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Abstract of the Dissertation

Improving Cancer Detection Through Visualization

by

Joseph Marino

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

The proliferation of medical scanning technology, especially computed tomog-

raphy (CT) and magnetic resonance imaging (MRI), has led to various research

works on methods of intuitively visualizing the large amounts of resulting slice

data. The visualization of this data consists not only of display methods, but ideas

covering topics such as navigation, exploration, surface parameterization, and anal-

ysis. These imaging modalities can play a large role in diagnosing a multitude of

diseases, including carcinomas of the colon, lungs, and prostate. The work pre-

sented in this dissertation develops varied visualization techniques for application

to the detection and localization of these three prevalent cancers. All techniques

presented herein were developed and tested using real patient data acquired from

CT or MRI scanning modalities.

There has been substantial research performed in the development of clinical

virtual colonoscopy (VC) systems based on CT scans, but methods to meld multi-

ple sources of diagnostic information are still under active development. Presented

are beginning methods to merge VC with the traditional optical colonoscopy, such

that VC information can be better utilized on a patient referred for the optical pro-

cedure. This work includes a method for removing the radial distortion introduced

by the fisheye lens on the endoscope and a method for correlating the path of the

physical colonoscope with the VC path. Techniques are also presented here which

can enhance a traditional VC environment. For CT scans of the colon acquired
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with the patient in different orientations, a method is presented to register the two

scans together in a one-to-one and onto manner. This direct mapping between the

two surfaces allows for the corresponding visualization of the same location within

each of the two colon models.

Mesh models are often used as a map to show the user’s location within an ob-

ject. In the case of VC, this 3D model can often have occlusions due to the twisted

shape of the colon. A method is presented to create a planar map which preserves

the global shape of the colon and does not contain any overlapping sections. This

allows for the user to observe the entire colon surface at once, ensuring that there

are no occlusions which could lead to an ambiguity in determining one’s location.

Similar problems exist for exploring the lungs in virtual bronchoscopy applications,

and can be even worse, due to the large number of bifurcations. The idea of a con-

text preserving map is expanded from tubular structures to treelike structures, being

applicable not only to the bronchi, but other branching structures such as blood ves-

sels. As there are different aspects to be addressed compared to a simple tubular

structure, this work is not simply an extension, but presents new methods which

have been developed to deal with the challenges inherent in treelike structures.

For the prostate, multiple MRI modes are typically used for the detection of can-

cer. Compared to colon and lung cancer, the prostate has so far seen relatively little

in terms of visualization research, and work is presented here on how to combine

the multiple MR modes to assist in the detection of prostate cancer. This includes

an upsampling and analysis of the slices to identify regions of interest and the dis-

play of these regions within the prostate along with the surrounding anatomy using

multi-volume rendering. Also developed is a method of visibility persistence to al-

low for easy viewing of occluded regions of interest, the ability of the user to paint

custom regions into the data, and an extension of the visibility persistence to these

user painted regions.
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Chapter 1

Introduction

Over the past decades, the use of medical imaging techniques such as magnetic

resonance imaging (MRI) and computed tomography (CT) have steadily increased.

As improvements to the scanning technology have moved forward, visualization

techniques have been developed to help deal with the massive amounts of data

which are acquired [143]. Volume rendering has become a standard technique for

visualizing medical data, and volumetric ray casting, which can be accelerated on

the GPU, is the preferred method [129]. For cancer in solid organs, such techniques

have been applied for detection of tumors within the breast or brain [20] and for

treatment of liver tumors [122]. Rendering of whole body datasets for virtual au-

topsy applications has also been presented [79]. As new interfaces are developed to

allow user interaction, these techniques are being expanded for new applications in

surgery planning using multi-touch tables [83].

Carcinomas form one of the leading causes of death among people worldwide.

Specifically, colon, lung, and prostate cancer are three of the most common types

of cancer [105]. In the United States, lung cancer and colorectal cancer are the

first and second leading causes of cancer-related mortality [52]. Prostate cancer is

the most incident cancer across all demographics, even when including both men

and women, and is the second leading cause of cancer-related mortality among men

only. The work presented here focuses on these three very prevalent cancers and

on developing new visualization methods to assist in exploring and locating said

cancer.

Given this medical data, visualization techniques are used to present the data to

the user in a useful manner and in accordance with the requirements for diagnosis.

In this chapter, a brief introduction to these topics, both technical and medical,

is presented. Volume rendering is used to create images from the medical data.

Surface mapping techniques based on conformal geometry are used to map 3D

surfaces to a 2D plane. Background information on the diagnosis of colon, lung,

and prostate cancers is also discussed, as well as the current use of visualization

1



and computer graphics in those fields.

1.1 Volumetric Visualization

Stacks of medical image data can be thought of as represented on a regular

Cartesian grid of elements called voxels, which form a volume in 3D space. To

display this data, volume rendering methods have been developed [24, 71, 77]. In

a traditional computer graphics rendering pipeline, pre-defined surfaces are ren-

dered [30]. Volumes can be rendered in a similar manner by first extracting an

isosurface [82]. It is also possible to use continuous representations, such as non-

uniform rational B-spline (NURBS) surfaces [112]. On the other hand, direct vol-

ume rendering (DVR) allows for the volume itself to be directly rendered without

the need to extract surfaces which would be typically rendered in a computer graph-

ics pipeline. Maximum intensity projection (MIP) rendering of volumes can also

be accomplished, which yields a 2D image that appears similar to an x-ray [100].

However, this technique is not applicable for a great many applications due to its

visual limitations.

In order to perform DVR, an optical model must be established, and there are

several possibilities [98]. The most common model is the emission-absorption

model, in which the elements of the volume are considered as particles within a

cloud which are able to both emit their own light and absorb incident light. This

leads to the following so-called volume rendering integral:

I(D) = I0T (D)+

D
∫

0

g(s)T ′(s)ds. (1.1)

In this equation, the result I(D) represents the radiance reaching the camera from D.

The first term represents the background illumination (I0) multiplied by the trans-

parency of the cloud (T (D)). The second term represents the integration over all

sample positions s, multiplying each sample’s source value (g(s)) with the trans-

parency between s and the eye (T ′(s)).
This volume rendering integral in the continuous domain can be discretized

into compositing for use with discretely sampled data. In this case, composition

is possible using both back-to-front and front-to-back methods. For back-to-front

compositing, the following is performed at each sample step:

Cdst ← (1−αsrc)Cdst +Csrc. (1.2)

For front-to-back compositing, the following is performed at each sample step:

Cdst ←Cdst +(1−αdst)Csrc,
αdst ← αdst +(1−αdst)αsrc.

(1.3)
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In both instances, Cdst and Csrc are the destination and source colors, while αdst

and αsrc are the destination and source opacities. Note that while front-to-back

compositing requires extra maintenance of the opacity term through the integration,

it also allows for early termination of the composition when the opacity reaches a

sufficient level (often αdst = 0.95).

There are a number of methods for performing the actual volume rendering. A

technique has been introduced where the voxels are splatted onto the screen space

and rendered as disks [151]. A method known as shear warp was also proposed

where the viewing transformation would be factored into a 3D shear parallel to the

volume slices, a projection would create a distorted image, and a 2D warp would

then be used to undistort the final image [67]. The volume as a whole can also

be decomposed into individual slices which are then rendered and composited with

typical 2D texture rendering in the graphics pipeline. The method known as ray

casting involves shooting rays through the volume data and sampling at regular

points along the rays [72]. Ray casting typically provides the best image quality

and is the preferred method of performing DVR [129].

When sampling through the volume, interpolation is needed to obtain sample

values not lying at an exact voxel. Nearest neighbor interpolation is the quickest and

easiest method, though it leads to undesirable quality for the rendered image. Tri-

linear interpolation provides significantly better results for moderately more work,

and is the most commonly used interpolation method for volume rendering. More

advanced methods have also been used to achieve better results, such as tricubic

interpolation or the use of Voronoi splines [99], though the tradeoff between speed

and quality is not advantageous in typical circumstances.

When rendering volumes, which often consist of singular scalar density values

for each voxel, it is desirable to map these scalar values to optical properties, such

as color and opacity. A 1D transfer function is used to provide such a mapping

[110]. Figure 1.1 shows the difference between general MIP rendering, ray casting

with no transfer function, and ray casting with opacity values adjusted in the trans-

fer function. Multi-dimensional transfer functions can also be used to give more

control over the mapping. Most commonly, a 2D transfer function is utilized with

density and gradient magnitude as the two axes. The rendering of isosurfaces within

volumes can be improved by utilizing peak finding [65].

To convey greater realism and recognition of the objects being rendered, illumi-

nation and shading are used. Based on the gradient information at each sampling

point, shading calculations can be performed using a typical illumination model,

such as Blinn shading. Gradients are often estimated as a simple central differ-

ence in each of the three axes. These gradients can be calcualted on-the-fly or pre-

computed, based on the needs of the renderer. When more precision is required,

better methods of gradient estimation have been proposed [51].
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(a) (b) (c)

Figure 1.1: Basic volume rendering. (a) Straight-on maximum intensity projection (MIP).

(b) Perspective density composition. (c) Perspective density composition with transfer func-

tion to further attenuate lower opacity values.

(a) (b) (c)

Figure 1.2: Direct volume rendering (DVR) with opacity peeling. (a) Outer layer. (b) Inner

layer. (c) Blending result of outer and inner layers.

There have been a number of improvements to increase the quality of rendering,

both in visual quality and speed. Stochastic jittering can be used to slightly offset

the positions of rays so that wood-grain effects are reduced [25]. Pre-integrated

transfer functions have been introduced to account for values between two dis-

cretely sampled values [26]. Empty space skipping has been introduced to allow

a ray caster to not sample from regions which do not contain displayable voxels

[74]. Direct interval volume visualization has also been presented as a way of

representing sharp isosurfaces so that they are visualized accurately [2]. Different

ways of presenting the information can also be used, such as using opacity peeling

to show inner structures that are otherwise occluded by an outer layer with simi-

lar density values [120]. Figure 1.2 shows an example of DVR with shading and
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(a) (b)

Figure 1.3: Effect of normal calculation on the rendering of triangular meshes. (a) Shading

with per-face normals. (b) Shading with per-vertex normals.

opacity peeling.

Although specialized hardware for volume rendering was developed [108, 109],

it has become common today to utilize commodity graphics hardware for this task

[25]. The graphics processing unit (GPU) was originally developed for gaming

applications, but provides a high level of SIMD performance at a relatively low cost

and can allow for real-time ray casting [131]. More recently, general processing on

the GPU has become popular, with Nvidia’s C-like CUDA language [21] and the

somewhat similar open standard OpenCL [104] both becoming widely adopted.

1.2 Surface Rendering and Parameterization

In computer graphics, surfaces are often represented as discrete meshes, with

triangular meshes being a popular choice due to the guarantee that the vertices of

each mesh will lie within a plane. There are several ways in which this information

can be represented in memory such that connected relationships between vertices,

faces, edges, and the neighbors of such items are easily accessed. Some popular

methods include the winged-edge, half-edge, and quad-edge data structures [61].

From the connectivity information of the vertices and faces, other information can

be easily calculated, such as normals. Normals can be calculated on a per-face or

per-vertex basis. For per-face normals, the normal is simply the direction perpen-

dicular to the plane in which the face lies, with the direction based on the order of

the vertices (clockwise or counterclockwise). From these flat normals, per-vertex

normals can be calculated as the weighted average of the per-face normals around

a vertex (typically weighted by the face’s area). By using these smoother normals,

a discrete triangular mesh can take on a more organic and less faceted appearance

when rendering with shading (see Figure 1.3).
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Figure 1.4: Conformal mapping for a colon surface. (a) The colon surface, which is a

topological cylinder, reconstructed from a CT scan. (b) The level set of the harmonic 1-

form ω . (c) The level set of the conjugate harmonic 1-form ∗ω . (d) Checker-board texture

mapping for the resulting holomorphic 1-form τ , where the right angles are preserved. (e)

Circle-packing texture mapping, where the shapes of the circles are preserved. (f) The

rectangular fundamental domain D̃.

There are several methods of mapping 3D surfaces to a 2D plane, but confor-

mal mapping is very applicable for visualization needs because it is angle, and thus

shape, preserving [35]. The use of conformal geometry for mapping triangular

meshes, where local angles are preserved, has been well established in the field of

computer graphics, especially in the creation of texture maps [130]. Texture map-

ping allows for a 3D image to be mapped to the 2D surface. This is accomplished

through the parameterization of the 3D vertices to a 2D domain.

Given a triangular mesh Q of genus zero with two boundaries, γ1 and γ2, the

boundary of Q is given as ∂Q = γ1−γ2, where γ1 denotes the outer boundary and γ2

the inner boundary. δ is the slicing line between γ1 and γ2, which cuts Q open to Q̃,

and δ+,δ− are the two splits of δ . In order to find a conformal mapping φ : Q→C

which maps Q to a planar rectangle, two harmonic functions f1, f2 : Q→ R are

computed such that:







∆ f1 = 0

f1|γ1
= 1

f1|γ2
= 0

,















∆ f2 = 0

f2|δ+ = 0

f2|δ− = 1
∂ f2
∂n
|γ1∪γ2

= 0

.

Here, f1 is computed on Q, and f2 on Q̃. Figures 1.4 (b) and (c) show the level sets

of the harmonic functions f1 and f2, respectively, on a sample colon segment.

The cotan formula [34] is used to approximate the Laplace-Beltrami operator.

For each edge [vi,v j], whose the two adjacent triangles are [vi,v j,vk] and [v j,vi,vl],
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the angles against the edge are θ k
i j and θ l

ji in each triangle respectively, then the

cotangent weight is defined as:

wi j = cotθ k
i j + cotθ l

ji.

The Laplacian of a function f : V → R is then defined as:

∆ f (vi) = ∑
[vi,v j]∈E

wi j( f (vi)− f (v j)).

Then, ∇ f1 is a closed harmonic 1-form, and ∇ f2 is an exact harmonic 1-form.

It is necessary to find a scalar λ such that ∗∇ f1 = λ∇ f2. This can be achieved by

minimizing the following energy:

E(λ ) = ∑
[vi,v j,vk]∈F

|∇ f1−λn×∇ f2|2Ai jk,

where ∇ f1 and ∇ f2 are the constant gradient vectors of f1 and f2 on the face

[vi,v j,vk], n is the normal vector to the face, and Ai jk is the area of the face. By

solving a linear equation, λ can be obtained.

The desired holomorphic 1-form is ω = ∇ f1+
√
−1λ∇ f2. The induced confor-

mal mapping φ : Q→ C is given by:

φ(p) =
∫ p

q
ω,

where q is the base point and the path from q to p is arbitrarily chosen. Then,

the surface is conformally mapped to a planar domain. By tracing the straight line

perpendicular to the two boundaries γ1 and γ2, a rectangular fundamental domain

is obtained, as shown in Figure 1.4(f). The checker-board (d) and circle-packing

(e) texture mappings demonstrate the conformality of the mapping, where the right

angles of the squares and the shape of the circles are preserved. This conformal

mapping based on holomorphic differentials has linear computational complexity,

and the conjugate gradient method is used to solve the linear system.

Discrete Ricci flow is a more recent method of computing conformal maps of

structures [59]. This process acts similar to heat diffusion, with the deformation of

the edge lengths being driven by the discrete Gaussian curvature. A circle packing

metric is used to approximate the discrete conformal deformation. The final map-

ping result can be affected by setting the target Gaussian curvature for each vertex

in the mesh.

There are many applications where discrete Ricci flow is useful, such as in sur-

face parameterization for texture mapping and construction of geometric structures
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[58] as well as to obtain optimal surface parameterizations using inverse curvature

maps [158]. Applications of Ricci flow will typically use a target Gaussian curva-

ture of zero everywhere, or constrain the boundary to a canonical shape, such as a

disc. Discrete Ricci flow has also been used for 3D shape analysis [164]. Based on

circle packing, the Ricci flow method has typically required the triangular meshes

to contain triangles that are not obtuse. The discrete Ricci flow method has been

generalized using inversive distance circle packing to remove this requirement for

the triangulation to lack skinny triangles [157].

1.3 Medical Imaging for Cancer Diagnosis

1.3.1 Virtual Endoscopy

As with all carcinomas, prevention is the best way of reducing mortality from

colorectal cancer. For this, it is recommended for people over fifty to be regularly

screened for colon polyps, the precursors of cancer [141]. For this screening, opti-

cal colonoscopy (OC) has been the traditional method and still remains as the gold

standard. In OC, a colonoscope is inserted through the rectum and snaked through

the colon until the end at the cecum. At this point, the gastroenterologist will pro-

ceed to slowly pull the scope out, inspecting the colon walls along the way to iden-

tify any polyps. If a polyp is found, it can be removed and biopsied to determine

whether it was benign (hyperplastic) or precancerous (adenomatous).

Regular OC screenings have been shown to successfully reduce the mortality

rate for colon cancer, are well established, and allow for suspicious polyps to be

immediately removed. However, OC does contain several disadvantages. The first

disadvantage starts the night before, when the patient is required to render the colon

clear of all materials so that the scope may be inserted. The procedure itself is inva-

sive, requiring anesthetization, and comes with a risk, albeit small, of complications

[31]. A third disadvantage is that not all of the colon surface can be observed due

to the singular direction of the scope’s view and the geometry of the colon; approx-

imately one quarter of the surface is missed in a typical OC examination [50].

To combat the disadvantages of traditional OC screening with a more patient

friendly method, virtual colonoscopy (VC) based on CT scans has been developed

[46]. For VC, volume rendering is used to generate high quality images of the

colon surface. The 3D volume rendered view is referred to as the endoluminal view.

Figure 1.5 shows a comparison between an OC view and a VC view. The surface of

the colon in the VC rendering is purposely left untextured and with simple lighting.

Though methods have been proposed for texturing endoluminal views and adding

distance-based lighting effects for nasal passages [66], these effects are deemed

invasive in the VC and could distract the user from identifying actual polyps and
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(a) (b)

Figure 1.5: Typical views for (a) an optical colonoscopy and (b) a virtual colonoscopy.

regions of interest.

Electronic cleansing of the colon allows for an easier prep for the patient on

the day before the examination. Material remaining in the colon which has been

tagged with barium can be digitally removed. A method based on casting so-called

segmentation rays through the data was proposed to identify locations of intersec-

tion between two distinct intensity regions [68]. More recently, statistical based

image processing methods utilizing expectation-maximization have been presented

[147, 149]. Given a cleansed colon, a region growing segmentation can be per-

formed to extract the interior of the colon, allowing for the colon wall to then be

identified. Research has also been performed on segmenting the outer colon wall

boundary using level sets [139].

An important task is the extraction of an accurate centerline, or medial axis,

through the colon. Much work has been done over the years on methods of ex-

tracting these skeleton curves, both in general and specifically related to the colon.

Skeleton extraction from volumetric medical data by connecting centerlines based

on a medial voxel path has been presented [168]. A method has been proposed using

a distance from boundary field with penalty weights to obtain general skeletons of

tree-like structures [10]. Obtaining a skeleton directly from a mesh by contracting

the surface, without any need for a volumetric representation, has been suggested

[63]. Both surface and curve skeletons from genus 0 structures have been extracted

through the use of advection to move mass from the object’s surface to its skele-

ton [119]. The use of least squares optimization has been suggested for extracting

curve skeletons in an efficient manner which is insensitive to noise [148]. Curve

skeletons can also be approximated for data from incomplete point clouds based on
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a generalized rotational symmetry axis for a set of points [135].

A mesh of the colon surface is typically extracted to use for navigation and to

give the user an external view of the colon. Several methods have been proposed

for extracting triangular meshes from volumes, the most popular method being the

well-known marching cubes technique [82]. In order to improve the quality of

triangular meshes extracted from medical imagery, a technique using surface nets

was developed [32]. A method based on dual contouring, which seeks to preserve

the original topology of the object being extracted, has also been presented [165].

Within the VC interface, several tools are presented to the user to aid in inter-

rogating suspicious regions. For example, the user is able to measure the size of

the polyp in 3D and adjust the lighting to better observe shapes. A more interesting

tool is a so-called electronic biopsy [145]. This electronic biopsy allows the user to

gain insight into the internal structure of the colon wall.

Virtually unfolding the colon surface to a plane has been presented [7, 78]. Con-

formal mapping has also been used to map the colon surface to a rectangular plane

[47]. These methods allow the user to view the entire inner colon surface at once as

a long strip in a 2D plane. A method of volumetric curved planar reformation has

also been proposed to allow the user to view the 3D colon surface set into a 2D CT

slice [153].

There has been significant work in the computer-aided detection (CAD) of

colonic polyps. Conformal mapping has been used as the basis for CAD based

on texture analysis of colonic polyps [48]. Other methods have also been used for

colon CAD, most commonly based on shape analysis methods [134, 159]. The use

of rendering curvature lines on the inner colon surface has also been suggested for

detecting polyps [167].

Surgery simulation is a common visualization task, and techniques have been

developed for endoscopic tasks. Specific to the colon, there has been work on gener-

ating images to simulate a general colonoscopy procedure [38]. For more advanced

colon cancer surgery, newer simulation systems involving collision detection and

reaction have also been developed [117]. A system for endoscopic pituitary proce-

dures has also been developed to assist in training and for surgery planning [103].

Similar to virtual colonoscopy, virtual bronchoscopy has been developed for

noninvasive screening in the identification of lung nodules [23]. Similar techniques

are used, including the extraction of the medial axis for navigation and a rendering

of an endoluminal view [45]. Path planning can then be performed to assist the

user in navigation [64]. However, navigational aids are still needed, such as global

maps, trail markers, cross-references to two-dimensional views, and so on [133],

and further research into more advanced techniques is still being undertaken [107].
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1.3.2 Prostate Imaging

Common methods used to identify the possibility of prostate cancer include

a blood test to check the level of prostate specific antigen (PSA) and the digital

rectal examination. However, these tests are non-specific; for example, an elevated

PSA could indicate prostate cancer, but it could also indicate another problem with

the prostate, such as benign prostatic hyperplasia (BPH). When there is elevated

suspicion for the presence of prostate cancer, ultrasound guided biopsies will be

taken. However, this is still in essence stabbing in the dark, and a large number of

biopsy samples (143 in one case) are sometimes necessary to hit the tumor [81].

The prostate is divided into three zones: the peripheral zone (PZ), transitional

zone (TZ), and central zone (CZ). The PZ is the largest of the three, accounting

for approximately 70% of the prostate, and roughly 70% of CaP cases originate

there [170]. Being on the periphery of the prostate, cancer from this region is more

likely to spread beyond the prostatic capsule. The TZ and CZ are often considered

together as a single region, and as such are referred to as the central gland (CG).

Cancer from this area is less likely to spread outside the prostate because it is gen-

erally bordered by the PZ and the fibromuscular stroma. Located superior to the

prostate are the seminal vesicles (SVs), which are fluid filled sacks. Invasion of

the SVs by CaP is also of concern. For the prostate, data is acquired using MRI

and three modes are commonly used: T2-weighted, T1-weighted, and spectroscopy

(MRSI). Examples from the three types of MRI acquired for a typical prostate ex-

amination are shown in Figure 1.6.

T2-w images provide good image quality of the prostate, allowing for a differ-

entiation between the PZ and CG. Normal prostatic tissue in the PZ will have high

intensity, while cancerous tissue will generally show a decreased intensity. In the

CG, however, normal tissue already has a decreased intensity. Due to this, and since

the CG is of relatively low importance compared to the PZ, typical MR examina-

tions of T2-w data are focused on detecting CaP in the PZ [150]. The prostatic

capsule surrounding the gland appears with low intensity in T2-w images.

Unlike T2-w images, T1-w images are of low image quality with respect to the

prostate and cannot be used to identify zonal anatomy. Cancerous regions and nor-

mal tissue both appear as areas of low intensity, and thus cancerous regions are not

apparent. Rather, the T1-w images are used to exclude areas which may still contain

blood from earlier biopsies. Such post-biopsy hemorrhages will appear similar to

cancer in the PZ in T2-w images. In T1-w images, such regions will have increased

intensity from normal prostate tissue.

MRSI measures chemical spectra in large regions, each covering many voxels.

For CaP detection, there are three chemicals of interest: choline, creatine, and cit-

rate. Specifically, the ratios of choline to creatine and of choline plus creatine to
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citrate appear elevated in cancerous regions [152]. MRSI is not suitable for specific

localization due to its coarse resolution, but can be useful as a broad tool.

The surrounding anatomy can also be important in identifying CaP. Invasion of

the SVs can be identified using the T2-w images. Normal SVs appear as regions

of increased intensity surrounded by walls of decreased intensity. In SV invasion,

the SVs will appear with decreased intensity throughout. An abnormal angle be-

tween the prostate and the rectum can also be indicative of a problem, and thus it is

important to be able to view the location of the rectal wall.

A common treatment for organ confined CaP is a radical prostatectomy, where

the entire prostate is removed. Imaging modalities to be able to tell if the cancer is

indeed organ confined would help in making the decision as to whether this is the

proper choice for treatment. This procedure has common undesirable side effects

of incontinence and impotence, making it an unpleasant option for many people.

More recently, brachytherapy is being used, where radioactive seeds are placed in

the prostate near tumors to kill off the cancerous cells. This procedure helps to

eliminate the undesired side effects from radical prostatectomy. Imaging technol-

ogy is needed here to assist in placing the seeds near cancer sites without radiating

healthy tissue or important tissues in nearby organs. Imaging techniques could also

help to visualize the dosage and coverage information.

There have been several attempts at automatically segmenting the prostate [171,

172], though manual segmentation still remains the current gold standard. There

have also been attempts at CAD using MR images [86] and MRS data [136]. These

works are focused on utilizing only the 2D MRI slices, not in a 3D rendered envi-

ronment, with an outlook towards providing full CAD.

1.4 Contributions

This dissertation features the following topics, which address various subtopics

in the visualization of volumetric and surface data:

• Virtually Assisted Optical Colonoscopy: Two techniques as the beginning

steps towards a system combining virtual and optical colonoscopies; undis-

tortion of the fisheye lens and a path correlation between virtual and optical

colonoscopies.

• Supine and Prone Colon Registration: Given two colon surfaces of the same

patient extracted from two scans in different positions, a one-to-one and onto

image space registration is found between the two colon models.

• Contextual Maps of Colon Surfaces: Given a model of a colon surface, a
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(c) (d)

(e)

Figure 1.6: Sample slice from each of the five typical image sequences acquired in MR

prostate imaging. The prostate is within the red circular regions. (a) T2-weighted endorectal

axial. (b) T2-weighted endorectal sagittal. (c) T2-weighted endorectal coronal. (d) T1-

weighted pelvic axial. (e) MRSI.
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2D map is created without occlusions, providing an undisturbed view of the

entire colon surface and locations therein.

• Contextual Maps of Treelike Structures: Given a model of a treelike structure,

such as the bronchi, a 2D map is created without occlusions which preserves

the general shape of the object.

• Prostate Visualization: A system to visualize in 3D prostate data obtained

from several MRI scans and provide various modes of interaction to allow

the user to explore the data.

These works all feature aspects of visualization and exploration to aid users in

analyzing the large amounts of medical imaging data acquired from CT and MRI

scanners. Though different organs are explored in different specific works, they

all focus on the end product of better visualization for the user. This improved

visualization includes techniques to combine and view multiple data at the same

time as well as succinctly view all data at once. The forthcoming chapters will

detail each of these works, including the motivation for each work, the methods

developed, and the final visualization results achieved.
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Chapter 2

Virtually Assisted Optical Colonoscopy

Though VC is a proven system for locating polyps within the colon, OC is still

necessary if any polyps are found and need to be removed. Due to this, there is

interest in exploring methods of augmenting OC with VC data such that the VC

information can be used to guide the OC when a VC reading has already been per-

formed and results are present. In this chapter, two methods are discussed which

are beginning steps towards a virtually assisted OC system [95]. These methods

include an undistortion of the fisheye view captured by the colonoscope and a cor-

relation between the view paths taken in VC and OC. Though these two techniques

can be used together in such a system, their methods and purpose are quite distinct.

As such, they are each presented separately in the following discussion.

2.1 Undistortion of Fisheye View

2.1.1 Motivation

The images obtained in OC are captured through a fisheye lens, which causes

a high level of radial distortion in the image. Radial undistortion of these images

would yield a more normal perspective view, in which the size and shape informa-

tion from the inside of the colon will be more correctly presented. Since decisions

on whether an item on the colon wall is a polyp or not is heavily dependent on size

and shape characteristics, this would allow for an improvement in the gastroenterol-

ogist’s ability to correctly identify potentially cancerous polyps. There has been

much research devoted to radial undistortion, with methods using images captured

with calibration grids [4, 39, 137] and methods using strictly numerical approaches

[84, 87]. In order to maintain an easy to use system, it is best to avoid the need

to capture images with calibration grids, and hence a simple numerical method is

needed.
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2.1.2 Method

Radial distortion can be represented using an infinite series, with the distortion

then calculated using the equation [84]:

F(r) = r f (r) = r(1+ k1r2 + k2r4 + k3r6 + · · ·), (2.1)

where r2 = x2 +y2, with (x,y) being the normalized undistorted projected points in

the image frame, and k are the scalar distortion coefficients. The distorted coordi-

nates in the camera frame can then be calculated as:

pd = pu · f (r), (2.2)

where pu are the undistorted coordinates (xu,yu) and pd are the distorted coordi-

nates (xd,yd) in the camera frame. It has been found that because the image space,

where the work will be performed, contains noise, modeling the distortion above

the second distortion coefficient does not improve the results [87], so the distortion

can be modeled as:

f (r) = 1+ k1r2 + k2r4. (2.3)

It has also been found that the r values can be reduced [84], such that the distortion

can now be modeled more simply as:

f (r) = 1+ k1r+ k2r2. (2.4)

Using this simplified model, the edges of the undistorted image are less prone to

distortion artifacts from the image inverting back in on itself.

The work is performed in the image space, not in the space of the camera frame,

and so it is necessary to calculate the distortion in the (u,v) space of the image,

rather than in the (x,y) space of the camera frame. The distortion in the image

(u,v) space can be calculated as:

ud−u0 = (u−u0) f (r),
vd− v0 = (v− v0) f (r),

(2.5)

where (u,v) are the image coordinates of the original undistorted image point,

(ud,vd) are the coordinates of the corresponding distorted image point, and (u0,v0)
are the coordinates of the image center. The adjustment using the image center co-

ordinates is necessary to ensure that the radial distortion occurs around the center

of the image, since the (x,y) coordinates of the pixels will be in the range [1, width]

for x and [1, height] for y, with the center point being at (width/2, height/2). In

the camera frame, the coordinates (0, 0) are at the center, with the values for x in
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the range [−x,x] and the values for y in the range [−y,y], and hence no adjustment

would be necessary.

In calculating the distortion, it is necessary to calculate the value of r, used in the

equation for f (r) (Equation 2.4). Since r2 = x2 + y2, this value must be calculated

in the 2D projection space of the camera frame, not in the image space. This is

accomplished using the affine transformations:

x =
u−u0

mu
, y =

v− v0

mv
, (2.6)

where mu and mv are the number of pixels per unit distance in the u and v direction,

obtained from previous work in colonoscope calibration [50].

The typical method to undistort an image using these formulae is to solve for the

undistorted (u,v) values for each pixel (ud,vd) in the distorted image. The undis-

tortion is performed on the GPU, using the coordinates of the framebuffer as the

output for the undistorted image. Because of this, the problem can be thought of

as knowing each pixel location on the undistorted image, and from there calculat-

ing where on the distorted input image to obtain the color value from. Using this

method, the values for (x,y) in Equation 2.6 can be easily calculated. Likewise,

the distorted pixel locations (ud,vd) can be easily calculated using Equation 2.5 as

follows:
ud = (u−u0) f (r)+u0,
vd = (v− v0) f (r)+ v0.

(2.7)

The undistorted image is also formed to be larger than the original, distorted image,

as the undisortion pushes the image information past the boundaries in the distorted

image.

Rather than locking the scalar distortion coefficient values for k1 and k2 to spe-

cific values or necessitating individual colonoscopes to be calibrated before use to

obtain these values, a simple interface is provided with two thumbwheels to allow

for easy adjustment of the two values. Since barrel distortion (the type of radial dis-

tortion present in colonoscopes) occurs when the value of k < 0, the thumbwheels

should be adjusted to negative values to perform the undistortion.

2.1.3 Results

The undistortion technique was tested on still images which were captured

through an Olympus colonoscope, Model CF-Q160L, with a field of view of 140

degrees. The images were acquired of boards with regular geometric patterns on

them (such as a checkerboard), so that the effectiveness of the undistortion algo-

rithm could be clearly seen. Figure 2.1 shows examples of performing the undistor-

tion technique on two such images. The radial distortion can be readily observed
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in Figure 2.1(a), where the square boxes of a checkerboard have become warped,

with the straight lines being curved. In the undistorted images 2.1(c) and 2.1(e), the

lines have been straightened and appear as when viewed normally in perspective

space. The undistortion technique was also applied to Figure 2.1(b), with similar

visual results.

In performing the undistortion, the resulting images are larger than the original

images. In essence, the center of the image (where there is very little distortion)

has remained the same, while the sides have been pulled outwards. It can be noted

from the undistortions that adjusting the value of k2 in Figures 2.1(e) and 2.1(f)

does not produce a noticeably better result than Figures 2.1(c) and 2.1(d), which

were created with k2 ignored (left at a value of 0.0). It can be inferred from this that

the use of k2 is unnecessary, and future tests that were performed utilized only k1

for adjustments. Being necessary to adjust only k1 also increases the simplicity of

the system for the user.

Figure 2.2 shows the result of undistorting an endoscopic image from an OC

video of an NIH dataset from the Pickhardt et al. study [111]. The undistorted

image in Figure 2.2(b) presents a perspective view more similar to what one would

observe in the real world inside the colon if a fisheye lens were not used. The empty

black spots at the top, bottom, left, and right are areas that fall outside of the image

area in the distorted image, and hence contain no image data. These areas can be

ignored, or, if they are found to be too distracting, they can be simply cropped out

at the expense of losing some information from the image corners. This undistor-

tion, as well as those in Figure 2.1, were created by experimentally determining the

appropriate value for k1 (and k2 for Figures 2.1(e) and 2.1(f)) necessary to achieve

the desired result.

The radial undistortion is performed on the GPU. The speed of the GPU allows

for real-time performance, so the value of k1 can be adjusted interactively. Interac-

tive performance with an average frame rate of approximately 35 frames per second

was achieved using a 3.6 GHz Xeon PC running Windows XP Professional x64 with

4G RAM and an NVIDIA Quadro FX 4500 GPU. This real-time performance also

means that it would be possible to perform the radial undistortion on the video from

the colonoscope in real-time.

2.2 Path Correspondence

2.2.1 Motivation

Integrating the information from a VC session or a CAD system can help to

ensure that the gastroenterologist does not miss investigating critical sections. This

is not trivial, as the exact path of the physical colonoscope is not known. A basic
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(a) Original distorted image (b) Original distorted image

from colonoscope. from colonoscope.

(c) Undistorted image (a) with parameters (d) Undistorted image (b) with parameters

k1 = -0.024000 and k2 = 0.000000. k1 = -0.024000 and k2 = 0.000000.

(e) Undistorted image (a) with parameters (f) Undistorted image (b) with parameters

k1 = -0.027000 and k2 = 0.000150. k1 = -0.027000 and k2 = 0.000175.

Figure 2.1: Performing undistortion on images of regular geometric patterns captured with

a colonoscope.
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(a) (b)

Figure 2.2: (a) Original image of a colon wall captured with an endoscope. (b) Undistorted

version of (a).

approach is to estimate this path, and correlate it to the centerline calculated for VC.

The distance from the rectum along the path can then be matched to a point on the

VC centerline. This allows for a rough alignment between the two views.

In addition to the ordinary centerline that is calculated for VC, also calculated

is a hugging corner shortest path. This approximates more closely the actual path

of the physical colonoscope that is snaked through the patient’s colon [50]. An

example of the difference between the conventional centerline that is calculated

for VC and the hugging corner shortest path that is calculated to approximate the

physical colonoscope is shown in Figure 2.3. Figure 2.4 shows the location of

the lens on the distal end of a colonoscope (other items on the distal end are not

shown). Because the lens center is not directly on the edge of the distal end, the

hugging corner shortest path will always remain some minimum distance from the

colon wall, never exactly touching the colon surface. This distance can range (in

the current example colonoscope) from 2.8 mm to 10 mm, depending on how the

colonoscope is oriented, with the average distance being 6.4 mm.

2.2.2 Method

The centerline and shortest path are both represented as spline curves, and are

discretized into a certain number of points for display and visualization. Knowing

what distance the colonoscope is inserted, the discrete point for that location on

the shortest path can be calculated. The centerline is correlated to the shortest path
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(a) (b)

Figure 2.3: Examples of (a) a centerline and (b) a hugging corner shortest path.

Figure 2.4: The location of the lens on the distal end of a colonoscope.

so that any point along the centerline in the VC can be matched to a point on the

shortest path in the simulated OC (and vice versa).

The idea of the path correlation is that for each point on one path, a corre-

sponding point on the other path can be found such that the views inside the colon

generated from both of these points should be similar. For this, simply finding the

nearest point on the other path is not appropriate, as the bends in the paths might

make a physically closer point be further away from the area of interest. Rather, it

is necessary to find matching points that are in the same cross section of the colon

lumen.

Since the centerline follows the contours of the colon more closely than the

shortest path, it is used as the starting point in calculating the correlation. The

normalized direction of the centerline at a point x is obtained using the next and

previous points on the centerline. To ensure a smooth curve for this calculation,

several points before and after x are averaged and used to calculate the direction
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(a) (b)

(c) (d)

Figure 2.5: Method of path correlation. (a) Obtain normalized direction vector for point

x on centerline. (b) Obtain plane orthogonal to point x. (c) Find nearest point on hugging

path which intersects the plane from (b). (d) Examples of three correspondence planes.

vector. This normalized direction vector is then taken to be the normal of a plane

that is perpendicular to point x. Since the centerline closely follows the contours

of the colon, this plane can be said to approximate the cross section of the colon

which contains point x. Then the nearest point to x on the shortest path which is

within some tolerance of being on the plane is found. This point y on the shortest

path is then also in the same cross section as point x. Since they are in the same

cross section, points x and y can be considered correlated. The method is illustrated

in Figure 2.5

2.2.3 Results

To test the path correlation method, the centerline and shortest path that were

extracted were used and correlation was checked by comparing the locations of the

correlated points and the views from these points inside the colon lumen. Figure

2.6 shows an example of the extracted centerline and hugging corner shortest path

with the colon shape. It can be seen that the name hugging corner is appropriate, as

the shortest path will stay near the bends of the colon as it curves around, hugging

it, whereas the centerline will remain in the center of the colon lumen.

To observe the locations of the corresponding points, just the splines and the
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Figure 2.6: Example of an extracted centerline (red) and hugging corner shortest path

(green) for a virtual colon model, showing the entire model and a zoomed in section.

Figure 2.7: Three examples of the correlation between the centerline (red) and hugging

corner shortest path (green). Calculated corresponding points are illustrated by a black dot

on each line.

two corresponding points were visualized. As the point on one spline is moved, the

corresponding point on the other spline is updated. The two points should remain

close and within the same cross section. Some images of the correlated points can

be seen in Figure 2.7. Using this method, it was observed that the two black points

appear correlated throughout the length of the colon.

To evaluate how the system might perform in a real OC, the experience was

simulated by volume rendering the correlated view from both the centerline (the

view from the VC) and from the shortest path (an approximation of the view from
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the OC). The two views are shown side-by-side, allowing for easy comparison.

Images from this simulation are shown in Figure 2.8. It is possible to identify

structures which are present in both views, showing that the two views are properly

correlated.

The simple setup would allow for easy insertion of CAD results, where the sus-

picious areas could be painted on the VC image but not the OC image. Such a

method can help ensure that the doctor will observe the entire OC image uninter-

rupted, but be able to use the CAD information from the VC view.
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Figure 2.8: Screenshots of the program simulating the correlation between the two views.

In both cases, the left image shows the view from the centerline, while the right image shows

the view from the shortest path. Landmarks (circled in yellow) can be easily identified in

both views, showing that they are properly correlated.
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Chapter 3

Supine and Prone Colon Registration

The ability to compare multiple scans of the same patient is an important task

in evaluating medical imagery. In this chapter, a technique is presented to register

scans of the colon acquired with the patient in both supine and prone orientations

[162]. The result of this registration forms a one-to-one mapping between the two

colon surfaces, allowing the user to easily identify the same region on both models.

3.1 Motivation

A persistent challenge throughout the development of VC has been the registra-

tion of colon models extracted from separate supine and prone scans [1, 22, 102].

It is typical for separate scans to be obtained with the patient in supine (face up)

and prone (face down) positions so that regions which may be occluded in one view

due to the elastic nature of the colon will be clear in the other. Due to this elas-

ticity, colon models extracted from the two scans will not match (see Figure 3.1).

Being able to register these two scans is useful for both a routine VC system and

for a CAD system. In the case of a VC system, providing the user the ability to

jump from one area in one scan to the same area in the other scan would allow for

the easy comparison of these areas when something might be unclear in one of the

scans, or for confirming a finding. For a CAD system, a proper registration could

help achieve greater accuracy while at the same time reducing false positive results.

In terms of visualization, supine-prone registration presents two interesting possi-

bilities: viewing corresponding regions of the two colon surfaces and observing the

elastic deformation of the colon between the supine and prone scans.

Early work on supine-prone registration for VC applications focused on using

the centerlines and various landmarks. A basic method applies linear stretching and

shrinking operations to the centerline, where local extrema are matched and used to

drive the deformations [1]. Improved methods of centerline correlation were also

investigated for use in reducing false positive results [102]. Correlating individual
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(a) Supine (b) Prone

Figure 3.1: A colon reconstructed from its (a) supine and (b) prone scans.

points along the centerline through the use of dynamic programming has also been

suggested [22, 101].

More recently, the taeniae coli (three bands of smooth muscle along the colon

surface) have been used as features which can be correlated between the two scans

[53, 54]. This relies on a manual identification of one of the three taeniae coli,

and then an automatic algorithm repeats the line representing the identified taenia

coli at equal distances. Further progress has been made where the haustral folds

and the points between them can be automatically detected, and the taeniae coli are

identified by connecting these points [140]. However, this method is only feasible

on the ascending and transverse portions of the colon.

Deformation fields have also been suggested for use in supine-prone registra-

tion. Motion vectors can be identified for matched centerline regions, interpolated

for non-matched regions, and then propagated to the entire volume [132]. It has also

been proposed to use a free-form deformation grid to model the possible changes in

the colon shape from supine to prone [114]. For general surface registration, con-

formal mapping has been used to compute smooth one-to-one maps between closed

surfaces of the same topology [75].

The characteristics of the deformation between supine and prone are determined

by the elasticity properties of the tissues and muscles. The strain-stress relations for

different types of tissues or muscles are different. If the strain-stress relation defor-

mation is independent of the orientation, then local deformation is in a practical

sense a scaling, and the global deformation is conformal. In that case, it is possible

to flatten each supine and prone surface to a planar rectangle conformally, and those

two rectangles should be similar. By aligning the planar rectangles, it is possible to

obtain a one-to-one and onto mapping, and obtain the registration between them.

An elastic deformation with bounded angle distortion is referred to as a quasi-
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Figure 3.2: The pipeline for supine-prone colon registration.

conformal map. The angle distortion for a quasi-conformal map can be represented

as a complex valued function, the so-called Beltrami coefficient. The Beltrami coef-

ficient fully controls the quasi-conformal map, which is determined by the elasticity

of the underlying material. By better understanding the deformation between supine

and prone, it is possible to understand the elasticity of the tissues and muscles and

vice versa.

This chapter discusses a method of supine-prone colon registration based on

conformal mapping [162]. The pipeline of the algorithm is shown in Figure 3.2. Ac-

cording to conformal geometry theory, there exists an angle preserving map which

periodically flattens the colon surface onto a planar rectangle. This mapping mini-

mizes the total stretching energy. Because the conformal mapping is locally shape

preserving, it offers an effective way to visualize the entire colon surface and ex-

poses all of the geometric structures hidden in the original shape embedded in 3D.

The non-rigid elastic deformation between supine and prone colons poses a

great challenge for shape registration. In this work, the anatomical landmarks

and internal features are located and matched on conformally flattened supine and

prone surfaces, and a harmonic map is computed with these feature constraints

in linear computational complexity. The resulting supine-prone registration is a

quasi-conformal map (diffeomorphism), which reflects the elastic deformation of

the muscle and tissue. The distortion is evaluated by the Beltrami coefficients.

Experiments on 6 pairs of supine-prone colon segments obtained an average R
3

distance error of 7.85mm for the feature points and polyps evaluated.

Because the deformation from supine to prone is not conformal, the conformal

colon flattening method is generalized to a quasi-conformal flattening for registra-

tion purposes. Most existing colon registration methods cannot guarantee the map-

ping to be a diffeomorphism (one-to-one and onto mapping). Due to the compli-

cated geometric structure of the colon surface, the existing methods often introduce

folding or singularities in the mapping. This method is based on the biophysical

nature of the deformation from supine to prone, which is physically elastic and

anisotropic. Due to the material properties of the muscles and tissues, the deforma-

tion can be exactly modeled as a quasi-conformal map. The experimental results

validate that the mapping is indeed quasi-conformal, and this work is the first to use
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(a) Front view (b) Back view

Figure 3.3: Taenia coli (in red) on the prone colon surface.

quasi-conformal mapping for supine-prone registration.

3.2 Anatomical Landmarks

Firstly, anatomical landmarks are extracted which are used in splitting the colon

for later processing. These landmarks include the taenia coli and flexures, which

are important anatomical landmarks of the colon which do not change despite the

change in position of the patient. Corresponding anatomical landmarks in the

supine and prone colon models are extracted and then used to cut each colon into

its anatomical segments, as well as slicing the colon open for flattening. The main

taenia coli is identified and used as a consistent cutting line between the supine and

prone colons. This consistent cutting line is important for the robustness of the reg-

istration as the boundaries should be the same between the two colon models. The

flexures are used to split the colon into five consistent sections which can be pro-

cessed individually. This splitting reduces the computational burden and allows for

better results by having multiple aligned boundaries along the length of the colon.

3.2.1 Taeniae Coli

Taeniae coli are three bands of longitudinal muscle on the surface of the colon

which run from the appendix to the sigmoid colon and are ideal references for

virtual navigation. The three taeniae coli are named taenia omentalis, taenia meso-

lica, and taenia libera according to the position on the transverse colon. Taeniae

coli can be regarded as ridge breakers for the haustral folds (that is, located be-

tween the haustral folds). It is relatively easy to extract the taenia omentalis as it
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is clearly visible on the transverse and ascending colons. Similar to reported ap-

proaches [17, 69], taeniae coli are identified by detecting the haustral folds, which

are computed initially using the heat diffusion and fuzzy C-means clustering al-

gorithms [69]. Using these haustral folds, the taenia omentalis is extracted. The

other two taeniae coli are also extracted during this procedure [53]. Although all

three bands of taeniae coli are extracted, the taenia omentalis is mostly used for

subsequent processing. Figure 3.3 shows the front and back views of a taenia coli

on the prone colon surface. Automatic extraction of the taeniae coli through the

entire colon is often possible. However, if fully automatic extraction is impossible

in some dataset, a semi-automatic method using manually placed markers can be

employed to improve reliability.

3.2.2 Flexures

The five segments of the colon, starting from the cecum, are the ascending colon

(A), the transverse colon (T), the descending colon (D), the sigmoid colon (S), and

the rectum (R). A method is needed to identify the locations of the four major flex-

ures between these five segments in the colon. These flexures are further anatomical

landmarks which help in virtual navigation and supine-prone alignment and split-

ting. The first major flexure occurs between the ascending colon and the transverse

colon (A-T flexure). This is the flexure close to the liver and is called the hep-

atic flexure. The second major flexure occurs between the transverse colon and the

descending colon (T-D flexure). This flexure is close to the spleen and is named

the splenic flexure. The third flexure occurs between the descending colon and the

sigmoid (D-S flexure), and the final flexure is between the sigmoid and the rectum

(S-R flexure). All of these flexures form very sharp bends and are distinguishable

from other smaller bends. Theoretically, the A-T flexure forms the topmost point of

the ascending colon and the T-D flexure forms the topmost point of the descending

colon.

For the detection of these flexures, the 3D centerline through the colon is uti-

lized. This centerline is projected onto a 2D coordinate system in the positive z− x

and positive y− z planes. The bends in the centerline are identified by iteratively

evaluating the slopes along the projected curves in the two planes. Not all of the

bends are important, so small bends are discarded based on a threshold and only

the major bends are retained. All of these detected bends are sorted based on their

z-coordinate (up direction). The T-D flexure is identified as the bend with the high-

est z-coordinate and the A-T flexure is identified as the bend with second highest

z-coordinate. In the event that the A-T flexure has a higher z-coordinate than the

T-D flexure, the order of the two points along the centerline can be used to confirm

the correct identifications. The S-R flexure is the bend with the lowest z-coordinate.
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Figure 3.4: The four flexures on the prone colon, which divide the colon surface into five

segments, depicted in various colors.

The next bend in the sorted order after the T-D flexure whose y-coordinate is compa-

rable to that of the T-D flexure forms the D-S flexure. These four positions are then

mapped back to the 3D coordinate system and the corresponding 3D coordinates of

the centerline are obtained.

However, the points that are obtained are those on the centerline and not on

the surface. Using these points, the areas on the surface where the flexures are

present need to be marked. For each point, a plane is defined which is orthogonal

to that point on the centerline. The intersection of the plane with the mesh surface

is computed and a polyline is marked by joining the intersection points using the

well-known Dijkstra’s shortest path algorithm. Consequently, the flexures on the

surface are extracted. The four extracted flexures between the five segments of the

colon are illustrated in Figure 3.4 on the prone colon surface.

3.3 Surface Features

In order to align the two colon surfaces, it is necessary to identify and correlate

feature points on the two surfaces. For this task, the problem of feature detection

and matching in 3D is changed into a 2D image matching problem. This is ac-

complished through the use of conformal mapping. Each colon segment is mapped

conformally to a planar rectangle, allowing for all work to then be accomplished

within the 2D domain. The results for corresponding segments are shown in Fig-
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(a) Segment A (b) Segment T (c) Segment D

Mod = 5.41089; Mod = 6.20148; Mod = 7.77978;

3.85803 5.87936 6.15164

Figure 3.5: Conformal modulus comparison between three different segments of the supine

and the corresponding segments of the prone (Ascending, Transverse, and Descending). In

each column, the left image shows the flattened rendering of the supine and the right image

shows the flattened rendering result of the prone. The conformal module for each segment

is defined as the ratio of height to width for the flat rectangle map, Mod = height/width.

Each of the segment pairs are not conformally equivalent.

ure 3.5. Since the conformal modulus values of corresponding segments are not

equal, the segments are not conformally equivalent, and thus the requirement for

additional feature points to align the two segments.

Given a mapping of each colon segment onto a planar rectangle, the mean cur-

vature is color encoded to generate color images. The mean curvature on vi, H(vi),
is approximated by:

H(vi) = ∑
[vi,v j]∈E

wi j < vj−vi,ni >,

where ni is the normal at the vertex vi, <,> is the inner product in R
3, and wi j is

the cotangent weight. An example of the color encoded colon surfaces in 3D and

2D are shown in Figure 3.6.

These color coded flattened colon segments are analyzed to obtain specific fea-
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(a) Supine (b) Supine curvature (c) Flat supine (d) Scaled supine

(e) Prone (f) Prone curvature (g) Flat prone (h) Registered supine

Figure 3.6: Color encoding mean curvature on corresponding supine and prone segments.

(a) and (e) Original colon surface segments. (b) and (f) Color encoded mean curvatures. (c)

and (g) Color encoded mean curvature on the flattened surfaces. (d) Scaled flat image of (c)

with the same size as (g). (h) Deformed flat image of (c) after registration to (g).

ture points for the registration. The well-known graph cut approach from computer

vision is used to find the regions of interest. In the case of the colon, the desired

regions of interest on the flattened supine and prone images are the folds. A graph

is constructed using the pixels of the image as the nodes. Assuming a virtual sink

and source, edges are constructed with appropriately assigned weights. Using the

max-flow min-cut method to solve the energy minimization problem [12], all of the

pixels belonging to the folds are obtained. The appropriate assignment of weights

ensures efficient detection of the folds.

Due to the drastic change in position of the patient in supine and prone, the

colon tends to stretch, contract, and move, resulting in the distortion of the folds. In

addition, some areas might be densely populated with folds, while other areas are
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(a) Segmentation (b) Features (c) Matching results (d) Constraint points

Figure 3.7: Feature detection and matching for the flat images between supine and prone

(see Figures 3.6 (d) and (g)). In each frame, supine is on the left and prone is on the

right. (a) Segmentation results using graph cut. (b) Feature detection results (in green). (c)

Feature matching results using graph matching. (d) Matching features used to constrain the

registration. Two corresponding feature points are encoded in the same color on the supine

and prone flat images in (c) and (d).

sparsely populated. To prevent any ambiguities, only the significant folds are cho-

sen which have a lower chance of distortion. Therefore, all of the folds whose length

and size are below a certain threshold are discarded. For this, a pre-processing step

is performed using a breadth-first search to find all of the connected components

among the extracted folds. The prominent folds form larger connected components

and thus by defining an experimental threshold value, all the smaller components

are discarded. By varying the threshold, it is possible to modify the number of

detected folds based on the requirements. Figure 3.7(a) shows the segmentation

results for both the supine and prone surfaces.

After applying the threshold all of the significant folds are now detected. These

folds can be approximated as ellipses and hence the axial end points form good

feature points for registration. These axial points of the detected folds are extracted

and form the feature point set. Figure 3.7(b) shows the detected features (in green)

on both supine and prone surfaces.

Feature matching is performed on each segment of the colon separately. Finding

a correspondence between the extracted feature points in supine and prone is again

formulated as an energy minimization problem by defining an objective function.

The dual decomposition approach is employed for energy optimization, which is

solved as an instance of the well-known graph matching problem [138].

Suppose the feature point sets are S1 and S2 on supine and prone respectively,
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and the matching is φ : S1→ S2, then the objective function is defined as:

E(φ) = λ ∑
p∈S1

|p−φ(p)|2 +(1−λ ) ∑
q∈S2−φ(S1)

|q|2,

where λ is determined experimentally.

The objective function is chosen depending on the geometrical compatibility of

feature correspondences and the spatial coherence of the matched features. It is de-

fined by considering the weighted sum of two energy terms. The first term includes

the geometric distance between the feature points within a pre-defined neighbor-

hood. The second term evaluates the effect of including the distance of the un-

matched features in the objective function. Minimization of this function using the

dual decomposition approach will result in a unique set of feature correspondences.

Due to the large deformation between supine and prone, their folding patterns

are highly inconsistent. Figure 3.7(a) shows that the number of significant folds is

different for supine and prone. Therefore, it is impossible to find the correspon-

dence for all feature points on supine and prone, as shown in Figure 3.7(b) and (c).

In the graph matching algorithm, it is attempted to try and utilize all of the matched

features, and ignore those that are unmatched. In practice, it was found that the

feature points near the taenia coli (that is, the border of the rectangle) are more re-

liable and accurate than those in the middle. Therefore, the algorithm emphasizes

the feature points near the borders more than those in the middle. The experimen-

tal results demonstrate that the registration result is satisfactory even without the

unreliable middle feature points. The points which are used as constraints for the

alignment step of the registration algorithm are shown in Figure 3.7(d).

3.4 Quasi-Conformal Mapping

Since the mappings of supine and prone segments are not conformally equiv-

alent (see Figure 3.5), a quasi-conformal registration between the two segments is

necessary [160]. Let S be a surface embedded in R
3 and g is the induced Euclidean

metric. Given two surfaces with Riemannian metrics (S1,g1) and (S2,g2), then

φ : S1→ S2 is a diffeomorphism between them. It is said that φ is a conformal map

if the pull back metric induced by φ satisfies the following relation:

φ∗g2 = e2λ g1.

Intuitively, this means that the conformal mapping φ maps infinitesimal circles on

S1 to infinitesimal circles on S2. In general, a diffeomorphism φ maps infinitesimal

ellipses on S1 to infinitesimal circles on S2. As shown in Figure 3.8, the eccentricity
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Figure 3.8: Geometric meaning for Beltrami coefficients µ . The quasi-conformal deforma-

tion can be measured by the local stretching K and the angle distortion θ through mapping

infinitesimal circles to ellipses.

and the orientation of the ellipse can be described by a complex differential µ ,

which is called the Beltrami coefficient. The dilatation K is defined as:

K = sup
p∈S1

1+ |µ(p)|
1−|µ(p)| ,

which gives the upper bound of the distortion (local stretching). A quasi-conformal

(QC) map with dilatation K is called a K-QC map.

It is possible to choose special local complex coordinates z of S1 and w of S2

such that g1 = e2η1dzdz̄ and g2 = e2η1dwdw̄. Then, the local representation of

φ : z→ w satisfies the following Beltrami equation:

∂φ

∂ z̄
dz̄ = µ

∂φ

∂ z
dz, (3.1)

where |µ|< 1. If µ is zero, then the mapping is conformal. The fundamental theo-

rem in quasi-conformal geometry claims that the solution to the Beltrami equation

exists and is essentially unique.

Due to the elastic deformation of the colon, the deformation from supine to

prone is not conformal, but is a K-QC mapping. Furthermore, the Beltrami coef-

ficient |µ| shows the anisotropy of the deformation at each point, which reflects

the anatomic characteristic of the colon wall tissue in the neighborhood. Given the

detected and matched feature points, it is possible to achieve this quasi-conformal

mapping between the supine and prone colon segments.

Suppose that the feature points are {p0, p1, · · · pn} on the supine surface and

{q0,q1, · · · ,qn} on the prone surface, such that pk corresponds to qk. In order to
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enforce the alignments among these features, an affine map, η : R2→ R
2, is first

used which maps the rectangle of the supine to that of the prone. Then two harmonic

functions are computed, h = (h1,h2), such that:

h(pk) = φ2(qk)−η ◦φ1(pk),0≤ k ≤ n,

and furthermore:

∆h1 = 0,h1|γ2∪γ4
= 0,

∂h1

∂n
|γ1∪γ3

= 0,

and:

∆h2 = 0,h2|γ1∪γ3
= 0,

∂h2

∂n
|γ2∪γ4

= 0.

Then, the final registration map from supine to prone, Φ : S1→ S2, is:

Φ := φ−1
2 ◦ (h+η ◦φ1).

This step adjusts the conformal mapping to be quasi-conformal and has linear

complexity. This quasi-conformal correction is necessary due to the elastic defor-

mation of the colon. As the elastic deformation of the colon between supine and

prone cannot be known before registration, this value is not used in creating the

map. Rather, the feature points are used to guide the creation of a quasi-conformal

map that will approximate the elastic deformations of the colon segments.

3.5 Results and Visualization

3.5.1 Quantitative Results

Two methods are used to quantitatively evaluate the registration results. The

first evaluation is a distance measurement between corresponding features located

on the registered colon surfaces. Since the registration is in the 2D space using the

flattened colon surfaces, a point (x,y,z) in R
3 on the original colon surface will be

at a location (u,v) in R
2 on the registered surface. Thus, for a point p0 = (up,vp)

on the supine colon surface and its corresponding point q0 = (uq,vq) on the prone

colon surface, a perfect registration with zero error is present when up = uq and

vp = vq. For two corresponding points, the L2 norm of their 2D coordinates is

computed with the width of the flattened images fixed to a unit length of 1. Note

that the width along the flattened image is equivalent to the colon circumference for

that location.

Also computed is the 3D distance error in millimeters. For the two correspond-

ing points p0 and q0 in R
2, their locations r0 and s0 in R

3 are known. If the supine
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(a) (b)

(c) (d)

Figure 3.9: Visual verification for supine-prone colon registration using volume rendering.

(a) and (c) The flattened views of the ascending colon segments of the supine and prone

surfaces, respectively. After registration, a polyp found on the flattened supine surface

(yellow circle in (a)) can be located on the flattened prone surface (yellow circle in (c)) at

nearly the same position. (b) and (d) Enlargements of the neighborhoods of the same polyp

on the supine and prone surfaces, respectively.

surface (containing p0) is taken as the truth and the measurement of the registra-

tion error on the prone surface (containing q0) is desired, the point p1 = (uq,vq) in

R
2 can be identified on the supine surface and similarly its location r1 in R

3. The

distance error in millimeters is then given to be |r1− r0|.
The corresponding feature points for evaluation are obtained in two ways. The

first is by manually identifying points of interest (e.g., a polyp) on both colon sur-

faces. The centers of regions of interest on the registered flat images are manually

selected. For the polyp shown in Figure 3.9, the distance error is 0.0265 in R
2 and

5.31 mm in R
3. The algorithm has been evaluated using a total of 20 pairs on 6

datasets, and the average distance error is 0.0305 in R
2 and 5.65 mm in R

3.

The second method of finding corresponding points is to use a subset (in this

case, half) of the features obtained from the feature extraction and matching pro-

cess. These features are used for evaluation purposes, and only the remaining half

are used in the harmonic mapping step. Note that this inherently reduces the quality

of the registration, and thus a registration using all feature points will contain less

error. In general, 16 pairs of features points are computed for each segment. For

the registration shown in Figure 3.9, the distance error in terms of feature points

evaluation is computed to be 0.0325 in R
2 and 7.51 mm in R

3. The average R
3

distance on 6 colon segments is 7.85 mm.

A comparison between the current method and other methods is performed us-
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Table 3.1: Statistics for conformal mapping.

Colon Segment # Vertices # Faces Time(s)

Supine Ascending (A) 35,251 70,366 21

Transverse (T) 43,255 86,364 27

Descending (D) 44,910 89,659 23

Sigmoid (S) 37,237 74,296 22

Rectum (R) 39,712 79,315 23

Prone Ascending (A) 36,629 73,139 20

Transverse (T) 42,452 84,781 25

Descending (D) 44,587 88,981 26

Sigmoid (S) 38,499 76,823 22

Rectum (R) 38,177 76,276 23

Table 3.2: Computational time for the supine and prone feature matching (including feature

extraction) and the harmonic map registration.

Time (s) A T D S R

Feature matching (FM) 18 19 21 18 16

Harmonic mapping (HM) 10 11 12 10 10

ing the analytic evaluation results in R
3. For those papers that present their distance

error, a comparison of their results with the current results is shown in Table 3.3.

The current method produces a registration with significantly smaller distance error

between corresponding points than other methods.

3.5.2 Corresponding Visualization

Perhaps a better indicator of the utility of this registration is a visual evaluation

of the results, as this mimics most closely how the user of a VC system would use

the results. For this, both the flattened rendering and the 3D correlated endoluminal

renderings are utilized. It was observed that the correlation between the flattened

renderings was good, as was the endoluminal views. Figure 3.10 shows two supine-

prone colon segments, flat rendered, both unregistered and registered. The images

of the registered segments clearly show very good alignment of the supine and

prone colon structures, whereas the unregistered segments show poor alignment.

Another use of the one-to-one and onto mapping is the ability to create a corre-

spondence between two views in the endoluminal view. In order to visualize both

supine and prone in a consistent manner, the camera frustum viewing the supine

inner surface (mucosa) is mapped to the camera frustum viewing the prone mucosa.
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Table 3.3: Comparison of average distance error between the presented quasi-conformal

registration method and other registration methods.

Methods Dist. Error

Presented Quasi-Conformal Mapping 7.85 mm

Centerline registration + statistical analysis

(Li et al., 2004 [73]) 12.66 mm

Linear stretching / shrinking of centerline

(Acar et al., 2001 [1]) 13.20 mm

Centerline feature matching + lumen deformation

(Suh & Wyatt., 2009 [132]) 13.77 mm

Centerline point correlation

(de Vries et al., 2006 [22]) 20.00 mm

Taeniae coli correlation

(Huang et al., 2005 [53]) 23.33 mm

This is achieved by first matching the skeletons through the entire colon lumen, and

then matching the camera orthonormal coordinate frames.

A new path through the colon is introduced and referred to as the flattened cen-

terline. With a colon segment mapped to a plane such that the segment boundaries

are on top and bottom (resulting in a plane taller than it is wide), horizontal line

segments then correspond to loop curves on the colon surface. The mass center

of a loop is taken to be the central point for that plane of the colon segment. By

calculating these mass centers along the entire flattened colon, a path of points is

generated which generally mimics that of a centerline. However, since this is calcu-

lated from the flattened colons, it is referred to as the flattened centerline. To avoid

confusion, the term skeleton is used to refer to the 3D medial axis centerline which

is conventionally calculated for VC systems.

The flattened centerline can be efficiently calculated as a series of points through

the colon lumen using the GPU to render the flattened colon mesh. For a desired

number of points in the flattened centerline, the colon mesh is scaled so the longest

side of the rectangular mesh is equal to this desired number of points. The mesh is

rendered such that the color of each vertex is the original coordinates of the vertex

in the volume, with the values interpolated to fill the triangles. Each row of pixels

can then be averaged to obtain the mass center for that row, which is the point for

that position on the flattened centerline.

The skeletons are matched through the use of the flattened centerlines. Given a

point c0 on the discretized supine skeleton, it is necessary to find the correspond-

ing point c1 on the discretized prone skeleton. First the point d0 is found on the

flattened centerline, which is the point nearest c0 in R
3. Given this point d0, the
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(a) Segment A (b) Segment A (c) Segment T (d) Segment T

unregistered registered unregistered registered

Figure 3.10: Visualization of registration results for segments A and T with 16 and 15

feature constraints, respectively. For each image pair, supine is shown on the left and prone

on the right.

corresponding point d1 on the prone flattened centerline is found at the same index.

c1 can then be found as the point on the prone skeleton closest in R
3 to d1.

The endoluminal correlation work is focused on situations where the user is

looking at something on the colon wall and wants to see the corresponding location

in the other scan. Using the correspondence along the skeletons, it is possible to cre-

ate a correlated automatic navigation, though running two fly-throughs side-by-side

was found to be distracting and more of a hindrance than help. Orienting rotation

around the skeleton for two automatic navigation views is possible by adapting the

below described technique into a pre-processing step for each point along the dis-

cretized path.

It is assumed that the optical center of the camera is at the skeleton as in a typical

VC navigation. Suppose o is the optical center of the camera for supine and c is the

point corresponding to o on the skeleton of prone. Furthermore, the z-axis of the

camera for supine intersects the surface at the point p0, and the y-axis intersects the

supine at p1, then let q0 and q1 be the corresponding points on the prone. Then, it

41



(a) Supine view 1 (b) Prone view 1

(c) Supine view 2 (d) Prone view 2

Figure 3.11: Consistent endoluminal views for supine and prone colons.

is possible compute the frame of the camera on prone as follows:

e3 =
q0−c
|q0−c| ,

e1 =
(q1−c)×e3

|(q1−c)×e3| ,
e2 = e3× e1,

and then the camera frame is given by {c;e1,e2,e3}. These camera coordinates

and frame are used by a GPU accelerated ray caster to render the final endoluminal

images, allowing the user to jump from a position on the supine to the same position

on the prone. Figure 3.11 demonstrates the consistent volume rendering results

using this camera frame matching method.

3.5.3 Visualization of Quasi-Conformality

The elastic deformation between supine and prone is measured by the Beltrami

coefficients in Equation 3.1 through the resulting registration. In general, this infor-

mation would likely not be of interest to a radiologist reading a VC study. However,
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(a) Circles (b) Zoom in (c) Ellipses (d) Zoom in (e) Stretching (f) Angle θ

on supine of (a) on prone of (c) K on prone on prone

Figure 3.12: Visualization of quasi-conformality. The (a) circles on the source (supine) are

mapped to (c) ellipses on the target (prone) by the registration map. The narrower ellipses

correspond to the region with large deformation (in red) in the local (e) stretching and (f)

angle distortions.

visualizing the amount of distortion in this way may be useful to a doctor seeking

to better understand how the colon deforms in certain regions.

The quasi-conformal mapping deforms circles to ellipses. Figure 3.12 illus-

trates that the deformation from supine to prone is quasi-conformal. A general

fundamental domain is chosen for the supine segment. Its flat coordinates are used

as the texture coordinates and the circle-packing texture mapping shown in (a) is

computed, where the circularity is preserved. After registration to the flattened map

of the prone segment, the supine planar image is changed and the circles are accord-

ingly deformed to ellipses, shown in (c). Using the one-to-one and onto mapping

between supine and prone, the Beltrami coefficients can be efficiently computed on

the triangular mesh surface. The quasi-conformality of the mapping is evaluated

by the local stretching and angle distortion. Their color encoded texture images are

shown in (e) and (f), respectively. The maximal local stretching is 11, and therefore

mathematically called 11-Quasi-Conformal Mapping.

Based on the diffeomorphism constructed between supine and prone, the de-

formation process can be simulated by a linearly interpolated morphing sequence.

Then, the texture coordinates are transferred to each intermediate mesh surface con-

sistently. Through the texture correspondence, it is possible to visually gain a better

understanding of how the deformation behaves from supine to prone and vice versa.

After registration, the supine and prone have the same mesh connectivity, but dif-
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supine sp1 sp2 sp3 sp4 prone

(a) Stretching K of deformation

supine sp1 sp2 sp3 sp4 prone

(b) Angle distortion θ of deformation

supine sp1 sp2 sp3 sp4 prone

(c) Checker-board texture mapping

supine sp1 sp2 sp3 sp4 prone

(d) Circle-packing texture mapping

Figure 3.13: Visualization of the Beltrami coefficients. The views sp1,sp2,sp3,sp4 are

generated by linear interpolation of the registration. In (a) and (b), red indicates the largest

stretching/angle distortion and blue indicates the least. The quasi-conformality of the de-

formation is visualized by sequences (c) and (d).
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ferent geometry. As shown in Figure 3.13, the morphing views sp1,sp2,sp3,sp4

between supine and prone are generated by the linear interpolation of geometry at

each vertex. Directly from the stretching-colored views (a), one can easily compre-

hend where the main deformation happens. The global surface distortion is mainly

affected by the local stretching deformation, valued by the ratio between the long

axis and short axis of the ellipse locally. The local angle distortion, however, is

intrinsic to the material properties of the organ muscle and tissue. Compared with

the stretching, the angle distribution is more uniform through the whole deforma-

tion, as shown in (b). Here, red denotes the largest stretching (angle distortion),

blue the lowest stretching, and yellow and green in between. The consistent texture

mapping of checker-board (c) and circle-packing (d) textures also demonstrates the

quasi-conformality of the deformation.
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Chapter 4

Contextual Maps of Colon Surfaces

This chapter presents a method of creating a 2D parameterization (or map) of

a colon surface such that the entire surface can be viewed at once, there are no

overlaps, and the global shape of the patient’s specific colon is preserved [96].

4.1 Motivation

In a VC system and other virtual endoscopic systems, it is typical to use a 3D

mesh model of the organ’s surface as a map. This map can be used to indicate the

current view position and present other information such as the location of user de-

fined bookmarks or CAD results. This is important in the colon since the surface

often looks similar at different regions, and therefore it can be difficult to identify

one’s location by simply observing the endoluminal view. However, using a 3D

mesh model for this purpose leads to its own problem, where sections can occlude

each other when they exist in the same region on the viewing plane and at differ-

ent depths along the view direction (see Figures 4.2(a) and 4.3). Such problems

necessitate a rotation of the 3D structure, distracting the user from their main task.

A solution to this problem would be to find a mapping of the colon’s surface to a

plane in such a way that occlusions do not exist. Such a mapping, however, should

preserve the global shape of the colon and therefore make it immediately recog-

nizable to the user. In essence, it is desirable to present a view which is similar to

the diagrammatic view utilized clinically for labeling regions (see Figure 4.1), but

which is tailored to a specific colon.

A flattened representation of a colon can be useful for providing an overview of

the entire structure in a single 2D view. This can allow for a virtual dissection of the

surface, permitting the user to view the entire colon at once, and can also allow for

a mapping with no occlusions. However, common methods of creating such views

will straighten the object, such that it is difficult to locate where positions would

correspond to by simply looking at the flattened representation. This is evident, for
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Figure 4.1: Common diagram view of the colon used in clinical practice.

example, in the case of flattening a colon to a long linear strip. Though the 3D

colon structure is often classified into separate sections based on the major flexures

it contains, this information is lost in the flattened representation. While labels

could be introduced to identify each of the flexures, such a technique would still

not retain the simplicity of viewing a recognizable colon shape.

There has been varied work on flattening the colon and other tubular structures

from the medical domain to planar representations. It has been proposed to virtu-

ally unfold the surface by rendering rays cylindrically around the centerline [7]. A

similar technique that also preserves some z-depth information along the flattened

mesh has been proposed [78]. Conformal mapping of the colon surface to the plane

has also been utilized for triangular mesh models [37], and conformal mapping with

volume rendering for image generation has been presented [47]. Flattening vessels

to the plane is also a subject of interest, and similar techniques have been applied

to flatten vessels in an angle preserving manner [169]. Further flattening and ex-

ploding of vessels into diagrams has also been shown to improve users’ abilities to

detect areas of interest [11]. However, all of these methods will greatly distort the

global shape of the object and cannot be considered ideal for a contextual map of

the colon.

The skeleton (centerline in the case of the colon) is a good descriptor of shape

and has great importance in many applications. Because of its utility, there has been

much research in methods of accurately extracting the skeleton of an object. Skele-

ton extraction from volumetric medical data by connecting centerlines based on a

medial voxel path has been presented [168]. A method has been proposed using

a distance from boundary field with penalty weights to obtain general skeletons of

tree-like structures [10]. Obtaining a skeleton directly from a mesh by contracting

the surface, without any need for a volumetric representation, has been suggested
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[63]. Both surface and curve skeletons from genus 0 structures have been extracted

through the use of advection to move mass from the object’s surface to its skele-

ton [119]. The use of least squares optimization has been suggested for extracting

curve skeletons in an efficient manner which is insensitive to noise [148]. Curve

skeletons can also be approximated for data from incomplete point clouds based on

a generalized rotational symmetry axis for a set of points [135].

There are many uses for skeleton curves in the fields of computer graphics and

visualization, and their 1D representation of 3D objects is useful for compact shape

descriptions, navigation, animation, and analysis [19]. Skeleton curves can be used

to drive shape deformations [156]. They have also been used in describing shape to

allow for the creation of shape-based transfer functions [115]. They are commonly

used for navigation in endoscopic visualizations, such as virtual colonoscopy [146],

and accurate curves are important for such kinds of navigation [142]. Due to the

importance of the skeleton curve and its ability to well represent the shape of an

object, it is reasonable to use the centerline as the basis for creating a context pre-

serving map of the colon.

This chapter presents a method of creating flattened maps of the colon surface

which preserve the geometric context of the overall colon structure [96]. The gen-

eral idea is illustrated in Figure 4.2. The centerline of the original 3D colon model

is first extracted. This centerline is then projected into 2D and molded such that

it preserves the general shape it had in 3D, but without intersections. Finally, this

molded centerline is used to create a boundary placement in 2D for the final map-

ping and the colon surface is mapped to this 2D boundary. Although this has been

developed with a focus on the colon, it is generalizable to other tubular structures.

4.2 Skeleton Layout

The creation of a context preserving map is based upon manipulating the skele-

ton of the structure, which can be found using any of the standard methods. Given

the 3D skeleton, it is first projected to an optimal 2D plane. This projection is then

corrected for length, untangled to remove intersections, and spaced properly to pre-

vent self-intersections of the structure’s surface during the later mapping step. All

operations are performed on a discretized version of the skeleton with an initial

equal 1mm spacing between points.

4.2.1 Orthogonal Projection

The original 3D skeleton of the structure is first projected to a plane, such that

all z values become 0. Since this projection is to be used as the basis for a map, per-
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(a) (b) (c)

Figure 4.2: Context preserving map of a colon. (a) The original colon mesh from a standard

view point. (b) The projected 2D skeleton of the colon after untangling and spacing. (c)

The context preserving flattened map of the colon surface based on the 2D skeleton in (b).

spective distortion is unnecessary and even detrimental, and thus orthogonal projec-

tion is used. The projection is performed using the standard orthogonal projection

matrix:
[

x′

y′

]

=

[

ux uy uz

vx vy vz

]





x

y

z



 , (4.1)

where u and v are the right and up vectors of the projection plane.

The projection plane is chosen to be at the orientation most commonly expected

for the domain experts who will be viewing the map. In the case of the human

colon, the projection plane would be expected to be parallel to and above the body

of a patient lying in a supine position. Assuming that a patient in 3D space is lying

oriented with their head towards the negative z-axis and their body facing up in

the positive y-axis, the projection plane will have u = (1, 0, 0) and v = (0, 0, -1).

The position and orientation information for the CT slices can be obtained directly

from the DICOM header information, allowing for the view plane to be determined

automatically.

The 2D projected skeleton of a colon is shown in Figure 4.4(a). Although the

focus here is on the colon, for most types of objects, especially in medical appli-
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Figure 4.3: Colon surface from Figure 4.2(a) viewed from above. From this vantage point,

it is easy to see how two long sections of the colon occlude each other when viewed from

the front or back.

cations, a canonical view is known which provides the best view and is familiar to

the user. If such a view is not known a priori, a plane which minimizes structural

overlap and skeletal intersections can be used.

4.2.2 Lengthening

When performing the orthogonal projection, the lengths of portions of the skele-

ton can be substantially diminished if the segment direction is aligned with the view

direction of the projection plane. The closer to parallel the segment direction and

view direction are, the greater the loss of length. To recover this length in the 2D

skeleton, a lengthening procedure is applied that bends a straight skeleton with even

spacing into the shape of the projected skeleton.

For every point along the projected skeleton (except endpoints), its two neigh-

boring skeleton points are used to create two vectors v1 and v2, and the angle be-

tween them is calculated in the standard way based on the law of cosines:

θ = cos−1 v1 · v2

|v1||v2|
. (4.2)

All of the points in the skeleton are then set in a straight line, with equal spacing

between them equivalent to the original spacing of the 3D discretized skeleton.

Starting at the beginning, the corresponding angle θ is used to rotate all of the

following points p = (x,y) around the current point p0 = (x0,y0) as follows:

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

][

x− x0

y− y0

]

+

[

x0

y0

]

. (4.3)
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(d)

(a) (b) (c) (e)

Figure 4.4: Skeleton of the colon shown in Figure 4.2. When intersections along the

skeleton are present, alternating regions between intersections are colored black and red.

(a) Projected 2D skeleton. (b) Lengthened projected 2D skeleton. (c) Untangled skeleton.

(d) Close-up of an intersection region from (b). (e) Close-up of the same region from (c).

Note that though from a distance the skeleton in (c) still appears to have intersections, the

view in (e) shows that they are in actuality just locations where the skeleton sections are

very close.

If the original rotation was clockwise instead of counterclockwise in relation

to the normal of the projection plane, then the transpose of the rotation matrix is

used accordingly. This is performed for all points along the skeleton until the end

is reached. After this process, the length of the skeleton from its original 3D shape

is preserved, while the geometric structure of the projected 2D skeleton is also

preserved. The lengthened 2D skeleton of a colon is shown in Figure 4.4(b).

4.2.3 Untangling

Given the lengthened 2D projected skeleton, it is then necessary to untangle

it so that no intersections are present. This process, however, should maintain the

general shape of the structure (compare Figures 4.4(b)-(c)). This is done by looking

for three types of intersections: loops, crossings, and abutments. An example of

each type of intersection and the corresponding result of untangling is shown in

Figure 4.5. The three types of intersections are as follows:

Abutment: An abutment (see Figure 4.5(a)) occurs when a center point among
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(a) Abutment

(b) Loop

(c) Crossing

Figure 4.5: Types of intersections and their untangling results.

three consecutive discrete skeleton points lies on the opposite side of another

line segment of the skeleton than the other two points. This causes both line

segments formed by the three points to intersect the skeleton at a single line

segment, and thus contains two points of intersection.

Loop: A loop (see Figure 4.5(b)) occurs when a skeleton comes around and crosses

over itself without any other intersections within the formed loop. This cre-

ates one intersection point.

Crossing: A crossing (see Figure 4.5(c)) occurs when two sections of a skeleton

intersect each other without any loops or abutments between them. This con-

tains two intersection points.

To remove these intersections, all intersections of the skeleton are first found.

Each intersection is actually located twice within the list, once for each time it is en-

countered when tracing the path. The list of intersections is then searched to locate

the three different types listed above. Given that an intersection is made of two in-

tersecting line segments in the discrete case, each intersection is represented by four
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points, the first two points representing the endpoints of the first line segment and

the second two points representing the endpoints of the second line segment along

the skeleton. The points themselves are ordered as their order along the skeleton.

Each of the three intersections can be identified as follows:

Abutment: An abutment is located by finding two consecutive intersections for the

same line segment (intersecting two separate line segments).

Loop: A loop is located as two consecutive intersections where the pair of line

segments for the two intersections is the same.

Crossing: A crossing is located as two consecutive intersections that do not meet

either of the above two conditions.

After searching the list of intersections, the first intersection of the highest pri-

ority that is found is corrected. The intersections in order from high to low priority

are abutment, loop, and crossing. Each type of intersection is corrected as follows:

Abutment: An abutment is removed by simply setting the offending point to the

average of its two neighbor points.

Loop: A loop is removed by first creating a line segment from the loop intersection

point to the median point of the loop. All points within the loop are then

reflected through this line segment in order to untangle it.

Crossing: A crossing is removed similarly to a loop. A line segment spanning

the two intersection points is found. All points within the crossing, on both

segments of the skeleton, are then reflected through this line segment in order

to untangle it.

Since performing one correction can cause new intersections to arise, the skele-

ton is searched again after every correction procedure to find all intersections. This

is repeated until no intersections are found along the skeleton. After untangling, the

skeleton is iteratively smoothed to remove small sharp features (see Figure 4.6(a)).

4.2.4 Spacing

After the untangling procedure, several segments can lie very close to each other

due to the orientation of the projection plane. These close areas must be spaced out

so that there is room for the colon surface boundary when flattened. The radius of

the structure along the skeleton is recorded, and the 2D skeleton points are trans-

lated perpendicular to their direction such that the radius segment from every point
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(a) (b)

Figure 4.6: Refined 2D skeleton of the colon shown in Figure 4.2. (a) The smoothed

version of the untangled 2D skeleton. (b) The spaced and smoothed version of the 2D

skeleton.

does not intersect other sections of the skeleton. For each offset of the skeleton

points, if an intersection is created, the offset is undone. In this way, no new in-

tersections will occur. Neighboring skeleton points are also moved slightly to help

avoid sharp bends. At the end, iterative smoothing is applied to the entire skeleton

to yield a clean path. An example of the result of this process is shown in Figure

4.6(b).

4.3 Boundary Placement

Given the untangled skeleton path of the structure, it is necessary to place the

boundary for the flattened surface in relation to it. In addition to preserving the

overall shape of the colon, it is also desirable to represent the general size of the

colon along the skeleton. This is accomplished by calculating the approximate

radius along the skeleton and using it to control the layout of the boundary. This

has the effect of condensing the surface perpendicular to the skeleton, but the overall

relation of size between regions can still be observed.
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4.3.1 Slicing

In order to map a tubular structure to a plane, it is necessary for the structure to

have a single boundary. The structure is discretely represented by a closed surface

triangular mesh (i.e., without boundaries), which is initially topologically equiva-

lent to the sphere in R
3 (it has an Euler characteristic number χ = 2). To make

the surface instead topologically equivalent to a plane in R
3, it must be sliced open

from one end to the other, creating a single boundary. Although this boundary

could technically be located anywhere, it should match the skeleton on the original

structure.

To locate the path along which the mesh is to be sliced open, Dijkstra’s shortest

path algorithm is used. This is advantageous for structures with features such as

bumps and valleys, through which the cutting line should not pass, as Dijkstra’s

algorithm naturally tends to avoid these areas and instead locate a path along more

uniform regions. In the case of the colon, this means that the slicing path will gen-

erally not go through features such as the haustral folds. For Dijkstra’s algorithm,

the starting point is taken to be the vertex on the surface mesh nearest to one end of

the 3D skeleton. The target point can then be taken as usual as the surface vertex

with the greatest distance from the source. Alternatively, the surface vertex located

nearest to the other end of the skeleton can be taken as the target.

Given a path along the surface to use for slicing the surface open, two small

holes are punched at each end of the path by removing one face for each. This

yields a structure that is now topologically equivalent to a cylinder (χ = 0). Slicing

along the cutting path is now equivalent to slicing a cylinder from one boundary to

another, yielding a surface with a single boundary (χ = 1) which is topologically

equivalent to the plane. For every vertex along the slicing path, a new vertex is

duplicated with the same surface position. The sliced surface with the boundary in

blue is shown in Figure 4.7.

4.3.2 Skeletal Correspondence

As the boundary vertices are mapped to a surface around the 2D skeleton, it

is necessary for each boundary vertex to have a correspondence to a position along

the skeleton. Two corresponding boundary vertices (i.e., an original vertex from the

unsliced mesh and a newly created vertex from the slicing at the same position) are

both associated with the same position along the skeleton. The four end vertices on

the boundary that result from punching holes at each end are treated as corner points

and are not associated with the skeleton, as they do not contribute to the mapped

shape. For all boundary vertices (other than corresponding pairs as mentioned), no

two boundary points can be associated with the same location along the skeleton.
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(a) Front view (b) Back view

Figure 4.7: Slicing path (in blue) on the 3D surface of the colon shown in Figure 4.2.

Since the twists and turns of the colon can often lead to situations where the

closest skeletal point for a boundary vertex is actually in a separate section, the lo-

cation of correspondences between the skeleton and boundary is created based on

finding the nearest boundary point for each skeleton point, determining boundary

to skeleton correspondences from those, and then interpolating positions for bound-

ary points which were not indicated by a skeleton point. The correspondences are

determined for the set of original surface vertices on the slicing path, and then du-

plicated to the newly created vertices. The first and last vertices along the slicing

path are mapped to the first and last position along the skeleton. The algorithm is

as follows:

for all skeleton points do

Find nearest boundary vertex

end for

for all vertices on slicing path do

Find all skeleton points indicated as correspondences

Take center of those points as true correspondence

end for

for all vertices on slicing path without correspondence do

Interpolate neighbors

end for

The correspondences (excluding the two end points) are then smoothed through

several iterations by setting the current boundary’s correspondence position to the
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Figure 4.8: Correspondence between boundary vertex points and skeleton points. The

skeleton path is shown in green, the slicing path in red, and the connections between a

boundary point and the skeleton in blue.

average of its two neighbors. The results of this correspondence are shown in Figure

4.8.

4.3.3 Radius Along Skeleton

The radius for each point along the skeleton is determined based on the corre-

spondence with the boundary vertices explained above. The algorithm is as follows:

for all skeleton points s do

for all boundary vertices v do

if v corresponds to segment containing s then

Accumulate weighted distance

Accumulate weight

end if

end for

end for

for all skeleton points do

if weight is not zero then

divide distance by weight

end if

end for

for all skeleton points without radius do

Interpolate neighbors

end for
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The radii of the skeleton points are then iteratively smoothed (again excluding

the endpoints) by averaging each skeleton point’s radius with its two neighbors.

4.3.4 Boundary Position

The position of the boundary is determined for every boundary vertex. For every

vertex on the slice path (original vertices and newly created vertices), the boundary

location on the 2D map for a vertex vi is calculated based on the discrete 2D skeleton

points preceding and following the vertex’s location on the skeleton. The positions

of these before and after points are p1 = (p1x, p1y) and p2 = (p2x, p2y), and the

radii for of the two points are r1 and r2, respectively. The normalized distance from

p1 is represented by α . The new mapped position p for each vertex on the slice path

is calculated as follows:

n = p1− p2,

d =

[

dx

dy

]

=

[

ny

−nx

]

,

p0 = p1∗ (1−α)+ p2∗α,

r = r1∗ (1−α)+ r2∗α,

p =

{

p0+d ∗ r, ∀vi ∈M0

p0−d ∗ r, ∀vi /∈M0
,

(4.4)

where M0 is the original unsliced mesh. The boundary points not on the slice path

(from when the holes were punched) are set to equal intervals between the nearest

sliced vertices. A smoothing operation is applied to remove intersections that might

occur, while still preserving the overall general geometric structure. An example of

the boundary for the mapping is shown in Figure 4.9.

4.4 Surface Mapping

Given the projected and spaced 2D skeleton of the structure and the boundary

placement generated as the target domain S2, the original 3D sliced colon surface

S1 is mapped to the plane. Such mapping preserves the original projected curved

information.

Discrete Ricci flow is used to map the open surface S1 to a rectangle D1 confor-

mally, φ1 : S1→D1. Similarly, the target domain S2 is mapped to another rectangle

D2 conformally, φ2 : S2 → D2. Using harmonic mapping, a one-to-one and onto

correspondence between D1 and D2, h : D1→D2 is computed. Finally, the 2D cor-

respondence is lifted to the 3D surfaces, f : S1→ S2, and the original 3D surface is

mapped to the designed target domain. The pipeline is shown in Equation 4.5.
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Figure 4.9: Placement of the boundary in 2D for the colon in Figure 4.2. The narrow

portion is caused by a narrowing in the original mesh (see inset).

The final result can then be rendered either using mesh rendering with vertex

normal information stored from the original structure, or using volume rendering

through the original volumetric dataset, which is the preferred method.

S1
f−−−→ S2

φ1





y





y

φ2

D1
h−−−→ D2

(4.5)

4.4.1 Rectangular Mapping

To map the 3D surface to the 2D plane, discrete Ricci flow is used. It behaves

like a heat diffusion, deforming one Riemannian metric to another Riemannian met-

ric conformally, as shown in Equation 4.6:

dg

dt
=−Kdt (4.6)

where g is the Riemannian metric and K is the target curvature.
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Figure 4.10: Colon surface mapped to a rectangle. The four sections from top to bottom

combine to form a single strip from left to right of the entire colon.

(a)

(b)

Figure 4.11: Example conformal modules (the ratios between height and width for the

conformal mappings) for (a) the original surface (0.045796) and (b) the target domain

(0.015378).

For the sliced colon surface, the boundary sides between each of the two corners

are mapped to a straight segment, and the four corners are mapped to be the right

corners of a rectangle. At the same time, the interior surface is mapped conformally

to the plane. Therefore, for discrete Ricci flow, the target curvature of the four

corners is set to be π
2

and the curvatures of the other boundary vertices and interior

vertices is set to be 0. The result of this is a rectangular mapping, as shown in Figure

4.10. Similarly, for the generated target domain, the corresponding corner vertices

and boundary sides are computed, they are set to the same target curvature, and its

conformal rectangular mapping is obtained. As a mesh is needed for this, the 2D

boundary samples are used as constraints and a constrained Delaunay triangulation

is performed to generate the triangular target domain [126].
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4.4.2 Deformation

The one-to-one and onto correspondence between two rectangles is computed

by minimizing the harmonic energy. The resulting harmonic mapping obtains the

smoothest deformation between two rectangles. In general, the original 3D colon

surface S1 and the 2D target domain S2 are not conformally equivalent. As shown

in Figure 4.11, their conformal modules (the ratios between height and width for

the conformal mappings D1 and D2) are quite different.

From the computation of the target boundary placement, the correspondence of

boundary vertices is known. The positions of the target boundary vertices are then

used as the constraint condition in the harmonic mapping, as shown in the following

equations:

harmonic energy E = ∑
edge(i, j)∈D2

‖h(vi)−h(v j)‖2 (4.7)

harmonic mapping 4h = 0, h|∂D2
= φ1(S1)|∂D1

(4.8)

where vi is the ith vertex and (i, j) is the edge of < vi,v j > in the discrete triangular

mesh D2. The detailed computation can be found elsewhere [162].

The rectangle D2 of the target curved domain S2 is mapped to the rectangle

D1 of the 3D sliced colon surface S1 to get D′2. Now D′2 and D1 are well aligned.

Then, the correspondence h : D1→ D2 is obtained. Therefore, the correspondence

between 3D surfaces can be recovered by f = φ−1
2 h ◦φ1 : S1→ S2. The 3D colon

surface is now mapped to the target boundary domain, as shown in Figure 4.2(c).

4.4.3 Rendering

The flattened map can then be volume rendered similarly to how other flattened

surfaces have been rendered [162]. Such volume rendered images are preferred over

a mesh rendering. Given the flattened (u,v) coordinates for each vertex, these can

be used to place the map in the 2D plane. Each vertex’s original (x,y,z) coordinates

are then used to reference the original location within the volume from which the

surface was extracted.

For each vertex, a camera position is also needed; this position is taken to be the

nearest skeleton point in relation to the flattened mesh. Since the boundary points

are already associated with a skeleton point, the nearest boundary vertex is found

for each inner vertex. The boundary vertex’s corresponding skeleton point is then

taken to be the camera position for that vertex. Using this information, volumetric

ray casting is performed to generate the final images (see Figure 4.2(c)).
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(d)

(a) (b) (c) (e)

Figure 4.12: Results for a colon model. (a) The original colon surface. (b) The shaped

skeleton. (c) The flattened and rendered colon map. (d) Zoomed region of the rectum with

a small 4mm polyp circled in yellow. (e) Close-up of the polyp.

4.5 Results

The pipeline was implemented in C++ in a Windows environment. Matlab was

used during the flattening for solving the linear system. The volumetric render-

ing was performed on the GPU using OpenGL and Cg. The entire pipeline takes

approximately 2-3 minutes to run.

The colon data used in this work generally come from volumes with an ap-

proximate size of 512× 512× 400 voxels. Preprocessing of the volumes includes

electronic cleansing, segmentation, triangular mesh extraction, and skeleton extrac-

tion. The meshes obtained are often very large (typically over 1.5 million faces) and

are simplified to approximately 5% of their original size. The skeleton is discretized

at a spacing of 1mm for use in this work. This method has been used successfully

to map colon surfaces, which are notoriously twisty, to a plane in such a way that

preserves the overall context.

In observing the results, the major bends of the colon are preserved, and an

indication of the colon’s radius along the skeleton is also present. In addition to the

colon shown in Figure 4.2, a second mapping example is shown in Figure 4.12 with

the original mesh, 2D shaped skeleton, and rendered result. Since volume rendering

is used to create the final image, even small polyps are easily observable. The colon

shown in Figure 4.12 has a small 4mm polyp near the rectum. A zoomed in version

of this region, closer to the viewing level one would use if scanning the surface for

polyps, is shown in Figure 4.12(d), and the polyp can be readily observed as a small

oval bump on the surface. A further close-up of the polyp on the flat colon is shown
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Figure 4.13: Straight map adjusted for radius of the colon in Figure 4.2. The top and

bottom sections combine to form a single strip from left to right.

in Figure 4.12(e).

Compared with straightened mappings, these context preserving maps allow

for a greater understanding of the general geometry of the structure. The colon

in Figure 4.2 is mapped to a straight rectangle in Figure 4.10 and is also mapped a

straightened representation accounting for radius in Figure 4.13. Compared to both,

the general geometry of the colon is well preserved. Due to the several smoothing

operations in creating the non-intersecting boundary, some of the radius information

is lost compared to Figure 4.13, but the general thickness is preserved and gives a

sense of the size.

In addition to better preserving the geometric structure, these maps can also

make more intuitive use of a squarish region. This is readily observable when com-

paring the context preserving map from Figure 4.2(c) to the straight maps in Figures

4.10 and 4.13. The straightened versions require much greater contiguous space

along a single axis if they are to be presented without breaks, while the context

preserving map makes better use of a squarish block of space.

The selection of a good projection plane is important to the final result, and

choosing views far away from the optimal view can lead to unusual results, as

shown in Figure 4.14. For the colon, using the diagram view as the basis of the

orthogonal projection supplies not only a typical view expected by the user, but

also a view which will in general minimize the number of detrimental overlaps.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Examples of failures for bad viewpoints for the colon in Figure 4.2, viewed

from (a, c, e) the top and (b, d, f) the side. Shown are (a, b) the original mesh, (c, d), the

projected skeleton, and (e, f) the final untangled and spaced skeleton.
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Chapter 5

Contextual Maps of Treelike Structures

Drawing on the work of the previous chapter, this chapter presents a method

of creating context preserving parameterizations of treelike objects, such as the

bronchi and blood vessels [92]. Though similar to the work in creating 2D context

preserving maps of the colon, this technique addresses several new problems that

must be overcome, such as the placement order of the branches in the 2D map and

the ability to convey a sense of depth to the user. Due to this, this cannot be viewed

as a straightforward extension of the previous work and is, in essence, distinct in its

manner of method for achieving the final result.

5.1 Motivation

Visualization of treelike objects is a common task for inspection of structures,

such as blood vessels and airways. However, observing these objects, whether from

an internal or external viewpoint, can be challenging due to occlusions and thus

the need to rotate the view. It has been shown that visualizing a 3D object in 2D

reduces complexity and makes tasks more efficient and accurate, though it has also

been indicated that maintaining the sense of structure for the object is important

[11]. This has motivated us to develop a method to create planar visualizations of

such objects where there are no occlusions, but the overall geometric context of

the object is preserved. This allows the user to succinctly investigate all parts of

the object, while being able to easily identify the current region being investigated.

The resulting objective of this work is shown in Figure 5.1 using a bronchial tree.

Treelike objects are common occurrences in medicine, and there is often great

effort in extracting them due to their importance [80]. Some procedures look at

the interior of such tubular structures (e.g., virtual bronchoscopy), while others will

look at values mapped to the surface (e.g., simulations for vessel walls). For such

applications, there are two use cases where planar visualizations would be advan-

tageous. The first use case is as a guidance map, especially for virtual endoscopic
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(a) (b)

Figure 5.1: Planar visualization for bronchial tree. (a) The original mesh structure viewed

from the direction of the projection plane. (b) The planar representation showing two vi-

sualization techniques for map use: raised central path (giving an indication of the medial

axis) and depth cue border (giving an indication of the depth of the structure along the

z-axis).

procedures. By presenting the entire object to the user in a single view without

occlusions, but which still has the shape of the object, one’s location within the

object can be easily identified without fear of it being occluded, which would ne-

cessitate a rotation of the 3D map. The second use case is to utilize such a map for

direct inspection. Having a planar version of the object allows for the user to easily

observe the entire surface without missing any regions while still being able to un-

derstand one’s location. A depth-first search of such a flattened object would be an

appropriate guidance for inspection, and various views, such as volume rendering

the interior of the organ or viewing a color map on the surface, can be provided.

Due to the importance of skeleton curves in computer graphics and visualiza-

tion, there has been much work dedicated to methods of extracting these curves

from objects. For extracting skeletons from volumetric medical data, methods have

been proposed which connect centerlines based on a medial voxel axis [168] or

which use a distance from boundary field with penalty weights [10]. For obtaining

a skeleton directly from a mesh, methods have been presented based on surface con-
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traction [63], through the use of advection to move mass from the object’s surface

to its skeleton [119], and through the use of least squares optimization [148]. For

data from incomplete point clouds, curve skeletons can also be approximated based

on a generalized rotational symmetry axis for a set of points [135].

The skeleton curve of an object compactly and efficiently represents the struc-

ture’s general geometric shape, and such curves are employed in a wide variety

of applications, including for navigation, animation, and analysis [19], for driv-

ing shape deformations [156], and even in graph visualization for edge bundling to

yield cleaner views [27]. In the field of volume rendering, skeletons have been used

for the creation of shape-based transfer functions [115] and to segment volumes

into regions to which different transfer functions can be applied [155]. Virtual en-

doscopy applications often use paths based on extracted skeletons to automatically

guide the user through a navigation of the object [8]. It is important that such paths

are accurate and reliable to ensure that the entirety of the organ’s internal surface

is presented to the user [40]. These paths are especially useful in virtual bron-

choscopy systems due to the large number of bifurcations through the airway tree,

and extracting and utilizing these skeletons for path planning is an important task

[64].

For visualizing graph data, there has been much work on various ways of per-

forming both planar embeddings and 3D visualizations [43], and there is interest in

methods to improve the layouts of planar graphs while maintaining planarity [128].

Specific to treelike structures, there has been interest in planar visualization of trees

of hierarchical data [97] and contour trees [41]. Radial embedding of graphs is one

popular area of graph drawing [5], and this work adapts a method of radial embed-

ding for phylogenetic trees which takes into account a fixed edge length [6]. Unlike

other works which are content only to find a pleasing embedding, this work seeks

an embedding which is not only planar and with fixed edge length, but which also

depicts as accurately as possible the actual shape of the object.

Surface parameterization is a popular topic for research in computer graphics

[28, 127]. Conformal geometry for mapping triangular meshes, where local angles

are preserved, has been used in the creation of texture maps [130]. Harmonic maps

are one method to map between two topological disks, and such maps are conformal

under certain circumstances [60]. Discrete Ricci flow is a recent method of com-

puting conformal maps of structures [59], and it has been used to obtain optimal

surface parameterizations using inverse curvature maps [158]. However, Ricci flow

requires a target Gaussian curvature for each vertex and is thus difficult to control

when utilizing a fixed boundary.

Applying mapping techniques for flattening objects to the plane is common in

computer graphics applications, but somewhat limited in medical applications of

hollow structures. Such unfolding tends to be limited to simple organs such as the

67



colon [7, 47] and bladder [76]. Similar techniques have been applied in a limited

sense to flatten vessels in an angle preserving manner, though a straightening is

performed, thus losing the geometric context [169]. In this work, complex objects

are flattened to the plane in a way that preserves the overall global shape of the

object. Since there is a predefined boundary to which the surface must be mapped,

harmonic mapping is used for this task.

In work on coronary artery visualization, users have indicated that accurate

anatomical information is important [11]. While that work created tree diagrams

to protray this anatomical information, a singular connected surface representing

the true shape of the arteries was not provided. In other work which dealt with the

idea of straightening objects for comparison, and thus losing the geometric context,

it was noted that such views were foreign to physicians, who were accustomed to

the original shapes of the objects [3].

Previous work specifically on context preserving flattening of objects has been

limited to simple tubular structures without branches [96]. The method used therein

is not robust to multi-branched objects. Based on first embedding the skeleton and

then removing intersections through a series of reflections which distort the shape,

that method can even lead to undesirable results. Presented here is a new method

to create the skeleton layout in 2D that first finds a guaranteed planar embedding of

the skeleton tree structure, and then adjusts this embedding to recover the original

shape. With the shape recovery last, it cannot become distorted due to intersection

removal. Rather than using a two-step flattening procedure with Ricci flow and har-

monic mapping, a single harmonic mapping step is used which operates on the full

high resolution mesh dataset and not on a reduced version. The mapping procedure

also takes into account where the mesh is being distorted too much by spreading

outside the boundary and adjust the boundary to account for this. This work also

explores problems specific to more complicated multi-branched structures, such as

the order of placement for branches in the embedding and the proper slicing of the

boundary for unfolding, and discusses providing depth cues for the user to assist in

understanding the more complicated flattened structures.

This chapter presents a method for creating planar maps of treelike objects with-

out occlusions which maintain the general geometric context of the original struc-

ture. These maps are created by first finding a planar layout, without intersections,

of the object’s skeleton, and then using this to guide the flattening of the object’s

surface. In some sense, the problem of finding a 2D layout of an object’s skele-

ton with no intersections can be considered as a planar graph embedding problem.

Since this work is on treelike objects, and thus there are no cycles in the skeleton,

it is guaranteed that a planar embedding exists. Introduced is a modified radial em-

bedding algorithm which takes into account the required order in which branches

are to be embedded to allow for the final shape reconstruction to be achieved. Using
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this planar embedding, an optimization procedure is developed that reconstructs the

original shape as much as possible without creating any intersections.

Given a target embedded skeleton to use as the basis for flattening the object’s

surface, it is necessary to create a boundary along the object by slicing it open in

a manner which is consistent with the order of the embedded branches. Given this

surface, which is now topologically equivalent to the plane, harmonic mapping is

used to flatten it to the plane. To account for regions where the surface is stretched

across gaps near bifurcations, a boundary adjustment procedure is introduced to

better fit the data. Using this flattened surface, various modes of visualization can be

provided using it as a map for guidance or for direct inspection, and also presented

is a grayscale border which gives depth cues to the user, allowing for one to identify

which areas are further from the background.

The following new ideas are introduced in this work:

• A method to flatten a treelike structure to the plane such that the general shape

of the structure is preserved.

• An algorithm to create a planar embedding of tree graphs which creates an

embedding with ordered importance for branches.

• A parameterization method with a movable boundary.

• Depth cue borders to the parameterization to aid in rapid recognition of object

depth.

5.2 Algorithm

The procedure for creating the planar map of a treelike object is based upon us-

ing the object’s skeleton to preserve the shape. Using a 2D version of this skeleton

and the estimated radius along the skeleton, a radial planar embedding is produced

which guarantees no intersections of the 2D skeleton. This embedded skeleton is

then deformed such that the angular curvature resembles that of the original pro-

jected skeleton. Using this shape restored skeleton, the object surface is sliced open

such that the boundaries are consistent for the planar mapping and the flattening is

then performed using harmonic mapping.

The skeleton used for this is arranged in a tree form where each node has exactly

one parent (except for the root) and any number of children. Since branches along

the skeleton typically do not occur at exactly the same point, most nodes have no

more than two children. A node at the end of a branch, with no children, is a leaf

node, a node with more than one child, which therefore causes the split of one or

more branches, is termed a branch node, and all other nodes, with exactly one child,
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Figure 5.2: Surface mesh of cranial blood vessels.

are inner nodes. Leaf and branch nodes can be collectively referred to as the group

of significant nodes, and these nodes indicate the general structure of the skeleton.

A region of inner nodes between two significant nodes is referred to as a segment

of the skeleton.

The process of the algorithm is illustrated using the cranial blood vessels in

Figure 5.2. Throughout the description, the following terms are used to describe

the skeleton and its associated values. The skeleton S = (N,E) contains the set of

n ∈ N nodes and e ∈ E edges connecting the nodes. Unlike conventional graph

theory terminology, an edge en is defined as being the edge which goes from node n

to its parent, parent(n). Therefore, the size of E is one less than the size of N since

the root node root(S) has no parent and thus no edge. The estimated radius value

of a node n is represented by ρn.

5.2.1 Orthographic Projection

The original 3D skeleton of the structure is first projected to a plane. To min-

imize distortion, this projection is accomplished using the standard orthographic

projection matrix:




x′

y′
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
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z



 , (5.1)

where u, v, and w are the right, up, and normal vectors of the projection plane,

respectively. For each projected point (x′,y′,z′), (x′,y′) are used to create the uv

coordinates for the skeleton and z′ is retained for use later in indicating the depth of

the object along the view direction. The 2D projected skeleton is shown in Figure

5.3(a).
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Based on this 2D projection, an angle θ is calculated for each node which is

used in reconstructing the shape. For a node n, θn is computed as the angle between

en and eparent(n). If the 2D edge length of en is zero, then θn = π . If the 2D edge

length of eparent(n) is zero, then continue up the skeleton until a node p is reached

such that the 2D edge length of ep is nonzero. If at any node parent(n) = root(S),
then eparent(n) is given as the edge between root(S) and root(S)+(1,0). The angles

are stored as the counterclockwise rotation in the range of [0,2π).

5.2.2 Radial Layout

Once the 2D projection of the skeleton is obtained, the next step is to perform

a planar embedding of the skeleton. The primary goal of this embedding is that

there be no intersections of the skeleton, which would then become occlusions in

the final surface mapping. To achieve this goal of no intersections, a radial pla-

nar embedding is first found which guarantees that there are no intersections. This

planar embedding loses the shape information, but ensures that there are no inter-

sections of the skeleton with itself. Once this radial layout is achieve, the next step

reconstructs the shape based on the angles previously calculated.

When performing the radial layout, it is important that branches are placed in

the proper order for the final shape, since branches that are swapped cannot be

swapped back in the shape optimization step that comes later. For this, a placement

weight is calculated for the children of every node. This weight determines which

child subtree should be placed first. Since the radial layout is performed in a coun-

terclockwise direction, branches which should be placed left of their siblings must

be embedded first and are given a lower weight value. This weight is calculated as

the angle between the parent node’s edge and the weighted center of the projected

positions of nodes in the subtree (up to a maximum distance of the minimum of

the lengths of all subtrees of the parent node). The procedure for calculating these

weights is given in Algorithm 5.1.

The radial layout itself is based on previous work used in embedding phylo-

genetic trees, where specified edge lengths are known [6]. This is similar to the

situation here, where the distance between two skeleton nodes must be preserved,

and thus fixed edge lengths are required. The method is modified to account for the

order in which to place subtrees based on the desired location from the projected

skeleton using the calculated placement weights. The modified procedure for the

radial planar embedding using these weights is given in Algorithm 5.2. Note that

the edge lengths ε used in this step are the original 3D edge lengths, allowing for

the full length of the object to be portrayed. Otherwise, edges closely aligned with

the view direction of the projection plane would be greatly reduced. The radially

embedded skeleton is shown in Figure 5.3(b).
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Algorithm 5.1: Calculation of Placement Weights

Input: Skeleton S = (N,E) with node arrays ε (2D edge lengths) and x (projected 2D

coordinates)

Result: Placement weights αn for all n ∈ N|n 6= root(s)

begin

foreach n ∈ N do
CalculateChildWeights(n)

end

function CalculateChildWeights(Node n)

foreach c ∈ children(n) do
δc←SubtreeDistance(c)

d←min(δc|c ∈ children(n))
foreach c ∈ children(n) do

mc← WeightedCenter(c, d)

αc←Angle(mc, n) . Angle of mc w.r.t en

function SubtreeDistance(Node n)

foreach c ∈ children(n) do

dc← SubtreeDistance(c)

return max(dc|c ∈ children(n)) +εn

function WeightedCenter(Node n, Float maxDist)

Create queue q of pair< Node,Float >
Push pair< n,εn > into q

s← (0,0)
sw← 0

while q 6= /0 do

pair< cn,cd >← popped front node of q

if cd ≤ maxDist then

w← 1− (cd/maxDist)
s← s+w · xcn

sw← sw+w

foreach c ∈ children(cn) do
Push pair< c, cd + εc > into q

return s/sw

5.2.3 Shape Recovery

Given the radial layout of the skeleton, a 2D embedding is now achieved which

is guaranteed to have no intersections. However, the shape of the object has been

lost as each branch has been straightened. To restore the shape, each node is bent

around its parent, in a breadth-first manner, using the original θ angles calculated

based on the 2D projection. For this step, the radius values are also used to ensure
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Algorithm 5.2: Radial Layout Using Placement Weights

Input: Skeleton S = (N,E) with node arrays ε (3D edge lengths), θ (angles), α
(placement weights) and l (number of leaves in subtree)

Result: Embedded 2D coordinates xn for all n ∈ N

begin

xroot(S)← (0,0)

ωroot(S)← 2π

τroot(S)← 0

EmbedNode(root(S))

end

function EmbedNode(Node n)

if n 6= root(S) then
xn← xparent(n)+ εn(cos(τn +0.5ωn),sin(τn +0.5ωn))

η ← τn

forall the children(n) do

c← unembedded child with lowest αc

ωc← 2π(lc/lroot(S))

τc← η
η ← η +ωc

EmbedNode(c)

that there is space for the surface to be mapped. The radius values are increased

slightly for this step in order to leave space around where the final mapped surface

will be placed.

As each node n is visited, the node is rotated based on its current angle and

its target angle θn. When rotating a node, all of the nodes in its subtree are also

rotated accordingly. Given this rotated subtree, it is checked to see if there are any

intersections of the skeleton or intersections of circles centered at each node with

that node’s radius value. If any of these intersections are found, then the rotation

is undone along the subtree, the target rotation for n is slightly reduced, and if

it has a single child c, then θc is modified by the small amount of the reduction.

This process is continued until the maximum amount of possible individual node

bending in an iteration is below a specified threshold. A threshold of 0.01 has been

found to be sufficient.

When finding intersections of the radius circles, it is apparent that nearby nodes

always have intersections. Due to this, for each node, the set of nearby nodes is

calculated. For a node n, another node m is nearby if the walking distance along the

skeleton between them is less than or equal to π(ρn+ρm), except in the case of leaf

nodes. The scaling factor of π allows relatively nearby positions to become merged

in the final flattening the better preserve the shape. For leaf nodes, the distance must
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(a) (b) (c)

Figure 5.3: Embedding of the 2D projected skeleton of the cranial blood vessels in Figure

5.2 to the plane. (a) Original 2D projected skeleton. (b) Radial planar embedding layout of

the skeleton. (c) Shape restored embedded skeleton with estimated radii along the skeleton

indicated by purple circles to show the space for surface mapping.

be less than or equal to (ρn +ρm), or else the tip of the skeleton may come too near

to another section. The procedure for this shape recovery step is given in Algorithm

5.3. The result of this process is shown in Figure 5.3(c) with circles illustrating the

node radii.

5.2.4 Boundary Creation

In order to map the surface of the object to the plane, it is necessary to slice

the mesh surface open to create a boundary, which makes the surface topologically

equivalent to the plane. To accomplish this, for each significant node in the skeleton

(leaf nodes and branch nodes), a corresponding mesh vertex on the surface is found.

For leaf vertices, this is simply the nearest vertex. For branch vertices, the cross

product of its children is found as a direction vector, and the negation of it is taken

if it lies more in the direction of the normal of the projection plane. A ray from the

branch node with this direction is then defined, and the nearest vertex in the nearest

face which this ray intersects is taken as the corresponding vertex.

The surface must then be sliced open between these points, with a slice for every

segment of the skeleton. In order to allow the surface to be unfolded properly with-

out twisting of the boundaries (see Figure 5.4), the slicing must be accomplished

in a specific order. The slicing is performed top down, starting at the root. For

the current significant node, paths are sliced between its corresponding mesh vertex

and those of its children. To be in the correct order, the children are processed from

right to left using the angles in the embedded skeleton (that is, processing from the

child with the largest angle to that with the smallest). For the child being processed,
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Algorithm 5.3: Shape Recovery for Skeleton

Input: Skeleton S = (N,E) with α and node arrays θ (angles), ρ (radii), and x (2D

embedded coordinates)

Result: Updated 2D coordinates xn for all n ∈ N

begin

repeat

β ←BendNodes()

until β < 0.01

end

function BendNodes

β ← 0

Create queue q of < Node >
foreach c ∈ children(root(S)) do

Push < c > into q

while q 6= /0 do

n← popped front node of q

φ ← CurrentAngle(n) . Calculates current angle

γ ← α(θn−φ)
RotateSubtree(n, parent(n),γ)
if FindIntersections(n) then

RotateSubtree(n, parent(n),−γ)
θn← θn− γ
if |children(n)|= 1 then

θchild(n)← θchild(n)+ γ

if |γ |> β then β ← |γ |
foreach c ∈ children(n) do

Push < c > into q

return β

function RotateSubtree(Node n, Node p, Radians γ)
xn← Rotate(xn, xp, γ) . Rotates xn around xp by γ
foreach c ∈ children(n) do

RotateSubtree(c, p,γ)

function FindIntersections(Node n)

foreach e ∈ E | e 6= en do
if line segments e and en intersect then return true

foreach m ∈ N | m 6∈ nearby(n) do
if circles (xn,ρn) and (xm,ρm) intersect then return true

foreach c ∈ children(n) do
if FindIntersections(c) then return true

return false
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(a) (b)

Figure 5.4: Diagram showing the importance of slicing the mesh consistent with the skele-

ton position. (a) A bad slice, where boundary edges cross over each other. (b) A good slice

with consistent boundaries yielding a proper view.

(a) (b)

Figure 5.5: The use of boundary adjustment (boundary shown in dark blue). (a) Without

boundary adjustment, a large portion of the mesh is stretched outside the boundary. (b)

With boundary adjustment, the mesh is properly contained and fits better.

the shortest path along the mesh surface from its vertex to the parent vertex is found.

This path is then sliced along, creating new vertices in the mesh. The vertices on

the right side of the slice are the newly created ones, while the vertices on the left

remain as the old ones. This is important, so that when the shortest path is found for

the next child (which is left of the current child), it is be traced back to the original

vertex point, which is on the left of the slice boundary.

5.2.5 Surface Mapping

In mapping the surface of the object to the plane, the planar positions of all

boundary vertices in the mesh must be found. Every boundary vertex is first associ-

ated with the nearest skeleton node that corresponds to that segment of the skeleton.

Since the boundaries were created in a consistent manner, boundary vertices from

the original mesh can be placed at 90◦ counterclockwise from the skeleton node,

while the newly created vertices are placed at 90◦ clockwise. A smoothing oper-

76



ation removes overlaps when multiple boundary vertices are associated with the

same embedded skeleton node.

Given these initial planar boundary positions, there are often looped intersec-

tions along the boundary in narrow regions. To remove these loops, which also

improves the area for which a large amount of the mesh must be mapped to, local-

ized smoothing operations are performed within the loop and its nearby neighbors.

Since the smoothing is restricted only to the looped section and its close neighbors,

this does not affect the general shape of the flattened object.

Harmonic mapping is used to map the interior vertices to the plane based on

the fixed boundary. The edge weights that are used for this are the Mean Value

Coordinates which are guaranteed to be positive [29]. For a vertex vi, its edge

weight ki j with respect to vertex v j is given as follows:

ki j =
wi j

∑vk∈N(vi)wik

, wi j =
tan(

αi ja

2
)+ tan(

αi jb

2
)

‖vi− v j‖
(5.2)

where N(vi) is the set of all neighboring vertices to vi and αi ja and αi jb are the

two angles at vi formed by ei j. Note that the edge weights are not symmetric, and

thus ki j 6= k ji. Since the boundary is fixed during the parameterization, weights are

calculated only for interior edges.

The interior vertices are initially flattened to the plane by setting their positions

equal to that of the boundary vertex to which they are nearest. Then the harmonic

energy is optimized, where the total harmonic energy H is given as:

H = ∑
[i, j]∈M

|h(vi)−h(v j)|2 (5.3)

For this, the goal is to reach the state such that ∆hv = 0, where v /∈ ∂M. The

harmonic function is updated until the total distance moved by vertices between

iterations is less than a specified threshold (a threshold of 0.1 has been found to be

sufficient).

Due to the unfolding, some regions of the mesh can become stretched over a gap

near a bifurcation. This causes the triangles in the mesh to go outside of the desired

boundary and some to invert. To account for this, the affected boundary vertices

are adjusted as necessary where this inversion is occurring. This is accomplished

by translating the inverted vertex v orthogonal to the mesh boundary at that position

by a value of one sixteenth the sum of the edge lengths of its two neighbor bound-

ary edges. A local smoothing operation is then applied to all translated boundary

vertices. Periodically, the entire boundary is checked for loops which may occur

from this, and they are duly removed. The final result of this flattening is shown in

Figure 5.6.

77



Figure 5.6: Flattened surface of cranial blood vessels.

5.3 Visualization

Given a planar representation of an object’s surface, there are several ways in

which it can be visualized, depending on need. These include being used as a

guidance map or for direct investigation using volume rendering of the interior of

the object or showing color maps on the surface. An indication of the spatial relation

in the z-direction of the view can also be provided by depth cues around the border

of the object. For direct inspection of the object, a depth first traversal can be used

to ensure complete coverage.

5.3.1 Map Surface View

One use of the planar map is as an actual map to use as guidance during a virtual

endoscopy. It is common for the physician to need to note their position within the

structure, and a 3D map is often used for this task. However, since a 3D map

may contain occlusions, the current position might be hidden, requiring the user

to disengage from their current task to rotate the view and identify their location.

Using a planar map eliminates this problem. For such a use, a view similar to an

exterior view of the normal surface mesh would be appreciated. Since the mesh has

been completely flattened to the plane, it would look completely flat when rendered

(see Figure 5.6). To give the mesh a more natural appearance, height can be added

back to the mesh’s z-coordinates. This is done by finding the shortest distance from

each interior vertex to the boundary. This distance is then set to the z coordinate of

the vertex, raising it out of the plane. Now when rendered with lighting, a peaked

appearance is given rather than a simple flat appearance (see Figure 5.7). Although

not smooth and rounded, this is actually advantageous, as the peak through the
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Figure 5.7: Flattened map of the cranial vessels with raised central path and depth cue as

grayscale border.

structure forms a central path through the object which can serve as a visual cue to

the approximate location of the skeleton within.

5.3.2 Depth Cues

An indication of the z depth of the mapped object can also be provided, and is

a useful tool for more complicated branching structures. A border is first created

around the boundary of the object. Based on the z coordinates of the projected

skeleton, the corresponding vertices in the boundary can be colored in grayscale

with black for vertices closer to the viewer and white for those further away. In

this sense, the areas with the black border pops more out of the background, while

the others fade into it. For this, a light blue color is used for the background, or

else the whitish sections of the border would completely disappear. An example of

this is shown in combination with the map view in Figure 5.7. When regions of the

border may overlap the mesh surface in tight areas, the mesh surface is always given

priority in being viewed. When the border may overlap itself in some areas, the

darker border (indicating closer to the viewer) is always shown on top of the lighter

border. A very small border is always maintained around the surface boundary with

the corresponding correct depth indication which is not obscured. The bronchial

tree in Figure 5.1 contains examples of these overlapping borders and the resulting

view. The depth border can be turned on or off as desired by the user, and the width

of the border can also be adjusted as needed. Note that for the images presented

here, the border is kept substantially large so as to appear clearly in the images.
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(a) (b)

Figure 5.8: Examples of visualization for direct inspection. (a) Volume rendering. (b)

Color map of surface normals.

5.3.3 Direct Inspection

For virtual endoscopy applications, it is possible to perform volume rendering

of the interior surface on the flattened map, allowing it to be inspected directly

in an efficient manner. To perform this volumetric ray casting, the original xyz

coordinates of the mesh are used to calculate the starting locations of the ray for

each vertex within the volume’s local coordinate system. The vertex’s normal value

can also be used to define the ray direction. This normal is slightly smoothed with

those of the neighboring vertices to account for the discrete nature of the triangular

mesh. With these values set at every vertex, the volume positions and ray directions

are then interpolated over each triangle in the mesh and used for volume rendering.

An example of this is shown in Figure 5.8(a).

For other applications, it might be necessary to visualize a color map on the ob-

ject’s surface which represents data calculated from or simulated on the mesh. Since

the full resolution mesh was mapped to the plane, and not a downsampled version,

the color map can be rendered at full quality on the flattened surface without loss of

data resolution. An example of this is shown in Figure 5.8(b).

5.4 Results

The inputs to this algorithm are the original triangular mesh, extracted skeleton,

and estimated radii for each node along the skeleton. If these radius values are not

known, they can be estimated from the skeleton curve and triangular mesh. For each

skeleton point in 3D, rays are cast around it and the closest intersections with the
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Table 5.1: Running times (in minutes) for the illustrated datasets. The Skeleton Time

covers the orthographic projection, radial layout, and shape recovery. The Mesh Time

covers the boundary creation and surface mapping.

Skeleton Mesh Skeleton Mesh

Dataset Nodes Vertices Time Time

Bronchial Tree I 1,948 92,047 1.83 min. 1.25 min.

Bronchial Tree II 1,031 59,230 0.26 min. 0.99 min.

Cranial Blood Vessels 1,763 134,589 3.58 min. 1.25 min.

Lower Limb Vessels 1,531 93,875 0.59 min. 0.53 min.

Aorta 2,670 331,200 2.02 min. 25.3 min.

triangular mesh are found and averaged to use as the radius. Using steps of fifteen

degree increments for 360◦ around the point is sufficient. Though a technical un-

folding of the surface should provide a distance of one half of the circumference on

each side instead of the radius, this significantly larger value would cause problems

with greater amounts of regions intersecting each other. Using the radius shows the

item as narrower in relation to its length, but the width along the object is relation-

ally consistent along the entire skeleton. In some senses, this is actually better for

guidance maps, as the view remains similar to that of the original 3D mesh view.

Figure 5.9 shows this technique applied to the lower limb vessels and the similarity

to the original mesh, albeit without occlusions.

The projection plane used in the orthographic projection is chosen as a typical

view for the object. For most types of objects, especially in medical applications,

a canonical view is known which provides the best view and is familiar to the user.

If such a view is not known a priori, a plane can be chosen at the discretion of the

user, such as one which minimizes structural overlap and skeletal intersections.

Due to the boundary adjustment step in the harmonic mapping, inverted vertices

are virtually eliminated. Only an extremely small amount remain, which do not

affect the final result (less than 0.05% remain inverted). Due to the fixed boundary,

a parameterization that is fully shape preserving (i.e., conformal) is not possible,

but the resulting mapping is quasi-conformal (i.e., circles are mapped to ellipses).

The running time for this technique is shown in Table 5.1 (in minutes) for the

five datasets illustrated herein. Also given for each dataset are the number of dis-

crete nodes in the skeleton that was processed and the number of vertices in the final

flattened mesh (that is, after slicing). Since it is imperative to ensure that the bound-

ary adjustment grows slowly and thus does not greatly change the shape, Newton’s

method is not used to accelerate the harmonic mapping. However, as shown, the

running times are generally sufficient on a modern processor. These times were

acquired using an Intel Core i7-3930K processor.
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Table 5.2: Average angular distortions (in radians).

Dataset Avg. Angular Distortion

Bronchial Tree I 0.48

Bronchial Tree II 0.46

Cranial Blood Vessels 0.48

Lower Limb Vessels 0.47

Aorta 0.49

Though global shape recovery is the goal, this is not always best when the object

would be used for direct inspection. As shown in the close-up Figure 5.10(a), some

regions may become sharply turned. There are no actual overlaps here (see Figure

5.10(c), which shows the border only of the mesh), though such a large twisting of

the surface can be undesirable. This effect can be mitigated in some instances by

using a different placement weight based only on the location of the first child node

instead of the entire subtree (see Figure 5.10(b)).

This method has been tested on real world datasets of common, naturally occur-

ring, biological structures which are frequently encountered in real world situations.

One can dream of further situations where much more complex structures require

such a mapping. Since the planar embedding is based on a radial embedding which

is guaranteed to exist, any structure can be mapped. However, extremely large

structures might need to make concessions in either the amount of shape recovery

possible, the size of resulting mapping, or both.

5.5 Evaluation

The average angular distortion on the parameterized surface was measured. The

angle distortion ε f ,θ for a face f is given as:

ε f ,θ = |α f ,p−α f ,o|+ |β f ,p−β f ,o|+ |γ f ,p− γ f ,o| (5.4)

where (α f ,p,β f ,p,γ f ,p) are the three interior angles in the parameterized face f and

(α f ,o,β f ,o,γ f ,o) are the original interior angles. The average angular distortion εθ

is given as:

εθ =
1

3| f ∈M| ∑
f∈M

ε f ,θ (5.5)

for a mesh M. The average and error values for the meshes are given in Table 5.2.

Due to the requirement of a fixed boundary, the result is a parameterization that

is quasi-conformal. This can be seen when using the parameterization for texture
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Table 5.3: User study results and improvement.

Task in 3D in 2D Improvement

Search Test (time) 33.84 sec. 12.74 sec. 62.4 %

Search Test (accuracy) 88.0 % 96.3 % 9.4 %

Task w/o Borders w/ Borders Improvement

Depth Test (time) 15.95 sec. 13.24 sec. 17.0 %

mapping; circles in the 2D texture image become ovals when mapped to areas which

are distorted on the 3D model (see Figure 5.11).

A small informal user study was performed with six subjects to assess the results

from this technique. The user study consisted of two tasks. In the first task, the

subject was asked to identify red spots placed randomly on the object, both in 3D

and 2D. The purpose of this test was to evaluate the user’s accuracy and the amount

of time taken to perform the task. Accuracy improved from 88% to over 96% when

using the 2D images since the users were able to plainly see all sections. The time

required for the test also dropped drastically from an average of 33.84 seconds per

dataset to 12.74 seconds per dataset. Again, the ability to efficiently view the entire

structure without tumbling the view contributed to this improvement.

The second task was to identify which of two points was closer to him/her (that

is, which is further away from the background). The purpose of this task was to

evaluate the usefulness of the depth borders by seeing the time it took users to make

the decision with and without depth borders. When there were no depth borders,

the user was required to mentally connect between the 2D and 3D models. Using

the depth borders allowed the average time for the task to drop from 15.95 seconds

to 13.24 seconds. Users also noted that while they were generally able to mentally

understand the relationships between the 2D maps and the original 3D structures,

the depth cues indeed helped in making their decisions and making them more

quickly. However, many subjects still spent at least some time going between the

2D and 3D models even when the depth borders were present. The accuracy was

the same in both cases. The results of these two tasks are recorded in Table 5.3.

The two additional mapped datasets (a second bronchi tree and the upper aorta) are

shown in Figure 5.12.
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(a) (b)

Figure 5.9: Planar map of lower limb blood vessels. (a) The original surface mesh. (b) The

planar map with raised central path.
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(a) (b) (c) (d)

Figure 5.10: Modifying placement weights for better direct inspection. (a) Region using

original placement weights. (b) Region using only the first node for placement weights. (c)

Border of map in (a). (d) Border of map in (b).

Figure 5.11: Texture mapping of circles onto the original bronchial surface using parame-

terized map.
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(a) (b)

(c) (d)

Figure 5.12: Further results of context preserving mapping. (a) Mesh model of a second

bronchi model. (b) 2D map of second bronchi model. (c) Mesh model of upper aorta. (d)

2D map of upper aorta
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Chapter 6

Prostate Visualization

Combining multiple imaging modalities into a single view has been a staple of

visualization research, and this chapter presents techniques for combining multiple

MR modes from prostate imaging [91]. In addition to simply rendering the multi-

modal data, techniques are also developed to aid in the exploration and interaction

of the data within a multi-volume ray casting framework.

6.1 Motivation

Prostate cancer (CaP) is the second most incident cancer for males worldwide

[105]. However, diagnostic methods remain primitive and inexact, relying primar-

ily on a non-specific blood test and a digital rectal examination. Non-cancerous

prostate diseases can yield positive results, requiring biopsies to be performed.

Though guided by transrectal ultrasound (US), these biopsies are inexact, and many

are often necessary to successfully sample a cancerous region [81]. Recently, it

has been noted that MRI can be used for detecting CaP [44], though multiple MR

images obtained with different settings are necessary. Most commonly used is a

combination of T2-weighted (T2-w) and T1-weighted (T2-w) image sequences, and

the use of MRSI has also been suggested. This work is focused on using these

three common acquisitions for visualizing the prostate, CaP, and the surrounding

anatomy, as shown in Figure 6.1.

Radiologists will examine the MR data by viewing the slices and trying to corre-

late matching positions between scans in various orientations (e.g., axial and coro-

nal). An automated analysis combined with a 3D rendering system, which would

allow for viewing of the entire gland at once and include the data from each scan,

would be more intuitive and efficient. This need for improved visualization tech-

niques for treatment planning has been noted [123]. For physicians it is an ad-

ditional tool to augment slice viewing, and can be used to assist in localizing the

disease and for treatment planning. For the patient, a 3D visualization allows for
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Figure 6.1: Visualization of the prostate gland and surrounding anatomy. The prostate is

between the rectum (shown in burnt orange) and the pelvic bone. Suspected areas of cancer

and hemorrhages in the gland are indicated by blue and red, respectively, and the seminal

vesicles are in green.

a more intuitive explanation of their disease and can be helpful in discussing what

course of action to pursue.

Although the prostate has been a subject of research for some time, most work

in 3D has focused on shape reconstruction and the use of geometric models for sim-

ulation purposes [170]. Volume rendering has typically been used for illustration of

the gland’s size and location. The prostate and surrounding anatomy have been ren-

dered from high resolution anatomical images of the Chinese visible human [154].

Simple rendering of MR and CT volumes to see the shape of the prostate for CT-

based radiotherapy treatment planning has been proposed [56], and US has been

used for brachytherapy planning [85]. Research has also been done to merge single

photon emission computed tomography (SPECT) imaging, where the cancer is very

apparent, with anatomical data for treatment planning [70].

As more imaging techniques become popular, multi-modal rendering has be-

come common for dealing with the increased data. Though technically not multi-

modal since they are all MR scans, the use of different acquisition types leads to

similar considerations. Early discussions centered on how to combine multiple vol-

umes for display [16]. In medical applications, multi-modal rendering is often used

to combine functional data with anatomic data, such as positron emission tomogra-

phy (PET) and CT [124], as well as for surgery planning [9]. In such works, values

from different modes can be combined during rendering to achieve a desired look.

Other work has performed multimodal fusion on two datasets, including two MRI
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modes, using mutual information to decide at each voxel which dataset contains the

more important information [13]. However, that work takes only a single value at

each sample point to display. In the work presented here, it is necessary to view the

data from multiple sources at the same time.

The T2-w, T1-w, and MRSI data are acquired at different levels of resolution, be-

ing approximately 0.5×0.5×3 mm, 1×1×6 mm, and 7×7×3 mm, respectively.

Since it is desirable to visualize both the immediate area of the prostate (gland and

seminal vesicles) as well as the general pelvic region (bladder, rectum, and pelvis

bone), multi-volume rendering is necessary. For ray casting, it is common to use

depth peeling and perform the ray casting in multiple passes [113, 125] or to do

only certain chunks at one time [14]. Methods where the ray casting occurs in a

single pass normally require the volume datasets to be preprocessed such that they

are registered and resampled to a single grid [9].

This chapter discusses work towards a virtual prostate visualization system [91].

A volume rendering framework is presented that allows the user to observe the

prostate and its surrounding anatomy in an intuitive 3D environment. The con-

cept of a score volume is introduced for visualizing the disease and methods are

presented to observe all three types of multi-modal MR data in a single 3D view.

This score volume can also be integrated into 2D slice-based views. User-driven

importance rendering allows for different information to be emphasized based on

the user’s desires. A method of visibility persistence is presented, where a score of

interest can automatically maintain visibility when it would be occluded, and over-

laps are indicated. To render the surrounding anatomy, a single pass multi-volume

ray caster accelerated on the GPU is used. A method of interactive region painting

is also presented and integrated into the multi-volume ray caster.

6.2 Score Volumes

This work is based on creating score volumes to contain the detection results,

and then rendering these score volumes rather than the original MR image data for

the prostate region. The current system has been developed around a specific set of

datasets, though it is generalizable to further imaging modalities and types of MR

acquisition.

6.2.1 Standard Patient Dataset

The system has been built around the use of five image sequences: three approx-

imately orthogonal T2-w sequences (axial, sagittal, and coronal), one T1-w axial se-

quence, and one MRSI sequence. For the T2-w sequences, the images are focused
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Figure 6.2: Natural alignment of three T2-w MR slices, with axial tinted red, sagittal blue,

and coronal green. The prostatic capsule aligns well between slices (yellow circles).

on the region of the prostate. The T1-w images, acquired with lower resolution, en-

compass the entire pelvic region. As these were acquired using an endorectal coil,

artifacts from it affect areas near the rectum. To overcome this, specialized software

to negate this effect is provided with the MR machine, and it is these post-processed

images that are utilized.

These scans were acquired during a single session, and as such, are naturally

registered in world space. The image position, orientation, and pixel spacing in-

formation from the DICOM data can be used to align the volumes properly with

respect to each other (see Figure 6.2). Due to this natural alignment, it is possible

to calculate the corresponding positions in each volume with respect to another vol-

ume. In general, the alignment between orthogonal slices was observed to be within

0 - 1 mm of the correct position. Because of this, no formal registration methods

are used. In cases where the datasets are not naturally aligned, MR registration

algorithms have been proposed [170].

Segmentation of the prostate and surrounding anatomy is necessary since nearby

structures are often within a similar range of values. Various methods have been

proposed for the segmentation of the prostate data [170] as well as for the pelvic

anatomy [106]. However, here efforts have been focused on scoring and visual-

ization techniques for this data, and thus segmentation is outside the scope of this

work. For accuracy, the data has been manually segmented (considered the current

gold standard method) with guidance from an experienced radiologist. For this sys-

tem, the label map segmentations for each of the four image volumes are taken. For

the three T2-w volumes, the PZ, CG, and SVs are segmented. For the T1-w volume,

the whole prostate gland, bladder, rectum, and bone are segmented.
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6.2.2 Label Map Upsampling

Due to the low z-resolution of the MR image sequences, a shape based interpo-

lation method is necessary to recreate intermediate slices and make the resolution

near isotropic. One method of upsampling is to perform grey-level interpolation to

create new images slices [33]. However, this increases the amount of segmentation

work that would need to be performed. Rather, a method for interpolating slices of

segmented volumes is required. Common methods for this take as input a binary

segmentation [118] or a threshold that allows for a binary segmentation of the data

[42]. However, for this work it is necessary to maintain a ternary segmentation, and

thus a ternary shape based segmentation interpolation method is presented in which

known regions are dilated into unknown regions to form the final shape in an inter-

polated slice. Further taken into account is the information from multiple labelmaps

to create the final upsampled labelmap. The method is fast, easy to implement, and

suitable for CaP visualization needs [90].

The first part of the upsampling method is to upsample each T2-w ternary la-

belmap volume separately along its z-axis by interpolating new slices in order to

reduce the interslice spacing to the level of the intraslice spacing. The ternary seg-

mentation is encoded into the voxels as follows: voxels not belonging to the prostate

are assigned a value of 0, voxels belonging to the PZ are assigned a value of 10,

and voxels belonging to the CG are assigned a value of 30. The result of the up-

sampling will likewise contain only these three values when completed. A simple

method based on iterative erosions and dilations has been developed which will take

this ternary data into account, preserving the shape of the entire gland as well as of

the individual zonal regions.

An interpolated slice is created midway between each pair of neighboring slices

in the original labelmap volume. The algorithm contains four steps which are per-

formed on the interpolated slice that is to be created. These four steps can be re-

peated as needed to reduce the interslice spacing of the volume to the level of the

intraslice spacing. For the discussion that follows, the use of the term neighboring

voxels refers to the two neighboring voxels from the two neighboring slices. That

is, given two slices A and B, for the interpolated slice AB between A and B, a voxel

vAB with position (x,y) in the interpolated slice contains two neighbor voxels vA

and vB with position (x,y) in slices A and B, respectively.

The first step in this algorithm is an initial labeling of all voxels in the inter-

polated slice. For every voxel vAB in the interpolated slice, its value is set to be

the mean of the two neighboring voxels, vA and vB. If both neighboring voxels

are labeled as non-prostate, then the corresponding interpolated voxel must also be

non-prostate and is correctly labeled 0. If both neighboring voxels are either PZ

or CG, then the corresponding interpolated voxel must also be PZ or CG, and it is
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correctly labeled as 10 or 30, respectively. If one neighboring voxel is PZ and the

other is CG, then the interpolated voxel will certainly be in the prostate, but it is as

yet undetermined as to whether it should be labeled as PZ or CG (its current value

is set to 20). If the interpolated voxel is between a prostate voxel and a non-prostate

voxel, then it will be labeled as uncertain (value of 5 or 15) and will be further

processed.

The second step is an erosion of the areas that have been labeled as uncertain

(labeled as 5 or 15); that is, areas that could be inside or outside of the prostate.

If an area is known to belong to the prostate, it is referred to as certain (note that

voxels which must belong to the prostate but can be either PZ or CG are referred

to as certain but undetermined). The uncertain regions are eroded by performing

iterative dilations on the certain regions into the uncertain regions. After this step,

all voxels in the interpolated slice will be labeled as one of the four certain types.

Note that the undetermined voxels (labeled as 20) are also dilated, such that they

grow outwards from their initial locations, as this is important for the next step.

The third step is to re-label voxels as belonging to the PZ or CG. For this, a

decision is made for all of the undetermined voxels (labeled as 20). Since this

region was grown during the previous step, some of these undetermined voxels will

now have a prostate label in one neighboring slice and a non-prostate label in the

other neighboring slice. Since these voxels are certain to be contained within the

prostate, they are labeled with the PZ or CG label from its corresponding prostate

neighbor (value 10 or 30).

The final step for the z-resolution upsampling is a further erosion of the remain-

ing undetermined voxels (labeled as 20), which are guaranteed to belong to the

prostate but are not yet labeled as PZ or CG. These voxels are eroded similarly to

the second step above, though only the PZ labels (value of 10) and CG labels (value

of 20) are allowed to grow into them, as it is known that the voxel must belong to

the prostate and thus the non-prostate voxels (value of 0) are not allowed to grow

into them. After this step, all voxels in the prostate will be labeled as belonging to

either the PZ or CG.

After these four steps, every voxel will be labeled as either non-prostate (value

of 0), PZ region (value of 10), or CG region (value of 30), preserving the ternary

state of the labelmap. This method is necessary instead of a conventional binary

shape-based interpolation approach in order to avoid gaps. If each prostate region

(PZ and CG) is interpolated separately, gaps can occur in the resulting interpolated

labelmap that should be covered by the prostate. An example of this problem is

shown in Figure 6.3. This interpolation is repeated until the z-resolution of each

labelmap volume is no worse than twice its corresponding x- and y-resolutions.
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(a) (b) (c) (d)

Figure 6.3: Example of the ternary labelmap interpolation. The PZ label is indicated by

red and the CG by green. (a) and (b) Two neighboring slices from the original labelmap

volume. (c) Interpolated slice when the PZ and CG regions are interpolated separately,

resulting in a large missing area where the prostate should be. (d) Result from the ternary

method, where the shape of the overall prostate segmentation has been presrveed and no

prostate area is missing.

6.2.3 Composite Label Map

The second part of the upsampling algorithm is to create a composite upsampled

labelmap volume. All three upsampled labelmap volumes from the T2-w data are

used in creating this composite volume, capitalizing on the good intraslice resolu-

tion of the generally orthogonal datasets. That is, if the axial volume is taken as the

canonical orientation for xyz, then it will have good resolution in x and y, but poor in

z, and thus the segmentation might be off slightly in that dimension. However, the

coronal volume will have good resolution in x and z, while the sagittal volume will

have good resolution in y and z. In this way, each dimension will be encompassed

by the good intraslice resolution data from two volumes.

For this composite labelmap, the axial T2-w upsampled labelmap is taken as

the coordinate system that will be used. For each voxel in the composite volume,

an average labelmap is computed using the labelmap values from the three upsam-

pled labelmaps. Only areas where either two or all three segmentations agree are

preserved. That is, at least two of the three upsampled labelmaps must agree that

a voxel is in the prostate in order for it to be labeled as such, helping to remove

outliers. This composite labelmap results in a more accurate and visually pleasing

representation of the prostatic volume.

The results of the simple prostate upsampling are shown for one dataset in Fig-

ure 6.4. The voxel spacing from the original image sequences is 0.55×0.55×3 mm

for each of the sequences (axial, sagittal, and coronal). For this resolution of data,

the upsampling interpolation will be performed twice for each of the three T2-w im-

age volumes, yielding an inter-slice resolution of 0.75 mm. Figure 6.4(a) shows an

isosurface rendering of the original segmented prostate from the T2-w axial image

sequence. Due to the large interslice gap, very obvious plateaus are visible where

93



(a) (b) (c)

Figure 6.4: Results of the composite segmentation upsampling procedure. (a) Original

axial segmentation of the prostate. (b) Upsampled result for the axial segmentation. (c)

Composite result from a combination of the three shape interpolated upsampled segmenta-

tion volumes (axial, coronal, and sagittal). The composite segmentation is significantly less

faceted and better illustrates the true shape of the prostate.

each slice was segmented. Figure 6.4(b) shows a rendering of the result from up-

sampling the axial sequence alone. The plateau artifacts have been greatly reduced,

though are still somewhat disturbing. Figure 6.4(c) shows a rendering of the final

composite segmentation based on combining the upsampling of the axial, sagittal,

and coronal sequences. The faceted artifacts have been further reduced, and the

entire shape of the prostate is more full and accurate due to the contributions to the

shape from the sagittal and coronal views.

6.2.4 Score Volume Creation

This work in visualizing the prostate gland and suspicious regions is based on

creating a score volume, where every voxel contains three values which are scores

corresponding to each of the three types of MR acquisitions. The T2 score is based

on detecting cancer from the T2-w data. The T1 score is based on detecting regions

of post-biopsy hemorrhage from the T1-w data. The MRSI score is based on detect-

ing areas of increased chemical ratios indicating the possibility of cancer existence.

The T1 and MRSI scores are binary and the T2 score is quaternary. The inputs for

the creation of the score volume are the five image sequences, the four upsampled

segmentation label maps, and the composite label map.

Empirically determined thresholds are used to decide a score for each of the

modes. These thresholds were defined by using a group of three datasets and man-

ually observing the typical signal intensities for regions believed to be normal and

abnormal in the PZ (decreased for T2, increased for T1, elevated spectra in MRSI).
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The pathology results were used to ensure that samples were taken from sextants

known to contain either cancer or hemorrhage. The scores are created as follows,

with the default values being zero.

T2 Score (PZ): Decreased T2-w intensity in the PZ is indicative of cancer, so vox-

els which are below the T2 threshold are of interest. Since there are three

volumes of T2-w data, all of them are sampled to take advantage of each vol-

ume’s high intraslice resolution. Each volume’s score contributes one third

towards the final score value, which can therefore contain four values (0, 0.33,

0.67, and 1).

T1 Score (PZ): Increased T1-w intensity in the prostate is indicative of post-biopsy

hemorrhage, so voxels which are above the T1 threshold are of interest. The

single T1-w volume contributes fully to the final score value.

MRSI Score (PZ and CG): An increase in one or both of the spectroscopic ratios

in the MRSI data is indicative of prostate cancer. If either of the two ratios

are above the MRSI threshold, then the voxel is scored as being of interest.

This scoring system, unlike for the T2 and T1 scores, is applied to both the PZ

and CG.

T2 Score (SVs): Similar to the T2 scoring for the PZ, decreased T2-w image inten-

sity in the SVs is indicative of cancer. However, the SVs pose a hurdle in that

their walls (both interior and exterior) also appear with decreased T2-w inten-

sity. To account for this, a three part scoring process is used. First, each T2-w

sequence (axial, sagittal, and coronal) is scored individually. Their individual

score volumes are then eroded by two voxels to remove thin boundaries. The

final SV score is created with each of the individual scores contributing one

third to the final score.

The neighboring regions of the PZ (prostatic capsule and CG) are generally

dark, and thus could yield false positive results if included accidentally as part of

the PZ. To account for this, the border voxels are not scored. To ensure that samples

are from the correct region for each of the three T2-w volumes, the upsampled label

maps are taken into account for each volume, and that volume is sampled only if

its label map indicates the region is correct. Likewise, the upsampled label map

of the T1-w volume is provided to ensure samples are from within the prostate.

Since areas immediately outside of the prostate are often of high intensity in T1-w

data, they could be mistaken as indicators of a hemorrhage if improperly sampled.

Trilinear interpolation is used when sampling from the upsampled label maps and

tricubic interpolation is used when sampling from the original MR data.
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(a) Axial (b) Sagittal

Figure 6.5: Integrating the score volume with slice-based viewing. The score information

is overlaid on the MR slices, with blue indicating T2 scores and red indicating T1 scores.

6.2.5 2D Slice-Based Visualization

The created score volume can be integrated into a 2D slice-based viewing sys-

tem to provide guidance for the radiologist in viewing the slices by presenting in-

formation from other slices on the slice being viewed. For each voxel in a slice

being viewed, the score values from the score volume can be found and overlaid on

the grayscale image. Though the score volume is aligned with the axial T2-w image

sequence, it can be interpolated to obtain values for the corresponding pixels in the

other image sequences. Examples of this are shown in Figure 6.5, where the T2 and

T1 scores are shown as blue and red overlays, respectively. The user can adjust the

opacity of the overlays as desired.

6.3 3D Visualization

A 3D volume rendered view of medical imagery is an intuitive method of visu-

alizing the data and obtaining a good sense of the relationship between objects. The

system allows the user to visualize the prostate region and the surrounding anatomy

of the pelvic region. For the prostate region, using the score volume allows the user

to visualize tumor and hemorrhage locations. The inputs for the volume rendering

framework are the following four volume files:

1. Score volume (prostate region)

2. Composite label map volume (prostate region)

3. Upsampled label map of T1-w volume (pelvic region)

4. T1-w pelvic MR volume (pelvic region)
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(a) (b) (c)

Figure 6.6: Rendering examples of individual score values. (a) The T2 score values with

blue indicating cancer. (b) The T1 score values with red indicating hemorrhages. (c) The

MRSI score values with purple indicating elevated ratios.

The two prostate region volumes occupy the same volumetric space, and the

two pelvic region volumes likewise occupy the same volumetric space. For render-

ing the surrounding anatomy, especially the bones, it is necessary to make use of

the pelvic region volumes, which encompass a much greater area than the prostate

region volumes. Since it is undesirable to scale or resample the data, multi-volume

rendering is performed through these two volumetric spaces. If only the prostate

region is to be viewed, this multi-volume rendering is not necessary.

Two preprocessing operations are performed before rendering. The prostate

region volumes are both trimmed so that surrounding area is removed where no

anatomy is labeled. This trimming is done such that a 3 mm border remains around

the cuboid region of interest and will typically reduce its size to 15% of the original.

Since all of the data has been based on binary segmentations with no smooth gradi-

ents between labeled and non-labeled regions, the score volume and both label map

volumes are filtered with a 3×3×3 mean filter to improve the rendering results.

6.3.1 Standard Prostate Region

Visualization of the prostate region is based on using the composite label map

volume and the score volume. For rendering the interior areas of the gland and SVs,

volume rendering is performed on the score volume. The score volume contains

three values per voxel, corresponding to the T2 score, T1 score, and MRSI score.

The user can view each of the values individually, or combined as desired. For the

surface of the gland, direct semi-transparent isosurface rendering of the composite

label map is used.

The following color scheme has been developed for the score values. For a

high T1 score, indicating hemorrhage, red is the obvious choice. For regions with

a high T2 score, blue is used to represent the location of suspect cancerous areas.

For the MRSI score, purple is used to indicate increased ratios. The prostate gland
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Figure 6.7: Seminal vesicles indicating bilateral invasion.

Figure 6.8: Rendering examples of the score values with various levels of transparency.

itself is rendered as a semi-transparent tan color and the seminal vesicles as a semi-

transparent green color. The transfer functions controlling the gland colors (prostate

and SVs) are applied to the label map volume, while the transfer functions for the

score colors are applied to the score volume. The T2-w data itself is not used in the

volume rendering. The user is presented with two standard options for rendering

the prostate score data:

Isosurface Score View: The solid isosurface renderings of each of the score values

are viewed. This mode is typically done with a single score value at a time.

Examples of the three scores rendered individually can be seen in Figure 6.6.

Since the T2 score is a quaternary value, the isosurface is set so that a score

≥ 0.66 is required (i.e., at least two of the T2-w volumes indicated decreased

signal).

Since only T2 scores exist within the seminal vesicles, its coloring is tied to

that of the T2 score for the prostate and uses the same blue color. An example

of the seminal vesicles with SV invasion indicated is shown in Figure 6.7.

Transparent Score View: When viewing multiple scores together, user-defined

transparency per score is typically used. This is most useful if the user wants

to see relationships between different scores (e.g., between a cancerous T2

score and a hemorrhage T1 score). Examples of combinations of multiple

score renderings with transparency are shown in Figure 6.8.
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Figure 6.9: Viewing the angle between the prostate and the rectum (endorectal coil), look-

ing towards the patient’s head.

6.3.2 Surrounding Anatomy

Single-pass multi-volume rendering is used when including the surrounding

anatomy. For each ray, its starting position and direction are calculated for both

the prostate region volume and the pelvic region volume. The steps along each

ray are adjusted to be the same length, such that steps along one ray are colocated

with steps along the other ray, and the number of steps to enter and exit each of

the volumes is calculated. Since the pelvic region is larger and fully encompasses

the prostate region, it is guaranteed that a sample position in the prostate region

will also be within the pelvic region, though most sample points within the pelvic

region will not be within the prostate region. Separately calculated for the rays are

the number of steps within the pelvic region before reaching the prostate region,

the number of steps within both, and the number of steps after the prostate region

until exiting the pelvic region. Using these values, the rays are cast through the vol-

umes, and the prostate region is sampled only when the current position is within

the correct range.

The pelvis and other nearby bones account for the majority of the area in the

pelvic region volumes. When the bones are not being rendered, the minimum and

maximum extent of the remaining anatomy (bladder and rectum) are calculated and

the sampling rays are cast only through this bounding box, reducing the amount of

area being traversed to approximately 10% of the full size. The prostate region is

between these two objects and thus will not be missed.

The rectum is rendered as an orange semi-transparent isosurface. The user

is able to easily observe the angle between the rectum and the prostate surface

(see Figure 6.9). Similar to the rectum, the bladder is rendered as a yellow semi-

transparent isosurface. The bones are rendered as slightly off-white isosurfaces.
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The user is not able to modify the translucency of these objects, though the visibil-

ity of each of these three objects can be toggled on or off as desired.

Unlike for the prostate region, the transfer functions for the pelvic region are

applied to the T1-w MR data, allowing for a less precise segmentation. Due to this,

these objects can take on a stepped appearance in the superior-inferior direction

because of the low interslice resolution. However, the shape of these objects is not

as important as that of the prostate, which is fully smoothed due to the rendering of

the upsampled label map and score data directly.

6.4 Exploration and Interaction

6.4.1 Visibility Persistence

A technique for viewing occluded structures by peeling back outer layers of

the object has been presented [120]. Methods for importance-driven rendering,

allowing for a region of interest to be preserved, have also been proposed [144].

In that work, they perform composition in order to present the important structures

when they may otherwise be obstructed. This is expanded on to provide contextual

feedback of overlapping regions. Since multiple score values are being used at

the same position which can have a relationship to each other, a tinting function is

introduced to color regions that overlap. This allows the user to further distinguish

within the view whether the score of interest overlaps another score, or whether it

is simply occluded.

In addition to standard rendering of the prostate score volumes, a score ren-

dering method called visibility persistence is provided. This mode will assist in

keeping a score of interest (i.e., the persistent score) visible when other scores may

occlude it. This mode will also indicate whether the occluded score is inside of the

occluding score (i.e., they overlap). This is accomplished by tinting it green, a color

which is otherwise not used within the prostate.

The visibility persistence is accomplished using a modified compositing strat-

egy. A second volume rendering integral is accumulated with reduced color and

opacity values for the non-persistent scores. The discretized volume rendering in-

tegral will then contain the standard front-to-back compositing as such:

Cdst ←Csrc× (1−αdst)+Cdst

αdst ← αsrc× (1−αdst)+αdst

where:

Csrc←Cgland +CPersistentScore +COtherScores

αsrc← αgland +αPersistentScore +αOtherScores
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(a) Isosurfaces (b) Visibility Persistence (c) Transparency

Figure 6.10: Rendering example of T2 (blue) and T1 (red) scores with visibility persistence

for the T2 score (green).

and will also contain:

Cdst2←Csrc2× (1−αdst2)+Cdst2

αdst2← αsrc2× (1−αdst2)+αdst2

αscore← αPersistentScore× (1−αscore)+αscore

where:

CTint ← Tinter(COtherScores)
CTint ←CPersistentScore +CTint×αPersistentScore

Csrc2←Cgland +CTint +0.1×COtherScores

αsrc2← αgland +αPersistentScore +0.1×αOtherScores

The Tinter function accumulates the intensities of the non-persistent score col-

ors into the green channel of CTint , which is then modulated by αPersistentScore and

added to CPersistentScore. At the end of the volume rendering integral, the final output

color and opacity are composited as such:

Cdst ←Cdst2×αscore +Cdst× (1−αscore)
αdst ← αdst2×αscore +αdst× (1−αscore)

where the αscore value for blending is used to prevent a jagged halo effect around

the persistent score.

As shown in Figure 6.10, the spatial relationships of the scores and gland are

fully maintained by this method. In contrast to making one score transparent to view

another occluded behind it, this mode allows for an occluded score to automatically

be visible, while the other scores will maintain their full opacity unless they are

occluding the score of interest. This method also gives context by showing if one

score is inside of another, or simply behind it, by tinting the persistent score green

when the scores overlap.
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Figure 6.11: Screenshot of the user interface with examples of light blue user painted

regions in both 3D and 2D views.

6.4.2 Interactive Region Painting

The ability of the user to interact with the underlying volume itself has also been

explored. Earlier work on the editing of volumes has focused on various ways of

displaying the existing data, such as painting on surfaces and making annotations,

cutting windows within structures, or selecting regions to render differently [15].

In contrast to this, instead of being able to edit the already existing data, the user is

allowed to draw new structures on-the-fly within the data which are then rendered

as 3D objects in a desired color along with the existing data.

The ability for the user to manually denote regions of interest on the 2D slices

is provided, and these regions are then updated in the 3D view. Within the user

interface (Figure 6.11), the user can quickly switch between slice views and can

view a slice directly next to the 3D rendering. Demarcations within one slice can

be viewed on the other slices for correlation, and the user can modify as required by

looking at all views. The user is also able to select their own custom colors when

painting lines or filling regions so that separate entities can be easily distinguished

and correlated between the 2D slice views and the 3D rendering view.
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To accomplish this, a new paint volume based on the upsampled T1-w label map

is created with four channels to allow for various colors to be held. One difference

between the dimensions of this volume and that of the upsampled T1 label map

is that the paint volume has twice the resolution in the z-dimension (0.75 mm) to

allow for greater accuracy when denoting areas on the T2-w slices. Though coarser

than the T2-w images, this resolution is sufficient for marking areas; since the paint

volume must cover the entire region (prostate and pelvis), maintaining a higher

resolution would require more memory and processing power with little advantage.

When the user draws out a region, a custom color of choice can be selected to

be used as both the overlay in the slice view and for the 3D rendering. As with the

normal score volume, these painted regions can be turned on, off, or transparent as

desired by the user. For rendering, the paint volume is smoothed with a 3× 3× 3

mean filter to yield a more natural look. The minimum and maximum extent of

these regions are used in defining a bounding box for ray casting so empty areas

do not need to be traversed. No transfer function is used, as the color and opacity

information is supplied directly in the paint volume.

6.4.3 Visibility Persistence in Painted Regions

While the previously presented method of visibility persistence works well for

such a closed system with predetermined colors, it does not translate well to the

open system of allowing the user to paint custom regions within the prostate. In

such a case, this default tinting of the custom painted regions is not applicable, as

the user can choose any color to paint the regions in. While it would be possible to

restrict the user’s choice of colors, this was not deemed a prudent course of action.

For general occlusions, the same technique is used so that structures in front of

the painted regions will appear with reduced opacity, allowing the painted region to

be visible. For regions of overlap, it was decided to place a striped pattern on the

painted region to indicate the overlap. Since this is not color dependent, the user

is free to choose any colors for the painted regions (which do not conflict with the

default T2 and T1 score colors). The presence of this striped pattern is based on the

alpha value of the T1 and T2 scores at the sampling location. The stripes are created

by halving the RGB color values for the painted region, which results in more of

the overlapping color being present. The striped pattern itself is determined by

the sample position within the 3D volume, so the pattern remains consistent from

varying viewpoints. Examples of this updated method are shown in Figure 6.12.
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: Examples of persistence visiblity for custom painted regions. T2 scores are

rendered in blue, T1 scores in red, and two custom regions are present in orange and green.

(a) and (d) Normal isosurface rendering. (b) and (e) Visibility persistence with no overlap

indications. (c) and (f) Visibility persistence with overlap indications as striped patterns. In

(e), for example, it can be seen how it might be ambivalent as to whether or not the painted

orange and green regions are inside of the T1 score data when simply revealing occluded

structures. However, in (f), it can be clearly seen that the green region does overlap with

portions of the T1 score data, while the orange region does not.

6.5 Results

The data used in this work comes from the ACRIN 6659 study [150] and the

current system has been built around their standard clinical protocol for MR imag-

ing of the prostate. This ACRIN study was a large, multi-institutional study, and

one goal was to be able to establish a protocol for MR acquisition that would be

followed at multiple hospitals in order to obtain consistent data. The properties of

a typical dataset, including original and processed data, are shown in Table 6.1.

6.5.1 Performance

There are four basic computational processes in the pipeline. First, the four label

map segmentations are upsampled. Then, the three upsampled T2-w label maps

are combined to form a composite label map. Third, the score volume is created.
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Table 6.1: Typical dataset properties. In the dataset volume descriptions, the Composite

Label Map is represented by CLM. The number of data channels for each voxel is indicated

in the last column (Ch.).

Dataset Volume Volume Size (voxels) Voxel Spacing (mm) Data Type Ch.

T2-w Axial, Sagit., Coron. 256×256×20-24 0.55×0.55×3.00 16-bit int 1

T1-w Axial 256×256×34 0.93×0.93×6.00 16-bit int 1

MRSI 7×3×12 6.88×7.31×3.00 32-bit float 2

Score Volume, CLM 256×256×89 0.55×0.55×0.75 8-bit uint 3

Trim Score Vol, CLM 115×89×78 0.55×0.55×0.75 8-bit uint 3

Upsample T1 Label Map 256×256×133 0.94×0.94×1.50 8-bit uint 4

Finally, the score volume and composite label map volume are trimmed and these

two along with the upsampled T1-w label map are mean filtered to improve the

rendering results. The average running time for these steps is 14 seconds.

The performance of the volume rendering varies depending on what regions and

objects are being viewed. All renderings maintain interactive performance. Figure

6.13 shows the five basic types of rendering with differing performance (all objects,

without bone, prostate only, persistence, and painted region), and their performance

in frames per second (fps). These have a render target of 512×512 pixels.

6.5.2 Score Evaluation

Although the focus in this system is on developing the visualization techniques

for a CaP detection system, the scoring system has been evaluated by comparing

against the results of the ACRIN 6659 study. For this study, the MR acquisitions

were performed on patients 4-6 weeks after needle biopsy and before radical prosta-

tectomy. The determinations of both radiologists and pathologists were denoted for

each sextant of the prostate. The six sextants are formed by splitting the gland

into left and right halves and further splitting them into apex, midgland, and base

sections from top to bottom. Since the results from the MRSI are very broad and

non-specific, only the T2 and T1 scores are considered in the evaluation.

For each patient dataset, a total of eight radiologists reviewed the MR data

and made determinations as to the presence of cancer and hemorrhage on a per-

sextant basis. For the cancer determinations, a ranking on a scale of one to five was

used, with one indicating definitely no cancer and five indicating definitely cancer.

To compare against the system’s results, the minimum and maximum scores are

dropped (to eliminate outliers), the remaining six are averaged, and an average of

three or greater is considered to indicate cancer. For determining hemorrhage, the

radiologists’ results are taken as the ground truth since this is not indicated from the
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(a) 35 fps (b) 54 fps (c) 38 fps

(d) 26 fps (e) 20 fps

Figure 6.13: Performance examples for the five main types of rendering. (a) All objects

in the scene. (b) All objects except for the bones. (c) Prostate region only. (d) Visibility

persistence. (e) User painted custom regions.

pathology.

Given the excised prostate, a pathological analysis was performed on it, and

results were reported for cancer in the prostate, again on a per-sextant basis. The

pathology report also indicates whether or not there was invasion of the seminal

vesicles. The results from the pathology (both cancer determination in the prostate

and seminal vesicle invasion) are taken as the ground truth in evaluating the system.

The results of testing the system on three datasets (different from those used in

determining the thresholds) are summarized in Tables 6.2-6.4, where [GT] indicates

the ground truth column. For the determination of cancer in a sextant (Table 6.2),

it is noted that the results from the system were better than from the radiologists.

However, further work is needed to see how accurate the specific regions are (this

information is not provided with the ACRIN data). This method was less successful

for detecting SV invasion (Table 6.3), though this problem is more difficult (the

radiologists in the ACRIN study were not asked to determine this). For the detection

of hemorrhages (Table 6.4), the simple threshold method proves to be very effective,

no doubt due to the large disparity between normal and hemorrhaged tissue.
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Table 6.2: Sextant evaluation for cancer in the prostate.

Cancer Pathology [GT] T2 Score Radiologists

Diagnosis (# Sextants) (# Correct) (# Correct)

cancer 15 14 7

no cancer 3 3 2

Table 6.3: Seminal vesicle evaluation for cancer invasion.

Seminal Vesicle Pathology [GT] T2 Score

Invasion (# Cases) (# Correct)

yes 2 1

no 1 0

The extent of consensus among the radiologists has also been calculated when

their average opinion was incorrect. For this, the radiologists’ scores were ternar-

ized into negative (1-2), undecided (3), and positive (4-5). First removing the unde-

cided scores so as to focus on the deterministic scores, the percentage of the scores

which yielded the incorrect average opinion was calculated; a larger percentage in-

dicates greater agreement amongst the radiologists. For the nine incorrect sextants

in Table 6.2, three had a consensus in the range of 85% - 100%, three were in the

range of 75% - 84%, and the remaining were in the range of 60% - 74%.

6.5.3 Physician Evaluation

The current system was shown to and discussed with a radiologist and positive

feedback was received from him. He noted the possible utility of the system for

surgery planning, and observed the utility of being able to manually indicate regions

and visualize shapes. Regarding the use of MRSI, he noted that it was most often

not of use, and was focused more on the T2-w and T1-w data. It was also observed

that the color scheme chosen was intuitive and easy to understand.
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Table 6.4: Sextant evaluation for hemorrhage.

Post-Biopsy Radiologists [GT] T1 Score

Hemorrhage (# Sextants) (# Correct)

hemorrhage 6 6

no hemorrhage 12 12
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Medical visualization is an important area of research. There is a high empha-

sis on using imaging modalities to assist in diagnosing cancer, and visualization

techniques help to improve the usability. The research presented here has been de-

veloped to aid in improving the diagnosis of three of the most prevalent cancers:

colon, lung, and prostate cancer.

Visualization is needed to make the large amounts of data more accessible to

the user. Research on virtual colonoscopy and virtual bronchoscopy has been on-

going for many years, and thus the research presented here can be considered as

extensions. In contrast, there has been little research on visualization for prostate

cancer detection, and the research here was performed as a basis for such a system

to develop from.

The integration of VC techniques into the typical OC is an interesting field of

research, and herein were provided two possible ideas towards such a larger system.

The first is a method of removing the radial distortion from the endoscopic images

so that they appear with normal perspective distortion instead. Also, a method of

creating a correlation between the VC centerline and the OC hugging corners path

was proposed.

Supine-prone colon registration allows for matching regions from two sepa-

rately scanned colons of the same patient to be presented to the user in an intuitive

manner so that they can be easily compared. Presented herein was a method for

performing this work based on quasi-conformal mapping. The results from this are

rectangular maps that are one-to-one and onto, allowing for corresponding visual-

izations in both the 2D and 3D domains.

Using a 3D mesh model of a colon as a map presents problems during naviga-

tion, as occlusions can cause questions to be raised as to one’s precise location. To

mitigate this problem, a map with no occlusions would be useful, and a 2D map

109



would be preferred so that the entire colon surface can be viewed at once. For this,

a method was presented which will create a 2D boundary based on the centerline of

the colon and then the colon surface is mapped to this 2D boundary.

The idea of a context preserving parameterization of a mesh model can also be

applied to treelike structures, such as the bronchi or blood vessels. However, this

is not a straight extension of the technique. In treelike structures, new items must

be taken into account, such as the order of branch placement and preservation of

depth to display to the end user. In accounting for these, a technique was developed

which was shown to yield better results for searching and identifying regions.

For the prostate, the idea of a 3D visualization system for exploring MRI scans

for diagnosis is new. Presented was a method to create score volumes from the MR

data, which can then be rendered as desired by the user. Also included in the render-

ing are the surrounding anatomy (rectum, pelvis, and bladder). Special rendering

modes, such as visibility persistence and interactive region painting, further allow

the user to experiment with the data.

7.2 Future Work

There are several available directions for future work for the colon, the prostate,

and other related organs. For the colon, there is the possibility of improving reg-

istration quality through the use of thickly segmented colon walls. There is also

interest in developing better tools for analyzing the structure of polyps. For the

prostate, there are several further MR acquisition modes which can be analyzed

and integrated into the visualization system, as well as possibilities for treatment

simulations. These future directions can be divided into short term and long term

goals.

7.2.1 Short Term

Using an outer wall colon segmentation, it is possible to map a thick colon

surface to a volumetric cuboid [163]. This has possibilities for use in improving

the registration quality. By mapping both supine and prone to volumetric cuboids,

a volumetric rather than simply surface registration can be achieved. Challenges

for this further research include identifying additional features both on the outer

wall boundary as well as within the colon wall to use in performing the registration.

Though not discussed in this work, such thick colons would also have the possibility

of assisting in improving CAD results [49].

Similar to the proposed work for thick volumetric registration of tetrahedral

colons, registration of prostate models can be similarly performed. The prostate
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(a) Colon wall volume (b) Volumetric flattening (c) Side/front/back render views

(d) Colon wall volume (e) Volumetric flattening (f) Side/front/back render views

Figure 7.1: Rendering of a flattened volumetric colon wall. (a) and (d) Colon wall volumes

with triangulation. (b) and (e) Flattening results. (c) and (f) Volumetric rendering results

as electronic biopsy images, with side, front, and back views. The tissue density is color

encoded, the yellow and red colors represent the higher density, the blue color the lower.

models can be mapped to canonical spheres, which can then be aligned through

the use of feature points. The deformed prostate model can then be restored to the

original shape of its match.

In addition to the three basic MR modes explored in this work, there are a num-

ber of further modes which are being explored in the medical domain for the iden-

tification of prostate cancer. Diffusion-weighted imaging can be used to create

apparent diffusion maps, in which cancer will show lower values than normal tissue

[36]. Dynamic contrast-enhanced MRI has also been used, where the tumor will

have a faster wash-in and wash-out [55]. Further work on preserving the hues of

various colors might also be applicable to the custom user painting ability and the

2D slice overlays as more color choices are used [18].

7.2.2 Long Term

It would be very helpful for doctors to have the ability to provide diagnostic

information from VC to identify cases where OC can be avoided or to identify

which polyps are necessary to be removed. Although the electronic biopsy method

111



(a) (b) (c)

Figure 7.2: Example of a discrepancy between prone and supine views of a polyp. (a) The

prone electronic biopsy view shows significant high density throughout the polyp (red col-

oration). (b) The supine electronic biopsy view shows much lower density within the center

of the polyp (green coloration) and less prevalent high density around the periphery. (c)

The polyp is located within a pool of tagged material in the supine, leading the radiologist

to believe that the observed discrepancy is the result of subtraction artifacts from the digital

cleansing.

has been developed as a method of allowing the user to gain insight into the structure

of a polyp, it is not yet ready to act as a primary mode of diagnosing polyp pathology

[88]. In looking at the ability of a radiologist to determine whether a polyp was

benign or an adenoma, the overall accuracy when using the combined score was

only 77%. When looking at the sensitivity and specificity values, much of the error

came from false positive results. Indeed, the overall sensitivity is quite good for the

total score at 93%. However, the specificity of 43% is extremely low.

Digital cleansing can cause problems with the electronic biopsy function, such

as in the case of the polyp shown in Figure 7.2. For this polyp, a score of definitely

an adenoma was assigned for the prone electronic biopsy and a score of probably

not an adenoma was assigned for the supine electronic biopsy. The polyp was

indeed a tubulovillous adenoma. The radiologist made a note on this case that he

did not believe the supine image and that the erroneous electronic biopsy view was

probably the result of a subtraction artifact due to the electronic cleansing. While

electronic cleansing methods for tagged materials are popular, they can obviously

have effects on the electronic biopsy technique, which relies solely on the intensity

values from the CT data. More investigation is needed to mitigate this problem.

Knowledge from this and future studies can be used to improve the abilities

of a virtual colonoscopy system to provide accurate diagnostic information on the

pathology of colonic polyps. In addition to modifying the translucent transfer func-

tion used in generating the electronic biopsy images, another possibility is to use a
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segmentation of the colon outer boundary [8]. With this, the ray integration through

the colon would be limited so as to not reach any structures beyond the colon. The

hope is that at a future date the electronic biopsy can be applied as a primary means

of diagnosis, allowing for a reduction in the number of patients that are referred for

the invasive OC procedure based on VC findings.

Further research work on bringing doctor interaction more into the visualization

domain can be looked at for visualization for assistance in treatment planning for

prostate cancer. There has been work performed on simulating laser therapy for

BPH [166]. Radiotherapy simulations have been performed for the liver [121], and

similar techniques would be applicable to the prostate. Simulation of safe methods

of entry into the body to reach the prostate could also be of interest [62]. Applying

these various methods to the prostate is a further possibility.

113



Bibliography

[1] B. Acar, S. Napel, D. S. Paik, P. Li, J. Yee, R. B. Jeffrey, Jr., and C. Beaulieu.

Medial axis registration of supine and prone CT colonography data. Proc.

of Engineering in Medicine and Biology Society (EMBS), pages 2433–2436,

Oct. 2001.

[2] M. Ament, D. Weiskopf, and H. Carr. Direct interval volume visualization.

IEEE Trans. on Visualization and Computer Graphics, 16(6):1505–1514,

Nov. 2010.

[3] P. Angelelli and H. Hauser. Straightening tubular flow for side-by-side

visualization. IEEE Trans. on Visualization and Computer Graphics,

17(12):2063–2070, Dec. 2011.

[4] K. V. Asari, S. Kumar, and D. Radhakrishnan. A new approach for nonlinear

distortion correction in endoscopic images based on least squares estimation.

IEEE Trans. on Medical Imaging, 18(4):345–354, Apr. 1999.

[5] C. Bachmaier. A radial adaptation of the Sugiyama framework for visual-

izing hierarchical information. IEEE Trans. on Visualization and Computer

Graphics, 13(3):583–594, May-June 2007.

[6] C. Bachmaier, U. Brandes, and B. Schlieper. Drawing phylogenetic trees.

Proc. of International Symposium on Algorithms and Computation, pages

1110–1121, 2005.

[7] A. V. Bartrolı́, R. Wegenkittl, A. König, and E. Gröller. Nonlinear virtual
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