Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.
(C) All Rights Reserved by Author.

Development of Enantiopure Biphenol-Based Phosphorus Ligand Libraries and Their Applications to Palladium-Catalyzed Asymmetric Transformations

A Dissertation Presented

by

Chi-Feng Lin

to

The Graduate School

In partial fulfillment of the
requirements
for the Degree of

Doctor of Philosophy

in

Chemistry

Stony Brook University

Copyright by Chi-Feng Lin 2012

Stony Brook University

The Graduate School

Chi-Feng Lin

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend acceptance of this thesis

Professor Iwao Ojima
Dissertation Advisor Department of Chemistry

Professor Robert C. Kerber
Chairman
Department of Chemistry

Professor Nancy S. Goroff
Third Member
Department of Chemistry

Dr. Ramesh C. Gupta
Outside Member
Vice President, Chem-Master International

This dissertation is accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

Abstract of the Dissertation

Development of Enantiopure Biphenol-Based Phosphorus Ligand Libraries and Their Applications to Palladium-Catalyzed Asymmetric Transformations

Chi-Feng Lin

Doctor of Philosophy
in

Chemistry

Stony Brook University

2012
Among methods of asymmetric synthesis, transition-metal catalyzed asymmetric transformation has proven to be a highly efficient and enabling methodology to induce desired chirality. In our laboratory, libraries of novel biphenol-based monodentate phosphoramidite and bidentate diphosphonite ligands have been developed, which are very effective in asymmetric allylic transformations. We present here the application of Pd-catalyzed intramolecular asymmetric allylic amination to the synthesis of enantiopure key intermediates, 1vinyltetrahydroisoquinolines in the total synthesis of Schulzeines A-C using our diphosphonite ligands. Schulzeines A-C, isolated from a marine sponge, Penares Schulzei, have been identified as a new class of marine natural products, which exhibit potent α-glucosidase inhibitory activity making them promising leads for drug development for cancer, diabetes, viral infections and other diseases.

We also studied a highly efficient Pd-catalyzed asymmetric tandem allylic alkylation process for the synthesis of an advanced key intermediate to (-)-Huperzine A with excellent enantioseletivity using our phosphoramidite ligands. (-)-Huperzine A, isolated from the plant firmoss, Huperzia serrata, is an acetylcholinesterase (AChE) inhibitor and shows promise in the treatment of Alzheimer's disease and enhance memory.

Besides, Pd-catalyzed asymmetric Heck reaction, chiral biphenol-based phosphoric acid mediated asymmetric organocatalysis and Rh-catalyzed [2+2+2+1] cycloaddition of enediynes were investigated and highlighted in the dissertation as well.

Dedicated to my entire family

TABLE OF CONTENTS

LIST OF FIGURES ix
LIST OF SCHEMES x
LIST OF TABLES xiii
LIST OF ABBREVIATIONS xv
ACKNOWLEDGEMENTS xviii
CHAPTER 1
Introduction and Synthesis of Phosphorus Ligands for Catalytic Asymmetric Reactions
§ 1.1 History of asymmetric organometallic catalysis 2
§ 1.2 Development of a library of fine-tunable chiral biphenol-based, monodentate phosphorus ligands and their applications to asymmetric catalysis 4
§ 1.3 Development of a library of fine-tunable chiral biphenol-based, bidentate phosphorus ligands and their applications to asymmetric catalysis 8
§ 1.4 Results and discussion 10
§ 1.4.1 Synthesis of enantiopure biphenol derivatives 10
§ 1.4.1.1 (S)- and (R)-3,3'-Di-tert-butyl-5,5’,6,6'-tetramethyl-1,1'-biphenyl- 2,2'-diol 10
§ 1.4.1.2 (S)- and (R)-5,5',6,6'-Tetramethyl-1,1'-biphenyl-2,2'-diol and modification of enantiopure biphenols at 3 and 3^{\prime} positions 11
§ 1.4.1.3 Synthesis of (R)-3,3'-bis(substituted-benzyl)-5,5',6,6'-tetramethyl- 1,1'- biphenyl-2,2'-diols 13
§ 1.4.1.4 Synthesis of (S)-3,3'-diiodo-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'- diol and (R)-5,5',6,6'-tetramethyl-3,3'-bis(phenylethynyl)-1,1'- biphenyl- 2,2'-diol. 14
§ 1.4.1.5 Synthesis of (S)-3,3'-di(2,4,6-triisopropyl phenyl)-5,5',6,6'-tetramethyl- 1,1'-bi- phenyl-2,2'-diol and (R)- 3,3'-di(triphenyl silyl)-5,5',6,6'- tetramethyl-1,1'-biphenyl-2,2'-diol 14
§ 1.4.2 Synthesis of enantiopure biphenol-based monophosphoramidite ligands 15
§ 1.4.3 Synthesis of enantiopure biphenol-based diphosphonite ligands 16
§ 1.5 Conclusions 17
§ 1.6 Experimental section 17
§ 1.7 References 37

CHAPTER 2 Palladium-Catalyzed Asymmetric Allylic Ammation with Bidentate Diphosphonite Ligands

§ 2.1 Transition metal-catalyzed asymmetric allylic alkylation 41
§ 2.2 Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination 43
§ 2.2.1 Asymmetric synthesis of natural products bearing C1-substituted tetrahydroisoquinolines 43
§ 2.2.2 Preliminary results of intramolecular asymmetric allylic amination of 2-18A-a 46
§ 2.3 Results and discussion 49
§ 2.3.1 Synthesis of substrates $2-18 \mathrm{~B}-\mathrm{a} \sim \mathrm{c}$ and $2-18 \mathrm{C}-\mathrm{a} \sim \mathrm{b}$ 49
§ 2.3.2 Pd-Catalyzed intramolecular asymmetric allylic amination 50
§ 2.4 Conclusions 54
§ 2.5 Experimental section 54
§ 2.6 References 67
CHAPTER 3
Formal Enantioselective Total Synthesis of Schulzeines A-C via Pd-Catalyzed Intramolecular Asymmetric Allylic Amination
§ 3.1 Asymmetric synthesis of Schulzeines A-C 71
§ 3.2 Results and discussion 72
§ 3.2.1 Formal total synthesis of Schulzeine B 72
§ 3.2.2 Formal total synthesis of Schulzeine A and C 79
§ 3.3 Conclusions 79
§ 3.4 Experimental section 80
§ 3.5 References 91
CHAPTER 4
Enantioselective Synthesis of Huperzine-A Key Intermediate via Tandem Pd-Catalyzed Intermolecular Allylic Alkylations
§ 4.1 Introduction of Huperzine A 94
§ 4.2 Results and discussion 97
§ 4.2.1 Synthesis of key-step substrates 97
§ 4.2.2 Enantioselective synthesis of Huperzine-A key intermediate via tandem Pd-catalyzed intermolecular allylic alkylations 99
§ 4.3 Conclusions 106
§ 4.4 Experimental section 107
§ 4.5 References 115
CHAPTER 5
Palladium-Catalyzed Asymmetric Heck Reactions with Monophosphoramidite and Bidentate Phosphite-Oxazoline Ligands
§ 5.1 Introduction to the asymmetric Heck reaction 119
§ 5.1.1 The Heck reaction and its application to catalytic asymmetric synthesis 119
§ 5.1.2 Asymmetric intramolecular Heck reactions 120
§ 5.1.3 Asymmetric intermolecular Heck reactions 126
§ 5.1.3.1 Dihydrofurans 126
§ 5.1.3.2 Dihydrodioxepins 129
§ 5.1.3.3 Other substrates for asymmetric intermolecular Heck reactions 130
§ 5.2 Results and discussion 131
§ 5.2.1 Synthesis of substrates for asymmetric Heck reaction 131
§ 5.2.1.1 Synthesis of 4-(2-iodo) benzyloxy-4-methoxycyclohexa-2,5-dien- 2-one 4-39 132
\S 5.2.1.2 Synthesis of N-(2-iodophenyl)- N-methyl-1-cyclohexene-1- Carboxamide 4-85 133
§ 5.2.2 Asymmetric Heck reaction with a library of biphenol-based monophosphoramidite ligands 133
§ 5.2.2.1 Pd-catalyzed asymmetric Heck reaction of dienone 4-39 using chiral biphenol-based monophosphoramidite ligands 133
§ 5.2.2.2 Pd-catalyzed asymmetric Heck reaction of carboxamide 4-85 using chiral biphenol-based monophosphoramidite ligands 135
§ 5.2.3 Asymmetric Heck reaction with a library of chiral biphenol and oxazoline-based phosphite-oxazoline ligands 139
§ 5.2.3.1 Synthesis of chiral biphenol and oxazoline-based phosphite- oxazoline ligands 139
§ 5.2.3.2 Asymmetric Heck reaction of carboxamide 4-85 with a Library of chiral biphenol and oxazoline-based phosphite-oxazoline ligands 143
§ 5.2.4 Asymmetric 1,4-conjugated addition with a library of chiral biphenol and oxazoline-based phosphite-oxazoline ligands 145
§ 5.3 Conclusions 148
§ 5.4 Experimental section 148
§ 5.5 References 159
CHAPTER 6
Synthesis of Chiral Biphenol-based Phosphoric Acids and their Applications to Asymmetric Organocatalysis
§ 6.1 Introduction of chiral phosphoric acid for asymmetric organocatalysis. 163
§ 6.2 Results and discussion 164
§ 6.2.1 Synthesis of chiral biphenol-based phosphoric acids 164
§ 6.2.2 The application of chiral biphenol-based phosphoric acids in the desymmetrization of meso-1,3-diones 165
§ 6.2.2.1 Synthesis of substrates 5-1a~c 165
§ 6.2.2.2 Evaluation of the efficacy of chiral biphenol-based phosphoric acids in desymmetrization of meso-1,3-diones 166
§ 6.3 Conclusions 169
§ 6.4 Experimental section 169
§ 6.5 References 176
CHAPTER 7
Formation of 5-7-5 Fused Tricyclic γ-Lactams via $\mathbf{R h}(\mathbf{I})$-Catalyzed [2+2+2+1]Cycloaddition and CO-SiCaT Reaction of Enediynes with Carbon Monoxide
§ 7.1 Introduction 179
§ 7.2 Results and discussion 179
§ 7.2.1 Synthesis of 1,3-diethyl 2-\{3-[(prop-2-en-1-yl)carbamoyl]prop-2-yn -1-yl\}-2-(prop-2-yn-1-yl)propanedioate and its derivative 183
§ 7.2.2 Optimization of $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of enediyne 7-16a 184
§ 7.2.3 $\mathrm{Rh}(\mathrm{I})$-catalyzed CO -SiCaT reaction of enediynes 7-16a and 7-16b 188
§ 7.3 Conclusions 189
§ 7.4 Experimental section 189
§ 7.5 References 193
BIBLIOGRAPHY
Chapter 1 195
Chapter 2 197
Chapter 3 199
Chapter 4 201
Chapter 5 202
Chapter 6 204
Chapter 7 205

APPENDICES

A1. Appendix Chapter 1 208
A2. Appendix Chapter 2 222
A3. Appendix Chapter 3 256
A4. Appendix Chapter 4 272
A5. Appendix Chapter 5 286
A6. Appendix Chapter 6 298
A7. Appendix Chapter 7 320

LIST OF FIGURES

CHAPTER 1
Figure 1-1. Chiral monodentate phosphine ligands 2
Figure 1-2. Chiral bidentate phosphine ligands 3
Figure 1-3. Monophosphorus Ligands based on (-)-TADDOL 4
Figure 1-4. Monophosphorus Ligands based on (S)-BINOL 4
Figure 1-5. Biphenol-based monodentate phosphorus ligand libraries 5
Figure 1-6. (S)-Biphenol-based monophosphite ligands 5
Figure 1-7. Biphenol-based chiral monophosphoramidite ligand 7
Figure 1-8. Biaryl atropisomeric ligands 9
Figure 1-9. Biphenol-based bidentate phosphorus (BOP) ligand library 9
Figure 1-10. BOP ligand library 17
CHAPTER 2
Figure 2-1. Trost ligands (DPPBA ligand series) 43
Figure 2-2. Selected naturally occurring C1-substituted tetrahydroisoquinolines 44
Figure 2-3. MPN and BOP ligand libraries 46
Figure 2-4. Substrate modifications 49
CHAPTER 3
Figure 3-1. Schulzeines A-C 71
CHAPTER 4
Figure 4-1. Structure of Huperzine A 94
Figure 4-2. Chiral HPLC trace of racemic products 4-6a 99
Figure 4-3. Chiral biphenol-based MPN ligand library 100
CHAPTER 5
Figure 5-1. Various $\mathrm{P}-\mathrm{N}$ type chiral ligands 127
Figure 5-2. Two substrate candidates for asymmetric Heck reactions 131
Figure 5-3. MPN ligands for asymmetric Heck reactions 136
Figure 5-4. PN and BOP ligands for asymmetric Heck reactions 145
Figure 5-5. PN ligands for asymmetric 1,4-conjugate addition. 146
CHAPTER 6
Figure 6-1. Chiral BINOL-based phosphoric acids 163
Figure 6-2. Other novel chiral phosphoric acids 164
Figure 6-3. Chiral biphenol-based phosphoric acids 165

LIST OF SCHEMES

CHAPTER 1Scheme 1-1. Asymmetric hydrogenation of the α-acetoamidocinnamic acid 1-2using (R, R)-DIOP3
Scheme 1-2. $\mathrm{Rh}(\mathrm{I})$-catalyzed asymmetric hydrogenation of dimethyl itaconate 1-4 6
Scheme 1-3. Asymmetric conjugate addition of diethyl zinc to nitroalkenes 1-6 6
Scheme 1-4. Asymmetric hydroformylation of allyl cyanide 1-8 7
Scheme 1-5. Total synthesis of $(+)-\gamma$-lycorane via asymmetric allylic alkylation 7
Scheme 1-6. Pd-catatalyzed intramolecular asymmetric allylic amination 8
Scheme 1-7. Pd-catalyzed intermolecular asymmetric allylic amination 9
Scheme 1-8. Synthesis of racemic biphenols (\pm)-1-23 10
Scheme 1-9. Synthesis of diastereomers (S, S)-1-26 and (R, S)-1-26 10
Scheme 1-10. Synthesis of enantiopure biphenol (S) -1-27a 11
Scheme 1-11. Synthesis of enantiopure biphenols (S)-1-27b to (S)-1-27e 12
Scheme 1-12. Alternative route towards the synthesis of enantiopure biphenol (S)-1-27d 13
Scheme 1-13. Synthesis of enantiopure biphenol (R)-1-27f 13
Scheme 1-14. Synthesis of enantiopure biphenols $(S)-1-27 \mathrm{~g}$ and $(S)-1-27 \mathrm{~h}$ 14
Scheme 1-15. Synthesis of enantiopure biphenols (S)-1-27i 14
Scheme 1-16. Synthesis of enantiopure biphenols (S)-1-27j 15
Scheme 1-17. Synthesis of MPN ligands with dimethyl amine moiety 15
Scheme 1-18. Synthesis of MPN ligands with other amine moieties (only the synthesis of (S)-MPN-L2a, (S)-MPN-L3a and (R, R, R)-MPN-L4a shown in the Scheme) 16
Scheme 1-19. General procedure of BOP ligand synthesis 16
CHAPTER 2
Scheme 2-1. Allylic alkylation 41
Scheme 2-2. First example of allylic substitution reaction 41
Scheme 2-3. General mechanism of $\operatorname{Pd}(0)$ catalyzed allylic substitution reaction 42
Scheme 2-4. Highly efficient AAA reaction of 2-14 and 2-16 45
Scheme 2-5. AAA reactions for the formation of 2-19A 46
Scheme 2-6. Preparation of AAA substrate 2-18B-a \sim c and 2-18C-a $\sim b$ 50
Scheme 2-7. Pd-catalyzed AAA reaction of 2-18 50
Scheme 3-1. Retrosynthetic analysis of the tricyclic core of Schulzeines A-C 72
Scheme 3-2. Synthesis of (+)-(S)-3-1B. 73
Scheme 3-3. Synthesis of vinylglycine derivative 3-2a 74
Scheme 3-4. Investigation of amidation of (S)-3-1B and 3-2a. 75
Scheme 3-5. Optimization of amidation of (S)-3-1B and 3-2b 76
Scheme 3-6. Optimized condition for amidation of (S)-3-1B and 3-2b 76
Scheme 3-7. Ring-closing metathesis (RCM) of (S,S)-3-3B 77
Scheme 3-8. Hydrogenation and hydrogenolysis of (S,S)-3-4B 77
Scheme 3-9. Synthesis of (S,S)-3-5.HBr. 78
Scheme 3-10. Synthesis of the common advanced key intermediate (S,S)-3-13 78
Scheme 3-11. Synthesis of an alternative key advanced intermediate (S,S)-3-14 78
Scheme 3-12. Formal total synthesis of Schulzeines A and C 79
CHAPTER 4
Scheme 4-1. The first total synthesis of the alkaloid Huperzine-A 4-1 95
Scheme 4-2. The total synthesis of Huperzine-A via tandem Pd-catalyzed allylic alkylations 95
Scheme 4-3. The first catalytic asymmetric synthesis of Huperzine-A intermediate 4-6a 95
Scheme 4-4. The modified catalytic asymmetric synthesis of Huperzine-A intermediate 4-6a 96
Scheme 4-5. The diastereoselective synthesis of Huperzine-A intermediate 4-8 96
Scheme 4-6. Synthesis of 7', 8^{\prime}-Dihydro-2'-methoxyspiro[1,3-dioxolane-2,6'- ($5^{\prime} \mathrm{H}$)]quinoline 4-11 97
Scheme 4-7. Synthesis of enol substrates 4-3a to 4-3d 98
Scheme 4-8. Synthesis of allylic substrates 4-5a to 4-5i 98
CHAPTER 5
Scheme 5-1. The first successful examples of the intramolecular enantioselective reaction. 119
Scheme 5-2. The total synthesis of terpenoid natural products 5-7, 5-10 and 5-13 120
Scheme 5-3. Synthesis of enantioenriched oxidoles 5-15 121
Scheme 5-4. Synthesis of enantioenriched oxidoles 5-16 to 5-19 122
Scheme 5-5. Synthesis of enantioenriched oxidoles 5-21 122
Scheme 5-6. Synthesis of enantioenriched oxidoles 5-25 and 5-27 123
Scheme 5-7. Synthesis of Indolizidine 5-32 123
Scheme 5-8. The total synthesis of (+)-minfiensine 5-35 124
Scheme 5-9. Synthesis of enantioenriched cis-decalintrienes 5-38 124
Scheme 5-10. Synthesis of enantioenriched tricyclic compound 5-40 124
Scheme 5-11. Synthesis of enantioenriched fused polycyclic products 125
Scheme 5-12. Synthesis of enantioenriched fused tetracyclic product 5-51 126
Scheme 5-13. The first example of the asymmetric intermolecular Heck reaction 126
Scheme 5-14. Plausible mechanism of the asymmetric intermolecular Heck reaction 127
Scheme 5-15. Synthesis of enantioenriched substituted dihydrofurans 5-71, 5-73, 5-56 and 5-75 128
Scheme 5-16. Synthesis of enantioenriched substituted dihydrofurans 5-55 and 5-56 129
Scheme 5-17. Synthesis of enantioenriched β-aryl- γ-butyrolactones 5-79 130
Scheme 5-18. Synthesis of enantioenriched substituted dihydropyrrole 5-81~5-82 and cyclopentene 5-84 130
Scheme 5-19. Synthesis of 4-(2-iodo)benzyloxyphenol 5-87 132
Scheme 5-20. Synthesis of 4-(2-Iodo)benzyloxy-4-methoxycyclohexa-2,5-dien- 2-one 5-39 132
Scheme 5-21. Synthesis of N-(2-Iodophenyl)-N-methyl-1-cyclohexene-1- carboxamide 5-85 133
Scheme 5-22. Analysis of the tricyclic product 5-40 by MS and NMR 135
Scheme 5-23. General procedures for the synthesis of P-N type ligands 139
Scheme 5-24. Unsuccessful attempt toward the synthesis of (R, S)-PN-L3a. 143
Scheme 5-25. Asymmetric 1,4-conjugate addition of diethyl zinc to enone systems 145

CHAPTER 6

$$
\text { Scheme 6-1. General procedure for the synthesis of chiral bipenol-based phosphoric acids } 164
$$

Scheme 6-2. Synthesis of substrates 6-2a to 6-2c ${ }^{8,10}$. 166
CHAPTER 7
Scheme 7-1. $\mathrm{Rh}(\mathrm{I})$-catalyzed CO-SiCaT reaction of dodeca-1-en-6,11-diynes 7-1 179
Scheme 7-2. $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of 1 -substituted dodec-11-ene-1,6-diynes 7-3 180
Scheme 7-3. $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of 3-(nona-3,8-diynyl)- 1 -cycloalkene derivatives 7-5 180
Scheme 7-4. The proposed mechanism $\mathrm{Rh}(\mathrm{I})$-catalyzed CO-SiCaT reaction of enediyne 181
Scheme 7-5. The proposed mechanism $\operatorname{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of enediyne 182
Scheme 7-6. $[2+2+2+1]$ Cycloaddition of 1-substituted dodec-11-ene-8-oxo- 1,6-diynes 7-12 183
Scheme 7-7. Synthesis of enediyne substrate 7-16a 183
Scheme 7-8. Synthesis of enediyne substrate 7-16b 184

LIST OF TABLES

CHAPTER 2
Table 2-1. Efficacy of MPN ligands in the Pd-catalyzed AAA reaction of 2-18A-a 47
Table 2-2. The Pd-catalyzed AAA reaction of 2-18A-a with BOP ligands ${ }^{23}$ 48
Table 2-3. Screening of BOP ligands L1a~d for the AAA reaction of 2-18B-a ${ }^{a}$ 51
Table 2-4. Screening of new BOP ligands for the AAA reaction of 2-18B-a ${ }^{a}$ 52
Table 2-5. Effect of concentration and L^{*} / Pd ratio on the AAA reaction of 2-18B-a ${ }^{a}$ 52
Table 2-6. Electronic effect on the efficacy of new BOP ligands 53
Table 2-7. Effects of the substrate structure and reaction temperature on the AAA reaction. 54
CHAPTER 4
Table 4-1. Preliminary Study of the allyl substrate structure on the tandem asymmetric allylic alkylations with 4-3a 100
Table 4-2. Screening of MPN ligands for tandem asymmetric allylic alkylations of 4-3a and 4-5f. 101
Table 4-3. Further study of the allyl substrate structure on tandem asymmetric allylic alkylations with 4-3a. 102
Table 4-4. Effect of enol substrate structure on tandem asymmetric allylic alkylations with 4-5f. 103
Table 4-5. Solvent effect on tandem asymmetric allylic alkylations of 4-3a and 4-5f 104
Table 4-6. Effect of concentration on tandem asymmetric allylic alkylations of 4-3a and 4-5f 105
Table 4-7. Effect of temperature on tandem asymmetric allylic alkylations of 4-3a and 4-5f. 105
Table 4-8. Effects of the allylic substrates 4-5 on tandem asymmetric allylic alkylations with 4-3a. 106
CHAPTER 5
Table 5-1. Preliminary screening of MPN ligands for asymmetric Heck reaction of 5-39 134
Table 5-2. Preliminary screening of MPN ligands for asymmetric Heck reaction of 5-85 137
Table 5-3. Screening of MPN ligands for asymmetric Heck reaction of 5-85 138
Table 5-4. Synthesis of enantiopure 5-94a to 5-94c 140
Table 5-5. Synthesis of (S)- and (R)-5-91a. 141
Table 5-6. Synthesis of (S, S)-PN-L1a to 1 d 141
Table 5-7. Synthesis of (R, S)-PN-L1b to 1 d 142
Table 5-8. Synthesis of phenol substituted 4,5-dihydro-oxazoles 5-92 142
Table 5-9. Screening of PN-L1a~c and BOP-L1a~b for asymmetric Heck reaction of 5-85 144
Table 5-10. Screening of PN-L1a~d and L2c for asymmetric 1,4-conjugate addition of cycloheptenone 5-98 146
Table 5-11. Screening of PN-L1a~d and L2c for asymmetric 1,4-conjugate addition of cyclohexenone 5-100. 147
CHAPTER 6
Table 6-1. Screening of PA catalysts $1 \mathrm{a} \sim \mathrm{f}, 2 \mathrm{a}$ and 3 a for the desymmetrization of $6-2 \mathrm{a}$ 167
Table 6-2. Use of PA-1e for the desymmetrization of 6-2b 168
Table 6-3. Screening of PA catalysts 1 e and 1 f for the desymmetrization of $6-2 \mathrm{c}$ 168
CHAPTER 7
Table 7-1. Effect of concentration on $[2+2+2+1]$ cycloaddition of enediyne 7-16a with CO 185
Table 7-2. Screening of different $\mathrm{Rh}(\mathrm{I})$ species for the $[2+2+2+1]$ cycloaddition of enediyne 7-16a with CO 186
Table 7-3. Effect of CO pressure on $[2+2+2+1]$ cycloaddition of enediyne 7-16a with CO 187
Table 7-4. Solvent effect on $[2+2+2+1]$ cycloaddition of enediyne 7-16 with CO 187
Table 7-5. Rh(I)-catalyzed CO-SiCaT reaction of enediyne 7-16a and 7-16b with PhMe 2 SiH 188

LIST OF ABBREVIATIONS

Ac	-	acetyl
AChE	-	acetylcholine esterase
atm	-	atmosphere
BINAP	-	2,2'-bis(diphenylphosphino)-1-1'-binapthyl
BINOL	-	1,1'-bi-2-naphthol
Bn	-	benzyl
Boc	-	tert-butyl carbonate
BOP	-	biphenol-based diphosphonite
Bu	-	butyl
$t \mathrm{Bu}$	-	tert-butyl
bp	-	boiling point
bs	-	broad singlet
bt	-	broad triplet
calcd.	-	calculated
CAMP	-	methylcyclohexyl-o-anisylphosphine
Celite ${ }^{\circledR}$	-	diatomaceous earth filter reagent, ${ }^{\circledR}$ Celite Corp.
$c \mathrm{Hex}$	-	cyclohexyl
COD	-	1,5-cyclooctadiene
CO	-	carbon monoxide
d	-	doublet
DCE	-	1,2-dichloroethane
DCM	-	dichloromethane
de	-	diastereomeric excess
DIOP	-	(+)-2,3-O-isopropylidene-2,3-dihydroxy-1,4bis(diphenylphosphino)butane
dd	-	doublet of doublets
DMAP	-	4-dimethylaminopyridine
DME	-	ethylene glycol dimethyl ether
DMF	-	dimethylformamide
DMSO	-	dimethylsulfoxide
dppp	-	diphenylphosphino propane
DuPHOS	-	(+)-1,2-Bis[(2S,5S)-2,5-dimethylphospholano]benzene
ee	-	enantiomeric excess
EI	-	electron impact (MS)
ESI	-	electrospray ionization
Et	-	ethyl
$\mathrm{Et}_{2} \mathrm{O}$	-	ethyl ether
EtOAc	-	ethyl acetate
FIA	-	flow-injection analysis
g	-	gram
GC- MS	-	gas chromatography mass spectrometry
h	-	hour
HMPT	-	hexamethylphosphorus triamide
HPLC	-	high performance liquid chromatography
HR-MS	-	high resolution mass spectrometry

Hz	-	hertz
IR	-	infrared spectroscopy
J	-	coupling constant
K	-	Kelvin
L	-	liter
LAH	-	lithium aluminum hydride
LC-MS	-	liquid chromatography mass spectrometry
LiHMDS	-	lithium hexamethyldisilizane
m	-	multiplet
Me	-	methyl
MeCN	-	acetonitrile
MeOH	-	methanol
min	-	minute
mmol	-	millimole
mol	-	mole
M	-	molarity
mg	-	milligram
MHz	-	mega hertz
mL	-	milliliters
mp	-	melting point
MPN	-	biphenol-based phosphoramidite
MS	-	mass spectrometry
Ms	-	mesylate
MW	-	molecular weight
$\mu \mathrm{W}$	-	microwave
NIS	-	N -iodosuccinimide
NMR	-	nuclear magnetic resonance
o.n.	-	overnight
PA	-	biphenol-based phosphoric acid
PCC	-	pyridinium chlorochromate
Ph	-	phenyl
PMB	-	p-methoxy benzyl
PN	-	biphenol-based phosphite-oxazoline ligand
ppm	-	parts per million
prep HPLC	-	preparative high performance liquid chromatography
q	-	quartet
quint.	-	quintet
RCM	-	ring-closing metathesis
Red-Al ${ }^{\text {® }}$	-	sodium bis(2-methoxyethoxy)aluminumhydride
rt	-	room temperature
s	-	singlet
t	-	triplet
TADDOL	-	$\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetraphenyl-2,2'-dimethyl-1,3-dioxolane-4,5-dimethanol
TBAI	-	tetrabutylammonium iodide
TEA	-	triethylamine
TFA	-	trifluroacetic acid

TFE	-	2,2,2-trifluoroethanol
THF	-	tetrahydrofuran
TLC	-	thin layer chromatography
TMG	-	tetramethylguanidine
TMS	-	trimethylsilyl
Ts	-	tosylate
$p-$ TSA	-	p-toluenesulfonic acid

ACKNOWLEDGEMENTS

I would like to first give my sincere gratitude to my dissertation advisor, Prof. Iwao Ojima, for offering me an excellent opportunity to do research in his laboratory. His guidance, patience, support and encouragement on my research fulfill my entire graduate career. I gratefully appreciate his mentorship. I wish to thank my ACC committee members: Prof. Robert C. Kerber and Prof. Nancy S. Goroff for their brilliant discussion with me and giving me different thinking of my research in all my committee meetings. I benefited greatly from their insightful advice. Also, I especially would like to express my thankfulness to Dr. Ramesh Gupta for taking his time to serve as my Outside Member of my dissertation committee. I also wish to thank Prof. Tadashi Honda for giving me advice in all my presentations. A special and wholehearted thanks to Mrs. Patricia Marinaccio "the Ojima Group Mom" for taking care of all group members on everything. I have to say everything because she really helped me this "fresh farther" to solve lots of tough baby issues. I wish to also thank Mrs. Yoko Ojima for her wonderful hospitality and kindness on many different occassions.

I would like to thank Ojima Group and ICB\&DD alumni, Dr. Gary Yu-Han Teng, Dr. Joseph Kaloko, Dr. Xianrui "Ray" Zhao, Dr. Stephen J. Chaterpaul, Dr. Liang Sun, Dr. Ce Shi, Dr. Shuyi Chen, Dr. Jin Chen, Dr. Olivier Marrec, Dr. Seung-Yub Lee, Dr. Hengguang Li and Ms. Ilaria Zanadi for giving me many advice, encouragement and discussions on my research projects. I wish to thank all the current members of the Ojima Lab; Dr. Edison Zuniga, ChihWei Chien, William Berger, Alexandra Athan, Joshua D. Seitz, Tao Wang, Yang Zang, Bora Park, Jacob G. Vineberg and the current members of ICB\ⅅ Dr. Kunal Kumar, Dr. Suqing Zheng, Dr. Motohiro Takahashi, Dr. Eduard H. Melief, Dr. Anushree Kamath, Dr. Wei Li for their support and help with every aspect of research. A special gratitude is given to Tolga Sevinc and Robert Robinson for being my mentee and helping me on my research projects. I truly appreciate to have worked with all of you in the Ojima group. A heartfelt thank to Dr. Edison Zuniga, Dr. Kunal Kumar, Dr. Anushree Kamath, Dr. Joseph Kaloko, and Alexandra Athan for spending time proofreading my dissertation. Because of your efforts, a dissertation with good quality can be performed to everyone.

I wish to thank all faculty members of the Chemistry Department, especially Prof. Iwao Ojima, Prof. Nancy S. Goroff, Prof. Jin Wang, Prof. Clare P. Grey, Prof. Kathlyn A. Parker and

Prof. Andreas Mayr for teaching me abundant knowledge of chemistry during my first-year course work. A special thank to Dr. James Marecek for operating various NMR experiments and solving numerous problems related to NMR. I also wish to thank Dr. Béla Ruzsicska for helping me to run lots of LC-MS and solving problems related to mass spectrometry. For Dr. Alvin Silverstein and Mr. Micheal Teta, thank you for keeping the chemistry building in good condition so I can work here freely. Moreover, thankfulness for the entire staff of the chemistry department's main office can not be forgotten. Ms. Carol Brekke, Ms. Charmaine Yapchin, Ms. Heidi Ciolfi, Ms. Lizandia Perez, Ms. Barbara Schimmenti and especially Ms. Katherine Hughes, with your presence, everything related to my academic status in Stony Brook University goes smoothly. A thank is also given to the National Science Foundation for funding my research.

I would like to give my appreciation to all my friends in long island and Taiwan for their support, encouragement and their friendships. Finally, I would like to express my deepest gratitude to my entire family. For my parents, thank you for continuous mental and materially supports in my life. For my lovely wife, Chia-Yen Claire Wu, thank you for believing in me, encouraging me all the time and giving us the most precious present, our cutest daughter Amelia Pin-Chieh Lin. Her smile always makes me forget those unpleasant things bothering my life. For all my family members who always stood by me, the accomplishment I achieved belongs to you as well.

Chapter 1

Introduction and Synthesis of Phosphorus Ligands for Catalytic Asymmetric Reactions

Table of Contents
§ 1.1 History of asymmetric organometallic catalysis 2
§ 1.2 Development of a library of fine-tunable chiral biphenol-based, monodentate phosphorus ligands and their applications to asymmetric catalysis 4
§ 1.3 Development of a library of fine-tunable chiral biphenol-based, bidentate phosphorus ligands and their applications to asymmetric catalysis 8
§ 1.4 Results and discussion 10
§ 1.4.1 Synthesis of enantiopure biphenol derivatives 10
§ 1.4.1.1 (S)- and (R)-3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl- 2,2'-diol 10
§ 1.4.1.2 (S)- and $(R)-5,5^{\prime}, 6,6^{\prime}$-Tetramethyl-1,1'-biphenyl-2,2'-diol and modification of enantiopure biphenols at 3 and 3' positions 11
§ 1.4.1.3 Synthesis of $(R)-3,3$ '-bis(substituted-benzyl)-5,5',6,6'-tetramethyl-1,1’- biphenyl-2,2'-diols. 13
§ 1.4.1.4 Synthesis of (S)-3,3'-diiodo-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'- diol and (R)-5,5',6,6'-tetramethyl-3,3'-bis(phenylethynyl)-1,1'-biphenyl- 2,2'-diol. 14
§ 1.4.1.5 Synthesis of (S)-3,3'-di(2,4,6-triisopropyl phenyl)-5,5',6,6'-tetramethyl- 1,1'-bi- phenyl-2,2'-diol and (R)- 3,3'-di(triphenyl silyl)-5,5',6,6'- tetramethyl-1,1'-biphenyl-2,2'-diol 14
§ 1.4.2 Synthesis of enantiopure biphenol-based monophosphoramidite ligands 15
§ 1.4.3 Synthesis of enantiopure biphenol-based diphosphonite ligands 16
§ 1.5 Conclusions 17
§ 1.6 Experimental section 17
§ 1.7 References 37

§ 1.1 History of asymmetric organometallic catalysis

By the 1960s, asymmetric organometallic catalysis started to attract the attention of many synthetic organic chemists. In 1961, Natta polymerized benzofurane using an $\mathrm{AlCl}_{3} /$ phenylalanine catalyst to produce optically active polymer. ${ }^{1}$ In 1966 , Nozaki, Noyori et al. introduced the first example of organometallic asymmetric catalysis through the cyclopropanation of different alkenes using chiral salen-copper complex catalyst. ${ }^{2}$ In the same year, Wilkinson discovered a rhodium catalyst $\left(\left[\operatorname{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]\right)$ which was used to catalyze the homogenous hydrogenation of alkenes. ${ }^{3}$ Two years later, Knowles and Horner individually modified Wilkinson's catalyst with a chiral monodentate phosphine 1-1 for asymmetric catalytic hydrogenation (Figure 1-1). ${ }^{4}$ Although the best enantioselectivity was only 15%, this study showed that an achiral catalyst can be converted into a chiral catalyst simply by ligand exchange using chiral ligands. Based on this successful achievement, further ligand modification of chiral monodentate phosphine 1-1 was done and more efficient ligands were synthesized. Among them, methylcyclohexyl-o-anisylphosphine (CAMP) gave impressive results in many cases and was used as the first chiral ligand in the industrial production of L-DOPA, an anti-Parkinson's drug. ${ }^{5}$

1-1a: $R=n-P r$

CAMP

Figure 1-1. Chiral monodentate phosphine ligands

In 1971, Kagan developed a chiral bidentate phosphine ligand, diphenylphosphino(dimethyl))dioxolane (DIOP) for the asymmetric hydrogenation of the α-acetoamidocinnamic acid $\mathbf{1 - 2}$, affording the (R)- N-acetylphenylalanine in 72% ee (Scheme 1-1). ${ }^{6}$ The good enantioselectivity induced by (R, R)-DIOP demonstrated that the chirality of a chiral catalyst is not necessary to be on the chelating atom (eg. phosphorus) to give the product in good enantiomeric excess.

Scheme 1-1. Asymmetric hydrogenation of the α-acetoamidocinnamic acid 1-2 using (R, R)-DIOP

Inspired by the impressive results accomplished by using DIOP ligand, chemists started to switch their attention from monodentate ligands to bidentate ligands. Thus, a variety of diphosphane ligands, especially C_{2}-symmetric ones, such as DIPAMP ${ }^{7}$, BINAP 8 and DuPHOS ${ }^{9}$ were developed to afford excellent enantioselectivity for asymmetric hydrogenation of different types of prochiral substrates. These ligands dominated the field of asymmetric catalysis for several decades (Figure 1-2). ${ }^{10}$

DIPAMP

BINAP

DuPHOS

Figure 1-2. Chiral bidentate phosphine ligands

In 1980, two dramatic breakthroughs in asymmetric catalysis were published. One was the asymmetric epoxidation of allylic alcohols using diethyl tartrate-titanium complex catalyst discovered by Katsuki and Sharpless, ${ }^{11}$ and the other was the application of asymmetric hydrogenation using BINAP-rhodium complexes by Noyori. ${ }^{8}$ To date, both catalytic reactions are still very useful in asymmetric synthesis because of their wide application and high enantioselectivity. In 2001, Knowles, Noyori, and Sharpless received a Nobel Prize in recognition of their contributions to asymmetric synthesis.

§ 1.2 Development of a library of fine-tunable chiral biphenol-based, monodentate phosphorus ligands and their applications to asymmetric catalysis

Although bidentate phosphine ligands have shown excellent efficacy in some asymmetric transformations, the diversity of the ligands was limited due to the tedious synthetic route and difficult modification of the bidentate ligand. With these drawbacks, the application of bidentate ligands in different types of asymmetric reactions is difficult. Therefore, to investigate the asymmetric synthesis more efficient, the most efficient way is to develop a ligand library which is easy to synthesize and finely tunable to a certain reaction. Along this line, many monodentate phosphorus ligand libraries have been developed, due to their straightforward syntheses and fine-tunable capability. For example, in 1998, Alexakis and co-workers used commercially available TADDOL to synthesize monodentate phosphorus ligands (Figure 1-3), and utilized them with copper (II) triflate to catalyze asymmetric conjugate addition of diethyl zinc to enones, achieving a 96% ee. ${ }^{12}$

TADDOL
Figure 1-3. Monophosphorus Ligands based on (-)-TADDOL

Futhermore, Reetz and Feringa used monodentate ligands derived from commercially available, enantiopure BINOL (Figure 1-4) with a rhodium (I) complex to catalyze the hydrogenation of methyl-2-acetamido acrylate with 99% ee. ${ }^{13}$

$\mathrm{R}=\mathrm{OR}^{\prime}, \mathrm{NR}_{2}{ }_{2}$

BINOL
Figure 1-4. Monophosphorus Ligands based on (S)-BINOL

Based on the successful examples mentioned above, new classes of monodentate phosphorous ligands based on the biphenol backbone have been developed in the Ojima group from 2003 (Figure 1-5). The biphenol-based monophosphorous ligands have three adjustable positions which play different roles in asymmetric synthesis. The 6 and 6'-dimethyl groups make biphenol-based ligands more configurationally stable compared to the corresponding chiral BINOLs because of steric-restricted rotation. ${ }^{14}$ The 3 and 3' substituents of biphenol-based ligands may substantially affect the catalytic activity and enantioselectivity, depending on their steric or electronic properties. ${ }^{14-15}$ Finally, the 5 and 5' substituents of biphenol-based ligands can be modified for recovery and recycling of catalyst. ${ }^{16}$ Those modifiable positions have led us to explore many specific asymmetric reactions utilizing the biphenol-based monophosphorous ligands.

Phosphites

Phosphoramidites

Phosphonites

Figure 1-5. Biphenol-based monodentate phosphorus ligand libraries

In 2003, Ojima and co-workers described the development of a new class of readily accessible biphenol-based chiral monophosphite ligands (Figure 1-6) and their application to the $\mathrm{Rh}(\mathrm{I})$-catalyzed asymmetric hydrogenation of dimethyl itaconate 1-4 (Scheme 1-2). ${ }^{14}$

Figure 1-6. (S)-Biphenol-based Monophosphite Ligands

Scheme 1-2. $\mathrm{Rh}(\mathrm{I})$-catalyzed asymmetric hydrogenation of dimethyl itaconate 1-4

Furthermore, in 2004, Ojima et al. used biphenol-based chiral monophosphoramidite ligands with copper (II) precatalyst to catalyze the asymmetric conjugate addition of diethyl zinc to nitroalkenes 1-6 with enantioselectivity up to 99% (Scheme 1-3). ${ }^{15 a}$

Scheme 1-3. Asymmetric conjugate addition of diethyl zinc to nitroalkenes 1-6

Also, in the same year, the Ojima group utilized a family of biphenol-based chiral monophosphoramidite ligands with Rh (I) complex to catalyze asymmetric hydroformylation of allyl cyanide 1-8 under hydrogen and carbon monoxide gases. Among our novel phosphoramidite ligands with the facile fine-tuning capability, biphenol-based monophosphoramidite with tert-butyl substitutes at the 3,3' positions of biphenol gave good regioselectivity and enantioselectivity (Scheme 1-4). ${ }^{15 b}$

Moreover, Ojima et al. also synthesized a family of biphenol-based chiral monophosphoramidite ligands and the one with unsymmetrical chiral amine on the phosphorus atom of monophosphoramidite (Figure 1-7) was used in the Pd-catalyzed asymmetric allylic alkylation towards the preparation of $(+)$ - γ-lycorane to afford $(+)-\gamma$-lycorane with $>99 \%$ ee (Scheme 1-5). ${ }^{15 \mathrm{c}}$

Scheme 1-4. Asymmetric hydroformylation of allyl cyanide 1-8

Figure 1-7. Biphenol-based chiral monophosphoramidite ligand

1-14
(+)- γ-lycorane (> 99% ee)
(i) $\mathrm{Pd}(\mathrm{OAC})_{2}, \mathrm{~L}^{*}, \mathrm{LDA}, \mathrm{THF} / \mathrm{CH}_{3} \mathrm{CN}$; (ii) $\mathrm{Pd}(\mathrm{OAc})_{2}$-dppb, $\mathrm{NaH}, \mathrm{DMF}$, then $\mathrm{Et}(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{~N}$,
(iii) $\mathrm{NaCl}, \mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$; (iv) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$; (v) LiAlH_{4}

Scheme 1-5. Total synthesis of $(+)-\gamma$-lycorane via asymmetric allylic alkylation

The asymmetric synthesis of 6,7-dimethoxy-1-vinyltetrahroisoquinoline through Pd-catatalyzed intramolecular allylic amination of 3-(amidoethylphenyl)prop-2-enyl carbonates 1-15 was also studied by Ojima et al. using a library of fine-tunable monophosphoramidite ligands in 2007. Excellent enantiopurity (up to 96%) and 100% product selectivity were achieved (Scheme 1-6). ${ }^{17}$

Scheme 1-6. Pd-catatalyzed intramolecular asymmetric allylic amination

§ 1.3 Development of a library of fine-tunable chiral biphenol-based, bidentate phosphorus ligands and their applications to asymmetric catalysis

During the development of monodentate chiral phosphorus ligands, a number of biaryl atropisomeric ligands have also been explored as effective bidentate ligand system. The ligands have proved to be useful for asymmetric transformations such as hydrogenation and allylic substitution reactions. ${ }^{18}$ BINAP possessing a binaphthalene skeleton is the most useful bidentate phosphorus ligand which can form a 7 -membered ring with a transition metal (Figure 1-10). BINAPO, another common bidentate ligand that has an addition oxygen atom between the C-P bonds compared to BINAP, forms a 9 -membered ring with a transition metal (Figure 1-10). The formation of the large ring has advantages and disadvantages in asymmetric catalysis. For example, due to its conformational flexibility, BINAPO is not as effective as BINAP for certain asymmetric hydrogenation reactions. However, taking advantage of the large bite angle (P-M-P) in the 9 -membered chelating ring with a transition metal, ${ }^{19}$ BINAPO has proven to be efficient in asymmetric allylic substitutions. ${ }^{20}$

BINAP

BINAPO

Figure 1-8. Biaryl atropisomeric ligands

In 2008, Ojima et al. developed of a new class of easily accessible biphenol-based chiral diphosphonite ligands (BOP) based on the concept of the BINAPO ligand (Figure 1-11). We expected that the modification of the 3,3 ' positions of the biphenol scaffold can help to increase the enantioselectivity. Indeed, this BOP ligand library can be applied to Pd-catalyzed intermolecular asymmetric allylic amination to give up to 96% ee for the key intermediate of Strychnos indole alkaloids for which Mori et al. were only able to achieve 84% ee using BINAPO in 2003 (Scheme 1-7). ${ }^{22}$

Figure 1-9. Biphenol-based bidentate phosphorus (BOP) ligand library

Scheme 1-7. Pd-catalyzed intermolecular asymmetric allylic amination

§ 1.4 Results and discussion

§ 1.4.1 Synthesis of enantiopure biphenol derivatives

§ 1.4.1.1 (S)- and (R)-3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol

To prepare enantiopure biphenols and monophosphoramidites with fine-tunable capability, racemic $3,3^{\prime}$ 'di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol (\pm)-1-23 was first synthesized. ${ }^{23}$ Friedal-Craft alkylation of 3,4-dimethyl phenol 1-21 with isobutene under acidic condition gave 2-tert-butyl-4,5-dimethyl-phenol 1-22; followed by oxidative coupling in the presence of potassium dichromate to afford methyl and tert-butyl substituted biphenol (\pm)-1-23 in 60% isolated yield after two steps (Scheme 1-8).

Scheme 1-8. Synthesis of racemic biphenols (\pm)-1-23
To obtain enantiomerically pure biphenols, diastereomers 1-26 were synthesized (Scheme 1-9). (-)-menthol 1-24 was treated with phosphorus trichloride in dichloromethane to give dichlorophosphite 1-25. The addition of racemic biphenols 1-23 in the presence of triethylamine to 1-25 gave the corresponding diastereomeric phosphates 1-26.

$(S, S)-1-26$ is crystallized from AcOH (R, S)-1-26 is crystallized from MeOH

Scheme 1-9. Synthesis of diastereomers (S, S)-1-26 and (R, S)-1-26
(S, S)-based and (R, S)-based diastereomers $\mathbf{1 - 2 6}$ were recrystallized from acetic acid and methanol respectively. ${ }^{31}$ P NMR was utilized to determine diastereomeric purity; only one single
peak was shown in each spectrum [$\delta-4.87 \mathrm{ppm}$ for $(R, S) \mathbf{- 1 - 2 6}$ and -4.34 ppm for $(S, S) \mathbf{- 1 - 2 6}]$ indicating both compounds are diastereomerically pure. ${ }^{23}$

The reduction of either isomer $[(S, S) \mathbf{- 1 - 2 6}$ or $(R, S)-\mathbf{1 - 2 6}]$ using Red-Al gave enantiomerically pure 3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1, 1^{\prime} '-biphenyl-2,2'-diol ((S)-1-27a or (R)-1-27a) in 80% and 88% yield respectively (Scheme 1-10). ${ }^{14}$

Scheme 1-10. Synthesis of enantiopure biphenol (S)-1-27a

§ 1.4.1.2 (S)- and (R)-5,5',6,6'-Tetramethyl-1,1'-biphenyl-2,2'-diol and modification of enantiopure biphenols at 3 and 3^{\prime} ' positions

After enantiopure biphenols $(S) \mathbf{- 1 - 2 7 a}$ and (R)-1-27a were obtained, many chemical modifications were achieved using different reaction conditions (Scheme 1-11). The tert-butyl groups at 3 and 3' positions of (S) - or $(R) \mathbf{- 1 - 2 7 a}$ were replaced by treating with aluminum trichloride in the presence of nitromethane and toluene via Friedel-Crafts transformation at $0{ }^{\circ} \mathrm{C}$ for 1 hour to produce (S) - or $(R) \mathbf{- 1 - 2 7 b}$ in 95% and 88% isolated yield respectively. ${ }^{14}$

Dibromo substituted biphenols, (S) - and $(R) \mathbf{- 1 - 2 7 c}$, were obtained by the bromination of (S) and $(R) \mathbf{- 1 - 2 7 b}$ in almost quantitative yield. Methyl protection of (S) - and $(R) \mathbf{- 1 - 2 7} \mathbf{c}$ provided diether adducts (S) - and $(R) \mathbf{- 1 - 2 8}$, respectively, for Suzuki coupling. ${ }^{14}$ In the Suzuki coupling reaction, the reported catalytic condition ${ }^{14}$ could not catalyze this reaction to completion. The ${ }^{1} \mathrm{H}$ NMR showed two sets of peaks; one set corresponds to the desired products (S) - and $(R) \mathbf{- 1 - 2 9}$, and the other set corresponds to unreacted, mono-phenyl and mono-bromo biphenol (S) - and $(R) \mathbf{- 1 - 3 3}$. For this reason, another portion of catalyst had to be added to complete the reaction to gave (S) - and (R)-1-29 in 90-95 \% isolated yield. The phenyl substituted biphenols (S) - and $(R) \mathbf{- 1 - 2 7 d}$ were synthesized from deprotection of (S) - and $(R) \mathbf{- 1 - 2 9}$, respectively, by treating with tribromoborane in dichloromethane at $0{ }^{\circ} \mathrm{C}$ for 2 hours. Both reactions gave $80-85 \%$ isolated yield. ${ }^{14}$

(a) $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}, \mathrm{rt}, 1.5 \mathrm{5}$; (b) $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{Bu}_{4} \mathrm{HSO}_{4}, \mathrm{KOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}(1: 1)$, rt, o.n; (c) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PhB}(\mathrm{OH})_{2}$, $\mathrm{NaHCO}_{3}, \mathrm{DME}-\mathrm{H}_{2} \mathrm{O}, 95^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (d) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (e) $\mathrm{Me}_{2} \mathrm{SO}_{4}$ ($\mathrm{Bu}_{4} \mathrm{~N}$), $\mathrm{KOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$ (1:1) rt, o.n.; (f) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HCl}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}, 42 \mathrm{~h}$; (g) LiAlH_{4}, THF, reflux, 3.5h.

Scheme 1-11. Synthesis of enantiopure biphenols (S)-1-27b to (S)-1-27e

In addition to the above method to synthesize phenyl-substituted biphenol $(S) \mathbf{- 1 - 2 7 d}$, an alternative route was also used to afford this compound in fewer synthetic steps (Scheme 1-12). In this synthesis, direct Suzuki coupling proceeded without the protection of biphenol. ${ }^{24}$ However, this one-step synthesis gave only 42% of $(S) \mathbf{- 1 - 2 7 d}$ which is a much lower yield compared to the previous synthetic method (65% in three steps) and 15% of byproduct (S)-1-34 from possible reductive elimination of phenyl moiety and hydrogen. Furthermore, the reaction time of this method was 48 hours which was almost equal to the total reaction time of previous method. For this reason, steps shown in Scheme 1-11 are still the best route to afford $(S) \mathbf{- 1 - 2 7 d}$.

Scheme 1-12. Alternative route towards the synthesis of enantiopure biphenol (S)-1-27d

Finally, enantiopure biphenols with methyl-substitutents at 3,3 ' positions, (S) - and (R)-1-27e, were synthesized in four steps respectively. Methyl-protection of enantiopure biphenols (S) - and $(R) \mathbf{- 1 - 2 7 a}$ were first employed to give ether adducts (S) - and $(R) \mathbf{- 1 - 3 0}$, respectively, in up to 85 \% yield followed by chloromethylation to provide (S)- and (R)-1-31 in 90% isolated yield. This chloromethyl substituted biphenol was then treated with LiAlH_{4} to afford reduced product (S) and (R)-1-32 followed by deprotection with tribromoborane to achieve enantiopure, methyl-substituted biphenol (S) - and (R)-1-33. ${ }^{14}$

§ 1.4.1.3 Synthesis of (R)-3,3'-bis(substituted-benzyl)-5,5',6,6'-tetramethyl-1,1'-biphenyl-

 2,2'-diolsThis series of biphenols was prepared from the chloromethyl substituted and methyl protected biphenol, $(R) \mathbf{- 1 - 3 1}$, coupling with corresponding aryl Grignard reagents generated in situ using CuI as the coupling reagent and followed by the subsequent removal of the methyl group with boron tribromide (Scheme 1-13). Both reactions went smoothly and excellent yields were obtained in each step.

Scheme 1-13. Synthesis of enantiopure biphenol (R)-1-27f
§ 1.4.1.4 Synthesis of (S)-3,3'-diiodo-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol and (R)-5,5',6,6'-tetramethyl-3,3'-bis(phenylethynyl)-1,1'-biphenyl-2,2'-diol

The enantiopure (S)-3,3'-diiodo-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27g) was synthesized from $(S) \mathbf{- 1 - 2 7 b}$ using ICl as the iodination agent in 73% isolated yield. Next, the synthesis of (S)-1-27h via Sonogashira coupling of unprotected (S)-1-27g with phenyl acetylene using diisopropylamine as the base gave the desired product $(S) \mathbf{- 1 - 2 7} \mathbf{h}$ in 54% isolated yield (Scheme 1-14).

Scheme 1-14. Synthesis of enantiopure biphenols $(S) \mathbf{- 1 - 2 7 g}$ and $(S) \mathbf{- 1 - 2 7 h}$
§ 1.4.1.5 Synthesis of (S)-3,3'-di(2,4,6-triisopropyl phenyl)-5,5',6,6'-tetramethyl-1,1'-bi-phenyl-2,2'-diol and (R)- 3,3'-di(triphenyl silyl)-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol

For the synthesis of $(S) \mathbf{- 1 - 2 7 i},(S) \mathbf{- 1 - 2 8}$ was first coupled with the corresponding aryl Grignard reagent using $10 \mathrm{~mol} \%$ of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ to introduce triisopropyl phenyl substituted diether adduct (S)-1-36 and followed by the subsequent removal of the methyl group with boron tribromide gave the desired biphenol (S)-1-27i in moderate yield after two steps (Scheme 1-15).

Scheme 1-15. Synthesis of enantiopure biphenols (S)-1-27i

For the synthesis of $(R) \mathbf{- 1 - 2 7 j},(R) \mathbf{- 1 - 2 7} \mathbf{c}$ was first protected with chlorotriphenylsilane in the presence of imidazole to give triphenyl silyl substituted diether adduct $(R) \mathbf{- 1 - 3 7}$, followed by silane rearrangement to give desired the biphenol $(R) \mathbf{- 1 - 2 7} \mathbf{j}$ in good yield after two steps (Scheme 1-16).

Scheme 1-16. Synthesis of enantiopure biphenols (S)-1-27j

§ 1.4.2 Synthesis of enantiopure biphenol-based monophosphoramidite ligands

A large enantiopure biphenol-based monophosphoramidite ligand library was previously developed in our laboratory. In general, two methods are used to synthesize those ligands (Schemes 1-17 and 1-18). When the amine moiety is dimethyl amino group, commercially available hexamethylphosphorustriamide (HMPT) is used to react with enantiopure biphenols 1-7 to easily give the desired monophosphoramidite ligands in good to excellent yields (Scheme 1-17). ${ }^{15 b}$

Scheme 1-17. Synthesis of MPN ligands with dimethyl amine moiety

When other amines are chosen as the amine moieties of the monophosphoramidite ligands, a more complicated synthetic method is used. In this method, secondary amine is treated with phosphorus trichloride to produce a dichlorophosphinoamine which is characterized by ${ }^{31} \mathrm{P}$ NMR. Then the resulting dichlorophosphinoamine reacts with enantiopure biphenol to afford
biphenol-based monophosphoramidite ligand in reasonable yield (Scheme 1-18). ${ }^{15 \mathrm{a}, \mathrm{b}}$

Scheme 1-18. Synthesis of MPN ligands with other amine moieties (only the synthesis of
(S)-MPN-L2a, (S)-MPN-L3a and (R, R, R)-MPN-L4a shown in the Scheme)

§ 1.4.3 Synthesis of enantiopure biphenol-based diphosphonite ligands

The 3,3'-disustituted-biphenol-based diphosphonite ligands (BOP) were synthesized following the synthetic protocol described for the BINAPO ligand (Scheme 1-19). ${ }^{25}$ In the scheme, we have designed the BOP ligands to have fine-tuning capability at the 3,3' positions of the biphenol moiety and Ar groups on the phosphorus moieties.

Scheme 1-19. General procedure of BOP ligand synthesis

The coupling reaction between biphenol and chlorodiarylphosphine $\left(\mathrm{ClPAr}_{2}\right)$ proceeded smoothly, affording the desired products in good to excellent yields after column chromatography on neutral/basic alumina or silica gel pretreated with NEt_{3}. The synthesized ligands are shown in Figure 1-12. Of these ligands, BOP-L1a~i and L3a~b have been
synthesized previously in the Ojima laboratory. Only BOP-L2a~c were newly synthesized by the author following the above procedure.

(R)-BOP-L1a: $\mathrm{R}=\mathrm{H}$
(S)-BOP-L1b: R=Me (R)-BOP-L1c: $\mathrm{R}=\mathrm{Br}$ (R)-BOP-L1d: R= Ph

(R)-BOP-L2a: $\mathrm{Ar}^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(S)-BOP-L2a: $\mathrm{Ar}^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(R)-BOP-L2b: $\mathrm{Ar}^{\prime}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
(R)-BOP-L2c: $\mathrm{Ar}^{\prime}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

$(R)-$ BOP-L1e: $\mathrm{Ar}=\mathrm{Ph}$
(R)-BOP-L1f: $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(R)-BOP-L1g: $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
(R)-BOP-L1h: $\mathrm{Ar}=4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}$
$(R)-$ BOP-L1i: $\mathrm{Ar}=1-\mathrm{Np}$

(R)-BOP-L3a: $\mathrm{Ar}^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(R)-BOP-L3b: $\mathrm{Ar}^{\prime}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Figure 1-10. BOP ligand library

§ 1.5 Conclusions

Enantiopure biphenol derivatives and their related monophosphoramidite, bidentate diphosphonite ligands were successfully synthesized in satisfied isolated yield. Those biphenol-based chiral ligands will be screened for a number of asymmetric transformations as described in later chapters to evaluate their efficacy in enantiopurity and reactivity.

§ 1.6 Experimental section

General Methods: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were measured on a Varian Inova-500 NMR (500 $\mathrm{MHz}{ }^{1} \mathrm{H}$, and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Inova-400 NMR ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 162 \mathrm{MHz}$ ${ }^{31} \mathrm{P}$) or a Varian Gemini-2300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H} ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} ; 121.5 \mathrm{MHz}{ }^{31} \mathrm{P}$) spectrometer in a deuterated solvent using residual protons $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm} . \mathrm{C}_{6} \mathrm{H}_{6}:{ }^{1} \mathrm{H}, 7.15\right.$ $\mathrm{ppm})$ as the internal standard or phosphoric acid as the external reference (${ }^{31} \mathrm{P} 0.00 \mathrm{ppm}$).

Analytical HPLC in reverse phase was carried out with a Shimadzu LC-2010A HPLC system using a Chiralpak AD-RH analytical column. Melting points were measured on a Thomas Hoover Capillary melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Helmer Model 241 polarimeter. TLC analyses were performed using Merck DC Alufolien 60F254 aluminum pre-coated silica gel plates. Flash column chromatography was carried out using Silicyle SiliaFlashP60® silica gel (particle size 40-63 $\mu \mathrm{m}$). High-resolution mass spectrometric analyses were carried out by Mass Spectrometry Laboratories, University of Illinois Urbana-Champaign, Urbana, IL or by ICB\&DD at Stony Brook University. Unless otherwise noted, all reactions were carried out under argon or nitrogen atmosphere in oven-dried glassware using standard Schlenck techniques.
Materials: Solvents were reagents grade and freshly distilled before use. Tetrahydrofuran (THF) and dichloromethane (DCM) were dried and degassed using an Innovative Technology PureSolvTM solvent purification system. Acetonitrile was distilled from calcium hydride. Anhydrous N, N-dimethylformamide (DMF) was purchased from Acros and used without further purification. Other solvents were used without purification. Other chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification unless otherwise noted.

Synthesis of 3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ${ }^{\mathbf{1 4 , 2 3}}$

2-tert-Butyl-4,5-dimethylphenol (1-22) ${ }^{23}$

3,4-Dimethylphenol 1-21 ($81.3 \mathrm{~g}, 0.66 \mathrm{~mol}$) and concentrated sulfuric acid (0.5 mL) were added into a 300 mL autoclave with a glass liner and stirring bar. This autoclave was then pressurized with 2-methylpropene (20 psi) and heated to $80{ }^{\circ} \mathrm{C}$ for 3.5 h . The autoclave was opened and the mixture was analyzed by GC-MS ($\mathrm{m} / \mathrm{z}=178$). This resulting crude was used in next step without any purification.

3,3'-Di-tert-butyl-5,5'-6,6'-tetramethyl-1,1'-diphenyl-2,2'-diol ((\pm)-1-23) ${ }^{23}$

Potassium dichromate ($60 \mathrm{~g}, 0.204 \mathrm{~mol}$) dissolved in the solution of sulfuric acid (120 mL) and water $(400 \mathrm{~mL})$ was carefully added to an acetic acid $(650 \mathrm{~mL})$ solution of the crude $\mathbf{1 - 2 2}$ from the previous step. It was an exothermic reaction, and thus the reaction temperature reached around $60{ }^{\circ} \mathrm{C}$. The reaction mixture was then stirred for an additional 45 min at $60^{\circ} \mathrm{C}$ and cooled down to room temperature. The brown solid was filtrated and washed with water ($250 \mathrm{~mL} \times 2$) and $\mathrm{MeOH}(200 \mathrm{~mL} x 3)$. The remaining solid was then stirred with methanol at $0{ }^{\circ} \mathrm{C}$ for 15 min and filtered again. The purified solid was dried in vacuo to give pure diol (\pm)-1-23 as a white solid ($71.8 \mathrm{~g}, 60 \%$ for two steps): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(\mathrm{~s}, 18 \mathrm{H}), 1.84(\mathrm{~s}, 6 \mathrm{H})$, $2.27(\mathrm{~s}, 6 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.9,20.0,29.6,34.5$, $121.0,128.0,128.7,133.4,134.1,150.4$. All data are in agreement with the literature values. ${ }^{23}$

Preparation and Resolution of $(R)-1-26$ and $(S)-1-26^{23}$

(S,S)-1-26 was crystallized from AcOH (R, S)-1-26 was crystallized from MeOH

A solution of $(1 R, 2 S, 5 R)-(-)$-menthol $\mathbf{1 - 2 4}(31.8 \mathrm{~g}, 202 \mathrm{mmol})$ in DCM (72 mL) was carefully added to a solution of phosphorus trichloride ($41.6 \mathrm{~g}, 303 \mathrm{mmol}, 1.5 \mathrm{eq}$) in DCM (144 mL) over 30 min at $0{ }^{\circ} \mathrm{C}$. After this period of time, the ice bath was removed and the reaction mixture was kept at room temperature for another hour. The solvent and other volatile liquids were removed in vacuo to give the remaining oil $\mathbf{1 - 2 5}$. This oil was then redissolved in DCM (108 mL) and a DCM (216 mL) solution of triethylamine ($84.6 \mathrm{~mL}, 06 \mathrm{mmol}, 3.0 \mathrm{eq}$) and $(\pm) \mathbf{- 1 - 2 3}(71.8 \mathrm{~g}, 202 \mathrm{mmol})$ was slowly added over 50 min . After an additional 2 h , the solution was filtered and $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 123 \mathrm{~mL})$ was added slowly with stirring. This biphasic mixture was vigorously stirred overnight. The organic layer was separated, washed with water (200 mLx) and brine (200 mL), and dried over MgSO_{4}. The solution was filtered to remove MgSO_{4} and then concentrated by rotary evaporation to give a white solid. The solid was further dried in vacuo to
give (\pm)-1-26: ${ }^{31} \mathrm{P}$ NMR (121.5 MHz, $\left.\mathrm{CDCl}_{3}\right)$-4.87 for $(R, S) \mathbf{- 1 - 2 6},-4.34$ for $(S, S) \mathbf{- 1 - 2 6}$.
The diastereomeric mixture of phosphate was dissolved in a minimum amount of hot acetic acid ($\sim 160 \mathrm{~mL}$) and white crystals were formed after 24 h at room temperature. These crystals were collected by filtration and washed with cold acetic acid ($50 \mathrm{~mL} x 2$). The isolated crystals were then dried in vacuo to afford crude (S, S)-1-26. It was further recrystallized twice from hot acetic acid to give pure $(S, S) \mathbf{- 1 - 2 6}(29.8 \mathrm{~g},>99 \%$ de, corresponding to 57% of (S, S)-diastereomer). The remaining liquid from the first crystallization was concentrated in vacuo to give $(R, S) \mathbf{- 1 - 2 6}$. The crude $(R, S) \mathbf{- 1 - 2 6}$ was recrystallized from hot MeOH ($\sim 200 \mathrm{~mL}$). White crystals formed on cooling to $0{ }^{\circ} \mathrm{C}$ with ice bath. These crystals were recrystallized again from hot MeOH to afford pure $(R, S) \mathbf{- 1 - 2 6}(25.1 \mathrm{~g},>99 \% \mathrm{de}$, corresponding to 48% of (R, S)-diastereomer). All data are in agreement with the literature values. ${ }^{23}$
(S)-3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27) ${ }^{23}$

Resolved (S, S)-1-26 (29.8 g, 53.8 mmol) was dissolved in toluene $(250 \mathrm{~mL})$ in a 2 L round bottomed flask equipped with an addition funnel. Red- Al^{\circledR} ($65.0 \mathrm{~mL}, 65 \% \mathrm{wt}$. in toluene) was added to an addition funnel and then added dropwise to $(S) \mathbf{- 1 - 2 6}$ solution with continuous gas evolution at $0^{\circ} \mathrm{C}$. After this step, the reaction mixture was stirred at room temperature for 40 h and then quenched with water $(90 \mathrm{~mL})$ followed by bleach $(6 \%, 90 \mathrm{~mL})$. The slurry was filtered through Celite and washed with toluene (250 mL). The remaining bi-layer solution was separated by extraction funnel. The toluene layer was washed with bleach ($6 \%, 200 \mathrm{~mL}$) and brine (200 mL) and then dried over MgSO_{4}. Magnesium sulfate was removed by filtration and toluene by vacuum distillation to give a white solid. The side product menthol was removed by washing with cold MeOH several times until no minty odor remained. Biphenol $(S) \mathbf{- 1 - 2 7 a}$ was collected by filtration and dried in vacuo to give a white solid (15.2 g, 80%). The optical purity of (S)-1-27a was examined by ${ }^{31} \mathrm{P}$ NMR of the (S)-biphenPMen ${ }^{*}$ derivative (Phophite): mp
$165.0-167.0^{\circ} \mathrm{C}\left(\right.$ lit. $\left..^{23} \mathrm{mp} 165.0-167.0^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}-76.9$ (c 0.91, DCM) $\left[\right.$ lit. $[\alpha]_{\mathrm{D}}{ }^{22}-72.8(c 1.25$, DCM)]; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.41$ (s, 18 H), $1.83(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H})$, $7.14(\mathrm{~s}, 2 \mathrm{H})$. All data were in agreement with the literature values. ${ }^{23}$ The reduction of $(R, S) \mathbf{- 1 - 2 6}$ to $(R) \mathbf{- 1 - 2 7}$ followed the same procedure.

(R)-3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((R)-1-27a) ${ }^{23}$

$(R) \mathbf{- 1 - 2 7 a}$ was obtained as a white solid $(13.4 \mathrm{~g}, 83 \%):[\alpha]_{\mathrm{D}}{ }^{23}+66.3(c 0.92, \mathrm{DCM})\left[\right.$ lit. ${ }^{23}$ $\left.[\alpha]_{\mathrm{D}}{ }^{22}+74.0\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.69\right)\right] ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}$, $6 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{23}$
(S)-5,5',6,6'-Tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27b) ${ }^{14}$

A solution of $\mathrm{AlCl}_{3}(6.67 \mathrm{~g}, 50.0 \mathrm{mmol})$ in benzene $(40 \mathrm{~mL})$ and nitromethane was added dropwise to a solution of $(S) \mathbf{- 1 - 2 7 a}(10.6 \mathrm{~g}, 29.8 \mathrm{mmol})$ in toluene $(120 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ over a period of 30 min . After this step, the reaction mixture was stirred another 30 min at $0{ }^{\circ} \mathrm{C}$. The reaction was then quenched with water $(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (30 $\mathrm{mL} x 3$). The collected organic layers were washed with brine (50 mL) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration and the filtrate was concentrated under reduced pressure to give crude $(S) \mathbf{- 1 - 2 7 b}$. This crude product was then recrystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give pure $(S) \mathbf{- 1 - 2 7 b}$ as a cotton-like white solid ($6.90 \mathrm{~g}, 95 \%$) : mp $199.0-200.5^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{14} \mathrm{mp} 198.5-200.0^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}-53.8\left(c 0.90\right.$, DCM) $\left[\mathrm{lit} .^{14}[\alpha]_{\mathrm{D}}{ }^{22}-53.3(c 0.90\right.$, DCM)]; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.90(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.3,19.8,112.6,120.2$, 129.1, 131.2, 136.9, 151.8. All data are in agreement with the literature values. ${ }^{14}$ The reaction of $(R) \mathbf{- 1 - 2 7 a}$ to $(R) \mathbf{- 1 - 2 7 b}$ followed the same procedure.

(R)-5,5',6,6'-Tetramethyl-1,1'-biphenyl-2,2'-diol ((R)-1-27b) ${ }^{14}$

$(R) \mathbf{- 1 - 2 7 b}$ was obtained as a cotton-like white solid ($2.54 \mathrm{~g}, 88 \%$): mp 199.0-200.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14}$ mp 198.5-200.0 $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+54.4$ (c 1.25, DCM) $\left[\right.$ lit. $\left.{ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}+54.0(c 1.16, \mathrm{DCM})\right] ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.90(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.13(\mathrm{~d}$, $2 \mathrm{H}, J=8.1 \mathrm{~Hz})$. All data are in agreement with the literature value. ${ }^{14}$

(S)-3,3'-Dibromo-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27c) ${ }^{14}$

A solution of bromine ($1.62 \mathrm{~mL}, 30.8 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(12 \mathrm{~mL})$ was slowly added to a solution of $(S) \mathbf{- 1 - 2 7 b}(2.98 \mathrm{~g}, 12.3 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(72 \mathrm{~mL})$ over 30 min . Then the reaction mixture was stirred for another hour at room temperature. The reaction was quenched by adding saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution $(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} x 3)$. The organic layer was then washed with water ($20 \mathrm{~mL} \times 2$) and brine (30 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration and the filtrate was concentrated under reduced pressure to give (S)-1-27c as an off-white solid (4.80g, 98%): mp $169.5-171.0{ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp}$ $\left.171.0-172.5^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+13.8(c 0.80, \mathrm{DCM})\left[\right.$ lit. $\left.{ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}+11.7(c 0.77, \mathrm{DCM})\right] ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 16.2,19.6,106.6,123.5,130.5,132.7,136.6,147.7$. All data are in agreement with the literature values. ${ }^{14}$ The bromination of $(R) \mathbf{- 1 - 2 7 b}$ to $(R) \mathbf{- 1 - 2 7} \mathbf{c}$ followed the same procedure.

(R)-3,3'-Dibromo-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27c) ${ }^{\mathbf{1 4}}$

(S)-1-7c was obtained as a white solid ($6.36 \mathrm{~g}, 99 \%$): mp 169.0-171.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-13.5(c$ $0.85, \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.86(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 2$ H). All data are in agreement with the literature values. ${ }^{14}$
(S)-3,3'-Diphenyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27d $)^{\mathbf{1 4}}$

Dimethyl sulfate ($1.07 \mathrm{~mL}, 11.4 \mathrm{mmol}$) was added to the biphasic mixture of $(S) \mathbf{- 1 - 2 7 c}$ $(1.52 \mathrm{~g}, 3.80 \mathrm{mmol}),\left(\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{HSO}_{4}(148 \mathrm{mg}, 0.38 \mathrm{mmol})$, and $\mathrm{KOH}(0.69 \mathrm{~g}, 11.4 \mathrm{mmol})$ in $\mathrm{DCM}-\mathrm{H}_{2} \mathrm{O}(1: 1)(30 \mathrm{~mL})$. The reaction mixture was then stirred overnight at room temperature. The organic and aqueous layers were separated by a separation funnel. The aqueous layer was extracted with DCM (15 mL x3). The combined organic layers were washed with brine (20 mL) and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo and triturated with cold MeOH to give $(S) \mathbf{- 1 - 2 8}$ as a white solid (1.51 g, 93 \%): mp 150.5-151.5 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{14} \mathrm{mp} 150.0-151.5^{\circ} \mathrm{C}\right)$; $[\alpha]_{\mathrm{D}}{ }^{22}+39.1$ (c 0.60, DCM) $\left[\right.$ lit. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}$ $+11.7(c 0.77, \mathrm{DCM})] ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.84(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{~s}, 6 \mathrm{H})$, $7.39(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$ The protection of $(R) \mathbf{- 1 - 2 7 c}$ to $(R) \mathbf{- 1 - 2 8}$ followed the same procedure.
$(R) \mathbf{- 1 - 2 8}$ was obtained as a white solid ($2.78 \mathrm{~g}, 92 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.84$ $(\mathrm{s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{~s}, 6 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$
$(S) \mathbf{- 1 - 2 8}(808 \mathrm{mg}, 1.89 \mathrm{mmol})$ and $6 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(138 \mathrm{mg}, 0.11 \mathrm{mmol})$ were suspended in DME $(17 \mathrm{~mL})$ and the suspension was stirred for 30 min at room temperature. Then, a solution of $\mathrm{PhB}(\mathrm{OH})_{2}(515 \mathrm{mg}, 4.22 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.95 \mathrm{~g}, 11.3 \mathrm{mmol})$ in water $(13 \mathrm{~mL})$ was added to the above suspension. The mixture was stirred and refluxed for 16 h . The reaction
mixture was then cooled down and diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The organic layer was washed with brine (30 mL) and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford the crude compound. However, from ${ }^{1} \mathrm{H}$ NMR, only 75% of the desired product was obtained. The other 25% of the compound corresponds to mono-phenyl substituted product (S)-1-33. Therefore, the crude and $6 \mathrm{~mol} \%$ of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ based on the mole of unreacted aryl bromide were redissolved into DME (5 mL) and stirred for 30 min at room temperature. Then, a solution of $\mathrm{PhB}(\mathrm{OH})_{2}(31 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(125 \mathrm{mg}, 1.49 \mathrm{mmol})$ in water $(3 \mathrm{~mL})$ was added to above suspension. The mixture was stirred and refluxed for another 18 h . This crude product was purified by the same procedures shown above and further purified by column chromatography on silica gel (hexanes:EtOAc $=$ 20:1) to give pure (S)-1-29 as a white solid ($730 \mathrm{mg}, 92 \%$): mp 57.0-58.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp} 56.5-58.5$ $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+139.3(c 0.43, \mathrm{DCM})\left[\right.$ lit. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}+143.6$ (c 0.55, DCM)]; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 7.23-7.62(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 16.4,19.8,121.6,125.6,127.0,128.4,129.1,129.2,132.1,136.3,137.9,148.4$. All data are in agreement with the literature values. ${ }^{14}$ The Suzuki coupling of $(R) \mathbf{- 1 - 2 8}$ to $(R) \mathbf{- 1 - 2 9}$ followed the same procedure.
$(R) \mathbf{- 1 - 2 9}$ was obtained as a white solid ($189 \mathrm{mg}, 93 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.98$ $(\mathrm{s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 7.23-7.62(\mathrm{~m}, 12 \mathrm{H})$. All data were in agreement with the literature values. ${ }^{14}$

To a stirring solution of $(S) \mathbf{- 1 - 2 9}(730 \mathrm{mg}, 1.73 \mathrm{mmol})$ in $\mathrm{DCM}(16 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{BBr}_{3}$ solution ($5.3 \mathrm{~mL}, 1 \mathrm{M}$ in DCM) was added over 5 min . The reaction mixture was then stirred at 0 ${ }^{\circ} \mathrm{C}$ for 2 h . Next, the reaction was quenched by adding water (40 mL). The aqueous layer was extracted with DCM (30 mL x2). The combined organic layers were washed with brine (25 mL) and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude (S)-1-27d. This crude product was further purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=30: 1,25: 1,20: 1,15: 1$, then 10:1) to give pure (S)-1-27d as a white solid ($555 \mathrm{mg}, 82 \%$): mp 152.5-154.5 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{14} \mathrm{mp} 153.0-154.0{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{23}+96.2(c 0.52, \mathrm{DCM})\left[\mathrm{lit}^{14}[\alpha]_{\mathrm{D}}{ }^{22}+86.3(c 0.53, \mathrm{DCM})\right] ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.99(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.61(\mathrm{~m}, 12 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$ The deprotection of $(R) \mathbf{- 1 - 2 9}$ to $(R) \mathbf{- 1 - 2 7 d}$ followed the same procedure.

(R)-3,3'-Diphenyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((R)-1-27d) ${ }^{\mathbf{1 4}}$

$(R)-\mathbf{1 - 2 7 d}$ was obtained as a white solid ($400 \mathrm{mg}, 84 \%$): mp 153.0-154.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp}$ $\left.153.0-154.0{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}-124.8(c 0.42, \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.32$ $(\mathrm{s}, 6 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.61(\mathrm{~m}, 12 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$

Alternative route toward the synthesis of $(S)-1-27 \mathbf{d}^{14}$

$\mathrm{Pd}(\mathrm{OAc})_{2}$ and PPh_{3} were dissolved in EtOH and the solution was stirred at room temperature for 30 min . To this solution, $(S) \mathbf{- 1 - 2 7 c}(1.00 \mathrm{~g}, \mathrm{mmol})$ in EtOH and $\mathrm{PhB}(\mathrm{OH})_{2}$ in 2 $\mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ were added. The reaction mixture was refluxed for 27 h with stirring. The reaction mixture was then cooled down and monitored by TLC. From TLC monitoring, the reaction did not go to completion. Therefore, the reaction mixture was transferred to another flask with in situ generated $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ solution. The reaction mixture was refluxed for another 21 h with stirring. The reaction mixture was then cooled down and diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The organic layer was washed with brine (30 mL) and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude product $(S) \mathbf{- 1 - 2 7 d}$ and byproduct $(S)-\mathbf{1 - 3 4}$. This crude product was further purified by column chromatography on silica gel (hexanes:EtOAc $=30: 1,25: 1,20: 1$, then $15: 1$) to give pure $(S) \mathbf{- 1 - 2 7 d}$ as a white solid ($410 \mathrm{mg}, 42 \%$) and (S)-1-34 as a yellow solid ($120 \mathrm{mg}, 15 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-1-34 $\delta 1.95$ ($\mathrm{s}, 3 \mathrm{H}$), 1.97 ($\mathrm{s}, 3 \mathrm{H}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}$), 2.33 ($\mathrm{s}, 3 \mathrm{H}$), 4.62 ($\mathrm{s}, 1 \mathrm{H}), 4.84$ (s, 1 H), $6.84(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.62(\mathrm{~m}, 5 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$
(S)-3,3'-Dimethyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27e) ${ }^{14}$

Dimethyl sulfate ($1.75 \mathrm{~mL}, 18.7 \mathrm{mmol}$) was added to the biphasic mixture of $(S) \mathbf{- 1 - 2 7 b}$ $(2.52 \mathrm{~g}, 6.25 \mathrm{mmol}),(\mathrm{nBu})_{4} \mathrm{NI}(231 \mathrm{mg}, 0.63 \mathrm{mmol})$, and $\mathrm{KOH}(1.07 \mathrm{~g}, 18.7 \mathrm{mmol})$ in DCM- $\mathrm{H}_{2}-$ O (1:1) (40 mL). The reaction mixture was then stirred overnight at room temperature. The organic and aqueous layers were separated by an extraction funnel. The aqueous layer was extracted with DCM ($25 \mathrm{~mL} x 3$). The combined organic layers were washed with water (30 mL), followed by $\mathrm{NH}_{4} \mathrm{OH}(30 \mathrm{~mL})$, and brine (30 mL), and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo and triturated with MeOH to give $(S) \mathbf{- 1 - 3 0}$ as a white solid ($2.41 \mathrm{~g}, 86 \%$): mp 110.5-112.0 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp} \mathrm{110.0-112.0}$ ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 6.77(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.3,19.9,55.9,108.1,126.8$, $128.5,128.9,136.5,155.3$. All data are in agreement with the literature values. ${ }^{14}$ The protection of $(R) \mathbf{- 1 - 2 7 b}$ to $(R) \mathbf{- 1 - 3 0}$ followed the same procedure.
$(R) \mathbf{- 1 - 3 0}$ was obtained as a white solid ($1.14 \mathrm{~g}, 83 \%$): mp 110.0-112.0 ${ }^{\circ} \mathrm{C}$ (lit..$^{14} \mathrm{mp}$ $110.0-112.0{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 6.77(\mathrm{~d}$, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$. All data are in agreement with the literature values. ${ }^{14}$

Next, concentrated $\mathrm{HCl}(16 \mathrm{~mL})$, $\mathrm{AcOH}(16 \mathrm{~mL}) \mathrm{H}_{3} \mathrm{PO}_{4}(85 \%, 16 \mathrm{~mL})$ and paraformaldehyde $(4.25 \mathrm{~g})$ were added to a round-bottomed flask with $(S) \mathbf{- 1 - 3 0}(1.50 \mathrm{~g}, 5.55$ mmol). The mixture was then stirred at $90{ }^{\circ} \mathrm{C}$ for 42 h . After that step, the solution was cooled down and extracted with toluene $(50 \mathrm{~mL} x 3)$. The combined organic layers were washed with
water (50 mL), saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (50 mL), brine (50 mL), and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to give crude (S)-1-31. This crude product was further purified by column chromatography on silica gel (hexane:EtOAc $=10: 1$) to give pure $(S) \mathbf{- 1 - 3 1}$ as a white solid ($1.84 \mathrm{~g}, 90 \%$): ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.94(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{~s}, 6 \mathrm{H}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=13.0 \mathrm{~Hz}), 4.79(\mathrm{~d}, 2 \mathrm{H}$, $J=13.0 \mathrm{~Hz}), 7.25(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$ The chloro-methylation of $(R) \mathbf{- 1 - 3 0}$ to (R)-1-31 followed the same procedure.
$(R) \mathbf{- 1 - 3 1}$ was obtained as a white solid ($1.22 \mathrm{~g}, 89 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.94$ (s, 6 H$), 2.30(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 4.57(\mathrm{~d}, 2 \mathrm{H}, J=14.4 \mathrm{~Hz}), 4.80(\mathrm{~d}, 2 \mathrm{H}, J=14.4 \mathrm{~Hz}), 7.25(\mathrm{~s}$, $2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$

A solution of $(S) \mathbf{- 1 - 3 1}(1.84 \mathrm{~g}, 5.01 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added dropwise to the suspension of $\mathrm{LiAlH}_{4}(0.66 \mathrm{~g}, 17.0 \mathrm{mmol})$ in THF (8 mL). The mixture was refluxed for 3.5 h . The reaction was then slowly quenched with THF/water $(1: 1,10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with ether ($20 \mathrm{~mL} x 3$). The combined organic layers were washed with water (50 mL) and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to give crude (S)-1-32. This crude product was further purified by column chromatography on silica gel (hexane:EtOAc $=20: 1$) to give pure $(S) \mathbf{- 1 - 3 2}$ as a white solid ($1.19 \mathrm{~g}, 90 \%$): mp 76.0-77.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp} 74.0-75.0{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{~s}, 6 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$ The reduction of $(R) \mathbf{- 1 - 3 1}$ to $(R) \mathbf{- 1 - 3 2}$ followed the same procedure.
$(R) \mathbf{- 1 - 3 2}$ was obtained as a white solid ($0.80 \mathrm{~g}, 96 \%$): mp 75.0-76.0 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp} 74.0-75.0$ ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 7.00$ $(\mathrm{s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$

To a stirring solution of $(S) \mathbf{- 1 - 3 2}(1.19 \mathrm{~g}, 3.99 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{BBr}_{3}$ solution $(11 \mathrm{~mL}, 1 \mathrm{M}$ in DCM$)$ was added slowly. The reaction mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Next, the reaction was quenched by adding water $(40 \mathrm{~mL})$. The aqueous layer was extracted with $\operatorname{DCM}(30 \mathrm{~mL} x 2)$. The combined organic layers were washed with water (50 mL), brine (50 mL), and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude (S)-1-27e. This crude product was further purified by column chromatography on silica gel (hexanes: $\mathrm{EtOAc}=10: 1$) to give pure $(S) \mathbf{- 1 - 2 7 e}$ as a white
solid ($0.97 \mathrm{~g}, 80 \%$): mp 135.0-137.0 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp} 136.0-137.5^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{23}-47.4(c 0.76, \mathrm{DCM})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.85(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 12 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the reported literature. ${ }^{14}$ The deprotection of $(R) \mathbf{- 1 - 3 2}$ to $(R) \mathbf{- 1 - 2 7 e}$ followed the same procedure.
$(R)-1-27 \mathrm{e}$ was obtained as a white solid ($0.70 \mathrm{~g}, 97 \%$): mp $136.0-137.5^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp}$ $136.0-137.5^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{23}+46.8(c 0.62, \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.86(\mathrm{~s}, 6 \mathrm{H}), 2.24$ $(\mathrm{s}, 12 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{14}$
(R)-3,3'-Bis(3,5-dimethylbenzyl)-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diols ((R)-1-27f) ${ }^{26}$

To a suspension of $\mathrm{Mg}(69 \mathrm{mg}, 2.9 \mathrm{mmol})$ and a catalytic amount of I_{2} in THF (6 mL) was added 5-bromo-m-xylene ($473 \mathrm{mg}, 2.56 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min . To a solution of $(R) \mathbf{- 1 - 3 1}(234 \mathrm{mg}, 0.638 \mathrm{mmol})$ and $\mathrm{CuI}(31 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF (6 mL) was added dropwise the above mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed up to room temperature and stirred for 1 h at the same temperature and then at $50{ }^{\circ} \mathrm{C}$ for 5 h . The reaction was then quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and the aqueous layer was separated and extracted with DCM (10 mL x 3$)$. The combined organic layer was washed with water (20 mL), brine (20 mL), and then dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as a yellow oil. Further purification by flash column chromatography on silica gel (hexanes/EtOAc =30:1-25:1) afforded pure (R)-1-35 as a colorless oil ($305 \mathrm{mg}, 94 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{22}+14.1$ (c 1.0, DCM); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.98(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 12 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 4.02(\mathrm{~S}, 4 \mathrm{H})$, $6.89(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{26}$

To a stirred solution of $(R) \mathbf{- 1 - 3 5}(300 \mathrm{mg}, 0.592 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added BBr_{3} $\left(1.3 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ solution in DCM) dropwise at $0^{\circ} \mathrm{C}$ over 30 min . The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched by water (3 mL). The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \mathrm{x} 3)$. The combined organic layer was washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as light yellow oil. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=50: 1-20: 1$) afforded pure $(R) \mathbf{- 1 - 2 7 f}$ as a white foam ($277 \mathrm{mg}, 98 \%$ yield): mp 48-50 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-13.0(c 1.0, \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 1.93(\mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 12 \mathrm{H}), 3.97(\mathrm{q}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$, $6.88(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{26}$

Synthesis of (S)-5,5',6,6'-Tetramethyl-3,3'-bis(phenylethynyl)-1,1'-biphenyl-2,2'-diols $((S)-\mathbf{1 - 2 7 h})^{26}$

(S)-3,3'-Diiodo-5,5',6,6'-tetramethylbiphenyl-2,2'-diol ((S)-1-27g) ${ }^{26}$

To a solution of $(S) \mathbf{- 1 - 2 7 b}(972 \mathrm{mg}, 4.01 \mathrm{mmol})$ and pyridine $(5 \mathrm{~mL})$ in 8 mL DCM was added a solution of $\mathrm{ICl}(9 \mathrm{~mL}, 1 \mathrm{M}$ in DCM$)$ dropwise at $0{ }^{\circ} \mathrm{C}$ over 30 min . The mixture was warmed to room temperature and stirred for 20 h . The reaction was quenched by saturated $\mathrm{Na}_{2} \mathrm{SO}_{3(\mathrm{aq})}(25 \mathrm{~mL})$ and the aqueous layer was separated and extracted with DCM (15 mL x3). The combined organic layer was washed with water (30 mL), brine (30 mL), and dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as an off-white solid. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=20: 1-10: 1$) afforded pure $(S) \mathbf{- 1 - 2 7 g}$ as a white solid ($1.43 \mathrm{~g}, 73 \%$ yield): mp 213-214 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-57.5$ (c 1.0, DCM); ${ }^{1} \mathrm{H}$ NMR (300 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 1.86(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 4.95(\mathrm{~S}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{26}$

(S)-5,5',6,6'-Tetramethyl-3,3'-bis(phenylethynyl)-1,1'-biphenyl-2,2'-diols ((S)-1-27h) ${ }^{26}$

To a suspension of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(21 \mathrm{mg}, 0.030 \mathrm{mmol}), \mathrm{CuI}(17 \mathrm{mg}, 0.090 \mathrm{mmol})$, and $(S) \mathbf{- 1 - 2 7 g}(247 \mathrm{mg}, 0.5 \mathrm{mmol})$ in benzene $(5 \mathrm{~mL})$ was added phenylacetylene $(0.17 \mathrm{~mL}, 1.5$ mmol) at room temperature under nitrogen. To this reaction mixture was added diisopropylamine $(0.14 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 18 h . The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \mathrm{x} 3)$. The combined organic layer was washed with water (20 mL), brine (20 mL), and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as a light yellow solid. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1-4: 1$) afforded pure $(S) \mathbf{- 1 - 2 7 h}$ as a light yellow solid ($119 \mathrm{mg}, 54 \%$ yield): mp 73-75 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-132.8$ (c 1.0, DCM); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97$ ($\mathrm{s}, 6 \mathrm{H}$), $2.29(\mathrm{~s}, 6 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 8 \mathrm{H}), 7.52(\mathrm{~m}, 4 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{26}$
(S)-3,3'-Di(2,4,6-triisopropyl phenyl)-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27i)

To a suspension of $\mathrm{Mg}(825 \mathrm{mg}, 34.4 \mathrm{mmol})$ and a catalytic amount of dibromoethane in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added 3 mL of 2-bromo-1,3,5-triisopropylbenzene ($4.72 \mathrm{~mL}, 18.8 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ at room temperature. Once the solution began to reflux, the rest of aryl bromide was added to the reaction mixture over 1 h and the resulting mixture was refluxed for 18 h . To a suspension of $(S) \mathbf{- 1 - 2 8}(2.01 \mathrm{~g}, 4.71 \mathrm{mmol})$ and $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(330 \mathrm{mg}, 0.471 \mathrm{mmol})$ in THF (40 mL) was added dropwise the Grignard reagent solution prepared above at room temperature. The
reaction mixture was refluxed for 24 h . The reaction was then quenched with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(35 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine (50 mL) and dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as yellow oil. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=30: 1-20: 1$) afforded pure $(S) \mathbf{- 1 - 3 6}$ as colorless oil $\left(2.11 \mathrm{~g}, 66 \%\right.$ yield): $[\alpha]_{\mathrm{D}}{ }^{20}+43.2$ (c 0.81, DCM) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 18 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.34(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 12 \mathrm{H}$), $2.01(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.85$ (quint., $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}$), 2.97 (quint., $J=6.8 \mathrm{~Hz}$, 2 H), $3.13(\mathrm{~s}, 6 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.5$, $20.2,23.3,23.4,24.1,25.3,25.5,30.5,30.6,34.2,59.1,120.4,120.5,129.7,130.7,131.8,131.9$, 133.8, 135.1, 146.7, 147.5, 153.4; HRMS (ESI+) calcd. For $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{NO}_{2}\left[\mathrm{M}_{+} \mathrm{NH}_{4}\right]^{+}$692.5401, found $692.5400(\Delta=-0.1 \mathrm{ppm})$.

To a stirred solution of $(S) \mathbf{- 1 - 3 6}(505 \mathrm{mg}, 0.748 \mathrm{mmol})$ in $\mathrm{DCM}(11 \mathrm{~mL})$ was added BBr_{3} $\left(1.9 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ dropwise at $0{ }^{\circ} \mathrm{C}$ over 30 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by water (10 mL). The aqueous layer was separated and extracted with DCM ($15 \mathrm{~mL} x 3$). The combined organic layer was washed with brine (20 mL) and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as light yellow oil. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=30: 1-20: 1$) afforded pure $(S) \mathbf{- 1 - 2 7 i}$ as colorless oil ($402 \mathrm{mg}, 83 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{20}+49.5(c 1.07, \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.20$ (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.70$ (quint., $J=6.8 \mathrm{~Hz}$, 2 H), 2.83 (quint., $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.98 (quint., 2 H), 4.45 (br, 2H), 6.96 (s, 2H), 7.11 (d, $J=1.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.1,19.9,23.8,23.9,24.0$, $24.1,24.2,30.6,34.3,120.9,121.0,122.0,123.6,128.2,131.1,131.7,135.6,147.6,147.7,148.5$, 148.9; HRMS (ESI-) calcd. For $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$645.4677, found 645.4673 ($\Delta=-0.6 \mathrm{ppm}$).
(R)- 3,3'-Di(triphenylsilyl)-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol ((S)-1-27j)

To a stirred solution of $(R) \mathbf{- 1 - 2 7 c}(800 \mathrm{mg}, 2.00 \mathrm{mmol})$ and imidazole $(381 \mathrm{mg}, 5.60 \mathrm{mmol})$ in DMF (20 mL) was added chlorotriphenylsilane ($1.82 \mathrm{~g}, 6.00 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched by water (30 mL). The aqueous layer was separated and extracted with DCM ($35 \mathrm{~mL} x 3$). The combined organic layer was washed with brine (30 mL) and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as light yellow oil. Further purification by flash column chromatography on silica gel (hexanes/DCM=4:1-2:1) afforded pure $(R) \mathbf{- 1 - 3 7}$ as colorless oil ($1.48 \mathrm{~g}, 81 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{20}-83.0$ (c 0.94, DCM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.90(\mathrm{~s}, 6 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 12 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 16.7,19.6,111.6,127.3,129.5,131.2,131.4,133.6,134.6,135.4,135.8,147.9$; HRMS (ESI+) calcd. For $\mathrm{C}_{52} \mathrm{H}_{48} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 932.1585$, found 932.1579 ($\Delta=-0.6 \mathrm{ppm}$).

To a stirred solution of $(R) \mathbf{- 1 - 3 7}(917 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise $\mathrm{n}-\mathrm{BuLi}\left(1.2 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ solution in hexanes) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 2 h . The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \mathrm{x} 3)$. The combined organic layer was washed with brine (20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as colorless oil. Further purification by flash column chromatography on silica gel (hexanes/DCM=4:1-2:1) afforded pure $(R) \mathbf{- 1 - 2 7 j}$ as a white foam ($594 \mathrm{mg}, 78 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{20}-16.4\left(c \quad 0.61, \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.05(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 12 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.5$, 19.8, 116.6, 120.4, 127.7, 129.0, 129.3, 134.5, 136.2, 139.6, 139.7, 156.7; HRMS (ESI-) calcd. For $\mathrm{C}_{52} \mathrm{H}_{45} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}-\mathrm{H}]^{-} 757.2964$, found $757.2954(\Delta=-1.3 \mathrm{ppm})$.

General procedure for the synthesis of monophosphoramidite ligands ${ }^{14,15 a}$

$O, O^{\prime}-(R)-\left(5,5 ', 6,6^{\prime}\right.$-Tetramethyl-1,1'-biphenyl-2,2'-diyl)- N, N-dimethylphosphor
amidite $((R)-M P N-L 1 b){ }^{15 a}$

To a mixture of $(R)-5,5 ', 6,6$ 'tetramethyl-1,1'-biphenyl-2,2'-diol $(R) \mathbf{- 1 - 7 b}(242 \mathrm{mg}, 1.00$ mmol) in toluene (5 ml), hexamethylphosphorous triamide (HMPT) $(248 \mathrm{mg}, 1.50 \mathrm{mmol})$ was added under nitrogen. The resulting mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 17 h . The solvent was evaporated under reduced pressure to afford a gel-like liquid, which was further purified by column chromatography [silica gel (neutralized by 1% TEA in hexanes) /hexanes : EtOAc $=$ 10:1] to give (R)-MPN-L1b as a white solid ($256 \mathrm{mg}, 81 \%$ yield): mp $157.0-159.0^{\circ} \mathrm{C}$ (lit. ${ }^{14} \mathrm{mp}$ $\left.161.0-163.5{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}-142.9(c 0.56, \mathrm{DCM})\left(\right.$ lit. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}-167.1$ (c 1.55, DCM) $) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(161.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.0. All data are in agreement with the literature values. ${ }^{14}$

Other monophosphoramidite ligands were obtained in the same manner as that described for the synthesis of (R)-MPN-L1b with some variations.

$O, O^{\prime}-(S)-\left(3,3^{\prime}, 5,55^{\prime}, 6,6^{\prime}\right.$-Hexamethyl-1,1'-biphenyl-2,2'-diyl)- N, N-dimethylphosphoramidite

((S)-MPN-L1c) ${ }^{14}$ Purified by column chromatography on silica gel [(neutralized by 1% TEA in hexanes) /hexanes:EtOAc $=10: 1]$ to give pure (S)-MPN-L1c as a white solid ($302 \mathrm{mg}, 88 \%$ yield); mp 119.0-120.0 ${ }^{\circ} \mathrm{C}$ (lit. $.^{14} \mathrm{mp} 121.0-121.5{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{22}+417.3$ (c 0.30, DCM) (lit. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}$ +488.0 (c 0.50, DCM)); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (161.9 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 138.8. All data are in agreement with the literature values. ${ }^{14}$
O, O^{\prime}-(S)-(3,3'-Diphenyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)-N,N-dimethylphospho ramidite ((S)-MPN-L1d $)^{14}$

Purified by column chromatography on silica gel [(neutralized by 1% TEA in hexanes) /hexanes:EtOAc = 10:1] to give pure (S)-MPN-L1d as a foam-like white solid ($338 \mathrm{mg}, 95 \%$ yield): mp 98-100 ${ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{14} \mathrm{mp} 109.5-112.5^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+502.1(c 0.48, \mathrm{DCM})\left(\right.$ lit. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}+466.7$ (c 0.45, DCM)); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 7.21-7.66(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (161.9 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 140.5. All data are in agreement with the literature values. ${ }^{14}$

$O, O^{\prime}-(R)-\left(3,3{ }^{\prime}\right.$-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)-N,N-dimethylphos

 phoramidite ((R)-MPN-L1e) ${ }^{14}$Purified by column chromatography on silica gel [(neutralized by 1% TEA in hexanes) /hexanes:EtOAc $=10: 1]$ to give pure (R)-MPN-L1e as a white solid ($293 \mathrm{mg}, 69 \%$ yield): mp $189.0-191.0{ }^{\circ} \mathrm{C}\left(\right.$ lit. $^{14} \mathrm{mp} 191.5-193.0^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{22}-367.7$ (c 0.62, DCM) (lit. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}-380.8$ (c $0.43, \mathrm{DCM})$) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{br}, 6 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}),{ }^{31} \mathrm{P}$ NMR (161.9 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) δ 141.1. All data are in agreement with the literature values. ${ }^{14}$

$O, O^{\prime}-(S)-\left(5,5^{\prime}, 6,6^{\prime}-\right.$ Tetramethyl-1, 1^{\prime}-biphenyl-2,2'-diyl)- N, N-diisopropylphosphoramidite

 ((S)-MPN-L2a) ${ }^{14}$A solution of bis(i-propyl)amine 1-38a ($0.15 \mathrm{~mL}, 1.03 \mathrm{mmol}$) in THF (2 mL) was added to a mixture of $\mathrm{PCl}_{3}(0.09 \mathrm{ml}, 1.03 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.70 \mathrm{~mL}, 5.00 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred under room temperature and monitored by ${ }^{31} \mathrm{P}$ NMR until intermediate $\mathbf{1 - 3 9}$ formed completely. Then to this reaction mixture was added a solution of (S) -1-27b (242 $\mathrm{mg}, 1.00 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was then stirred overnight at room temperature. The reaction mixture was diluted with toluene (10 mL) and filtered through neutral alumina. The remaining solution was concentrated under reduced pressure and purified by column chromatography on silica gel [(neutralized by 1% TEA in hexanes) $/$ hexanes:EtOAc $=$ 10:1] to give pure (S)-MPN-L2a as a white and foam-like solid (190 mg, 50% yield): mp $78.0-79.5{ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{14} \mathrm{mp} 79.0-81.0^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+244.1$ (c 0.68, DCM) (lit. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{22}+236.0(c 0.75$, DCM)) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16(\mathrm{~m}, 12 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(161.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.2. All data are in agreement with the literature values. ${ }^{14}$

Other monophosphoramidite ligands were obtained in the same manner as that described for the synthesis of (S)-MPN-L2a with some variations.

$O, O^{\prime}-(S)-\left(5,5^{\prime}, 6,6^{\prime}\right.$-Tetramethyl-1, 1^{\prime} '-biphenyl-2,2'-diyl)- N, N-dibenzylphosphoramidite

 ((S)-MPN-L3a) ${ }^{14}$Purified by column chromatography on silica gel [(neutralized by 1% TEA in hexanes) /hexanes:EtOAc $=10: 1$] to give pure (S)-MPN-L3a as a white and foam-like solid ($370 \mathrm{mg}, 79$ \% yield): ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 1.97$ (s, 3H), 1.99 ($\mathrm{s}, 3 \mathrm{H}$), 2.19 (s, 3H), 2.30 ($\mathrm{s}, 3 \mathrm{H}$), $3.37(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.04-7.17(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (161.9 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 147.7. All data are in agreement with the literature values. ${ }^{14}$

$O, O^{\prime}-(R)-\left(5,55^{\prime}, 6,6^{\prime}-\right.$ Tetramethyl-1,1'-biphenyl-2,2'-diyl)- N, N-bis[(R)-methylbenzyl]

 phosphoramidite ((R, R, R)-MPN-L4a) ${ }^{14}$Purified by column chromatography on silica gel [(neutralized by 1% TEA in hexanes) /hexanes: $\mathrm{EtOAc}=50: 1]$ to give pure (R, R, R)-MPN-L4a as a white and foam-like solid (327 mg , 66% yield): $[\alpha]_{\mathrm{D}}{ }^{23}+171.4$ (c 0.56, DCM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}$, $3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}(161.9$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.2 \mathrm{ppm}$. All data are in agreement with the literature values. ${ }^{14}$

General procedure for the synthesis of chiral diphosphonite ligands

To a solution of a chiral biphenol ${ }^{12}(1 \mathrm{mmol})$, $\operatorname{DMAP}(10 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}, 6 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of a chlorodiarylphosphine (2.5 mmol) in $\mathrm{DCM}(5$ mL) over the period of 20 min via a syringe. The mixture was stirred at the same temperature for additional 3 h , and concentrated in vacuo. The residue was dissolved in dry ether (20 mL) and filtered through a pad of Celite. The filtrate was concentrated in vacuo and the crude product was purified on a silica gel column pretreated with $E t_{3} \mathrm{~N}$ using (hexanes: $\mathrm{NEt}_{3}=99: 1$) as the eluent.
(R)-2,2'-Bis[bis(4-methylphenyl)phosphinoxy]-3,3'-bis(3,5-dimethylbenzyl)-5,5',6,6'-tetram ethyl-1,1'-biphenyl, (R)-BOP-L2a

Colorless oil; 50% yield; $[\alpha]_{\mathrm{D}}{ }^{21}-72.5$ (c 0.69, DCM); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.68(\mathrm{~s}$, $6 \mathrm{H}), 1.81$ (s, 6H), 2.22 (s, 18H), 2.27 (s, 6H), 3.45 (d, $J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.57 (d, $J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.34(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 4 \mathrm{H}), 6.81(\mathrm{t}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 111.0$; HRMS (EI) calcd $\mathrm{C}_{62} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{P}_{2}$ $[\mathrm{M}+\mathrm{O} 2]^{+} 934.4280$, found $934.4267(\Delta=-1.3 \mathrm{ppm})$.
(S)-2,2'-Bis[bis(4-methylphenyl)phosphinyloxy]-3,3'-bis(3,5-dimethylbenzyl)-5,5',6,6'-tetra methyl-1,1'-biphenyl, (S)-BOP-L2a

Colorless oil; 45% yield; $[\alpha]_{\mathrm{D}}{ }^{21}+74.4(c 0.73, \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{~s}$, $6 \mathrm{H}), 1.81(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 18 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 3.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.34(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 4 \mathrm{H}), 6.81(\mathrm{t}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 110.9$; HRMS (EI) calcd $\mathrm{C}_{62} \mathrm{H}_{64} \mathrm{O}_{2} \mathrm{P}_{2}$ $[\mathrm{M}]^{+} 902.4382$, found $902.4399(\Delta=1.7 \mathrm{ppm})$.

(R)-2,2'-Bis[bis(4-methoxyphenyl)phosphinyloxy]-3,3'-bis(3,5-dimethylbenzyl)-5,5',6,6'-tetr

 amethyl-1,1'-biphenyl, (R)-BOP-L2bColorless oil; 62% yield; $[\alpha]_{\mathrm{D}}{ }^{21}-31.4$ (c 0.51, DCM); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 1.67$ $(\mathrm{s}, 6 \mathrm{H}), 1.84(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 12 \mathrm{H}), 3.44(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}$, $6 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 6.39(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 4 \mathrm{H}), 6.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.66(\mathrm{~s}, 4 \mathrm{H}), 6.76-6.79(\mathrm{~m}$, 4H), 7.16-7.21 (m, 4H), 7.33-7.38 (m, 4H); ${ }^{31} \mathrm{P}$ NMR (121.5 Hz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 112.7$; HRMS (EI) calcd $\mathrm{C}_{62} \mathrm{H}_{84} \mathrm{O}_{8} \mathrm{P}_{2}[\mathrm{M}+\mathrm{O} 2]^{+} 998.4076$, found 998.4059 ($\Delta=-1.4 \mathrm{ppm}$).

(R)-2,2'-Bis[bis(4-trifluoromethylphenyl)phosphinyloxy]-3,3'-bis(3,5-dimethylbenzyl)-5,5’,6

 ,6'-tetramethyl-1,1'-biphenyl, (R)-BOP-L2cColorless oil; 35% yield; $[\alpha]_{\mathrm{D}}{ }^{23}-115.8$ (c 1.2, DCM); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.77$ (s, $6 \mathrm{H}), 1.86(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 12 \mathrm{H}), 3.40(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 2 \mathrm{H})$, $6.49(\mathrm{~s}, 4 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.44(\mathrm{~m}, 14 \mathrm{H}){ }^{31} \mathrm{P}$ NMR (121.5 Hz, CDCl3) $\delta 103.5$; HRMS (EI) calcd $\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{~F}_{12} \mathrm{P}_{2}[\mathrm{M}]^{+} 1118.3251$, found 1118.3233 ($\Delta=-1.8 \mathrm{ppm}$).

§ 1.7 References

1. Natta, G.; Porri, L.; Valenti, S., Synthesis of optically active cis-1,4 poly(1,3-pentadiene) by asymmetric induction, kurzmitteilung. Die Makromolekulare Chemie 1963, 67 (1), 225-228.
2. Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R., Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate. Tetrahedron Lett. 1966, 7 (43), 5239-5244.
3. (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G., The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J. Chem. Soc. A 1966, 1711-1732; (b) Baird, M. C.; Lawson, D. N.; Mague, J. T.; Osborn, J. A.; Wilkinson, G., Novel Addition Reactions of Chlorotris(triphenyl phosphine)rhodium(I).

Chem. Comтип. 1966, 129-130; (c) Mague, J. T.; Wilkinson, G., Tris(triphenylarsine)- and tris(triphenylstibine)-chlororhodium(I) complexes and their reactions with hydrogen, olefins, and other reagents. J. Chem. Soc. A 1966, 1736-1740.
4. (a) Horner, L.; Siegel, H.; Büthe, H., Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution. Angew. Chem., Int. Ed. 1968, 7 (12), 942; (b) Knowles, W. S.; Sabacky, M. J., Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun. 1968, (22), 1445-1446.
5. Knowles, W. S., Asymmetric hydrogenation. Acc. Chem. Res. 1983, 16 (3), 106-112.
6. Dang, T. P.; Kagan, H. B., The asymmetric synthesis of hydratropic acid and amino-acids by homogeneous catalytic hydrogenation. J. Chem. Soc. D, Chem. Commun. 1971, (10), 481.
7. Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J., Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. J. Am. Chem. Soc. 1977, 99 (18), 5946-5952.
8. Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R., Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of .alpha.-(acylamino)acrylic acids. J. Am. Chem. Soc. 1980, 102 (27), 7932-7934.
9. Burk, M. J., C2-symmetric bis(phospholanes) and their use in highly enantioselective hydrogenation reactions. J. Am. Chem. Soc. 1991, 113 (22), 8518-8519.
10. (a) Noyori, R., Asymmetric Catalysis in Organic Synthesis. Wiley: New York, 1994; (b) Ojima, I., Catalytic Asymmetric Synthesis. Wiley: New York, 2000; p 1-110; (c) Tang, W.; Zhang, X., New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103 (8), 3029-3070.
11. Katsuki, T.; Sharpless, K. B., The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 1980, 102 (18), 5974-5976.
12. Alexakis, A.; Vastra, J.; Burton, J.; Benhaim, C.; Mangeney, P., Asymmetric conjugate addition of diethyl zinc to enones with chiral phosphorus ligands derived from TADDOL. Tetrahedron Lett. 1998, 39 (43), 7869-7872.
13. (a) Reetz, M. T.; Sell, T., Rhodium-catalyzed enantioselective hydrogenation using chiral monophosphonite ligands. Tetrahedron Lett. 2000, 41 (33), 6333-6336; (b) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L., Highly Enantioselective Rhodium-Catalyzed Hydrogenation with Monodentate Ligands. J. Am. Chem. Soc. 2000, 122 (46), 11539-11540.
14. Hua, Z.; Vassar, V. C.; Ojima, I., Synthesis of New Chiral Monodentate Phosphite Ligands and Their Use in Catalytic Asymmetric Hydrogenation. Org. Lett. 2003, 5 (21), 3831-3834.
15. (a) Choi, H.; Hua, Z.; Ojima, I., Highly Enantioselective Copper-Catalyzed Conjugate Addition of Diethylzinc to Nitroalkenes. Org. Lett. 2004, 6 (16), 2689-2691; (b) Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I., New biphenol-based, fine-tunable monodentate phosphoramidite ligands for catalytic asymmetric transformations. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (15), 5411-5416; (c) Chapsal, B. D.; Ojima, I., Total Synthesis of

Enantiopure (+)- γ-Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation. Org. Lett. 2006, 8 (7), 1395-1398.
16. (a) Bonafoux, D.; Hua, Z.; Wang, B.; Ojima, I., Design and synthesis of new fluorinated ligands for the rhodium-catalyzed hydroformylation of alkenes in supercritical CO 2 and fluorous solvents. J. Fluorine Chem. 2001, 112 (1), 101-108; (b) Hultzsch, K. C.; Jernelius, J. A.; Hoveyda, A. H.; Schrock, R. R., The First Polymer-Supported and Recyclable Chiral Catalyst for Enantioselective Olefin Metathesis. Angew. Chem., Int. Ed. 2002, 41 (4), 589-593.
17. Shi, C.; Ojima, I., Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination. Tetrahedron 2007, 63 (35), 8563-8570.
18. Pu, L., 1,1'-Binaphthyl Dimers, Oligomers, and Polymers: Molecular Recognition, Asymmetric Catalysis, and New Materials \dagger. Chem. Rev. 1998, 98 (7), 2405-2494.
19. van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P., Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation. Chem. Rev. 2000, 100 (8), 2741-2770.
20. Trost, B. M.; Murphy, D. J., A model for metal-templated catalytic asymmetric induction via .pi.-allyl fragments. Organometallics 1985, 4 (6), 1143-1145.
21. Kaloko, J. J.; Teng, Y.-H.; Ojima, I., One-step formation of fused tetracyclic skeletons from cyclohexene-diynes and carbon monoxide through $\mathrm{Rh}(\mathrm{I})$-catalyzed [2+2+2+1] cycloaddition reaction. Chemical Communications 2009, (30), 4569-4571.
22. Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y., A Novel and General Synthetic Pathway to Strychnos Indole Alkaloids: Total Syntheses of (-)-Tubifoline, (-)-Dehydrotubifoline, and (-)-Strychnine Using Palladium-Catalyzed Asymmetric Allylic Substitution. J. Am. Chem. Soc. 2003, 125 (32), 9801-9807.
23. Alexander, J. B.; Schrock, R. R.; Davis, W. M.; Hultzsch, K. C.; Hoveyda, A. H.; Houser, J. H., Synthesis of Molybdenum Imido Alkylidene Complexes That Contain 3,3'-Dialkyl-5,5‘,6,6'-tetramethyl-1,1'-biphenyl-2,2'-diolates (Alkyl $=$ t-Bu, Adamantyl). Catalysts for Enantioselective Olefin Metathesis Reactions. Organometallics 2000, 19 (18), 3700-3715.
24. (a) Freundlich, J. S.; Landis, H. E., An expeditious aqueous Suzuki-Miyaura method for the arylation of bromophenols. Tetrahedron Lett. 2006, 47 (25), 4275-4279; (b) Chouteau, F.; Ramanitrahasimbola, D.; Rasoanaivo, P.; Chibale, K., Exploiting a basic chemosensitizing pharmacophore hypothesis. Part 1: Synthesis and biological evaluation of novel arylbromide and bicyclic chemosensitizers against drug-resistant malaria parasites. Bioorg. Med. Chem. Lett. 2005, 15 (12), 3024-3028.
25. Yoshizaki, H.; Satoh, H.; Sato, Y.; Nukui, S.; Shibasaki, M.; Mori, M., Palladium-Mediated Asymmetric Synthesis of Cis-3,6-Disubstituted Cyclohexenes. A Short Total Synthesis of Optically Active (+)-.gamma.-Lycorane. J. Org. Chem. 1995, 60 (7), 2016-2021.
26. Shi, C.; Chien, C.-W.; Ojima, I., Synthesis of Chiral Biphenol-Based Diphosphonite Ligands and Their Application in Palladium-Catalyzed Intermolecular Asymmetric Allylic Amination Reactions. Chem. Asian J. 2011, 6 (2), 674-680.

Chapter 2

Palladium-Catalyzed Asymmetric Allylic Amination with Bidentate Diphosphonite Ligands

Table of Contents
§ 2.1 Transition metal-catalyzed asymmetric allylic alkylation 41
§ 2.2 Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination 43
§ 2.2.1 Asymmetric synthesis of natural products bearing C1-substituted tetrahydroisoquinolines 43
§ 2.2.2 Preliminary results of intramolecular asymmetric allylic amination of 2-18A-a 46
§ 2.3 Results and discussion 49
§ 2.3.1 Synthesis of substrates 2-18B-a~c and 2-18C-a~b 49
§ 2.3.2 Pd-Catalyzed intramolecular asymmetric allylic amination 50
§ 2.4 Conclusions 54
§ 2.5 Experimental section 54
§ 2.6 References 67

§ 2.1 Transition metal-catalyzed asymmetric allylic alkylation

Transition-metal catalyzed allylic alkylation has proven to be one of the most powerful methods for asymmetric synthesis, due to the ability to form multiple types of bonds such as C-C, $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{S}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{H}$. Instead of acting as the nucleophile, the formation of the key η-allyl metal complex intermediate makes the allyl moiety become an electrophile, resulting in nucleophilic substitution on the allylic substrate (Scheme 2-1).

Scheme 2-1. Allylic alkylation

The first example of C-C bond formation by allylic alkylation was carried out by Tsuji and coworkers in 1965 (Scheme 2-2). ${ }^{1}$ In 1977, the first example of an asymmetric version of allylic alkylation was published by Trost et al. ${ }^{2}$ Since then, many research groups intended to extend the asymmetric potential of allylic alkylations, but have been unsuccessful until it was realized that chiral ligands have to be designed to reach across the plane of the allyl moiety to create a proper chiral environment for the enantiodiscrimination. Although most of accomplished efforts were done by palladium catalysts, this process can also be catalyzed by other transition metal complexes including cobalt, platinum, rhodium, ruthenium, iridium, molybdenum, tungsten, and copper to complement the patterns of reactivity. ${ }^{3}$

Scheme 2-2. First example of allylic substitution reaction

The general mechanism for the palladium-catalyzed allylic substitution is illustrated below (Scheme 2-3). ${ }^{3-4}$ As shown in the scheme, the catalytic cycle begins with the complexation of the olefin moiety of the allylic substrate $\mathbf{2 - 9}$ to $\operatorname{Pd}(0) \mathrm{L}_{2} \mathbf{2 - 8}$, followed by the ionization step where X ' is cleaved from the allyl moiety, leading to the formation of a $\mathrm{Pd}(\mathrm{II})$-allyl intermediate 2-11. It is generally observed that the ionization step occurs with the leaving group at a position anti to the metal. The third step is the nucleophilic addition to the $\mathrm{Pd}(\mathrm{II})$-allyl complex 2-11 to form the
corresponding $\operatorname{Pd}(0)$-olefin complexes (2-12 or $\mathbf{2 - 1 2}{ }^{\prime}$). In the case of soft nucleophiles ($\mathrm{pKa}<$ 25), which generally refer to stabilized nucleophiles, the attack occurs on the π-allyl group anti to the metal. In contrast, hard nucleophiles ($\mathrm{pKa}>25$), such as alkylmetals, bind to the palladium metal first, thus leading to a syn-attack on the allylic substrate. The final step is the decomplexation to release the newly formed compounds and regenerate $\operatorname{Pd}(0) \mathrm{L}_{2} \mathbf{2 - 8}$ to complete the cycle.

From the mechanism, each step offers the chance for enantiodiscrimination, depending on the structure of the substrate, except for the decomplexation step, which is the step after the bond formation. Thus, the recognition of the step in the catalytic cycle that determines the enantiopurity, followed by the design of proper chiral ligands based on the above judgment becomes crucial to obtain high enantioselectivity. ${ }^{3}$

Scheme 2-3. General mechanism of $\operatorname{Pd}(0)$ catalyzed allylic substitution reaction

When compared to monodentate ligands, bidentate ligands are the better ligand system in this field. Among numerous bidentate ligands, the Trost ligands, the DPPBA ligand and its derivatives, are the most efficient ligands in various asymmetric allylic alkylations due to the extension of the chiral induction caused by their large bite angle (P-M-P) (Figure 2-1). ${ }^{5}$

Figure 2-1. Trost ligands (DPPBA ligand series)

In the Ojima laboratory, our monodentate phosphoramidite ligands gave excellent enantioselectivity in Pd-catalyzed allylic alkylation reaction for the total synthesis of $(+)$-lycorane and allylic amination of 3-(amidoethylphenyl)prop-2-enyl carbonates for the synthesis of 1-vinyltetrahydroisoquinoline. Moreover, diphosphonite ligands also achieved excellent \% ee in Pd-catalyzed intermolecular asymmetric allylic amination for the key intermediate of Strychnos indole alkaloids. As a result, both our ligand libraries have the potential for other types of palladium-catalyzed allylic substitutions.

§ 2.2 Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination

§ 2.2.1 Asymmetric synthesis of natural products bearing C1-substituted tetrahydroisoquinolines

The development of efficient methods for the synthesis of C 1 -substituted tetrahydroisoquinolines has attracted much interest among synthetic organic chemists, mainly due to the interesting pharmacological properties these alkaloids possess. ${ }^{6}$ Members of this family (Figure 2-2) have shown diverse activities, ${ }^{7}$ such as anti-inflammatory properties, ${ }^{8}$ neuromuscular transmission blocking, ${ }^{9}$ antiplatelet aggregation activity, ${ }^{10}$ and enzyme inhibitory activities for acetylcholinesterase (AChE) ${ }^{11}$ and α-glucosidase. ${ }^{12}$ Thus, in order to study the biological and pharmacological activities of this class of compounds, the efficient synthesis of these alkaloids in enantiomerically pure form is of great importance.

(-)-O-methylthaicanine

(S)-Sinactine

Schulzeine $A\left(C 11 b-H \beta ; R^{1}=M e, R^{2}=H\right)$
Schulzeine B (C11b-H $\alpha ; R^{1}, R^{2}=H$);
Schulzeine C (C11b-HB; $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}$)

Figure 2-2. Selected naturally occurring C1-substituted tetrahydroisoquinolines

Optically active C1-substituted tetrahydroisoquinolines have been prepared through diastereoselective reactions for the introduction of chirality at the C 1 position. Other methods utilizing enantioselective reactions to introduce the chirality at the C 1 position have been developed in the past decade, these include enantioselective Pictet-Spengler reaction, ${ }^{13}$ alkylation, vinylation or cyanation of 3,4 -dihydroisoquinolines, ${ }^{14}$ asymmetric hydrogenation of 3,4-dihydroisoquinolines ${ }^{15}$ as well as 1 - alkylidenetetrahydroisoquinolines, ${ }^{16}$ and other transformations. ${ }^{17}$ In 2003, a Pd-catalyzed intramolecular asymmetric allylic amination (AAA) catalyzed by a Pd catalyst with a chiral P,N ligand in the presence of a strong base was reported, giving 6,7-dimethoxy-1-vinyltetrahydroisoquinoline in a single step and introducing chirality at the C-1 position. ${ }^{18}$ Although high enantioselectivity ($82-88 \%$ ee) was realized under optimized conditions, the catalytic activity of this system was insufficient since it required 12-23 days to reach synthetically meaningful conversions.

In order to achieve excellent efficiency and enantioselectivity, the selection of suitable chiral ligands for this process is essential. We have been developing a library of novel enantiopure monodentate phosphite, ${ }^{19}$ and phosphoramidite (MPN) ${ }^{20}$ ligands based on axially chiral biphenols. These ligands can be readily prepared as described in Chapter 1 and are fine-tunable for a variety of catalytic asymmetric reactions. For example, asymmetric hydrogenation, ${ }^{19}$ asymmetric hydroformylation, ${ }^{20 \mathrm{~b}}$ asymmetric conjugate additions to cycloalkenones and nitroalkeness, ${ }^{20 a, b}$ and asymmetric allylic alkylation, as well as its application to the total synthesis of $(+)-\gamma$-lycorane. ${ }^{20 \mathrm{c}}$

Since several of these chiral MPN ligands were found to be extremely effective (up to 99.7% ee) in the Pd-catalyzed asymmetric allylic alkylation mentioned above, ${ }^{20 \mathrm{c}}$ we anticipated that this type of ligands would be effective for the AAA process. Thus, we employed chiral MPN ligands to the intramolecuar AAA reaction of compounds 2-14 and 2-16, which indeed gave compounds 2-15 and 2-17 with excellent enantioselectivity (up to 96% ee for 2-15 and 91% ee for 2-17) and high catalyst activity under neutral conditions (Scheme 2-4). ${ }^{21}$

2-14

Scheme 2-4. Highly efficient AAA reaction of 2-14 and 2-16

We have also developed a library of novel chiral bidentate bisphosphonite (BOP) ligands based on axially chiral biphenols and successfully applied it to the intermolecular AAA reaction. ${ }^{22}$ Building upon the successful application of our MPN ligands to the enantioselective synthesis of compounds 2-15 and 2-17 through Pd-catalyzed AAA reaction (Scheme 2-5), we have expanded the scope of the AAA reaction to the enantioselective synthesis of 6,8-dimethoxy-1-vinyltetrahydroisoquinoline 2-19A, using MPN and BOP ligands (Figure 2-3), which serve as versatile intermediates for the synthesis of naturally occurring alkaloids
exemplified in Figure 2-2.

(S)-MPN-L1a: R=H
(S)-MPN-L1b: R = Me
(S)-MPN-L1c: $\mathrm{R}=\mathrm{Br}$
(S)-MPN-L1d: R = Ph

(R)-BOP-L1a: R=H
(S)-BOP-L1b: $\mathrm{R}=\mathrm{Me}$
(R)-BOP-L1c: $\mathrm{R}=\mathrm{Br}$
(R)-BOP-L1d: R= Ph

(R)-BOP-L1e: $\mathrm{Ar}=\mathrm{Ph}$
(R)-BOP-L1f: $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(R)-BOP-L1g: $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
(R)-BOP-L1h: $\mathrm{Ar}=4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}$
(R)-BOP-L1i: $\mathrm{Ar}=1-\mathrm{Np}$

(R)-BOP-L2a: $\mathrm{Ar}^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(S)-BOP-L2a: $\mathrm{Ar}^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(R)-BOP-L2b: $\mathrm{Ar}^{\prime}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
(R)-BOP-L2c: $\mathrm{Ar}^{\prime}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

(R)-BOP-L3a: $\mathrm{Ar}^{\prime}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(R)-BOP-L3b: $\mathrm{Ar}^{\prime}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Figure 2-3. MPN and BOP ligand libraries

Scheme 2-5. AAA reactions for the formation of 2-19A

§ 2.2.2 Preliminary results of intramolecular asymmetric allylic amination of

2-18A-a

The Pd-catalyzed AAA reaction of 2,4-dimethoxyphenylallyl carbonate 2-18A-a was first carried out by Dr. Ce Shi using MPN ligands under the same conditions as those employed in the reaction of 3,4-dimethoxyphenylallyl carbonate $\mathbf{2 - 1 4},{ }^{21}$ which gave excellent results (Scheme 2-4). The reaction proceeded smoothly to give (S)-(+)-tetrahydroisoquinoline 2-19A in excellent yield (Table 2-1). To our surprise, however, the reactions using (S)-MPN-L1a~1d did not give the same high level of enantioselectivity as that observed in the reactions of 2-14. ${ }^{21}$ As Table 2-1
shows, the best result was 47% ee (entry 3) when (S)-MPN-L1c $(\mathrm{R}=\mathrm{Br})$ was used as the chiral ligand. (S)-MPN-L1d $(\mathrm{R}=\mathrm{Ph})$, which achieved $95-96 \%$ ee in the AAA reaction of 2-14, ${ }^{21}$ gave only 29% ee (entry 4). (S)-MPN-L1a $(\mathrm{R}=\mathrm{H})$ afforded $(R)-(+)$-2-19A with 26% ee (entry 1), which has the opposite configuration to that induced by all other MPN ligands examined. The results appear to indicate that the methoxy group at the C6 position of $\mathbf{2 - 1 8 A} \mathbf{- a}$, which is ortho to the allyl carbonate moiety, is responsible for the observed marked difference in enantioselectivity for the AAA reaction of 2-14 and that of 2-18A-a. ${ }^{23}$

Table 2-1. Efficacy of MPN ligands in the Pd-catalyzed AAA reaction of 2-18A-a ${ }^{23}$

Since none of the simple MPN ligands gave encouraging result, we examined the efficacy of BOP ligands, (R)-BOP-L1a~1g and (R)-BOP-L3a~3b, in this AAA reaction. Results are summarized in Table 2-2. The reactions proceeded very smoothly in DMF at room temperature and completed in $1.5 \sim 8 \mathrm{~h}$. Among the first four BOP ligands employed (BOP-L1a~1d), which bears $\mathrm{H}, \mathrm{Me}, \mathrm{Br}$, and Ph groups at the $3,3^{\prime}$ positions, BOP-L1c $(\mathrm{R}=\mathrm{Br})$ gave the best result, i.e., 72% ee (entry 3). However, BOP-L1e ($\mathrm{Ar}=\mathrm{Ph}$) achieved even better result, giving (S)-(+)-2-19A with 79% ee (entry 5). Enantioselectivity was further increased to 84% ee and

88\% ee by introducing 4-methylbenzyl (BOP-L1f) and 3,5-dimethylbenzyl (BOP-L1g) groups, respectively, in place of benzyl group (entries 6 and 9). Introduction of p-tolyl (BOP-L3a) and 3,5-xylyl (BOP-L3b) groups as Ar moiety, keeping methyl groups as the 3, 3' substituents, also improved the enantioselectivity to 72% ee and 80% ee, respectively (entries 12 and 13), as compared to 68% ee achieved by the parent ligand, BOP-L1b (entry 2). ${ }^{23}$

Table 2-2. The Pd-catalyzed AAA reaction of 2-18A-a with BOP ligands ${ }^{23}$

Entry $^{\mathrm{a}}$	Ligand	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Conv. (\%) ${ }^{\mathrm{b}}$2-19A (S) $\% \mathrm{ee}^{\mathrm{c}}$	
1	(R)-BOP-L1a	r.t.	1.5	>95	35
2	(R)-BOP-L1b	r.t.	4	>95	68
3	(R)-BOP-L1c	r.t.	8	>95	72
4	(R)-BOP-L1d	r.t.	8	>95	68
5	(R)-BOP-L1e	r.t.	6	>95	79
6	(R)-BOP-L1f	r.t.	8	>95	84
7	(R)-BOP-L1f	0	24	>95	88
8	(R)-BOP-L1f	-25	48	<5	nd
9	(R)-BOP-L1g	r.t.	8	>95	88
10	(R)-BOP-L1g	0	24	>95	90
11	(R)-BOP-L1g	-25	48	<5	nd
12	(R)-BOP-L3a	r.t.	8	>95	72
13	(R)-BOP-L3b	r.t.	12	>95	80
105					

${ }^{\mathrm{a}}$ Reaction was run with 2-18A-a $(0.05 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(1.1 \times 10^{-3} \mathrm{mmol}\right)$ and BOP-L
$\left(3.3 \times 10^{-3} \mathrm{mmol}\right)$ in DMF $(0.5 \mathrm{~mL})$

Lowering the reaction temperature from room temperature to $0{ }^{\circ} \mathrm{C}$ improved enantioselectivity to 88% ee (from 84% ee, entry 7) for BOP-L1f and to 90% ee (from 88% ee,
entry 9) for BOP-L1g. However, at $-25^{\circ} \mathrm{C}$, the reaction was basically shut down (entries 8 and 11). ${ }^{23}$

According to the data reported above, so far, the best ee achieved is 90% using (R)-BOP-L1g at $0{ }^{\circ} \mathrm{C}$ for 24 h . (Table 2-2, entry 10). Therefore, further optimization on the structure of both the ligand and substrate are still necessary to improve the enantioselectivity of above AAA reaction.

§ 2.3 Results and discussion

Here, the main strategy for the substrate modifications was to change the substituents bearing on the resorcinol moiety from Me to Bn and PMB because we believe that the alkoxy group at C-6 position of the phenyl ring might have some steric effect to the allylic moiety and thus affect the chiral ligand orientation on the Pd catalyst to provide either a decrease or increase of enantioselectivity during the catalytic process (Figure 2-4). Furthermore, if these substituents need to be cleaved at the end of the synthesis, Bn and PMB are more appropriate protecting groups than Me due to the milder deprotection conditions. In addition to the modification of alkoxy groups, the R group of the carbonate moiety was also investigated because it acts as counterion to the Pd- η-allyl complex which can also have potential to affect the enantioselectivity during the catalytic process (Figure 2-4).

Figure 2-4. Substrate modifications

§ 2.3.1 Synthesis of substrates 2-18B-a~c and 2-18C-a~b

The AAA substrate 2-18B ($\mathrm{P}=4$-methoxybenzyl $(\mathrm{PMB}), \mathrm{R}^{\prime}=\mathrm{CF}_{3}$) was prepared from the N-trifluoroacetyl- O, O-bis-PMB-resorcinolamine (2-20B) ${ }^{25}$ as shown in Scheme 2-6. The iodination of 2-20B (TFA = trifluoroacetyl) with N-iodosuccinimide (NIS) ${ }^{26}$ proceeded smoothly to give 2-21B. No bis-iodinated product was detected by TLC. The Sonogashira coupling of 2-21B with propargyl alcohol gave compound 2-22B in fairly good yield ($60-65 \%$), wherein
conversion was $80-85 \%$ after 48 h ($15-20 \%$ 2-21B was recovered). Selective hydrogenation of 2-22B over P2-Ni catalyst under ambient conditions gave cis-allylic alcohol 2-23B cleanly. The subsequent acylation of the alcohol moiety with chloroformates gave the corresponding allylic carbonates, i.e., AAA substrates $\mathbf{2 - 1 8 B - a} \sim \mathbf{c}$ in excellent yields. In the same manner, AAA substrates $\mathbf{2 - 1 8 C - a}, \mathbf{b}$ were prepared from N-trifluoroacetyl- O, O-dibenzylresorcinolamine (2-20C) in similar yield.

88-93\%
(a) $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$; (b) $\mathrm{R}=\mathrm{Ph}$;
(c) $\mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
2-18C: $\mathrm{P}=\mathrm{PhCH}_{2}$; (a) $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$;
(b) $\mathrm{R}=\mathrm{Ph}$

Scheme 2-6. Preparation of AAA substrate 2-18B-a~c and 2-18C-a~b

§ 2.3.2 Pd-Catalyzed intramolecular asymmetric allylic amination

Since BOP ligands gave better ee than MPN ligands did in this type of reaction, the previously reported BOP ligands ($\mathbf{L 1 a \sim 1 i}$) and some new BOP ligands ($\mathbf{L 2 a} \sim \mathbf{2 c}$) were synthesized (Figure 2-3) and examined for efficacy in the AAA reaction of 2-18.

Scheme 2-7. Pd-catalyzed AAA reaction of 2-18

First, BOP-L1a~d were screened for the AAA reaction of 2-18B-a to give 2-19B using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(\mathrm{dba}=$ dibenzylideneacetone $)$ as the catalyst precursor in DMF at room temperature under nitrogen (Scheme 2-7). As shown in Table 2-3, all reactions gave $>95 \%$ conversion in less than 6 h . There was a dramatic increase in enantioselectivity when the 3,3 '-substituents were changed from hydrogen (entry 1) to methyl and other groups (entries 2-4). Among the four BOP ligands examined, (S)-BOP-L1b $(\mathrm{R}=\mathrm{Me}$), gave $(-)-\mathbf{2 - 1 9 B}$ with 80% ee (entry 2). Accordingly, we also carried out the reaction of $\mathbf{2 - 1 8 C - a}\left(\mathrm{P}=\mathrm{PhCH}_{2}, \mathrm{R}=\right.$ vinyl) to see if there was a difference in enantioselectivity, depending on the protecting group of the phenolic hydroxyl groups (Scheme 2-7). The reactions of 2-18C-a and 2-18C-b under the same conditions as those for 2-18B-a completed in 2 h and 6 h , respectively, to afford $(-)-\mathbf{2 - 1 9 C}\left(\mathrm{P}=\mathrm{PhCH}_{2}\right)$ in quantitative yield with 75% ee and 76% ee, respectively. Thus, 2-18B-a appeared to be a better substrate than $\mathbf{2 - 1 8 C} \mathbf{- a}$ and $\mathbf{2 - 1 8 C - b}$. Also, it was found that there was a difficulty in separating (-)-2-19C from a small amount of dba by flash chromatography on silica gel, due to their very small difference in polarity. In contrast, the separation of (-)-2-19B from dba did not have any problem. Therefore, 2-18B series substrates $(\mathrm{P}=\mathrm{PMB})$ were selected for optimization.

Table 2-3. Screening of BOP ligands L1a~d for the AAA reaction of 2-18B-a ${ }^{a}$

| Entry | Ligand (L*) | Time (h) | Conv. $(\%)^{b}$ | $\mathbf{2 - 1 9 B}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ ee c | | | | |

${ }^{a}$ All reactions were run using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$ with a BOP ligand ($7.5 \mathrm{~mol} \%$) in DMF at room temperature under N_{2}. ${ }^{b}$ Determined by 1H NMR. ${ }^{c}$ Determined by HPLC using Chralpak AD-RH, CH3CN/H2O $=50 / 50$.

BOP ligands bearing benzyl or substituted benzyl group at the 3,3'-positions were examined, as well. Results are shown in Table 2-4. Among those BOP ligands screened,
(R)-BOP-L1g ($\mathrm{R}=3,5$-dimethylbenzyl) gave the best result so far (entry 3). Thus, this BOP ligand was selected as the ligand of choice for further optimization.

Table 2-4. Screening of new BOP ligands for the AAA reaction of 2-18B-a ${ }^{a}$

Entry	Ligand (L*)	Time (h)	Conv. (\%)	$\mathbf{2 - 1 9 B}$ $\% \mathrm{ee}^{c}$
1	(R)-BOP-L1e	4	>95	$83(+)$
2	(R)-BOP-L1f	4	>95	$83(+)$
3	(R)-BOP-L1g	6	>95	$84(+)$
4	(R)-BOP-L1h	4	>95	$80(+)$
5	(R)-BOP-L1i	4	>95	$80(+)$

${ }^{a, b, c}$ See the footnote of Table 2-3.

Next, the effects of the concentration of the reaction mixture as well as the chiral ligand $/ \mathrm{Pd}$ ratio on enantioselectivity were examined using (R)-BOP-L1g. As shown in Table 2-5, higher concentrations gave better results (entries 3 and 4) than the lower concentration (entry 1) that was employed in the screening described above. At concentrations higher than $0.5 \mathrm{M}, \mathrm{Pd}$ species precipitated out, resulting in low reactivity. Thus, we chose 0.5 M concentration for further optimization, although 0.25 M concentration afforded a slightly higher enantioselectivity, by taking into account the economical and environmental merit of using less solvent.

Table 2-5. Effect of concentration and $L^{*} / P d$ ratio on the AAA reaction of 2-18B-a ${ }^{a}$

Entry	conc. (M)	$\mathrm{L}^{*} / \mathrm{Pd}$	Time (h)	Conv. $(\%)^{b}$	$\mathbf{2 - 1 9 B}$ $\% \mathrm{ee}^{c}$
1	0.05	1.5	6.0	>95	$84.0(+)$
2	0.10	1.5	5.5	>95	$87.5(+)$
3	0.25	1.5	5.0	>95	$90.3(+)$
4	0.50	1.5	5.0	>95	$90.1(+)$
5	0.50	1.0	4.5	>95	$91.1(+)$

[^0]For the optimal ligand/Pd ratio, just the use of 1 equivalent of BOP-L1g to Pd metal gave a bit better enantioselectivity than that achieved by using 1.5 equivalents of the ligand to the metal (entry 5). Thus, the stoichiometric use of the ligand was employed for further optimization.

At this point, we examined the possible electronic effect of the diphenylphosphinyl moiety of BOP-L1g on enantioselectivity as a further optimization process. Thus, (R)-BOP-L2a~c ligands were prepared (see Experimental Section), and their efficacy evaluated in the AAA of 2-18B-a under the optimized conditions described above. As shown in Table 2-6, the introduction of electron-releasing substituents, i.e. Me (BOP-L2a) and MeO (BOP-L2b) groups, at the para-position of the diphenylphosphinyl moiety of BOP-L1g improved the efficacy (entries 2-4), while that of electron-withdrawing CF_{3} group (BOP-L2c) considerably decreased enantioselectivity (entry 5). Accordingly, (R)-BOP-L2a, which gave 94.0% ee (entry 2), was selected as the best BOP ligand for this reaction.

Table 2-6. Electronic effect on the efficacy of new BOP ligands

Entry	Ligand (L*)	Time (h)	Conv. (\%) $)^{b}$	$\mathbf{2 - 1 9 B}$ $\% \mathrm{ee}^{c}$
1	(R)-BOP-L1g	4.5	>95	$91.1(+)$
2	(R)-BOP-L2a	7	>95	$94.0(+)$
3	(S)-BOP-L2a	7	>95	$96.1(-)$
4	(R)-BOP-L2b	7	>95	$93.3(+)$
5	(R)-BOP-L2c	7	>95	$81.5(+)$

${ }^{a}$ Reactions were run using Pd2(dba)3 ($2.5 \mathrm{~mol} \%$) with a BOP ligand ($5.0 \mathrm{~mol} \%$) in DMF at room temperature.
${ }^{b, c}$ See the footnote of Table 2-3.

We also examined the effect of the allylic carbonate substituents on this AAA reaction. As shown in Table 2-7, the vinyl carbonate (2-18B-a) gave slightly better result (94.0% ee) (entry 1) than other two carbonates (2-18B-b and 2-18B-c; entries 2 and 3). Effect of the reaction temperature on enantioselectivity and reaction rate was also examined. The reaction at 10 and 0 ${ }^{\circ} \mathrm{C}$ gave higher enantioselectivity (95.0 and 95.6% ee, respectively), but at $0{ }^{\circ} \mathrm{C}$ the reaction rate was substantially decreased as compared to that at 10 or $25^{\circ} \mathrm{C}$ (entries 4 and 5).

Table 2-7. Effects of the substrate structure and reaction temperature on the AAA reaction

Entry	Substrate	$\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Conv. $(\%)^{b}$	2-19B $\% \mathrm{ee}^{c}$
1	2-18B-a	25	7	>95	$94.0(+)$
2	2-18B-b	25	7	>95	$93.6(+)$
3	2-18B-c	25	7	>95	$92.0(+)$
4	2-18B-a	10	48	>95	$95.0(+)$
5	2-18B-a	0	96	76	$95.6(+)$

${ }^{\bar{a}}$ Reactions were run using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$ with (R)-BOP-L2a ($5.0 \mathrm{~mol} \%$) in DMF at room temperature.
${ }^{b, c}$ See the footnote of Table 2-3.

§ 2.4 Conclusions

We have successfully synthesized 1 -vinyl-6,8-di(4-methoxybenzyl)tetrahydroisoquinoline 2-19B with $>95 \%$ ee by means of Pd-catalyzed intramolecular AAA reactions using the BOP ligand library, developed in our laboratory. The 1 -vinlyltetrahydroisoquinolines thus obtained can be served as the key intermediate for the synthesis of Schulzeines A-C which was described in chapter 3.

§ 2.5 Experimental section

General Methods: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were measured on a Varian Inova-500 NMR (500 $\mathrm{MHz}{ }^{1} \mathrm{H}$, and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Inova-400 NMR ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 162 \mathrm{MHz}$ ${ }^{31} \mathrm{P}$) or a Varian Gemini-2300 (300 MHz ${ }^{1} \mathrm{H} ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} ; 121.5 \mathrm{MHz}{ }^{31} \mathrm{P}$) spectrometer in a deuterated solvent using residual protons $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm} . \mathrm{C}_{6} \mathrm{H}_{6}:{ }^{1} \mathrm{H}, 7.15\right.$ $\mathrm{ppm})$ as the internal standard or phosphoric acid as the external reference (${ }^{31} \mathrm{P} 0.00 \mathrm{ppm}$). Analytical HPLC in reverse phase was carried out with a Shimadzu LC-2010A HPLC system using a Chiralpak AD-RH analytical column. Melting points were measured on a Thomas Hoover Capillary melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Helmer Model 241 polarimeter. TLC analyses were performed using Merck DC Alufolien 60F254 aluminum pre-coated silica gel plates. Flash column chromatography was carried out using Silicyle SiliaFlashP60® silica gel (particle size $40-63 \mu \mathrm{~m}$). High-resolution mass spectrometric analyses were carried out at Mass Spectrometry Laboratories, University of

Illinois Urbana-Champaign, Urbana, IL and ICB\&DD at Stony Brook University. Unless otherwise noted all reactions were carried out under argon or nitrogen atmosphere in oven-dried glassware using standard Schlenck techniques.
Materials: Solvents were reagents grade and freshly distilled before use. Tetrahydrofuran (THF) and dichloromethane (DCM) were dried and degassed using an Innovative Technology PureSolvTM solvent purification system. Acetonitrile was distilled from calcium hydride. Anhydrous N, N-dimethylformamide (DMF) was purchased from Acros and used without further purification. Other solvents were used without purification. Other chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification unless otherwise noted. Chiral biphenols and chiral BOP ligands, L1a-L1i were prepared according to the procedure previously reported by our laboratory. ${ }^{22}$

Synthesis of substrates 2-18B-a~c and 2-18C-a~b

3,5-Bis(4-methoxybenzyloxy)benzaldehyde

To a stirred solution of 3,5-dihydroxybenzaldehyde (4.50 g , 32.6 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv) in DMF (150 mL) was added 4-methoxybenzyl chloride ($9.60 \mathrm{~mL}, 71.7 \mathrm{mmol}$) at room temperature. Then, the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to room temperature and diluted with EtOAc $(75 \mathrm{~mL})$ and water $(75 \mathrm{~mL})$. The organic layer was separated and washed with water ($100 \mathrm{~mL} x 3$). The organic layer was then washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford crude yellow solid. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded 3,5-bis(4-methoxybenzyloxy)benzaldehyde as a white solid ($9.48 \mathrm{~g}, 77 \%$ yield): mp $70-71{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82(\mathrm{~s}, 6 \mathrm{H}), 5.01(\mathrm{~s}, 4 \mathrm{H}), 6.84(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 9.89(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.5,70.4,106.1,108.5,108.9,114.3,128.5,129.5,138.6,159.9,160.6,192.0$; HRMS (ESI +) calcd. For $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 401.1365$, found 401.1366 ($\Delta=0.2 \mathrm{ppm}$).

1,3-Bis(4-methoxybenzyloxy)-5-[(E)-2-nitroethenyl]benzene

A mixture of 3,5-bis(4-methoxybenzyloxy)benzaldehyde (7.62 g, 20.2 mmol), $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{NH}_{4}$ $(1.56 \mathrm{~g}, 20.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{NO}_{2}(106 \mathrm{~mL})$ was placed in a 250 mL round-bottomed flask. Then, the mixture was heated to reflux (about $110{ }^{\circ} \mathrm{C}$) for 1.5 h . The reaction mixture was cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} x 2)$. The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford crude yellow solid, which was washed with EtOH to afford 1,3-bis(4-methoxybenzyloxy)-5-[(E)-2-nitroethenyl]benzene as a yellow solid (7.21 g, 85\% yield): mp 128-130 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.99(\mathrm{~s}, 4 \mathrm{H}), 6.73(\mathrm{~m}, 3 \mathrm{H})$, 6.93 (d, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.51(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.5,70.4,106.1,108.4,114.3,128.4,129.5,131.9,137.7$, 139.3, 159.9, 160.6; HRMS (ESI+) calcd. For $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 444.1423$, found 444.1422 ($\Delta=-0.2 \mathrm{ppm}$).

1,3-Bis(4-methoxybenzyloxy)-5-[2-(N-trifluoroacetylamino)ethyl]benzene (2-20B)

To a suspension of $\mathrm{LiAlH}_{4}(2.54 \mathrm{~g}, 66.4 \mathrm{mmol})$ in THF (50 mL) was added dropwise a solution of 1,3-bis(4-methoxybenzyloxy)-5-[(E)-2-nitroethenyl]benzene ($6.98 \mathrm{~g}, 16.6 \mathrm{mmol}$) in THF (120 mL) at $0{ }^{\circ} \mathrm{C}$ under nitrogen. Then, the mixture was heated to $65{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and quenched with $20 \% \mathrm{KOH}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting precipitate was removed by filtration, and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} x 3)$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as brown oil. The brown
oil was dissolved in $\mathrm{DCM}(120 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(5.77 \mathrm{~mL}, 41.5 \mathrm{mmol})$ was added. To this mixture was added slowly $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(3.04 \mathrm{~mL}, 21.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and distilled water (10 mL) was added to quench the reaction. The aqueous layer was separated and extracted with DCM ($50 \mathrm{~mL} x 3$). The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as a brown solid. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=20: 1 \rightarrow 5: 1$) afforded 2-20B as a white solid ($4.68 \mathrm{~g}, 58 \%$ yield for two steps): mp $116-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.81(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 4.94(\mathrm{~s}, 4 \mathrm{H}), 6.26$ (br, 1H), $6.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.3,40.9,55.5,70.1,100.8,107.9,114.3,116.0(\mathrm{q}$, $J=286 \mathrm{~Hz}), 128.9,129.5,139.9,157.3(\mathrm{q}, ~ J=37 \mathrm{~Hz}$), 159.7, 160.6; HRMS (ESI+) calcd. For $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 490.1841$, found $490.1840(\Delta=-0.2 \mathrm{ppm})$.

2,4-Bis(4-methoxybenzyloxy)-1-iodo-6-[2-(trifluoroacetamido)ethyl)]benzene (2-21B)

To a solution of 2-20B ($3.26 \mathrm{~g}, 6.65 \mathrm{mmol}$) in anhydrous DMF (12 mL) was added N -iodosuccinimide (NIS) $(1.87 \mathrm{~g}, 8.31 \mathrm{mmol})$ all at once at room temperature. The mixture was stirred at room temperature until TLC indicated the completion of the reaction (18 h). The reaction mixture was then diluted with EtOAc $(50 \mathrm{~mL})$ and filtered through a pad of Celite. The filtrate was washed with distilled water (50 mL), and the aqueous layer was extracted with EtOAc ($50 \mathrm{~mL} x 2$). The combined organic layer was washed with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{~mL} x 2$) and brine, and died over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as a yellow solid. Recrystallization of the crude product from hexanes/EtOAc (4/1) afforded 2-21B as white solid ($3.71 \mathrm{~g}, 91 \%$ yield): mp $134-135{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.07(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82(\mathrm{~s}, 6 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{br}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 39.9,40.0,55.4,55.5,70.3,71.2,82.9,100.2,108.6,114.2,114.3,116.0(\mathrm{q}$,
$J=287 \mathrm{~Hz}), 128.5,128.6,128.9,129.5,142.6,157.5(\mathrm{q}, ~ J=37 \mathrm{~Hz}), 158.6,159.6,159.9,160.5$; HRMS (ESI+) calcd. For $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~F}_{3} \mathrm{NaI}[\mathrm{M}+\mathrm{Na}]^{+} 638.0627$, found 638.0626 ($\Delta=-0.2 \mathrm{ppm}$).

1,3-Bis(4-methoxybenzyloxy)-6-(3-hydroxyprop-1-ynyl)-5-[2-(trifluoroacetamido)ethyl]ben zene (2-22B)

A mixture of 2-21B ($1.52 \mathrm{~g}, 2.47 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(86.7 \mathrm{mg}, 0.124 \mathrm{mmol})$, and CuI $(47.0 \mathrm{mg}, 0.247 \mathrm{mmol})$ was placed in a 50 mL round-bottomed flask. After purging the flask with nitrogen, $\mathrm{Et}_{2} \mathrm{NH}(30 \mathrm{~mL})$ was added to the mixture, and the solution was stirred for 20 min at $30{ }^{\circ} \mathrm{C}$ to dissolve 2-21B. Propargyl alcohol ($0.29 \mathrm{~mL}, 4.94 \mathrm{mmol}$) was added to this mixture via a syringe under at the same temperature. The reaction mixture was heated to reflux until TLC indicated the completion of the reaction (48 h). Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc ($30 \mathrm{~mL} x 3$). The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as brown oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=5: 1 \rightarrow 1: 1$) afforded 2-22B as an off-white solid ($851 \mathrm{mg}, 63 \%$ yield): mp $123-124{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.53(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H})$, $5.05(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{br}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.5,40.7,52.0,55.5,55.6,70.2,70.7,80.2,95.2,99.8,105.6,107.9,114.2$, $114.3,116.0(\mathrm{q}, ~ J=286 \mathrm{~Hz}), 128.5,128.8,128.9,129.5,142.9,157.6$ (q, $J=37 \mathrm{~Hz}$), 159.6, 159.9, 160.1, 161.1; HRMS (ESI+) calcd. For $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 544.1947$, found 544.1947 ($\Delta=0.0 \mathrm{ppm}$).

1,3-Bis(4-methoxybenzyloxy)-6-[(Z)-3-hydroxyprop-1-enyl]-5-[2-(trifluoroacetamido)ethyl] benzene (2-23B)

P2-Ni catalyst was generated in situ by adding $\mathrm{NaBH}_{4}(85.9 \mathrm{mg}, 1.70 \mathrm{mmol})$ to a suspension of $\mathrm{Ni}(\mathrm{OAc})_{2}(271.3 \mathrm{mg}, 0.893 \mathrm{mmol})$ in $\mathrm{EtOH}(7 \mathrm{~mL})$ at room temperature under nitrogen with stirring. After 30 min , neat ethylenediamine ($140 \mu \mathrm{~L}, 2.05 \mathrm{mmol}$) was added to the reaction mixture via a syringe. After stirring the catalyst solution for another $10 \mathrm{~min}, \mathbf{2 - 2 2 B}$ (790 $\mathrm{mg}, 1.45 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added. The nitrogen atmosphere was then replaced by hydrogen (1 atm). The reaction mixture was stirred until TLC indicated the completion of the reaction (18 h). The reaction was quenched by addition of water (20 mL), and the aqueous layer was extracted with EtOAc ($25 \mathrm{~mL} x 3$). The combined organic layer was washed with saturated NaHCO_{3} solution and brine, and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as an off-white solid. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=7: 3 \rightarrow 1: 1$) afforded 2-23B as a white solid ($759 \mathrm{mg}, 96 \%$ yield): mp $74-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.73(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{dd}, J=0.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 6.01(\mathrm{dt}, J=7.2,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{br}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.2,40.0,55.5,55.6,60.5,70.2,70.9,100.0,107.8,114.3$, $114.4,116.0(\mathrm{q}, J=287 \mathrm{~Hz}), 118.4,124.8,128.6,128.9,129.4,129.5,133.5,138.3,157.2,157.4$ (q, $J=38 \mathrm{~Hz}$), 159.4, 159.8; HRMS (ESI+) calcd. For $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$568.1923, found $568.1918(\Delta=-0.9 \mathrm{ppm})$.

1,3-Bis(4-methoxybenzyloxy)-6-(3-ethenyloxycarbonyloxyprop-1-enyl)-[2-(trifluoroacetami do) ethyl]benzene (2-18B-a)

To a solution of 2-23B ($221 \mathrm{mg}, 0.404 \mathrm{mmol}$) and pyridine $(0.8 \mathrm{~mL})$ in $\mathrm{DCM}(8 \mathrm{~mL})$ was added slowly vinyl chloroformate $(0.050 \mathrm{~mL}, 0.48 \mathrm{mmol})$ in $\mathrm{DCM}(2.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring the mixture at $0{ }^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched by saturated $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x 4)$. Combined organic layer was washed with distilled water and brine, and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as an off-white solid. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=5: 1 \rightarrow 7: 3$) afforded 2-18B-a as a white solid ($231 \mathrm{mg}, 93 \%$ yield) : mp $109-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{dd}, J=1.2,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=2.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}$, $J=2.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{dt}, J=6.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46(\mathrm{dt}, J=2.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{br}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.95(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 32.9,39.5,55.5,55.6,66.9,70.2,70.6,98.3,99.8,107.9$, 114.2, 114.3, $116.0(\mathrm{q}, J=287 \mathrm{~Hz}), 117.0,127.0,127.4,128.8,128.9,129.3,129.6,138.5,142.6$, 153.1, $157.4,157.5\left(\mathrm{q}, ~ J=38 \mathrm{~Hz}\right.$), 159.7, 159.8; HRMS (ESI+) calcd. For $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{NO}_{8} \mathrm{~F}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 638.1978$, found $638.1979(\Delta=0.2 \mathrm{ppm})$.

1,3-Bis(4-methoxybenzyloxy)-6-(3-phenoxycarbonyloxyprop-1-enyl)-[2-(trifluoroacetylami no)ethyl]benzene (2-18B-b)

The carbonate 2-18B-b was synthesized in the same manner as that described for 2-18B-a:

White solid (88% yield); mp 109-110 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.51(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{dt}, J=6.6$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (br, 1H), $6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.37(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.9,39.4,55.5,55.6,67.0,70.1,70.6,99.8,107.9,114.2,114.3,115.9(\mathrm{q}, J=$ $286 \mathrm{~Hz}), 117.1,121.1,126.3,127.1,127.4,128.8,128.9,129.3,129.5,129.6,138.5,151.2,154.1$, $157.3,157.4(\mathrm{q}, ~ J=37 \mathrm{~Hz}), 159.6,159.7,159.8$; HRMS (ESI+) calcd. For $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{NO}_{8} \mathrm{~F}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 688.2134$, found $688.2131(\Delta=-0.4 \mathrm{ppm})$.

1,3-Bis(4-methoxybenzyloxy)-6-[3-(2,6-dimethylphen-1-oxy)carbonyloxyprop-1-enyl]-[2-(tri

 fluoroacetylamino) ethyl]benzene ($2-17 \mathrm{~A}-\mathrm{c}$)

The carbonate 2-18B-c was synthesized in the same manner as that described for 2-18B-a: Colorless oil (92% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.12(\mathrm{~s}, 6 \mathrm{H}), 2.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 4.57(\mathrm{dd}, J=1.2$ and $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~s}$, $2 \mathrm{H}), 5.91(\mathrm{dt}, J=6.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ (s, 3H), $7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.8$, $15.9,32.7,39.1,55.3,66.8,69.9,70.3,99.6,107.7,113.9,114.0,115.7$ (q, $J=282 \mathrm{~Hz}$), 116.8, $126.1,126.9,127.2,128.5,128.6,129.1,129.3,129.9,138.3,148.2,153.3,157.0,157.3$ (q, $J=$ $36 \mathrm{~Hz}), 159.4,159.5,159.6$; HRMS (ESI +) calcd. For $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{NO}_{8} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 716.2447$, found $716.2451(\Delta=0.6 \mathrm{ppm})$.

In the same manner as that described for $\mathbf{2 - 1 8 B} \mathbf{- a} \sim \mathbf{c}, \mathbf{2 - 1 8 C - a}, \mathbf{b}$ were prepared. Characterization data are shown below:

1,3-Dibenzyloxy-5-[(E)-2-nitroethenyl]benzene

Yellow solid; 65% yield; mp 110-112 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 5.06(\mathrm{~s}, 4 \mathrm{H}), 6.75$ (br, 3 H), 7.35-7.42 (m, 10H), $7.50(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDC1}_{3}$) $\delta 70.5,106.0,108.4,127.7,128.4,128.9,132.0,136.4,137.7,139.2,160.6$; HRMS (ESI +) calcd. For $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 362.1392$, found 362.1396 ($\Delta=1.1 \mathrm{ppm}$). All data are in agreement with the literature values.

1,3-Dibenzyloxy-5-[2-(N-trifluoroacetylamino)ethyl]benzene (2-20C)

White crystal; 55\% yield for two steps from 1,3-dibenzyloxy-5-[(E)-nitroethenyl]benzene: mp 85-87 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.03(\mathrm{~s}, 4 \mathrm{H}), 6.26(\mathrm{br}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.4,40.9,70.3,100.8,108.1,116.0(\mathrm{q}, ~ J=286 \mathrm{~Hz}$), 127.7, 128.3, 128.8, 136.9, 140.1, 157.3 (q, $J=36 \mathrm{~Hz}$), 160.6; HRMS (ESI+) calcd. For $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~F}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 430.1630$, found $430.1629(\Delta=-0.2 \mathrm{ppm})$.

2,4-Dibenzyloxy-1-iodo-6-[2-(trifluoroacetamido)ethyl)]benzene (2-21C)

White solid; 92% yield; $\mathrm{mp} 139-141{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.08(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.61(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.37(\mathrm{br}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.50(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 39.9,40.0,70.6$, 71.3, 82.9, 100.1, 108.6, 116.0 (q, $J=286 \mathrm{~Hz}$), 127.3, 127.7, 128.2, 128.5, 128.8, 128.9, 136.4,
$136.5,142.7,157.5(\mathrm{q}, J=36 \mathrm{~Hz}), 158.5,160.5$. HRMS (ESI+) calcd. For $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~F}_{3} \mathrm{NaI}$ $[\mathrm{M}+\mathrm{Na}]^{+} 578.0416$, found $578.0415(\Delta=-0.2 \mathrm{ppm})$.

1,3-Dibenzyloxy-6-(3-hydroxyprop-1-ynyl)-5-[2-(trifluoroacetamido)ethyl]benzene (2-22C)

Off-white solid; 55% yield; mp 121-123 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.50(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{br}, 1 \mathrm{H}), 7.31-7.45(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 34.5,40.7,51.9,70.4,70.8,80.1,95.3,99.8,105.7,107.9,116.0(\mathrm{q}, J=287 \mathrm{~Hz})$, 127.1, 127.8, 128.1, 128.4, 128.8, 128.9, 136.5, 136.8, 142.9, 157.7 (q, $J=37 \mathrm{~Hz}$), 160.0, 161.0. HRMS (ESI +) calcd. For $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 506.1555$, found $506.1551(\Delta=-0.8 \mathrm{ppm})$.

1,3-Dibenzyloxy-6-[(Z)-3-hydroxyprop-1-enyl]-5-[2-(trifluoroacetamido)ethyl]benzene

 (2-23C)

White solid; 98% yield; $\mathrm{mp} 138-140{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.84(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.55(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{dt}, J=$ $7.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{br}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.1,39.9,60.4,70.4,71.0$, 99.9, 107.8, 116.0 (q, $J=286 \mathrm{~Hz}$), 118.4, 124.8, 127.6, 127.8, 128.3, 128.4, 128.8, 128.9, 133.5, 136.7, 136.8, 138.3, 157.2, $157.5(\mathrm{q}, J=36 \mathrm{~Hz}$), 159.3; HRMS (ESI+) calcd. For $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 508.1712$, found 508.1714 ($\left.\Delta=0.4 \mathrm{ppm}\right)$.

1,3-Dibenzyloxy-6-(3-ethenyloxycarbonyloxyprop-1-enyl)-[2-(trifluoroacetamido) ethyl]benzene (2-18C-a)

White sticky solid; 89% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ $(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{dd}, J=2.1,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 5.90$ (dt, $J=7.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{br}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=7.2,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.44(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 32.7,39.3,66.6,70.2,70.6,98.1,99.6,107.8,115.8(\mathrm{q}, J=286 \mathrm{~Hz}), 117.0,126.9$, $127.3,127.6,128.0,128.1,128.6,136.5,136.6,138.4,142.4,152.9,157.1,157.5(\mathrm{q}, J=37 \mathrm{~Hz})$, 159.4; HRMS (ESI +) calcd. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$578.1766, found $578.1762(\Delta=-0.7$ ppm).

1,3-Dibenzyloxy-6-(3-phenoxycarbonyloxyprop-1-enyl)-[2-(trifluoroacetylamino)ethyl]benz ene (2-18C-b)

White solid; 91% yield; mp 112-114 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.89(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.52(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 4 \mathrm{H}), 5.95(\mathrm{dt}, J=6.3,11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{br}, 1 \mathrm{H})$, 7.04-7.25 (m, 5H), 7.32-7.44 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.9,39.4,67.0,70.4$, $70.8,99.8,108.0,116.3$ (q, $J=287 \mathrm{~Hz}$), 117.2, 121.1, 126.3, 127.1, 127.4, 127.5, 127.8, 128.2, 128.3, 128.8, 128.9, 129.6, 136.8, 138.6, 151.1, 154.1, 157.2, 157.5 (q, $J=37 \mathrm{~Hz}$), 159.6; HRMS (ESI +) calcd. For $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 628.1923$, found 628.1917 ($\Delta=-1.0 \mathrm{ppm}$).

General procedure for intramolecular asymmetric allylic amination

(+)-(S)-2-19B

(R)-BOP-L2a

Typical procedure is described for the reaction of 2-18B-a to afford (+)-6,8-bis-(4-methoxybenzyloxy)-1-ethenyl-2-trifluroacetyl-3,4-dihydro-1H-isoquinoline, (+)-(S)-2-19B: A solution of BOP ligand (R)-L2a ($28.5 \mathrm{mg}, 0.0319 \mathrm{mmol}$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(14.8 \mathrm{mg}, 0.0159 \mathrm{mmol})$ in DMF (1.3 mL) was added to a reaction tube with a stirring bar under nitrogen. The solution was stirred at room temperature until the color of the solution turned to light yellow from purple. Then, 2-18B-a ($400 \mathrm{mg}, 0.638 \mathrm{mmol}$) was added to the catalyst solution via a syringe. The mixture was stirred at room temperature until TLC indicated completion of the reaction. The resulting solution was diluted with water (20 mL). The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL} x 3)$. The combined organic layer was washed with water ($20 \mathrm{~mL} \times 5$) and brine, and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as orange oil. The conversion of the reaction was checked by ${ }^{1} \mathrm{H}$ NMR, which indicated over 95% conversion and 100% product selectivity. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 5: 1$) afforded $(+)-(S) \mathbf{- 2 - 1 9 B}$ as colorless oil $(285 \mathrm{mg}, 85 \%$ yield). The pure product was then subjected to chiral HPLC analysis, using a Chiralcel AD-RH column $\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}=50 / 50,0.7 \mathrm{~mL} / \mathrm{min}\right)$, which indicated that the enantiopurity of the product $(+)-(S) \mathbf{- 2 - 1 9 B}$ was 94.0% ee. The S configuration was tentatively assigned by comparison of the sign of the optical rotation of $(+)-(S)-\mathbf{2 - 1 9 B}$ with that of structurally close $(+)-(S)$-1-ethenyl-2-trifluoroacetyl-6,7-dimethoxy- 1,2,3,4-tetrahydroisoquinoline1 and further confirmed by converting $(+)-(S)-\mathbf{2 - 1 9 B}$ to literature known $(-)-(S, S)-\mathbf{3 - 1 2}$ (see chapter 3 for the detail).
$(+)-(S)-2-19 \mathrm{~B}:[\alpha]_{\mathrm{D}}{ }^{21}+66.0(c \quad 1.5, \mathrm{DCM}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (a mixture of two rotamers) $\delta 2.76-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.05(\mathrm{~m}, 1 \mathrm{H}),[3.30-3.40(\mathrm{~m}, 0.33 \mathrm{H}), 3.58-3.66(\mathrm{~m}, 0.67 \mathrm{H})$], $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}),[3.92-4.00(\mathrm{~m}, 0.67 \mathrm{H}), 4.35-4.42(\mathrm{~m}, 0.33 \mathrm{H})$], 4.93-4.99 (m, 5H),
5.19-5.24 (m, 1H), 5.87-6.00 (m, 1H), [5.80-5.84 (m, 0.33H), 6.20-6.24 (m, 0.67H)], [6.35 (d, J $=2.1 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.38(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.33 \mathrm{H})], 6.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (a mixture of two rotamers) (major) $\delta 29.5,39.9,51.6,55.5,70.070 .1,99.1,105.6$, $114.2,114.3,115.4,116.7,116.8(\mathrm{q}, ~ J=287 \mathrm{~Hz}), 128.8,128.9,129.0,129.4,135.1,135.4,155.9$ $(\mathrm{q}, J=36 \mathrm{~Hz}), 156.0,159.1,159.6,159.8$; (minor) $\delta 28.0,38.0,53.4,55.5,70.0,70.1,99.0$, $105.9,114.2,114.3,115.4,116.8(\mathrm{q}, ~ J=287 \mathrm{~Hz}), 117.1,128.8,128.9,129.0,129.5,135.8,136.2$, $155.8(\mathrm{q}, ~ J=36 \mathrm{~Hz}), 156.6,159.4,159.6,159.8$; HRMS (ESI+) calcd. For $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~F}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 550.1817$, found $550.1818(\Delta=0.2 \mathrm{ppm})$.

(-)-6,8-Bis(4-methoxybenzyloxy)-1-ethenyl-2-trifluroacetyl-3,4-dihydro-1 \boldsymbol{H}-isoquinoline,(-)-

 (R)-2-19B.

The compound (-)-(R)-2-19B was obtained in the same manner as that described for the synthesis of (+)-(S)-2-19B except for using (S)-BOP-L2a as the chiral ligand: 85\% yield; 96.1\% ee. All characterization data were identical to those of $(+)-(S)$-2-19B except for $[\alpha]_{D}{ }^{21}-67.1(c$ 1.5, DCM). HRMS (ESI +) calcd. For $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 528.1998$, found 528.1996 ($\Delta=-0.4$ ppm).
(-)-6,8-Dibenzyloxy-1-ethenyl-2-trifluroacetyl-3,4-dihydro-1 \boldsymbol{H}-isoquinoline [(-)-(R)-2-19C].

$(-)-(R)-2-19 \mathrm{C}$
Colorless oil; 83% yield; 75% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of two rotamers) $\delta 2.73-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.06(\mathrm{~m}, 1 \mathrm{H}),[3.32-3.42(\mathrm{~m}, 0.36 \mathrm{H}), 3.58-3.69(\mathrm{~m}, 0.64 \mathrm{H})]$, [3.90-4.00 (m, 0.64H), 4.35-4.44 (m, 0.36H)], 4.93-5.10 (m, 5H), 5.19-5.27 (m, 1H), 5.99 (ddd, J $=4.4,10.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}),[5.85-5.90(\mathrm{~m}, 0.36 \mathrm{H}), 6.25-6.30(\mathrm{~m}, 0.64 \mathrm{H})],[6.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}$,
$0.64 \mathrm{H}), 6.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.36 \mathrm{H})], 6.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of two rotamers) (major) $\delta 29.5,39.8,51.6,70.370 .5,99.1,105.8$, $115.6,116.8(\mathrm{q}, J=287 \mathrm{~Hz}), 116.9,117.0,117.2,127.3,128.3,128.8,135.1,135.9,136.8,137.0$, 155.8 (q, $J=36 \mathrm{~Hz}$), 156.6, 159.1; (minor) $\delta 28.0,38.0,53.4,70.2,70.4,99.0,106.1,115.5$, 116.7, 116.8 (q, $J=287 \mathrm{~Hz}$), 117.1, 117.3, 127.1, 127.7, 128.1, 135.0, 135.8, 136.3, 136.9, 155.9, $156.2\left(\mathrm{q}, J=36 \mathrm{~Hz}\right.$), 159.1; HRMS (ESI+) calcd. For $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 468.1787$, found 468.1786 ($\Delta=-0.2 \mathrm{ppm})$.

§ 2.6 References

1. Tsuji, J.; Takahashi, H.; Morikawa, M., Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Letters 1965, 6 (49), 4387-4388.
2. Trost, B. M.; Strege, P. E., Asymmetric induction in catalytic allylic alkylation. Journal of the American Chemical Society 1977, 99 (5), 1649-1651.
3. Trost, B. M.; Lee, C., Catalytic Asymmetric Synthesis, ed. Ojima, I. (Wiley-VCH, New. York). 2nd ed.; 2000; p 593-649.
4. Tsuji, J., Palladium reagents and catalyst; Wiley: New york. 1995; p 290.
5. Trost, B. M.; Crawley, M. L., Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chemical Reviews 2003, 103 (8), 2921-2944.
6. Scott, J. D.; Williams, R. M., Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics. Chem. Rev. 2002, 102 (5), 1669-1730.
7. Bentley, K. W., The Isoquinoline Alkaloids. In Chemistry and Biochemistry of Organic Natural Products, Ravindranath, B., Ed. Harwood Academic Publishers: Amsterdam, 1998.
8. Ivanovska, N.; Nikolova, P.; Hristova, M.; Philipov, S.; Istatkova, R., Complement modulatory activity of bisbenzylisoquinoline alkaloids isolated from Isopyrum thalictroides--I: Influence on classical pathway in human serum. International Journal of Imтипоpharmacology 1999, 21 (5), 325-336.
9. Banning, J. W.; Salman, K. N.; Patil, P. N., A Pharmacological Study of Two Bisbenzylisoquinoline Alkaloids, Thalistyline and Obamegine. Journal of Natural Products 1982, 45 (2), 168-177.
10. Pingaew, R.; Ruchirawat, S., Application of the Hypervalent Iodine Reagent to the Synthesis of Some Pentasubstituted Aporphine Alkaloids. Synlett 2007, 2007 (EFirst), 2363,2366.
11. Markmee, S.; Ruchirawat, S.; Prachyawarakorn, V.; Ingkaninan, K.; Khorana, N., Isoquinoline derivatives as potential acetylcholinesterase inhibitors. Bioorganic \& Medicinal Chemistry Letters 2006, 16 (8), 2170-2172.
12. Takada, K.; Uehara, T.; Nakao, Y.; Matsunaga, S.; van Soest, R. W. M.; Fusetani, N.,

Schulzeines A-C, New α-Glucosidase Inhibitors from the Marine Sponge Penares schulzeil. Journal of the American Chemical Society 2004, 126 (1), 187-193.
13. Taylor, M. S.; Jacobsen, E. N., Highly Enantioselective Catalytic Acyl-Pictet-Spengler Reactions. Journal of the American Chemical Society 2004, 126 (34), 10558-10559.
14. (a) Ukaji, Y.; Shimizu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata, K., Catalytic Asymmetric Addition of Dialkylzinc to 3,4-Dihydroisoquinoline N-Oxides Utilizing Tartaric Acid Ester as a Chiral Auxiliary. Bulletin of the Chemical Society of Japan 2000, 73 (2), 447-452; (b) Kanemitsu, T.; Yamashita, Y.; Nagata, K.; Itoh, T., Catalytic Asymmetric Synthesis of (R)-(-)-Calycotomine, (S)-(-)-Salsolidine and (S)-(-)-Carnegine. Synlett 2006, 2006 (10), 1595,1597; (c) Wang, S.; Seto, C. T., Enantioselective Addition of Vinylzinc Reagents to 3,4-Dihydroisoquinoline N-Oxide. Organic Letters 2006, 8 (18), 3979-3982.
15. (a) Morimoto, T.; Suzuki, N.; Achiwa, K., Enantioselective synthesis of (S)-calycotomine employing catalytic asymmetric hydrogenation with an iridium(I)-(R)-BINAP-phthalimide complex. Tetrahedron: Asymmetry 1998, 9 (2), 183-187; (b) Mujahidin, D.; Doye, S., Enantioselective Synthesis of $(+)-(\mathrm{S})$-Laudanosine and $(-)-(\mathrm{S})$-Xylopinine. European Journal of Organic Chemistry 2005, 2005 (13), 2689-2693.
16. Ohkuma, T.; Kitamura, M.; Noyori, R., Asymmetric Hydrogenation. In Catalytic Asymmetric Synthesis (2nd Edition), Ojima, I., Ed. Wiley-VCH: New York, 2000; pp 1-110.
17. Chrzanowska, M.; Rozwadowska, M. D., Asymmetric Synthesis of Isoquinoline Alkaloids. Chem. Rev. 2004, 104 (7), 3341-3370.
18. Ito, K.; Akashi, S.; Saito, B.; Katsuki, T., Asymmetric Intramolecular Allylic Amination: Straightforward Approach to Chiral C1-Substituted Tetrahydroisoquinolines. Synlett 2003, 1809-1812.
19. Hua, Z.; Vassar, V.; Ojima, I., Synthesis of new chiral monodentate phosphite ligands and their use in catalytic asymmetric hydrogenation. Organic Letters 2003, 5, 3831-3834.
20. (a) Choi, H.; Hua, Z.; Ojima, I., Highly Enantioselective Copper-Catalyzed Conjugate Addition of Diethylzinc to Nitroalkenes. Organic Letters 2004, 6 (16), 2689-2691; (b) Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I., New biphenol-based, fine-tunable monodentate phosphoramidite ligands for catalytic asymmetric transformations. Proc. Nat. Acad. Sci., U. S. A. 2004, 101 (15), 5411-5416; (c) Chapsal, B. D.; Ojima, I., Total Synthesis of Enantiopure (+)- γ-Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation. Organic Letters 2006, 8 (7), 1395-1398.
21. Shi, C.; Ojima, I., Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination. Tetrahedron 2007, 63 (35), 8563-8570.
22. Shi, C.; Chien, C. W.; Ojima, I., Synthesis of chiral biphenol-based diphosphonite ligands and their application to Pd-catalyzed intermolecular asymmetric allylic amination. Chem. Asian J. 2011, 6, 674.
23. Shi, C. Development and Applications of Chiral Phosphorus Ligands to Transition-Metal Catalyzed Asymmetric Reactions. Doctor of Philosophy in Chemistry, Stony Brook University, Stony Brook, NY, August 2008.
24. (a) Lesch, B.; Toräng, J.; Nieger, M.; Bräse, S., The Diels-Alder Approach towards

Cannabinoids. Synthesis 2005, (11), 1888-1900; (b) Sawant, D.; Kumar, R.; Maulik, P. R.; Kundu, B., Unprecedented SnCl2-Mediated Cyclization of Nitro Arenes via N-N Bond Formation†. Organic Letters 2006, 8 (8), 1525-1528.
25. Compound 8 (A or B) can be prepared in two steps from commercially available resorcinolamine. Alternatively, 8 (A or B) can also be prepared from commercially available 3,5-dihydroxybenzaldehyde through PMB or benzyl protection and nitro-aldol reaction, followed by reduction and trifluoroacetylation. See Experimental Section.
26. Denmark, S. E.; Regens, C. S.; Kobayashi, T., Total Synthesis of Papulacandin D. Journal of the American Chemical Society 2007, 129 (10), 2774-2776.

Chapter 3

Formal Enantioselective Total Synthesis of Schulzeines A-C via Pd-Catalyzed Intramolecular Asymmetric Allylic Amination
Table of Contents
§ 3.1 Asymmetric synthesis of Schulzeines A-C 71
§ 3.2 Results and discussion 72
§ 3.2.1 Formal total synthesis of Schulzeine B 72
§ 3.2.2 Formal total synthesis of Schulzeine A and C 79
§ 3.3 Conclusions 80
§ 3.4 Experimental section 80
§ 3.5 References 91

§ 3.1 Asymmetric synthesis of Schulzeines A-C

Schulzeines A-C, isolated from the marine sponge, Penares Schulzei, have been identified as a new class of marine natural products (Figure 3-1). ${ }^{1}$ These new alkaloids were found to exhibit potent α-glucosidase inhibitory activity, which made them promising leads in drug development for the treatment of cancer, diabetes and viral infections. ${ }^{2}$ Therefore, it is important to develop efficient synthesis for these natural products to provide sufficient amounts for biological studies as well as structure-activity relationship studies for discovery of more potent analogs.

Schulzeine A (C11b-H β; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$)
Schulzeine B (C11b-H α; $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}$);
Schulzeine C (C11b-H β; $R^{1}, R^{2}=H$)
Figure 3-1. Schulzeines A-C

Five research groups have reported the synthesis of Schulzeines A-C tricyclic core to date. ${ }^{3}$ All but one of these syntheses employed Pictet-Spengler-type cyclization to form the tricyclic core, and the introduction of the critical stereocenter at $\mathrm{C}-11 \mathrm{~b}$ was either totally nonselective or gave only low to moderate diastereoselectivity, wherein the separation of two diastereomers was difficult in some cases. Furthermore, the diastereoselectivity at C-11b of those reported results favors the cis configuration ($\mathrm{C} 1-\mathrm{C} 11 \mathrm{~b}$ bond is cis to $\mathrm{C} 3-\mathrm{N}$ bond) which required for Schulzeine B tricyclic core. The efficacy for the synthesis of Schulzeines A and C which possess trans configuration ($\mathrm{C} 1-\mathrm{C} 11 \mathrm{~b}$ bond is trans to $\mathrm{C} 3-\mathrm{N}$ bond) was greatly disfavored (Figure 3-1). Thus, it is apparent that a more efficient construction of the tricyclic core needs to be developed. We envisioned that an intramolecular asymmetric allylic amination (AAA) could serve as the key reaction in the construction of required stereochemistry at C 11 b . We describe here a new and efficient synthesis of the tricyclic core of Schulzeines A-C based on the AAA approach.

Our retrosynthetic analysis is illustrated in Scheme 3-1. The S configuration to the C3 position of the tricyclic core 3-5 can be introduced by coupling (S)-vinylglycine derivative 3-2 to the amine moiety of 1-vinyltetrahydroisoquinoline $\mathbf{3 - 1}$ (for representative approaches to the
construction of 1 -vinyltetrahydroisoquinolines, see References $10-15),{ }^{4}$ followed by ring-closing metathesis (RCM) of 3-3 ${ }^{5}$ and hydrogenation of the resulting didehydropiperidinone ring of 3-4. Then, 3-1 can be derived from 2-19 by N -deprotection, and 2-19 with excellent enantiopurity can be obtained through the intramolecular AAA of 2-18, which should introduce the chiral center at C11b of 3-5.

Scheme 3-1. Retrosynthetic analysis of the tricyclic core of Schulzeines A-C

§ 3.2 Results and discussion

§ 3.2.1 Formal total synthesis of Schulzeine B

With the optimized conditions for the AAA reaction of compound $\mathbf{2 - 1 8 B}$ reported in the chapter 2 , we prepared $(+)-(S) \mathbf{- 2 - 1 9 B}{ }^{6}$ with excellent enantiopurity $(94-95 \%$ ee) in a larger quantity, and set out to complete the synthesis of the Schulzeine B tricyclic core in accordance with the planned synthetic route based on the retrosynthetic analysis (Scheme 3-1) described above. The synthesis is divided into two parts. One part is to introduce 1-vinyltetrahydronisoquinoline $(+)-(S)$-3-1B which can be generated from the amide deprotection of TFA-substituted 1-vinyltetrahydronisoquinoline (+)-($(S) \mathbf{- 2 - 1 9 B}$ using 2 NaOH and EtOH at room temperature for 16 h , with 98% isolated yield after purification (Scheme

3-2). ${ }^{7}$

Scheme 3-2. Synthesis of (+)-(S)-3-1B

With the secondary amine $(+)-(S)-\mathbf{3 - 1 B}$ for the formal synthesis of tricyclic core of Schulzeines B in hand, the other part is to synthesize the corresponding vinylglycine derivative for the amide coupling reaction with compound (S)-(+)-3-1B. Scheme 3-3 shows the synthesis of Fmoc-N-protected vinylglycine $\mathbf{3 - 2 a} .{ }^{8}$ Because basic conditions are not compatible for vinylglycine synthesis due to the fast isomerization of the double bond of vinylglycine, only neutral or acidic conditions can be used in the synthesis of vinylglycine. Therefore, we herein chose the Fmoc group as the protecting group because it can tolerate acidic conditions during the synthesis and can be cleaved under mild basic conditions or hydrogenolysis at the end of the synthesis. Starting with L-Methionine methyl ester hydrochloride 3-6 treated with Fmoc-OSu 3-7 in the presence of triethylamine and methylene chloride, [N-(9-fluorenylmethoxycarbonyloxy)]-L-methionine methyl ester 3-8 was prepared with 94% isolated yield. ${ }^{8 a}$ Next, compound 3-8 was converted into the corresponding sulfoxide 3-9 using sodium periodate in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ cosolvent. After the work-up and simple purification, 3-9 can be used for the next step without further purification. To synthesize [N-(9-fluorenylmethoxycarbonyloxy)]-L-vinyl glycine methyl ester 3-10, the pyrolysis of 3-9 was employed using xylenes as the solvent under reflux condition for 72 h . Because of these harsh reaction conditions, compound 3-10 and its regioisomers were generated. After careful flash column chromatography on silica gel twice, 3-10 was obtained in 63% isolated yield after two steps and 15% of regioisomers were also isolated. ${ }^{8 a}$ The desired Fmoc-N-protected vinylglycine 3-2a was simply produced by the acid hydrolysis of methyl ester 3-10 in the presence of acetic acid and hydrochloric acid with 97% isolated yield. ${ }^{8 b}$

94\%

Scheme 3-3. Synthesis of vinylglycine derivative 3-2a

With 1-vinyltetrahydronisoquinoline $(+)-(S) \mathbf{- 3 - 1 B}$ and Fmoc-N-protected vinylglycine 3-2a in hands, we first investigated the amide coupling reaction of $(+)-(S)-\mathbf{3 - 1 B}$ and 3-2a using EDC. HCl and HOBt as the coupling reagents. After 20 h at room temperature, only 12% of desired diene product (S, S)-3-3B was obtained and the major product was the diene with the double bond isomerization of vinyl glycine moiety which can be attributed to the basicity of HOBt (Scheme 3-4). As a result, to avoid the use of basic reagents, DEPC (diethyl cyanophosphonate), which is a relatively neutral amide coupling reagent, was employed. Before dealing directly with the vinylglycine derivative, a model reaction using butenoic acid was investigated first to check the efficacy of the above coupling reagent. The reaction went smoothly using 3 equivalent of DEPC in DMF at room temperature and 88% of desired product (S)-3-12B was obtained after 18 h . With this encouraging result, (S)-3-1B and 3-2a were coupled under the similar reaction conditions mentioned above. However, this reaction is not as fast as the model reaction and took 40 h to be completed. Comparing to the result using EDC $\cdot \mathrm{HCl}$ and HOBt as the coupling reagents, the yield of desired product (S, S)-3-3B was indeed much higher here (51\%) although 24% of byproduct (S) - 3-11B was still obtained (Scheme 3-4).

Scheme 3-4. Investigation of amidation of (S)-3-1B and 3-2a

To further optimize this reaction, we tried to run the reaction without adding any coupling reagent and under neutral or even acidic condition. Therefore, carboxylic acid 3-2a was then converted into acyl chloride $\mathbf{3 - 2 b}{ }^{8}$ using thionyl chloride, and compound $\mathbf{3 - 2 b}$ was employed to couple with (S) -3-1B without adding any base to neutralize HCl formed from the reaction (Scheme 3-5). Indeed, as expected, none of the isomerized byproduct was found and only the desired product $(S, S) \mathbf{- 3} \mathbf{- 3 B}$ was observed. However, because no extra base was added in this reaction, almost half the starting material $(S) \mathbf{- 3 - 1 B}$ acts as the base to neutralize the generated HCl instead of reactant. As a result, the yield of (S, S)-3-3B should be 50% (61% yield may due to the measurement error in the small scale reaction) even though there is no isomerized byproduct was formed.

Scheme 3-5. Optimization of amidation of (S)-3-1B and 3-2b

Therefore, to increase the yield and minimize the formation of the isomer from above optimized reaction, we decided to add a minimal amount of triethylamine as base, i.e., one equivalent relative to the starting material $(S) \mathbf{- 3 - 1 B}$, and use a slight excess of acyl chloride $\mathbf{3 - 2 b}$ (1.1 eq relative to $(S) \mathbf{- 3 - 1 B})$ for the further optimized conditions (Scheme 3-6). After 16 h under room temperature, (S, S)-3-3B was obtained in 87% yield, and no isomerized product was observed in the presence of 1 eq of triethylamine.

(S)-3-1B

(S,S)-3-3B

Scheme 3-6. Optimized condition for amidation of (S)-3-1B and 3-2b

Before discussing the next step, one issue has to be clarified. Actually, to simplify the discussion of the optimization of amidation, we only focused on the product selectivity of (S,S)-3-3B and its isomerized byproduct but did not mention the diastereomeric ratio of (S, S)-3-3B. However, since $(S) \mathbf{- 3 - 1 B}$ is not an enantiopure compound ($97: 3$ er), reaction with enantiopure 3-2b could theoretically give (S, S)-3-3B with 97:3 dr. Indeed, from ${ }^{1} \mathrm{H}$ NMR analysis, over $20: 1 \mathrm{dr}$ value was observed in favor of (S, S)-3-3B. Unfortunately, these two diastereomers have the same R_{f} value on TLC and are inseparable by column chromatography. For that reason, the mixture was used for the next step without doing further separation.

With (S, S)-3-3B ($97: 3 \mathrm{dr}$) in hand, ring-closing metathesis proceeded to form the third ring
of Schulzeine tricylic core. By using $10 \mathrm{~mol} \%$ of $2^{\text {nd }}$ generation Grubbs catalyst ${ }^{9}$ in refluxing dichloromethane, the tricyclic RCM product $(S, S)-\mathbf{3 - 4 B}$ was obtained as a single diastereomer in 80\% yield after column chromatography (Scheme 3-7).

Scheme 3-7. Ring-closing metathesis (RCM) of (S,S)-3-3B

Next, we originally planned to convert compound (S, S)-3-4B to compound (S, S)-3-5 through the hydrogenation of the olefin and hydrogenolysis of the PMB group using Pd / C under H_{2}, followed by the deprotection of Fmoc moiety using piperidine. To our surprise, while (S, S)-3-4B was treated with $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{~mol} \%$) in $\mathrm{THF} / \mathrm{MeOH}$ cosolvent system under ambient pressure of H_{2} for 48 h , all three reactions were done and the desired (S, S)-3-5 was afforded in 91\% yield (Scheme 3-8).

Scheme 3-8. Hydrogenation and hydrogenolysis of (S, S)-3-4B
(S,S)-3-5, which has been made by Romo's group, can be used as a reference to assign the absolute configuration at C 11 b of the tricylic core. However, $[\alpha]_{\mathrm{D}}$ value that we got is way higher than that they provided (the literature value for (S, S)-3-5 (free amine form) from Ref. 7 is $[\alpha]_{\mathrm{D}}{ }^{23}-138.7(c 0.73, \mathrm{MeOH})$ but $(S, S)-\mathbf{3 - 5}$, in our hands, showed the specific rotation of $[\alpha]_{\mathrm{D}}{ }^{20}$ -252.3 ($c 0.35, \mathrm{MeOH})$). Therefore, we reevaluated our data and also checked their experimental procedure to see whose data has the mistake, and we found that they used BBr_{3} for this reaction but they didn't use any base to quench and neutralize the product. As a result, $(S, S)-\mathbf{3 - 5}$ that they obtained should be its corresponding HBr salt. To confirm our finding, we prepared $(S, S) \mathbf{- 3}-\mathbf{5} . \mathrm{HBr}$ salt by the treatment of $(S, S) \mathbf{- 3 - 5}$ with $15-16 \% \operatorname{HBr}_{(\mathrm{aq})}$ in MeOH (Scheme 3-9). After simple purification, $(S, S)-3-5 . \mathrm{HBr}$ was obtained and its $[\alpha]_{\mathrm{D}}$ value $\left([\alpha]_{\mathrm{D}}{ }^{20}-138.9\right.$ (c 0.72,
$\mathrm{MeOH})$) was found to be virtually identical to that of the literature value for (S, S)-3-5 (free amine form) with $[\alpha]_{D}{ }^{20}-138.9(c 0.72, \mathrm{MeOH})$ and it appears that the data in Ref. 7 indeed made an error.

Scheme 3-9. Synthesis of (S,S)-3-5.HBr

To convert (S, S)-3-5 to $(S, S) \mathbf{- 3 - 1 3}$, Boc protection was first introduced to mask the secondary amine at the C 3 position to give (S, S)-3-5-Boc in 79% yield. Next, (S, S)-3-5-Boc was smoothly reacted with benzyl bromide in the presence of TBAI and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to give $(S, S)-\mathbf{3 - 1 3}$ in 78% yield (Scheme 3-10). From (S,S)-3-13, three groups already reported the total synthesis of Schulzeine B. ${ }^{3 b-d}$ Thus, a formal total synthesis of this compound will be completed.

Scheme 3-10. Synthesis of the common advanced key intermediate (S, \underline{S})-3-13

Scheme 3-11. Synthesis of an alternative key advanced intermediate (S, S)-3-14

Although O, O^{\prime}-dibenzyl protection was used in the known total syntheses, O, O^{\prime} '-bis-PMB
protection should work equally well. Thus, (S, S)-3-14 was also prepared as an alternative key advanced intermediate through Fmoc deprotection of (S, S)-3-4B with diethylamine in DCM at room temperature for 10 h (Scheme 3-11).

§ 3.2.2 Formal total synthesis of Schulzeine A and C

In the same manner, we carried out the asymmetric synthesis of $(S, R)-\mathbf{3 - 5}, \mathbf{3 - 5}-\mathrm{Boc}$ and $\mathbf{3 - 1 3}$, starting from $(R)-(-)-\mathbf{2 - 1 9 B}$, which was obtained in 96.1% ee through the AAA reaction of 2-18B-a using (S)-BOP-L2a (Scheme 3-12). Diene (S, R)-3-3B was prepared, and subjected to the RCM reaction in the same manner as that for (S, S)-3-3B to give the corresponding RCM product (S.R)-3-4B. However, unexpectedly, substantial epimerization occurred during the RCM reaction to give almost an equal amount of $(R, R)-\mathbf{3 - 4 B} .{ }^{10}$ After screening of RCM catalysts and reaction variables, we found that the 2 nd generation Hoveyda-Grubbs catalyst ${ }^{11}$ gave the best results so far, favoring the formation of $(S . R)$-3-4B in 3:1 ratio. Thus, enantio- and diastereopure (S.R)-3-4B was isolated in 51% yield. From $(S . R)$-3-4B, (S, R)-3-5-Boc and (S, R)-3-13 were synthesized in a similar manner to that illustrated before, and thus the formal total synthesis of Schulzeines A and C have also been completed.

Scheme 3-12. Formal total synthesis of Schulzeines A and C

§ 3.3 Conclusions

A new approach toward the total synthesis of Schulzeines A-C, featuring efficient asymmetric allylic amination and ring-closing metathesis as key steps, has been successfully developed. Every step in the synthesis gave good to excellent yield except for the formation of (S, R)-3-4B. Further optimizations of the whole process, especially the RCM step for (S, R)-3-3B, and mechanistic studies are actively underway in our laboratory.

§ 3.4 Experimental section

General Methods: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were measured on a Varian Inova-500 NMR (500 $\mathrm{MHz}{ }^{1} \mathrm{H}$, and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Inova-400 NMR ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 162 \mathrm{MHz}$ ${ }^{31} \mathrm{P}$) or a Varian Gemini-2300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H} ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} ; 121.5 \mathrm{MHz}{ }^{31} \mathrm{P}$) spectrometer in a deuterated solvent using residual protons $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm} . \mathrm{C}_{6} \mathrm{H}_{6}:{ }^{1} \mathrm{H}, 7.15\right.$ $\mathrm{ppm})$ as the internal standard or phosphoric acid as the external reference (${ }^{31} \mathrm{P} 0.00 \mathrm{ppm}$). Analytical HPLC in reverse phase was carried out with a Shimadzu LC-2010A HPLC system using a Chiralpak AD-RH analytical column. Melting points were measured on a Thomas Hoover Capillary melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Helmer Model 241 polarimeter. TLC analyses were performed using Merck DC Alufolien 60F254 aluminum pre-coated silica gel plates. Flash column chromatography was carried out using Silicyle SiliaFlashP60® silica gel (particle size 40-63 $\mu \mathrm{m}$). High-resolution mass spectrometric analyses were carried out at the Mass Spectrometry Laboratories, University of Illinois Urbana-Champaign, Urbana, IL and ICB\&DD at Stony Brook University. Unless otherwise noted all reactions were carried out under argon or nitrogen atmosphere in oven-dried glassware using standard Schlenck techniques.

Materials: Solvents were reagents grade and freshly distilled before use. Tetrahydrofuran (THF) and dichloromethane (DCM) were dried and degassed using an Innovative Technology PureSolvTM solvent purification system. Acetonitrile was distilled from calcium hydride. Anhydrous N, N-dimethylformamide (DMF) was purchased from Acros and used without further purification. Other solvents were used without purification. Benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(tricyclohexylphosph ine)ruthenium (2nd generation Grubbs catalyst), [1,3-bis(2,4,6-tri-methylphenyl)-2-Imidazoli-
dinylidene]dichloro(o-isopropoxyphenylmethylene)ruthenium (2nd generation Hoveyda-Grubbs catalyst), N-iodosuccinimide was obtained from Sigma-Aldrich and used as received. (S)- N -Fmoc-vinylglycinyl chloride was synthesized in five steps from commercial available L-methionine methyl ester hydrochloride. ${ }^{8}$ Other chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification unless otherwise noted. Chiral biphenols and chiral BOP ligands, L1a-L1i were prepared according to the procedure previously reported by our laboratory. ${ }^{12}$

Preparation of L-vinylglycine derivative ${ }^{8 \mathrm{a}, 13}$

[N-(9-Fluorenylmethoxycarbonyloxy)]-L-methionine methyl ester (3-8) ${ }^{8 \mathrm{a}}$

To a stirred solution of L-methionine methyl ester hydrochloride 3-6 ($2.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in distilled DCM (100 mL) was added triethylamine (2 eq) in an ice bath, followed by the slow addition of N-(9-fluorenylmethoxycarbonyloxy)succinimide 3-7 (1.2 eq) in methylene chloride via a syringe over the period of 20 min under the same temperature. After the addition was complete, the ice bath was removed and the mixture was stirred at room temperature for 19 h . The reaction mixture was diluted with DCM and water. The aqueous layer was separated and extracted with DCM (3x). The combined organic layer was washed with brine and dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford crude off-white solid 3-8. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=4: 1-2: 1$) afforded pure 3-8 as a white solid ($3.65 \mathrm{~g}, 94 \%$ yield): mp $80-82{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.94-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{br}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 4.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.32(\mathrm{dd}, J=6.9$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=6.9$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. All data are in good agreement with the literature values. ${ }^{8 \mathrm{a}}$
[N-(9-Fluorenylmethoxycarbonyloxy)]-L-vinyl glycine methyl ester (3-10) ${ }^{8 a}$

To a stirred solution of [N-(9-fluorenylmethoxycarbonyloxy)]-L-methionine methyl ester 3-8 ($3.65 \mathrm{~g}, 9.46 \mathrm{mmol}$) in distilled $\mathrm{MeOH}(120 \mathrm{~mL})$ was added slowly aqueous sodium periodate (1.1 eq in 20 mL of $\mathrm{H}_{2} \mathrm{O}$) over 25 min in an ice bath. After the addition was complete, the ice bath was removed and the reaction mixture was stirred at room temperature for 22 h . The resulting solid was filtrated off and MeOH was removed under reduced pressure. The resulting colorless oil was diluted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$. The combined organic layer was washed with water, brine and dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford crude white solid 3-9. This product was used in the next step without further purification. To the crude 3-9 was added xylenes $(100 \mathrm{~mL})$ and the mixture was heated to reflux $\left(150{ }^{\circ} \mathrm{C}\right)$ for 72 h . The reaction mixture was cooled to room temperature and xylenes were evaporated under reduced pressure to give crude orange oil 3-10 and its isomers. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1$) afforded pure 3-10 as a white solid ($2.07 \mathrm{~g}, 63 \%$ yield) and 15% isomers.

3-10: mp 107-109 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{21}-7.3(c 4.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79(\mathrm{~s}$, $3 \mathrm{H}), 4.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.35(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=6.9$ and 7.5 Hz , $2 \mathrm{H}), 7.41(\mathrm{dd}, J=6.9$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. All data are in good agreement with the literature values. ${ }^{8 a}$

[N-(9-Fluorenylmethoxycarbonyloxy)]-L-vinyl glycine (3-2a) ${ }^{13}$

To [N-(9-fluorenylmethoxycarbonyloxy)]-L-methionine methyl ester 3-10 (502 mg, 1.49 mmol) placed in a 25 mL round-bottom flask were added acetic acid and water in 1:1 ratio (8 mL total) at room temperature. After the addition was complete, the mixture was heated to reflux for 1.5 h . The reaction mixture was cooled to room temperature and acetic acid was evaporated under reduced pressure. The resulting oil was diluted with DCM. The aqueous layer was separated and extracted with DCM (3x). The combined organic layer was washed with water, brine and dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford 3-2a as a white crystal ($470 \mathrm{mg}, 97 \%$ yield): $\mathrm{mp} 151-153{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{21}+1.39$ (c 16.6, MeOH); (note: the product existed in the form of two distinguishable rotamers with $2: 1$ ratio); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (two d, $J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.63 and 5.00 (two m, 1H), 5.20 and 7.03 (two m, 1H), 5.35 and 5.41 (two m, 2H), 5.80 and 5.92 (two m, 1H), $7.34(\mathrm{dd}, J=6.9$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=6.9$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.55 and 7.60 (two d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$). All data are in good agreement with the literature values.

(+)-6,8-Bis(4-methoxybenzyloxy)-3,4-dihydro-1-ethenyl-1H-isoquinoline, (+)-(S)-3-1B

To a stirred solution of $(+)-(S) \mathbf{- 2 - 1 9 B}(280 \mathrm{mg}, 0.531 \mathrm{mmol}, 94.0 \%$ ee) in EtOH (5 mL) was added slowly 2 M NaOH solution $(1 \mathrm{~mL})$ at room temperature, and the mixture was stirred at room temperature for 16 h . Then, EtOH was evaporated under reduced pressure, and the resulting oil was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The aqueous layer was separated
and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} x 3)$. The combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford (+)-(S)-3-1B ($225 \mathrm{mg}, 98 \%$ yield) as a light yellow solid: mp 83-85 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}+25.8\left(c 0.62, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.61-2.66(\mathrm{~m}, 1 \mathrm{H})$, 2.78-2.90 (m, 1H), 2.97-3.04 (m, 1H), 3.09-3.20 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.95(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{dt}, J=10.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.4,38.1,52.6$, $55.5,69.8,70.0,98.5,106.1,114.1,114.2,116.2,118.1,128.9,129.2,129.3,129.5,136.9,139.0$, 156.8, 158.5, 159.5, 159.7; HRMS (ESI+) calcd. For $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$432.2175, found $432.2163(\Delta=-2.8 \mathrm{ppm})$.

(-)-6,8-Bis(4-methoxybenzyloxy)-3,4-dihydro-1-ethenyl-1 \boldsymbol{H}-isoquinoline, $(-)-(R)$-3-1B.
The compound (-)-(R)-3-1A was obtained in 98% yield in the same manner as that described for the synthesis of $(+)-(S)-\mathbf{3 - 1 A}$. All characterization data were identical to those of $(+)-(S)-\mathbf{3 - 1 A}$ except for $[\alpha]_{\mathrm{D}}{ }^{21}-27.0\left(c \quad 0.62, \mathrm{CHCl}_{3}\right)$; HRMS (ESI+) calcd. For $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 432.2175$, found $432.2172(\Delta=-0.7 \mathrm{ppm})$.
(3S,11bS)-9,11-Bis(4-methoxybenzyloxy)-3-(9H-fluoren-9-yl)methoxycarbonylamino-2,3,6,7 -tetrahydro-1H-pyrido[2,1-a]isoquinolin-4(11bH)-one, (-)-(S,S)- 3-4B

To a stirred solution of $(+)-(S)-3-1 \mathbf{B}(94 \%$ ee $)(58.3 \mathrm{mg}, 0.135 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(18.8 \mu \mathrm{~L}$, 0.135 mmol) in distilled DCM (0.8 mL) was added (S)- N -Fmoc-vinylglycinyl chloride 3-2b $(50.8 \mathrm{mg}, 0.149 \mathrm{mmol})$ in distilled $\mathrm{DCM}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen. The mixture was then stirred at room temperature for 16 h , and the reaction was quenched by adding $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL}$ x2). The combined organic layer was washed with 1 M hydrochloric acid, water and brine, and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=5: 1 \rightarrow 2: 1$) afforded $(+)-(S, S) \mathbf{- 3 - 3 B}$ as colorless oil ($83 \mathrm{mg}, 84 \%$ yield): cis/trans $>20 / 1$ by ${ }^{1} \mathrm{H} \mathrm{NMR}$); $[\alpha]_{\mathrm{D}}{ }^{21}+61.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); HRMS (ESI+) calcd. For $\mathrm{C}_{46} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 737.3227$, found $737.3232(\Delta=0.7 \mathrm{ppm})$.

To a stirred solution of $(+)-(S, S)$-3-3B $(63 \mathrm{mg}, 0.086 \mathrm{mmol})$ in distilled $\mathrm{DCM}(3.5 \mathrm{~mL})$ was added the 2 nd generation Grubbs catalyst ($7.4 \mathrm{mg}, 10 \mathrm{~mol} \%$) under nitrogen, and the mixture was heated to reflux for 16 h . The reaction mixture was cooled to room temperature and DCM was evaporated under reduced pressure to give the crude product as a brown solid. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=4: 1 \rightarrow 1: 1$) afforded (-)-(S,S)-3-4B as a white solid ($48 \mathrm{mg}, 80 \%$ yield): $\mathrm{mp} 125-127^{\circ} \mathrm{C}\left(\mathrm{dec}\right.$); $[\alpha]_{\mathrm{D}}{ }^{21}-132(c$ $0.5, \mathrm{CHCl} 3) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.63-2.85(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.65-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.89-5.08(\mathrm{~m}, 5 \mathrm{H}), 5.39(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.95-6.08 (m, 2H), $6.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.95(\mathrm{~m}, 4 \mathrm{H})$, 7.26-7.40 (m, 8H), $7.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 30.1,40.4,47.4,51.5,52.8,55.5,55.6,67.4,70.1,70.2,99.3,106.1,114.3,114.4$, $114.5,115.8,120.2,125.4,127.3,127.9,128.4,128.5,128.9,129.0,129.1,129.5,129.9,137.9$, $141.5,144.1,144.2,156.4,158.9,159.7,159.8,167.5$; HRMS (ESI+) calcd. For $\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{7}$ $[\mathrm{M}+\mathrm{H}]^{+} 709.2914$, found $709.2906(\Delta=-1.1 \mathrm{ppm})$.
(3S,11bS)-3-Amino-9,11-dihydroxy-2,3,6,7-tetrahydro-1H-pyrido[2,1-a]isoquinolin-4(11bH)-one, (-)-(S,S)-3-5

To (-)-(S,S)-3-4B (40 mg, 0.055 mmol$)$ and $10 \% \mathrm{Pd} / \mathrm{C}(12 \mathrm{mg}, 0.011 \mathrm{mmol})$ placed in a 10 mL round-bottomed flask were added distilled $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and THF (1.5 mL) at room temperature. The nitrogen atmosphere was then replaced with hydrogen (1 atm), and the mixture was stirred for 48 h . The reaction mixture was filtered through Celite, washed with MeOH (30 mL), and the filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} /\left(2 \mathrm{M} \mathrm{NH}_{3}\right.\right.$ in MeOH$\left.)=30: 1 \rightarrow 10: 1\right)$ afforded $(-)-(S, S)-3-5$ as a white paste ($13 \mathrm{mg}, 91 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{20}-252.3(c \quad 0.35, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.28-1.52(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.74(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=3.6$ and $14.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 28.1,29.1,30.6,40.5,50.8,52.1,102.1,107.5$, $115.5,138.6,156.4,158.1,175.2$; HRMS (ESI+) calcd. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$249.1239, found $249.1232(\Delta=-2.8 \mathrm{ppm})$.

(3S,11bS)-3-Amino-9,11-dihydroxy-2,3,6,7-tetrahydro-1H-pyrido[2,1-a]isoquinolin-4(11bH

)-one hydrobromide, (-)-(S,S)-3-5. HBr

To (-)-(S,S)-3-5 ($5.5 \mathrm{mg}, 0.022 \mathrm{mmol})$ in a 5 mL round-bottomed flask was added 16% hydrobromic acid $(0.6 \mathrm{~mL})$ and $\mathrm{MeOH}(2.4 \mathrm{~mL})$ at room temperature, and the mixture was stirred for 4 h . All volatiles were removed under high vaccum to give $(-)-(S, S)-3-5 . \mathrm{HBr}$ as a light yellow paste ($7.3 \mathrm{mg}, 100 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{20}-138.9(c 0.73, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ $1.41-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.86(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{dt}, J=7.8$ and $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.84(\mathrm{~m}, 1 \mathrm{H}), 6.25-6.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 22.3,27.0,28.4,39.5,48.8,49.8,101.3,107.1,114.4,138.3,153.9,155.4,168.3$; LRMS (ESI-) calcd. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}$ [M-H] 327.0, found 327; HRMS (ESI+) calcd. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}-\mathrm{Br}]^{+} 249.1239$, found $249.1237(\Delta=-0.8 \mathrm{ppm})$.
(3S,11bS)-3-(tert-Butoxycarbonylamino)-9,11-dihydroxy-2,3,6,7-tetrahydro-1H-pyrido-[2,1a] isoquinolin-4(11bH)-one, (-)-(S,S)-3-5-Boc. ${ }^{3 \mathrm{~b}}$

To a stirred solution of (-)-(S,S)-3-5 (5.8 mg, 0.023 mmol$)$ in distilled $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(7.4 \mathrm{mg}, 0.030 \mathrm{mmol})$ under nitrogen, and a mixture was stirred at room temperature for 20 h . The solvent was evaporated under reduced pressure to give the crude product as light yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=4: 1 \rightarrow 1: 1)$ afforded $(-)-(S, S)-3-5-B o c$ as colorless oil $(6.4 \mathrm{mg}, 79 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{22}-176.6(c 0.64, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.28-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}$, $9 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.75(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.81(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 26.3,28.7,29.2,30.3,40.4,50.8,51.2,80.5,102.0,107.3,115.1$, $138.4,156.3,158.0,158.2,172.4$. All data were in agreement with the literature values except for the specific rotation. Gurjar et al. ${ }^{3 b}$ reported the specific rotation of this compounds to be $[\alpha]_{D}$ -49.1 (c 0.90, MeOH). However, the value was $[\alpha]_{\mathrm{D}}^{22}-176.6$ (c 0.64, MeOH) in our hands, as shown above. It appears that the reported value is either an error or their compound is not enantiomerically pure.

(3S,11bS)-3-(tert-Butoxycarbonylamino)-9,11-bis(benzyloxy)-2,3,6,7-tetrahydro-1Hpyrido[

 2,1-a]isoquinolin-4(11bH)-one, $(-)-(S, S)-3-13 .{ }^{3 b, 3 d}$

To a stirred solution of (S, S)-3-5-Boc ($6.4 \mathrm{mg}, 0.019 \mathrm{mmol}$), tetrabutylammonium iodide (TBAI) $(0.2 \mathrm{mg}, 0.0005 \mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(18 \mathrm{mg}, 0.057 \mathrm{mmol})$ in dry DMF (0.5 mL) was added benzyl bromide ($0.026 \mathrm{~mL}, 0.042 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred under the same temperature for 3 h . The reaction was quenched with water (5 mL) and diluted with EtOAc (5 mL). The aqueous layer was separated and extracted with EtOAc (5 mL x 2). The combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration and the solvent evaporated in vacuo to
afford the crude product as light yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded (S, S)-3-13 as colorless oil ($7.6 \mathrm{mg}, 78 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{19}-109.2\left(c 0.76, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit}{ }^{3 \mathrm{~d}}[\alpha]_{\mathrm{D}}{ }^{24}-108.1\left(c 1.97, \mathrm{CHCl}_{3}\right)\right]$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 2.41-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.82(\mathrm{~m}, 3 \mathrm{H})$, $4.30-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.92(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 5.75(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.42(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 26.0,28.6,28.7,29.9,39.0,49.0,50.0,70.4,79.7,99.2,106.0,117.6,127.4$, $127.7,128.3,128.4,128.8,129.0,136.7,136.9,137.5,155.9,156.2,158.7,170.8$. All data were in good agreement with those reported by Bowen and Wardrop. ${ }^{3 \mathrm{~d}}$ However, the specific rotaion reported by Gurjar et al. ${ }^{3 \mathrm{~b}}$ was $[\alpha]_{\mathrm{D}}-102\left(c 1.1, \mathrm{CHCl}_{3}\right)$, which is considerably lower than our value as well as that of Bowen and Wardrop.

(3S,11bS)-3-Amino-9,11-bis(4-methoxybenzyloxy)-2,3,6,7-tetrahydro-1H-pyrido[2,1-a]isoq uinolin-4(11bH)-one, (-)-(S,S)-3-14.

(-)-(S,S)-3-4B

To a stirred solution of (-)-(S,S)-3-4B ($25 \mathrm{mg}, 0.036 \mathrm{mmol}$) in distilled DCM (4.0 mL) was added $\mathrm{Et}_{2} \mathrm{NH}(37 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$ at room temperature, and the mixture was stirred at room temperature for 10 h . Solvents were evaporated under reduced pressure to give the crude product as brown oil. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated a quantitative formation of the desired product, (-)-(S,S)-3-14. Purification of the crude product by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /(2 \mathrm{M} \mathrm{NH} 3\right.$ in MeOH$\left.)=99: 1 \rightarrow 98: 2\right)$ afforded $(-)-(S, S)-\mathbf{3 - 1 4}$ as a light yellow oil ($13 \mathrm{mg}, 72 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{21}-197.8\left(c 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.60-2.80(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.84-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.80(\mathrm{~m}, 1 \mathrm{H})$, 4.91-5.04 (m, 4H), 5.35-5.37 (m, 1H), 5.81 (ddd, $J=2.0,3.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{ddd}, J=2.0,3.2$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 29.6,40.0,53.8,54.5$, 69.7, 69.9, 99.1, 106.5, 113.7, 113.8, 115.9, 127.6, 128.9, 129.1, 129.3, 137.6, 156.4, 158.9, 159.8, 159.9, 171.3; HRMS (ESI +) calcd. For $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 487.2233$, found $487.2220(\Delta$ $=-2.7 \mathrm{ppm})$.
(3S,11R)-9,11-Bis(4-methoxybenzyloxy)-3-(9H-fluoren-9-yl)methoxycarbonylamino-2,3,6,7-tetrahydro-1H-pyrido[2,1-a]isoquinolin-4(11bH)-one, $(+)-(S, R)$-3-4B.

To a stirred solution of (-)-(R)-3-1B ($96.1 \% \mathrm{ee})(76.5 \mathrm{mg}, 0.177 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(24.6 \mu \mathrm{~L}$, $0.177 \mathrm{mmol})$ in distilled DCM (1 mL) was added 3-2b ($72.7 \mathrm{mg}, 0.212 \mathrm{mmol}$) in distilled DCM $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred at room temperature for 18 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x 2)$. The combined organic layer was washed with 1 M hydrochloric acid, water and brine, and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=5: 1 \rightarrow 2: 1$) afforded $(-)-(S, R)-\mathbf{3 - 3 B}$ as colorless oil ($105 \mathrm{mg}, 81 \%$ yield): trans/cis $>20 / 1$ by ${ }^{1} \mathrm{H}$ NMR; $[\alpha]_{\mathrm{D}}{ }^{20}-36.8\left(c \quad 1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (ESI +) calcd. For $\mathrm{C}_{46} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 737.3227$, found $737.3218(\Delta=-1.2 \mathrm{ppm})$.

To a stirred solution of $(-)-(S, R) \mathbf{- 3 - 3 B}(41 \mathrm{mg}, 0.055 \mathrm{mmol})$ in distilled toluene $(5.5 \mathrm{~mL})$ was added 2nd generation Hoveyda-Grubbs catalyst ($7.0 \mathrm{mg}, 20 \mathrm{~mol} \%$) under nitrogen, and the mixture was heated to $90^{\circ} \mathrm{C}$ for 40 h . The reaction mixture was cooled to room temperature and toluene was evaporated under reduced pressure to give the crude product as a brown solid. The ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated that $(S, R)-\mathbf{3 - 4 B}$ and $(R, R)-\mathbf{3 - 4 B}$ were formed in 3:1 ratio. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=2: 1 \rightarrow 1: 1$) afforded (S, R)-3-4B as an off-white solid ($20 \mathrm{mg}, 51 \%$ yield). Since $(S, R)-\mathbf{3 - 4 B}$ was found to be rather unstable and prone to decompose, the purified compound was immediately used for the next step without further characterization.
(3S,11bR)-3-(tert-Butoxycarbonylamino)-9,11-dihydroxy-2,3,6,7-tetrahydro-1H-pyrido-[2,1 -a] isoquinolin-4(11bH)-one, $(+)-(S, R)-3-5-B o c .{ }^{3 b}$

To (S, R)-3-4B ($20 \mathrm{mg}, 0.028 \mathrm{mmol}$), thus obtained, and $10 \% \mathrm{Pd} / \mathrm{C}(6.0 \mathrm{mg}, 0.0056 \mathrm{mmol})$ placed in a 5 mL round-bottomed flask were added distilled $\mathrm{MeOH}(0.8 \mathrm{~mL})$ and THF $(0.8 \mathrm{~mL})$ at room temperature. The nitrogen atmosphere was then replaced with hydrogen (1 atm). The mixture was stirred at room temperature for 48 h , and $\mathrm{Boc}_{2} \mathrm{O}(9.0 \mathrm{mg}, 0.036 \mathrm{mmol})$ in MeOH $(0.2 \mathrm{~mL})$ was added without removing Pd / C. The reaction mixture was stirred at room temperature for 20 h . The solid was then filtered out and the filtrate was evaporated under reduced pressure to give the crude product as light yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=2: 1 \rightarrow 1: 1$) afforded (S, R)-3-5-Boc as colorless oil ($6.1 \mathrm{mg}, 63 \%$ yield for two steps): $[\alpha]_{\mathrm{D}}{ }^{20}+184.3$ (c $0.51, \mathrm{MeOH}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.34-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.91-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.70(\mathrm{~m}$, $3 \mathrm{H}), 3.05-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.92-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.79(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data were in agreement with the literature values. Gurjar et al. ${ }^{3 \mathrm{~b}}$ reported the specific rotation of this compounds to be $[\alpha]_{\mathrm{D}}+122$ (c 1.4, MeOH). However, the value was $[\alpha]_{\mathrm{D}}{ }^{20}+184.3$ (c $\left.0.51, \mathrm{MeOH}\right)$ in our hands, as shown above. It appears that the reported value is either an error or their compound is enantiomerically not pure.
(3S,11bR)-3-(tert-Butoxycarbonylamino)-9,11-bis(benzyloxy)-2,3,6,7-tetrahydro-1Hpyrido[2,1-a]isoquinolin-4(11bH)-one, (+)-(S,R)-3-13. ${ }^{3 \mathrm{~b}, 3 \mathrm{~d}}$

Compound $(+)-(S, R)-\mathbf{3 - 1 3}$ was obtained in 78% yield as color less oil in the same manner as that described for the synthesis of $(-)-(S, S)-\mathbf{3 - 1 3}:[\alpha]_{\mathrm{D}}{ }^{19}+177.2$ (c $\left.0.57, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. ${ }^{8}[\alpha]_{\mathrm{D}}{ }^{24}$ +182.2 (c 1.33, $\left.\mathrm{CHCl}_{3}\right)$]; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, 1.69-1.75 (m, 1H), 2.41-2.49 (m, 1H), 2.57-2.66 (m, 2H), 2.83-2.90(m, 1H), 3.04-3.08 (m, 1H),
3.99-4.06 (m, 1H), 4.78 (dd, $J=3.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.98-5.08(\mathrm{~m}, 4 \mathrm{H}), 5.32$ (br s, 1H), $6.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 10 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data are in agreement with the literature values. ${ }^{3 \mathrm{~d}}$

Gurjar et al. ${ }^{3 \mathrm{~b}}$ reported the specific rotation of this compounds to be $[\alpha]_{\mathrm{D}}+116$ (c 1.35, $\mathrm{MeOH})$. However, the value was $[\alpha]_{\mathrm{D}}{ }^{19}+177.2\left(c 0.57, \mathrm{CHCl}_{3}\right)$ in our hands and $[\alpha]_{\mathrm{D}}{ }^{24}+182.2(c$ $1.33, \mathrm{CHCl}_{3}$) by Bowen and Wardrop, ${ }^{3 \mathrm{~d}}$ as shown above. It appears that the reported value by Gurjar et al. ${ }^{3 \mathrm{~b}}$ is either an error or their compound is enantiomerically not pure. We believe that a small difference in our specific rotation and that by Bowen and Wardrop ${ }^{3 d}$ is due to the difference in concentration and temperature for the measurement.

§ 3.5 References

1. Takada, K.; Uehara, T.; Nakao, Y.; Matsunaga, S.; van Soest, R. W. M.; Fusetani, N., Schulzeines A-C, New α-Glucosidase Inhibitors from the Marine Sponge Penares schulzei. J. Am. Chem. Soc. 2004, 126 (1), 187-193.
2. (a) Braun, C.; Brayer, G. D.; Withers, S. G., Mechanism-based Inhibition of Yeast alpha-Glucosidase and Human Pancreatic alpha-Amylase by a New Class of Inhibitors. J. Biol. Chem. 1995, 270 (45), 26778-26781; (b) Mehta, A.; Zitzmann, N.; Rudd, P. M.; Block, T. M.; Dwek, R. A., α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 1998, 430 (1-2), 17-22; (c) Dwek, R. A.; Butters, T. D.; Platt, F. M.; Zitzmann, N., Targeting glycosylation as therapeutic approach. Nat. Rev. Drug Discov. 2002, 1, 65-75.
3. (a) Kuntiyong, P.; Akkarasamiyo, S.; Eksintkun, G., Short Synthetic Route toward the Tricyclic Core of Schulzeines. Chem. Lett. 2006, 35, 1008-1009; (b) Gurjar, M. K.; Pramanik, C.; Bhattasali, D.; Ramana, C. V.; Mohapatra, D. K., Total Syntheses of Schulzeines B and C. J. Org. Chem. 2007, 72 (17), 6591-6594; (c) Liu, G.; Romo, D., Enantioselective Synthesis of Schulzeines B and C via a β-Lactone-Derived Surrogate for Bishomoserine Aldehyde. Org. Lett. 2009, 11 (5), 1143-1146; (d) Bowen, E. G.; Wardrop, D. J., Total Synthesis of the α-Glucosidase Inhibitors Schulzeine A, B, and C and a Structural Revision of Schulzeine A. J. Am. Chem. Soc. 2009, 131 (17), 6062-6063; (e) Miyazaki, M.; Ando, N.; Sugai, K.; Seito, Y.; Fukuoka, H.; Kanemitsu, T.; Nagata, K.; Odanaka, Y.; Nakamura, K. T.; Itoh, T., Catalytic Asymmetric Allylation of 3,4-Dihydroisoquinolines and Its Application to the Synthesis of Isoquinoline Alkaloids. J. Org. Chem. 2011, 76 (2), 534-542.
4. (a) Vicario, J. L.; Badía, D.; Carrillo, L.; Etxebarria, J., α-Amino Acids and Derivatives in the Asymmetric Synthesis of Tetrahydroisoquinoline Alkaloids. Curr. Org. Chem. 2003, 7 (18), 1775-1792; (b) Chrzanowska, M.; Rozwadowska, M. D., Asymmetric Synthesis of Isoquinoline Alkaloids. Chem. Rev. 2004, 104 (7), 3341-3370; (c) Kaufman, T. S., Approaches to the Total Synthesis of Calycotomine, a Widespread 1-Hydroxymethyl-Substituted Simple Tetrahydroisoquinoline. Synthesis 2005, (EFirst), 339,360; (d) Ito, K.; Akashi, S.; Saito, B.; Katsuki, T., Asymmetric Intramolecular Allylic

Amination: Straightforward Approach to Chiral C1-Substituted Tetrahydroisoquinolines. Synlett 2003, 1809-1812; (e) Taylor, A. M.; Schreiber, S. L., Enantioselective Addition of Terminal Alkynes to Isolated Isoquinoline Iminiums. Org. Lett. 2006, 8 (1), 143-146; (f) Teichert, J. F.; Fañanás-Mastral, M.; Feringa, B. L., Iridium-Catalyzed Asymmetric Intramolecular Allylic Amidation: Enantioselective Synthesis of Chiral Tetrahydroisoquinolines and Saturated Nitrogen Heterocycles. Angew. Chem. Int. Ed. 2011, 50 (3), 688-691.
5. Kinderman, S. S.; Wekking, M. M. T.; van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T., Catalytic N-Sulfonyliminium Ion-Mediated Cyclizations to α-Vinyl-Substituted Isoquinolines and β-Carbolines and Applications in Metathesis. J. Org. Chem. 2005, 70 (14), 5519-5527.
6. The absolute configuration of $(+)-2$ was tentatively assigned to S based on the sign of the specific rotation of close related (S)-(+)-1-vinyltetrahydroisoquinoline that we reported previously (Ref. 2-11), and confirmed by the known value of (S,S)-13 (See Experimental Section).
7. Capilla, A. S.; Romero, M.; Pujol, M. D.; Caignard, D. H.; Renard, P., Synthesis of isoquinolines and tetrahydroisoquinolines as potential antitumour agents. Tetrahedron 2001, 57 (39), 8297-8303.
8. (a) Organ, M. G.; Xu, J.; N'Zemba, B., A modular, general and enantiospecific strategy for the synthesis of CVS 1778 analogs: inhibitors of factor Xa. Tetrahedron Lett. 2002, 43 (45), 8177-8180; (b) Rajendra, G.; Miller, M. J., Intramolecular electrophilic additions to olefins in organic syntheses. Stereoselective synthesis of 3,4 -substituted .beta.-lactams by bromine-induced oxidative cyclization of O-acyl .beta.,.gamma.-unsaturated hydroxamic acid derivatives. J. Org. Chem. 1987, 52 (20), 4471-4477.
9. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H., Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands§. Org. Lett. 1999, 1 (6), 953-956.
10. The Spartan program indicates that cis-6 and trans-6 have almost same energy, and an attempted epimerization of trans- 6 to cis- 6 under the RCM conditions did not cause any epimerization. Thus, this epimerization should have taken place during the RCM reaction.
11. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H., Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122 (34), 8168-8179.
12. Shi, C.; Chien, C. W.; Ojima, I., Synthesis of chiral biphenol-based diphosphonite ligands and their application to Pd-catalyzed intermolecular asymmetric allylic amination. Chem. Asian J. 2011, 6, 674.
13. Rajendra, G.; Miller, M. J., Intramolecular electrophilic additions to olefins in organic syntheses. Stereoselective synthesis of 3,4 -substituted .beta.-lactams by bromine-induced oxidative cyclization of O-acyl .beta.,.gamma.-unsaturated hydroxamic acid derivatives. The Journal of Organic Chemistry 1987, 52 (20), 4471-4477.

Chapter 4

Enantioselective Synthesis of Huperzine A Key Intermediate via Tandem Pd-Catalyzed Intermolecular Allylic Alkylations

Table of Contents

§ 4.1 Introduction of Huperzine A 94
§ 4.2 Results and discussion 97
§ 4.2.1 Synthesis of key-step substrates 97
§ 4.2.2 Enantioselective synthesis of Huperzine-A key intermediate via tandem Pd-catalyzed intermolecular allylic alkylations 99
§ 4.3 Conclusions 106
§ 4.4 Experimental section 107
§ 4.5 References 115

§ 4.1 Introduction of Huperzine A

Huperzine A (Figure 4-1) is a naturally occurring sesquiterpene alkaloid that can be isolated from the Chinese lycopod Huperzia serrata. ${ }^{1}$ Huperzine A is an acetylcholinesterase (AchE) inhibitor, which has a mechanism of action similar to donepezil, rivastigmine, and galantamine. In addition, it has also been shown to attenuate β-amyloid-induced apoptosis in cortical neurons along with several other neuroprotective effects. ${ }^{2}$ In China, it has been used for the treatment of swelling, fever and blood disorders for many hundred years. In the US, Huperzine A is a dietary supplement for memory support. Clinical trials in China have shown it to be effective in the treatment of Alzheimer's disease ${ }^{3}$ and enhancing memory in students. Given its promising medicinally benefits, the isolation of Huperzine A is in great demand. However, Huperzia serrata on average contains only 0.08 mg HupA/g dry weight. As a result of over harvesting, the population of Huperzia serrata is in rapid decline in China. ${ }^{4}$ Therefore, alternative natural sources of Huperzine A are necessary. These natural sources include other Huperzia species such as H. elmeri, H. carinat, and H. aqualupian; some of these plants contain up to 1.01 mg HupA/g. ${ }^{4}$

Figure 4-1. Structure of Huperzine A

With the rapid decline of natural sources of Huperzine A, synthetic organic chemists have to discover efficient ways to synthesize Huperzine A. The first total synthesis of the alkaloid Huperzine A was completed by Kozikowski in 1989 (Scheme 4-1). ${ }^{5}$ Four years later, he modified the key step for the total synthesis of Huperzine A using tandem Pd-catalyzed allylic alkylations for the formation of the tricylic core of Huperzine A as shown in Scheme 4-2. ${ }^{6}$

Scheme 4-1. The first total synthesis of the alkaloid Huperzine-A 4-1

Scheme 4-2. The total synthesis of Huperzine-A via tandem Pd-catalyzed allylic alkylations

Inspired by Kozikowski's successful synthesis, Terashima and co-workers completed the first catalytic asymmetric synthesis of Huperzine A by using a bidentate ferrocene-based ligand, to affording the desired key intermediate 4-6a in excellent yield and moderate enantioselectivity (92% yield and 64% ee) (Scheme 4-3). ${ }^{7}$

Scheme 4-3. The first catalytic asymmetric synthesis of Huperzine-A intermediate 4-6a

In 2001, Bai and co-workers achieved 90% ee of 4-6a by employing a slightly modified Terashima's bidentate ferrocenyl-based ligand (Scheme 4-4). ${ }^{8}$

Scheme 4-4. The modified catalytic asymmetric synthesis of Huperzine-A intermediate 4-6a

In addition to the use of chiral ligand to obtain the enantioenriched Huperzine A intermediate 4-6a, Langolis and co-workers adopted the diastereoselective synthesis using Whitesell's chiral auxiliary to afford the desired intermediate 4-8 in 92\% d.r (Scheme 4-5). ${ }^{9}$

Scheme 4-5. The diastereoselective synthesis of Huperzine-A intermediate 4-8

Based on the previously reported results, there is still need to improve the enantioselective synthesis of entiopure key intermediates of Huperzine A. Moreover, the use of monodentate chiral ligands for the tandem allylic alkylations has not been reported thus far. Therefore, building upon the successful application of our biphenol-based MPN ligands used for the total synthesis of (+)-lycorane through asymmetric allylic alkylation as the key step for the excellent enantioselectivity, ${ }^{10}$ we would like to study the enantioselective efficacy of this ligand library on the same reaction investigated by the Kozikowski, Terashima and Bai's groups.

§ 4.2 Results and discussion

§ 4.2.1 Synthesis of key-step substrates

The synthesis of desired enol substrates 4-3a to 4-3d is outlined below. The commercially available mono-protected 1,4-cyclohexanedione (4-2) first underwent a modified Stork-enamine synthesis with methyl propiolate in the presence of $7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH at $100{ }^{\circ} \mathrm{C}$ to afford compound 4-9. ${ }^{11}$ However, the major side product 4-10 and other impurities were obtained in a significant amount according to TLC and flash column chromatography, thus lowering the yield of the desired product. The subsequent O-methylation promoted by silver carbonate afforded compound 4-11 in 84% yield (Scheme 4-6). ${ }^{5}$ Next, the ketal group was deprotected under the acidic condition to afford compound $\mathbf{4 - 1 2}$, followed by the carboxylation at the most acidic position to give the desired substrates 4-3a and $\mathbf{4 - 3 b}$, in 77% and 85% yield, respectively over two steps (Scheme 4-7). ${ }^{5}$ The synthesis of substrates containing n-butyl and cyclohexyl esters began with 4-3a, which underwent ester exchange using n-butanol and cyclohexanol in the presence of a catalytic amount of p-TSA and benzene as the solvent to afford 4-3c and 4-3d, in 75% and 82% yields, respectively (Scheme 4-7). It is worthy of note that the enol-tautomer is a stable isomer due to an intramolecular hydrogen-bond between the ester carbonyl and the enol moiety, thus only the enoltautomers of 4-3a-d were isolated. ${ }^{6}$

Scheme 4-6. Synthesis of $7^{\prime}, 8^{\prime}$-Dihydro-2'-methoxyspiro[1,3-dioxolane-2, $6^{\prime}-\left(5^{\prime} \mathrm{H}\right)$]quinoline 4-11

Scheme 4-7. Synthesis of enol substrates 4-3a to 4-3d

Scheme 4-8. Synthesis of allylic substrates 4-5a to 4-5i

The second substrate series containing an allylic group was synthesized from commercially available 2-methylene-1,3-propane-diol and the corresponding anhydride or chloformate to afford the desired allylic diacetate $(\mathbf{4 - 5 a})^{6}$ and allylic dicarbonates $(\mathbf{4 - 5 b} \text { to } \mathbf{4 - 5 i})^{12}$ in good to excellent yields under conventional or microwave-irradiated heating conditions (Scheme 4-8).

§ 4.2.2 Enantioselective synthesis of Huperzine-A key intermediate via tandem Pd-catalyzed intermolecular allylic alkylations

Although the reaction for the synthesis of the key intermediate 4-6a has previously been reported by other groups, we were not able to find the detailed chiral HPLC condition for these two enantiomers in any literature. Therefore, a racemic allylic alkylation of 4-3a and 4-5c for the formation of tricyclic intermediate 4-6a was used to set chiral HPLC condition for further study. By using the reaction conditions described by Kozikowski, ${ }^{6}$ racemic product 4-6a can be obtained in moderate yield and the two enantiomers can be separated very well with 5.2 minutes differential ($\mathrm{t}_{\mathrm{R}}=19.0$ and 24.2 mins) using a Chiracel OD-H normal phase column with an eluent of 3\% ispropanol in hexanes (Figure 4-2).

Figure 4-2. Chiral HPLC trace of racemic products 4-6a

After setting the chiral HPLC conditions for racemic products 4-6a, the ligand and substrate screenings for the intermolecular asymmetric allylic alkylation were performed to optimize the enantioselectivity of product 4-6a. Figure 4-3 shows a library of chiral MPN ligands that were used for the ligand screening. This ligand library demonstrated good to excellent chiral induction in the Pd-catalyzed asymmetric allylic alkylation of $(+)-\gamma$-lycorane. ${ }^{10}$

$(R, R, R)-M P N-L 4 a: A r=P h$ $(R, S, S)-M P N-L 5 a: A r=2-N p$

(S,S,S)-MPN-L6a: Ar $=\mathrm{Ph}$
$(R, S, S)-M P N-L 6 a: A r=P h$
$(S, S, S)-M P N-L 7 a: A r=2-N p$ (S,S,S)-MPN-L8a: $A r=1-N p$

$(S, S, S)-M P N-L 6 b:$ Ar $=P h$

$$
(\mathrm{S}, \mathrm{\Delta}, \mathrm{~S}) \text {-IIIPIN-L6D: Ar = Pn }
$$

$$
1-N p
$$

A small number of various allylic substrates using 4-3a as the nucleophile and TMG as the base in the presence of $[\operatorname{Pd}(\eta-\text { allyl }) \mathrm{Cl}]_{2}$ and (R, R, R)-MPN-L4a were investigated to determine the optimal substrate for the Pd-catalyzed intermolecular asymmetric allylic alkylation (Table 4-1). Among those results, more bulky R^{1} groups tend to provide higher entioselectivity. It was observed that the allyl substrate 4-5i which contain t-Bu groups gave the best enantioselectivity, thus was selected for the further optimization (entry 4).

Next, the MPN ligand library shown in Figure 4-3 was screened for the Pd-catalyzed asymmetric allylic alkylation of 4-3a and 4-5i (Table 4-2). As shown in Table 4-2, all reactions achieved full conversion in 48 h except for entries 4 and 5 which gave less than 5% conversion indicated by GC-MS. Among the MPN ligands screened, each ligand containing the unsymmetric chiral amine on the phosphorus atom (entries 3,6 and 7) gave higher enantioselectivity than those possessing the symmetric chiral amine on the phosphorus atom did (entries 1 and 2).

Table 4-2. Screening of MPN ligands for tandem asymmetric allylic alkylations of 4-3a and 4-5f

Entry a	Ligand (L*)	conv. $\%^{b}$	$\% \mathrm{ee}^{c}$
1	(R, R, R)-MPN-L4a	100	$40(-)$
2	(S, S, S)-MPN-L5a	100	$2(+)$
3	(S, S, S)-MPN-L6a	100	$49(-)$
4	(R, S, S)-MPN-L6a	<5	n.d.
5	(S, S, S)-MPN-L6b	<5	n.d.
6	(S, S, S)-MPN-L7a	100	$61(-)$
7	(S, S, S)-MPN-L8a	100	$76(-)$
a, b, c			

[^1](S, S, S)-MPN-L8a, which contains a 1-naphthalenyl substituent as the Ar group, afforded 76% ee; the highest enantioselectivity among these three MPN ligands with an unsymmetric amine attached to the phosphorus atom. It is worthy of note that there were dramatic decreases in reactivity observed when the mismatched ligand pairings were used, i.e., ligands where the chirality of biphenol is opposite to that of the chiral amine moiety and the ligand bearing methyl group at the 3,3'-positions of the biphenol, were used (Table 4-2, entries 4-5). Thus, (S, S, S)-MPN-L8a was selected as the ligand of choice for further optimization studies.

Next, the effect of different allyl dicarbonates on the tandem asymmetric allylic alkylation using the optimized condition determined thus far were investigated (Table 4-3). As shown in Table 4-3, the allyl dicarbonate containing benzyl moieties 4-5f gave a slightly better result (87% ee) (entry 3) compared to the other two allyl carbonates, which have vinyl-type moieties (4-5d and 4-5e; entries 1 and 2). Moreover, the use of 4-5f also afforded better enantioselectivity compared to that of 4-5i which was the optimized allyl substrate shown in Table 4-2 (76\% ee, entry 7). Thus, substrate $\mathbf{4 - 5 f}$ was carried for the next step of optimization.

Table 4-3. Further study of the allyl substrate structure on tandem asymmetric allylic alkylations with 4-3a

Entry a	Allyl substrate	Conv. $\%^{b}$	$\% \mathrm{ee}^{c}$
1	$\mathbf{4 - 5 d}$	100	$55(-)$
2	$\mathbf{4 - 5 e}$	100	$54(-)$
3	$\mathbf{4 - 5 f}$	100	$87(-)$

${ }^{a}$ All reactions were run using $[\operatorname{Pd}(\eta-\text { allyl }) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$ with a MPN ligand ($15 \mathrm{~mol} \%$) and TMG (2.5 eq) in DME [0.025] at $-45^{\circ} \mathrm{C}$ for 48 h under N_{2}. ${ }^{b, c}$ See the footnote of Table 4-1.

With the further optimized allyl dicarbonate $\mathbf{4 - 5 f}$ in hand, the effect of enol substrate structure was also studied to determine the best enol for this reaction (Table 4-4). Among the four substrates examined, 4-3a, which has the smallest R group (Me), gave 4-6 with the highest \%ee (87% ee, entry 1).

Table 4-4. Effect of enol substrate structure on tandem asymmetric allylic alkylations with 4-5f

Entry a	Enol substrate	Conv. $\%^{b}$	\%ee c
1	$\mathbf{4 - 3 a}$	100	$87(-)$
2	$\mathbf{4 - 3 b}$	100	$80(-)$
3	$\mathbf{4 - 3 c}$	100	$82(-)$
4	$\mathbf{4 - 3 d}$	100	$66(-)$

$\overline{{ }^{a}}$ All reactions were run using $[\mathrm{Pd}(\eta-\text { allyl }) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$ with a MPN ligand ($15 \mathrm{~mol} \%$) and TMG (2.5 eq) in DME [0.025] at $-45^{\circ} \mathrm{C}$ for 48 h under N_{2}.
${ }^{b, c}$ See the footnote of Table 4-1.

As shown in Table 4-5, the solvent effect on the intermolecular asymmetric allylic alkylation of 4-3a and $\mathbf{4 - 5 f}$ was demonstrated. Among the solvents selected, DCM gave a slightly better result (89% ee, entry 2) compared to DME (87% ee, entry 1) and DMF, a polar solvent (88% ee, entry 3). When toluene, a nonpolar solvent, was used as solvent, a decrease in enantioselectivity (81% ee, entry 4) was observed compared to the results observed with polar solvents. Surprisingly, we expected the use of ether, which is similar to DME, to give at least comparable enantioselectivity, but gave the poorest result (71% ee, entry 5). Accordingly, DCM was employed as the optimized solvent for the further optimization process.

Table 4-5. Solvent effect on tandem asymmetric allylic alkylations of 4-3a and 4-5f

Entry ${ }^{\text {a }}$	Solvent	Conv. \% ${ }^{\text {b }}$	$\% \mathrm{ee}^{c}$
1	DME	100	87 (-)
2	DCM	100	89 (-)
3	DMF	100	88 (-)
4	Toluene	100	81 (-)
5	Ether	100	70 (-)
${ }^{\bar{a}} \mathrm{All}$ reactions were run using $[\mathrm{Pd}(\eta-\text { allyl }) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$ with a MPN ligand ($15 \mathrm{~mol} \%$) and TMG (2.5 eq) in the solvent [0.025] at $-45^{\circ} \mathrm{C}$ for 48 h under N_{2}. ${ }^{b, c}$ See the footnote of Table 4-1.			

At this point, the concentration effect on this reaction was investigated (Table 4-6). As shown in Table 4-6, More diluted concentration compared to the concentration in entry 2 gave both lower reactivity and enantioselectivity ($72 \mathrm{~h}, 100 \%$ conv. and 67% ee, entry 1). On the other hand, a higher concentration $(0.05 \mathrm{M})$ afforded better reactivity ($24 \mathrm{~h}, 100 \%$ conv., entry 3) but the enantioselectivity was lower compared to the $\%$ ee observed when the concentration was $0.025 \mathrm{M}(80 \%$ vs 89% ee, entries 1 and 2$)$. Thus, a concentration of 0.025 M was used for the further optimization.

The effect of the reaction temperature on both enantioselectivity and reaction rate was also examined. In general, there is no obvious relationship between the reaction temperature and its corresponding \%ee. The reaction at $-45{ }^{\circ} \mathrm{C}$ still gave the best enantioselectivity among all temperatures we screened (89% ee, entry 3), although the reaction rate is the slowest compared to those observed at -25 and $-35^{\circ} \mathrm{C}$ (entries 1 and 2).

Table 4-6. Effect of concentration on tandem asymmetric allylic alkylations of 4-3a and 4-5f

Entry	Conc. (M)	Time (h)	conv. \%	\%ee
1	0.0125	72	100	$67(-)$
2	0.025	48	100	$89(-)$
3	0.05	24	100	$80(-)$

${ }^{a}$ All reactions were run using $[\mathrm{Pd}(\eta \text {-allyl }) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$ with a MPN ligand ($15 \mathrm{~mol} \%$) and TMG (2.5 eq) in the DCM at $-45^{\circ} \mathrm{C}$ under N_{2}.
${ }^{b, c}$ See the footnote of Table 4-1.

Table 4-7. Effect of temperature on tandem asymmetric allylic alkylations of 4-3a and 4-5f

Entry	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Time (h)	conv. \%	\%ee
1	-25	24	100	$85(-)$
2	-35	24	100	$81(-)$
3	-45	48	100	$89(-)$
4	-55	48	100	$86(-)$
5	-78	96	100	$68(-)$

${ }^{\bar{a}}$ All reactions were run using $[\mathrm{Pd}(\eta \text {-allyl }) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$ with a MPN ligand ($15 \mathrm{~mol} \%$) and TMG $(2.5 \mathrm{eq})$ in the DCM [0.025] under N_{2}.
${ }^{b, c}$ See the footnote of Table 4-1.

Since the benzyl substituted allyl dicarbonate 4-5f gave the best enantioselectivity for this reaction thus far, additional benzyl-type substituted allyl dicarbonates were screened to determine if benzyl-type substrates can improve the \%ee. As shown in Table 4-8, the allyl dicarbonate bearing (9H-fluoren-9-yl)methyl on the oxygen (4-5g) afforded a very similar result (89.0% ee, entries 2) compared to that obtained from the allyl substrate $\mathbf{4 - 5 f}$ with the benzyl substituent (89.2% ee, entry 1). The introduction of the electron-withdrawing group, i.e. 4-nitrobenzyl, at the allyl dicarbobnate moiety ($\mathbf{4 - 5 h}$) gave slightly lower enantioselectivity than the allyl substrate without any electronic effect on the benzyl group (4-5f) (89.2\% vs 87.4%, entries 2 and 3). If there is a correlation between the electronic effect and enantioselectivity, the improvement of \%ee can be expected where an electron-donating group is attached to the benzyl moiety of the allyl substrate.

Table 4-8. Effects of the allylic substrates 4-5 on tandem asymmetric allylic alkylations with 4-3a

Entry a	Allyl substrate	Conv. $\%^{b}$	$\%$ ee c
1	$\mathbf{4 - 5 f}$	100	$89.2(-)$
2	$\mathbf{4 - 5 g}$	100	$89.0(-)$
3	$\mathbf{4 - 5 h}$	100	$87.4(-)$
${ }^{\text {a }}$ All reactions were run using $[\mathrm{Pd}(\eta-\text { allyl }) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$ with a MPN ligand $(15 \mathrm{~mol} \%)$ and $\mathrm{TMG}(2.5 \mathrm{eq})$ in DCM			
$[0.025]$ at $-45{ }^{\circ} \mathrm{C}$ for $48 \mathrm{~h} \mathrm{under} \mathrm{N}_{2}$.			
b, c See the footnote of Table $4-1$.			

§ 4.3 Conclusions

The key intermediate 4-6a in the synthesis of (-)-Huperzine A has been prepared with 89.2% ee by means of Pd-catalyzed tandem intermolecular asymmetric allylic alkylations using our MPN ligand library and optimized substrates 4-3a and 4-5f in the presence of TMG as the base and DCM as the solvent at $-45{ }^{\circ} \mathrm{C}$ for 48 h . Although the enantioselectivity is still lower
than that achieved by Bai's bidentate ferrocenyl-based ligand $(90.3 \% \mathrm{ee})^{8}$, this is the first time monodentate chiral ligand has been used for this asymmetric allylic alkylation to date. Further optimization on enantioselectivity is underway in our labrotatory.

§ 4.4 Experimental section

General Methods: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were measured on a Varian Inova-500 NMR (500 $\mathrm{MHz}{ }^{1} \mathrm{H}$, and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Inova-400 NMR ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 162 \mathrm{MHz}$ ${ }^{31} \mathrm{P}$) or a Varian Gemini-2300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H} ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} ; 121.5 \mathrm{MHz}{ }^{31} \mathrm{P}$) spectrometer in a deuterated solvent using residual protons $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm} . \mathrm{C}_{6} \mathrm{H}_{6}:{ }^{1} \mathrm{H}, 7.15\right.$ $\mathrm{ppm})$ as the internal standard or phosphoric acid as the external reference (${ }^{31} \mathrm{P} 0.00 \mathrm{ppm}$). Analytical HPLC in normal phase was carried out with a Shimadzu LC-2010A HPLC system using a Chiralpak OD-H analytical column. Melting points were measured on a Thomas Hoover Capillary melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Helmer Model 241 polarimeter. TLC analyses were performed using Merck DC Alufolien 60F254 aluminum pre-coated silica gel plates. Flash column chromatography was carried out using Silicyle SiliaFlashP60® silica gel (particle size 40-63 $\mu \mathrm{m}$). High-resolution mass spectrometric analyses were carried out at Mass Spectrometry Laboratories, University of Illinois Urbana-Champaign, Urbana, IL and ICB\&DD at Stony Brook University. Unless otherwise noted all reactions were carried out under argon or nitrogen atmosphere in oven-dried glassware using standard Schlenck techniques.

Materials: Solvents were reagents grade and freshly distilled before use. Tetrahydrofuran (THF) and dichloromethane (DCM) were dried and degassed using an Innovative Technology PureSolvTM solvent purification system. Acetonitrile was distilled from calcium hydride. Anhydrous N, N-dimethylformamide (DMF) was purchased from Acros and used without further purification. Other solvents were used without purification. Other chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification unless otherwise noted. Chiral biphenols were prepared according to the procedure previously reported by our laboratory. ${ }^{10}$

Synthesis of substrates 4-3a to 4-3d ${ }^{5,11}$

$\mathbf{2}^{\prime}, \mathbf{5}^{\prime}, 7^{\prime}, 8^{\prime}$-Tetrahydro-1'H-spiro[1,3-dioxolane-2,6'-quinoline]-2'-one (4-9) ${ }^{11}$

1,4-Cyclohexanedione monoethylene ketal (4-2) (3.00 g, 19.20 mmol), methyl propiolate $(3.229 \mathrm{~g}, 38.41 \mathrm{mmol})$ were placed into a 300 mL beaker. A 7 N solution of ammonia in methanol $(60 \mathrm{~mL})$ was added to the reaction beaker and the flask was then placed into a stainless steel Parr reaction vessel and heated to $100{ }^{\circ} \mathrm{C}$ for 15 h . The pressure can approximately reach 90-100 psi. The vessel was evacuated and the solvent was concentrated in vacuo. The resulting red-orange solid was adhered to silica gel and subjected to flash chromatography on silica gel ($\mathrm{MeOH} / \mathrm{DCM}=5: 95$), affording $\mathbf{4 - 9}$ as a light yellow solid ($2.04 \mathrm{~g}, 51 \%$ yield): $\mathrm{mp}>220^{\circ} \mathrm{C}$ dec, (lit. ${ }^{11} \mathrm{mp} \mathrm{dec}>220{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.90(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}),, 2.70(\mathrm{~s}, 2 \mathrm{H})$, $2.86(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 4 \mathrm{H}), 6.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 26.1,30.2,36.4,64.9,107.5,112.0,117.9,141.8,143.6$. All data are in agreement with the literature values. ${ }^{11}$

7', 8'-Dihydro-2'-methoxyspiro[1,3-dioxolane-2,6'-(5'H)]quinoline (4-11) ${ }^{5}$

To a solution of 4-9 ($1.75 \mathrm{~g}, 8.44 \mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(4.66 \mathrm{~g}, 16.9 \mathrm{mmol}, 2 \mathrm{eq})$ in CHCl_{3} $(50 \mathrm{~mL})$ was added dropwise iodomethane $(5.25 \mathrm{~mL}, 84.4 \mathrm{mmol}, 10 \mathrm{eq})$. The reaction mixture was refluxed for 3 h . The resulting mixture was filtered through Celite and concentrated in vacuo to afford crude product as a yellow solid. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1-4: 1$) afforded $\mathbf{4 - 1 1}$ as a white needle
crystals ($1.56 \mathrm{~g}, 84 \%$ yield): mp $73-75{ }^{\circ} \mathrm{C}$ (lit. ${ }^{5} \mathrm{mp} 77.5-78.5{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.88(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 31.0,31.7,53.5,64.8$, $108.1,108.3,121.7,140.0,152.9,162.5$. All data are in agreement with the literature values. ${ }^{5}$

6-Oxo-2-methoxy-5,6,7,8-tetrahydroquinoline-5-methylcarbonyl (4-3a) ${ }^{5}$
Compound 4-11 ($966 \mathrm{mg}, 4.37 \mathrm{mmol}$) was dissolved in a $5 \% \mathrm{HCl}$ solution in acetone (1:1) and refluxed overnight. All volatiles were evaporated in vacuo. The aqueous layer was then basified with sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$ until no more gas evolution was noted. The resulting solution was then extracted with EtOAc ($20 \mathrm{~mL} x 3$). The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the product as light yellow oil. The resulting product $\mathbf{4 - 1 2}$ was used without further purification.

To a solution of 4-12 in dimethyl carbonate (25 mL) was added a solution of sodium hydride ($60 \% \mathrm{w} / \mathrm{v}$ in mineral oil, $1.75 \mathrm{~g}, 43.7 \mathrm{mmol}, 4 \mathrm{eq}$) in 10 mL of dimethyl carbonate. The reaction mixture was refluxed for 3 h and the reaction was quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$. All volatiles were removed in vacuo and the resulting solution was neutrualized with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ $(10 \mathrm{~mL})$. The resulting solution was then extracted with EtOAc ($20 \mathrm{~mL} x 3$). The combined organic layers were washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the product as a light yellow solid. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=30: 1-20: 1$) afforded 4-3a as a light yellow solid ($788 \mathrm{mg}, 77 \%$ yield for two steps): mp 73-74 ${ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{5} \mathrm{mp} 71-72{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.06(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.91(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 6.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.3,30.2,52.0,53.6,98.5,107.5,120.0,136.3,151.3,161.3,172.2,177.0$.

All data are in agreement with the literature values. ${ }^{5}$

Ethyl 6-hydroxy-2-methoxy-7,8-dihydroquinoline-5-carboxylate (4-3b)

Compounds 4-3b was obtained in the same manner as that described for the synthesis of 4-3a with some variations.

Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=19: 1-9: 1$) afforded pure 4-3b as colorless oil ($250 \mathrm{mg}, 85 \%$ yield for two steps): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 13.3(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,29.1,30.0,53.3,61.0,98.3,107.2,120.0$, 136.1, 151.1, 161.0, 171.6, 176.7; HRMS (ESI+) calcd. For $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 250.1079$, found $250.1073(\Delta=-2.4 \mathrm{ppm})$.

Butyl 6-hydroxy-2-methoxy-7,8-dihydroquinoline-5-carboxylate (4-3c)

Methyl 6-hydroxy-2-methoxy-7,8-dihydroquinoline-5-carboxylate (4-3a) (122 mg, 0.519 $\mathrm{mmol})$, p-TSA ($10 \mathrm{mg}, 0.052 \mathrm{mmol}$) and butanol $(0.237 \mathrm{~mL}, 2.60 \mathrm{mmol})$ were dissolved in benzene (13 mL) and the solution was heated to reflux in a Dean-Stark apparatus. After the disappearance of 4-3a indicated by TLC (ca. 48 h), the reaction mixture was concentrated in vacuo to afford the crude product as yellow oil. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=19: 1-9: 1$) afforded pure 4-3c as colorless oil (108 mg, 75\% yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.44 ($\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.73(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.32$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 13.3(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ (100 MHz, CDCl_{3}) $\delta 13.7,19.3,29.1,30.0,30.6,53.3,64.9,98.3,107.2,120.0,136.1,151.1$, 161.0, 171.7, 176.7; HRMS (ESI+) calcd. For $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$278.1392, found 278.1386 (Δ
$=-2.2 \mathrm{ppm})$.

Cyclohexyl 6-hydroxy-2-methoxy-7,8-dihydroquinoline-5-carboxylate (4-3d)

Compounds 4-3d was obtained in the same manner as that described for the synthesis of 4-3c with some variations.

Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=19: 1-9: 1$) afforded pure $\mathbf{4 - 3 d}$ as light-yellow oil ($247 \mathrm{mg}, 82 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.01-5.08(\mathrm{~m}, 1 \mathrm{H}), 6.55$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 13.4(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.6$, $25.3,29.1,30.0,31.6,53.3,73.7,98.4,107.1,120.2,136.1,151.1,161.0,171.7,176.6$; HRMS (ESI+) calcd. For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 304.1549$, found $304.1545(\Delta=-1.3 \mathrm{ppm})$.

Synthesis of substrates 4-5a to 4-5i ${ }^{6,12}$

2-Methylenepropane-1,3-diyl diacetate (4-5a) ${ }^{6}$

1,3-(2-Methylene)propandiol (4-13) ($407 \mathrm{mg}, 4.62 \mathrm{mmol}$,) and 0.033 mL of pyridine were placed in a 10 mL round-bottomed flask. To this solution 3 mL of acetic anhydride was added. The reaction mixture was then refluxed overnight. The excess acetic anhydride was concentrated in vacuo and ice water was added to the resulting solution. The aqueous layer was then basified with sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$ until no more gas evolution was noted. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The combined organic layer was washed with water (20 mL) and brine (20 mL), and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the product 4-5a as colorless oil. (694 mg , 87% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.16$ (s, 6H) 4.67 (s, 4H) 5.35 (s, 2H); 13C NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.1,64.7,116.9,138.8,170.1$. All data are in agreement with the literature values. ${ }^{6}$

Dimethyl 2-methylenepropane-1,3-diyl dicarbonate (4-5b) ${ }^{12 \mathrm{a}}$

1,3-(2-Methylene)propandiol (4-13) ($250 \mathrm{mg}, 2.84 \mathrm{mmol}$) and DMAP ($1.275 \mathrm{~g}, 5.68 \mathrm{mmol}$, $2 \mathrm{eq})$ were introduced to a 35 mL microwave reaction vessel, followed by DCM (15 mL) under nitrogen at room temperature. The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and the methyl chloroformate $(1.16 \mathrm{~g}, 8.52 \mathrm{mmol}, 3 \mathrm{eq})$ was added dropwise with stirring. The reaction mixture was warmed to room temperate and placed in a microwave reactor for 90 min at $40{ }^{\circ} \mathrm{C}$. The reaction was quenched by adding sat. $\mathrm{NaCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with DCM (20 mL x 3). The combined organic layer was washed with water (40 mL) and brine (40 mL), and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded 4-5b as colorless oil ($367 \mathrm{mg}, 64 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.80(\mathrm{~s}, 6 \mathrm{H}), 4.67(\mathrm{~s}$, $4 \mathrm{H}) 5.35(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 54.7,67.4,117.8,137.6,155.2$. All data are in agreement with the literature values. ${ }^{12 \mathrm{a}}$

Di-n-butyl 2-methylenepropane-1,3-diyl di-n-butyl dicarbonate (4-5c) ${ }^{12 b}$
1,3-(2-Methylene)propandiol (4-13) ($274 \mathrm{mg}, 3.11 \mathrm{mmol}$) and pyridine ($2.51 \mathrm{~mL}, 31.1$ mmol, 10 eq) were introduced to a 35 mL microwave reaction vessel, followed by DCM (15 mL) under nitrogen at room temperature. The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and the butyl chloroformate ($1.60 \mathrm{~mL}, 12.4 \mathrm{mmol}, 4 \mathrm{eq}$) was added dropwise with stirring. The reaction mixture was warmed to room temperate and placed in a microwave reactor for 60 min at $50{ }^{\circ} \mathrm{C}$.

The reaction was quenched by adding sat. $\mathrm{CuSO}_{4(\mathrm{aq})}(15 \mathrm{~mL})$. The aqueous layer was separated and extracted with DCM (20 mL x 3). The combined organic layer was washed with water (40 mL) and brine (40 mL), and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded $4-5 \mathrm{c}$ as colorless oil ($858 \mathrm{mg}, 96 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) 1.33(\mathrm{q}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.59(\mathrm{q}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.09(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $4 \mathrm{H}), 4.63(\mathrm{~s}, 4 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.4,18.7,67.3,67.9,154.8$. All data are in agreement with the literature values. ${ }^{12 b}$

Compounds $\mathbf{4 - 5 d}$ to $\mathbf{4 - 5 h}$ were obtained in the same manner as that described for the synthesis of 4-5c with some variations.

2-Methylenepropane-1,3-diyl divinyl dicarbonate (4-5d) ${ }^{12 b}$

Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded $\mathbf{4 - 5 d}$ as colorless oil (58% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 4.58(\mathrm{dd}, J=5.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 4 \mathrm{H}), 4.90(\mathrm{dd}, J=3.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H})$, $7.03(\mathrm{dd}, J=21,6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 68.0,98.1,119.4,136.7,142.5$, 152.4. All data are in agreement with the literature values. ${ }^{12 b}$

2-Methylenepropane-1,3-diyl diprop-1-en-2-yl dicarbonate (4-5e)

Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded 4-5e as light yellow oil (93% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.92(\mathrm{~s}, 6 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 4 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $18.9,67.7,101.8,118.6,137.0,152.4,152.8$; HRMS (ESI +) calcd. For $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 274.1291, found $274.1285(\Delta=-2.2 \mathrm{ppm})$.

2-Methylenepropane-1,3-diyl dibenzyl dicarbonate (4-5f) ${ }^{12 b}$

Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1)$ afforded $\mathbf{4 - 5 f}$ as colorless oil (76% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 4.76(\mathrm{~s}, 4 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{~s} 2 \mathrm{H}), 7.41(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $60.3,67.7,69.7,118.2,128.3,128.5,128.5,137.4,154.7$. All data are in agreement with the
literature values. ${ }^{12 b}$

Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded $\mathbf{4 - 5 g}$ as light yellow oil (99% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 4.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.79(\mathrm{~s}, 4 \mathrm{H}), 5.44$ (s, 2H), 7.36 (t, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 46.6,67.7,69.9,118.3,120.0,125.1,127.1,127.8,137.5,141.2$, 143.2, 154.8; HRMS (ESI +) calcd. For $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$550.2230, found 550.2224 ($\Delta=$ $-1.1 \mathrm{ppm})$.

2-Methylenepropane-1,3-diyl 4-nitrobenzyl dicarbonate (4-5h)

Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded $\mathbf{4 - 5 h}$ as light yellow oil (82% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 4.70(\mathrm{~s}, 4 \mathrm{H}), 5.23(\mathrm{~s}, 4 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 67.9,68.0,118.9,123.7,128.2,136.9,142.2,147.7,154.4 ;$ HRMS (ESI +) calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 464.1300$, found $464.1300(\Delta=0.0 \mathrm{ppm})$.
tert-Butyl 2-methylenepropane-1,3-diyl dicarbonate (4-5i)

To a solution of 1,3-(2-methylene)propandiol (4-13) $(535 \mathrm{mg}, 6.07 \mathrm{mmol}),(t-\mathrm{Boc})_{2} \mathrm{O}(3.58$ $\mathrm{g}, 16.4 \mathrm{mmol}, 2.7 \mathrm{eq})$ and tetrabutylammonium hydrogen sulfate ($350 \mathrm{mg}, 1.03 \mathrm{mmol}, 0.17 \mathrm{eq}$) in $\mathrm{DCM}(15 \mathrm{~mL})$ was added dropwise $6 \mathrm{~N} \mathrm{NaOH}_{(\mathrm{aq})}(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred overnight at room temperature. The reaction was quenched by adding water. The aqueous layer was separated and extracted with DCM (20 mL x3). The combined organic layer was washed with water (40 mL) and brine (40 mL), and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent evaporated in vacuo to afford the crude product as yellow
oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 4: 1$) afforded $\mathbf{4 - 5 i}$ as colorless oil ($1.43 \mathrm{~g}, 82 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.37(\mathrm{~s}, 18 \mathrm{H}), 4.45(\mathrm{~s}, 4 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 27.4, 66.5, 81.7, 116.7, 138.2, 152.8; HRMS (ESI+) calcd. For $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$311.1471, found $311.1464(\Delta=-2.2 \mathrm{ppm})$.

A typical procedure for tandem asymmetric allylic alkylations

A chiral ligand ($15 \mathrm{~mol} \%$), and a catalyst $\left[\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right) \mathrm{Cl}\right]_{2}(1.2 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$ and 2-methylene-1,3-propane diacetate (4-5a) ($34 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.5 \mathrm{eq}$) and 4-3a(31 mg, 0.13 mmol) were dissolved in 8 mL of dry solvent in a 35 mL Schlenck tube. The mixture was then stirred at room temperature for 30 min and cooled to $-45^{\circ} \mathrm{C}$ for 30 min . Then tetramethylguanidine (TMG) ($37.4 \mathrm{mg}, 0.33 \mathrm{mmol}$) was slowly added to this solution and the reaction mixture was stirred at $-45{ }^{\circ} \mathrm{C}$ for 48 h . The solvent was evaporated and the resulting yellow oil was submitted to normal phase chiral HPLC column (Chiracel OD-H) with an eluent of 3% ispropanol in hexanes $\left(\mathrm{t}_{\mathrm{R}}=\right.$ 19.0 and 24.2 mins) to determine the enantiopurity. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=20: 1 \rightarrow 10: 1$) afforded 4-6a as a light yellow oil ($26 \mathrm{mg}, 70 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.53(2 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{m}), 2.92$ $(\mathrm{m}, 1 \mathrm{H}), 3.06(2 \mathrm{H}, \mathrm{m}), 3.40(1 \mathrm{H}, \mathrm{dd}, J=18.4, \mathrm{~J}=6.8), 3.78(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 4.47(1 \mathrm{H}, \mathrm{s})$, $4.80(1 \mathrm{H}, \mathrm{s}), 6.54(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $40.4,43.9,45.6,47.8,52.6,53.4,62.0,109.5,116.3,124.7,137.5,138.9,151.3,162.9,171.3$, 208.3. All data are in agreement with the literature values. ${ }^{6}$

§ 4.5 References

1. Kozikowski, A. P.; Tückmantel, W., Chemistry, Pharmacology, and Clinical Efficacy of the Chinese Nootropic Agent Huperzine A. Acc. Chem. Res. 1999, 32 (8), 641-650.
2. (a) Bai, D., Development of huperzine A and B for treatment of Alzheimer's disease. Pure Appl. Chem. 2007, 79 (4), 469-479; (b) Xiao, X. Q.; Yang, J. W.; Tang, X. C., Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neurosci. Lett. 1999, 275 (2), 73-76; (c) Xiao, X. Q.; Zhang, H. Y.; Tang, X. C., Huperzine A attenuates amyloid β-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J. Neurosci. Res. 2002, 67 (1), 30-36.
3. Wang, B.-s.; Wang, H.; Wei, Z.-h.; Song, Y.-y.; Zhang, L.; Chen, H.-z., Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer's disease:
an updated meta-analysis. Journal of Neural Transmission 2009, 116 (4), 457-465.
4. Lim, W.-H.; Goodger, J. Q. D.; Field, A. R.; Holtum, J. A. M.; Woodrow, I. E., Huperzine alkaloids from Australasian and southeast Asian Huperzia. Pharm. Biol. 2010, 48 (9), 1073-1078.
5. Xia, Y.; Kozikowski, A. P., A practical synthesis of the Chinese "nootropic" agent huperzine A: a possible lead in the treatment of Alzheimer's disease. J. Am. Chem. Soc. 1989, 111 (11), 4116-4117.
6. Campiani, G.; Sun, L. Q.; Kozikowski, A. P.; Aagaard, P.; McKinney, M., A palladium-catalyzed route to huperzine A and its analogs and their anticholinesterase activity. J. Org. Chem. 1993, 58 (27), 7660-7669.
7. Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S., A novel enantioselective synthesis of the key intermediate of (-)-huperzine a employing asymmetric palladium-catalyzed bicycloannulation. Tetrahedron: Asymmetry 1997, 8 (6), 829-832.
8. He, X.-C.; Wang, B.; Yu, G.; Bai, D., Studies on the asymmetric synthesis of huperzine A. Part 2: Highly enantioselective palladium-catalyzed bicycloannulation of the β-keto-ester using new chiral ferrocenylphosphine ligands. Tetrahedron: Asymmetry 2001, 12 (23), 3213-3216.
9. Chassaing, C.; Haudrechy, A.; Langlois, Y., Asymmetric palladium annulation: formal synthesis of (+)-huperzine A. Tetrahedron Lett. 1999, 40 (50), 8805-8809.
10. Chapsal, B. D.; Ojima, I., Total Synthesis of Enantiopure (+)- γ-Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation. Org. Lett. 2006, 8 (7), 1395-1398.
11. Kozikowski, A. P.; Reddy, E. R.; Miller, C. P., A simplified route to a key intermediate in the synthesis of the Chinese nootropic agent huperzine A. J. Chem. Soc., Perkin Trans. 1 1990, (1), 195-197.
12. (a) Salamone, S. G.; Dudley, G. B., A Ring-Expansion Approach to Roseophilin. Org. Lett. 2005, 7 (20), 4443-4445; (b) Chaterpaul, S. J. Application of Transition Metal-Catalyzed Reactions in the Synthesis of NHeterocyclic Natural Products. Doctor of Philosophy in Chemistry, Stony Brook University, Stony Brook, NY, August 2010.

Chapter 5

Palladium-Catalyzed Asymmetric Heck Reactions with Monophosphoramidite and Bidentate Phosphite-Oxazoline Ligands

Table of Contents

§ 5.1 Introduction to the asymmetric Heck reaction 119
§ 5.1.1 The Heck reaction and its application to catalytic asymmetric synthesis 119
§ 5.1.2 Asymmetric intramolecular Heck reactions 120
§ 5.1.3 Asymmetric intermolecular Heck reactions 126
§ 5.1.3.1 Dihyofurans 126
§ 5.1.3.2 Dihydrodioxepins 129
§ 5.1.3.3 Other substrates for asymmetric intermolecular Heck reactions 130
§ 5.2 Results and discussion 131
§ 5.2.1 Synthesis of substrates for asymmetric Heck reactions 131
§ 5.2.1.1 Synthesis of 4-(2-iodo)benzyloxy-4-methoxycyclohexa-2,5-dien -2-one (5-39) 132
§ 5.2.1.2 Synthesis of N-(2-iodophenyl)-N-methyl-1-cyclohexene-1- carboxamide (5-85) 133
§ 5.2.2 Asymmetric Heck reactions with a library of bipheol-based monophospho- ramidite ligands 133
§ 5.2.2.1 Pd-catalyzed asymmetric Heck reaction of dienone using chiral bipheol-based monophosphoramidite 133
§ 5.2.2.2 Pd-catalyzed asymmetric Heck reaction of carboxamide using chiral bipheol-based monophosphoramidite 135
§ 5.2.3 Asymmetric Heck reactions with a library of chiral biphenol and oxazoline- based phosphite-oxazoline ligands 139
§ 5.2.3.1 Synthesis of chiral biphenol and oxazoline-based phosphite-oxazoline ligands 139
§ 5.2.3.2 Asymmetric Heck reaction of carboxamide with a library of chiral biphenol and oxazoline-based phosphite-oxazoline ligands 143
§ 5.2.4 Asymmetric 1,4-conjugated addition by a library of chiral biphenol and
oxazoline-based phosphite-oxazoline ligands 145
§ 5.3 Conclusions 148
§ 5.4 Experimental section 148
§ 5.5 References 159

§ 5.1 Introduction to the asymmetric Heck reaction

§ 5.1.1 The Heck reaction and its application to catalytic asymmetric synthesis

The Heck reaction (more accurately "Mizoroki-Heck reaction") is defined as a $\operatorname{Pd}(0)$-catalyzed coupling reaction of aryl or alkenyl halides with alkenes in the presence of an appropriated base. This reaction was first discovered and developed by Mizoroki et al. ${ }^{1}$ and Heck and Nolley ${ }^{2}$ in the early 1970s. Since then, this coupling reaction has become one of the most widely used reactions in organic synthesis, and its popularity is mainly attributed to the fact that this reaction can construct tertiary and quaternary carbon centers through carbon-carbon bond formation. This feature has found numerous applications in the synthesis of complex natural products. ${ }^{3}$ With the explosive development of chiral ligands for asymmetric catalysis over the past decades, the development of the asymmetric Heck reaction has attracted much attention. ${ }^{4}$ The first successful examples of the intramolecular enantioselective reaction were reported independently by Shibasaki et al. ${ }^{5}$ and Overman et al. ${ }^{6}$ in 1989. In Shibasaki's process, a chiral tertiary carbon center was introduced (46% ee) by the catalysis of $\operatorname{Pd}(\mathrm{OAc})_{2}-(R)-\mathrm{BINAP}$ in the presence of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in N -methyl-2-pyrrolidinone (NMP), while in Overman's process, a chiral quaternary carbon center was created (45% ee) by using $\mathrm{Pd}(\mathrm{OAc})_{2}-(R)$-DIOP as the catalyst in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in benzene (Scheme 5-1).

$\mathrm{Pd}(\mathrm{OAC})_{2}(10 \mathrm{~mol} \%)$
5-3

(Overman)

Scheme 5-1. The first successful examples of the intramolecular enantioselective reaction

After these reports, a variety of intra- and intermolecular asymmetric Heck reactions emerged quickly with improved enantioselectivities. For example, enantioselective intramolecular Heck reaction of meso-cycloalkadienes 5-5, 5-8, and 5-11, bearing an enol triflate tether using Pd catalysts with (R) - or (S)-BINAP, gave key intermediates 5-6, 5-9, and 5-12 for the synthesis of various terpenoid natural products, including (+)-vernolepin 5-7, (-)-oppositol 5-10, and (-)-capnellene 5-13, respectively (Scheme 5-2). ${ }^{7}$ The reaction has also been applied to the total synthesis of natural polyketides such as halenaquinone, xestoquinone, and wortmannin. ${ }^{3}$ Moreover, the reaction has been employed as the key step in the synthesis of various alkaloids, for example, physostigmine, quadrigemine C , spirotryprostatin B , and minfiensine. ${ }^{3}$

$\left[\mathrm{Pd}(\right.$ allyl $\left.) \mathrm{Cl}_{2}\right],(S)$-BINAP

Scheme 5-2. The total synthesis of terpenoid natural products 5-7, 5-10 and 5-13

§ 5.1.2 Asymmetric intramolecular Heck reactions

The intramolecular asymmetric Heck reaction has found numerous applications in organic syntheses, as mentioned above. Among those applications, the synthesis of optically active oxindoles bearing a quaternary asymmetric center has been extensively studied, mainly because enantiopure oxindoles can serve as versatile intermediates or synthons in the total synthesis of a variety of natural products. ${ }^{4,8}$ The reaction of $(E)-\alpha, \beta$-unsaturated-2-iodoanilide $\mathbf{5 - 1 4}$ was carried
out using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-(R)$-BINAP as catalyst and $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ or 1,2,2,6,6-pentamethylpiperidine (PMP) as HI scavenger in N,Ndimethylacetamide (DMA), to give oxindoles (S) - or $(R) \mathbf{- 5} \mathbf{- 1 5}$ in good yield and fairly good enantioselectivity under cationic or neutral conditions (Scheme 5-3). It should be noted that a dramatic switching in the direction of asymmetric induction was observed between these two conditions even though the same chiral ligand, (R)-BINAP, was used in both reactions. This was the first example that achieved fairly good enantioselectivity under neutral conditions.

Scheme 5-3. Synthesis of enantioenriched oxidoles 5-15

In the same manner, the reactions of a series of N-cycloalkenoyl-2-iodoanilides, Ncycloalkenylmethyl-2-iodoaniline, and cycloalkenylmethyl 2-iodophenyl ether were investigated, and results are shown in Scheme 5-4. ${ }^{8 b}$ It is worthy of note that the cationic conditions with $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ are detrimental to the enantioselectivity in the reactions of N -cycloalkenoyl-2-iodoanilides, while neutral conditions with PMP do not give appreciable asymmetric induction in the reaction of N-cycloalkenylmethyl-2-iodoaniline and cycloalkenylmethyl 2-iodophenyl ether. Thus, this reaction appears to be highly sensitive to the matching or mismatching of the functional groups in substrate and reaction conditions.

To optimize both enantioselectivity and regioselectivity of the reaction, new chiral ligands and modified substrates have been developed in the past 10 years. For example, Guiry and Kiely prepared aryl triflate 5-20 to investigate the regio- and enantioselectivity in the formation of oxindole 5-21 catalyzed by $\operatorname{Pd}(0)$ complex with oxazoline-based aminophosphine ligand 5-23 under cationic conditions (Scheme 5-5). ${ }^{8 c}$ Excellent regioselectivity (99:1) and high
enantioselectivity (up to 85% ee) were obtained using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathbf{5 - 2 3}$, and proton sponge as TfOH scavenger in toluene or DMA.

5-16
Neutral conditions $50 \%, 88 \%$ e Cationic contditions 62\%, 0\% ee

5-17

$51 \%, 8 \%$ ee
$90 \%, 64 \%$ ee

$66 \%, 0-7 \%$ ee $91 \%, 49-55 \%$ ee

Scheme 5-4. Synthesis of enantioenriched oxidoles 5-16 to 5-19

Scheme 5-5. Synthesis of enantioenriched oxidoles 5-21

A library of phosphinoimidazoline (BIPI) ligands 5-28 was developed by Busacca et al. for asymmetric intramolecular Heck reactions. ${ }^{9}$ Through electronic tuning of three substituents in a ligand, high enantioselectivity was achieved. Two examples are shown in Scheme 5-6. In addition to chiral oxindoles, other chiral nitrogen heterocycles have also been synthesized via intramolecular asymmetric Heck cyclization. For example, the reaction of endocyclic enamide 5-29 afforded indoloizidine 5-30 or its achiral isomer 5-31, depending on the solvent used (Scheme 5-7). ${ }^{10}$ The reaction of $\mathbf{5 - 2 9}$ catalyzed by Pd- (R)-BINAP in the presence of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ in DMF at room temperature gave 5-30 in 64% yield and 85% ee. However, when THF was employed as the solvent, 5-31 was formed exclusively (Scheme 5-7). Indolizidine 5-32, a key intermediate for the synthesis of $5 E, 9 Z$-indolizidine $223 \mathrm{AB}^{11}$ and (+)-5-epiindolizine $167 \mathrm{~B},{ }^{12}$ was obtained from 5-30 in four steps. ${ }^{10}$

$\mathrm{R}_{1}=3,5-\mathrm{F}_{2}$
$\mathrm{R}_{2}=(R, R)-3,5-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ $\mathrm{R}_{3}=$ 2-Naphthoyl

Scheme 5-6. Synthesis of enantioenriched oxidoles 5-25 and 5-27

Scheme 5-7. Synthesis of Indolizidine 5-32

A sequential catalytic asymmetric Heck-iminium ion cyclization was employed for the enantioselective total synthesis of minfiensine, a strychnos alkaloid. ${ }^{13}$ In this synthesis, the reaction of 5-33 catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}$ with Pfaltz ligand 5-36 under microwave conditions gave tricyclic dienylcarbamate 5-34 in 85% yield and 99% ee (Scheme 5-8). The total synthesis of (+)-minfiensine 5-35 was completed with another 16 steps from key intermediate 5-34. Desymmetrization of meso-1,4-cyclohexadienes with a vinyl iodide or triflate tether, forming the corresponding chiral bicyclic products can be achieved through intramolecular asymmetric Heck reaction. This methodology has proven to be powerful for the rapid and enantioselective construction of fused polycyclic compounds. The first example was reported by Shibasaki et al.. ${ }^{5}$ The reaction of 5-37 catalyzed by $\operatorname{Pd}(\mathrm{OAc})_{2}-(R)$ - BINAP gave cis-decalintrienes $\mathbf{5 - 3 8}$ in moderate yields and excellent enantioselectivity (up to 92% ee) (Scheme 5-9).

Scheme 5-8. The total synthesis of (+)-minfiensine 5-35

Scheme 5-9. Synthesis of enantioenriched cis-decalintrienes 5-38

An efficient intramolecular Heck reaction of cyclohexadienone 5-39 gave 5-40 with high enantioselectivity (up to 96% ee) using a TADDOL-based monophosphoramidite ligand 5-41 instead of BINAP (Scheme 5-10). ${ }^{14}$ It is noteworthy that excellent enantioselectivity can be achieved by a chiral monodentate phosphorus ligand in the absence of silver or thallium salt.

100 \% conversion, 96 \% ee
Scheme 5-10. Synthesis of enantioenriched tricyclic compound 5-40

The intramolecular asymmetric Heck reaction through desymmetrization of bicyclo[3.3.0]octadiene 5-42 gave the corresponding fused polycyclic product 5-43 in high yield and excellent enantioselectivity using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-(S)$-p-tol-BINAP as catalyst in the presence of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ (Scheme 5-11). ${ }^{15}$ In contrast, the reaction of bicyclo[4.4.0] decadiene, 5-44 or 5-47, with an aryl iodide or triflate tether under similar reaction conditions gave mixed results (Scheme 5-11). ${ }^{15}$ The enantioselective desymmetrization of bicyclo[4.4.0]decadienes 5-50 catalyzed by Pd- (S, R)-JOSIPHOS complex 5-52 gave fused tetracyclic product $\mathbf{5 - 5 1}$ with three stereogenic centers in excellent yield and 84% ee (Scheme 5-12). ${ }^{16}$

82\% ee 66\% ee
Scheme 5-11. Synthesis of enantioenriched fused polycyclic products

Scheme 5-12. Synthesis of enantioenriched fused tetracyclic product 5-51

§ 5.1.3 Asymmetric intermolecular Heck reactions

§ 5.1.3.1 Dihyofurans

In 1991, Hayashi et al. reported the first example of the asymmetric intermolecular Heck reaction, wherein the asymmetric arylation of 2,3-dihydrofuran 5-53 with phenyl triflate 5-54 catalyzed by Pd-BINAP complex gave 2-phenyl-2,3-dihydrofuran 5-55, (93\% ee) as the predominant product accompanied by a small amount of 2-phenyl-2,5-dihydrofuran 5-56 (Scheme 5-13). ${ }^{17}$

Scheme 5-13. The first example of the asymmetric intermolecular Heck reaction

A plausible mechanism was proposed to explain the high enantiopurity of the major product 5-55 (R) and inversion of configuration in the formation of minor product 5-56' (S). This mechanism was further refined by Brown et al. (Scheme 5-14). ${ }^{17-18}$ As Scheme 5-14 illustrates, the insertion of the double bond of 5-53 into the $\mathrm{Ar}-\mathrm{Pd}$ bond of 5-57 yields two diastereomeric Pd complexes 5-58 (via si-face attack) and 5-58' (via re-face attack). Next, β-hydride elimination takes place for both intermediates to form π-olefin-Pd-H complex 5-59 and its diastereomer 5-59'. The π-complex 5-59 undergoes rapid hydropalladation to give 5-60, followed by β-hydride elimination and reductive elimination to afford 2-phenyl-2,3-dihydrofuran 5-55. Thus, for 5-59, the hydropalladation is much faster than the dissociation of 5-56. In contrast, the
π-complex 5-59' rapidly dissociates 2-phenyl-2,5-dihydrofuran 5-56' rather than undergoing hydropalladation. Accordingly, the proposed mechanism involves a kinetic resolution process that enhances enantioselectivity of 5-55 by selectively eliminating 5-58' through the formation of 5-56' as the minor product.

Scheme 5-14. Plausible mechanism of the asymmetric intermolecular Heck reaction

Figure 5-1. Various $\mathrm{P}-\mathrm{N}$ type chiral ligands

The asymmetric intermolecular Heck reaction, involving double-bond migration, has been extensively studied using various chiral P, N-ligands (Figure 5-1).

As Scheme 5-15 exemplifies, the reaction of 5-53 with 2-carbethoxycyclhexenyl triflate 5-70 gave 5-cyclohexenyl-2,3-dihydrofuran 5-71 with 96% ee exclusively. ${ }^{19}$ In contrast, the reaction of 2,2-dimethyl-2,3-dihydrofuran $\mathbf{5 - 7 2}$ with phenyl triflate $\mathbf{5 - 5 4}$ afforded 2-phenyl-2,5-dihydrofuran 5-73 with 98% ee, as the sole product. ${ }^{20}$ The reaction of $\mathbf{5 - 5 3}$ with 5-54 catalyzed by a Pd complex with (D-glucosamine)phosphiteoxazoline ligand 5-68 gave 5-56 with 99% ee and 97% regioselectivity. ${ }^{21}$ Also, the reaction of 5-53 with cyclohexenyl triflate 5-74 catalyzed by a Pd complex with 5-69 gave 2-cyclohexenyl-2,5-dihydrofuran 5-75 with 98\% ee and 98% regioselectivity. ${ }^{21}$ A series of PHOX ligands, for example, 5-63 and 5-64, featuring a rigid chiral cyclopropyl backbone, were applied to the asymmetric Heck reaction of 5-53 with 5-54. As Scheme 5-16 shows, the chirality in the oxazoline moiety of the PHOX ligands exerts a profound influence on the double-bond migration, forming either 5-55 or 5-56, exclusively. ${ }^{22}$

Scheme 5-15. Synthesis of enantioenriched substituted dihydrofurans 5-71, 5-73, 5-56 and 5-75

A dramatic change in enantioface selection was observed when closely related chiral P,N-ligands 5-65 and 5-66, bearing chiral oxazolines with the same absolute configuration, were used in the reaction of 5-53 with aryl and cyclohexenyl triflates. ${ }^{23}$ The ligand 5-66 led to the formation of (R)-2-substituted 2,5-dihydrofurans with up to 95% ee, while $\mathbf{5 - 6 5}$ bearing a gem-dimethyl group gave (S) products with up to 87% ee (Scheme 5-16).

Scheme 5-16. Synthesis of enantioenriched substituted dihydrofurans 5-55 and 5-56

§ 5.1.3.2 Dihydrodioxepins

Asymmetric arylation reaction of 4,7-dihydro-1,3-dioxepins 5-76 through intermolecular Heck reaction has been studied in a similar manner as that for dihydrofurans. The resulting enol ether 5-78 can be readily transformed to chiral β-aryl- γ-butyrolactones 5-79, which are useful chiral building blocks in natural product synthesis. Shibasaki et al. reported the first example in 1994, wherein products 5-78 were obtained in variable yields and enantioselectivities, using $\operatorname{Pd}(\mathrm{OAc})_{2}-(S)-\mathrm{BINAP}$ as catalyst in the presence of potassium carbonate and $3 \AA$ molecular sieves (Scheme 5-17). ${ }^{24}$ The best results were obtained with 5-76a $\left(R^{1}=R^{2}=H\right.$), giving 5-78a $\left(R^{1}=R^{2}=H\right)$ in 48-86\% yield and $60-75 \%$ ee. ${ }^{24}$ The reaction of 5-76a $\left(R^{1}=R^{2}=H\right)$ with 5-54 catalyzed by a Pd complex with a chiral oxazoline-based P, N-ligand 5-67 gave 5-78a $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\right.$ $\mathrm{H}, \mathrm{Ar}=\mathrm{Ph}$) in 70% yield and 92% ee (Scheme 5-17). ${ }^{25}$ The same reaction using P, N-ligand 5-68 also afforded 5-78a in 84% yield and 92% ee (Scheme 5-17). ${ }^{21}$

Scheme 5-17. Synthesis of enantioenriched β-aryl- γ-butyrolactones 5-79

§ 5.1.3.3 Other substrates for asymmetric intermolecular Heck reactions

In addition to dihydrofurans and dihydrodioxepins, dihydropyrroles and cyclopentene have been employed as substrates for asymmetric intermolecular Heck reaction. For example, the reaction of 2,3-dihydropyrrole 5-80 with aryl triflate catalyzed by Pd complex and chiral P,N-ligand 5-65 gave (S)-2-aryl-2,5-dihydropyrrole (S)-5-81 in good yield and up to 89% ee, while the same reaction catalyzed by Pd-5-66 afforded the enantiomeric $(R)-5-82$ in moderate yield and 60-70\% ee (Scheme 5-18). ${ }^{23 b}$

Scheme 5-18. Synthesis of enantioenriched substituted dihydropyrrole 5-81~5-82 and cyclopentene 5-84

The reaction of cyclopentene $\mathbf{5 - 8 3}$ with $\mathbf{5 - 5 4}$ using Pd-5-69 as the chiral catalyst gave (R)-3-phenylcyclopent-1-ene 5-84 in good yield and 95% ee with 94% regioselectivity (Scheme 5-18). ${ }^{21}$

From the above introduction of asymmetric Heck reactions, it is apparently that the applications of mondentate ligands in palladium-catalyzed asymmetric Heck reactions are still very limited. However, this efficient intramolecular Heck reaction of cyclohexadienone 5-39 shown in Scheme 5-10 inspired us to believe that monophosphoramidite ligands, including our tunable ligand system, still have potential to lead to high enantiomeric excess in some asymmetric Heck reactions.

§ 5.2 Results and discussion

In 2002, Feringa published the first and only successful asymmetric Heck reaction catalyzed by a phosphoramidite ligand, obtaining 100% conversion and up to 96% ee (Scheme 5-10). ${ }^{14}$ However, this ligand provided only 33% conversion and 32% ee for one of Overman's substrate. ${ }^{8 b}$ These results clearly indicate the need for tunable ligands for each specific substrate type and substitution pattern. Accordingly, we plan to use these two substrates, 5-39 and 5-85, for the evaluation of basic efficacy of our monodentate phosphorus ligands.

§ 5.2.1 Synthesis of substrates for asymmetric Heck reactions

In order to screen asymmetric Heck reactions by our monophosphoramidite ligand library (MPN), two substrates have to be synthesized as our starting materials. One is dienone 5-39 which was reported by Feringa, ${ }^{14}$ and the other is carboxamide $\mathbf{5 - 8 5}$ which was published by Overman $^{8 \mathrm{~b}}$ (Figure 5-2).

Figure 5-2. Two substrate candidates for asymmetric Heck reactions

§ 5.2.1.1 Synthesis of 4-(2-iodo)benzyloxy-4-methoxycyclohexa-2,5-dien-2-one (5-39)

According to the reported literature, ${ }^{14}$ 4-(2-iodo)benzyloxyphenol 5-87 was first synthesized from (2-iodo)-benzylchloride 5-86 and excess hydroquinone in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and acetone under reflux condition overnight. Unfortunately, the starting material 5-86 was not able completely consumed until 40 h . For this reason, a catalytic amount of tetrabutylammonium iodide (TBAI) was added as an ion exchange reagent to increase reaction rate, and the reaction was finished after 12 h under reflux. In this ether-formation reaction, byproduct 5-88 was also formed and the ratio of product and byproduct was about 7 to 1 (74\%:11\%). (Scheme 5-19) ${ }^{14}$

Scheme 5-19. Synthesis of 4-(2-iodo)benzyloxyphenol 5-87

To achieve desired dienone substrate 5-39, phenolic oxidation of 4-(2-iodo)benzyloxyphenol 5-87 with phenyliododiacetate (PIDA) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in dry MeOH was employed to afford dienenone 5-39 in 94% isolated yield (Scheme 5-20). ${ }^{14}$ In this reaction, $\mathrm{K}_{2} \mathrm{CO}_{3}$, which acts as base, was required. If no base is added in this reaction, several undesired products are obtained by TLC and the reaction does not go completion even after 2 days.

Scheme 5-20. Synthesis of 4-(2-Iodo)benzyloxy-4-methoxycyclohexa-2,5-dien-2-one 5-39

§ 5.2.1.2 Synthesis of \mathbf{N}-(2-Iodophenyl)-N-methyl-1-cyclohexene-1-carboxamide (5-85)

N-(2-Iodophenyl)- N-methyl-1-cyclohexene-1-carboxamide 5-85 was efficiently synthesized in four steps from commercially available 1-cyclohexenecarboxylic acid 5-89 which was treated with few drops of DMF and oxalyl chloride at reflux for 4 h followed by amidation with 2-iodoaniline and dry triethylamine to afford N -(2-Iodophenyl)-1-cyclohexene-1-carboxamide 5-90 in 51% isolated yield. Next, methylation of NH-carboxamide 5-90 with sodium hydride and methyl iodide gave desired NMe- carboxamide 5-85 in 94% isolated yield (Scheme 5-21). ${ }^{8 b}$

Scheme 5-21. Synthesis of N-(2-Iodophenyl)-N-methyl-1-cyclohexene-1-carboxamide 5-85

§ 5.2.2 Asymmetric Heck reactions with a library of biphenol-based monophosphoramidite ligands

§ 5.2.2.1 Pd-catalyzed asymmetric Heck reaction of dienone using chiral bipheol-based monophosphoramidite

In this study, phenyl-substituted monophosphoramidite (S)-MPN-L1d was first employed as the chiral ligand because it possesses the same substituted group as reported ligand which gave the best conversion and enantioselectivity in asymmetric Heck reaction of dienone 5-39. Several conditions were attempted and all results were shown in Table 5-1. Entry 1 demonstrated the synthesis of racemic Heck product 5-40 to set up the chiral HPLC condition. In this reaction, dienone 5-39 was catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}$ and PPh_{3} in the presence of $\mathrm{Cy}_{2} \mathrm{MeN}$ and CHCl_{3} under reflux for $48 \mathrm{~h} .{ }^{14}$ Product 5-40 was expected to be produced after 48 h ; however, no desired product was formed, as determined by TLC, ${ }^{1} \mathrm{H}$ NMR and LC-MS characterization. At the same time, (S)-MPN-L1d was introduced and different reaction conditions were tested to evaluate this
asymmetric Heck reaction (entries 2-5). Unfortunately, no matter which thermal or microwave condition was adopted, no product was found after reaction; even though solvent or base was changed, the same result was observed consistently. Due to these poor results, the reported ligand was synthesized to examine where the problem came from. Entry 6 and Scheme 5-23 showed reaction details and the result using taddol-based monophosphoramidite ligand. ${ }^{14}$ From MS determination, the peak of product was observed along with two other undesired peaks. Considering ${ }^{1} \mathrm{H}$ NMR, only few peaks match cyclisation product $\mathbf{5 - 4 0}$; too many unexpected peaks appeared in the spectrum as well. Accordingly, this unanticipated problem was still not clear. A further study is necessary to solve this issue.

Table 5-1. Preliminary screening of MPN ligands for asymmetric Heck reaction of 5-39

Entry c	Ligand	Base	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h) Condition	Results ${ }^{e}$	
1^{a}	PPh_{3}	$\mathrm{Cy}_{2} \mathrm{MeN} \mathrm{CHCl}_{3}$	reflux	48	Heating	Messy mixtures	
2^{a}	(S)-MPN-L1d $\mathrm{Cy}_{2} \mathrm{MeN} \mathrm{CHCl}_{3}$	reflux	48	Heating	Only starting material		
3^{a}	(S)-MPN-L1d $\mathrm{Cy}_{2} \mathrm{MeN} \mathrm{CHCl}$						
3	80	3	MW	Messy mixtures			
4^{b}	(S)-MPN-L1d $\mathrm{Cy}_{2} \mathrm{MeN}$	THF	80	3	MW	Messy mixtures	
5^{b}	(S)-MPN-L1d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	80	10	MW	Messy mixtures
6^{a}	$\mathbf{5 - 4 1}$	$\mathrm{Cy}_{2} \mathrm{MeN} \mathrm{CHCl}_{3}$	80	48	Heating	No desired product ${ }^{f}$	

a. 40 mg of substrate and 2 mL of solvent were used.
b. 20 mg of substrate and 1 mL of solvent were used.
c. The conversion was determined by ${ }^{1} \mathrm{H}$ NMR.
d. Microwave condition: dynamic mode, $250 \mathrm{~W}, 100 \mathrm{psi}$.
e. Those results were characterized from TLC, ${ }^{1} \mathrm{H}$ NMR and LC-MS.
f. The result was shown in Scheme 5-22.

Exact Mass: 228.08

From MS

$$
\begin{array}{ll}
229.1 \text { (Major Peak) } & {[\mathrm{M}+\mathrm{H}]^{+}} \\
197.1 \text { (Major Peak) } & {[\mathrm{M}+\mathrm{H}]^{+}-32} \\
282.3 \text { (Minor Peak) } & {[\mathrm{M}+\mathrm{H}]^{+}-53}
\end{array}
$$

From NMR
Only several peaks match the desired product Too many undesired peaks are present.

Scheme 5-22. Analysis of the tricyclic product 5-40 by MS and NMR

§ 5.2.2.2 Pd-catalyzed asymmetric Heck reaction of carboxamide using chiral

 bipheol-based monophosphoramiditeA library of our biphenol-based monophosphoramite ligands was intended to screen this known cyclisation substrate 5-85 in intramolecular asymmetric Heck reaction (Figure 5-3). The synthesis of racemic Heck cyclization products 5-21 and 5-22 was performed by using $\operatorname{Pd}(\mathrm{OAc})_{2}$ as the precatalyst, $\mathrm{Bu}_{3} \mathrm{P}$ and dppp as ligands in the presence of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and DMF (Table 5-2, entry 1). ${ }^{8 b}$ As expected, isomers 5-21 and 5-22 were both obtained and were inseparable by column chromatography. Therefore, ${ }^{1} \mathrm{H}$ NMR was employed to determine the regioselectivity of isomers 5-21 and 5-22. From ${ }^{1} \mathrm{H}$ NMR, two set of peaks are shown. However, only characteristic alkene peaks were able to be distinguished. Alkene peaks for isomer 5-21 were shown at 5.27 and 6.13 ppm and for isomer $\mathbf{5 - 2 2}$ were shown at $5.90 \mathrm{ppm} .{ }^{8 c}$ Besides, the conversion of the reaction was also obtained from ${ }^{1} \mathrm{H}$ NMR by comparing methyl group between starting material and products. These racemic products were then submitted to chiral HPLC (OD-H column) to determine their retention times. Unfortunately, racemic mixtures of isomer 5-22 were difficult to be separated in this column. However, based on previous literature, ${ }^{8 \mathrm{~b}}$ isomer 5-22 was the undesired product. For this reason, it is understandable if enantiomeric excess of $\mathbf{5 - 2 2}$ was ignored in the following data.

Figure 5-3. MPN ligands for asymmetric Heck reactions

From Table 5-2, three enantiopure biphenol-based monophosphoramite ligands, (S)-MPN-L1b, (S)-MPN-L1d and (R)-MPN-L1e, were chosen to do some preliminary tests to decide which reaction condition was better for the future study. In entries 2-4, the reaction condition of neutral pathway reported by Overman was adopted. ${ }^{\text {bb }}$ Each case gave about 95% conversion after 1.5 h at $80^{\circ} \mathrm{C}$ except entry $2(60 \%)$. No matter which ligand was used, regio ratio was almost 1 to 1 in each case which was similar to Overman's results. However, when considering enantiomeric excess, methyl-substitued monophosphoramite ligand (entry 2) gave nearly no enantioselectivity, and tert-butyl and phenyl-substituted monophosphoramite ligands (entries 3 and 4) only provided 27% and 28% ee which were poor enantiomeric excess compared to 89% ee by chiral BINAP ligands. On the other hand, the reaction conditions for the cationic pathway was employed in entries 5-7. In this reaction conditions, $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used as precatalyst and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ acted as base and halide scavenger, favoring the cationic pathway. ${ }^{8 \mathrm{c}}$ From entries 5-7, each reaction gave 100% conversion after 1.5 h at $80^{\circ} \mathrm{C}$. The regioselectivity was pretty good when methyl- or tert-butyl-substitued monophosphoramite ligand was performed as the chiral ligand (entries 5 and 6). The ratio of 4-21 to 4-22 was poorer while phenyl-substituted monophosphoramite ligand was employed (entry 7). Regarding enantioselectivity, only tert-butyl-substitued monophosphoramite ligand provided significant result, 22% ee (entry 6). Moreover, the comparison of the same ligand within these two sets of data indicated that the reaction condition of the cationic pathway gave comparable enantioselectivity but better reactivity and regioselectivity than the reaction conditions of the neutral pathway did (entries 2 and 5, entries 3 and 6). Therefore, the cationic reaction conditions were chosen as the standard conditions in the following study.

Table 5-2. Preliminary screening of MPN ligands for asymmetric Heck reaction of 5-85

a. 20 mg of substrate was used in each entry.
b. 0.75 mL of solvent was used.
c. The conversion was determined by ${ }^{1} \mathrm{H}$ NMR.
d. The regioselectivity was determined by ${ }^{1} \mathrm{H}$ NMR.
$e . \%$ ee was determined by chiral HPLC (OD-H column, eluent: Hexane:IPA=99.5:0.5).
$f . \%$ ee of 5-21 equals to the $\%$ area of first peak minus the $\%$ area of second peak.

* $\mathrm{PMP}=1,2,2,6,6$-pentan

Next, a variety of parameters were adjusted to optimize the regioselectivity and enantioselectivity using $\operatorname{Pd}(\mathrm{OAc})_{2}$ as precatalyst, $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ as base in DMF. First, temperature effect was investigated by tert-butyl-substitued monophosphoramite ligand which was the best ligand from the preliminary tests (Table 5-3, entries 1-4). The results suggested that lower temperature gave both poor regioselectivity and enantioselectivity. A valid explanation of those results was not clear so far because in principle, lower temperature should enhance
enantioselectivity due to less flexibility of the chiral monodentate ligand.
In addition to temperature effect, the loading of catalyst has also been discussed (entry 5). In this trial, the amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and chiral ligand was four times less than the amount in entry 1 . After 3 h at $80^{\circ} \mathrm{C}$, the conversion was over 95% and the regio- and enantioselectivity were only slightly unfavorable compared to the results in entry 1 . It showed that lower catalytic loading had a chance to be applied to asymmetric Heck reaction in our ligand system. In entries $6-10$, the amine moiety of ligands was replaced by $N, N-$ bis $((R)$-methyl benzyl) amine with C_{2}-symmetry to see whether bulky chiral amine moiety was capable of achieving higher enantioselectivity than small achiral amine moiety.

Table 5-3. Screening of MPN ligands for asymmetric Heck reaction of 5-85

Entry ${ }^{\text {a }}$	Pd source	Ligand	Temp(${ }^{\circ} \mathrm{C}$) Time (h) Conv. $\%^{b}$ 5-21:5-22 ${ }^{\text {c }}$				$\% \mathrm{ee}^{d}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(R)-MPN-L1e	80	1.5	>95	96:4	+22
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(R)-MPN-L1e	60	2.5	93	56:44	<5
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(R)-MPN-L1e	40	3.5	82	56:44	<5
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(R)-MPN-L1e	rt	4.0	>95	57:43	<5
5^{f}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(R)-MPN-L1e	80	3.0	>95	85:15	+13
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(S, R, R)-MPN-L2a	80	1.5	76	77:23	<5
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(S, R, R)-MPN-L2b	80	1.5	83	85:15	-15
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(S, R, R)-MPN-L2d	80	1.5	41	76:24	-26
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(S, R, R)-MPN-L2d	80	48	77	78:22	-18
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	(S, R, R)-MPN-L2e	80	48	83	76:24	<5

$\overline{a, b, c, d, e \text {, Please see the footnotes on Table 5-2. }}$
$f .2 .5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $7.5 \mathrm{~mol} \%$ MPN-L1e were used in the reaction.

From the data, entry 8 , in which phenyl-substitued monophosphoramite ligand with chiral amine moiety (S, R, R)-MPN-L2d was used as a chiral ligand, performed the best enantiomeric
excess (26% ee) but worst conversion (41% after 1.5 h at $80^{\circ} \mathrm{C}$). Moreover, when comparing with (S)-MPN-L1d which possesses the same biphenol but different amine moiety in this asymmetric Heck reaction (Table 5-2, entry 7), the chiral amine moiety indeed affected the enantioselectivity but reduced the reactivity as well. Entries 6 and 7 gave higher conversion but lower enantiomeric excess and each case showed moderate regioselectivty (up to 85:15). In order to increase the conversion of entry 8 , reaction time was prolonged to 48 h (entry 9). Although the conversion was really enhanced, enantiomeric excess slightly dropped to 18% ee. According to above results, the chiral amine moiety does improve enantioselectivity but its steric effect decreases reactivity instead (Table 5-2, entries 5 and 7; Table 5-3, entries 7 and 8).

§ 5.2.3 Asymmetric Heck reactions with a library of chiral biphenol and oxazoline-based phosphite-oxazoline ligands

Because poor results were obtained by using chiral biphenol-based monophosphoramidite, the focus was shifted back onto bidentate P-N type ligands which achieved impressive results in both inter- and intramolecular asymmetric Heck reactions (Figure 5-1). Thus, new chiral biphenol and oxazoline-based phosphite-oxazoline ligands were designed and synthesized for asymmetric Heck reactions described in the chapter 5.2.

Scheme 5-23. General procedures for the synthesis of P-N type ligands

§ 5.2.3.1 Synthesis of chiral biphenol and oxazoline-based phosphite-oxazoline ligands

According to the synthetic route in Scheme 5-23, biphenyl chlorophosphite and hydroxy
substituted oxazoline are two mandatory components. Thus, two oxazoline derivatives were synthesized; one is α, α-dimethyl-2-ethanol substituted 4,5-dihydro-oxazole 5-91, another is phenol substituted 4,5-dihydro-oxazole 5-92.

To synthesize α, α-dimethyl-2-ethanol substituted 4,5-dihydro-oxazole moiety, the selected chiral amino acids 5-93 were reduced by NaBH_{4} and I_{2} in THF to introduce corresponding amino alcohols 5-94 in 57-70\% isolated yields and the optical rotation for each amino alcohol is in agreement with the reported literature (Table 5-4).

Table 5-4. Synthesis of enantiopure 5-94a to 5-94c

Entry	substrate	R^{1}	yield (\%)	$[\alpha]_{\mathrm{D}}{ }^{22}$
1	D-Valine (R)	i-Pr	57	$-17.3(c=1.2$ in EtOH $)$
2	L-Valine (S)	i-Pr	61	$+14.6(c 0.8, \mathrm{EtOH})$
3	L-Phenylglycine (S)	Ph	70	$+30.9(c 1.4,1 \mathrm{~N} \mathrm{HCl})$

Next, D or L-Valinol 5-94a was reacted with 2-Hydroxy-2-methylpropanoic acid 5-95 in p-xylene under reflux condition using a Dean-Stark apparatus to generate desired (R) or (S)-4,5-Dihydro- α, α-dimethyl-4-isopropyloxazole-2-ethanol 5-91a. However, even though water was removed by Dean-Stark trap to inhibit the reversed reaction, the reaction did not complete after 30 h . Therefore, only 15% and 18% yield of products were obtained (Table 5-5). ${ }^{26}$

On the other hand, because of the instability of chlorophosphite under moisture, each chiral chlorophosphite was formed in situ, followed by the condensation with chiral α, α-dimethyl-2-ethanol substituted 4,5-dihydro-oxazole moiety (S)-5-91a to introduce the corresponding chiral P, N ligand (Tables 5-6 and 5-7). According to the data, more bulky substituent on $3,3^{\prime}$ positions of chiral biphenol results in lower yield of desired ligand $\left(R^{1}=H\right.$, $62 \%, \mathrm{R}^{1}=\mathrm{Me}, 57 \%, \mathrm{R}^{1}=\mathrm{Ph}, 25 \%, \mathrm{R}^{1}=\mathrm{Br}, 34 \%$ in Table $4-6, \mathrm{R}^{1}=\mathrm{Me}, 50 \%, \mathrm{R}^{1}=\mathrm{Ph}, 46 \%, \mathrm{R}^{1}=\mathrm{Br}$, 33% in Table 5-7). Biphenol bearing tert-butyl substituent on 3, 3' positions was also tried to
form its corresponding ligand using the same method. Unfortunately, none of desired ligand was observed after the reaction.

Table 5-5. Synthesis of (S)- and (R)-5-91a

Table 5-6. Synthesis of (S, S)-PN-L1a to 1d

Entry	R^{1}	${ }^{31} \mathrm{P}$ NMR of chlorophosphite (ppm)	${ }^{31}$ P NMR of P-N ligand (ppm)	Yield (\%)	$[\alpha]_{\mathrm{D}}{ }^{23}$
(S,S)-PN-L1a	H	171.3	145.3	62	$+92.3\left(c 0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(S,S)-PN-L1b	Me	166.4	140.9	57	$+173.3\left(c 0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
(S,S)-PN-L1c	Ph	167.5	142.5	25	$+266.7\left(c 0.30, \mathrm{CHCl}_{3}\right)$
(S,S)-PN-L1d	Br	172.2	143.9	34	$+257.9\left(c 0.40, \mathrm{CHCl}_{3}\right)$

Table 5-7. Synthesis of (R, S)-PN-L1b to 1d

Entry	R^{1}	${ }^{31} \mathrm{P}$ NMR of chlorophosphite (ppm)	${ }^{31}$ P NMR of $\mathrm{P}-\mathrm{N}$ ligand (ppm)	yield (\%)	$[\alpha]_{\mathrm{D}}{ }^{23}$
(R, S)-PN-L1b	Me	166.4	141.4	50	-237.5 (c 0.40, $\left.\mathrm{CHCl}_{3}\right)$
(R, S)-PN-L1c	Ph	167.5	142.8	46	-120.0 (c 0.45, CHCl_{3})
(R, S)-PN-L1d	Br	172.2	143.9	33	-343.8(c 0.30, CHCl_{3})

Table 5-8. Synthesis of phenol substituted 4,5-dihydro-oxazoles 5-92

To synthesize phenol substituted 4,5-dihydro-oxazoles 5-92, 2-hydroxybenzamide 5-96 was converted into 2-hydroxybenzonitrile 5-97 in the presence of catalytic amount of PdCl_{2} and 1:1 ratio of acetonitrille and water. After 24 h at $50^{\circ} \mathrm{C}$, 2-hydroxybenzonitrile 5-97 was obtained in
66% isolated yield. ${ }^{21}$ The resulting substrate then reacted with chiral amino alcohols 5-94 which were described above to introduce corresponding phenol substituted 4,5-dihydro-oxazoles 5-92 in moderated yields (63-83\% in Table 5-8).

Next, the same approach shown in Tables 5-6 and 5-7 was employed to synthesize this type of P,N ligands. A chiral chlorophosphite was formed in situ, and then a solution of oxazole moiety was treated with it in the presence of NEt_{3} and DMAP. After room temperature for 20 h , TLC and ${ }^{31} \mathrm{P}$ NMR indicated the presence of the desired ligand (R, S)-PN-L3a. However, no product was found after column chromatography on silical gel; only starting material $\mathbf{5 - 9 2 b}$ was recovered (Scheme 5-24).

Scheme 5-24. Unsuccessful attempt toward the synthesis of (R, S)-PN-L3a
§ 5.2.3.2 Asymmetric Heck reaction of carboxamide with a library of chiral biphenol and oxazoline-based phosphite-oxazoline ligands

A small library of our chiral biphenol-based phosphite-oxazoline ligands in Figure 5-3 was intended to screen this known cyclization substrate $\mathbf{5 - 8 5}$ in intramolecular asymmetric Heck reaction. The results are summarized in Table 5-9. The solvent effect was first studied in this reaction (entries 1-3). Among these three common solvents (DMA, NMP and toluene) for Heck reaction, NMP gave the best conversion, regio- and enantioselectivity (entry 2). Next, different silver source was used to investigate the reaction (entries 4 and 5). While AgOTf replaced $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ as the HI scanvenger, the reactivity was enhanced a lot; however, both regio- and enantioselectivity dropped dramatically (entries 1 and 4). Therefore, according to above results, the ligand study will be performed in the presence of NMP as a solvent and $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ as a HI
scanvenger. Here, three chiral biphenol-based phosphite-oxazoline ligands, (S, S)-PN-L1a, (S, S)-PN-L1b, (R, S)-PN-L1c, were used to screen the reaction (entries 2, 6, and 7). From those data, each of them gave 100% conversion after 26 h at $80^{\circ} \mathrm{C}$ and more bulky substituent on 3,3 , positions of chiral biphenol results in higher regio- and enantioselectity. However, that's so called "higher regio- and enantioselectity" still not an encouraging outcome. Besides, two BOP ligands, (R)-BOP-L1a and (S)-BOP-L1b (Figure 4-3), were also employed in this reaction to test their efficacy. Unfortunately, the regioselectivity was improved but enantioselectivity became even worse; only racemic cyclization products were found for each isomer.

Table 5-9. Screening of PN-L1a~c and BOP-L1a~b for asymmetric Heck reaction of 5-85

$a, b, c, d, e, f \quad$ Please see the footnotes on Table 5-2.

$(S, S)-P N-L 1 a: ~ R=H$ (S,S)-PN-L1b: R = Me $(R, S)-P N-L 1 c: ~ R=P h$

(R)-BOP-L1a: R = H (S)-BOP-L1b: R = Me

Figure 5-4. PN and BOP ligands for asymmetric Heck reactions

§ 5.2.4 Asymmetric 1,4-conjugated addition with a library of chiral biphenol and oxazoline-based phosphite-oxazoline ligands

Although poor results for asymmetric Heck reaction were given by newly developed chiral phosphite-oxazoline ligands, other useful asymmetric reactions have to be tried without just sacrificing those ligands.

Scheme 5-25. Asymmetric 1,4-conjugate addition of diethyl zinc to enone systems

Here, asymmetric 1,4-conjugate addition was screened by those P,N ligands (Figure 5-5) since silimilar P,N type chiral ligands gave moderate to good enantioselectivity for this reaction (Scheme 5-25). ${ }^{27}$

In the asymmetric 1,4 -conjugate addition, both cyclohepten-1-one and cyclohexen-1-one were used as substrates. The results are summarized in Table 5-10 and 5-11.

(S,S)-PN-L1a: R = H
(S,S)-PN-L1b: R = Me
(S,S)-PN-L1c: R = Ph
$(S, S)-P N-L 1 d: R=B r$

$(R, S)-P N-L 1 b: R=M e$
$(R, S)-\mathrm{PN}-\mathrm{L} 1 \mathrm{c}: \mathrm{R}=\mathrm{Ph}$
(R, S)-PN-L1d: $\mathrm{R}=\mathrm{Br}$

$(R, S)-P N-L 2 c: ~ R=P h$

Figure 5-5. PN ligands for asymmetric 1,4-conjugate addition

Table 5-10. Screening of PN-L1a~d and L2c for asymmetric 1,4-conjugate addition of cycloheptenone 5-98

Entry $^{a, b}$	Ligand	Conv. (\%)	\% ee ${ }^{d}$	Entry $^{a, b}$	Ligand	Conv. (\%)	\% ee^{d}
1	(S, S)-PN-L1b	89	$7(S)$	4	(R, S)-PN-L1b	68	$42(R)$
2	(S, S)-PN-L1c	97	$75(S)$	5	(R, S)-PN-L1c	97	$81(R)$
3	(S, S)-PN-L1d	79	$42(S)$	6	(R, S)-PN-L1d	71	$59(R)$
				7	(R, S)-PN-L2c	98	$79(R)$

a. 1 mmol of substrate was used in each entry.
b. 5 mL of solvent was used.
c. The conversion was determined by 1 H NMR and GC.
d. \%ee was determined by chiral GC (β-Dex 225 column, $\mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min}(S)$-product, $\mathrm{t}_{\mathrm{R}}=12.2 \mathrm{~min}$ (R)-product) for 2-cyclohepten-1-one).

In Table 5-10, (R, S)-PN-L1c gave very good conversion and the best ee among chiral P,N ligands (97% conv. and 81% ee in entry 5) for the asymmetric 1,4 -conjugate addition of cyclohepten-1-one. While the substituent on the oxazolie moiety was changed from $i \mathrm{Pr}$ to Ph which is (R, S)-PN-L2c, the comparable result was observed (98% conv. and 79% ee in entry 7). Comparing ligands and their diastereomeric pairs (entries 1 and 4, 2 and 5, 3 and 6), (S, S) ligands seem to inhibit the ee of the product and (R, S) ligands enhance the ee. These results indicated that two moieties of the ligand possessing the same chiralty interfere with each other and the ee of the product decreases by this mismatch.

In Table 5-11, (R, S)-PN-L1c and (R, S)-PN-L2c gave the best results among chiral P,N ligands for the asymmetric 1,4-conjugate addition of cyclohexen-1-one (Table 5-11, entries 3 and $10) ;>99 \%$ conv. and 68% ee were obtained. However, they are still not as good as the data reported in the literature. Moreover, the mismatch effect of two moieties of the ligand was not clearly found in this case.

Table 5-11. Screening of PN-L1a~d and L2c for asymmetric 1,4-conjugate addition of cyclohexenone 5-100

a, b, c, d, Please see the footnotes on Table 5-10.

§ 5.3 Conclusions

So far, a small library of chiral biphenol-based phosphite-oxazoline ligands was successfully synthesized for asymmetric Heck reaction. For asymmetric Intramolecular Heck reactions of carboxamide substrate, these newly synthesized Phosphite-Oxazoline Ligands show good reactivity to catalyze this reaction ($26 \mathrm{~h}, 100 \%$ conversion). However, the regioselectivity and enantioselectivity of products are both unsatisfied so far. (About $2: 1$ regio ratio and 31% ee).

§ 5.4 Experimental section

General Methods: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were measured on a Varian Inova-500 NMR (500 $\mathrm{MHz}{ }^{1} \mathrm{H}$, and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Inova-400 NMR ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 162 \mathrm{MHz}$ ${ }^{31} \mathrm{P}$) or a Varian Gemini-2300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H} ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} ; 121.5 \mathrm{MHz}{ }^{31} \mathrm{P}$) spectrometer in a deuterated solvent using residual protons $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm} . \mathrm{C}_{6} \mathrm{H}_{6}:{ }^{1} \mathrm{H}, 7.15\right.$ ppm) as the internal standard or phosphoric acid as the external reference (${ }^{31} \mathrm{P} 0.00 \mathrm{ppm}$). Analytical HPLC in reverse phase was carried out with a Shimadzu LC-2010A HPLC system using a Chiralpak AD-RH analytical column. Melting points were measured on a Thomas Hoover Capillary melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Helmer Model 241 polarimeter. TLC analyses were performed using Merck DC Alufolien 60F254 aluminum pre-coated silica gel plates. Flash column chromatography was carried out using Silicyle SiliaFlashP60® silica gel (particle size $40-63 \mu \mathrm{~m}$). High-resolution mass spectrometric analyses were carried out at the Mass Spectrometry Laboratories, University of Illinois Urbana-Champaign, Urbana, IL and ICB\&DD at Stony Brook University. Unless otherwise noted all reactions were carried out under argon or nitrogen atmosphere in oven-dried glassware using standard Schlenck techniques.
Materials: Solvents were reagents grade and freshly distilled before use. Tetrahydrofuran (THF) and dichloromethane (DCM) were dried and degassed using an Innovative Technology PureSolvTM solvent purification system. Acetonitrile was distilled from calcium hydride. Anhydrous N, N-dimethylformamide (DMF) was purchased from Acros and used without further purification. Other solvents were used without purification. All chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification unless
otherwise noted.

4-(2-Iodo)benzyloxyphenol (5-87) ${ }^{14}$

To a solution of acetone (10 mL), 2-iodobenzyl chloride 5-86 ($676 \mathrm{mg}, 2.68 \mathrm{mmol}$), hydroquinone ($1.49 \mathrm{~g}, 13.4 \mathrm{~mol}$), tetrabutylammonium iodide (TBAI) ($100 \mathrm{mg}, 0.27 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(561 \mathrm{mg}, 4.1 \mathrm{mmol})$ were added and stirred under reflux for 12 h . The reaction mixture was then cooled to room temperature and the salts were removed by filtration. The remaining solution was evaporated under reduced pressure and the residue was redissolved in CHCl_{3}. The insoluble hydroquinone was removed by filtration again. After evaporation of CHCl_{3}, methanol was added to the remaining oil and byproduct $\mathbf{5 - 8 8}$ was precipitated ($155 \mathrm{mg}, 11 \%$). After filtration and evaporation, the resulting orange oil was purified by column chromatography on silica gel (hexanes/EtOAc $=10: 1-5: 1$) to give pure $\mathbf{5 - 8 7}$ as an off-white solid ($650 \mathrm{mg}, 74 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 6.76-6.78$ (m, 2 H), 6.86-6.88 (m, 2 H), $7.02(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}), 7.38(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}), 7.50(\mathrm{dd}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}), 7.86$ (dd, $1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 74.7,97.1,116.0,116.1,128.3,128.6$, $129.4,139.2,139.3,149.9,152.7$. All data are in agreement with the literature values. ${ }^{14}$

4-(2-Iodobenzyloxy)-4-methoxycyclohexa-2,5-dien-2-one (5-39) ${ }^{14}$

A mixture of $\mathrm{PhI}(\mathrm{OAc})_{2}(500 \mathrm{mg}, 1.53 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(432 \mathrm{mg}, 3.05 \mathrm{mmol})$ in dry MeOH
(18 mL) was placed in a flask and flushed with N_{2}. To this solution was added 4-(2-iodo)benzyloxyphenol 5-87 (400 mg, 1.22 mmol$)$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ over 10 min . Stirring was continued for 2 h and the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The mixture was separated and the organic layer was diluted with ether and washed with water and brine, and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude 5-39. This crude product was further purified by column chromatography on silica gel (hexanes/EtOAc $=5: 1$) to give pure $\mathbf{5 - 3 9}$ as a yellow solid ($407 \mathrm{mg}, 94 \%$): mp $37-38{ }^{\circ} \mathrm{C}$ (lit. ${ }^{14} 35-37{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.45$ (s, 3 H), $4.65(\mathrm{~s}, 2 \mathrm{H}), 6.29-6.32(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.94(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{td}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}), 7.35(\mathrm{td}, 1 \mathrm{H}$, $J=7.5,1.2 \mathrm{~Hz}), 7.43(\mathrm{dd}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}), 7.82(\mathrm{dd}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.8,68.9,92.8,97.3,128.3,128.7,129.4,130.0,139.2,139.8,143.2,185.1$. All data are in agreement with the reported literature. ${ }^{14}$

A typical procedure for asymmetric Heck reaction of 5-39 ${ }^{14}$

A mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(0.011 \mathrm{mmol})$ and monophosphoramidite ligand (0.033 mmol) in dry solvent (1 mL) was heated to reflux for 1-2 h . After a clear yellow solution was obtained, a base (0.44 mmol) and dienone $5-39(0.11 \mathrm{mmol})$ were added and the reaction mixture was refluxed for 48 h . The solvent was evaporated and the crude product was characterized by ${ }^{1} \mathrm{H}$ NMR, TLC and LC-MS. However, in every trial, each characterization showed several undesired products which are inconsistent with published results. ${ }^{14}$

N-(2-Iodophenyl)-1-cyclohexene-1-carboxamide (5-90) ${ }^{8 b}$

To a solution of 1-cyclohexenecarboxylic acid 5-89 (540 mg, 4.28 mmol$)$ in dry DCM (10 mL) were added few drops of DMF and oxalyl chloride ($0.81 \mathrm{~mL}, 8.63 \mathrm{mmol}$) in ice bath and the mixture was stirred at reflux for 4 h . The reaction mixture was concentrated to dryness under reduced pressure. To the remaining residue were added 2-iodoaniline $(1.12 \mathrm{~g}, 5.13 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and dry $\mathrm{Et}_{3} \mathrm{~N}(0.81 \mathrm{~mL}, 5.82 \mathrm{mmol})$, and the solution was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was diluted with DCM , and then washed with $1 \mathrm{~N} \mathrm{HCl}, 5 \% \mathrm{NaOH}$ and brine, and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude 5-90. This crude product was further purified by column chromatography on silica gel (hexanes/EtOAc $=20: 1,15: 1$, then $10: 1$) to give pure 4-90 as a yellow solid ($710 \mathrm{mg}, 51 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64-1.78(\mathrm{~m}, 4 \mathrm{H})$, 2.24-2.28 (m, 2 H), 2.40-2.44 (m, 2 H), 6.82 (ddd, $1 \mathrm{H}, J=8.1,8.1,1.2 \mathrm{~Hz}$), 6.89-6.91 (m, 1 H), 7.35 (ddd, $1 \mathrm{H}, J=8.1,8.1,1.2 \mathrm{~Hz}$), 7.76 (dd, $1 \mathrm{H}, J=8.1,1.2 \mathrm{~Hz}$), 7.84 (br, 1 H), 8.36 (dd, 1 H , $J=8.1,1.2 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.4,22.2,24.4,25.7,89.9,121.6,125.6,129.3$, $133.5,135.6,138.4,138.7,166.2$. All data are in agreement with the literature values. ${ }^{8 b}$

N-(2-Iodophenyl)- N-methyl-1-cyclohexene-1-carboxamide (5-85) ${ }^{8 \mathrm{~b}}$

A suspension of N-(2-iodophenyl)-1-cyclohexene-1-carboxamide 5-90 ($607 \mathrm{mg}, 1.85 \mathrm{mmol}$) and $\mathrm{NaH}(259 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 6.48 mmol$)$ in dry DMF (23 mL) was stirred at room temperature for 30 min . A solution of $\mathrm{MeI}(0.13 \mathrm{~mL}, 1.85 \mathrm{mmol})$ in dry DMF (13 mL) was added to the resulting mixture and the whole solution was stirred at room temperature for another 1 h . Then, the reaction mixture was diluted with ether and washed with brine, dried over
MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude 5-85. This crude product was further purified by column chromatography on silica gel (hexanes/EtOAc $=5: 1$) to give pure $\mathbf{5 - 8 5}$ as a white solid (592 mg , 94%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.78-2.15(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 5.88$ (br, 1 H), 6.97 (ddd, $1 \mathrm{H}, J=7.6,7.6,1.6 \mathrm{~Hz}$), 7.14 (d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 7.33 (dd, $1 \mathrm{H}, J=7.6$, 7.6 Hz), $7.86(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,22.0,24.9,25.9$, $36.9,99.1,128.9,129.2,129.3,132.3,134.1,140.0,172.4$. All data are in agreement with the literature values. ${ }^{8 b}$

General procedure for asymmetric Heck reaction of 5-85 ${ }^{8 b}$

Cationic Pathway:

A mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(0.006 \mathrm{mmol})$, monophosphoramidite ligand (0.018 mmol), and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.12 \mathrm{mmol})$ in dry DMF $(0.35 \mathrm{~mL})$ was stirred at room temperature for 30 min . To this mixture was added carboxamide 5 -85 $(0.06 \mathrm{mmol})$ in dry DMF $(0.40 \mathrm{~mL})$ and the resulting mixture was heated to $80{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was diluted with ether and filtrated through Celite to remove salts and excess $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The solution was washed with sat. NaHCO_{3} and brine, and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude cyclization products 5-21 and 5-22. The conversion and regioselectivity of 5-21 and 5-22 were determined by ${ }^{1} \mathrm{H}$ NMR. The crude products were then passed through flash silical gel column and submitted to chiral HPLC analysis (OD-H or OJ column, eluent: Hexane:IPA=99.5:0.5) to give enantiopurity of both isomers.

Neutral Pathway:

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.003 \mathrm{mmol})$ and monophosphoramidite ligand $(0.018 \mathrm{mmol})$ in dry DMF (0.35 mL) was stirred at room temperature until the color of solution turned red. To this mixture were added PMP (0.3 mmol) and carboxamide $9(0.06 \mathrm{mmol})$ in dry DMF $(0.40 \mathrm{~mL})$
and the resulting mixture was heated to $80{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through Celite to remove salts. The filtrate was washed with sat. NaHCO_{3} and brine, and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude cyclization products $\mathbf{5 - 2 1}$ and $\mathbf{5 - 2 2}$. The conversion and regioselectivity of $\mathbf{5 - 2 1}$ and $\mathbf{5 - 2 2}$ were determined by ${ }^{1} \mathrm{H}$ NMR. The crude products were then passed through flash silical gel column and submitted to chiral HPLC analysis (OD-H or OJ column, eluent: Hexane:IPA=99.5:0.5) to give enantiopurity of both isomers.

Synthesis of chiral biphenol and oxazoline-based phosphite-oxazoline ligands

D-Valinol $[(R)-5-94 a]^{28}$
To a solution of D-Valine (R)-5-93a ($4.95 \mathrm{~g}, 47.2 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(3.89 \mathrm{~g}, 102.7 \mathrm{mmol})$ in THF (108 mL) was added slowly a solution of iodine ($10.9 \mathrm{~g}, 47.2 \mathrm{mmol}$) in THF (40 mL) at 0 ${ }^{\circ} \mathrm{C}$ over 15 min . The reaction mixture was then heated to reflux for another 20 h . After cooling the reaction mixture to room temperature, THF was removed under reduced pressure and 20% $\mathrm{KOH}(100 \mathrm{~mL})$ was added and stir for 4 h at room temperature. The aqueous mixture was extracted with DCM (100 mLx 3). The combined organic layer was washed with brine and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude oil $(R)-5-94$. This crude product was further purified by distillation $\left(52{ }^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}\right)$ to give pure $(R)-5-94 \mathrm{a}$ as a white solid $(2.50 \mathrm{~g}, 64 \%)$: $\mathrm{mp} 31-32^{\circ} \mathrm{C}$ (lit. $\left.{ }^{28} 31-32{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}-17.3(\mathrm{EtOH}, 1.2) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{~m}, 6 \mathrm{H}), 1.57(\mathrm{~m}$, $1 \mathrm{H}), 2.00(\mathrm{br}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=6.6,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=3.0,8.1 \mathrm{~Hz}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{28}$

L-Valinol $[(S) \text {-5-94a }]^{28}$
The compound (S)-5-94a was synthesized in the same manner as that described for (R)-5-94a. White solid (61% yield); mp $31-32{ }^{\circ} \mathrm{C}$ (lit. ${ }^{28} 31-32{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{23}+14.6(\mathrm{EtOH}, 0.8) ;{ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{~m}, 6 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{br}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=$ $6.6,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=3.0,8.1 \mathrm{~Hz}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{28}$

L-Phenylglycine $[(S)-5-94 b]^{28}$

The compound $(S) \mathbf{- 5 - 9 4 b}$ was synthesized in the same manner as that described for $(R)-5-94 a$. The crude oil $(S)-\mathbf{5 - 9 4 b}$ was recrystallized from toluene to give a pure white solid (70% yield): mp 76-78 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{28} 75-76{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{22}+30.9$ (1N HCl, 1.4); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.79(\mathrm{br}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{28}$

(S)-4,5-Dihydro- α, α-dimethyl-4-isopropyloxazole-2-ethanol [(S)-5-91a] ${ }^{26}$

2-Hydroxy-2-methylpropanoic acid (5-95) $(2.75 \mathrm{~g}, 26.4 \mathrm{mmol})$ and the L-valinol [(S)-5-94a] $(2.75 \mathrm{~g}, 26.7 \mathrm{mmol})$ were dissolved in p-xylene $(70 \mathrm{~mL})$ (complete dissolution occurred during heating) and heated to reflux in a Dean-Stark apparatus (oil-bath temp. $180^{\circ} \mathrm{C}$). After water formation stopped (ca. 28-30 h). The mixture was cooled to room temperature and the solvent was removed under reduced pressure. The yellow crude liquid was further purified by flash column chromatography on silica gel (hexanes/EtOAc $=7: 3$) to afford pure (S)-5-91a as colorless oil at room temperature (white solid was formed in a refrigerator) ($830 \mathrm{mg}, 18 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{22}-69.1(\mathrm{DCM}, 1.2) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.72-1.77(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{br}, 1 \mathrm{H}), 3.89-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.11(\mathrm{~m}, 1 \mathrm{H})$, 4.29-4.34 $(\mathrm{m}, 1 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{26}$
(R)-4,5-Dihydro- α, α-dimethyl-4-isopropyloxazole-2-ethanol $\left[(R)\right.$-5-91a] ${ }^{26}$

The compound (R)-5-91a was synthesized in the same manner as that described for (S)-5-91a. White solid (15% yield): mp 31-32 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{26} 31-32{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{23}+59.5$ (DCM, 0.4); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H})$,
1.72-1.77 (m, 1H), 3.30 (br, 1H), 3.89-3.95 (m, 1H), 4.05-4.11 (m, 1H), 4.29-4.34 (m, 1H). All data are in agreement with the literature values. ${ }^{26}$

(+)-\{2-[(4'S)-(4'-Isopropyloxazolin-2'-yl)]-2-methylethyl $[(S)-5,5 ', 6,6 '$ 'tetramethylbiphenyl-2, 2'-diyl]phosphate [(S,S)-PN-L1a]

In a dry 5 mL Schlenk tube under nitrogen, (S)-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol $(144 \mathrm{mg}, 0.590 \mathrm{mmol})$ was dissolved in $\mathrm{PCl}_{3}(1.0 \mathrm{~mL})$. The mixture was heated to reflux for 6 h . Afterwards the reaction mixture was cooled to room temperature and excess PCl_{3} and HCl were removed under reduced pressure. The crude product was characterized by ${ }^{31} \mathrm{P}$ NMR, which showed exclusively one peak at 171.3 ppm for the chlorophosphite; no peak at 210 ppm for PCl_{3} was observed. In a second 10 mL round-bottomed flask, DMAP ($7.2 \mathrm{mg}, 0.052 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.34 \mathrm{~mL}, 2.6 \mathrm{mmol}$) and (S)-4,5-dihydro- α, α-dimethyl-4-isopropyloxazole-2-ethanol [(S)-5-91a] ($88 \mathrm{mg}, 0.52 \mathrm{mmol}$) were dissolved in dry THF (2.5 mL). The chlorophosphite in THF (1 mL) was added slowly over 5 min by syringe at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred for 20 h . The salt was removed and then THF was evaporated under reduced pressure to give the crude oil (S, S)-PN-L1a. Further purification by flash column chromatography on silica gel [(Neutralized by $1 \% \mathrm{NEt}_{3}$) hexanes/EtOAc $\left.=15: 1-10: 1\right]$ afforded pure (S, S)-PN-L1a as a sticky solid ($140 \mathrm{mg}, 62 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{23}+92.3(\mathrm{DCM}, 0.52) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$, 1.76-1.84 (m, 1H), $1.99(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.97-4.03(\mathrm{~m}, 1 \mathrm{H})$, 4.08-4.12 (m, 1H), 4.31-4.36 (m, 1H), $6.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.3$; HRMS (EI+)
calcd. For $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+} 441.2069$, found $441.2068(\Delta=-0.1 \mathrm{ppm})$.
(+)-\{2-[(4'S)-(4'-Isopropyloxazolin-2'-yl)]-2-methylethyl\}[(S)-3,3'-dimethyl-5,5',6,6'-tetrame thylbiphenyl-2,2'-diyl]phosphate [(S,S)-PN-L1b]

Compound (S, S)-PN-L1b was synthesized in the same manner as that described for (S,S)-PN-L1a. White, foam-like solid (57\% yield): $[\alpha]_{\mathrm{D}}{ }^{23}+173.3$ (DCM, 0.45); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, 1.76-1.84 (m, 1H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 3.97-4.12 (m, 2H), 4.28-4.36 (m, 1H), $6.99(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (121.5 MHz, CDCl_{3}) $\delta 140.9$; HRMS (EI+) calcd. For $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+} 469.2382$, found $469.2382(\Delta=0.0 \mathrm{ppm})$.
(+)-\{2-[(4'S)-(4'-Isopropyloxazolin-2'-yl)]-2-methylethyl\}[(S)-3,3'-diphenyl-5,5',6,6'-tetrame thylbiphenyl-2,2'-diyl]phosphate [(S,S)-PN-L1c]

Compound (S, S)-PN-L1c was synthesized in the same manner as that described for (S,S)-PN-L1a. White, foam-like solid (25% yield): $[\alpha]_{\mathrm{D}}{ }^{23}+266.7\left(\mathrm{CHCl}_{3}, 0.3\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$, 1.56-1.64 (m, 1H), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 3 \mathrm{H})$, 7.20-7.60 (m, 12H); ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.4; HRMS (EI+) calcd. For $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+} 593.2695$, found $593.2695(\Delta=0.0 \mathrm{ppm})$.
(+)-\{2-[(4'S)-(4'-Isopropyloxazolin-2'-yl)]-2-methylethyl\}[(S)-3,3'-dibromo-5,5',6,6'-tetrame thylbiphenyl-2,2'-diyl]phosphate [(S,S)-PN-L1d]

Compound (S, S)-PN-L1d was synthesized in the same manner as that described for (S,S)-PN-L1a. White, foam-like solid (34\% yield): $[\alpha]_{\mathrm{D}}{ }^{22}+257.9\left(\mathrm{CHCl}_{3}, 0.4\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.04(\mathrm{~m}, 1 \mathrm{H})$, 4.11-4.16 (m, 1H), 4.33-4.39 (m, 1H), $7.39(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (121.5 MHz, $\left.\mathrm{CDCl}_{3}\right)$ δ 143.9; HRMS (EI+) calcd. For $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Br}_{2} \mathrm{P}[\mathrm{M}]^{+}$597.0279, found 597.0277 ($\Delta=-0.3$ ppm).
thylbiphenyl-2,2'-diyl]phosphate $[(R, S)$-PN-L1b]
Compound (R, S)-PN-L1b was synthesized in the same manner as that described for (S,S)-PN-L1a. White, foam-like solid (50% yield): $[\alpha]_{\mathrm{D}}{ }^{23}-237.5\left(\mathrm{CHCl}_{3}, 0.4\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, 1.76-1.84 (m, 1H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 3.97-4.12 (m, 2H), 4.28-4.36 (m, 1H), $6.99(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4$; HRMS (EI+) calcd. For $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+} 469.2382$, found $469.2382(\Delta=0.0 \mathrm{ppm})$.

(-)-\{2-[(4'S)-(4'-Isopropyloxazolin-2'-yl)]-2-methylethyl\}[(R)-3,3'-diphenyl-5,5',6,6'-tetrame thylbiphenyl-2,2'-diyl]phosphate [(R, S)-PN-L1c]

Compound (R, S)-PN-L1c was synthesized in the same manner as that described for (S,S)-PN-L1a. White, foam-like solid (46% yield): $[\alpha]_{\mathrm{D}}{ }^{23}-120.0\left(\mathrm{CHCl}_{3}, 0.45\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$, $1.56-1.64(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 3 \mathrm{H})$, 7.20-7.60 (m, 12H); ${ }^{31} \mathrm{P}$ NMR (121.5 MHz, CDCl_{3}) δ 142.8; HRMS (EI+) calcd. For $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+} 593.2695$, found $593.2689(\Delta=-0.6 \mathrm{ppm})$.

(-)-\{2-[(4'S)-(4'-Isopropyloxazolin-2'-yl)]-2-methylethyl\}[(R)-3,3'-dibromo-5,5',6,6'-tetramet hylbiphenyl-2,2'-diyl]phosphate [(R, S)-PN-L1d]

Compound (R, S)-PN-L1d was synthesized in the same manner as that described for (S,S)-PN-L1d. White, foam-like solid (33\% yield): $[\alpha]_{\mathrm{D}}{ }^{24}-343.8$ (DCM, 0.3); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.98-4.04(\mathrm{~m}, 1 \mathrm{H})$, 4.11-4.16 (m, 1H), 4.33-4.39 (m, 1H), $7.39(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (121.5 MHz, $\left.\mathrm{CDCl}_{3}\right)$ δ 144.1; HRMS (EI +) calcd. For $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Br}_{2} \mathrm{P}[\mathrm{M}]^{+}$597.0279, found 597.0281 ($\Delta=0.2 \mathrm{ppm}$).

2-Hydroxybenzonitrile (5-97) ${ }^{21}$

To a suspension of 2-hydroxybenzamide 5-96 (3.01 g, 21.9 mmoli) in a mixture of
water:acetonitrile ($1: 1,180 \mathrm{~mL}$) was added $\mathrm{PdCl}_{2}(383 \mathrm{mg}, 2.19 \mathrm{mmol})$. The orange suspension was heated at $50^{\circ} \mathrm{C}$ for 24 h . Acetonitrile was evaporated under reduced pressure and aqueous layer was extracted with DCM (3x). The combined organic layer was washed with brine and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude solid 5-97. The yellow crude solid was further purified by flash column chromatography on silica gel (hexanes/EtOAc $=9: 1-1: 1$) to afford pure 5-97 as a white solid ($1.72 \mathrm{~g}, 66 \%$ yield): mp $75-77{ }^{\circ} \mathrm{C}$ (lit. ${ }^{21} 75-77{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.60(\mathrm{br}, 1 \mathrm{H}), 6.96-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.52(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 99.4, 116.3, $116.6,120.9,132.9,134.8,158.6$. All data are in agreement with the literature values. ${ }^{21}$

(S)-2-(4-Isopropyl-4,5-dihydrooxazol-2-yl)phenol [(S)-5-92a]

2-Hydroxybenzonitrile $\mathbf{5 - 9 7}$ ($315 \mathrm{mg}, 2.64 \mathrm{mmol}$), L-valinol [(S)-5-94a] (331 mg, 3.21 $\mathrm{mmol})$, and $\mathrm{ZnCl}_{2}(14.4 \mathrm{mg}, 0.104 \mathrm{mmol})$ were placed in a 10 mL round-bottomed flask. Dry toluene (4 mL) was added in the flask. The reaction mixture was then heated to reflux for 24 h . After the reaction mixture was cooled to room temperature, $\mathrm{Et}_{2} \mathrm{O}$ was added and the organic layer was washed with water (5x). The organic layer was washed with brine and dried over MgSO_{4}. The drying agent was removed by filtration and the remaining solution was concentrated in vacuo to afford crude (S)-5-92a as yellow oil. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=9: 1$) afforded pure $(S)-\mathbf{5 - 9 2 a}$ as pale yellow oil ($449 \mathrm{mg}, 83 \%$): $[\alpha]_{\mathrm{D}}{ }^{22}-30.8\left(\mathrm{CHCl}_{3}, 2.3\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.50(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{t}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 12.4(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.5,18.6,32.9,69.8,71.5,110.6,116.6,118.5,127.9$, 133.2, 159.9, 165.0. All data are in agreement with the literature values.

(R)-2-(4-Isopropyl-4,5-dihydrooxazol-2-yl)phenol [(R)-5-92a]

Compound (R)-5-92a was synthesized in the same manner as that described for (S)-5-92a. Pale yellow oil (81% yield): $[\alpha]_{\mathrm{D}}{ }^{22}+46.3\left(\mathrm{CHCl}_{3}, 1.6\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~d}, J$
$=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.50(\mathrm{~m}, 1 \mathrm{H})$, $6.86(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1H), $12.4(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.5,18.6,32.9,69.8,71.5,110.6,116.6$, $118.5,127.9,133.2,159.9,165.0$. All data are in agreement with the literature values.

(S)-2-(4-Phenyl-4,5-dihydrooxazol-2-yl)phenol [(S)-5-92b]

The compound (S)-5-92b was synthesized in the same manner as that described for (S)-5-92a. Pale yellow oil (63% yield): $[\alpha]_{\mathrm{D}}{ }^{22}+83.0\left(\mathrm{CHCl}_{3}, 1.1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.24(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=8.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=8.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 12.2(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 68.8,73.9,110.4,116.8,118.7,126.5,127.8,128.2,128.8$, 133.6, 141.5, 160.0, 166.3. All data are in agreement with the literature values.

§ 5.5 References

1. Mizoroki, T.; Mori, K.; Ozaki, A., Arylation of Olefin with Aryl Iodide Catalyzed by Palladium. Bull. Chem. Soc. Jpn. 1971, 44 (2), 581-581.
2. Heck, R. F.; Nolley, J. P., Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37 (14), 2320-2322.
3. (a) Dounay, A. B.; Overman, L. E., The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis. Chem. Rev. 2003, 103 (8), 2945-2964; (b) Masakatsu Shibasaki, Erasmus M. V., Takashi Ohshima,, Asymmetric Heck Reaction. Adv. Synth. Catal. 2004, 346 (13-15), 1533-1552.
4. Ojima, I., Catalytic asymmetric synthesis. 2nd ed.; 2000.
5. Sato, Y.; Sodeoka, M.; Shibasaki, M., Catalytic asymmetric carbon-carbon bond formation: asymmetric synthesis of cis-decalin derivatives by palladium-catalyzed cyclization of prochiral alkenyl iodides. J. Org. Chem. 1989, 54 (20), 4738-4739.
6. Carpenter, N. E.; Kucera, D. J.; Overman, L. E., Palladium-catalyzed polyene cyclizations of trienyl triflates. J. Org. Chem. 1989, 54 (25), 5846-5848.
7. (a) Shibasaki, M.; Mase, T.; Ikegami, S., The first total syntheses of DELTA-9(12)-Capnellene-8-beta-10.alpha-diol and DELTA-9(12)-capnellene-3-beta-8-beta-10-alpha-triol. J. Am. Chem. Soc. 1986, 108 (8), 2090-2091; (b) Ohrai, K.; Kondo, K.; Sodeoka, M.; Shibasaki, M., Effects of Solvents and Additives in the Asymmetric Heck Reaction of Alkenyl Triflates: Catalytic Asymmetric Synthesis of Decalin Derivatives and Determination of the Absolute Stereochemistry of (+)-Vernolepin. J. Am. Chem. Soc. 1994, 116 (26), 11737-11748; (c) Sato, Y.; Mori, M.; Shibasaki, M., Asymmetric Heck reaction: A catalytic asymmetric synthesis of the key
intermediate of (-)-oppositol and (-)-prepinnaterpene. Tetrahedron: Asymmetry 1995, 6 (3), 757-766.
8. (a) Ashimori, A.; Overman, L. E., Catalytic asymmetric synthesis of quarternary carbon centers. Palladium-catalyzed formation of either enantiomer of spirooxindoles and related spirocyclics using a single enantiomer of a chiral diphosphine ligand. The Journal of Organic Chemistry 1992, 57 (17), 4571-4572; (b) Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J., Catalytic Asymmetric Synthesis of Quaternary Carbon Centers. Exploratory Investigations of Intramolecular Heck Reactions of (E)- α, β-Unsaturated 2-Haloanilides and Analogues To Form Enantioenriched Spirocyclic Products. J. Am. Chem. Soc. 1998, 120 (26), 6477-6487; (c) Kiely, D.; Guiry, P. J., Palladium complexes of phosphinamine ligands in the intramolecular asymmetric Heck reaction. J. Organomet. Chem. 2003, 687 (2), 545-561.
9. Busacca, C. A.; Grossbach, D.; So, R. C.; O'Brie, E. M.; Spinelli, E. M., Probing Electronic Effects in the Asymmetric Heck Reaction with the BIPI Ligands. Org. Lett. 2003, 5 (4), 595-598.
10. Kiewel, K.; Tallant, M.; Sulikowski, G. A., Asymmetric Heck cyclization route to indolizidine and azaazulene alkaloids: synthesis of (+)-5-epiindolizidine 167 B and indolizidine 223AB. Tetrahedron Lett. 2001, 42 (38), 6621-6623.
11. Hart, D. J.; Tsai, Y. M., Stereoselective indolizidine synthesis: preparation of stereoisomers of gephyrotoxin-223AB. The Journal of Organic Chemistry 1982, 47 (23), 4403-4409.
12. Yoda, H.; Katoh, H.; Ujihara, Y.; Takabe, K., SmI2-mediated hetero-coupling reaction of lactams with aldehydes; synthesis of indolizidine alkaloids, (-) δ-coniceine, $(+)-5$-epiindolizidine 167B and (+)-lentiginosine. Tetrahedron Lett. 2001, 42 (13), 2509-2512.
13. Dounay, A. B.; Overman, L. E.; Wrobleski, A. D., Sequential Catalytic Asymmetric Heck-Iminium Ion Cyclization: Enantioselective Total Synthesis of the Strychnos Alkaloid Minfiensine. J. Am. Chem. Soc. 2005, 127 (29), 10186-10187.
14. Imbos, R.; Minnaard, A. J.; Feringa, B. L., A Highly Enantioselective Intramolecular Heck Reaction with a Monodentate Ligand. J. Am. Chem. Soc. 2001, 124 (2), 184-185.
15. Lautens, M.; Zunic, V., Sequential olefin metathesis-Intramolecular asymmetric Heck reactions in the synthesis of polycycles. Can. J. Chem. 2004, 82 (2), 399-407.
16. Lormann, M. E. P.; Nieger, M.; Brase, S., Desymmetrisation of bicyclo[4.4.0]decadienes: A planar-chiral complex proved to be most effective in an asymmetric Heck reaction. J. Organomet. Chem. 2006, 691 (10), 2159-2161.
17. Ozawa, F.; Kubo, A.; Hayashi, T., Catalytic asymmetric arylation of 2,3-dihydrofuran with aryl triflates. J. Am. Chem. Soc. 1991, 113 (4), 1417-1419.
18. K. K. Hii, Timothy D. W. C., John M. Brown, Andrew Smith, Robert J. Deeth,, The Intermolecular Asymmetric $<\mathrm{I}>$ Heck $</ \mathrm{I}>$ Reaction: Mechanistic and Computational Studies13. Helv. Chim. Acta 2001, 84 (10), 3043-3056.
19. Ozawa, F.; Kobatake, Y.; Hayashi, T., Palladium-catalyzed asymmetric alkenylation of cyclic olefins. Tetrahedron Lett. 1993, 34 (15), 2505-2508.
20. (a) Hennessy, A. J.; Malone, Y. M.; Guiry, P. J., 2,2-Dimethyl-2,3-dihydrofuran, a new substrate for intermolecular asymmetric Heck reactions. Tetrahedron Lett. 1999, 40 (51), 9163-9166; (b) Hennessy, A. J.; Connolly, D. J.; Malone, Y. M.; Guiry, P. J., Intermolecular asymmetric Heck reactions with 2,2-diethyl-2,3-dihydrofuran. Tetrahedron Lett. 2000, 41 (40), 7757-7761.
21. Mata, Y.; Dieguez, M.; Pamies, O.; Claver, C., Chiral Phosphite-oxazolines: A New Class of Ligands for Asymmetric Heck Reactions. Org. Lett. 2005, 7 (25), 5597-5599.
22. Rubina, M.; Sherrill, W. M.; Rubin, M., Dramatic Stereo- and Enantiodivergency in the Intermolecular Asymmetric Heck Reaction Catalyzed by Palladium Complexes with Cyclopropane-Based PHOX Ligands. Organometallics 2008, 27 (24), 6393-6395.
23. (a) Hou, X.-L.; Dong, D. X.; Yuan, K., Synthesis of new chiral benzylically substituted P,N-ligands and their applications in the asymmetric Heck reaction. Tetrahedron: Asymmetry 2004, 15 (14), 2189-2191; (b) Wu, W.-Q.; Peng, Q.; Dong, D.-X.; Hou, X.-L.; Wu, Y.-D., A Dramatic Switch of Enantioselectivity in Asymmetric Heck Reaction by Benzylic Substituents of Ligands. J. Am. Chem. Soc. 2008, 130 (30), 9717-9725.
24. Koga, Y.; Sodeoka, M.; Shibasaki, M., Palladium-catalyzed asymmetric arylation of 4,7-dihydro-1,3-dioxepin. Catalytic asymmetric synthesis of γ-butyrolactone derivatives. Tetrahedron Lett. 1994, 35 (8), 1227-1230.
25. Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A., Enantioselective Heck Reactions Catalyzed by Chiral Phosphinooxazoline-Palladium Complexes. Synthesis 1997, 1997 (11), 1338-1345.
26. Dieter K. Heldmann, D. S., Catalytic Enantioselective Hydrosilylation of Ketones with Rhodium-Phosphite Complexes Containing a TADDOLate and a Dihydrooxazole Unit. Helv. Chim. Acta 1999, 82 (7), 1096-1110.
27. Escher, I. H.; Pfaltz, A., New Chiral Oxazoline-Phosphite Ligands for the Enantioselective Copper-Catalyzed 1,4-Addition of Organozinc Reagents to Enones. Tetrahedron 2000, 56 (18), 2879-2888.
28. McKennon, M. J.; Meyers, A. I.; Drauz, K.; Schwarm, M., A convenient reduction of amino acids and their derivatives. J. Org. Chem. 1993, 58 (13), 3568-3571.

Chapter 6

Synthesis of Chiral Biphenol-based Phosphoric Acids and their Applications to Asymmetric Organocatalysis

Table of Contents
§ 6.1 Introduction of chiral phosphoric acid for asymmetric organocatalysis 163
§ 6.2 Results and discussion 164
§ 6.2.1 Synthesis of chiral biphenol-based phosphoric acids 164
§ 6.2.2 The application of chiral biphenol-based phosphoric acids in the desymmetrization of meso-1,3-diones 165
§ 6.2.2.1 Synthesis of substrates $6-2 \mathrm{a} \sim \mathrm{c}$ 165
§ 6.2.2.2 Evaluation of the efficacy of chiral biphenol-based phosphoric acids in desymmetrization of meso-1,3-diones 166
§ 6.3 Conclusions 168
§ 6.4 Experimental section 169
§ 6.5 References 176

§ 6.1 Introduction of chiral phosphoric acid for asymmetric organocatalysis

Chiral phosphoric acid derived from chiral BINOL has first been used as an organocatalyst by Akiyama, ${ }^{1}$ Uraguchi, and Terada ${ }^{2}$ groups independently in 2004. They developed a BINOL-based phosphoric acid library as a novel and easily accessible chiral Brønsted acid catalyst system. After this breakthrough, many groups have explored numerous asymmetric transformations such as Friedel-Crafts reactions, ${ }^{3}$ Diels-Alder reactions, ${ }^{4}$ and nucleophilic addition of imine ${ }^{5}$ utilizing this catalyst system and found that phosphoric acids are actually bifunctional catalysts which possess a Brønsted acidic site and a Lewis basic site (Figure 6-1). Moreover, like BINOL or biphenol-based phosphoramidite and diphosphonite ligands that we mentioned in the previous chapters, 3, 3 ' substituents of BINOL for phosphoric acids are also crucial for controlling enantioselectivity and reactivity due to their steric and electronic properties.

Figure 6-1. Chiral BINOL-based phosphoric acids

In addition to chiral BINOL-based phosphoric acids, several novel phosphoric acids with different backbones have also been reported and proven to be highly efficient for several asymmetric transformations such as Mannich-type reactions and transfer hydrogenations (Figure 6-2). ${ }^{6}$

Figure 6-2. Other novel chiral phosphoric acids

§ 6.2 Results and discussion

Several different biphenol-based phosphorus ligand libraries which gave comparable or even better enantioselectivities comparing to BINOL-based phosphorus ligands have been developed in the Ojima laboratory. ${ }^{7}$ As a result, according to previously successful experiences and encouraging results reported by other research groups mentioned above, the development of novel enantiopure biphenol-based phosphoric acids has its significance and is worth to be done.

Described here is the synthesis of chiral biphenol-based phosphoric acids with various 3,3' substituents and the evaluation of asymmetric efficacy of these phosphoric acids through the desymmetrization of meso-1,3-diones for which BINOL-based phosphoric acids gave up to 92% ee. ${ }^{8}$

§ 6.2.1 Synthesis of chiral biphenol-based phosphoric acids

With various chiral biphenols in hand, a library of chiral bipenol-based phosphoric acids (Figure 6-3) can be synthesized according to literature procedures for the synthesis of BINOL-based phosphoric acids with some modifications (Scheme 6-1). ${ }^{2,9}$

Scheme 6-1. General procedure for the synthesis of chiral bipenol-based phosphoric acids

(R)-PA-1a: $\mathrm{R}=\mathrm{H}$
(R)-PA-1b: $\mathrm{R}=\mathrm{Me}$
(R)-PA-1c: R = Ph
(R)-PA-1d: $\mathrm{R}={ }^{\text {t }} \mathrm{Bu}$
(S)-PA-1e: $\mathrm{R}=2,4,6-\mathrm{-}^{\prime} \mathrm{PrC}_{6} \mathrm{H}_{2}$
(R)-PA-1f: $\mathrm{R}=\mathrm{SiPh}_{3}$

(S)-PA-3a

Figure 6-3. Chiral biphenol-based phosphoric acids

For the synthesis of chiral phosphoric acids bearing less bulky substituents on the 3,3 ' positions of the biphenol, i.e. PA-1a~1c, 2a, and 3a, their corresponding biphenols were first treated with phosphoryl chloride in pyridine at room temperature for several hours and followed by the hydrolysis using water at room temperature to give desired phosphoric acids in 50 to 90% yields after recrystallization in DCM/hexanes. In the syntheses of PA-1d~1f, which possessing bulky groups on the 3,3 ' positions of the biphenol, harsher conditions are necessary. Reflux temperature was mandatory in the first step to push the reaction to completion. In the hydrolysis step, phosphoric acids PA-1d and 1f form in decent yield using water at $95{ }^{\circ} \mathrm{C}$ for 24 hours. However, the above conditions were not harsh enough to introduce PA-1e. In this case, 12 M $\mathrm{NaOH}_{(\text {aq })}$ was utilized as the hydrolysis reagent at $60{ }^{\circ} \mathrm{C}$ for 5 hours, and the desired phosphoric acid can be obtained in 80% yield after column chromatography. ${ }^{2,9}$

§ 6.2.2 The Application of chiral biphenol-based phosphoric acids in the desymmetrization of meso-1,3-diones

§ 6.2.2.1 Synthesis of substrates $\mathbf{6 - 2 a} \sim \mathrm{c}$

Substrates 6-2a~c were prepared following literature procedures ${ }^{8,10}$ to evaluate the efficacy of the chiral biphenol-based phosphoric acids (Scheme 6-2). According to literature procedure, compound 6-2a can be obtained in excellent yield starting from 2-methylcyclohexane-1,3-dione 6-1 treated with methyl vinyl ketone in the presence of catalytic amount of triethylamine at room
temperature for 2 hours. However, due to the impurity which is most likely the oligomer of MVK in the original bottle, poor conversion was observed after 2.5 hours at room temperature. As a result, another 0.9 equivalent of distilled MVK and also 0.3 equivalent of triethylamine were added in the reaction mixture and 6-2a can be obtained in decent yield. For the synthesis of $\mathbf{6 - 2 b}$, which is an allylic substituted triketone, cyclohexane-1,3-dione $\mathbf{6 - 3}$ was reacted with allyl bromide in the presence of $5 \mathrm{~mol} \%$ copper powder and $20 \% \mathrm{KOH}_{(\mathrm{aq})}$ at room temperature for 24 hours to introduce 2-allylcyclohexane-1,3-dione $\mathbf{6 - 4}$ which is followed by 1,4 conjugate addition using the procedure described above to give 6-2b in 85% isolated yield. To introduce 6-2c, dimethyl phthalate 6-5 was first reacted with methyl propionate in the presence of sodium hydride and dibutyl ether to give desired diketone intermediate 6-6 and followed by 1,4 conjugate addition to give $\mathbf{6 - 1} \mathbf{c}$ in good yield after two steps.

Scheme 6-2. Synthesis of substrates 6-2a to 6-2c ${ }^{8,10}$

§ 6.2.2.2 Evaluation of the efficacy of chiral biphenol-based phosphoric acids in desymmetrization of meso-1,3-diones

With substrates 6-2a~c in hand, the reaction using the library of chiral biphenol-based phosphoric acids were screened and results are summarized in Table 6-1 to 6-3. In Table 6-1, PA-1a~e, 2a and 3a were used to screen the desymmetrization of 6-2a. No obvious trend for the increase of enantioselectivity was observed with the increase of bulkiness of the substituent on
the on the 3 , 3 ' positions of the biphenol (entries 1-4). However, if the substituent of the 3, 3 ' positions of the biphenol becomes really bulky such as triphenyl silyl and 2,4,6-triisopropyl phenyl groups, the enantioselectivity did increase dramatically and was up to 82% which is comparable to the result from the literature using chiral binol-based phosphoric acid with 2,4,6-triisopropyl phenyl on the the 3,3 ' positions of the binol (entries 5-7). ${ }^{8}$ The use of benzyl or ethynyl phenyl group did not help much in enantioselectivity (entries 8 and 9). For the solvent screening, hexanes is better than toluene in enantioselectivity but poorer in reactivity (dehydration to non-dehydration product ratio) (entries 1, 5 and 6).

Table 6-1. Screening of PA catalysts 1a~f, 2a and 3a for the desymmetrization of 6-2a

					$+$	
Entry	Catalyst	Temp (${ }^{\circ} \mathrm{C}$)	Solvent	Conv. \% ${ }^{\text {a }}$	6-7 (\%) ${ }^{a}$	\%ee
1	(R)-PA-1a	70	Hexanes	100	80	12.2 (R)
2	(R)-PA-1b	90	Toluene	100	>95	22.4 (R)
3	(R)-PA-1c	90	Toluene	100	>95	rac
4	(R)-PA-1d	90	Toluene	100	>95	21.0 (R)
5	(S)-PA-1e	90	Toluene	100	>95	77.0 (S)
6	(S)-PA-1e	70	Hexanes	100	84	82.2 (S)
7	(R)-PA-1f	90	Toluene	100	>95	51.1 (R)
8	(S)-PA-2a	90	Toluene	100	>95	20.8 (S)
9	(S)-PA-3a	90	Toluene	100	>95	rac

${ }^{\bar{a}}$ Determined by GC-MS.

As shown in Table 6-2, PA-1e, the best catalyst in Table 6-1, was employed for the
desymmetrization of $\mathbf{6 - 2 b}$ and 77% ee was obtained which is comparable to the result of using 6-2a as the starting substrate (Table 6-1, entry 5 and Table 6-2, entry 1). In the study of desymmetrization of $\mathbf{6 - 2} \mathbf{c}$, the combination of PA-1e and hexanes gave the best result which is also comparable to what they got in the literature (entry 2). ${ }^{8}$

Table 6-2. Use of PA-1e for the desymmetrization of 6-2b

Table 6-3. Screening of PA catalysts $\mathbf{1 e}$ and $\mathbf{1 f}$ for the desymmetrization of 6-2c

Entry	Catalyst	Solvent	Conv. \% ${ }^{\text {a }}$	6-11 (\%) ${ }^{\text {a }}$	\%ee
1	(S)-PA-1e	Toluene	88	>95	90.6 (+)
2	(S)-PA-1e	Hexanes	100	>95	$90.8(+)$
3	(R)-PA-1f	Toluene	100	>95	71.6 (-)

§ 6.3 Conclusions

A library of chiral biphenol-based phosphoric acids was successfully developed and its
asymmetric efficacy was evaluated by desymmetrization of meso-1,3-diones. Among those chiral phosphoric acids, PA-1e bearing 2,4,6-triisopropyl phenyl group on the 3,3' positions of the biphenol gave the best ee in all three cases which is comparable to results from the literature using chiral binol-based phosphoric acid with 2,4,6-triisopropyl phenyl on the the 3,3' positions of the binol. ${ }^{8}$ Further investigations in other asymmetric organocatalytic reactions catalyzed by our catalyst library are underway in our laboratory.

§ 6.4 Experimental section

General Methods: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were measured on a Varian Inova-500 NMR (500 $\mathrm{MHz}{ }^{1} \mathrm{H}$, and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Inova-400 NMR ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 162 \mathrm{MHz}$ ${ }^{31} \mathrm{P}$) or a Varian Gemini-2300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H} ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} ; 121.5 \mathrm{MHz}{ }^{31} \mathrm{P}$) spectrometer in a deuterated solvent using residual protons $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm} . \mathrm{C}_{6} \mathrm{H}_{6}:{ }^{1} \mathrm{H}, 7.15\right.$ $\mathrm{ppm})$ as the internal standard or phosphoric acid as the external reference (${ }^{31} \mathrm{P} 0.00 \mathrm{ppm}$). Analytical HPLC in reverse phase was carried out with a Shimadzu LC-2010A HPLC system using a Chiralpak AD-RH analytical column. Melting points were measured on a Thomas Hoover Capillary melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Helmer Model 241 polarimeter. TLC analyses were performed using Merck DC Alufolien 60F254 aluminum pre-coated silica gel plates. Flash column chromatography was carried out using Silicyle SiliaFlashP60® silica gel (particle size 40-63 $\mu \mathrm{m}$). High-resolution mass spectrometric analyses were carried out at Mass Spectrometry Laboratories, University of Illinois Urbana-Champaign, Urbana, IL and ICB\&DD at Stony Brook University. Unless otherwise noted all reactions were carried out under argon or nitrogen atmosphere in oven-dried glassware using standard Schlenck techniques.
Materials: Solvents were reagents grade and freshly distilled before use. Tetrahydrofuran (THF) and dichloromethane (DCM) were dried and degassed using an Innovative Technology PureSolvTM solvent purification system. Acetonitrile was distilled from calcium hydride. Anhydrous N, N-dimethylformamide (DMF) was purchased from Acros and used without further purification. Other solvents were used without purification. Other chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification unless otherwise noted. Chiral biphenols were prepared according to the procedure previously reported by our laboratory. ${ }^{7}$

General procedure for the synthesis of chiral biphenol-based phosphoric acids ${ }^{2,9}$

Synthesis of (R)-PA-1a~1c, (S)-2a, and (S)-3a
To a stirred solution of chiral biphenol 1-27 (1.00 mmol) in anhydrous pyridine (3 mL) was added $\mathrm{POCl}_{3}(183 \mu \mathrm{~L}, 2.00 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed up to room temperature and then stirred under room temperature until TLC indicated the completion of the reaction. To the reaction mixture was added water $(2 \mathrm{~mL})$ dropwise at room temperature and the reaction was stirred at the same temperature for 18 h . The reaction was quenched with 1 M HCl $(10 \mathrm{~mL})$ and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x 4)$. The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as a white foam. The recrystallizatoin of the white foam from $\mathrm{DCM} /$ hexanes gave pure chiral biphenol-based phosphoric acids as an off-white solid.
(R)-PA-1a: white solid (42% yield); $[\alpha]_{\mathrm{D}}{ }^{20}-96.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c \quad 1.13\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, d-DMSO) $\delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, d-DMSO) 17.2, 19.8, 118.2, 127.2, 130.1, 134.0, 136.9, 147.0; ${ }^{31} \mathrm{P}$ NMR (121.5 Hz, CDCl_{3}) $\delta 3.95$; HRMS (ESI-) calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-}$303.0786, found $303.0790(\Delta=1.3 \mathrm{ppm})$.
(R)-PA-1b: white solid (71\% yield); $[\alpha]_{\mathrm{D}}{ }^{20}-173.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 1.06\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.93(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{br}, 1 \mathrm{H}),{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}$, CDCl_{3}) 16.2, 17.1, 20.0, 126.9, 127.8, 131.5, 133.1, 134.0, 145.9; ${ }^{31} \mathrm{P} \operatorname{NMR}\left(121.5 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta$ 3.57; HRMS (ESI-) calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 331.1099$, found $331.1105(\Delta=1.8 \mathrm{ppm})$.
(R)-PA-1c: white solid (75% yield); $[\alpha]_{\mathrm{D}}{ }^{20}-177.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 1.02\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 2.09(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 7.09-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}$, CDCl_{3}) 17.4, 20.2, 126.9, 127.9, 128.2, 129.5, 131.5, 134.0, 136.5, 137.2, 143.7; ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 1.52$; HRMS (ESI-) calcd. For $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 455.1412$, found $455.1419(\Delta=1.5 \mathrm{ppm})$.
(S)-PA-2a: white solid (97% yield); $[\alpha]_{\mathrm{D}}{ }^{20}+204.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 1.45\right.$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 3.95(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}$, 2H), 7.10-7.20 (m, 10H), $7.40(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 17.2, 20.1, 35.4, 125.6, $128.0,128.1,129.3,130.0,130.9,133.4,140.7,145.5 ;{ }^{31} \mathrm{P}$ NMR (121.5 Hz, CDCl_{3}) $\delta 3.72$; HRMS (ESI-) calcd. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 483.1731$, found 483.1731 ($\Delta=0.0 \mathrm{ppm}$).
(S)-PA-2b: light yellow solid (97% yield); $[\alpha]_{\mathrm{D}}{ }^{20}+204.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c\right.$ 1.45); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{~s}, 6 \mathrm{H}), 2.09(\mathrm{~s}, 12 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 3.72(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.52-6.75(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 17.1, 20.1, 21.1, 34.8, 127.1, $127.2,128.2,130.4,130.6,132.9,134.3,137.3,140.5,145.8 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(121.5 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 2.70$. HRMS (ESI-) calcd. For $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 539.2351$, found 539.2354 ($\Delta=0.6 \mathrm{ppm}$).
(S)-PA-3a: light yellow solid (92\% yield); $[\alpha]_{\mathrm{D}}{ }^{20}+321.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c \quad 1.09\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.96(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.42(\mathrm{~m}, 5 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 17.5, 19.9, 85.6, $92.7,113.8,123.2,126.1,127.7,127.9,128.2$, $131.5,133.1,133.3,137.6,141.0,144.3,148.3,148.4 ;{ }^{31} \mathrm{P}$ NMR (121.5 Hz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.10$; HRMS (ESI+) calcd. For $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 503.1412$, found 503.1419 ($\Delta=1.4 \mathrm{ppm}$).

Synthesis of (R)-PA-1d ${ }^{9 \mathrm{aa}}$

To a stirred solution of a chiral biphenol ($354 \mathrm{mg}, 1.00 \mathrm{mmol}$) in anhydrous pyridine (3 mL) was added $\mathrm{POCl}_{3}(183 \mu \mathrm{~L}, 2.00 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was refluxed until TLC indicated the completion of the reaction. To the reaction mixture was added water (2 mL) dropwise at room temperature and the resulting mixture was stirred at $95{ }^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (15 mL x 4). The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated
in vacuo to afford the crude product as a white solid. The recrystallizatoin of the white solid in hot acetic acid gave pure $(R)-\mathbf{P A}-1 \mathbf{d}$ as a white needle crystal ($230 \mathrm{mg}, 55 \%$): $[\alpha]_{\mathrm{D}}{ }^{20}-87.7$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 1.06\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.46(\mathrm{~s}, 18 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 7.21(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(121.5 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 0.84$. All data are in agreement with the literature value. ${ }^{9 \mathrm{a}}$

Synthesis of (S)-PA-1e

To a stirred solution of chiral biphenol ($328 \mathrm{mg}, 0.507 \mathrm{mmol}$) in anhydrous pyridine (3 mL) was added $\mathrm{POCl}_{3}(140 \mu \mathrm{~L}, 1.52 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was refluxed until TLC indicated the completion of the reaction. To the reaction mixture was added $12 \mathrm{M} \mathrm{NaOH}(0.5 \mathrm{~mL})$ dropwise at room temperature and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 h . The reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x 4)$. The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as a white solid. Further purification by flash column chromatography on silica gel $(\mathrm{DCM} / \mathrm{MeOH}=20: 1-10: 1)$ afforded pure (S)-PA-1e as a white solid ($289 \mathrm{mg}, 80 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{20}+53.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 1.24\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.79-0.85(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.08-1.25(\mathrm{~m}, 12 \mathrm{H}), 2.10$ (s, 6H), $2.32(\mathrm{~s}, 6 \mathrm{H}), 2.48-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.76-2.85(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.3,20.2,22.8,23.1,23.9,24.1,24.8,26.4,30.4,30.5,34.2$, $119.9,120.8,128.1,128.4,128.5,129.1,132.0,132.1,132.9,136.3,147.0,147.6,147.7 ;{ }^{31} \mathrm{P}$ NMR (121.5 Hz, CDCl_{3}) $\delta 1.49$; HRMS (ESI-) calcd. For $\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]{ }^{-} 707.4235$, found $707.4236(\Delta=0.1 \mathrm{ppm})$.

Synthesis of (R)-PA-1f

To a stirred solution of chiral biphenol ($363 \mathrm{mg}, 0.48 \mathrm{mmol}$) in anhydrous pyridine (1.5 mL) and DMAP ($117 \mathrm{mg}, 0.96 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(90 \mu \mathrm{~L}, 0.96 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was refluxed until TLC indicated the completion of the reaction. To the reaction mixture was added water (8 mL) dropwise at room temperature and the resulting mixture was refluxed for 24 h . The reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x 4)$. The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was
concentrated in vacuo to afford the crude product as a white solid. The solid was washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave pure (R)-PA-1f as a white crystal ($280 \mathrm{mg}, 71 \%$): $[\alpha]_{\mathrm{D}}{ }^{20}-162.2(\mathrm{MeOH}, c$ 0.37); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d$-DMSO) $\delta 1.97(\mathrm{~s}, 18 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 5.75(\mathrm{brs}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H})$, 7.30-7.37 (m, 18H), 7.39-7.46 (m, 12H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d$-DMSO) $\delta 17.1,19.8,121.5$, 121.6, 127.6, 127.8, 129.4, 132.7, 134.2, 136.1, 138.5, 139.7, 152.2, 152.3; ${ }^{31} \mathrm{P}$ NMR (121.5 Hz, d-DMSO) δ 2.76. HRMS (ESI-) calcd. For $\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{PSi}_{2}[\mathrm{M}-\mathrm{H}]^{-} 819.2516$, found 819.2520 ($\Delta=$ $0.5 \mathrm{ppm})$.

Synthesis of substrates 6-2a~2c $\mathbf{c}^{8,10}$

2-Methyl-2-(3-oxobutyl)cyclohexane-1,3-dione (6-2a)

To a stirred solution of 2-methylcyclohexane-1,3-dione 6-1 (3.80 g, 30.1 mmol) and methyl vinyl ketone ($2.71 \mathrm{~mL}, 33.1 \mathrm{mmol}$) was added a catalytic amount of $\mathrm{NEt}_{3}(1 \mathrm{~mol} \%)$ at room temperature. The mixture was stirred under room temperature for 2.5 h . However, the reaction did not go well as indicated by TLC. Thus, another 0.3 equiv. of NEt_{3} and 0.9 equiv. of distilled methyl vinyl ketone were added to the reaction mixture at room temperature. After stirring for another 2.5 h at room temperature, volatile components were removed under reduced pressure to give crude brown oil 6-2a. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=3: 1-1: 1$) afforded pure $\mathbf{6 - 2 a}$ as colorless oil ($3.64 \mathrm{~g}, 62 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.87-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.77$ $(\mathrm{m}, 4 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{10}$

2-Allyl-2-(3-oxobutyl)cyclohexane-1,3-dione (6-2b)

To a stirred solution of cyclohexane-1,3-dione (6-3) ($2.25 \mathrm{~g}, 20.1 \mathrm{mmol}$) and allyl bromide $(1.55 \mathrm{~g}, 22.1 \mathrm{mmol})$ in $20 \% \mathrm{KOH}_{(\mathrm{aq})}$ was added a catalytic amount of copper powder ($5 \mathrm{~mol} \%$) at room temperature. The mixture was stirred at room temperature for 24 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the resulting precipitate was removed by filtration. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \mathrm{x} 3)$. The combined organic layer was washed with brine and dried over anhydrous MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as a brown solid. The recrystallization of the brown solid in toluene gave pure allyl substituted diketone 6-4 as an off-white solid ($1.51 \mathrm{~g}, 50 \%$ yield).

To a solution of the off-white solid in distilled methyl vinyl ketone (1.1 equiv.) was added $\mathrm{NEt}_{3}(1 \mathrm{~mol} \%)$. The reaction mixture was stirred at room temperature for 3.5 h and then volatile components were removed under reduced pressure to give crude brown oil 6-2b. Further purification by flash column chromatography on silica gel (hexanes/EtOAc=3:1-1:1) afforded pure 6-2b as colorless oil ($1.25 \mathrm{~g}, 85 \%$ yield): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97$ (quint, $J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.52-2.70 (m, 4H), $5.03(\mathrm{~m}, 2 \mathrm{H}), 5.51-5.60(\mathrm{~m}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{10}$

2-Methyl-2-(3-oxobutyl)-1H-indene-1,3(2H)-dione (6-2c)

To a suspension of $\mathrm{NaH}(494 \mathrm{mg}, 12.4 \mathrm{mmol})$ in $\mathrm{Bu}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added dimethyl phthalate 6-5 ($2.00 \mathrm{~g}, 10.3 \mathrm{mmol}$) and methyl propionate $(1.18 \mathrm{~g}, 13.4 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 2 h and then cooled to room temperature. To the
reaction mixture was added another 1.2 equiv. of NaH and the resulting mixture was refluxed for another 14 h . The reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x 4)$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product 6-6 as yellow oil.

To a solution of crude 6-6 and distilled methyl vinyl ketone (1.5 equiv.) in DCM was added NEt_{3} (2.0 equiv.). The reaction mixture was stirred at room temperature for 3 h and then volatile components were removed under reduced pressure to give crude yellow oil 6-2c. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1-4: 1$) afforded pure 6-2c as yellow oil ($1.23 \mathrm{~g}, 52 \%$ yield for two steps): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~s}$, $3 \mathrm{H}), 2.04-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.40(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.99(\mathrm{~m}, 2 \mathrm{H})$. All data are in agreement with the literature values. ${ }^{8}$

General procedure for the desymmetrization of meso-1,3-Diones.

Typical procedure is described for the reaction of 6-2a to afford Wieland-Miescher ketone, (S)-6-7: A mixture of 6-2a ($19.6 \mathrm{mg}, 0.100 \mathrm{mmol}$), and (S)-PA-1e ($7.1 \mathrm{mg}, 10 \mathrm{~mol} \%$) was placed in a 15 mL Schlenck tube. After purging the tube with nitrogen, toluene (1 mL) was added to the mixture, and the solution was stirred at $90^{\circ} \mathrm{C}$ for 24 h . The conversion and the ratio of 6-7 to 6-8 were determined by GC-MS. The volatile solvent was removed under reduced pressure to give crude yellow oil (S)-6-7. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1 \rightarrow 5: 1$) afforded $(S)-6-7$ as colorless oil ($12 \mathrm{mg}, 75 \%$ yield). The pure product was then subjected to chiral HPLC analysis, using a Chiralcel OD-H column (Hexanes $/ \mathrm{IPA}=96 / 4,0.6 \mathrm{~mL} / \mathrm{min}$), which indicated that the enantiopurity of the product (S)-5-2 was 77.0% ee. The S configuration was assigned by comparison of the HPLC trace in the literature. ${ }^{8}$

§ 6.5 References

1. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K., Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid. Angew. Chem., Int. Ed. 2004, 43 (12), 1566-1568.
2. Uraguchi, D.; Terada, M., Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004, 126 (17), 5356-5357.
3. (a) Uraguchi, D.; Sorimachi, K.; Terada, M., Organocatalytic Asymmetric Aza-Friedel-Crafts Alkylation of Furan. J. Am. Chem. Soc. 2004, 126 (38), 11804-11805; (b) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L., Chiral Brønsted Acid Catalyzed Enantioselective Friedel-Crafts Reaction of Indoles and α-Aryl Enamides: Construction of Quaternary Carbon Atoms. Angew. Chem., Int. Ed. 2007, 46 (29), 5565-5567; (c) Kang, Q.; Zhao, Z.-A.; You, S.-L., Highly Enantioselective Friedel-Crafts Reaction of Indoles with Imines by a Chiral Phosphoric Acid. J. Am. Chem. Soc. 2007, 129 (6), 1484-1485; (d) Seayad, J.; Seayad, A. M.; List, B., Catalytic Asymmetric Pictet-Spengler Reaction. J. Am. Chem. Soc. 2006, 128 (4), 1086-1087.
4. (a) Itoh, J.; Fuchibe, K.; Akiyama, T., Chiral Brønsted Acid Catalyzed Enantioselective Aza-Diels-Alder Reaction of Brassard's Diene with Imines. Angew. Chem., Int. Ed. 2006, 45 (29), 4796-4798; (b) Akiyama, T.; Morita, H.; Fuchibe, K., Chiral Brønsted Acid-Catalyzed Inverse Electron-Demand Aza Diels-Alder Reaction. J. Am. Chem. Soc. 2006, 128 (40), 13070-13071.
5. Guo, Q.-X.; Liu, H.; Guo, C.; Luo, S.-W.; Gu, Y.; Gong, L.-Z., Chiral Brønsted Acid-Catalyzed Direct Asymmetric Mannich Reaction. J. Am. Chem. Soc. 2007, 129 (13), 3790-3791.
6. (a) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K., Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid Derived from TADDOL. Adv. Synth. Catal. 2005, 347 (11-13), 1523-1526; (b) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C., Brønsted Acid-Catalyzed Imine Amidation. J. Am. Chem. Soc. 2005, 127 (45), 15696-15697.
7. (a) Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y., A Novel and General Synthetic Pathway to Strychnos Indole Alkaloids: Total Syntheses of (-)-Tubifoline, (-)-Dehydrotubifoline, and (-)-Strychnine Using Palladium-Catalyzed Asymmetric Allylic Substitution. J. Am. Chem. Soc. 2003, 125 (32), 9801-9807; (b) Choi, H.; Hua, Z.; Ojima, I., Highly Enantioselective Copper-Catalyzed Conjugate Addition of Diethylzinc to Nitroalkenes. Org. Lett. 2004, 6 (16), 2689-2691.
8. Mori, K.; Katoh, T.; Suzuki, T.; Noji, T.; Yamanaka, M.; Akiyama, T., Chiral Phosphoric Acid Catalyzed Desymmetrization of meso-1,3-Diones: Asymmetric Synthesis of Chiral Cyclohexenones. Angew. Chem., Int. Ed. 2009, 48 (51), 9652-9654.
9. (a) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C., Enantioselective Organocatalytic Reductive Amination. J. Am. Chem. Soc. 2005, 128 (1), 84-86; (b) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R., Catalytic Enantioselective Ring-Closing Metathesis by a Chiral Biphen-Mo Complex. J. Am. Chem. Soc. 1998, 120 (16), 4041-4042; (c) Liu, W.-J.; Chen, X.-H.; Gong, L.-Z., Direct Assembly of Aldehydes, Amino Esters, and Anilines into Chiral Imidazolidines via Brønsted Acid

Catalyzed Asymmetric 1,3-Dipolar Cycloadditions. Org. Lett. 2008, 10 (23), 5357-5360.
10. Bradshaw, B.; Etxebarría-Jardi, G.; Bonjoch, J.; Viózquez, S. F.; Guillena, G.; Nájera, C., Efficient Solvent-Free Robinson Annulation Protocols for the Highly Enantioselective Synthesis of the Wieland-Miescher Ketone and Analogues. Adv. Synth. Catal. 2009, 351 (14-15), 2482-2490.

Chapter 7

Formation of 5-7-5 Fused Tricyclic γ-Lactams via Rh(I)Catalyzed [2+2+2+1] Cycloaddition and $\mathrm{CO}-\mathrm{SiCaT}$ Reaction of Enediynes with Carbon Monoxide

Table of Contents

§ 7.1. Introduction 179
§ 7.2. Result and discussion 183
§ 7.2.1. Synthesis of 1,3-diethyl 2-\{3-[(prop-2-en-1-yl)carbamoyl]prop-2-yn-1-yl\}- 2-(prop-2-yn-1-yl)propanedioate and its derivative 183
§ 7.2.2. Optimization of $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of enediyne 7-16a 184
§ 7.2.3. $\mathrm{Rh}(\mathrm{I})$-catalyzed $\mathrm{CO}-\mathrm{SiCaT}$ reaction of enediynes 7-16a and 7-16b. 188
§ 7.3. Conclusions 189
§ 7.4. Experimental section 189
§ 7.5. References 193

§ 7.1. Introduction

Transition metal-catalyzed carbocyclization and cycloadditions are among the most efficient types of reactions to access complex polycyclic skeletons. ${ }^{1}$ Recent advances of higher order cycloaddition reactions include $[2+2+2+1]^{2},[4+2+2]^{3},[5+1+2+1]^{4},[3+3+1]^{5},[5+2+1]^{6}$, and $[2+2+2+2]^{7}$ processes. Linear, unsaturated starting materials can be transformed into complex polycyclic systems via any of these higher order processes. This proves useful in rapid access to the cores of a number of natural products and natural product-like derivatives from acyclic precursors. ${ }^{6 c, 8}$

In the Ojima laboratory, a series of $\mathrm{Rh}(\mathrm{I})$-catalyzed, silicon initiated carbocyclizations and carbonylative carbocyclizations as well as the $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition for the formation of polycyclic compounds using linear eneynes, diynes, triynes and enediynes as substrates have been developed. ${ }^{1 a, 2,9}$ Among them, enediyne type substrates have been the most extensively studied in recent years to give the desired tricyclic and tetracyclic products. ${ }^{2,9 c}$

In 2000, the first example for the formation of 5-7-5 tricyclic products 7-2 using dodeca-1-en-6,11-diynes 7-1 was reported by the Ojima group via silylcarbocyclization (CO-SiCaT) (Scheme 7-1). ${ }^{9 \mathrm{c}}$ However, these CO-SiCaT reactions only went smoothly with substrates having terminal alkyne moieties. None of the desired product was formed using enediyne substrates with substituted alkyne moieties under $\mathrm{CO}-\mathrm{SiCaT}$ reaction condition.

Scheme 7-1. $\mathrm{Rh}(\mathrm{I})$-catalyzed CO-SiCaT reaction of dodeca-1-en-6,11-diynes 7-1

After further study, the Ojima laboratory found that the 5-7-5 fused ring system can be easily introduced from enediyne substrates with substituted alkyne moieties through $\mathrm{Rh}(\mathrm{I})$ catalyzed $[2+2+2+1]$ cycloaddition without the addition of hydrosilane (Scheme 7-2). ${ }^{2 \mathrm{a}, \mathrm{b}}$

Scheme 7-2. $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of 1-substituted dodec-11-ene-1,6-diynes 7-3

Recently, the scope of the enediyne substrates has been extended for the formation of 5-7-n5 tetracyclic fused ring systems via $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition. A number of 3-(nona-3,8-diynyl)-1-cycloalkene derivatives $\mathbf{7 - 5}$ were synthesized and subjected to the cycloaddition reaction to afford the corresponding tetracyclic fused products and their regioisomers in good to excellent yields (Scheme 7-3). ${ }^{2 \mathrm{c}}$

Scheme 7-3. $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of 3-(nona-3,8-diynyl)-1cycloalkene derivatives 7-5

Although the similar fused-ring products can be accessed via the CO-SiCaT and $[2+2+2+1]$ cycloaddition reactions, their mechanisms are fundamentally different. The plausible mechanisms of two typical processes are illustrated in Schemes 7-4 and 7-5. ${ }^{2 b}$ The general mechanism of $\mathrm{Rh}(\mathrm{I})$-catalyzed $\mathrm{CO}-\mathrm{SiCaT}$ reaction of the enediyne begins with the insertion of the terminal alkyne moiety into the $\mathrm{Si}-\mathrm{Rh}$ bond of the hydrosilane- Rh oxidative complex. Carbocyclization then takes place to give intermediate 7-7a which isomerizes to 7-7c via 7-7b through the Ojima-Crabtree mechanism due to the steric hindrance between silane and $[\mathrm{Rh}] \mathrm{H}$. Intermediate 7-7c can undergo the second carbocyclization to afford 7-7d. At this stage, CO insertion to $\mathbf{7 - 7 d}$ and reductive elimination of $\mathbf{7 - 7 d}$ can compete to give different products. Reductive elimination of 7-7d assisted by the hydrosilane gives 7-8 as the product and regenerate
hydrosilane-Rh active species to complete the catalytic cycle. On the other hand, the insertion of CO into Rh-C bond introduces acyl- $[\mathrm{Rh}] \mathrm{H}$ intermediate 7-7e. The corresponding aldehyde 7-9 can be obtained by reductive elimination of 7-7e. To afford the most desired 5-7-5 tricyclic fused product, the carbocyclization of $\mathbf{7 - 7 e}$ should occur to give tricyclic intermediate 7-7f which possesses the silane and rhodium species in syn positions. Because of the syn conformation, β silyl elimination is able to happen to give the tricyclic product 7-2

It is worthy of note that the amount of hydrosilane and reaction concentration easily control the product selectivity. When stoichiometric or excess amount of hydrosilane and high reaction concentration are used, products $\mathbf{7 - 8}$ and 7-9 are obtained as major products due to the bimolecular process during the reductive elimination step (intermolecular reaction). On the other hand, tricyclic product $\mathbf{7 - 2}$ can be synthesized as the major product under the substoichiometric amount of hydrosilane and dilute concentration because the unimolecular process during the β silyl elimination step (intramolecular reaction) is involved in the reaction mechanism. Furthermore, by using a catalytic amount of hydrosilane and high dilution conditions, product 72 can be obtained exclusively with excellent yield. ${ }^{2 b}$

Scheme 7-4. The proposed mechanism $\mathrm{Rh}(\mathrm{I})$-catalyzed CO-SiCaT reaction of enediyne

Scheme 7-5 shows the proposed mechanism of $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of enediynes. It includes; (i) the formation of metallacycle 7-10a ([2+2+M]) by the oxidative cyclization of the diyne moiety into the active Rh catalyst species; (ii) the formation of fused 5-7-n-5 rhodacycle 7-10b $([2+2+2+M])$ by the insertion of the olefin moiety into the Rh-C bond followed by CO coordination to the metal; (iii) the formation of 5-8-n-5 rhodacycle 7-10c or $\mathbf{7 - 1 0} \mathbf{c}^{\prime}([2+2+2+1+\mathrm{M}])$ by the migratory insertion of CO into the $\mathrm{Rh}-\mathrm{C}$ bond; and (iv) the production of the $[2+2+2+1]$ cycloadduct 7-6 by reductive elimination and the regeneration of the active Rh catalyst species for the next catalytic cycle. If no CO insertion occurs at step (iii), the $[2+2+2]$ cycloadduct $\mathbf{7 - 1 1}$ can be obtained by reductive elimination from the 5-7-n-5 rhodacycle 7-10b.

Scheme 7-5. The proposed mechanism $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of enediyne

Very recently, 5-7-5 fused tricyclic γ-lactones were also obtained via the $\operatorname{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition from the corresponding enediyne substrates in good to excellent yields
(Scheme 7-6). ${ }^{10}$ Because of these successful results, as part of the ongoing studies of the $\mathrm{Rh}(\mathrm{I})$ catalyzed $[2+2+2+1]$ cycloaddition, the synthesis of enediyne substrates with the incorporation of an amide moiety for the formation of 5-7-5 fused tricyclic γ-lactams has been explored. If this methodology can be applied to the γ-lactam synthesis as well, it will become a more powerful tool for the synthesis of natural products and natural product-like derivatives.

Scheme 7-6. $[2+2+2+1]$ Cycloaddition of 1-substituted dodec-11-ene-8-oxo-1,6-diynes 7-12

§ 7.2. Result and discussion

§ 7.2.1. Synthesis of 1,3-diethyl 2-\{3-[(prop-2-en-1-yl)carbamoyl]prop-2-yn-1-

 yl\}-2-(prop-2-yn-1-yl)propanedioate and its derivativeThe synthesis of 1,3-diethyl 2-\{3-[(prop-2-en-1-yl)carbamoyl]prop-2-yn-1-yl\}-2-(prop-2-yn-1-yl)propanedioate 7-16a first underwent the coupling of propynyl diethylmalonate 7-14 with propargyl bromide in the presence of NaH in THF to obtain the desired dipropynyl diethylmalonate $\mathbf{7 - 1 5}$ in 93% yield (Scheme 7-7). ${ }^{10}$ Another coupling of 7-15 with allyl chloroformate in the presence of LiHMDS afforded the desired enediyne derivative 7-16a in 62% isolated yield (Scheme 7-7).

Scheme 7-7. Synthesis of enediyne substrate 7-16a

To extend the substrate scope, 7-16a with N-methyl substituted group, 7-16b, was also synthesized by using methyl iodide as the methylating reagent and solvent in the presence of NaH (Scheme 7-8).

Scheme 7-8. Synthesis of enediyne substrate 7-16b

§ 7.2.2. Optimization of $\mathbf{R h}(\mathbf{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction of enediyne 7-16a

With the enediyne substrates in hand, the $\operatorname{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition was investigated to find out the optimized condition (Table 7-1). First, enediyne 7-16a was reacted with $5 \mathrm{~mol} \%[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and 2 atm of CO in DCE $(0.05 \mathrm{M})$ at $50{ }^{\circ} \mathrm{C}$ to afford the desired $[2+2+2+1]$ and $[2+2+2]$ products. Analysis of the crude reaction mixture by HPLC indicated a clean reaction with two major peaks (Table 7-1, entry 1). Further analysis by LC-MS showed molecular masses consistent with the desired $[2+2+2+1]$ product $\mathbf{7 - 1 7}$ a and $[2+2+2]$ product 7 18a. Since the two cycloaddition products have different absorption coefficients, each compound must be isolated to determine each coefficient which can be further used to determine the product selectivity by HPLC. However, both products have the same R_{f} value in any solvent combination and could not be separated by column chromatography. Fortunately, the products were able to be separated according to analytical HPLC analysis, and prep-HPLC enabled us to isolate each of them with excellent purity. In addition, to achieve the best accuracy in the determination of product selectivity by HPLC, the UV spectrum of each product is necessary to find out the most appropriate working wavelength for HPLC and 303 nm was found to be the best wavelength to give the most accurate estimation of product distribution.

After setting the method to determine the product ratio by HPLC, the optimization studies of concentration effect were investigated (Table 7-1). When the reaction was ran in DCE at a substrate concentration of 0.05 M and 2 atm CO at $50{ }^{\circ} \mathrm{C}$ for 24 h in the autoclave, 100% conversion and 81:19 product selectivity favoring the carbonylated product $\mathbf{7 - 1 7}$ a were obtained (entry 1). Decrease in selectivity for the carbonylated product $\mathbf{7 - 1 7}$ a was noted under more
concentrated condition (entry 2) due to the lower quantity of CO in the reaction mixture. Based on this logic, the reaction should be selective towards the carbonylated product $\mathbf{7 - 1 7} \mathbf{a}$ under more dilute conditions and it indeed gave the result as expected but with some significant impurities based on HPLC analysis (entry 3). Thus, the reaction concentration at 0.05 M was selected for the further optimization.

Table 7-1. Effect of concentration on $[2+2+2+1]$ cycloaddition of enediyne 7-16a with CO

Next, a number of rhodium catalysts were screened for the $[2+2+2+1]$ cycloaddition of enediyne 7-16a with CO using the best reaction condition to date mentioned in Table 7-1 (Table 7-2). When $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ was used as the catalyst, a decrease of the $[2+2+2+1]$ product was observed, as determined by calibrated HPLC data (i.e. 81:19 vs. 73:27) (Table 7-2, entries 1 and 2). In addition to using rhodium dimer complex as the catalyst, catalysts with the mono rhodium, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$, and the cationic rhodium complex, $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{SbF}_{6}$ were also employed for this reaction. Surprisingly, the $[2+2+2+1]$ product $\mathbf{7 - 1 7}$ a was not obtained using $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ as the catalyst, as the $[2+2+2]$ product $\mathbf{7 - 1 8 a}$ was obtained exclusively (entry 3). On the other hand, the reaction using $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{SbF}_{6}$ as the catalyst resulted in high selectivity towards the carbonylated product $\mathbf{7 - 1 7 a}$; however, the reaction mixture was very messy according to HPLC
analysis. To conclude, the effect of rhodium dimer precursor, $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$, is still the most appropriate catalyst and was utilized for the further optimization.

Table 7-2. Screening of different $\mathrm{Rh}(\mathrm{I})$ species for the $[2+2+2+1]$ cycloaddition of enediyne 716a with CO

Entry a	Catalyst (mol\%)	Conv. (\%)	7-17a:7-18a ${ }^{b}$
1	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	100	$81: 19$
2	$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}(5)\right.$	100	$73: 27$
3	$\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(10)$	100	$\mathbf{7 - 1 8 a}$ only
4	$\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{SbF}_{6}(10)$	100	Messy mixture

[^2]Since the goal was to increase the selectivity towards the carbonylated product $\mathbf{7 - 1 7 a}$, the screening of different CO pressures was performed (Table 7-3). As shown in Table 7-3, increasing the pressure of CO from 2 atm to 3 atm gave the worse selectivity compared to that obtained when the CO pressure was 2 atm (entries 1 and 2). Also, higher CO pressure (6 atm) was explored in this reaction, but resulting in lower product ratio compared to the result at 3 atm of CO (entry 3). Based on above results, lower CO pressure gave better product selectivity. Therefore, 1 atm of CO was used to prove the proposed trend. Indeed, the reaction at 1 atm of CO afforded a bit better product selectivity than that at 2 atm of CO (entries 1 and 4). In addition, bubbling CO at ambient pressure has been shown to increase $[2+2+2+1]$ product selectivity for $[2+2+2+1]$ cycloaddition of other enediyne substrates. Thus, the reaction under CO bubbling was ran and gave the best result so far (i.e. 88:12) (entry 5).

The solvent effect was also studied to further optimize the product selectivity. When the reaction was run in toluene, at 1 atm of CO bubbling and $50^{\circ} \mathrm{C}$ in 0.05 M substrate concentration, a significant decrease in product ratio of the $[2+2+2+1]$ product $\mathbf{7 - 1 7}$ a to $[2+2+2]$ product $\mathbf{7 - 1 8 a}$ was noted by calibrated HPLC analysis (i.e. 88:12 vs. 70:30) (Table 7-4, entries 1 and 2). Because trifluoroethanol (TFE) has been shown to be an effective solvent in cyclocarbonylation reactions of other enediyne substrates, ${ }^{2 c}$ performing the reaction in TFE was done and afforded
very similar results to that in DCE (entries 1 and 3). With two good solvent candidates in hand, different co-solvent ratios of these two were investigated to evaluate their influence on the product selectivity. Thus far, only two co-solvent ratios were ran and a mixture of DCE and TFE (1:1) gave the best product selectivity (i.e. 94:6) favoring the $[2+2+2+1]$ product $\mathbf{7 - 1 8}$ (entries 4 and 5).

Table 7-3. Effect of CO pressure on $[2+2+2+1]$ cycloaddition of enediyne 7-16a with CO

Entry a	CO (atm)	Conv. (\%)	7-17a:7-18a
1	2	100	$81: 19$
2	3	100	$59: 41$
3	6	100	$47: 53$
4	1	100	$83: 17$
5	1 (bubble CO)	100	$88: 12$

${ }^{a}$ All reactions were run using $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5.0 \mathrm{~mol} \%)$ in DCE [0.05] at $50^{\circ} \mathrm{C}$ for 24 h under $\mathrm{CO}_{(\mathrm{g})}$.
${ }^{b}$ Determined by HPLC using Proteo reverse phase column.

Table 7-4. Solvent effect on $[2+2+2+1]$ cycloaddition of enediyne 7-16 with CO

Entry a	Solvent	Conv. (\%)	7-17a:7-18a
1	DCE	100	$88: 12$
2	toluene	100	$70: 30$
3	TFE	100	$91: 9$
4	DCE/TFE $4 / 1$ 5	DCE/TFE $1 / 1$	100

[^3]
§ 7.2.3. $\mathrm{Rh}(\mathrm{I})$-catalyzed $\mathrm{CO}-\mathrm{SiCaT}$ reaction of enediynes 7-16a and 7-16b

As mentioned above, because the reaction condition to obtain exclusive product selectivity was not found and the separation of two desired products was still impossible using column chromatography, the $\mathrm{Rh}(\mathrm{I})$-catalyzed $\mathrm{CO}-\mathrm{SiCaT}$ reaction of enediyne $\mathbf{7 - 1 6}$ with hydrosilane was studied as well to determine if the carbonylated product can be obtained exclusively or if multiple products can at least be separated using standard purification techiques.

Enediynes 7-16a and 7-16b were subnjected to the $\mathrm{CO}-\mathrm{SiCaT}$ reaction (Table 7-5). When enediyne 7-16a $\left(R^{1}=H\right)$ was used as the substrate, the reaction almost did not proceed after 24 h under the reaction condition described in Table 7-5 (entry 1). Fortunately, enediyne 7-16b $\left(R^{1}=\right.$ Me) was able to give the desired 5-7-5 tricyclic carbonylated product 7-17b in 71% isolated yield based on 70% conversion under the same $\mathrm{CO}-\mathrm{SiCaT}$ reaction condition with no observation of other possible byproducts (7-19 and 7-20) by TLC (entry 2). The poor reactivity of enediyne 7-16a may due to the formation of rhodium-imidate complex by rhodium catalyzed $\mathrm{N}-\mathrm{H}$ activation prior to the formation of rhodium-silicon active species for $\mathrm{CO}-\mathrm{SiCaT}$ reaction. This rhodium-imidate complex then traps the hydrosilane by strong Si-O bond and completely poisons the $\mathrm{CO}-\mathrm{SiCaT}$ reaction.

Table 7-5. $\mathrm{Rh}(\mathrm{I})$-catalyzed $\mathrm{CO}-\mathrm{SiCaT}$ reaction of enediyne 7-16a and 7-16b with PhMe 2 SiH

Entry ${ }^{a}$	R^{1}	Conv. (\%) ${ }^{\text {b }}$	Yield of 7-17
1	H	<5	n.d.
2	Me	70	$50(71)^{b}$
${ }^{\bar{a}}$ All reactions were run using $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(1.0 \mathrm{~mol} \%)$ in THF $[0.015]$ at $22^{\circ} \mathrm{C}$ for 24 h under $\mathrm{CO}_{(\mathrm{g})}(2 \mathrm{~atm})$. ${ }^{b}$ Determined by HPLC using Proteo reverse phase column.			

§ 7.3. Conclusions

Enediynes containing amide moieties were successfully synthesized in moderate to good yields for the formation of 5-7-5 fused tricyclic γ-lactam products. $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition of 7-16a has been applied and optimized to afford the desired 5-7-5 fused tricyclic γ-lactam 7-17a and 5-6-5 fused tricyclic γ-lactam 7-18a in 94:6 product selectivity. However, the separation of two desired products is impossible using flash column chromatography. Therefore, the $\mathrm{Rh}(\mathrm{I})$-catalyzed $\mathrm{CO}-\mathrm{SiCaT}$ reaction of enediyne with hydrosilane was studied and found to give the corresponding 5-7-5 fused tricyclic γ-lactam 7-17b exclusively when enediyne 7-16b was used as the substrate. Both methodologies are useful and promising to introduce desired fused tricyclic γ-lactams. Further studies on the synthesis of other enediyne derivatives for these methodologies are underway in our laboratory.

§ 7.4. Experimental section

General Methods: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR were measured on a Varian Inova-500 NMR (500 $\mathrm{MHz}{ }^{1} \mathrm{H}$, and $125 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Inova-400 NMR ($400 \mathrm{MHz}{ }^{1} \mathrm{H} ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} ; 162 \mathrm{MHz}$ ${ }^{31} \mathrm{P}$) or a Varian Gemini-2300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H} ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} ; 121.5 \mathrm{MHz}{ }^{31} \mathrm{P}$) spectrometer in a deuterated solvent using residual protons $\left(\mathrm{CHCl}_{3}:{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm} . \mathrm{C}_{6} \mathrm{H}_{6}:{ }^{1} \mathrm{H}, 7.15\right.$ ppm) as the internal standard or phosphoric acid as the external reference (${ }^{31} \mathrm{P} 0.00 \mathrm{ppm}$). Analytical HPLC in reverse phase was carried out with a Shimadzu LC-2010A HPLC system using a Chiralpak AD-RH analytical column. Melting points were measured on a Thomas Hoover Capillary melting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Helmer Model 241 polarimeter. TLC analyses were performed using Merck DC Alufolien 60F254 aluminum pre-coated silica gel plates. Flash column chromatography was carried out using Silicyle SiliaFlashP60® silica gel (particle size $40-63 \mu \mathrm{~m}$). High-resolution mass spectrometric analyses were carried out at the Mass Spectrometry Laboratories, University of Illinois Urbana-Champaign, Urbana, IL and ICB\&DD at Stony Brook University. Unless otherwise noted all reactions were carried out under argon or nitrogen atmosphere in oven-dried glassware using standard Schlenck techniques.
Materials: Solvents were reagents grade and freshly distilled before use. Tetrahydrofuran (THF), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and dichloromethane (DCM) were dried and degassed using an Innovative

Technology PureSolvTM solvent purification system. Acetonitrile was distilled from calcium hydride. Anhydrous N, N-dimethylformamide (DMF) was purchased from Acros and used without further purification. Other solvents were used without purification. Other chemicals and reagents were purchased from Sigma-Aldrich or Fisher Scientific and used without further purification unless otherwise noted.

Synthesis of Diethyl 2-\{3-[(prop-2-en-1-yl)carbamoyl]prop-2-yn-1-yl\}-2-(prop-2-yn-1-

 yl)propanedioate (7-16a)

To a solution of dipropynyl diethylmalonate $\mathbf{7 - 1 5}(944 \mathrm{mg}, 4.00 \mathrm{mmol})$ in THF (15 mL) was added dropwise 1 M LiHMDS $(6.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$. After stirring the mixture at this temperature for 30 min , allyl isocyanate ($498 \mathrm{mg}, 6.00 \mathrm{mmol}$) was added to the reaction mixture and stirred for another 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\text {aq) }}$. The aqueous layer was separated and extracted with EtOAc ($50 \mathrm{~mL} x 3$). The combined organic layer was washed with distilled water, brine and dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as a light yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1-3: 1$) afforded 7-16a as colorless oil ($1.19 \mathrm{~g}, 62 \%$ yield): ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) [a mixture of two rotamers (6:1)] $\delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.03(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}),[3.07(\mathrm{~s}, 1.72 \mathrm{H}), 3.14(\mathrm{~s}, 0.28 \mathrm{H})$], $[3.85(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1.72 \mathrm{H})$, $3.94(\mathrm{t}, J=5.6 \mathrm{~Hz}, 0.28 \mathrm{H})$], $4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.11-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.73-5.84(\mathrm{~m}, 1 \mathrm{H}), 6.00$ (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of two rotamers) (major) $\delta 13.9,22.6,22.7$, $42.0,56.0,62.3,72.1,77.9,78.0,81.0,116.9,133.1,152.4,168.2$; (minor) $\delta 13.9,22.8,22.9$, $45.4,55.9,62.3,72.1,77.9,78.0,81.0,116.5,133.8,155.5,168.1$; HRMS (ESI+) calcd. For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 320.1498$, found $320.1492(\Delta=-1.9 \mathrm{ppm})$.

Synthesis of Diethyl 2-\{3-[methyl(prop-2-en-1-yl)carbamoyl]prop-2-yn-1-yl\}-2-(prop-2-yn-1-yl)propanedioate (7-16b)

To a solution of enediyne 7-16a ($180 \mathrm{mg}, 0.562 \mathrm{mmol}$) in MeI (1 mL) was added slowly $\mathrm{NaH}\left(60 \%\right.$ oil dispersion, $27 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. After stirring the mixture at this temperature for 30 min , the reaction mixture was warmed up to room temperature and stirred for another 18 h . The reaction was then quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The combined organic layer was washed with distilled water, brine and dried over MgSO_{4}. The drying agent was removed by filtration and the solvent was concentrated in vacuo to afford the crude product as a light yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=10: 1-3: 1$) afforded $\mathbf{7 - 1 6 b}$ as colorless oil ($133 \mathrm{mg}, 71 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) [a mixture of two rotamers (3:2)] $\delta[1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3.6 \mathrm{H})],[1.99(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $0.4 \mathrm{H}), 2.00(\mathrm{t}, J=2.4 \mathrm{~Hz}, 0.6 \mathrm{H})], 2.03(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}),[2.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1.2 \mathrm{H}), 2.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.8 \mathrm{H})$], $3.02(\mathrm{~s}, 1 \mathrm{H}),[3.09(\mathrm{~s}, 1.2 \mathrm{H}), 3.11(\mathrm{~s}, 0.8 \mathrm{H})$], [3.92 (d, $J=5.6$ $\mathrm{Hz}, 0.8 \mathrm{H}), 4.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1.2 \mathrm{H})],[4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1.6 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{H})]$, 5.07-5.18 (m, 2H), 5.60-5.76 (m, 1H) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of two rotamers) (major) $\delta 13.8,22.9,23.0,31.7,35.5,48.7,53.2,55.8,62.1,72.0,76.6,77.8,86.0,117.5,132.3$, $153.8,168.1$; (minor) $\delta 13.8,22.7,22.8,31.7,35.5,48.7,53.2,55.8,62.1,72.0,76.4,77.8,86.6$, 117.8, 131.7, 153.5, 168.1; HRMS (ESI+) calcd. For $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$334.1654, found $334.1648(\Delta=-1.8 \mathrm{ppm})$.

General procedure for the $[2+2+2+1]$ cycloaddition reaction

A typical procedure is described for the reaction of enediyne 7-16a. All other reactions were run following the same procedure unless otherwise noted. Enediyne 7-16a ($32 \mathrm{mg}, 0.10 \mathrm{mmol}$) was introduced to a 5 mL round-bottomed flask, followed by DCE (2 mL) under nitrogen, and
then CO was bubbled into the solution at room temperature. After $15 \mathrm{~min},[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.5$ $\mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added under CO and the resulting mixture was stirred at room temperature for an additional 5 min . Then, the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h under CO (ambient pressure, bubbled into the solution). All volatiles were removed in vacuo to afford the crude product as yellow oil. Purification of the crude product by flash column chromatography on silica gel (hexanes/EtOAc $=1: 1-2: 8$) afforded mixtures of 7-17a and 7-18a as light yellow oil. Two products were further separated by prep HPLC and 7-17a was obtained as colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.60(\mathrm{dt}, J=15.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{t}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dd}$, $J=18.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{qd}, J=7.2,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,33.8,38.5,42.7,44.7,45.1,57.8,61.9,127.5,140.7,154.6,170.0,170.5$, 170.6, 196.3; HRMS (ESI+) calcd. For $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 348.1447$, found 348.1441 ($\Delta=-1.7$ ppm).

7-18a was obtained exclusively using $\mathrm{Rh}(\mathrm{acac}) \mathrm{CO}_{2}$ as the catalyst. Light yellow oil. 75\% yield: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-2.04$ $(\mathrm{m}, 1 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 3 \mathrm{H}), 3.25-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J$ $=18.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 5.89-5.92 (m, 1H); ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 14.5,29.9,34.8,37.6,39.1,49.2,61.1,62.9$, $63.0,122.6,123.9,140.3,140.9,172.5,172.9$; HRMS (ESI +) calcd. For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 320.1498, found 320.1491 ($\Delta=-2.2 \mathrm{ppm})$.

General procedure for the catalytic $\mathrm{CO}-\mathrm{SiCaT}$ reaction

A typical procedure is described for the reaction of diethyl 2-(4-(allyl(methyl)amino)-4-oxobut-2-ynyl)-2-(prop-2-ynyl) malonate (7-16b). A reaction vessel equipped with a stirring bar and a CO inlet was charged with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(0.6 \mathrm{mg}, 1 \mathrm{~mol} \%)$. After purging the reaction
vessel with CO, THF (9 mL) was added to dissolve the catalyst. Dimethylphenylsilane ($12 \mu \mathrm{~L}$, $0.078 \mathrm{mmol}, 0.5 \mathrm{eq})$ was then added, and the mixture was stirred at room temperature. After 1 min , a solution of substrate $\mathbf{7 - 1 6 b}(52 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added, and the reaction mixture was stirred under CO (1 atm) for 24 h . All volatiles were removed in vacuo to afford the crude product as yellow oil. Further purification by flash column chromatography on silica gel (hexanes/EtOAc $=8: 2-7: 3$) afforded pure $\mathbf{7 - 1 7 b}$ as light-yellow oil ($26 \mathrm{mg}, 71 \%$ yield based on 70% conversion): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.60(\mathrm{dt}, J=$ $15.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H}), 2.90-3.28(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{dt}, J=15.2$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=18.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{qd}, J=7.2,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,30.0,31.3,38.4,42.7,44.8,52.1,57.7,61.8,61.9,127.1,136.4$, 139.6, 155.0, 167.1, 170.6, 170.7, 196.4; HRMS (ESI+) calcd. For $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 362.1604$, found $362.1599(\Delta=-1.4 \mathrm{ppm})$.

§ 7.5. References

1. (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J., Transition Metal-Catalyzed Carbocyclizations in Organic Synthesis. Chem. Rev. 1996, 96 (2), 635-662; (b) Lautens, M.; Klute, W.; Tam, W., Transition Metal-Mediated Cycloaddition Reactions. Chem. Comm. 1996, 96, 49-92; (c) Lloyd-Jones, G. C., Mechanistic aspects of transition metal catalysed 1,6-diene and 1,6-enyne cycloisomerisation reactions. Org. Biomol. Chem. 2003, 1, 215-236; (d) Bauer, R. A.; DiBlasi, C. M.; Tan, D. S., The tert-Butylsulfinamide Lynchpin in Transition-Metal-Mediated Multiscaffold Library Synthesis. Org. Lett. 2010, 12, 2084-2087.
2. (a) Bennacer, B.; Fujiwara, M.; Ojima, I., Novel [2+2+2+1] Cycloaddition of Enediynes Catalyzed by Rhodium Complexes. Org. Lett. 2004, 6 (20), 3589-3591; (b) Bennacer, B.; Fujiwara, M.; Lee, S.; Ojima, I., Silicon-Initiated Carbonylative Carbotricyclization and $[2+2+2+1]$ Cycloaddition of Enediynes Catalyzed by Rhodium Complexes. J. Am. Chem.Soc. 2005, 127 (50), 17756-17767; (c) Kaloko, J. J.; Teng, Y.-H.; Ojima, I., One-step formation of fused tetracyclic skeletons from cyclohexene-diynes and carbon monoxide through $\operatorname{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction. Chemical Communications 2009, (30), 4569-4571.
3. Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N., Intermolecular transition metalcatalyzed $[4+2+2]$ cycloaddition reactions: A new approach to the construction of eightmembered rings. Journal of the American Chemical Society 2002, 124 (30), 8782-8783.
4. Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Pham, S. M.; Zhang, L., Multicomponent Cycloadditions: The Four-Component [5+1+2+1] Cycloaddition of Vinylcyclopropanes, Alkynes, and CO. J. Am. Chem. Soc. 2005, 127, 2836-2837.
5. Kim, S. Y.; Lee, S. I.; Choi, S. Y.; Chung, Y. K., Rhodium-Catalyzed Carbonylative [3+3+1] Cycloaddition of Biscyclopropanes with a Vinyl Substituent To Form Seven-Membered

Rings. Angew. Chem. Int. Ed. 2008, 47, 4914-4917.
6. (a) Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z. X., A Computationally Designed $\mathrm{Rh}(\mathrm{I})$-Catalyzed Two-Component [5+2+1] Cycloaddition of Ene-vinylcyclopropanes and CO for the Synthesis of Cyclooctenones. J. Am. Chem. Soc. 2007, 129, 10060-10061; (b) Yuana, C.; Jiaoa, L.; Yu, Z.-X., Formal total synthesis of (\pm)-hirsutic acid C using the tandem $\mathrm{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition/aldol reaction. Tetrahedron Letters 2010, 51 (43), 5674-5676; (c) Liang, Y.; Jiang, X.; Yu, Z.-X., Enantioselective total synthesis of (+)-asteriscanolide via $\mathrm{Rh}(\mathrm{I})-$ catalyzed $[(5+2)+1]$ reaction. Chemical Communications 2011, 47, 6659-6661.
7. (a) Wender, P. A.; Croatt, M. P.; Kühn, B., Rhodium(I)-Catalyzed [2+2], [2+2+2], and $[2+2+2+2]$ Cycloadditions of Dienes or Alkynes with a Bis-ene. Organometallics 2009, 28 (20), 5841-5844; (b) Wender, P. A.; Christy, J. P.; Lesser, A. B.; Gieseler, M. T., The Synthesis of Highly Substituted Cyclooctatetraene Scaffolds by Metal-Catalyzed [2+2+2+2] Cycloadditions: Studies on Regioselectivity, Dynamic Properties, and Metal Chelation. Angew. Chem. Int. Ed. 2009, 48, 7687-7690.
8. (a) Yu, R. T.; Friedman, R. K.; Rovis, T., Enantioselective Rhodium-Catalyzed [4+2+2] Cycloaddition of Dienyl Isocyanates for the Synthesis of Bicyclic Azocine Rings. J. Am. Chem. Soc. 2009, 131 (13250-13251); (b) Krishna, U. M.; Patil, M. P.; Sunoj, R. B.; Trivedi, G. K., [5+3] cycloaddition of 3-oxidopyrylium: a novel route to functionalized cyclooctanoids from furans Synthesis 2010, 2, 320-328.
9. (a) Ojima, I.; McCullagh, J. V.; Shay, W. R., New Cascade Silylcarbocyclization (SiCaC) of Enediynes. Journal of Organometallic Chemistry 1996, 521, 421-423; (b) Ojima, I.; Vu, A. T.; McCullagh, J. V.; Kinoshita, A., Rhodium-Catalyzed Intramolecular Silylcarbotricyclization (SiCaT) of Triynes. Journal of the American Chemical Society 1999, 121, 3230-3231; (c) Ojima, I.; Lee, S.-Y., Rhodium-Catalyzed Novel Carbonylative Carbotricyclization of Enediynes. J. Am. Chem. Soc. 2000, 122 (10), 2385-2386; (d) Ojima, I.; Vu, A. T.; Lee, S. Y.; McCullagh, J. V.; Moralee, A. C.; Fujiwara, M.; Hoang, T. H., Rhodium-Catalyzed Silylcarbocyclization (SiCaC) and Carbonylative Silylcarbocyclization (CO-SiCaC) Reactions of Enynes. Journal of the American Chemical Society 2002, 124, 9164-9174.
10. Kaloko, J. J. Synthesis of Novel Fused Tricyclic and Tetracyclic Skeletons Through Rh(I)Catalyzed $[2+2+2+1]$ Cycloaddition of Enediyne Derivatives with Carbon Monoxide. Doctor of Philosophy in Chemistry, Stony Brook University, Stony Brook, NY, August 2010.

Bibliography

Chapter 1

1. Natta, G.; Porri, L.; Valenti, S., Synthesis of optically active cis-1,4 poly(1,3-pentadiene) by asymmetric induction, kurzmitteilung. Die Makromolekulare Chemie 1963, 67 (1), 225-228.
2. Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R., Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate. Tetrahedron Lett. 1966, 7 (43), 5239-5244.
3. (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G., The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J. Chem. Soc. A 1966, 1711-1732; (b) Baird, M. C.; Lawson, D. N.; Mague, J. T.; Osborn, J. A.; Wilkinson, G., Novel Addition Reactions of Chlorotris(triphenyl phosphine)rhodium(I). Chem. Comтип. 1966, 129-130; (c) Mague, J. T.; Wilkinson, G., Tris(triphenylarsine)- and tris(triphenylstibine)-chlororhodium(I) complexes and their reactions with hydrogen, olefins, and other reagents. J. Chem. Soc. A 1966, 1736-1740.
4. (a) Horner, L.; Siegel, H.; Büthe, H., Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution. Angew. Chem., Int. Ed. 1968, 7 (12), 942; (b) Knowles, W. S.; Sabacky, M. J., Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun. 1968, (22), 1445-1446.
5. Knowles, W. S., Asymmetric hydrogenation. Acc. Chem. Res. 1983, 16 (3), 106-112.
6. Dang, T. P.; Kagan, H. B., The asymmetric synthesis of hydratropic acid and amino-acids by homogeneous catalytic hydrogenation. J. Chem. Soc. D, Chem. Commun. 1971, (10), 481.
7. Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J., Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. J. Am. Chem. Soc. 1977, 99 (18), 5946-5952.
8. Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R., Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of .alpha.-(acylamino) acrylic acids. J. Am. Chem. Soc. 1980, 102 (27), 7932-7934.
9. Burk, M. J., C2-symmetric bis(phospholanes) and their use in highly enantioselective hydrogenation reactions. J. Am. Chem. Soc. 1991, 113 (22), 8518-8519.
10. (a) Noyori, R., Asymmetric Catalysis in Organic Synthesis. Wiley: New York, 1994; (b) Ojima, I., Catalytic Asymmetric Synthesis. Wiley: New York, 2000; p 1-110; (c) Tang, W.; Zhang, X., New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103 (8), 3029-3070.
11. Katsuki, T.; Sharpless, K. B., The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 1980, 102 (18), 5974-5976.
12. Alexakis, A.; Vastra, J.; Burton, J.; Benhaim, C.; Mangeney, P., Asymmetric conjugate addition of diethyl zinc to enones with chiral phosphorus ligands derived from TADDOL.

Tetrahedron Lett. 1998, 39 (43), 7869-7872.
13. (a) Reetz, M. T.; Sell, T., Rhodium-catalyzed enantioselective hydrogenation using chiral monophosphonite ligands. Tetrahedron Lett. 2000, 41 (33), 6333-6336; (b) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L., Highly Enantioselective Rhodium-Catalyzed Hydrogenation with Monodentate Ligands. J. Am. Chem. Soc. 2000, 122 (46), 11539-11540.
14. Hua, Z.; Vassar, V. C.; Ojima, I., Synthesis of New Chiral Monodentate Phosphite Ligands and Their Use in Catalytic Asymmetric Hydrogenation. Org. Lett. 2003, 5 (21), 3831-3834.
15. (a) Choi, H.; Hua, Z.; Ojima, I., Highly Enantioselective Copper-Catalyzed Conjugate Addition of Diethylzinc to Nitroalkenes. Org. Lett. 2004, 6 (16), 2689-2691; (b) Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I., New biphenol-based, fine-tunable monodentate phosphoramidite ligands for catalytic asymmetric transformations. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (15), 5411-5416; (c) Chapsal, B. D.; Ojima, I., Total Synthesis of Enantiopure (+)- γ-Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation. Org. Lett. 2006, 8 (7), 1395-1398.
16. (a) Bonafoux, D.; Hua, Z.; Wang, B.; Ojima, I., Design and synthesis of new fluorinated ligands for the rhodium-catalyzed hydroformylation of alkenes in supercritical CO 2 and fluorous solvents. J. Fluorine Chem. 2001, 112 (1), 101-108; (b) Hultzsch, K. C.; Jernelius, J. A.; Hoveyda, A. H.; Schrock, R. R., The First Polymer-Supported and Recyclable Chiral Catalyst for Enantioselective Olefin Metathesis. Angew. Chem., Int. Ed. 2002, 41 (4), 589-593.
17. Shi, C.; Ojima, I., Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination. Tetrahedron 2007, 63 (35), 8563-8570.
18. Pu, L., 1,1'-Binaphthyl Dimers, Oligomers, and Polymers: Molecular Recognition, Asymmetric Catalysis, and New Materials \dagger. Chem. Rev. 1998, 98 (7), 2405-2494.
19. van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P., Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation. Chem. Rev. 2000, 100 (8), 2741-2770.
20. Trost, B. M.; Murphy, D. J., A model for metal-templated catalytic asymmetric induction via .pi.-allyl fragments. Organometallics 1985, 4 (6), 1143-1145.
21. Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y., A Novel and General Synthetic Pathway to Strychnos Indole Alkaloids: Total Syntheses of (-)-Tubifoline, (-)-Dehydrotubifoline, and (-)-Strychnine Using Palladium-Catalyzed Asymmetric Allylic Substitution. J. Am. Chem. Soc. 2003, 125 (32), 9801-9807.
22. Alexander, J. B.; Schrock, R. R.; Davis, W. M.; Hultzsch, K. C.; Hoveyda, A. H.; Houser, J. H., Synthesis of Molybdenum Imido Alkylidene Complexes That Contain 3,3‘-Dialkyl-5,5‘,6,6‘-tetramethyl-1,1‘-biphenyl-2,2‘-diolates (Alkyl = t-Bu, Adamantyl). Catalysts for Enantioselective Olefin Metathesis Reactions. Organometallics 2000, 19 (18), 3700-3715.
23. (a) Freundlich, J. S.; Landis, H. E., An expeditious aqueous Suzuki-Miyaura method for the arylation of bromophenols. Tetrahedron Lett. 2006, 47 (25), 4275-4279; (b) Chouteau, F.; Ramanitrahasimbola, D.; Rasoanaivo, P.; Chibale, K., Exploiting a basic chemosensitizing pharmacophore hypothesis. Part 1: Synthesis and biological evaluation of novel arylbromide
and bicyclic chemosensitizers against drug-resistant malaria parasites. Bioorg. Med. Chem. Lett. 2005, 15 (12), 3024-3028.
24. Yoshizaki, H.; Satoh, H.; Sato, Y.; Nukui, S.; Shibasaki, M.; Mori, M., Palladium-Mediated Asymmetric Synthesis of Cis-3,6-Disubstituted Cyclohexenes. A Short Total Synthesis of Optically Active (+)-.gamma.-Lycorane. J. Org. Chem. 1995, 60 (7), 2016-2021.
25. Shi, C.; Chien, C.-W.; Ojima, I., Synthesis of Chiral Biphenol-Based Diphosphonite Ligands and Their Application in Palladium-Catalyzed Intermolecular Asymmetric Allylic Amination Reactions. Chem. Asian J. 2011, 6 (2), 674-680.

Chapter 2

1. Tsuji, J.; Takahashi, H.; Morikawa, M., Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Letters 1965, 6 (49), 4387-4388.
2. Trost, B. M.; Strege, P. E., Asymmetric induction in catalytic allylic alkylation. Journal of the American Chemical Society 1977, 99 (5), 1649-1651.
3. Trost, B. M.; Lee, C., Catalytic Asymmetric Synthesis, ed. Ojima, I. (Wiley-VCH, New. York). 2nd ed.; 2000; p 593-649.
4. Tsuji, J., Palladium reagents and catalyst; Wiley: New york. 1995; p 290.
5. Trost, B. M.; Crawley, M. L., Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chemical Reviews 2003, 103 (8), 2921-2944.
6. Scott, J. D.; Williams, R. M., Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics. Chem. Rev. 2002, 102 (5), 1669-1730.
7. Bentley, K. W., The Isoquinoline Alkaloids. In Chemistry and Biochemistry of Organic Natural Products, Ravindranath, B., Ed. Harwood Academic Publishers: Amsterdam, 1998.
8. Ivanovska, N.; Nikolova, P.; Hristova, M.; Philipov, S.; Istatkova, R., Complement modulatory activity of bisbenzylisoquinoline alkaloids isolated from Isopyrum thalictroides--I: Influence on classical pathway in human serum. International Journal of Imтипopharmacology 1999, 21 (5), 325-336.
9. Banning, J. W.; Salman, K. N.; Patil, P. N., A Pharmacological Study of Two Bisbenzylisoquinoline Alkaloids, Thalistyline and Obamegine. Journal of Natural Products 1982, 45 (2), 168-177.
10. Pingaew, R.; Ruchirawat, S., Application of the Hypervalent Iodine Reagent to the Synthesis of Some Pentasubstituted Aporphine Alkaloids. Synlett 2007, 2007 (EFirst), 2363,2366.
11. Markmee, S.; Ruchirawat, S.; Prachyawarakorn, V.; Ingkaninan, K.; Khorana, N., Isoquinoline derivatives as potential acetylcholinesterase inhibitors. Bioorganic \& Medicinal Chemistry Letters 2006, 16 (8), 2170-2172.
12. Takada, K.; Uehara, T.; Nakao, Y.; Matsunaga, S.; van Soest, R. W. M.; Fusetani, N.,

Schulzeines A-C, New α-Glucosidase Inhibitors from the Marine Sponge Penares schulzeil. Journal of the American Chemical Society 2004, 126 (1), 187-193.
13. Taylor, M. S.; Jacobsen, E. N., Highly Enantioselective Catalytic Acyl-Pictet-Spengler Reactions. Journal of the American Chemical Society 2004, 126 (34), 10558-10559.
14. (a) Ukaji, Y.; Shimizu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata, K., Catalytic Asymmetric Addition of Dialkylzinc to 3,4-Dihydroisoquinoline N-Oxides Utilizing Tartaric Acid Ester as a Chiral Auxiliary. Bulletin of the Chemical Society of Japan 2000, 73 (2), 447-452; (b) Kanemitsu, T.; Yamashita, Y.; Nagata, K.; Itoh, T., Catalytic Asymmetric Synthesis of (R)-(-)-Calycotomine, (S)-(-)-Salsolidine and (S)-(-)-Carnegine. Synlett 2006, 2006 (10), 1595,1597; (c) Wang, S.; Seto, C. T., Enantioselective Addition of Vinylzinc Reagents to 3,4-Dihydro isoquinoline N-Oxide. Organic Letters 2006, 8 (18), 3979-3982.
15. (a) Morimoto, T.; Suzuki, N.; Achiwa, K., Enantioselective synthesis of (S)-calycotomine employing catalytic asymmetric hydrogenation with an iridium(I)-(R)-BINAP-phthalimide complex. Tetrahedron: Asymmetry 1998, 9 (2), 183-187; (b) Mujahidin, D.; Doye, S., Enantioselective Synthesis of $(+)-(\mathrm{S})$-Laudanosine and $(-)-(\mathrm{S})$-Xylopinine. European Journal of Organic Chemistry 2005, 2005 (13), 2689-2693.
16. Ohkuma, T.; Kitamura, M.; Noyori, R., Asymmetric Hydrogenation. In Catalytic Asymmetric Synthesis (2nd Edition), Ojima, I., Ed. Wiley-VCH: New York, 2000; pp 1-110.
17. Chrzanowska, M.; Rozwadowska, M. D., Asymmetric Synthesis of Isoquinoline Alkaloids. Chem. Rev. 2004, 104 (7), 3341-3370.
18. Ito, K.; Akashi, S.; Saito, B.; Katsuki, T., Asymmetric Intramolecular Allylic Amination: Straightforward Approach to Chiral C1-Substituted Tetrahydroisoquinolines. Synlett 2003, 1809-1812.
19. Hua, Z.; Vassar, V.; Ojima, I., Synthesis of new chiral monodentate phosphite ligands and their use in catalytic asymmetric hydrogenation. Organic Letters 2003, 5, 3831-3834.
20. (a) Choi, H.; Hua, Z.; Ojima, I., Highly Enantioselective Copper-Catalyzed Conjugate Addition of Diethylzinc to Nitroalkenes. Organic Letters 2004, 6 (16), 2689-2691; (b) Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I., New biphenol-based, fine-tunable monodentate phosphoramidite ligands for catalytic asymmetric transformations. Proc. Nat. Acad. Sci., U. S. A. 2004, 101 (15), 5411-5416; (c) Chapsal, B. D.; Ojima, I., Total Synthesis of Enantiopure (+)- γ-Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation. Organic Letters 2006, 8 (7), 1395-1398.
21. Shi, C.; Ojima, I., Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination. Tetrahedron 2007, 63 (35), 8563-8570.
22. Shi, C.; Chien, C. W.; Ojima, I., Synthesis of chiral biphenol-based diphosphonite ligands and their application to Pd-catalyzed intermolecular asymmetric allylic amination. Chem. Asian J. 2011, 6, 674.
23. Shi, C. Development and Applications of Chiral Phosphorus Ligands to Transition-Metal Catalyzed Asymmetric Reactions. Doctor of Philosophy in Chemistry, Stony Brook University, Stony Brook, NY, August 2008.
24. (a) Lesch, B.; Toräng, J.; Nieger, M.; Bräse, S., The Diels-Alder Approach towards

Cannabinoids. Synthesis 2005, (11), 1888-1900; (b) Sawant, D.; Kumar, R.; Maulik, P. R.; Kundu, B., Unprecedented SnCl2-Mediated Cyclization of Nitro Arenes via N-N Bond Formation \dagger. Organic Letters 2006, 8 (8), 1525-1528.
25. Compound 8 (A or B) can be prepared in two steps from commercially available resorcinolamine. Alternatively, 8 (A or B) can also be prepared from commercially available 3,5-dihydroxybenzaldehyde through PMB or benzyl protection and nitro-aldol reaction, followed by reduction and trifluoroacetylation. See Experimental Section.
26. Denmark, S. E.; Regens, C. S.; Kobayashi, T., Total Synthesis of Papulacandin D. Journal of the American Chemical Society 2007, 129 (10), 2774-2776.

Chapter 3

1. Takada, K.; Uehara, T.; Nakao, Y.; Matsunaga, S.; van Soest, R. W. M.; Fusetani, N., Schulzeines A-C, New α-Glucosidase Inhibitors from the Marine Sponge Penares schulzei. J. Am. Chem. Soc. 2004, 126 (1), 187-193.
2. (a) Braun, C.; Brayer, G. D.; Withers, S. G., Mechanism-based Inhibition of Yeast alpha-Glucosidase and Human Pancreatic alpha-Amylase by a New Class of Inhibitors. J. Biol. Chem. 1995, 270 (45), 26778-26781; (b) Mehta, A.; Zitzmann, N.; Rudd, P. M.; Block, T. M.; Dwek, R. A., α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 1998, 430 (1-2), 17-22; (c) Dwek, R. A.; Butters, T. D.; Platt, F. M.; Zitzmann, N., Targeting glycosylation as therapeutic approach. Nat. Rev. Drug Discov. 2002, 1, 65-75.
3. (a) Kuntiyong, P.; Akkarasamiyo, S.; Eksintkun, G., Short Synthetic Route toward the Tricyclic Core of Schulzeines. Chem. Lett. 2006, 35, 1008-1009; (b) Gurjar, M. K.; Pramanik, C.; Bhattasali, D.; Ramana, C. V.; Mohapatra, D. K., Total Syntheses of Schulzeines B and C. J. Org. Chem. 2007, 72 (17), 6591-6594; (c) Liu, G.; Romo, D., Enantioselective Synthesis of Schulzeines B and C via a β-Lactone-Derived Surrogate for Bishomoserine Aldehyde. Org. Lett. 2009, 11 (5), 1143-1146; (d) Bowen, E. G.; Wardrop, D. J., Total Synthesis of the α-Glucosidase Inhibitors Schulzeine A, B, and C and a Structural Revision of Schulzeine A. J. Am. Chem. Soc. 2009, 131 (17), 6062-6063; (e) Miyazaki, M.; Ando, N.; Sugai, K.; Seito, Y.; Fukuoka, H.; Kanemitsu, T.; Nagata, K.; Odanaka, Y.; Nakamura, K. T.; Itoh, T., Catalytic Asymmetric Allylation of 3,4-Dihydroisoquinolines and Its Application to the Synthesis of Isoquinoline Alkaloids. J. Org. Chem. 2011, 76 (2), 534-542.
4. (a) Vicario, J. L.; Badía, D.; Carrillo, L.; Etxebarria, J., α-Amino Acids and Derivatives in the Asymmetric Synthesis of Tetrahydroisoquinoline Alkaloids. Curr. Org. Chem. 2003, 7 (18), 1775-1792; (b) Chrzanowska, M.; Rozwadowska, M. D., Asymmetric Synthesis of Isoquinoline Alkaloids. Chem. Rev. 2004, 104 (7), 3341-3370; (c) Kaufman, T. S., Approaches to the Total Synthesis of Calycotomine, a Widespread 1-Hydroxymethyl-Substituted Simple Tetrahydroisoquinoline. Synthesis 2005, (EFirst), 339,360; (d) Ito, K.; Akashi, S.; Saito, B.; Katsuki, T., Asymmetric Intramolecular Allylic Amination: Straightforward Approach to Chiral C1-Substituted Tetrahydroisoquinolines. Synlett 2003, 1809-1812; (e) Taylor, A. M.; Schreiber, S. L., Enantioselective Addition of

Terminal Alkynes to Isolated Isoquinoline Iminiums. Org. Lett. 2006, 8 (1), 143-146; (f) Teichert, J. F.; Fañanás-Mastral, M.; Feringa, B. L., Iridium-Catalyzed Asymmetric Intramolecular Allylic Amidation: Enantioselective Synthesis of Chiral Tetrahydroisoquinolines and Saturated Nitrogen Heterocycles. Angew. Chem. Int. Ed. 2011, 50 (3), 688-691.
5. Kinderman, S. S.; Wekking, M. M. T.; van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T., Catalytic N-Sulfonyliminium Ion-Mediated Cyclizations to α-Vinyl-Substituted Isoquinolines and β-Carbolines and Applications in Metathesis. J. Org. Chem. 2005, 70 (14), 5519-5527.
6. The absolute configuration of $(+)-2$ was tentatively assigned to S based on the sign of the specific rotation of close related (S)-(+)-1-vinyltetrahydroisoquinoline that we reported previously (Ref. 2-11), and confirmed by the known value of (S,S)-13 (See Experimental Section).
7. Capilla, A. S.; Romero, M.; Pujol, M. D.; Caignard, D. H.; Renard, P., Synthesis of isoquinolines and tetrahydroisoquinolines as potential antitumour agents. Tetrahedron 2001, 57 (39), 8297-8303.
8. (a) Organ, M. G.; Xu, J.; N'Zemba, B., A modular, general and enantiospecific strategy for the synthesis of CVS 1778 analogs: inhibitors of factor Xa. Tetrahedron Lett. 2002, 43 (45), 8177-8180; (b) Rajendra, G.; Miller, M. J., Intramolecular electrophilic additions to olefins in organic syntheses. Stereoselective synthesis of 3,4 -substituted .beta.-lactams by bromine-induced oxidative cyclization of O-acyl .beta.,.gamma.-unsaturated hydroxamic acid derivatives. J. Org. Chem. 1987, 52 (20), 4471-4477.
9. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H., Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands§. Org. Lett. 1999, 1 (6), 953-956.
10. The Spartan program indicates that cis-6 and trans-6 have almost same energy, and an attempted epimerization of trans-6 to cis-6 under the RCM conditions did not cause any epimerization. Thus, this epimerization should have taken place during the RCM reaction.
11. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H., Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122 (34), 8168-8179.
12. Shi, C.; Chien, C. W.; Ojima, I., Synthesis of chiral biphenol-based diphosphonite ligands and their application to Pd-catalyzed intermolecular asymmetric allylic amination. Chem. Asian J. 2011, 6, 674.
13. Rajendra, G.; Miller, M. J., Intramolecular electrophilic additions to olefins in organic syntheses. Stereoselective synthesis of 3,4 -substituted .beta.-lactams by bromine-induced oxidative cyclization of O-acyl .beta.,.gamma.-unsaturated hydroxamic acid derivatives. The Journal of Organic Chemistry 1987, 52 (20), 4471-4477.

Chapter 4

1. Kozikowski, A. P.; Tückmantel, W., Chemistry, Pharmacology, and Clinical Efficacy of the Chinese Nootropic Agent Huperzine A. Acc. Chem. Res. 1999, 32 (8), 641-650.
2. (a) Bai, D., Development of huperzine A and B for treatment of Alzheimer's disease. Pure Appl. Chem. 2007, 79 (4), 469-479; (b) Xiao, X. Q.; Yang, J. W.; Tang, X. C., Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neurosci. Lett. 1999, 275 (2), 73-76; (c) Xiao, X. Q.; Zhang, H. Y.; Tang, X. C., Huperzine A attenuates amyloid β-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J. Neurosci. Res. 2002, 67 (1), 30-36.
3. Wang, B.-s.; Wang, H.; Wei, Z.-h.; Song, Y.-y.; Zhang, L.; Chen, H.-z., Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer's disease: an updated meta-analysis. Journal of Neural Transmission 2009, 116 (4), 457-465.
4. Lim, W.-H.; Goodger, J. Q. D.; Field, A. R.; Holtum, J. A. M.; Woodrow, I. E., Huperzine alkaloids from Australasian and southeast Asian Huperzia. Pharm. Biol. 2010, 48 (9), 1073-1078.
5. Xia, Y.; Kozikowski, A. P., A practical synthesis of the Chinese "nootropic" agent huperzine A: a possible lead in the treatment of Alzheimer's disease. J. Am. Chem. Soc. 1989, 111 (11), 4116-4117.
6. Campiani, G.; Sun, L. Q.; Kozikowski, A. P.; Aagaard, P.; McKinney, M., A palladium-catalyzed route to huperzine A and its analogs and their anticholinesterase activity. J. Org. Chem. 1993, 58 (27), 7660-7669.
7. Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S., A novel enantioselective synthesis of the key intermediate of (-)-huperzine a employing asymmetric palladium-catalyzed bicycloannulation. Tetrahedron: Asymmetry 1997, 8 (6), 829-832.
8. He, X.-C.; Wang, B.; Yu, G.; Bai, D., Studies on the asymmetric synthesis of huperzine A. Part 2: Highly enantioselective palladium-catalyzed bicycloannulation of the β-keto-ester using new chiral ferrocenylphosphine ligands. Tetrahedron: Asymmetry 2001, 12 (23), 3213-3216.
9. Chassaing, C.; Haudrechy, A.; Langlois, Y., Asymmetric palladium annulation: formal synthesis of (+)-huperzine A. Tetrahedron Lett. 1999, 40 (50), 8805-8809.
10. Chapsal, B. D.; Ojima, I., Total Synthesis of Enantiopure $(+)-\gamma$-Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation. Org. Lett. 2006, 8 (7), 1395-1398.
11. Kozikowski, A. P.; Reddy, E. R.; Miller, C. P., A simplified route to a key intermediate in the synthesis of the Chinese nootropic agent huperzine A. J. Chem. Soc., Perkin Trans. 1 1990, (1), 195-197.
12. (a) Salamone, S. G.; Dudley, G. B., A Ring-Expansion Approach to Roseophilin. Org. Lett. 2005, 7 (20), 4443-4445; (b) Chaterpaul, S. J. Application of Transition Metal-Catalyzed Reactions in the Synthesis of NHeterocyclic Natural Products. Doctor of Philosophy in Chemistry, Stony Brook University, Stony Brook, NY, August 2010.

Chapter 5

1. Mizoroki, T.; Mori, K.; Ozaki, A., Arylation of Olefin with Aryl Iodide Catalyzed by Palladium. Bull. Chem. Soc. Jpn. 1971, 44 (2), 581-581.
2. Heck, R. F.; Nolley, J. P., Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37 (14), 2320-2322.
3. (a) Dounay, A. B.; Overman, L. E., The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis. Chem. Rev. 2003, 103 (8), 2945-2964; (b) Masakatsu Shibasaki, Erasmus M. V., Takashi Ohshima,, Asymmetric Heck Reaction. Adv. Synth. Catal. 2004, 346 (13-15), 1533-1552.
4. Ojima, I., Catalytic asymmetric synthesis. 2nd ed.; 2000.
5. Sato, Y.; Sodeoka, M.; Shibasaki, M., Catalytic asymmetric carbon-carbon bond formation: asymmetric synthesis of cis-decalin derivatives by palladium-catalyzed cyclization of prochiral alkenyl iodides. J. Org. Chem. 1989, 54 (20), 4738-4739.
6. Carpenter, N. E.; Kucera, D. J.; Overman, L. E., Palladium-catalyzed polyene cyclizations of trienyl triflates. J. Org. Chem. 1989, 54 (25), 5846-5848.
7. (a) Shibasaki, M.; Mase, T.; Ikegami, S., The first total syntheses of DELTA-9(12)-Capnellene-8-beta-10.alpha-diol and DELTA-9(12)-capnellene-3-beta-8-beta-10-alpha-triol. J. Am. Chem. Soc. 1986, 108 (8), 2090-2091; (b) Ohrai, K.; Kondo, K.; Sodeoka, M.; Shibasaki, M., Effects of Solvents and Additives in the Asymmetric Heck Reaction of Alkenyl Triflates: Catalytic Asymmetric Synthesis of Decalin Derivatives and Determination of the Absolute Stereochemistry of (+)-Vernolepin. J. Am. Chem. Soc. 1994, 116 (26), 11737-11748; (c) Sato, Y.; Mori, M.; Shibasaki, M., Asymmetric Heck reaction: A catalytic asymmetric synthesis of the key intermediate of (-)-oppositol and (-)-prepinnaterpene. Tetrahedron: Asymmetry 1995, 6 (3), 757-766.
8. (a) Ashimori, A.; Overman, L. E., Catalytic asymmetric synthesis of quarternary carbon centers. Palladium-catalyzed formation of either enantiomer of spirooxindoles and related spirocyclics using a single enantiomer of a chiral diphosphine ligand. The Journal of Organic Chemistry 1992, 57 (17), 4571-4572; (b) Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J., Catalytic Asymmetric Synthesis of Quaternary Carbon Centers. Exploratory Investigations of Intramolecular Heck Reactions of (E)- α, β-Unsaturated 2-Haloanilides and Analogues To Form Enantioenriched Spirocyclic Products. J. Am. Chem. Soc. 1998, 120 (26), 6477-6487; (c) Kiely, D.; Guiry, P. J., Palladium complexes of phosphinamine ligands in the intramolecular asymmetric Heck reaction. J. Organomet. Chem. 2003, 687 (2), 545-561.
9. Busacca, C. A.; Grossbach, D.; So, R. C.; O'Brie, E. M.; Spinelli, E. M., Probing Electronic Effects in the Asymmetric Heck Reaction with the BIPI Ligands. Org. Lett. 2003, 5 (4), 595-598.
10. Kiewel, K.; Tallant, M.; Sulikowski, G. A., Asymmetric Heck cyclization route to indolizidine and azaazulene alkaloids: synthesis of (+)-5-epiindolizidine 167 B and indolizidine 223AB. Tetrahedron Lett. 2001, 42 (38), 6621-6623.
11. Hart, D. J.; Tsai, Y. M., Stereoselective indolizidine synthesis: preparation of stereoisomers of gephyrotoxin-223AB. The Journal of Organic Chemistry 1982, 47 (23), 4403-4409.
12. Yoda, H.; Katoh, H.; Ujihara, Y.; Takabe, K., SmI2-mediated hetero-coupling reaction of lactams with aldehydes; synthesis of indolizidine alkaloids, (-)- δ-coniceine, $(+)-5$-epiindolizidine 167B and (+)-lentiginosine. Tetrahedron Lett. 2001, 42 (13), 2509-2512.
13. Dounay, A. B.; Overman, L. E.; Wrobleski, A. D., Sequential Catalytic Asymmetric Heck-Iminium Ion Cyclization: Enantioselective Total Synthesis of the Strychnos Alkaloid Minfiensine. J. Am. Chem. Soc. 2005, 127 (29), 10186-10187.
14. Imbos, R.; Minnaard, A. J.; Feringa, B. L., A Highly Enantioselective Intramolecular Heck Reaction with a Monodentate Ligand. J. Am. Chem. Soc. 2001, 124 (2), 184-185.
15. Lautens, M.; Zunic, V., Sequential olefin metathesis-Intramolecular asymmetric Heck reactions in the synthesis of polycycles. Can. J. Chem. 2004, 82 (2), 399-407.
16. Lormann, M. E. P.; Nieger, M.; Brase, S., Desymmetrisation of bicyclo[4.4.0]decadienes: A planar-chiral complex proved to be most effective in an asymmetric Heck reaction. J. Organomet. Chem. 2006, 691 (10), 2159-2161.
17. Ozawa, F.; Kubo, A.; Hayashi, T., Catalytic asymmetric arylation of 2,3-dihydrofuran with aryl triflates. J. Am. Chem. Soc. 1991, 113 (4), 1417-1419.
18. K. K. Hii, Timothy D. W. C., John M. Brown, Andrew Smith, Robert J. Deeth,, The Intermolecular Asymmetric Heck Reaction: Mechanistic and Computational Studies. Helv. Chim. Acta 2001, 84 (10), 3043-3056.
19. Ozawa, F.; Kobatake, Y.; Hayashi, T., Palladium-catalyzed asymmetric alkenylation of cyclic olefins. Tetrahedron Lett. 1993, 34 (15), 2505-2508.
20. (a) Hennessy, A. J.; Malone, Y. M.; Guiry, P. J., 2,2-Dimethyl-2,3-dihydrofuran, a new substrate for intermolecular asymmetric Heck reactions. Tetrahedron Lett. 1999, 40 (51), 9163-9166; (b) Hennessy, A. J.; Connolly, D. J.; Malone, Y. M.; Guiry, P. J., Intermolecular asymmetric Heck reactions with 2,2-diethyl-2,3-dihydrofuran. Tetrahedron Lett. 2000, 41 (40), 7757-7761.
21. Mata, Y.; Dieguez, M.; Pamies, O.; Claver, C., Chiral Phosphite-oxazolines: A New Class of Ligands for Asymmetric Heck Reactions. Org. Lett. 2005, 7 (25), 5597-5599.
22. Rubina, M.; Sherrill, W. M.; Rubin, M., Dramatic Stereo- and Enantiodivergency in the Intermolecular Asymmetric Heck Reaction Catalyzed by Palladium Complexes with Cyclopropane-Based PHOX Ligands. Organometallics 2008, 27 (24), 6393-6395.
23. (a) Hou, X.-L.; Dong, D. X.; Yuan, K., Synthesis of new chiral benzylically substituted P,N-ligands and their applications in the asymmetric Heck reaction. Tetrahedron: Asymmetry 2004, 15 (14), 2189-2191; (b) Wu, W.-Q.; Peng, Q.; Dong, D.-X.; Hou, X.-L.; Wu, Y.-D., A Dramatic Switch of Enantioselectivity in Asymmetric Heck Reaction by Benzylic Substituents of Ligands. J. Am. Chem. Soc. 2008, 130 (30), 9717-9725.
24. Koga, Y.; Sodeoka, M.; Shibasaki, M., Palladium-catalyzed asymmetric arylation of 4,7-dihydro-1,3-dioxepin. Catalytic asymmetric synthesis of γ-butyrolactone derivatives. Tetrahedron Lett. 1994, 35 (8), 1227-1230.
25. Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A., Enantioselective Heck Reactions Catalyzed by Chiral Phosphinooxazoline-Palladium Complexes. Synthesis 1997, 1997 (11), 1338-1345.
26. Dieter K. Heldmann, D. S., Catalytic Enantioselective Hydrosilylation of Ketones with Rhodium-Phosphite Complexes Containing a TADDOLate and a Dihydrooxazole Unit. Helv. Chim. Acta 1999, 82 (7), 1096-1110.
27. Escher, I. H.; Pfaltz, A., New Chiral Oxazoline-Phosphite Ligands for the Enantioselective Copper-Catalyzed 1,4-Addition of Organozinc Reagents to Enones. Tetrahedron 2000, 56 (18), 2879-2888.
28. McKennon, M. J.; Meyers, A. I.; Drauz, K.; Schwarm, M., A convenient reduction of amino acids and their derivatives. J. Org. Chem. 1993, 58 (13), 3568-3571.

Chapter 6

1. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K., Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid. Angew. Chem., Int. Ed. 2004, 43 (12), 1566-1568.
2. Uraguchi, D.; Terada, M., Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004, 126 (17), 5356-5357.
3. (a) Uraguchi, D.; Sorimachi, K.; Terada, M., Organocatalytic Asymmetric Aza-Friedel-Crafts Alkylation of Furan. J. Am. Chem. Soc. 2004, 126 (38), 11804-11805; (b) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L., Chiral Brønsted Acid Catalyzed Enantioselective Friedel-Crafts Reaction of Indoles and α-Aryl Enamides: Construction of Quaternary Carbon Atoms. Angew. Chem., Int. Ed. 2007, 46 (29), 5565-5567; (c) Kang, Q.; Zhao, Z.-A.; You, S.-L., Highly Enantioselective Friedel-Crafts Reaction of Indoles with Imines by a Chiral Phosphoric Acid. J. Am. Chem. Soc. 2007, 129 (6), 1484-1485; (d) Seayad, J.; Seayad, A. M.; List, B., Catalytic Asymmetric Pictet-Spengler Reaction. J. Am. Chem. Soc. 2006, 128 (4), 1086-1087.
4. (a) Itoh, J.; Fuchibe, K.; Akiyama, T., Chiral Brønsted Acid Catalyzed Enantioselective Aza-Diels-Alder Reaction of Brassard's Diene with Imines. Angew. Chem., Int. Ed. 2006, 45 (29), 4796-4798; (b) Akiyama, T.; Morita, H.; Fuchibe, K., Chiral Brønsted Acid-Catalyzed Inverse Electron-Demand Aza Diels-Alder Reaction. J. Am. Chem. Soc. 2006, 128 (40), 13070-13071.
5. Guo, Q.-X.; Liu, H.; Guo, C.; Luo, S.-W.; Gu, Y.; Gong, L.-Z., Chiral Brønsted Acid-Catalyzed Direct Asymmetric Mannich Reaction. J. Am. Chem. Soc. 2007, 129 (13), 3790-3791.
6. (a) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K., Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid Derived from TADDOL. Adv. Synth. Catal. 2005, 347 (11-13), 1523-1526; (b) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C., Brønsted Acid-Catalyzed Imine Amidation. J. Am. Chem. Soc. 2005, 127 (45), 15696-15697.
7. (a) Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y., A Novel and General Synthetic

Pathway to Strychnos Indole Alkaloids: Total Syntheses of (-)-Tubifoline, (-)-Dehydrotubifoline, and (-)-Strychnine Using Palladium-Catalyzed Asymmetric Allylic Substitution. J. Am. Chem. Soc. 2003, 125 (32), 9801-9807; (b) Choi, H.; Hua, Z.; Ojima, I., Highly Enantioselective Copper-Catalyzed Conjugate Addition of Diethylzinc to Nitroalkenes. Org. Lett. 2004, 6 (16), 2689-2691.
8. Mori, K.; Katoh, T.; Suzuki, T.; Noji, T.; Yamanaka, M.; Akiyama, T., Chiral Phosphoric Acid Catalyzed Desymmetrization of meso-1,3-Diones: Asymmetric Synthesis of Chiral Cyclohexenones. Angew. Chem., Int. Ed. 2009, 48 (51), 9652-9654.
9. (a) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C., Enantioselective Organocatalytic Reductive Amination. J. Am. Chem. Soc. 2005, 128 (1), 84-86; (b) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R., Catalytic Enantioselective Ring-Closing Metathesis by a Chiral Biphen-Mo Complex. J. Am. Chem. Soc. 1998, 120 (16), 4041-4042; (c) Liu, W.-J.; Chen, X.-H.; Gong, L.-Z., Direct Assembly of Aldehydes, Amino Esters, and Anilines into Chiral Imidazolidines via Brønsted Acid Catalyzed Asymmetric 1,3-Dipolar Cycloadditions. Org. Lett. 2008, 10 (23), 5357-5360.
10. Bradshaw, B.; Etxebarría-Jardi, G.; Bonjoch, J.; Viózquez, S. F.; Guillena, G.; Nájera, C., Efficient Solvent-Free Robinson Annulation Protocols for the Highly Enantioselective Synthesis of the Wieland-Miescher Ketone and Analogues. Adv. Synth. Catal. 2009, 351 (14-15), 2482-2490.

Chapter 7

1. (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J., Transition Metal-Catalyzed Carbocyclizations in Organic Synthesis. Chem. Rev. 1996, 96 (2), 635-662; (b) Lautens, M.; Klute, W.; Tam, W., Transition Metal-Mediated Cycloaddition Reactions. Chem. Comm. 1996, 96, 49-92; (c) Lloyd-Jones, G. C., Mechanistic aspects of transition metal catalysed 1,6-diene and 1,6-enyne cycloisomerisation reactions. Org. Biomol. Chem. 2003, 1, 215-236; (d) Bauer, R. A.; DiBlasi, C. M.; Tan, D. S., The tert-Butylsulfinamide Lynchpin in Transition-Metal-Mediated Multiscaffold Library Synthesis. Org. Lett. 2010, 12, 2084-2087.
2. (a) Bennacer, B.; Fujiwara, M.; Ojima, I., Novel [$2+2+2+1]$ Cycloaddition of Enediynes Catalyzed by Rhodium Complexes. Org. Lett. 2004, 6 (20), 3589-3591; (b) Bennacer, B.; Fujiwara, M.; Lee, S.; Ojima, I., Silicon-Initiated Carbonylative Carbotricyclization and $[2+2+2+1]$ Cycloaddition of Enediynes Catalyzed by Rhodium Complexes. J. Am. Chem.Soc. 2005, 127 (50), 17756-17767; (c) Kaloko, J. J.; Teng, Y.-H.; Ojima, I., One-step formation of fused tetracyclic skeletons from cyclohexene-diynes and carbon monoxide through $\mathrm{Rh}(\mathrm{I})$-catalyzed $[2+2+2+1]$ cycloaddition reaction. Chem. Commun. 2009, (30), 4569-4571.
3. Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N., Intermolecular transition metal-catalyzed $[4+2+2]$ cycloaddition reactions: A new approach to the construction of eight-membered rings. J. Am. Chem. Soc. 2002, 124 (30), 8782-8783.
4. Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Pham, S. M.; Zhang, L., Multicomponent Cycloadditions: The Four-Component [5+1+2+1] Cycloaddition of Vinylcyclopropanes,

Alkynes, and CO. J. Am. Chem. Soc. 2005, 127, 2836-2837.
5. Kim, S. Y.; Lee, S. I.; Choi, S. Y.; Chung, Y. K., Rhodium-Catalyzed Carbonylative [3+3+1] Cycloaddition of Biscyclopropanes with a Vinyl Substituent To Form Seven-Membered Rings. Angew. Chem. Int. Ed. 2008, 47, 4914-4917.
6. (a) Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z. X., A Computationally Designed Rh(I)-Catalyzed Two-Component [5+2+1] Cycloaddition of Ene-vinylcyclopropanes and CO for the Synthesis of Cyclooctenones. J. Am. Chem. Soc. 2007, 129, 10060-10061; (b) Yuana, C.; Jiaoa, L.; Yu, Z.-X., Formal total synthesis of (\pm)-hirsutic acid C using the tandem $\operatorname{Rh}(\mathrm{I})$-catalyzed $[(5+2)+1]$ cycloaddition/aldol reaction. Tetrahedron Letters 2010, 51 (43), 5674-5676; (c) Liang, Y.; Jiang, X.; Yu, Z.-X., Enantioselective total synthesis of (+)-asteriscanolide via Rh(I)-catalyzed [(5+2)+1] reaction. Chem. Соттип. 2011, 47, 6659-6661.
7. (a) Wender, P. A.; Croatt, M. P.; Kühn, B., Rhodium(I)-Catalyzed [2+2], [2+2+2], and [2+2+2+2] Cycloadditions of Dienes or Alkynes with a Bis-ene. Organometallics 2009, 28 (20), 5841-5844; (b) Wender, P. A.; Christy, J. P.; Lesser, A. B.; Gieseler, M. T., The Synthesis of Highly Substituted Cyclooctatetraene Scaffolds by Metal-Catalyzed [2+2+2+2] Cycloadditions: Studies on Regioselectivity, Dynamic Properties, and Metal Chelation. Angew. Chem. Int. Ed. 2009, 48, 7687-7690.
8. (a) Yu, R. T.; Friedman, R. K.; Rovis, T., Enantioselective Rhodium-Catalyzed [4+2+2] Cycloaddition of Dienyl Isocyanates for the Synthesis of Bicyclic Azocine Rings. J. Am. Chem. Soc. 2009, 131 (13250-13251); (b) Krishna, U. M.; Patil, M. P.; Sunoj, R. B.; Trivedi, G. K., [5+3] cycloaddition of 3-oxidopyrylium: a novel route to functionalized cyclooctanoids from furans Synthesis 2010, 2, 320-328.
9. (a) Ojima, I.; McCullagh, J. V.; Shay, W. R., New Cascade Silylcarbocyclization (SiCaC) of Enediynes. Journal of Organometallic Chemistry 1996, 521, 421-423; (b) Ojima, I.; Vu, A. T.; McCullagh, J. V.; Kinoshita, A., Rhodium-Catalyzed Intramolecular Silylcarbotricyclization (SiCaT) of Triynes. J. Am. Chem. Soc. 1999, 121, 3230-3231; (c) Ojima, I.; Lee, S.-Y., Rhodium-Catalyzed Novel Carbonylative Carbotricyclization of Enediynes. J. Am. Chem. Soc. 2000, 122 (10), 2385-2386; (d) Ojima, I.; Vu, A. T.; Lee, S. Y.; McCullagh, J. V.; Moralee, A. C.; Fujiwara, M.; Hoang, T. H., Rhodium-Catalyzed Silylcarbocyclization (SiCaC) and Carbonylative Silylcarbocyclization (CO-SiCaC) Reactions of Enynes. J. Am. Chem. Soc. 2002, 124, 9164-9174.
10. Kaloko, J. J. Synthesis of Novel Fused Tricyclic and Tetracyclic Skeletons Through $\mathrm{Rh}(\mathrm{I})$-Catalyzed $[2+2+2+1]$ Cycloaddition of Enediyne Derivatives with Carbon Monoxide. Doctor of Philosophy in Chemistry, Stony Brook University, Stony Brook, NY, August 2010.

APPENDIX

A1. Appendix Chapter 1 208
A2. Appendix Chapter 2 222
A3. Appendix Chapter 3 256
A4. Appendix Chapter 4 272
A5. Appendix Chapter 5 286
A6. Appendix Chapter 6 298
A7. Appendix Chapter 7 320

ع07:65-
$289^{\circ} 9 \angle$
$000 \angle \angle \square$
$81 E \angle L$

$80: 08$ -

$$
\begin{aligned}
& 600201- \\
& \angle 62 \angle 01-
\end{aligned}
$$

$120 \mathrm{SIL}-$
$190881-$

28： 201

S86．615－
$990^{\circ} 985$

980 ${ }^{-}$－S！

02002 F

$650^{\circ} \mathrm{TSF}$ -

0Е0 ${ }^{\circ}$ T9!

(R,S)-PN-L1b

	1		1		1		12		1		1	1	1	50	,	A	10	10
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$289^{\circ} 9 \angle$
$000<\angle L$
$\angle E E \angle L$

[^4]

[^0]: ${ }^{a}$ Reactions were run using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$ with (R) -BOP-L1g ligand (L^{*}) in DMF at room temperature under N_{2}.
 ${ }_{b, c}$ See the footnote of Table 2-3.

[^1]: ${ }^{a, b, c}$ See the footnote of Table 4-1.

[^2]: ${ }^{a}$ All reactions were run using Rh catalyst ($10.0 \mathrm{~mol} \%$) in DCE [0.05] at $50^{\circ} \mathrm{C}$ for 24 h under $\mathrm{CO}_{(\mathrm{g})}(2 \mathrm{~atm})$.
 ${ }^{b}$ Determined by HPLC using Proteo reverse phase column.

[^3]: ${ }^{\bar{a}} \mathrm{All}$ reactions were run using $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5.0 \mathrm{~mol} \%)$ in the solvent [0.05] with $\mathrm{CO}_{(\mathrm{g})}$ bubbling $(1 \mathrm{~atm})$ at $50{ }^{\circ} \mathrm{C}$ for 24 h . ${ }^{b}$ Determined by HPLC using Proteo reverse phase column.

[^4]:

