kHz NMR frequency (Figure 5.5). On the other hand, the revertant mutants 

(W515K/Q516W and R514W/W515K) did not give rise to such an NMR spectrum with a 

rotational side-band pattern. This result indicates a great mobility of the deuterated methyl 

groups in the revertant mutant peptides, hence, the absence of the peptide homodimerization. 

Thus, we can conclude that the revertant mutant TM-JM peptide behaves like the wild-type 

peptide and does not interact with each other strongly.  
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Figure 5.5: Deuterium MAS NMR of the W515K, R514W/W515K and W515K/Q516W mutants. (A) The 
TpoR TM-JM peptide used in deuterium MAS NMR spectroscopy. The RWQFP motif, in which various mutations 
were created, is underlined. Leu512, the deuterated residue, is highlighted in red. The wild-type (B) and mutant 
peptides (C-G) were reconstituted in DMPC:DMPG lipid bilayer membranes. The NMR spectra were obtained using 
single pulse excitation at a deuterium frequency of 55.26 MHz with a spinning speed of 3 kHz. Each spectrum 
represents the average of the 600,000-1,500,000 transients. Spectra were obtained at 25 °C. The sharp peak at 0 
frequency is residual deuterated water in the sample. Characteristic d3-methyl rotational spinning bands were 
observed in the NMR spectra of W515K (E), ∆RWQFP (F), and W515A/Q516W (G), but not in those of 
R514W/W515K (C) and W515K/Q516W (D).  
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5.2.7 Tryptophan controls the TpoR TM-JM tilt angle 

 
Our data suggest that the tryptophan residue in the RWQFP region modulates the TpoR 

activation and dimerization. However, it remains unclear how this residue affects TM-TM 

interaction within a TpoR dimer. Considering the data obtained from the dual luciferase reporter 

assay using W515Y and W515F TpoR, not only the aromaticity, but also the chemical property 

specific to a tryptophan is critical for regulating the JAK2-STAT signaling transduction. 

Tryptophan possesses the largest nonpolar side chain as well as a moiety that functions as a 

hydrogen bond donor. Due to this amphipathic nature, tryptophan residues in a transmembrane 

protein tend to be located at the membrane proximal region. Such tryptophan residues have been 

suggested to control the tilt angle of the TM helix, thereby stabilizing a specific membrane 

protein structure (147). Similarly, the tryptophan in the RWQFP motif may regulate the TM-TM 

interaction in the TpoR dimer by adjusting the TM helix tilt angle. To validate this model, we 

utilized a polarized attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis 

and measured the TM helix tilt angle of four different recombinant TM-JM peptides: the wild-

type, W515K, W515K/Q516W, and R514W/W515K (Figure 2.2).  

A polarized ATR-FTIR spectroscopy is a powerful method to obtain the secondary 

structure and orientation of a TM peptide in membranes (106). The orientation of a TM helix 

relative to the bilayer normal can be calculated by a dichroic ratio (A||/A⊥), the ratio of the 

absorbance of light polarized parallel to the axis of an α-helix sample (A||) to the absorbance of 

light polarized perpendicularly to the sample axis (A⊥) (107). Then, a dichroic ratio can be 
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correlated to the orientation of a TM helix peptide (for details, see Chapter 2: ATR-FTIR, Figure 

2.4).  

In our ATR-FTIR spectroscopy experiments, each sample (the wild-type, W515K, 

W515K/Q516W, or R514W/W515K) was reconstituted into DMPC:DMPG lipid bilayers at a 

lipid/peptide molar ratio of 50:1. As shown in Figure 5.6, all of the samples gave rise to a signal 

peak at 1657 cm-1, which is a characteristic frequency of α-helix. This is an expected result 

because a TM domain of a single-pass transmembrane protein possesses an α-helix structure. 

Compared with the wild-type peptide, the constitutively active receptor mutant W515K showed a 

smaller TM helix tilt angle with respect to the membrane normal (Figure 5.6 and Table 5.2). 

However, the tilt angle of the W515A/Q516W was almost the same as that of the wild-type 

peptide. Interestingly, the revertant mutant W515K/Q516W showed the largest tilt angle. These 

results suggest that a tryptophan residue in the IC-JM region regulates the TM helix tilt angle of 

TpoR. It is plausible that the narrower tilt angle observed in W515K may contribute to enhanced 

TM-TM interaction, leading to constitutive receptor activation. 

Table 5.2: Dichroic ratio and TM helix tilt angle 

AVE SE AVE SE

wild-type: RWQFP 2.84 0.11 29 3.1

W515K (RKQFP) 2.99 0.06 24 1.7

W515K/Q516W (RKWFP) 2.5 0.10 38 2.9

W515A/Q516W (RAWFP) 2.86 0.03 28 0.9

Dichroic ratio (A||/A⊥) Angle (°)

 
AVE: average; SE: standard error (n = 3 for the wild-type and W515K peptide, n = 2 for W515K/Q516W and 
W515A/Q516W). 
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Figure 5.6: Polarized ATR-FTIR spectra of the wild-type and the W515K TpoR TM-JM peptides. The spectra 
were measured using parallel (solid line) and perpendicular (dashed line) polarized lights to the bilayers normal. The 
frequencies between 1600 to 1790 cm-1 are selected to focus on the IR bands at 1745 cm-1 (the lipid carbonyl 
vibration) and the bands at ~1657cm-1 (the protein amide I vibration). 

5.3 Discussion 

 
The dual luciferase reporter assay revealed that all of the clinically related mutations at W515 of 

TpoR (W515K, W515L, W515A, W515R, W515G, and W515S) constitutively activate the 

JAK2-STAT signaling pathway (Figure 5.1), indicating that the W515 plays an important role 

for regulating the TpoR activity. The role of W515 could not be fully replaced by tyrosine or 

phenylalanine (Figure 5.2), suggesting that tryptophan, rather than just an aromatic residue, is 

required for stabilization of the inactive receptor conformation.  

Interestingly, the second mutation, R514W or Q516W, reverted the constitutively active 

phenotype caused by a mutation at W515 (W515K, W515L, and W515A), although only the 

W515A/Q516W mutant still exhibited constitutive receptor activation (Figure 5.3). Like the 

wild-type TpoR, these revertant mutants activated the JAK2-STAT signaling in a ligand-

responsive manner. Consistent with this, one of the revertant mutations, Q516W, restored the 

high dimerization frequency of the W515K receptor to the basal level (Figure 5.4). These 
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observations suggest that a tryptophan residue in the JM region controls the activity of TpoR by 

modulating the dimerization strength of the receptor. 

To further investigate how mutations in the RWQFP motif affect the dimerization of TpoR, 

the SE-AUC and deuterium MAS NMR analyses were conducted using the TpoR-derived TM-

JM peptides. Both assays revealed that the TM domains containing a constitutively active 

mutation (W515K, ∆RWQFP, and W515A/Q516W) possess a strong tendency to self-interact in 

detergent micelles as well as lipid bilayer membranes (Table 5.1, Figure 5.5). In contrast, the 

TM domain containing a revertant mutation (R514W/W515K and W515K/Q516W) did not 

interact with each other strongly. Thus, our data suggest that the receptor activation is mediated 

by a TM-TM interaction. 

Our ATR-FTIR using the wild-type and mutant TpoR TM-JM peptides demonstrated that a 

TM-TM interaction preferentially occurs when the TM helix tilt angle with respect to the 

membrane plane is relatively small (Table 5.2). For example, the W515K peptide, which 

possesses a strong propensity for self-interaction, resulted in a smaller TM helix tilt angle than 

the wild-type peptide or the W515K/Q516W revertant mutant. Thus, it is possible that the W515 

residue maintains the inactive receptor state by keeping a specific TM helix tilt angle and that the 

TM-TM interaction and the resultant receptor activation may take place when the tilt angle is 

reduced by ligand binding. This notion is further supported by a recent molecular dynamic 

simulation, in which mutations in the TpoR JM region, including W515K, were shown to affect 

the TM helix tilt angle (148). 

Based on the studies on W515 of TpoR, we propose two models for the TpoR activation 

mechanism: one involving ligand-independent receptor dimerization and another involving 
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ligand-induced receptor dimerization (Figure 5.7). In the former model (Figure 5.7A), TpoR 

most likely exists as a pre-formed dimer although the interaction may be weak in the native state. 

Within the pre-formed dimer, the TM domain does not interact with each other due to a 

relatively large TM helix tilt angle set by the RWQFP motif. However, binding of Tpo to the 

pre-formed dimer overrides the inhibitory function of the RWQFP region, leading to a decrease 

in the TM helix tilt angle. This tilt angle change allows the TM domain to interact with each 

other, thereby repositioning the TpoR-associated JAK2 kinase in a proper place for its trans-

phosphorylation. In the ligand-induced dimerization model (Figure 5.7B), TpoR exists as a 

monomer. A specific TM helix tilt angle induced by the RWQFP motif inhibits dimerization of 

the TpoR monomer, but ligand binding changes the TM helix tilt angle, resulting in the TpoR 

dimerization. This allows JAK2 to rearrange its structure/position, leading to activation of the 

JAK2-STAT signaling pathway. 
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Figure 5.7: Refined models for the TpoR activation mechanism. (A) At least some fraction of TpoR can undergo 
ligand-independent dimerization, as presented in the previous model (Figure 3.8). A specific TM helix tilt angle, 
which is defined by the RWQFP motif, inhibits a TM-TM interaction (left). Ligand binding to the extracellular (EC) 
domain reduces the TM helix tilt angle (middle), allowing a TM-TM interaction (right). This receptor conformation 
in turn reorients JAK2 into an active position (right), resulting in activation of the JAK2-STAT signaling pathway. 
(B) Alternatively, TpoR may exist as a monomer, as presented in the previous model (Figure 1.10B). The inactive 
monomer state is maintained by a specific TM helix tilt angle. Ligand binding modulates the TM helix tilt angle, 
allowing the receptor to dimerize, leading to activation of the JAK2-STAT signaling pathway. An ellipse in the EC 
domain represents one cytokine receptor module (CRM).  

 
It remains elusive how exactly tryptophan in the JM region of a transmembrane protein 

regulates a TM helix angle. The key to understanding the molecular role of such a tryptophan 

may lie in its chemical properties. Tryptophan is unique among all amino acids in that it has an 

indole ring as a side chain. With the help of this side chain, tryptophan can form a hydrogen 

bond as well as cation-π interactions with adjacent molecules. Thus, W515 may control the TM 

helix tilt angle by forming stable, non-covalent interactions with its neighboring molecules, such 

as membrane lipids. We will further discuss the molecular basis of the tryptophan-mediated TM 

helix tilt angle control in Chapter 6.  
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5.4 Conclusions 

 
• Clinically relevant mutations at W515 of TpoR constitutively activate the JAK2-STAT 

signaling pathway. 

• The constitutively active mutations at W515 enhance ligand-independent dimerization of 

TpoR. 

• Incorporation of a tryptophan residue at position 514 or 516 reverts the constitutively 

active phenotype of W515K, W515L, and W515A. 

• The TM-JM peptide containing W515K has a strong propensity for dimerization. 

• The TM-JM peptide containing a revertant mutation, R514W/W515K or W515K/Q516W 

does not dimerize. 

• Compared with the wild-type and revertant TM-JM peptides, the W515K mutant peptide 

produces a smaller TM helix tilt angle in the lipid bilayer membrane. 

• These observations suggest that W515 regulates the dimerization and activity of TpoR by 

modulating the TM helix tilt angle in the cell membrane. 
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Chapter 6. General Discussion 

6.1 Introduction 

 
The thrombopoietin receptor (TpoR) regulates megakaryocytopoiesis and platelet development 

(12-16). Despite the importance of TpoR for vertebrates including humans, at the molecular level 

its activation mechanism remains elusive. To better understand the detailed activation 

mechanism, we compared the wild-type TpoR with several clinically related mutants of TpoR in 

terms of their dimerization and receptor activity.  Specifically, we analyzed the role of the TM-

JM region of TpoR in receptor activation using a combination of five different methods: 

sedimentation equilibrium analytical ultracentrifugation (SE-AUC), deuterium magic angle 

spinning (MAS) NMR spectroscopy, polarized attenuated total reflection Fourier transform 

infrared (ATR-FTIR), a dual luciferase reporter assay, and a split Gaussia princeps luciferase 

complementation assay. 
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6.2 Summary of results 

6.2.1 The TM domain of TpoR does not interact with each other 

 
Previous studies have shown that the other Type I-Group 1 cytokine receptors, namely the 

erythropoietin receptor (EpoR), the growth hormone receptor (GHR), and the prolactin receptor 

(PRLR), form dimers even in the absence of ligand (76-78, 80).  EpoR, the closest relative of 

TpoR, is known to undergo dimerization via its TM domain (76). The EpoR TM domain is 

thought to stabilize the receptor dimer by forming a TM-TM interaction (76, 82). On the other 

hand, our SE-AUC and deuterium MAS NMR analyses showed that the TM domain of TpoR 

does not possess a strong propensity to undergo self-interaction (Figure 3.3, Figure 3.4, Figure 

3.5). Our split G. princeps luciferase complementation assay demonstrated that the full-length 

TpoR can dimerize in a ligand-independent manner (Figure 3.7). However, this ligand-

independent dimerization was relatively weak compared with that of EpoR, presumably due to 

the lack of a TM-TM interaction in the TpoR dimer. These results suggest that two different 

forms of the inactive TpoR (i.e., monomer and dimer) may co-exist in the cells. As for TpoR 

molecules that exist as pre-formed dimers, such dimerization may be stabilized by the 

extracellular (EC) or intracellular (IC) domain.  

6.2.2 The S505N mutation enhances ligand-independent receptor dimerization 

 
Although TpoR and EpoR share high sequence similarity, their TM domains play different roles 

in receptor activation. To further analyze the importance of the TpoR TM domain, we focused on 

a clinically relevant mutation, S505N, which causes excessive proliferation of megakaryocytes 
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and platelets in the bone marrow (22, 35). The S505N mutation is located in the middle of the 

TM domain; thus, we reasoned that a close examination of this mutant should enable us to 

understand the importance of the TM domain in the regulation of TpoR activity. As expected, 

our dual luciferase reporter assay showed that the S505N mutation increased the activity of the 

JAK2-STAT signaling pathway in living cells independently of ligand binding (Figure 4.3). This 

enhanced JAK2-STAT activation seems to be due to enhanced dimerization of the mutant TpoR. 

Indeed, the split G. princeps luciferase complementation assay revealed that the S505N mutant 

receptor undergoes dimerization more frequently than wild-type TpoR (Figure 4.4). Moreover, 

our SE-AUC and deuterium MAS NMR spectroscopy analyses demonstrated that the synthetic 

TM-JM peptide containing the S505N mutation has a stronger propensity for self-interaction 

compared with the wild-type TM-JM domain (Figure 4.1, Figure 4.2). Together, these 

observations suggest that the S505N mutation stabilizes a pre-formed TpoR dimer by enhancing 

an interaction between two TM helices. Considering that asparagine can be a potential hydrogen 

bond acceptor/donor, the TM-TM interaction within the receptor dimer may be mediated by a 

hydrogen bond between two asparagine residues.  

6.2.3 The tryptophan in the RWQFP region of TpoR maintains the receptor 

inactive state by inhibiting the TM-TM interaction 

 

Another clinically relevant residue of TpoR is W515, the mutation of which causes constitutive 

activation of TpoR. To date, several mutations at this residue (e.g., W515K, W515L, and 

W515A) have been isolated from myeloproliferative neoplasm (MPN) patients (29). To elucidate 

the effect of these mutations on TpoR activity, we first examined the JAK2-STAT signaling 
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activity in living cells transiently expressing the mutant TpoR by the dual luciferase reporter 

assay. As expected, all of the clinically related mutations at W515 (W515K, W515L, W515A, 

W515G, W515S, and W515R) upregulated the JAK2-STAT signaling pathway in the absence of 

Tpo (Figure 5.1). Furthermore, we detected the ligand-independent dimerization of W515K, one 

of the constitutively active TpoR mutants, by the split G. princeps luciferase complementation 

assay. Like S505N, the W515K mutant receptor dimerized more frequently than the wild-type 

TpoR (Figure 5.4). Moreover, the SE-AUC and the deuterium MAS NMR experiments clearly 

demonstrated that the TM region containing W515K possesses high affinity for self-interaction 

(Figure 5.5E, Table 5.1). Thus, we propose that W515K renders TpoR active by enhancing a 

TM-TM interaction. The same scenario may apply to the other clinically relevant mutations at 

W515 (W515L, W515A, W515G, W515S, and W515R), all of which are known to cause 

constitutive activation of TpoR.  

How do these mutations at W515 constitutively activate TpoR? The six known amino acid 

substitutions (i.e., K, L, A, G, S, and R) at W515 do not share a common chemical property in 

their amino acid side chains. Thus, unlike S505N, the mutations at W515 may be loss-of-

function mutations, rather than gain-of-function mutations that forcibly stabilize the active 

receptor conformation. In other words, W515 itself is important and this residue may play a 

critical role in inhibition of the TM-TM interaction. To examine this possibility, we first asked 

whether other aromatic residues, such as tyrosine and phenylalanine, can replace the function of 

W515. Although both W515Y and W515F enhanced the JAK2-STAT signaling activity even in 

the absence of Tpo (Figure 5.2), these ligand-independent activations were not as exaggerated as 

those of, for example, W515K and W515A (Figure 5.1). In addition, W515Y and W515F were 
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responsive to addition of Tpo (Figure 5.2), suggesting that, to some extent, both mutant 

receptors can still control the transition between the active and inactive receptor states. Thus, an 

aromatic residue can at least partly replace the function of W515 in the receptor activity control. 

Together, our data suggest that the aromaticity of the W515 side chain is important but not 

sufficient to maintain the inactive TpoR conformation.  

To further investigate the role of W515 in regulation of the TpoR activity, we next asked 

whether the constitutively active phenotype of the W515-related mutant receptors can be 

reverted by incorporation of a tryptophan residue in the 514RWQFP region. To this end, we 

replaced R514 or Q516 with tryptophan in the W515K, W515L, and W515A mutant receptors, 

resulting in six different double mutants: R514W/W515K, W515K/Q516W, R514W/W515L, 

W515L/Q516W, R514W/W515A, and W515A/Q516W. The dual luciferase reporter assay 

showed that the normal TpoR activity was restored in all of the double mutants except 

W515A/Q516W. These double mutants properly activated the JAK2-STAT signaling pathway in 

a Tpo-dependent manner (Figure 5.3). It is plausible that introduction of tryptophan at position 

514 or 516 can compromise the high dimerization propensity of the constitutively active 

receptors (W515K, W515L, and W515A). Consistent with this notion, the split G. princeps 

luciferase complementation assay showed that one of the double mutants, W515K/Q516W, 

reduced its dimerization affinity almost to the same level as wild-type TpoR (Figure 5.4). 

Furthermore, our SE-AUC and deuterium MAS NMR analyses revealed that the synthetic TM-

JM peptide containing a double mutation (R514W/W515K or W515K/Q516W) does not interact 

with each other as strongly as the W515K TM-JM peptide (Figure 5.5, Table 5.1). These 

findings suggest that a tryptophan residue in the TpoR JM region plays a critical role in 
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stabilization of the inactive receptor conformation via inhibition of a TM-TM interaction within 

the receptor dimer. 

However, it remains unclear how the tryptophan residue in the RWQFP region affects TM-

TM interactions within a TpoR dimer. We hypothesized that the tryptophan inhibits a TM-TM 

interaction by inducing a specific TM helix tilt angle. It has been suggested that tryptophan in a 

JM region of a single-pass transmembrane protein controls the tilt angle of the TM helix (147). 

To examine this possibility in TpoR, we utilized ATR-FTIR spectroscopy and calculated the 

helix tilt angle of the TM domains of the wild-type, W515K, R514W/W515K, and 

W515K/Q516W receptors in the lipid bilayers. As shown in the Table 5.2 and Figure 5.6, the 

helix tilt angle with respect to the membrane normal was the smallest (24° ± 1.7) in the W515K 

mutant TM helix, and it progressively became greater as the position of the tryptophan moved 

toward the C terminus (RKQFP: 24° ± 1.7, RWQFP: 29° ± 3.1, RKWFP: 38° ± 2.9). These 

observations suggest that the position of the tryptophan in the TpoR JM region may control the 

helix tilt angle.  

6.3 Discussion 

6.3.1 Models for the TpoR activation mechanism 

 
On the basis of our data, we propose two models for the TpoR activation mechanism: the ligand-

independent receptor dimerization model and the ligand-induced receptor dimerization model 

(Figure 5.7). In the former model (Figure 5.7A), TpoR exists as a ligand-independent dimer, the 

formation of which does not involve TM-TM interactions. Next, ligand binding to the EC 

domains of the receptor dimer changes the tilt angle of each TM helix, which then induces a TM-
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TM interaction within the pre-formed dimer. Finally, the interaction between the two TM 

domains triggers a specific structural rearrangement of the IC domains, leading to activation of 

the TpoR-bound JAK2 kinase. Alternatively, the ligand-induced dimerization model is on the 

assumption that TpoR exists as a monomer in its inactive state (Figure 5.7B). In this model, a 

specific TM helix tilt angle prevents dimerization of the TpoR monomer. Upon ligand binding to 

the receptor, the TM helix tilt angle alters, leading to the receptor dimerization. As a result, the 

TpoR-bound JAK2 kinase and its downstream signaling become activated. It should be noted 

that these two models are not necessarily exclusive to each other; the inactive TpoR molecules 

may exist as both monomers and dimers. 

6.3.2 Importance of ligand-independent receptor dimerization 

 
Traditionally, it has long been believed that single-pass transmembrane receptors are activated 

by ligand-induced receptor dimerization (134). However, this concept has been challenged by the 

discovery of ligand-independent dimerization of several receptors, including the Type I-Group 1 

cytokine receptors. The activity of such receptors is likely to be regulated by a more complex 

conformational change within the receptor dimers rather than just a change in their oligomeric 

states. However, a previous study using receptor cross-linking analyses failed to detect the pre-

formed TpoR dimers (38). In this study, the two EC domains of the potential TpoR dimers were 

covalently linked together and the oligomeric states were analyzed by SDS-PAGE (38). This 

approach found no TpoR dimer in the absence of Tpo (38). Contrary to this result, we found that 

at least some fraction of TpoR can dimerize in a ligand-independent manner, although this 

interaction was relatively weak compared with that of EpoR (unpublished data). We speculate 
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that this discrepancy between our study and the previous study stems from the relatively low 

detection efficiency of the receptor cross-linking assay. Indeed, the same study showed that only 

~10% of total TpoR molecules undergo dimerization even in the presence of Tpo (38). This 

technical limitation, which is inherent with receptor cross-linking approaches, may be the reason 

why ligand-independent dimerization of TpoR had not been experimentally proven until our 

present study.  

To examine how widespread ligand-independent receptor dimerization is among single-

pass transmembrane receptors, highly sensitive assays for protein-protein interactions, such as 

split luciferase complementation and single-molecule imaging, are required. This notion is not 

trivial because the presence of a pre-formed receptor dimer may not be detectable by 

conventional approaches as was the case for TpoR. Similarly, ligand-independent dimerization 

of the epidermal growth factor receptor (EGFR) had not been clearly demonstrated until single-

molecule imaging of fluorescently labeled EGFR was conducted (149). Thus, it would be 

worthwhile to re-examine other single-pass transmembrane receptors for their oligomeric states 

using a highly sensitive detection system. Such studies should elucidate whether ligand-

independent dimerization is a common phenomenon among the majority of receptors.  

6.3.3 Comparison between TpoR and EpoR 

 
Activation mechanisms of pre-formed receptor dimers have been intensively studied in EpoR, 

which shares the highest sequence similarity with TpoR among the Type I-Group 1 cytokine 

receptors. In the absence of its ligand, EpoR most likely exists as a dimer, which is mediated by 

a TM-TM interaction (76, 82, 83). The current model for EpoR activation is that upon ligand 
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binding, each TM helix in the pre-formed EpoR dimer rotates on its helical axis, thereby 

switching the TM-TM interaction surface (Figure 1.7, Figure 1.8). Such a structural 

rearrangement within the receptor dimer may be critical to activate the EpoR-bound JAK2 kinase 

(86).  

On the other hand, the TM helix rotation model is not likely to be the case for TpoR. Our 

results suggest that the TM domains of the wild-type TpoR do not interact with each other. On 

the other hand, the TM domains derived from the constitutively active TpoR mutants were found 

to possess a high affinity for self-interaction. Thus, TM-TM association/dissociation, rather than 

switching of TM-TM interaction interface, may control the activity of TpoR. 

6.3.4 A possible mechanism of the ligand-induced TM-TM interaction in the TpoR 

dimer 

 
Our studies shed light on a striking difference between TpoR and EpoR. While the two TM 

domains of the EpoR dimer are always associated with each other, the TM-TM interaction of 

TpoR is likely to occur in a ligand-dependent manner. Such ligand-induced TM-TM interaction 

had never been documented until the present study, and requires a novel mechanistic explanation. 

We hypothesize that Tpo induces the TM-TM interaction by altering the TM helix tilt angle. The 

importance of the TM helix tilt angle has been suggested by a recent computational simulation 

(148). In this study, the TpoR TM domain was built by using homology modeling based on a 

single-pass transmembrane protein segment (PDB ID: 2JPX), while the IC domain structure was 

predicted by the Rosetta ab initio calculation method. The merged structure of the TM and IC 

domains of TpoR were then inserted into the lipid bilayers composed of palmitoyloleoyl 
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phosphatidylcholine (POPC). Based on the molecular dynamics simulations on this reconstituted 

TM-IC domains of TpoR (residues 481 to 635), the TM helix tilt angles of the wild-type and 

W515K (constitutively active) TpoR receptors were determined to be 27.6° ± 7 and 25.1° ± 6.4, 

respectively. This study suggests that the TM domains of the active and inactive receptors are 

associated with the cell membrane at different tilt angles (148).  

Furthermore, a recent study on an integrin receptor underscored the critical role of a TM 

helix tilt angle in receptor activation. An integrin receptor exists as a heterodimer composed of 

α- and β-subunits. This dimerization is mediated by a TM-TM interaction, as is the case for 

EpoR. Interestingly, binding of a cytoplasmic protein, called talin, to the membrane-proximal 

region of the β-subunit was shown to change the TM helix tilt angle (150). As a result, the TM 

domains of the α- and β-subunits become dissociated within the integrin heterodimer, promoting 

structural rearrangement of the EC domains (150). Thus, the TM helix tilt angle change may be a 

common mechanism for regulation of receptor activation. 

6.3.5 Maintenance of the inactive state of TpoR 

 
Our data demonstrated that the chemical property and/or position of tryptophan in the RWQFP 

region play a substantial role in inhibition of a TpoR TM-TM interaction. The side chain of 

tryptophan not only possesses the largest nonpolar surface among all amino acids, but also serves 

as a hydrogen bond donor via its NH group. Due to this amphipathic nature, tryptophan residues 

in a transmembrane protein are preferentially located at the lipid-water boundary (151). Similarly, 

W515 of TpoR most likely resides at the boundary between the cell membrane and the 

cytoplasm, thereby locking TpoR in a specific conformation/orientation. However, the precise 
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molecular mechanism by which W515 affects the inactive receptor conformation remains to be 

investigated. A fascinating hypothesis is that W515 positions the TpoR TM helix at a specific tilt 

angle via a non-covalent interaction with the cell membrane components (Figure 6.1). 

Tryptophan at the lipid-water boundary is known to possess a strong propensity to interact with 

the lipid head group (152). Consistent with this notion, a computational simulation using a TM 

peptide predicted that tryptophan located at the lipid-water interface forms a hydrogen bond 

between its NH group and the ester oxygen of a lipid head group (153). In addition to hydrogen 

bonding, an interfacial tryptophan residue also has the ability to form a cation-π interaction with 

the lipid head group (154, 155). Such a non-covalent interaction is possible between the π-

electron cloud of the tryptophan indole ring and the quaternary amine of the phosphocholine 

(PC) head group (155). Considering these unique chemical properties of tryptophan, it will be 

interesting to examine the possibility that W515 contributes to similar non-covalent interactions 

with lipids. 

 
Figure 6.1: Possible interactions between W515 and a lipid head group. A hydrogen bond may be formed 
between the NH group of the tryptophan and the carbonyl group of a lipid head. Alternatively, a cation-π interaction 
may be formed between the tryptophan indole ring and the cationic nitrogen of a lipid head. As an example of 
phospholipids, DMPC is shown. The R514, W515, Q516, F517, and P518 residues are highlighted in cyan, magenta, 
yellow, green, and blue, respectively. The hydrogen, nitrogen, and oxygen atoms of the amino acids are shown in 
white, blue, and red, respectively. The phosphorus and hydrocarbon atoms of a DMPC molecule are shown in 
orange and light gray, respectively. 
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Another possibility is that W515 offsets the overall hydrophilic nature of the RWQFP 

region via a cation-π interaction with R514 and squeezes this motif into the cell membrane 

(Figure 6.2). In general, positively charged amino acids, such as arginine, do not penetrate into 

the hydrophobic core of the cell membrane. Thus, the guanidinium side chain of R514 is most 

likely located in the aqueous phase just adjacent to the bilayer surface. However, once a cation-π 

interaction between W515 and R514 occurs, the positive charge of the R514 side chain is 

compensated by the negatively charged surface of the tryptophan indole ring, leading to an 

increased “hydrophobicity” of the RWQFP motif. The creation of this additional hydrophobic 

region in TpoR should alter the length of the TM domain as well as the resultant TM helix tilt 

angle (Figure 6.2).  
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Figure 6.2: Effect of W515 on the TpoR TM helix orientation in the lipid bilayer. Schematic representation of 
the wild-type TpoR TM domain inserted into a DMPC bilayer. (A) The predicted TM domain of TpoR (I492 to 
L513) is embedded in the DMPC bilayer. The I492 and L513 residues are presented as spheres. (B) The predicted 
TM-JM region of TpoR (I492 to P518) is embedded in the DMPC bilayer. The I492 and R514 to P518 residues are 
presented as spheres. A cation-π interaction (shown in dotted line) between the indole ring of W515 and the cationic 
group of R514 increases the hydrophobicity of the RWQFP motif. As a result, a longer region, including the 
RWQFP motif, can be incorporated into the lipid bilayer, altering the TM helix tilt angle. The TM helix is shown in 
green. The R514, W515, Q516, F517, and P518 residues are highlighted in cyan, magenta, green, yellow, and blue, 
respectively. The hydrogen, nitrogen, and oxygen atoms of the amino acids are shown in white, blue, and red, 
respectively. The phosphorus and hydrocarbon atoms of a DMPC molecule are shown in orange and light gray, 
respectively. 

 
In the case of the constitutively active W515K mutant, R514 should be placed outside of 

the cell membrane due to the lack of the W515-mediated cation-π interaction. Furthermore, the 

presence of the W515K residue, a hydrophilic amino acid, decreases the net hydrophobicity of 

the TpoR JM region. As a result, W515K may produce a shorter TM domain with a smaller TM 

helix tilt angle (Figure 6.3A). This effect of the W515K mutation on the TM helix may be 
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reversed by the Q516W mutation, which restores the hydrophobicity of the TM-JM region back 

to the wild-type level through a cation-π interaction with the lysine residue (Figure 6.3B). 

Contrary to our model involving the TM helix tilt angle change, it has been proposed that 

long, hydrophilic amino acids, such as lysine and arginine, at the lipid-water boundary affect the 

length of a TM helix, but do not alter the helix orientation (156). Based on this model, the long 

and flexible side chain of R514 can stretch out its charged amino group towards water (i.e., 

cytoplasm) while keeping its hydrocarbon part embedded in the lipid bilayer. This phenomenon, 

termed “snorkeling”, might change the length of the TpoR TM helix without affecting the helix 

tilt angle. Thus, it can be argued that the W515K mutation should not affect the overall tilt angle 

of the TM helix. However, such snorkeling of R514 at the cytoplasmic side of the cell membrane 

is energetically unfavorable because the Cα-Cβ bond of R514, which connects the charged 

group and the TM helix backbone, is oriented towards the extracellular side, rather than the 

cytoplasmic side of the membrane.  
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Figure 6.3: Effect of W515K and W515K/Q516W on the TpoR TM helix orientation in the lipid bilayer. 
Schematic representation of the mutant TpoR TM domains inserted into a DMPC bilayer. (A) The TpoR TM-JM 
region (I492-Q516) containing the W515K mutation is embedded in a DMPC bilayer. The 514RKQ residues are 
shown as spheres. The W515K mutation creates a cluster of hydrophilic residues (514RKQ), which tends to move 
outside of the lipid bilayer. This hydrophilic nature of the JM region and the lack of the cation-π interaction between 
W515 and R514 give rise to a relatively smaller TM helix tilt angle. The I492 and R514 to Q516 residues are 
presented as spheres. (B) The TpoR TM-JM region (I492-Q516) containing the W515K/Q516W revertant mutation 
is placed in a DMPC bilayer. The 514RKW residues are shown as spheres. A cation-π interaction (shown in dotted 
line) between the indole ring of Q516W and the cationic group of W515K restores the hydrophobicity of the JM 
region to the normal level. As a result, a longer region, including the RKWFP motif, can be once again embedded in 
the lipid bilayer, fixing a proper TM helix tilt angle. The I492 and R514 to Q516W residues are presented as spheres. 
The TM helix is shown in green. The R514, W515K, Q516W, F517, and P518 residues are highlighted in cyan, 
magenta, green, yellow, and blue, respectively. The hydrogen, nitrogen, and oxygen atoms of the amino acids are 
shown in white, blue, and red, respectively. The phosphorus and hydrocarbon atoms of a DMPC molecule are shown 
in orange and light gray, respectively. 

  

The aromatic amino acids (i.e., tryptophan, phenylalanine and tyrosine) share similar 

chemical properties, such as the ability to form cation-π interactions. Thus, theoretically, 

phenylalanine and tyrosine should functionally replace the role of W515 in controlling the TM 

helix tilt angle and receptor activity. However, these aromatic residues could not fully substitute 
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the function of W515 in TpoR-mediated JAK2-STAT signaling (Figure 5.2). A possible 

explanation for this result may be that neither the phenylalanine side chain (benzene) nor the 

tyrosine side chain (phenol) can form as strong a cation-π interaction as the tryptophan side 

chain (indole). Indeed, a computational study revealed that indole has the highest (most negative) 

electrostatic potential surface among three aromatic amino acid side chains (157). Furthermore, 

the Wimley-White interfacial hydrophobicity scale showed that a pentapeptide (W-L-X-L-L) has 

the highest (most negative) free energy of transfer from water to a lipid bilayer interface when 

tryptophan is placed at position “X” (152). This indicates that tryptophan at the lipid-water 

boundary has the strongest propensity to position itself towards the lipid head group, presumably 

via a cation-π interaction. On the other hand, phenylalanine and tyrosine give rise to the second 

and third highest transfer free energies, respectively, when they were incorporated into the 

peptide at position “X” (152). However, these free energies were lower than that of the peptide 

containing tryptophan at the same position (152). This difference in the thermodynamic property 

among those three aromatic residues may be the reason why the W515F and W515Y TpoR 

mutants could only partially maintain the inactive receptor state in the absence of Tpo (Figure 

5.2). 

6.3.6 Alternative models for the control of TpoR activity 

 
In contrast to our model, a recent study using a dimerization-dependent transcription factor 

showed that the TpoR TM domain undergoes self-interaction in E. coli cell membranes, 

suggesting that two TM helices within a pre-formed TpoR dimer are associated with each other 

independently of ligand binding (133). Based on this result, it was proposed that the activation of 
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TpoR is regulated by rotation of the TM helices and the resultant switching of the TM-TM 

interaction interface. However, caution must be taken in interpreting the data obtained from this 

study as the TpoR TM peptide used for their analyses does not contain a complete RWQFP motif 

(includes only R514 and W515). It has been demonstrated that the RWQFP motif plays an 

essential role in maintaining the inactive TpoR state. Indeed, the insertion-deletion mutation in 

this motif (RWQFP to RKT) has been shown to cause MNP disorders (34, 55) (Table 1.1). 

Furthermore, the murine TpoR is known to be constitutively activated by deletion of the 

KWQFP motif, which corresponds to the human RWQFP motif (96). Moreover, our SE-AUC 

and deuterium MAS NMR data showed that the TpoR TM domain lacking the RWQFP motif, 

but not the wild-type TM domain, has a strong propensity to undergo self-interaction (Figure 5.5, 

Table 5.1). Thus, the TM helix rotation model, which presupposes a constant TM-TM 

interaction within a receptor dimer, may not be applied to the native TpoR. 

Our study offered convincing evidence that W515 stabilizes the inactive receptor dimer 

state. However, W515 may not be the exclusive residue that contributes to this function. Indeed, 

the W515A/Q516W double mutant of TpoR still constitutively activates JAK2-STAT signaling 

even with the substitution of Q516 for tryptophan (Figure 5.3). Consistent with this constitutive 

receptor activity, the TM domain of the W515A/Q516W mutant strongly interacted with each 

other (Figure 5.5, Table 5.1). Thus, we cannot exclude the possibility that some other residues, 

in concert with W515, also play an indispensable role in the regulation of TpoR activity.  

Furthermore, it should be noted that the helix tilt angle of the W515A/Q516W mutant TM 

domain was similar to that of the wild-type TM domain even though this mutant causes 

constitutive activation of TpoR. This observation suggests that the tryptophan at position 516 is 
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still functional for adjusting a proper TM helix orientation in the cell membrane, but cannot 

stabilize the inactive receptor state presumably due to the W515A mutation. Thus, the two 

processes, the control of the TM helix tilt angle and the resultant TM-TM association, may be 

uncoupled. A tryptophan residue in the JM region is sufficient for the former process, while the 

latter process may require other unknown conditions. To further investigate the TpoR activation 

mechanism, the W515A/Q516W double mutant will continue to be a great experimental tool.  

6.4 Future experiments 

 

We proposed that a tryptophan residue in the TpoR JM region regulates the transition between 

the active and inactive receptor states by modulating the TM helix tilt angle as well as the TM-

TM interaction. However, the W515A/Q516W mutant did not fit this model; this double 

mutation causes constitutive receptor activation despite the presence of tryptophan in the JM 

region. We hypothesize that not only the presence of tryptophan, but also the size of the amino 

acid adjacent to the tryptophan, plays a critical role in inhibition of TM association. In the case 

of the W515A/Q516W double mutant, the alanine residue at position 515 may be small enough 

to allow formation of an aromatic stacking or a cation-π interaction between the two tryptophan 

residues at position 515, which then mediate TM association (Figure 6.4). On the other hand, 

neither W515L/Q516W nor W515K/Q516W constitutively activates TpoR because the presence 

of a relatively large residue at position 515 (leucine or lysine) does not allow enough space for 

such an aromatic stacking interaction. To test this hypothesis, we will generate a series of double 

mutants, such as W515G/Q516W, W515S/Q516W, and W515C/Q516W, and analyze the 

activity of each mutant TpoR by the dual luciferase reporter assay. In addition, we will examine 
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the effect of each double mutation on the TM helix tilt angle as well as a TM-TM interaction by 

ATR-FTIR and the split G. princeps luciferase reporter assay. We believe that such analyses will 

further advance our understanding on the TpoR activation mechanism.  

  
Figure 6.4: A possible mechanism by which the W515A/Q516W still allows constitutive activation of TpoR. 
Schematic representation of the W515A/Q516W TpoR TM domain inserted into a DMPC bilayer. The 
W515A/Q516W mutation may allow the Q516W to form a new aromatic stacking interaction (red dotted line). This 
interaction may facilitate TM association leading to constitutive activation of the JAK2-STAT signaling pathway. In 
addition, a cation- π interaction between R514 and F517 (black dotted line) may help to locate R514 into the lipid 
head group region of the bilayer. The R514, W515A, Q516W, F517, and P518 residues are highlighted in cyan, 
magenta, green, yellow, and blue, respectively. The hydrogen, nitrogen, and oxygen atoms of the amino acids are 
shown in white, blue, and red, respectively. The phosphorus and hydrocarbon atoms of a DMPC molecule are shown 
in orange and light gray, respectively. The lipid molecules are removed in the right panel for clarity. 

6.5 Conclusions 

 
Our study on TpoR revealed a novel activation mechanism for a single-pass transmembrane 

receptor. Furthermore, the data underscored the critical role of the TM-JM region, more 

specifically W515, in maintenance of the inactive receptor state. We propose that ligand binding 

to a TpoR monomer and/or a pre-formed TpoR dimer induces a TM helix tilt change, which in 

turn stabilizes an active receptor conformation via TM-TM interactions within the dimer. Is this 

model applicable to other single-pass transmembrane receptors? If so, how widespread is such an 

activation mechanism? Can we design new drugs against TpoR mutants based on our model? Is 

our model also useful for mutants of other single-pass transmembrane receptors? Future studies 

will likely answer these questions and pave the way to improvement in human health.  
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