Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.
(C) All Rights Reserved by Author.

Part I. Studies of Stereoselective C-H Amination

Part II. Synthetic Studies of Edaxadiene

Part III. Studies towards the Synthesis of Alchivemycin A Part IV. The Formal Synthesis of (-)-Englerin A by RRCM and Etherification

A Dissertation Presented
by
Jungyong Lee
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
\section*{Doctor of Philosophy}
in
\section*{Chemistry}
Stony Brook University

August 2012

Copyright by
Jungyong Lee
2012

Stony Brook University

The Graduate School

Jungyong Lee

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend acceptance of this dissertation.

Kathlyn A. Parker, Ph.D., Advisor Professor, Department of Chemistry

Dale G. Drueckhammer, Ph.D., Chairman Professor, Department of Chemistry

Francis Johnson, Ph.D., Third Member
Professor, Department of Chemistry

Yeon-Hee Lim, Ph.D., Outside Member
Senior Research Scientist, Merck Research Laboratories

This dissertation is accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

Abstract of the Dissertation
Part I. Studies of Stereoselective C-H Amination
Part II. Synthetic Studies of Edaxadiene
Part III. Studies towards the Synthesis of Alchivemycin A
Part IV. The Formal Synthesis of (-)-Englerin A by RRCM and Etherification
by
Jungyong Lee
Doctor of Philosophy
in
\section*{Chemistry}
Stony Brook University
2012

Part I. Various polysaccharides and glycosidic antibiotics including anthracycline and vancomycin have been widely used to treat cancer or infection. Amino sugars are often found in their structures and play an important role in biological activities. C-H amination is one of valuable methods to streamline the synthesis of C-N bond. Regio-, stereoselective C-H amination has been studied to produce useful amino sugars from glycals and alkynol carbamates.

Part II. Edaxadiene was considered as a new diterpene that had biological activities to inhibit the infection process of Mycobacterium tuberculosis. We describe a design to access a bicyclic backbone, which is the core structure of this compound by an intramolecular Diels-Alder (IMDA) reaction.

Part III. Progress toward the synthesis of a key moiety of alchivemycin A, which was isolated from a plant-derived actinomycete Streptomyces sp and displayed selective and potent antibiotic activity against Micrococcus luteus, has been focused on the construction of a bicyclic structure by the IMDA reaction.

Part IV. (-)-Englerin A is a natural product from phyllathus engleri, a plant common in east Africa. It showed an interesting biological activity in its ability to inhibit the growth of kidney cancer cell lines in the NCI-60 screen. The useful bioactivity and unique structure of (-)-englerin A have inspired many scientists to develop synthetic approaches to understand the structureactivity relationship (SAR). We reported the formal synthesis of (-)-englerin A and established an efficient synthetic route by a relay ring closing metathesis (RRCM) reaction and etherification. This study includes the efficient opening of the epoxide ring of a β-substituted α epoxy alcohol under the lithium acetylide reagent, the relay ene-yne-ene metathesis method for the preparation of a diene that is disubstituted on both ends, and the transannular stereo- and regio-specific oxymercuration of the C-6, C-7 olefin in the guaiane ring system.

Table of Contents

List of Abbreviation viii
List of Figures xiii
List of Schemes xiv
List of Tables xxii
Acknowledgement xxiii
Part I.
Studies of Stereoselective C-H Amination
1.1. Introduction 2
1.1.1. 3-Amino hexoses 2
1.1.2. Glycosylation 4
1.1.3. Previous synthetic approaches to the precursors of L-acosamine (8) 7
1.1.4. Previous syntheses of 3 -amino sugar intermediate by C-H amination 12
1.1.5. A new investigation of the intermolecular $\mathrm{C}-\mathrm{H}$ amination of glycals 14
1.1.6. A new investigation of the intramolecular C-H amination of alkynol carbamates 17
1.2. Result and Discussion 20
1.2.1. Intermolecular C-H amination of L-rhodinose glycals (93) 20
1.2.1.1. Synthesis of L--rhodinose glycals (93) 20
1.2.1.2. Intermolecular C-H amination of L-rhodinose glycal (93) 22
1.2.2. Intermolecular C-H amination of alkynol carbamates 23
1.2.2.1. Preparation of alkynol carbamates 23
1.2.2.2. C-H amination of alkynol carbamates 25
1.3. Conclusion 29
1.4. Reference 30
1.5 Experimental section 35
Part II.
Synthetic Studies of Edaxadiene (129)
2.1. Introduction 47
2.1.1. Background 47
2.1.2. Synthetic approaches to nosyberkol (131) and "PE" (129) 48
2.1.3. A new synthetic approach to a key core of "PE" (129) 51
2.1.4. A new approach for the preparation of nosyberkol (131) from tuberculosinol (130) 55
2.2. Result and Discussion 57
2.2.1. Studies of synthesis of "PE" (129) 57
2.2.2. Studies of synthesis of nosyberkol (131) from tuberculosinol (130) 58
2.3. Conclusion 61
2.4. Reference 62
2.5. Experimental section 64

Part III.

Studies Towards the Synthesis of Alchivemycin A (168)
3.1. Introduction 71
3.1.1. Background 71
3.1.2. Stereochemistry of the intramolecular and transannular Diels-Alder reaction 72
3.1.3. A new synthetic approach to a key core of alchivemycin A (168) 80
3.2. Result and Discussion 81
3.2.1. Synthetic approach to precursors of the IMDA and TADA reactions 83
3.2.2. Investigation of an intramolecular Diels-Alder (IMDA) reactions 88
3.3. Conclusion 93
3.4. Reference 94
3.5. Experimental section 98
Part IV.
The Formal Synthesis of (-)-Englerin A (267) by RRCM and Etherification
4.1. Introduction 112
4.1.1. Background 112
4.1.2. Biological activities of (-)-englerin A (267) and analogues of (-)-englerin A (267)- 114
4.1.3. Previous synthetic approaches to englerin A 121
4.1.4. Previous syntheses of guaiane cores of englerins 129
4.1.5. A new approach to a key core of (-)-englerin A (267) by RRCM and transannular etherification 131
4.2. Result and discussion 139
4.2.1. Investigation of preparation of diol acetylene (406) 139
4.2.1.1. The first-generation approach (Scheme 115) 139
4.2.1.2. Model test of epoxide ring opening 143
4.2.1.3. The second - generation approach (Scheme 116) 149
4.2.2. Investigation of RRCM and preparation of TBS-protected diol (466) 153
4.2.3. Investigation of transannular etherification and the synthesis of an oxa-bicyclic structure (469) 162
4.3. Conclusion 168
4.4. Reference 169
4.5. Experimental section 175
Bibliography 205
Appendix 222

List of Abbreviations

α	alpha
β	beta
\pm	Racemate
Ac	Acetyl
AcCN	Acetonitrile
AcOH	Acetic acid
$\mathrm{Ac}_{2} \mathrm{O}$	Acetic anhydride
AE	Asymmetric epoxidation
aq.	Aqueous
Ar	Aryl
Bn	Benzyl
Boc	tert-Butyloxycarbonyl
br	Broad
CDI	1,1'-Carbonyldiimidazole
CSA	10-Camphorsulfonic acid
Conc. HCl	Concentrated hydrochloric acid
d	Doublet
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene

DET	Diethyl tartrate
DIBAL-H	Diisobutylaluminum hydride
DIPEA	Diisopropylethylamine
DIPET	Diisopropyl tartrate
DMF	N,N-Dimethylformamide
DMSO	Dimethylsulfoxide
ee	Enantiomeric excess
eq.	Equivalent
Et	Ethyl
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
EtOAc	Ethyl acetate
g	Gram
h	Hour(s)
HMPA	Hexamethylphosphoramide
Hz	Hertz
I (Collins) $2_{2} \mathrm{PF}_{6}$	Bis(2,4,6-trimethylpyridine)iodine(I) hexafluorophosphate
IC_{50}	Concentration for 50% inhibition
IMDA	Intramolecular Diels-Alder reaction
${ }^{\text {Pr }}$	Isopropyl
IR	Infrared spectroscopy
J	First order coupling constant (NMR)

LAH	Lithium aluminum hydride
m	Multiplet
mCPBA	meta-Chloroperoxybenzoic acid
Me	Methyl
mg	Milligram
MHz	Megahertz
min	Minute(s)
mL	Milliliter
mmol	Millimole
mol	Mole
mp	Melting point
MS	Mass spectrometry
Ms	Methanesulfonyl
MTPA-Cl	α-Methoxy- α-(trifluoromethyl)phenylacetyl chloride
m / z	Mass-charge ratio
NaHMDS	Sodium 1,1,1,3,3,3-hexamethyldisilazide
NBS	N-Bromosuccinimide
NIS	N -iodosuccinimide
NMR	Nuclear magnetic resonance
9-OMe-9-BBN	9-OMe-9-borobicyclo[3,3,1]nonane
PCC	Pyridinium chlorochromate

PDC	Pyridinium dichromate
Ph	Phenyl
ppm	Parts per million
Py	Pyridine
q	Quartet
R_{f}	Retention factor
$\mathrm{Rh}_{2}(\mathrm{esp})_{4}$	Bis[rhodium($\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramethyl-1,3-benzenedipropionic acid)]
RRCM	Relay ring closing metathesis
rt	Room temperature
s	Singlet
SAR	Structure-activity relationship
Sat.	Saturated
t	Time, or triplet (NMR)
TBAF	Tetra-N-butylammonium fluoride
TBHP	tert-Butyl hydroperoxide
TBS	tert-Butyldimethylsilyl
TcesNH2	2,2,2-Trichloroethoxysulfonamide
TADA	Transannular Diels-Alder reaction
Tf	Trifluoromethane sulfonate
THF	Tetradydrofuran
TLC	Thin layer chromatography

TMS Trimethylsilyl

Ts Para-Toluenesulfonyl (tosyl)
UV Ultraviolet

List of Figures

Figure 1. Examples of glycosidic and polysaccharide antibiotics 2
Figure 2. Examples of representative simple amino hexoses 3
Figure 3. The structure of epirubicin (12) 4
Figure 4. Natural products, which have aminal structures 19
Figure 5. Revised structure $\mathbf{1 3 1}$ of diterpene $\mathbf{1 2 9}$ 48
Figure 6. The structure of Alchivemycin A (168) 71
Figure 7. Valuable drugs from plant origin sources 112
Figure 8. Guaiane sesquiterpenes 113
Figure 9. Drugs for kidney cancers 114
Figure 10. Structures of (\pm)-englerin B acetate (274), hydroxy acetate (275), TBS-ether (276), and hydrogenated englerin A (277) 116
Figure 11. Structure of (-)-Englerin A analogues (278) 117
Figure 12. Structure of (-)-Englerin A analogues (294) 118
Figure 13. Structure of (\pm)-englerin analogues (304) 119
Figure 14. Structure of (-)-Englerin A analogues (312) 120
Figure 15. Structures of truncated englerins prepared by the Theodorakis group 121
Figure 16. Structures of six model compounds 144

List of Schemes

Scheme 1. Syntheses of daunorubicin (1) analogues, which have azido sugars by glycosylation 5
Scheme 2. Syntheses of daunorubicin analogues 21 and 23 by Lowary group 6
Scheme 3. Synthesis of α-glycoside from 3-amino glycal 25 by Monneret et al. 6
Scheme 4. Synthesis of protected L-acosamine derivative $\mathbf{3 0}$ by Boivin et al. 7
Scheme 5. Synthesis of protected L-acosamine derivative $\mathbf{3 4}$ by Pelyvas et al. 7
Scheme 6. Asymmetric synthesis of L-acosamine derivative $\mathbf{4 2}$ from non-carbohydrate 35 8
Scheme 7. Synthesis of L-acosamine derivatives 49 by Trost et al. 9
Scheme 9. Synthesis of protected L-acosamine glycal (55) by the Pucko's group 10
Scheme 10. Synthesis of L-acosamine derivative $\mathbf{5 9}$ by Zhang et al. 10
Scheme 11. Synthesis of L-acosamine glycal (63) by the McLeod group 11
Scheme 12. Synthesis of L-acosamine derivative 69 by Bagal et al. 11
Scheme 13. The intramolecular C-H amination by the Du Bois group 12
Scheme 14. Synthesized protected 3-amino glycals by the Du Bois reaction 13
Scheme 15. Synthesis of the oxazolidinone via allylic C-H amination 14
Scheme 16. The intermolecular C-H amination developed by Du Bois et al. 15
Scheme 17. Retrosynthetic analyses for synthesis of 3-amino glycals 93 and 95 16
Scheme 18. Syntheses of glycals $\mathbf{9 3}$ and $\mathbf{9 5}$ by the McDonald group and the Trost group - 16
Scheme 19. Retrosynthetic analysis of alkynol 99 17
Scheme 20. The key precursor 46 of L-acosamine derivative 49 17
Scheme 21. Asymmetric synthesis of the carbamate $\mathbf{1 0 2}$ by the Parker group 18
Scheme 22. Expected products from C-H amination of alkynol carbamates 18

Scheme 23. Retrosynthetic analysis of oxazolidinone by Du Bois reaction
Scheme 24. Preparation of the dihydopyran 111 from the ethyl lactate (107) ----------------- 21
Scheme 25. Isomerization of allyl ether with Rh catalyst -- 21

Scheme 27. Synthesis of 2-amino sugar 114 from the protected L-rhodinose glycal (93) -- 22
Scheme 28. Formation of 2-aminosugar 114 via aziridine ring opening ----------------------- 22

Scheme 30. Synthesis of alkynols 117 and $\mathbf{1 1 8}$ with allenylmagnesium bromide ----------- 24
Scheme 31. Synthesis of alkynols $\mathbf{1 1 9}$ and $\mathbf{1 2 0}$ with $\mathbf{Z n}$-dust and propargyl bromide ------ 24
Scheme 32. Synthesis of alkynols $\mathbf{1 1 7}$ and $\mathbf{1 1 8}$ with Zn -dust and propargyl bromide ------ 24
Scheme 33. Preparation of two alkynol carbamates diastereomers $\mathbf{1 2 2}$ and $\mathbf{1 2 3}$------------ 25
Scheme 34. Synthesis of aminal 124 from carbamate 115 --- 26
Scheme 35. Synthesis of aminal $\mathbf{1 2 5}$ from carbamate $\mathbf{1 2 3}$-- 26

Scheme 37. C-H amination of a mixture of diastereomers 122 and $\mathbf{1 2 3}$------------------------ 28
Scheme 38. Catalyzed cyclization of $\mathbf{1 2 7}$ to $\mathbf{1 2 8}$ by Rv3378c/MtEDS and proposed 47
Scheme 39. Corresponding biomimetic synthesis of "PE" (129) from tuberculosinol

Scheme 40. Construction of a backbone 134 of (\pm)-nosyberkol (131) by Maugel et al. --- 49
Scheme 41. Synthesis of tuberculosinol (130) and (\pm)-nosyberkol (131) by Maugel et al.- 49
Scheme 42. Synthesis of the [3.3.1] bicyclic core $\mathbf{1 4 2}$ of "PE" (129) by Sorensen group - 50
Scheme 43. Construction of a backbone 144 of (\pm)-nosyberkol (131) by Sorensen group 50
Scheme 44. Syntheses of nosyberkol (131) from tuberculosinol (130) by Sorensen group 51

Scheme 46. Proposed transition states of an intramolecular Diels-Alder reaction 53
Scheme 47. Preparation the methyl ketone 153 from the epoxide 147 by Skorianetz et al.- 53
Scheme 48 . Conversion ketones $\mathbf{1 5 4}$ to carboxylic acids $\mathbf{1 5 5}$ by haloform reaction 54
Scheme 49. Retrosynthetic analysis of a precursor 146 54
Scheme 50. Sulfoxide-sulfenate ester rearrangement 55
Scheme 51. Retrosynthetic approaches of nosyberkol (131) from tuberculosinol (130) ---- 55
Scheme 52. Retrosynthetic analysis of a tertiary alcohol 161 from farnesol (164) 56
Scheme 53. Preparation of the methyl ketone 153 from the epoxide 147 57
Scheme 54. Preparation of the alcohol 165 from the methyl ketone 153 57
Scheme 55. Preparation of the triene $\mathbf{1 6 6}$ from the alcohol $\mathbf{1 6 5}$ 58
Scheme 56. Preparation of the bicyclic compounds 167 from the triene 166 58
Scheme 57. Synthesis of the sulfide 163 from the farnesol (164) 59
Scheme 58. Preparation of the sulfoxide 162 from the sulfide 163 59
Scheme 59. Synthesis of the vinyl tertiary alcohol 161 from the sulfoxide $\mathbf{1 6 2}$ 60
Scheme 60. A possible biogenesis of oxazine ring 172 proposed by the Furuma group --- 72
Scheme 61. Retrosynthetic analysis of alchivemycin A (168) 72
Scheme 62. Intramolecular Diels-Alder reactions by the Roush group 74
Scheme 63. Endo and exo products $\mathbf{1 8 6}$ and $\mathbf{1 8 8}$ from IMDA reactions 74
Scheme 64. Bicyclic compounds from the IMDA reaction in the thermal condition by the Shing group 75
Scheme 65. Bicyclic compounds from the IMDA reaction in the thermal condition by the Shing group 75
Scheme 66. Transannular Diels-Alder reaction (TADA) 76
Scheme 67. Bicyclic cores $\mathbf{1 9 9}$ and $\mathbf{2 0 0}$ produced by the TADA reaction in thermal condition by the Toró group 77
Scheme 68. Bicyclic cores $\mathbf{2 0 2}$ and $\mathbf{2 0 4}$ produced by TADA reactions with $\mathrm{Et}_{2} \mathrm{AlCl}$ by the Toró group 77
Scheme 69. A synthesis of a backbone of (-)-oblongolide from a (E,E,E)-macrocycle (205) by TADA reactions 78
Scheme 70. Bicyclic cores and proposed transition states by the TADA reaction by the Nakada group 79
Scheme 71. Designed precursors to investigate IMDA and TADA reactions 80
Scheme 72. Retrosynthetic analyses of trienes (213, 215, and 216) 81
Scheme 73. Retrosynthetic analysis of the diene 213 81
Scheme 74. The Structure of the (E,Z,E)-triene (221) 82
Scheme 75. Preparation of the iododiene 225 83
Scheme 76. Preparation of the iodo alkane 233 84
Scheme 77. Preparation of the common precursor 234 84
Scheme 78. The model test by Suzuki coupling reaction with $\mathrm{Ni}(\mathrm{COD})_{2}$ catalyst 84
Scheme 79. The model test by Neghishi coupling reaction 84
Scheme 80. The model test by Suzuki-Miyaura coupling reaction using 9-OMe-9-BBN -- 86
Scheme 81. Preparation of $\mathbf{2 3 3}$ by Suzuki-Miyaura coupling reaction using 9-OMe-9- BBN 86
Scheme 82. Preparation of the aldehyde 239 87
Scheme 83. Preparation of the (E,E,E)-triene 242 and the (E,E,Z)-triene 243 87
Scheme 84. Preparation of the macrolactone 216 88
Scheme 85. Two Diastereomers produced by an IMDA reaction 89
Scheme 86. Proposed transition states and products of the IMDA reaction from the (E,E,E)-triene 242 89

Scheme 87. The lactone $\mathbf{2 5 5}$ and the alcohol $\mathbf{2 5 4}$ separated by deprotection of acetate of
\qquad
Scheme 88. Bicyclic core $\mathbf{2 4 3}$ from the (E,E,Z)-triene $\mathbf{2 5 6}$ by the IMDA reaction
Scheme 89. Proposed transition states and products of the IMDA reaction from the (E,E,Z)-triene 243

Scheme 90. The alcohol $\mathbf{2 6 1}$ by separated by deprotection of acetate of $\mathbf{2 5 6}$----------------- 92
Scheme 91. The total synthesis of (+)-Englerin A ---122

Scheme 92. The mechanism of the backbone synthesis of (-)-Englerin A (267) by the Echavarren group

Scheme 93. The mechanism of the backbone synthesis of (-)-Englerin A (267) by the Ma group123

Scheme 94. The construction of the 7-memebred ring (337) by Nicolaou and co-worker - 124
Scheme 95 . Stereoselective [5+2] cycloaddition using the chiral auxiliary $\mathbf{3 3 9}$ by Nicolaou and co-workers

Scheme 96. The synthesis of the oxatricyclic structure $\mathbf{3 4 3}$ by Nicolaou and co-worker --- 124
Scheme 97. The synthesis of the oxabicycle 346 by the Theodorakis group ------------------ 124
Scheme 98. The synthesis of the oxatricyclic structure $\mathbf{3 4 9}$ by the Theodorakis group ----- 124
Scheme 99. The synthesis of (-)-englerin A (267) by the Chain group -------------------------126
Scheme 100. The formal synthesis of (+)-englerin A by the Lin group ------------------------127
Scheme 101. The total synthesis of (-)-englerin A (267) by the Christmann group --------- 128
Scheme 102. The formal synthesis of (\pm)-englerin A (272) by the Cook group ------------- 128
Scheme 103. Preparation of a oxo-bridged guaiane structure 37 ---------------------------------129
Scheme 104. Preparation of a bicyclic ketone 380 --130
Scheme 105. Asymmetric syntheses of (-)-englerin A (267) --------------------------------------131
Scheme 106. Preparation of various bicyclic dienes by a cascade metathesis 132
Scheme 107. Examples of dienyne metathesis from optically active dienyne 132
Scheme 108. Retrosynthetic analysis of (-)-englerin A (267) by RCM and transannular etherification 133
Scheme 109. Possible two diene products from a ring closing metathesis (RCM) reaction 133
Scheme 110. The relay ring closing metathesis reaction for unreactive geminally substituted alkenes 134
Scheme 111. Regioselectivity of the relay ring closing metathesis reaction 134
Scheme 112. The Synthesis of the hydroazulene $\mathbf{3 8 1}$ by the RRCM reaction 135
Scheme 113. Oxa-bicyclic structure 392 from the hydroazulene $\mathbf{3 8 1}$ by transannular etherification 136
Scheme 114. Retrosynthetic analysis of (-)-englerin A (267) by RRCM reaction and transannular etherification 136
Scheme 115. The first retrosynthetic plan to prepare diol 406 137
Scheme 116. The second retrosynthetic plan to prepare diol 406 138
Scheme 117. Preparation of allyl ether 412 139
Scheme 118. SeO_{2} oxidation to prepare alcohol 411 and aldehyde 408 140
Scheme 119. Preparation of the alcohol 413 by a Barbier addition 140
Scheme 121. Preparation the alcohol 416 from the aldehyde 417 141
Scheme 122. Preparation the epoxy alcohol 407 from the secondary alcohol 413 142
Scheme 123. Epoxide opening reactions from the epoxy alcohol 407 143
Scheme 124. Preparation of secondary epoxy alcohols as model compounds 145
Scheme 125. Preparation of diol $\mathbf{4 3 2}$ with Li-acetylene diamine complex 146

Scheme 126. Epoxide opening reactions from anti-epoxy alcohols 422 and 423 ------------ 146
Scheme 127. Epoxide opening reactions from syn-epoxy alcohols $\mathbf{4 2 4}$ and $\mathbf{4 2 5}$------------ 147
Scheme 128. Preparation of primary epoxy alcohols 426 and 427 as model compounds -- 148
Scheme 129. Epoxide opening reaction from primary epoxy alcohols 426 and 427 -------- 149
Scheme 130. Preparation the epoxy alcohol 442 from the allylic alcohol 411 ---------------- 150
Scheme 131. Preparation of 2,3-diol 443 with $\mathrm{Et}_{2} \mathrm{AlCl}$ and acetylene -------------------------150
Scheme 132. Preparation of the aldehyde 445 by Parikh-Doering oxidation ----------------- 151
Scheme 133. Preparation of the diol 406 by the Barbier addition and TMS-deprotection -- 151
Scheme 134. Preparation of the diol $\mathbf{4 1 0}$ with Li-acetylene diamine complex -------------- 152
Scheme 135. Preparation of the diol 406 with Li-acetylene diamine complex --------------- 152

Scheme 137. Expected products by ring closing metathesis (RRCM) reactions ------------ 154
Scheme 138. Preparation of the hydroazulene $\mathbf{4 5 0}$ by the RRCM reaction ------------------- 155
Scheme 139. Preparation of the hydroazulene $\mathbf{4 5 5}$ from $\mathbf{4 4 3}$ by the RRCM reaction ------- 156
Scheme 140. RRCM of the acetonide 456 from the diastereomer diol 449 --------------------- 157
Scheme 141. Synthesis of the hydroazulene 450 from the acetonide $\mathbf{4 5 3}$----------------------157
Scheme 142. Synthesis of carbamates mixture 459 from the mixture of $\mathbf{4 0 6}$ and $\mathbf{4 4 9}$------ 158
Scheme 143. Synthesis of the hydroazulene $\mathbf{4 5 0}$ from carbonates mixture $\mathbf{4 5 9}$------------- 159
Scheme 144. Synthesis of the hydroazulene 461 from carbonates mixture $\mathbf{4 6 0}$------------- 159
Scheme 145. Synthesis of the hydroazulene $\mathbf{4 5 0}$ from carbonates mixture $\mathbf{4 5 9}$ with Stewart-Grubbs catalyst 465

Scheme 146. Synthesis of the hydroazulene $\mathbf{4 6 1}$ from carbonates mixture $\mathbf{4 6 4}$ with 30% Stewart-Grubbs catalyst 465 ---161

Scheme 147. Synthesis of TBS-protected diene 466 from 461 -------------------------------------11
Scheme 148. Synthesis of $\mathbf{3 9 2}$ by transannular etherification ---------------------------------------162
Scheme 149. Synthesis of the alkyl Hg compound 467 by transannular etherification ----- 164
Scheme 150. Synthesis of alkyl Hg compound 467 at low temperature ------------------------165
Scheme 151. Synthesis of tertiary alcohols 468 and 469 by oxidative demercuration ------ 165
Scheme 152. The synthesis of (-)-englerin A (267) from the alcohol 468 ---------------------- 166

List of Tables

Table 1. Examples for a stereoselective intermolecular amination by the Du Bois group -- 15
Table 2. Results of C-H amination of alkynol carbamate 115 26
Table 3. Results of C-H amination of alkynol carbamate 123 27
Table 4. Results of C-H amination of alkynol carbamate 122 27
Table 5. Results of synthesis of the sulfide 163 59
Table 6. Renal Cancer Cell Growth Inhibition Data of (-)-englerin A (267) 115
Table 7. Cytotoxicity of (\pm)-Englerin A (272) and Englerin A analogues 116
Table 8. The cytotoxicity of 32 englerin A analogues 278 was tested with the A498 by the Christmann group 117
Table 9. The cytotoxicity of 32 englerin A analogues (294) was tested with the A498 by Christmann group 118
Table 10. The cytotoxicity of englerin A (272) analogues by the Chan group 119
Table 11. The cytotoxicity of englerin A analogues (312) by the Chan group 120
Table 12. Results of synthesis of allylic alcohol 413 by a Barbier addition 141
Table 13. Results of epoxide opening reactions from anti-epoxy alcohols 422 and 423 ---- 146
Table 14. Results of epoxide opening reactions from syn-epoxy alcohols 424 and 425 ---- 148
Table 15. Results of epoxide opening reactions from primary epoxy alcohols 426 and 427 149
Table 16. Results of the RRCM reaction of 406 154
Table 17. Results of synthesis of the hydroazulene 454 by the RRCM reaction 157
Table 18. Results of synthesis of the oxa-bicyclic compound 392 by transannular etherification 164

Acknowledgement

First, I would like express my deepest appreciation to my advisor Professor Kathlyn A. Parker. I could not find any word to express my immeasurable gratitude. I would not been able to accomplish my research without her careful concern and unfailing patience. Her brilliant ideas and endless enthusiasm for chemistry allowed me to explore the world of chemistry. She always guided me and gave her advice to solve dilemma in my research. When I was standing at crossroad in my life, her advice and concern enabled me to find my way. I have tried to follow her passion and deep knowledge and it will be continuously my life goal to achieve in all my life. Finally, I would like to make a deep bow to my advisor Kathlyn A. Parker to express my heart with the deepest respect and appreciation.

I am sincerely grateful to my previous chair, Professor Frank W. Fowler. His sincere assistance and advice helped me to improve my ability and gave me guidance over my study. I would like to appreciate my new chair, Professor Dale G. Drueckhammer. He greatly helped me to find my future position. I will never forget his generous assistance and great support in Stony Brook. I also would like to thank Professor Francis Johnson, the third member of my committee. His insightful and deep questions enabled me to approach chemistry from a new view point. He is one of my role model in my life. I am sincerely grateful to thank Dr. Yeon-Hee Lim. In spite of her tight schedule, she made a time to come Stony Brook from New Jersey to attend my Ph.D defense as the outside member. It was really great time and a wonderful opportunity to take her advice and comment.

I would like to dedicate my honor to my M.S. degree advisor, Professor Kee-Jung Lee at Hanyang University in South Korea. When I had a chance to learn about an organic chemistry in his research group, I was able to find my way and make a dream to go overseas to study. His advice and teaching inspired me to decide my future career.

I would also like to thank Professor Nancy S. Goroff, Professor Iwao Ojima, Professor Jin Wang, Professor Robert Rizzo, Professor Peter J. Tonge, and Professor Elizabeth Boon who taught me in the courses. Their education enabled me to develop broad understanding for chemistry. Professor Nancy S. Goroff also gave me a lot of help to study over 5 years as a
director of the Department of Chemistry. In addition, it was my great honor to have a hood from Professor Iwao Ojima in a graduate ceremony. I also would like to thank Professor Joseph W. Lauher for help in X-ray crystallography analysis and Professor Stephen A. Koch for his advice for inorganic catalysts.

I am grateful to Dr. Zachary Katsamanis, Dr. Mohammad Akhtar, Dr. Troy Wolfskill, Dr. Rong Chen, and Lobna Kahek, and Yenhui Kuan who supported me in my teaching assistance over 5 years.

I would like to thank Heidi Ciolfi, Business Manager, Charmine Yapchin, Assistant Business Manager, Barbara Schimmenti, Graduate Program Secretary, Liz Perez, Undergraduate Secretary, and Daniel Cashmar, Electronics Instrumentation Specialist. In particular, I wish to thank Katherine M. Hughes, Student Affairs Coordinator. I never forget her kind and sincere support and help over years. I am very grateful to Francis Picart, NMR Coordinator, for his all help. Without his assistance and advice for 2D NMR spectroscopy, I could not finish my research projects. I am also grateful to Dr. James Merecek for their generous assistance in NMR spectroscopy. He has always stayed with us and gave his sincere help and assistance in NMR spectroscopy.

I want to thank all Parker group members; Dr. Keunsoo Kim, Dr. Zhou Zhou, Dr. Eryk. Stolarzewicz, Matt Calder, Hee Nam Lim, Dan Elliott, Jonathan Hancewicz, Andrew Dick, Gabriela Bermudez, David Galler, Vicky Chen, Nana Agyemang, and Yihan Wu.

I wish to thank all people in the Department of Chemistry in Stony Brook University. In particular, my friends in ChemMaster International, Professor Ojima group members, Professor Nancy S. Goroff group members, Professor Drueckhammer group members, and Prof. Prof. Fowler and Lauher group members.

I also would like to express my sincere appreciation to my friends, Dr. Ed O'Neal and Mrs. Ellen O'Neal. Their sincere and generous friendship allowed me to feel the true life in United States. I will not forget their love and concern.

I would like to deeply thank my all family. My parents, Mr. Yong-Jae Lee and Mrs. Gil-Jae Jung, always believe me and support my life. Thanks to their endless love, I was able to study and complete my degree in Stony Brook. I also want to thank to my brother, Jung-Won Lee, my brother-in law, my sister, Wha-Shin Lee, and my sister-in law for their love. I am very sorry to my nephews, Da-Gyeom Lee and Rita Hong. Because of my study in Stony Brook, I could not
see their growth and give my deep love. Now, they are not young girls but ladies. It is my great pleasure to hear that they still remember me.

Finally, I want to thank my true friends in South Korea. Sung-Woo Baek, Ji-Young Cha, SuHan Choi, Sung-Lim Choi, Chang-Hee Joo, Young- Kwang Joo, Dr. Sangmo Kim, GyeongBong Kim, Jung-Weun Lee, Jin-Sane Ryu, Jong-Min Youn. It has been long time since we did not meet, but they never forget me and always stay with me. I could stand without stirring by their warm-hearted encouragement and lifelong friendship. I hope to have a time to drink a soju with my friends soon.

Part I.

Studies of Stereoselective C-H Amination

1.1. Introduction

1.1.1. 3-Amino hexoses

Various polysaccharide and glycosidic antibiotics have been widely used to treat cancer or bacterial infection. These antibiotics including daunorubicin (1), doxorubicin (2), and vancomycin (3) contain amino sugars, 2,3,6-trideoxy-3-aminohexoses (Figure 1), which play an important role in their biological activities. ${ }^{1}$

Daunorubicin (1)

Vancomycin (3)

Doxorubicin (2)

Figure 1. Examples of glycosidic and polysaccharide antibiotics

These amino hexoses were generally isolated through hydrolysis of the parent antibiotics and some amino hexoses are not naturally found in nature, but had been obtained as minor products in other synthetic studies. Among them, are the simple amino hexoses represented in Figure 2. ${ }^{1}$

L-Daunosamine
(4)

L-Acosamine
(8)

D-Daunosamine
(5)

D-Acosamine
(9)

L-Ristosamine
(6)

L-3-epi-Daunosamine
(10)

D-Ristosamine
(7)

D-3-epi-Daunosamine
(11)

Figure 2. Examples of representative simple amino hexoses

Like daunorubicin (1) and doxorubicin (2), epirubicin (12), one of the more famous anthracycline drugs has been used against various cancers such as breast tumor, ovarian tumor, and lung tumor. ${ }^{2}$ Epirubicin (12) is a synthetic analogues of doxorubicin (2), but it contains 2,3,6-trideoxy-3-aminohexose called L-acosamine (8), which was first isolated from the antibiotic actinoidin by Lomakina and co-workers. ${ }^{1}$ It (12) has almost the same structure as doxorubicin (2), but shows fewer side effects while having similar antitumor activity. ${ }^{3}$ The only difference between epirubicin (12) and doxorubicin (2) is aminohexose that the former has namely L-acosamine (8) rather than L-daunosamine (4).

Epirubicin (12)

Figure 3. The structure of epirubicin (12)

Therefore, L-acosamine ($\mathbf{8}$) is very important moiety in its relationship to the impressive biological activity of epirubicin (12). Some amino sugars such as L-acosamine (8) and L-3-epidaunosamine (10) (Figure 2) have the anti-configuration between the amine and hydroxyl groups and 10 does not occur naturally. Many synthetic analogues of anthracycline have been synthesized in an attempt to reduce cytotoxicity or enhance antitumor activity, but there are not many examples where this has been successful. ${ }^{3-4}$ Thus, it would be valuable to investigate efficient and simple methods to produce precursors of L-acosamine (8) or other amino sugar analogues. These glycoside precursors can yield amino sugars moieties by glycosylation. ${ }^{4 \mathrm{~d}, 4 \mathrm{f}, 4 \mathrm{k}, 4 \mathrm{~m}}$

1.1.2. Glycosylation

To introduce the amino sugar moiety, several glycosidic bond formations have been developed to provide glycosides from derivatives of 3-aminohexoses (Figure 2). For example, Lowary et al. ${ }^{4 \mathrm{f}}$ introduced daunorubicin (1) analogues $\mathbf{1 5}, \mathbf{1 6}, \mathbf{1 8}$, and $\mathbf{1 9}$, which have azido sugars, by glycosylation in 2007 (Scheme 1).

13

17
.

15

18

16

19

Scheme 1. Syntheses of daunorubicin (1) analogues, which have azido sugars by glycosylation

After removal of acetate groups, the azido sugars $\mathbf{2 0}$ and $\mathbf{2 2}$ were transformed to give the Lacosamine moiety (8) in daunorubicin (1) analogues 21 and 23 by Staudinger reduction (Scheme 2).

Scheme 2. Syntheses of daunorubicin (1) analogues 21 and 23 by the Lowary et al. ${ }^{4 \mathrm{f}}$

In addition, 3-amino glycals can be valuable glycoside precursors to introduce amino sugars. They also produced a mixture of glycosides, but sometimes, only the α-glycoside was obtained from glycals. Monneret et al. ${ }^{5}$ demonstrated an example to show usefulness of 3-amino glycal 25 in 1998 (Scheme 3).

Scheme 3. Synthesis of α-glycoside from 3-amino glycal 25 by Monneret et al. ${ }^{5}$

Those examples show the usefulness of derivatives of 3-aminohexoses to obtain glycosides.

1.1.3. Previous synthetic approaches to precursors of L-acosamine (8)

Originally, these promising intermediates, related to L-acosamine (8) and 3-amino glycals, were prepared from carbohydrates, especially L-rhamnal in 1980. ${ }^{1,4 g}$ For example, the Boivin group in 1980 reported the preparation of protected L-acosamine derivative 30, from the protected L-rhamnal derivative 27 by acid catalyzed azide addition (Scheme 4). ${ }^{4 \mathrm{~g}}$

ratio (28:29=7:3)

Scheme 4. Synthesis of protected L-acosamine derivative $\mathbf{3 0}$ by Boivin et al. ${ }^{4 \mathrm{~g}}$
Pelyvas et $\mathrm{al} .^{4 \mathrm{~h}}$ also reported another procedure to prepare L-acosamine derivative $\mathbf{3 4}$ by selective oxidation with Fetizon's reagent $\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right.$ precipitated on Celite) from L-rhamnal (31) in 1980 (Scheme 5).

34

Scheme 5. Synthesis of protected L-acosamine derivative $\mathbf{3 4}$ by Pelyvas et al. ${ }^{4 \mathrm{~h}}$

Several strategies have been tried to synthesize derivatives of L-acosamine (8) from noncarbohydrates. Firstly, Wovkulich et al. ${ }^{4 i}$ introduced a asymmetric synthesis of L-acosamine derivatives 42 by an enantioselective intramolecular [3+2] cycloaddition of a chiral nitrone in 1981 (Scheme 6).

Scheme 6. Asymmetric synthesis of L-acosamine derivative $\mathbf{4 2}$ from non-carbohydrate $\mathbf{3 5}$

On the other hand, Trost et al. ${ }^{4 j}$ also synthesized the chiral L -acosamine derivative 49 from 2oxazolidone 46, which was prepared from the optically pure vinyl epoxide $\mathbf{4 5}$ obtained via a palladium-mediated vicinal hydroxyamination in 1987 (Scheme 7).

Scheme 7. Synthesis of L-acosamine derivatives 49 by Trost et al. ${ }^{4 j}$

The Fiebig group in 2000 developed a strategy, by which they convert L-rhamnal diacetate $\mathbf{(5 0)}$ to a precursor of L-acosamine derivative $\mathbf{5 2} .^{41}$ They used hydrolysis to obtain alcohol $\mathbf{5 1}$ from 50 and sodium azide as a nitrogen source to introduce the amine moiety of $\mathbf{5 2}$. The stereoselectivity of addition of azide was only moderate ($\mathbf{5 2} / \mathbf{5 3}=2 / 1)$ (Scheme 8).

Scheme 8. Synthesis of a precursor of L-acosamine derivative 52 by Fiebig et al. ${ }^{41}$

The Pucko group in 2006 demonstrated the synthesis of protected L-acosamine glycal 55. ${ }^{4 \mathrm{n}, 6}$ Isocyanate was used to convert 54 to a chlorosulfonyl compound, which is an valuable intermediate for the synthesis of L-acosamine glycal 55 (Scheme 9).

Scheme 9. Synthesis of protected L-acosamine glycal 55 by the Pucko group

Zhang and co-workers in 2007 developed a different approach, which uses a α, β-unsaturated lactone 56 as a key intermediate. ${ }^{3}$ It was prepared by a reaction with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ and mCPBA from L-rhamnal diacetate (50). The treatment with diphenylphosphoryl azide (DPPA) produced azido sugar 59 that is one of precursors to prepare L-acosamine (8) (Scheme 10).

Scheme 10. Synthesis of L-acosamine derivative $\mathbf{5 9}$ by Zhang et al. ${ }^{3}$

In 2007, McLeod and co-workers reported a synthesis of protected L-acosamine glycal 63 from a non-carbohydrate $\mathbf{6 0}$ via asymmetric aminohydroxylation (Scheme 11). ${ }^{40}$

Scheme 11. Synthesis of L-acosamine glycal 63 by the McLeod group
Finally, Bagal et al. ${ }^{4 \mathrm{p}}$ reported an asymmetric synthesis of a derivative of L-acosamine $\mathbf{8}$ and the β-amino ester 64 was converted to the lactone 67 that was subjected to a reduction with DIBAL-H to produce 69 (Scheme 12).

Scheme 12. Synthesis of L-acosamine derivative $\mathbf{6 9}$ by Bagal et al. ${ }^{4 \mathrm{p}}$

1.1.4. Previous syntheses of $\mathbf{3}$-amino sugar intermediate by $\mathbf{C}-\mathrm{H}$ amination

Recently, intramolecular amination of C-H bond, especially Du Bois reaction ${ }^{7}$ (Scheme 13), has been ultimately developed ranging from catalysts to reagents to synthesize nitrogencontaining molecules and amine-derived natural products. ${ }^{8}$

Scheme 13. The intramolecular C-H amination by the Du Bois group

In 2003 and 2005, the Parker group ${ }^{9}$ demonstrated that the intramolecular C-H amination using the Du Bois reaction, can be applied to produce valuable 3-amino glycals derivatives such as L-daunosamine (73), D-saccharosamine (75), L-ristosamine (77), and L-vancosamine (79) from glycals 72, 74, 76, and 78 with high stereoselectivity (Scheme 14).

72

74

75

77

79

Scheme 14. Synthesized protected 3-amino glycals by the Du Bois reaction ${ }^{7}$

The white group also reported new allylic C-H amination and the preparation of a key intermediate, which allowed Trost and co-workers ${ }^{4 j}$ (Scheme 7) to synthesize L-acosamine 8. The oxazolidinone 46 was prepared from carbamate 80 via allylic $\mathrm{C}-\mathrm{H}$ amination with a palladium catalyst 81 (Scheme 15). ${ }^{10-11}$

Scheme 15. Synthesis of the oxazolidinone via allylic C-H amination

These examples prove usefulness of $\mathrm{C}-\mathrm{H}$ amination methods to provide various amino sugars. Thus, studies of stereoselectivity of C-H amination of appropriate substituents would be valuable to develop application of amino sugars syntheses.

1.1.5. A new investigation of the intermolecular C-H amination of glycals

As we discussed, previously the Parker group demonstrated that the regiospecific C-H insertions of glycals (see Scheme 14) and allylic positions are preferred other sites. ${ }^{9}$ However, the intramolecular C-H amination on a cyclic system cannot be applied to the preparation of 3,4-trans-3-aminoglycals from deoxy glycals because it produces cis-addition products. Therefore, the intramolecular C-H amination cannot give L-acosamine glycal 92 and 3-epi-daunosamine 94 (see Scheme 17).

In 2007, Du Bois et al. ${ }^{12}$ also introduced the intermolecular C-H amination (Scheme 16) and some of the examples showed stereoselective insertions of $\mathrm{C}-\mathrm{H}$ bond (Table 1).

Scheme 16. The intermolecular C-H amination developed by Du Bois et al. ${ }^{12}$

Table 1. Examples for a stereoselective intermolecular amination by the Du Bois group
Substrate

Thus, we wanted to build a new efficient way to synthesize them from glycals via the intermolecular C-H amination. Due to steric hindrance, we expected that stereoselectivity would
be controlled by the intermolecular C-H amination to provide useful other 3-amino sugars including L-rhodinose glycal (92) and L-amicetose glycal (94) if allylic positions were more reactive than other sites. (Scheme 17).

92

RO
93

95

Scheme 17. Retrosynthetic analyses for syntheses of 3-amino glycals 93 and 95

To investigate them, we needed to prepare glycals $\mathbf{9 3}$ and $\mathbf{9 5}$ as precursors. There are few methods for the preparation of L-rhodinose glycal (93) and L-amicetose glycal (95). Efficient methods has been developed by McDonald et al. ${ }^{13}$ in 1998 and Trost et al. ${ }^{14}$ in 2002 (Scheme 18).

Scheme 18. Syntheses of glycals $\mathbf{9 3}$ and $\mathbf{9 5}$ by the McDonald group and the Trost group
Both methods can produce two glycals 93 and 95 by tungsten ${ }^{13}$ or rhodium ${ }^{14}$-catalyzed cycloisomerization, but precursors 96 and 97 are not prepared by asymmetric syntheses. ${ }^{13-14}$

When the Parker group synthesized L-ristosamine (77), 99 was prepared by asymmetric synthesis (see scheme 21). ${ }^{9 \mathrm{a}}$ We believe that the intermediate 97 could be obtained after protection and deprotection of the alcohol 99 . (Scheme 19)

Scheme 19. Retrosynthetic analysis of alkynol 99

In progress of synthesis of the alkynol 97, asymmetric procedure was reported by Schmidt and co-worker. ${ }^{15}$ L-Rhodinose glycal (93) and L-amicetose glycal (95) were prepared from the ethyl lactate (107) via a ring closing metathesis isomerization. These new methods seem to be efficient and useful, so we adopted their procedures and prepared L-rhodinose glycal (93). Finally, the intermolecular C-H amination was applied to know the stereoselective C-H insertion of a glycal.

1.1.6. A new investigation of the intramolecular C-H amination of alkynol carbamates

As we discussed, Trost and White groups showed preparations of the oxazolidinone 46 as the key intermediate to synthesize L-acosamine (8) from the epoxide $\mathbf{4 5}$ and the carbamate $\mathbf{8 0}$ (Scheme 20).

Scheme 20. The key precursor 46 of L-acosamine derivative 49
We focused on another possibility to access the intermediate oxazolidinone 46 from an alkyne 102 (see Scheme 23) by the intramolecular C-H amination (Du Bois reaction).

When the Parker group disclosed a preparation of L-ristosamine glycal (77), they also developed a procedure to provide a carbamate $\mathbf{1 0 2}$ (Scheme 21) ${ }^{\text {aa }}$, but the regioselectivity of C-H amination of the alkynol carbamate $\mathbf{1 0 2}$ was not explored.

Scheme 21. Asymmetric synthesis of the carbamate $\mathbf{1 0 2}$ by the Parker group

At that time, there was no example to expect results from C-H amination, but we could expect two possible products (Scheme 22).

Scheme 22. Expected products from C-H amination of alkynol carbamates

When it provides the insertion of a nitrene into a propargylic C-H bond, we expected that a precursor of oxazolidinone 103 might be produced from the carbamate $\mathbf{1 0 2}$, which will subjected to a reduction of alkyne $\mathbf{1 0 3}$ to provide a valuable intermediate $\mathbf{4 6}^{4 j}$ for L-Acosamine (8) (Scheme 23). The stereoselectivity could be controlled by cis-addition of the intramolecular C-H amination.

Scheme 23. Retrosynthetic analysis of the oxazolidinone $\mathbf{4 6}$ by the Du Bois reaction

In addition, another expected product 104 was an aminal structure, which has amine and alcohol functional group on the same carbon atom. A wide variety of natural products, which show incredible bioactivities for cancer cells, have aminal structures as a key moiety such as pederin (105) and psymberin (106). Preparing the aminal moiety and control of its stereochemistry are the central problems in their syntheses. ${ }^{16}$ If we would control the stereoselectivity of aminal structures, it could be a new strategy to produce valuable natural compounds (Figure 4).

Pederin (105)

(+)-Psymberin (106)

Figure 4. Natural products, which have aminal structures

Thus, we have investigated reactivity and selectivity of alkynol carbamates of intramolecular C-H amination.

1.2. Result and discussion

1.2.1. Intermolecular C-H amination of L-rhodinose glycals (93)

1.2.1.1. Synthesis of L-rhodinose glycals (93)

To investigate the stereoselectivity of the intermolecular C-H amination of L-rhodinose glycal (93) and L-amicetose glycal (95), we decided to follow procedures developed by Schmidt group ${ }^{15}$. They produced 93 and 95 from ethyl lactate (107) via the RCM-isomerization. The first step was a synthesis of allyl ethyl lactate $\mathbf{1 0 8}^{17}$ from the ethyl lactate (107) via a palladiumcatalyzed O-allylation with allyl ethyl carbonate. Reduction of the allyl ethyl lactate 108, and then addition of vinyl magnesium bromide produced alcohol 109. Benzyl protection of the alcohol $\mathbf{1 0 9}$ afforded benzyl ether 110. However, we were not able to prepare L-rhodinose glycal (93) from 110 through the RCM-isomerization. Instead of 93, a dihydropyran 111 was obtained. We also used other reagents such as NaH and NaBH_{4} instead of NaOH for the RCMisomerization ${ }^{18}$, but all reactions produced the only dihydropyran 111 (Scheme 24).

Scheme 24. Preparation of the dihydopyran 111 from the ethyl lactate 107
In 1973, Corey group reported the isomerization of allyl ether that Wilkinson's catalyst, $\mathrm{RhC}\left(\mathrm{PPh}_{3}\right)_{3}$, can catalyze isomerization of allyl ether $\mathbf{1 1 2}$ to 1-propenyl ether $\mathbf{1 1 3}$ (Scheme 25). ${ }^{19}$

Scheme 25. Isomerization of allyl ether with Rh catalyst
Thus, the dihydropyran 111 was treated with Wilkinson's catalyst and finally we could obtain the protected L-rhodinose glycal 93 (Scheme 26). ${ }^{19-20}$

Scheme 26. Synthesis of the protected L-rhodinose glycal 93 by isomerization with Rh catalyst

1.2.1.2. Intermolecular C-H amination of L-rhodinose glycal (93)

After preparing C-H amination reagents such as $\mathrm{TcesNH}_{2} \mathbf{8 3}, \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)_{2}$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$ $\mathbf{8 4}$, we investigated the selectivity of the intermolecular C-H amination ${ }^{12}$ of the protected Lrhodinose glycal 93 to know if L-epi-daunosamine glycal (92) could be produced from the protected L-rhodinose glycal 93 . However, we found that the product was not the 3 -amino glycal 92 but the 2-aminosugar 114 (Scheme 27).

Scheme 27. Synthesis of 2-aminosugar 114 from the protected L-rhodinose glycal 93
On the basis of a reference ${ }^{21}$, we believe that a rhodium nitrene insertion prefers forming an aziridine ring with a double bond of $\mathbf{9 3}$ to $\mathrm{C}-\mathrm{H}$ amination of $\mathrm{C} 3-\mathrm{H}$ bond of 93 , and 2-aminosugar 114 was produced via an aziridine ring opening by $\left(-^{\mathrm{t}} \mathrm{BuCO}_{2}\right)$ generated from a reagent, $\mathrm{PhI}\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)_{2}$ (Scheme 28).

Scheme 28. Formation of 2-aminosugar 114 via aziridine ring opening
So far, there are not so many examples ${ }^{22}$ to prepare 2 -amino glycosides. Our approach would be good access to introduce 2-amino sugar moiety for natural products analogues.

1.2.2. Intermolecular C-H amination of alkynol carbamates

1.2.2.1. Preparation of alkynol carbamates

First of all, the alkynol carbamate $\mathbf{1 1 5}$ was prepared from 3-buten-2-ol (100) using the procedure developed by the Parker group. ${ }^{9 \mathrm{a}}$ The epoxide was produced from 3-butene-2-ol (100) by Sharpless asymmetric epoxidation and the epoxy alcohol was protected by TBDPS to provide 101. The treatment of the epoxide 101 with acetylide in the presence of Lewis acid $\left(\mathrm{Et}_{2} \mathrm{AlCl}\right)$ gave alkynol 99 that was converted to the alkynol carbamate 115 (Scheme 29).

Scheme 29. Asymmetry synthesis of the alkynol carbamate 115

In addition, we also applied another synthetic way to easily prepare alkynol carbamates, two diastereomers $\mathbf{1 2 2}$ and 123. The McDonald group reported that a treatment of aldehyde $\mathbf{1 1 6}(\mathrm{R}=$ TBS) with allenylmagnesium bromide could give a partially separable mixture of TBS-protected alkynols 117 and 118, but it is not convenient to make allenylmagnesium bromide (Scheme 30). ${ }^{13}$

Scheme 30. Synthesis of alkynols $\mathbf{1 1 7}$ and $\mathbf{1 1 8}$ with allenylmagnesium bromide

Wu et al. ${ }^{23}$ also introduced a synthesis of Bn-protected alkynols $\mathbf{1 1 9}$ and $\mathbf{1 2 0}$ from the aldehyde $116(\mathrm{R}=\mathrm{Bn})$ by a propargylation with Zn -dust and propargyl bromide, which is an effective and convenient method, but they gave an inseparable mixture (Scheme 31).

Scheme 31. Synthesis of alkynols $\mathbf{1 1 9}$ and $\mathbf{1 2 0}$ with Zn -dust and propargyl bromide

Therefore, we decided to apply allylation with Zn -dust and propargyl bromide to produce carbamates 117 and 118 from aldehyde ($\mathrm{R}=\mathrm{TBS}$) 116 that can be separable by silica gel chromatography (Scheme 32).

Scheme 32. Synthesis of alkynols 117 and 118 with Zn -dust and propargyl bromide
(-)-Ethyl lactate (107) was simply converted to TBS-protected ethyl lactate 121. The DIBALH reduction of TBS-protected ethyl lactate $\mathbf{1 2 1}$ gave an aldehyde $\mathbf{1 1 6} .{ }^{24}$ The treatment of the aldehyde 116 with Zn dust and propargyl bromide provided alkynols as two diastereomers 117 and 118 that were partially separated by silica gel chromatography. Finally, an addition of isocyanate to each alkynol $\mathbf{1 1 7}$ and $\mathbf{1 1 8}$ followed by filtration throughout $\mathrm{Al}_{2} \mathrm{CO}_{3}{ }^{25}$ resulted in two diastereomers, carbamates $\mathbf{1 2 2}$ and $\mathbf{1 2 3}$ (Scheme 33).

Ratio : $\mathbf{1 1 7} / \mathbf{1 1 8}=1.0 / 1.1$

Scheme 33. Preparation of two alkynol carbamates diastereomers $\mathbf{1 2 2}$ and $\mathbf{1 2 3}$

1.2.2.2. C-H amination of alkynol carbamates

We had been investigating the C-H amination of carbamate 115 under the Du Bois reaction condition ${ }^{7}$. After several experiments, although this reaction just gave small amount of a product $\mathbf{1 2 4}(12 \%)$, it showed that the carbamate $\mathbf{1 1 5}$ had reactivity for $\mathrm{C}-\mathrm{H}$ amination and the product is the aminal 124 (Scheme 34) (Table 2).

Scheme 34. Synthesis of aminal 124 from carbamate 115
Table 2. Results of C-H amination of alkynol carbamate $\mathbf{1 1 5}$

Catalyst (\% mol)		PhI(OAc) $)_{2}$ $($ eq. $)$	$\mathrm{MgO}($ eq. $)$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Result
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	5%	1.4	2.3	40	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	no rxn
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	10%	1.4	2.3	40	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	no rxn
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	20%	1.4	2.4	40	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	no rxn
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	$20 \% \mathrm{X} 2$	1.4×2	2.4 X 2	90	Toluene	$\mathrm{Y}=12 \%$

After we obtained a small amount of product, we prepared two carbamate diastereomers $\mathbf{1 2 2}$ and $\mathbf{1 2 3}$ and another catalyst, $\mathrm{Rh}_{2}(\mathrm{tpa})_{4}$, to examined the regio and stereoselectivity of $\mathrm{C}-\mathrm{H}$ amination for carbamates. Firstly, the carbamate $\mathbf{1 2 3}$ that has the same stereo configuration as the carbamate $\mathbf{1 1 5}$ was examined and it gave us only aminal structure $\mathbf{1 2 5}$ like $\mathbf{1 2 4}$ in 52% yield. The $\mathrm{Rh}_{2}(\text { tpa })_{4}$ catalyst ${ }^{7,26}$ is more efficient and powerful than the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ for the carbamate $\mathbf{1 2 3}$ in C-H amination reaction. The relative stereochemistry of the aminal $\mathbf{1 2 5}$ was assigned on the basis of nuclear Overhauser effects (Scheme 35) (Table 3).

123

125

Scheme 35. Synthesis of aminal 125 from carbamate 123

Table 3. Results of C-H amination of alkynol carbamate $\mathbf{1 2 3}$

Catalyst (\% mol)		$\mathrm{PhI}(\mathrm{OAc})_{2}$ (eq.)	MgO (eq.)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Result
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	20%	1.4	2.4	50	benzene	conversion 50\%
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	20%	1.4	2.4	90	toluene	no product and no $\mathbf{1 2 3}$
$\mathrm{Rh}_{2}(\text { tpa })_{4}$	20%	1.4	2.4	50	benzene	$\mathrm{Y}=40 \%$, no starting
$\mathrm{Rh}_{2}(\text { tpa })_{4}$	3%	1.4	2.4	50	benzene	$\mathrm{Y}=52 \%, 19 \%$ starting (123) recovered

On the other hand, another diastereomer 122 did not give any product, although several reaction conditions including different catalysts were tried (Scheme 36) (Table 4).

Scheme 36. C-H amination of carbamate 122

Table 4. Results of C-H amination of alkynol carbamate $\mathbf{1 2 2}$

Catalyst (\% mol)		PhI(OAc) (eq.)	MgO (eq.)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Result
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	20%	1.4	2.4	40	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	no rxn
$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	20%	1.4	2.4	80	benzene	no rxn
Rh_{2} (tpa) 4	4%	1.4	2.0	40	benzene	$96 \% \mathbf{1 2 2}$ recovered
Rh_{2} (tpa) 4_{4}	10%	1.8	2.4	50	benzene	no rxn
Rh_{2} (tpa)	40%	1.8	3.0	40	benzene	no $\mathbf{1 2 2}$ and no product
Rh_{2} (tpa) $)_{4}$	20%	3.5	6.0	50	benzene	no $\mathbf{1 2 2}$ and no product

Under the same reaction condition, the anti-alkynol carbamate $\mathbf{1 2 3}$ just gave aminal product 125, but the syn-alkynol $\mathbf{1 2 2}$ was not reactive and did not give products. To confirm previous results for selective amination, a mixture of $\mathbf{1 2 2}$ and $\mathbf{1 2 3}$ (1:1 ratio) was examined under the Du Bois reaction and this experiment gave us more a reliable result that the anti-alkynol carbamate $\mathbf{1 2 3}$ could just do C-H insertion and the syn-alkynol carbamate $\mathbf{1 2 2}$ did not give any C-H insertion product on based of NMR analysis (Scheme 37).

$122+123$

Scheme 37. C-H amination of a mixture of diastereomers of $\mathbf{1 2 2}$ and $\mathbf{1 2 3}$

1.3. Conclusion

In conclusion, in attempting to examine the stereoselectivity of intermolecular C-H amination for L-rhodinose glycal (93), we discovered that the 2-amino sugar 114 was produced from the glycal 93 in 57% yield. This experimental result clearly shows that the intermolecular C-H amination of glycals prefer 2 -amino sugars to 3 -amino sugars. We can explain that the intermolecular C-H amination by the formation of an aziridine ring intermediate instead of nitrene $\mathrm{C}-\mathrm{H}$ insertion and thereafter aziridine ring opening would provide the 2 -amino sugar 93.

In addition, we had investigated and discovered that the intramolecular C-H amination of anti-alkynol carbamates $\mathbf{1 1 5}$ and $\mathbf{1 2 3}$ give aminal structures 124 and $\mathbf{1 2 5}$ with high regio-, and stereoselectivity, but the isomeric syn-alkynol carbamates $\mathbf{1 2 2}$ do not provide any product. Experimental result also showed that the $\mathrm{Rh}_{2}(\text { tpa })_{4}$ catalyst is more reactive than the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ for the C-H amination of alkynol carbamates. Further studies of the C-H amination of alkynol carbamates are needed to allow the syntheses of aminal subunits in valuable natural compounds.

1.4. Reference

(1) Hauser, F. M.; Ellenberger, S. R.: Syntheses of 2,3,6-trideoxy-3-amino- and 2,3,6-trideoxy-3-nitrohexoses, Chem. Rev. 1986, 86, 35.
(2) Zaya, M. J.; Hines, R. N.; Stevens, J. C.: Epirubicin Glucuronidation and UGT2B7 Developmental Expression, Drug Metabolism and Disposition 2006, 34, 2097.
(3) Zhang, G.; Shi, L.; Liu, Q.; Liu, X.; Li, L.; Wang, J.: A divergent approach to 3-azido-2,3,6-trideoxy-l-hexoses from rhamnal, Tetrahedron Lett. 2007, 48, 3413.
(a) Portugal, J.; Cashman, D. J.; Trent, J. O.; Ferrer-Miralles, N.; Przewloka, T.; Fokt, I.; Priebe, W.; Chaires, J. B.: A New Bisintercalating Anthracycline with Picomolar DNA Binding Affinity, J. Med. Chem. 2005, 48, 8209 (b) Zhang, G.; Fang, L.; Zhu, L.; Aimiuwu, J. E.; Shen, J.; Cheng, H.; Muller, M. T.; Lee, G. E.; Sun, D.; Wang, P. G.: Syntheses and Biological Activities of Disaccharide Daunorubicins, J. Med. Chem. 2005, 48, 5269 (c) Zhang, G.; Fang, L.; Zhu, L.; Zhong, Y.; Wang, P. G.; Sun, D.: Syntheses and Biological Activities of 3'-Azido Disaccharide Analogues of Daunorubicin against Drug-Resistant Leukemia, J. Med. Chem. 2006, 49, 1792 (d) Horton, D.; Khare, A.: Anthracycline glycosides of 2,6-dideoxy-2-fluoro- α-l-talopyranose, Carbohydr. Res. 2006, 341, 2631 (e) Fang, L.; Zhang, G.; Li, C.; Zheng, X.; Zhu, L.; Xiao, J. J.; Szakacs, G.; Nadas, J.; Chan, K. K.; Wang, P. G.; Sun, D.: Discovery of a Daunorubicin Analogue That Exhibits Potent Antitumor Activity and Overcomes P-gp-Mediated Drug Resistance, J. Med. Chem. 2006, 49, 932 (f) Fan, E.; Shi, W.; Lowary, T. L.: Synthesis of Daunorubicin Analogues Containing Truncated Aromatic Cores and Unnatural Monosaccharide Residues, J. Org. Chem.2007, 72, 2917 (g) Boivin, J.; Pais, M.; Monneret, C.: Substitutions d'esters allyliques: préparation de glycals aminës en c-3 et étude de leur glycosidation acido-cataly-sée. Application à l'hémisynthè de glycosides du groupe des anthracyclines, Carbohydr. Res. 1980, 79, 193 (h) Pelyvás, I.; Whistler, R. L.: Synthesis of 1-acosamine and 1-thio-l-acosamine derivatives by the stereoselective reduction of O-acetyloximes with borane, Carbohydr. Res. 1980, 84, C5 (i) Wovkulich, P.
M.; Uskokovic, M. R.: A chiral synthesis of L-acosamine and L-daunosamine via an enantioselective intramolecular[3 + 2]cycloaddition, J. Am. Chem. Soc. 1981, 103, 3956 (j) Trost, B. M.; Sudhakar, A. R.: Cis hydroxyamination equivalent. Application to the synthesis of (-)-acosamine, J. Am. Chem. Soc. 1987, 109, 3792 (k) Konradsson, P.; Udodong, U. E.; Fraser-Reid, B.: Iodonium promoted reactions of disarmed thioglycosides, Tetrahedron Lett. 1990, 31, 4313 (1) Renneberg, B.; Li, Y.-M.; Laatsch, H.; Fiebig, H.-H.: A short and efficient transformation of rhamnose into activated daunosamine, acosamine, ristosamine and epi-daunosamine derivatives, and synthesis of an anthracycline antibiotic acosaminyl-[var epsilon]-iso-rhodomycinone, Carbohydr. Res. 2000, 329, 861 (m) Lear, M. J.; Yoshimura, F.; Hirama, M.: A Direct and Efficient α Selective Glycosylation Protocol for the Kedarcidin Sugar, L-Mycarose: AgPF6 as a Remarkable Activator of 2-Deoxythioglycosides, Angew. Chem. Int. Ed. 2001, 40, 946 (n) Pucko, W.; Les, A.; Ramza, J.; Zagrodzka, J.; Cieplucha, G.; Cichy, B.; Szelejewski, W.: Optimization of a Key Step of Synthesis of 1-Acosamine and 1-Daunosamine Derivatives, Industrial \& Engineering Chemistry Research 2006, 45, 2962 (o) Bodkin, J. A.; Bacskay, G. B.; McLeod, M. D.: The Sharpless asymmetric aminohydroxylation reaction: optimising ligand/substrate control of regioselectivity for the synthesis of 3- and 4-aminosugars, Organic \& Biomolecular Chemistry 2008, 6, 2544 (p) Bagal, S. K.; Davies, S. G.; Fletcher, A. M.; Lee, J. A.; Roberts, P. M.; Scott, P. M.; Thomson, J. E.: Concise and highly selective asymmetric synthesis of acosamine from sorbic acid, Tetrahedron Lett. 2011, 52, 2216.

Mouton, C.; Tillequin, F.; Seguin, E.; Monneret, C.: Synthesis of heterodisaccharidecontaining peptides, fragments of actinoidin antibiotics, J. Chem. Soc., Perkin Trans. 1 1998, 2055.
(6) Hall, R. H.; Jordaan, A.; Lourens, G. J.: Reaction of chlorosulphonyl isocyanate with unsaturated sugars, J. Chem. Soc., Perkin Trans. 1 1973, 38.
(8) Collet, F.; Dodd, R. H.; Dauban, P.: Catalytic C-H amination: recent progress and future directions, Chem. Commun. 2009, 5061.
(11) Fraunhoffer, K. J.; White, M. C.: syn-1,2-Amino Alcohols via Diastereoselective Allylic C-H Amination, J. Am. Chem. Soc. 2007, 129, 7274.
(12) Fiori, K. W.; Du Bois, J.: Catalytic Intermolecular Amination of C-H Bonds: Method Development and Mechanistic Insights, J. Am. Chem. Soc. 2007, 129, 562.
(13) McDonald, F. E.; Zhu, H. Y. H.: Novel Strategy for Oligosaccharide Synthesis Featuring Reiterative Alkynol Cycloisomerization, J. Am. Chem. Soc. 1998, 120, 4246.
(14) Trost, B. M.; Rhee, Y. H.: A Ru Catalyzed Divergence: Oxidative Cyclization vs Cycloisomerization of Bis-homopropargylic Alcohols, J. Am. Chem. Soc. 2002, 124, 2528.
(15) Bernd Schmidt; Anne Biernat: The Tandem Ring-Closing Metathesis-Isomerization Approach to 6-Deoxyglycals, Chemistry - A European Journal 2008, 14, 6135.
(a) Smith, A. B.; Jurica, J. A.; Walsh, S. P.: Total Synthesis of (+)-Psymberin (Irciniastatin A): Catalytic Reagent Control as the Strategic Cornerstone, Org. Lett. 2008, 10, 5625 (b) Huang, X.; Shao, N.; Palani, A.; Aslanian, R.; Buevich, A.: The Total Synthesis of Psymberin, Org. Lett. 2007, 9, 2597 (c) Jewett, J. C.; Rawal, V. H.: Total Synthesis of Pederin, Angew. Chem. Int. Ed. 2007, 46, 6502.
(17) Schmidt, B.; Nave, S.: Palladium-Catalyzed O-Allylation of alpha-Hydroxy Carbonyl Compounds, Adv. Synth. Catal. 2006, 348, 531.
(a) Schmidt, B.; Biernat, A.: Tandem RCM-Isomerization Approach to Glycals of Desoxyheptoses from a Common Precursor, Org. Lett. 2007, 10, 105 (b) Schmidt, B.; Staude, L.: Unexpected transfer hydrogenation of $\mathrm{C}-\mathrm{C}$-double bonds during Tandem-RCM-isomerization reactions, J. Organomet. Chem. 2006, 691, 5218 (c) Mallagaray, A.; Dominguez, G.; Gradillas, A.; Perez-Castells, J.: Tandem RCM-IsomerizationCyclopropanation Reactions, Org. Lett. 2008, 10, 597.

Corey, E. J.; Suggs, J. W.: Selective cleavage of allyl ethers under mild conditions by transition metal reagents, J. Org. Chem.1973, 38, 3224.

Oguri, H.; Oomura, A.; Tanabe, S.; Hirama, M.: Design and synthesis of a trans-fused polycyclic ether skeleton as an [alpha]-helix mimetic scaffold, Tetrahedron Lett. 2005, 46, 2179.
(a) Guthikonda, K.; Wehn, P. M.; Caliando, B. J.; Du Bois, J.: Rh-catalyzed alkene oxidation: a highly efficient and selective process for preparing N -alkoxysulfonyl aziridines, Tetrahedron 2006, 62, 11331 (b) Hayes, C. J.; Beavis, P. W.; Humphries, L. A.: $\mathrm{Rh}(\mathrm{II})$-catalysed room temperature aziridination of homoallyl-carbamates, Chem. Commun. 2006, 4501.
(a) Abuaan, M. M.; Brimacombe, J. S.; Tucker, L. C. N.: Syntheses of methyl 2,6-diacetamido-2,3,6-trideoxy- α-d-ribo-hexopyranoside (methyl di-N-acetyl- α-dtobrosaminide) and methyl 2-acetamido-2,3,6-trideoxy- β-l-lyxo-hexopyranoside, Carbohydr. Res. 1984, 132, 51 (b) Morin, C.: Inverse Klemer\–Rodemeyer Fragmentation. Application to the Synthesis of Positional Isomers of Ristosamine and Acosamine, Chem. Lett. 1986, 15, 1055.

Wu, W.-L.; Yao, Z.-J.; Li, Y.-L.; Li, J.-C.; Xia, Y.; Wu, Y.-L.: Diastereoselective Propargylation of .alpha.-Alkoxy Aldehydes with Propargyl Bromide and Zinc. A Versatile and Efficient Method for the Synthesis of Chiral Oxygenated Acyclic Natural Products, J. Org. Chem.1995, 60, 3257.

Massad, S. K.; Hawkins, L. D.; Baker, D. C.: A series of (2S)-2-O-protected-2hydroxypropanals (L-lactaldehydes) suitable for use as optically active intermediates, J. Org. Chem.1983, 48, 5180.
(25) Kocovsk, P.: Carbamates : A method of synthesis and some syntehtic applications, Tetrahedron Lett. 1986, 27, 5521.

Hashimoto, S.-i.; Watanabe, N.; Ikegami, S.: Dirhodium(II) tetra(triphenylacetate): A highly efficient catalyst for the site-selective intramolecular C-H insertion reactions of [alpha]-Diazo [beta]-Keto Esters, Tetrahedron Lett. 1992, 33, 2709.

Van Boom, J. H.; Leeuwenburgh, M. A.; Overkleeft, H. S.; van der Marel, G. A.: Synlett 1997, 1263.

McDonald, F. E.; Zhu, H. Y. H.: J. Am. Chem. Soc. 1998, 120, 4246.
(29) Van Cauwenberge, G.; Gao, L.-J.; Van Haver, D.; Milanesio, M.; Viterbo, D.; De Clercq, P. J.: A Novel Short Convergent Entry into Himbacine Derivatives, Org. Lett. 2002, 4, 1579.

1.5. Experimental section

General Information

All air- and moisture sensitive reactions were performed under argon in oven-dried or flamedried glassware. Unless stated otherwise, commercially available reagents were used as supplied and solvents were dried over molecular sieves prior to use. HPLC grade hexane and HPLC grade ethyl acetate (EtOAc) were used in chromatography. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium-benzophenone ketyl and dichloromethane was distilled from calcium hydride under argon gas. All experiments were monitored by thin layer chromatography (TLC) performed on Whatman precoated AL SIL G/UV $250 \mu \mathrm{~m}$ layer aluminum -supported flexible plates. Flash chromatography was carried out with Sorbent Technologies silica gel (porosity $60 \AA$, 230-400 mesh, surface area $500-600 \mathrm{~m}^{2} / \mathrm{g}$, bulk density $0.4 \mathrm{~g} / \mathrm{mL}$, pH range $6.5-$ 7.5). Infrared spectra were recorded with a Perkin-Elmer 1600 Series FT-IR instrument. Samples were scanned as neat liquids or dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on sodium chloride (NaCl) salt plates. Frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Nuclear magnetic resonance (NMR) spectra were recorded with a Varian Inova-600 (600 MHz for ${ }^{1} \mathrm{H}$), a Varian Inova-500 (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$), Bruker-400 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$), Varian Inova$400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, or Gemini-2300 (300 MHz for ${ }^{1} \mathrm{H}$) spectrometer. Chemical shifts for proton NMR spectra are reported in parts per million (ppm) relative to the singlet at 7.26 ppm for chloroform-d. Chemical shifts for carbon NMR spectra are reported in ppm with the center line of the triplet for chloroform-d set at 77.00 ppm . COSY and NOE experiments were measured on Bruker-400, Varian Inova-400 and Varian Inova-600 spectrometer. High-resolution mass spectra were obtained on a Micromass Q-Tof Ultima spectrometer by the Mass Spectrometry Laboratory at the University of Illinois Urbana Champaign.

1.5.1. Experimental Procedure for intermolecular C-H amination of glycals

Ally ethyl lactate $\mathbf{1 0 8} .{ }^{17}$ To solution of ethyl lactate (107) ($0.590 \mathrm{~g}, 5.00 \mathrm{mmol}$) in THF (5 mL) was added a solution of ally ethyl carbonate $(1.30 \mathrm{~g}, 10.0 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.144 \mathrm{~g}, 0.125$ mmol) in THF (5 mL) via a cannula. The mixture was stirred and heated to reflux for 5 h . The reaction was allowed to cool to ambient temperature and then filtered through a short pad of silica followed by washing with ethyl ether. After evaporation, the crude product was purified on silica gel chromatography (elution with petroleum ether / EtOAc $=9: 1$) to give allyl ethyl lactate $\mathbf{1 0 8}(0.63 \mathrm{~g}, 80 \%)$ as colorless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89($ dddd, $1 \mathrm{H}, J=$ $17.2,10.4,6.0,5.5 \mathrm{~Hz}$), 5.26 (ddd, $1 \mathrm{H}, J=16.9,3.4,1.5 \mathrm{~Hz}$), 5.16 (ddt, $J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{dq}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{ddt}, J=12.5,5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (ddt, $J=12.5 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{17}$

Alcohol 109. ${ }^{15,27}$ A solution DIBAL-H (1.0 M in hexane, $1.23 \mathrm{~mL}, 1.23 \mathrm{mmol}$) was added at -90 ${ }^{\circ} \mathrm{C}$ to a solution of lactate $\mathbf{1 0 8}(0.142 \mathrm{mg}, 0.900 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. After stirring at this temperature for $30 \mathrm{~min}, \mathrm{TLC}(\mathrm{EtOAc}$: hexanes $=1: 20)$ indicated complete consumption of the starting material. Vinyl magnesium bromide (0.7 M solution in THF, $2.51 \mathrm{~mL}, 1.76 \mathrm{mmol}$) was then added via syringe and the mixture was allowed to warm to ambient temperature. It was then poured onto water and diethyl ether, and the precipitate was dissolved with a saturated solution
of K tartrate. The organic layer was separated, and the aqueous layer was extracted twice with diethyl ether. The combined organic extracts were dried with MgSO_{4}. After evaporation, the crude product was purified on silica gel chromatography (elution with EtOAc : hexane $=1: 20$) to give alcohol 109 ($85 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.89$ (dddd, $J=17.3,10.5$, $5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}) 5.79(\mathrm{ddd}, J=17.3,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dm}$, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (ddd, $J=10.5,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dm}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (dddd, J $=12.8,5.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dddd, $J=12.8,5.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=7.0,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{dq}, J=7.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{16,28}$

Benzyl protected benzyl ether 110. ${ }^{15} \mathrm{NaH}$ (60% dispersion in mineral oil, $3.0 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added to a solution of $\mathbf{1 0 9}(9.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ and the mixture was heated to reflux for 30 min . Benzyl bromide ($13.2 \mathrm{mg}, 0.077 \mathrm{mmol}$) was added, and the mixture was heated to reflux for 30 min again. NaH (60% dispersion in mineral oil, $3.0 \mathrm{mg}, 0.08 \mathrm{mmol}$) was 2 times more added until TLC (EtOAc : hexane $=1: 7$) indicated complete consumption of the starting material. After evaporation, the crude product was purified on silica gel chromatography (elution with EtOAc : hexane = 1: 20) to afford benzyl ether $\mathbf{1 1 0}(13.5 \mathrm{mg}$, 92%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}$), 5.93 (dddd, $J=17.0,10.5,5.7,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.82(\mathrm{ddd}, J=17.2,10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.24(\mathrm{~m}, 3 \mathrm{H}), 5.16(\mathrm{dm}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.07(\mathrm{dt}, J=2.4,2 \mathrm{H}), 3.83-3.78(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{dq}, \mathrm{J}=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{15}$

3,6-Dihydropyran 111. ${ }^{15}$ Grubb's $1^{\text {st }}$ generation catalyst ($2.3 \mathrm{mg}, 5.0 \mathrm{~mol} \%$) was added to a solution of ether 110 ($13 \mathrm{mg}, 0.056 \mathrm{mmol}$) in toluene (1.5 mL). The solution was stirred at ambient temperature, until the starting material was fully consumed as indicated by TLC and all volatiles were evaporated. The residue was purified by silica gel column chromatography (elution with EtOAc : hexanes $=1: 20)$ to give colorless oil $111(6.0 \mathrm{mg}, 53 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}) \delta 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~m}$, $1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.

L-Rhodinose glycal (93). To a solution of dihydropyran $111(6.0 \mathrm{mg}, 29 \mu \mathrm{~mol})$ in absolute $\mathrm{EtOH}(3 \mathrm{~mL})$ was added $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(5.4 \mathrm{mg}, 5.9 \mu \mathrm{~mol})$ and $\mathrm{DBU}(1.1 \mu \mathrm{~L}, 7.4 \mu \mathrm{~mol}) .{ }^{20,28-29}$ The mixture was heated to 70°. After 16 h , the reaction temperature was increased to $85^{\circ} \mathrm{C}$. The catalyst ($5.4 \mathrm{mg}, 5.9 \mu \mathrm{~mol}$) and DBU ($7 \mu \mathrm{~L}$) were added more and stirred for 2.5 h at the same temperature. After evaporation, the residue was purified by silica gel column chromatography (elution with EtOAc : hexanes $=1: 20$) to give colorless oil $93(5.0 \mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 6.31(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dq}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dt}, J=2.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.28$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{16,28}$

2-Amino sugar 114. To a solution of glycal $93(14.3 \mathrm{mg}, 0.070 \mathrm{mmol})$ in benzene (0.8 mL) was added $\mathrm{Rh}_{2}(\mathrm{esp})_{4} \mathbf{8 4}(4.0 \mathrm{mg}, 0.005 \mathrm{mmol})$ and NH_{2} Tces $\mathbf{8 3}(10.2 \mathrm{mg}, 0.070 \mathrm{mmol})$ under argon and then a solution of $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right)_{2}(56.9 \mathrm{mg}, 0.140 \mathrm{mmol})$ in benzene $(0.5 \mathrm{~mL})$ was added dropwise for 3 h with a syringe pump. The reaction mixture was stirred for 3 hr and sat. thiourea solution was added. The mixture was separated, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times), and dried over anhydrous MgSO_{4}. The combined organic extract was concentrated under reduced pressure and purified by silica gel column chromatography (elution with EtOAc : hexane $=1: 20$) to give white solid 114 ($21 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.19(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $4.25-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{qd}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=14.4,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.82(\mathrm{td}, J=12.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.6,137.8,128.7,128.2,93.5,91.0,78.5,76.9,73.7,71.6,68.7,48.5,39.6$, 29.6, 27.3, 16.7.

1.5.2. Experimental Procedure for intramolecular of C-H amination of alkynol carbamates

Epoxide 101 ${ }^{9 \mathrm{a}}$ Powdered $3 \AA$ molecular sieves (500 mg) were placed in a flask and heated at $300{ }^{\circ} \mathrm{C}$ under reduced pressure (ca .0 .5 mmHg) for 3 h . To the cooled flask, maintained under argon, were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, 3-butene-2-ol (100) ($2.0 \mathrm{~mL}, 23 \mathrm{mmol}$), and L-(+)-DIPT
$(730 \mu \mathrm{~L}, 3.5 \mathrm{mmol})$. The stirred mixture was cooled to $-20^{\circ} \mathrm{C}$ and treated with $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(680$ $\mu \mathrm{L}, 2.3 \mathrm{mmol}$). After 30 min , TBHP in decane ($6.0 \mathrm{M}, 1.73 \mathrm{~mL}, 10 \mathrm{mmol}$), dried with activated $3 \AA$ molecular sieves prior to use, was added dropwise. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 21 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. To the stirred mixture at $-20{ }^{\circ} \mathrm{C}$ were added imidazole ($4.7 \mathrm{~g}, 69 \mathrm{mmol}$), and TBDPS-Cl $(9.0 \mathrm{~mL}, 35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction mixture was slowly warmed to rt and stirred for 12 h . Then 10% saturated aqueous $\mathrm{NaHCO}_{3}(20$ mL) was added, and the mixture was filtered through a short Celite column and concentrated. The residue was extracted with hexane $(2 \times 20 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (elution with EtOAc : hexanes $=1: 150$) on silica gel, that had been treated with $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}$ per 100 mL gel) in hexane before use, to afford epoxide 101 ($2.7 \mathrm{~g}, 38 \%$ for two steps, theoretical yield: $45 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H})$, $2.86(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{9 a}$

Alkynol 99. ${ }^{\text {a }}$ To the solution of trimethylsilyl acetylene ($1.83 \mathrm{~mL}, 12.9 \mathrm{mmol}$) in toluene (13 mL) was added n -BuLi in hexane $(1.6 \mathrm{M}, 8.09 \mathrm{~mL}, 13 \mathrm{mmol})$ and the mixture was stirred at $-35^{\circ} \mathrm{C}$. After 15 min , the white suspension was warmed to $0^{\circ} \mathrm{C}$ and $\mathrm{Et}_{2} \mathrm{AlCl}$ in toluene $(1.8 \mathrm{M}, 7.19 \mathrm{~mL}$, $13 \mathrm{mmol})$ was added. The mixture was vigorously stirred at $0^{\circ} \mathrm{C}$ for 1 h and epoxide $101(2.11 \mathrm{~g}$, 6.47 mmol) in toluene (9 mL) was added via cannula. The mixture was slowly warmed to $10{ }^{\circ} \mathrm{C}$ and stirred for 12 h . Then, it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and water (10 $\mathrm{mL})$. The organic layer was separated and the aqueous phase was extracted with ether ($5 \times 5 \mathrm{~mL}$). The combined organic solution was dried over MgSO_{4}, concentrated, and purified by silica gel flash column chromatography on silica gel (elution with EtOAc : hexanes $=1: 60$) to provide alcohol $99(2.2 \mathrm{~g}, 63 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~m}$, $6 \mathrm{H}), 3.98(\mathrm{dd}, J=4.4,1 \mathrm{H}), 3.74(\mathrm{dt}, J=6.8,4.4,1 \mathrm{H}), 2.48(\mathrm{dd}, J=17.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J$
$=16.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{9 \mathrm{a}}$

Carbamate 115. To a solution of alcohol $99(56.8 \mathrm{mg}, 0.134 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added isocyanate $(20.5 \mu \mathrm{~L}, 0.167 \mathrm{mmol})^{9 \mathrm{a}}$ dropwise at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was slowly warned to rt , and stirred at rt for 1 hr . The mixture was filtered throughout $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then concentrated under reduced pressure. The crude oil was purified by silica gel column chromatography (elution with EtOAc : n-hexane =1:50) to afford carbamate 115 ($55 \mathrm{mg}, 88 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.71(\mathrm{~m}, 4 \mathrm{H}), 4.76-4.81$ (m, 1H), $4.44(\mathrm{br}, 2 \mathrm{H}), 4.10-4.07(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.12$ ($\mathrm{s}, 9 \mathrm{H}$).; IR (neat) $v_{\max } 3501,3341,2958,2929,2179,1728,1590,1427,1389,1250$, $1112 \mathrm{~cm}^{-1}$. Spectroscopic properties were in agreement with literature values. ${ }^{9 \mathrm{a}}$

TBS - protected ethyl lactate $121 .{ }^{24}$ To a solution of ethyl lactate $107(0.50 \mathrm{~g}, 3.2 \mathrm{mmol})$ in THF (5 ml) was added $\mathrm{Et}_{3} \mathrm{~N}(0.83 \mathrm{~g}, 8.2 \mathrm{mmol})$, DMAP ($37 \mathrm{mg}, 0.30 \mathrm{mmol}$) and TBS-Cl $(0.63$ $\mathrm{g}, 4.3 \mathrm{mmol}$) under argon, and the mixture was stirred at rt for 20 hr . The mixture was concentrated under reduced pressure. Ethyl ether was added, and salts were removed by filtration. The filtrate was washed with 15% acetic acid, water, Saturated aq. NaHCO_{3}, and water and then dried over MgSO_{4}. The combined mixture was concentrated under reduced pressure to give the crude product $121(744 \mathrm{mg}, 91.0 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.28(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.23-4.10(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 6 \mathrm{H})$ Spectroscopic properties were in agreement with literature values. ${ }^{29}$

Aldehyde 116. ${ }^{29,24}$ To a solution of TBS-protected ethyl ester $\mathbf{1 2 1}(500 \mathrm{mg}, 2.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to $-55^{\circ} \mathrm{C} \sim-65^{\circ} \mathrm{C}$, and then DIBAL-H ($2.9 \mathrm{~mL}, 2.88 \mathrm{mmol}, 1.3 \sim$ 1.5 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise for 20 min . The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 20 min , and then $\mathrm{H}_{2} \mathrm{O}$ was added dropwise. The mixture was filtered to remove white solid, dried over MgSO 4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane $\left.=1: 1\right)$ to afford aldehyde $\mathbf{1 1 6}(0.34 \mathrm{mg}$, 84%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.61(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{qd}, J=1.2,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 6 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{29}$

Alkynol 117 and 118. To a solution of aldehyde $\mathbf{1 1 6}(0.46 \mathrm{mg}, 1.97 \mathrm{mmol})$ in a mixed solvent (8 mL , DMF and ethyl ether $=1: 1$) was added activated Zn dust ($0.387 \mathrm{mg}, 5.92 \mathrm{mmol}$) and propargyl bromide $(0.59 \mathrm{mg}, 3.95 \mathrm{mmol})^{23}$ and the reaction was stirred at rt for 14 hr . The reaction mixture was filtered to remove Zn dust and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The organic phase was separated and the aqueous layer was extracted with ehtyl ether (5 mL X 2). The combined organic layers were washed with brine and dried over anhydrous MgSO . The
crude oil was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with pentene : ethyl ether $=100: 1$ and then $20: 1$) to afford 117 (90.9 $\mathrm{mg}, 20 \%), \mathbf{1 1 8}(51 \mathrm{mg}, 11 \%)$, and the mixture of $\mathbf{1 1 7}$ and $\mathbf{1 1 8}$ ($142 \mathrm{mg}, 32 \%$).

Akynol $117^{13}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.97(\mathrm{dq}, J=3.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 2.40$ (dd, $J=2.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{t}, J=2.4,1 \mathrm{H}), 1.2(\mathrm{~d}, J=6.3,3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$.

Alkynol $118{ }^{13}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.27$ (br, $1 \mathrm{H}), 2.03(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$.

Spectroscopic properties were in agreement with literature values. ${ }^{13}$

Carbamate 122. To a solution of alcohol $117(77 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and added isocyanate ($69 \mathrm{mg}, 0.37 \mathrm{mmol}$) dropwise. ${ }^{9 \mathrm{a}}$ The reaction was slowly warmed to rt and stirred for 1 hr . The reaction mixture was filtered throughout $\mathrm{Al}_{2} \mathrm{O}_{3}{ }^{25}$ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : n-hexane $=1: 20$) to afford $122(82 \mathrm{mg}, 90 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.75-4.70(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (dddd, $J=24.9,16.8$, $5.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.3,3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~d}, J=3.0$, 6 H). IR (neat) $v_{\max } 3482,3313,2928,2857,1725,1599,1389,1257,1109 \mathrm{~cm}^{-1}$.

Carbamate 123. To a solution of alcohol $118(50.5 \mathrm{mg}, 0.221 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and added isocyanate dropwise ($45.8 \mathrm{mg}, 0.243 \mathrm{mmol}$). ${ }^{9 \mathrm{a}}$ The reaction was slowly warmed to rt and stirred for 1 hr . The reaction mixture was filtered throughout $\mathrm{Al}_{2} \mathrm{O}_{3}{ }^{25}$ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : n-hexane =1:20) to afford $\mathbf{1 2 3}(55 \mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.86(\mathrm{br}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=5.4,1 \mathrm{H}), 4.00$ (app. quintet, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63-2.48 (m, 2H), $1.96(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 6 \mathrm{H})$.; IR (neat) $v_{\max } 3314,2925,2853,1724,1463,1379,1259,1074 \mathrm{~cm}^{-1}$.

115

124

Oxazolidinone 124. To a dried vial were added the carbamate $115(8.0 \mathrm{mg}, 0.017 \mathrm{mmol})$, toluene (3 ml), $\mathrm{MgO}(3 \mathrm{mg}, 0.074 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(7.7 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.5$ $\mathrm{mg}, 0.0034 \mathrm{mmol}) .{ }^{7}$ The mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 36 hr , and then cooled to rt . MgO (3.0 $\mathrm{mg}, 0.074 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}(7.7 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.5 \mathrm{mg}, 0.0034 \mathrm{mmol})$ were additionally added. The mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 18 hr again. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography (elution with EtOAc : hexane = 1:4) to afford oxazolidinone $\mathbf{1 2 4}(1.0 \mathrm{mg}, 12 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 6 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}$, $J=18.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=15.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}) ;$ IR (neat) $v_{\max } 3274,3071,2960,2926,2181,1775 \mathrm{~cm}^{-1}$.

Representative procedure for intramolecular C-H amination

Oxazolidinone 125. To a solution of carbamate $123(55.0 \mathrm{mg}, 0.203 \mathrm{mmol})$ in benzene (1 mL) were added $\mathrm{Rh}_{2}(\mathrm{tpa})_{4}(8.2 \mathrm{mg}, 0.007 \mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{4}(99.6 \mathrm{mg}, 0.309 \mathrm{mmol})$, and $\mathrm{MgO}(21.3$ $\mathrm{mg}, 0.528 \mathrm{mmol}$) and then stirred at $50^{\circ} \mathrm{C}$ for 3 hr . The mixture was cooled to rt and concentrated under reduced pressure. The crude oil was purified by silica gel column chromatography (elution with EtOAc : hexane $=1: 4)$ to afford $\mathbf{1 2 5}(23 \mathrm{mg}, 52 \%)$ and recovered starting material $\mathbf{1 2 3}$ $(10 \mathrm{mg}, 19 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.42(\mathrm{br}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=8.0,4.0,1 \mathrm{H}), 2.75-$ $2.63(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,86.2,84.6,78.8,70.62,27.3,25.5,18.9,18.0,-3.6$. IR (neat) 3312, 2929, 1767.; IR (neat) $v_{\max } 3313,2926,2854,1762,1724,1587,1462,1260,1037 \mathrm{~cm}^{-1}$.

Difference NOE for compound $\mathbf{1 2 5}$.

Inverted peak (ppm)	Enhanced peaks (ppm)
$\mathrm{CH}(4.34)$	$\mathrm{CH}_{2}(2.75-2.63), \mathrm{CH}_{3}(1.62)$
$\mathrm{CH}_{2}(2.70)$	$\mathrm{CH}(4.34), \mathrm{CH}(2.15), \mathrm{C}_{4} \mathrm{H}_{9}(0.90)$
$\mathrm{CH}_{3}(1.62)$	$\mathrm{CH}(4.34), \mathrm{C}_{4} \mathrm{H}_{9}(0.90), \mathrm{CH}_{3}(0.17), \mathrm{CH}_{3}(0.16)$

Part II.

Synthetic Studies of Edaxadiene (129)

2.1. Introduction

2.1.1. Background

Tuberculosis (TB) is an infectious disease and an incredibly serious problem around the world. It is caused by mycobacteria, mainly Mycobacterium tuberculosis. This tuberculosis is a pathogenic bacteria species, and more than one-third of global population has been infected. ${ }^{1}$ In 2009, Mann and co-workers reported that they found a new bioactive diterpene 129, which inhibits endosomal progression to suppress phagosome maturation in the infection process of Mycobacterium tuberculosis. ${ }^{2}$ Subverting phagosomal processing allows the bacterium to enter and reside in its host cell macrophage. Mycobacterium tuberculosis also prevents phagosomal maturation, and an enzyme encoded by Rv3377c plays an important role for Mycobacterium tuberculosis to enter into macrophage at initial stage.

The Rv3378c enzyme produces halimadienyl diphosphate (127). Mann and co-workers expected that an enzyme encoded by Rv3378c could give a further product from halimadienyl diphosphate (127). Finally, they got a single diterpene 129 (Scheme 38).

Scheme 38. Catalyzed cyclization of $\mathbf{1 2 7}$ to $\mathbf{1 2 9}$ by Rv3378c/MtEDS and proposed a mechanism 128

However, it is difficult to do a large scale incubation of Rv3378c encoded enzyme because this enzyme is unstable. Therefore, they developed the biomimetic synthesis of "PE" (129) from tuberculosinol (130) (Scheme 39).

Scheme 39. Corresponding biomimetic synthesis of "PE"(129) from tuberculosinol (130)

After characterization of the structure of "PE" (129), they proposed the structure and named it edaxadiene (129).

Later, Maugel and Mann et al. ${ }^{3}$ questioned the structure of "PE" (129), so they synthesized another possible structure, nosyberkol (isotuberculosinol) (131) and elucidated that the diterpene is not "PE" (129), but nosyberkol (isotuberculosinol) (131), which was isolated by Kashman et al. ${ }^{4}$ in 2004 from the Nosy be Islands sponge Raspailia sp. (Figure 5).

Nosyberkol (131)
Figure 5. Revised structure 131 of the diterpene 129

2.1.2. Synthetic approaches to nosyberkol (131) and "PE" (129)

In 2010, (\pm)-nosyberkol (131) was synthesized by Maugel et al. ${ }^{3 a}$ to compare the spectra data of the diterpene 129 they isolated to nosyberkol (131) (Scheme 36). A bicyclic structure $\mathbf{1 3 4}$ was prepared by an intermolecular Diels-Alder reaction (Scheme 40).

Scheme 40. Construction of a backbone 134 of (\pm)-nosyberkol (131) by Maugel et al. ${ }^{3 \mathrm{a}}$

From a bicyclic compound 134, they demonstrated syntheses of tuberculosinol (130) and (\pm)nosyberkol (131) (Scheme 41).

134

135

Tuberculosinol (130)

Nosyberkol (131)

Scheme 41. Syntheses of tuberculosinol (130) and (\pm)-nosyberkol (131) by Maugel et al. ${ }^{3 \mathrm{a}}$

In 2010, Sorensen group displayed a synthesis of the [3.3.1] bicyclic core $\mathbf{1 4 2}$ of "PE" (129) by an intramolecular ketone allylation. ${ }^{5}$ A Diels-Alder reaction in thermal condition with a modified Rawal diene 136 and tiglaldehyde 137 provided silyl enol ether 138, which was subjected to methylation and Suzuki-Miyaura coupling to give a right linear piece of alkene chain 139. After TBS-deprotection, the oxazolidinone was removed to afford α, β-unsaturated ketone 140, which was treated with Mn and Cu in AcOH -benzene to produce bicycles $\mathbf{1 4 1}$. After
a reduction and dehydration, they showed the synthesis of bicyclic core $\mathbf{1 4 2}$ by an intramolecular ketone allylation (Scheme 42).

Scheme 42. Synthesis of the [3.3.1] bicyclic core $\mathbf{1 4 2}$ of "PE" (129) by Sorensen group

In the progress of their research, Maugel et al. ${ }^{3}$ revised the structure of $\mathbf{1 2 9}$, so Sorensen group changed the target compound "PE" (129) to tuberculosinol (130) and (\pm)-nosyberkol (131) and also confirmed the structure of $\mathbf{1 2 9}$. A Diels-Alder reaction in thermal condition produced inseparable products 144 in favor of a desired major product (Scheme 43).

144 (endo : exo =1:2)
Scheme 43. Construction of a backbone 144 of (\pm)-nosyberkol (131) by Sorensen group

In addition, they demonstrated biomimetic conversion of tuberculosinol (130) into nosyberkol (131) (See Scheme 38). They found that this reaction is a Lewis acid-mediated allylic transposition ${ }^{6}$ and the treatment of tuberculosinol (130) with CuCl_{2} produced nosyberkol (131) in 34% yield (Scheme 44).

Scheme 44. Syntheses of nosyberkol (131) from tuberculosinol (130) by Sorensen group

When we started a synthesis of "PE" (129), we focused on the preparation of a bicyclic core by an intramolecular Diels-Alder reaction, but in the progress of our research, we found that the diterpene (129) is nosyberkol (131). Therefore, we also changed a target compound "PE" (129) to nosyberkol (131) and examined a procedure to convert tuberculosinol (130) to $\mathbf{1 3 1}$.

2.1.3. A new synthetic approach to a key core of "PE" (129)

We envisioned that the bicyclic core 145 , of "PE" (129) could be prepared by the intramolecular Diels-Alder (IMDA) reaction ${ }^{7}$ of triene 146. This was an attractive approach because a powerful fragmentation approach provided $\mathbf{1 4 6}$ from a commercially available epoxide 147 (Scheme 45).

145
Purported Edaxadiene or "PE" (129)

Scheme 45. Retrosynthetic analysis of "PE" (129)

The intramolecular Diels-Alder reaction (IMDA) ${ }^{7}$ could have 4 possible transition states to produce a diastereomers mixture. Desired products 150 and 151 would be produced throughout endo-transition state as an isomeric mixture in thermal condition (Scheme 46).

Scheme 46. Proposed transition states of the intramolecular Diels-Alder reaction

Based on our expectation, we designed a retrosynthetic approach to access a precursor of an IMDA. We focused on synthesis of methyl ketone 153 reported by Skorianetz et al. ${ }^{8}$ It was simply prepared from an epoxide, 4-(1,3,3-trimethylbicyclo[4.1.0]hept-2-yl)-3-Buten-2-one 147, a commercially available material by two steps (Scheme 47).

Scheme 47. Preparation the methyl ketone 153 from the epoxide 147 by Skorianetz et al. ${ }^{8}$

In addition, the haloform reaction has been widely used to convert ketones $\mathbf{1 5 4}$ to carboxylic acids 155 (Scheme 48). ${ }^{9}$

154

155
$\mathrm{X}=$ halogen

Scheme 48. Conversion ketones 154 to carboxylic acids $\mathbf{1 5 5}$ by haloform reaction

Therefore, we believed that haloform reaction would give us carboxylic acid 157 from methyl ketone 153. Reduction of carboxylic acid 157 followed by oxidation could produce aldehyde 156, which would be subjected to Wittig reaction to prepare a precursor 146 for an IMDA reaction (Scheme 49).

Scheme 49. Retrosynthetic analysis of a precursor 146

Furthermore, after we proved the usefulness of our simple procedure, introducing a chiral auxiliary to a precursor for an IMDA would control stereoselectivity to provide a desired product 151. Based on our retrosynthetic analysis, we started the synthetic approach of "PE" (129).

2.1.4. A new approach for the preparation of nosyberkol (131) from tuberculosinol (130)

In the progress of our research, it was elucidated that the diterpene $\mathbf{1 2 9}$ isolated by Mann et al. is nosyberkol (131). Therefore, we examined a synthetic route to obtain nosyberkol (131) from tuberculosinol (130) because we also wanted to confirm the structure of "PE" (129) by the synthesis of nosyberkol (131) from tuberculosinol (130) using a promising synthetic method for 1,3-transposition of primary allylic alcohols. There are some methods to convert primary allylic alcohols to vinyl tertiary alcohols. ${ }^{10}$ Especially, we focused on sulfoxide-sulfenate ester rearrangement (Scheme 50). ${ }^{11}$

Scheme 50. Sulfoxide-sulfenate ester rearrangement

Thus, we envisioned another promising method to nosyberkol (131) from tuberculosinol (130) by sulfoxide-sulfenate ester rearrangement (Scheme 51).

Scheme 51. Retrosynthetic approaches of nosyberkol (131) from tuberculosinol (130)

We used a model compound, farnesol (164), and explored synthetic methods with this rearrangement to obtain a vinyl tertiary alcohol 161 (Scheme 52).

161

Farnesol (164)

162
\downarrow

163

Scheme 52. Retrosynthetic analysis of a tertiary alcohol 161 from farnesol (164)

2.2. Result and Discussion

2.2.1. Studies of synthesis of "PE"(129)

As we envisioned retrosynthetic analysis of "PE" (129), the mixtures of diastereomers 152 were obtained from the epoxide 147 by reduction with LiAlH_{4}. After dehydration, the mixture 155 gave the methyl ketone 153 as one product in 78% for 2 steps (Scheme 53). ${ }^{8,12}$

Scheme 53. Preparation of the methyl ketone 153 from the epoxide 147
To convert the methyl ketone $\mathbf{1 5 3}$ to a carboxylic acid, the haloform reaction ${ }^{9 a}$ was examined to give a product. When it was treated with bromine, a desired product was obtained. The crude acid was directly used to the next step, reduction with LiAlH_{4}, to produce an alcohol 165 in 45% for 2 steps (Scheme 54).

153

1) Br_{2} / aq. NaOH dioxane, $0^{\circ} \mathrm{C}$ to rt
2) LAH, THF 45% (2 steps)

165

Scheme 54. Preparation of the alcohol 165 from the methyl ketone 153

The treatment of the alcohol $\mathbf{1 6 5}$ with PCC afforded an aldehyde 156, which was subjected to Wittig reaction to provide an ester 166, a precursor of the IMDA reaction (Scheme 55).

Scheme 55. Preparation of the triene 166 from the alcohol 165

Finally, in thermal condition, the IMDA reaction was applied to the ester $\mathbf{1 6 6}$ to produce a bicyclic core and we believed that products 167 were an inseparable mixture of diastereomers (Scheme 56).

Scheme 56. Preparation of the bicyclic compounds 167 from the triene 166

2.2.2. Studies of synthesis of nosyberkol (131) from tuberculosinol (130)

A sulfide 163 was synthesized from an allylic alcohol 164, farnesol, which is a commercially available compound. Farnesol (164) was treated with diphenyl sulfide ${ }^{13}$, tributyl phosphine, and pyridine to provide a sulfide $\mathbf{1 6 3}$ (Scheme 57). Other phosphine reagents were explored, but tributyl phosphine gave high conversion (Table 5).

Scheme 57. Synthesis of the sulfide 163 from the farnesol (164)
Table 5. Results of synthesis of the sulfide 163

Phosphine reagent	Solvent	Temperature	Result
Triphenyl phosphine	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	No rxn
Triphenyl phosphine	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	No rxn
Tris(dimethylamino)phosphine	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	Conversion 23\%
Tris(dimethylamino)phosphine	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	reflux	Conversion 35\%
Tributyl phosphine	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	Conversion $\sim 100 \%$ $\mathrm{Y}=83 \%$

RT = room temperature
In addition, a treatment of the sulfide $\mathbf{1 6 3}$ with mCPBA provided a sulfoxide $\mathbf{1 6 2}$ (scheme 58). ${ }^{14}$

Scheme 58. Preparation of the sulfoxide $\mathbf{1 6 2}$ from the sulfide $\mathbf{1 6 3}$
Finally, a vinyl tertiary alcohol $\mathbf{1 6 1}$ was produced from the sulfoxide $\mathbf{1 6 2}$ by sulfoxidesulfenate ester rearrangement ${ }^{11 a, b}$ and sulfenate cleavage. $\mathrm{P}(\mathrm{OMe})_{3}$ was used as thiophile ${ }^{15}$ (Scheme 59). The tertiary alcohol 161 was successfully synthesized from the model compound, farnesol (164).

Scheme 59. Synthesis of the vinyl tertiary alcohol 161 from the sulfoxide 162

We obtained a vinyl tertiary alcohol 161 in 61% yield for 3 steps and proved sulfoxidesulfenate ester rearrangement is a mild reaction to provide vinyl tertiary alcohols from allylic alcohols. However, the progress of their research, Sorensen group also proved the structure of "PE" (129), so we did not try to synthesize nosyberkol (isotuberculosinol) (131) from tuberculosinol (130)

2.3. Conclusion

In conclusion, a bicyclic structure 167, which would be a key structure of natural products, was simply constructed from epoxide 147, a commercially available material, by seven steps. Our procedure would be applied to syntheses of other natural products. In addition, we also demonstrated that the vinyl tertiary alcohol 161 can prepared from the farnesol (164) via the sulfoxide-sulfenate ester rearrangement and total yields for 3 steps were 61%. Nosyberkol (131) could be prepared from tuberculosinol (130) by our developed process.

2.4. Reference

(1) Rohde, K.; Yates, R. M.; Purdy, G. E.; Russell, D. G.: Mycobacterium tuberculosis and the environment within the phagosome, Immunological Reviews 2007, 219, 37.
(2) Mann, F. M.; Xu, M.; Chen, X.; Fulton, D. B.; Russell, D. G.; Peters, R. J.: Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis, J. Am. Chem. Soc. 2009, 131, 17526.
(3) (a) Maugel, N.; Mann, F. M.; Hillwig, M. L.; Peters, R. J.; Snider, B. B.: Synthesis of (\pm)-Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene) and (\pm)Tuberculosinol, Org. Lett. 2010, 12, 2626 (b) Mann, F. M.; Xu, M.; Chen, X.; Fulton, D. B.; Russell, D. G.; Peters, R. J.: Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis, J. Am. Chem. Soc. 2010, 132, 10953.
(4) Rudi, A.; Aknin, M.; Gaydou, E.; Kashman, Y.: Asmarines I, J, and K and Nosyberkol: Four New Compounds from the Marine Sponge Raspailia sp, J. Nat. Prod. 2004, 67, 1932.
(5) Spangler, J. E.; Carson, C. A.; Sorensen, E. J.: Synthesis enables a structural revision of the Mycobacterium tuberculosis-produced diterpene, edaxadiene, Chemical Science 2010, 1, 202.
(6) Arata, K.; Matsuura, C.: Isomerizations of Citronellal to Isopulegol and Geraniol to Linalool Catalyzed by Solid Acids and Bases, Chem. Lett. 1989, 18, 1797.

Craig, D.: Stereochemical aspects of the intramolecular Diels-Alder reaction, Chem. Soc. Rev. 1987, 16, 187.
(8) Skorianetz, W.; Ohloff, G.: Uber vinyloge English-Zimmerman-Spaltungen in der Jononreihe, Helv. Chim. Acta 1975, 58, 771.
(9) (a) Fuson, R. C.; Bull, B. A.: The Haloform Reaction, Chem. Rev. 1934, 15, 275 (b) Guthikonda, K.; Wehn, P. M.; Caliando, B. J.; Du Bois, J.: Rh-catalyzed alkene oxidation: a highly efficient and selective process for preparing N -alkoxysulfonyl aziridines, Tetrahedron 2006, 62, 11331.
(a) Wu, Y.-K.; Liu, H.-J.; Zhu, J.-L.: An Efficient Procedure for the 1,3-Transposition of Allylic Alcohols Based on Lithium Naphthalenide Induced Reductive Elimination of Epoxy Mesylates, Synlett 2008, 2008, 621 (b) Dittmer, D. C.; Discordia, R. P.; Zhang, Y.; Murphy, C. K.; Kumar, A.; Pepito, A. S.; Wang, Y.: A tellurium transposition route to allylic alcohols: overcoming some limitations of the Sharpless-Katsuki asymmetric epoxidation, J. Org. Chem. 1993, 58, 718 (c) Discordia, R. P.; Murphy, C. K.; Dittmer, D. C.: Telluride-mediated stereospecific conversion of racemic E-allylic alcohols to homochiral Z-allylic alcohols; transposition of primary and secondary allylic alcohols via glycidol derivatives, Tetrahedron Lett. 1990, 31, 5603.
(a) Evans, D. A.; Andrews, G. C.: Allylic sulfoxides. Useful intermediates in organic synthesis, Acc. Chem. Res. 1974, 7, 147 (b) Daniels, N. J.; Johnson, G.; Ross, B. C.; Yeomans, M. A.: Use of the allylic sulphoxide-sulphenate ester rearrangement for the synthesis of a 2-thiacephem and a penem, J. Chem. Soc., Chem. Commun. 1982, 1119 (c) Yamaguchi, Y.; Uyehara, T.; Kato, T.: Biogenetic type synthesis of (\pm)-concinndiol and (\pm)-aplysin 20, Tetrahedron Lett. 1985, 26, 343.
(12) Brenna, E.; Delmonte, M.; Fuganti, C.; Serra, S.: Enzyme-Mediated Preparation of (+)and $(-)-\beta$-Irone and (+)- and (-)-cis- γ-Irone from Irone alpha®, Helv. Chim. Acta 2001, 84, 69.
(13) Streiff, S.; Ribeiro, N.; Désaubry, L.: Synthesis of Allylsilanes by Reductive Lithiation of Thioethers, J. Org. Chem. 2004, 69, 7592.
(a) Brown, W. L.; Fallis, A. G.: Intramolecular rearrangements: Epimerization of bicyclic vinyl tertiary alcohols via a $[2,3]$ sulfoxide sigmatropic rearrangement, Can. J. Chem. 1987, 65, 1828 (b) Choi, S.; Yang, J.-D.; Ji, M.; Choi, H.; Kee, M.; Ahn, K.-H.; Byeon, S.-H.; Baik, W.; Koo, S.: Selective Oxidation of Allylic Sulfides by Hydrogen Peroxide with the Trirutile-type Solid Oxide Catalyst LiNbMoO6, J. Org. Chem. 2001, 66, 8192.
(15) Majetich, G.; Song, J. S.; Ringold, C.; Nemeth, G. A.; Newton, M. G.: Intramolecular additions of allylsilanes to conjugated dienones. A direct stereoselective synthesis of (.+-.)-14-deoxyisoamijiol, J. Org. Chem. 1991, 56, 3973.

2.5. Experimental Section

General Information

All air- and moisture sensitive reactions were performed under argon in oven-dried or flamedried glassware. Unless stated otherwise, commercially available reagents were used as supplied and solvents were dried over molecular sieves prior to use. HPLC grade hexane and HPLC grade ethyl acetate (EtOAc) were used in chromatography. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium-benzophenone ketyl and dichloromethane was distilled from calcium hydride under argon gas. All experiments were monitored by thin layer chromatography (TLC) performed on Whatman precoated AL SIL G/UV 250μ m layer aluminum -supported flexible plates. Flash chromatography was carried out with Sorbent Technologies silica gel (porosity $60 \AA, 230-400$ mesh, surface area $500-600 \mathrm{~m}^{2} / \mathrm{g}$, bulk density $0.4 \mathrm{~g} / \mathrm{mL}, \mathrm{pH}$ range $6.5-$ 7.5). Infrared spectra were recorded with a Perkin-Elmer 1600 Series FT-IR instrument. Samples were scanned as neat liquids or dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on sodium chloride (NaCl) salt plates. Frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Nuclear magnetic resonance (NMR) spectra were recorded with a Varian Inova-600 $\left(600 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$, a Varian Inova-500 (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$), Bruker-400 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$), Varian Inova$400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, or Gemini-2300 (300 MHz for ${ }^{1} \mathrm{H}$) spectrometer. Chemical shifts for proton NMR spectra are reported in parts per million (ppm) relative to the singlet at 7.26 ppm for chloroform-d. Chemical shifts for carbon NMR spectra are reported in ppm with the center line of the triplet for chloroform-d set at 77.00 ppm . COSY and NOE experiments were measured on Bruker-400, Varian Inova-400 and Varian Inova-600 spectrometer. High-resolution mass spectra were obtained on a Micromass Q-Tof Ultima spectrometer by the Mass Spectrometry Laboratory at the University of Illinois Urbana Champaign.

Methyl ketone 153. To a stirred solution of LiAlH_{4} (LAH) (155 mg , 155 mmol) in THF (10 mL) was added dropwise epoxide 147 ($300 \mathrm{mg}, 1.44 \mathrm{mmol}$) solution in THF (5 mL). The reaction mixture was heated to $35^{\circ} \mathrm{C}$ for 6.5 h and cooled to rt . To a reaction mixture was added dropwise EtOAc under an ice bath and then ice water was added. Volatile organic mixture was evaporated and EtOAc (20 mL) was added again. After separation of the organic layer, the aqueous phase was extracted with EtOAc (15 mL X 2). The combined organic layer was washed with aq. NaCl and dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with EtOAc : hexane $=1: 20$ to $1: 1$) to provide a mixture of diastereomers $152 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~m}$, $1 \mathrm{H}), 4.35$ (quint, J = 6.0, 1H), 1,74 (m, 2H), $1.57-1.34(\mathrm{~m}, 7 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=10.2,1 \mathrm{H}), 1.46(\mathrm{~m}$, $1 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H}), 1.08(\mathrm{~m}, 3 \mathrm{H}), 1.00(\mathrm{~m}, 3 \mathrm{H}), 0.79(\mathrm{~m}, 3 \mathrm{H})$; IR (neat) 3386, 2928, 1458 cm^{-1}. Without a further purification, it was directly used to the next step. To a stirred solution of mixture products $\mathbf{1 5 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added p -TsOH (30 mg) and stirred at rt for 19 h . The reaction mixture was washed with brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic solution was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with EtOAc : Hexane $=1: 20$) to afford methyl ketone $\mathbf{1 5 3}$ ($197 \mathrm{mg}, 78 \%$ for 2 steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-6.06$ $(\mathrm{m}, 2 \mathrm{H}), 5.55-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, $1.73(\mathrm{dd}, \mathrm{J}=6.9,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.3,141.6,132.1,127.2,126.7,44.6,42.8,36.0,30.1,27.4,19.4,18.3$.

153

165

Alcohol 165. To a stirred solution of $\mathrm{NaOH}(265 \mathrm{mg}, 6.60 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2.2 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and bromine ($0.086 \mathrm{~mL}, 1.7 \mathrm{mmol}$) was added dropwise for 5 min . The reaction mixture was stirred for 7 min and dioxane (1.5 mL) was added dropwise for 5 min . Then, to a reaction mixture were added dropwise the solution of methyl ketone 153 in dioxane (2.5 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(0.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction solution was slowly warmed to rt over 3 h and stirred at rt for 2 h . $\mathrm{Na}_{2} \mathrm{SO}_{3}(63 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.06 \mathrm{~mL})$ were added and then the resulting mixture was immersed in a pre-heated oil bath $90{ }^{\circ} \mathrm{C}$ for 15 min and cooled to rt. After evaporation, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $25 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was added and extracted with $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{mL} X$ 2). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure to give a product, crude carboxylic acid, (106 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87$ - $6.03(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, \mathrm{~J}=15.6,1 \mathrm{H}), 2.28(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{dd}, \mathrm{J}=6.8$, $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 180.6,141.4,132.2,127.3,126.8,42.7,36.0,34.9,27.3,20.3,18.2 . ;$ IR (neat) 2500 3700, 2960, $1713 \mathrm{~cm}^{-1}$. To a stirred solution of $\mathrm{LiAlH}_{4}(131 \mathrm{mg}, 3.45 \mathrm{mmol})$ was added dropwise the carboxylic acid (106 mg) solution in THF (10 mL) for 10 min and stirred at rt for 4 h. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added dropwise very carefully and then aq. $10 \% \mathrm{NaOH}$ was added. The resulting mixture was filtered throughout Celite and rinsed with $\mathrm{E}_{2} \mathrm{O}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with EtOAc : Hexane = 1:20 to 7:1) to afford alcohol $165(44 \mathrm{mg}, 45 \%$ for 2 steps $)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.06-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.73(\mathrm{dd}, \mathrm{J}=6.9,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 142.0,132.2,127.1,126.5,63.2,43.3,36.1,33.7,27.4,21.1,18.2 . ;$ IR (neat) $3364,2933 \mathrm{~cm}^{-1}$.

Ester 166. To a stirred solution of alcohol $165(81.6 \mathrm{mg}, 0.447 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ was added PCC (Pyridinium chlorochromate) reagent ($156 \mathrm{mg}, 1.79 \mathrm{mmol}$) and stirred at rt. After 5 h , the reaction mixture was concentrated under reduced pressure and ethyl ether was added. The resulting mixture was filtered throughout Celite and concentrated under reduced pressure again. Then the residue was purified by a short silica gel column chromatography (elution with EtOAc : Hexane $=1: 20$) to give crude aldehyde 156. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.01-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{td}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.69(\mathrm{dd}, \mathrm{J}=6.8,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,132.1,127.4,127.0,44.7,42.8,36.1,29.9,27.3,17.7$; IR (neat) 2959 , $1727 \mathrm{~cm}^{-1}$. To a stirred solution of crude aldehyde $\mathbf{1 5 6}$ in benzene (9 mL) was added triphenyl phosphorane ($162 \mathrm{mg}, 0.468 \mathrm{mmol}$). The reaction mixture was heated and stirred at $80{ }^{\circ} \mathrm{C}$. After 9 h , the resulting mixture was cooled to rt and concentrated under reduced pressure. The residue was purified by a short silica gel column chromatography (elution with EtOAc: Hexane $=1$: 100 to 1 : 50) to provide ester $166(86 \mathrm{mg}, 73 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{tq}, \mathrm{J}=$ $1.2,7.2,1 H), 6.07-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~d}, \mathrm{~J}=15.2,1 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=7.2,2 \mathrm{H}), 2.08$ $(\mathrm{q}, \mathrm{J}=6.8,2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dd}, \mathrm{J}=6.4,0.8,3 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 7 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.2,142.0,141.5,131.9,127.7,126.9,126.4,60.3,42.9,35.8,29.3$, $27.2,23.8,18.0,14.5,12.5$; IR (neat) $2959,1712 \mathrm{~cm}^{-1}$.

166
167

Bicyclic compounds 167. The solution of ester 166 ($15.4 \mathrm{mg}, 0.0582 \mathrm{mmol}$) in toluene (6.0 mL) was heated to $160{ }^{\circ} \mathrm{C}$. After 24 h , the reaction solution was concentrated under reduced pressure and purified by a short silica gel column chromatography (elution with EtOAc: Hexane $=1$: 100) to give crude esters. This crude was purified again by Plate TLC to provide diastereomer mixtures $167(7 \mathrm{mg}, 46 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.64-5.57(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.03(\mathrm{~m}$, $2 \mathrm{H}), 2.91-2.89(\mathrm{~m}, 0.5 \mathrm{H}), 2.30(\mathrm{dt}, \mathrm{J}=12.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.02(\mathrm{~m}, 0.5 \mathrm{H}), 1.89(\mathrm{td}, \mathrm{J}=10.8,2.4$, $0.5 \mathrm{H}, 1.71-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}), 1.18-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.99(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 0.81 (s, 1H); IR (neat) 2961, $1729 \mathrm{~cm}^{-1}$.

Farnesol (164)

Sulfide 163. To a stirred solution of farnesol (164) (18.6 mg, 0.0840 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added phenyl sulfide ($55.3 \mathrm{mg}, 0.251 \mathrm{mmol}$) and pyridine ($33.0 \mathrm{mg}, 0.418 \mathrm{mmol}$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and tributyl phosphine ($63 \mu \mathrm{~L}, 0.251 \mathrm{mmol}$) was added dropwise. The reaction mixture was slowly warmed to rt and stirred for $14 \mathrm{hr} . \mathrm{NaBH}_{4}$ ($14.5 \mathrm{mg}, 0.251 \mathrm{mmol}$) was added and stirred for 1 hr . Then, $10 \% \mathrm{NaOH}$ solution was added and the mixture was separated. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 times), the combined organic extract was treated with $25 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and NaHCO_{3}. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by Plate TLC (elution with EtOAc : n-hexane $=1: 4)$ to afford sulfide $163(22 \mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.14 \sim 7.36(\mathrm{~m}, 5 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 8 \mathrm{H}), 1.68$ $(\mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H})$.

Sulfoxide 163. mCPBA ($4.2 \mathrm{mg}, 0.019 \mathrm{mmol}$) was added to a solution of sulfide $\mathbf{1 6 3}(6.0 \mathrm{mg}$, $0.019 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$. The reaction mixture was stirred under argon for 1 hr , and $\mathrm{H}_{2} \mathrm{O}$ was added. The organic phase was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 times). The combined organic extract was dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by column chromatography (elution with EtOAc : hexane $=1: 20$) to afford $162(5.2 \mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60 \sim 7.63(\mathrm{~m}$, $2 \mathrm{H}), 7.48 \sim 7.50(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{qd}, \mathrm{J}=16.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 8 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}$ $=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Vinyl tertiary alcohol 161. To a solution of sulfoxide $162(2.0 \mathrm{mg}, 0.0061 \mathrm{mmol})$ in MeOH $(1.0 \mathrm{~mL})$ was added $\mathrm{P}(\mathrm{OMe})_{3}(11.0 \mathrm{mg}, 0.089 \mathrm{mmol})$. The mixture was stirred at $55^{\circ} \mathrm{C}$ for 12 hr under argon. The reaction mixture was concentrated under reduced pressure and purified by column chromatography (elution with EtOAc : hexane $=1: 4$) to afford vinyl tertiary alcohol 161 ($1.2 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92(\mathrm{dd}, \mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.22(\mathrm{~d}, \mathrm{~J}=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~s}$, $3 H$); IR (neat) $3416,2969,2926,1450,1375,1109 \mathrm{~cm}^{-1}$.

Part III.

Studies Towards the Synthesis of Alchivemycin A (168)

3.1. Introduction

3.1.1. Background

Alchivemycin A (168), a bioactive polycyclic polyketide, was discovered from the culture extract of a Streptomyces strain from a leaf of a Chinese chive by Furuma et al ${ }^{1}$ in 2010. Strain TP-A0867 produced was cultured in A-11 M medium $30{ }^{\circ} \mathrm{C}$ for 6 days and was extracted with 1butanol to produce Alchivemycin A (168) (Figure 6). It showed not only a selective antimicrobial activity for Micrococcus luteus in MIC value of 50 nM , but also bioactivity for a murine colon carcinoma with an IC_{50} of $0.34 \mu \mathrm{M}$ without cytotoxic effects.

Alchivemycin A (168)
Figure 6. The structure of Alchivemycin A (168)

A structure of Alchivemycin A(168) was determined and showed a highly interesting core and a 2 H-tetrahydro-4,6-dioxo-1,2-oxazine ring 172. Furuma and co-workers also suggested a possible biogenesis of that oxazine ring (scheme 60).

Scheme 60. A possible biogenesis of oxazine ring 172 proposed by the Furuma group

We focused on a bicyclic structure that would be a good starting point to construct alchivemycin $\mathrm{A}(\mathbf{1 6 8)}$ and could be prepared by a Diels-Alder reaction, especially an intramolecular Diels-Alder (IMDA) reaction ${ }^{2}$ or a transannular Diels-Alder (TADA) reaction ${ }^{3}$ (Scheme 61). Generally, expectations with transition state conformations predicted products and transition state conformations would be controlled by reaction conditions and an appropriate design of precursors.

168

Scheme 61. Retrosynthetic analysis of alchivemycin A (168)

3.1.2. Stereochemistry of the intramolecular and transannular Diels-Alder reaction

The intramolecular Diels-Alder (IMDA) reactions have produced a wide variety of bicyclic cores of many natural products and demonstrated valuable IMDA applications. In spite of a large number of examples of these reactions, the control of stereoselectivity of IMDA reactions has been not fully understood and it is still very important to discover the origin of
stereoselectivity. ${ }^{2,4}$ In principal, IMDA reactions would have 2 transition states of endo and exo to generate trans-fused or cis-fused products. Thermal cyclization could provide cis-fused products by exo-mode cyclization or a mixture of trans and cis-fused rings. For example, Roush and co-worker in 1981 displayed some examples. ${ }^{5}$ In thermal condition, products depend on precursors of IMDA reactions, but cis-fused products can be generated as one of major products (Scheme 62).

Scheme 62. Intramolecular Diels-Alder reactions by the Roush group
The Vederas group reported bicyclic structure syntheses by IMDA reactions in 1996 . $^{4 a}$ The IMDA reaction can have endo and exo transition states and each provides two diastereomers in which methyl the group is pseudoaxial and pseudoequatorial at C-6. Both thermal and Lewis
acid $\left(\mathrm{EtAlCl}_{2}\right)^{6}$ catalyzed conditions were applied to a triene 184. Thermal condition gave two products (186 and 188) from endo and exo transition states and the Lewis acid condition produced the endo product 186 selectively. None of the reactions showed any product from transition states in which the methyl at C-6 is pseudoaxial. Therefore, comparing endo and exo transition states of triene (184) can sometimes allow us to predict products from IMDA reactions (Scheme 63).

E,E,E-triene (184)

Endo transition states

185

36%

186

187

188

Scheme 63. Endo and exo products 186 and 188 from IMDA reactions
The Shing group also reported the synthesis of (-)-oblongolide by the IMDA reaction. ${ }^{7}$ They also showed similar results for stereoselectivity controlled by a methyl group at C-6 (Schemes 64 and 65)

> Transition states
> ratio $(190: 191: 192=24: 12: 38)$

Scheme 64. Bicyclic compounds from the IMDA reaction in the thermal condition by the Shing group
Transition states

Scheme 65. Bicyclic compounds from the IMDA reaction in the thermal condition by the Shing group

Based on their results, methyl group at C6 would play an important role to control stereoselectivity of bicyclic structures from IMDA reactions.

In addition, there are other examples of controlling endo and exo transition states to obtain desired products by the transannular Diels-Alder (TADA) reaction. ${ }^{3,8}$ TADA reactions can produce a tricycle 197 from a macrocycle 196. The stereochemistry of the tricycles can be predicted and controlled by geometry of double bonds and substituents of macrocycles (Scheme $66)$.

Trienes (196) 197

Scheme 66. Transannular Diels-Alder reaction (TADA)

The Toró group investigated a stereocontrol of TADA reactions and showed syntheses of bicyclic cores. ${ }^{9}$ In macrocylces, both exo transition states are sterically prohibited and only endo transition conformations can be applied to provide products. As expected, two endo products (199 and 200) from 198 were isolated, but the major product was 200 (Scheme 67). The endo product 204 was produced from 203 (Scheme 68). The results were a little surprising because the -OTBS at C3 and the methyl group at C4 of $\mathbf{1 9 8}$ and $\mathbf{2 0 4}$ would be axial in a transition state TS-2 and TS-4 to product $\mathbf{2 0 0}$ and 204. This experiment demonstrated that the steric effects of the substituent -OTBS and methyl groups are not enough to control a stereoselectivity of products and they suggested -COOMe group and -CN group would prefer to be inside of boat - like conformation.

Proposed endo tansition states

Scheme 67. Bicyclic cores 199 and 200 produced by the TADA reaction in thermal condition by the Toró group

Scheme 68. Bicyclic cores 202 and 204 produced by TADA reactions with $\mathrm{Et}_{2} \mathrm{AlCl}$ by the Toró group

The Shing group displayed usefulness of TADA reactions in the synthesis of (-)-oblongolide from (E,E,E)-macrocycle (205) in 1995. ${ }^{\text {b }}$ This triene gave the only bicyclic core 206 from the macrocycle (205) by endo-mode cyclization (Scheme 69).

Scheme 69. A synthesis of a backbone of (-)-oblongolide from a (E,E,E)-macrocycle (205) by a TADA reactions

The Nakada group demonstrated a synthesis of (+)-phomopsidin from (E,Z,E)-trienes 207 and 210 by the TADA reaction (Scheme 70). ${ }^{10}$ The only difference between 207 and $\mathbf{2 1 0}$ is the stereochemistry of the OTIPS groups. The major products were 209 and 211 in spite of axial hydroxyl and methyl groups in transition states.

ratio $(\mathbf{2 0 8}: \mathbf{2 0 9}=2: 1)$

Scheme 70. Bicyclic cores and proposed transition states by the TADA reaction by the Nakada group

These syntheses clearly demonstrate that the bicyclic cores of natural products can be constructed by Diels-Alder reactions and that stereoselectivity would be determined by various factors including the preference for an equatorial position of substituents and the geometry of double bonds of macrocycles.

3.1.3. A new synthetic approach to a key core of alchivemycin A (168)

In intramolecular Diels-Alder (IMDA) reactions, trans-fused products have been produced predominately in many cases, but cis-fused products can be obtained from proper precursors in thermal reaction conditions. To construct a key moiety of Alchivemycin A (168), we also need to prepare cis-fused rings and control transition states to prohibit trans-fused products, so three trienes (213, 215, and 216) were designed to investigate possible precursors and reaction conditions to produce a moiety of Alchivemycin A (168) by IMDA or TADA reactions (Scheme 71).

(E,E,E)-triene (216)

Scheme 71. Designed precursors to investigate IMDA and TADA reactions
In addition, dienes 217 can be common precurors to prepare three trienes (213, 215, and 216) (Scheme 72).

Scheme 72. Retrosynthetic analyses of trienes (213, 215, and 216)
We believed that dienes 217 can be prepared by cross coupling reactions ${ }^{11}$ (e.g. Negishi and Suzuki - Miyaura coupling reactions) from known compounds $\mathbf{2 1 9}^{12}$ and $\mathbf{2 2 0}{ }^{13}$ (Scheme 73).

Scheme 73. Retrosynthetic analysis of the diene 213

Further, after investigation of three trienes (213, 215, and 216), the next triene will be other macrolactons like a (E,Z,E)-triene 221 (Scheme 74).

Scheme 74. The Structure of the (E,Z,E)-triene (221)

3.2. Result and Discussion

3.2.1. Synthetic approach to precursors of IMDA and TADA reactions

To efficiently investigate precursors to prepare a target structure 214 by the IMDA reaction, the ($\mathrm{E}, \mathrm{E}, \mathrm{E}$)-triene 213, the $(\mathrm{E}, \mathrm{E}, \mathrm{Z})$-triene 215 , and the macrolactone 216 were prepared as racemic mixtures.

The left and the right pieces were prepared by known procedures. First, an iododiene 225 was synthesized by the literature method. ${ }^{12-13}$ Alkyne 223 was treated with catecholborane and water to generate boronic acid 224. The treatment of 224 with I_{2} and NaOH solution produced the iodo alcohol 225 as a left piece (Scheme 75).

Scheme 75. Preparation of the iododiene 225

Next, we synthesized an iodide 233. A diester 226 was treated with a bromoester 227 to produce a triester 228, which was subject to hydrolysis with acid and lactonization with acetic anhydride to give an anhydride mixture. It was treated with DIPEA in EtOAc and recrystallized at $-20{ }^{\circ} \mathrm{C}$ to generate a meso compound 230 as a white solid. ${ }^{14,15}$ Reduction with lithium aluminium hydride provided diol $\mathbf{2 3 1}{ }^{16}$. Finally, the selective protection of the diol $\mathbf{2 3 1}$ with TBSCl gave the racemate 232 at low temperature ${ }^{17}$, which was subjected to Appel type reaction to afford the corresponding right piece $\mathbf{2 3 3}^{\mathbf{1 8}}$. Herein, if we use an enzyme and vinyl acetate, it will provide an acetate protected alcohol from the diol 231 as an enantiomer (Scheme 76). ${ }^{16,19}$

226

NaOEt EtOH, reflux

228

229
 40%

230

racemate 232

233

Scheme 76. Preparation of the iodo alkane 233

After preparing precursors (224, 225 and 233), we examined the Negishi and Suzuki Miyaura coupling reactions to obtain a common precursor 234 (Scheme 77).

Scheme 77. Preparation of the common precursor 234

There are a few examples to show $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ cross couping reactions, so we decided to do model tests with a commercially available iodo alkane $\mathbf{2 3 5}$ instead of the right piece iodide $\mathbf{2 3 3}$ because left pieces $\mathbf{2 2 4}$ and $\mathbf{2 2 5}$ are easily prepared by one or two steps, but the right piece 233 demands six steps.

Firstly, Suzuki-Miyaura coupling reaction with $\mathrm{Ni}(\mathrm{COD})_{2}$ catalyst developed by the Fu group ${ }^{20}$ was tested with $\mathbf{2 3 5}$, but in spite of several trials, we did not isolate any product from this reaction conditions (Scheme 78).

224
Scheme 78. The model test by Suzuki coupling reaction with $\mathrm{Ni}(\mathrm{COD})_{2}$ catalyst
Next, Negishi coupling ${ }^{21}$ was applied and we could isolate a desire product 236 in 37% yield (Scheme 79). However, it demanded the excess amount of the iodo alkane 235 (more than 2 equivalent of dienol $\mathbf{2 2 5}$) to produce $\mathbf{2 3 6}$ and the isolated yield was not high.

Scheme 79. The model test by Neghishi coupling reaction
Finally, diene 236 was also produced by Suzuki-Miyaura coupling reaction ${ }^{22}$ with 9-OMe-9BBN. However, inseparable by-products were generated (Scheme 80).

Scheme 80. The model test by Suzuki-Miyaura coupling reaction using 9-OMe-9-BBN

Although the product 236 included inseparable unknown products, this reaction gives more advantages that the excess amount of the iodo alkane 235 can be used and the reaction condition is mild ($9-\mathrm{BBN}$ complex with $\mathbf{2 3 5}$ is not sensitive for moisture). Therefore, this reaction condition was applied to our real substituents 225 and 233. It gave us 234 and concomitant impurities (Scheme 81).

Scheme 81. Preparation of 234 by Suzuki-Miyaura coupling reaction using 9-OMe-9-BBN

After the alcohol protection of $\mathbf{2 3 4}$ with acetate, we could remove almost all of impurities from coupling reactions. After deprotection of TBS group, we prepared an alcohol 238, which was subjected to Dess-Martin oxidation to give the aldehyde 239 (Scheme 82).

Scheme 82. Preparation of the aldehyde 239
From the aldehyde 239, the (E,E,E)-triene 242 and the (E,E,Z)-triene 243, two precursors of IMDA reactions, were synthesized by Wittig reaction and the Still-Gennari olefination (Scheme 83).

243

Scheme 83. Preparation of the (E,E,E)-triene 242 and the (E,E,Z)-triene 243
On the other hand, the macrocyclic lactone (216) was generated by an intramolecular Horner-Wadsworth-Emmons reaction. Suzuki-Miyaura coupling gave the same alcohol 234, followed by
treatment with diethylphosphonoacetic acid ${ }^{10 a} 244$ to produce the phosphorane 245. Deprotection of TBS group followed by Dess-Martin oxidation gave an aldehyde 247, which was subjected to Horner-Wadsworth-Emmons reaction to provide a macrocyclic lactone (216) (Scheme 84).

234

60%

246

THF
93%

AcCN, rt, 42 \%

Macrolactone 216

Scheme 84. Preparation of the macrolactone 216

3.2.2. Investigation of an intramolecular Diels-Alder (IMDA) reactions

From the (E,E,E)-triene 242, the IMDA reaction gave us an inseparable mixture of two diastereomers 248 under thermal conditions (Scheme 85). After the IMDA reaction, we isolated one spot on TLC by a silica gel column chromatography, but the ${ }^{1} \mathrm{H}$ NMR spectrum showed two strong methyl peaks of acetate groups, so we believed that it was a mixture $\mathbf{2 4 8}$ of diastereomers.

Scheme 85. Two diastereomers produced by the IMDA reaction
From the IMDA reaction of (E,E,E)-triene 242, we expected 4 possible diastereomers (Scheme 86).

Scheme 86. Proposed transition states and products of the IMDA reaction from the (E,E,E)triene 242

We had tried to separate the mixture $\mathbf{2 4 8}$ to identify each diastereomer. After deprotection of the alcohols, we could separate two products from the mixture 248. One of products was a lactone 255 and we believe that after hydrolysis, an alcohol 253 spontaneously underwent the
lactonization reaction ${ }^{7 \mathrm{~b}}$ to provide 255. 1D NOE and COSY spectrum data explained the relative stereochemistry of the lactone $\mathbf{2 5 5}$, so we believe that $\mathbf{2 5 5}$ is a trans-fused bicyclic product from the endo chair transition state, which is also energetically favored. The stereochemical assignment of another product was established by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY, NOESY, and HMQC and we confirmed that it was the cis-fused product $\mathbf{2 5 4}$ from an exo chair transition state. Therefore, we could confirm that the mixture 248 gave two products (249 and 251) and we elucidated the relative stereochemistry of these compounds (Scheme 87). The preferred equatorial position of both methyl groups would be a key factor to control a stereoselectivity of $\mathbf{2 5 3}$ and $\mathbf{2 5 4}$.

Scheme 87. The lactone 255 and the alcohol 254 separated by deprotection of acetate of 248
The (E,E,Z)-triene (243) was also subjected to thermal conditions and it appeared to give only one product 256 because a methyl group of acetate showed one peak in the ${ }^{1} \mathrm{H}$ NMR spectrum data (Scheme 88).

Scheme 88. Bicyclic core $\mathbf{2 4 3}$ from the (E,E,Z)-triene $\mathbf{2 5 6}$ by the IMDA reaction
From the IMDA reaction of (E,E,Z)-triene 236, we also expected four possible diastereomers (Scheme 89)

Scheme 89. Proposed transition states and products of the IMDA reaction from the (E,E,Z)triene (243)

The product 256 had few impurities. We removed the acetate group and obtained one product 261 (Scheme 90). Its structure was assigned by ${ }^{1} \mathrm{H}$, COSY, and 1D NOE. This product 261 would be a trans-fused ring produced from 257 (See Scheme 89) through the endo transition state because of the preferred equatorial position of both methyl groups and steric hindrance between the methyl group at C 8 and $-\mathrm{CH}_{2} \mathrm{OAc}$.

Scheme 90. The alcohol 261 by separated by deprotection of acetate of $\mathbf{2 5 6}$

3.3. Conclusion

In conclusion, the valuable intermediate $\mathbf{2 3 4}$ was efficiently prepared by the Suzuki-Miyaura coupling reaction. From 234, two model compounds 242 and $\mathbf{2 4 3}$ were successfully synthesized and examined to give bicyclic cores by the intramolecular Diels-Alder reactions. The (E,E,E)triene $\mathbf{2 4 2}$ produced the inseparable mixture but after deprotection of alcohols, we could isolate products 254 and 255 . From these compounds, we could assign relative stereochemistry to the cycloaddition products. In addition, only one diastereomer 256 was synthesized from the (E,E,Z)-triene 243 and we also confirmed a stereochemistry of $\mathbf{2 4 3}$ after deprotection of an acetate group. Although the stereochemistry of the bicyclic cores was consistent with expectations, none had the relative stereochemistry required for alchivemycin A(168). We began the preparation of the macrolactone 216 and it will be examined soon. Control the stereochemistry of bicyclic cores of alchivemycin A (168) will be supported by future experiments.

3.4. Reference

(1) (a) Igarashi, Y.; Kim, Y.; In, Y.; Ishida, T.; Kan, Y.; Fujita, T.; Iwashita, T.; Tabata, H.; Onaka, H.; Furumai, T.: Alchivemycin A, a Bioactive Polycyclic Polyketide with an Unprecedented Skeleton from Streptomyces sp. \dagger, Org. Lett. 2010, 12, 3402 (b) Onaka, H.; Mori, Y.; Igarashi, Y.; Furumai, T.: Mycolic Acid-Containing Bacteria Induce Natural-Product Biosynthesis in Streptomyces Species, Appl. Environ. Microbiol. 2011, 77, 400.
(2) Craig, D.: Stereochemical aspects of the intramolecular Diels-Alder reaction, Chem. Soc. Rev. 1987, 16, 187.
(3) Marsault, E.; Toró, A.; Nowak, P.; Deslongchamps, P.: The transannular Diels-Alder strategy: applications to total synthesis, Tetrahedron 2001, 57, 4243.
(a) Witter, D. J.; Vederas, J. C.: Putative Diels-Alder-Catalyzed Cyclization during the Biosynthesis of Lovastatin, J. Org. Chem. 1996, 61, 2613 (b) Bear, B. R.; Sparks, S. M.; Shea, K. J.: The Type 2 Intramolecular Diels-Alder Reaction: Synthesis and Chemistry of Bridgehead Alkenes, Angew. Chem. Int. Ed. 2001, 40, 820 (c) Cayzer, Tory N.; PaddonRow, Michael N.; Sherburn, Michael S.: Stereocontrol of the Intramolecular Diels-Alder Reaction by Internal Hydrogen Bonding, Eur. J. Org. Chem. 2003, 2003, 4059 (d) Pearson, E. L.; Willis, A. C.; Sherburn, M. S.; Paddon-Row, M. N.: Controlling cis/transselectivity in intramolecular Diels-Alder reactions of benzo-tethered, ester linked 1,3,9decatrienes, Organic \& Biomolecular Chemistry 2008, 6, 513 (e) Burke, J. P.; Sabat, M.; Iovan, D. A.; Myers, W. H.; Chruma, J. J.: Exploring the Original Proposed Biosynthesis of (+)-Symbioimine: Remote Exocyclic Stereocontrol in a Type I IMDA Reaction, Org. Lett. 2010, 12, 3192.
(5) Roush, W. R.; Hall, S. E.: Studies on the total synthesis of chlorothricolide: stereochemical aspects of the intramolecular Diels-Alder reactions of methyl undeca-2,8,10-trienoates, J. Am. Chem. Soc. 1981, 103, 5200.
(6) Roush, W. R.; Gillis, H. R.: Further stereochemical aspects of intramolecular Diels-Alder reactions in the undeca-2,8,10-trienoate ester series, J. Org. Chem. 1982, 47, 4825.
(a) Shing, T. K. M.: Oblongolide: synthesis and absolute configuration, J. Chem. Soc., Chem. Commun. 1986, 49 (b) Shing, T. K. M.; Yang, J.: A Short Synthesis of Natural (-)Oblongolide via an Intramolecular or a Transannular Diels-Alder Reaction, J. Org. Chem. 1995, 60, 5785.
(a) Deslongchamps, P.: Transannular Diels-Alder reaction on macrocycles. A general strategy for the synthesis of polycyclic compounds, P. Pure AppL Chem. 1992, 64 (b) Dory, Y. L.; Soucy, P.; Drouin, M.; Deslongchamps, P.: Experimental and Semiempirical Calculation Studies of Transannular Diels-Alder and Other Competing Pericyclic Reactions, J. Am. Chem. Soc. 1995, 117, 518.
(9) Toró, A.; Lemelin, C.-A.; Préville, P.; Bélanger, G.; Deslongchamps, P.: Transannular Diels-Alder studies on the asymmetric synthesis of (+)-maritimol, Tetrahedron 1999, 55, 4655.
(10) (a) Suzuki, T.; Usui, K.; Miyake, Y.; Namikoshi, M.; Nakada, M.: First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin, Org. Lett. 2004, 6, 553 (b) Hayashi, N.; Suzuki, T.; Usui, K.; Nakada, M.: Alternative synthetic approach for (+)-phomopsidin via the highly stereoselective TADA reaction, Tetrahedron 2009, 65, 888.
(11) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M.: From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis, Angew. Chem. Int. Ed. 2010, 49, 9047.
(12) Torrado, A.; Iglesias, B.; López, S.; de Lera, A. R.: The suzuki reaction in stereocontrolled polyene synthesis: Retinol (vitamin A), its 9- and/or 13-demethyl analogs, and related 9-demethyl-dihydroretinoids, Tetrahedron 1995, 51, 2435.
(13) Mauleón, P.; Zeldin, R. M.; González, A. Z.; Toste, F. D.: Ligand-Controlled Access to $[4+2]$ and $[4+3]$ Cycloadditions in Gold-Catalyzed Reactions of Allene-Dienes, J. Am. Chem. Soc. 2009, 131, 6348.
(14) Lautens, M.; Colucci, J. T.; Hiebert, S.; Smith, N. D.; Bouchain, G.: Total Synthesis of Ionomycin Using Ring-Opening Strategies, Org. Lett. 2002, 4, 1879.
(15) Saicic, R. N.: Improved Procedure for the Preparation of cis-2,4-Dimethyl glutaranhydride, Synth. Commun. 2006, 36, 2559.
(16) (a) Prusov, E.; Röhm, H.; Maier, M. E.: Chemoenzymatic Synthesis of the C10-C23 Segment of Dictyostatin, Org. Lett. 2006, 8, 1025 (b) Schmidt, Y.; Lehr, K.; Breuninger,
U.; Brand, G.; Reiss, T.; Breit, B.: Enantioselective Total Synthesis of the Unnatural and the Natural Stereoisomers of Vittatalactone, J. Org. Chem. 2010, 75, 4424.

Mori, K. F. K.: New Synthesis of Serricornin, the Female Sex Pheromone of the Cigarette Beetle, Biosci. Biotechnol. Biochem. 2001, 65, 1429.
(a) Tan, Z.; Negishi, E.-i.: An Efficient and General Method for the Synthesis of α, ω Difunctional Reduced Polypropionates by Zr -Catalyzed Asymmetric Carboalumination: Synthesis of the Scyphostatin Side Chain, Angew. Chem. Int. Ed. 2004, 43, 2911 (b) Pitsinos, E.; Athinaios, N.; Xu, Z.; Wang, G.; Negishi, E.-i.: Total synthesis of (+)scyphostatin featuring an enantioselective and highly efficient route to the side-chain via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA), Chem. Commun. 2010, 46, 2200.
(19) Guo-Qiang, L.; Wei-Chu, X.: A convergent and stereoselective synthesis of the sex pheromone of Macrocentrus grandii, Tetrahedron 1996, 52, 5907.

Zhou, J.; Fu, G. C.: Suzuki Cross-Couplings of Unactivated Secondary Alkyl Bromides and Iodides, J. Am. Chem. Soc. 2004, 126, 1340.
(a) Asao, K.; Iio, H.; Tokoroyama, T.: Total synthesis of (\pm)-ageline a, a physiologically active constituent ofAgelas sponges, Tetrahedron Lett. 1989, 30, 6401 (b) Negishi, E.-i.; Ay, M.; Gulevich, Y. V.; Noda, Y.: Highly stereoselective and general synthesis of (z)-3-methyl-2-alken-1-ols via palladium-catalyzed cross coupling of (z)-3-iodo-2-buten-1-ol with organozincs and other organometals, Tetrahedron Lett. 1993, 34, 1437 (c) Villiers, P.; Vicart, N.; Ramondenc, Y.; Plé, G.: 1,6-Dibromohexa-1,3,5-triene - Stereocontrolled Synthesis of Monosubstituted and Disubstituted Hexatrienes by Palladium-Catalysed Cross-Coupling Reactions, Eur. J. Org. Chem. 2001, 2001, 561 (d) Adolph, S.; Poulet, S. A.; Pohnert, G.: Synthesis and biological activity of $\alpha, \beta, \gamma, \delta$-unsaturated aldehydes from diatoms, Tetrahedron 2003, 59, 3003 (e) Liang, B.; Novak, T.; Tan, Z.; Negishi, E.-i.: Catalytic, Efficient, and syn-Selective Construction of Deoxypolypropionates and Other Chiral Compounds via Zr-Catalyzed Asymmetric Carboalumination of Allyl Alcohol, J. Am. Chem. Soc. 2006, 128, 2770 (f) Schachtschabel, D.; Boland, W.: Efficient Generation of a Trisporoid Library by Combination of Synthesis and Biotransformation, J. Org. Chem. 2007, 72, 1366 (g) Sato, H.; Sato, K.; Iida, M.; Yamanaka, H.; Oishi, T.; Chida, N.: Total synthesis of mycestericin A, Tetrahedron Lett. 2008, 49, 1943 (h)

Placzek, A. T.; Gibbs, R. A.: New Synthetic Methodology for the Construction of 7Substituted Farnesyl Diphosphate Analogs, Org. Lett. 2011, 13, 3576.
(a) Marshall, J. A.; Johns, B. A.: Total Synthesis of (+)-Discodermolide, J. Org. Chem. 1998, 63, 7885(b) Kuranaga, T.; Ohtani, N.; Tsutsumi, R.; Baden, D. G.; Wright, J. L. C.; Satake, M.; Tachibana, K.: Total Synthesis of (-)-Brevisin: A Concise Synthesis of a New Marine Polycyclic Ether, Org. Lett. 2011, 13, 696 (c) Johnson, C. R.; Braun, M. P.: A two-step, three-component synthesis of PGE1: utilization of .alpha.-iodo enones in $\operatorname{Pd}(0)$-catalyzed cross-couplings of organoboranes, J. Am. Chem. Soc. 1993, 115, 11014 (d) Marshall, J. A.; Bourbeau, M. P.: Total Synthesis of (-)-Callystatin A, J. Org. Chem. 2001, 67, 2751 (e) Tsutsumi, R.; Kuranaga, T.; Wright, J. L. C.; Baden, D. G.; Ito, E.; Satake, M.; Tachibana, K.: An improved synthesis of (-)-brevisamide, a marine monocyclic ether amide of dinoflagellate origin, Tetrahedron 2010, 66, 6775 (f) Bonazzi, S.; Eidam, O.; Güttinger, S.; Wach, J.-Y.; Zemp, I.; Kutay, U.; Gademann, K.: Anguinomycins and Derivatives: Total Syntheses, Modeling, and Biological Evaluation of the Inhibition of Nucleocytoplasmic Transport, J. Am. Chem. Soc. 2010, 132, 1432.

3.5. Experimental section

General Information

All air- and moisture sensitive reactions were performed under argon in oven-dried or flamedried glassware. Unless stated otherwise, commercially available reagents were used as supplied and solvents were dried over molecular sieves prior to use. HPLC grade hexane and HPLC grade ethyl acetate (EtOAc) were used in chromatography. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium-benzophenone ketyl and dichloromethane was distilled from calcium hydride under argon gas. All experiments were monitored by thin layer chromatography (TLC) performed on Whatman precoated AL SIL G/UV 250μ m layer aluminum -supported flexible plates. Flash chromatography was carried out with Sorbent Technologies silica gel (porosity $60 \AA$, 230-400 mesh, surface area $500-600 \mathrm{~m}^{2} / \mathrm{g}$, bulk density $0.4 \mathrm{~g} / \mathrm{mL}$, pH range $6.5-$ 7.5). Infrared spectra were recorded with a Perkin-Elmer 1600 Series FT-IR instrument. Samples were scanned as neat liquids or dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on sodium chloride (NaCl) salt plates. Frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Nuclear magnetic resonance (NMR) spectra were recorded with a Varian Inova-600 $\left(600 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$, a Varian Inova-500 (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$), Bruker-400 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$), Varian Inova$400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, or Gemini-2300 (300 MHz for ${ }^{1} \mathrm{H}$) spectrometer. Chemical shifts for proton NMR spectra are reported in parts per million (ppm) relative to the singlet at 7.26 ppm for chloroform-d. Chemical shifts for carbon NMR spectra are reported in ppm with the center line of the triplet for chloroform-d set at 77.00 ppm . COSY and NOE experiments were measured on Bruker-400, Varian Inova-400 and Varian Inova-600 spectrometer. High-resolution mass spectra were obtained on a Micromass Q-Tof Ultima spectrometer by the Mass Spectrometry Laboratory at the University of Illinois Urbana Champaign.

Boronic acid 225. ${ }^{12-13}$ To the alcohol 223 ($484 \mathrm{mg}, 5.89 \mathrm{mmol}$) was added catecholborane $(1.484 \mathrm{~g}, 12.37 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon, allowing release for hydrogen. The reaction mixture was stirred for 2 h . It was stored at $-20 \sim 25^{\circ} \mathrm{C}$ for 16 h . The cold water $(12 \mathrm{~mL})$ was added and stirred for 4.5 h . The resulting solution was saturated with NaCl and extracted with EtOAc (10 $\mathrm{mL} \mathrm{X} \mathrm{5)} .\mathrm{The} \mathrm{combined} \mathrm{organic} \mathrm{solution} \mathrm{was} \mathrm{dried} \mathrm{over} \mathrm{MgSO}_{4}$ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (elution with EtOAc : Hexane $=1: 1$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=95: 5\right)$ to produce $224(408 \mathrm{~g}, 54 \%)$. To a stirred solution of $224(408 \mathrm{mg}, 3.19 \mathrm{mmol})$ in ethyl ether $(10 \mathrm{~mL})$ was added 3 N NaOH at 0° and then $\mathrm{I}_{2}(891$ $\mathrm{mg}, 3.52 \mathrm{mmo}$) solution in ethyl ether (10 mL). The reaction mixture was slowly warmed to rt and stirred for 1 h and quenched by addition of saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The aqueous layer was extracted with (6 mL X 3) and the combined organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (elution with EtOAc : Hexane =1:3) to give 225 ($381 \mathrm{mg}, 57 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05(\mathrm{dd}, J=10.5,1 \mathrm{H}), 6.36(\mathrm{dd}, J=14.4,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20(\mathrm{dd}, J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=14.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{18}$

Diacid 229. ${ }^{14,15}$ To ethanol (28 mL) was added $\mathrm{Na}(1.055 \mathrm{~g}, 44.89 \mathrm{mmol})$ and the resulting solution was heated to reflux. Malonate $226(7.959 \mathrm{~g}, 45.23 \mathrm{mmol})$ was bromide $227(9.121 \mathrm{~g}$, 46.7 mmol) were added and stirred at $90{ }^{\circ} \mathrm{C}$ (an oil bath temperature). After 5 h , the reaction mixture was cooled to rt and concentrated under reduced pressure. Ethyl ether (25 mL) and water
(4 mL) were added and the aqueous layer was extracted with ethyl ether (15 mL X 3). The combined organic layer was dried over MgSO 4 and concentrated under reduced pressure to give a crude product the triester $228(11.09 \mathrm{~g})$. Conc. HCl was added to $228(11.09 \mathrm{~g})$ and stirred at $100{ }^{\circ} \mathrm{C}$ for 8 h and stored at $-25^{\circ} \mathrm{C}$ for 1 day. A white solid was filtered and dissolved in ethyl ether. The ether layer was dried over MgSO_{4} and concentrated under reduced pressure to give the white solid $229(3.07 \mathrm{~g})$. The filtrate was extracted with ethyl ether and the combined organic layer was concentrated under educed pressure. Hexane was added and stored at $-25^{\circ} \mathrm{C}$ for 1 day. A white solid was filtered and followed the same procedure above to give the $229(0.397 \mathrm{~g})$ as white solid. The white solids 229 were combined (3.46 g , 48% for 2 steps). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.71(\mathrm{sext}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=5.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 3 \mathrm{H}) 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{14-15}$

Diol 231. ${ }^{14,15-16}$ A stirred solution of diacid 229 ($3.39 \mathrm{~g}, 21.16 \mathrm{mmol}$) in acetic anhydride (10 mL) was heated to $115{ }^{\circ} \mathrm{C}$ (an oil bath temperature). After 24 h , the reaction mixture was cooled to rt and then acetic acid and acetic anhydride were distilled to give a white solid (2.6 g). EtOAc $(3.1 \mathrm{~mL})$ and DIPEA $(0.6 \mathrm{~mL})$ were added and stirred at rt for 14 h . The mixture was cooled to $30{ }^{\circ} \mathrm{C}$ for 1 day. The white solid was filtered and washed wit EtOAc (pre-cooled to $-30^{\circ} \mathrm{C}$). The white solid $230(580 \mathrm{mg})$ was obtained. The filtrate was concentrated under reduced pressure. The residue was added EtOAc and recrystallized again to produce $230(610 \mathrm{mg})$. The filtrate was reused to obtain 230. Crystallized white solid $\mathbf{2 3 0}(1.19 \mathrm{~g}, 40 \%)$ from1 ${ }^{\text {st }}$ and $2^{\text {nd }}$ recrystallization. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.83-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dt}, J=13.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.37(\mathrm{dd}, J=6.9,0.5 \mathrm{~Hz}, 6 \mathrm{H})$. To stirred solution of $230(658 \mathrm{mg}, 4.63 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ was added $\mathrm{LiAlH}_{4}(351 \mathrm{mg}, 9.25 \mathrm{mmol})$ and stirred for 1 h at rt . To the resulting mixture was added $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and water (3 mL) carefully and then $10 \% \mathrm{NaOH}(1.2 \mathrm{~mL})$. The mixture was filtered through Celite and $\mathrm{Et}_{2} \mathrm{O}$ was added. The organic layer was concentrated under reduced
pressure to give a crude product $231(454 \mathrm{mg}, 74 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93$ (ddt, J $=17.3,10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dq}, J=10.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.07-3.94(\mathrm{~m}, 6 \mathrm{H}), 2.70(\mathrm{dd}, J=11.6,3.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.46-2.24 (m, 3H), 2.11 (ddd, $J=34.8,14.4,9.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.92 (dtd, $J=13.0,6.9,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.04(\mathrm{~m}, 13 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{14}$

Iodide 233. To a stirred solution of diol $\mathbf{2 3 1}(267 \mathrm{mg}, 2.017 \mathrm{mmol})$ in THF (4 mL) was added n BuLi ($1.34 \mathrm{~mL}, 2.14 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) dropwise at $-78^{\circ} \mathrm{C}$ and stirred for 30 min . TBS-Cl solution in THF (2 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ for 40 min and stirred for 4 h at $-78{ }^{\circ} \mathrm{C}$ and stored at $-30^{\circ} \mathrm{C}$ for 14 h . It was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(2.5 \mathrm{~mL})$ and Ethyl ether (5 mL) were added. The aqueous layer was extracted with ethyl ether (1 mL X 3). The combined organic phase was washed with brine and water and dried over MgSO_{4}. After concentration, the crude product was purified by silica gel flash column chromatography (elution with EtOAc : Hexane $=1: 7$) to provide $\mathbf{2 3 2}{ }^{17}(427 \mathrm{mg}, 86 \%)$ and the recovered starting $231(38 \mathrm{mg}, 14 \%)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.46-3.32(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 1.69$ (quint, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.41 (quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.87(\mathrm{~m}, 13 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 68.3,68.0,37.3,33.2,33.2,25.9,18.3,17.8,17.7,-5.4$. To a stirred solution of iodine ($520.6 \mathrm{mg}, 2.051 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added imidazole (151.3 mg , $2.222 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(538 \mathrm{mg}, 2.051 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 10 min , and then the solution of $232(419.3 \mathrm{mg}, 1.701 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added and the syringe was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The resulting mixture was warmed to rt and stirred for 2 h . It was concentrated under reduced pressure and purified with silica gel flash column chromatography (elution with EtOAc : Hexane =1:7) to give a iodo alkane 233 ${ }^{18}$ (489 $\mathrm{mg}, 80 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.44(\mathrm{dd}, J=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=9.6,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=9.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=6.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.06-$ $0.79(\mathrm{~m}, 16 \mathrm{H}), 0.893(\mathrm{~s}, 6 \mathrm{H})$. Spectroscopic properties were in agreement with literature values. ${ }^{17-18}$

233

234

237

Diene 237. To a stirred solution of $233(16.2 \mathrm{mg}, 0.0455 \mathrm{mmol})$ was $\mathrm{Et}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ was added B-OMe-9-BBN ($0.21 \mathrm{~mL}, 0.21 \mathrm{mmoL}$) at $-78{ }^{\circ} \mathrm{C}$ under argon and stirred for $10 \mathrm{~min} . \mathrm{t}-\mathrm{BuLi}$ ($0.13 \mathrm{~mL}, 0.21 \mathrm{mmol}, 1.6 \mathrm{M}$ pentane) was added and stirring for 15 min at $-78{ }^{\circ} \mathrm{C}$. THF (0.9 mL) was added dropwise and stirring for 20 min . The resulting mixture was slowly warmed to rt and stirred for 2.5 h . To the solution were added $3 \mathrm{M} \mathrm{CsCO}_{3}(0.05 \mathrm{~mL}, 0.16 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($3.7 \mathrm{mg}, 0.0046 \mathrm{mmol}$), diene $225(13.4 \mathrm{mg}, 0.0636 \mathrm{mmol}$) solution in DMF (0.9 mL), and $\mathrm{AsPh}_{3}(2.1 \mathrm{mg}, 0.0068 \mathrm{mmol})$ for 36 h . It was quenched with saturated aq. $\mathrm{NaCl}(1.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL} \mathrm{X} \mathrm{3})$ and the combined organic phase was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc: Hexane $=1: 7$) to provide the crude $234(25.3 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.22(\mathrm{dd}, J=15,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=$ $15,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=9.5,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=9.5,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (quint, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~m}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.; IR (neat) $v_{\max } 3377.1,2925.3,2858.7 \mathrm{~cm}^{-1}$. To a stirred solution of $234(25.3 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Et}_{3} \mathrm{~N}(10.6 \mathrm{mg}, 0.105 \mathrm{mmol})$, DMAP (1.0 $\mathrm{mg}, 0.008 \mathrm{mmol})$, and acetic anhydride ($9.1 \mathrm{mg}, 0.089 \mathrm{mmol}$) and stirred for $14 \mathrm{~h} \mathrm{at} \mathrm{rt}$. quenched with saturated aq. NaHCO_{3} and water was added. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \mathrm{~mL} \mathrm{X} \mathrm{2)}$ and the combined organic layer was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane =1:20) to provide the pure $237\left(10 \mathrm{mg}, 60 \%\right.$ for 2 steps). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.26(\mathrm{dd}, J=15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.75(\mathrm{~m}$,
$2 \mathrm{H}), 4.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=9.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=9.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ $-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{dt}, J=14.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{dt}, J=13.7,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.25(\mathrm{~s}, 1 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) . ;$ IR (neat) $v_{\max } 2956,2928,2856,1744 \mathrm{~cm}^{-1}$.

Alcohol 238. To a stirred solution of $237(10 \mathrm{mg}, 0.027 \mathrm{mmol})$ in THF (1.0 mL) was added TBAF ($0.05 \mathrm{~mL}, 0.05 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). The reaction mixture was stirred for 3 h at rt and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane =1:4) to provide $238(6.4 \mathrm{mg}, 94 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.29-6.24(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.00(\mathrm{~m}, 1 \mathrm{H})$, $5.74-5.61(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=10.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.89$ (quint, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (sext, $J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$).

Aldehyde 239. To a stirred solution of $239(6.4 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added Dess-Martin periodinane ($18.2 \mathrm{mg}, 0.042 \mathrm{mmol}$). The reaction mixture was stirred for 14 h at rt and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane =1:4) to provide 239 ($5.1 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$
(dd, $J=15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.48,(\mathrm{~m}, 1 \mathrm{H})$, 2.13-2.08(m, 1H), 2.07(s, 3H), 2.02-1.92(m, 1H), 1.77-1.71 (m, 1H), 1.65-1.59 (m, 1H), $1.21-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

(E,E,E)-triene 242. To a stirred solution of aldehyde 239 ($10.9 \mathrm{mg}, 0.046 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.3 mL) was added $240(71.8 \mathrm{mg}, 0.206 \mathrm{mmol})$. The reaction mixture was stirred for 17 h and 240 ($14.6 \mathrm{mg}, 0.0419 \mathrm{mmol}$) was added more. After 3 h , the mixture was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane = $1: 4$) to provide $242(12.2 \mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{dd}$, $J=15.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.09-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.86-5.56(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{dd}, J=$ $6.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.84(\mathrm{~m}, 6 \mathrm{H}), 1.61(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.53-0.97(\mathrm{~m}, 11 \mathrm{H}), 0.97-0.79(\mathrm{~m}, 4 \mathrm{H})$. IR (neat) $v_{\max } 2960,2915,1741,1719 \mathrm{~cm}^{-1}$.
(E,E,Z)-triene 243. To a stirred solution of $241(27.2 \mathrm{mg}, 0.0794 \mathrm{mmol})$ in THF (1 mL) was added 18 -crown- $6(24.5 \mathrm{mg}, 0.0926 \mathrm{mmol})$ and cooled at $0{ }^{\circ} \mathrm{C}$. To the reaction mixture was added dropwise KHMDS ($0.08 \mathrm{~mL}, 0.08 \mathrm{mmol}, 1 \mathrm{M}$ in THF) and stirred at $0{ }^{\circ} \mathrm{C}$. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and aldehyde $239(6.3 \mathrm{mg}, 0.026 \mathrm{mmol})$ solution in THF (1 mL) was added dropwise and the syringe was rinsed with THF $(0.05 \mathrm{~mL})$. The resulting mixture was stirred for 1
h at $-78{ }^{\circ} \mathrm{C}$ and stored at $-25^{\circ} \mathrm{C}$ for 15 h . It was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and EtOAc (3 mL) was added. The aqueous phase was extracted with EtOAc (3 mL X 2). The combined organic mixture was concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (elution with EtOAc: Hexane $=1: 7$) to provide 242 ($6.2 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.26(\mathrm{dd}, J=15.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.10-5.84 (m, 2H), 5.82-5.58 (m, 3H), $4.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{qd}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.65(\mathrm{tt}, J=10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.94(\mathrm{dq}, J=14.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{tq}, J=13.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.19-0.82(\mathrm{~m}, 7 \mathrm{H})$.

233

60 \% (b.r.s.m)

$\mathrm{R}=(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

245

Phosphorane 245. To a stirred solution of the crude alcohol 233 ($28.0 \mathrm{mg}, 0.090 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added pyridine ($14.2 \mathrm{mg}, 0.179 \mathrm{mmol}$), $\mathrm{CBr}_{4}(44.6 \mathrm{mg}, 0.134 \mathrm{mmol}), \mathrm{PPh}_{3}(32.9$ $\mathrm{mg}, 0.125 \mathrm{mmol})$, and acid $244(21.0 \mathrm{mg}, 0.108 \mathrm{mmol})$. The mixture was stirred for 18 h and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane = 1:7 to 1:2) to provide $245(17.5 \mathrm{mg}, 60 \%$, b.r.s.m) and recovered $233(9.4 \mathrm{mg}) . \delta 6.27(\mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=15.2,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76-5.58(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33(\mathrm{dd}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=24,2 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~m}, 7 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.2(\mathrm{~s}, 6 \mathrm{H})$. IR (neat) $v_{\max } 3419,2956,1738,1443 \mathrm{~cm}^{-1}$.

$\mathrm{R}=(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2^{-}}$
245

Alcohol 246. To a stirred solution of $245(17.4 \mathrm{mg}, 0.0355 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added TBAF ($0.09 \mathrm{~mL}, 0.09 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). The reaction mixture was stirred for 15 h at rt and it was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane =1:2 to 1:1) to provide 246 ($7.1 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.29(\mathrm{dd}, J=15.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.1,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.68 (ddt, $J=34.8,14.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.17$ (quint, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$), 3.53 $-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=21.6,2 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dt}, J=14.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H})$.

Aldehyde 216. To a stirred solution of $246(5.3 \mathrm{mg}, 0.014 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added Dess-Martin periodinane $(9.0 \mathrm{mg}, 0.021 \mathrm{mmol})$. The reaction mixture was stirred for 5 h at rt and it was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane = 1:1) to provide 247 ($4.1 \mathrm{mg}, 78 \%$). To a stirred solution of $247(4.1 \mathrm{mg}, 0.011 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10.0 \mathrm{~mL})$ was added $\mathrm{LiCl}(10.0$ $\mathrm{mg}, 0.229 \mathrm{mmol}$) and DIPEA ($28.3 \mathrm{mg}, 0.219 \mathrm{mmol}$). The reaction mixture was stirred. After 3 days, it was concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (elution with EtOAc : Hexane = 1:4) to afford 216 (1.0 mg , $42 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76$ (ddd, $\left.J=15.8,8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.25(\mathrm{t}, J=12.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.09-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.63(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{dd}, J=13.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=13.5$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 1.97(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}), 1.15-0.97(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{dd}, J$ $=19.6,6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

242 248

Diastereomer mixture 248. The solution of $242(11.5 \mathrm{mg}, 0.037 \mathrm{mmol})$ in toluene (3.7 mL) was heated to $150{ }^{\circ} \mathrm{C}$ for 20 h . The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane $=1: 7$) to afford the mixture $248(8.4 \mathrm{mg}, 73 \%)$.

Lactone 255 and alcohol 254. To a stirred solution of the mixture of 248 ($8.4 \mathrm{mg}, 0.027 \mathrm{mmol}$) in absolute $\mathrm{EtOH}(1.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{mg}, 0.018 \mathrm{mmol})$. The reaction mixture was stirred for 11 h . It was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$ was added. The mixture was concentrated under reduced pressure. To residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was separated and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane $=1: 4$) to afford the mixture 255 ($2.9 \mathrm{mg}, 35 \%$ for 2 steps) and 254 ($3.4 \mathrm{mg}, 34 \%$).
$255:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83(\mathrm{dt}, J=9.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dt}, J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.41-4.21 (m, 2H), 2.96 (ddt, $J=8.4,5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 5 \mathrm{H}), 1.41(\mathrm{tdd}, J=12.8,6.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-0.68(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.6,139.1,127.7,71.6,46.0,44.9,43.8,40.8,39.6,38.4,36.76$, $32.2,22.3,20.1 . ;$ IR (neat) $v_{\max } 2915,1765,1456 \mathrm{~cm}^{-1}$.

254 : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67-5.53(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{qd}, J=7.1,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}$, $J=10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddt}, J=9.0,6.1$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{td}, J=13.3,12.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.33-1.12$ $(\mathrm{m}, 5 \mathrm{H}), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,133.1,125.4,65.4,60.5,44.4,42.9,41.2,40.0,38.7,32.6,30.1,27.8$, 22.5, 20.2, 14.2.

Difference NOE chart for compound $\mathbf{2 5 5}$

Inverted peak	Enhanced peaks
2.68 ppm	$2.95 \mathrm{ppm}, 1.08 \mathrm{ppm}$
2.95 ppm	$5.66 \mathrm{ppm}, 4.38 \mathrm{ppm}, 1.70 \mathrm{ppm}$
4.37 ppm	2.68 ppm

Difference NOESY chart for compound 254

243
256

Diene 261. The solution of $243(5.0 \mathrm{mg}, 0.016 \mathrm{mmol})$ in toluene (3 mL) was heated to $150{ }^{\circ} \mathrm{C}$ for 21 h . The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane $=1: 7$) to afford the impure $248(3.5 \mathrm{mg})$. Without further purification, it was used to the next reaction. To a stirred solution of the mixture of $\mathbf{2 4 8}(3.5 \mathrm{mg})$ in absolute $\mathrm{EtOH}(2.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.0 \mathrm{mg}, 0.014 \mathrm{mmol})$. The reaction mixture was stirred for 11 h . It was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$ was added. The mixture was concentrated under reduced pressure. To
residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was separated and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane = 1:4) to afford $261(2.0 \mathrm{mg}, 46 \%$ for 2 steps $) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.66-5.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.49(\mathrm{dt}, J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.02(\mathrm{~m}$, $2 \mathrm{H}), 3.65(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H})$, $2.08(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddt}, J=23.4,13.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=33.5 \mathrm{~Hz}, 13 \mathrm{H}), 1.33$ $-1.13(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.82(\mathrm{~m}, 8 \mathrm{H}), 0.79-0.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1$, $135.3,123.6,65.6,60.0,45.3,44.4,41.9,41.3,41.0,36.7,33.7,32.2,30.3,22.4,19.4,14.3$.

Difference NOE chart for compound $\mathbf{2 5 5}$

Inverted peak	Enhanced peaks
2.58 ppm	$5.55 \mathrm{ppm}, 3.69 \mathrm{ppm}, 3.66 \mathrm{ppm}$
3.06 ppm	1.02 ppm
2.08 ppm	$5.65 \mathrm{ppm}, 1.55 \mathrm{ppm}$

Part IV.

The Formal Synthesis of (-)-Englerin A (267)

by RRCM and Etherification

4.1. Introduction

4.1.1. Background

Nature is a major source for useful medical products. Many natural products have been isolated from various natural sources ranging from plants to marine sponges; some have been developed as valuable drugs such as aspirin, penicillin and taxol (262) to treat a wide spectrum of human diseases. Throughout the ages, plants, in particular, have been major natural sources for important drugs. For example, the record for Egyptian medicine, which was written in "Ebers Papyrus", shows that the Egyptians used more than 700 drugs from natural sources, mostly plant origins, to treat many diseases around 1500 BCE. Until now a number of natural products from plants have been used without modification. ${ }^{1}$ Although the number of natural compounds isolated from medical plants have been rapidly decreasing since early 1981's, they have played a pivotal role in the development of valuable drugs such as taxol (262), camptothecin (263), and podophyllotoxin (264) (Figure 7). ${ }^{2}$

(262) Taxol

(263)

Camptothecin

(264)

Podophyllotoxin

Figure 7. Valuable drugs from plant origin sources

Recently, new guaiane sesquiterpenes such as $(+)$-oriental $\mathrm{F}(\mathbf{2 6 5})^{3}$, (\pm)-pubinernoid B (266) ${ }^{4}$, $(-)$-englerin $\mathrm{A}(\mathbf{2 6 7})^{5}$ and (-)-englerin $\mathrm{B}(\mathbf{2 6 8})^{5}$ were reported (Figure 8).

(+)-Orientalol F (265)

(-)-Englerin A (267)

Pubinernoid B (266)

(-)-Englerin B (268)

Figure 8. Guaiane sesquiterpenes
Among them, (-)-englerin A (267) and B(268) were firstly isolated from root and stem bark of phyllanthus engleri that is a very popular plant in East Africa, particularly Tanzania and Zimbabwe by the Beutler group in 2008. ${ }^{5}$ Extraction yields from the plant, phyllanthus engleri are not high; the yields were $0.24 \%(2.4 \mathrm{~g} / \mathrm{kg})$ from root bark and $0.12 \%(1.2 \mathrm{~g} / \mathrm{kg})$ from stem bark. (-)-Englerin A (267) displayed excellent biological activities to inhibit the growth of kidney cancer cell lines. The Beutler group also demonstrated their structures and relative stereo configurations of (-)-englerin $A(267)$ and $B(268)$. They have tricyclic cores, which have also oxa-cyclic substructures and show interesting structure-activity relationship (SAR). Englerin A (267) and B (268) have almost the same structure except a substituent at C9 position (Figure 8), but Englerin B (268) showed low activity and selectivity for renal cancer cells. In 2009, Christmann and co-workers synthesized unnatural (+)-englerin A and confirmed an absolute
stereochemistry of (-)-englerin A (267). ${ }^{6}$ Various research groups have also reported efficient strategies to provide (-)-englerin $\mathrm{A}(\mathbf{2 6 7})$ and its analogues. ${ }^{7}$

Our research group has been also interested in this unique structure and excellent bioactivity and it allowed us to invent a new process to obtain the key core structure of (-)-englerin A (267). We have believed that it would contribute to study preliminary structure-activity relationship (SAR) and launch a new kidney cancer drug.

4.1.2. Biological activities of (-)-englerin A (267) and analogues of (-)-englerin A (267)

The biological activity and selectivity of (-)-englerin A (267) has attracted many scientists because the medical treatment of renal cancer is very difficult and challenging task and there are no satisfactory medicines. Although there are some medicines such as bevacizumab (269), sunitinib ${ }^{8}$ (270), and sorafenib (271) ${ }^{9}$ (Figure 9) to treat renal cancers, they have serious side effects or no medicinal effects. ${ }^{5}$

Sunitinib

Sorafenib
(271)
(270)

Figure 9. Drugs for kidney cancers
The Beutler group reported biological tests of (-)-englerin A (267) that showed high selective and potent for kidney cancer cell line panel at concentrations under 20 nM (Table 6).

Table 6. Renal Cancer Cell Growth Inhibition Data of (-)-englerin A (267)

Renal cell line	(-)-Englerin A (267)	Taxol (262)
$786-0$	<0.01	0.034
A498	<0.01	0.10
ACHN	<0.01	0.65
CAKI-1	15.5	0.35
RXF-393	0.011	0.041
SN12C	0.087	0.018
TK-10	15.5	0.11
UO-31	<0.01	0.45

(Mean GI_{50} in $\mu \mathrm{M}$)
In addition, (-)-englerin $A(267)$ and $B(268)$ displayed impressive structure-activity relationship (SAR). Therefore exploring the SAR will be helpful to find and develop a new kidney cancer drug. Many research groups have prepared various analogues of (-)-englerin A (267) and tried to elucidate SAR.

Nicolaou and co-workers in 2010 reported biological studies for (\pm)-englerin A (272) and (\pm)-analogues against cancer cell lines including breast (MCF-7), lung (NCI-H460), and renal (ACHN, A498, and UO31). ${ }^{10}$ (\pm)-Englerin A (272) displayed high potency and selectivity toward renal cancer cells. (\pm)-Englerin B (273), (\pm)-englerin B acetate (274), and (\pm)-analogues showed no or little activities (Figure 10) (Table 7).

274

275

276

277

Figure 10. Structures of (\pm)-englerin B acetate (274), hydroxy acetate (275), TBS-ether (276), and hydrogenated englerin A (277)

Table 7. Cytotoxicity of (\pm)-Englerin A (272) and Englerin A analogues

Compound	MCF-7	NCI-H460	ACHN	A498	UO31
Doxorubicin	0.066 ± 0.004	0.010 ± 0.000	0.072 ± 0.006	0.243 ± 0.062	0.693 ± 0.221
Taxol	0.007 ± 0.001	0.006 ± 0.001	0.076 ± 0.008	0.078 ± 0.006	0.721 ± 0.146
(\pm)-Englerin A $(\mathbf{2 7 2})$	>10	>10	0.113 ± 0.071	0.045 ± 0.004	0.037 ± 0.005
(\pm)-Englerin B $(\mathbf{2 7 3})$	>10	>10	>10	>10	>10
(\pm)-Englerin B acetate (274)	>10	>10	>10	6.341 ± 0.229	9.275 ± 0.013
Hydroxy acetate $(\mathbf{2 7 5})$	>10	>10	>10	>10	>10
TBS-ether (276)	>10	>10	>10	>10	>10
Hydrogenated englerin A (277)	>10	>10	0.745 ± 0.166	0.287 ± 0.139	0.359 ± 0.006

(GI_{50} values in $\mu \mathrm{M}$)
Christmann and co-workers had prepared (-)-englerin A (267) and 32 analogues to test cytotoxicity with A498 kidney cancer cell lines to extend SAR study to find new potential compounds. ${ }^{11}$ First, they changed cinnamoyl ester of (-)-englerin A (267) and found 3 analogues $\mathbf{(2 7 9}, \mathbf{2 8 0}$, and 285) that are twice as potent as (-)-englerin A (267) (Figure 11) (Table 8). They
proved that cinnamoyl ester of (-)-englerin A (267) can be replaced and changed to improve activities.

278
Figure 11. Structure of (-)-Englerin A analogues (278)
Table 8. The cytotoxicity of 32 englerin A analogues (278) was tested with the A498 by the Christmann group
(-)-englerin A (267)

Secondly, the glycolate ester was replaced. The resulting analogues (294) gave extremely decreased activities (Figure 12) (Table 9). They showed that the glycolate ester part is very sensitive for a modification.

294
Figure 12. Structure of (-)-Englerin A analogues (294)
Table 9. The cytotoxicity of 32 englerin A analogues (294) was tested with the A498 by Christmann group

R^{2} (IC_{50} value)		
$\begin{gathered} -\mathrm{CH}_{2} \mathrm{OMe} \\ \mathbf{3 0 1}(0.65 \mu \mathrm{M}) \end{gathered}$	$\begin{gathered} \hline-\mathrm{CH}_{2} \mathrm{NHCH}_{3} \\ \mathbf{3 0 2}(5.04 \mu \mathrm{M}) \end{gathered}$	$\begin{gathered} -\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Boc}) \mathrm{Me} \\ \mathbf{3 0 3}(>10 \mu \mathrm{M}) \end{gathered}$

Thirdly, replacing the isopropyl group with methyl and ethyl groups dramatically decreases biological activities. Therefore, this part is also important to obtain high activity.

The Chan group in 2011 also introduced biological evaluation of (\pm)-englerin analogues. ${ }^{12}$ They changed the cinnamoyl ester of (\pm)-englerin A (272). Analogues (305) and (309) showed similar or slightly improved activities (Figure 13) (Table 10).

304

Figure 13. Structure of (\pm)-englerin analogues 304
Table 10. The cytotoxicity of englerin A (272) analogues by the Chans group

R_{1}	UO31	A498	R_{1}	UO31	A498
(\pm)-englerin A (272)	0.037	0.045		0.040	0.032
	0.150	0.340		0.071	0.060
 308	0.014	0.086	 309	0.007	0.049
310	> 10	> 10		8.6	> 10

(GI_{50} values in $\mu \mathrm{M}$)
They also replaced the glycolate . However, two analogues $\mathbf{3 1 3}$ and $\mathbf{3 1 4}$ gave no activities (Figure 14) (Table 11). Although these analogues did not give significant improvement of activities, they showed a role of structure of (\pm)-englerin A (272).

312
Figure 14. Structure of (\pm)-Englerin A analogues (312)

Table 11. The cytotoxicity of englerin A analogues (312) by the Chan group

R_{2}	UO 31	A 498	R_{2}	UO 31	A 498
$-\mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OH}$ $\mathbf{3 1 3}$	>10	>10	$-\mathrm{CO}_{2} \mathrm{H} \mathrm{314}$	>10	>10
$\mathrm{C}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ $\mathbf{3 1 5}$	0.035	0.048	s. $^{s^{3}} \mathrm{O}^{4} \mathrm{OH}$	0.047	0.020

(GI_{50} values in $\mu \mathrm{M}$)

Theodorakis and co-workers finally reported SAR of truncated englerins (Figure 15). ${ }^{13}$ Truncated englerin 317 and $\mathbf{3 1 9}$ compounds did not give any activity in A498 cancer cell, so they suggested that a five membered ring of englerin $A(267)$ is essential to inhibit a growth of renal cancer cells. Antiproliferative activity of (-)-englerin A (267) and truncated englerin analogues in CEM T- cell acute lymphoblastic leukemia cells was also evaluated. (-)-Englerin A (267) and 320 that have additional rings showed no or little cytotoxicity in $20 \mu \mathrm{M}$, but 321 and 322 analogues, which have single ring gave high cytotoxicity against leukemia cells in low concentration $\left(\mathrm{GI}_{50}=1-3 \mu \mathrm{M}\right)$. They explained a role of structures of (-)-englerin $\mathrm{A}(267)$ (Figure 15).

317 : $\mathrm{R}=\mathrm{H}$
318 : $\mathrm{R}=\mathrm{Ac}$
319 : $\mathrm{R}=\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OH}$

320

321

322

Figure 15. Structures of truncated englerins prepared by the Theodorakis group

4.1.3. Previous synthetic approaches to englerin \mathbf{A}

The Beutler group in 2008 reported the natural product, (-)-englerin A (267) and demonstrated the relative stereochemistry of this compound. The absolute configuration of (-)englerin A (267) was established by Christmann and co-workers in 2009. They introduced the first synthetic route for (+)-englerin A from (+)-cis, trans-neopetalactone $\mathbf{3 2 3}$ using key strategies such as an epoxylactone rearrangement, a stereoselective Barbier addition, and a ring-closing metathesis (RCM) reaction (Scheme 91). ${ }^{6}$ In addition, they demonstrated that (-)-englerin A (267) can be synthesized from (-)-cis,trans-neopetalactone (see Scheme 101) by the same strategies in 2011. ${ }^{11}$

Scheme 91. The total synthesis of (+)-Englerin A

After the Christmann group identified the absolute configuration of (-)-englerin A (267), the research groups of Ma and Echavarren reported the total synthesis of (-)-englerin (267) by a gold-catalyzed cyclization in 2010.

Echavarren et al. ${ }^{14}$ generated a tricyclic alcohol $\mathbf{3 3 2}$ from a protected ketone $\mathbf{3 3 1}$ by the goldcatalyzed cyclization (Scheme 92).

332

Scheme 92. The mechanism of the backbone synthesis of (-)-Englerin A (267) by the Echavarren group

Ma et al. ${ }^{15}$ also showed the synthesis of (-)-englerin A (267) from an unprotected alcohol 333 by the Au-catalyzed cyclization. The tricyclic alcohol 335, the backbone of (-)-englerin A (267), was constructed from the free alcohol $\mathbf{3 3 3}$ (Scheme 93).

Scheme 93. The mechanism of the backbone synthesis of (-)-Englerin A (267) by the Ma group
Nicolaou and co-workers introduced a [5+2] cycloaddition for the construction of a sevenmembered ring (337) in 2010 (Scheme 94). ${ }^{10}$

Scheme 94. The construction of the 7-memebred ring (337) by Nicolaou and co-workers

In addition, they showed stereoselective [5+2] cycloaddition using the chiral auxiliary $\mathbf{3 3 9}$ to obtain the optically pure $\mathbf{3 4 0}$ (Scheme 95).

Scheme 95. Stereoselective [5+2] cycloaddition using the chiral auxiliary 339 by Nicolaou and co-workers

The oxatricyclic structure $\mathbf{3 4 3}$ was formed by the aldol condensation followed by reduction (Scheme 96).

Scheme 96. The synthesis of the oxatricyclic structure $\mathbf{3 4 3}$ by Nicolaou and co-workers

The Theodorakis group reported a formal synthesis of (-)-englerin A (267). ${ }^{16}$ They used the $[4+3]$ cycloaddition for construction of the 7 -membered oxabicycle 346 (Scheme 97) and the aldol condensation to generate the tricyclic core $\mathbf{3 4 9}$ (Scheme 98). The origin of diastereoselectivity of $[4+3]$ cycloaddition was controlled by an interaction between the carbonyl group of the auxiliary of $\mathbf{3 4 4}$ and rhodium carbenoid generated from diazo compound of $\mathbf{3 4 4}$.

Scheme 97. The synthesis of the oxabicycle 346 by the Theodorakis group
The adol condensation provided the tricyclic intermediate 348 from a diketone 347. After 8 steps, $\mathbf{3 4 8}$ was converted to the known compound $\mathbf{3 4 9}$ reported by Ma et al. ${ }^{15}$ (Scheme 98).

Scheme 98. The synthesis of the oxatricyclic structure $\mathbf{3 4 9}$ by the Theodorakis group
The Chain group in 2011 displayed the most efficient synthesis. ${ }^{17}$ A 5-membered ring 351 was prepared from lithium enolates by Michael addition and 7-membered oxatricyclic core 352 was constructed through a reductive carbonyl-alkene cyclization. 3-Furanone 349 was treated with LDA to produce lithium enolate that was subjected to Michael addition with an aldehyde 350 to give inseparable 5 -membered rings in favor of a desired product $\mathbf{3 5 1}$ in d.r. 2:1. A reductive carbonyl-alkene cyclization with SmI_{2} gave the valuable ketone $\mathbf{3 5 2}$ that is a known compound synthesized by the Ma group. ${ }^{15}$ It is very a concise synthetic strategy to furnish (-)englerin A (267) (Scheme 99).

349

352

Scheme 99. The synthesis of (-)-englerin A (267) by the Chain group

Lin and co-workers showed a formal synthesis of (+)-englerin A by organocatalytic [4+3]cycloaddition (Scheme 100). ${ }^{18}$

Scheme 100. Preparation of oxabicycle by organocatalytic [4+3]-cycloaddition by the Lin group

The Christmann group in 2011 used the same strategy, which was used to synthesize (+)englerin A, to prepare (-)-englerin A (267) (Scheme 101). ${ }^{11}$

367
Scheme 101. The total synthesis of (-)-englerin A (267) by the Christmann group
Recently, Cook and co-worker reported a reductive-Heck approach to key cores of (\pm)englerin A (272). A hydroazulene ring 369 was constructed by the Heck reaction. They showed a preparation of a known alcohol 335 reported by the Ma group (Scheme 102). ${ }^{19}$

Scheme 102. The formal synthesis of (\pm)-englerin A (272) by the Cook group

4.1.4. Previous syntheses of guaiane cores of englerins

The Maier group used carbonyl ylide-alkyne 1,3-dipolar cycloaddition to generate a oxobridged guaiane $\mathbf{3 7 6}{ }^{20}$ A 5-membered ring 374 was prepared from 372 by Favorskii rearrangement and Barton-McCombie protocol. They utilized carbonyl ylide-alkyne 1,3-dipolar cycloaddition to build a 7-membered ring 376 from diazoketone 375 (Scheme 103).

Scheme 103. Preparation of a oxo-bridged guaiane structure 376

The synthesis of analogue, (-)-9-deoxy-englerin A (380) was reported by the same group (Scheme 104). ${ }^{21}$ They used intramolecular epoxide opening of a ketone enolate for the construction of a bicyclic ketone 378. Oxymercuration of $\mathbf{3 7 9}$ followed by reduction gave the oxygen-bridged structure 380.

Scheme 104. Preparation of a bicyclic ketone 380

As we discussed, there have been a lot of synthetic approaches to prepare englerin A and because of selective and potential biological activities of (-)-englerin A (267) for renal cancer cells and studies for SAR to disclose new potential compounds from (-)-englerin A (267). Herein, we describe a new strategy for a formal synthesis of (-)-englerin A (267) by a relay ring closing metathesis (RRCM) reaction and transannular etherification. ${ }^{22}$ Now, asymmetric syntheses of (-)englerin A (267) can be summarized ${ }^{23}$ as follows (Scheme 105).

Scheme 105. Asymmetric syntheses of (-)-englerin A (267)

4.1.5. A new approach to a key core of (-)-englerin (267) A by RRCM and transannular etherification

A cascade metathesis has been investigated for some time and it is well known to produce easily various bicyclic dienes (Scheme 106). ${ }^{24}$

382

386
$3 \mathrm{~mol} \%$

383

385

387

Scheme 106. Preparation of various bicyclic dienes by a cascade metathesis
There are also some examples of dienyne metathesis from optically pure dienyne (Scheme 107). ${ }^{25}$

Scheme 107. Examples of dienyne metathesis from optically active dienyne

Therefore, we believed that optically active hydroazulene 381 can be prepared by ene-yneene metathesis and an important structure to synthesize (-)-englerin A (267). In addition, based on our analysis, transannular etherification was expected to produce an oxa-bicyclic structure 392 from a hydroazulene 381, which can be probably converted to the key intermediates to synthesize (-)-englerin A (267) (Scheme 108).

Scheme 108. Retrosynthetic analysis of (-)-englerin A (267) by $R C M$ and transannular etherification

First, we designed an acetylene diol precursor $\mathbf{3 9 3}$ to obtain the hydroazulene $\mathbf{3 8 1}$ by the cascade metathesis and found two problems. A desired diene $\mathbf{3 8 1}$ would be a major product because a less hindered site might be more reactive with a catalyst, but it has a possibility to have another diene 394 (Scheme 109).

Scheme 109. Possible two diene products from a ring closing metathesis (RCM) reaction

In addition, it cannot be easy to initiate a ring closing metathesis because geminally substituted terminal alkenes are unreactive with a relay ring closing (RCM) catalysts. Therefore, to give more promising results, we decided to introduce a relay metathesis step to give high reactivity and regio selectivity of ene-yne-ene metathesis. Hoye and co-workers developed relay metathesis to resolve reactivity (Scheme 110) and selectivity (Scheme 111) problems of terminal alkenes $\mathbf{3 9 5}$ that are geminally substituted. ${ }^{26}$

397

Scheme 110. The relay ring closing metathesis reaction for unreactive geminally substituted alkenes

Scheme 111. Regioselectivity of the relay ring closing metathesis

Therefore, it is prudent to initiate site-specific ruthenium carbine to produce a desired diene 381, so we decided to use the relay ring closing metathesis (RRCM) to construct hydroazulene 381 (Scheme 112).

(-)-englerin A (267)

381

Scheme 112. The Synthesis of the hydroazulene $\mathbf{3 8 1}$ by the RRCM reaction

After a construction of $\mathbf{3 8 1}$, we postulated that the oxa-bicyclic structure 392 would be approached by transannular etherification. Hydroxyl nucleophile would not only attack C-7 because this site is more positive than C-6, but also approach from front side of C-7 of unstrained conformations because backside attack would not be possible due to a ring strain (Scheme 113).

Scheme 113. Oxa-bicyclic structure 392 from the hydroazulene 381 by transannular etherification

Thus, the final retrosynthetic analysis of (-)-englerin (267) is as follows (Scheme 114).

Scheme 114. Retrosynthetic analysis of (-)-englerin A (267) by RRCM reaction and transannular etherification

Based on our expectation, we designed two retrosynthetic strategies to access the diol $\mathbf{4 0 6}$ to prepare the hydroazulene 381.

The first retrosynthetic plan of $\mathbf{4 0 6}$ is to use Sharpless asymmetric kinetic resolution ${ }^{27}$ to control stereoselectivity of the hydroazulene $\mathbf{3 8 1}$ (Scheme115). An aldehyde 408 can be prepared from Geraniol 409, a commercially available starting material, by selenium oxidation. Optically pure epoxy alcohol 407 would be obtained by Sharpless asymmetric kinetic resolution from a secondary allylic alcohol made by a Barbier addition based. Although the maximum yield would be 50 \% from epoxidation, another diastereomer recovered from Sharpless epoxidation might be easily separable and reused by oxidation and stereoselective reduction. Finally, the target precursor of RRCM, diol 406, would be prepared by stereo-, regio selective epoxide opening reaction because generally less hinder site of epoxide has more reactive in nucleophilic addition reaction.

407

1) Barbier coupling
2) Sharpless asymmetric kinetic resolution

408

1) o-allylation
2) Selenium dioxide oxidation

406

409

Scheme 115. The first retrosynthetic plan to prepare diol 406
The second retrosynthetic plan of $\mathbf{4 0 6}$ is to use Sharpless asymmetric epoxidation to introduce stereoselectivity of hydroazulene $\mathbf{3 8 1}$ (Scheme 116). Our second retrosynthetic scheme would be alternative to produce the same intermediate, the diol 406. Herein, stereoselectivity of an epoxy alcohol could be controlled by Sharpless epoxidation and epoxide opening could provide 410. Oxidation and a Barbier coupling reaction would produce the mixture of diastereomers 406, but a desired diastereomer could be produced as a major product through non-chelation transition state.

410

Oxiation 2. Barbier coupling

406

1. Sharpless AE
2. Stereoselective epoxide opening reaction

Scheme 116. The second retrosynthetic plan to prepare diol 406
Based on our synthetic analysis of (-)-englerin A (267), we decided to apply the first strategies (Scheme 115) to produce acetylene diol 406, but we found that epoxide opening of 407 did not give desired product 406. Therefore, we have prepared three model compounds, epoxy alcohols, and investigated epoxide opening reactions. After examination, the second method (Scheme 116) was applied to obtain the hydroazulene 381 and we proved that $\mathbf{3 8 1}$ can be converted to the key structure 392 of (-)-englerin A (267) by transannular etherification.

4.2. Result and discussion

4.2.1. Investigation of preparation of diol acetylene (406)

4.2.1.1. The first-generation approach (Scheme 115)

To investigate a relay ring closing metathesis (RRCM) reaction to construct the hydroazulene 381, we needed to prepare the diol 406 with a desired stereochemistry (See Scheme 112). First, allyl ether 412 was synthesized from a geraniol 409 to give a moiety of the relay ring closing metathesis by two methods (Scheme 117). Both methods gave us high yields; the $2^{\text {nd }}$ method is more convenient for a large scale experiment, so we decided to use the $2^{\text {nd }}$ method.

$1^{\text {st }}$ Method : allyl bromide, $\mathrm{KOH}, \mathrm{TBAI}$, no solvent, $\mathrm{rt}($ Lit. $\mathrm{Y}=91 \%){ }^{28}$
$2^{\text {nd }}$ Method : allyl bromide, NaH, THF
Scheme 117. Preparation of allyl ether 412
After o-allylation of a geraniol 409, we have explored SeO_{2} oxidation to provide the aldehyde 408 from allyl ether 412. After several examinations ${ }^{29}$, we decided to use catalytic SeO_{2} oxidation method ${ }^{29 \mathrm{~b}}$ to produce an alcohol 411 and the aldehyde 408 because other reaction conditions showed low conversion or low yield. PDC oxidation was applied to convert the alcohol 411 to the aldehyde 408 in 65% yield (Scheme 118).

Scheme 118. SeO_{2} oxidation to prepare alcohol 411 and aldehyde 408

The aldehyde 408 was treated with 2-bromo-methyl-3-methyl-1-butene (326) to afford an alcohol 413 by a Barbier addition. We tested reaction conditions and found that when 3 equivalent of allyl bromide $\mathbf{3 2 6}$ was used in a solvent mixture ${ }^{30}$ of THF and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the yield of $\mathbf{4 1 3}$ was increased to 95% (Scheme 119) (Table 12).

408

413

Scheme 119. Preparation of the alcohol 413 by a Barbier addition

Table 12. Results of synthesis of the alcohol $\mathbf{4 1 3}$ by a Barbier addition

Activated Zn (eq.)	Bromide 326 (eq.)	Solvent (v/v)	Result
3	2	THF	No reaction
3	2	THF $/ \mathrm{NH}_{4} \mathrm{Cl}($ sat. $)=2 / 1$	$\mathrm{Y}=85-90 \%$
3	3	THF $/ \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{sat})=.2 / 1$	$\mathrm{Y}>95 \%$

($\mathrm{v} / \mathrm{v}=$ volume $/$ volume)
In addition, the bromide 326 was prepared from an alcohol 416 by a literature method. ${ }^{31}$ Firstly, the alcohol 416 was prepared from an ester 415 by a literature method ${ }^{32}$, but a synthesis of 416 was not easy to obtain enough the bromide 326 because of a low yield and by-products in a large scale (Scheme 120).

Scheme 120. Preparation of bromide 326 by literature methods

Thus, another route was developed to provide the alcohol 416. An aldehyde 418 was prepared from a literature method ${ }^{33}$ and a simple reduction of $\mathbf{4 1 8}$ with NaBH_{4} gave us the alcohol 416, which is a precursor to make the bromide 326 (Scheme 121).

Scheme 121. Preparation the alcohol 416 from the aldehyde 417
Sharpless kinetic resolution ${ }^{27}$ was used to give a chiral epoxide 407 from the secondary alcohol 413. Epoxidation of one of isomers would be faster and give an optically pure epoxy alcohol 407. The epoxy alcohol 407 was obtained in 42% yield and $\mathbf{4 1 9}$ was recovered in 47%
yield. We did not identify an enantiomeric excess of $\mathbf{4 0 7}$ because it would be ease to confirm an absolute stereochemistry of $\mathbf{4 0 7}$ after an epoxide opening reaction (Scheme 122).

Scheme 122. Preparation the epoxy alcohol 407 from the secondary alcohol 413
After obtaining the epoxy alcohol 407, representative methods had been tested to open an epoxide ring of $\mathbf{4 0 7}$ to provide a chirality of alcohol position and desired stereochemistry of alkyne of 406 (see Scheme 115). However, acetylene did not attack the epoxide ring of 407 to produce the acetylene diol 406. When the epoxy alcohol 407 was treated with TMS-acetylene and $\mathrm{Et}_{2} \mathrm{AlCl}^{34}$, it gave an unknown product 420. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2 0}$ did not show proton peaks from a double bond of isobutene structure of 407. It might be possible that a double bond of isobutene of $\mathbf{4 0 7}$ would attack the epoxide ring to afford a cyclized product $\mathbf{4 2 0}$. In addition, when 407 was treated with TMS-acetylene and $\mathrm{BF}_{3} \mathrm{OEt}_{2}{ }^{35}$ or Li-acetylene diamine complex ${ }^{34 \mathrm{~b}, 36}$, Payne rearrangements was occurred to produce a mixture of $\mathbf{4 0 7}$ and $\mathbf{4 2 1}$ that were an inseparable mixture and ratio (1:1) was determined by the ${ }^{1} \mathrm{H}$ NMR spectrum (Scheme 123).

Scheme 123. Epoxide opening reactions from the epoxy alcohol 407

Representative procedures to open epoxides did not give us the desired product 406 and there are few references to open an acetylide opening of a 2-alkyl-2,3-epoxy alcohol and their examples are not exactly match with our epoxy alcohol 407. ${ }^{37}$ Therefore, more experiments was required to find efficient methods to provide the desired acetylene diol 406 and we started to investigate epoxide opening reactions with model compounds.

4.3.1.2. Model test of epoxide ring opening

We synthesized six model compounds that are free or Bn-protected epoxy alcohols (Figure 16).

422

423

424
Anti-epoxy alcohols

425

426

427
Primary epoxy alcohols

Figure 16. Structures of six model compounds
Firstly, secondary epoxide alcohols (422, 423, 424, and 425) were prepared from 10undecenal (428) by general methods. Horner-Wadsworth-Emmons reaction gave a α, β unsaturated ketone $\mathbf{4 3 0}$ and a reduction of $\mathbf{4 3 0}$ with NaBH_{4} produced an allylic alcohol 431 that was subjected to epoxidation with $\mathrm{Ti}(i-\mathrm{OPr})_{4}$ to give anti- and syn-epoxy alcohols 422 and 424 in a ratio ($2: 1$ or $1: 2$). Relative configuration of epoxy alcohols $\mathbf{4 2 2}$ and $\mathbf{4 2 4}$ was not determined by other experiments, but the major product would be the anti-epoxy alcohol $\mathbf{4 2 2}$ based on references ${ }^{38}$, which showed that $\mathrm{Ti}(i-\mathrm{OPr})_{4}$ catalyst can produce anti-epoxy alcohols as a major product and most of all anti-epoxy alcohols gave proton peaks of epoxide in down field of ${ }^{1} \mathrm{H}$ NMR more than syn- epoxy alcohols. When the alcohol 431 was treated with mCPBA, it gave a 1:1 mixture of syn- and anti-epoxy alcohols 422 and 424. After separation, we also prepared benzyl protected alcohols $\mathbf{4 2 3}$ and $\mathbf{4 2 5}$ from two isomers 422 and 424 (Scheme 124).

423

425

Scheme 124. Preparation of secondary epoxy alcohols as model compounds

After preparation of four epoxy alcohols, we tested the anti-epoxy alcohol 422, which has the same relative configuration as the epoxy alcohol 407 (Scheme 123), with $\mathrm{Et}_{2} \mathrm{AlCl}$ or Liacetylene diamine complex to open an epoxide ring, but we could not get acetylene diols (433 or 434). Bn-protected the anti-epoxy alcohols 423 had been also investigated to explore epoxide opening reactions with various Lewis acids ($\mathrm{Et}_{2} \mathrm{AlCl}, \mathrm{Me}_{2} \mathrm{AlCl}^{39}, \mathrm{BF}_{3} \mathrm{OEt}_{2}$, and $\mathrm{AlMe}_{3}{ }^{40}$) and Liacetylene diamine complex. We realized that Li -acetylene diamine complex can give the acetylene 1,2-diol 432 from the protected epoxy alcohol $\mathbf{4 2 3}$ when a reaction temperature was increased at $50{ }^{\circ} \mathrm{C}$, but the reaction conversion was 50% (Scheme 125). When we increased a reaction temperature to $70{ }^{\circ} \mathrm{C}$, the conversion was increased to $85-90 \%$, but an unknown byproduct was formed (Table 13).

Scheme 125. Preparation of acetylene diol 432 with Li-acetylene diamine complex from 423
The experiment results were summarized as follows (Scheme 126) (table 13).

Scheme 126. Epoxide opening reactions from anti-epoxy alcohols 422 and 423
Table 13. Results of epoxide opening reactions from anti-epoxy alcohols 422 and 423

R	X	Reaction condition	Result
H	H	Li-acetylide (10 eq.), DMSO / HMPA, rt, 2 days	No reaction
H	TMS	TMS-acetylene (3.8 eq.), n-BuLi (3.8 eq.), $\mathrm{Et}_{2} \mathrm{AlCl}(3.8$ eq.), rt	No reaction
Bn	H	Li-acetylide (10-15 eq.), DMSO / HMPA, rt, 1 day	No reaction
Bn	H	Li-acetylide (10-15 eq.), DMSO / HMPA, $50^{\circ} \mathrm{C}, 1-3$ days	$\begin{aligned} & \text { Conversion } 50 \% \\ & \text { Ratio }(\mathbf{4 2 3}: \mathbf{4 3 3}=1: 1) \end{aligned}$
Bn	H	Li-acetylide (10-15 eq.), DMSO, $50{ }^{\circ} \mathrm{C}, 1$ day	No reaction
Bn	H	Li-acetylide (10-1 5eq), DMSO / HMPA, $70^{\circ} \mathrm{C}, 1-3$ days	423 (10-15\% left) Major by-product formed
Bn	TMS	TMS-acetylene (3 eq.), n-BuLi (3 eq.), $\mathrm{Et}_{2} \mathrm{AlCl}$ (3 eq.), Cat. $\mathrm{NiCl}_{2}, 35^{\circ} \mathrm{C}$	Some unknown spots, but almost 423 left

Bn	TMS	TMS-acetylene (32 eq.), n-BuLi (32 eq.), $\mathrm{Et}_{2} \mathrm{AlCl}$ (32 eq.), rt, 4 days	$\begin{aligned} & \text { Ratio }(\mathbf{4 3 3}: \mathbf{4 3 4}=1 / 1) \\ & \mathbf{4 2 3}(20-30 \% \text { left }) \end{aligned}$
Bn	TMS	TMS-acetylene (2 eq), n-BuLi (2 eq), $\mathrm{Me}_{3} \mathrm{Al}$ (1.9 eq), $4.5 \mathrm{hr}, \mathrm{rt}$	No reaction
Bn	TMS	TMS-acetylene (3 eq), n-BuLi (3 eq), $\mathrm{Me}_{2} \mathrm{AlCl}(2.9 \mathrm{eq}), 14 \mathrm{hr}, \mathrm{rt}$	No reaction
Bn	TMS	TMS-acetylene (5 eq), $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ (2.2 eq), BuLi (4.6 eq), rt, 24 hr	No reaction
Bn	TMS	TMS-acetylene (5 eq), $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ (2.2 eq), BuLi (4.6 eq), THF, $60^{\circ} \mathrm{C}, 44 \mathrm{hr}$	Starting and messy unknown products

However, syn-epoxy alcohols $\mathbf{4 2 4}$ and $\mathbf{4 2 5}$ displayed different reactivity and results. It gave us an acetylene 2,3-diol 435 as major product in 42% yield and an acetylene 2,4-diol $\mathbf{4 3 6}$ as a by-product in 10-15 \% yield when it was treated with $\mathrm{Et}_{2} \mathrm{AlCl}$ and TMS-acetylene. Li-acetylene diamine complex can also open a ring of the protected syn-epoxy alcohol $\mathbf{4 2 5}$ to give $\mathbf{4 3 5}$ even at a room temperature, although the conversion was $15-20 \%$. When a reaction temperature was increased to $50{ }^{\circ} \mathrm{C}$, the conversion was 50% after 3 days. Therefore, both epoxy alcohols 424 and $\mathbf{4 2 5}$ produced acetylene diols $\mathbf{4 3 5}$ by different methods.

The experiment results were summarized as follows (Scheme 127) (Table 14).

Scheme 127. Epoxide opening reactions from syn-epoxy alcohols 424 and 425

Table 14. Results of epoxide opening reactions from syn-epoxy alcohols 424 and 425

R	X	Reaction condition	Result
H	H	Li-acetylide, (10 eq.), DMSO / HMPA, rt, 2 days	No reaction
H	TMS	TMS-acetylene (3.8 eq.), n-BuLi (3.8 eq.), $\mathrm{Et}_{3} \mathrm{Al}$ (3.8 eq.), rt	$\begin{aligned} & \hline 435 \text { (yield : } 42 \%) \\ & 436 \text { (yield : 5-10\%) } \end{aligned}$
Bn	H	Li-acetylide, (15 eq.), DMSO / HMPA, rt, 3 days	Ratio :(425 : 435 = $7: 3$)
Bn	H	Li-acetylide, (2 eq.), DMSO / HMPA, rt, 3 days	Almost starting 427 left
Bn	H	Li-acetylide, (10 eq.), DMSO/ HMPA, $50^{\circ} \mathrm{C}, 3$ days	Ratio (425 : $\mathbf{4 3 5}=1: 1$)
Bn	TMS	TMS-acetylene(5eq.), $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ (2.2eq.), BuLi (4.6eq.), THF, $60^{\circ} \mathrm{C}, 44 \mathrm{hr}$	425 and messy unknown products

On the other hand, the primary epoxy alcohols $\mathbf{4 2 6}$ and 427 were synthesized from the 10 undecenal (428) to explore another possible access to have the acetylene 2,3-diols 440 (Scheme 129). The 10 -undecenal (428) was treated with phosphonopropionate 437 to furnish a α, β unsaturated ester 438. The reduction of $\mathbf{4 3 8}$ followed by epoxidation with mCPBA provided the epoxy alcohol 426. Benzyl protection of 426 afforded the Bn-protected epoxy alcohol 427 (Scheme 128).

427
Scheme 128. Preparation of primary epoxy alcohols 426 and 427 as model compounds

This epoxy alcohol 426 was treated with $\mathrm{Et}_{2} \mathrm{AlCl}$ and it provided the acetylene 2,3-diols 440 as a major product, but the protected alcohol $\mathbf{4 2 7}$ did not give the desired product $\mathbf{4 4 0}$. Therefore, we decided to use the second strategy (see Scheme 112) to prepare acetylene diol 406 from the primary epoxy alcohol 411 because a protection free procedure is better to save synthetic steps. The experiment results were summarized as follows (Scheme 129) (Table 15).

Scheme 129. Epoxide opening reaction from primary epoxy alcohols 426 and 427
Table 15. Results of epoxide opening reactions from primary epoxy alcohols 426 and 427

R	X	Reaction condition	Result
H	TMS	TMS-acetylene (4.3eq), n-BuLi (3.0eq), $\mathrm{Et}_{2} \mathrm{Al} \mathrm{Cl}(3.0 \mathrm{eq})$, rt	$\begin{aligned} & \text { Yield } 55 \% \\ & \text { Ratio }(\mathbf{4 4 0}: \mathbf{4 4 1}=5: 1) \end{aligned}$
Bn	H	Li-acetylide (10-15 eq), DMSO / HMPA, rt, 24 hr	No reaction
Bn	H	Li-acetylide (10-15 eq), DMSO / HMPA, $50^{\circ} \mathrm{C}, 1-3$ days	No reaction
Bn	TMS	TMS-acetylene (5 eq), $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ (2.2 eq), BuLi (4.6 eq), THF, rt, 48 hr	Almost starting
Bn	TMS	TMS-acetylene (5 eq), $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ (2.2 eq), BuLi (4.6 eq), THF, $60^{\circ} \mathrm{C}$, 44 hr	Starting and messy Unknown products

4.2.1.3. The second - generation approach (Scheme 116)

To introduce chirality of the primary epoxy alcohol 442, we used Sharpless epoxidation ${ }^{41}$ (Scheme 130) and enantiomeric excess was determined by ${ }^{1} \mathrm{H}$ NMR of its Mosher esters.

Scheme 130. Preparation the epoxy alcohol 442 from the allylic alcohol 411

The epoxide $\mathbf{4 4 2}$ was treated with $\mathrm{Et}_{2} \mathrm{AlCl}$ and TMS-acetylene gave a 2,3-diol product $\mathbf{4 4 3}$ as a major product (ratio $1.4: 1.0$). To prohibit a formation of 2,4 -diol 444, we had tried to change reaction conditions and found high reaction temperature can depress 2,4-diol formation to give more of the 2,3 -diol 443 . When a reaction temperature was $50^{\circ} \mathrm{C}$, it afforded a mixture of the 2,3-diol 443 and the 2,4-diol 444 as a moderate ratio (1.5 ~ $3.0: 1.0$) in 80% yield (Scheme 131).

Scheme 131. Preparation of 2,3-diol 443 with $\mathrm{Et}_{2} \mathrm{AlCl}$ and TMS-acetylene

The separation of two isomers 443 and 444 was difficult, but 444 can be removed by silica gel column chromatography to give $\mathbf{4 4 3}$, which has adequate purity for the next step. The oxidation of alcohol 443 with $\mathrm{SO}_{3} \cdot$ Py complex and triethyl amine ${ }^{42}$ gave an aldehyde 445 in 51 \% yield. We tried to use the Swern oxidation to improve a yield of 445, but the yield was 61 \% yield. Finally, Parikh-Doering oxidation with diisopropyl ethyl amine (DIPEA) provided the best yield in 67% yield (Scheme 132).

Scheme 132. Preparation of the aldehyde 445 by Parikh-Doering oxidation
The Barbier addition produced a TMS-acetylene diol 446 and 447 from the aldehyde 445 in 93 \% yield. Later, the major compound was assigned structure 446. The separation of two diastereomers 446 and 447 is not easy, but we could obtain some pure 446 and 447 by silica gel column chromatography. TMS deprotection of $\mathbf{4 4 6}$ gave the diol $\mathbf{4 0 6}$ to make a diene $\mathbf{3 8 1}$ in 94 98%. (Scheme 133).

Scheme 133. Preparation of the diol 406 by the Barbier addition and TMS-deprotection

The best reaction condition was found that a crude aldehyde $\mathbf{4 4 5}$ without column purification was directly subject to a Barbier addition to afford the TMS-acetylene diols (ratio 446: $\mathbf{4 4 7}=2$: 1) in 70% for 2 steps.

In addition, we finally found another good procedure to open the epoxy alcohol 442 with high regio-selectivity. Li-acetylene diamine complex in DMSO and HMPA directly produced the only desired product $\mathbf{4 1 0}$ in 82% at $50-60^{\circ} \mathrm{C}$ (Scheme 134).

Scheme 134. Preparation of the diol 410 with Li-acetylene diamine complex
The acetylene diol 406 was produced from 410 by Parikh-Doering oxidation with diisopropyl ethyl amine (DIPEA) and the Barbier addition (ratio 406: $449=1.8: 1.0$) (Scheme 135).

410

449

Zn dust

406

Scheme 135. Preparation of the diol 406 with Li-acetylene diamine complex

4.2.2. Investigation of RRCM and preparation of TBS-protected diol (466)

After successfully preparing the acetylene diols, a major diastereomer of diol 406 was tested to construct a guaiane structure $\mathbf{4 5 0}$ by the ring closing metathesis (RRCM) reactions. However, we could not obtain any product or just recover the starting material 406 under various reaction conditions such as a high temperature like $110{ }^{\circ} \mathrm{C}$ and high loading catalysts ($20-30 \%$). (Scheme 136) (Table 16).

Scheme 136. Construct a guaiane structure 406 by the closing metathesis (RRCM) reactions
Table 16. Results of the RRCM reaction of 406

Catalyst	Mole \% of catalyst	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Concentration (M)	Result	comment
G II	8.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	16	0.005	No rxn	starting recovered
G II	30	Toluene	$95-100$	5	0.005	Decomposed	
G I	20	Toluene	50	20	0.01	Decomposed	

G I : Grubbs $1^{\text {st }}$ catalyst, G II : Grubbs $2^{\text {nd }}$ catalyst

We focused one result that the starting material 406 was just recovered when 406 was treated with $8.5 \mathrm{~mol} \%$ of Grubbs $2^{\text {nd }}$ catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at reflux. It was very interesting because the Grubbs $2^{\text {nd }}$ catalyst did not give any expected product (Scheme 137). The 2,5-dihydrofuran 400 has low boiling point, so it is not possible to detect 400, but a by-product $\mathbf{4 5 2}$ of RRCM reaction could be produced when Grubbs $2^{\text {nd }}$ catalyst have a chance to react with the allyl ether moiety of 406.

Scheme 137. Expected products by ring closing metathesis (RRCM) reactions
One of possible reasons would be deactivation of catalysts by a formation of a chelate between the diol of $\mathbf{4 0 6}$ and catalysts. We tested to use $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$ reagent ${ }^{43}$ because this reagent can inhibit a formation of a chelate between catalysts and functional groups. However, we could not obtain products (Table 13).

Table 13. Results of RRCM of $\mathbf{4 0 6}$ with $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$

Catalyst	Mole $\%$ of catalyst	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$\mathrm{Ti}(\mathrm{OiPr})_{4}$ (eq.)	Result
GI	30	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	14	10	 messy
GI	30	Toluene	Reflux	14	2	Decomposed

G I : Grubbs $1^{\text {st }}$ catalyst
The next possibility would be conformation problems and conformational constraints could improve RCM. ${ }^{44}$ To remove all possible problems, the diol 406 was protected as the acetonide 453 which provided metathesis products 454 and 455 . After a protection, the RRCM reaction produced an unknown product, which was isolated by silica gel column chromatography, and it showed one spot on TLC. In ${ }^{1} \mathrm{H}$ NMR spectrum, it displayed many peaks from 5-7 ppm and the integration of each peak indicated around one proton. These peaks probably come from protons of double bonds. We suspected that it can be a mixture of a diene 455 and a 5 -memebered ring

454, so it was treated with Grubbs $2^{\text {nd }}$ catalyst again in the same reaction condition. After 20 h , some peaks became smaller and other peaks became bigger in the ${ }^{1} \mathrm{H}$ NMR spectrum, so we proved that it was an inseparable mixture. After deprotection of the mixture of $\mathbf{4 5 4}$ and $\mathbf{4 5 5}$, we could isolate the hydroazulene $\mathbf{4 5 0}$. The relative stereo configuration of $\mathbf{4 5 0}$ was determined on the basis of nuclear Overhauser effects and we confirmed that the diene $\mathbf{4 5 0}$ was a desired diene for the synthesis of (-)-Englerin A (267). Therefore, we proved that the hydroazulene $\mathbf{4 5 0}$ can be constructed by the RRCM reaction (Scheme 138).

Scheme 138. Preparation of the hydroazulene $\mathbf{4 5 0}$ by the RRCM reaction
Many reaction conditions had been examined to find the best condition. Grubbs $1^{\text {st }}$ and $2^{\text {nd }}$ catalysts and Hoveyda-Grubbs $2^{\text {nd }}$ catalyst had been used to improve a conversion from the 5membered ring $\mathbf{4 5 4}$ to the diene $\mathbf{4 5 5}$. Grubbs $1^{\text {st }}$ catalyst gave less unknown by-products and was similar conversion to Grubbs $2^{\text {nd }}$ catalyst. Hoveyda-Grubbs $2^{\text {nd }}$ catalyst did give lower
conversion than Gruubs $2^{\text {nd }}$ catalyst. In addition, long reaction time and high loading catalysts gave more unknown by-products (Scheme 135). However, all reactions did not give 100% conversion from $\mathbf{4 5 4}$ to 455.

453

454

455

Scheme 139. Preparation of the hydroazulene $\mathbf{4 5 5}$ from $\mathbf{4 5 3}$ by the RRCM reaction
Table 17. Results of synthesis of the hydroazulene 455 by the RRCM reaction

Catalyst	Mole \% of catalyst	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Concent ration (M)	Crude NMR ratio $(\mathbf{4 5 4} / \mathbf{4 5 5})$	comment
G II	10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	20	0.01	$1.5 / 1.0$	
G II	20	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	19	0.01	$0.9 / 1.0$	
G II	30	Toluene	$60-70$	60	0.005	$0.4 / 1.0$	
G II	35	Toluene	Reflux	14	0.005	$0.3 / 1.0$	
G I	30	Toluene	80	24	0.005	$0.4-0.5 / 1.0$	
G I	30	Toluene	140	0.5	0.01	$0.3 / 1.0$	microwave
G I	35	Toluene	Reflux	13	0.005	$0.4 / 1.0$	
HG II	20	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Reflux	36	0.005	$0.8 / 1.0$	

* G I : Grubbs $1^{\text {st }}$ catalyst, G II : Grubbs $2^{\text {nd }}$ catalyst, HG II : Hoveyda-Grubbs $2^{\text {nd }}$ catalyst

On the other hand, an acetonide 456 from the minor diastereomer diol 449 did produce not any diene 458 , but a 5 -memebred ring 457 by theRRCM reaction when 456 was treated with Grubbs $1^{\text {st }}$ catalyst (Scheme 140).

Scheme 140. RRCM of the acetonide 456 from the diastereomer diol 449
Based on our experiments, we decided a reaction condition, 30% Grubbs $1^{\text {st }}$ catalyst in toluene at $80^{\circ} \mathrm{C}$ for 24 h because it gave fewer by-products. The RRCM reaction provided the inseparable mixture of $\mathbf{4 5 4}$ and 455. After deprotection, we isolated the diene $\mathbf{4 5 0}$ in 35% yield for 2 steps and the deprotection yield was moderate ($\sim 75 \%$) from $\mathbf{4 5 5}$. We also tried to obtain the 5-membered ring 451 (see Scheme 137) from deprotection of $\mathbf{4 5 4}$ to reuse 451, but we could not separate $\mathbf{4 5 1}$ because the hydrolysis of the mixture of $\mathbf{4 5 4}$ and $\mathbf{4 5 5}$ gave messy products (Scheme 141).

Scheme 141. Synthesis of the hydroazulene 450 from the acetonide 453

Therefore, we decided to use carbonate protecting groups to protect the diol 406 that can be easily removed in a mild condition. We used the mixture of diastereomers (406 and 449) and obtained carbonates 459 in 83% when it was treated with CDI ($1,1^{\prime}$-carbonyldiimidazole) in THF at reflux or toluene at $80^{\circ} \mathrm{C}$, but the yield of $\mathbf{4 5 9}$ was increased to 92% when it was treated with CDI and NaH in DMF at rt (Scheme 142).

Scheme 142. Synthesis of carbamates mixture 459 from the mixture of 406 and 449
Carbonates 459 were tested under the same reaction condition (30% Grubbs $1^{\text {st }}$ catalyst, toluene, $80^{\circ} \mathrm{C}$). The result was little disappointing because the conversion from the 5 -membered ring 460 to the diene 461 was 50%. However, surprisingly, we can separate the 5 -membered ring 460 by silica gel column chromatography. After the deprotection of carbonates, the hydroazulene 450 and a five-membered ring 463 were easily isolated by silica gel column chromatography. Deprotection of carbonate groups was very simple and clean to produce the hydroazulene 450 (Scheme 143).

Scheme 143. Synthesis of the hydroazulene $\mathbf{4 5 0}$ from carbonates mixture $\mathbf{4 5 9}$

Although the carbonate $\mathbf{4 5 9}$ gave the lower yield of $\mathbf{4 5 0}$ (18 \% for 2 steps) and the low conversion ($\sim 50 \%$ from $\mathbf{4 6 0}$ to 461), deprotection and isolation procedures were more efficient and easier than acetonide experiments. In addition, the isolated 5-membered ring 460 was reused to provide diene 461. It was treated with Grubbs $1^{\text {st }}$ catalyst again and showed 77% conversion to afford 461 (Scheme 144).

Scheme 144. Synthesis of the hydroazulene 461 from carbonates mixture 460

Therefore, we decided to use the carbonate protection and to continue to try to find more a reactive catalyst to give quantitative conversion from this carbonates 459

One of more reactive RCM catalysts, Stewart-Grubbs catalyst (465) ${ }^{45}$, was tested for RRCM. When 459 was treated with 20 \% Stewart-Grubbs catalyst 465, it provided two dienes (460 and
 could be isolated after deprotection of carbonates (Scheme 145).

Easily separable mixture (450 and 463)

Scheme 145. Synthesis of the hydroazulene 450 from carbonates mixture 459 with StewartGrubbs catalyst $\mathbf{4 6 5}$

Therefore, we found that both dienes 461 and 464 can be produced by Stewart-Grubbs catalyst 465 and the carbonates 459 can also give a high conversion and yields. Finally, when we used 30% Stewart-Grubbs catalyst 464, it gave a quantitative conversion from carbonates $\mathbf{4 5 9}$ to dienes 461 and 464. The relative stereochemistry of both dienes 461 and 464 were assigned on the basis of nuclear Overhauser effects (Scheme 146).

$($ ratio $=1.8: 1.0)$

Scheme 146. Synthesis of the dienes 461 and 464 from carbonates 459 with 30 \% StewartGrubbs catalyst 465

This result gave us strong points that we do not have to isolate diastereomer diols 406 and 449 after the Barbier addition (see Scheme 133) because they were easily isolated after the RRCM reaction. The epimer diene $\mathbf{4 6 4}$ could be used to develop new structures or changed to the desired hydroazulene $\mathbf{4 5 0}$ by general methods after deprotection of carbonate groups.

The desired diene 461 was easily hydrolyzed by a treatment of base, NaOH in dioxane and gave the hydroazulene $\mathbf{4 5 0}$ in 97% yield. The secondary alcohol of the hydroazulene $\mathbf{4 5 0}$ was protected with TBS group to afforded TBS-protected diene 466 in 93% yield (Scheme 147).

Scheme 147. Synthesis of TBS-protected diene 466 from 461
4.2.3. Investigation of transannular etherification and the synthesis of an oxa-bicyclic structure (469)

After preparing the TBS-protected diene 466, we have developed procedures to provide the oxa-bicyclic structure 392 that is an important intermediate for the synthesis of (-)-englerin A (267) (Scheme 148).

466

392

Scheme 148. Synthesis of $\mathbf{3 9 2}$ by transannular etherification
Various methods have been tested to initiate a transannular cyclization that would affect conversion of 466 to 392 . An epoxidation with mCPBA provided a product in which the olefinic proton was retained. Treatments of 466 with $\mathrm{I}_{2}{ }^{46}, \mathrm{NIS}^{25 \mathrm{a}, 47}, \mathrm{NBS}^{48}, \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}{ }^{49}$, and $(\mathrm{Coll})_{2} \mathrm{IPF}_{6}{ }^{50}$ did not provide the oxa-bicyclic compound 392 (Table 18). After several experiments, we realized that oxymercuration of 466 with $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}{ }^{51}$ affords a transannular cyclized product 392.

Table 18. Results of synthesis of the oxa-bicyclic compound $\mathbf{3 9 2}$ by transannular etherification

Reagent	Reaction condition	Result
$\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$	2.4 eq., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 4 \mathrm{~h}$	TLC (no spots), Crude NMR (showed peaks from reagents)
	1.0 eq., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $4-20 \mathrm{~h}$	TLC (no spots), crude NMR (showed 466 peaks and some small peaks)
	1.2 eq., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 18 \mathrm{~h}$	TLC ($\mathbf{4 6 6}$ spot), crude NMR (showed 466 and some small peaks)
NIS	$\begin{aligned} & \mathrm{K}_{2} \mathrm{CO}_{3} \text { (5.5 eq.), } \mathrm{CH}_{2} \mathrm{Cl}_{2}, \\ & \mathrm{rt}, 38 \mathrm{~h} \end{aligned}$	TLC (messy, $\mathbf{4 6 6}$ spot), crude NMR (showed 466 and some very small peaks)
	$\begin{aligned} & \text { CSA (1.0 eq.), 2,4,6-collidine } \\ & (1.0 \text { eq. }), ~ r t, ~ 20 ~ h ~ \end{aligned}$	TLC (messy, $\mathbf{4 6 6}$ spot), crude NMR showed 466 and some very small peaks)
	AcCN, rt, 5 h	TBS deprotected 466 ($=\mathbf{4 5 0}$)
I_{2}	KI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, rt, 5 h	466 was recovered
	KI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, $50{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}$	466 was recovered.
	$\mathrm{NaHCO}_{3}, \mathrm{AcCN}, \mathrm{rt}, 12 \mathrm{~h}$	Messy unknown products
$\mathrm{I}(\text { Collidine })_{2} \mathrm{PF}_{6}$	$\begin{aligned} & 1.6 \text { eq., } \mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { rt, } 21 \mathrm{~h} \\ & 35^{\circ} \mathrm{C}, 20 \mathrm{~h} \end{aligned}$	466 was recovered
	1.6 eq., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 35^{\circ} \mathrm{C}, 20 \mathrm{~h}$	466 was recovered
	$\begin{aligned} & 10 \text { eq., } \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \\ & 50^{\circ} \mathrm{C}, 3.5 \mathrm{~h} \end{aligned}$	465 was recovered
	$\begin{aligned} & 10 \text { eq., } \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \\ & 60-64{ }^{\circ} \mathrm{C}, 15 \mathrm{~h} \end{aligned}$	TLC (466 spot), Crude NMR (466 and showed some small peaks).
	2 eq., toluene, $100{ }^{\circ} \mathrm{C}$	466 was recovered
NBS (4.5 eq.)	4A MS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1 h	Messy unknown products
$\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CF}_{3}\right)_{2}$	$\mathrm{AcCN}, \mathrm{O}^{\circ} \mathrm{C}$	$392(\mathrm{R}=\mathrm{HgCl})$, yield $=45 \%$
	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (cat.), $-78{ }^{\circ} \mathrm{C}(12 \mathrm{~h})$ over $0{ }^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{C}\right)$	$392(\mathrm{R}=\mathrm{HgCl})$, a very clean product

Oxymercuration gave expected regio- and stereoselective addition of C6-C7 olefin and the hydroxyl group at C10 exactly attached to C 7 position in Hg complex with the diene $\mathbf{4 6 6}$, so it provided the only product 467 . This result showed that the hydroxyl nucleophile effects ring opening by attack at C-7 and a backside attack is not allowed (Scheme 149).

Scheme 149. Synthesis of the alkyl Hg compound 467 by transannular etherification
After the construction of the alkyl $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)$ intermediate 392 in situ condition, we found that saturated aq. NaCl solution was doing rapid reversion to the starting material 466 and it would be because of aq. $\mathrm{CF}_{3} \mathrm{COOH}$ generated by aq. NaCl solution. ${ }^{51 \mathrm{a}}$ Therefore, a chloromercurial compound 467 was produced by the treatment with saturated aq. NaCl solution after neutralizing the acid with saturated aq. NaHCO_{3} solution. This chloromercurial compound 467 was very stable, so we isolated 467 by silica gel column chromatography and identified 467 by ${ }^{1}$ H NMR spectrum. This spectrum showed that a proton peak from double bond of C6 and C7 had disappeared and a new peak had appeared; therefore we proved the highly regio, stereoselective etherification from the diene 466. To improve yields and reduce by-products, we tried to optimize reaction conditions. The reaction temperature was cooling down to $0{ }^{\circ} \mathrm{C}$ and it gave 45% yield and showed fewer by-products on TLC. Therefore, we believed that low temperature can depress the formation of by-products and decided to use $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ solvents system at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$. After 12 h , the reaction showed the only product, but 466 was still left on TLC, so 0.3 eq. $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ was added more and slowly warmed to 5 ${ }^{\circ} \mathrm{C}$ over 4 h , and then starting completely disappeared. Finally, we obtained a very clean a crude product (TLC showed the only product) (Scheme 150). For the next reaction, the purification of chloromercurial was not necessary, so it was directly used without purification.

Scheme 150. Synthesis of the alkyl Hg compound 467 at low temperature

The second, we desired to convert the chloromercurial 467 to the alcohol 470. Until now, there are two methods to do oxidative demercuration. One is to use O_{2} and another is to use O_{2} and TEMPO. ${ }^{52}$ Both methods are radical reactions. We expected they could produce the secondary alcohol 470 directly from chloromercurial 467. However, after several tries, we found that radical generated from oxygen was trapped at the tertiary position and produced tertiary alcohols. Both methods gave us the same products, but O_{2} and TEMPO provided a low yield. The chloromercurial 467 was treated with NaBH_{4} and O_{2} in DMF to produce a mixture of stereoisomeric tertiary alcohols 468 and 469 (Scheme 151).

Scheme 151. Synthesis of tertiary alcohols 468 and 469 by oxidative demercuration
Although we would have preferred to obtain the known alcohol 470 directly, the alcohol 468 has been produced by oxidative demercuration through the radical intermediate. However, the major product 468 is also the valuable known alcohol, which has been converted to (-)-englerin A (267) in seven steps ${ }^{14}$ (by way of alcohol 470). Therefore, access to alcohol 468 completes a formal synthesis of (-)-englerin A (267) (Scheme 152).

Scheme 152. The synthesis of (-)-englerin A (267) from the alcohol 468

4.3. Conclusion

In conclusion, we illustrated the efficient stratiges to approach the key core of (-)-englerin A (267). First of all, we introduced the epoxide opening reaction to access the acetylene diol 406 from alkyl-2,3-epoxide derivatives with lithium acetylide condition. In addition, the optically pure hydroazulene 450, which has disubstituted olefins both side, was synthesized by the relay ene-yne-ene metathesis reaction. The carbamate from the sterically hindered diol 449 was also converted to the hydroazulene $\mathbf{4 6 4}$ by Stewart-Grubbs catalyst. Furthermore, we demonstrated that the oxa-bicyclic structure 468 can be constructed by transannular etherification with $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ and oxidative demercuration. It also proved that ionic transannular oxymercuration of 466 gave the regio specific halomercurial 467.

4.4. Reference

(1) Grothaus, P. G.; Newman, D. J.: Impact of Natural Products on Developing New AntiCancer Agents- Cragg, Gordon M, Chem. Rev. 2009, 109, 3012.
(2) Simmons, T. L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W. H.: Marine natural products as anticancer drugs, Molecular Cancer Therapeutics 2005, 4, 333.
(3) Peng, G.-P.; Tian, G.; Huang, X.-F.; Lou, F.-C.: Guaiane-type sesquiterpenoids from Alisma orientalis, Phytochemistry 2003, 63, 877.
(4) Huang, S.-X.; Yang, J.; Xiao, W.-L.; Zhu, Y.-L.; Li, R.-T.; Li, L.-M.; Pu, J.-X.; Li, X.; Li, S.-H.; Sun, H.-D.: Three Novel Terpenoids from Schisandra pubescens var. pubinervis, Helv. Chim. Acta 2006, 89, 1169.
(5) Ratnayake, R.; Covell, D.; Ransom, T. T.; Gustafson, K. R.; Beutler, J. A.: Englerin A, a Selective Inhibitor of Renal Cancer Cell Growth, from Phyllanthus engleri, Org. Lett. 2008, 11, 57.
(6) Willot, M.; Radtke, L.; Könning, D.; Fröhlich, R.; Gessner, V. H.; Strohmann, C.; Christmann, M.: Total Synthesis and Absolute Configuration of the Guaiane Sesquiterpene Englerin A, Angew. Chem. Int. Ed. 2009, 48, 9105.
(a) Pouwer, R. H.: Chemical Synthesis of the Englerins, Chemistry, an Asian journal 2012, 7(b) Chain, W. J.: Synthetic Strategies toward the Guaiane Sesquiterpene Englerin A, Synlett 2011, 2011, 2605.
(8) Kramer, T.; Lo Monte, F.; Göring, S.; Okala Amombo, G. M.; Schmidt, B.: Small Molecule Kinase Inhibitors for LRRK2 and Their Application to Parkinson's Disease Models, ACS Chemical Neuroscience 2012, 3, 151.
(9) Lin, X.; Huang, X.-P.; Chen, G.; Whaley, R.; Peng, S.; Wang, Y.; Zhang, G.; Wang, S. X.; Wang, S.; Roth, B. L.; Huang, N.: Life Beyond Kinases: Structure-Based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors, J. Med. Chem. 2012, 55, 5749.
(10) Nicolaou, K. C.; Kang, Q.; Ng, S. Y.; Chen, D. Y. K.: Total Synthesis of Englerin A, J. Am. Chem. Soc. 2010, 132, 8219.
(11) Radtke, L.; Willot, M.; Sun, H.; Ziegler, S.; Sauerland, S.; Strohmann, C.; Fröhlich, R.; Habenberger, P.; Waldmann, H.; Christmann, M.: Total Synthesis and Biological Evaluation of (-)-Englerin A and B: Synthesis of Analogues with Improved Activity Profile, Angew. Chem. Int. Ed. 2011, 50, 3998.
(12) Chan, K. P.: Chemical Synthesis and Biological Evaluation of the Englerin Analogues, ChemMedChem 2011 6, 420.
(13) Jung Xu, E. J. E. C.-D., Ayse Batova, Steven D. E. Sullivan, and Emmanuel A. Theodorakis: Formal Synthesis of (-)-Englerin A and Cytotoxicity Studies of Turncated Englerins, Chem. Asian J. 2012, 7(5).
(14) Molawi, K.; Delpont, N.; Echavarren, A. M.: Enantioselective Synthesis of (-)-Englerins A and B, Angew. Chem. Int. Ed. 2010, 49, 3517.

Zhou, Q.; Chen, X.; Ma, D.: Asymmetric, Protecting-Group-Free Total Synthesis of (-)Englerin A, Angew. Chem. Int. Ed. 2010, 49, 3513.
(16) Xu, J.; Caro-Diaz, E. J. E.; Theodorakis, E. A.: Enantioselective Formal Synthesis of (-)Englerin A via a Rh-Catalyzed [4 + 3] Cycloaddition Reaction, Org. Lett. 2010, 12, 3708.
(a) Sun, B.-F.; Wang, C.-L.; Ding, R.; Xu, J.-Y.; Lin, G.-Q.: Concise approach to the core of englerin A via an organocatalytic [4+3] cycloaddition reaction, Tetrahedron Lett. 2011, 52, 2155(b) Wang, C.-L.; Sun, B.-F.; Chen, S.-G.; Ding, R.; Lin, G.-Q.; Xu, J.-Y.; Shang, Y.-J.: Concise Formal Synthesis of (+)-Englerin A and Total Synthesis of (-)-Orientalol F: Establishment of the Stereochemistry of the Organocatalytic [4+3]-Cycloaddition Reaction, Synlett 2012, 2012, 263.
(19) Gao, P.; Cook, S. P.: A Reductive-Heck Approach to the Hydroazulene Ring System: A Formal Synthesis of the Englerins, Org. Lett. 2012, 14, 3340. Navickas, V.; Ushakov, D. B.; Maier, M. E.; Ströbele, M.; Meyer, H. J. r.: Synthesis of the Guaianolide Ring System via Cycloaddition of a Bicyclic Carbonyl Ylide with Allyl Propiolate, Org. Lett. 2010, 12, 3418.
(21) Ushakov, D. B.; Navickas, V.; Ströbele, M.; Maichle-Mössmer, C. c.; Sasse, F.; Maier, M. E.: Total Synthesis and Biological Evaluation of (-)-9-Deoxy-englerin A, Org. Lett. 2011, 13, 2090.
(a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B.: Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity?, J. Am. Chem. Soc. 1981, 103, 6237(b) Coleman, R. S.; Sarko, C. R.; Gittinger, J. P.: Efficient stereoselective synthesis of the epoxyacid fragment of the azinomycins, Tetrahedron Lett. 1997, 38, 5917(c) Lenis, L. A.; Ferreiro, M. J.; Debitus, C.; Jiménez, C.; Quiñoá, E.; Riguera, R.: The unusual presence of hydroxylated furanosesquiterpenes in the deep ocean tunicate Ritterella rete. Chemical interconversions and absolute stereochemistry, Tetrahedron 1998, 54, 5385(d) Chakraborty, T. K.; Goswami, R. K.: Synthesis of (3R,4S,5S,9S)-3,5,9-trihydroxy-4methylundecanoic acid δ-lactone, Tetrahedron Lett. 2004, 45, 7637(e) Yadav, J. S.; Rao, K. V. R.; Ravindar, K.; Reddy, B. V. S.: Total Synthesis of (+)-Aculeatin D and (+)-6-epi-Aculeatin D, Synlett 2010, 2010, 51.
Lee, J.; Parker, K. A.: A Formal Synthesis of (-)-Englerin A by Relay Ring Closing Metathesis and Transannular Etherification, Org. Lett. 2012, 14, 2682.

Szostak, M.; Procter, D. J.: Concise Syntheses of Strychnine and Englerin A: the Power of Reductive Cyclizations Triggered by Samarium Iodide, Angew. Chem. Int. Ed. 2011, 50, 7737.
(a) Li, J.; Lee, D.: Enyne-Metathesis-Based Tandem Processes, Eur. J. Org. Chem. 2011, 2011, 4269(b) Kim, S.-H.; Bowden, N.; Grubbs, R. H.: Catalytic Ring Closing Metathesis of Dienynes: Construction of Fused Bicyclic Rings, J. Am. Chem. Soc. 1994, 116, 10801.
(a) Adachi, Y.; Kamei, N.; Yokoshima, S.; Fukuyama, T.: Total Synthesis of (-)Histrionicotoxin, Org. Lett. 2011, 13, 4446(b) Boyer, F.-D.; Hanna, I.; Ricard, L.: Synthesis of Polyoxygenated Bicyclic Systems Containing Medium-Sized Rings from Carbohydrates via Tandem Metathesis of Dienynes, Org. Lett. 2001, 3, 3095.
Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H.: Relay Ring-Closing Metathesis (RRCM): A Strategy for Directing Metal Movement Throughout Olefin Metathesis Sequences, J. Am. Chem. Soc. 2004, 126, 10210. Senthilkumar, H. S. P. R. a. S. P.: A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols, Proceedings of the Indian Academy of Sciences. Chemical sciences 2001, 113, 191.
(a) Thota, N.; Koul, S.; Reddy, M. V.; Sangwan, P. L.; Khan, I. A.; Kumar, A.; Raja, A. F.; Andotra, S. S.; Qazi, G. N.: Citral derived amides as potent bacterial NorA efflux pump inhibitors, Bioorganic \& Medicinal Chemistry 2008, 16, 6535(b) Umbreit, M. A.; Sharpless, K. B.: Allylic oxidation of olefins by catalytic and stoichiometric selenium dioxide with tert-butyl hydroperoxide, J. Am. Chem. Soc. 1977, 99, 5526(c) Gaich, T.; Mulzer, J.: From Silphinenes to Penifulvins: A Biomimetic Approach to Penifulvins B and C, Org. Lett. 2009, 12, 272.
(30) Petrier, C.; Einhorn, J.; Luche, J. L.: Selective tin and zinc mediated allylations of carbonyl compounds in aqueous media, Tetrahedron Lett. 1985, 26, 1449.
Barton, D. H. R.; Shioiri, T.; Widdowson, D. A.: Biosynthesis of terpenes and steroids. Part V. The synthesis of ergosta-5,7,22,24(28)-tetraen-3[small beta]-ol, a biosynthetic precursor of ergosterol, Journal of the Chemical Society C: Organic 1971, 1968.
(a) Ueno, Y.; Setoi, H.; Okawara, M.: Deacylative condensation I. A new facile method for the direct α-methylenation of ester or lactone starting from monosubstituted active methylene compounds, Tetrahedron Lett. 1978, 19, 3753(b) Lee, H.-S.; Park, J.-S.; Kim, B. M.; Gellman, S. H.: Efficient Synthesis of Enantiomerically Pure $\beta 2$-Amino Acids via Chiral Isoxazolidinones, J. Org. Chem.2003, 68, 1575.
(a) Marvel, C. S.; Myers, R. L.; Saunders, J. H.: The Preparation of 2-Alkylbutadienes1, J. Am. Chem. Soc. 1948, 70, 1694(b) Nakahira, H.; Ryu, I.; Ikebe, M.; Oku, Y.; Ogawa, A.; Kambe, N.; Sonoda, N.; Murai, S.: .beta.-Trichlorostannyl ketones and aldehydes. Preparation and facile amine-induced dehydrostannation leading to .alpha.-methylene ketones and aldehydes, J. Org. Chem.1992, 57, 17(c) Breit, B.; Heckmann, G.; Zahn, S. K.: Diastereoselective Hydroformylation of 2-Substituted Allylic o-DPPB-Esters-On the Origin of 1,2-Asymmetric Induction, Chemistry - A European Journal 2003, 9, 425.
(a) Boireau, G.; Abenhaim, D.; Henry-Basch, E.: The ate complexes of aluminium: Reactivity and stereoselectivity with respect to epoxides and carbonyl compounds. Catalytic activation by salts of transition metals, Tetrahedron 1980, 36, 3061(b) Parker, K. A.; Chang, W.: Regioselectivity of Rhodium Nitrene Insertion. Syntheses of Protected Glycals of 1-Daunosamine, d-Saccharosamine, and 1-Ristosamine, Org. Lett. 2005, 7, 1785.
(a) Adam, W.; Kumar, R.; Reddy, T. I.; Renz, M.: Chemo- and Diastereoselective Epoxidation of Chiral Allylic Alcohols with the Urea Hydrogen Peroxide Adduct, Catalyzed by Titanium Silicate 1, Angew. Chem., Int. Ed.1996, 35, 880 (b) Kilic, H.; Adam, W.; Alsters, P. L.: Effect of Additives on Chemoselectivity and Diastereoselectivity in the Catalytic Epoxidation of Chiral Allylic Alcohols with Hydrogen Peroxide and Binuclear Manganese Complexes, J. Org. Chem. 2009, 74, 1135 (c) Jung, M. E.; van den Heuvel, A.; Leach, A. G.; Houk, K. N.: Unexpected Syn Hydride Migration in the Non-aldol Aldol Reaction, Org. Lett. 2003, 5, 3375 (d) Pettersson, H.; Gogoll, A.; Baeckvall, J. E.: Epoxidation of 5-(tosylamido)-3-hexen-2-ol derivatives. Stereochemical assignment of product configuration by NMR and molecular mechanics studies, J. Org. Chem.1992, 57, 6025.
Zhao, H.; Engers, D. W.; Morales, C. L.; Pagenkopf, B. L.: Reactions of alanes and aluminates with tri-substituted epoxides. Development of a stereospecific alkynylation at the more hindered carbon, Tetrahedron 2007, 63, 8774.
Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H.: Regio- and stereoselective ring opening of epoxy alcohols with organoaluminium compounds leading to 1,2-diols, Tetrahedron Lett. 1982, 23, 3597.
(a) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B.: Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization, J. Am. Chem. Soc. 1987, 109, 5765(b) Bravo, F.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I.: Alkene Substituents for Selective Activation of endoRegioselective Polyepoxide Oxacyclizations, Org. Lett. 2004, 6, 4487(c) Ichige, T.;

Okano, Y.; Kanoh, N.; Nakata, M.: Total Synthesis of Methyl Sarcophytoate, a Marine Natural Biscembranoid, J. Org. Chem.2008, 74, 230.
(42) Parikh, J. R.; Doering, W. v. E.: Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide, J. Am. Chem. Soc. 1967, 89, 5505.
(43) Fürstner, A.; Langemann, K.: Total Syntheses of (+)-Ricinelaidic Acid Lactone and of (-)-Gloeosporone Based on Transition-Metal-Catalyzed C-C Bond Formations, J. Am. Chem. Soc. 1997, 119, 9130.
(44) Prunet, J.: Progress in Metathesis Through Natural Product Synthesis, Eur. J. Org. Chem. 2011, 2011, 3634.
(45) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y.: Highly Efficient Ruthenium Catalysts for the Formation of Tetrasubstituted Olefins via RingClosing Metathesis, Org. Lett. 2007, 9, 1589.
(a) Tamaru, Y.; Harayama, H.; Bando, T.: Pronounced electronic effects of the allylic amino group on the [small pi]-facial stereoselectivity and reactivity in electrophilic additions to double bonds, J. Chem. Soc., Chem. Commun. 1993, 1601(b) Gilbert, J. C.; Selliah, R. D.: Enantioselective synthesis of an ent-trichothecene, Tetrahedron 1994, 50, 1651.

Van de Weghe, P.; Aoun, D.; Boiteau, J.-G.; Eustache, J.: Silicon Tether-Aided Coupling Metathesis: Application to the Synthesis of Attenol A, Org. Lett. 2002, 4, 4105.
(48) Chen, F.; Jiang, X.; Er, J. C.; Yeung, Y.-Y.: Molecular sieves as an efficient and recyclable catalyst for bromolactonization and bromoacetoxylation reactions, Tetrahedron Lett. 2010, 51, 3433.

Kim, H.-j.; Schlecht, M. F.: Substituent-directed oxidation: Regiochemistry and stereochemistry of the 4addition of hypervalent iodine reagents to cycloalkenols, Tetrahedron Lett. 1987, 28, 5229.
(50) Ueda, M.; Sato, A.; Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, O.: Direct Synthesis of Trisubstituted Isoxazoles through Gold-Catalyzed Domino Reaction of Alkynyl Oxime Ethers, Org. Lett. 2010, 12, 2594.
(a) Broka, C. A.; Lin, Y. T.: Synthetic studies on thyrsiferol. Elaboration of the bromotetrahydropyran ring, J. Org. Chem.1988, 53, 5876(b) Bernardelli, P.; Moradei, O. M.; Friedrich, D.; Yang, J.; Gallou, F.; Dyck, B. P.; Doskotch, R. W.; Lange, T.; Paquette,
L. A.: Total Asymmetric Synthesis of the Putative Structure of the Cytotoxic Diterpenoid $(-)$-Sclerophytin A and of the Authentic Natural Sclerophytins A and B, J. Am. Chem. Soc. 2001, 123, 9021.
(52) Hill, C. L.; Whitesides, G. M.: Reactions of alkylmercuric halides with sodium borohydride in the presence of molecular oxygen, J. Am. Chem. Soc. 1974, 96, 870.

4.5. Experimental Section

General Information

All air- and moisture sensitive reactions were performed under argon in oven-dried or flamedried glassware. Unless stated otherwise, commercially available reagents were used as supplied and solvents were dried over molecular sieves prior to use. HPLC grade hexane and HPLC grade ethyl acetate (EtOAc) were used in chromatography. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled from sodium-benzophenone ketyl and dichloromethane was distilled from calcium hydride under argon gas. All experiments were monitored by thin layer chromatography (TLC) performed on Whatman precoated AL SIL G/UV 250μ m layer aluminum -supported flexible plates. Flash chromatography was carried out with Sorbent Technologies silica gel (porosity $60 \AA, 230-400$ mesh, surface area $500-600 \mathrm{~m}^{2} / \mathrm{g}$, bulk density $0.4 \mathrm{~g} / \mathrm{mL}, \mathrm{pH}$ range 6.5 7.5). Infrared spectra were recorded with a Perkin-Elmer 1600 Series FT-IR instrument. Samples were scanned as neat liquids or dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on sodium chloride (NaCl) salt plates. Frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Nuclear magnetic resonance (NMR) spectra were recorded with a Varian Inova-600 $\left(600 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$, a Varian Inova-500 (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$), Bruker-400 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$), Varian Inova$400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, or Gemini-2300 (300 MHz for ${ }^{1} \mathrm{H}$) spectrometer. Chemical shifts for proton NMR spectra are reported in parts per million (ppm) relative to the singlet at 7.26 ppm for chloroform-d. Chemical shifts for carbon NMR spectra are reported in ppm with the center line of the triplet for chloroform-d set at 77.00 ppm . COSY and NOE experiments were measured on Bruker-400, Varian Inova-400 and Varian Inova-600 spectrometer. High-resolution mass spectra were obtained on a Micromass Q-Tof Ultima spectrometer by the Mass Spectrometry Laboratory at the University of Illinois Urbana Champaign.

Ether 412. To a stirred solution of geraniol (409, $5.00 \mathrm{~g}, 32.4 \mathrm{mmol}$) in THF (50 mL) were added allyl bromide ($4.71 \mathrm{~g}, 38.9 \mathrm{mmol}$) and slowly $\mathrm{NaH}(1.43 \mathrm{~g}, 60 \%, 35.7 \mathrm{mmol})$ under argon. The reaction mixture achieved a gentle reflux and then it was allowed to cool down to room temperature. After stirring for 14 h , the mixture was filtered through Celite to remove a solid and the filter cake was washed with THF. The resulting solution was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with hexane) to give allyl ether $412(5.98 \mathrm{~g}, 95 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93$ (ddt, $\mathrm{J}=17.4$, $10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.35 (tdd, $J=6.9,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.27 (ddt, $J=17.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dm, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=6.9,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{dt}, J=5.7,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.98-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=0.3 \mathrm{~Hz}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data were consistent with the reported values. ${ }^{28}$

Aldehyde 408 and alcohol 411. To a stirred solution of $\mathrm{SeO}_{2}(2.3 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ mL) were added salicylic acid ($14.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), t - $\mathrm{BuOOH}\left(477 \mathrm{mg}, 70 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 3.71$ mmol), and ether 412 ($200 \mathrm{mg}, 1.03 \mathrm{mmol}$) under Ar. The mixture was stirred for 46 h . Then volatile compounds were removed under reduced pressure and the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The organic solution was washed with $10 \% \mathrm{NaOH}(5 \mathrm{~mL} \mathrm{X} \mathrm{3})$ and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude oil was purified by silica gel
column chromatography (elution with EtOAc $:$ Hexane $=1: 20$ to 1:2) to give alcohol 411 (104.4 $\mathrm{mg}, 48 \%$) as an oil, the corresponding aldehyde 408 ($17.4 \mathrm{mg}, 8 \%$), and recovered 412 (42.3 $\mathrm{mg}, 21 \%$).

Alcohol 411: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.37$ (quintet $\mathrm{d}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.26(\mathrm{dd}, J=16.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 6 \mathrm{H}), 2.17(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.7$, $16.4,25.7,39.1,66.5,69.0,71.0,117.0,121.1,125.6,135.0,135.1,139.7$. IR (neat) $v_{\max } 3397$, 2918, 2857, 1670, 1647, 1448, $1383 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$233. 1517, found 233.1523.

Aldehyde 408 : ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{tdd}, J=7.5,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (ddt, $J=17.4,10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (tdd, $J=6.6,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (ddt, $J=17.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 0.5 \mathrm{H}), 5.12(\mathrm{~m}, 0.5 \mathrm{H}), 3.95(\mathrm{dd}, J=6.9,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{ddd}, J=6.0,1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, 2 \mathrm{H}), 1.70(\mathrm{dt}, J=2.1,0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.1, 16.3, 26.9, 37.7, 66.3, 71.0, 117.0, 121.9, 134.7, 138.3, 139.4, 153.7, 195.1. IR (neat) $v_{\max } 2924,2853,2711,1687,1645,1447,1360 \mathrm{~cm}^{-1}$.

408

413

Alcohol 413. To a stirred solution of $408(781 \mathrm{mg}, 2.70 \mathrm{mmol})$ in $\mathrm{THF}(7 \mathrm{~mL})$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(3.5 \mathrm{~mL})$ were added Zn dust ($530 \mathrm{mg}, 8.10 \mathrm{mmol}$) and bromide $326(880 \mathrm{mg}, 5.40$ mmol). After 16 h , to the reaction mixture were added Zn dust ($176 \mathrm{mg}, 2.70 \mathrm{mml}$) and bromide 326 ($440 \mathrm{mg}, 2.70 \mathrm{mml}$) and stirred for 5 h . To the resulting mixture were added $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and water (3 mL) and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \mathrm{X} 3)$. The combined organic layer was concentrated under reduced pressure. The residue was purified by silica gel
column chromatography (elution with EtOAc : Hexane $=1: 20$ to 1:2) to provide alcohol 413 ($750 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.98-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.26$ (dq, $J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddt}, J=10.2,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.03(\mathrm{~m}, 7 \mathrm{H}), 1.88(\mathrm{~s}, 1 \mathrm{H})$, $1.63(\mathrm{dm}, J=11.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.1,152.6,139.7,136.9,134.9,125.6,120.9,117.0,110.0,74.9,71.0,66.0$, 41.3, 39.0, 33.2, 25.7, 21.6, 16.4, 11.6.; IR (neat) $v_{\max } 3445,2961,2928,2870,1668,1641,1449$, $1380 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 315.2296$, found 315.2300.

Alcohol 416. To a stirred solution of aldehyde $\mathbf{4 1 8}^{33}$ ($3.04 \mathrm{~g}, 30.1 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.17 \mathrm{~g}, 30.1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$. The resulting mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(12$ $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ then filtered through Celite to remove the white solids. Volatile organic solvent was carefully removed under reduced pressure (note the volatility of the product) and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL X 4). The combined organic solution was concentrated and purified by silica gel column chromatography (elution with EtOAc : Hexane $=$ $1: 9)$ to provide $416(2.51 \mathrm{~g}, 81 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~m}, 1 \mathrm{H})$, $4.05(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.26(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data were consistent with the reported values. ${ }^{32}$ 2-Bromo-methyl-3-methyl-1-butene (326) was prepared from this alcohol according to Barton et al. ${ }^{31}$

413
 $-25^{\circ} \mathrm{C}$

42\%
407

47%
419

Epoxide 407. To a stirred suspension of activated $4 \AA$ molecular sieves $(0.5 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45$ mL) were added alcohol 413 ($845 \mathrm{mg}, 2.90 \mathrm{mmol}$) and D-(-)-DIPT ($104 \mathrm{mg}, 0.435 \mathrm{mmol}$) under Ar. The resulting mixture was stirred and cooled to $-20^{\circ} \mathrm{C}$. The solution of $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(82.4 \mathrm{mg}$, $0.290 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise and stirred at $-20{ }^{\circ} \mathrm{C}$ for 30 min . TBHP ($0.34 \mathrm{~mL}, 1.88 \mathrm{mmol}, 5.5 \mathrm{M}$ in decane with molecular sieves) was added dropwise and the resulting mixture was cooled to $-25^{\circ} \mathrm{C}$ for 20 h . It was warmed to $0{ }^{\circ} \mathrm{C}$ and water (1 mL) was added and then warmed to room temperature. Aqueous NaOH solution 30% saturated $\mathrm{NaCl}(0.2$ mL) was added and the resulting mixture was stirred vigorously for 30 min . The resulting mixture was filtered through Celite and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solution was concentrated under reduced pressure and purified by silica gel column chromatography (elution with EtOAc : Hexane =1:20 to 1:10) to afford epoxide $407(379 \mathrm{mg}$, 42%) as colorless oil and recovered 419 ($402 \mathrm{mg}, 47 \%$). Epoxide 407 : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91(\mathrm{ddt}, J=17.1,10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{tq}, J=6.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.31-5.12 (m, 2H), $4.86(\mathrm{dt}, J=17.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 4 \mathrm{H}), 3.59$ (ddd, $J=9.6,2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.03(\mathrm{~m}, 6 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.28$ $(\mathrm{s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.2,138.9,134.8,121.6$, $117.0,109.3,72.0,71.1,66.4,62.4,60.3,38.2,36.1,33.2,26.2,21.9,21.5,16.4,13.6 . ;$ IR (neat) $v_{\max } 3462,3081,2961,2870,1643,1460,1382 \mathrm{~cm}^{-1} . \mathrm{HRMS}[\mathrm{ES}+]$ calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 331.2249, found.331.2246.

Methyl Ketone 430. To a stirred solution of a phosphonate 429 ($1.155 \mathrm{~g}, 6.412 \mathrm{mmol}$) in THF $(35 \mathrm{ml})$ was added $\mathrm{Ba}(\mathrm{OH})_{2}(5.000 \mathrm{~g}, 29.14 \mathrm{mmol})$ and 10 -undecenal (428) (1.116 g, 5.829 $\mathrm{mmol})$. The reaction mixture was stirred for 5 min and hold for 16 h . To the resulting mixture was added saturated aq. NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then filtered. The aqueous later was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure and purified by silica gel column chromatography (eluent with EtOAc : hexane $=1: 20$) to give a product $430(1.1 \mathrm{~g}, 92 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.76$ $(\mathrm{m}, 1 \mathrm{H}), 5.01-4.91(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}$, $3 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,144.0,139.1,137.6,114.1,33.8$, 29.4, 29.3, 29.1, 29.0, 28.9, 28.6, 25.4, 11.1.; IR (neat) $v_{\max } 2926,1670 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$223.2062, found 223.2062 .

Alcohol 431. To a stirred solution of the methyl ketone $\mathbf{4 3 0}(1.05 \mathrm{~g}, 5.38 \mathrm{mmol})$ in $\mathrm{MeOH}(20$ mL) was added $\mathrm{CeCl}_{7} \cdot \mathrm{H}_{2} \mathrm{O}(2.05 \mathrm{~g}, 5.38 \mathrm{mmol})$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and NaBH_{4} ($204 \mathrm{mg}, 5.38 \mathrm{mmol}$) was added and stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and concentrated under reduced pressure. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (15 mL X 3). The combined organic layer was washed with brine, and dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (eluent with EtOAc : hexane $=1: 20$ to $1: 10$) to give alcohol $431(945 \mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.03-4.89 (m, 3H), 4.25-4.16 (m, 1H), 2.08-1.96 (m, 4H), 1.62 (s, 3H), 1.35-1.23 (m, 16H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 139.2,138.3,125.4,114.0,73.5,33.8,29.5,29.5,29.4,29.3,29.1$, 28.9, 27.5, 21.6, 11.4.; IR (neat) $v_{\max } 3343,2925 \mathrm{~cm}^{-1}$. HRMS[EI] calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$ [M] ${ }^{+}$ 224.21402 , found 224.21353 .

Epoxy alcohols 422 and 424 (model compounds). To a stirred suspension of activated $4 \AA$ molecular sieves (0.4 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34 \mathrm{~mL})$ were added alcohol $431(0.975 \mathrm{~g}, 4.97 \mathrm{mmol})$ and cooled at $-20^{\circ} \mathrm{C}$. Ti reagent was added and the reaction mixture was stirred for 0.5 h . TBHP (2.2 $\mathrm{mL}, 0.993 \mathrm{mmol}, 5.5 \mathrm{M}$) was added and the resulting mixture was stirred for 5 h at $-20^{\circ} \mathrm{C}$. The mixture was quenched with water and warmed to rt. The mixture was filtered and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent with EtOAc : hexane $=1: 20$ to 1:4) to
afford the anti-epoxy alcohol 422 ($690 \mathrm{mg}, 58 \%$: the fast moving isomer) and 424 (315 mg , 31% : the slow moving isomer).

Anti - epoxy alcohol 422: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.86(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{q}, J=6.3,1 \mathrm{H}), 3.02(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.25$ $(\mathrm{m}, 17 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.2,114.1,68.5,63.6,59.0$, 33.8, 29.5, 29.4, 29.3, 29.1, 28.9, 28.1, 26.4, 18.4, 14.3.; IR (neat) $v_{\max } 3450,2926,2855 \mathrm{~cm}^{-1}$. HRMS[EI] calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}[M]^{+} 241.21676$, found 241.21609.

Syn- epoxy alcohol 424: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=17.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.04(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.27(\mathrm{~m}, 17 \mathrm{H}), 1.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.2,114.1,72.3,63.9,61.8,33.8,29.5,29.4,29.3,29.1,28.9,28.1,26.4,18.7,11.3$;; IR (neat) $v_{\max } 3418,2926,2856 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$263.1996, found 263.1987.

422

Bn-protected alcohol 423. To a stirred solution of epoxide 422 ($457 \mathrm{mg}, 2.02 \mathrm{mmol}$) in THF (9 mL) was added $\mathrm{BnBr}(414 \mathrm{mg}, 2.43 \mathrm{mmol})$ and $\mathrm{NaH}(96.9 \mathrm{mg}, 2.42 \mathrm{mmol}, 60 \%)$. The reaction mixture was stirred for 21 h . The resulting mixture was quenched with water (1 mL) and $\mathrm{Et}_{2} \mathrm{O}$ (3 mL) was added. After separation, the organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent with EtOAc : hexane $=$ $10: 100$ to $1: 20$) to afford epoxide 423 ($442 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 5.85-5.78(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J$ $=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ $(\mathrm{m}, 2 \mathrm{H}), 1.58-1.27(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,138.5,128.3,127.5,127.4$, 114.1, 79.0, 71.1, 64.0, 61.0, 33.7, 29.4, 29.3, 29.1, 28.9, 28.4, 26.4, 16.4, 11.4.; IR (neat) $v_{\max }$

3065, 3030, 2976, 2926, $2855 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 353.2457$, found 353.2449 .

424

Bn-protected alcohol 425. To a stirred solution of epoxide 424 ($74.9 \mathrm{mg}, 0.312 \mathrm{mmol}$) in THF $(1 \mathrm{~mL})$ was added $\mathrm{BnBr}(63.9 \mathrm{mg}, 0.374 \mathrm{mmol})$ and $\mathrm{NaH}(17.4 \mathrm{mg}, 0.436 \mathrm{mmol}, 60 \%)$. The reaction mixture was stirred for 14 h . The resulting mixture was quenched with water $(0.3 \mathrm{~mL})$ and added $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent with EtOAc : hexane $=1: 20$) to afford epoxide 425 ($89 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.23(\mathrm{~m}, 5 \mathrm{H})$, 5.86 $5.76(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.30(\mathrm{~m}$, $17 \mathrm{H}), 1.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,138.7,128.3,127.6,127.4$, $114.1,80.2,71.1,63.2,59.0,33.8,29.5,29.4,29.3,29.1,28.9,28.0,26.4,17.9,11.0$; IR (neat) $v_{\max } 3064,3031,2976,2925,2854 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$353.2457, found 353.2463.

Diol 433: To a stirred solution of epoxide $\mathbf{4 2 3}(31.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ in DMSO $(0.35 \mathrm{~mL})$ were added HMPA (0.35 mL) and Li-acetylene diamine complex ($153 \mathrm{mg}, 1.66 \mathrm{mmol}$). The reaction
mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . To the mixture were added saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, and saturated aq. $\mathrm{LiCl}(1 \mathrm{~mL})$. After separation, the organic layer was concentrated under reduced pressure and purified by a silica gel column chromatography to provide 433 (2.4 $\mathrm{mg}, 7 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.74-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.90(\mathrm{~m}$, $3 \mathrm{H}), 4.68(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{q}, J=$ $3.51-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=2.4 \mathrm{H}, 1 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 19) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $139.3,128.4,127.8,127.7,114.1,85.1,79.1,75.4,71.5,71.2,39.1,33.8,29.7,29.5,29.4,29.1$, 28.9, 28.6, 28.1, 20.6, 12.8.; IR (neat) $v_{\max } 3307,2926,2854 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$379.2613, found 379.2615.

424

$\mathrm{X}=\mathrm{TMS}$
435

Diol 435 ($\mathbf{X}=\mathbf{T M S})$: To a stirred solution of TMS-acetylene $(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ was added n $\mathrm{BuLi}(0.43 \mathrm{~mL}, 0.696 \mathrm{mmol}, 1.6 \mathrm{M})$ dropwise at $-15{ }^{\circ} \mathrm{C}$ and stirred for 30 min at the same temperature. $\mathrm{Et}_{2} \mathrm{AlCl}(0.43 \mathrm{~mL}, 0.70 \mathrm{mmol})$ was added dropwise. The reaction mixture was warmed to $\mathrm{O}^{\circ} \mathrm{C}$ and stirred for 1.5 h at the same temperature. The epoxy alcohol 424 was added, and the resulting mixture was warmed to rt and stirred for 12 h . The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and $\mathrm{Et}_{2} \mathrm{O}$ was added. After separation, the organic layer was concentrated under reduced pressure and purified by silica gel column chromatography (eluent with EtOAc : hexane $=1: 7$) to afford diol $435(26 \mathrm{mg}, 42 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.86-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 14 \mathrm{H}), 1.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,114.1,107.8,88.5,75.6$, $70.9,41.5,33.8,29.5,29.4,29.3,29.1,28.9,28.7,28.1,19.4,17.0,0.07$. . IR (neat) $v_{\max } 3392$, 2923, 2852, $2161 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 339.2719$, found 339.2722.

Ester 438. To a stirred solution of phosphonate $\mathbf{4 3 7}(4.72 \mathrm{~g}, 19.7 \mathrm{mmol})$ in THF (25 ml) was added $\mathrm{NaH}(0.984 \mathrm{mg}, 24.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and slowly warmed. The reaction mixture was stirred for 1 h at rt and cooled to $0^{\circ} \mathrm{C}$. 10 -undecenal ($\mathbf{4 2 8}$) $(3.15 \mathrm{~g}, 16.45 \mathrm{mmol})$ was added and then the resulting mixture was warmed to rt. After 20 h , the mixture was quenched with water. After separation, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \mathrm{X} 3)$. The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent with EtOAc : hexane $=1: 20$ to 1:4) to afford ester $438(3.24 \mathrm{~g}, 72 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{ddt}, J=17.0$, $10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.00(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.1, 142.2, 138.9, 127.6, 114.0, 60.2, 33.7, 29.3, 29.2, 29.0, 28.8, 28.6, 28.5, 14.2, 12.2.; IR (neat) $v_{\text {max }} 2928,1714 \mathrm{~cm}^{-1}$. HRMS[ES +$]$ calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 253.2168$, found 253.2170 .

Alcohol 439. To a solution of the ester $438(2.04 \mathrm{~g}, 8.09 \mathrm{mmol})$ in THF (95 mL) was added LAH (very slowly) ($321 \mathrm{mg}, 8.45 \mathrm{mmol}$) and stirred at rt . After 24 h , it was quenched with water $(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \mathrm{X} 3)$. The combined organic mixture was concentrated reduced pressure and purified by silica gel column chromatography (eluent with EtOAc : hexane $=1: 20)$ to give alcohol $439(941 \mathrm{mg}, 55 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86-5.76(\mathrm{~m}, 1 \mathrm{H})$, $5.41(\mathrm{td}, J=7.2,1.2,1 \mathrm{H}), 4.99$ (ddd, $J=17.2,3.6,1.6,1 \mathrm{H}), 4.93(\mathrm{dm}, J=10.2,1 \mathrm{H}), 4.00(\mathrm{~s}$, 2 H), 2.03 (quint, $J=7.1,4 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
139.2, 134.5, 126.7, 114.1, 69.1, 33.8, 29.49, 29.48, 29.4, 29.3, 29.1, 28.9, 27.6, 13.6.; IR (neat) $v_{\max } 3328,2924,2854$. HRMS[EI] calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}]^{+} 210.19837$, found 210.19865.

Epoxide 426. To the alcohol $439(225 \mathrm{mg}, 1.07 \mathrm{mmol})$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was added mCPBA ($251 \mathrm{mg}, 1.12 \mathrm{mmol}$, max 77%) at $0{ }^{\circ} \mathrm{C}$ and stirred for $1 \mathrm{~h} .10 \% \mathrm{KOH}$ solution was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml} \mathrm{X} 2)$ and dried over MgSO_{4} and concentrated under reduced pressure. After silica gel column chromatography, 211 mg epoxide 426 was obtained in 88% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85-5.75(\mathrm{~m}, 1 \mathrm{H})$, 4.98 (ddd, $J=17.1,3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{dm}, ~ J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=12.2,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{dd}, J=12.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H}), 1.58-1.27$ ($\mathrm{m}, 17$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0,114.0,65.5,60.9,60.3,33.7,29.3,29.2,29.0$, 28.8, 28.1, 26.3, 14.1. ; IR (neat) $v_{\max } 3418,3077,2924 \mathrm{~cm}^{-1}$.

Bn-protected alcohol 427. To a stirred solution of epoxide 426 ($183 \mathrm{mg}, 0.809 \mathrm{mmol}$) in THF $(3 \mathrm{~mL})$ was added $\mathrm{BnBr}(168 \mathrm{mg}, 0.971 \mathrm{mmol})$ and $\mathrm{NaH}(38.9 \mathrm{mg}, 0.971 \mathrm{mmol}, 60 \%)$. The reaction mixture was stirred for 21 h and it was quenched with water $(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ was added. The organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent with EtOAc : hexane $=1: 20$) to afford the Bn-protected epoxy alcohol 427 ($249 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.88-$ $5.75(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J$ $=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.30(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.2,138.1,128.3,127.7,114.1,74.9,73.1,61.1,59.7,33.8,29.5,29.4$,
29.3, 29.1, 28.9, 28.2, 26.5, 14.5.; IR (neat) $v_{\max } 3065,3031,2926,2854 \mathrm{~cm}^{-1} . \operatorname{HRMS}[\mathrm{ES}+$] calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 339.2300$, found 339.2305.

Diol 440 : To a stirred solution of TMS-acetylene ($0.15 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added n-BuLi (0.44 $\mathrm{mL}, 0.70 \mathrm{mmol}, 1.6 \mathrm{M})$ dropwise at $-30^{\circ} \mathrm{C}$ and stirred for 30 min at the same temperature. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and added $\mathrm{Et}_{2} \mathrm{AlCl}(0.70 \mathrm{~mL}, 0.70 \mathrm{mmol}, 1.0 \mathrm{M})$ dropwise and stirred for 1.5 h at $0{ }^{\circ} \mathrm{C}$. The epoxy alcohol $426(53 \mathrm{mg}, 0.23 \mathrm{mmol})$ was added and the mixture was warmed to rt and stirred for 17 h . The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ were added. After separation, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 mL X 4). The combined organic layer was concentrated under reduced pressure and purified by a silica gel column chromatography (eluent with EtOAc : hexane $=1$: 7) to afford diol $440(41 \mathrm{mg}, 55 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81$ (ddt, $J=17.0,10.2,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=11.0,1 \mathrm{H}), 3.48(\mathrm{~d}$, $J=11.0,1 \mathrm{H}), 2.53-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.13(\mathrm{br}, 1 \mathrm{H}), 1.71-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 13 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.2$, $114.1,107.2,88.3,74.0,68.8,41.2,33.8,29.5,29.4,29.3,29.1,28.9,28.6,28.1,20.2,-0.05 . ;$ IR (neat) $v_{\max } 3343,2921,2850,2159 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 325.2563$, found 325.2568.

Epoxy Alcohol 442. Regio- and stereoselective epoxidation was accomplished by the catalytic procedure of Sharpless. To a stirred suspension of activated $4 \AA$ molecular sieves (1.6 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(124 \mathrm{~mL})$ under argon were added alcohol $411(2.59 \mathrm{~g}, 12.3 \mathrm{mmol})$ and D-(-)-DET (381 $\mathrm{mg}, 1.85 \mathrm{mmol})$. The resulting mixture was stirred and cooled to $-20^{\circ} \mathrm{C}$. A solution of $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ ($350 \mathrm{mg}, 1.23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise and stirred at $-20^{\circ} \mathrm{C}$ for 30 min . Then TBHP ($4.50 \mathrm{~mL}, 24.7 \mathrm{mmol}, 5.5 \mathrm{M}$ in decane with molecular sieves) was added dropwise and the resulting mixture was cooled to -26 to $-30{ }^{\circ} \mathrm{C}$. After 2.5 h , it was warmed to $0{ }^{\circ} \mathrm{C}$, water (7 mL) was added, and the solution was allowed to warm to room temperature. A $30 \% \mathrm{NaOH}$ solution saturated with solid NaCl was prepared. Of this, 1.4 mL was added to the reaction mixture. Vigorous stirring was continued for 30 min . Then the reaction mixture was filtered through Celite and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solution was concentrated under reduced pressure and subjected to silica gel flash column chromatography (elution with EtOAc : Hexane $=1: 4$ to $1: 1$) to afford epoxide $442(2.42 \mathrm{~g}, 83 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=12.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=$ $12.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, 4 \mathrm{H}), 5.18(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,16.3,26.3,36.1,60.0,60.9,65.6$, $66.4,71.1,117.0,121.5,134.8,138.9 . ;$ IR (neat) $v_{\max } 3441,2925,2857,1741,1670,1647,1449$, $1384 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$249.1467, found 249.1456. The enantiomeric excess was determined to be 93% ee by comparison of the ${ }^{1} \mathrm{H}$ NMR of the (S) MTPA and the (R)-MTPA ester.

442

2, 3 - diol
443

2, 4-diol
444

Diols 443 and 444. To a solution of TMS-acetylene ($1.33 \mathrm{~mL}, 9.31 \mathrm{mmol}$) in toluene (12 mL) was added $\mathrm{n}-\mathrm{BuLi}(2.8 \mathrm{~mL}, 6.98 \mathrm{mmol}, 2.5 \mathrm{M})$ for 3 min at $-60^{\circ} \mathrm{C}$. The reaction mixture was warmed to ${ }^{\circ} \mathrm{C} . \mathrm{Et}_{2} \mathrm{AlCl}(7.0 \mathrm{~mL}, 6.98 \mathrm{mmol}, 1.0 \mathrm{M})$ was added dropwise for 20 min and the resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and an ice bath was removed. The solution of epoxide $442(535 \mathrm{~g}, 2.27 \mathrm{mmol})$ in toluene (7 mL) was added and the mixture was directly immersed a pre-heated ($50-60{ }^{\circ} \mathrm{C}$) oil bath. The reaction mixture was stirred overnight. The mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and water. $\mathrm{Et}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (15 mL X 3 times). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue (a ratio of $\mathbf{4 4 3}: \mathbf{4 4 4}=3.5: 1.0$) was purified by silica gel flash column chromatography (eluent with EtOAc : hexane $=1: 4$) to give 443 (484 mg , a ratio of $\mathbf{4 4 3}: \mathbf{4 4 4}=2.6: 1.0,66 \%)$ and $\mathbf{4 4 3}(118 \mathrm{mg}$, a ratio of $\mathbf{4 4 3}: \mathbf{4 4 4}=1: 1,16 \%)$.

Slow moving isomer 443: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.97-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{td}, J=6.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 4 \mathrm{H})$, $3.77(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.30$ (m, 3H), 2.12-2.04 (m, 1H), 1.84 (dddd, $J=12.8,10.1,7.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.52-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,135.0,121.3$, $117.2,107.0,88.4,74.0,71.1,68.9,66.5,40.2,37.8,26.7,19.9,16.5,0.04$. IR (neat) $v_{\max } 3408$, $2958,2167 \mathrm{~cm}^{-1} . \mathrm{HRMS}[\mathrm{ES}+]$ calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$347.2018, found 347.2015.

Fast moving isomer 444: HRMS[ES+] calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$325.2199, found 325.2198.

Mixture of isomer 443 and 444 (ratio =1:1) : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.98-5.88(\mathrm{~m}$, $1 \mathrm{H}), 5.45-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=17.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.4,1 \mathrm{H}), 4.06-3.97(\mathrm{~m}$,
$4 \mathrm{H}), 3.78(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.69(\mathrm{dd}, J=10.4,1.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.64(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.55(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.47(\mathrm{~d}, J=11.0,0.5 \mathrm{H}), 2.50(\mathrm{dd}, J=11.7,3.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.36-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 1.5 \mathrm{H}), 1.13(\mathrm{~s}, 1.5 \mathrm{H})$, $1.56-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,139.7,135.0,134.9$, $121.4,121.3,117.1,108.9,106.9,88.6,88.5,77.2,74.6,74.0,71.1,68.8,68.7,66.5,66.4,43.3$, $40.4,37.8,36.5,30.0,26.8,20.0,17.2,16.5,16.3,0.10,0.05$. IR (neat) $v_{\max } 3404,2958,2166$, $1249 \mathrm{~cm}^{-1}$.

Aldehyde 445. To a solution of $443(660 \mathrm{~g}, 2.04 \mathrm{mmol}$, a ratio of $\mathbf{4 4 3}: \mathbf{4 4 4}=2.6: 1.0)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added DIPEA ($1.368 \mathrm{~g}, 10.58 \mathrm{mmol}$) and DMSO ($1.670 \mathrm{~g}, 21.37 \mathrm{mmol}$) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{SO}_{3} \mathrm{Py}$ complex ($992 \mathrm{mg}, 6.107 \mathrm{mmol}$) was added and stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to $10^{\circ} \mathrm{C}$ and stirred for 4 h . 1 N HCl was added to adjust $\mathrm{pH} 3 \sim 4$. After separation, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and washed with NaHCO_{3} (sat.) and brine. It was dried over MgSO_{4} and concentrated under reduced pressure. The crude aldehyde $445(908 \mathrm{~g})$ was directly used in a Barbier addition. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.74(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.92 (ddt, $J=16.9,10.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.18 (dd, $J=10.4,0.8,1 \mathrm{H}), 3.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.16$ $(\mathrm{d}, J=0.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.9,135.0,121.4,121.5,117.3,107.2$, $88.6,74.2,71.2,69.0,66.7,66.6,40.4,37.9,26.9,20.1,20.0,16.6,16.5,0.2$.; IR (neat) $v_{\max } 3422$, $2959,2169,1734,1251 \mathrm{~cm}^{-1}$.

445

Zn dust, $\mathrm{THF} / \mathrm{NH}_{4} \mathrm{Cl}$, rt

446 (major)

447 (minor)

Diols 446 and 447. To a solution of aldehyde $445(908 \mathrm{~g})$ in THF $(18 \mathrm{~mL})$ were added saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(9 \mathrm{~mL})$, bromide 326 ($896 \mathrm{mg}, 5.49 \mathrm{mmol}$), and Zn dust (599 mg). The resulting mixture was stirred for 20 h . If 445 is left, Zn dust and bromide will be added more (the conversion should be checked by proton NMR because TLC does not show clearly a progress of the reaction). The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL X 3 times) and filtered throughout Celite to remove Zinc dust. The organic layer was washed with brine and dried over MgSO_{4} and concentrated under reduced pressure. The residue (a ratio of $\mathbf{4 4 6}: \mathbf{4 4 7}=2: 1$) was purified by silica gel flash column chromatography (eluent with EtOAc : hexane $=1: 9$) to provide 446 (165 mg , 28% for 2 steps based on 443), and 447 ($132 \mathrm{mg}, 22 \%$ for 2 steps based on 443), and the mixture of 446 and 447 ($121 \mathrm{mg}, 20 \%$ for 2 steps based on 443).

Slower moving isomer (major 446): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.00-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.44-$ $5.40(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{dq}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.04-$ $3.93(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=11.4,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.49(\mathrm{~m}$, $1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.09(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,140.0,135.0,116.9,110.8,106.7,88.2,76.7,74.8,72.1,71.0$, 66.5, 39.6, 37.8, 36.3, 32.9, 27.1, 22.4, 21.5, 20.7, 16.5, 0.04 .

Faster moving isomer (minor 447): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dq}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dq}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H})$, $4.85(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.96(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{dd}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.28$ (quint, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=11.0$ Hz, 1H), 2.11-2.05 (m, 1H), 1.96-1.90(m, 1H), $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$

446 (major)

406

406 : To a stirred solution of $446(165 \mathrm{mg}, 0.405 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ was added TBAF $(0.47 \mathrm{~mL}, 0.461 \mathrm{mmol}, 1.0 \mathrm{M})$. The reaction mixture was stirred for 5 h and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (eluent with EtOAc : hexane $=1: 4)$ to provide $\mathbf{4 4 6}(138 \mathrm{mg}, 99 \%)$. The ${ }^{1} \mathrm{H}$ NMR data were consistent with the reported values of the same product, which was synthesized from 448.

Diol 410. To a stirred solution of epoxide $442(933 \mathrm{mg}, 3.95 \mathrm{mmol})$ in DMSO (13 mL) and HMPA (13 mL) under argon was added Li-acetylide•ethylenediamine complex ($2.02 \mathrm{~g}, 19.8$ $\mathrm{mmol}, 90 \%$) at room temperature. The mixture was warmed to $55^{\circ} \mathrm{C}$ and stirred for 3.5 h . The reaction mixture was carefully quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$. Then saturated aq. LiCl was added very carefully. The resulting mixture was separated and the aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (20 mL X 5). The combined organic solution was dried over MgSO_{4}, decolorized with activated
charcoal, and concentrated under reduced pressure. Silica gel flash column chromatography (elution with EtOAc : Hexane $=1: 1$) provided diol $410(814 \mathrm{mg}, 82 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H})$, $2.07(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dt}, J=11.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{br}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 4 \mathrm{H}), 5.12(\mathrm{dd}, J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (dd, $J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.2,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.3,19.3,26.3,37.5,38.3,66.3,68.4,70.8,71.4,73.9,84.5,117.0$, $120.9,134.6,139.6 . ;$ IR (neat) $v_{\max } 3418,3080,2935,2110,1668,1646,1455,1381 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 275.1623$, found 275.1615.

410

448

Aldehyde 448. Oxidation was performed by the Parikh-Doering method. To a stirred solution of diol 410 ($200 \mathrm{mg}, 0.793 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}$) were added DMSO ($495 \mathrm{mg}, 6.34 \mathrm{mmol}$) and N, N-diisopropylamine (DIPEA) ($410 \mathrm{mg}, 3.17 \mathrm{mmol}$). Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ under argon. The $\mathrm{SO}_{3} \cdot$ Py complex ($322 \mathrm{mg}, 1.98 \mathrm{mmol}$) was added and the reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. Then it was warmed to $10{ }^{\circ} \mathrm{C}$ andstirred for 2 h . Additional DMSO ($0.14 \mathrm{~mL}, 1.97 \mathrm{mmol}$), DIPEA ($0.10 \mathrm{~mL}, 0.57 \mathrm{mmol}$), and $\mathrm{SO}_{3} \cdot$ Py complex (130 mg , $98 \%, 0.80 \mathrm{mmol}$) were added and stirring was continued for 1 h . The reaction mixture was quenched with $1 N \mathrm{HCl}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \mathrm{X} 2)$. The combined organic solution was washed with saturated aq. NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane =1:4) to afford aldehyde 448 as a colorless oil ($142 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.18$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24-2.31 (m, 1H), 2.46 (ddd, $J=10.4,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (br, 1H), 3.91 $(\mathrm{m}, 4 \mathrm{H}), 5.12(\mathrm{dd}, J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{td}, J=6.4,0.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 9.66(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.2,19.6,26.8,36.9,38.4,66.2$, $70.8,73.2,78.0,81.9,116.8,121.7,134.8,138.6,203.3$. IR (neat) $v_{\max } 3430,3295,3080,2935$, 2859, 1732, 1669, 1646, 1452, $1349 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$251.1647, found 251.1657.

Diols 406 and 449. The allylation procedure of Luche et al. was used. To a stirred solution of aldehyde $448(374 \mathrm{mg}, 1.43 \mathrm{mmol})$ in THF (10 mL) and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ were added 2-bromo-methyl-3-methyl-1-butene (326) ($1.07 \mathrm{~g}, 6.57 \mathrm{mmol}$) and activated Zn dust (683 mg , 10.5 mmol). The reaction mixture was stirred for 12 h under argon and diluted with $\mathrm{Et}_{2} \mathrm{O}$ (10 $\mathrm{mL})$. The resulting mixture was filtered through Celite and the filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$. After separation of the layers, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL X 3). The combined organic solution was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was subjected to column chromatography (elution with EtOAc : Hexane $=1: 4$) to afford a mixture of 5a and 13a ($398 \mathrm{mg}, 80 \%$, d.r. 5a $: \mathbf{1 3 a}=1.8$: 1.0).

A sample of the mixture was subjected to additional chromatography and spectroscopic data were obtained for each isomer.

Slower moving isomer, later shown to be 406 (colorless oil) : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.97$ $(\mathrm{m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{dt}, J=11.5,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.5,6.0 \mathrm{~Hz}, 4 \mathrm{H})$, $4.84(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=15.5,1.5,1 \mathrm{H}), 5.43(\mathrm{td}, J=5.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.5,20.7,21.4,22.2,26.9$,
$33.0,36.2,37.7,38.4,66.5,70.9,71.8,71.9,74.7,84.2,110.8,116.9,121.3,135.0,139.7$, 153.2.; IR (neat) $v_{\max } 3454,3307,3081,2962,2871,1640,1455,1379 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$357.2406, found 357.2398.

Faster moving isomer, later shown to be 449 (white solid) : ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.96$ (m, 1H), 2.05-2.11 (m, 1H), 2.11 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 2.25-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (dt, J $=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dt}, J=6.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-4.02(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H})$, $5.17(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=17.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{td}, J=6.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.5,17.6,21.5,22.2,26.7,33.3,36.4,37.9,39.5$, $66.5,70.8,70.9,71.3,75.2,85.3,110.6,116.9,121.3,135.0,139.8,153.0$. ; IR (neat) $v_{\max } 3382$, 3304, 3229, 2961, 2916, 2850, 1643, 1455, $1391 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3}[\mathrm{M}+$ $\mathrm{Na}]^{+} 357.2406$, found 357.2401. $\mathrm{mp}=53-55^{\circ} \mathrm{C}$.

Acetonide 453: To a stirred solution of diol $406(200 \mathrm{mg}, 0.602 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ were added 2,2-dimethyloxypropane ($0.15 \mathrm{~mL}, 1.2 \mathrm{mmol}$) and $p-\mathrm{TsOH}(11.5 \mathrm{mg}, 0.0602 \mathrm{mmol})$. The reaction mixture was stirred for 2 h at rt . The mixture was quenched with saturated aq. NaHCO_{3} to adjust pH 7 . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL X 2). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (elution with EtOAc : Hexane =1:20) to provide $453(196 \mathrm{mg}, 93 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.95-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{td}, J=6.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dq}, J=17.2,1.2,1 \mathrm{H}), 4.85(\mathrm{~d}$, $J=3.6,2 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 5 \mathrm{H}), 2.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$

- $2.26(\mathrm{~m}, 3 \mathrm{H}), 2,13(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}$, $3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.8$, $139.4,134.9,121.4,116.8,107.7,106.8,85.3,83.1,82.5,72.2,70.8,66.5,37.3,35.8,33.9,33.8$, 28.2, 27.4, 26.5, 21.7, 21.6, 19.9, 16.5.; IR (neat) $v_{\max } 3308,3081,2982,2935,2871,1645,1378$ cm^{-1}.

Acetonide 456: To a stirred solution of diol $449(24.4 \mathrm{mg}, 0.071 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ were added 2,2-dimethyloxypropane ($14.7 \mathrm{mg}, 0.14 \mathrm{mmol}$) and p - $\mathrm{TsOH}(1.4 \mathrm{mg}, 0.007 \mathrm{mmol})$. The reaction mixture was stirred for 2 h at rt . The mixture was quenched with saturated aq. NaHCO_{3} to adjust pH 7 . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL X 2). The combined organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with EtOAc : Hexane = $1: 20$) to provide $453(25 \mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.00-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dm}, J=$ $10.5,1 \mathrm{H}), 4.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=10.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}$, $4 \mathrm{H}), 2.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=11.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.0,139.3,135.0,121.5,116.9,106.7,84.1,82.5,81.9,72.1,71.0,66.5,41.5$, $37.3,35.6,33.7,28.6,27.8,26.6,21.8,21.7,17.4,16.4$.

456

Five membered ring 437 : To a solution of $456(18.8 \mathrm{mg}, 0.0521 \mathrm{mmol})$ was added Grubb's $1^{\text {st }}$ catalyst ($12.9 \mathrm{mg}, 0.0156 \mathrm{mmol}$). The reaction mixture was heated by a microwave (setting temp. $150{ }^{\circ} \mathrm{C}, \mathrm{W}=100$). The temperature of the microwave was increased to $115^{\circ} \mathrm{C}$ for 10 min and to $139{ }^{\circ} \mathrm{C}$ for 30 min . The resulting mixture was cooled to $65^{\circ} \mathrm{C}$ for 20 min . The mixture was concentrated under reduced pressure. The residue was purified by PTLC (eluent with EtOAc : hex = $20: 1$) to provide $457(6.4 \mathrm{mg}, 40 \%) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.54$ (dd, J $=17.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=11.2,1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.11(\mathrm{t}, \mathrm{J}=5.8,1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.25$ (quint, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.16-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}$, $3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.2,6 \mathrm{H})$.

Carbonates $\mathbf{5 b} \mathbf{+ 1 3 b}$. To a stirred solution of the mixture of $\mathbf{5 a}$ and $\mathbf{1 3 a}(177 \mathrm{mg}, 0.528 \mathrm{mmol})$ in DMF (1.7 mL) under argon was added $\mathrm{NaH}(44.3 \mathrm{mg}, 60 \%, 1.11 \mathrm{mmol})$. The reaction mixture was stirred for 15 min and then 1,1 '-carbonyldiimidazole (CDI) ($530 \mathrm{mg}, 3.17 \mathrm{mmol}$) was added slowly. The resulting mixture was stirred at room temperature for $4 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ were added and the resulting mixture was stirred for 10 min . After separation of the two
layers, the organic solution was washed with water (1.5 mL X 3) and brine and then dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with EtOAc : hexane $=1: 4$) to provide a mixture of carbonates $\mathbf{5 b}$ and $\mathbf{1 3 b}(175 \mathrm{mg}, 92 \%)$ as a colorless oil. Without further purification, the mixture of carbonate $\mathbf{5 b}$ and $\mathbf{1 3 b}$ was directly used for the next step.

For the purpose of characterization, each carbonate isomer was prepared from the corresponding diol (see above).

Major product : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H})$, $2.24-2.37$ (m, 4H), 2.69 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{dd}, J=12.6,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0,1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 1H), 5.87 - $5.94(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.3,20.5,21.4$, $21.6,27.4,33.5,33.7,35.3,36.9,66.3,71.0,73.5,81.9,84.9,85.7,110.6$, $116.9,122.2,134.8,138.4,149.5,153.4$. IR (neat) $v_{\max } 3288,3083,2964,2872,1808,1646$, 1455, $1384 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 383.2198$, found 383.2199

Minor product : ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.06(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.86-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.38(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dt}, J=8.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.98 (m, 4H), 4.64 (dd, $J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.90 (s, 1H), 4.94 (s, $1 \mathrm{H}), 5.18(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=17.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.7$, $16.3,21.5,21.6,27.0,33.5,35.4,36.9,41.3,66.5,71.1,73.5,81.2,83.8,85.8,110.5,117.0$, $122.4,134.9,138.2,149.9,153.2$. ; IR (neat) $v_{\max } 3288,2962,2871,1805,1646,1455,1385 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 383.2198$, found 383.2194.

Bicyclic dienes 461 and 464. To a stirred solution of the mixture of carbonates 459 (31.7 mg , 0.088 mmol) in toluene (8.8 mL) under Argon was added $30 \mathrm{~mol} \%$ Stewart -Grubbs catalyst $(15.0 \mathrm{mg}, 0.026 \mathrm{mmol})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, the reaction mixture was concentrated. The residue was subjected to silica gel flash column chromatography (elution with EtOAc : hexane = 1:4) to give diene 461 (10.3 $\mathrm{mg}, 45 \%)$ as an oil and diene $\mathbf{4 6 4}(7.4 \mathrm{mg}, 32 \%)$ as an oil.

461 : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26(\mathrm{~d}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $1.74(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=14.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.37(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=12.2,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,20.9,20.9,21.2,23.3,30.2,37.5,37.8,50.8$, 84.6, 87.1, 120.1, 131.2, 139.3, 139.6, 153.9.; IR (neat) $v_{\max } 2960,2927,1805,1466,1383 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$285.1467, found 285.1462.

464 : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{sext}, 4 \mathrm{H}), 2.67(\mathrm{dd}, J=17.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 4.42$ $(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.0,14.5,21.5,22.1$, $23.8,28.4,37.7,39.0,54.9,84.9,87.5,118.5,129.4,137.1,142.6,154.9 . ;$ IR (neat) $v_{\max } 2961$, 2930, 1809, 1462, $1382 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$285.1467, found 285.1470 .

Diol 450. To a stirred solution of carbonate $461(67.2 \mathrm{mg}, 0.256 \mathrm{mmol})$ in dioxane (3.2 mL) was added $1 N \mathrm{NaOH}(0.7 \mathrm{~mL})$ and the resulting mixture was stirred for 14 h at room temperature. The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. After separation of layers, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \mathrm{X} 2)$ and the combined organic solution was washed with brine and water, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography to provide diol $450(58.7 \mathrm{mg}, 97 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.90-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dd}, \mathrm{J}=$ $16.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (quint, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (quint, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{br}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=16.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.4,20.7,21.1,21.5,24.3$, $34.4,37.6,37.8,53.7,76.8,77.2,119.0,132.7,137.2,144.6$.; IR (neat) $v_{\max } 3396,2959,2924$, 1714, 1557, 1463, $1379 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 259.1674$, found 259.1685.

Cyclization Substrate 466. To a stirred solution of diol $450(\mathrm{R}=\mathrm{H})(8.5 \mathrm{mg}, 36 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ under argon was added 2,6-lutidine ($9.2 \mathrm{mg}, 86 \mu \mathrm{~mol}$). Then TBSOTf (11.4 mg , $43.0 \mu \mathrm{~mol}$) was added dropwise and the resulting mixture was stirred for 2 h , quenched with water, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL} \mathrm{X} 3)$ and
the combined organic solution was dried over MgSO_{4}, concentrated under reduced pressure, and subjected to silica gel flash column chromatography (elution with EtOAc : hexane $=1: 20$). Alcohol 466 ($11.7 \mathrm{mg}, 93 \%$) was isolated as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.81(\mathrm{dd}, J=20.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=16.7,9.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.31 (quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.37-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=16.8,9.6,1 \mathrm{H}), 3.03(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.8,-3.8,14.3,18.0,21.2,21.5,21.9,24.7,25.9,34.3,37.8,37.9,53.1,76.0,78.8$, $119.1,133.1,136.8,145.2$. IR (neat) $v_{\max } 3544,2956,2930,2857,1651,1472,1361 \mathrm{~cm}^{-1}$. HRMS[ES+] calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 373.2539$, found 373.2535.

Alcohols 468 and 469. Oxymercuration was carried out according to a hybrid procedure derived from related literature. ${ }^{9}$ To a stirred solution of alcohol $466(16.0 \mathrm{mg}, 45.6 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL) under argon was added $\mathrm{MeOH}(5.0 \mathrm{mg})$ at room temperature. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}, \mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(23.8 \mathrm{mg}, 54.8 \mu \mathrm{~mol})$ was added, and stirring was continued for 24 h . Then additional $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(5.9 \mathrm{mg}, 14 \mu \mathrm{~mol})$ was added and the reaction mixture was

[^0]slowly warmed to $5{ }^{\circ} \mathrm{C}$ over 3.5 h . The reaction was quenched with saturated aq. $\mathrm{NaHCO}_{3}(2$ $\mathrm{mL})$ and then saturated aq. $\mathrm{NaCl}(2 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 2 h , and then extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \mathrm{X} 3)$. The ether solution was washed with brine and then with water, dried over MgSO_{4}, and concentrated under reduced pressure to provide an organomercurial intermediate 467. Without further purification, the crude product was directly used for the next step. $467:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $1.2(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.96(\mathrm{~m}$, 4H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Oxidative demercuration was accomplished according to Hill and Whitesides. A stream of oxygen gas was bubbled into a solution of $\mathrm{NaBH}_{4}(9.5 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{DMF}(3.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 30 min . To the resulting mixture was added dropwise a solution of the alkylmercurial 467 in DMF (0.7 mL) by syringe pump at $0^{\circ} \mathrm{C}$ for 1 h . During this time, oxygen bubbling was continued. The syringe was filled with DMF (0.2 mL) and this wash was added dropwise (oxygen bubbling continued). When addition was complete, the resulting mixture was warmed slowly to room temperature over 2.5 h (oxygen bubbling continued). The reaction mixture was quenched with $1 N \mathrm{HCl}$, diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and filtered through Celite. Water and $\mathrm{Et}_{2} \mathrm{O}$ were added to the filtrate and the layers were separated. The organic solution was dried over MgSO_{4} and concentrated under reduced pressure. The residue was subjected to silica gel Flash column chromatography (elution with EtOAc : hexane =1:3) to afford the known 468 (9.2 mg , 55% for 2 steps) as an oil and its isomer $\mathbf{4 6 9}(6.2 \mathrm{mg}, 37 \%$ for 2 steps $)$, also as an oil.

Compound 468 : ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.58(\mathrm{~m}$, 2H), $1.73-1.78$ (m, 3H), 1.91 (hept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.30(\mathrm{dd}, J=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}$, $1 \mathrm{H}), 4.13(\mathrm{t}, J=6.0,1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,-4.5,17.8,17.7,18.0$, $20.7,23.5,25.8,28.0,34.1,41.0,50.2,51.0,73.4,77.4,83.3,85.1,119.3,148.9$; IR (neat) $v_{\max }$ 3419, 2959, 2929, 2857, 1472, $1386 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were consistent with the reported values. ${ }^{14}$

Compound 469 : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=11.2,7.2,1 \mathrm{H}), 3.07(\mathrm{td}, J=9.2,2.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $-5.0,-4.5,17.7,17.8$, 18.0, 20.7, 22.9, 25.5, 25.8, 34.0, 40.8, 49.5, 50.8, 73.4, 77.1, 83.1, 85.2, 120.0, 146.7.; IR (neat) $v_{\max } 3373,2959,2930,2857,1463,1386 \mathrm{~cm}^{-1}$.

Difference NOE for compound 461

Difference NOE chart for compound 461

Inverted peak $\left(\mathrm{C}_{\text {number }}, \mathrm{ppm}\right)$	Enhanced peaks $\left(\mathrm{C}_{\text {number, }} \mathrm{ppm}\right)$
$\mathrm{CH}_{3}(10 \mathrm{a}, 1.33)$	$\mathrm{CH}_{2}(2,1.89-1.95), \mathrm{CH}_{2}(2.35-2.37), \mathrm{CH}(9,4.27)$
$\mathrm{CH}(1,3.64)$	$\mathrm{CH}_{3}(10 \mathrm{a}, 1.33), \mathrm{CH}_{3}(4 \mathrm{a}, 1.74), \mathrm{CH}_{2}(1.89-1.95), \mathrm{CH}_{2}(2$, $1.99-2.07), \mathrm{CH}_{2}(2.35-2.37), \mathrm{CH}_{2}(8,2.97)$
$\mathrm{CH}(9,4.27)$	$\mathrm{CH} 3(7 \mathrm{~b}, 1.04), \mathrm{CH}_{3}(10 \mathrm{a}, 1.33), \mathrm{CH}_{2}(2.31), \mathrm{CH}_{2}(8,2.97)$

Difference NOE for compound 464

Difference NOE chart for compound 464

Inverted peak ($\mathrm{C}_{\text {number }}, \mathrm{ppm}$)	Enhanced peaks ($\left.\mathrm{C}_{\text {number }}, \mathrm{ppm}\right)$
CH (10a, 1.17)	$\begin{aligned} & \mathrm{CH}_{2}(2,1.73-1.78), \mathrm{CH}_{2}(2,2.03), \mathrm{CH}_{2}(2.38), \\ & \mathrm{CH}(1,3.03), \mathrm{CH}(9,4.42), \mathrm{CH}(6,6.19) \end{aligned}$
CH (1, 3.03)	$\begin{aligned} & \mathrm{CH}(10 \mathrm{a}, 1.17), \mathrm{CH}_{2}(1.73-1.78), \mathrm{CH}_{2}(2.38), \\ & \mathrm{CH}_{2}(2,2.03), \mathrm{CH}(9,4.42), \mathrm{CH}(6,6.19) \end{aligned}$
CH (9, 4.42)	$\begin{aligned} & \mathrm{CH} 3 \text { (7b, 1.04), } \mathrm{CH}(10 \mathrm{a}, 1.17), \mathrm{CH}_{2}(2.38), \mathrm{CH}_{2} \\ & (8,2.67), \mathrm{CH}(1,3.03), \mathrm{CH}(6,6.19) \end{aligned}$

Bibliography

Part I.

(1) Hauser, F. M.; Ellenberger, S. R.: Syntheses of 2,3,6-trideoxy-3-amino- and 2,3,6-trideoxy-3-nitrohexoses, Chem. Rev. 1986, 86, 35.
(2) Zaya, M. J.; Hines, R. N.; Stevens, J. C.: Epirubicin Glucuronidation and UGT2B7 Developmental Expression, Drug Metabolism and Disposition 2006, 34, 2097.

Zhang, G.; Shi, L.; Liu, Q.; Liu, X.; Li, L.; Wang, J.: A divergent approach to 3-azido-2,3,6-trideoxy-1-hexoses from rhamnal, Tetrahedron Lett. 2007, 48, 3413.
(a) Portugal, J.; Cashman, D. J.; Trent, J. O.; Ferrer-Miralles, N.; Przewloka, T.; Fokt, I.; Priebe, W.; Chaires, J. B.: A New Bisintercalating Anthracycline with Picomolar DNA Binding Affinity, J. Med. Chem. 2005, 48, 8209 (b) Zhang, G.; Fang, L.; Zhu, L.; Aimiuwu, J. E.; Shen, J.; Cheng, H.; Muller, M. T.; Lee, G. E.; Sun, D.; Wang, P. G.: Syntheses and Biological Activities of Disaccharide Daunorubicins, J. Med. Chem. 2005, 48, 5269 (c) Zhang, G.; Fang, L.; Zhu, L.; Zhong, Y.; Wang, P. G.; Sun, D.: Syntheses and Biological Activities of 3'-Azido Disaccharide Analogues of Daunorubicin against Drug-Resistant Leukemia, J. Med. Chem. 2006, 49, 1792 (d) Horton, D.; Khare, A.: Anthracycline glycosides of 2,6-dideoxy-2-fluoro- α-l-talopyranose, Carbohydr. Res. 2006, 341, 2631 (e) Fang, L.; Zhang, G.; Li, C.; Zheng, X.; Zhu, L.; Xiao, J. J.; Szakacs, G.; Nadas, J.; Chan, K. K.; Wang, P. G.; Sun, D.: Discovery of a Daunorubicin Analogue That Exhibits Potent Antitumor Activity and Overcomes P-gp-Mediated Drug Resistance, J. Med. Chem. 2006, 49, 932 (f) Fan, E.; Shi, W.; Lowary, T. L.: Synthesis of Daunorubicin Analogues Containing Truncated Aromatic Cores and Unnatural Monosaccharide Residues, J. Org. Chem. 2007, 72, 2917 (g) Boivin, J.; Pais, M.; Monneret, C.: Substitutions d'esters allyliques: préparation de glycals aminës en c-3 et étude de leur glycosidation acido-cataly-sée. Application à l'hémisynthè de glycosides du groupe des anthracyclines, Carbohydr. Res. 1980, 79, 193 (h) Pelyvás, I.; Whistler, R. L.: Synthesis of 1-acosamine and 1-thio-l-acosamine derivatives by the stereoselective reduction of O-acetyloximes with borane, Carbohydr. Res. 1980, 84, C5 (i) Wovkulich, P. M.; Uskokovic, M. R.: A chiral synthesis of L-acosamine and L-daunosamine via an enantioselective intramolecular[3 + 2]cycloaddition, J. Am. Chem. Soc. 1981, 103, 3956
(j) Trost, B. M.; Sudhakar, A. R.: Cis hydroxyamination equivalent. Application to the synthesis of (-)-acosamine, J. Am. Chem. Soc. 1987, 109, 3792 (k) Konradsson, P.; Udodong, U. E.; Fraser-Reid, B.: Iodonium promoted reactions of disarmed thioglycosides, Tetrahedron Lett. 1990, 31, 4313 (1) Renneberg, B.; Li, Y.-M.; Laatsch, H.; Fiebig, H.-H.: A short and efficient transformation of rhamnose into activated daunosamine, acosamine, ristosamine and epi-daunosamine derivatives, and synthesis of an anthracycline antibiotic acosaminyl-[var epsilon]-iso-rhodomycinone, Carbohydr. Res. 2000, 329, 861 (m) Lear, M. J.; Yoshimura, F.; Hirama, M.: A Direct and Efficient α Selective Glycosylation Protocol for the Kedarcidin Sugar, L-Mycarose: AgPF6 as a Remarkable Activator of 2-Deoxythioglycosides, Angew. Chem. Int. Ed. 2001, 40, 946 (n) Pucko, W.; Les, A.; Ramza, J.; Zagrodzka, J.; Cieplucha, G.; Cichy, B.; Szelejewski, W.: Optimization of a Key Step of Synthesis of 1-Acosamine and 1-Daunosamine Derivatives, Industrial \& Engineering Chemistry Research 2006, 45, 2962 (o) Bodkin, J. A.; Bacskay, G. B.; McLeod, M. D.: The Sharpless asymmetric aminohydroxylation reaction: optimising ligand/substrate control of regioselectivity for the synthesis of 3- and 4-aminosugars, Organic \& Biomolecular Chemistry 2008, 6, 2544 (p) Bagal, S. K.; Davies, S. G.; Fletcher, A. M.; Lee, J. A.; Roberts, P. M.; Scott, P. M.; Thomson, J. E.: Concise and highly selective asymmetric synthesis of acosamine from sorbic acid, Tetrahedron Lett. 2011, 52, 2216.
(5) Mouton, C.; Tillequin, F.; Seguin, E.; Monneret, C.: Synthesis of heterodisaccharidecontaining peptides, fragments of actinoidin antibiotics, J. Chem. Soc., Perkin Trans. 1 1998, 2055.

Hall, R. H.; Jordaan, A.; Lourens, G. J.: Reaction of chlorosulphonyl isocyanate with unsaturated sugars, J. Chem. Soc., Perkin Trans. 1 1973, 38.

Christine G. Espino; J. Du Bois: A Rh-Catalyzed C-H Insertion Reaction for the Oxidative Conversion of Carbamates to Oxazolidinones 13, Angew. Chem. Int. Ed. 2001, 40, 598.

Collet, F.; Dodd, R. H.; Dauban, P.: Catalytic C-H amination: recent progress and future directions, Chem. Commun. 2009, 5061.
(a) Parker, K. A.; Chang, W.: Regioselectivity of Rhodium Nitrene Insertion. Syntheses of Protected Glycals of 1-Daunosamine, d-Saccharosamine, and 1-Ristosamine, Org. Lett.

2005, 7, 1785 (b) Parker, K. A.; Chang, W.: A Synthesis of l-Vancosamine Derivatives from Non-Carbohydrate Precursors by a Short Sequence Based on the Marshall, McDonald, and Du Bois Reactions, Org. Lett. 2003, 5, 3891.
(10) Rice, G. T.; White, M. C.: Allylic C-H Amination for the Preparation of syn-1,3-Amino Alcohol Motifs, J. Am. Chem. Soc. 2009, 131, 11707.
(11) Fraunhoffer, K. J.; White, M. C.: syn-1,2-Amino Alcohols via Diastereoselective Allylic C-H Amination, J. Am. Chem. Soc. 2007, 129, 7274.
(12) Fiori, K. W.; Du Bois, J.: Catalytic Intermolecular Amination of C-H Bonds: Method Development and Mechanistic Insights, J. Am. Chem. Soc. 2007, 129, 562.
(13) McDonald, F. E.; Zhu, H. Y. H.: Novel Strategy for Oligosaccharide Synthesis Featuring Reiterative Alkynol Cycloisomerization, J. Am. Chem. Soc. 1998, 120, 4246.
(14) Trost, B. M.; Rhee, Y. H.: A Ru Catalyzed Divergence: Oxidative Cyclization vs Cycloisomerization of Bis-homopropargylic Alcohols, J. Am. Chem. Soc. 2002, 124, 2528.

Bernd Schmidt; Anne Biernat: The Tandem Ring-Closing Metathesis-Isomerization Approach to 6-Deoxyglycals, Chemistry - A European Journal 2008, 14, 6135.
(a) Smith, A. B.; Jurica, J. A.; Walsh, S. P.: Total Synthesis of (+)-Psymberin (Irciniastatin A): Catalytic Reagent Control as the Strategic Cornerstone, Org. Lett. 2008, 10, 5625 (b) Huang, X.; Shao, N.; Palani, A.; Aslanian, R.; Buevich, A.: The Total Synthesis of Psymberin, Org. Lett. 2007, 9, 2597 (c) Jewett, J. C.; Rawal, V. H.: Total Synthesis of Pederin, Angew. Chem. Int. Ed. 2007, 46, 6502.
(17) Schmidt, B.; Nave, S.: Palladium-Catalyzed O-Allylation of alpha-Hydroxy Carbonyl Compounds, Adv. Synth. Catal. 2006, 348, 531.
(18) (a) Schmidt, B.; Biernat, A.: Tandem RCM-Isomerization Approach to Glycals of Desoxyheptoses from a Common Precursor, Org. Lett. 2007, 10, 105 (b) Schmidt, B.; Staude, L.: Unexpected transfer hydrogenation of $\mathrm{C}-\mathrm{C}$-double bonds during Tandem-RCM-isomerization reactions, J. Organomet. Chem. 2006, 691, 5218 (c) Mallagaray, A.; Dominguez, G.; Gradillas, A.; Perez-Castells, J.: Tandem RCM-IsomerizationCyclopropanation Reactions, Org. Lett. 2008, 10, 597.
(19) Corey, E. J.; Suggs, J. W.: Selective cleavage of allyl ethers under mild conditions by transition metal reagents, J. Org. Chem. 1973, 38, 3224.

Oguri, H.; Oomura, A.; Tanabe, S.; Hirama, M.: Design and synthesis of a trans-fused polycyclic ether skeleton as an [alpha]-helix mimetic scaffold, Tetrahedron Lett. 2005, 46, 2179. Propargylation of .alpha.-Alkoxy Aldehydes with Propargyl Bromide and Zinc. A Versatile and Efficient Method for the Synthesis of Chiral Oxygenated Acyclic Natural Products, J. Org. Chem. 1995, 60, 3257.
Massad, S. K.; Hawkins, L. D.; Baker, D. C.: A series of (2S)-2-O-protected-2hydroxypropanals (L-lactaldehydes) suitable for use as optically active intermediates, J. Org. Chem. 1983, 48, 5180.
(27) Van Boom, J. H.; Leeuwenburgh, M. A.; Overkleeft, H. S.; van der Marel, G. A.: Synlett 1997, 1263.
(a) Guthikonda, K.; Wehn, P. M.; Caliando, B. J.; Du Bois, J.: Rh-catalyzed alkene oxidation: a highly efficient and selective process for preparing N -alkoxysulfonyl aziridines, Tetrahedron 2006, 62, 11331 (b) Hayes, C. J.; Beavis, P. W.; Humphries, L. A.: $\mathrm{Rh}(\mathrm{II})$-catalysed room temperature aziridination of homoallyl-carbamates, Chem. Commun. 2006, 4501.
(a) Abuaan, M. M.; Brimacombe, J. S.; Tucker, L. C. N.: Syntheses of methyl 2,6-diacetamido-2,3,6-trideoxy- α-d-ribo-hexopyranoside (methyl di-N-acetyl- α-dtobrosaminide) and methyl 2-acetamido-2,3,6-trideoxy- β-1-lyxo-hexopyranoside, Carbohydr. Res. 1984, 132, 51 (b) Morin, C.: Inverse Klemer\–Rodemeyer Fragmentation. Application to the Synthesis of Positional Isomers of Ristosamine and Acosamine, Chem. Lett. 1986, 15, 1055.

Wu, W.-L.; Yao, Z.-J.; Li, Y.-L.; Li, J.-C.; Xia, Y.; Wu, Y.-L.: Diastereoselective
Org.

Kocovsk, P.: Carbamates : A method of synthesis and some syntehtic applications, Tetrahedron Lett. 1986, 27, 5521.

Hashimoto, S.-i.; Watanabe, N.; Ikegami, S.: Dirhodium(II) tetra(triphenylacetate): A highly efficient catalyst for the site-selective intramolecular C-H insertion reactions of [alpha]-Diazo [beta]-Keto Esters, Tetrahedron Lett. 1992, 33, 2709.

McDonald, F. E.; Zhu, H. Y. H.: J. Am. Chem. Soc. 1998, 120, 4246.
(29) Van Cauwenberge, G.; Gao, L.-J.; Van Haver, D.; Milanesio, M.; Viterbo, D.; De Clercq, P. J.: A Novel Short Convergent Entry into Himbacine Derivatives, Org. Lett. 2002, 4, 1579.

Part II.

(1) Rohde, K.; Yates, R. M.; Purdy, G. E.; Russell, D. G.: Mycobacterium tuberculosis and the environment within the phagosome, Immunological Reviews 2007, 219, 37.
(2) Mann, F. M.; Xu, M.; Chen, X.; Fulton, D. B.; Russell, D. G.; Peters, R. J.: Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis, J. Am. Chem. Soc. 2009, 131, 17526.
(3) (a) Maugel, N.; Mann, F. M.; Hillwig, M. L.; Peters, R. J.; Snider, B. B.: Synthesis of (\pm)-Nosyberkol (Isotuberculosinol, Revised Structure of Edaxadiene) and (\pm)Tuberculosinol, Org. Lett. 2010, 12, 2626 (b) Mann, F. M.; Xu, M.; Chen, X.; Fulton, D. B.; Russell, D. G.; Peters, R. J.: Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis, J. Am. Chem. Soc. 2010, 132, 10953.
(4) Rudi, A.; Aknin, M.; Gaydou, E.; Kashman, Y.: Asmarines I, J, and K and Nosyberkol: Four New Compounds from the Marine Sponge Raspailia sp, J. Nat. Prod. 2004, 67, 1932.
(5) Spangler, J. E.; Carson, C. A.; Sorensen, E. J.: Synthesis enables a structural revision of the Mycobacterium tuberculosis-produced diterpene, edaxadiene, Chemical Science 2010, 1, 202.
(6) Arata, K.; Matsuura, C.: Isomerizations of Citronellal to Isopulegol and Geraniol to Linalool Catalyzed by Solid Acids and Bases, Chem. Lett. 1989, 18, 1797.
(7) Craig, D.: Stereochemical aspects of the intramolecular Diels-Alder reaction, Chem. Soc. Rev. 1987, 16, 187.
(8) Skorianetz, W.; Ohloff, G.: Über vinyloge English-Zimmerman-Spaltungen in der Jononreihe, Helv. Chim. Acta 1975, 58, 771.
(a) Fuson, R. C.; Bull, B. A.: The Haloform Reaction, Chem. Rev. 1934, 15, 275 (b) Guthikonda, K.; Wehn, P. M.; Caliando, B. J.; Du Bois, J.: Rh-catalyzed alkene oxidation: a highly efficient and selective process for preparing N -alkoxysulfonyl aziridines, Tetrahedron 2006, 62, 11331.
(a) Wu, Y.-K.; Liu, H.-J.; Zhu, J.-L.: An Efficient Procedure for the 1,3-Transposition of Allylic Alcohols Based on Lithium Naphthalenide Induced Reductive Elimination of Epoxy Mesylates, Synlett 2008, 2008, 621 (b) Dittmer, D. C.; Discordia, R. P.; Zhang, Y.; Murphy, C. K.; Kumar, A.; Pepito, A. S.; Wang, Y.: A tellurium transposition route to allylic alcohols: overcoming some limitations of the Sharpless-Katsuki asymmetric epoxidation, J. Org. Chem. 1993, 58, 718 (c) Discordia, R. P.; Murphy, C. K.; Dittmer, D. C.: Telluride-mediated stereospecific conversion of racemic E-allylic alcohols to homochiral Z-allylic alcohols; transposition of primary and secondary allylic alcohols via glycidol derivatives, Tetrahedron Lett. 1990, 31, 5603.
(a) Evans, D. A.; Andrews, G. C.: Allylic sulfoxides. Useful intermediates in organic synthesis, Acc. Chem. Res. 1974, 7, 147 (b) Daniels, N. J.; Johnson, G.; Ross, B. C.; Yeomans, M. A.: Use of the allylic sulphoxide-sulphenate ester rearrangement for the synthesis of a 2-thiacephem and a penem, J. Chem. Soc., Chem. Commun. 1982, 1119 (c) Yamaguchi, Y.; Uyehara, T.; Kato, T.: Biogenetic type synthesis of (\pm)-concinndiol and (\pm)-aplysin 20, Tetrahedron Lett. 1985, 26, 343.

Brenna, E.; Delmonte, M.; Fuganti, C.; Serra, S.: Enzyme-Mediated Preparation of (+)and $(-)-\beta$-Irone and (+)- and (-)-cis- γ-Irone from Irone alpha®, Helv. Chim. Acta 2001, 84, 69.

Streiff, S.; Ribeiro, N.; Désaubry, L.: Synthesis of Allylsilanes by Reductive Lithiation of Thioethers, J. Org. Chem. 2004, 69, 7592.
(a) Brown, W. L.; Fallis, A. G.: Intramolecular rearrangements: Epimerization of bicyclic vinyl tertiary alcohols via a $[2,3]$ sulfoxide sigmatropic rearrangement, Can. J. Chem. 1987, 65, 1828 (b) Choi, S.; Yang, J.-D.; Ji, M.; Choi, H.; Kee, M.; Ahn, K.-H.; Byeon, S.-H.; Baik, W.; Koo, S.: Selective Oxidation of Allylic Sulfides by Hydrogen Peroxide with the Trirutile-type Solid Oxide Catalyst LiNbMoO6, J. Org. Chem. 2001, 66, 8192.

Majetich, G.; Song, J. S.; Ringold, C.; Nemeth, G. A.; Newton, M. G.: Intramolecular additions of allylsilanes to conjugated dienones. A direct stereoselective synthesis of (.+-.)-14-deoxyisoamijiol, J. Org. Chem. 1991, 56, 3973.

Part III.

(1) (a) Igarashi, Y.; Kim, Y.; In, Y.; Ishida, T.; Kan, Y.; Fujita, T.; Iwashita, T.; Tabata, H.; Onaka, H.; Furumai, T.: Alchivemycin A, a Bioactive Polycyclic Polyketide with an Unprecedented Skeleton from Streptomyces sp. \dagger, Org. Lett. 2010, 12, 3402 (b) Onaka, H.; Mori, Y.; Igarashi, Y.; Furumai, T.: Mycolic Acid-Containing Bacteria Induce Natural-Product Biosynthesis in Streptomyces Species, Appl. Environ. Microbiol. 2011, 77, 400.
(2) Craig, D.: Stereochemical aspects of the intramolecular Diels-Alder reaction, Chem. Soc. Rev. 1987, 16, 187.
(3) Marsault, E.; Toró, A.; Nowak, P.; Deslongchamps, P.: The transannular Diels-Alder strategy: applications to total synthesis, Tetrahedron 2001, 57, 4243.
(a) Witter, D. J.; Vederas, J. C.: Putative Diels-Alder-Catalyzed Cyclization during the Biosynthesis of Lovastatin, J. Org. Chem. 1996, 61, 2613 (b) Bear, B. R.; Sparks, S. M.; Shea, K. J.: The Type 2 Intramolecular Diels-Alder Reaction: Synthesis and Chemistry of Bridgehead Alkenes, Angew. Chem. Int. Ed. 2001, 40, 820 (c) Cayzer, Tory N.; PaddonRow, Michael N.; Sherburn, Michael S.: Stereocontrol of the Intramolecular Diels-Alder Reaction by Internal Hydrogen Bonding, Eur. J. Org. Chem. 2003, 2003, 4059 (d) Pearson, E. L.; Willis, A. C.; Sherburn, M. S.; Paddon-Row, M. N.: Controlling cis/transselectivity in intramolecular Diels-Alder reactions of benzo-tethered, ester linked 1,3,9decatrienes, Organic \& Biomolecular Chemistry 2008, 6, 513 (e) Burke, J. P.; Sabat, M.; Iovan, D. A.; Myers, W. H.; Chruma, J. J.: Exploring the Original Proposed Biosynthesis of (+)-Symbioimine: Remote Exocyclic Stereocontrol in a Type I IMDA Reaction, Org. Lett. 2010, 12, 3192.
(5) Roush, W. R.; Hall, S. E.: Studies on the total synthesis of chlorothricolide: stereochemical aspects of the intramolecular Diels-Alder reactions of methyl undeca-2,8,10-trienoates, J. Am. Chem. Soc. 1981, 103, 5200.
(6) Roush, W. R.; Gillis, H. R.: Further stereochemical aspects of intramolecular Diels-Alder reactions in the undeca-2,8,10-trienoate ester series, J. Org. Chem. 1982, 47, 4825.
(a) Shing, T. K. M.: Oblongolide: synthesis and absolute configuration, J. Chem. Soc., Chem. Commun. 1986, 49 (b) Shing, T. K. M.; Yang, J.: A Short Synthesis of Natural (-)Oblongolide via an Intramolecular or a Transannular Diels-Alder Reaction, J. Org. Chem. 1995, 60, 5785.
(a) Deslongchamps, P.: Transannular Diels-Alder reaction on macrocycles. A general strategy for the synthesis of polycyclic compounds, P. Pure AppL Chem. 1992, 64 (b) Dory, Y. L.; Soucy, P.; Drouin, M.; Deslongchamps, P.: Experimental and Semiempirical Calculation Studies of Transannular Diels-Alder and Other Competing Pericyclic Reactions, J. Am. Chem. Soc. 1995, 117, 518.
(9) Toró, A.; Lemelin, C.-A.; Préville, P.; Bélanger, G.; Deslongchamps, P.: Transannular Diels-Alder studies on the asymmetric synthesis of (+)-maritimol, Tetrahedron 1999, 55, 4655.
(12) Torrado, A.; Iglesias, B.; López, S.; de Lera, A. R.: The suzuki reaction in stereocontrolled polyene synthesis: Retinol (vitamin A), its 9- and/or 13-demethyl analogs, and related 9-demethyl-dihydroretinoids, Tetrahedron 1995, 51, 2435.
(13) Mauleón, P.; Zeldin, R. M.; González, A. Z.; Toste, F. D.: Ligand-Controlled Access to $[4+2]$ and $[4+3]$ Cycloadditions in Gold-Catalyzed Reactions of Allene-Dienes, J. Am. Chem. Soc. 2009, 131, 6348.
(14) Lautens, M.; Colucci, J. T.; Hiebert, S.; Smith, N. D.; Bouchain, G.: Total Synthesis of Ionomycin Using Ring-Opening Strategies, Org. Lett. 2002, 4, 1879.

Saicic, R. N.: Improved Procedure for the Preparation of cis-2,4-Dimethylglutaranhydride, Synth. Commun. 2006, 36, 2559.
(a) Prusov, E.; Röhm, H.; Maier, M. E.: Chemoenzymatic Synthesis of the C10-C23 Segment of Dictyostatin, Org. Lett. 2006, 8, 1025 (b) Schmidt, Y.; Lehr, K.; Breuninger, U.; Brand, G.; Reiss, T.; Breit, B.: Enantioselective Total Synthesis of the Unnatural and the Natural Stereoisomers of Vittatalactone, J. Org. Chem. 2010, 75, 4424.
(17) Mori, K. F. K.: New Synthesis of Serricornin, the Female Sex Pheromone of the Cigarette Beetle, Biosci. Biotechnol. Biochem. 2001, 65, 1429.
(a) Tan, Z.; Negishi, E.-i.: An Efficient and General Method for the Synthesis of α, ω Difunctional Reduced Polypropionates by Zr -Catalyzed Asymmetric Carboalumination: Synthesis of the Scyphostatin Side Chain, Angew. Chem. Int. Ed. 2004, 43, 2911 (b) Pitsinos, E.; Athinaios, N.; Xu, Z.; Wang, G.; Negishi, E.-i.: Total synthesis of (+)scyphostatin featuring an enantioselective and highly efficient route to the side-chain via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA), Chem. Commun. 2010, 46, 2200.
(19) Guo-Qiang, L.; Wei-Chu, X.: A convergent and stereoselective synthesis of the sex pheromone of Macrocentrus grandii, Tetrahedron 1996, 52, 5907.

Zhou, J.; Fu, G. C.: Suzuki Cross-Couplings of Unactivated Secondary Alkyl Bromides and Iodides, J. Am. Chem. Soc. 2004, 126, 1340.
(a) Asao, K.; Iio, H.; Tokoroyama, T.: Total synthesis of (\pm)-ageline a, a physiologically active constituent ofAgelas sponges, Tetrahedron Lett. 1989, 30, 6401 (b) Negishi, E.-i.; Ay, M.; Gulevich, Y. V.; Noda, Y.: Highly stereoselective and general synthesis of (z)-3-methyl-2-alken-1-ols via palladium-catalyzed cross coupling of (z)-3-iodo-2-buten-1-ol with organozincs and other organometals, Tetrahedron Lett. 1993, 34, 1437 (c) Villiers, P.; Vicart, N.; Ramondenc, Y.; Plé, G.: 1,6-Dibromohexa-1,3,5-triene - Stereocontrolled Synthesis of Monosubstituted and Disubstituted Hexatrienes by Palladium-Catalysed Cross-Coupling Reactions, Eur. J. Org. Chem. 2001, 2001, 561 (d) Adolph, S.; Poulet, S. A.; Pohnert, G.: Synthesis and biological activity of $\alpha, \beta, \gamma, \delta$-unsaturated aldehydes from diatoms, Tetrahedron 2003, 59, 3003 (e) Liang, B.; Novak, T.; Tan, Z.; Negishi, E.-i.:

Catalytic, Efficient, and syn-Selective Construction of Deoxypolypropionates and Other Chiral Compounds via Zr -Catalyzed Asymmetric Carboalumination of Allyl Alcohol, J. Am. Chem. Soc. 2006, 128, 2770 (f) Schachtschabel, D.; Boland, W.: Efficient Generation of a Trisporoid Library by Combination of Synthesis and Biotransformation, J. Org. Chem. 2007, 72, 1366 (g) Sato, H.; Sato, K.; Iida, M.; Yamanaka, H.; Oishi, T.; Chida, N.: Total synthesis of mycestericin A, Tetrahedron Lett. 2008, 49, 1943 (h) Placzek, A. T.; Gibbs, R. A.: New Synthetic Methodology for the Construction of 7Substituted Farnesyl Diphosphate Analogs, Org. Lett. 2011, 13, 3576.
(22) (a) Marshall, J. A.; Johns, B. A.: Total Synthesis of (+)-Discodermolide, J. Org. Chem. 1998, 63, 7885(b) Kuranaga, T.; Ohtani, N.; Tsutsumi, R.; Baden, D. G.; Wright, J. L. C.; Satake, M.; Tachibana, K.: Total Synthesis of (-)-Brevisin: A Concise Synthesis of a New Marine Polycyclic Ether, Org. Lett. 2011, 13, 696 (c) Johnson, C. R.; Braun, M. P.: A two-step, three-component synthesis of PGE1: utilization of .alpha.-iodo enones in Pd(0)-catalyzed cross-couplings of organoboranes, J. Am. Chem. Soc. 1993, 115, 11014 (d) Marshall, J. A.; Bourbeau, M. P.: Total Synthesis of (-)-Callystatin A, J. Org. Chem. 2001, 67, 2751 (e) Tsutsumi, R.; Kuranaga, T.; Wright, J. L. C.; Baden, D. G.; Ito, E.; Satake, M.; Tachibana, K.: An improved synthesis of (-)-brevisamide, a marine monocyclic ether amide of dinoflagellate origin, Tetrahedron 2010, 66, 6775 (f) Bonazzi, S.; Eidam, O.; Güttinger, S.; Wach, J.-Y.; Zemp, I.; Kutay, U.; Gademann, K.: Anguinomycins and Derivatives: Total Syntheses, Modeling, and Biological Evaluation of the Inhibition of Nucleocytoplasmic Transport, J. Am. Chem. Soc. 2010, 132, 1432.

Part IV.

(1) Grothaus, P. G.; Newman, D. J.: Impact of Natural Products on Developing New AntiCancer Agents- Cragg, Gordon M, Chem. Rev. 2009, 109, 3012.
(2) Simmons, T. L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W. H.: Marine natural products as anticancer drugs, Molecular Cancer Therapeutics 2005, 4, 333.
(3) Peng, G.-P.; Tian, G.; Huang, X.-F.; Lou, F.-C.: Guaiane-type sesquiterpenoids from Alisma orientalis, Phytochemistry 2003, 63, 877.

Huang, S.-X.; Yang, J.; Xiao, W.-L.; Zhu, Y.-L.; Li, R.-T.; Li, L.-M.; Pu, J.-X.; Li, X.; Li, S.-H.; Sun, H.-D.: Three Novel Terpenoids from Schisandra pubescens var. pubinervis, Helv. Chim. Acta 2006, 89, 1169.
(5) Ratnayake, R.; Covell, D.; Ransom, T. T.; Gustafson, K. R.; Beutler, J. A.: Englerin A, a Selective Inhibitor of Renal Cancer Cell Growth, from Phyllanthus engleri, Org. Lett. 2008, 11, 57.
(6) Willot, M.; Radtke, L.; Könning, D.; Fröhlich, R.; Gessner, V. H.; Strohmann, C.; Christmann, M.: Total Synthesis and Absolute Configuration of the Guaiane Sesquiterpene Englerin A, Angew. Chem. Int. Ed. 2009, 48, 9105.
(a) Pouwer, R. H.: Chemical Synthesis of the Englerins, Chemistry, an Asian journal 2012, 7(b) Chain, W. J.: Synthetic Strategies toward the Guaiane Sesquiterpene Englerin A, Synlett 2011, $2011,2605$.
(8) Kramer, T.; Lo Monte, F.; Göring, S.; Okala Amombo, G. M.; Schmidt, B.: Small Molecule Kinase Inhibitors for LRRK2 and Their Application to Parkinson's Disease Models, ACS Chemical Neuroscience 2012, 3, 151.
(9) Lin, X.; Huang, X.-P.; Chen, G.; Whaley, R.; Peng, S.; Wang, Y.; Zhang, G.; Wang, S. X.; Wang, S.; Roth, B. L.; Huang, N.: Life Beyond Kinases: Structure-Based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors, J. Med. Chem. 2012, 55, 5749.
(10) Nicolaou, K. C.; Kang, Q.; Ng, S. Y.; Chen, D. Y. K.: Total Synthesis of Englerin A, J. Am. Chem. Soc. 2010, 132, 8219.
(11) Radtke, L.; Willot, M.; Sun, H.; Ziegler, S.; Sauerland, S.; Strohmann, C.; Fröhlich, R.; Habenberger, P.; Waldmann, H.; Christmann, M.: Total Synthesis and Biological Evaluation of $(-)$-Englerin A and B: Synthesis of Analogues with Improved Activity Profile, Angew. Chem. Int. Ed. 2011, 50, 3998.
(12) Chan, K. P.: Chemical Synthesis and Biological Evaluation of the Englerin Analogues, ChemMedChem 2011 6, 420.
(13) Jung Xu, E. J. E. C.-D., Ayse Batova, Steven D. E. Sullivan, and Emmanuel A. Theodorakis: Formal Synthesis of (-)-Englerin A and Cytotoxicity Studies of Turncated Englerins, Chem. Asian J. 2012, 7(5).

Molawi, K.; Delpont, N.; Echavarren, A. M.: Enantioselective Synthesis of (-)-Englerins A and B, Angew. Chem. Int. Ed. 2010, 49, 3517.

Zhou, Q.; Chen, X.; Ma, D.: Asymmetric, Protecting-Group-Free Total Synthesis of (-)Englerin A, Angew. Chem. Int. Ed. 2010, 49, 3513.

Xu, J.; Caro-Diaz, E. J. E.; Theodorakis, E. A.: Enantioselective Formal Synthesis of (-)Englerin A via a Rh-Catalyzed [4 + 3] Cycloaddition Reaction, Org. Lett. 2010, 12, 3708. Li, Z.; Nakashige, M.; Chain, W. J.: A Brief Synthesis of (-)-Englerin A, J. Am. Chem. Soc. 2011, 133, 6553.
(a) Sun, B.-F.; Wang, C.-L.; Ding, R.; Xu, J.-Y.; Lin, G.-Q.: Concise approach to the core of englerin A via an organocatalytic [4+3] cycloaddition reaction, Tetrahedron Lett. 2011, 52, 2155(b) Wang, C.-L.; Sun, B.-F.; Chen, S.-G.; Ding, R.; Lin, G.-Q.; Xu, J.-Y.; Shang, Y.-J.: Concise Formal Synthesis of (+)-Englerin A and Total Synthesis of (-)-Orientalol F: Establishment of the Stereochemistry of the Organocatalytic [4+3]-Cycloaddition Reaction, Synlett 2012, 2012, 263.

Gao, P.; Cook, S. P.: A Reductive-Heck Approach to the Hydroazulene Ring System: A Formal Synthesis of the Englerins, Org. Lett. 2012, 14, 3340.

Navickas, V.; Ushakov, D. B.; Maier, M. E.; Ströbele, M.; Meyer, H. J. r.: Synthesis of the Guaianolide Ring System via Cycloaddition of a Bicyclic Carbonyl Ylide with Allyl Propiolate, Org. Lett. 2010, 12, 3418.

Ushakov, D. B.; Navickas, V.; Ströbele, M.; Maichle-Mössmer, C. c.; Sasse, F.; Maier, M. E.: Total Synthesis and Biological Evaluation of (-)-9-Deoxy-englerin A, Org. Lett. 2011, 13, 2090.

Lee, J.; Parker, K. A.: A Formal Synthesis of (-)-Englerin A by Relay Ring Closing Metathesis and Transannular Etherification, Org. Lett. 2012, 14, 2682.

Szostak, M.; Procter, D. J.: Concise Syntheses of Strychnine and Englerin A: the Power of Reductive Cyclizations Triggered by Samarium Iodide, Angew. Chem. Int. Ed. 2011, 50, 7737.
(a) Li, J.; Lee, D.: Enyne-Metathesis-Based Tandem Processes, Eur. J. Org. Chem. 2011, 2011, 4269(b) Kim, S.-H.; Bowden, N.; Grubbs, R. H.: Catalytic Ring Closing Metathesis of Dienynes: Construction of Fused Bicyclic Rings, J. Am. Chem. Soc. 1994, 116, 10801.
(a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B.: Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity?, J. Am. Chem. Soc. 1981, 103, 6237(b) Coleman, R. S.; Sarko, C. R.; Gittinger, J. P.: Efficient stereoselective synthesis of the epoxyacid fragment of the azinomycins, Tetrahedron Lett. 1997, 38, 5917(c) Lenis, L. A.; Ferreiro, M. J.; Debitus, C.; Jiménez, C.; Quiñoá, E.; Riguera, R.: The unusual presence of hydroxylated furanosesquiterpenes in the deep ocean tunicate Ritterella rete. Chemical interconversions and absolute stereochemistry, Tetrahedron 1998, 54, 5385(d) Chakraborty, T. K.; Goswami, R. K.: Synthesis of (3R,4S,5S,9S)-3,5,9-trihydroxy-4methylundecanoic acid δ-lactone, Tetrahedron Lett. 2004, 45, 7637(e) Yadav, J. S.; Rao, K. V. R.; Ravindar, K.; Reddy, B. V. S.: Total Synthesis of (+)-Aculeatin D and (+)-6-epi-Aculeatin D, Synlett 2010, 2010, 51.
Senthilkumar, H. S. P. R. a. S. P.: A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols, Proceedings of the Indian Academy of Sciences. Chemical sciences 2001, 113, 191.
(a) Thota, N.; Koul, S.; Reddy, M. V.; Sangwan, P. L.; Khan, I. A.; Kumar, A.; Raja, A. F.; Andotra, S. S.; Qazi, G. N.: Citral derived amides as potent bacterial NorA efflux pump inhibitors, Bioorganic \& Medicinal Chemistry 2008, 16, 6535(b) Umbreit, M. A.; Sharpless, K. B.: Allylic oxidation of olefins by catalytic and stoichiometric selenium dioxide with tert-butyl hydroperoxide, J. Am. Chem. Soc. 1977, 99, 5526(c) Gaich, T.; Mulzer, J.: From Silphinenes to Penifulvins: A Biomimetic Approach to Penifulvins B and C, Org. Lett. 2009, 12, 272.
Petrier, C.; Einhorn, J.; Luche, J. L.: Selective tin and zinc mediated allylations of carbonyl compounds in aqueous media, Tetrahedron Lett. 1985, 26, 1449.

Barton, D. H. R.; Shioiri, T.; Widdowson, D. A.: Biosynthesis of terpenes and steroids. Part V. The synthesis of ergosta-5,7,22,24(28)-tetraen-3[small beta]-ol, a biosynthetic precursor of ergosterol, Journal of the Chemical Society C: Organic 1971, 1968.
(a) Ueno, Y.; Setoi, H.; Okawara, M.: Deacylative condensation I. A new facile method for the direct α-methylenation of ester or lactone starting from monosubstituted active methylene compounds, Tetrahedron Lett. 1978, 19, 3753(b) Lee, H.-S.; Park, J.-S.; Kim, B. M.; Gellman, S. H.: Efficient Synthesis of Enantiomerically Pure $\beta 2$-Amino Acids via Chiral Isoxazolidinones, J. Org. Chem.2003, 68, 1575.
(a) Marvel, C. S.; Myers, R. L.; Saunders, J. H.: The Preparation of 2-Alkylbutadienes1, J. Am. Chem. Soc. 1948, 70, 1694(b) Nakahira, H.; Ryu, I.; Ikebe, M.; Oku, Y.; Ogawa, A.; Kambe, N.; Sonoda, N.; Murai, S.: .beta.-Trichlorostannyl ketones and aldehydes. Preparation and facile amine-induced dehydrostannation leading to .alpha.-methylene ketones and aldehydes, J. Org. Chem.1992, 57, 17(c) Breit, B.; Heckmann, G.; Zahn, S. K.: Diastereoselective Hydroformylation of 2-Substituted Allylic o-DPPB-Esters-On the Origin of 1,2-Asymmetric Induction, Chemistry - A European Journal 2003, 9, 425.
(a) Boireau, G.; Abenhaim, D.; Henry-Basch, E.: The ate complexes of aluminium: Reactivity and stereoselectivity with respect to epoxides and carbonyl compounds. Catalytic activation by salts of transition metals, Tetrahedron 1980, 36, 3061(b) Parker, K. A.; Chang, W.: Regioselectivity of Rhodium Nitrene Insertion. Syntheses of Protected Glycals of 1-Daunosamine, d-Saccharosamine, and 1-Ristosamine, Org. Lett. 2005, 7, 1785.

Yamaguchi, M.; Hirao, I.: An efficient method for the alkynylation of oxiranes using alkynyl boranes, Tetrahedron Lett. 1983, 24, 391.
Inanaga, J.; Kawanami, Y.; Yamaguchi, M.: Total Synthesis of Neomethynolide, Bull. Chem. Soc. Jpn. 1986, 59, 1521.
(a) Dahlhoff, W. V.; Bruckmann, J.; Angermund, K.; Krüger, C.: 1-[1,7-dicarba-closo-dodecaboran(12)-1-yl]aldoses: Novel Boron Neutron Capture Candidates, Liebigs Ann. Chem. 1993, 1993, 831(b) Bartlett, P. A.; Tanzella, D. J.; Barstow, J. F.: Ester-enolate Claisen rearrangement of lactic acid derivatives, J. Org. Chem.1982, 47, 3941.
(a) Adam, W.; Kumar, R.; Reddy, T. I.; Renz, M.: Chemo- and Diastereoselective Epoxidation of Chiral Allylic Alcohols with the Urea Hydrogen Peroxide Adduct,

Catalyzed by Titanium Silicate 1, Angew. Chem., Int. Ed.1996, 35, 880 (b) Kilic, H.; Adam, W.; Alsters, P. L.: Effect of Additives on Chemoselectivity and Diastereoselectivity in the Catalytic Epoxidation of Chiral Allylic Alcohols with Hydrogen Peroxide and Binuclear Manganese Complexes, J. Org. Chem. 2009, 74, 1135 (c) Jung, M. E.; van den Heuvel, A.; Leach, A. G.; Houk, K. N.: Unexpected Syn Hydride Migration in the Non-aldol Aldol Reaction, Org. Lett. 2003, 5, 3375 (d) Pettersson, H.; Gogoll, A.; Baeckvall, J. E.: Epoxidation of 5-(tosylamido)-3-hexen-2-ol derivatives. Stereochemical assignment of product configuration by NMR and molecular mechanics studies, J. Org. Chem.1992, 57, 6025.

Zhao, H.; Engers, D. W.; Morales, C. L.; Pagenkopf, B. L.: Reactions of alanes and aluminates with tri-substituted epoxides. Development of a stereospecific alkynylation at the more hindered carbon, Tetrahedron 2007, 63, 8774.
(a) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B.: Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization, J. Am. Chem. Soc. 1987, 109, 5765(b) Bravo, F.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I.: Alkene Substituents for Selective Activation of endoRegioselective Polyepoxide Oxacyclizations, Org. Lett. 2004, 6, 4487(c) Ichige, T.; Okano, Y.; Kanoh, N.; Nakata, M.: Total Synthesis of Methyl Sarcophytoate, a Marine Natural Biscembranoid, J. Org. Chem.2008, 74, 230.
(42) Parikh, J. R.; Doering, W. v. E.: Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide, J. Am. Chem. Soc. 1967, 89, 5505.

Fürstner, A.; Langemann, K.: Total Syntheses of (+)-Ricinelaidic Acid Lactone and of (-)-Gloeosporone Based on Transition-Metal-Catalyzed C-C Bond Formations, J. Am. Chem. Soc. 1997, 119, 9130.
Prunet, J.: Progress in Metathesis Through Natural Product Synthesis, Eur. J. Org. Chem. 2011, 2011, 3634.
(45) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y.: Highly Efficient Ruthenium Catalysts for the Formation of Tetrasubstituted Olefins via RingClosing Metathesis, Org. Lett. 2007, 9, 1589.
(a) Tamaru, Y.; Harayama, H.; Bando, T.: Pronounced electronic effects of the allylic amino group on the [small pi]-facial stereoselectivity and reactivity in electrophilic additions to double bonds, J. Chem. Soc., Chem. Commun. 1993, 1601(b) Gilbert, J. C.; Selliah, R. D.: Enantioselective synthesis of an ent-trichothecene, Tetrahedron 1994, 50, 1651.
(47) Van de Weghe, P.; Aoun, D.; Boiteau, J.-G.; Eustache, J.: Silicon Tether-Aided Coupling Metathesis: Application to the Synthesis of Attenol A, Org. Lett. 2002, 4, 4105.
(48) Chen, F.; Jiang, X.; Er, J. C.; Yeung, Y.-Y.: Molecular sieves as an efficient and recyclable catalyst for bromolactonization and bromoacetoxylation reactions, Tetrahedron Lett. 2010, 51, 3433.
(49) Kim, H.-j.; Schlecht, M. F.: Substituent-directed oxidation: Regiochemistry and stereochemistry of the 4addition of hypervalent iodine reagents to cycloalkenols, Tetrahedron Lett. 1987, 28, 5229.
(50) Ueda, M.; Sato, A.; Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, O.: Direct Synthesis of Trisubstituted Isoxazoles through Gold-Catalyzed Domino Reaction of Alkynyl Oxime Ethers, Org. Lett. 2010, 12, 2594.
(a) Broka, C. A.; Lin, Y. T.: Synthetic studies on thyrsiferol. Elaboration of the bromotetrahydropyran ring, J. Org. Chem.1988, 53, 5876(b) Bernardelli, P.; Moradei, O. M.; Friedrich, D.; Yang, J.; Gallou, F.; Dyck, B. P.; Doskotch, R. W.; Lange, T.; Paquette, L. A.: Total Asymmetric Synthesis of the Putative Structure of the Cytotoxic Diterpenoid $(-)$-Sclerophytin A and of the Authentic Natural Sclerophytins A and B, J. Am. Chem. Soc. 2001, 123, 9021.
(52) Hill, C. L.; Whitesides, G. M.: Reactions of alkylmercuric halides with sodium borohydride in the presence of molecular oxygen, J. Am. Chem. Soc. 1974, 96, 870.

Appendix


```
*)
```


[^0]: ${ }^{9}$ (a) Broka, C. A.; Lim, Y.-T. J. Org. Chem. 1988, 53, 5876. (b) Kang, S.H.; Kim, M.; Kang, S. Y. Angew. Chem. Int. Ed. 2004, 43, 6177 (c) Ushakov, D. B.; Navickas, V.; Ströbele, M.; Maichle-Mössmer, C.; Sasse, F.; Maier, M.E. Org. Lett. 2011, 13, 2090.

