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Abstract of the Dissertation

Higgs Physics in Supersymmetric Models

by

Prerit Jaiswal

Doctor of Philosophy

in

Physics

Stony Brook University

2012

Standard Model (SM) successfully describes the particle spectrum
in nature and the interaction between between these particles us-
ing gauge symmetries. However, in order to give masses to these
particles, the electroweak gauge symmetry must be broken. In the
SM, this is achieved through the Higgs mechanism where a scalar
Higgs field acquires a vacuum expectation value. It is well known
that the presence of a scalar field in the SM leads to a hierarchy
problem, and therefore the SM by itself can not be the fundamen-
tal theory of nature. A well-motivated extension of the SM which
addresses this problem is the Minimal Supersymmetric Standard
Model (MSSM).

The Higgs sector in the MSSM has a rich phenomenology and its
predictions can be tested at colliders. In this thesis, I will de-
scribe three examples in supersymmetric models where the Higgs
phenomenology is significantly different from that in SM. The first
example is the MSSM with large tan β where the Higgs coupling to
the bottom quarks receives large radiative supersymmetric QCD
corrections. As a consequence, bg → bh can be a dominant Higgs
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production mode in certain parameter spaces of the MSSM. A sec-
ond example is an extension of the MSSM wherein a fourth gen-
eration of chiral fermions and their super-partners are added. I
will show that the Higgs boson in such models can be as heavy as
∼ 500 GeV. Finally, as a third example, the MSSM with one of the
stops lighter than the top quark is considered. Such a scenario is
required to generate sufficient baryon asymmetry in the universe
through the process of electroweak baryogenesis. By using the cor-
relations between the Higgs production and decay rates, it will be
shown that the electroweak baryogenesis in the MSSM is highly
constrained.
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Chapter 1

Introduction

The Standard Model (SM) in particle physics has been enormously success-
ful in describing almost all the experimental data related to the electroweak
and strong interactions of elementary particles. The SM is a gauge theory
which combines Quantum Chromodynamics (QCD), the theory of strong inter-
actions based on the gauge group SU(3)C , with the Glashow-Weinberg-Salam
model [1] of electromagnetic and weak interactions, based on the gauge group
SU(2)L × U(1)Y

1.
Gauge invariance under the electroweak gauge group requires the gauge

bosons to be massless. Given that W and Z bosons describing the weak inter-
actions are massive, the electroweak symmetry must be spontaneously broken.
In the SM, this is achieved through the Higgs mechanism[2] where a complex
scalar SU(2) doublet is introduced. One of the components of this doublet
acquires a non-vanishing vacuum expectation value leading to spontaneous
breaking of SU(2)L ×U(1)Y to the electromagnetic group U(1)Q. In this way,
the weak gauge bosons W and Z get their masses, their longitudinal polariza-
tion degree of freedom coming from three of the four real component of the
Higgs doublet. The fourth component of the doublet is the famous spin-0, yet
to be discovered, Higgs boson. The Higgs mechanism not only gives masses to
the gauge bosons, but also to the fermions since fermion mass terms are also
forbidden by gauge invariance. More details on this subject will be presented
in Chapter 2.

To get an idea of just how well the SM describes the strong and electroweak
forces in nature, it should be noted that the theory agrees with some of the
precision experiments at 0.1 % level probing quantum corrections to high or-
ders in perturbation theory. However, it would be fair to say that the least

1L and Y subscripts in SU(2)L×U(1)Y refer to weak left-handed isospin and hypercharge
respective while C in SU(3)C refers to the color charge.
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understood part of the SM is the one involving the mechanism of electroweak
symmetry breaking, particularly since the Higgs boson has not been observed
yet at the colliders. While experiments in the past such as the LEP at CERN
and the Tevatron at Fermilab have made precision measurements firmly estab-
lishing the SM, the Higgs boson continues to elude us. Currently, the Higgs
searches continue at the Large Hadron Collider (LHC) at CERN.

Despite its success, the SM is only regarded as an effective theory valid
at the low-energy scales tested by the current colliders. Though the SM is a
renormalizable theory, when regarded as an effective theory is only valid till
cut-off scale Λ. One of the major criticisms of the SM is that the radiative
corrections to the Higgs mass have divergences that grow quadratically with
Λ. In the language of renormalization, the counter-terms have to be fine-tuned
to keep the Higgs mass from becoming too large. This point will be discussed
in some detail in Chapter 2.

One of the ways to solve the problem of fine-tuning is to cancel the quadratic
divergences by introducing additional scalars in the theory. A popular ex-
tension of the SM which does exactly that is the Minimal Supersymmetric
Standard Model (MSSM) [3]. In supersymmetry, for every fermionic degree of
freedom, there is a corresponding bosonic degree of freedom. The quadratic di-
vergence to the Higgs mass from the scalar and fermion loops cancel. MSSM is
a supersymmetric model with minimum possible particle content that reduces
to SM at low energies. However, if the nature were exactly supersymmet-
ric, the super partners of the SM particles will have the same mass their SM
counterparts. Supersymmetry must therefore be broken possibly at some high
energy scales.

While the most direct way to check if the nature is indeed supersymmetric
is to look for the direct production of super-partners at the colliders, it is quite
possible that these particles are heavy enough (few TeV) to be just beyond the
reach of the current experiments. However, the MSSM makes very testable
predictions in the Higgs sector[80] : [i] there are three neutral (two CP-even h
and H and a CP-odd A) and one charged Higgs bosons (H+) [ii] the lightest
CP-even neutral Higgs boson mass can be at most ∼ 135 GeV even when the
radiative corrections are included[8, 80, 157]. Indeed, within the next few
years, the LHC should be able to discover or exclude Higgs boson in this mass
range. But in order to claim either discovery or exclusion, it is imperative that
we understand the production and decay of the MSSM Higgs to high precision.

In the MSSM, the production mechanisms for t he Higgs bosons can be sig-
nificantly different from in the SM. In certain parameter spaces of the MSSM,
the heavier Higgs bosons, A and H, are predominantly produced in association
with b quarks. Even for the lighter Higgs boson, h, the dominant production

2



mechanism at both the Tevatron and the LHC is production with b quarks
for light MA ( <∼ 200 GeV ), where the bbh coupling is enhanced. Both the
Tevatron[53] and the LHC experiments[54] have presented limits Higgs pro-
duction in association with b quarks, searching for the decays h → τ+τ− and
bb. These limits obtained in the context of the MSSM are sensitive to the loop
corrections from SUSY particles particularly superpartners of quarks (squarks)
and gluons (gluinos) which will be the topic of discussion in Chapter 3. In
particular, we will explore the validity of an effective Lagrangian approach
called the ∆b approximation[30, 31] which can be used (and is used by the
experimentalists) to approximate the SQCD contributions to the on-shell bbh
vertex and to resum the terms that otherwise ruin perturbativity.

Let us now return to the shortcomings of SM besides the quadratic diver-
gence problem which we have tried to address until now. The SM has three
generations of quarks and leptons but it offers no clue as to why only three
generations of chiral fermions are observed. It is thus natural to consider
the consequences of a fourth family of heavy fermions[55, 56]. The allowed
parameter space for a fourth generation is severely restricted by experimen-
tal searches, by precision electroweak measurements, and by theoretical con-
straints from the requirements implied by the perturbative unitarity of heavy
fermion scattering amplitudes and the perturbativity of the Yukawa coupling
constants at high energy. In Chapter 4, we discuss the consequences of adding
a fourth chiral generation to the MSSM and show that the allowed parameter
space is severely restricted.

Another fundamental question which has been left unanswered by the SM
of particle physics is the net baryon number in the universe i.e. the abun-
dance of matter over anti-matter.There are many approaches to generating
the baryon asymmetry of the universe (BAU), some examples of which are
electroweak baryogenesis (EWBG) [102], leptogenesis [103] and Affleck-Dine
baryogenesis [104]. EWBG is an intriguing possibility because it relies only
upon weak scale physics and gives rise to possible direct experimental tests, but
it cannot take place within the SM [105, 106] given the current lower bounds
on the Higgs mass [107]. EWBG could be realized within the MSSM [108], see
[106] for reviews, but it requires a particular corner of the MSSM parameter
space known as the light stop scenario (LSS) [109–120]. As the name suggests
there are in principle directly testable predictions of new light particles that
can be discovered at the LHC. However, as with many searches at the LHC,
depending on the exact spectra, particles with copious production cross sec-
tions can be missed if a particular signature is not investigated. The benefit of
the LSS is that direct production of stops are not the only test of the scenario.
In the MSSM the stop sector is crucial for a viable Higgs sector due to the
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needed radiative corrections to the Higgs mass. The stops also contribute to
various effective Higgs couplings, most significantly to two gluons. This inter-
twining of the two sectors means that there are additional tests of EWBG in
the MSSM, based purely on the properties of the Higgs. In Chapter 5, will
show that the correlations between different Higgs decay channels and pro-
duction modes, in particular those which occur via loops compared to those
that occur at tree level, make predictions that are already in tension with the
data. By combining the available constraints from LHC Higgs searches, we
show that the Higgs searches are highly constraining, excluding a large part
of the EWBG parameter space at the 90% CL.
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Chapter 2

Electroweak Symmetry
Breaking

The Standard Model (SM) not only successfully describes the particle spec-
trum in nature but is also in excellent agreement with precise experimental
measurements. While the theory is gauge invariant under the gauge group
SU(3)C×SU(2)L×U(1)Y , the gauge invariance requires massless gauge bosons
since a mass term such as m2

AAµA
µ would break the gauge invariance. In the

SM, one starts with a gauge invariant theory but in order to gives masses to W
and Z bosons, the electroweak gauge group SU(2)L×U(1)Y is broken through
the Higgs mechanism which will be described in Section 2.1. In Section 2.2, it
will be shown that the radiative corrections to the Higgs mass in the SM have
large quadratic divergences which is problematic if one regards the SM as a low
energy effective theory. A well-motivated extension of the SM which addressed
this problem is the Minimal Supersymmetric Standard Model (MSSM). The
Higgs sector in the MSSM has a rich phenomenology which will be the topic
of discussion in Section 2.4.

2.1 The Higgs Mechanism

A successful model of electroweak gauge interaction must also describe
how the W and Z bosons get their masses. In the 1960’s Glashow, Weinberg
and Salam wrote down a model where the gauge symmetry SU(2)L × U(1)Y
is spontaneously broken down to U(1)em and successfully describes the weak
interactions in nature. The Lagrangian of the model in the unbroken phase
has the following kinetic terms

L = −1

4
W a
µνW

µν,a − 1

4
BµνB

µν (2.1.1)
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where,

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν

Bµν = ∂µBν − ∂νBµ

The gauge field W a
µ (a = 1, 2, 3) corresponds to the group SU(2)L with coupling

g while the gauge field Bµ corresponds to the abelian hypercharge group U(1)Y
with coupling g′. Until now, all the gauge bosons are massless as required by
the gauge invariance. In order to make the vector bosons massive, the gauge
fields are coupled to a scalar SU(2)L doublet, Φ

Φ(x) =

(
φ0(x)
φ+(x)

)
=

U(x)√
2

(
0

v + h(x)

)
(2.1.2)

where in the second step, a particularly useful and completely general parametriza-
tion has been used. The unitary matrix U(x) can be regarded as an SU(2)
transformation that acts on the doublet. v is the vacuum expectation value
(VEV) if 〈h(x)〉 = 0 and h(x) is a real-valued scalar field which has the inter-
pretation of the yet to be discovered spin-0 Higgs boson.

A renormalizable Lagrangian for the complex scalar doublet is

L = |DµΦ|2 + µ2Φ†Φ− λ(Φ†Φ)2 (2.1.3)

where1 µ2 > 0. Let us focus on the potential term in the above equation.
Substituting the parametrization for Φ in Eq. (2.1.2), the potential term in
the Lagrangian Eq. (2.1.3) is

VΦ = const− λ

4

(
v2 − µ2

λ

)
− v

(
µ2 − λv2

)
h

+
3λv2 − µ2

2
h2 + λvh3 +

1

4
h4

(2.1.4)

The potential has a minimum at v = (µ2/λ)1/2. Around the minimum, the
potential has a vanishing linear term in h while the quadratic term gives the
mass of the Higgs boson, mh =

√
λ/2v.

1Note that very often in the literature, µ2 is defined such that µ2 < 0 but with the
opposite sign in front.
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2.1.1 Gauge Boson Masses

To understand how the W and Z bosons get masses, let us study more
carefully the relevant terms in kinetic term of Eq. (2.1.3) when the scalar field
acquires a VEV. Working in the unitarity gauge where the U(x) is gauged
away by an SU(2) transformation, the kinetic term simplifies to

Lkin =
1

2
(∂µh)2 +

1

2

(
0 v + h

)(
gW a

µ τ
a +

1

2
g′Bµ

)2(
0

v + h

)
=

1

2
(∂µh)2 +

(
m2
WW

+
µ W

µ− +
1

2
m2
ZZµZ

µ

)(
1 +

h

v

) (2.1.5)

where mW = gv/2, mZ =
√
g2 + g′2v/2 and the mass eigenstates are defined

as follows

W±
µ =

1√
2

(W 1
µ ∓W 2

µ)

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ)
(2.1.6)

While there were four gauge fields in the unbroken theory corresponding to
the four generators of SU(2)L×U(1)Y , we have accounted for only three so far.
Since the vacuum of the spontaneously broken theory is gauge invariant under
the electromagnetic charge, the fourth mass eigenstate, which is identified as
the photon, remains massless

Aµ =
1√

g2 + g′2
(g′W 3

µ + gBµ) (2.1.7)

2.1.2 Fermion Weak Interactions and Masses

The GWS model not only successfully describes the gauge boson masses
but also the weak interaction of the fermions. It is well known that the W bo-
son only couples to the left-handed fermions. This chiral behavior of fermions
can be achieved by requiring that left and the right-handed fermions trans-
form under different representations of SU(2)L as long as the mass term is
ignored2. The hypercharge assignment of the fermions is determined by the
their electric charge. The right-handed fermions are singlets (T 3 = 0) un-
der SU(2)L since they do not couple to W boson. Thus, their hypercharge
is simply the electric charge (the unbroken EM charge generator is given by

2A fermion mass term such as −m(ψ̄LψR + ψ̄RψL) spoils the gauge invariance
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SU(3)C SU(2)L U(1)Y(
uL
dL

)
3 2 1

6

uR 3 1 2
3

dR 3 1 −1
3(

νL
eL

)
1 2 −1

2

eR 1 1 −1(
φ+

φ0

)
1 2 1

2

Table 2.1: Charge assignments in the Standard Model

the combination, Q = T 3 + Y ). The left-handed fermions transform under
the fundamental representation of SU(2)L. The detailed charge assignments
of all fermions are summarized in Table 2.1. The Lagrangian describing the
electroweak interaction of fermions is given by

Lfer = ψ̄Liγ
µ(∂µ − igW a

µ τ
a − iYLg′Bµ)ψL + ψ̄Riγ

µ(∂µ − iYRg′Bµ)ψR (2.1.8)

So far, we have assumed the fermions to be massless to preserve gauge invari-
ance. To give masses to the fermions, we could use the same principle we used
to give masses to weak gauge bosons. The fermions are coupled to the scalar
SU(2)L doublet, Φ in a gauge invariant way as follows

Lf = (−λeĒLΦeR + h.c.) + (−λdQ̄LΦdR + h.c.)

+ (−λuεabQ̄L,aΦbuR + h.c.)
(2.1.9)

where in the last line, we have used the fact that anti-symmetric combination
of two fundamental SU(2) indices is a singlet3. Using the parametrization for
Φ in Eq. (2.1.2) and making a gauge transformation to unitarity gauge,

Lf = − 1√
2
λfvf̄f

(
1 +

h

v

)
+ h.c. (2.1.10)

The coupling of the Higgs boson to the fermions is proportional to the fermion
mass. This is particularly interesting for the case of top quark (mt ≈ 174 GeV)
where the coupling is O(1) and leads to interesting Higgs phenomenology.

The GWS model is, therefore, successful in describing the weak interactions

3Let χ and η be two SU(2) doublets, then it can be proven that χT iτ2η is an SU(2)
invariant where τi denotes the Pauli matrices (using τTa τ2 + τ2τa = 0).
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Figure 2.1: Top loop Contribution to Higgs mass

in nature and how the gauge bosons and the fermions get their masses. The
Higgs mechanism in the SM has its shortcomings too; it doesn’t explain the
fermion mass hierarchy, neither does it predict the mass of the Higgs boson.
The most serious criticism, however, is that radiative corrections to the Higgs
mass have quadratic divergences which leads to the fine-tuning problem as will
be explained in the next section.

2.2 The Fine-Tuning Problem

Though the SM is in excellent accord with the experimental data, one of
the most compelling arguments against it is its instability against quantum
corrections due to large quadratically divergent loop corrections to the Higgs
mass. Let us compute the loop contribution of the top quark (see Feynman
diagram in Fig. 2.1) to the self-energy of the Higgs boson evaluated at p2 = m2

h

using a momentum cutoff Λ,

−iΣh(p
2)
∣∣∣
p2=m2

h

= (−1)NC

∫
d4k

(2π)4
Tr

[(
−iλt√

2

)
i

/k −mt

(
−iλt√

2

)
i

/k + /p−mt

] ∣∣∣
p2=m2

h

= iNC
λ2
t

8π2

[
Λ2 +

(
m2
h

2
− 3m2

t

)
ln

(
Λ2 +m2

t

m2
t

)
+ · · ·

]
(2.2.11)

where the additional terms are finite in the limit Λ → ∞. We know that the
SM is a renormalizable theory, so the divergence in the self-energy at one-loop
should be cancelled by the counter-term, δm2

h,

m2
h = m2

h,0 + Σh + δm2
h (2.2.12)

Though this result is self-consistent, however, if the SM were to be regarded
as an effective low energy theory, then the counter-term must be adjusted to
a very high precision to cancel off the quadratically divergent piece leading

9



to the famous fine-tuning problem. In the absence of fine-tuning, the scale Λ
pushes the Higgs mass to large values unless there is new physics near the TeV
scale. An example of how this fine-tuning problem can be resolved is discussed
next.

Consider a model where the Higgs boson, in addition to the usual SM
interactions, couples to N pair of complex scalars φ1 and φ2,

Lsc =
λS
2
h2(|φ1|2 + |φ2|2)− h(µ1|φ1|2 + µ2|φ2|2)

−m2
1|φ1|2 −m2

2|φ2|2
(2.2.13)

Figure 2.2: One-loop self-energy diagrams for the MSSM Higgs boson

There are two Feynman diagrams (diagrams 1 and 3 in Fig. 2.2) that
contribute to the self-energy of the Higgs at one-loop. The contribution of
diagram 1 in Fig. 2.2 (evaluated at p2 = m2

h as before) is

−iΣ(1)
h (p2)

∣∣∣
p2=m2

h

= −iλN
∫

d4k

(2π)4

[
i

k2 −m2
1

+
i

k2 −m2
2

] ∣∣∣
p2=m2

h

= −iN λ

8π2

[
Λ2 − m2

1

2
ln

(
Λ2 +m2

1

m2
1

)
− m2

2

2
ln

(
Λ2 +m2

2

m2
2

)
+ · · ·

]
(2.2.14)
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The second diagram 3 in Fig. 2.2 gives a contribution

−iΣ(2)
h (p2)

∣∣∣
p2=m2

h

= N

∫
d4k

(2π)4

[
(−iµ1)2

(
i2

[k2 −m2
1][(k + p)2 −m2

1]

)
+(−iµ2)2

(
i2

[k2 −m2
1][(k + p)2 −m2

1]

)] ∣∣∣
p2=m2

h

= iN
λ

16π2

[
µ2

1 ln

(
Λ2 +m2

1

m2
1

)
+ µ2

2 ln

(
Λ2 +m2

2

m2
2

)
+ · · ·

]
(2.2.15)

We notice that the quadratic divergence in Eq. (2.2.14) and Eq. (2.2.15) is can-
celled by that in Eq. (2.2.11) if λ = λ2

t and N = NC . Indeed, supersymmetry
is one of the theories in which there is a scalar associated with every fermion
such that the quadratic divergence contribution from the scalars and their
fermionic counterparts are equal and opposite thereby stabilizing the VEV.
There is a vast literature on supersymmetry, however, we will be interested in
the minimal supersymmetric extension of the SM called the Minimal Super-
symmetric Standard Model (MSSM). In the next section, the Higgs sector of
the MSSM will be explained in some detail. For an introduction to MSSM in-
cluding the superfield formalism (which will only be used in the next section),
see references [4].

2.3 The Higgs Sector in the MSSM

In the MSSM, one requires two SU(2)L Higgs doublets as compared to one
doublet for the SM. The reason is that the superpotential (which is a product
of two or three chiral superfields in a renormalizable model) can not contain
complex conjugates of fields for Lagrangian to be SUSY invariant. Then, only
way to obtain masses for both up and down type quarks is to introduce two
Higgs doublets instead of one.

Let the two doublets be denoted by Hu and Hd with hypercharge4 Y = 1/2
and Y = −1/2 respectively. The isospin component expansion is given below

Hu =

(
H+
u

H0
u

)
; Y = 1/2

Hd =

(
H0
d

H−d

)
; Y = −1/2 (2.3.16)

4We follow the convention Q = T3 + Y
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Our aim is to write down the mass term for the Higgs in the MSSM Lagrangian
and hence look for bilinear terms in Higgs fields. There are various contribu-
tions. Let us start with the ’F-term’ of the superpotential W (θθ term in chiral
superpotential that is SUSY invariant) which is made up of SU(2)L invariant
product of Higgs superfields5.

W(µ term) = µHu ·Hd

The dot here refers to SU(2)L invariant productconstructed from doublets Hu

and Hd but not their complex conjugates. It can be written in terms of isospin
components as

W(µ term) = µ
(
H+
u H

−
d −H

0
uH

0
d

)
(2.3.17)

The Kähler term6 contains a contribution from auxiliary fields, fi given by f †f
which then combines with the ’F-term’ of the superpotential −fi∂W (zi)/∂zi+
h.c. (zi being the scalar components of the constituent chiral superfields of
W and W (zi) being the scalar component of W ) to give − |∂W/∂zi|2 + . . .
after substituting the equation of motion for the auxiliary fields fi. Their
contribution to the scalar potential can be summarized as follows,

V1 = |µ|2
(∣∣H+

u

∣∣2 +
∣∣H−d ∣∣2 +

∣∣H0
u

∣∣2 +
∣∣H0

d

∣∣2) (2.3.18)

There is another term from the ’D-term’ of the vector multiplet. The potential
from such a term is

V2 =
∑
G,a,i

g2
G

2

∣∣∣z†iT azi∣∣∣2 (2.3.19)

where G represents the gauge group(s), T a being the generators of that group.
In the Higgs sector, we are concerned with gauge groups SU(2)L and U(1)Y

(before electroweak symmetry breaking). Inserting the explicit form of dou-
blets Eq. (2.3.16) into the potential Eq. (2.3.19), for the U(1)Y part, noting

5Note that superpotential is product of chiral superfields but with abuse of notation,
we denote the chiral superfields of bosonic doublets Hu and Hd by the same symbols Hu

and Hd respectively. The fermionic doublets are denoted by H̃u and H̃d respectively. Also,
throughout this discussion, we assume that no R-parity violating terms be present.

6Also called ’D-term’ is the θθθθ term. ’D-term’ of any superfield is SUSY invariant or
strictly speaking transforms as a total derivative. On the other hand, ’F-term’ or θθ term
of only a chiral superfield transforms like a total derivative.
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that Hu has hypercharge Y = 1/2 while Hd has Y = −1/2 :

VU(1)
2 =

(g′/2)2

2

∣∣∣H†uHu −H†dHd

∣∣∣2
=

g′2

8

∣∣∣∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2 − ∣∣H−d ∣∣2 − ∣∣H0
d

∣∣2∣∣∣2 (2.3.20)

For the SU(2)L part with coupling g, the potential is given by

VSU(2)
2 =

g2

2

(
H†u

τa
2
Hu +H†d

τa
2
Hd

)(
H†u

τa

2
Hu +H†d

τa

2
Hd

)
(2.3.21)

Again using (Eq. (2.3.16)), we evaluate all the matrices explicitly

H†uτ1Hu +H†dτ1Hd = 2Re
[
H+∗
u H0

u +H0∗
d H

−
d

]
H†uτ2Hu +H†dτ2Hd = 2Im

[
H+∗
u H0

u +H0∗
d H

−
d

]
H†uτ2Hu +H†dτ2Hd =

∣∣H+
u

∣∣2 − ∣∣H0
u

∣∣2 +
∣∣H0

d

∣∣2 − ∣∣H−d ∣∣2 (2.3.22)

Substituting Eq. (2.3.22) in Eq. (2.3.21) gives the SU(2) part of the scalar
potential

VSU(2)
2 =

g2

8

(∣∣H+
u

∣∣2 − ∣∣H0
u

∣∣2 +
∣∣H0

d

∣∣2 − ∣∣H−d ∣∣2)2

+
g2

2

∣∣H+∗
u H0

u +H0∗
d H

−
d

∣∣2
=

g2

8

(∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2 − ∣∣H0
d

∣∣2 − ∣∣H−d ∣∣2)2

+
g2

2

∣∣H+∗
u H0

d +H0∗
u H

−
d

∣∣2(2.3.23)

Since, none of the supersymmetric partners of SM particles have been observed
experimentally, we require that SUSY be broken at some higher scale. There
are various methods to achieve this symmetry breaking such as mSUGRA7,
gauge mediated breaking or anomaly mediated breaking. However, we follow
an approach independent of the mechanism for symmetry breaking by adding
terms to the Lagrangian which break SUSY but respect SU(3)× SU(2)L × U(1)Y

gauge symmetry of the SM. Further, we demand that these terms do not in-
troduce quadratic divergences which leads to hierarchy problem. This method
is known as soft-SUSY breaking. In the Higgs sector, the possible soft-SUSY

7mSUGRA or minimal supergravity is the minimal version (minimum number of addi-
tional particles added) of a new symmetry obtained by making global SUSY a local theory
i.e. the parameters of the SUSY transformation become co-ordinate dependent.
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breaking terms are

V3 = m2
Hu

(∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2)+m2
Hd

(∣∣H−d ∣∣2 +
∣∣H0

d

∣∣2)+
{
b
(
H+
u H

−
d −H

0
uH

0
d

)
+ h.c.

}
(2.3.24)

where the parameters m2
Hu

, m2
Hd

and b have arbitrary signs as yet. Combin-
ing Eq. (2.3.18), Eq. (2.3.20)), Eq. (2.3.23) and Eq. (2.3.24), the total scalar
potential can be written as

V =
(
|µ|2 +m2

Hu

) (∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2)+
(
|µ|2 +m2

Hd

) (∣∣H−d ∣∣2 +
∣∣H0

d

∣∣2)
+
{
b
(
H+
u H

−
d −H

0
uH

0
d

)
+ h.c.

}
+
g2

2

∣∣H+∗
u H0

d +H0∗
u H

−
d

∣∣2
+
g2 + g′2

8

(∣∣H+
u

∣∣2 +
∣∣H0

u

∣∣2 − ∣∣H0
d

∣∣2 − ∣∣H−d ∣∣2)2

(2.3.25)

As in the SM, the electroweak gauge symmetry must be broken to give mass
to the W and Z gauge bosons. A short discussion of this topic is presented
below.

2.3.1 The Higgs Mechanism in the MSSM

The basic principle behind the Higgs mechanism in the MSSM is the same
as that in SM, the only subtlety arises due to presence of two Higgs doublets.
In hindsight, we know that electromagnetism gauge group U(1) is not broken.
Thus, we start with the assumption that 〈H+

u 〉 = 0 where 〈φ〉 denotes the vev
of φ. Further, we require that H+

u attain this vev at the minimum of V :

∂V
∂H+

u

∣∣∣∣
H+
u =0

= 0

⇒ H−d = 0

or b = −g
2

2
H0∗
d H

0∗
u

We choose the first solution for the same reason that H−d carries electromag-
netic charge and must have a vanishing vev8. Thus, we have 〈H+

u 〉 =
〈
H−d
〉

=
0. Let the vev of neutral scalars be defined as 〈H0

u〉 = vu and 〈H0
d〉 = vd and

8Note that with the choice
〈
H−
d

〉
= 0, ∂V/∂H−

d

∣∣
H−

d =0
= 0 is already satisfied
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requiring that these values be attained at the minimum of V , we have

∂V
∂H0

u

∣∣∣∣
H0
u=vu

= 0

⇒
(
|µ|2 +m2

Hu

)
vu = bvd +

g2 + g′2

4
vu
(
v2
d − v2

u

)
(2.3.26)

and,

∂V
∂H0

d

∣∣∣∣
H0
d=vd

= 0

⇒
(
|µ|2 +m2

Hd

)
vd = bvu −

g2 + g′2

4
vd
(
v2
d − v2

u

)
(2.3.27)

The vevs vd and vu are not both independent parameters but are related by
the mass of W/Z gauge bosons. Consider the kinetic terms for the Higgs fields

Lkin = (DµHu)
†(DµHu) + (DµHd)

†(DµHd)

where the covariant derivative is defined as Dµ = ∂µ + igτaW
a
µ/2 + ig′yBµ/2.

When the scalars acquire vevs, the W/Z gauge bosons get masses given by

m2
Z =

g2 + g′2

2

(
v2
u + v2

d

)
(2.3.28)

m2
W =

g2

2

(
v2
u + v2

d

)
Next, the Higgs mass eigenstates and eigenvalues will be evaluated leading to
interesting theoretical bounds on the Higgs mass.

2.3.2 Theoretical Bounds on the Higgs Mass

Unlike in the SM where the Higgs mass is a free parameter, the MSSM
makes definite predictions about the Higgs mass. But first, we must calculate
the Higgs mass eigenstates. Before EWSB, we had 8 degrees of freedom(d.o.f.)
from the two Higgs doublets. But after symmetry breaking, three of these are
used to make the gauge bosons massive. The remaining 5 d.o.f. are distributed
as follows : 2 d.o.f in the charged Higgs, 1 d.o.f for a CP-odd Higgs and 1 d.o.f
each for two CP-even Higgs. An explicit calculation of the Higgs eigenstates
is now presented.

Writing all complex scalars as sum of their real and imaginary parts (ex-
panded about vev) H = (〈H〉+φ+iϕ) and substituting in the scalar potential,
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we find that the mass terms of the fields mix but they mix in pairs. For ex-
ample, the mass terms9 for ϕu and ϕd only mix among themselves :

Vϕu,ϕd =
(
|µ|2 +m2

Hu

)
(ϕu)

2 +
(
|µ|2 +m2

Hd

)
(ϕd)

2 + 2bϕuϕd

+
g2 + g′2

4

(
v2
u − v2

d

) [
(ϕu)

2 − (ϕd)
2]

=
(
ϕu ϕd

)
M2

ϕu,ϕd

(
ϕu
ϕd

)
where the off-diagonal mass squared matrix is given by

M2
ϕu,ϕu =

( (
|µ|2 +m2

Hu

)
− g2+g′2

4
(v2
d − v2

u) b

b
(
|µ|2 +m2

Hu

)
+ g2+g′2

4
(v2
d − v2

u)

)

=

(
b cot β b
b b tan β

)
(2.3.29)

In the last step, we we have defined

tan β =
vu
vd

the next step is to diagonalize the mass squared matrix Eq. (2.3.29). If λ is
its eigenvalue, then it satisfies

(b cot β − λ)(b tan β − λ) = b2

⇒ λ [λ− b(tan β + cot β)] = 0

⇒ λ = 0

or λ = b(tan β + cot β) =
2b

sin 2β

The zero eigenmode (− sin β, cos β) corresponds to the longitudinal component
of Z boson while the non-zero eigenmode (cos β, sin β) corresponds to a Higgs
boson A0 defined as

A0 =
√

2 (ϕu cos β + ϕu sin β) ; m2
A0 =

2b

sin 2β
(2.3.30)

Now, we repeat the same procedure for φu and φd as their mass terms only

9mass terms are the quadratic terms in fields one gets on expanding about vev. The
linear terms cancel because we are expanding about the minima of the potential.
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mix among themselves :

Vφu,φd =
(
|µ|2 +m2

Hu

)
(φu)

2 +
(
|µ|2 +m2

Hd

)
(φd)

2 − 2bφuφd

+
g2 + g′2

4

(
v2
u − v2

d

) [
(φu)

2 − (φd)
2]+

g2 + g′2

2
[vuφu − vdφd]2

=
(
φu φd

)
M2

φu,φd

(
φu
φd

)
where the mass squared matrix is [using 2.3.26 and 2.3.27 ] :

M2
φu,φd

=

(
b cot β +m2

Z sin2 β −b− 1
2
m2
Z sin 2β

−b− 1
2
m2
Z sin 2β b tan β +m2

Z cos2 β

)
(2.3.31)

Let the two eigenvalues ofM2
φu,φd

be λ1 and λ2 . Then their sum and product
can be evaluated

Σλ = λ1 + λ2 = b cot β +m2
Z sin2 β + b tan β +m2

Z cos2 β

= m2
A0 +m2

Z

Πλ = λ1λ2 =
(
b cot β +m2

Z sin2 β
) (
b tan β +m2

Z cos2 β
)
−
(
b+

1

2
m2
Z sin 2β

)2

= 2bm2
Z

(
sin4 β + cos4 β

sin 2β

)
− bm2

Z sin 2β

= m2
Aom

2
Z

(
1− sin2 2β

2

)
−m2

Aom
2
Z

(
sin2 2β

2

)
= m2

Aom
2
Z cos2 2β

where we have used the expression for mA0 in Eq. (2.3.30). The two eigenvalues
are then given by

m2
h0 =

1

2

(
Σλ −

√
Σ2
λ − 4Πλ

)
=

1

2

[(
m2
A0 +m2

Z

)
−
√(

m2
A0 +m2

Z

)2 − 4m2
Aom

2
Z cos2 2β

]
(2.3.32)
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m2
H0 =

1

2

(
Σλ +

√
Σ2
λ − 4Πλ

)
=

1

2

[(
m2
A0 +m2

Z

)
+

√(
m2
A0 +m2

Z

)2 − 4m2
Aom

2
Z cos2 2β

]
(2.3.33)

where the lighter of the two Higgs is mh0 and its value is bounded from above.
We consider two cases. If mA0 � mZ ,

m2
h0 ≈ 1

2

[
m2
Z −m2

Z

(
1−

4m2
A0 cos2 2β

2m2
Z

)]
= m2

A0 cos2 2β

m2
h0 � m2

Z cos2 2β (2.3.34)

Now, consider the other possibility mA0 � mZ ,

m2
h0 =

1

2

[
m2
A0 −m2

A0

(
1− 4m2

Z cos2 2β

2m2
A0

+ . . .

)]
m2
h0 < m2

Z cos2 2β (2.3.35)

Therefore, at tree level, the upper bound on the lightest Higgs mass
is mZ

10. This is however not the complete picture since a Higgs boson as
light as 91 GeV is already excluded from collider searches. Including one-loop
radiative corrections, the Higgs mass is given by the following formula

m2
h = m2

Z cos 2β2 +
3m4

t

4π2v2

[
ln

(
M2

S

m2
t

)
+
X2
t

M2
S

(
1− X2

t

12M2
S

)]
(2.3.36)

where MS is the characteristic supersymmetric mass scale usually taken to be
MS =

√
Mt̃1Mt̃2 and Xt is the mixing in the stop sector. A brief discussion

about the renormalization in the Higgs sector and derivation of the one-loop
corrections to the Higgs mass is given in Appendix C. Including higher order
corrections and large log resummations can push the Higgs mass to as heavy as
∼ 130 GeV. Let us complete the discussion by calculating all the eigenmodes
of the mass squared matrix M2

φu,φd
in corresponding to the eigenvalues m2

h0

10We have based this argument considering only the extreme limits of mA0 but the
argument still holds for a general case because the expression for mh0 as a function of mZ

has no maxima/minima.
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and m2
H0 . Using Eq. (2.3.30), we rewrite the mass matrix as

M2
φu,φd

=

(
m2
A0 cos2 β +m2

Z sin2 β −1
2
m2
A0 sin 2β − 1

2
m2
Z sin 2β

−1
2
m2
A0 sin 2β − 1

2
m2
Z sin 2β m2

A0 sin2 β +m2
Z cos2 β

)

=

 (m2
A0+m2

Z)
2

+ cos 2β
2

(
m2
A0 −m2

Z

)
− sin 2β

2

(
m2
A0 +m2

Z

)
− sin 2β

2

(
m2
A0 +m2

Z

) (m2
A0+m2

Z)
2

− cos 2β
2

(
m2
A0 −m2

Z

)


(2.3.37)

Let the eigenvector for m2
h0 and m2

H0 be (cosα,− sinα) and (sinα, cosα)11.
Then,

M2
φu,φd

(
cosα
− sinα

)
= m2

h0

(
cosα
− sinα

)
=

{
1

2

(
m2
A0 +m2

Z

)
− 1

2
ρ

}(
cosα
− sinα

)
(2.3.38)

M2
φu,φd

(
sinα
cosα

)
= m2

H0

(
sinα
cosα

)
=

{
1

2

(
m2
A0 +m2

Z

)
+

1

2
ρ

}(
sinα
cosα

)
(2.3.39)

where from Eq. (2.3.32) and Eq. (2.3.33), ρ is defined as

ρ =

√(
m2
A0 +m2

Z

)2 − 4m2
Aom

2
Z cos2 2β

= m2
H0 −m2

h0

From Eq. (2.3.38), Eq. (2.3.39) and Eq. (2.3.37), we get

tanα = −
[

1
2
ρ+ cos 2β

2

(
m2
A0 −m2

Z

)]
1
2

(
m2
A0 +m2

Z

)
sin 2β

= −
[

1
2

(
m2
H0 −m2

h0

)
+ cos 2β

2

(
m2
A0 −m2

Z

)]
1
2

(
m2
A0 +m2

Z

)
sin 2β

(2.3.40)

Thus, the h0 and H0 fields can be written as

h0 =
√

2 (φu cosα− φd sinα)

H0 =
√

2 (φu sinα + φd cosα) (2.3.41)

11The eigenvectors are orthogonal
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Rearranging the above equations :

φu =
1√
2

(
h0 cosα +H0 sinα

)
φd =

1√
2

(
−h0 sinα +H0 cosα

)
(2.3.42)

In the limit mA0 � mZ , Eq. (2.3.40) reduces to

tanα → −
[

1
2
m2
A0 + cos 2β

2
m2
A0

]
1
2
m2
A0 sin 2β

= − cot β

⇒ α→ β − π

2
(2.3.43)

The limit of heavy CP-odd Higgs, mA0 � mZ goes by the name of decoupling
limit. This limit not only spans a significant parameter space of the MSSM
but also has a physical interpretation that the CP-even Higgs, h0 behaves like
the SM Higgs boson as we will show next.

2.3.3 Higgs Couplings in the MSSM

In the previous section, the Higgs mass eigenstates were calculated. It is
evident that there is considerable mixing between the different components of
the two Higgs doublets. As a consequence, the couplings of the Higgs bosons
to the SM particles is modified as shown in Table 2.2.

h0 H0 A0

huu −igmu cosα
2mW sinβ

−igmu sinα
2mW sinβ

−igmu cotβγ5
2mW

hdd −igmd sinα
2mW cosβ

−igmd cosα
2mW cosβ

−igmu tanβγ5
2mW

hW+W− igmW sin(β − α)gµν igmW cos(β − α)gµν

hZZ ig mZ
cos θw

sin(β − α)gµν ig mZ
cos θw

cos(β − α)gµν

Table 2.2: MSSM Higgs couplings

An interesting limit in the MSSM is the decoupling limit (mA � mZ).
Using Eq. (2.3.43), it is easy to see that the couplings of lightest CP-even
Higgs boson, h0 are identical to that of SM in the decoupling limit at the
tree level. This is the reason why h0 is sometimes referred to as SM-like
Higgs boson in the literature. It should also be noted that in this limit, the
CP-odd Higgs, A0 and the heavy CP-even Higgs, H0 in the decoupling limit
have an enhanced coupling to down type quarks at large tan β. Therefore,in
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these scenarios, production in association with bottom quark is an important
channel for production at hadron colliders.

2.4 Higgs Production and Decays

In this section, we discuss the production modes at lepton and hadron
colliders as well as the decay modes of the lightest neutral CP-even Higgs boson
in the MSSM. The current limits from the collider searches is also presented.

2.4.1 Higgs Decays

As discussed in Section 2.3.3, the mixing between the various components
of the Higgs doublets leads to modified couplings to the SM fermions and gauge
bosons. Therefore, the branching ratio of the Higgs to SM particles is not fixed
but instead depends on the various SUSY parameters. This is unlike the SM
Higgs case where the branching ratio (BR) to SM particles is determined once
the Higgs boson mass is fixed. In the special case of decoupling limit where
all SUSY particles are heavy, the CP-even Higgs boson is ’SM-like’ and one
recovers the SM-Higgs BRs (shown in Fig. 2.3). Note that a light Higgs boson
prefers to decay to bottom quarks and the taus and hence these decay channels
are important for the MSSM Higgs boson.

Figure 2.3: Branching ratios of SM Higgs boson decays
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In the non-decoupling limit, the CP-even Higgs BRs are significantly mod-
ified depending on the various SUSY parameters. At the tree level, the cou-
plings are determined by two parameters : mA and tan β. However, radiative
corrections in Higgs physics can be very important. For example, the Higgs
boson has no tree level coupling to gluon pair or photon pair. For example,
the effective coupling between photons and the Higgs boson comes from the
fermion and W boson loops in the SM while in the MSSM, there are additional
loop contributions from sfermions and charginos. A more detailed discussion
of the BR calculation in the MSSM is provided in Appendix ***.

2.4.2 Lepton Colliders

The three dominant Higgs production modes at e+e− colliders are as follows

• WW fusion process (e+ e− → W W ∗ → νν̄ + h0) : This process is one
of the dominant Higgs production modes at the lepton colliders.

• Higgs-strahlung (e+ e− → Z∗ → Z + h0) : Higgs production in associa-
tion with Z boson is an important production mode if it is kinematically
allowed. Indeed, at LEP center of mass energy, this process contributes
to the exclusion limits for light Higgs mass. Note that if Z decays to
neutrinos, this process interferes with the WW fusion process.

• Higgs pair production (e+ e− → Z∗ → A0 + h0) : For small mA, this
process is kinematically allowed. The Z − h0 −A0 coupling has a factor
of cos(β − α) as compared to the Higgs-strahlung where the coupling
Z − Z − h0 is proportional to sin(β − α). Thus, the two processes are
complimentary as far as the collider searches are concerned.

LEP Limits

LEP was an electron-positron collider which by the end of 1990’s was oper-
ating at a center of mass energy

√
s = 209 GeV. One of the main motivations

for building LEP was to search for Higgs bosons. In Fig. 2.4, the exclu-
sion limits are shown [5] in the tan β − mh0 and the tan β − mA0 parameter
space for two scenarios : ’mh-max scenario’ and the ’no-mixing scenario’. For
both the scenarios, the following parameters are chosen : MS = 1000 GeV,
M2 = −µ = 200 GeV and M3 = 800 GeV. For the ’mh-max scenario’, the stop
mixing parameter is chosen to be Xt = 2MS to maximize the Higgs mass. For
the ’no-mixing scenario’, as the name suggests, Xt = 0 i.e. no mixing in the
stop sector.
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Figure 2.4: The MSSM Higgs exclusion from the LEP in the tan β − mh0

and the tan β −mA0 parameter space for two benchmark scenarios : ’mh-max
scenario’ and the ’no-mixing scenario’. See the text for details

2.4.3 Hadron Colliders

There are four dominant Higgs production modes at hadron colliders :

• Gluon-Gluon Fusion (g g → h0) : The dominant process for Higgs pro-
duction at hadron colliders is the gluon fusion. Even though the leading
order diagrams proceeds through a top quark loop, the loop suppres-
sion is more than compensated by the large gluon parton distribution
functions at the hadron colliders.

• Associated production with W/Z (q q̄ → h0 +W/Z) : Higgs production
in association with vector boson can be a useful channel for Higgs boson
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Figure 2.5: The MSSM Higgs exclusion from the Tevatron in the tan β −mA0

parameter space for two benchmark scenarios. See the text for details.

discovery when decays to bottom quarks. Tagging a W/Z along with
the two b-jets improves the signal to background ratio.

• Vector boson fusion (q q̄ → V V ∗ → h0 + 2j) : It is characterized by
Higgs production in association with two back to back jets.

• Associated production with heavy quarks (g g → h0 + t(b)t̄(t̄)) : This
process can be particularly important in the MSSM since the Higgs cou-
pling to the bottom quarks receives large radiative corrections for large
tan β.

Tevatron and LHC Limits

The Tevatron, which was a proton anti-proton collider operating until 2011
at a center of mass energy,

√
s = 1.96 TeV, searched for MSSM neutral Higgs

bosons using production in association with b quark where the Higgs boson
then decays to a b-quark pair or a τ pair [53]. The exclusion limits from
the Tevatron using ∼ 7fb−1 data for the two benchmark scenarios, ’mh-max
scenario’ and the ’no-mixing scenario’ discussed before, are shown in Fig. 2.5.

The LHC, a proton-proton collider machine which is currently running
at a center of mass energy,

√
s = 8 TeV, collected ∼ 5fb−1 data in 2011 at√

s = 7 TeV. The 95 % exclusion limits from the ATLAS and CMS in the
’mh-max scenario’ are shown in Fig. 2.6.
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Figure 2.6: The MSSM Higgs exclusion from the LHC in the tan β − mA0

parameter space for the ’mh-max scenario’
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Chapter 3

Higgs Production in Association
with Bottom Quarks :
Radiative Corrections

As mentioned in the previous chapter, the production mechanisms for the
Higgs bosons in the MSSM can be significantly different from in the SM. For
large values of tan β, the heavier Higgs bosons, A and H, are predominantly
produced in association with b quarks. Even for tan β ∼ 5, the production
rate in association with b quarks is similar to that from gluon fusion for A and
H production[24]. For the lighter Higgs boson, h, for tan β >∼ 7 the dominant
production mechanism at the LHC is production with b quarks for light MA

( <∼ 200 GeV ), where the bbh coupling is enhanced. Both the Tevatron[53] and
the LHC experiments[54] have presented limits Higgs production in association
with b quarks, searching for the decays h → τ+τ− and bb1. These limits
obtained in the context of the MSSM are sensitive to the b-squark and gluino
loop corrections which will be discussed here. Given the importance of MSSM
Higgs production in association with the bottom quarks (bg → bh), it becomes
imperative to understand the radiative corrections in detail. In this chapter,
the supersymmetric QCD (SQCD) corrections to the process are discussed
and compared to the ∆b approximation[30, 31] which is often used by the
experimentalists.

1Theexpected sensitivities of ATLAS and CMS to b Higgs associated production are
described in Refs. [11, 12].
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3.1 Flavor Number Schemes

There are two alternate ways to calculating cross-sections involving b quarks
: the Four-partons Flavor Number Scheme (4-FNS) and the Five-partons Fla-
vor Number Scheme (5-FNS). As the name suggests, in the 5-FNS, the bottom
quark is treated as a parton unlike the 4-FNS. The 4-FNS has the advantage
that large log terms such as log(m2

b/µ
2) are resummed into the bottom quark

PDFs, however, to all orders the two schemes are equivalent. The rates for
bh associated production at the LHC and the Tevatron have been extensively
studied[13–23] and the NLO QCD correction are well understood, both in the
4-FNS and 5-FNS[14, 16, 20]. In the 4-FNS, the lowest order processes for
producing a Higgs boson and a b quark are gg → bbh and qq → bbh[13, 17, 22].
In the 5-FNS, the lowest order process is bg → bh (bg → bh). The two
schemes represent different orderings of perturbation theory and calculations
in the two schemes produce rates which are in qualitative agreement[16, 24].
In this chapter, we use the 5-FNS for simplicity. The resummation of threshold
logarithms[25], electroweak corrections[26, 27] and SUSY QCD corrections[28]
have also been computed for bh production in the 5-FNS.

Notation

Most of the notation used in this chapter has already been defined in Chap-
ter 2. Note that the tree level relations defined in Eq. (2.3.32) receive large
radiative corrections which must be taken into account in numerical studies.
While the dominant one-loop correction was listed in Eq. (2.3.32), we use
the program FeynHiggs[39–41] to generate the Higgs masses and an effective
mixing angle, αeff , which incorporates higher order effects and resummation.
Since, the SUSY QCD radiative corrections would involve bottom masses, the
relevant notation is briefly discussed next.

The scalar partners of the left- and right- handed b quarks, b̃L and b̃R, are
not mass eigenstates, but mix according to,

LM = −(b̃∗L, b̃
∗
R)M2

b̃

(
b̃L
b̃R

)
. (3.1.1)

The b̃ squark mass matrix is,

M2
b̃

=

(
m̃2
L mbXb

mbXb m̃2
R

)
, (3.1.2)
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and we define,

Xb = Ab − µ tan β

m̃2
L = M2

Q +m2
b +M2

Z cos 2β(Ib3 −Qb sin2 θW )

m̃2
R = M2

D +m2
b +M2

Z cos 2βQb sin2 θW . (3.1.3)

MQ,D are the soft SUSY breaking masses, Ib3 = −1/2, and Qb = −1/3. The
parameter Ab is the trilinear scalar coupling of the soft supersymmetry break-
ing Lagrangian and µ is the Higgsino mass parameter. The b squark mass
eigenstates are b̃1 and b̃2 and define the b-squark mixing angle, θ̃b

b̃1 = cos θ̃bb̃L + sin θ̃bb̃R

b̃2 = − sin θ̃bb̃L + cos θ̃bb̃R .

(3.1.4)

At tree level,

sin 2θ̃b =
2mb(Ab − µ tan β)

M2
b̃1
−M2

b̃2

(3.1.5)

and the sbottom mass eigenstates are,

M2
b̃1,b̃2

=
1

2

[
m̃2
L + m̃2

R ∓
√

(m̃2
L − m̃2

R)2 + 4m2
bX

2
b

]
. (3.1.6)

3.2 ∆b Approximation: The Effective Lagrangian

Approach

Loop corrections which are enhanced by powers of αs tan β can be included
in an effective Lagrangian approach. At tree level, there is no ψLbRHu coupling
in the MSSM, but such a coupling arises at one loop and gives an effective
interaction[30–32],

Leff = −λbψL
(
Hd +

∆b

tan β
Hu

)
bR + h.c. . (3.2.7)

Eq. 3.2.7 shifts the b quark mass from its tree level value,

mb →
λbv1√

2
(1 + ∆b) , (3.2.8)
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and also implies that the Yukawa couplings of the Higgs bosons to the b quark
are shifted from the tree level predictions. This shift of the Yukawa couplings
can be included with an effective Lagrangian approach[31, 32],

Leff = − mb

vSM

(
1

1 + ∆b

)(
− sinα

cos β

)(
1− ∆b

tan β tanα

)
bbh . (3.2.9)

The Lagrangian of Eq. 3.2.9 has been shown to sum all terms of O(αs tan β)n

for large tan β[30, 31].2 This effective Lagrangian has been used to compute
the SQCD corrections to both the inclusive production process, bb → h, and
the decay process, h → bb, and yields results which are within a few percent
of the exact one-loop SQCD calculations[32, 42].

The expression for ∆b is found in the limitmb << Mh,MZ << Mb̃1
,Mb̃2

,Mg̃.
The 1-loop contribution to ∆b from sbottom/gluino loops is[30, 31, 43]

∆b =
2αs(µS)

3π
Mg̃µ tan βI(Mb̃1

,Mb̃2
,Mg̃) , (3.2.10)

where the function I(a, b, c) is,

I(a, b, c) =
1

(a2 − b2)(b2 − c2)(a2 − c2){
a2b2 log

(
a2

b2

)
+ b2c2 log

(
b2

c2

)
+ c2a2 log

(
c2

a2

)}
,(3.2.11)

and αs(µS) should be evaluated at a typical squark or gluino mass. The
2−loop QCD corrections to ∆b have been computed and demonstrate that the
appropriate scale at which to evaluate ∆b is indeed of the order of the heavy
squark and gluino masses[37, 38]. The renormalization scale dependence of
∆b is minimal around µ0/3, where µ0 ≡ (Mg̃ +mb̃1

+mb̃2
)/3. In our language

this is a high scale, of order the heavy SUSY particle masses. The squarks
and gluinos are integrated out of the theory at this high scale and their effects
contained in ∆b. The effective Lagrangian is then used to calculate light Higgs
production at a low scale, which is typically the electroweak scale, ∼ 100 GeV .

Using the effective Lagrangian of Eq. 3.2.7, which we term the Improved
Born Approximation (or ∆b approximation), the cross section is written in
terms of the effective coupling,

g∆b
bbh ≡ gbbh

(
1

1 + ∆b

)(
1− ∆b

tan β tanα

)
, (3.2.12)

2It is also possible to sum the contributions which are proportional to Ab, but these
terms are less important numerically[32].
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where

gbbh = −
(

sinα

cos β

)
mb(µR)

vSM
. (3.2.13)

We evaluate mb(µR) using the 2−loop MS value at a scale µR of O(Mh),
and use the value of αeff determined from FeynHiggs. The Improved Born
Approximation consists of rescaling the tree level cross section, σ0, by the
coupling of Eq. 3.2.123,

σIBA =

(
g∆b
bbh

gbbh

)2

σ0 . (3.2.14)

The Improved Born Approximation has been shown to accurately reproduce
the full SQCD calculation of pp→ tbH+[44, 45].

The one-loop result including the SQCD corrections for bg → bh can be
written as,

σSQCD ≡ σIBA

(
1 + ∆SQCD

)
, (3.2.15)

where ∆SQCD is found from the exact SQCD calculation summarized in Ap-
pendix D.1.

The Improved Born Approximation involves making the replacement in the
tree level Lagrangian,

mb →
mb

1 + ∆b

. (3.2.16)

Consistency requires that this substitution also be made in the squark mass
matrix of Eq. 3.1.2[46, 47]

M2
b̃
→

 m̃2
L

(
mb

1+∆b

)
Xb(

mb
1+∆b

)
Xb m̃2

R

 . (3.2.17)

The effects of the substitution of Eq. 3.2.16 in the b-squark mass matrix
are numerically important, although they generate contributions which are
formally higher order in αs. Eqs. 3.2.10 and 3.2.17 can be solved iteratively
for Mb̃1

, Mb̃2
and ∆b using the proceedure of Ref. [46]4.

3This is the approximation used in Ref. [24] to include the SQCD corrections.
4We use FeynHiggs only for calculating Mh and sinαeff .
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h

b

gAµ
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b

b

h

gAµ

b

Figure 3.1: Feynman diagrams for g(q1) + b(q2)→ b(pb) + h(ph).

3.3 SQCD Contributions to gb→ bh

The contributions from squark and gluino loops to the gb→ bh process have
been computed in Ref. [28] in the mb = 0 limit. We extend that calculation by
including terms which are enhanced by mb tan β and provide analytic results
in several useful limits.

The tree level diagrams for g(q1) + b(q2)→ b(pb) + h(ph) are shown in Fig.
3.1. We define the following dimensionless spinor products

Mµ
s =

u (pb)
(
/q1

+ /q2

)
γµu (q2)

s

Mµ
t =

u (pb) γ
µ
(
/pb − /q1

)
u (q2)

t

Mµ
1 = qµ2

u (pb)u (q2)

u

Mµ
2 =

u (pb) γ
µu (q2)

mb

Mµ
3 = pµb

u (pb) /q1
u (q2)

mbt

Mµ
4 = qµ2

u (pb) /q1
u (q2)

mbs
, (3.3.18)

where s = (q1 + q2)2, t = (pb − q1)2 and u = (pb − q2)2. In the mb = 0 limit,
the tree level amplitude depends only on Mµ

s and Mµ
t , and Mµ

1 is generated
at one-loop. When the effects of the b mass are included, Mµ

2 , Mµ
3 , and Mµ

4

are also generated.
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The tree level amplitude is

Aaαβ |0 = −gsgbbh (T a)αβ εµ(q1) {Mµ
s +Mµ

t } , (3.3.19)

and the one loop contribution can be written as

Aaαβ = −αs(µR)

4π
gsgbbh (T a)αβ

∑
j

XjM
µ
j εµ(q1) . (3.3.20)

In the calculations to follow, only the non-zero Xj coefficients are listed and
we neglect terms of O(m2

b/s) if they are not enhanced by tan β.
The renormalization of the squark and gluino contributions is performed in

the on-shell scheme and has been described in Refs. [28, 37, 48]. The bottom
quark self-energy is

Σb (p) = /p

(
ΣV
b (p2)− ΣA

b (p2)γ5

)
+mbΣ

S
b (p2) . (3.3.21)

The b quark fields are renormalized as b→
√
ZV
b b and ZV

b ≡
√

1 + δZV
b . The

contribution from the counter-terms to the self-energy is,

Σren
b (p) = Σb (p) + δΣb(p)

δΣb (p) = /p
(
δZV

b − δZA
b γ5

)
−mbδZ

V
b − δmb . (3.3.22)

Neglecting the γ5 contribution, the renormalized self-energy is then given by

Σren
b (p) =

(
/p−mb

) (
ΣV
b (p2) + δZV

b

)
+mb

(
ΣS
b (p2) + ΣV

b (p2)− δmb

mb

)
. (3.3.23)

The on-shell renormalization condition implies

Σren
b (p)|

/p=mb
= 0 (3.3.24)

lim/p→mb

(
Σren
b (p)

/p−mb

)
= 0 . (3.3.25)
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The mass and wavefunction counter-terms are5

δmb

mb

=
[
ΣS
b

(
p2
)

+ ΣV
b

(
p2
)]
p2=m2

b

=
αs(µR)

3π

2∑
i=1

[
(−1)i

Mg̃

mb

s2b̃B0 −B1

](
0;M2

g̃ ,M
2
b̃i

)
(3.3.26)

δZV
b = − ΣV

b

(
p2
)∣∣
p2=m2

b

− 2m2
b

∂

∂p2

(
ΣV
b (p2) + ΣS(p2)

)
|p2=m2

b

=
αs(µR)

3π

2∑
i=1

[
B1 + 2m2

bB
′
1 − (−1)i2mbMg̃s2b̃B

′
0

](
0;M2

g̃ ,M
2
b̃i

)
, (3.3.27)

where we consistently neglect the b quark mass if it is not enhanced by tan β.

The Passarino-Veltman functions B0

(
0;M2

g̃ ,M
2
b̃i

)
and B1

(
0;M2

g̃ ,M
2
b̃i

)
are

defined in Appendix D.1. Using the tree level relationship of Eq. 3.1.5, the
mass counterterm can be written as,

δmb

mb

=
2αs(µR)

3π
Mg̃AbI(Mb̃1

,Mb̃2
,Mg̃)−∆b −

αs(µR)

3π

2∑
i=1

B1

(
0;M2

g̃ ,M
2
b̃i

)
. (3.3.28)

The external gluon is renormalized as gAµ →
√
Z3g

A
µ =
√

1 + δZ3g
A
µ and the

strong coupling renormalization is gs → Zggs with δZg = −δZ3/2. We renor-
malize gs using the MS scheme with the heavy squark and gluino contributions
subtracted at zero momentum[49],

δZ3 = −αs(µR)

4π

[
1

6
Σq̃i

(
4πµ2

R

M2
q̃i

)ε
+ 2

(
4πµ2

R

M2
g̃

)ε]
1

ε
Γ(1 + ε) . (3.3.29)

In order to avoid overcounting the effects which are contained in g∆b
bbh to

O(αs), we need the additional counterterm,

δCT = ∆b

(
1 +

1

tan β tanα

)
. (3.3.30)

5s2b̃ ≡ sin 2θ̃b.
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The total contribution of the counterterms is,

σCT = σIBA

(
2δZV

b +δZ3+2δZg+2
δmb

mb

+2δCT

)
= 2σIBA

(
δZV

b +
δmb

mb

+δCT

)
.

(3.3.31)
The tan β enhanced contributions from ∆b cancel between Eqs. 3.3.28 and
3.3.30. The expressions for the contributions to the Xi, as defined in Eq.
3.3.20, are given in Appendix D.1 for arbitrary squark and gluino masses, and
separately for each 1− loop diagram.

3.4 Results for Maximal and Minimal Mixing

in the b-Squark Sector

3.4.1 Maximal Mixing in the b Squark Sector

The squark and gluino contributions to bg → bh can be examined analyti-
cally in several scenarios. In the first scenario,

| m̃2
L − m̃2

R |<<
mb

1 + ∆b

| Xb | . (3.4.32)

We expand in powers of
|m̃2

L−m̃
2
R|

mbXb
. In this case the sbottom masses are nearly

degenerate,

M2
S ≡

1

2

[
M2

b̃1
+M2

b̃2

]
|M2

b̃1
−M2

b̃2
| =

(
2mb | Xb |

1 + ∆b

)(
1 +

(m̃2
L − m̃2

R)2(1 + ∆b)
2

8m2
bX

2
b

)
<< M2

S

. (3.4.33)

This scenario is termed maximal mixing since

sin 2θ̃b ∼ 1− (m̃2
L − m̃2

R)2(1 + ∆b)
2

8m2
bX

2
b

. (3.4.34)

We expand the contributions of the exact one-loop SQCD calculation given

in Appendix B in powers of 1/MS, keeping terms to O
(
M2
EW

M2
S

)
and assuming

MS ∼ Mg̃ ∼ µ ∼ Ab ∼ m̃L ∼ m̃R >> MW ,MZ ,Mh ∼ MEW . In the expan-
sions, we assume the large tan β limit and take mb tan β ∼ O(MEW ). This
expansion has been studied in detail for the decay h → bb, with particular
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emphasis on the decoupling properties of the results as MS and Mg̃ →∞[33].
The SQCD contributions to the decay, h→ bb, extracted from our results are
in agreement with those of Refs. [33, 47]

The final result for maximal mixing, summing all contributions, is,

As ≡ −gsTAgbbhMµ
s

{
1 +

αs(µR)

4π
Xs
i

}
= −gsTAgbbhMµ

s

{
1 +

(
δgbbh
gbbh

)
max

+
αs(µR)

4π

s

M2
S

δκmax

}
At ≡ −gsTAgbbhMµ

s

{
1 +

αs(µR)

4π
X t
i

}
= −gsTAgbbhMµ

t

{
1 +

(
δgbbh
gbbh

)
max

}
A1 ≡ −gsTAgbbhMµ

s

{
1 +

αs(µR)

4π
X1
i

}
= −gsTAgbbhMµ

1

(
−αs(µR)u

2πM2
S

)
δκmax . (3.4.35)

The contribution which is a rescaling of the bbh vertex is,(
δgbbh
gbbh

)
max

=

(
δgbbh
gbbh

)(1)

max

+

(
δgbbh
gbbh

)(2)

max

, (3.4.36)

where the leading order term in MEW/MS is O(1),(
δgbbh
gbbh

)(1)

max

=
αs(µR)

3π

Mg̃(Xb − Yb)
M2

S

f1(R) , (3.4.37)

with Yb ≡ Ab + µ cotα and R ≡ Mg̃/MS. Eq. 3.4.37 only decouples for large
MS if the additional limit MA →∞ is also taken[28, 33]. In this limit,

Xb − Yb →
2µM2

Z

M2
A

tan β cos 2β +O
(
M4

EW

M4
A

)
. (3.4.38)
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The subleading terms of O(M2
EW/M

2
S) are,6(

δgbbh
gbbh

)(2)

max

=
αs(µR)

3π

{
−Mg̃Yb

M2
S

[
M2

h

12M2
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f−1
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X2
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2
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2(1 + ∆b)2M4
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f3(R)

]
− m2
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f−1
3 (R)
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Z

3M2
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cβsα+β

sα
Ib3

[
3f1(R) +

(
2Mg̃Xb

M2
S

− 1

)
f2(R)

]}
(3.4.39)

The functions fi(R) are defined in Appendix D.2.
The s

M2
S
, u
M2
S

terms in Eq. 3.4.35 are not a rescaling of the lowest order

vertex and cannot be obtained from the effective Lagrangian. We find,

δκmax =
1

4

[
f3(R) +

1

9
f−1

3 (R)

]
−R Yb

2MS

[
f ′2(R) +

1

9
f̂2(R)

]
. (3.4.40)

The δκmax term is O(1) in MEW/MS and has its largest values for small R
and large ratios of Yb/MS, as can be seen in Fig. 3.2. Large effects can be
obtained for Yb/MS ∼ 10 and Mg̃ << MS. However, the parameters must be
carefully tuned so that Ab/MS <∼ 1 in order not to break color[50].

The amplitude squared, summing over final state spins and colors and aver-
aging over initial state spins and colors, including one-loop SQCD corrections
is ∣∣A∣∣2

max
= −2παs(µR)

3
g2
bbh

[(
u2 +M4

h

st

)[
1 + 2

(
δgbbh
gbbh

)
max

]
+
αs(µR)

2π

M2
h

M2
S

δκmax

]
. (3.4.41)

Note that in the cross section, the δκmax term is not enhanced by a power of

s and gives a contribution of O
(
M2
EW

M2
S

)
.

Expanding ∆b in the maximal mixing limit,

∆b → −
αs(µS)

3π

Mg̃µ

M2
S

tan βf1(R) +O
(
M4

EW

M4
S

)
. (3.4.42)

6We use the shorthand, cβ = cosβ, sα+β = sin(α+ β), etc.
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Figure 3.2: Contribution of δκmax defined in Eq. 3.4.40 as a function of
R = Mg̃/MS.

By comparison with Eq. 3.2.12,

∣∣A∣∣2
max

= −2παs(µR)

3
(g∆b
bbh)

2

{(
u2 +M4

h

st

)[
1 + 2

(
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2π
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}
+O

([
MEW

MS

]4

, α3
s

)
. (3.4.43)

Note that the mis-match in the arguments of αs in Eqs. 3.4.42 and 3.4.43
is higher order in αs than the terms considered here. The (δgbbh/gbbh)

(2)
max

and δκmax terms both correspond to contributions which are not present in
the effective Lagrangian approach. These terms are, however, suppressed by
powers of M2

EW/M
2
S and the non-decoupling effects discussed in Refs. [33] and

[32] are completely contained in the g∆b
bbh term.

3.4.2 Minimal Mixing in the b Squark Sector

The minimal mixing scenario is characterized by a mass splitting between
the b squarks which is of order the b squark mass, |M2

b̃1
−M2

b̃2
|∼M2

S. In this
case,

| m̃2
L − m̃2

R |>>
mb | Xb |
(1 + ∆b)

, (3.4.44)
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and the mixing angle in the b squark sector is close to zero,

cos 2θ̃b ∼ 1− 2m2
bX

2
b

(M2
b̃1
−M2

b̃2
)2

(
1

1 + ∆b

)2

. (3.4.45)

The non-zero subamplitudes are

As = −gsTAgbbhMµ
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Expanding the exact one-loop results of Appendix B in the minimal mixing
scenario,

δκmin =
1

8
Σ2
i=1

(
R2
i

[
1

9
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3 (Ri) + f3(Ri)

])
+
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2
2
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2 −R2
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(
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8

3
h1(R1, R2, 2)

)
, (3.4.47)

where Ri = Mg̃/Mb̃i
and the functions fi(Ri) and hi(R1, R2, n) are defined in

Appendix D.2. The δκmin function is shown in Fig. 3.3. For large values of
Yb/Mg̃ it can be significantly larger than 1.

As in the previous section, the spin and color averaged amplitude-squared
is,

| A |2min = −2αs(µR)π

3
(g2
bbh)

{
(M4
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st

[
1 + 2

(
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, (3.4.48)

with, (
δgbbh
gbbh

)
min

=

(
δgbbh
gbbh

)(1)

min

+

(
δgbbh
gbbh

)(2)

min

. (3.4.49)
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.

The leading order term in MEW/MS is O(1),(
δgbbh
gbbh

)(1)

min

=
2αs(µR)

3π

(Xb − Yb)
Mg̃

R2
1R

2
2

R2
1 −R2

2

h1(R1, R2, 0) . (3.4.50)
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The subleading terms are O
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The symmetric and anti-symmetric functions are defined,

S(f(R,Mb̃) ≡
1

2

[
f(R1,Mb̃1

) + f(R2,Mb̃2
)

]
A(f(R,Mb̃) ≡
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]
(3.4.52)

and ∆M2
b̃12
≡ M2

b̃1
−M2

b̃2
. The remaining functions are defined in Appendix

D.2 .
By expanding ∆b in the minimal mixing limit, we find the analogous result

to that of the maximal mixing case,
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. (3.4.53)

The contributions which are not contained in σIBA are again found to be

suppressed by O
([

MEW

MS

]2)
.
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Figure 3.4: Percentage difference between the Improved Born Approximation
and the exact one-loop SQCD calculation of pp → bh for maximal mixing in
the b-squark sector at

√
s = 7 TeV , tan β = 40, and MA = 1 TeV .

3.5 Numerical Results

We present results for pp → b(b)h at
√
s = 7 TeV with pTb > 20 GeV

and | ηb |< 2.0. We use FeynHiggs to generate Mh and sinαeff and then
iteratively solve for the b squark masses and ∆b from Eqs. 3.2.10 and 3.2.17.
We evaluate the 2-loop MS b mass at µR = Mh/2, which we also take to be the
renormalization and factorization scales7. Finally, Figs 3.4, 3.5, 3.6, and 3.7
use the CTEQ6m NLO parton distribution functions[51]. Figs. 3.4, 3.5 and 3.6
show the percentage deviation of the complete one-loop SQCD calculation from
the Improved Born Approximation of Eq. 3.2.14 for tan β = 40 and tan β = 20
and representative values of the MSSM parameters8. In both extremes of b
squark mixing, the Improved Born Approximation approximation is within a
few percent of the complete one-loop SQCD calculation and so is a reliable
prediction for the rate. This is true for both large and small MA. In addition,
the large MS expansion accurately reproduces the full SQCD one-loop result
to within a few percent. These results are expected from the expansions of

7∆b is evaluated using αs(MS).
8Figs. 3.4, 3.5 and 3.6 do not include the pure QCD NLO corrections[22].
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Eqs. 3.4.43 and 3.4.53, since the terms which differ between the Improved
Born Approximation and the one-loop calculation are suppressed in the large
MS limit.

Fig. 3.7 compares the total SQCD rate for maximal and minimal mixing,
which bracket the allowed mixing possibilities. For large MS, the effect of the
mixing is quite small, while for MS ∼ 800 GeV , the mixing effects are at most
a few fb. The accuracy of the Improved Born Approximation as a function
of mR is shown in Fig. 3.8 for fixed MA, µ, and mL. As mR is increased, the
effects become very tiny. Even for light gluino masses, the Improved Born
Approximation reproduces the exact SQCD result to within a few percent.

In Fig. 3.9, we show the scale dependence for the total rate, including
NLO QCD and SQCD corrections (dotted lines) for a representative set of
MSSM parameters at

√
s = 7 TeV . The NLO scale dependence is quite

small when µR = µF ∼ Mh. However, there is a roughly ∼ 5% difference
between the predictions found using the CTEQ6m PDFs and the MSTW2008
NLO PDFs[52]. In Fig. 3.10, we show the scale dependence for small µF (as
preferred by [21]), and see that it is significantly larger than in Fig. 3.9. This
is consistent with the results of [24, 34].

42



500 600 700 800 900 1000
M

S
 (GeV)

0

1

2

3

4

(σ
-σ

IB
A

)/
σ

 (
%

)

tan β=40, M
A

=1 TeV

tan β=20, M
A

=250 GeV

Minimal Mixing, LHC7
µ=1 TeV, M

S
=m

L
=2M

gluino
, m

R
=√2 M

S

Figure 3.6: Percentage difference between the Improved Born Approximation
and the exact one-loop SQCD calculation for pp → bh for minimal mixing in
the b squark sector at

√
s = 7 TeV .

43



600 800 1000 1200 1400 1600 1800 2000
M  (GeV)

50

60

σ
 (

fb
)

Maximal Mixing

Minimal Mixing

7 TeV LHC, bg→bh
tan β=40, µ=M

A
=1TeV, M

S
=2M

gluino
=m

L

Figure 3.7: Comparison between the exact one-loop SQCD calculation for
pp→ bh for minimal and maximal mixing in the b squark sector at

√
s = 7 TeV

and tan β = 40. The minimal mixing curve has mR =
√

2MS and θ̃b ∼ 0, while
the maximal mixing curve has mR = MS and θ̃b ∼ π

4
.

44



700 800 900 1000 1100
m

R
 (GeV)

0

0.5

1

1.5

2

(σ
-σ

IB
A

)/
σ

IB
A

 (
%

)

M
gluino

 = 350 GeV

M
gluino

 = 700 GeV

7 TeV LHC, bg→bh
tan β=40, µ=1000 GeV, M

A
=500 GeV, m

L
=700 GeV

Figure 3.8: Percentage difference between the Improved Born Approximation
and the exact one-loop SQCD calculation for pp→ bh as a function of mR at√
s = 7 TeV and tan β = 40.

45



Figure 3.9: Total cross section for pp → b(b)h production including NLO
QCD and SQCD corrections (dotted lines) as a function of renormaliza-
tion/factorization scale using CTEQ6m (black) and MSTW2008 NLO (red)
PDFs. We take Mg̃ = 1 TeV and the remaining MSSM parameters as in Fig.
3.4.
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Figure 3.10: Total cross section for pp → b(b)h production including NLO
QCD and SQCD corrections as a function of the factorization scale using
MSTW2008 NLO PDFs. We take Mg̃ = 1 TeV and the remaining MSSM
parameters as in Fig. 3.4.
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Chapter 4

Four Generations, Higgs
Physics and the MSSM

The SM offers no clue as to why only three generations of chiral fermions
are observed. It is thus natural to consider the consequences of a fourth family
of heavy fermions[55, 56]. The allowed parameter space for a fourth genera-
tion is severely restricted by experimental searches, by precision electroweak
measurements, and by theoretical constraints from the requirements implied
by the perturbative unitarity of heavy fermion scattering amplitudes and the
perturbativity of the Yukawa coupling constants at high energy.

A model with a fourth generation contains charge 2/3 and −1/3 quarks,
t′ and b′, and a charged lepton, e′, with its associated neutrino, ν ′. Tevatron
searches for direct production of a b′ [57] imply mb′ > 338 GeV , assuming
b′ → Wt, and mt′ > 335 GeV , assuming t′ → Wq, with q = d, s, b[58].
Relaxing the mixing assumptions changes the limits somewhat, but the b′ limits
vary by less than 20%, while the t′ limits increase in some mixing scenarios
to mt′ > O(400 GeV )[59]. In all cases, a fourth generation quark is excluded
up to a mass of O(300 GeV ). We consider 4th generation neutrinos heavier
than MZ/2, so there is no constraint from the invisible Z width. From direct
production searches for e′ and ν ′ at LEPII, there is a limit of O(100 GeV ) on
the masses of 4th generation charged leptons and unstable neutrinos. Current
bounds on 4th generation Standard Model like fermions are reviewed in Ref.
[60–63]. We will typically consider 4th generation lepton masses greater than
∼ 200 GeV and quark masses greater than ∼ 300−400 GeV , which are safely
above direct detection bounds. Furthermore, we will neglect CKM mixing
between the 4th generation and the lighter 3 generations[64].

Precision electroweak measurements place strong constraints on the the
allowed fermion masses of a 4th generation, but it is possible to arrange the
masses such that cancellations occur between the contributions of the heavy
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leptons and quarks. By carefully tuning the fourth generation fermion masses,
the Higgs boson can be as heavy as Mh ∼ 600 GeV [60, 65–67]. In a four
generation model, therefore, Higgs physics can be significantly altered from
that of the Standard Model: Higgs production from gluon fusion is enhanced
by a factor of roughly 9[68], and the Higgs branching ratio to 2 gluons is
similarly enhanced[60]. The D0 experiment has recently excluded a SM-like
Higgs mass between 131 GeV and 204 GeV produced from gluon fusion in a
four generation scenario[69].

It is interesting to consider scenarios with heavy fermions and a neutral
Higgs boson heavier than expected from Standard Model electroweak fits. A
model of this type is the MSSM with a fourth generation of chiral fermions
(4GMSSM). This model has a number of interesting features. Since the mass-
squared of the lightest Higgs boson in the MSSM receives corrections propor-
tional to the (mass)4 of the heavy fermions, it is potentially possible to signifi-
cantly increase the lightest Higgs boson mass in the four generation version of
the MSSM[70]. In general, a 4th generation of heavy quarks can contribute to
electroweak baryogenesis[71, 72] and Ref. [73] argues that the 4GMSSM with
tan β ∼ 1 can yield a first order electroweak phase transition for 4th generation
quark and squark masses just beyond the current Tevatron search bounds.

We discuss the features of the model in Section 4.1, and derive unitarity
constraints on the fermion masses in Section 4.2. In the 4GMSSM, these
constraints can be quite different from those of the four generation version of
the Standard Model[74]. Section 4.3 contains limits on the four generation
MSSM from precision electroweak measurements.

4.1 The Model

We consider an N = 1 supersymmetric model which is an exact replica
of the 3 generation MSSM except that it contains a 4th generation of chiral
superfields described by the superpotential[75–79]

W4 = λt′ψ̂4(t̂′)cĤ2 + λb′ψ̂4(b̂′)cĤ1 + λe′ l̂4(ê′)cĤ1 + λν′ l̂4(ν̂ ′)cĤ2 , (4.1.1)

where ψ̂4 is the 4th generation SU(2)L quark and squark doublet superfield, l̂4
is the 4th generation SU(2)L lepton and slepton doublet superfield, and Ĥi are
the SU(2)L Higgs superfields. Similarly, t̂′, b̂′, ê′ and ν̂ ′ are the 4th generation
superfields corresponding to the right-handed fermions. We assume no mixing
between W4 and the superpotential of the 3 generation MSSM1. The new

1Limits on the 4 generation Standard Model suggest that the mixing between the 3rd

and 4th generation is restricted to be small, θ34 < .1[60, 64] .
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particles in the 4GMSSM are the 4th generation quarks and leptons (including
a right-handed heavy neutrino), along with their associated scalar partners.
We assume that the 4th generation neutrino receives a Dirac mass, although
our conclusions are relatively insensitive to these assumptions.

The Higgs sector is identical to the 3 generation MSSM and consists of 2
neutral scalars, h and H, a pseudo-scalar, A, and a charged scalar, H±. The
Higgs Yukawa couplings of t′, b′,e′ and ν ′ are,

λt′ =
mt′
√

2

v sin β
λb′ =

mb′
√

2

v cos β

λe′ =
me′
√

2

v cos β
λν′ =

mν′
√

2

v sin β
, (4.1.2)

where tanβ is the usual ratio of Higgs vacuum expection values[80]. Because
of the large masses of the 4th generation fermions which are required in order
to satisfy restrictions from the experimental searches, the Yukawa couplings
quickly become non-perturbative. Requiring perturbativity at the weak scale,
a strong bound comes from the restriction λ2

b′ < 4π which implies[81],

tan β <

√
2π

(
v

mb′

)2

− 1 ∼ 1.8 , (4.1.3)

for mb′ ∼ 300 GeV . The evolution of the Yukawa couplings above the weak
scale has been studied in Refs. [75, 76, 78] with the conclusion that it is
not possible for the 4GMSSM to be perturbative above scales on the order of
10 − 1000 TeV . The 4GMSSM thus leads to a picture with an intermediate
scale of physics such as that present in gauge mediated SUSY models.

In the 4GMSSM, the lightest Higgs boson mass has an upper bound which
receives large corrections proportional to the 4th generation fermion masses.
The masses of the neutral Higgs bosons can therefore be significantly heavier
than in the case of the 3 generation MSSM and are shown in Fig. 4.1 for
tan β = 1 and representative 4th generation masses[70]. The dominant contri-
butions to the neutral Higgs masses in the 4GMSSM are given in Appendix
A[82–85].

4.2 Tree Level Unitarity

Chiral fermions have an upper bound on their masses from the requirement
of perturbative unitarity of fermion anti-fermion scattering at high energy,
originally derived in Ref. [74]. In the MSSM, the unitarity bounds on heavy
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Figure 4.1: Predictions for the neutral Higgs boson masses in the four genera-
tion MSSM. The squarks and sleptons are assumed to have degenerate masses
of 1 TeV . The mass of the lighter Higgs boson, Mh, is insensitive to the value
of MA. (Not all masses shown here are allowed by the restrictions of perturba-
tive unitarity and electroweak precision measurements, as discussed in Sects.
4.2 and 4.3.)

φα

fj

f j

fi

f i

φα

fj

f j

fi

fi

Figure 4.2: Feynman diagrams contributing to fif i → fjf j in the high energy
limit. φα is a scalar, pseudo-scalar, or Goldstone boson.

fermions can be quite different from those of the Standard Model, due to the
effects of the additional scalars present in the MSSM, and also to the different
fermion Yukawa couplings in the MSSM relative to those of the Standard
Model.

Consider an SU(2)L doublet of heavy left-handed fermions, along with
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their corresponding right-handed fermion partners,

ψL =

(
f1

f2

)
L

, f1R, f2R , (4.2.4)

with masses m1 and m2. At high energy,
√
s >> mi, the scattering amplitudes

can be most conveniently written in terms of helicity amplitudes. The positive
and negative helicity spinors are u±(p) = PL,Ru(p) and v± = PL,Rv(p), where
PL,R = 1

2
(1 ∓ γ5). The fermions interact with the scalars of the MSSM and

the Goldstone bosons of electroweak symmetry breaking via the interactions,

L = f i

(
aiαL PL + aiαR PR

)
fiφ

0
α +

{
f 1

(
a12α
L PL + a12α

R PR

)
f2φ

+
α + h.c.

}
, (4.2.5)

where φ0
α and φ±α are generic neutral and charged scalars.

The scattering of f i
λ
fλi → f j

λ′

fλ
′

j can be found using the Goldstone Boson
equivalence theorem to obtain the high energy limits (where λ are the helicity
indices). The Feynman diagrams are shown in Fig. 4.2. In the s− channel, the
contribution from neutral scalar or pseudo-scalar exchange, φ0

α, to the generic
amplitude for fif i → fjf j in the high energy limit is,

Ms = uλ′(p3)(ajαL PL + ajαR PR)vλ′(p4) v
λ
′(p2)(aiαL PL + aiαR PR)uλ(p1) . (4.2.6)

The high energy limits of the helicity amplitudes from the s−channel contri-
butions are thus,

Ms(++→ ++) = +aiαL a
jα
R s

Ms(++→ −−) = −aiαL a
jα
L s

Ms(−− → ++) = −aiαR a
jα
R s

Ms(−− → −−) = +aiαR a
jα
L s , (4.2.7)

where s = (p1 + p2)2, t = (p1− p3)2, and we have assumed s >> m2
i ,M

2
φ,M

2
W ,

and M2
Z .

Similarly, the high energy limit of the amplitude resulting from the ex-
change of a scalar or pseudo-scalar in the t− channel is,

Mt = uλ′(p3)(aijαL PL + aijαR PR)uλ(p1) vλ(p2)(aijαL PL + aijαR PR)vλ′(p4) , (4.2.8)
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λλ→ λ′λ
′

Mh MH MA MG0

++→ ++ − c2α
s2β
− s2α
s2β
− cot2 β −1

++→ −− + c2α
s2β

+ s2α
s2β
− cot2 β −1

−− → ++ + c2α
s2β

+ s2α
s2β
− cot2 β −1

−− → −− − c2α
s2β
− s2α
s2β
− cot2 β −1

Table 4.1: Contributions from s− channel exchange of h,H,A, and G0 to
helicity scattering amplitudes for f 1f1 → f 1f1 in the high energy limit of
the 4GMSSM. The contributions given in the table must be multiplied by√

2GFm
2
1.

which yields the helicity amplitudes,

Mt(++→ −−) = −(aijαL )2t

Mt(−− → ++) = −(aijαR )2t

Mt(+− → −+) = +aijαR aijαL t

Mt(−+→ +−) = +aijαL aijαR t . (4.2.9)

(We have assumed that all couplings are real).
From the results in Eqs. 4.2.7 and 4.2.9, it is straightforward to read off

the contributions to the partial wave amplitudes for a specific model. The
MSSM couplings of the fermions to the scalars can be found in Ref. [80], for
example. First consider the scattering of f 1f1 → f 1f1 in the 4GMSSM. In the
s− channel, h,H,A, and G0 contribute and their contributions are listed in
Table 4.1, while the t− channel contributions are shown in Table 4.22. It is
apparent that there are many cancellations between the various contributions
that are not present in the Standard Model. The amplitudes for f 2f2 → f 2f2

are found by making the replacments m1 → m2, β → β + π
2
, α→ α− π

2
.

Flavor changing fermion anti-fermion scattering, f 1f1 → f 2f2, also yields
interesting limits on heavy fermion masses in the 4GMSSM. The s−channel
contributions to the high energy limits of the helicity scattering amplitudes
are shown in Table 4.2, and the t− channel contributions from H+ and G+

exchange in Table 4.4.
Bounds on the fermion masses come from the coupled channel J = 0 partial

2We have defined sβ = sinβ, cβ = cosβ, sα = sinα and cα = cosα. The mixing in the
neutral Higgs sector is described by the angle α which is defined in Appendix A and in Ref.
[80].
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λλ→ λ′λ
′

Mh MH MA MG0

++→ −− + c2α
s2β

+ s2α
s2β
− cot2 β −1

−− → ++ + c2α
s2β

+ s2α
s2β
− cot2 β −1

+− → −+ − c2α
s2β
− s2α
s2β
− cot2 β −1

−+→ +− − c2α
s2β
− s2α
s2β
− cot2 β −1

Table 4.2: Contributions from t− channel exchange of h,H,A, and G0 to
helicity scattering amplitudes for f 1f1 → f 1f1 in the high energy limit of
the 4GMSSM. The contributions given in the table must be multiplied by√

2GFm
2
1.

λλ→ λ′λ
′

Mh MH MA MG0

++→ ++ + sin 2α
sin 2β

− sin 2α
sin 2β

−1 +1

++→ −− − sin 2α
sin 2β

+ sin 2α
sin 2β

−1 +1

−− → ++ − sin 2α
sin 2β

+ sin 2α
sin 2β

−1 +1

−− → −− + sin 2α
sin 2β

− sin 2α
sin 2β

−1 +1

Table 4.3: Contributions from s− channel exchange of h,H,A and G0 to
helicity scattering amplitudes for f 1f1 → f 2f2 in the high energy limit. An
overall factor of

√
2GFm1m2 is omitted.

wave amplitudes for fλi f i
λ → fλ

′
j f

λ′

j [74, 86],

a0 =
1

16πs

∫ 0

−s
|M | , (4.2.10)

where |M | is the sum of the s− and t− channel helicity amplitudes given in
the tables. Perturbative unitarity requires that the eigenvectors of the scatter-

ing matrix satisfy | a0 |< 1[87]. In the scattering basis, f+
1 f

+

1 , f
+
2 f

+

2 , f
−
1 f
−
1 , f

−
2 f
−
2 ,

the high energy limit of the J = 0 coupled partial wave scattering matrix is,

| a0 |≡ B =
GF

4
√

2π



m2
1

s2β
0 0 0

0
m2

2

c2β
0 0

0 0
m2

1

s2β
0

0 0 0
m2

2

c2β

 . (4.2.11)

Enforcing the unitarity condition, | a0 |< 1, on the eigenvalues of Eq. 4.2.11
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λλ→ λ′λ
′

MH+ MG+

++→ −− +m1m2 −m1m2

−− → ++ +m1m2 −m1m2

+− → −+ −m2
2 −m2

2

−+→ +− −m2
1 −m2

1

Table 4.4: Contributions from t− channel exchange of H+ and G+ to helicity
scattering amplitudes for f 1f1 → f 2f2 in the high energy limit. An overall
factor of 2

√
2GF is omitted.

gives the restrictions,

m2
1 < s2

β

4
√

2π

GF

m2
2 < c2

β

4
√

2π

GF

. (4.2.12)

A further interesting limit is found from the coupled channel scattering of the

helicity amplitudes f+
1 f
−
1 , f

−
1 f

+

1 , f
+
2 f
−
2 , f

−
2 f

+

2 , with

| a0 |=
GF

4
√

2π


0

m2
1

s2β
0

m2
1

s2β
m2

1

s2β
0

m2
2

c2β
0

0
m2

2

c2β
0

m2
2

c2β
m2

1

s2β
0

m2
2

c2β
0

 . (4.2.13)

Requiring the largest eigenvalue of Eq. 4.2.13 to be < 1,

λmax =
GF

4π

√
m4

1

s4
β

+
m4

2

c4
β

< 1 . (4.2.14)

The bounds of Eqs 4.2.12 and 4.2.14 are relevant for a heavy lepton doublet in
the 4GMSSM and the allowed regions are shown in Fig. 4.3. These bounds can
be compared with the Standard Model bounds, m2

lepton <
4
√

2π
GF

= (1.2 TeV )2.
For tan β = 1, the bound is reduced from the Standard Model value to
mlepton < 750 GeV . For tan β = 10, the value of m2 (mν′) allowed by unitarity
is mν′ < 100 GeV , which is excluded by experimental searches.

The bounds on a heavy quark doublet in the 4GMSSM can be found by

55



0 200 400 600 800
m

1
 (GeV)

0

200

400

600

800

m
2
 (

G
eV

)

tan β =1

tan β =10

Lepton masses allowed by unitarity

Figure 4.3: Unitarity restriction on on a 4th generation lepton doublet in
the 4GMSSM. The allowed region with the vertical (diagonal) cross- hatches
corresponds to tan β = 10(1).

considering the color neutral scattering amplitudes3. In the basis, f+
1 f

+

1 , f
+
2 f

+

2 ,

f−1 f
−
1 , f

−
2 f
−
2 , the coupled channel scattering matrix for the J = 0 partial wave

amplitude is a 12 ×12 matrix of the form,

| a0 |∼

 B B B
B B B
B B B

 , (4.2.15)

where the 3× 3 color neutral matrix B is given in Eq. 4.2.11. Restricting the
eigenvectors to be less than 1 gives the restrictions on 4th generation quark
masses shown in Fig. 4.4,

m2
1 < s2

β

4
√

2π

3GF

m2
2 < c2

β

4
√

2π

3GF

. (4.2.16)

It is apparent that the experimental bounds of mt′ > 335 GeV and mb′ >

3The logic is identical to Ref. [74].
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responds to tan β = 10(1).

338 GeV are close to violating perturbative unitarity in the 4GMSSM with
tan β = 1. For larger tan β, the parameters are even more restricted.

4.3 Limits from Precision Electroweak Mea-

surements

The limits on the 4GMSSM from precision electroweak measurements can
be studied assuming that the dominant contributions are to the gauge boson
2-point functions[88, 89], Πµν

XY (p2) = ΠXY (p2)gµν +BXY (p2)pµpν , with XY =
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γγ, γZ, ZZ and W+W−,

αS =

(
4s2

W c
2
W

M2
Z

){
ΠZZ(M2

Z)− ΠZZ(0)− Πγγ(M
2
Z)

−c
2
W − s2

W

cW sW

(
ΠγZ(M2

Z)− ΠγZ(0)

)}
αT =

(
ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

− 2sW
cW

ΠγZ(0)

M2
Z

)
αU = 4s2

W

{
ΠWW (M2

W )− ΠWW (0)

M2
W

− c2
W

(
ΠZZ(M2

Z)− ΠZZ(0)

M2
Z

)
−2sW cW

(
ΠγZ(M2

Z)− ΠγZ(0)

M2
Z

)
− s2

W

Πγγ(M
2
Z)

M2
Z

}
, (4.3.17)

where sW ≡ sin θW and cW ≡ cos θW and any definition of sW can be used
in Eq. 4.3.17 since the scheme dependence is higher order. The contributions
to S, T, and U from fourth generation fermions, squarks, and the scalars of
the MSSM are given in Appendix B[88–95, 97, 98, 157]. Our definition of U
differs from that of Ref. [94] and so should not be compared with those results.
The potential contributions from other MSSM particles such as charginos and
neutralinos decouple for heavy masses[95] and we omit them here.

Considerable insight can be gained from various limits of S, T and U .
We begin by considering the contributions from a heavy fermion generation
as defined in Eq. 4.2.4[88, 94, 98]. The potentially large isospin violating
contributions to ∆Tf imply that fermions in an SU(2)L doublet must have
nearly degenerate masses. For a fermion doublet with m2

1 = m2
2 + δm2

f and
δm2

f << m2
1,2,M

2
W ,M

2
Z , and m2

1,2 >> M2
W ,M

2
Z ,

∆Sf →
Nc

6π

{
1− 2Yf

(
δm2

f

m2
2

)}
∆Tf →

Nc

48πs2
WM

2
W

(δm2
f )

2

m2
2

∆Uf →
Nc

30π

(δm2
f )

2

m4
2

, (4.3.18)

where Nc = 3(1) and Yf = 1
6
(−1

2
) for a quark or lepton doublet. Both ∆Uf and

∆Tf are isospin violating, but ∆Uf is suppressed by a factor of M2
Z/m

2
2 rela-

tive to ∆Tf and is numerically small. ∆Sf does not decouple for large fermion
masses and so poses a potential problem for consistency with the experimental
limits from precision electroweak measurements[66, 67]. By carefully arrang-
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ing the 4th generation quark and lepton masses, however, it is possible find
values of the fermion masses where the contribution to ∆Sf is reduced from
its value for degenerate fermion partners of Nc

6π
, while still respecting the lim-

its on ∆Tf [60]. This possibility is due to the strong correlation between the
experimental limits on ∆S and ∆T [60, 65].

The 4thgeneration squarks and sleptons are denoted by,(
t̃′L
b̃′L

)
,

(
ν̃ ′L
ẽ′L

)
, t̃′R, b̃

′
R, ẽ

′
R, ν̃

′
R (4.3.19)

Consider the limit of no mixing between the left- and right- handed sfermion
partners, and also no mixing between the sfermion generations. (The mixing
between left- and right- handed sfermions is included in the formulae in Ap-
pendix B). In this limit, the the contribution from sfermions with small mixing
between the isospin partners, m̃2

t′L
− m̃2

b′L
<< m̃2

t′L
, m̃2

b′L
, is [90, 93],

∆Ssf → − 1

12π

[
3Yq

(m̃2
t′L
− m̃2

b′L

m̃2
b′L

)
+ Yl

(m̃2
ν′L
− m̃2

e′L

m̃2
e′L

)]
+O

(
1

m̃4

)
.(4.3.20)

(Note that only the scalar partners of the left-handed sfermions contribute in
this limit). For intermediate values of the sfermion masses, it is possible to
arrange cancellations between the slepton and squark contributions. In the
same limit, the contributions from squarks and sleptons to the ∆Tsf [90, 95,
97, 157], and ∆Usf [90] parameters are[90, 95, 97, 157],

∆Tsf →
1

48πs2
WM

2
W

[
3

(m̃2
t′L
− m̃2

b′L
)

m̃2
b′L

+
(m̃2

ν′L
− m̃2

e′L
)

m̃2
e′L

]
+O

(
1

m̃4

)
.

∆Usf → − 1

30π

[
3

(m̃2
t′L
− m̃2

b′L
)2

m̃4
b′L

+
(m̃2

ν′L
− m̃2

e′L
)2

m̃2
e′L

]
+O

(
1

m̃4

)
.(4.3.21)

The sfermion contributions decouple for heavy masses and for sfermions with
TeV scale masses, the effects on precision electroweak constraints are small.
In our numerical results, we use the complete amplitudes given in Appendix
B. The major effect of heavy sfermions in the 4GMSSM is to increase the
predictions for the neutral Higgs masses, as shown in Fig. 4.1.

We study the restriction on the 4GMSSM using the fits to ∆S, ∆T , and
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∆U given by the GFITTER collaboration[67].

∆S = S − SSM = 0.02± 0.11

∆T = T − TSM = 0.05± 0.12

∆U = U − USM = +0.07± 0.12 (4.3.22)

with the Standard Model values defined by Mh,ref = 120 GeV and Mt =
173.2 GeV . The associated correlation matrix is,

ρij =

 1.0 0.879 −0.469
0.879 1.0 −0.716
−0.469 −0.716 1.0

 .

∆χ2 is defined as

∆χ2 = Σij(∆Xi −∆X̂i)(σ
2)−1
ij (∆Xi −∆X̂i) , (4.3.23)

where ∆X̂i = ∆S,∆T, and ∆U are the central values of the fit in Eq. 4.3.22,
∆Xi = ∆S,∆T , and ∆U include the 4th generation fermions, sfermions, and
MSSM scalars, σi are the errors given in Eq. 4.3.22 and σ2

ij = σiρijσj. The
95% confidence level limit corresponds to ∆χ2 = 7.815.

In Fig. 4.5 we show the 95% confidence level allowed region for mt′ =
400 GeV , MA = 300 GeV and me′ = 300 GeV and including 4 generations of
sfermions with degenerate masses, msq = 1 TeV . The difference between the
masses of the quark and lepton isospin +1

2
and −1

2
doublet partners is scanned

over (while imposing the requirement of perturbative unitarity as discussed in
the previous section) to find the allowed regions. We note that the point with
all 4th generation masses degenerate is not allowed. As pointed out in Refs.
[60, 65, 99] for the Standard Model case, the fermion masses must be carefully
tuned to find agreement with precision electroweak measurements. As tan β is
increased, the allowed region shrinks and for the parameters of Figs. 4.5 and
4.6 there is no allowed region with tan β > 2.5. The Higgs boson masses vary
within these plots according to the following one-loop formula:

m2
H,h =

1

2

{
M2

A +M2
Z + ε̂b + ε̂t ±

[
(M2

A +M2
Z)2 − 4c2

2βM
2
AM

2
Z

+(ε̂b − ε̂t)
(

2c2β(M2
Z −M2

A) + ε̂b − ε̂t
)]1/2}

. (4.3.24)
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Figure 4.5: 95 % confidence level allowed regions from fits to S, T, and U
in the 4GMSSM. The requirement of perturbative unitarity is also imposed.
From top to bottom, the curves correspond to tan β = 2.5, 2, and 1.

where,

ε̂b = Σi=b′,e′
NcGF

2
√

2π2

m4
i

c2
β

ln

(
m̃2
i1m̃

2
i2

m4
i

)
ε̂t = Σi=t′,ν′

NcGF

2
√

2π2

m4
i

s2
β

ln

(
m̃2
i1m̃

2
i2

m4
i

)
∆12 = 0 , (4.3.25)

Fig. 4.6 demonstrates the effects of increasing the charged lepton mass. The
effect of increasing the t′ mass is shown in Fig. 4.7 and we see that the allowed
parameter space is significantly shrunk from Figs. 4.5 and 4.6. In Fig. 4.8,
we show the allowed range of Higgs masses corresponding to the scan of Fig.
4.5 and imposing the experimental constraints on 4th generation masses. It is
apparent that the 4GMSSM requires highly tuned fermion masses in order to
be viable.

The effect of increasing mA (and hence Mh) is shown in Fig. 4.9 and
we see only a very small region of allowed parameters. In Fig. 4.10, we
show the effects of lowering the sfermion masses to 500 GeV and see that the
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Figure 4.6: 95 % confidence level allowed regions from fits to S, T, and U
in the 4GMSSM. The requirement of perturbative unitarity is also imposed.
From top to bottom, the curves correspond to tan β = 2 and 1. The only
difference from Fig. 4.5 is that me′ = 400 GeV here.

allowed region shrinks considerably. This is due not to the effects of sfermion
contributions to the electroweak limits, but rather to the change in Higgs mass
corresponding to the heavier squark masses.
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From top to bottom, the curves correspond to tan β = 2 and 1. The only
difference from Fig. 4.5 is that mt′ = 500 GeV here.
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Figure 4.9: 95 % confidence level allowed regions from fits to S, T, and U
in the 4GMSSM. The requirement of perturbative unitarity is also imposed.
From top to bottom, the curves correspond to tan β = 2 and 1. The only
difference from Fig. 4.5 is that mA = 1 TeV here.
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Figure 4.10: 95 % confidence level allowed regions from fits to S, T, and U in
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Chapter 5

Electroweak Baryogenesis in the
MSSM

Baryogenesis is one of the fundamental questions left unanswered by the
SM of particle physics. There are many approaches to generating the baryon
asymmetry of the universe (BAU), some examples of which are electroweak
baryogenesis (EWBG) [102], leptogenesis [103] and Affleck-Dine baryogenesis
[104]. EWBG is an intriguing possibility because it relies only upon weak scale
physics and gives rise to possible direct experimental tests, but it cannot take
place within the SM [105, 106] given the current lower bounds on the Higgs
mass [107]. EWBG could be realized within the Minimally Supersymmetric
Standard Model (MSSM) [108], see [106] for reviews, but it requires a partic-
ular corner of the MSSM parameter space known as the light stop scenario
(LSS) [109–120]. As the name suggests there are in principle directly testable
predictions of new light particles that can be discovered at the LHC. However,
as with many searches at the LHC, depending on the exact spectra, particles
with copious production cross subsections can be missed if a particular sig-
nature is not investigated. The benefit of the LSS is that direct production
of stops are not the only test of the scenario. In the MSSM the stop sector
is crucial for a viable Higgs sector due to the needed radiative corrections to
the Higgs mass. The stops also contribute to various effective Higgs couplings,
most significantly to two gluons. This intertwining of the two sectors means
that there are additional tests of EWBG in the MSSM, based purely on the
properties of the Higgs.

Recently, both the ATLAS [121–123] and CMS [124–126] experiments at
the Large Hadron Collider (LHC) reported intriguing 2 − 3 σ excesses in the
diphoton and ZZ∗ → 4` channels that could be interpreted as early signs
of a ≈ 125 GeV Standard-Model-like Higgs. More data is needed to claim
discovery, but it is not too early to start thinking about what the implications
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of such a result might be [127–132]. In particular, there are only two ways
that such a heavy Higgs could be realized within the MSSM: large mixing in
the stop sector with relatively light stop masses, or minimal mixing with at
least one of the stops being extremely heavy.

This potential Higgs mass measurement immediately creates tension with
EWBG. A detailed recent analysis of the LSS [118] showed that a Higgs mass
of ≈ 125 GeV requires the left-handed (LH) stop to be heavier than about
1000 TeV, since the stop mixing cannot be large. The right-handed (RH) stop,
on the other hand, gets pushed to a mass of ∼ 100 GeV. This spectrum is very
peculiar, especially when trying to imagine a corresponding SUSY breaking
scheme [133]. Nevertheless, it remains as the only realization of EWBG in the
MSSM.

Before the recent Higgs mass measurement, EWBG was reconcilable with
a fairly wide variety of Higgs phenomenologies [134]. Now that the stop spec-
trum has been so strongly constrained by the Higgs mass measurement it may
be possible to rule out EWBG purely by determining the properties of the
Higgs boson. This is particularly attractive, since one could imagine many
ways to hide a light stop from direct searches (e.g. decay through a displaced
vertex). Using Higgs data represents a model-independent approach to ex-
cluding EWBG in the MSSM.

In this chapter, it will be shown that the correlations between different
Higgs decay channels and production modes, in particular those which occur
via loops compared to those that occur at tree level, make predictions that are
already in tension with the data. By combining the available constraints from
LHC Higgs searches, we show that EWBG in the MSSM is already excluded
at the (90) 95% confidence level (CL) in the (non-)decoupling limit. We also
examine the exclusion without the assumption of a≈ 125 GeV higgs. The higgs
searches are still highly constraining, excluding the entire EWBG parameter
space at the 90% CL except for a small window of mh ≈ 117 − 119 GeV due
to a small excess seen in the ATLAS γγ search.

This chapter is organized as follows. In Section 5.1, a very brief review of
electroweak baryogenesis is given, which explains the need for the LSS in the
MSSM. We then discuss the current status of the LSS in subsection Section
5.2 and the particular parameter space within the LSS dictated by a Higgs of
mass ≈ 125 GeV. In Section 5.3, the fingerprint of EWBG in the MSSM, the
correlations amongst the different production and decay channels of the Higgs,
that are the signature of the LSS, is investigated. In Section 5.4, we discuss
the available experimental data from LHC Higgs searches and combine them
to exclude the EWBG parameter space at the 90% CL.
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5.1 Electroweal Baryogenesis and the Light Stop

Scenario

As is well known, to generate a BAU the three Sakharov conditions [135]
must be satisfied: B-violation, CP -violation (otherwise any B-producing pro-
cess is cancelled out by its CP -counterpart) and departure from thermal equi-
librium (to prevent washout of the accumulatedB-excess). Electroweak Baryo-
genesis [102] (see also [106] for reviews) is a mechanism for producing the BAU
that relies entirely on weak scale physics to satisfy the Sakharov conditions.
The triangle anomaly in the electroweak sector of the Standard Model leads to
non-perturbative sphaleron processes at high temperatures that violate baryon
number, complex phases in the Higgs-fermion couplings provide the necessary
CP -violation, and departure from thermal equilibrium is instigated by the
electroweak phase transition. Even though the Standard Model has all the
qualitative ingredients for electroweak baryogenesis, the size of the generated
baryon asymmetry falls far short of the required value [105, 106]. The phase
transition is first order but only weakly so, and there is not enough CP vio-
lation. This means that electroweak baryogenesis can only work in a theory
with additional complex phases, as well as weak-scale particles that interact
strongly with the Higgs sector to give the necessary additional contributions
to its thermal potential. These conditions can be satisfied in the MSSM [108]:
contributions from stops to the thermal potential of the Higgs can generate a
stronger first order phase transition, and there are many new sources of CP
violation available.

The task of computing the generated BAU can be approximately factorized,
into sectors that are responsible for the first order phase transition, and those
directly responsible for creating the baryon asymmetry during that phase tran-
sition. Therefore we can examine the constraints or evidence for these sectors
independently.

Provided that a strong enough first order phase transition occurs, compu-
tation of the BAU involves a complicated tunneling, quantum transport and
hydrodynamics calculation. CP -violating interactions between the plasma and
the space-time varying Higgs VEV generate chiral currents across the bubble
wall, which sphelarons in the unbroken phase convert to baryon asymmetry.
This excess then partially survives in the broken phase, where sphelarons are
suppressed, as the bubble expands. There is a vast literature on this calcula-
tion [113–115, 136? –141]. The uncertainties are still order one, and tend to
err on the optimistic side [143]. That being said, the generation of a sufficient
BAU seems at least possible within the MSSM for some suitably chosen gaug-
ino/higgsino parameters (M1,M2, µ, tan β,mA), if there is a strong enough
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first order phase transition.1

The only severe constraint from this step of the calculation comes from
EDMs [145] that can arise as a result of the required CP -violating phases.
The required phases are φ1 = Arg(µM1b

?) and φ2 = Arg(µM2b
?), where b is

the Higgs sector soft mass. One-loop EDM contributions can be suppressed
by making the first and second generation sfermions heavier than ∼ 10 TeV,
but two-loop contributions involving the chargino and Higgs fields are sizable
unless mA >∼ 1 TeV (see e.g. [116, 118, 140]). This generic bound can be
loosened if φ2 is strongly suppressed relative to φ1, since the phase of the bino-
mass by itself does not generate strong two-loop EDM contributions. In this
bino-driven scenario [140] mA can take on smaller values.

Calculating the strength of the first order phase transition is somewhat
more straightforward, and ultimately more constraining, than the baryon den-
sity calculation. A sufficiently strong phase transition requires vc/Tc >∼ 1
(see e.g. [106]), where Tc ≈ 100 GeV is the critical temperature at which the
electroweak symmetry breaking vacuum φ = vc is degenerate with the sym-
metric minimum φ = 0. In the one-loop thermal Higgs potential one finds that
vc/Tc ∼ (cubic coefficient)/(quartic coefficient). The cubic term comes solely
from the thermal contribution and has the form δV ∼ Tmi(φ)3, where mi(φ)
is the field dependent thermal mass of the additional scalars in the MSSM. To
maximize the strength of the phase transition clearly requires maximizing the
new contributions to the cubic term. Given the form of the contribution from
the scalars of the MSSM, the largest potential contribution will come from the
stop sector. The Higgs dependent masses of the stops are given by

m2
t̃R

= m2
Q3

+ h2
tφ

2
u +

(
1

2
− 2

3
sin2 θW

)
g2 + g′2

2
(φ2

u − φ2
d)

m2
t̃L

= m2
U3

+ h2
tφ

2
u +

(
2

3
sin2 θW

)
g2 + g′2

2
(φ2

u − φ2
d)

m2
X = ht(Atφu − µφd)

where φu,d = ReH0
u,d. Working along the direction of the zero-temperature

Higgs-VEV in the Higgs potential2, (φu, φd) = (φ sin β, φ cos β), their mass

1It was recently suggested [144] that modifying the thermal history of the universe
could enlarge the parameter space for EWBG within the MSSM. However, given the known
mechanisms for generating baryons during the phase transition, this is not a viable proposal.

2This is valid at the critical temperature if mA is large, and sufficient for our purposes
of demonstrating the effect of stops on Veff (φu, φd).
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eigenvalues are

m2
t̃1,2

(φ) =
m2
t̃L

(φ) +m2
t̃R

(φ)

2
±

√√√√(m2
t̃L

(φ)−m2
t̃R

(φ)

2

)2

+ [m2
X(φ)]

2
. (5.1.1)

In the cubic term of the thermal one-loop thermal Higgs potential one has to
replace the soft masses m2

Q3,U3
by m2

Q3,U3
+ ΠtL,tR , where ΠtL , Πt̃R

∼ g2T 2 are
the thermal masses of the LH and RH stops. (This is necessary to control IR
divergences in the one-loop thermal potential and restore the validity of the
perturbative expansion at the critical temperature [146, 147]). To maximize
the cubic Higgs term, one of the stop mass eigenvalues should therefore be
close to ∼ h2

tφ
2. This requires small stop mixing, as well as a fairly precise

cancellation between the light stop’s thermal mass, Πt̃R
∼ g2T 2

c , and the nec-
essarily negative stop soft mass-squared [109]. This yields one stop that is
lighter than the top. To increase the Higgs mass beyond the LEP limit [107]
and avoid large corrections to the ρ-parameter [148] the LH stop should then
be heavier than a TeV or so.

Two-loop corrections [111, 112, 117, 119, 149] are quite large because gs
enters for the first time at this order. Both two-loop and non-perturbative cor-
rections [110, 150] enhance the phase transition, enlarging the viable parameter
space. This gives provides a more complete picture of the viable regions of
MSSM parameter space for electroweak baryogenesis, but the intuition from
examining one-loop effects still provides a helpful guide.

Putting all these ingredients together leads to the Light Stop Scenario
(LSS)[109–120], the only corner of MSSM parameter space where electroweak
baryogenesis might be possible. The constraints on the stop sector parameters
are the following:

• Achieving a strong phase transition and avoiding color-breaking requires
a mostly right-handed light stop with mt̃1 < mt and At <∼ mQ/2. [109,
117, 118].

• The mostly left-handed stop should be heavier than ∼ TeV to satisfy the
LEP Higgs mass bound (for a SM-like Higgs) and avoid large corrections
to the ρ-parameter.

• The gluino should be heavier than ∼ 500 GeV to decouple it from the
plasma, otherwise its large contribution to the stop thermal masses would
make it even more difficult to achieve the needed cancellation m2

U3
∼

−ΠtR .
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In addition, there are some constraints on the electroweak gaugino and higgsino
parameters to allow for sufficient generation of BAU:

• M1 or M2 ∼ µ ∼ O(100 GeV) with sufficiently large CP -violating phases
in the -ino sector, as well as tan β <∼ 15 [118].

• mA >∼ 1 TeV, unless all the CP -violation is pushed into the bino soft
mass [140].

5.2 LSS and a heavy Higgs

It is well known to experts that the possible detection of a ≈ 125 GeV Higgs
at the LHC spells trouble for electroweak baryogenesis in the MSSM. Such a
large Higgs mass can only be achieved if stop mixing is large (incompatible
with a strong phase transition) or if the left-handed stop is extraordinarily
heavy. To quantify the exact consequences of such a heavy Higgs, we draw
upon the results of [118].

The authors of [118] studied the electroweak baryogenesis window of the
MSSM in great detail. They constructed a low-energy effective theory [117] in
which all scalar superpartners with the exception of the RH stop are pushed
to some high common scale.1 This effective description, tailored to the Light
Stop Scenario, included the most important one- and two-loop effects. They
constructed the resulting thermal Higgs potential and scanned over the stop-
and Higgs-sector parameter space. Requiring a sufficiently strong first-order
phase transition and avoiding color-breaking yields regions of the stop-Higgs
mass plane where electroweak baryogenesis could proceed within the MSSM.

As expected, a Higgs mass in the range of 123 GeV ≤ mh ≤ 128 GeV is
extremely difficult to accommodate. The stop sector has to take on a very
particular form:

mt̃R
= 80− 115 GeV , mt̃L

>∼ 103 TeV , tan β ≈ 5− 15 (5.2.1)

with stop mixing being completely negligible for such large mQ. The size of
the allowed mt̃R

range is somewhat overestimated, since it was obtained by
interpreting the results of the analysis in a very conservative fashion. There-
fore, if this stop spectrum can be excluded, then electroweak baryogenesis in
the MSSM is excluded (assuming of course that the Higgs mass falls into the
above mentioned range).

1The scalars other than the LH stop have been made heavy to satisfy EDM constraints,
but this might not be necessary (e.g. Bino-Driven EWBG [140]). Nevertheless, the derived
restrictions on the stop spectrum should be widely applicable.
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The extremely heavy left-handed stop is in some conflict with notions of
naturalness, reminiscent of Split Supersymmetry [151]. One could ask how a
high-energy theory of SUSY breaking could generate such a spectrum [133],
but let us put aside such considerations and focus on the phenomenology.

The light right-handed stop with a mass of ∼ 100 GeV is an extremely
interesting prediction of electroweak baryogenesis within the MSSM, emerging
as a direct consequence of requiring a sufficiently strong electroweak phase
transition and a Higgs mass of ≈ 125 GeV. It is already excluded if it decays
promptly [152–154] or escapes the detector [155], but one could imagine it
being hidden from direct stop searches somehow, for example by decaying via
a displaced vertex [156].

The question is then: given a Higgs mass of ≈ 125 GeV, can electroweak
baryogenesis within the MSSM be excluded in a model-independent way? As
it turns out, the answer is yes. The specific spectrum required by the LSS in
light of such a Higgs mass, especially the light RH stop, makes very definite
predictions for the Higgs production rate and branching ratios. This allows
us to test electroweak baryogenesis within the MSSM using pure Higgs data,
separate from collider searches for the stop and questions of how such a strange
spectrum could be generated by a high-energy theory of SUSY-breaking.

5.3 The Fingerprint of Electroweak Baryoge-

nesis

The presence of a light RH stop can significantly alter Higgs production
and decay rates compared to their SM expectation. In the context of over-
all inclusive production cross subsections this has been investigated in detail
by [134]. However, even without an unambiguous 5σ Higgs discovery at the
LHC, or an extremely precise measurement of the γγ branching fraction, it is
still possible to conclusively test the mechanism of EWBG in the MSSM. This
is because the LSS makes specific predictions for all possible production and
decay modes of the Higgs, and they have very particular correlations.

The presence of the light RH stop affects Higgs phenomenology through
loop level production via gluon fusion and decays to γγ. The effects are en-
coded by examining the partial widths, which can be related to both pro-
duction and decay. The leading order contributions to gluon fusion (in the
decoupling limit) are [157]

Γ(h→ gg) =
Gµα

2
sm

3
h

36
√

2π3

∣∣∣∣∣34 ∑
f

A1/2(τf ) +
3

4

ght̃R t̃R
m2
t̃R

A0(τt̃R)

∣∣∣∣∣
2

, (5.3.1)
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where τi = m2
h/4m

2
i , ght̃R t̃R is the normalized Higgs coupling to the right-

handed stop, which in the LSS is given by ght̃R t̃R ≈ m2
t + 2/3 cos 2βs2

wm
2
Z . The

functions As (s = 0, 1/2 or 1) are defined as

A0(τ) = − [τ − f(τ)] /τ 2 (5.3.2)

A1/2(τ) = 2 [τ + 2τ − 1)f(τ)] /τ 2

A1(τ) = −
[
2τ 2 + 3τ + 3(2τ − 1)f(τ)

]
/τ 2

where

f(τ) =

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1 − iπ
]2

τ > 1
. (5.3.3)

The crucial point is that the light stop loop interferes constructively with the
top quark loop, which leads to a more than three-fold increase in the Higgs
production cross subsection via gluon fusion. However, when investigating the
clean γγ decay channel we must also examine the stop’s contribution to the
h→ γγ decay width, which at lowest order (again in the decoupling limit) is

Γ(h→ γγ) =
Gµα

2m3
h

128
√

2π3
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f

NcQ
2
fA1/2(τf ) + A1(τW )

+
4

3

ght̃R t̃R
m2
t̃R

A0(τt̃R) +
∑
χ+

2mW

mχ+

ghχ+χ−A1/2(τχ+)

∣∣∣∣2 (5.3.4)

where we have also included the contribution from Charginos. We do not
explicitly calculate Γ(h → γγ) as a function of the chargino mass, but they
can shift the width at most by order 10% if their mass is small, mχ+ ∼ 100
GeV, and we include this as a theory uncertainty. Unlike for the gluon width,
the stops destructively interfere with the dominant contribution in Eq. (5.3.4)
coming from the W bosons, and thus decrease the decay width Γ(h→ γγ) by
nearly a factor of 1/2 compared to the SM expectation.

Thus, while a light stop can effect both Γ(h → gg) and Γ(h → γγ)
significantly, the effect can be washed out by looking at the total rate of
σ(gg → h → γγ) only. However, there are both additional Higgs production
and decay modes available at the LHC.

In particular, examining both tree level and loop level (affected by the stop)
production and decay modes in various combinations should reveal strong
correlations amongst the various channels. We call this the fingerprint of
electroweak baryogenesis in the MSSM. For example, in gluon fusion events
with tree level decays one would expect a large increase over Standard Model
rates. However, if one examined vector boson fusion production of a Higgs
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which then decayed to γγ, we would expect a rate smaller than the SM. For
EWBG we can give predictions for all the channels, and even without a Higgs
discovery one can still make strong exclusion statements by considering their
correlations. This is similar in spirit to analyses investigating naturalness and
general composite higgs sectors [127, 158].

We use [157, 159] to compute the EWBG predictions for the Higgs decay
widths. To understand the various correlations and predictions for EWBG
quantitatively we define ratios of the various production channels, gluon fusion
(ggF), vector boson fusion (VBF) and associated production (AP), in the LSS
compared to the SM:

rggF ≡
σMSSM(gg → h)

σSM(gg → h)
, rV BF ≡

σMSSM(V BF )

σSM(V BF )
, rAP ≡

σMSSM(AP )

σSM(AP )
.

(5.3.5)
rggF is derived by taking ratios of decay widths, while rV BF , rAP ≈ 1 in the
decoupling limit. Similarly we can define ratios for the branching fractions
h→ X compared to the SM as:

bX =
BrMSSM(h→ X)

BrSM(h→ X)
. (5.3.6)

Combining these various production and decay channels we can define a partial
signal strength

µX(i) =
σ(i→ h→ X)

σ(i→ h→ X)SM
, (5.3.7)

where X labels the Higgs decay final state and i represents the production
channel. As an example, our partial signal strengths for γγ final states when
produced through gluon fusion and vector boson fusion are

µγγ(V BF ) = rV BF bγγ, µγγ(ggF ) = rggF bγγ. (5.3.8)

In principle these can both be measured separately, as discussed in Section 5.4,
in which case a large discernible difference compared to the SM should be found
if EWBG takes place within the MSSM. We also consider searches sensitive
to both ggF and VBF. In this case case the γγ signal strength prediction
(similarly for other channels) is given by

µγγ =
rggF + rV BF rSM

1 + rSM
bγγ , where rSM =

σSM(V BF )

σSM(gg → h)
∼ 0.1, (5.3.9)

if the efficiencies for ggF and VBF are approximately equal. (We will justify
this assumption when we discuss the experimental results in the next subsec-
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tion.)
While EWBG fixes the stops of the MSSM to particular values, in principle

the value of mA can range from the decoupling limit to very low values of mA

as in Bino-driven EWBG[140], while still preserving the successes of EWBG.
The value of mA is important since it alters the V V h coupling compared to
the SM, which in turn rescales

rV BF , rAP ≈ sin(β − αeff ), (5.3.10)

where αeff is the effective CP -even Higgs mixing angle. (In the decoupling
limit, αeff = β − π/2 thus, rV BF , rAP ≈ 1 in this case.) Our analysis will
take this allowed range for mA into account. For technical details on the
decay width and cross subsection ratio computation, as well as the associated
theoretical errors, the reader is referred to the Appendix E.

Combining the shifts for bγγ and rggF from (5.3.1) and (5.3.4) with all the
other channels allows us to map the theoretical fingerprint of the entire EWBG
scenario over the allowed range of stop masses. We show this fingerprint in
Fig. 5.1 for the decoupling limit and for mA = 300 GeV. The decoupling limit
is required for generic CP -violating phases, and the latter value of mA was
chosen because, as we will see in the next subsection, it minimizes the tension
between experimental data and the EWBG prediction. What is striking about
Fig. 5.1 is that even including a range of stop masses, theory uncertainties,
and mA, there are easily discernible correlations amongst the various channels.

While not all of these channels have been measured to a very precise level,
the particular fingerprint of EWBG in the MSSM means that this scenario can
in principle be ruled out by combining information from the 7 TeV LHC Higgs
searches only. Of course, it is possible that the Higgs may not ultimately be
found to have a mass of ≈ 125 GeV. However, because the deviations from
SM are so large for EWBG, it is still possible to bound EWBG for arbitrary
Higgs mass given the current data sets.

We will examine this in detail in the following subsections, but the finger-
print detailed in Fig. 5.1 stresses the power of setting limits even with channels
that may not have enough data for a discovery with the entire 2012 8 TeV data
set. Eventually, the study of correlations such as these could be one of our
most powerful tools into discerning the effects of new physics, if it is related
to electroweak symmetry breaking.
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Figure 5.1: Theoretical EWBG fingerprint for mA = 2 TeV and 300 GeV,
for a range of stop masses from 80-115 GeV including theory errors. Shown
are signal strength predictions for each channel, with subscripts indicating
an exclusive production mode. The purple line is the SM expectation. This
fingerprint is for mh = 125 GeV, but the dependence on mh is very small in
the 123−128 GeV neighborhood of Higgs masses. Solid red bands indicate the
range of predictions for mt̃R

∈ (80, 115) GeV. The light red bands indicate the
theory error at the top and bottom of the stop mass range. tan β was allowed
to vary in the range (5, 15), but its effect is very small since mh was taken as
a low-energy input. The rate of decays that are dominated by gluon fusion
increases for lighter stop masses, while γγ and channels sensitive to Vector
Boson Fusion and Associated Production are much less affected.
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Production Mode Sensitivity Signal Strength Bounds
ggF VBF AP Inclusive Source mh range (GeV)

γγ
ATLAS [121] ? official (110, 150)

CMS [124, 160] ? ? reconstructed† [127] (120, 128)

ZZ∗
ATLAS [122] ? official (110, 150)

CMS [125] ? reconstructed† [127] (120, 128)

WW ∗
ATLAS [161] ? official (110, 150)

CMS ◦ ◦ — —

bb
ATLAS [162] ? official (110, 130)

CMS [160, 163] ? reconstructed† [158] (110, 130)
D0 + CDF [164] ? official (100, 150)

ττ
ATLAS [165] ? ? reconstructed [158] (110, 150)

CMS [166] ◦ ? reconstructed [158] (110, 150)

Table 5.1: Summary of the relevant higgs searches and their sensitivity to pro-
duction modes and decay channels. ’?’ indicates that the experiment released
sufficient experimental data for our analysis. ’◦’ indicates that even though
search channel was considered in the experiment, the publicly available data
was insufficient for our analysis. Whenever official signal strength bounds
were unavailable we performed our analysis using approximate reconstructed
likelihoods for the signal strength (which are likely to give more conservative
bounds than the official fit). For CMS γγ, ZZ∗ we used likelihoods supplied
to us by the authors of [127], while for CMS bb and both ττ searches we re-
constructed the likelihoods using the methods of [158]. †CMS made official
γγ[VBF], ZZ

∗, bb[AP] signal strength bounds available at mh = 124, 125 GeV,
which were used instead of the reconstructed approximations.

5.4 Experimental Status

We will start by briefly outlining the available experimental data before
moving on to show the extent to which different regions of EWBG parameter
space are excluded, both with and without the assumption of a ≈ 125 GeV
Higgs.

5.4.1 Available Data Until Dec 2011

Table 5.1 summarizes all the available Higgs searches to date that are
relevant to our analysis. A few remarks are in order:

• We use Eqns. (5.3.8) and (5.3.9) to compute the theory predictions for
the γγ signal strengths (similarly for the other channels). The inclusive
signal strength prediction assumes equal signal efficiencies for ggF and
VBF, which is a conservative choice for setting limits. Production is
dominated by ggF, but assuming the VBF efficiency to be zero would lead
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Figure 5.2: Comparing the signal strength predictions for each Higgs decay
channel of electroweak baryogenesis in the MSSM with the ATLAS, CMS
and Tevatron data as explained in Section 5.4.1. Subscripts indicate exclusive
production via a single mode. For each channel we show up to three bands: the
EWBG prediction, with mt̃R

∈ (80, 115) GeV (red, with theoretical error bands
in light red) and the ATLAS/CMS 1-σ best-fit measurements (blue/green,
with central value indicated in dark blue/green). In the bb[AP] channel we also
show the combined Tevatron constraint as a fourth band (purple). The SM
prediction is indicated with a horizontal line at µ = 1.

us to slightly overestimate the theory prediction for the signal strength µ,
since ggF is enhanced in our MSSM scenario. As we will see, this would
increase tension with the data. Therefore, we set the two efficiencies to
be equal, while noting that some deviation from this assumption will not
invalidate the analysis since rSM is small.

• Official signal strength bounds were not always available for each chan-
nel. Fortunately, the authors of [127] reconstructed approximate signal
strength likelihoods for the CMS γγ, ZZ∗ searches by using the informa-
tion that is publicly available and generating their own event samples.
For other searches we used the methods of [158], very similar to the ideas
of [127], to reconstruct approximate likelihoods where necessary.
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• We used the older ATLAS h → WW ∗ → ``νν search using 2.05 fb−1

of data [161] rather than the updated version with 4.7 fb−1 [167]. The
latter is significantly more constraining and looks to increase the tension
with the EWBG prediction, but there is not enough information avail-
able to reliably disentangle the ggF and VBF contributions. The CMS
WW ∗ search [168] is omitted because signal strength bound are only
reconstructible for mh = 120, 130 GeV.

Fig. 5.2 compares the signal strength predictions to the experimental signal
strength bounds in all available channels, for mh = 125 and 126 GeV. The
results are displayed for these two higgs masses since they are preferred by the
CMS and ATLAS γγ searches, respectively. A visual inspection already reveals
some tension with the data. We will now make this impression quantitative.

5.4.2 Excluding Electroweak Baryogenesis in the MSSM

Given the large error bars in the early Higgs data it is perhaps surprising
that we can make relatively strong statements regarding the exclusion of elec-
troweak baryogenesis. This is due to the correlations of the signal strength
predictions in the various channels and their dependence on EWBG parame-
ters.

The Higgs signal in the various channels depends only very weakly on
tan β, since our parameterization takes mh as a low-energy input and tan β
can not be large for successful EWBG. Therefore, for a given Higgs mass, the
parameter space of EWBG in the MSSM is the (mA,mt̃R

) plane. Once the
Higgs mass is determined this will be the relevant parameter space to exclude.

Each point in this plane has an associated prediction of signal strength in
each channel. More precisely, each prediction is actually a range, due to theory
error and some tan β dependence. By making use of the 1-σ best-fit bounds
on the various signal strengths we can construct a gaussian approximation for
signal strength likelihoods (taking into account asymmetric error bars where
appropriate), which can then be combined across all channels to give overall
exclusion bounds. For each point in the (mA,mt̃R

) plane we then find the
minimal exclusion over the allowed range of signal strength predictions. This
allows us to construct an exclusion plot over EWBG parameter space.

In Fig. 5.3 we show the exclusion across EWBG parameter space, obtained
by combining ATLAS and CMS data for mh = 125 GeV. The entire parameter
space is excluded at the 97.7 % CL (98.6 % if we enforce the decoupling limit).
The least excluded points are at mA ≈ 300 GeV, with mt̃R

as high as possible.
One could consider several variations on this plot, each with similar results.
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Figure 5.3: Exclusion plot of EWBG parameter space for mh = 125 GeV,
obtained by combining the signal strength bounds from the various ATLAS
and CMS Higgs searches (not Tevatron) as outlined in Section 5.4.1. The
smallest exclusion at mA ≈ 300 GeV, mt̃R

= 115 GeV is 97.7%, which increases
to 98.6% if we enforce the decoupling limit (mA > 1 TeV).

• Until the Higgs mass is precisely known one should generally consider the
exclusion of EWBG over a range of mh. This produces a very similar pat-
tern of exclusion to Fig. 5.3, with tension minimized for mA ≈ 300 GeV
and high mt̃R

. The exclusion as a function of Higgs mass (from ATLAS
and CMS data only) is:

mh in GeV 123 124 125 126 127 128
minimal exclusion (%) for all mA: 94.3 96.8 97.7 91.5 92.5 90.5
minimal exclusion (%) for mA > 1 TeV: 99.4 98.0 98.6 97.5 99.8 99.99

We can see that EWBG is always excluded with a CL beyond 90 %.

• There appears to be a slight mismatch between the most favored Higgs
mass from the CMS and ATLAS γγ searches. If we were to shift the
γγ channel signal strength bounds for ATLAS or CMS by 1 GeV, the
exclusions would go up to 98% for mh = 125, 126 GeV.
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• One could ask how these exclusions would change if we also made use of
the Tevatron bb constraint:

mh in GeV 123 124 125 126 127 128
minimal exclusion (%) for all mA: 91.1 96.5 97.8 93.3 94.2 92.6
minimal exclusion (%) for mA > 1 TeV: 99.5 98.6 99.0 98.7 99.9 99.997

The exclusion is hardly changed, becoming slightly more strict overall.

• It is instructive to consider the exclusion obtained by combining only
the two γγ constraints, each at their respective best-fit Higgs masses.
mA < 500 GeV is significantly disfavored, since the reduced γγh effective
coupling exacerbates the tension between the γγ[VBF] signal strength
prediction (already lower than SM) and the larger-than-SM observation
by CMS. Over the entire EWBG parameter space, the exclusion from
only γγ data is 92.9%.

EWBG is more excluded for smaller stop masses because lighter stops
lead to greater enhancement of the Higgs production cross-subsection. This
increases the γγ, ZZ∗ and WW ∗ signal strengths, causing tension with the
observations. For large mA, the signal strength predicted by EWBG is some-
what larger that the observed value for the channels ZZ∗ and WW ∗, which
leads to relatively strong exclusion. As we reduce mA, the Higgs couplings
to γγ, ZZ and WW decrease. The reduced signal strength leads to weaker
exclusion from ZZ and WW , but as explained above the increasing tension
in the γγ[VBF] channel strongly disfavors very small mA. This leads to the
‘sweet spot’ of mA around 200 - 300 GeV.

If we believe that recent excesses observed in the various LHC and Tevatron
searches are due to a Higgs in the 123 - 128 GeV mass range, then these
early measurements already exclude EWBG in the MSSM at the 90% CL. If
we combine only the γγ observations at the best-fit higgs mass values, the
exclusion is 92.9%. While more data is needed for a definite conclusion, it is
clear that EWBG in the MSSM is strongly disfavored even at this early stage.

5.4.3 Excluding a more general Light-Stop Scenario

One could loosen the assumptions of our analysis, and ask what the avail-
able LHC data tells us about a wider range of Higgs and stop masses. Dropping
the assumption of a 123 - 128 GeV Higgs allows us to examine the prospects
of electroweak baryogenesis in the MSSM if the Higgs were to sit at a different
mass.
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Figure 5.4: Exclusion of a more general Light Stop Scenario in the (mh,mt̃R
)

plane. As before, t̃L is taken to be very heavy, while mA and tan β were varied
in the range (150, 2000) GeV and (5, 15). This exclusion plot was created
via the same method as Fig. 5.3, using both ATLAS and CMS data but not
the Tevatron bb bound. For each point in the (mh,mt̃R

) plane we minimize
exclusion with respect to theory error, tan β dependence and mA dependence.
The decoupling limit mA > 1 TeV is enforced in (a), while (b) allows the whole
range of mA.

Fig. 5.4 shows the exclusion from ATLAS and CMS data as a function of
the (mh,mt̃R

) plane. This exclusion plot was created via the same method
as Fig. 5.3, using gaussian approximations of the signal strength bounds. For
each point in the (mh,mt̃R

) plane we minimize exclusion with respect to the-
ory error, tan β dependence and mA dependence, using the experimental sig-
nal strength bounds for whatever Higgs masses they are available (see Table
5.1). However, there is one additional complication with this expanded Higgs
mass range: the ATLAS ZZ bounds have extremely asymmetric error bars
for mh < 122 GeV. This suggests a reduced reliability of the gaussian likeli-
hood approximation, and therefore we do not use the ATLAS ZZ bounds for
mh < 122 GeV.

What does Fig. 5.4 imply for MSSM EWBG in general? Without a Higgs
mass constraint, the successful electroweak phase transition requires mt̃R

<∼
120 GeV and mh < 128 GeV [118]. As we can see, LHC data already excludes
almost all of this parameter space at more than 90% CL, with the most notable
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exception being a (117 - 119) GeV Higgs mass window that is only excluded
at 80− 85% CL.

Including Tevatron data does not significantly enhance these constraints.
If we were to include the ATLAS ZZ constraints below mh = 122 GeV by
naively applying its +1σ error bar to −1σ and using the gaussian likelihood
approximation, then the exclusion of the allowed Higgs Mass window increases
by ≈ 10%. However, given the possibly long tail of the likelihood distribution
these numbers must be taken with a grain of salt.

At any rate, it is clear that the LHC Higgs searches are already excluding
large portions of the LSS parameter space, even without the assumption of a
particular Higgs mass. Further data should allow exclusion of the 117 - 119
GeV Higgs mass window, but these considerations are of course irrelevant if a
Higgs mass of ≈ 125 GeV is confirmed. We also point out that our exclusions
could likely be improved if the experimental collaborations provided more
detailed signal strength likelihoods.

Finally, we point out that the discovery or exclusion of the MSSM pseu-
doscalar Higgs would of course significantly enhance the power of these con-
straints by restricting the allowed value of mA.

5.5 Results

EWBG in the MSSM has long been an attractive possibility for baryo-
genesis due to the presence of additional light supersymmetric states within
reach of colliders. With the 7 TeV run of the LHC now completed, there
finally is enough high energy data to confront the entire parameter space of
EWBG. However, in direct searches there are in principle ways to weaken con-
straints without affecting the physics of EWBG. In this chapter, we looked
at the indirect consequences for the Higgs sector alone, which represents an
irreducible constraint on EWBG in the MSSM1. Given that the only window
for EWBG that still exists is the LSS, there are very large corrections to Higgs
phenomenology and in particular strong correlations amongst channels as we
have demonstrated.

We have shown that in the context of a possible Higgs mass measurement
of mh ≈ 125 GeV at the LHC, EWBG in the MSSM is now ruled out at greater
than a 95% CL in the decoupling limit for the Higgs sector, and at least 90%
CL for lighter values of mA. This is primarily due to the fact that this heavy
of Higgs mass even further restricts the allowed parameter space for EWBG in

1This is irreducible in the sense that to alter the effects of indirect constraints would
require introducing new couplings to the Higgs directly and thus by definition alter the
predictions for EWBG in the MSSM.
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the MSSM. If we relax the constraint of mh ≈ 125 GeV, to allow for a larger
parameter space, we can still constrain the LSS in full generality with the
current LHC data. We find that the only significant region excluded at less
than 90% CL is mh ≈ 117 - 119 GeV. This window can be excluded with more
data, though of course the point is moot if the Higgs is confirmed to have a
mass of ≈ 125 GeV.

Finally, one can speculate that LHC Higgs searches could in fact offer a
truly model-independent way to exclude electroweak baryogenesis, even be-
yond the MSSM implementation.2 At its very basic level, the mechanism
of EWBG requires the presence of weak-scale particles with substantial Higgs
couplings to generate the strong first-order phase transition via their contribu-
tions to the thermal potential. These particles, via those very same couplings,
could then significantly contribute to the effective Higgs couplings and allows
for testing EWBG in other scenarios [170]. Ultimately, the indirect tests of
Higgs phenomenology using correlations may prove to be the most important
window into new physics.

2For a recent example, see [169].
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Chapter 6

Conclusion

Motivated by the fine-tuning problem in the SM, in this thesis we have stud-
ied supersymmetric extensions of the SM. In Chapter 2, electroweak symmetry
breaking and the Higgs mechanism in the context of MSSM were discussed in
some detail. It was shown that the Higgs sector in the MSSM can be signifi-
cantly different from the SM. Even though there are five Higgs bosons in the
MSSM, the theory predicts that one of them must be lighter than ∼ 135 GeV,
a prediction within the reach of LHC. The other difference between SM and
MSSM is the production and decay modes of the Higgs boson due to modified
couplings to SM particles in certain parameter spaces of the MSSM.

In certain parameter spaces of the MSSM, the process bg → bh is an
important production mode for neutral Higgs bosons at the hadron colliders.
In Chapter 3, we discussed the SUSY QCD corrections to this process for the
lightest CP-even Higgs boson. These corrections are very important since they
modify the effective Higgs coupling to the bottom quarks for large tan β. These
large corrections, which include resummations, can be approximated by an
Effective Lagrangian approach called the ∆b approximation. Our major result
in Chapter 3 is that the full SQCD corrections are described to a good accuracy
(∼ 1 − 2% ) by the ∆b approximation. We have also provided analytical
expressions for the SQCD corrections to b Higgs associated production in the
minimal and maximal b squark mixing scenarios.

In Chapter 4, we have studied an extension of the MSSM with four gen-
erations of chiral fermions since the number of generations is not a prediction
of the SM. It was shown that the existence of a fourth generation allows the
lightest neutral Higgs boson to be considerably heavier (O(500 GeV)) than
that in the SM. However, the model itself is highly constrained. Imposing
the restrictions of perturbative unitarity and constraints from precision elec-
troweak measurements requires tan β ∼ 1 and extremely fine-tuned values of
the fermion masses.
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Finally, in Chapter 5, we explored the possibility of electroweak baryogen-
esis in the MSSM as a possibility for explaining the abundance of matter over
anti-matter. In particular, due to the requirement of lights stops for successful
baryogenesis, we looked at the indirect consequences for the Higgs sector. The
collider constraints on the Higgs sector represent constraints on EWBG. Given
that the light stops can significantly modify the Higgs effective couplings to
gluons and photons, the Higgs production and deaf breaching ratios can devi-
ate significantly from the SM. By using the latest LHC data, we examined the
correlations between these production and decay channels, excluding at more
than 90% CL a large parameter space in the MSSM as required by EWBG.
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Appendix A

Passarino Veltman functions

A.1 Scalar integrals

The Passarino Veltman functions are the integrals which turn up in almost
any loop calculation. The integrals without any tensor structure are the scalar
functions. The scalar integrals are defined as:

i

16π2
A0(M2

0 ) =

∫
dnk

(2π)n
1

N0

,

i

16π2
B0(p2

1;M2
0 ,M

2
1 ) =

∫
dnk

(2π)n
1

N0N1

,

i

16π2
C0(p2

1, p
2
2, (p1 + p2)2;M2

0 ,M
2
1 ,M

2
2 ) =

∫
dnk

(2π)n
1

N0N1N2

,

i

16π2
D0(p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2;M2

0 ,M
2
1 ,M

2
2 ,M

2
3 )

=

∫
dnk

(2π)n
1

N0N1N2N3

, (A.1.1)

where,

N0 = k2 −M2
0

N1 = (k + p1)2 −M2
1

N2 = (k + p1 + p2)2 −M2
2

N3 = (k + p1 + p2 + p3)2 −M2
3 . (A.1.2)

Below we list the expansion of some of these integrals (including the pole
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terms) that will be useful :

A0(m) = m2

(
∆ε + 1− ln

m2

µ2

)
+O(ε) ; ∆ε =

2

ε
− γE + ln 4π

B0(p2,m1,m2) = ∆ε+2−ln
m1m2

µ2
−∆m2

2p2
ln

(
m2

1

m2
2

)
+

1

2

r1 − r2

p2
ln

(
r1

r2

)
+O(ε)

where ∆m2 = m2
1 −m2

2 and r1, r2 satisfy the following equation

r +
m2

1m
2
2

r
= m2

1 +m2
2 − p2

Special Cases :

B0(p2,m,m) = ∆ε − ln
m2

µ2
+ f(p2,m2)

where

f(p2,m2) =


2− 2

√
4m2

p2
− 1 tan−1

 1√
4m2

p2
−1

 ; p2 < 4m2

2 +
√

1− 4m2

p2
ln

1−
√

1− 4m2

p2

1+

√
1− 4m2

p2

 ; p2 > 4m2

(A.1.3)

B0(0,m1,m2) =
A0 (m1)− A0 (m2)

∆m2

= ∆ε + 1−
m2

1 ln
(
m2

1

µ2

)
−m2

2 ln
(
m2

2

µ2

)
∆m2

B0(0,m,m) = ∆ε − ln

(
m2

µ2

)
B0(0,m1,m2)

m1�m2−→ ∆ε + 1− ln

(
m2

1

µ2

)
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A.2 Tensor Reduction of Passarino Veltman

integrals

The tensor integrals encountered are expanded in terms of the external
momenta pi and the metric tensor gµν . For the two-point function we write:

i

16π2
Bµ(p2

1;M2
0 ,M

2
1 ) =

∫
dnk

(2π)n
kµ

N0N1

≡ i

16π2
pµ1B1(p2

1,M
2
0 ,M

2
1 ) , (A.2.4)

while for the three-point functions we have both rank-one and rank-two tensor
integrals which we expand as:

Cµ(p2
1, p

2
2, (p1 + p2)2;M2

0 ,M
2
1 ,M

2
2 ) = pµ1C11 + pµ2C12 ,

Cµν(p2
1, p

2
2, (p1 + p2)2;M2

0 ,M
2
1 ,M

2
2 ) = pµ1p

ν
1C21 + pµ2p

ν
2C22

+ (pµ1p
ν
2 + pν1p

µ
2)C23 + gµνC24

, (A.2.5)

where:

i

16π2
Cµ(Cµν)(p2

1, p
2
2, (p1 + p2)2;M2

0 ,M
2
1 ,M

2
2 ) ≡

∫
dnk

(2π)n
kµ(kµkν)

N0N1N2

(A.2.6)

Finally, for the box diagrams, we encounter rank-one and rank-two tensor
integrals which are written in terms of the Passarino-Veltmann coefficients as:

i

16π2
Dµ(p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2;M2

0 ,M
2
1 ,M

2
2 ) ≡

∫
dnk

(2π)n
kµ

N0N1N2N3

=
i

16π2

{
pµ1D11 + pµ2D12 + pµ3D13

}
. (A.2.7)

i

16π2
Dµν(p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2;M2

0 ,M
2
1 ,M

2
2 )(A.2.8)

≡
∫

dnk

(2π)n
kµkν

N0N1N2N3

=
i

16π2

{
gµνD00 + · · · tensor structures not needed here

}
.(A.2.9)

All tensor Passarino Veltman integrals can be reduced to scalar integrals by
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contraction them with external momentum. In this appendix, we demonstrate
the reduction of two-point tensor functions. For short hand notation, we use

∫
to denote

∫
dnk/(2π)n , D1 to denote (k2−m2

1) and D2 to denote [(k+p)2−m2
2].

We will use the fact that any tensor integral can only depend on pµ or gµν in
order to have the right Lorentz transformations. Consider the following two-
point function :

Bµ =

∫
kµ

D1D2

≡ pµB1(p2,m1,m2)

Contracting with pµ, we get

p2B1(p2,m1,m2) =

∫
kµp

µ

D1D2

=
1

2

∫
D2 −D1 − (∆m2 + p2)

D1D2

=
1

2

[
A0(m1)− A0(m2)− (∆m2 + p2)B0(p2,m1,m2)

]
where ∆m2 = m2

1 −m2
2. Similarly, for Bµν we have

Bµν =

∫
kµkν
D1D2

≡ gµνB00(p2,m1,m2) + pµpνB12(p2,m1,m2) (A.2.10)

First, contracting the above equation with gµν :

nB00(p2,m1,m2) + p2B12(p2,m1,m2) =

∫
k2

D1D2

=

∫
D1 +m2

1

D1D2

= A0(m2) +m2
1B0(p2,m1,m2)

(A.2.11)

Next, contracting (A.2.10) with pµ

pνB00(p2,m1,m2) + p2pνB12(p2,m1,m2) =

∫
(p · k)kν
D1D2

=
1

2

∫
kν
D2 −D1 − (∆m2 + p2)

D1D2

=
1

2
[pνA0(m2)

−pν(∆m2 + p2)B1(p2,m1,m2)
]

(A.2.12)
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From (A.2.11) and (A.2.12), we can solve for B00 and B12

B00(p2,m1,m2) =
1

2(n− 1)

[
A0(m2) + 2m2

1B0(p2,m1,m2)

+(∆m2 + p2)B1(p2,m1,m2)
]

B12(p2,m1,m2) =
1

(n− 1)p2

[(n
2
− 1
)
A0(m2)−m2

1B0(p2,m1,m2)

−n
2

(∆m2 + p2)B1(p2,m1,m2)
]

Special Cases :

B00(0,m1,m2) =
m2

1A0(m1)−m2
2A0(m2)

n∆m2

=
1

4

(m2
1 +m2

2

)(3

2
+ ∆ε

)
−
m4

1 ln
(
m2

1

µ2

)
−m4

2 ln
(
m2

2

µ2

)
m2

1 −m2
2


B00(0,m,m) =

m2

2

[
∆ε + 1− ln

(
m2

1

µ2

)]
= A0(m)/2
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Appendix B

Electroweak Precision
Parameters

The electroweak radiative corrections for many processes can often be ap-
proximated by a set of parameters. Three of these parameters S, T and U
involve evaluation of only the two-point functions (and hence are easy to cal-
culate), yet they constitute an important part of the radiative corrections.
These parameters are used to study the contributions of new physics beyond
SM. For example, T parameter measures the extent of isospin violation due
to new physics while S parameter measures the contribution of new physics
to neutral currents at different scales. We define S, T, U parameters in the
notation of Peskin and Takeuchi

αS =
s2

2θ

M2
Z

[
∆ΠZZ

(
M2

Z

)
−∆Πγγ

(
M2

Z

)
− 2c2θ

s2θ

∆ΠγZ

(
M2

Z

)]
αT =

ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

− 2sθ
cθ

ΠγZ(0)

M2
Z

where we define
∆ΠAB

(
M2
)

= ΠAB

(
M2
)
− ΠAB (0)

For calculation of S, T, U parameters in MSSM, we have to evaluate those
contributions to gauge boson self energies that are different from those in SM.
In our analysis, we shall assume the gauginos to be massive and by the decou-
pling theorem, their contribution is negligible. Thus, the relevant couplings to
be considered are those of gauge bosons with quarks and squarks.

Notation : Uppercase indices such as I, J ∈ {1, 2, 3} refer to generation
number while lower case indices i, j ∈ {1, 2} refer to squarks within a given
generation and type. CKM matrix is denoted by KIJ while the mixing
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matrix for squarks (sixteen of them in four generations model) are denoted
by ZI,i

ũ and ZI,i

d̃
. The gauge boson self-energy calculations are shown below.

B.1 Self Energy of Gauge Bosons

The self energy of gauge bosons can be written as sum of transverse and
longitudinal parts

Πµν
AB

(
p2
)

= gµνΠAB

(
p2
)

+ pµpνΠL
AB(p2)

We present the calculation of the transverse part of the self-energies which
receive fermionic and bosonic contributions.

Fermionic contributions : The fermionic contrinutions in general are
of the form

iΠ
µν(f)
AB

(
p2
)

= (−1)NC

∫
dnk

(2π)n

Tr

{
γµ
(
afAPL + bfAPR

) i (/k + /p+m1

)
(k + p)2 −m2

1

γν
(
afBPL + bfBPR

) i (/k +m2)

k2 −m2
2

}

= NC

∫
dnk

(2π)n
Tr

{
γµ
(
afAa

f
BPL + bfAb

f
BPR

) (
/k + /p

)
(k + p)2 −m2

1

γν
(/k +m2)

k2 −m2
2

}

+m1Tr

{
γµ
(
afAb

f
BPL + afBb

f
APR

) 1

(k + p)2 −m2
1

γν
(/k +m2)

k2 −m2
2

}
The transverse part of the self-energy is

Π
(f)
AB

(
p2
)

=
1

8π2
NC

(
afAa

f
B + bfAb

f
B

)
[
2B00

(
p2,m1,m2

)
− A0 (m1)−m2

2B0

(
p2,m1,m2

)
− p2B1(p2,m1,m2)

]
+

1

8π2
NC

(
afAb

f
B + afBb

f
A

)
m1m2B0

(
p2,m1,m2

)
(B.1.1)

Bosonic contributions : There are in general two kinds of contributions
from scalar fields. One from the loop diagram with four-point interaction

iΠ
µν(b,1)
AB

(
p2
)

= NC

∫
dnk

(2π)n
iλb,1ABg

µν

k2 −m2

Π
(b,1)
AB

(
p2
)

=
i

16π2
NCλ

b,1
ABA0 (m)
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The other loop diagram with three-point interaction gives

iΠ
µν(b,2)
AB

(
p2
)

= λb,2A λ
b,2
B NC

∫
dnk

(2π)n
i (2k + p)µ

(k + p)2 −m2
1

i (2k + p)ν

k2 −m2
2

Π
(b,2)
AB

(
p2
)

= − 1

4π2
NCλ

b,2
A λ

b,2
B B00

(
p2,m1,m2

)
For completeness, we list the interaction coefficients a and b for W , γ and Z
gauge bosons.

afγ = bfγ =

{
−2

3
ieδIJ ∀f ∈ uI

1
3
ieδIJ ∀f ∈ dI

λb,1γγ =

{
8
9
ie2δijδIJ ∀b ∈ ũiI

2
9
ie2δijδIJ ∀b ∈ d̃iI

λb,2γ =

{
−2

3
ieδijδIJ ∀b ∈ ũiI

1
3
ieδijδIJ ∀b ∈ d̃iI

afW = − ie√
2sθ
KJI∗

bfW = 0

λb,1WW = ie2

2s2θ
ZI,i∗
ũ ZJ,j

d̃

λb,2W = − ie√
2sθ
ZI,i

d̃
ZJ,j
ũ KJI∗

afZ =

{
− ie

2sθcθ

(
1− 4

3
s2
θ

)
δIJ ∀f ∈ uI

ie
2sθcθ

(
1− 2

3
s2
θ

)
δIJ ∀f ∈ dI

bfZ =

{
− ie

2sθcθ

(
−4

3
s2
θ

)
δIJ ∀f ∈ uI

ie
2sθcθ

(
−2

3
s2
θ

)
δIJ ∀f ∈ dI

λb,1ZZ =


2ie2

3c2θ

(
4
3
s2
θδ
ijδIJ +

3−8s2θ
4s2θ

ZI,i∗
ũ ZJ,j

ũ

)
∀b ∈ ũiI

2ie2

3c2θ

(
1
3
s2
θδ
ijδIJ +

3−4s2θ
4s2θ

ZI,i

d̃
ZJ,j∗
d̃

)
∀b ∈ d̃iI

λb,2Z =

 −
ie

2sθcθ

(
ZI,i∗
ũ ZJ,j

u − 4
3
s2
θδ
ijδIJ

)
∀b ∈ ũiI

ie
2sθcθ

(
ZI,i

d̃
ZJ,j∗
d̃
− 2

3
s2
θδ
ijδIJ

)
∀b ∈ d̃iI

λb,1γZ =


2ie2

3sθcθ

(
ZI,i∗
ũ ZJ,j

ũ δIJ − 4
3
s2
θδ
ijδIJ

)
∀b ∈ ũiI

ie2

3sθcθ

(
ZI,i∗
d̃
ZJ,j

d̃
δIJ − 2

3
s2
θδ
ijδIJ

)
∀b ∈ d̃iI

108



B.2 Higgs sector

The diagrams in the Higgs sector are the contributions to self-energies
with loops that include Higgs bosons and Goldstone bosons. Some of these
diagrams are identical in SM and MSSM and need not be evaluated as we are
only interested in the contribution of new physics beyond SM. The contribution
to T from diagrams in SM that are absent (or modified) in MSSM is

T (SM) =
1

4πs2
θm

2
W

[B00 (0,mhSM ,mW )−B00 (0,mhSM ,mZ)

−m2
WB0 (0,mhSM ,mW ) +m2

ZB0 (0,mhSM ,mZ)
]

Then, there are diagrams in MSSM which are absent in SM and their contri-
bution to T is

T (MSSM) =
1

4πs2
θm

2
W

[
−1

2
A0 (mH+) +B00 (0,mA0 ,mH+)

+s2
(β−α) {B00 (0,mH0 ,mH+)−B00 (0,mH0 ,mA0) +B00 (0,mh0 ,mW )

−B00 (0,mh0 ,mZ)−m2
WB0 (0,mh0 ,mW ) +m2

ZB0 (0,mh0 ,mZ)
}

+c2
(β−α) {B00 (0,mh0 ,mH+)−B00 (0,mh0 ,mA0) +B00 (0,mH0 ,mW )

−B00 (0,mH0 ,mZ)−m2
WB0 (0,mH0 ,mW ) +m2

ZB0 (0,mH0 ,mZ)
}]

Thus, contribution from the Higgs sector beyond SM is

∆T = T (MSSM) − T (SM)

The procedure for calculation ∆S is similar to that described for T . The
result is as follows

S(SM) =
1

πm2
Z

[
∆B00

(
m2
Z ,mhSM ,mZ

)
−m2

Z∆B0

(
m2
Z ,mhSM ,mZ

)]

S(MSSM) =
1

πm2
Z

[
−∆B00

(
m2
Z ,mH+ ,mH+

)
+ s2

(β−α)

{
∆B00

(
m2
Z ,mH0 ,mA0

)
+∆B00

(
m2
Z ,mh0 ,mZ

)
−m2

Z∆B0

(
m2
Z ,mh0 ,mZ

)}
+c2

(β−α)

{
∆B00

(
m2
Z ,mh0 ,mA0

)
+ ∆B00

(
m2
Z ,mH0 ,mZ

)
−m2

Z∆B0

(
m2
Z ,mH0 ,mZ

)}]
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where we define

∆B0

(
M2,m1,m2

)
≡ B0

(
M2,m1,m2

)
−B0 (0,m1,m2)

∆B00

(
M2,m1,m2

)
≡ B00

(
M2,m1,m2

)
−B00 (0,m1,m2)

Thus, contribution to S from the Higgs sector beyond SM is

∆S = S(MSSM) − S(SM)

B.3 Fermionic/sfermionic sector

Since calculation of T involves self-energies evaluated at zero momentum
scale as well as MZ , we give the explicit formula for ΠAB(p2) in (B.1.1) evalu-
ated at p2 = 0 and p2 = m2

Z .

Π
(f)
WW (0) =

NG∑
I=1

e2Nc

32π2s2
θ

(m2
uI

+m2
dI

)

(
∆ε +

1

2

)
−

m
4
uI

ln
(
m2
uI

µ2

)
−m4

dI
ln

(
m2
dI

µ2

)
m2
uI
−m2

dI




Π
(f)
ZZ(0) =

NG∑
I=1

e2Nc

32π2s2
θc

2
θ

[
(m2

uI
+m2

dI
)∆ε −m2

uI
ln

(
m2
uI

µ2

)
−m2

dI
ln

(
m2
dI

µ2

)]
Π

(f)
γZ (0) = 0

Π
(b)
WW (0) =

NG∑
I=1

∑
i=1,2

e2Nc

32π2s2
θ

[
1

2
(m2

ũI,i
+m2

d̃I,i
)−

m2
ũI,i
m2
d̃I,i

m2
ũI,i
−m2

d̃I,i

ln

(
m2
ũI,i

m2
d̃I,i

)]
Π

(b)
ZZ(0) = 0

Π
(b)
γZ(0) = 0
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∆Π
(f)
ZZ(M2

Z) =
Nce

2

8π2s2
2θ

[
m2
uI
f(M2

Z ,m
2
uI

) +m2
dI
f(M2

Z ,m
2
dI

)
]
− Nce

2

8π2s2
2θ

×

[{(
1− 4s2

θ

3

)2

+

(
4s2

θ

3

)2
}
g(M2

Z ,m
2
uI

)

+

{(
1− 2s2

θ

3

)2

+

(
2s2

θ

3

)2
}
g(M2

Z ,m
2
dI

)

]

∆Π(f)
γγ (M2

Z) = −Nce
2

8π2

[
2

(
2s2

θ

3

)2

g(M2
Z ,m

2
uI

) + 2

(
s2
θ

3

)2

g(M2
Z ,m

2
dI

)

]

∆Π
(f)
γZ (M2

Z) = − Nce
2

8π2s2θ

[
2

3

(
1− 8s2

θ

3

)
g(M2

Z ,m
2
uI

) +
1

3

(
1− 4s2

θ

3

)
g(M2

Z ,m
2
dI

)

]

∆Π
(b)
ZZ(M2

Z) =
Nce

2

4π2s2
2θ

[(
1− 4s2

θ

3

)2

g̃(M2
Z ,m

2
uI

) +

(
1− 2s2

θ

3

)2

g̃(M2
Z ,m

2
dI

)

]

∆Π(b)
γγ (M2

Z) =
Nce

2

4π2

[
4

9
g̃(M2

Z ,m
2
uI

) +
1

9
g̃(M2

Z ,m
2
dI

)

]
∆Π

(f)
γZ (M2

Z) =
Nce

2

4π2s2θ

[
2

3

(
1− 4s2

θ

3

)
g̃(M2

Z ,m
2
uI

) +
1

3

(
1− 2s2

θ

3

)
g̃(M2

Z ,m
2
dI

)

]
where

g
(
p2,m2

)
=

1

3

[
p2

{
∆ε − ln

m2

µ2
+ f(p2,m2)− 1

3

}
+ 2m2f(p2,m2)

]
g̃
(
p2,m2

)
=

1

6

[
p2

2

{
∆ε − ln

m2

µ2
+ f(p2,m2)− 2

3

}
+ 2m2f(p2,m2)

]
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and the function f(p2,m2) is defined in A.1.3. The fermionic and bosonic
contributions to ∆S is given by

∆S(f) =
3

2πM2
Z

[
m2
u4
f(M2

Z ,m
2
u4

) +m2
d4
f(M2

Z ,m
2
d4

)
]

+
1

2πM2
Z

[
g(M2

Z ,m
2
u4

)− g(M2
Z ,m

2
d4

)
]

=
1

6π

[(
1 + 11

m2
u4

M2
Z

)
f(M2

Z ,m
2
u4

) +

(
−1 + 7

m2
d4

M2
Z

)
f(M2

Z ,m
2
d4

)− ln
m2
u4

m2
d4

]
≈ 1

6π

[
3− ln

m2
u4

m2
d4

]

∆S(b) = −
4∑
I=1

∑
i=1,2

1

πM2
Z

[
g̃(M2

Z ,m
2
ũI,i

)− g̃(M2
Z ,m

2
d̃I,i

)
]

= −
4∑
I=1

∑
i=1,2

1

12π

[(
1 + 4

m2
ũI,i

M2
Z

)
f(M2

Z ,m
2
ũI,i

)

−

(
1 + 4

m2
d̃I,i

M2
Z

)
f(M2

Z ,m
2
d̃I,i

)− ln
m2
ũI,i

m2
d̃I,i

]

≈
4∑
I=1

∑
i=1,2

1

12π
ln
m2
ũI,i

m2
d̃I,i

Contributions from each lepton and quark (not already present in SM) to
∆T is

∆T = T (MSSM) − T (SM)

=
∑
f

N f
C

4πs2
θm

2
W

[
m2
fu
A0(mfu)−m2

fd
A0(mfd)

m2
fu
−m2

fd

− 2B00(0,mfu ,mfd)

−1

2

{
m2
fuB0(0,mfu ,mfu) +m2

fd
B0(0,mfd ,mfd)

}]
where f denotes a quark or lepton (not already present in the SM, for example,
a fourth generation chiral fermion) and N f

C is the color factor (N f
C = 1 for

leptons and N f
C = 3 for quarks).

For the case of minimal mixing with no inter-generation mixing, setting
CKM matrix to unity and the squark mass matrix to be diagonal. The
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fermionic and bosonic contribution to ∆T 1 is

∆T (f) =
3

8πs2
θM

2
W

[
1

2
(m2

u4
+m2

d4
)−

m2
u4
m2
d4

m2
u4
−m2

d4

ln

(
m2
u4

m2
d4

)]
∆T (b) =

4∑
I=1

∑
i=1,2

3

8πs2
θM

2
W

[
1

2
(m2

ũI,i
+m2

d̃I,i
)−

m2
ũI,i
m2
d̃I,i

m2
ũI,i
−m2

d̃I,i

ln

(
m2
ũI,i

m2
d̃I,i

)]

1∆T is the deviation from the T in SM.
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Appendix C

Renormalization in the MSSM

Since SUSY requires that bosonic and fermionic degrees of freedom match,
this symmetry is ruined if we assume that the components of gauge bosons1

are in n dimensions while the fermions have the usual four components. This
means that, if we were to use dimensional regularization, SUSY will not be
preserved. To avoid this complication, one uses the method of dimensional
reduction (DR)2 where one assumes four components for gauge fields. This
method of regularization is known to give ambiguous results at higher loop
levels but would suffice for the one-loop calculations3 which we are concerned
with.

C.1 Higgs Sector Renormalization

For the purpose of estimating the bound on the lightest Higgs mass, we
should treat as a dependent parameter while choosing MA as one of the input
parameters. The counter-terms and their relation to bare parameters is defined

1Here, component refers to for example µ components of gauge boson, Aµ.
2In dimensional regularization, both the space-time and the components of gauge fields

are assumed to be in n dimensions where n is slightly different from four. In dimensional
reduction method, only the space-time are in n dimensions while the gauge field components
are in exactly 4 dimensions.

3Even at one-loop, invariance is not completely verified.
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as follows (
M2

V

)0
= M2

V + δM2
V(

M2
S

)0
= M2

S + δM2
S

T 0
h = Th + δTh

T 0
H = TH + δTH

t0β = tβ(1 + δtβ)

where V refers to vector gauge bosons W and Z , and S refers to scalar Higgs
fields h, H, A, etc . We shall be using the shorthand sθ, cθ and tθ to denote
sin θ, cos θ and tan θ respectively. Until now, we have set the linear terms4

in the Higgs field to be zero since we expand about the vacuum which is the
minimum and so the linear terms vanish. But this only holds at tree level.
From here on, we shall not explicitly put this linear term equal to zero but
instead write it as a tadpole term Th, etc with a counter-term5. Since, tadpole
diagrams will always appear in diagrams with Higgs fields, we can fix the
counter-term by requiring that at any given order, tadpole diagrams cancel
the counter-term (This condition ensures vacuum expectation value of scalar
fields vanish even at the one-loop level). This condition fixes δTh and δTH .
The linear terms in the full scalar potential (2.3.25) were set to zero in (2.3.26)
and (2.3.27). Let us define these linear terms :

Tu =
(
|µ|2 +m2

Hu

)
vu − bvd −

g2 + g′2

4
vu
(
v2
d − v2

u

)
Td =

(
|µ|2 +m2

Hd

)
vd − bvu +

g2 + g′2

4
vd
(
v2
d − v2

u

)
(C.1.1)

The linear and bilinear terms in (2.3.25) including the counterterms is

V = 2Tuφu + 2Tdφd +
(
φu φd

)
M2

φu,φd

(
φu
φd

)
+
(
ϕu ϕd

)
M2

ϕu,ϕd

(
ϕu
ϕd

)
(C.1.2)

4In our convention, linear term refers to linear term in the potential. The linear term
in the Lagrangian is related to linear term in potential, Th0 by a minus sign.

5For a quantity vanishing at tree level, we use additive renormalization instead of mu-
tiplicative renormalization.

115



where the fields and other parameters are still bare at this point. The bare
mass matrices are given by (using (2.3.31) and (C.1.1)) :

M2
ϕu,ϕd

=

(
Tu/vu + b cot β b

b Td/vd + b tan β

)
(C.1.3)

M2
φu,φd

=

( Tu
vu

+ b cot β +m2
Z sin2 β −b− 1

2
m2
Z sin 2β

−b− 1
2
m2
Z sin 2β Td

vd
+ b tan β +m2

Z cos2 β

)
(C.1.4)

An important point to note here is that in our renormalization scheme, the
rotation matrices which rotate the original Lagrangian fields to physical fields
are always renormalized and fixed.(

A0

G0

)
=
√

2

(
cβ sβ
−sβ cβ

)(
ϕu
ϕd

)
≡
√

2U(β)

(
ϕu
ϕd

)
(

h0

H0

)
=
√

2

(
cα −sα
sα cα

)(
φu
φd

)
≡
√

2U(−α)

(
φu
φd

)
(C.1.5)

where the above relations hold at all levels in perturbation theory. In other
words, the matrices U(−α) and U(β) are always finite renormalized matrices
even if the fields are bare.

C.1.1 A0 −G0 sector

We start by looking at the mass matrix for ϕu − ϕd terms in the poten-
tial which give rise to A0 and G0 on rotation. The renormalized part of the
potential (C.1.2) reduces to the tree level potential.

VA0−G0

ren =
1

2

(
A0 G0

)
U(β)

(
b/tβ b
b btβ

)
U(−β)

(
A0

G0

)
=

1

2

(
A0 G0

)( m2
A0 0
0 0

)(
A0

G0

)
As expected, we get the factor of half in front of the mass matrix. Details of
diagonalization of mass matrix has already been presented. Next consider the
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wavefunction renormalization of bare fields(
ϕu
ϕd

)
bare

=

( √
Zu 0
0

√
Zd

)(
ϕu
ϕd

)
(
A0

G0

)
bare

= U(β)

( √
Zu 0
0

√
Zd

)
U(−β)

(
A0

G0

)
=

( √
ZA0A0

√
ZA0G0√

ZG0A0

√
ZG0G0

)(
A0

G0

)
With this way of renormalization, one does not have to deal with unphysical
fields. However, it also introduces some redundancies, for example, ZG0G0 is
not required since a Goldstone boson can never be on an external leg. Thus,
the wavefunction counter-term contribution to (C.1.2) is

VA0−G0

wf ct =
1

2
m2
A0

(
A0 G0

)( δZA0A0 δZA0G0

δZA0G0 0

)(
A0

G0

)
Finally, we calculate the counterterms from the bare mass matrix in (C.1.3) :

VA0−G0

mass ct =
1

2

(
A0 G0

)
U(β)δM2

ϕu,ϕd
U(−β)

(
A0

G0

)
where,

δM2
ϕu,ϕd

=

(
δTu/vu + δb/tβ − bδtβ/tβ δb

δb δTd/vd + δbtβ + btβδtβ

)
(C.1.6)

Let us define Th and TH as the coefficients of the linear term in the potential
for field h0 and H0 respectively. Then, using (C.1.2) and (C.1.5), we have the
following relation(

Tu
Td

)
=

1√
2

(
cα sα
−sα cα

)(
Th0
TH0

)
=

1√
2
U(α)

(
Th0
TH0

)
(C.1.7)

Note here that wavefunction renormalization does not enter linear terms be-
cause the tree level tadpoles vanish. Making change to new tadpole basis, we
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get the following counter-term contributions to the self-energies at one-loop

δm2
A0 = m2

A0

δb

b
−m2

A0δtβc2β

+
e

2swcwmZ

[
δTh0

(
3c(α+β) + c(α−3β)

2s2β

)
+ δTH0

(
3s(α+β) + s(α−3β)

2s2β

)]
δm2

G0 =
e

2swcwmZ

[
−s(α−β)δTh0 + c(α−β)δTH0

]
δm2

A0G0 =
1

2
m2
A0δtβ sin 2β − e

2swcwmZ

[
c(α−β)δTh0 + s(α−β)δTH0

]
(C.1.8)

Since, mA is one of our input parameters, we want to eliminate the counter-
term δb in favour of δm2

A0 as shown below

δb =
s2β

2
δm2

A0+
s4β

4
δtβ−

e

2swcwmZ

[
δTh0

(
3c(α+β) + c(α−3β)

4

)
+ δTH0

(
3s(α+β) + s(α−3β)

4

)]
(C.1.9)

C.1.2 h0 −H0 sector

Now we repeat the same procedure as in previous section for the terms in
potential with fields φu and φd which rotate into physical fields h0 and H0

with rotation matrices defined by (C.1.5). The renormalized part of the bare
potential (C.1.2) is then given by

Vh0−H0

ren =
1

2

(
h0 H0

)
U(−α)

(
b cot β +m2

Z sin2 β −b− 1
2
m2
Z sin 2β

−b− 1
2
m2
Z sin 2β b tan β +m2

Z cos2 β

)
U(α)

(
h0

H0

)
=

1

2

(
h0 H0

)( m2
h0 0

0 m2
H0

)(
h0

H0

)
The mass counter-terms can be derived from the bare mass matrix (C.1.4) :

Vh0−H0

mass ct =
1

2

(
h0 H0

)
U(−α)δM2

φu,φd
U(α)

(
h0

H0

)
(C.1.10)
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where,

δM2
φu,φd

=( [
δM2

ϕu,ϕd

]
11

+ s2
βδm

2
Z +

m2
Z

2
s2

2βδtβ −
[
δM2

ϕu,ϕd

]
12
− 1

2
δm2

Zs2β −
m2
Z

4
s4βδtβ

−
[
δM2

ϕu,ϕd

]
21
− 1

2
δm2

Zs2β −
m2
Z

4
s4βδtβ

[
δM2

ϕu,ϕd

]
22

+ c2
βδm

2
Z −

m2
Z

2
s2

2βδtβ

)

The elements of the matrix δM2
ϕu,ϕd

can be read from (C.1.6). Substituting
the above in (C.1.10) and using (C.1.9), we obtain the mass counter-terms for
this sector.

δm2
h0 = − e

2swcwmZ

[
sα−β

(
1 + c2

α−β
)
δTh0 + cα−βs

2
α−βδTH0

]
+ s2

α+βδm
2
Z

+c2
α−βδm

2
A0 +

1

2
s2β

(
m2
A0s2(α−β) +m2

Zs2(α+β)

)
δtβ

δm2
H0 =

e

2swcwmZ

[
sα−βc

2
α−βδTh0 + cα−β

(
1 + s2

α−β
)
δTH0

]
+ c2

α+βδm
2
Z

+s2
α−βδm

2
A0 −

1

2
s2β

(
m2
A0s2(α−β) +m2

Zs2(α+β)

)
δtβ

δm2
h0H0 =

e

2swcwmZ

[
c3
α−βδTh0 − s3

α−βδTH0

]
− 1

2
s2(α+β)δm

2
Z

+
1

2
s2(α−β)δm

2
A0 −

1

2
s2β

(
m2
A0c2(α−β) +m2

Zc2(α+β)

)
δtβ (C.1.11)

C.2 One-loop corrections to the Higgs mass

The renormalized self-energy of Higgs bosons is

Σ̂h0h0(p
2) = Σh0h0(p

2) + δm2
h0 −

[
p2 −m2

h0

]
δZh0h0

Σ̂h0H0(p2) = Σh0H0(p2) + δm2
h0H0 −

[
p2 − 1

2

(
m2
h0 +m2

H0

)]
δZh0H0

Σ̂H0H0(p2) = ΣH0H0(p2) + δm2
H0 −

[
p2 −m2

H0

]
δZH0H0

The one-loop correction ∆m2
h0 is

∆m2
h0 = Σ̂h0h0(p

2)
∣∣∣
p2=m2

h0

= Σh0h0(m
2
h0) + δm2

h0 (C.2.12)
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In the limit mA0 � mZ , α ≈ β − π/2. In this limit, the Higgs mass counter-
term in (C.1.11) simplifies

δm2
h0 ≈

e

2swcwmZ

δTh0 + c2
2βδm

2
Z −

1

2
s2βs4βm

2
Zδtβ (C.2.13)

In DR scheme, the finite part of δtβ is set to zero. Further, δm2
Z does not have

any Yukawa type couplings. Thus, we only need to calculate top and stop
contributtions to δTh0 = −Th0 where Th0 is the sum of tadpole diagrams.

C.2.1 Tadpole diagrams

1

h
0

t

2

h
0

t
1˜

Figure C.1: Top/stop contribution to Higgs tadpole diagrams

Top and stop contributions to tadpole diagrams of h0 are shown in fig
C.1. Their amplitudes are evaluated below [See Appendix A.1 for explicit
expressions of scalar integrals].

M1 = (−1) (−iλt̄th0)
∫

dnk

(2π)n
Tr

{
i (/k +mt)

k2 −m2
t

}
= − 4i

16π2
λt̄th0mtA0(mt)

M2 = −iλt̃† t̃h0
∫

dnk

(2π)n
i

k2 −M2
t̃

=
i

16π2
λt̃† t̃h0A0(Mt̃)
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There is a contribution to M2 from other stop slepton. The tadpole counter-
term is

δTh0 = −Th0
= −i (M1 +M2)

= − 1

16π2

[
4λt̄th0mtA0(mt)− λt̃† t̃h0A0(Mt̃)− λt̃′† t̃′h0A0(Mt̃′)

]
(C.2.14)

The couplings were derived in Section 2.3.3. The finite part of mass counter-
term in (C.2.13) with contributions to O(g2m4

t/m
2
W ), O(g2m2

tM
2
t̃
/m2

W ) and
O(g2m2

tM
2
t̃′
/m2

W ) is as follows

δm2
h0

∣∣
finite

= − αm2
t

8πs2
wm

2
W

[
2m2

t

(
1− ln

m2
t

µ2

)
−M2

t̃

(
1− ln

M2
t̃

µ2

)
−M2

t̃′

(
1− ln

M2
t̃′

µ2

)]
(C.2.15)

C.2.2 Self-energy diagrams

For simplicity, we work in the minimal mixing scenario to start with. The
contributions of the top and stop particles are shown6 in Fig. C.2 (only one
of the stops is shown).

1

h
0

h
0

t
1˜

2

h
0

h
0

t

t

3

h
0

h
0

t
1˜

t
1˜

Figure C.2: Top/stop contribution to Higgs self energy

Next, we evaluate the three diagrams.

M1 = −iλt̃† t̃h0h0
∫

dnk

(2π)n
i

k2 −M2
t̃

=
i

16π2
λt̃† t̃h0h0A0(Mt̃) (C.2.16)

6Only third generation diagrams are depicted. Extension to fourth generation is trivial.
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M2 = (−1) (−iλt̄th0)2

∫
dnk

(2π)n
Tr

{
i (/k +mt)

[k2 −m2
t ]

i
(
/k + /p+mt

)[
(k + p)2 −m2

t

]}
=

−i
16π2

4λ2
t̄th0

[
gµνBµν(p

2,mt,mt) + pµBµ(p2,mt,mt) +m2
tB0(p2,mt,mt)

]
(C.2.17)

M3 = (−iλt̃† t̃h0)
2

∫
dnk

(2π)n

[
i

k2 −M2
t̃

][
i

(k + p)2 −M2
t̃

]
=

i

16π2
λ2
t̃† t̃h0

B0(p2,Mt̃,Mt̃) (C.2.18)

The Passarino Veltman integrals are given in Appendix A.M2 can be written
in terms of scalar functions as follows

M2 =
−4i

16π2
λ2
t̄th0

[
gµνBµν(p

2,mt,mt) + pµBµ(p2,mt,mt) +m2
tB0(p2,mt,mt)

]
=
−4i

16π2
λ2
t̄th0

[
4B00(p2,mt,mt)

+p2
{
B12(p2,mt,mt) +B1(p2,mt,mt)

}
+m2

tB0(p2,mt,mt)
]

=
−4i

16π2
λ2
t̄th0

[
2

3

{
A0(mt) + 2m2

tB0(p2,mt,mt) + p2B1(p2,mt,mt)
}

+
1

3

{
A0(mt)−m2

tB0(p2,mt,mt)− 2p2B1(p2,mt,mt)
}

+p2B1(p2,mt,mt) +m2
tB0(p2,mt,mt)

]

=
−4i

16π2
λ2
t̄th0

[
A0(mt) +

4m2
t − p2

2
B0(p2,mt,mt)

]
(C.2.19)

ToM1 andM3 , we add the contribution for the second ’stop’. Then, adding
(C.2.16), (C.2.19) and (C.2.18) :

Mself =
i

16π2

[
λt̃† t̃h0h0A0(Mt̃) + λ

t̃′
†
t̃′h0h0

A0(Mt̃′)− 4λ2
t̄th0A0(mt)

]
+

i

16π2

[
λ2
t̃† t̃h0

B0(p2,Mt̃,Mt̃) + λ2

t̃′
†
t̃′h0

B0(p2,Mt̃′ ,Mt̃′)

−2(4m2
t − p2)λ2

t̄th0B0(p2,mt,mt)

]
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The first line in the above expression consists of only A0 functions and hence
contribute to quadratic divergence. In a supersymmetric theory, we expect
quadratic divergences to cancel (even if soft SUSY terms are present which only
lead to logarthimic divergences). Indeed, substituting the triple and quadratic
couplings, we find that quadratic divergence of O(g2m2

t/m
2
W ) cancel. Same is

true for quadratic divergences in tadpole counter-term in (C.2.14).
In our convention, the self energy at one loop Σ is defined as i times

the one-loop amplitude7. Thus, the finite part of one-loop self-energy of h0 to
O(g2m4

t/m
2
W ), O(g2m2

tM
2
t̃
/m2

W ) andO(g2m2
tM

2
t̃′
/m2

W ) can be calculated using
the analytical expressions for Pasarino Veltman functions given in Appendix
A.1 (we make the approximation mh0 � mt,Mt̃,Mt̃′).

Σh0h0(m
2
h0)
∣∣
finite

= iMself |finite

=
αm4

t

4πs2
wm

2
W

[
1− ln

(
m2
t

µ2

)
+ ln

(
M2

t̃
M2

t̃′

m4
t

)]
+

αm2
t

8πs2
wm

2
W

[
M2

t̃

{
1− ln

(
M2

t̃

µ2

)}
+M2

t̃′

{
1− ln

(
M2

t̃′

µ2

)}]
(C.2.20)

Substituting (C.2.15) and (C.2.20) in (C.2.12), µ dependence cancels and one
gets the following one-loop mass correction to the lightest Higgs mass

∆m2
h0 =

αm4
t

4πs2
wm

2
W

ln

(
M2

t̃
M2

t̃′

m4
t

)

7In this convention, the inverse unrenormalized propagator is p2−m2
0−Σ(p2) where m0

is the bare mass.
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Appendix D

SUSY QCD Corrections to
bg → bh

D.1 One-loop Results

In this appendix, we give the non-zero contributions of the individual di-
agrams in terms of the basis functions of Eq. 3.3.18 and the decompositions
of Eq. 3.3.20. The contributions proportional to mb tan β are new and were
not included in the results of Ref.[28]. Although we specialize to the case of
the lightest Higgs boson, h, our results are easily generalized to the heavier
neutral Higgs boson, H, and so the Feynman diagrams in this appendix are
shown for φi = h,H.

The self-energy diagrams of Fig. D.1:

b bg̃B

b̃ b

b

g̃B b̃

b φi

gAµ

Figure D.1: Self-energy diagrams, S1 and S2.
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X
(t)
S1

=
4

3

2∑
i=1

{
B1 − (−1)i

2mbMg̃s2b̃

t
B0

}(
M2

b̃i

)
X

(2)
S1

= −4

3

2∑
i=1

(−1)i
mbMg̃s2b̃

t
B0

(
M2

b̃i

)
(D.1.1)

where we have have used the shorthand notation for the arguments of Passarino-

Veltman functions, B0,1

(
M2

b̃i

)
≡ B0,1

(
t;M2

g̃ ,M
2
b̃i

)
.

X
(s)
S2

=
4

3

2∑
i=1

{
B1 − (−1)i

2mbMg̃s2b̃

s
B0

}(
M2

b̃i

)
X

(2)
S2

= −4

3

2∑
i=1

(−1)i
mbMg̃s2b̃

s
B0

(
M2

b̃i

)
(D.1.2)

and B0,1

(
M2

b̃i

)
≡ B0,1

(
s;M2

g̃ ,M
2
b̃i

)
The vertex functions of Fig. D.2:

b

g̃B

gAµ

b

b̃

b̃

φi

b

b

gAµ

b

b̃

b̃

g̃B

φi

b

Figure D.2: Virtual diagrams, V1 and V2.
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Diagram V1:

X
(s)
V1

=
s

6

2∑
i=1

{
C12 + C23 − (−1)i

2mbMg̃s2b̃

t
(C0 + C11)

}(
M2

b̃i

)
X

(t)
V1

= −1

6

2∑
i=1

{
t (C12 + C23) + 2C24 − (−1)i 2mbMg̃s2b̃ (C0 + C11)

}(
M2

b̃i

)
X

(1)
V1

= −u
3

2∑
i=1

{
C12 + C23 − (−1)i

2mbMg̃s2b̃

t
(C0 + C11)

}(
M2

b̃i

)
X

(3)
V1

= −1

3

∑
i

(−1)imbMg̃s2b̃ (C0 + C11)
(
M2

b̃i

)
(D.1.3)

where C0,11,12,23,24

(
M2

b̃i

)
≡ C0,11,12,23,24

(
0, 0, t;M2

g̃ ,M
2
b̃i
,M2

b̃i

)
.

Diagram V2:

X
(s)
V2

= −1

3

2∑
i=1

C24

(
M2

b̃i

)
X

(1)
V2

= −u
3

2∑
i=1

{
C12 + C23 − (−1)i

2mbMg̃s2b̃

s
(C0 + C11)

}(
M2

b̃i

)
X

(4)
V2

=
1

3

∑
i

(−1)imbMg̃s2b̃ (C0 + C11)
(
M2

b̃i

)
(D.1.4)

where C0,11,12,23,24

(
M2

b̃i

)
≡ C0,11,12,23,24

(
0, 0, s;M2

g̃ ,M
2
b̃i
,M2

b̃i

)
.

The vertex functions of Fig. D.3:

b

b̃

gAµ

b

g̃B

g̃C

φi

b

b̃

b

gAµ

b

g̃C

g̃B

φi

b

Figure D.3: Virtual diagrams, V3 and V4.
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Diagram V3:

X
(s)
V3

=
3s

2

2∑
i=1

{
C12 + C23 − (−1)i

2mbMg̃s2b̃

t
(C0 + C12)

}(
M2

b̃i

)
X

(t)
V3

= −3

2

2∑
i=1

{
M2

g̃C0 − 2 (1− ε)C24 − (−1)i 2mbMg̃s2b̃C12

}(
M2

b̃i

)
X

(1)
V3

= −3u
2∑
i=1

{
C12 + C23 − (−1)i

2mbMg̃s2b̃

t
(C0 + C12)

}(
M2

b̃i

)
X

(2)
V3

= −3

2

2∑
i=1

(−1)imbMg̃s2b̃C0

(
M2

b̃i

)
X

(3)
V3

= −3
2∑
i=1

(−1)imbMg̃s2b̃ {C0 + C12}
(
M2

b̃i

)
(D.1.5)

where C0,11,12,23,24

(
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Diagram V4:

X
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where C0,11,12,23,24

(
M2

b̃i

)
≡ C0,11,12,23,24

(
0, 0, s;M2

g̃ ,M
2
g̃ ,M

2
b̃i

)
.

The vertex functions of Fig. D.4:
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Figure D.4: Virtual diagrams, V5 and V6.

where C0,11,12,23,24

(
M2

b̃i
,M2

b̃j

)
≡ C0,11,12,23,24

(
0,M2

h , t;M
2
g̃ ,M

2
b̃i
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b̃j

)
, the squark

mixing matrix is defined,(
a11 a12

a21 a22

)
=

(
s2b̃ c2b̃

c2b̃ −s2b̃

)
(D.1.8)

and the light Higgs-squark-squark couplings Ch,ij, are normalized with respect
to the Higgs-quark-quark coupling[80],

Ch,11 + Ch,22 = 4mb +
2M2

Z

mb

Ib3
sα+βcβ
sα

(D.1.9)

Ch,11 − Ch,22 = 2Ybs2b̃ +
2M2

Z

mb

c2b̃

(
Ib3 − 2Qbs

2
W

) sα+βcβ
sα

(D.1.10)

Ch,12 = Ch,21 = Ybc2b̃ −
M2

Z

mb

s2b̃

(
Ib3 − 2Qbs2

W

) sα+βcβ
sα

, (D.1.11)

s2
W = sin θ2

W = 1−M2
W/M

2
Z and Yb is defined below Eq. 3.4.39.
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where C0,11,12,23,24

(
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,M2
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b̃j

)
.

The box diagram of Fig. D.5:
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Figure D.5: Box diagram, B1.

X
(s)
B1

=
3Mg̃s

2

∑
i,j=1,2

aijCh,ij {D0 +D13}
(
M2

b̃i
,M2

b̃j

)
X

(t)
B1

= −3Mg̃t

2

∑
i,j=1,2

aijCh,ijD13

(
M2

b̃i
,M2

b̃j

)
X

(1)
B1

= 3Mg̃u
∑
i,j=1,2

aijCh,ij {D11 −D13}
(
M2

b̃i
,M2

b̃j

)
X

(2)
B1

= −3mb

2

∑
i,j=1,2

δijCh,ij
{
M2

g̃D0 − 2D00

}(
M2

b̃i
,M2

b̃j

)
(D.1.13)

where, D0
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The box diagram of Fig. D.6:
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Figure D.6: Box diagram, B2.
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Figure D.7: Box diagram, B3.
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The vertex and external wavefunction counter terms, Eq. 3.3.27, along
with the subtraction of Eq. 3.3.30, give the counterterm of Eq. 3.3.31:

X
(s)
CT = X

(t)
CT =

(
4π

αs(µR)

)[
δZV

b +
δmb

mb

+ δCT

]
=

4

3

[
2Mg̃YbI(Mb̃1

,Mb̃2
,Mg̃) +

2∑
i=1

(
− (−1)i 2mbs2b̃B

′
0 + 2m2

bB
′
1

)
(0;M2

g̃ ,M
2
b̃i

)

]
(D.1.16)

Note that the counterterm contains no large tan β enhanced contribution.

D.2 Definition of Functions

In this appendix we define the functions used in the expansions of the
Passarino-Veltman integrals in the maximum and minimum mixing scenarios,

where R ≡ Mg̃

MS
in the maximal mixing scenario, and Ri ≡

Mb̃i

MS
in the minimal

mixing scenario:
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Further,

f ′i (R) ≡ dfi (x)

dx2

∣∣∣∣∣
x=R

f−1
i (R) ≡ fi (1/R)

R2

f̂i (R) ≡ 1

R4

dfi (x)

dx2

∣∣∣∣∣
x=1/R

. (D.2.18)
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Appendix E

Appendix: Higgs Decay Rate
Calculations

Most of the public programs available for branching ratio and Higgs pro-
duction/decay calculations of the MSSM Higgs bosons are unsuitable for the
unusual stop spectrum under consideration. We have therefore implemented
a simple Mathematica code to perform the computations following the refer-
ences [157, 159]. This is feasible since we only care about calculating decay
widths and production cross sections from a very simple low-energy spectrum,
not the derivation of that spectrum from UV-parameters.

The case of smallmA is handled as follows: For each choice ofmh,mt̃R
, tan β

and mA, we use the expressions in [157] to derive the LH stop mass required
to give the desired Higgs mass at one-loop resummed order. This allows us
to compute the radiatively corrected charged and heavy neutral Higgs masses
at the same order and include their contributions in the light Higgs decay
widths and branching fractions. This one-loop resummed calculation might be
insufficient if we were actually interested in how exactly the Higgs spectrum is
derived from a low-energy theory, but for the purposes of ‘sweeping through
the Higgs spectrum’ as we change mA this is certainly expected to work well.

E.1 Decay Widths & Branching Fractions

The branching ratio calculations in our code include most of the important
higher order corrections under the assumption of no stop mixing. Understand-
ing the theoretical uncertainties is quite important for a comparison with LHC
data. Therefore we briefly summarize the decay width calculation for each
channel and estimate the theory error from those higher order corrections we
neglected, as well as chargino and neutralino contributions.
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• h → gg : The LO contribution is a one-loop diagram with quarks or
squarks running in the loop. Only the light right-handed stops were con-
sidered in our calculation since the contribution from the heavy scalars
decouples. Most of the important NLO/NNLO QCD corrections [171–
173] were implemented with the exception of those from gluino loops.
However, the latter are quite small (a few percent for Mg ∼ 1 TeV)
[174]. The electroweak (EW) corrections [175, 176] are <∼ 5% due to
large cancellations from various contributions.

• h → γγ/γZ : This channel is also loop induced at LO. However, in
addition to quarks and squarks, there is also a small contribution from
charginos and charged Higgs in the loop. While the contributions are
small for mχ+ >∼ 250 GeV, they can be as big as 10% for mχ+ ∼ 100
GeV [177, 178]. The contributions from the charged Higgs are ignored
since they are assumed to be heavy and therefore decouple. Most of the
NLO/NNLO QCD corrections [172, 179] are implemented, an exception
being the QCD corrections to the squark loop diagrams leading to an
error of ∼ 10% [177]. The EW corrections from the top Yukawa coupling
[180] is also implemented for the h→ γγ channel.

• h→ V V ∗ : The vector boson V here refers to the massive gauge bosons
W and Z. Since, we assume that the Higgs mass is mh ≈ 125 GeV,
one of the final state vector bosons is always off-shell [181]. The NLO
EW corrections [182, 183] have been implemented for this channel and
we expect the remaining theoretical uncertainties to be small. In the
decoupling limit the hV V couplings are SM-like, so the partial decay
width is identical to the SM case. For small mA the tree-level coupling is
rescaled (see below). The NLO SUSY contributions have been ignored
as they are expected to be small.

• h → ff̄ : For a 125 GeV Higgs, the decay to top quarks is kinemat-
ically forbidden and thus the relevant channels are decays to bottom,
charm, and tau. We have implemented NLO/NNLO QCD corrections
[184] including the running of the quark masses to absorb the large
logarithms [185]. NLO EW contributions have also been implemented
[182, 186]. In the MSSM, the bottom quark Yukawa coupling gets signif-
icant corrections which are non-vanishing in the decoupling limit [187].
In our scenario, the corrections to the bottom quark Yukawa are given
by ∆b ∝ αsMgµ tan β/M2

b̃L
. Since the left-handed sbottom is extremely

heavy we conclude that these SUSY QCD corrections are small and can
be ignored. The only significant source of error in this channel is the un-
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certainty in the quark masses since they can not be directly measured.
This translates to an error of ∼ 4 % for the channel h→ bb̄ [188].

E.2 Production Cross Section Ratios

The LO cross-section for a 2→ 1 process is proportional to the decay width
of the inverse process. Therefore we can use the following approximation to
estimate the MSSM Higgs production cross-section through gluon fusion:

rggF ≡
σMSSM(gg → h)

σSM(gg → h)
≈ ΓMSSM(h→ gg)

ΓSM(h→ gg)

where we use the decay widths calculated above. The QCD K-factors for h→
gg differ by ∼ 6 % for the SM and the MSSM case and this difference is taken
into account by using NLO decay widths. Thus we expect this approximation
to work very well, and take its contribution to the theory error of our signal
strength prediction to be small (compared to the other sources of uncertainty),
of order a few percent.

The Vector Boson Fusion and Associated Production cross section ratios
are rV BF , rAP ≈ 1 in the decoupling limit, but for small mA the V V h tree-
level couplings are rescaled compared to the SM. Therefore

rV BF , rAP ≈ sin(β − αeff ),

where αeff is the effective CP -even Higgs mixing angle. (In the decoupling
limit, αeff = β − π/2 thus, rV BF , rAP ≈ 1 in this case.) We expect the error
introduced by this approximation to also be a few percent.

Finally, to compute theory predictions for inclusive signal strengths we
need

rSM =
σSM(V BF )

σSM(gg → h)
∼ 0.1.

The SM Higgs production cross section and associated theoretical errors are
calculated in [189], which we use to obtain predictions and theoretical uncer-
tainties for rSM .
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