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Abstract of the Thesis

Performance study of Cascade Reconstruction at

the Glashow Resonance in IceCube

by

Hans Niederhausen

Master of Arts

in

Physics

Stony Brook University

2012

IceCube is a one cubic kilometer neutrino telescope at the South Pole. Its primary goal is to

discover high energy cosmic neutrinos and anti-neutrinos from astrophysical sources. Observa-

tion of the spectrum near the characteristic energy Eν ≈ 6.3 PeV of the Glashow resonance, the

interaction of anti-neutrinos with atomic electrons via ν̄e + e− → W−, is of particular interest.

Since the cross section for this process can be calculated from first principles, it is possible to

quantify separately the fluxes for neutrinos and anti-neutrinos if the resonance is observed above

a continuum. In turn, such a separation will give unique insights into the astrophysics properties

of the sources.

We conducted the first IceCube performance studies and optimizations for likelihood-based algo-

rithms to reconstruct (anti-)neutrino-induced particle showers (cascades) in the energy range of

the Glashow resonance using simulated data from electron (anti-)neutrino Monte Carlo genera-

tors and detector response simulations. For hadronic showers in the energy range 1 PeV < Eν <

10 PeV that are well contained within the IceCube instrumented volume, we achieved an energy

resolution of 10% < σ (∆E/E) < 14% depending on the ice model and the shower position in the

detector. The position and direction resolution varied between 1.1 m < σ (∆x,∆y,∆z) < 4.2 m

and 8◦ < θRMS < 27◦, respectively. We verified and refined the methods on experimental

data using an in-situ laser as a pulsed light source with constant brightness and a single wave-

length of λ = 337 nm. The energy resolution for reconstructed laser events was found to be

σ (∆E/E) = 1.8% from the reconstructed energy of E ± δEstat = (527± 9) TeV, where the

uncertainty is statistical. For 83%− 92% of the laser events, we reconstructed the zenith angle
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to within ∆θ < 2◦ and found a position resolution of 0.3 m < σ (∆x, y, z) < 0.4 m from the re-

constructed positions. The existence of considerable systematic effects is evidenced by a shift of

the reconstructed laser position from the true position by 3.7 m. Such effects arise, for example,

from differences in photon propagation at different wavelengths. The laser data represent a best

case scenario, in view of its illumination of the detector and the monochromatic laser emission.

The simulation results confirm IceCube’s capability to observe astrophysical neutrino fluxes near

the Glashow resonance and form a first demonstration, corroborated by an analysis of laser data,

of IceCube’s pointing capability with the cascade detection channel in this energy range.
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Chapter 1

Introduction to Neutrino

Astronomy

It is of greatest interest to understand the acceleration and propagation of high energy

cosmic rays. A large step forward would be to identify their sources. Such a search

based on the detection of the cosmic ray particles themselves is intrinsically difficult due

to the fact, that charged particles get deflected in galactic magnetic fields (B ∼ 3µG).

Only particles at the highest energies are less affected by magnetic deflection.

One approach to avoid this problem is to use the neutrino as cosmic messenger, which

can travel almost undeflected from its source to the detector due to its low interaction

cross-section with matter. It is because of this small probability of detection and the

typically low fluxes, that huge instrumented volumes are required in oder to accumulate

enough statistics, required for a possible discovery of extra-terrestrial high energy neu-

trinos.

The largest instrument, built up to date, possessing realistic chances to discover astro-

physical neutrinos, is the IceCube Neutrino Observatory [1], covering a cubic kilometer

of glacial ice at the South Pole. IceCube has been collecting data since 2006 in different

partial configurations during its construction. It was completed in December 2010. Ice-

Cube detects the Cherenkov light, radiated by charged leptons, which are created when

neutrinos interact in or near the detector, starting at ∼ 100 GeV up to ∼ 100 EeV.

Its main goal, the discovery of extra-terrestrial high energetic neutrinos, is yet to be

achieved. In that context the Glashow Resonance process is particularly interesting.

At an energy of Eν̄e = 6.3 PeV electron anti neutrinos possess a drastically enhanced

probability to interact with atomic electrons, while traversing the detector. A discovery

of that resonance would likely imply the first observation of astrophysical neutrinos in

IceCube.
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1.1 Cosmic Rays

Cosmic rays denominate extra-terrestrial particles, which impinge on earth’s atmosphere

and produce extensive air showers of secondary particles. Most primary nucleons are

free protons (79%). About 70% of the remaining fraction are bound Helium nuclei [2].

Small contributions of heavier nuclei [3] exist. Our current knowledge about the ener-

getic distribution of incident high energetic cosmic rays, as measured by various such

experiments, is summarized in Figure 1.1.

At energies below 100 TeV one typically performs direct measurements of the primary

cosmic rays in balloon or satellite based experiments, to extract charge, mass and energy

of the respective particle. However at larger energies due to the low fluxes (less than

one particle per km2 and century above 100 EeV [3]) by far larger collective areas are

necessary for detection, hence direct measurements are not feasible anymore. Informa-

tion about high energetic cosmic rays is thus provided by large earth based air shower

experiments, which infer the properties of the primary particle from the measured ob-

servables of the air shower.

The Cosmic Ray Spectrum
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Figure 1.1: The flux of high energetic cosmic rays as measured by various experiments,
weighted with E2.6. The transition into the knee region (at 1015 eV) and the transition
from the knee region to the ankle (at 3×1018 eV) are clearly visible. At highest energies
several measurements are consistent with the presence of a cut-off. (Figure from [2])

The cosmic ray spectrum, shown in Figure 1.1, can be described as a series of power
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laws (E−γ , with γ being the spectral index) which holds over 8 orders of magnitude in

energy and about 24 orders of magnitude in flux [4]. It can be characterized as follows:

• 100 GeV < ECR < 1 PeV: γ ≈ 2.7

• 1 PeV < ECR < 3 EeV: γ ≈ 3.0 (knee)

• 3 EeV < ECR < 30 EeV: γ ≈ 2.6 (ankle)

This spectrum has two interesting regions: the steep knee region and the high energy

ankle, which is cut off around 30 EeV [4]. Although until today the physical processes

which cause the change of the spectrum at the lower bound of the knee region are not un-

ambiguously identified, two scenarios are generally discussed. One idea is that the begin

of the knee region indicates an upper bound of energies, to which galactic supernovae,

a favored candidate source for cosmic rays up to PeV regime, could accelerate particles.

Another explanation could be leakage of particles from the galaxy, since above a certain

energy the galaxy is expected not to be able to confine those particles anymore. This

bound can be approximately estimated using the following relation between the Larmor

radius rL of a proton and the strength of the galactic magnetic field B [3]:

rL = 1.08 pc
E/PeV

Z ·B/µG
(1.1)

where Z is the atomic number. From this one can see that the energy cut-off increases

for heavier nuclei. The kink in the spectrum is thus thought to be the energy at which

the proton energy is cut-off. The knee region is then made up from the fluxes of heavier

nuclei with their individual cut-offs along the knee. The ankle might indicates a change

from dominantly galactic cosmic rays to those of extra-galactic origin, which may have

been accelerated to higher energies, thus having a harder spectrum [4]. The presence

of an overall cut off at energies around 30 EeV in the cosmic ray spectrum has been

observed by the HiRes [5], Auger [6] and Telescope Array[7] experiments, rejecting an

earlier non-confirmation of the AGASA experiment [8].

The GZK Limit

This natural end of the spectrum is particularly interesting since it was predicted already

in 1966 by Kenneth Greisen [9] and independently by Vadim Kuzmin and Georgiy Zat-

sepin [10] to appear around 50 EeV. They attributed the cut-off to be due to interactions

between cosmic ray protons and photons of the cosmic microwave background, which

lead to resonant ∆ (1232)-production and subsequent decay into nucleons and pions.

p+ γ → ∆→ p+ π0 (1.2)

p+ γ → ∆→ n+ π+ (1.3)



Chapter 1. Introduction to Neutrino Astronomy 4

This means that only sources within the “GZK-horizon” will contribute to the corre-

sponding flux of UHE cosmic rays observed at earth. For example 90% of the protons

with E > 60 EeV, observed at earth, have been produced within L = 130 Mpc [11].

As for now it is not unambiguously clear, that the CR cut-off, observed in various ex-

periments, is due to the processes mentioned above, or whether the CR sources simply

can not provide the required energy above this threshold. Both scenarios could be dis-

tinguished by observing neutrinos produced by the decay of charged pions, which were

created in GZK interactions:

π+ → µ+ + νµ (1.4)

µ+ → e+ + νe (1.5)

In case the GZK cutoff is realized in nature, those neutrinos should contribute to the

diffuse flux of astrophysical neutrinos, which neutrino telescopes like IceCube aim to

observe.

Candidate Source of Cosmic Rays

There has been a long term interest in the sources of cosmic rays. Up to know it is not

known where these particles get accelerated to their enormous energies (up to 1020 eV).

However some considerations allow to largely constrain possible sources. First, the ge-

ometry of the respective object should be such that the particle can be trapped inside

the source while being accelerated. Secondly the source should have enough energy to

provide the particles with the required power. Furthermore the acceleration process in

the source should not lead to a massive emission of radiation in form of photons or

neutrinos in order not to conflict with already established flux limits on earth. The

geometric constraint can be expressed as rL ≤ R (with R being the source “radius”, i.e

its extension). This yields a maximum particle energy Emax, which a source of extension

R and average magnetic field strength B is capable to confine [12], as was first suggested

by A. M. Hillas in 1984 [13].:

Emax ≈ 0.03 · η · Z · B
G

R

km
GeV (1.6)

η is a source efficiency factor.

Viable cosmic ray sources can thus be visualized in the B-R parameter space, the so

called Hillas-Plot (Figure 1.2). Among all the possible sources, which fulfill the neces-

sary but not sufficient conditions, shown in Figure 1.2, the most promising are AGNs

(Active Galactic Nuclei) and GRBs (Gamma Ray Bursts).
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Figure 1.2: The figure shows possible sources of Cosmic Rays according to the Hillas
criterion (Active Galactic Nuclei,GRBs, etc.). The influence of the source movement
is depicted by showing the relation for different bulk lorentz boosts Γ. An optimistic
acceleration efficiency of η = 1 is assumed. (Figure from [12])

Active Galactic Nuclei are the very bright regions in some galaxies, which host su-

permassive black holes. Gravitationally bound material forms an accretion disc, which

heats up due to dissipative processes, leading to intense emission over a large range

in the electromagnetic spectrum. In some AGNs relativistic jets have been observed,

which are typically produced in the accretion disc. These jets could constitute an en-

vironment in which so-called first order Fermi acceleration might happen. Given typ-

ical properties of an AGN like its extension, which is of the order R ∼ 1.5 · 1010 km,

and magnetic field strengths in the center of B ∼ 300 G (for a black hole with mass

m ∼ 109MΘ ∼ 2 · 1030 kg), these objects could confine particles up to Emax ∼ 150 EeV.

Electrostatic processes in the black hole magnetosphere would then allow for an accel-

eration up to 100 EeV [4]. In 2007 the Pierre Auger Collaboration announced to have

found a correlation between the arrival directions of their highest energetic cosmic ray

events (ECR > 57 EeV) and the locations of known AGNs. The hypothesis of their ar-

rival directions being isotropic was rejected at 99% confidence [14]. Nevertheless it was

not possible to unambiguously deduce that AGNs are the long searched source, since

their location is itself correlated with the abundance of nearby matter, i.e. galaxies.
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Furthermore additional data collected by Auger drastically lowered the significance of

this observation and their claim did not persist [15].

Gamma Ray Bursts are the most violent electromagnetic processes, so far observed

in the universe. They release large amounts of energy in a short flash of gamma rays,

typically on a timescale of milliseconds up to one minute. Multiple shock regions formed

by these events are the potential zones in which cosmic rays might get accelerated to

their energies. Typical magnetic fields are of the order of B ∼ 106 G at a distance of

R ∼ 107 km of the center, allowing for acceleration up to 100 EeV [4]. The recently

published non-observation of neutrino events correlated in space and time with known

GRBs by the IceCube Collaboration, either strongly challenges current GRB models or,

given these models are correct, disfavors GRBs as being the source of UHECRs [16].

Fermi Acceleration

It is important to model the acceleration processes, which give rise to the observed en-

ergy spectrum. A first explanation was published by Enrico Fermi in 1949. He proposed

moving magnetic fields, created by wandering matter clouds of the interstellar medium,

as being mainly responsible for the acceleration [17]. Charged particles in the vicinity

of these clouds would spiral along magnetic field lines and scatter of inhomogeneities,

which are present in such fields. Given the random nature of these scatterings, some

particles will loose and some particles will gain energy. Assuming elastic scattering of

the inhomogeneities, Fermi showed that in this model a relativistic particle would on

average gain energy per scattering, and this gain would be proportional to the square of

the ratio between the (non-relativistic) velocity V of the cloud and the vacuum speed of

light c [18]:

〈
∆E

E

〉
=

8

3

(
V

c

)2

(1.7)

It can be shown that this model naturally predicts a power-law energy spectrum [18]:

N (E) ∝ E−x (1.8)

with x = 1 + (ατesc)
−1 and τesc being the time scale, for which the particle stays in the

acceleration region. α describes the rate of the energy increase dE
dt = αE = 4V 2

3cL with

L being the mean free path between clouds along a magnetic field line. This so called

second order Fermi acceleration leads to a slow energy gain per particle. Following the

line of argument of Fermi, a more efficient mechanism was proposed by several groups

in the late 1970s [19][20][21], the so called diffusive shock acceleration, also known as

first order Fermi acceleration. Given a strong shock, which propagates through a diffuse
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medium at super sonic speeds, the average energy gain per particle scales linearly with

the ratio between the (still non-relativistic) velocity of the shock V and the speed of light

c, when the particles cross from the upstream (in front of the shock) to the downstream

(behind the shock) region (and vice-versa) [18]:〈
∆E

E

〉
=

2

3

(
V

c

)
(1.9)

This scenario predicts the following energy spectrum

N (E) ∝ E−2 (1.10)

for primary particles emitted from the respective source.

1.2 The Neutrino and its role in the Standard Model

The neutrino was first proposed in 1930 as a neutral spin-1
2 particle by Wolfgang Pauli,

in an attempt to resolve the tension between observations in the context of β-decay and

the energy conservation law [22]. The first theoretical description was given by Enrico

Fermi in 1934 who concluded, that the mass of the neutrino must either be zero or at

least very tiny compared to the mass of an electron [23]. However due to the small

probability of neutrino interactions with matter, it took more than 20 years until it was

first observed by the team of Cowen and Reines in 1956, who used reactor neutrinos to

observe inverse beta decay in a liquid scintillator [24]. Since then various experiments

concerning the neutrino but also other particles and their interaction have led to a con-

sistent picture of physics at the smallest scales, the Standard Model of particle physics.

The Standard Model of Particle Physics

The Standard Model (SM) describes the interplay between all presently known particles,

induced by the known fundamental forces, except gravity. In this model the forces are

mediated by exchange of the so called gauge bosons. The strong force, which acts among

particles, that possess color charge, for example protects larger nuclei from disintegra-

tion due to repulsive electromagnetic forces. The corresponding mediators are eight

massless gluons. The well-known electromagnetic force which exists between particles,

that carry electric charge, is mediated by the massless photon. Neutrinos interact via

weak interactions, since they carry neither electric nor color charge. This interaction

acts on the weak isospin of a particle and is caused by the exchange of the massive W±

and Z0 bosons. Since β-decay is a weak process, it is not surprising that the neutrino
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was first proposed in that context. Unfortunately up to now it was not possible to in-

clude gravity in that description. However since gravitational interactions are negligible

in strength, compared to the other three forces at all energy scales relevant for current

(and probably future) measurements, the Standard Model with that respect provides a

complete description of particles dynamics.

The particle content of the Standard Model can be divided according to the spin of the

respective particle in scalar particles (Spin 0), fermions (Spin 1
2) and gauge-bosons (Spin

1). The fermions, which make up the matter particles, can subsequently be organized

as leptons, which do not participate in strong interactions, and quarks which do. Since

for this thesis mainly the weak part of the Standard Model is of interest and only left

handed particles (right handed anti-particles) participate in those interactions, we can

represent this fermionic structure as follows:

Leptons: (
νLe

e−L

) (
νLµ

µ−L

) (
νLτ

τ−L

)
(1.11)

Quarks: (
uL

dL

) (
cL

sL

) (
tL

bL

)
(1.12)

Each fermonic particle in the SM is accompanied by an anti-particle (not shown above).

The electromagnetic and weak part of the SM were shown to originate from one fun-

damental interaction, the so-called electroweak interaction described in the Glashow-

Weinberg-Salam model [25] [26], unifying both interactions above energies ∼ 100 GeV.

1.3 Neutrino Interactions with Matter

In neutrino astronomy with IceCube it is important to understand interactions between

the neutrinos and the matter constituents of the glacial ice. These are electrons and

nucleons. Neutrino-electron scattering due to its small cross-section typically is negligi-

ble1.

Neutrino-Nucleon Scattering - DIS

At energies which are of interest to IceCube (E > 100 GeV) all scatterings between

the primary neutrino and the nucleons of the ice happen inelastically, which means,

1Neutrino electron scattering becomes important only in the vicinity of the Glashow Resonance at
energies around Eν = 6.3 PeV
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that the typical momentum transfer Q2 to the nucleon target is such, that the nucleon

fragments into hadrons (Q2 > 1 GeV2), which subsequently due to various strong inter-

actions gives rise to a hadronic shower. Given such a momentum transfer, the process

is well described by the parton picture of nucleons being composite objects made of

non-interacting quarks. Hence in this regime neutrino nucleon scattering really means

neutrino quark scattering and is referred to as Deep Inelastic Scattering (DIS, see figure

1.3).

From a fundamental point of view nucleons are to be regarded as dynamical objects.

They consist of three valence quarks, which continuously interact strongly. Hence in ad-

dition to the valence quarks, a nucleon further consists of gluons, which mediate those in-

teractions, and so-called sea quarks, which denote virtual quark anti-quark pairs, created

in higher order interactions. Due to the asymptotic freedom in QCD, those interactions

between the nucleon’s constituents weaken with increasing Q2. Above Q2 = 1 GeV2 they

are negligible over the timescale of the scattering and hence during such an interaction

the participating constituents (valence quarks and sea quarks) appear as non-interacting,

free particles. In this approximation the nucleon structure then is independent of the

momentum transfer Q2. This is known as Bjorken scaling and becomes more and more

accurate with increasing Q2. An additional approximation, used to describe DIS pro-

cesses, concerns the momentum of the interacting quark. Since for a fast moving nucleon

the transverse momentum of its constituents is negligible compared to their longitudinal

motion, the interacting quark is assumed to carry a fraction ξ of the total nucleon’s

momentum P with pq = ξP . For Q2 > 1 GeV2 this fraction ξ equals the Bjorken scaling

variable x = Q2

2Pq = Q2

2Mν . The last equality only holds in the rest frame of the proton,

with M being its mass and ν denoting the energy, transferred from the neutrino to the

proton system. The momentum fraction x is used to characterize the kinematic distribu-

tions of the nucleon’s quark content in form of the parton distribution functions fi (x).

They describe the probability that the primary neutrino interacts with a quark of

q

W∓

P+

νe, νµ, ντ

Xp

q′

e±, µ±, τ±

q

Z0

P+

νe, νµ, ντ

Xp

q′

νe, νµ, ντ

Figure 1.3: Deep Inelastic Neutrino Nucleon Scattering (leading order): Charged
Current interaction via W-boson (left), Neutral Current interaction via Z boson (right).

type i carrying a momentum fraction x. They are normalized according to the valence

quark content, with valence quarks being dominant in the region at large x and sea
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quarks being important at low x. These distributions slowly vary with Q2 in the region,

where valence quarks dominate. Strong violations of Bjorken scaling exist in the region

of small x [27].

In charged-current interactions (CC) the incoming neutrino interacts with the nucleon

via W± exchange (left graph in figure 1.3). This results in an emerging charged lep-

ton and the already mentioned hadronic shower. This is opposed to neutral-current

interactions (NC) in which the scattering is mediated by the Z0-boson. Here the neu-

trino simply exchanges momentum with the nucleon, which subsequently produces a

hadronic shower and an outgoing neutrino (right graph in 1.3). The corresponding DIS

cross-sections, a measure for the probability of these processes to happen, have been

calculated using electroweak theory in [28]. In order to avoid treating neutrons and

protons separately, they assumed iso-scalar nucleons N := n+p
2 , which can be thought

of being an admixture of the quark contents of both. Up to 104 GeV the cross-sections

scale linearly with the incident neutrino energy [28]:

for CC-interactions (inclusive) ν`N → `± +X:

d2σ

dxdy
=

2G2
FMEν
π

(
M2
W

Q2 +M2
W

)2 [
xq
(
x,Q2

)
+ xq̄

(
x,Q2

)
(1− y)2

]
(1.13)

for NC-interactions (inclusive) ν`N → ν` +X:

d2σ

dxdy
=

2G2
FMEν
π

(
M2
Z

Q2 +M2
Z

)2 [
xq0

(
x,Q2

)
+ xq̄0

(
x,Q2

)
(1− y)2

]
(1.14)

The cross-sections above are differential in the Bjorken variables x and y = ν
Eν

with

ν = Eν−Eµ (for NC ν = Eν−E′ν) being the energy lost to the nucleon in the lab frame.

M and MW/Z denote the masses of the nucleon and the weak bosons respectively, with

the Fermi constant GF =
√

2g2

8M2
W
≈ 1.17×10−5 GeV−2 being the coupling constant of weak

interactions below the electroweak unification. q, q̄, q0, q̄0 denote different superpositions

of parton distribution functions (see [28] for details). At PeV energies about 26% of the

neutrino energy gets deposited into the hadronic shower (〈y〉 = 0.26) [29].

The parton distribution functions, used in the results given above, cannot be calculated

analytically, so they have to be extracted from measurements and subsequently extrapo-

lated into kinematic regions, that are not accessible by those experiments. The difficulty

here lies in the fact that with increasing neutrino energy, interactions at small values

of x (down to x ∼ 10−8 at 1012GeV [30]) have to be described [31]. In a second step

violations of Bjorken scaling, (i.e. the Q2 dependence) have to be calculated by evolving

the parton functions in Q2 using the DGLAP equations. Important constraints come

from the HERA electron-proton collider located at DESY in Hamburg. From their mea-

surements parton distribution functions up to an equivalent of 54 TeV neutrino energy
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have been extracted, covering the region x ≥ 10−5 [30]. Global fits to various experi-

mental results are for example provided by the CTEQ Collaboration [32]. According to

the CTEQ4-DIS parametrization the neutrino DIS cross-sections scale as follows in the

range between 107 GeV ≤ Eν ≤ 1012 GeV above Eν = 10 TeV [28]:

σtot (νN) = 7.84 · 10−36cm2

(
Eν

1 GeV

)0.363

(1.15)

σtot (ν̄N) = 7.80 · 10−36cm2

(
Eν

1 GeV

)0.363

(1.16)

The uncertainty of UHE neutrino nucleon cross-sections due to different extrapolation

schemes has been estimated to be within a factor of 2 [28]. One of those extrapolations

is shown in figure 1.4. Below that threshold, they scale linearly with the neutrino energy.

Figure 1.4: The figure shows the energy dependence of the neutrino-nucleon and
neutrino-electron scattering cross-sections for neutrinos and anti-neutrinos respectively.
The figure is taken from [33] and is based on data from [31]

Given a flux of high energy neutrinos, IceCube measurements may be able to constrain

the uncertainty in the parton distribution functions using the fact that an isotropic flux

of high energy astrophysical neutrinos is expected to produce a zenith dependent neu-

trino event rate in IceCube. This is because the interaction length lint = 1
nσνN

(with n

being the number density of targets and σνN denoting the neutrino-nucleon scattering

cross section) remains constant with increasing zenith angle, while the distance, the neu-

trino would have to travel through the earth to reach the detection volume, increases.

Since above 1 PeV the earth becomes opaque for neutrinos, a clear asymmetry between

the rates for up and down going neutrinos would allow to measure parton distribution

functions at energies complementary and above the range of current collider experiments
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[34]. Such a strategy however requires the analysis to provide enough zenith resolution

in order to distinguish both directions. In this context this thesis provides a feasibility

study by investigating the reconstruction performance of shower reconstruction algo-

rithms at PeV energies, which are currently used in IceCube.

The Glashow Resonance

Neutrino-electron scattering typically is negligible compared to neutrino-nucleon scat-

tering. However one exception exists. For electron anti-neutrinos, which scatter of elec-

trons, a unique interaction channel exists. At an electron anti-neutrino energy of Eν̄e =

6.3 PeV, which corresponds to a center-of-mass energy of ECMS = MW = 80.4 GeV, res-

onant production of an on-shell W− boson becomes possible, which then subsequently

decays according to its decay modes (see table 1.5). This drastically enhances the neu-

trino interaction cross-section and can be thought of being an inverse muon decay, which

was first suggested by Sheldon L. Glashow in 1960 [35]. This resonance thus manifests

itself as a sharp peak in the neutrino-electron cross-section shown in figure 1.4. The

process is visualized in the respective Feynman graph in figure 1.5.

W−

e−

ν̄e

ν`, q̄

`−, q

W− Decay Modes Fraction(Γi/Γtot)

e−ν̄e (10.75± 0.13) %

µ−ν̄µ (10.57± 0.15) %

τ−ν̄τ (11.25± 0.27) %

hadrons (67.60± 0.27) %

Figure 1.5: Glashow Resonance: (Left) resonant s-channel scattering between elec-
tron anti-neutrino and electron, tree level. (Right) the respective branching ratios,
determined by the W−-decay, are given in the table.

The respective cross-sections are given by [29]:

for ν̄ee → ν̄µµ:

dσ

dy
(ν̄ee → ν̄µµ) =

G2
FmEν
2π

4 (1− y)2 (1− (µ2 −m2
)
/2mEν

)2(
1− 2mEν/M2

W

)2
+ Γ2

W /M
2
W

(1.17)

for ν̄ee → hadrons:

dσ

dy
(ν̄ee → hadrons) =

dσ

dy
(ν̄ee → ν̄µµ) · Γ (W− → hadrons)

Γ (W− → ν̄µµ)
(1.18)
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with m and µ being the masses of electron and muon respectively.

Since the decay widths into charged leptons are pretty similar, the cross-sections for

electron and tau production are almost the same as the cross section for muon produc-

tion. The total resonant cross-section ν̄ee → anything is about 360 times higher than

the charged-current neutrino-nucleon cross-section at this energy [29]. However due to

the small width of the resonance (ΓW = 2.05 GeV [36]) the cross-section rapidly drops

below the DIS cross-section for energies different from Eν = 6.3PeV . The main decay

channel of the W− into hadrons (∼ 70%) does not produce a secondary neutrino in the

final state. Hence the primary electron antineutrino deposits almost all its energy in the

detector.

Experimentally the Glashow Resonance has not yet been observed. Due to the lack

of artificial neutrino sources reaching far enough in energy, searches for that resonance

would have to rely on the natural neutrino abundance. Although not being discovered

yet, the existence of a flux of high energetic astrophysical neutrinos is expected from

various models describing for example cosmic ray acceleration. Hence a discovery of

the Glashow Resonance in IceCube would potentially imply two achievements at the

same time: the confirmation of a 50 year old prediction and the first observation of

high energetic astrophysical neutrinos. The study of the reconstruction performance of

current reconstruction algorithms at the energy of the resonance, done in this thesis, is

a starting point for such a search.

1.4 Extraterrestrial Neutrino Flux

The accelerated protons are still subject to interactions with the particle content of the

respective source, while being confined to the source region. These reactions produce

mesons (mainly pions) which subsequently decay giving rise to a flux of high energetic

astrophysical neutrinos.

π+ → µ+ + νµ (1.19)

π− → µ− + ν̄µ (1.20)

The muons further decay via µ+ → e+ + νe and µ− → e− + ν̄e. Since the neutrinos

are unaffected by magnetic fields, they leave the source after production. The flavor

ratios of those neutrinos depends upon the ratio between the charged pions π±, which

in turn depends on the source properties, determining the proton interactions during

acceleration. Among several models, which appear in the literature, for example [12],

two limits are most often used to discuss the implications for an experiment on earth:
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the pure pp source and the pγ source, which is assumed to be optically thin to neutrons

[12] [29]. In a pp source, the following interactions are assumed to dominate:

p+ p→ N
[
π0 + π+ + π−

]
+X (1.21)

with N being the multiplicity of the secondary pions [1]. This yields a flavor composition

at the source of (νe, νµ, ντ , ) = (ν̄e, ν̄µ, ν̄τ ) ≈ (1, 2, 0) which due to neutrino oscillation

over the large distance from source to the earth turns into (νe, νµ, ντ , ) = (ν̄e, ν̄µ, ν̄τ ) ≈
(1, 1, 1) [29]. In the case of photo-meson production in a pγ source the situation is

different. Protons are assumed to interact via the ∆-resonance with the light fields

present in the source [12].

p+ γ → ∆+ →

{
n+ π+ 1

3 of all cases

p+ π0 2
3 of all cases

This yields a flavor distribution at the source of (νe, νµ, ντ , ) = (1, 1, 0) and (ν̄e, ν̄µ, ν̄τ ) =

(0, 1, 0). This changes to (νe, νµ, ντ , ) ≈ (0.78, 0.61, 0.61) and (ν̄e, ν̄µ, ν̄τ ) ≈ (0.22, 0.39, 0.39)

at earth [29]. It is important to note that those two source models differs with respect to

the predicted ratio T̂ = Φν̄e
Φνµ+Φν̄µ

between the fluxes of electron antineutrinos and muon

(anti-)neutrinos at earth [12].

Suppose the fraction ε of the proton energy, which is deposited in the produced pion

during such collisions, is a constant (independent of the proton energy). Then the pri-

mary neutrino spectrum follows the proton spectrum at the source, as expected from

shock acceleration [37].

E2
ν

dNν

dEν
≈ ε

4
tHE

2
CR

dNCR

dECR
(1.22)

Here tH ≈ 1010 a denotes the Hubble time. NCR and ECR denote the amount and

energy of cosmic ray particles. The reduction by a factor of 1
4 in addition to ε ≈ 0.05

is due to neutral pions (do not contribute to neutrinos) being produced at equal rate as

charged pions during pγ encounters. In addition half of the pion energy gets deposited

in the muon neutrino during decay [37]. Expression (1.22) overestimates the neutrino

flux in the case of sources, that are dominated by pp interactions [38]. However the

neutrino spectrum should still follow the proton spectrum. These considerations can

be used to derive a theoretical constraint on the diffuse astrophysical neutrino flux,

also known as the Waxman-Bahcall upper bound, which does not depend on detailed

models of different sources (AGNs,GRBs, etc.). Given a cosmic ray generation rate of

E2
CR = 1044 erg Mpc−3 a−1 the subsequent neutrino flux should not exceed the following
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value [37]:

E2
νφνi =

εξz
2
· 1.5 · 10−8 GeV cm−2s−1sr−1 (1.23)

φνi ∈
{
φνe , φνµ , φν̄µ

}
(1.24)

The factor ξz accounts for redshift corrections and the fact that the universe at earlier

times may have had an enhanced cosmic ray production rate. Depending on the evolu-

tion of the neutrino energy generation rate with redshift z, ξz was found to vary from

ξz ≈ 3.0 to ξz ≈ 0.6 [37]. The bound also applies to pp dominated sources [38].

A diffuse flux is important in searches for astrophysical neutrinos, since, although single

sources of neutrinos may be to weak to be observed, the cumulative diffuse flux of a

collection of sources might be detectable [39]. The general strategy in such searches is

to look for a hardening in the observed neutrino spectrum. Conventional atmospheric

neutrinos, produced in pion and kaon decays in the atmosphere, follow a power law with

γ = 3.7. At higher energies a so-called prompt contribution to the atmospheric neutrino

flux from the decays of charmed mesons is expected to follow the harder cosmic ray

spectrum at earth with γ = 2.7. Prompt neutrinos should dominate the atmospheric

flux for Eν > 30TeV and are yet to be observed [39]. However both are significantly

softer then the expected astrophysical spectrum with γ = 2.0, as discussed above. In

Figure 1.6: The figure shows the upper limits on an astrophysical νµ flux based on
an assumed spectrum of E−2 as derived by several neutrino detectors. These limits
can be compared to various theoretical predictions. Furthermore the measured flux of
atmospheric muon neutrinos and its expectations are shown. (Figure from [40])
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IceCube such searches are performed in the track channel being sensitive to muon neu-

trinos and the cascade channel, being an all-flavor search. By using data accumulated

with the IceCube detector in its partial IC-22 (22 strings) configuration, a cascade anal-

ysis yielded an diffuse upper limit of E2φ90%CL < 3.6 × 10−7 GeV cm−2 s−1 sr−1 at the

90% confidence level. This analysis assumed a flavor ratio νe : νµ : ντ on earth of

1:1:1 [39] and was sensitive at neutrino energies between 24 TeV and 6.6 PeV. Based on

measurements in the track channel (νµ) with IceCube in its larger IC-59 (59 strings)

configuration, a preliminary upper limit on the diffuse flux of muon neutrinos has been

set at E2φ90%CL < 1.4 × 10−8 GeV cm−2 s−1 sr−1 [40]. The current status of searches

for diffuse fluxes of astrophysical neutrinos in the muon channel, as well as in all-flavor

searches, is summarized in figure 1.6 and compared to flux predictions of various models.

It was recently argued that a diffuse flux of astrophysical neutrinos - given it is strong

enough - is likely to emerge from the background of atmospheric neutrinos in the PeV

range (see Figure 1.6), which would then be close to the Glashow Resonance [29]. Hence

this resonance provides a promising opportunity to search for a diffuse flux of astrophys-

ical neutrinos due to its enlarged cross-section. Despite the enhanced cross-section the

Glashow Resonance provides additional unique features, which will be very interesting,

once a flux of such neutrinos has been discovered. Only electron anti-neutrinos have

the chance to interact via this resonance. Due to this asymmetry IceCube should have

sensitivity to the electron neutrino to anti neutrino ratio, which otherwise is impossible

to distinguish. Thus by determining the measured ratio T̂ at the Glashow Resonance,

statements about the asymmetry in the abundance of the charged pions in the source

region can be made, which may allow the identify the underlying dominant interactions

pp or pγ [12]. If the corresponding fluxes of neutrinos are strong, it my even be possible

Figure 1.7: Glashow Resonance Eventrates: Energy distribution of shower events
in IceCube at PeV energies for the case of pure pp-sources (left) and pure pγ-sources
(right). The Glashow Resonance is shown in red. (Figure from [29])

to separate both scenarios based on the energy distributions of the associated showers in
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IceCube, as shown in Figure 1.7 for pure pp-soures (left) and for pure pγ-sources being

dominant (right) [29]. The Glashow Resonance thus provides an interesting channel to

look for astrophysical neutrinos. With the recent observation of two neutrino induced

∼ 1 PeV particle showers [41], IceCube has already entered the era of PeV scale neutrino

physics. The discovery potential w.r.t. astrophysical neutrino fluxes of PeV neutrino

events is reflected in the fact, that, not including systematic uncertainties, those two

events already imply a preliminary 2.9σ deviation from the conventional atmospheric

neutrino background expectation [41].
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Chapter 2

Neutrino induced Cascades

This chapter covers the processes that give rise to the observable signatures of interest

in IceCube, which for the purpose of this thesis are the properties of neutrino induced

particle showers in the ice. Two different kinds of such showers can be distinguished.

An electromagnetic shower is produced when an incoming electron neutrino (electron

anti-neutrino) produces an electron (positron) in a charge current interaction. In con-

trast, whenever a neutrino of any flavor interacts with a nucleon via the neutral current

channel, a hadronic particle shower is initiated. None of those showers is purely elec-

tromagnetic or purely hadronic. First, the electromagnetic cascade, emerging from a

CC interaction, is contaminated with a hadronic contribution due the nucleon being

fragmented. Second, any hadronic cascade contains an electromagnetic component due

to electrons, positrons and high energetic photons being produced, when secondary pi-

ons decay. For simplicity, purely electromagnetic cascades will be considered first to

introduce shower development in general. In a next step the different phenomenology

of hadronic cascades will be discussed.

2.1 Passage of Electrons through Matter

An electromagnetic cascade is produced by the primary electron or positron via its en-

ergy loss in the ice. These mechanisms will be discussed in this section.

When an electron propagates through a medium such as ice, it interacts via different

channels with the particle constituents of the ice. First of all, the primary electron may

elastically scatter off a nucleus in the ice resulting in a change of its direction, while

not loosing energy. But given that this process is strongly forward peaked at IceCube

energies [42], it can safely be ignored. Secondly in inelastic Coulomb interactions the
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incoming electron can excite an electron in the atom into a different state or even ion-

ize the atom by providing more than the binding energy to the atomic electron. Both

processes reduce the energy of the primary electron. In addition, during an electro-

magnetic encounter the electron might emit a high energetic photon in a process called

Bremsstrahlung, dominating at high energies.

Excitation and Ionization

Energy losses of the primary electron through excitation and ionization of atoms in the

medium can be described using the ’mean stopping power’ formula, which was derived

by Hans Bethe in the late 1920s based on the cross-section for Moller scattering. Thus it

is only valid at high incident electron energies, when the typical energy transfer is large

compared to the binding energy of the target electron in the atom [42]:

Lion (E) ≡ −dE
dx

=
2πNZe4

mv2

{
ln

[
(γ + 1)E2

2I2

]
−
(

2

γ
− 1

γ2

)
ln 2 +

1

γ2
+

1

8

(
1− 1

γ

)2

− δ

}
(2.1)

with N being the number density of atoms in the material being transversed. The γ-

factor is defined as usual γ =

(√
1− v2

c2

)−1

; m and v denote the mass and velocity of

the primary electron, while Z and e are the atomic number and the elementary charge

respectively. The mean excitation energy I depends on the material. The δ-correction

term accounts for the so called density effect. An electron passing through the medium

with dielectric constant εr polarizes it, thus altering its subsequent interactions. For

highly relativistic electrons γ � 1 it contributes as follows [42],

δ = ln

[
γ2 (~ωp)2

I2

]
− 1, (2.2)

with ωp = 4π e
2NZ
m being the plasma frequency of the atomic electrons in the medium.

In this limit the energy loss becomes independent of the mean excitation energy I, thus

describing ionization only. The ejected electron (“knock-on electron”) can carry up to

50% of the primary electron. These so called δ-rays can still contribute to an electro-

magnetic shower [42]. However in water or ice most of them are produced at energies

below the Cherenkov threshold (Eth ≈ 0.26 MeV [43]) and hence do not contribute to

the light, visible in a Cherenkov detector.

Bremsstrahlung

The most important energy loss of the primary electron at energies relevant for IceCube

is given by bremsstrahlung, which was first described by Walter Heitler and Hans Bethe.

The cross-section (differential in photon energy) takes the following form in the extreme
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relativistic limit γ � 1 [42]:

dσ

dEγ
= 2αZ2

(
e2

mc2

)2
1

Eγ

[
1 +

E′20
E2

0

− 2E′0
3E0

] [
2 ln

2E0E
′
0

mc2Eγ
− 1

]
(2.3)

with E0 = Ekin + mc2 being the total energy of the incident electron. E′0 = E0 − Eγ
denotes the total energy of the scattered electron, with Eγ being the energy of the

radiated photon. The fine structure constant is given by α.

Hence the probability of radiating a bremsstrahlungs photon decreases with increasing

mass of the charged primary particle. Moreover from this relation it can be shown that

the energy loss rate is approximately proportional to the energy of the electron

Lrad (E) ≡ dE

dx
≈ −E

X0
(2.4)

E (x) = E0 exp

(
− x

X0

)
(2.5)

Here x describes the amount of material which was transversed: x = lρ, with ρ being

the mass density of the material. The mean radiation length is denoted by X0
1. It can

approximately be parametrized [42]:

1

X0
= 4NgαZ (Z + 1)

(
e2/mc2

)2
ln

183

Z1/3
(2.6)

with Ng being the atomic density of the target ([Ng] = g−1).

The number of bremsstrahlungs photons, which are produced per unit of transversed

material (g/cm2) with energies E ∈ [E1, E2], then is [42]

dN

dE
(E1, E2) =

2Lrad (E)

E

[
ln
E2

E2
− E2 − E1

E

]
(2.7)

The transition for bremsstrahlung to become dominant over ionization losses happens

in the MeV regime.

2.2 Electromagnetic Showers

In this section the basic properties of electromagnetic shower development in ice will be

described. Highly energetic electrons loose energy through radiation of photons during

momentum exchange with nucleons. These γ-rays are a key ingredient in the develop-

ment of a cascade. In the vicinity of the electric field of a nucleon, the photon is able to

deposit all its energy into the production of an electron-positron pair in a process called

1For water (and ice) the radiation length for bremsstrahlung is X0 = 36 g/cm2.
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pair-production. The electric field of the nucleon is needed for this process in order

to become kinematically possible. These processes, energy loss via bremsstrahlung and

subsequent bremsstrahlung, will iteratively be repeated, thus forming an electromag-

netic cascade.

Pair-Production

The photon needs to possess enough energy to create an electron positron pair. If the

momentum conservation is assured due to electromagnetic scattering with a heavy par-

ticle (i.e. the nucleus), the threshold energy for pair production is given by the rest

masses of the created particles Ethγ = 2mec
2. It was shown by Walter Heitler, that

in the high energy limit the pair production cross-section in the vicinity of a nucleon

becomes a constant [42]

lim
E→∞

σnucpair = αZ2
(
e/mc2

)2 28

9

[
ln

183

Z1/3
− 1

42

]
(2.8)

If one also includes pair-production in the vicinity of the Coulomb field of electrons in

the target (possible for Eγ > 4mec
2), the Z2 prefactor in eq. (2.8) has to be replaced

by Z(Z + 1) [42]. Neglecting the second term in eq. (2.8), the high energy limit of the

cross-section can be expressed in terms of the bremsstrahlung’s radiation length (2.6).

It is given by [44]

σtotpair =
7

9

1

NgX0
(2.9)

Hence the interaction length of pair-production Lpair and the radiation length of brem-

strahlung X0 are closely related Lpair = 9
7X0.

A simplified Model for electromagnetic Cascades

Cascade development is typically treated using Monte-Carlo simulations due to its highly

stochastic nature. However a better insight is provided by approaching the problem ap-

proximately in an analytic manner. A first description of shower development was given

by Walter Heitler in 1937 [45]. The simplest of his models [46] shall be summarized

here. As described, the number of particles (electrons, positrons and photons) in the

shower increases with the distance transversed by the primary particle, mainly due to

bremsstrahlung and pair production. This is only true until the energy of the particles

inside the shower drops below some critical energy Ec, since the cross-sections for both

processes decrease with energy and other energy loss mechanisms become important.

This threshold can be defined as the energy at which the energy loss over one radiation

length equals the electron energy. The critical energy can be parametrized (for solids)
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as follows [44]:

Ec =
610 MeV

Z + 1.24
(2.10)

The critical energy for ice is Ec = 80 MeV [33].

Now following [46] consider an incident high energetic electron with energy E0. It

is assumed that this electron radiates a photon with energy Eγ = 1
2E0 after having

transversed one splitting length d = X0 ln 2, which corresponds to the distance, after

which the electron has lost half of its energy. In the next iteration the the photon creates

an electron-positron pair over the same splitting length2. This process is visualized in

Figure 2.1. It repeats until the energy of the particles inside the shower reaches the

critical energy, where the shower is assumed to stop. This is visualized in Figure 2.1.

After n steps the shower consists of in total Np = 2n particles (electrons, positrons and

Figure 2.1: The figure shows a simplified model of electromagnetic shower develop-
ment (Figure from [46])

photons). The length of the shower then amounts to L = nX0
ρ ln 2. The primary electron

energy E0 can be related to the critical energy using the maximum number of iterations

nmax:

E0 = EcNp = Ec2
nmax (2.11)

The shower maximum is thus reached at

Lmax =
X0

ρ
ln
E0

Ec
(2.12)

From there on can give a rough estimate of the length of a 1 PeV cascade in ice

(
(
X0
ρ

)
ice

= 39.3 cm [44], Eicec = 80 MeV) of Licemax (1PeV ) ∼ 6.4 m. The key features

2reminder: bremsstrahlung and pair production have almost the same radiation length
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of this model are, that amount of secondary particles in the shower at its maximum is

proportional to the primary energy E0, and that the length of the shower increases log-

arithmically with the primary energy E0. While overestimating the number of charged

particles of the shower, the position of the shower maximum was shown to agree well with

simulations [46]. Finally since the number of Cherenkov photons emitted per charged

particle and splitting length Nd
γ is a constant for highly relativistic particles (eq. (2.19)),

the model predicts that the primary energy E0 of such a cascade is proportional its total

Cherenkov light yield Nγ , and vice-versa [47]:

E0 ≈
3

4

Ec
Nd
γ

N tot
γ (2.13)

The linear relationship between cascade energy E0 and light yield Nγ is extensively used

during event reconstruction.

As final remark: it was shown in simulation that the longitudinal energy loss of a cascades

in units of the radiation length t = x
X0

is better approximated by a gamma distribution

[44].

dE

dt
= E0b

(bt)a−1 e−bt

Γ (a)
(2.14)

For water the following parameters hold: a = 2.03 + 0.604 ln E0
GeV and b = 0.633 [48].

2.3 Hadronic Showers

The description of hadronic showers is more involved, since in addition to the electromag-

netic processes, hadronization needs to be considered. First the light yield of a hadronic

cascades is smaller than the light yield of an electromagnetic cascade with the same en-

ergy, since in hadronic cascades some of the energy gets deposited into neutrons, as well

as in binding energies during hadronization processes [49]. Furthermore the Cherenkov

threshold for hadrons is larger than for electrons or positrons, since they have a larger

mass. The main contribution to hadronic cascades comes from pion (π±, π0) production

and decay. A simplified model analogous to the electromagnetic case above has been de-

rived in [46]. Since neutral pions decay almost instantaneous into a pair of gamma-rays

after their production, they introduce an electromagnetic component into the hadronic

shower, which becomes more and more important with increasing shower energy [49].

For the purpose of IceCube most of the subtle details of hadronic physics in the shower

can be neglected and hence hadronic cascades are modeled in a first approximation as

electromagnetic cascades with a reduced light yield [50], which can be described by
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downscaling the energy of a hadronic shower compared to an electromagnetic shower.

F =
Ehad
Eem

(2.15)

This scaling is energy dependent, since the amount of neutral pions in the shower in-

creases with increasing shower energy. It is shown in Figure 2.2.

Figure 2.2: Energy dependence of the relative fraction of the light yield of a hadronic
cascade w.r.t an electromagnetic cascade of the same energy. The redline corresponds
to the best fit, while the green lines mark the 1σ error band (Figure from [50])

2.4 Vavilov-Cherenkov Radiation

Cherenkov light is radiated, when charged particles propagate through a medium with

refractive index n =
√
εr (εr: dielectric constant) at a speed, exceeding the phase ve-

locity of light cn = c0
n (c0: vacuum speed of light). This emission was first observed by

Pavel A. Cherenkov in 1934 [51], who had sent fast electrons through purified liquids.

Such fast moving electrons polarize the atoms close to their track. During relaxation

those atomic electrons get accelerated and radiate [52]. It was shown by I. M. Frank

and I. E. Tamm that constructive interference of this coherent emission takes place for

vp > cn (vp: velocity of the charged particle). The predicted properties of that radiation

showed good agreement with Cherenkov’s observations [51].

Tamm considered a point charge being at rest at z = −z0 for t < −t0 [53]. This charge

then moves at a constant velocity v in the time interval −t0 < t < t0. At t = t0 the par-

ticle stops at z = z0. By looking at the emitted energy, he found bremsstrahlung for the

instantaneous acceleration and deacceleration. In case of v > cn an additional contribu-

tion appeared, which was identified with the Cherenkov radiation. The corresponding

energy loss (differential in frequency and length) scaled as follows [53]:

d2E

dωdx
∝
(

1− 1

β2n2

)
(2.16)
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with β being the velocity measured in units of the vacuum speed of light β =
vp
c0

.

The amount of radiated energy per unit length increases with the frequency ω. Hence

in an optical medium transparent at optical frequencies, Cherenkov light will be most

intense in the blue and near UV region. The amount of radiated photons per unit length

and frequency can be expressed as [44]:

d2Nγ

dλdx
=

2πα

λ2

(
1− 1

β2n (λ)2

)
(2.17)

This is the so called Frank-Tamm-equation. The angular emission profile was shown to

be sharply peaked at the Cherenkov angle θc [53]. With increasing track length, the

emission profile peaks more and more at θc, until it behaves like δ
(

cos θc − 1
nβ

)
for an

infinite track (ωt0 →∞) [53]. The Cherenkov angle is thus given by [44]:

cos θc =
1

nβ
(2.18)

For a highly relativistic particle (β ≈ 1) this yields θc ≈ 41◦ in ice (nice ≈ 1.33 [50]).

Whereas the angular emission profile (i.e. the Cherenkov angle) provides the basis for

the reconstruction of directional information of a particle shower, the energy can be

estimated by convolving the radiated number of photons with the spectral acceptance

of the detector. Using equation (2.17) and neglecting dispersion, one can estimate the

number of radiated Cherenkov photons per unit length in an interval λ ∈ [λ1, λ2] to:

dNγ

dx
= 2πα

(
1− 1

β2n2

)
λ2 − λ1

λ1λ2
(2.19)

Hence the the number of photons per unit length is constant. The energy loss due to

Cherenkov emission is neglectable compared to collisional or radiative losses [42].
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Chapter 3

The IceCube Detector

This section shall describe how the design of the IceCube detector allows to measure

the Cherenkov light caused by the charged secondary particles, created when a neutrino

interacts with the glacial ice, and how information about the incident particles can then

be deduced from that signals.

3.1 Design of the IceCube Array

The IceCube Detector consists of 5160 DOMs (Digital Optical Modules), which are

distributed among 86 strings, which have been deployed into the ice by using a hot

water drilling technique. The 86 strings, which connect to the counting house in the

center of the array and provide power and communication to each of its 60 DOMs, have

then been lowered into those holes until the DOMs reached their final position between

1450 m to 2450 m below the surface of the glacial ice. The geometry of IceCube is based

on a triangular grid (shown in Fig. 3.1). The distance between closest strings amounts

to ∼ 125 m, whereas DOMs on the same string have a spacing of 17 m [1].

There are two reasons why it is beneficial to deploy the DOMs at the large depths

mentioned above. First, the 1450 m layer of ice above the DOMs lowers the muon

background and second, more important, at larger depths IceCube profits from the

improved optical quality of the ice, since above 1400 m the ice is contaminated with

small air bubbles of about 50µm diameter, which significantly reduces the scattering

length of light [1]. Unfortunately this not true for the small region between ∼ 2000 m

and ∼ 2100 m, the so-called dust layer, with a high concentration of dust particles, thus

enhancing scattering and absorption.

There exists a subarray of 15 “DeepCore (DC)” strings (marked green in Figure 3.1)
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Figure 3.1: In total 5160 DOMs, distributed over an cubic kilometer of arctic ice,
make up the instrumented volume of the IceCube Detector. The IceCube extension
DeepCore is shown in green (Figure from [1]).

among the 86 IceCube strings, which have a denser population of DOMs (down to 7 m

vertical distance) and a smaller inter string distance (down to 42 m) than regular IceCube

strings. The DeepCore gap visible in Figure 3.1 is due to the dust layer mentioned above.

The PMTs in the DC DOMs of the 8 closest DC strings, deployed at the largest depths

to take advantage of the clearest ice, have a 35% higher quantum efficiency than the

regular IceCube PMTs.

The very top of IceCube, the surface of the arctic ice shield, is instrumented as well.

Two Cherenkov tanks with two standard IceCube DOMs each have been placed on top

of each IceCube string. These tanks make up an extensive air shower array called IceTop

[54], which indirectly measures the cosmic rays themselves. IceTop improves IceCube’s

extra terrestrial neutrino physics related capabilities by providing a possibility to veto

events accompanied by atmospheric air showers.

To specify the position of events in the detector a coordinate system is needed. The

“IceCube coordinate system” is defined as follows. It has its origin close to the center

of the detector array at a depth of 1948.07 m with the z-axis being normal to the ice

surface, while pointing upwards. The y-axis is aligned along the prime meridian towards

Greenwich (UK). The system is right-handed. The zenith angles θ and azimuth Φ are

defined by the direction of the possible source of the measured particles, i.e. its arrival

direction. This definition is visualized in figure 3.2.
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Figure 3.2: The IceCube coordinate system. (Figure from [55])

3.2 The Digital Optical Modules

The measurement in IceCube is done in single instrumentation units, called Digital

Optical Modules (DOMs). Its heart is a 25 cm diameter photomultiplier tube (PMT),

the R7081-02, which was manufactured by the Hamamatsu Corp. A schematic view of

a standard IceCube DOM is given in Figure 3.3.

Figure 3.3: The figure shows the structure of the standard DOM used in IceCube. A
photomultiplier tube, which is served by a high voltage divider, connects to the DOM
main board, which takes care about signal recording and digitization. The DOM is
bounded by a pressure sphere of glass, containing a flexible gel providing an optical
coupling to the PMT (Figure from [1]).

The DOM is bounded by a borosilicate glass sphere with a diameter of 33 cm. In order

to be able to withstand the pressure of an ice layer of more than 1400 m thickness as
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well as to withstand the pressure occurring during refreezing, the glass boundary itself

has a diameter of 1.3 cm [56]. Therefore this sphere can be used in environments with a

pressure up to 70 Mpa [1]. The optical properties inside the DOM are given by a flexible

gel, which holds the DOM electronics, which in addition to the PMT consists of the

DOM main board, controlling the whole recording and digitization procedure, a high

voltage divider, providing the power needed by the PMT and finally the LED flasher

board, which is used for in-situ calibration purposes. An additional metal grid, more

precisely a nickel-iron alloy, which wraps around the the PMT, shields it from earths

magnetic field. Furthermore the whole pressure vessel is filled with dry nitrogen at a

pressure about 1
2 -atmospheres [56]. The design goal of the IceCube DOM was to match

requirements set by the experimental needs (e.g. low dark noise1) within the limits im-

posed by the infrastructure at the south pole (i.e. power consumption, reliability etc.)

[1].

The IceCube Photomultiplier Tube

The PMT used in the IceCube DOM is the large-area Hamamatsu PMT R7081-02,

which provides low noise rates, while maintaining large gains, as well as a good time and

charge resolution [57] [58]. The purpose of a PMT is to measure small amounts of in-

coming light by turning it into an electronic signal, using several stages of amplification.

The general structure is shown in figure 3.4.

Figure 3.4: Light incident on the photocathode creates a small photocurrent (photo-
electric effect) which gets amplified during several dynode stages (secondary emission)
to finally produce a measurable signal at the anode (Figure from [59]).

Incoming photons hit the photocathode, which in case of the IceCube PMT is a bial-

kali photocathode (Sb-Rb-Cs and Sb-K-Cs) [1], leading to electromagnetic interactions

between those photons and some electrons of the solid system of the photocathode, in

which those electrons gain energy. If a single photon carries more energy than the en-

ergy at which a single electron is bound to the system (working function), the resulting

1dark noise denotes light signals seen by the PMT although no light source is present; the main
contribution is thought to be due to radioactive processes in the glas sphere and/or the PMT
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increase of the single electron’s energy will allow the electron to leave its bound state.

This is known as the photoelectric effect.

Typically the amount of emitted electrons is too small to provide a measurable pho-

tocurrent, hence this signal needs to be amplified. This is achieved in steps by several

dynodes inside of the vacuum tube via secondary emission of electrons into the dynode

chamber. Neglecting that the above mentioned processes are highly stochastic, giving

rise to a non-trivial charge response of the PMT (cf. equation (3.4)), the physics of such

a PMT can approximately be summarized as follows:

UPMT (t) = RI (t) = R
d

dt
Q (t)

∆t→0−−−−→ R
∆Q

∆t
(t) (3.1)

Q (t,∆t) = γNe (t,∆t) e (3.2)

Ne (t,∆t) = ηNγ (t,∆t) (3.3)

with R being the resistance of the resistor at which the current I induces the Voltage

drop U. The total charge Q is collected after amplifying the number of emitted primary

photoelectrons Ne by the overall dynode gain of γ. In IceCube a gain of γ = 107, is

achieved (U=1, 3 kV). This was chosen to produce single photon pulses of 8 mV, in order

not to conflict with the digitizer precision [58].

Quantum Efficiency

The IceCube PMT has its peak quantum efficiency of η = 0.25 at an incident photon

wavelength of 390 nm [58], which lies at the lower end of the visible spectrum (blue),

where Cherenkov radiation is most intensive.

Dark Noise

Another parameter of the PMT important for IceCube physics is the so-called dark

noise rate. Even in the absence of any light source a PMT records light signals, which

contribute to the background of any real incoming light. The typical dark noise rate

of the IceCube PMTs has been estimated to be about 300 Hz at temperatures between

−20◦C and −40◦C [58], which is the temperature range of the instrumented ice. An

additional contribution to the dark noise comes from the glass sphere of the DOM. It is

generally assumed, that radioactive decays (K40, U, Th-contaminations in the glass [56])

in combination with scintillation are causing that noise [58].

Spectral Response of the PMT

The fraction between the number of photons, causing a PMT signal, and the number of

photons incident to the DOM, defines the DOM acceptance ηDOM . It is a convolution of

effects including transmission of photons through the DOM glass and gel, as well as the

PMT quantum efficiency and collection efficiency. The DOM acceptance η (λ) therefore



Chapter 3. The IceCube Detector 31

depends on the photon’s wavelength, which is shown in Figure 3.5 (left). It peaks at a

wavelength of 400 nm with ηDOM (400 nm) ∼ 13%.

Single Photo Electron (SPE) Charge Response

In order to be able to extract physics information out of the measured light yield, it is

Figure 3.5: Left: The spectral dependence of the DOM’s photon acceptance η is
shown (from [60]); Right: The average of 10.000 SPE waveforms is shown. Single SPE
waveforms were found to vary only in terms of absolute amplitudes, but the shapes
agree at the 1%-level (Figure from [58]).

of crucial importance to understand the PMT response to single photoelectrons (SPE),

since, due to the detector geometry, many DOMs will detect only small amounts of light

during an event. This response was studied by using a dim UV LED (375 nm) with

an average light output of 0.1 photons per shot [58]. It was shown that individually

measured SPE waveforms differ w.r.t their amplitudes. The shapes were consistent at

the few percent level. The average of several thousand SPE waveforms is shown in

Figure 3.5 (right).

It was found that 90 % of the total SPE charge was detected within a 10 ns time window

after the main peak in the waveform. That justifies to measure the distribution of

the total charge of these SPE events as the charge seen within a 70 ns time window,

which was triggered by the synchronization signal of the light source. The resulting

distribution is shown in the left plot of Figure3.6. It shows some characteristic features.

At very low charges, slightly above 0 pC, one can see a sharp pedestal peak, which is an

artifact of the digitizer, used to record the signal. Pedestal in that context refers to the

signal measured by the digitizer, when there is no voltage drop present at the resistor

(i.e. no signal in the PMT). At larger charges charges, a clear SPE peak q0 is present.

Its Gaussian contribution indicates a SPE resolution of nearly 30 % [61] [58]. However

the intermediate region between the sharp pedestal peak and the Gaussian part of the

SPE peak is given by an exponential decay of the measured charge. It was checked
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Figure 3.6: left: The plot shows the measured SPE charge response of an IceCube
PMT. As expected a SPE peak (around 7pC) and a pedestal peak (close to 0pC) are
visible (Figure from [58]). right: The plot show the SPE charge response function
(3.4) of the IceCube PMT for different PMTs. In addition the average charge response
function of a set of DOMs is shown (Figure from [61]).

by removing the light source (but keeping the synchronization trigger signal) that this

exponential part is in fact a real contribution to the SPE signal [58]. It is assumed that

this is mainly caused by back-scattering at the first dynode, which leads to a reduced

amount of electrons entering the second stage. Omitting the pedestal dominated low-

charge region (q < 0.15 q0), the distribution was thus fit using an exponential and a

Gaussian term [58]:

f (q) =
Pe
qτ
e
− q
qτ + (1− Pe)

1√
2πσq

e
− (q−q0)2

2σ2
q (3.4)

with Pe being the fraction of counts in the exponential part, qτ being a decay constant

and σq being the width of the gaussian SPE-peak. q0 describes the charge, at which the

SPE part has its maximum.

The right plot of figure 3.6 shows the fits of the two terms in the charge response function

(3.4) in the respective regions, as well as the global overall fit. The left plot of figure 3.6

shows the same charge response function in units of q0 for some individual PMTs (dotted

lines), as well as the average charge response (solid line). It was found that the mean

expected SPE charge is 15 % smaller than the SPE peak charge q0 (qmean = 0.85 q0) [61].

With a similar set-up it was possible to investigate the time resolution of the IceCube

PMT, which for the vast majority of the events has been measured to be 2 ns. However

a small amount of the events (∼ 5 %) showed so-called late hits with delays compared

to the synchronization signal of up to 160 ns. These are again most likely caused by
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backscattering at the first dynode. The delay time would then correspond to the distance

traveled by the primary electron before it starts the pulse [58].

Saturation of the IceCube PMT

For highly energetic neutrino events (like Glashow Resonance cascades), which are

among the most interesting for IceCube, additional effects have to be considered. At low

energies, it is expected that the signal measured at the PMT output scales linearly with

the brightness of the event [58]. However it is natural to assume that this scaling breaks

down at very high energies. This effect is called saturation. It has been studied in [58]

by illuminating the IceCube PMT with a LED, operated at different brightnesses. The

Figure 3.7: A comparison between the expected peak photocurrent I0 given linear
PMT response vs the actually observed photocurrent I. The LED pulse shape was varied
as well as the PMT gain (Figure from [58]).

illumination level of the PMT was measured using an attenuation filter, which damped

the light such, that the PMT was operating in the linear region. Then a set of different

filters was used to slowly increase the light output. Based on the ratio between the atten-

uation coefficients of the filters, it was possible to determine the ideal peak photocurrent

I0, which would be expected, if the PMT would respond linearly over the whole range

[58]. By comparing this ideal current to the measured Photocurrent Iphot at the PMT

output, it was found, that the PMT response stays linear within 10% up to photocur-

rents of Iphot = 50 mA. This comparison is shown in figure 3.7 for different LED settings

(various pulse widths) and different PMT settings (various gains). No peak photocur-

rent larger than 150 mA is visible. It was discussed whether the visible saturation is an

effect of the charge collected in total, or whether it is an instantaneous effect of overly

bright illumination. Since the saturation behavior was found to be independent of the
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shape of the emitted light pulse, the instantaneous saturation interpretation is favored

[58]. The saturation curve shown in figure 3.7 was parametrized as follows:

ln I0 = ln Iphot + C
(Iphot/A)B

(1− Iphot/A)1/4
(3.5)

Unfortunately the parameters A,B,C used in this parametrization were found to vary

strongly among the set of PMTs used in IceCube, which according to the authors,

makes it unusable for reconstruction. Hence measurements of high energetic cascades

have to rely on data of DOMs far away from the shower center. Although as of now it is

not possible to extract meaningful information from the amplitudes of badly saturated

DOMs, the photon arrival times can still help to constrain the region of the shower in

the detector [58].

3.3 The IceCube Data Acquisition System

Data recording and digitization is controlled separately in each DOM by an FPGA (field-

programmable gate array) chip on each DOM’s mainboard. Only the digitized data is

sent to the counting house on top of IceCube. This decentralized strategy was chosen in

order to meet the required large dynamic range of each DOM, which is set by the large

differences in signal strength [56]. This has the advantage that for one event at the same

time those DOMs, which receive small amounts of light, are able to further amplify the

PMT signal during recording, whereas those DOMs, which are close to the light source,

can digitize at a lower gain to prevent the PMT signal to exceed the range of the digitizer.

However in order to be able to later combine these individual data to one measurement,

the time still needs to be defined globally. Thus the mainboard in each DOM receives

timing information provided from a GPS-based Master Clock (synchronized to UTC

standard) using the same cable network over which power is distributed. The design of

the DOM mainboard is shown in Figure 3.8.

Light that enters the PMT, induces an electrical signal at the PMT output. This signal

is then spread among the different mainboard components. First of all it is sent to a

trigger, which is connected to the FPGA, which constitutes the mainboard logic. If this

signal exceeds the trigger threshold, which is set to an equivalent of 0.25 spe, the FPGA

starts the machinery needed to produce the data corresponding to this possible event.

First of all the trigger information is transmitted to the LC (local coincidence) unit of

the mainboard, which in turn is connected to the two vertically neighboring DOMs.

This allows to introduce an LC-criterium, upon which the data recoding depends, which

will be described later.
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Figure 3.8: The figure shows the mainboard layout, used in the IceCube DOM. Its
logic is controlled by the FPGA-chip starting the recording of the signal, once the charge
trigger threshold of 0.25 spe gets exceeded. It also decides which digitization strategy
(ATWD,fADC, see text) will be used according to the LC response of neighboring
DOMs. (Figure from [56])

Another signal path connects the PMT output to the two ATWDs (Analog Transient

Waveform Digitizer) where the signal arrives with a 75 ns delay. This delay is enough

for the mainboard trigger to start ATWD recording, once the trigger threshold gets

exceeded. At the ATWD the signal is split among the three possible ATWD input chan-

nels. At each of those ATWD inputs, the signal strength is controlled by an additional

amplifier with amplifications of 0.25, 2, and 16 respectively. The ATWD also provides

enough memory to store 128 samples (1 sample every 3.3 ns) of each of the three analog

signal, taken at the input channels. This means that the ATWD is capable of covering

a time window of 450 ns. Wether or not the stored sampling information is digitized

depends on the LC feedback of the FPGA, since the digitization of the waveform at

the ATWD precision of 10-bits takes 29µs, which is a relatively large deadtime. This

deadtime is the reason why the DOM mainboard provides a second ATWD chip, which

can record an incoming signal, when the other ATWD digitizes an earlier waveform [56].

This strategy is called “ping-pong mode”.

In addition to the ATWDs, the PMT output signal is sent to the FADC chip (Fast

Analog to Digital Converter). The FADC, which only has one channel at a fixed ampli-

fication (x23.5) covers a time window of 6, 4µs in order to record signals which exceed

the ATWD window. The smaller sampling rate of the FADC (25 ns per sample, 256

samples in total) allows is to digitize signals without deadtime.

As mentioned above, the ATWD digitization of the recorded waveform depends on local
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Figure 3.9: upper plot: The plot shows two ATWD waveforms recorded by the two
different ATWD chips. Since the strong signal exceeded 768 ATWD counts for the mid-
and high gain channels, the lowest gain channel (blue) is shown. Due to the deadtime
of the first ATWD after digitization, the second ATWD records the late part of the
signal at the highest gain (red). lower plot: The fADC waveforms corresponding to
the same signals shown above. The first fADC waveform (blue) exceeds the dynamic
range of the digitizer.

coincidence (LC). Given that the trigger thresholds of the neighboring DOMs on the

same string have been exceeded within a time window of ±1µs, the signal gets flagged

as LC, which leads to ATWD digitization. The ATWD waveform, which was recorded

at the highest gain (x16), is digitized first. If at some point the digitized signal of that

channel exceeded the equivalent of 768 ATWD counts, the second channel is digitized as

well. The same condition may trigger the digitization of the lowest gain channel. This

strategy was chosen in order to provide at least one waveform which does not suffer

from ATWD clipping, while saving space by not digitizing redundant information [56].

During analysis all available waveforms will be combined (up to three ATWD channels

+ one FADC channel).

However, if the signal did not meet the LC criterium, then only the FADC digitizes

the waveform. This is justified since isolated hits (SLC) compared to HLC hits (with

LC flag), are by far more likely to be PMT induced noise, than to be physics related

information. An example of the digitized waveform of a very bright cascade (∼ 1 PeV)
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measured in a single DOM, is shown in figure 3.9 and clearly exhibits the different dig-

itization features described above.

The technical design of the IceCube allows for two main event topologies, which form

the basis of lepton flavor discrimination in IceCube. Electrons propagating through the

glacial ice experience rapid energy loss (compare section 2) thus forming an electromag-

netic cascade, which due to photon scattering in the ice is characterized by an almost

spherical light distribution. Such a cascade with an energy about 1 PeV is shown at

the top of figure 3.10. Since for contained cascades, all primary neutrino energy gets

deposited in the detector, this channel has the best energy resolution, but provides a

worse pointing accuracy [50] compared to the other main signature, the muon track. The

cascade channel is typically used in searches for diffuse fluxes of astrophysical neutrinos.

The signature left by a muon inside of IceCube differs significantly from those cascades.

Since the muon is around 200 times heavier than an electron, it radiates less energy,

leading to a larger propagation length (several kilometers at PeV energies). Hence they

appear as tracks in the detector, as shown in the middle picture of Figure 3.10 for a

simulated PeV event. Due to their long range this channel provides an excellent direc-

tional resolution (less than 1 degree) and an enhanced effective area. Therefore this is

the channel, used to look for point sources of neutrinos in the sky.

A very unique signature arises from the rare Glashow resonance muon channel. Since

this interaction does not involve a hadronic component, the final state muon will not be

accompanied by a cascade, thus showing a starting track at the bottom of figure 3.10

(simulated). However the most “creative” particle in this context is the tau particle,

which produces a variety of different signatures with a double bang (hadronic compo-

nents of tau creation and decay) being expected at PeV energies. As for now neither

tau related signatures nor the Glashow resonance have been found.

3.4 Artifical Light Sources in IceCube: Flashers and Stan-

dard Candles

For an experiment like IceCube it is very important to understand the detector response

to an incoming signal, in order to properly simulate and reconstruct those events. Since

the IceCube is a detector for natural sources of neutrinos, it does not include an ac-

celerator machine to create a particle beam, that could be used for calibration. Hence

studying the detector response including measuring the optical properties of the arctic

ice has to rely on different methods. The main tools used for this purpose are the flasher

boards in each DOM and the two lasers, which have been deployed.
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Figure 3.10: top:A PeV neutrino induced cascade event is shown (data). This event
topology is beneficial in diffuse searches. center: A PeV neutrino induced through
going track is visible (simulation). Such events are used in searches for point sources of
neutrinos. bottom: A muon produced in a Glashow Resonance interaction will miss
the hadronic cascade at its vertex, hence producing a starting track
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The Flashers

Each IceCube DOM is equipped with a flasher board, which holds 12 LEDs. They

can emit light pulses at a wavelength of λ = 405 nm. Half of the LEDs are oriented

horizontally with an azimuthal spacing of 60◦. The other half uses the same azimuthal

spacing but is tilted upwards by 40◦ . The light output of the LEDs can be varied in

terms of pulse width and brightness, with a maximum light output per LED of 8× 109

photons which mimics a 80 TeV cascade. Calibration based on Flashers therefore aims

at the TeV energy regime. For the purpose of this thesis however the in-situ calibration

needs to address higher energies in the PeV range. Hence it can not rely on Flasher

data.

The Standard Candles

A more powerful light source is given by the two standard-candle lasers SC1 and SC2

which have been deployed at depths of 1811 m (on string 40, pointing upwards) and

2153 m (on string 55, pointing downwards) respectively. The nitrogen laser Lastertechnik-

Berlin MNL-100 produces pulses with a width of 4 ns at a near-UV wavelength of 337 nm.

Per pulse, a maximum energy of 120µJ is released [62]. A custom filter wheel allows to

regulate the intensity from 0.5% to 100% in steps of 0.5%. By using a highly reflective

cone, the beam is shaped according to the Cherenkov angle, thus mimicking point-like

Cherenkov emission. The effect of the beam shaping is shown in Figure 7.1. For the pur-

Figure 3.11: The effect of the beam shaping of the SC: before using the reflective
cone, i.e. no shaping (left) and after (right).

pose of IceCube two properties are important. First, the number of photons released in

different pulses should be stable (pulse-to-pulse stability). During calibration measure-

ments of the standard-candle in the laboratory, a pulse-to-pulse stability better than 3%

for temperatures between room temperature and −25◦C has been found in agreement

with the manufacturer’s specification [62]. Secondly the absolute output needs to be

known very well, in order to use the Standard Candle in-situ as a calibration device to

gauge cascade reconstruction algorithms, especially targeting the absolute energy scale.
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Nominal 0.5% 1% 3% 10% 30.5% 51% 100%

SC1 0.9% 1.39% 3.5% 10.9% 32.2% 53.9% 100%

SC2 0.07% 1.4% 2.92% 8.4% 26% 37.2% 100%

Table 3.1: Lab calibrated filter attenuations of SC1 and of SC2 (preliminary)

In that context, by measuring the rations between the filter wheel settings Es and a

reference setting Er for 10,000 pulses, it was found that the actual attenuation by those

filters deviate from the manufactures specifications. The effective intensity of the laser

and filter wheel combination was found to scale according to a factor of 110 within the

nominal range 0.5% to 100% (for SC1). The measured effective attenuations by the

different filter wheel settings for both lasers are given in table 3.1. For SC1 the total

number of emitted photons at 100% brightness is known to within 10% (stat.). However

large unresolved systematics exist [62]. For SCII the preliminary maximum intensity

corresponds to 2.5 × 1013 photons. Hence the SCII output covers a range from ∼ 1011

to ∼ 1013 photons, which should approximately be 1 PeV to 100 PeV cascade energy

equivalent.

3.5 The IceCube Data Processing Chain

Since data transmission resources are limited and the vast majority of the incoming data

consists of background (cosmic ray muons), it is neither necessary nor feasible to sent

all data to the analyzers in the north. In this section we summarize the steps involved

in reducing the data stream.

Triggering and Filtering

After a signal is digitized, a decision has to be made whether or not that signal is inter-

esting enough to be stored on disk. This decision depends on a set of selection criteria

(triggers). One example is the so-called Simple Multiplicity Trigger (SMT). In IceCube

SMT8 is required, so this trigger keeps events, that produced light in at least 8 optical

modules during a time window of 5µs. In addition, those eight DOMs have to satisfy

local coincidence. The overall trigger rate (SMT8 and others) in IceCube amounts to

about ∼ 2700 Hz, which implies a data rate of almost 1 TB/day. However the satellite

bandwidth available, to be used by IceCube, is limited at ∼ 100 GB/day [63]. Hence dif-

ferent so-called “Online Filters” have been designed, which choose the most interesting

events (among the set of triggered events) to be sent north via satellite. The decisions

made by those filters, are based on the results of fast reconstruction algorithms, which
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are used at the pole. If an event did not pass those filters, it gets stored on tapes, which

are shipped north once a year. The most important online filters are the Cascade Fil-

ter, designed to select events with a cascade like light pattern, the Muon Filter, which

selects events with a track like signature and the EHE filter, which keeps events with

a high multiplicity (bright events). For the purpose of this thesis the Cascade Filter is

of interest. For neutrinos with energies above 10 TeV the Online Cascade Filter (2012)

achieves a signal efficiency of ∼ 90%, while removing ∼ 99% of background. Once the

data arrived at the computing center in the north, further so-called offline processing

is applied. The first step is named offline Level2. No filtering in addition to the online

filter is applied, but further reconstructions are performed. Based on those results ad-

ditional filtering is done at Level3, to further remove background events, thus reducing

the amount of data. At Level3 of the Cascade Filter stream, the most sophisticated and

computationally intensive reconstruction methods are applied, which will be discussed

in this thesis. For cascade-like events, contained in the detector, the Level3 filtering is

almost 100% signal efficient compared to Level2.

Calibration and Pulse Extraction

As already described, the data consists of ATWD waveforms at different amplifications

as well as one fADC waveform. Before being ready for reconstruction, the data needs to

be processed in order to account for effects caused by the DOM electronics. Furthermore

light pulses have to be extracted from the calibrated waveforms, which are the input to

reconstruction methods.

Throughout the work of this thesis, whenever raw data needed to be calibrated, the

WaveCalibrator module was used. Before the ADC counts in each bin of the different

waveforms can be converted into a voltage, the contribution due to digitizer pedestal

need to be subtracted (compare figure 3.6). The baseline contribution in each DOM was

measured using so-called beacon launches, which means that the waveform recording and

digitizing procedure was triggered by the CPU of the FPGA on the DOM mainboard.

Since the so recorded waveforms typically due not contain pulses induced by real light,

they can be used to determine the pedestal baseline (digitizer response to zero input

charge). The average of these beacon waveforms is the beacon-baseline to be subtracted

by the WaveCalibrator. In a next step the start time of all waveforms are corrected for

the PMT transit time and the delay times between the different digitizer channels. In

addition all waveforms need to be corrected for possible distortions due the transformer

between the PMT and the High Voltage control board in the DOM.

For reconstruction purposes it is important to know the arrival times of the light pulses

incident on the PMT during an event. However due to the PMT charge response to
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single photons the pulse timing information get smeared. If multiple photons (a pulse)

hit the PMT, the final signal will be a superposition of those single photo-electron sig-

nals. Hence the calibrated waveforms represent a convolution of a light pulse with the

detector response to single photons. In order to reconstruct the charge and timing in-

formation of incident light pulses, one needs to find the photon distributions in each

time bin of the corresponding waveform, which when convoluted with the spe charge

response, would give rise to the observed waveform. Several algorithms exist which

are able to unfold light pulses from the calibrated waveforms. These pulses are then

characterized by their charge (number of photons), their starting time and width of the

respective pulse. For the purpose of this thesis, if pulses needed to be extracted the

tool WaveDeform was used. It is able to deconvolve the above described processes by

using a linear algebra based non-negative least squares algorithm. ATWD and fADC

signals are processed simultaneously. The output of this module gets stored in the frame

as so-called OfflinePulses, which contain all recorded light pulses (HLC and SLC). For

some algorithms it is beneficial to remove background contributions (i.e. noise). One

example is the so called time window cleaning, which only keeps the light pulses within

a 6µs time window around the largest fraction of hits. If in addition the pulses are

required to satisfy local coincidence, the result is called TWOfflinePulsesHLC.
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Chapter 4

The IceCube Simulation

Framework

In experimental physics dedicated simulations are needed, in order to not only predict

the detector response for a single event but also to determine the signal distributions for

an ensemble of events of a given physics hypothesis. Those predictions are necessary to

relate the observables, extracted from the data, to the underlying physics quantities of

interest. Within the IceCube Collaboration the software IceSim provides the available

simulation tools. They allow to produce simulated data from a given flux of neutrinos,

handling the details like neutrino propagation through the earth, lepton production and

propagation in the detector, light emission and tracking and finally the light induced

detector response.

4.1 Neutrino Generator

In the energy range of interest for this thesis, the processes related to neutrino propa-

gation from primary neutrino injection at earth’s surface to primary lepton production

in the vicinity of the detector are simulated using the neutrino-generator [64]. It creates

neutrinos according to a neutrino flux at Earth’s surface following a power law with

spectral index γ. These neutrinos are subsequently injected into the earth and then

propagated, in order to determine the corresponding neutrino flux at the surface of the

detection volume, while accounting for the interactions the neutrino might face. With

the tau neutrino being an exception, a charge current interaction between a neutrino and

a nucleon somewhere in the earth leads to the absorption of the corresponding neutrino

and hence that particular neutrino does not contribute to the flux at the detector surface.

In contrast the tau neutrino is “regenerated”, when the secondary tau lepton decays,
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thus producing a tau neutrino. Neutrinos of all flavors are subject to neutral current

interactions, in which the neutrino looses energy. If a neutrino finally reaches the detec-

tion volume and eventually produces detectable charged leptons, it adds to the number

of detectable neutrino events NMC
detection (Eν). Hence neutrino-generator allows to deter-

mine the expected event rate R = Jν (Eν) · Aeffν (Eν) with Aeffν (Eν) =
NMC
detection(Eν)

NMC
injected(Eν)

A0

being the neutrino effective area of the detector, while A0 denotes the geometric area

[64].

In order to accumulate sufficient Monte Carlo statistics an event weighting technique is

applied. That means that neutrino generator forces every neutrino, which reaches the

surface of a cylindrical volume, fully containing the detector, to interact. The inter-

action point along the trajectory (parametrized with x) inside that cylinder of length

L is randomly chosen with probability p (x) = 1
L . Since this is an unphysical choice,

the event has subsequently to be weighted according to the true interaction probability

Pint (x) = NAρσtot (Eν) e−NAρσtot(Eν)x. Hence the weighting factor is:

Wint (x,Eν) =
NAρσtot (Eν) e−NAρσtot(Eν)x

1/L
(4.1)

with NAρ being the number density of target nucleons in the detector material and

σ (Eν) being the total νN cross section. The cross-sections used in neutrino generator

are provided by the CTEQ Collaboration (CTEQ5, see sec. 1.3). In addition it is

possible to save computing resources by oversampling events with high energies (i.e. by

using a hard injection spectrum), which subsequently need to be reweighed to a physical

flux dΦν(Eν)
dEν

. The overall weighting information is stored as OneWeight variable and

reads:

OneWeight =

(
P totint

E−γ

)∫ Emax

Emin

E−γdE ·A0 · Ω · T (4.2)

with P totint being the combined probabilities of the neutrino propagation and interaction,

as described above. Ω and T denote the solid angle and collection time respectively.

Using OneWeight, the weighting factor for a single event i based on the neutrino flux of

interest dΦν(Eν)
dEν

can be expressed as:

wi =
OneWeighti
NEvents

· dΦν (Eν)

dEν
(4.3)

with NEvents being the total number of injected neutrinos.



Chapter 4. The IceCube Simulation Framework 45

4.2 Muon and Cascade Monte Carlo (MMC and CMC)

In a second step the charged leptons produced in the detection volume have to be prop-

agated in order to determine their light yield. In case of muons and taus this is done

using the Muon Monte Carlo (MMC [65]), which simulates the stochastic energy losses

due to ionization, bremsstrahlung, photo-nuclear interactions and electron pair produc-

tion based on the respective cross sections. Since the number of stochastic energy losses

diverges with 1
Elost

, a lower bound ecut on the energy is introduced. Below that threshold

the total energy loss is treated continuously [65].

In this thesis the secondaries of interest are electrons and hadrons, which produce elec-

tromagnetic and hadronic showers. The light yield of these cascades is calculated using

the tool Cascade Monte Carlo. When the secondary particle, responsible for the subse-

quent shower, is created by neutrino-generator, that particle is assumed to be point like.

However with increasing energy the spatial extension of a cascade becomes important.

The basic idea behind CMC is to account for the longitudinal elongation of a cascade

by splitting the “point like” primary cascade into several sub cascades according to its

energy loss profile in the longitudinal direction. Below energies of 1 PeV the energy loss

of the respective electromagnetic shower is based on parametrization eq. (2.14). This is

visualized in Figure 4.1 for a shower with E = 100 TeV.

Above 1 PeV the longitudinal shower development is simulated based on the pair pro-

duction and bremsstrahlungs cross-sections, with the suppression due to the LPM effect1

being taken into account. Particles are tracked in one dimension until their energy falls

below a given energy, typically 1 TeV. The energy loss profile of the full shower is than

given by the sum of the profiles of the individual particles. It should be mentioned, that

due to the infrared divergence of the differential bremsstrahlungs cross section, the total

cross section used, only considers radiation of photons with energies larger than 1 GeV.

In section 2 it was discussed that the average light yield of a hadronic cascades scales

with the light yield of their electromagnetic counterparts. The same scaling is used

in CMC to derive the energy loss profile of hadronic cascades. However due to their

stochastic nature, the scaling factor is sampled from a Gaussian distribution around the

mean light yield. In addition hadronic cascades may contain low energetic muons. The

amount of produced muons in a given hadronic cascades relies on a parametrization

derived from Corsika [66] simulations.

1The LPM effect denotes a strong decrease of the Bremsstrahlungs cross-section due to quantum
interference between the scattering amplitudes of different atoms. Since this effect is only important
above Ee ≈ 10 PeV it has no influence for the purpose of this thesis.
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Figure 4.1: A Cascade with energy E = 100 TeV is split by CMC into sub cascades
(top) according to its longitudinal energy loss (bottom)

4.3 Modeling the optical properties of arctic Ice

Understanding the optical properties of the glacial ice, scattering and absorption lengths

of photons, at the south pole is a necessity for simulation and reconstruction of events in

IceCube. Glacial ice is the most transparent known solid for light in the blue and near

UV regime ∼ (200 nm− 400 nm). It is also an inhomogenous medium [67]. First of all,

the scattering of light in the shallow ice above depths of 1500 m is primarily dominated

by the presence of air bubbles, leading to short scattering lengths. Due to the pressure

gradient present in the ice their density depends on the depth. With increasing depth,

those air bubbles slowly transform into air-hydrate crystals until at depths of 1500 m

and larger, no air bubbles remain. Since those crystals share their refractive index with

the surrounding ice, they can be transversed by a photon almost without scattering [67].

Secondly, since a glacier slowly forms when existing snow gets compressed to ice under

the pressure of new snow, climate changes in the past left imprints to the ice in form

of its dust and ash contamination. Hence below 1500 m the optical properties of the ice

are determined by the depth dependent concentration of those dust particles. The most

recent description of the optical properties of the ice in IceCube is given by the south

pole ice model (SPICE) [68]. By using the flasher LEDs of the 60 DOMs on String 63 as
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a light source and the DOMs on the strings surrounding string 63 as light sensors, the

effective scattering coefficient be and the absorption coefficient adust have been extracted

for depths between 1400 m and 2500 m in steps of 10 m 2. Although the emission of the

flasher LED peaks at 405 nm, the light emitted by the DOM peaks at 400 nm due the

influence of the pressure vessel. Hence the wavelength dependent coefficients have been

extracted at 400nm. However parametrizations exist, which allow to extrapolate those

coefficients to other wavelengths [67].

In order to determine the parameters be, adust at 400nm, the response of the receiving

DOMs to the flashing string 63 has been simulated based on the direct photon propa-

gation code PPC [69] for many different sets of scattering and absorption coefficients.

PPC propagates photons from their source until they reach a DOM or are absorbed

in the ice based on a linear combination of the Heney-Greenstein function (HG) and

the simplified Liu scattering function (SL), describing the distribution of the scattering

angle θ of a photon [68]:

p (cos θ) = (1− fSL) ·HG (cos θ) + fSL · SL (cos θ) (4.4)

with fSL being a constant, which was varied as well, in order to find the best fitting

value. The HG and SL scattering functions read:

HG (cos θ) =
1

2

1− g2

(1 + g2 − 2g cos θ)
3
2

(4.5)

SL (cos θ) =
1 + α

2
·
(

1 + cos θ

2

)α
(4.6)

with α = 2g
1−g and the mean scattering angle g = 〈cos θ〉. The PPC result provides an

estimate of the total cumulative charge soo′ expected in DOM o for ns flasher events from

DOM o′. At the same time from the flasher data the corresponding measured charge

doo′ for nd flasher events is known. This allows to construct the following Likelihood

[68]:

L =
∏
o,o′

(
µoo

′
s ns

)soo′
soo′ !

e−µ
oo′
s ·

(
µoo

′
d nd

)doo′
doo′ !

e−µ
oo′
d · 1√

2πσ2
e
−
(

lnµoo
′

d −lnµoo
′

s

)2

2σ2 (4.7)

This Likelihood is minimized w.r.t. the per-event expected charge µoo
′

s and the per-event

measured charge µoo
′

d . The gaussian term accounts for the possible error of describing

data with simulation. Once the best fit values for µd and µs are obtained for each

simulated set (which differ w.r.t. of the assumed scattering and absorption coefficients),

a final χ2 fit selects the simulated set of coefficient with the best agreement between

2For more details about scattering and absorption coefficients, see sec. 4.4.
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data µd and simulation µs:

χ2 =
∑
oo′

lnµoo
′

d − lnoo
′

s

σ2
+R (4.8)

where R denotes regularization terms, which have been introduced to suppress bias due

to fluctuations (more details in [68]). The fit result yielded the SPICE1 ice model. In or-

der the improve the result, a second iteration of the fitting procedure also included data

obtained from the dust logger [70], a device, which was lowered into the IceCube bore-

holes to measure scattering by dust. In the regions above and below the instrumented

region of IceCube, the dust logger data added useful information to the fitting routine.

The final fit result is known as the SpiceMie ice model and is shown in figure 4.2. The

effective scattering and absorption coefficients are compared to the AHA ice model [67],

which is based on AMANDA3 measurements and was previously used. The so called

dust layer, a region with a high concentration of dust particles between ∼ 2000 m and

∼ 2100 m, shows up as a strong peak in the scattering and absorption coefficients. It

was formed during the last glacial period about 65, 000 years ago.

Figure 4.2: Depth dependence of the effective scattering coefficient be (left) and the
absorption coefficient a (right) according to the SPICE Mie and AHA ice models. Values
given for a photon wavelength of λ = 405 nm; Figure from [68]

4.4 The Photonics Simulation

The IceCube neutrino detection is based on detecting Cherencov photons. Hence it is

of crucial importance to know the arrival time distributions as well as the total amount

of expected photons at all DOM positions corresponding to a specific light source for

both, event simulation and event reconstruction. Since photon propagation is a highly

3AMANDA was the predecessor of IceCube and was located at smaller depths between 1500 m and
1900 m
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stochastic process, these distributions can not be calculated analytically and have to be

extracted from simulations, targeting photon propagation. In IceCube the Photonics

[71] software is used. The optical properties of the inhomogenous glacial ice, which de-

termine the scattering and absorption of the propagated photons are described by five

parameters, which depend on the photon wavelength and the depth in the ice (assumed

to possess azimuthal symmetry): (ng, np, 〈cos θ〉 , λe, λa). The first two parameters are

the group refractive index ng, determining the velocity of the photons, and the phase

refractive index np, describing the respective transmission and scattering coefficients of

the ice. Absorption due to atomic and molecular excitation is modeled by the absorption

length λa. The effective scattering length λe denotes the distance, which the light travels

before the photon directions are completely randomized [71]. The latter is determined

by two effects: the scattering length λs, the length scale defining the distance between

two scatterings, and the angular distribution of the deflection at each scattering. The

scattering centers in the ice (air bubbles, dust particles etc.) are assumed to have a

spherical shape and hence the angular distributions used in Photonics are based on the

Mie solution to the Maxwell equations in the limit of forward peaked scattering. Thus

they are given by the Henyey-Greenstein distribution eq. (4.5), determined by 〈cos θ〉.
With those parameters the Photonics simulation is able to track the propagation of each

photon from its source to a given volume element dV. This propagation is described

using a cylindrical coordinate system, which is aligned with the principal axis of the

source, as shown in Figure 4.3. Due to the azimuthal symmetry of the ice only two

coordinates are needed to describe the source: the tilt of the principal axis of the source

π−Θs and its depth Zs. Once the principal axis of the source is chosen, the cylindrical

coordinate system used to describe the volume elements dV (ρ, l,Φ) is fixed. Here l de-

notes the distance of that element along that principal axis, whereas ρ and φ describe

its position in the plane perpendicular to l̂ at a given distance l, with Φ = 0 defined

such, that ρ̂ is maximally aligned with ẑ [71]. The distance between source and receiver

dV is denoted as d. To determine the delay time distributions dp
dt (Zs,Θs, ρ, l,Φ, td) with

td = t − d
cice

and the corresponding time integrated photon flux I (Zs,Θs, ρ, l,Φ, td),

a given number of photon is injected at the source position following the cherenkov

spectrum and angular distribution. Each photon is then propagated through the ice,

with the length between two scatters and the survival probability being sampled from

the corresponding exponential distributions characterized by the scattering coefficient

λs and the absorption coefficient λa respectively. During that procedure the depth and

wavelength dependence of those parameters is taken into account. Since photon fluxes

are linear, a moving light source can be simulated as superposition of single source. F

cascade like emission only stationary sources are considered. The results of simulating

single sources are stored in large tables which are binned in the dimensions ρ, l,Φ, td.

Due to the azimuthal symmetry of the ice it is sufficient to simulate Φ in the range of
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Figure 4.3: The coordinate system used in Photonics to simulate photon propagation
from a source with principal axis l̂ to a given volume element dV = ρ dρdφdl; Figure
from [71]

[0◦, 180◦], while still accounting for the depth dependence of the ice properties. For each

source (Zs,Θs) such a table is created and itself stored in a table of such sources. The

tables, used in this thesis, are binned as follows: ∆Zs = 10 m and ∆Θs = 20◦.

By construction the Photonics tables do not contain information about the dependence

of the tabulated data on the cascade energy E0. However since the stochastics of the

photon propagation is independent of the source energy E0, the arrival time distribu-

tions dp
dt (Zs,Θs, ρ, l,Φ, td) do not depend on energy. Only its normalization, the time

integrated photon flux I (Zs,Θs, ρ, l,Φ, td), does. It was shown in section 2.2, that the

light yield of a particle shower is approximately directly proportional the shower energy.

This relation can be used to determine the total number of photoelectrons 〈µtot〉 from

the time integrated photon flux I (Zs,Θs, ρ, l,Φ, td), based on the photo effective area

and the quantum efficiency of the IceCube DOMs [50]. Photonics results are based on a

simulated source with a strength corresponding to E0 = 1 GeV [47]. Hence the number
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of photoelectrons 〈µtot〉o in DOM o for arbitrary energies E0 reads:

〈µtot〉o = 〈µtot〉1GeVo

E0

1GeV
(4.9)

〈µtot〉1GeVo = (1GeV ) · ∂

∂E0
〈µtot〉o (4.10)

with 〈µtot〉1GeVo being the total number of photoelectrons corresponding to the time in-

tegrated photon flux I (Zs,Θs, ρ, l,Φ, td) at DOM o as determined by Photonics.

Two tools, which allow to query the Photonics tables to relate the simulation results

of Photonics to a given cascade hypothesis C0 (eq. (5.1)), exist: PhotoRec and Pho-

toSplines. Due to the coarse binning used in Photonics, the tabulated results need to

be interpolated. The PhotoRec interface is based on a fast linear interpolation and

PhotoSplines uses a smooth spline fit to reduce interpolation artifacts, thus being com-

putationally more intensive. An example of the precision of such a spline fit is shown in

Figure 4.4 for a delay time distribution according to the Pandel PDF, eq. (5.12).

Figure 4.4: The figure shows a delay time pdf according to Pandel as well as a spline
fit. The resulting curve for the fit is the sum of the base splines (dashed). Figure from
[55]

4.5 Simulating the Detector Response

In the simulation chain, summarized in Figure 4.5, the last step is simulating the de-

tector response to a given light signal. Based on the photon arrival time distributions

of Photonics the HitMaker module characterizes the emission of photoelectrons at the
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photocathode of the PMT. For each hit its arrival time and the corresponding number of

emitted photoelectrons is derived. Together with additional information about stochas-

tic features like PMT pre- and after pulsing, the results are stored for each DOM. In a

next step the amplification of the emitted photoelectrons needs to be simulated. This

is done by the PMTSimulator module. Base on the input from the HitMaker module,

the amplified charge for each hit is calculated based on the PMT charge response func-

tion, eq. (3.4). In addition the pulse is smeared in time according to the PMT pulse

shape. Finally a corresponding waveform is produced, taking into account that the PMT

behaves non-linear for large input currents [55]. The very last step consists of simulat-

ing the DOM electronics, i.e. the FPGA logic. This is done using the DOMsimulator

module.

Figure 4.5: The Figure shows a flow chart of the different steps necessary to produce
Monte Carlo simulations of neutrino events in IceCube. Figure from [55]
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Chapter 5

Cascade Reconstruction

Algorithms

A neutrino, that interacts via the Glashow resonance in the detector, will most likely

(about 80% of all cases) produce a hadronic or electromagnetic particle shower. Hence

a search for the Glashow resonance is a search for high energetic cascade like events,

i.e. events with an almost spherical light distribution and a photon yield equivalent to

a shower energy of E0 ∼ 6 PeV. Thus this chapter will focus on cascade reconstruction

algorithms. Those algorithms have been designed to extract a set of parameters C0

describing the properties of a cascade from the set of recorded signals. In a second

step by addressing the question, which properties maximize the probability for such a

neutrino to have caused the observed particle shower, the underlying neutrino properties

would have to be inferred from those observables. This is not straightforward, since not

only the Glashow Resonance produces such showers, but also charge-current (νe,ν̄e) and

neutral current (all flavors) interactions contribute. In addition possible interactions of

the primary neutrino during the propagation through the earth have to be taken into

account. This thesis primarily addresses the first step.

Cascades with energies below the LPM regime1 typically have a longitudinal extension

of less than 10 m. Given a smallest possible distance between two DOMs of 17 m, the

elongation of a shower can not be resolved in IceCube. Hence such cascades appear as

point-like Cherenkov emitters and thus can be described by a set of seven parameters

(to be reconstructed):

C0 = {~x0, t0, θ0,Φ0, E0} (5.1)

1The LPM effect causes significant longitudinal shower elongation for E0 > 100 PeV.



Chapter 5. Cascade Reconstruction Algorithms 54

The first three parameters ~x0 are given by the the position of the cascade, i.e. the point-

like emitter. The time, at which the emission started, is denoted by the vertex time

t0. Two parameters describe the direction of the cascade (zenith θ0 and azimuth Φ0,

anti-parallel to direction of the longitudinal shower development). Finally the energy of

the cascade is referred to as E0. The convention of the shower direction (θ0,Φ0) to be

antiparallel to the direction of the primary lepton was chosen to point back to the source

of the possibly underlying neutrino. Hence the cascade direction and the direction at

which cherenkov photons are radiated form an angle of α = π − θc. Which methods

are currently being used to determine these parameters from the measurement, shall be

discussed in this section.

The IceTray Software

The IceTray Software provides the framework in which all data processing and data

analysis tasks are performed. The data is organized in so called I3Frames, a container

class which holds several frame objects, which themselves are classes within IceTray.

Such objects are mainly raw data, waveforms and pulses (Q-frames) or subsequent re-

construction results (P-frames) corresponding to one event. Data, structured in that

way, can be stored to disk in so called i3-files. Within IceTray the data can be processed

by using the modules, provided by a meta project. The meta-project used for this the-

sis is the IceRec meta project, which provides a set of common reconstruction tools. A

module can access frame objects in order to use the stored information to perform tasks.

The result will then be stored in one or more additional frame objects. Some modules

require so called services for successful processing. These services provide additional

information to the modules (other than the data shipped as frame objects), such as the

tabulated results of the photonics simulation.

In addition it is possible to convert data stored as frame objects into tabulated infor-

mation, such as the ROOT and HDF5 formats for faster table based analysis.

5.1 The First Guess

Several first guess algorithms, which provide a rough estimate of the cascade parame-

ters C0, are available within the IceRec framework. When using those algorithms, it

should be noted that they are supposed to give somewhat reliable estimates for con-

tained events only. Consider a partially contained cascade with an interaction vertex

somewhere outside the detector boundaries. By construction the vertex provided by the

center of gravity method (see below) will lie within the detector, which will subsequently
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distort the reconstructed vertex time.

The first guess algorithms used in this thesis are described below.

CFirst

The CFirst algorithm aims at the reconstruction of vertex and time of a cascade [49].

In a first step the center of gravity (COG) is used to determine the vertex position. The

positions ~xo of the DOMs o, which recorded light, are weighted and averaged.

~xcog =

∑
owo~xo∑
owo

(5.2)

(5.3)

They weights wo are related to the total charge Qo,tot of the respective DOM o: wo =

Qαo,tot = (
∑

i qoi)
α. Here i runs over all pulses with corresponding charge qoi in DOM

o. The amplitude weight power α allows to adjust the weighting, from no weighting

applied (α = 0) to full weighting (α = 1) [50]. When CFirst was used in this thesis, no

weighting was applied.

In addition to determine the vertex position, CFirst provides an estimate of the time t0,

at which the cascade started, based on the previously estimated vertex position. The

following trial time ttrial can be defined [50]:

ttrialo = to1 −
|~xk − ~xcog|

cice
(5.4)

with to1 being the time of the first pulse in DOM o. In case of no scattering this time

would be the same for each DOM with ttrialo = t0. However since light scatters until

it reaches the DOM the earliest possible time needs to be found. One therefore selects

all DOMs o′ within a sphere of radius r=100m around the center of gravity position

~xcog (o′ ∈ S = {DOMs}r<100m). For each DOM o′ in this set S the trial time ttrialo′

is calculated using (5.4). In the next step for all other DOMs o′′ in S (with o′′ 6= o′)

one can calculate the the delay time w.r.t. straight propagation from ~xcog to DOM o′′,

assuming ttrialo′ would be the true interaction time t0:

tdo′′ = to′′1 − ttrialo′ − |~xo
′′ − ~xcog|
cice

(5.5)

Now it is possible to count the number of DOMs N, which satisfy that their delay time

tdo′′ w.r.t. ttrialo′ lies in a 200ns time window td ∈ [0ns, 200ns]. The algorithm returns the

smallest ttrialo′ with N > 4 [49] as interaction time t0 [50].

Tensor of Inertia

The Tensor of Inertia algorithm estimates the direction of the cascade from the topology
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of the light distribution among the DOMs o, which measured light during an event. It

uses the well known expression for the tensor of inertia, with the mass mo being replaced

by the total charge Qo, seen by the DOM o [47]:

Iij =
∑
o

Qαo
(
δij~x

2
o − xo,ixo,j

)
(5.6)

α again controls by how much each DOM o is weighted by its charge Qo in the above ex-

pression. The position of the DOM o is given by ~xo. By calculating the eigenvalues λi of

this tensor, it is possible to find its principal axes. The principal axis corresponding to the

smallest λ may give an estimate of the direction, since the light distribution is assumed

to be elongated along the arrival direction at high energies, where elongation becomes

non-neglectable. However the ratio between the eigenvalues λi
λj

(i, j ∈ {1, 2, 3} ; i 6= j)

provides a useful variable to discriminate spherical light patterns (i.e. cascades) from

track-like structures, which have an overwhelming background contribution of down-

going atmospheric muons.

5.2 Maximum Likelihood Reconstruction

The most powerful and thus computationally intensive reconstruction algorithms in-

cluded, make use of the likelihood principle. As we have already seen, many probabilis-

tic processes are involved, until the final data is created in form of the calibrated light

pulses of all DOMs. These range from the photon propagation through the ice to all

the effects concerning the detector itself, like the SPE-charge response of the PMT. By

convoving all these probabilistic processes, it is possible to formulate the conditional

probability of observing data R given a cascade with parameters C as the probability

P (R|C) [50]. Here the detector response R is a function of the parameters C. However

event reconstruction can be thought of as solving the inverse problem, namely to ex-

tract those parameters C from a given observation R, which are best supported by the

data. This problem is known as statistical inference. The difficulty lies in the fact that

different classes of events (different sets Ci) might have caused the observation R. Two

main approaches to statistical inference are found in statistics. The method of Bayesian

inference, based on the Bayes theorem, requires pre-knowledge about the probability

distribution P (C), the so called prior-distribution. This knowledge allows to invert the

conditional probability P (R|C) [55]:

P (Ci|R) =
P (R|Ci)P (Ci)∑
j P
(
R|Cj

)
P
(
Cj
) (5.7)
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Since the prior distribution is typically unknown for most experiments in physical sci-

ences, another method is needed. According to [72] all necessary information to deter-

mine the relative support of one hypothesis Ci compared to another Cj by the data R,

is described by the likelihood function L, defined as follows:

L (Ci|R) ∝ P (R|Ci) (5.8)

The likelihood of a hypothesis Ci based on a measurement R is proportional to the

probability that this observation occurs under the conditions Ci. The likelihood itself can

not be interpreted as a probability(density), as it may not be normalized and transforms

differently under variable transformations. The absolute value of the likelihood therefore

has no meaning w.r.t the support of a hypothesis and an absolute comparison of different

hypotheses on different data is to be avoided. It is the ratio between the likelihoods of two

competing hypothesis data, which, based on the same data, quantifies which hypothesis

is preferred. This is summarized in the Likelihood axiom [72]:

“Within the framework of a statistical model, all the information which the

data provide concerning the relative merits of two hypotheses is contained in

the likelihood ratio of those hypotheses on the data, and the likelihood ratio is

to be interpreted as the degree to which the data support the one hypothesis

against the other”. (A. W. F. Edwards)

Hence the best matching hypothesis is defined by the set of parameters C0, which

maximize the likelihood L. In that context it is useful to define the natural logarithm

of the likelihood as the support function [72], since it avoids numerical difficulties while

preserving the position of the maximum [50]. One thus minimizes the negative logarithm

of the likelihood to find the best fitting parameters C0:

−∇C lnL (C|R)

∣∣∣∣
C=C0

= 0 (5.9)

In order to find the minimum of this expression, additional constants in the support func-

tion, such as the constant of proportionality of the likelihood function, can be discarded.

The data R in our case consists of the calibrated light pulses of all DOMs.

R = {toi,∆toi, noi} (5.10)

with the DOMs being indexed by o and the pulses in each DOM being denoted by i.

A pulse is characterized by its starting time (leading edge) toi, its width ∆toi and its

charge noi in units of photoelectrons [50].
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5.3 The Second Estimate

Cascade Likelihood Vertex Reconstruction

The Cascade Likelihood Vertex Reconstruction (CscdLlh) algorithm, which is based on

the maximum likelihood technique, described above, is used in this thesis to further

improve the result of the vertex and timing information provided by CFirst. CscdLlh,

as used in this thesis, relies on the Powell algorithm [73] to minimize a likelihood,

describing that DOM o at a distance do = |~xo − ~x0| from the hypothetical cascade vertex

~x0 measures its first pulse at a delay time tdo1 = to1 − t0 − do
cice

w.r.t to the hypothetical

vertex time t0. The delay time thus is the additional time it takes for a photon to

arrive at the DOM due to scattering compared to straight unscattered propagation.

The support function reads:

− lnL
(
t0, ~x0|tdo1, ~xo

)
= − ln

[
Πopo

(
tdo1, ~xo|t0, ~x0

)]
= −

∑
o

ln po

(
tdo1, ~xo|t0, ~x0

)
(5.11)

The probability density is based on the Pandel-pdf [74], which assumes homogenous and

isotropic optical properties of the ice. It reads [50]:

po

(
tdo, do

)
=

dp

dtdo

(
tdo, do

)
∆t =

a
(
atdo
)b−1

exp
(
−atdo

)
Γ (b)

∆t (5.12)

a =
1

τ
+
cice
λa

(5.13)

b =
do
λ

(5.14)

The following coefficients are used: λ = 47 m, τ = 450 ns, λa = 98 m [50], with λa being

the absorption length in ice while τ and λ are free parameters in the parametrization,

which have been extracted from simulations. Since the bias due to the assumption of

homogenous ice increases with increasing number of scatterings, i.e. with increasing de-

lay time td, only the first pulse of each DOM was used in the algorithm for the purpose

of this thesis. However it is due to this simplified treatment of the optical properties of

the ice, that Cscd-Llh is much faster than more sophisticated algorithms, which include

a full treatment of the optical properties of the ice (compare sec. 4.3).

Atmospheric Cascade Energy Reconstruction

The Atmospheric Cascade Energy Reconstruction (ACER) algorithm is a likelihood

based energy reconstruction, which semi-analytically solves for the cascade energy E0

based on its vertex seed. For the purpose of this thesis ACER was seeded with the

vertex solution provided by Cscd-Llh. Since ACER only reconstructs the energy, it

includes a proper treatment of the ice by making use of the tabulated results of the
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Photonics simulation, while being sufficiently fast. In section 4.4 it was shown, that the

Photonics simulation allows to relate the mean total charge (number of photoelectrons)

〈µtot〉o, expected in DOM o given a cascade with hypothetical parameters C0, to the

total charge 〈µtot〉1GeVo of a 1 GeV light source determined by simulation. It is assumed

that the total charge no in DOM o follows a Poisson distribution, characterized by the

total charge µo = 〈µtot〉o + νT , where νT denotes the noise contribution (rate ν) over

the event length T. The likelihood thus reads:

L (E0|no) =
∏

DOMs(o)

µnoo e
−µo

no!
(5.15)

The corresponding support function can be minimized analytically w.r.t E0, which yields

the following equation:

− ∂

∂E0
lnL (E0|no) =

∑
o

[
〈µtot〉1GeVo

(
1− no

E0
1GeV 〈µtot〉

1GeV
o + νT

)]
= 0 (5.16)

〈µtot〉1GeVo = (1 GeV) · ∂

∂E0
〈µtot〉o (5.17)

with 〈µtot〉1GeVo being the total charge returned by Photonics/PhotoRec for DOM o

(compare 4.4). This 1-D root finding problem is solved numerically.

Since the predictions of PhotoRec rely on the tabulated Photonics results, which are

based on the simulations for different ice models, one has to specify, which ice model

shall be used. The AHA photorec tables have been used for ACER throughout this

thesis, providing a fast energy estimate.

5.4 The Final Answer

Credo

The Credo algorithm [50] is a likelihood based cascade reconstruction algorithm, that

determines all seven parameters C0 from the calibrated pulses. The basic assumption of

this algorithm is that the photonics simulation allows to predict the expected number

of photons in each time interval and hence the charge of all pulses in each DOM for a

given cascade hypothesis C0. The expected charge µoi of a pulse i with width ∆toi in
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DOM o at position ~xo reads [50]:

µoi

(
~xo, t

d
oi,∆toi|C0

)
=

∫
∆toi

dtdo

(
〈µtot〉o

dp

dtdo

(
~xo, t

d
o

)
+ νnoise

)
(5.18)

≈
(
〈µtot〉o

dp

dtdo

(
~xo, t

d
o

)
+ νnoise

)
∆toi (5.19)

tdoi = toi −
do
cice
− t0 (5.20)

with do being the distance from DOM o to the hypothetical vertex ~x0.

Given the stochastic nature of the involved processes like photon propagation and charge

multiplication in the PMT, it is natural to assume that the charges µoi measured for dif-

ferent pulses (i.e. in different time intervals of the respective waveform) are statistically

independent and can thus be modeled with a poisson distribution. The Credo likelihood

reads [47]:

L (C0|~xo, toi,∆toi, noi) =
∏
o

∏
i

µnoioi e
−µoi

noi!

∏
o′

e−µo′ (5.21)

Here o and o’ denote hit and unhit DOMs respectively. Those unhit DOMs, i.e. DOMs

which did not measure light, are included in the fit, because they can provide important

constraints to penalize wrong hypothesis. Any hypothesis which predicts charge for such

a DOM will exponentially be suppressed.

The expression above yields the following support function:

− lnL =
∑
o

{
µo −

∑
i

(
noi ln

µoi
µo
− ln (noi!)

)
−No lnµo

}
−
∑
o′

µo′ (5.22)

µo =
∑
i

µoi ≈ 〈µtot〉o + νnoise∆tevent (5.23)

with No =
∑

i noi being the total charge recorded in DOM o. The approximation for

the total expected charge µo of DOM o is valid as long as all pulses of the full waveform

have been considered. Throughout this thesis the commonly used simplex algorithm

[75] was applied to minimize the expression above in all seven parameters to determine

the best fitting cascade hypothesis C0.

It should be noted that the contribution of a DOM to the likelihood increases with

increasing charge, not only because they should have measured the most pulses, but

more importantly because the relative error of a Poisson distribution ∆µ
µ decreases with

increasing µ as 1√
µ . Thus the penalty for the same relative deviation of measured charge

from predicted charge ∆µoi
µoi

= µoi−nnoi
µoi

for a single pulse increases with the expected

charge. That means, that the Likelihood becomes more sensitive to possible deviations

from the assumed poisson characteristics of the DOM with increasing charge. By a
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DOM wise comparing the expected total charge and observed total charge, it was found

in [50] that for bright DOMs (i.e. Qtoto > O(100p.e.)) the relative error ∆µtot
µtot

stays al-

most constant with increasing expected total charge µtot. This was interpreted as a hint,

that bright pulses might not properly be described by a poisson distribution. The Credo

likelihood was thus expanded such that bright pulses above a threshold charge with

noi > α2
t are compared to a Gaussian distribution with σ = noi

αt
. Different values of αt

corresponding to relative errors of σ
noi
∈ {5%, 10%, 20%, 50%} have been tested, but the

results of this change have not been conclusive and hence are commonly not used during

reconstruction. Details can be found in [50]. Throughout this thesis a value αt = 1000

(α2
t = 106 p.e.) was chosen, making sure, that only poissonean terms enter the likelihood.

Monopod

Monopod, another likelihood based cascade reconstruction algorithm, is the single source

specialization of the hybrid reconstruction algorithm millipede. Millipede is designed to

reconstruct the energy loss in each segment of a track by fitting a cascade in each seg-

ment, using a pulse based Poisson likelihood similar to the one used in Credo. However

since reconstructing single cascades similar to Credo already is computationally inten-

sive, several changes were needed in order to speed up that process of dealing with mul-

tiple sources. Thus those changes are also present in Monopod, making that algorithm

significantly faster than Credo. Whereas Credo numerically minimizes the full seven-

dimensional likelihood, as discussed above, Monopod only minimizes in 6 dimensions,

leaving the energy reconstruction for a subsequent semi-analytical treatment, using the

ACER approach w.r.t to the charge measured in each time bin of the waveform. An ad-

ditional gain in computational speed is obtained by using the spline interpolated version

of the Photonics tables. Since the derivatives of those splines are known by construction,

Monopod provides gradient information to the minimizer, making numerical minimiza-

tion more efficient.

The Monopod Likelihood and support functions read:

L (C0|~xo, toi,∆toi, noi) =
∏
o

∏
i

µnoioi e
−µoi

noi!
(5.24)

lnL (C0|~xo, toi,∆toi, noi) =
∑
o,i

[noi lnµoi − µoi − ln Γ (noi + 1)] (5.25)

o and i denote the DOM and the time window, in which a certain amount of charge

was measured, respectively. The Γ function is used to generalize the factorial of the

respective Poisson distribution to the case of having continuous parameters. The mean

expected charge µoi = 〈µtot〉oi+νo is based on the Photonics prediction 〈µtot〉oi. However

similar to ACER the linear relationship between the energy of a cascade E0 and its light
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yield is used:

〈µtot〉oi (~xo, toi,∆toi|C0) =
E0

1GeV
〈µtot〉1GeVoi

(
~xo, toi,∆toi|C0;−1

)
(5.26)

〈µtot〉1GeVoi

(
~xo, toi,∆toi|C0;−1

)
=

∫
∆toi

dtd
dp

dtd

(
~xo, t

d
)
〈µtot〉1GeVo (5.27)

with C0;−1 being the set of all Cascade parameters C0 except the energy E0. Once

the position, time and direction of the Cascade have been determined via numerical

minimization, the energy can be reconstructed in a next step by minimizing the support

given above analytically:

− ∂

∂E0
lnL (E0|noi) =

∑
o,i

[
〈µtot〉1GeVoi

(
1− noi

E0
1GeV 〈µtot〉

1GeV
oi + νo

)]
= 0 (5.28)

This equation is solved for the energy E0 numerically using the Newton-Rhapson method

[76].

Monopod offers the user the option to provide a constant factor ξ ∈ [0, 1] to artificially

downscale the Photonics prediction to 〈µ′tot〉
1GeV
oi = ξ 〈µtot〉1GeVoi .

It is possible for all likelihood-based algorithms to apply an iterative fitting scheme

as follows: based on the seed a first likelihood minimization is done to provide a first

solution. At that point it is not possible to conclude that this minimum is global. One

thus seeds that solution into another iteration of the respective algorithm, while the

direction of the previous solutions is altered. If the support function, evaluated at the

new solution, which is found after reminimization of all parameters, has a smaller value

than the previous solution, then that new solution will be considered as best fitting

hypothesis. This procedure can be repeated arbitrarily often.

5.5 The “True” Cascade Parameters

In order to make comparisons between the reconstructed cascade parameters and the

simulated showers, as we intend in the next chapter, a meaningful Monte Carlo Truth

must be chosen. “Meaningful” in this context means to use a value, to be found by

the algorithm, which does not necessarily need to equal the respective property of the

primary neutrino, as already discussed.

The energy Etrue, which a cascade reconstruction is supposed to find, can only be

given by its visible energy losses. This differs from the primary neutrino Energy Eν for

two reasons. First, in some interactions (CC/NC/GR leptons) the kinematic processes
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involved need to be considered. Secondly as described in section 2.3 in case of hadronic

showers, the visible energy might differ from the total energy deposited in the shower.

Hence the Monte Carlo Truth of the Cascade energy Etrue is given by the sum of all

visible energy losses Ei according to CMC (Etrue =
∑

iEi with Ei being the energy of

a sub-cascade created by CMC, compare 4). This is visualized in figure 4.1.

One underlying assumption behind the cascade reconstruction algorithms, used in this

thesis, is the point like emission profile of those showers. This approximation works as

long as the elongation of a cascade is smaller than the distance between two optical mod-

ules in IceCube (17m). The vertex x̃true will thus be defined as the position at which

the shower brightness peaks (shower maximum), which is the energy loss weighted av-

erage position of the sub cascades created by CMC (center of gravity): ~xtrue,i =
∑
i Eixi∑
j Ej

(compare figure 4.1). The distance from the interaction vertex to the position of the

Figure 5.1: The figure visualizes the energy dependence of the cascade elongation
as simulated in IceCube by showing the distance between the position of the shower
maximum and vertex position of the neutrino interaction.

shower maximum gives a good estimate of the cascade elongation. The energy depen-

dence of this distance is shown in figure 5.1. The sharp edge at Ei = 1 PeV is due to

the energy threshold above which the LPM2 effect is simulated in CMC. The red dot at

log E
GeV = 6.8 shows the position of the Glashow Resonance. Thus those cascade have

a typical length 5m < d < 7 m in good agreement with the estimated length d ≈ 6.4 m

using the Heitler model (compare sec. 2) and hence the point like approximation is valid

for Glashow Resonance Cascades.

2The LPM effect denotes a strong decrease of the Bremsstrahlungs cross-section due to quantum
interference between the scattering amplitudes of different atoms. Since this effect is only important
above Ee ≈ 10 PeV it has no influence for the purpose of this thesis.
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Since the whole simulation chain assumes the secondary particles to follow the direction

of the primary neutrino, its direction will be used to define the true shower zenith θtrue

and azimuth Φtrue.
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Chapter 6

Reconstruction Performance for

Simulated Glashow Resonance

Cascades

One important step towards exploiting the Glashow resonance in a search for a diffuse

flux of astrophysical neutrinos is the capability to reliably reconstruct the properties of

the neutrino induced electromagnetic and hadronic showers in IceCube. An increasingly

precise knowledge of the properties of a single event would be beneficial in estimating

the probability that a given sample of neutrino event candidates contains an astrophys-

ical signal, i.e. that the distributions of the cascade parameters within that sample are

likely not to be explained by background (i.e. cosmic ray muons, atmospheric neutri-

nos). In that context the energy distribution is of special importance, since rejecting

the hypothesis, of that sample being consistent with atmospheric neutrinos, will almost

entirely rely on the reconstructed energies.

Due to the absence of a viable artificial source of neutrinos, an analysis of the recon-

struction capabilities of current reconstruction algorithms has to rely on the combined

study of simulated data and the use of the IceCube Standard Candle Lasers. Only the

Standard Candle provides a light yield strong enough to mimic particle showers with

energies near the Glashow resonance E = 6.3 PeV. The goal of this thesis is to test

the currently most sophisticated cascade reconstruction algorithms (Credo and Mono-

pod) and evaluate their reconstruction performance using simulated neutrino events and

Standard Candle data.

In this chapter the part of the analysis which is based on simulated data will be described.
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6.1 Electron Neutrino Monte Carlo Dataset

This analysis is based on the IceCube IC79 (79 strings) electron neutrino Monte Carlo

dataset 6461. The 79-strings detector configuration represents the largest detection vol-

ume, for which official Monte Carlo data were available.

Dataset Details

• dataset id: 6461 (processed to Level2)

• geometry: IC79

• ice model: SPICEMie

• photon propagator: Photonics

• generator: neutrino-generator

• energy range: 101.7 GeV < Eν < 109 GeV with E−γ (γ = 1)

• angular range: 0◦ < θ < 180◦

• software version: simulation.releases.V02-06-02 with std-processing.releases.11-02-

00

In order to provide sufficient statistics at high energies, this dataset was simulated using

a hard primary neutrino spectrum with a slope of γ = 1. In order to make statements

about an presumably astrophysical flux with a generic slope of γ = 2, all events have to

be reweighted. The resulting neutrino spectrum after online filtering (black) as well as

the individual contributions from several IceCube online data filters (colored) are shown

in figure 6.1 . The Glashow resonance is visible as a very sharp peak at energies around

log (E/GeV) ≈ 6.8. The cascade filter (green), which was designed to select events with

cascade like light patterns, contains almost all Glashow Resonance events, as expected.

6.2 Cascade Reconstruction Performance for simulated Elec-

tron Neutrino Events

In this analysis we use the cascade Level3 filter data (cf. sec. 3.5), since it already con-

tains the results of computationally expensive cascade reconstruction algorithms. Based

on the reconstructed cascade position by Credo, as run at Level3, all events are tagged
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Figure 6.1: Dataset 6461 at Level2: The logarithmic energy spectrum of all events
(black) and of individual IceCube filters (colors) is shown for a neutrino flux expectation

of dΦ
dE = 10−8

(
E

GeV

)−2

GeV−1cm−2s−1sr−1 and Φνe/Φν̄e = 1. The Glashow resonance

is visible as a sharp peak at log E

GeV ≈ 6.8

as contained or uncontained. Contained events have their reconstructed x and y coordi-

nates within the detection volume and their brightest (highest charge) DOM not on the

outer strings. In addition to the above mentioned result of 1-iteration Credo, the result

of 1-iteration Monopod is available. The following settings for Credo and Monopod have

been used for the Cascade Level3 processing:

Credo 1-iteration

• pulses: TWOfflinePulsesHLC

• ice model: AHA

• photonics interface: PhotoRec

• seed: Cscd-Llh (position and time), Tensor of Inertia (direction), ACER (energy)

• Credo “IC40-Corrections” 1 (dynamic scaling of the photonics predicted light yield)

Monopod 1-iteration

• pulses: OfflinePulses

• ice model used: SPICE1

• photonics interface: PhotoSplines

1This name reflects, that those corrections have been implemented at the time, when IceCube was
run in its partial IC40 configuration.
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• seed: Credo 1-iter (position, time, direction, energy)

• “Monopod Scaling Factor” (constant factor of 0.58, lowering the photonics pre-

dicted light yield)

The electron neutrino Monte Carlo simulation dataset 6461 at Level3 was chosen for a

first study of their performance. Figure 6.2 shows the distributions of events according

to their reconstructed Credo vertex position in the xy-plane (right), as well as the dis-

tribution of the true positions (left). The distribution of the reconstructed and the true

positions in that plane are very similar for contained events. Only at the boundary of

the detector and beyond differences appear. This indicates that reconstructing uncon-

tained events has to be regarded as a challenge. The distribution based on the Monopod

reconstruction (not shown) does not differ from the Credo result.

In order to obtain a realistic estimate of the reconstruction performance, only contained

Figure 6.2: Electron neutrino Monte Carlo (Level3): x versus y position of
the shower maximum (left) and of the reconstructed cascade position obtained by 1-
iteration Credo (right).

events (CascadeL3 Containment = True) will subsequently be considered, since those

are easier to reconstruct. For the same reason an additional loose cut on the z-component

of the true position of the shower maximum has been made, to select only those events,

which deposited most of their light inside the detector (−500 m < ztrue < 500 m). This

set of cuts will subsequently referred to as “weak containment”.

Vertex Resolution

The distributions of ∆x = xreco − xtrue and ∆z = zreco − ztrue for events, with pri-

mary neutrino energy Eν satisfying 4.0 PeV < Eν < 6.3 PeV, are shown in Figure 6.3
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Figure 6.3: Electron neutrino Monte Carlo (Level3): A comparison of the
vertex distribution ∆x (top) and ∆z (bottom) for Credo (left) and Monopod (right)
for contained events with energies 4.0 PeV < Eν < 6.3 PeV

for Credo and Monopod. Both algorithms show a resolution in x of about σ∆x ≈ 8m

in this energy range while showing a bias of up to µ∆x ≈ 2m. The results for y are

similar. Due to the denser population of DOMs in the z direction compared to x and

y, the average resolution of the z coordinate is slightly better with σ∆z ≈ 5 m. Both

algorithms on average tend to underestimate the z position with µ∆z ≈ −2 m. It should

be noted that the large non-Gaussian tails visible above, are due to events, that are

close to the detector boundary or lie within the dust layer and thus are only partially

contained. By further constraining the sample to be well-contained above the dust layer

with x2
true + y2

true < (350 m)2 and 50 m < ztrue < 350 m, those tails largely disappear

as shown in Figure 6.4. This set of cuts which selects well contained cascades, will

subsequently referred to as “strong containment”.

The dependence of the vertex reconstruction performance on the neutrino energy Eν is

shown in Figure 6.5, for the case of weak containment. Both algorithms show their best

vertex resolution between Eν = 0.1 PeV a nd Eν = 1.0 PeV, while generally showing
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Figure 6.4: Electron neutrino Monte Carlo (Level3): A comparison of the
vertex distribution ∆z for Credo (left) and Monopod (right) with strong containment
and energy 3.2 PeV < Eν < 6.3 PeV

Figure 6.5: Electron neutrino Monte Carlo (Level3): Bias (top) and resolution
(bottom) of the reconstructed vertex coordinates ∆x (left) and ∆z (right) for Credo,
Monopod and Cscd-llh. The bias and resolution are obtained from fits to gaussian
distributions in each energy bin.
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a very similar energy dependence as expected, since both algorithms essentially share

the same likelihood (compare sec. 5.2). Monopod however generally performs better

than Credo at all energies. This is mainly for two reasons. First Monopod benefits from

having a better vertex seed (Credo Vertex) and secondly it used spline fitted photonics

tables, thus minimizing problems due to the coarse binning in the standard photonics

tables and its linear interpolations. Finally both algorithms show a significantly im-

proved resolution compared to Cscd-llh (compare sec. 5.3), since they account properly

for the inhomogenous optical properties of the ice.

Energy Resolution

The distributions of ∆ logE = log10
Ereco
Etrue

(Etrue defined as visible deposited energy)

are shown for the range 4.0 PeV < Eν < 6.3 PeV in Figure 6.6 for the case of weak

containment. In addition the influence of requiring strong containment, is displayed for

the range 3.2 PeV < Eν < 6.3 PeV. The first observation is the presence of large tails

for both algorithms in case of weak containment. In addition these tails are system-

atically different for both algorithms. In case of Monopod those tails lie in the region

of overestimated energies, whereas the opposite is true for Credo, which shows tails

towards underestimated energies. Constraining the sample to be well contained above

the dust layer cuts most of those tails and the distributions become largely Gaussian.

For that sample the following biases can be read off: µ∆ logE ≈ −0.02 (Monopod) and

µ∆ logE ≈ 0.13 (Credo). Both algorithms show a resolution of about σ∆ logE = 0.08.

The disagreement of both algorithms with respect to the reconstructed energies seems

to be in tension with the expectation of both algorithms being very similar. This will

be further investigated in section 6.3. The bias and the resolution of Monopod, Credo

as well as ACER (compare sec. 5.3) are shown in Figure 6.7 over the full energy range.

The energy dependence of the bias in the energy reconstruction is different for both

algorithms. Monopod shows a nearly constant bias towards overestimated energies be-

low the PeV region, whereas the bias of Credo rises with energy from less bias than

Monopod to almost twice as much bias in ∆ logE around 1 PeV. This disagreement will

be investigated further in the next chapter (sec. 6.3). The rapid decrease in resolution

for both algorithms at energies above 10 PeV is partially due to events at the detector

boundary. In case of tighter containment, this decrease is weaker.

Directional Resolution

Reconstructing directional information from a cascade has been proven to be challeng-

ing [50]. Two angles are of interest: the zenith θ and the opening angle α between the

true and reconstructed directions. Figure 6.8 shows the bias2 in zenith 〈∆θ〉, where

∆θ = θreco − θtrue as well as the zenith resolution ∆∆θ = 〈|θreco − θtrue|〉. At energies

2bias here: average of the histogrammed deviations. Not the parameter of a gaussian fit.
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Figure 6.6: Electron neutrino Monte Carlo (Level3): The distributions of ∆E
E

for weak containment and energy range 4.0 PeV < Eν < 6.3 PeV (top) as well as strong
containment and energy range 3.2 PeV < Eν < 6.3 PeV (bottom): Monopod (left) and
Credo (right).

Figure 6.7: Electron neutrino Monte Carlo (Level3): Resolution (right) and
bias (left) of the reconstructed energy ∆E

E for Credo, Monopod and ACER. The bias
and the resolution are obtained from fits to gaussian distributions in each energy bin.
Events satisfy weak containment.
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Figure 6.8: Electron neutrino Monte Carlo (Level3): Bias (left) and resolution
(right) of the reconstructed zenith angle of Credo and Monopod to be compared the
case of the reconstructed zenith being sampled from a random number generator (gauge
zenith); events satisfy weak containment

around the Glashow Resonance the resolution3 in zenith is of the order of ∆∆θ ≈ 40◦

for Monopod and ∆∆θ ≈ 46◦ for Credo. The pink line shows the “resolution” in case of

using a random number in the interval θrnd ∈ [0◦, 180◦[ as reconstructed zenith. Hence

only little information about the zenith can be extracted at Level3, since the resolution

of both algorithms is only marginally better (by about 10◦) than the case of not having

extracted any information (pink). Some caution is required when interpreting the bias

shown in figure 6.8. Since with increasing energy the earth starts to absorb neutrinos

until it becomes opaque at PeV energies, one expects a bias towards overestimating the

zenith even in the case of random population of reconstructed zeniths. The pink curve

visualizes that effect, rising from no bias at low energies to a bias of about ∼ 30◦ at

highest energies.

The overall directional resolution in terms of the mean opening angle α between the true

and reconstructed directions are summarized in figure 6.9. Over all the best directional

resolution is achieved by Monopod with ᾱ ≈ 48◦ between 10 TeV and 100 TeV. At

energies around the Glashow Resonance resonance Monopod still gives the best result

(ᾱ ≈ 60◦).

Summary

A summary is given by Table 6.1, showing the reconstruction performance at energies

around the Glashow Resonance for three samples of dataset 6461, which differ only w.r.t.

to the region within the detector of the events. Sample 1 shows the case of weak con-

tainment (Level3 Containment + additional cut on ztrue, as discussed above), whereas

3resolution here: average absolute deviation of the reconstructed zenith from the true zenith
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Figure 6.9: Electron neutrino Monte Carlo (Level3): The figures shows the
mean opening angle ᾱ between the true and reconstructed directions. “gauge zenith”
refers to the case of the reconstructed direction being a random number; weak contain-
ment req.

Sample µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆ logE ± σ∆ logE

Sample 1

Monopod 1.7± 8.2 −0.8± 4.94 −1.6± 4.2 0.03± 0.08

Credo 1.6± 8.6 0.7± 8.4 −1.8± 5.5 0.13± 0.09

Sample 2

Monpod −0.1± 7.3 −2.3± 8.7 −2.0± 3.9 −0.02± 0.07

Credo −0.9± 8.8 −2.0± 7.0 −1.0± 4.5 0.13± 0.08

Sample 3

Monopod 1.2± 6.9 −0.3± 7.8 −1.6± 3.1 0.00± 0.07

Credo 2.8± 11.3 −0.8± 8.1 −1.4± 7.8 0.15± 0.07

Table 6.1: Electron neutrino Monte Carlo (Level3): Bias and resolution of
Credo and Monopod at the Glashow Resonance. The three samples: Sample 1: full
detector with weak containment; Sample 2: above the dustlayer with strong contain-
ment; Sample 3: below the dust layer (x2

true + y2
true < (350 m)

2
and −400 m < ztrue <

−200 m). Resolution and bias have been extracted from fits to gaussian distributions.

samples 2 and 3 are restricted to well contained events (x2
true + y2

true < (350 m)2) above

(50 m < ztrue < 350 m) and below (−400 m < ztrue < −200 m) the dust layer. The

results presented in this section are based on 1-iteration of both algorithms and suppos-

edly improve with increasing number of iterations. However even in the case of having

32 iterations of Credo a median directional resolution of only 30◦ was found in previous

studies [50]. Concerning the energy it is visible, that the energy estimates of Credo and

Monopod differ at Level3. This disagreement will be addressed in the next section.
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6.3 Credo and Monopod: A direct comparison at the Glashow

resonance

In the last section it was found, that at Level3 of the cascade filter stream Monopod

and Credo give largely different energy estimates, although relying on the same recon-

struction method. By especially focusing on the Glashow resonance this shall be further

investigated in this section. During those studies a problem with simulated Glashow

resonance events was found in Monte Carlo dataset 6461, which will be discussed first.

6.3.1 Problem with Lepton Propagation in Dataset 6461 at Level2

Figure 6.10: Electron neutrino Monte Carlo (Level2): Rates of the dif-
ferent Glashow Resonance modes in simulation for a neutrino flux expectation of

dΦ
dE = 10−8

(
E

GeV

)−2

GeV−1cm−2s−1sr−1 and Φνe/Φν̄e = 1

In this work it was found, that the the muon and tau decay modes of the W−-boson are

strongly suppressed compared to the electron mode, as can be seen in Figure 6.10. In

order to investigate this problem, two additional datasets will be used throughout this

discussion:

The “generated” Dataset

• dataset id: 7747 (unprocessed)

• geometry: IC79

• ice model: SPICEMie

• photon propagator: Photonics

4This value underestimates the respective resolution, due to a failed fit.
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• generator: neutrino-generator (NuE)

• energy range: 101.7 GeV < Eν < 109 GeV with E−γ (γ = 1)

• angular range: 0◦ < θ < 180◦

• software version: simulation.releases.V02-06-02

The “fixed” dataset 8788

• dataset id: 8788 (processed to Level2)

• geometry: IC86

• ice model: SPICEMie

• photon propagator: PPC

• generator: neutrino-generator (NuE)

• energy range: 101.7 GeV < Eν < 107 GeV with E−γ (γ = 1)

• angular range: 0◦ < θ < 180◦

• software: simulation releases.V03-02-00 (contains lepton propagator bugfix)

According to the branching ratios (compare table 1.5) the rates in all leptonic modes

should be the same, with small differences due to neutrino propagation through the

earth. These differences would slightly enhance the contribution to the rate by the tau

mode, compared to the other leptonic modes. At PeV energies the Earth is opaque for

neutrinos, meaning that neutrinos traveling upwards (θ > 90◦, see Figure 3.2) would

interact before reaching the detection volume, thus getting absorbed by the earth. The

tau neutrino however is not absorbed, since a tau lepton produced in a CC interaction

will decay to a tau neutrino (and others) before getting absorbed by the earth. As

shown in Figure 6.10 there are up to two orders of magnitude difference between events

associated with muon and tau production as compared to the electron mode. These

missing contributions are also visible in the unweighted spectrum as a dip at the energy

of interest in Figure 6.11. In order to understand the differences between the surviving

contribution in the track like modes and the missing events, we plot the event distri-

butions in the zenith-distance plane in Figure 6.12, with distance being the distance of

the first resonant interaction vertex from the origin of the IceCube coordinate system.

The upper plots in Figure 6.12 show the event distributions for all events, which are

associated with the Glashow Resonance for the electron channel (left) and the muon

channel (right). In the muon channel those events, which have had their first resonant
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Figure 6.11: Electron neutrino Monte Carlo (Level2): E−1 primary neutrino
energy spectrum at Level2 and the contributions from different IceCube filters. Missing
events are shown as a suppression at the Glashow Resonance (log Eν

GeV ∼ 6.8).

Figure 6.12: Electron neutrino Monte Carlo (Level2): Zenith versus distance
d for the electron channel (top left) and the muon channel (top right). In addition the
influence of the requirement, that the last neutrino interaction was resonant, is shown
(bottom).
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interaction vertex close to the detection Volume (d < 1 km) are missing. In the lower

plots an additional cut regarding the interaction, which produced visible light in the

detector, was applied. Only those events that produced visible light due to a resonant

interaction are shown. In the muon channel 100% of the signal is missing after that

selection. The same holds for the tau channel. Hence the only contribution to the

track like modes in this dataset is due to those events, that produced muon and tau

anti-neutrinos resonantly somewhere in the earth, which then produced a signal in the

detector due to a subsequent CC or NC interaction.

In order to distinguish whether those events have been lost due to filtering and process-

ing up to Level2 or if they have not been simulated within the simulation framework, a

small unprocessed dataset (dataset 7747, based on same software and settings as used

in Figure 6.12) of generated events was produced and subsequently processed using

standard processing scripts (Version 11-02-00). The left plot in Figure 6.13 shows the

zenith-distance plane for dataset 7747 (unprocessed) in the muon channel. By compar-

Figure 6.13: Dataset 7747 unprocessed: zenith versus distance d plane for the GR
muon channel (left). Dataset 8788 at Level2: GR muon channel (right), simulated
with IceSim 3.2. (w. lepton propagation bug fix).

ing to Figure 6.12 it becomes clear, that the neutrino generator used in the Monte Carlo

simulation is not responsible for the loss. Instead it was found that the events are lost

during the triggering, which means that these events miss their associated light output

and hence are not kept. We passed this information to the simulation working group
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in IceCube. It turned out that the secondary leptons (µ− and τ−) produced in the re-

spective resonant interactions have not been propagated by the lepton simulation MMC

(section 4). The small fraction of events associated with the Glashow resonance, which

survived up to Level2 in dataset 6461, have been kept, because the hadronic cascade

in the subsequent CC/NC interaction produced by itself sufficient light to trigger the

detector.

In the release version 3.2. of the IceCube simulation software IceSim, this bug has par-

tially been fixed. The right plot in figure 6.13 shows the distribution of muon events as-

sociated with the Glashow Resonance after Level2 processing of dataset 8788, which was

produced after the release of IceSim 3.2. with the bug fix mentioned above. The Level 2

distribution of dataset 8788 (right) follows the unprocessed distribution of dataset 7477

for that mode (left), with differences in normalization being due to triggering. However

the tau mode is still affected by this problem, as shown in Figure 6.14. Why the tau

channel is still suppressed after the release of IceSim 3.2., is currently under investigation

in the IceCube simulation working group.

Figure 6.14: Dataset 8788 at Level2: Rates of the different Glashow Resonance
modes in simulation after the release of IceSim 3.2. for a neutrino flux expectation of

dΦ
dE = 10−8

(
E

GeV

)−2

GeV−1cm−2s−1sr−1 and Φνe/Φν̄e = 1

6.3.2 The Event Samples

The issue discussed above, does not influence the Glashow resonance modes with hadronic

or electron (and electron anti neutrino) final states. In addition the hadronic Glashow

resonance mode does not produce neutrinos, which would invisibly carry away energy,

thus creating cascades with a well-defined light yield. Furthermore this channel dom-

inates the Glashow Resonance at 6.3 PeV. Hence the following study, addressing the

observed disagreement in energy as well as the general reconstruction performance at
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the Glashow resonance, is based on those cascades only. In section 6.2 it was shown that

partially contained cascades impose a challenge for reconstruction algorithms. By requir-

ing a strong containment of the sample the corresponding non-gaussian tails vanished.

To make sure, that no light leaves the detection volume those containment cuts have

been tightened further. The samples, subsequently being used, possess the following

properties:

• 1000 hadronic cascades via Glashow Resonance

• dataset 6461 at Level25

• 1 PeV < Eprim < 10 PeV with E−1 spectrum

• x2
true + y2

true < (250 m)2

• Sample A (above the dustlayer): 100 m < ztrue < 300 m

• Sample B (below the dustlayer): −400 m < ztrue < −200 m

The study will focus on the sample A, since the reconstruction performance above the

dust layer typically is worse compared to the performance below the dust layer, where

the clearest ice is present. Sample B will be used to validate the results, we obtained

based on investigating Sample A.

6.3.3 Credo and Monopod: Corrections 1 (same pulses and ice model)

Interpreting the difference in the energy estimates provided by Credo and Monopod

found in section 6.2 is problematic, since at Level3 those algorithms have been run

using different input (i.e. different seed and differently processed light pulses). Hence

for further investigation the effect of the algorithm has to be disentangled from the

influence of having different input. Thus in this section, both algorithms will be used to

reconstruct the event sample based on the same settings as were previously applied at

Level 3 except that the same input will be used for both algorithms. This is summarized

as follows:

• pulses: OfflinePulses

• ice model: SPICE1

• photonics interface: PhotoSplines

5Level2 was chosen to increase the statistics to 1000 cascades with the described properties.



Chapter 6. Reconstruction Performance for simulated Glashow Resonance Cascades 81

• seed: Cscd-llh (vertex), ToI (direction), ACER (energy)

• 1-iteration

• Credo with “IC40-Corrections” (same as at Level3)

• Monopod with constant scaling of Photonics predictions (ξ = 0.58, same as at

Level3)

• Software: IceRec.release.V04-01-02

including Credo.release.V00-02-02 and Millipede.release.V01-01-00

It was decided to use calibrated pulses (OfflinePulses), that have not been cleaned from

noise, since both algorithms consider noise contributions to the measured charge, when

likelihood values are computed. PhotoSpline tables are used to avoid problems, which

may arise from the coarse binning and the respective possible artifacts of the linear in-

terpolation, used in PhotoRec tables (compare sec 4.4). These settings will subsequently

be referred to as C1R for Credo and M1R for Monopod.

The distributions of ∆E
E = Ereco−Etrue

Etrue
(energy), ∆θ = θreco − θtrue (zenith), ∆x =

xreco − xtrue and ∆z = zreco − ztrue (vertex) as obtained with C1R and M1R are shown

in Figure 6.15 for sample A. The corresponding resolutions have been obtained from fits

to Gaussian distributions, except for the zenith distribution, which due to geometry is

not expected to follow a Gaussian distribution.

As shown in Figure 6.15, when relying on the same input, Credo and Monopod still

give different estimates of the energy distribution ∆E
E = Ereco−Etrue

Etrue
. Whereas Credo on

average overestimates the cascade energy by about 21 %, Monopod underestimates the

cascade energy by about −8 %. In addition Monopod shows a non-Gaussian feature at

lower reconstructed energies. Hence Monopod divides this sample, which should contain

very similar cascades, into two regions, a main peak for which the under estimation of

−8 % holds and a side peak towards even lower reconstructed energies. Credo determines

the x coordinate to within σ∆x ≈ 5.2 m, while being unbiased. However a contribution

of non-gaussian tails are present. The Monopod result is slightly worse, showing a reso-

lution of σ∆x ≈ 7.8 m without bias. The performance in y is similar. Due to the denser

instrumentation along z, a better resolution of 3.7 m (Credo) and 5.6 m (Monopod) is

achieved. Both algorithms show the same zenith resolution of θRMS ≈ 40◦. The results

for all parameters are listed in Table 6.2. The side peak in the Monopod energy

distribution was not observed in section 6.2, when Monopod was using a more accurate

seed, provided by Credo. We checked, whether this feature depends on the seed by using

6These values only apply for the main peak of the corresponding distribution. A significant contri-
bution is due to events, which form a second peak towards underestimated energies.
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Figure 6.15: Sample A: Reconstruction results of M1R and C1R for energy ∆E
E (top

left), zenith ∆θ (top right), ∆x (bottom left) and ∆z (bottom right)

µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

−0.1± 7.8 0.0± 7.3 −1.2± 5.6 (−8± 19) %6 (13± 40)◦

0.1± 5.2 0.0± 4.6 −0.9± 3.7 (21± 25) % (16± 41)◦

Table 6.2: Sample A: Summary of the bias and resolution for M1R (1st row) and
C1R (2nd row)

the result of C1R obtained in this section as seed for 1-iteration of Monopod (M1C1)

and 1-iteration of Credo (C1C1), while keeping all other settings as before.

As shown in Figure 6.16 the Monopod side peak in the energy vanished, when be-

ing seeded with C1R, and the distribution becomes gaussian. Hence we interpret this

as Monopod being more sensitive to its seed. In addition after using the more precise

seed, both algorithms show similar distributions of the vertex coordinates. The corre-

sponding resolutions slightly improved compared to the C1R result (shown in 6.15) by

about ∼ 0.5 m in all coordinates. Despite the vanishing side peak in case of M1C1 the
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µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

M1C1

−0.1± 5.1 0.0± 4.2 −0.8± 3.5 (−13± 19) % (15± 36)◦

C1C1

0.2± 4.6 0.1± 4.2 −0.7± 3.2 (21± 25) % (16± 39)◦

Table 6.3: Sample A: Summary of the bias and resolution for M1C1 and C1C1

energy results of M1C1 and C1C1 remain unchanged when compared to M1R and C1R.

Due to the improved seed, Monopod now shows a slightly better zenith performance

(θRMS = 36.2◦) than Credo (θRMS = 38.7◦). This is summarized in Table 6.3. Despite

Figure 6.16: Sample A: Reconstruction results of M1C1 and C1C1 for energy ∆E
E

(top left), zenith ∆θ (top right), ∆x (bottom left) and ∆z (bottom right); Seed: C1R

improving the vertex resolution, having a better seed did not resolve the presence of

non-Gaussian tails in the vertex distributions. Since both algorithms show Gaussian

energy distributions, the used settings will be kept, while only the photonics corrections

in both algorithms will be changed to study the influence of those corrections on the

visible disagreement in the energy estimates.
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6.3.4 Credo and Monopod: Corrections 2 (photonics scaling)

The number of photons created by a cascade scales linear with the cascade energy. Credo

and Monopod apply corrections to the predicted Photonics amplitudes (sec. 5.2), which

thus have a direct influence on the reconstructed energy. The corrections, used in Credo,

have been introduced in 2008/2009 (40-string detector configuration) [50]. By compar-

ing the expected and observed charge in each DOM, it was found in [50] that Photonics

on average over-predicted the light yield in a given DOM for unknown reasons. This

discrepancy has been parametrized and the parametrization was used to lower the pho-

tonics prediction before minimizing the Credo likelihood (for details see [50]). Due to

advances in calibration since then, those corrections should be redundant. Thus from

now on, they have been removed for the subsequent studies in this work. However as

discussed below, other corrections are still necessary.

The detector response, except for the DOM acceptance and efficiency, is not reflected

in the photonics predictions. First of all the charge response function of the IceCube

PMT (sec. 3) yields a mean single photon charge of < qspe >= 0.85 qspe. Hence on

average the observed charge will be lower than the Photonics predicted light yield by

85%. In addition so-called cable shadowing may reduce the expected number of photons

by another 10%. Thus the DOM efficiency ε0 would have to be corrected by a factor of

ξ = 0.9 · 0.85 to yield an “effective” DOM efficiency εeff = ξ · ε0. Since the Photonics

simulation uses the uncorrected DOM efficiency ε0 to derive the predicted amplitude

A0, the predicted amplitude needs to be corrected accordingly: Aeff = ξ · A0. In the

case of Monopod this was already done [77].

Instead of ξ = 0.58 (Monopod) and IC40-Corrections (Credo), which were used in the

IceCube Cascade Level3 processing, yielding a large disagreement in the energy esti-

mate, as seen in Figure 6.16), the constant correction ξ = 0.9 · 0.85 ≈ 0.77 will now be

applied in both, M1C1 as well as C1C1. As shown in Figure 6.17 the large disagree-

ment vanished. Furthermore all other reconstructed parameters (vertex and zenith)

agree very well, as shown in table 6.4 based on the results of the respective gaussian

fits (sample A). However two issues remain. First the above mentioned correction yields

underestimated energies for both algorithms by about −30 %. Second the distributions

of the vertex residuals show large non-gaussian tails towards miss reconstructed values,

indicating unstable results.
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Figure 6.17: Sample A: Reconstruction results of M1C1 and C1C1 for energy ∆E
E

(top left), zenith ∆θ (top right), ∆x (bottom left) and ∆z (bottom right); Same settings
as in Figure 6.16 but common photonics correction ξ ≈ 0.77 applied in both algorithms.

µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

M1C1

0.0± 5.0 −0.1± 4.1 −0.7± 3.5 (−34± 14) % (14± 36)◦

C1C1

0.2± 5.3 0.1± 4.8 −0.5± 3.5 (−33± 14) % (13± 36)◦

Table 6.4: Sample A: Resolution and Bias for M1C1 and C1C1; Same settings as in
table 6.3, but common photonics correction ξ = 0.77 applied in both algorithms

We have shown that C1C1 and M1C1 show similar reconstruction performance on Sam-

ple A, when feeding the same input to Credo and Monopod, while applying the same

corrections ξ = 0.77 to the photonics predicted amplitudes. This also holds for Sample

B, see Table 6.5. Compared to Sample A (Table 6.4) the resolutions are up to a factor

of two better, due to the clear ice below the dust layer. The energy however shows

the same underestimation of µ∆E
E
≈ −30%. Since Monopod and Credo were found to

show consistent results for the correction ξ = 0.77, this setting will subsequently be used
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µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

M1C1

0.0± 2.6 0.0± 2.4 −0.3± 1.9 (−32± 14) % (4± 23)◦

C1C1

0.0± 2.5 0.0± 2.7 −0.2± 2.0 (−31± 14) % (4± 21)◦

Table 6.5: Sample B: Resolution and Bias for M1C1 and C1C1; ξ = 0.77

(unless mentioned otherwise).

6.3.5 Credo and Monopod: Event-wise comparison

It is interesting to investigate how both algorithms compare on an event by event ba-

sis. The residuals ∆E
E and ∆xi will be redefined such that they measure the deviation

between both algorithms: ∆E
E = 100 · EM1C1−EC1C1

EC1C1
, with EM1C1 and EC1C1 being the

reconstructed Monopod and Credo energies respectively. The same will be used for the

vertex ∆xi = xM1C1
i − xC1C1

i . Hence the comparison becomes independent of the abso-

lute energy. These residuals are plotted in Figure 6.18 for sample A and sample B. Both

Figure 6.18: Samples A and B: Event per Event comparison of M1C1 and C1C1:
∆E
E = 100 · EM1C1−EC1C1

EC1C1
(left) and ∆xi = xM1C1

i − xC1C1
i (right); The respective

resolutions can be found in 6.4 (Sample A) and 6.5 (Sample B)

algorithms agree within σ∆E
E
≈ 2% in terms of energy for most of the events. This is in

agreement within the resolution w.r.t to the true energy of σ∆E
E true

≈ 14%, as shown in

tables 6.4 (Sample A) and 6.5 (Sample B). The same holds for the vertex position, with

one exception. The deviation between both algorithms σ∆x ≈ 1.5 m is not significantly

smaller than the respective resolution w.r.t to xtrue of σtrue∆x ≈ 2.5 m.

The presence of non gaussian tails in both histograms of figure 6.18 reveals a contri-

bution of events for which the residuals σ∆E
E

and σ∆x exceed the resolutions σ∆E
E true
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and σtrue∆x . This discrepancy can be explained with the fit results being unstable for this

class of events. This will be shown by applying the following seeding scheme (visual-

ized in fig. 6.19): A first iteration will be performed using Credo (C1R) and Monopod

Figure 6.19: Seeding scheme used to investigate the tails in the distributions of figure
6.18.

(M1R) seeded with Cscd-llh, ACER and ToI, as in sec. 6.3.3. Next a more precise result

will be obtained using 8-iterations of Credo (C8C1), seeded with the result of the C1R.

In addition 8-iterations of Monopod, M8C1 and M8M1, will be seeded with C1R and

M1R respectively. This allows to compare deviations between M8C1 and C8C1 to the

deviations between two Monopod results (M8C1 and M8M1), which only differ w.r.t

their seed. Thus this will qualitatively provide an estimate of the instabilities due to

minimization and seeding (i.e. paths through the likelihood during minimization). The

Figure 6.20: Sample A: (Left) distance d between the reconstructed vertices of M8C1
and C8C1 versus the relative difference in the energy estimate ∆E

E = 100· EM8C1−EC8C1

EC8C1
;

(Right) distance d between the reconstructed vertices of M8C1 and M8M1 versus the
relative difference in the energy estimate ∆E

E = 100 · EM8M1−EM8C1

EM8C1

results are presented in Figure 6.20, showing the distance between both reconstructed
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vertices versus the fractional difference between the energy estimators in case of Sample

A. The main fraction of the events shown in both 2D plots in Figure 6.20 agree within
∆E
E ≈ 2% and σ∆xi ≈ 2 m. The tails, discussed above, show up as a contribution of

events which wildly scatters in this plane. However as one can see, the scattering in case

of a comparison between the results of M8C1 and C8C1 (left) is comparable (or slightly

less) than the scattering in case of a comparison between M8M1 to M8C1 (right). The

conclusion is that the observed tails of events, for which Monopod and Credo disagree,

can be explained with the algorithms being sensitive to the seeds for those events. Thus

for those events the reconstruction result is not stable against changes of the initial con-

ditions. Hence we have shown that Credo and Monopod give consistent reconstruction

results, when using the same set of settings, as expected from the fact, that both are

using the same likelihood description.

6.3.6 Credo and Monopod: Increasing the number of iterations

Figure 6.21: Sample A: Reconstruction results of M8C1 and C8C1 for energy ∆E
E

(top left), zenith ∆θ (top right), ∆x (bottom left) and ∆z (bottom right); common
photonics correction ξ = 0.77 applied in both
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By comparing the reconstruction results obtained by M8C1 and C8C1 (sec. 6.3.5 to

the results of C1C1 and M1C1 (sec. 6.3.4) it is possible to investigate by how much

the results improve when more iterations are used. Hence from now on the following

definitions apply:

∆E

E
= 100 · Ereco − Etrue

Etrue
(6.1)

∆θ = θreco − θtrue (6.2)

∆xi = xrecoi − xtruei (6.3)

The corresponding distributions for M8C1 and C8C1 based on Sample A are shown in

Figure 6.21. Increasing the number of iterations from one to eight iterations did not

change the energy distribution. Hence the energy resolution remains at ∆E
E = 14%. The

vertex resolution improved by about 1 m in all components. The strongest effect is seen

in the reconstructed zenith with a change from θRMS = 35.9◦ (C1C1) to θRMS = 19.2◦

(C8C1) and from θRMS = 36.2◦ (M1C1) to θRMS = 25.0◦ (M8C1). However additional

iterations did not resolve the issue of having non-gaussian contributions in the vertex

distributions. The results for sample A are summarized in Table 6.6.

That the observations made for Sample A also hold for Sample B, is shown in Table

µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

M8C1

0.1± 4.1 0.1± 4.1 −0.9± 2.8 (−35± 14) % (12± 25)◦

C8C1

0.2± 3.9 0.2± 3.9 −0.6± 2.8 (−34± 14) % (10± 19)◦

Table 6.6: Sample A: Resolution and bias for M8C1 and C8C1; ξ = 0.77

6.7 for C1R and C4C1 (4-iterations). The energy is again stable against increasing

the number of iterations, while mainly the reconstructed zenith improves. In contrast

µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

C1R

0.0± 2.7 0.2± 2.7 −0.5± 2.4 (−31± 14) % (6± 27)◦

C4C1

0.0± 2.3 0.0± 2.4 −0.3± 1.8 (−32± 14) % (3± 15)◦

Table 6.7: Sample B: Resolution and bias for C4C1 and C1R; ξ = 0.77

to the zenith the energy resolution does not improve further with increasing number

of iterations. This will have implications on the strategy to select candidate events
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in a search for the Glashow Resonance, with the cascade energy being the main cut

variable. Since the best performance is already achieved after one iteration, a stable

energy estimate can be achieved, without spending additional CPU resources on more

iterations. In that context a comparison on an event-per-event basis between C8C1 and

C1C1 is of interest. Again the sensitivity to the absolute energy scale will be removed by

using the following residuals: ∆E
E = 100 · EC1C1−EC8C1

EC8C1
and ∆xi = xC1C1

i − xC8C1
i . The

distribution of the distance between both reconstructed vertices versus the distribution

of the relative energy difference is shown in Figure 6.22 for Sample A. Most events line

Figure 6.22: Sample A: Distance d between the reconstructed vertices of C8C1 and
C1C1 versus the relative difference in the energy estimate ∆E

E = 100 · EC1C1−EC8C1

EC8C1

up at a straight line, where the reconstructed energies of C1C1 and C8C1 agree within

σ∆ ∆E
E
≈ 2%, but for a class of events both estimates disagree, producing the scattered

results in Figure 6.22. Hence for those events, the reconstructed energy seems to be

unstable, which will further be investigated in the next section.

6.4 Credo and Monopod: Saturation Effects

This section addresses the large non-gaussian tails observed in the distributions of the

reconstructed x and y positions of C8C1 and M8C1 (Figure 6.21, bottom left) as well as

the remaining per-event disagreement between the energy estimates of C8C1 and C1C1

(Figure 6.22). In Figure 6.23 (left) we plot the distance between the reconstructed ver-

tex as obtained by C1R and the true vertex (position of shower maximum) versus the

distance of that shower maximum to the closest (brightest) DOM. The average distance

between the true position of the shower maximum and the solution found by Credo
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(C1R) increases with decreasing distance of that true vertex to the closest optical mod-

ule. By looking at the waveforms it can be understood, why events close to a DOM

typically are misreconstructed. An example of such waveforms (ATWD and fADC) is

shown in Figure 6.23 for a DOM which measured the light yield near the shower max-

imum (d ≈ 20 m). The upper plot shows the two ATWD waveforms, as measured by

the two digitizers, each covering a time window of 450ns. The lower plot shows the

corresponding fADC waveforms with a coverage of 6400 ns. The first fADC waveform

(blue) is clipped during the first ∼ 1500 ns of the event, due to its limited dynamic range.

Since for the ATWD it is possible to record the waveform via the low gain7 input, the

ATWD waveform does not get clipped. However it should be noted, that the ATWD

waveform (blue) exceeds a current of 50 mA by more than a factor of two. Thus during

the full ATWD time window the PMT measured in the deeply non-linear regime (see

sec: 3). This means, that the linear relation between the observed amount of photoelec-

trons and the amount of incident photon used in pulse extraction and calibration does

not hold anymore, making this waveform mostly unusable during reconstruction. The

second DOM launch (red) is caused by PMT afterglow (see [58] for details) and hence

does not provide useful information during reconstruction.

Since Photonics does not include saturation effects in its charge prediction, these pre-

Figure 6.23: A correlation between the distance to the reconstructed vertex (C1R)
to the true vertex and the distance of that shower maximum to the closest DOM (left);
ATWD (top right) and fADC (bottom right) waveforms measured by a DOM close to
the shower maximum d ≈ 20 m

dictions can not be compared to the calibrated pulses in that regime.

7The difference in amplification between the low-gain ATWD the fADC signals is about a factor of
90
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Consider a Photonics predicted charge µoi for pulse i in dom o being in the saturated

regime. The corresponding measured charge qoi will be much smaller then the predic-

tion. Since cascade reconstruction algorithms assume the measured charge qoi to follow

a Poisson distribution with mean µoi: P (qoi, µoi) =
µ
qoi
oi e

−µoi

qoi!
, the real hypothesis C0

will become highly unlikely. Hence the mismatch between prediction and observation

penalizes the true hypothesis w.r.t to other hypotheses, which thus might have a better

likelihood and will be found as solution. Until a proper parametrization of that effect

is found, those DOMs which took data in the non-linear regime will be removed from

the fits to prevent introducing such misleading penalty terms in the likelihood. Hence

DOMs, which satisfy the following criteria, will be excluded from C8C1 and M8C1, as

suggested in [77]:

• Iophot (t) > 50 mA, t ∈ T

• Qotot > 10 ·
〈
QHLCtot

〉
with T being the duration of the event and

〈
QHLCtot

〉
denotes the average total charge

of all HLC pulses of the corresponding event. The second condition removes DOMs,

which during the event measured at least a factor of 10 more charge, than the average

of all optical modules. This prevents the algorithm to be sensitive to DOMs with large

amounts of charge, for which indications of non-poissonean behavior exists [50]. The

effect of removing bright DOMs on the C8C1 and M8C1 results is shown in Figure 6.24.

For both algorithms the reconstructed energy shifts towards higher energies. In case

of C8C1 the bias decreased from µ∆E
E
≈ −34% to µ∆E

E
≈ −12% while the resolution

improved from σ∆E
E
≈ 14% to σ∆E

E
≈ 10%. The energy distribution of M8C1 shows

strong deviation from the expected gaussian distribution due to the presence of a signif-

icant side peak. It was verified that this structure remains stable against changing the

seed to M1R or increasing the number of iterations to 16, with bright DOMs still being

removed. Hence for Monopod, removing bright DOMs leads to a worse energy recon-

struction performance than before8. By comparing the distributions of all parameters

provided M8C1 and C8C1, shown in Figure 6.24, one can see that the vertex resolution

of M8C1 is worse by up to 2 m compared to C8C1, while also showing a worse resolution

in the reconstructed zenith of θM8C1
RMS = 48◦ compared to θC8C1

RMS = 27◦. Before removing

bright DOMs both algorithms showed the same performance (compare Figure 6.21).

The results for all parameters, as obtained from the fits to gaussian distributions are

given in Table 6.8.

We will now compare the distributions of ∆x for C8C1 before removing bright DOMs

8This statement holds for Monopod as part of Millipede.release.V01-01-00, used in this study.



Chapter 6. Reconstruction Performance for simulated Glashow Resonance Cascades 93

Figure 6.24: Sample A: Reconstruction results of M8C1 and C8C1 for energy ∆E
E

(top left), zenith ∆θ (top right), ∆x (bottom left) and ∆z (bottom right); Bright DOMs
removed

µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

M8C1

−0.1± 5.0 0.0± 5.6 −1.6± 5.7 (−16.4± 17.2) %9 (11.2± 48.2)◦

C8C1

0.1± 3.8 −0.1± 4.2 −1.5± 3.8 (−11.7± 10.4) % (13.3± 27.4)◦

Table 6.8: Sample A: Resolution and Bias for M8C1 and C8C1; Bright DOMs
removed; Based on Figure 6.24

(Figure 6.21, bottom left) and after removing bright DOMs (Figure 6.24, bottom left).

It can be seen, that while preserving a resolution of about σ∆x ≈ 4 m, the large tails

towards miss reconstructed vertices, which are present in Figure 6.21, vanished in Figure

6.24 after removing bright DOMs. The same is true for the y-component. Hence in ad-

dition to improving the estimated energy of C8C1, removing bright DOMs also improves

9The distribution is not gaussian, hence the given values have no probabilistic meaning. However it
shows that M8C1 after removing bright DOMs reconstructs to higher energies compared to before (see
6.6)
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the reconstructed position in the xy-plane. On the other hand by comparing the ∆z

distribution of C8C1 in Figure 6.21 (bottom right) to the ∆z distribution of C8C1 in

Figure 6.24 one can see that the resolution σ∆Z worsened by ∼ 1 m after removing bright

DOMs, while preserving the gaussian shape. This can be explained due to the cuts used

to remove bright DOMs. Since the optical modules are much denser populated along

z, those criteria will mainly remove DOMs in the z direction, which otherwise would

constrain the position of the shower maximum in the z direction. In addition the zenith

worsened from before θC8C1
RMS = 19◦ to θC8C1

RMS = 27◦ after those cuts, which remove the

DOMs which detect the largest fraction of unscattered photons (closest to the shower

maximum).

In addition to studying the influence on the reconstruction resolution, it is interest-

ing to investigate the influence of removing bright DOMs on the per-event agreement of

the energy estimates of C81C1 and C1C1. For a class of events both energy estimates

differed before removing bright DOMs, leading to presence of results, which scatter

widely in Figure 6.22. The corresponding distribution in the 2D plane, showing the

fractional difference in the energy estimate of C8C1 and C1C1 vs the distance between

both reconstructed vertices after removing bright DOMs in sample A, is shown in Figure

6.25. Compared to Figure 6.22 the scattered results vanished and nearly all events line

Figure 6.25: Sample A: Distance d between the reconstructed vertices of C8C1 and
C1C1 versus the relative difference in the energy estimate ∆E

E = 100 · EC1C1−EC8C1

EC8C1
;

Bright DOMs removed

up within σ∆E
E
≈ 1%. Hence removing bright DOMs not only improved resolution and

bias of the reconstructed energy, it also removed the dependency of the reconstructed

energy on the amount of iterations, thus providing a stable energy estimate.
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The discussion of the reconstruction resolution and bias after removing bright DOMs

based on Sample A also holds for Sample B, as shown in table 6.9, with the results of

C1R and C4C1 being obtained after removing bright DOMs. This can be compared to

table 6.7 showing the results before removing bright DOMs. The difference compared to

sample A is that the resolution in zenith remains unchanged with θC4C1
RMS = 15◦ (before)

and θC4C1
RMS = 14◦ (after). We conclude that removing bright DOMs will be helpful in

µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

C1R

0.1± 3.7 0.0± 3.6 −1.0± 2.8 (−11.6± 13.3) % (9.6± 28.6)◦

C4C1

−0.1± 3.3 0.0± 3.0 −1.0± 2.2 (−11.9± 13.4) % (5.8± 14.1)◦

Table 6.9: Sample B: Resolution and bias for C4C1 and C1R; ξ = 0.77; Bright
DOMs removed;

searches for high energetic cascades at the Glashow resonance, for which an accurate en-

ergy estimate is a fundamental necessity. Since this was not achieved by using Monopod

(V01-01-00), only Credo will be considered in the subsequent studies .

6.5 Credo: Influence of the ice model

In section 4.3 it was discussed, that the optical properties of the glacial ice, which are

used during reconstruction, have been obtained by fitting the scattering and absorption

coefficients (among others) to the measured light yield of the flasher LEDs on string

63. Those parameters are subject to statistical and systematic errors. Hence during the

reconstruction of experimental data, the optical properties are likely to show small de-

viations from the best fit values especially at large distances from string 63. The results

presented so far, can be interpreted as conservative in a sense that the simulated events

have been reconstructed using an ice model (SPICE1), which shows deviations from the

one (SpiceMie) used during the production of the simulated data (sec. 4.3). This section

aims at estimating the sensitivity of the Credo result on the optical properties of the ice,

by using the same ice model (SpiceMie) for reconstruction, which was used to simulate

the samples A and B.

According to the findings of section 6.4, bright DOMs are excluded and a constant Pho-

tonics correction of ξ = 0.77 is used. Based on the combined results of Cscd-llh, ACER

and ToI 4-iterations (C4R) and 8-iterations (C8R) of Credo are used. The results are

shown in Figure 6.26 for Sample A.
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Figure 6.26: Sample A: Reconstruction results of C4R and C8R for energy ∆E
E (top

left), zenith ∆θ (top right), ∆x (bottom left) and ∆z (bottom right); Bright DOMs
removed; SpiceMie ice model

First of all, the results of all parameters (vertex, energy, zenith) are almost independent

of the number of iterations, indicating a very stable fit result. Compared to the best

result achieved when using SPICE1, C8C1 in Figure 6.24, using SpiceMie decreased the

C8R bias in Figure 6.26 of the energy from µ∆E
E

= −11.7% to µ∆E
E

= −6.3%, while the

resolution shows only a tiny improvement from σ∆E
E

= 10.4% to σ∆E
E

= 9.9%. The effect

of using the correct optical properties mainly influences the reconstructed vertex and

zenith. While the resolution σ∆xi in all three vertex parameters improved by at least a

factor of 2, the bias in the z-coordinate decreased from µ∆z = −1.5 m for C8C1 using

SpiceMie to µ∆z = 0.3 m for C8R using SpiceMie. The results, shown in Figure 6.26,

are summarized in Table 6.10 for sample A. In addition the results of using the true

parameters C0 = {~x0, θ0, φ0, E0, t0} as seed, are shown for 8 iterations of Credo (C8T).

No improvement compared to C8R is achieved. Since having the true parameters as

seed represents the most optimal initial conditions for a fit, we can conclude, that, given

a precise knowledge of the ice properties, already few iterations of Credo (C4R) provide

the best possible estimate of the Cascade parameters. Thus the results given in Table
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µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

C4R

0.0± 1.4 0.1± 1.4 0.3± 1.9 −6.3± 10.0 (3.3± 17.0)◦

C8R

0.0± 1.4 0.1± 1.4 0.3± 1.8 −6.4± 9.9 (3.2± 15.5)◦

C8T

0.1± 1.3 0.1± 1.3 0.4± 1.7 −6.3± 9.9 (2.9± 15.5)◦

Table 6.10: Sample A: Resolution and bias for C8T, C8R and C4R ξ = 0.77; Bright
DOMs removed

6.10 show the intrinsic resolution, i.e. the limiting resolutions, that can be achieved

by having the optimal input. The remaining resolution therefore is mostly related to

the approximations underlying the method: assuming point like cherenkov emission,

the non-inclusion of the detector response in the Photonics simulation, deviations from

poisson statistics for bright pulses etc.

Those observations also hold for sample B, as shown in Table 6.11 using SpiceMie for

C8T, C8R and C4R. The latter can be compared to the result, given in Table 6.9, based

on SPICE1. While the accuracy of the energy estimate remains unchanged, the other

parameters show strong improvements.

Figure 6.27 compares the reconstruction results obtained by C8T for both samples.

µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] µ∆E
E
± σ∆E

E
∆θ ±RMS∆Θ

C4R

0.1± 1.1 0.0± 1.2 −0.4± 1.3 −11.5± 12.1 (4.1± 8.8)◦

C8R

0.0± 1.1 0.0± 1.1 −0.4± 1.3 −11.5± 12.1 (4.0± 7.5)◦

C8T

0.1± 1.1 −0.1± 1.1 −0.3± 1.3 −11.4± 11.9 (4.0± 7.4)◦

Table 6.11: Sample B: Resolution and bias for C8T, C8R and C4R; ξ = 0.77; Bright
DOMs removed

Due to the clearer ice below the dust layer the reconstructed parameters which have a

strong dependence on timing information (influenced by scattering) show an improved

resolution for Sample B.

So far the discussion of the dependence of the results on the ice model only consid-

ered the bias and resolution. In Sample B below the dust layer another parameter is of
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Figure 6.27: Samples A and B: Reconstruction results of C8T for ∆E
E (top left),

zenith ∆θ (top right), ∆x (bottom left) and ∆z (bottom right); Bright DOMs removed;
SpiceMie ice model

importance, which is the number events for which Credo did not converge. When using

SpiceMie for both samples the algorithm always converges. In the case of SPICE1, i.e.

when the ice model used deviates from the optical properties underlying the data, such

a contributions exists. Independent of the settings used to run Credo, this contribution

was 0.1% in case of sample A and between 8% and 10% for sample B. This supports

the interpretation that the reconstruction becomes more sensitive to its seed, when the

ice model deviates from the “true” properties, as was argued above, when discussing,

that the results become independent of the number of iterations in case of matching

optical properties. Above the dust layer the reconstructed vertex provided by Cscd-llh

is known to be more accurate than below the dust layer. Hence below the dust layer the

contribution of failed fits is larger than above the dust layer. Thus while in principle

increasing the number of iterations can make up for some of the differences between the

ice model of use and the true optical properties, as was shown in sec. 6.3.6, the amount

of failed fits can only be improved by either improving the seed or the ice model of use.
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Chapter 7

Cascade Reconstruction

Performance for Standard Candle

Experimental Data

In this section we will broaden the cascade reconstruction performance studies presented

so far, by using in-situ light pulses independent of simulations. The Standard Candle

Laser was designed to act as a calibrated light source to gauge cascade reconstruction

algorithms at high energies in a real environment, especially focusing on the calibration

of the absolute energy scale. After the deployment of the Standard Candle’s at the south

pole, the in-situ light yield was found to significantly deviate from the lab calibrated

values. However given its pulse-per-pulse stability of 3% [62], we can use the Standard

Candle to test cascade reconstruction algorithms on experimental data. Only the ab-

solute energy scale will not be accessible. Since the Standard Candle is deployed at a

fixed position with a well defined direction and a stable light output, the question to be

answered in this section is, how well this is reflected in the Credo reconstruction results.

7.1 Standard Candle II Data

In the last chapter the best Credo performance was achieved below the dust layer, thus

the Standard Candle II was chosen for this study to minimize the impact of scattering

and absorption on the result. The latest Standard Candle II data have been taken on the

13th of January 2011 for the different filter wheel settings. Given the dynamic brightness

of the Standard Candle (sec. 3.4) the energy of interest w.r.t the Glashow Resonance

should be reflected at a brightness between 1% and 10%. In order to minimize the effect

of saturation, the 1% brightness dataset (Run 117411) was chosen. This dataset has
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already been filtered from background (i.e. cosmic ray muons) and provides a purity

of > 99%. The Standard Candle is located on String 55 between DOMs 42 and 43

(xSCII = 11.87 m, ySCII = 179.19 m, zSCII = −205.64 m). The vertex resolution will

subsequently be defined as the deviation of the reconstructed vertex from the position

of the SCII, given above:

∆xi = xicredo − xiSCII (7.1)

Since the SCII was deployed facing downwards, the deviation ∆θ of the reconstructed

zenith θcredo from the true zenith θSCII = 0◦ equals the reconstructed zenith θcredo.

Hence we define the zenith resolution as follows:

∆θ = θcredo (7.2)

The total light yield of the Standard Candle II, and hence the cascade energy equivalent,

is subject to large systematic uncertainties. It can not be used to measure the energy

resolution. Therefore we will subsequently define the energy resolution ∆E
E with respect

to the average energy estimate 〈Ecredo〉:

∆E

E
= 100 · Ecredo − 〈Ecredo〉

〈Ecredo〉
(7.3)

7.2 Credo: Performance

The processing of SC II Run 117411 was done in early 2011 when WaveCalibrator and

WaveDeform had yet to be released. In order to benefit from the advances in cali-

bration since then (i.e. beacon baseline subtraction), the experimental data needed

to be reprocessed. In accordance with the strategy used throughout this thesis 1000

events have been selected. For this sample the raw waveforms have been calibrated, us-

ing WaveCalibrator (Release V11-08-00), before extracting and calibrating light pulses,

using WaveDeform (Release V01-00-03). The Standard Candle events were then re-

constructed using Credo (Release V00-02-03) within IceRec (Release V04-02-00). The

reconstruction used spline fitted photonics tables based on SPICE1 as ice model and

OfflinePulses without noise cleaning, as before. The seeding strategy is based on the

results of last section.

At first, we used one iteration of Credo (C1R) based on the results of Cscd-llh, ACER

and ToI as a seed. Four iterations of Credo (C4C1), seeded with the C1R result, are

then used to study the reconstruction performance. In this study all DOMs are included

and the constant Photonics correction ξ = 0.77 is applied.
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Figure 7.1: SCII: Resolution and bias as obtained by C4R and C4C1; ∆E
〈EC4C1〉 (top

left), ∆z (top right), ∆x (center left), ∆y (center right), ∆θ (bottom)

The average value of the C4C1 energy estimate was found to be 〈EC4C1〉 = 543 TeV.

Given the lab calibrated light yield of the laser, one would have expected an energy

around 1 PeV. However indications exist, that the actual in-situ light output is dimmed

by a factor of 2 for unknown reasons, which means that given this large uncertainty, the

result is not in tension with the expectation.
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Figure 7.1 shows the distributions of ∆E
〈E〉 , ∆xi and ∆θ for C1R and C4C1 reconstruc-

tions. Given that those 1000 cascades should all be described with almost the same

parameters, the result is disillusioning. The distributions in the polar plane (Figure 7.1,

center left and center right) do not show gaussian behavior, but develop a spiky struc-

ture, no matter whether one or four iterations were used. The same is true for the zenith

distribution (Figure 7.1, bottom). In addition the distributions are highly sensitive to

changing the number of iterations, while improving only marginally. The only distri-

butions that show expected shapes are ∆E
〈EC4C1〉 (Figure 7.1, top left) and ∆z (Figure

7.1, top right), while both imply poor resolutions of σ∆z ≈ 1.1m and σ ∆E

〈EC4C1〉
≈ 13%

respectively , given that all those cascades should be identical.

We investigate the correlation between the reconstructed x and y positions in figure

7.2. The results of C1R (left) and C4C1 (right) are distributed in a ring like structure

Figure 7.2: SCII: Reconstructed cascade positions in the X,Y-plane for C1R (left)
C4C1 (right); Standard Candle position (∆X,∆Y ) = (0m, 0m)

around the position of the standard candle, i.e. the position of string 55 (∆x = 0,

∆y = 0), where the laser is situated. Increasing the number of iterations only smeared

this structure. Although these rings are not spherically symmetric around the position

of string 55, this strongly points towards saturation effects.

As discussed in sec. 6.4, when a DOM becomes saturated, the measured charge will

be much smaller then the Photonics prediction, based on the true hypothesis. Hence

the true solution gets penalized and the likelihood prefers the vertex to be shifted from

string 55.

An example of the waveforms of the DOMs on string 55 neighboring the Standard

Candle is shown in figure 7.3 for DOM 42 (left) and DOM 43 (right). Photocurrents

about 100 mA and larger indicate, that those DOMs operated in the deeply non-linear
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Figure 7.3: SCII: Example ATWD waveforms of the DOMs neighboring the SCII
below (left) and above (right)

regime of the PMT. Hence it seems worthwhile to exclude saturated DOMs from the

cascade reconstruction algorithm to study, whether the results (Figure 7.1) improve.

7.3 Credo: Saturation Effects

The selection criteria, which were used in section 6.4 to minimize saturation effects in

the reconstruction, were applied to this set of Standard Candle Cascades.

• Iophot (t) > 50 mA, t ∈ T

• Qotot > 10 ·
〈
QHLCtot

〉
with T being the duration of the event and

〈
QHLCtot

〉
denotes the average total charge of

all HLC pulses of the corresponding event. In 99.6% of all events the same 8 DOMs out

of on average (average of all events) ∼ 619 DOMs, which recorded light, got excluded.

The eight DOMs, which were removed, are distributed symmetrical around the Standard

Candle position on String 55, ranging from DOM 39 to DOM 46. Such a symmetry is

expected from the spherical light pattern of the Standard Candle Events. Given the

stable light yield of the laser, one would expect those criteria to select the same DOMs

in 100% of all events. The presence of four events for which fewer DOMs were removed,

could be traced to be due to a problem with the mainboard firmware, used during Run

117411 (see Appendix A). The issue was found not to influence the reconstruction result.

Figure 7.4 shows the distributions for ∆E
〈EC4C1〉 (top left), ∆z (top right), ∆x (center

left), ∆y (center right), ∆θ (bottom left) after excluding bright DOMs in C1R and

C4C1 reconstructions. A contribution of failed reconstructions (about 8% of all events)

is not shown in Figure 7.4. For those events C1R preferred a vertex solution outside

the detection volume. Since the C1R result was subsequently used to seed additional

iterations, C4C1 did not converge for those events. This reflects that no solution exists

outside the detection volume.
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Figure 7.4: SCII: Saturated DOMs removed; Resolution and bias as obtained by
C4R and C4C1; ∆E

〈EC4C1〉 (top left), ∆z (top right), ∆x (center left), ∆y (center right),

∆θ (bottom left), ∆θ zoomed (bottom right)
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Excluding those eight saturated DOMs yielded strong improvements of the fit results,

which will be discussed below.

Energy

The energy resolution improved by almost an order of magnitude from σ∆E
E
≈ 13%

before removing bright DOMs (top left plot of Figure 7.1) to σ∆E
E
≈ 1.8% (top left

plot of Figure 7.4) afterwards. The achieved resolution lies now well within the lab

calibrated pulse-per-pulse stability of the laser of 3% [62]. The influence of excluding

saturated DOMs on the on average reconstructed energy is small. It slightly decreased

from 〈EC4C1〉 = 543 TeV to 〈EC4C1〉 = 527 TeV. By comparing the distribution of C1R

to C4C1 in the top left plot of Figure 7.4, one can see, that the reconstructed energy

remains stable against increasing the amount of iterations. This confirms the same ob-

servation made in sec. 6.4 based on electron neutrino simulations.

Z-Coordinate

The effect of removing saturated DOMs on the z-coordinate is two fold. The resolu-

tion σ∆z achieved by C4C1 improved by more than a factor of 2 from σ∆z = 1.1 m

(top right plot of Figure 7.1) to σ∆z = 0.4 m (top right plot of Figure 7.4). The bias

µ∆z of the C4C1 result however became worse. Before this step, the standard candle

was reconstructed to be on average 0.6 m below its actual position, which afterwards

on average yields a position 3.4 m above the true value. The strongest constraints on

the reconstructed position typically come from the DOMs closest to the light source,

because the first photons, measured close to the source, are less affected by scattering

than others. All saturated DOMs, removed in the Standard Candle events, lie on the

same string. Hence the distance along the string (along z) between the contributing

DOMs and the source increased. In result, scattering becomes more important and

makes the reconstruction result more sensitive to differences between the ice model and

the actual optical properties of the glacial ice. However given the strong improvements

of resolutions in energy and z-position, this is acceptable.

The top right plot of Figure 7.4 shows the ∆z distributions for the C4C1 and C1R re-

constructions. The reconstruction result remains sensitive to the number of iterations.

Although the two distributions share the same resolution, they differ in bias and nor-

malization. The C1R result µ∆z = 3.1 m is slightly less biased than the C4C1 result

µ∆z = 3.4 m. The large discrepancy in normalization is due to the presence of a second

peak in the ∆z distribution of C1R in the region ∆z < 0 m, which is shown in Figure

7.5. This structure makes up most of the contribution of ∼ 17% of all events, which,

after additional iterations, get fully recovered and add to the single peak in the ∆z

distribution of C4C1, thus explaining the difference in normalization in the top right
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Figure 7.5: SCII: Saturated DOMs removed; Resolution and bias of ∆z as obtained
by C4R and C4C1; same as Figure 7.4 (top left)

plot of Figure 7.4.

The XY-Plane

Figure 7.6: SCII: Reconstructed cascade positions in the X,Y-plane for C4C1 (left);
Radial distance of the reconstructed vertex to string 55 vs reconstructed zenith for
C4C1 (right)

Before removing saturated DOMs, the solutions covered an area of about ∼ 10.000 m2 in

the xy-plane, distributed in a ring like structure around string 55, as shown in Figure 7.2

(right). The left plot in Figure 7.6 shows, that for C4C1 this area shrunk to ∼ 50 m2 after

removing bright DOMs, while in figure 7.4 the corresponding distributions of ∆x (center

left) and ∆y (center right) develop gaussian peaks near the true position of the Standard

Candle in the xy-plane (∆x,∆y) = (0 m, 0 m). However in addition to the main peaks

some side structure is still present, forming a partial ring of miss-reconstructed events.

The sensitivity of the result to the number of iterations, as discussed above in the context

of ∆z, is even stronger in the case of ∆x and ∆y, as shown in centered plots of figure

7.4, comparing C4C1 to C1R. The latter does not show dominant peaks close to the true
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position of SCII. The gaussian peaks in case of the C4C1 result indicate resolutions of

σ∆x = 0.5 m and σ∆y = 0.4 m while only the ∆x distribution is biased with µ∆x = 1.1 m.

The Zenith

Before removing bright DOMs the reconstructed zenith is distributed widely over most

of the down going region (θreco < 85◦), without showing any preference for θSCII = 0◦,

as shown at the bottom of Figure 7.1. This drastically changed after removing bright

DOMs. The results of C4C1 are now mostly contained in two peaks with small structure

in between, as shown at the bottom of Figure 7.4 (bottom left and bottom right). The

main peak contains events with reconstructed zenith θC4C1 < 2◦ (54%), which means the

Credo reconstruction algorithm determines the direction of the cascade to be straight

down going for these events. However a contribution of mis-reconstructed events forms

a pronounced second peak (24%) in the region of 17◦ < θC4C1 < 21◦, as well as smaller

contributions between both peaks. The right plot in Figure 7.6 shows that the events

with a reconstructed zenith within the main peak θC4C1 < 2◦ of the zenith distribution in

7.4 (bottom) have a distance of ρ =
√

∆x2 + ∆y2 < 2 m to the position of the Standard

Candle in the xy-plane, whereas the events in the second peak around θC4C1 ≈ 18◦ are

distributed at ρ ≈ 4 m. Hence the events with a misreconstructed zenith angle form the

partial ring, observed in the left plot of Figure 7.6. The correlation between the recon-

struction results concerning zenith and vertex position can be used to define the number

of well reconstructed events Ngood with θCredo < 2◦ and Nbad with 17◦ < θCredo < 21◦

We stress again the strong dependence of the fit result on the number of iterations, as

visible in 7.4 (bottom). In case of C1R the second peak of misreconstructed events Nbad

is dominant over a small contribution of well reconstructed events Ngood. In addition

a significant number of events is reconstructed with θC1R > 21◦. All of the latter are

recovered by additional iterations thus contributing to Ngood for C4C1.

The aim throughout the last part of this thesis will be to increase the fraction Ngood/Nbad

of those events, thought to be well reconstructed.

7.4 Credo: Sensitivity to the Number of Iterations and

final Result

In sec. 4.3 it was shown, that increasing the number of iterations improves the recon-

struction result in case of insufficiencies in ice modeling. We will now study the influence

of increasing the number of iteration on the Credo reconstruction performance, as fol-

lows: Based on the C4C1 result (Figure 7.4) another 8 iterations of Credo (C8C4) will be

added. The result will be compared to 16 iterations of Credo based on Cscd-llh,ACER
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and ToI (C16R) before a final estimate will be given by additional 16-iterations of Credo

(C16C16). This is summarized in Figure 7.7. Using this scheme, we study whether the

fraction Ngood/Nbad improves. In addition one might ask which ratio would be achiev-

able in case of having an infinite amount of iterations, i.e. whether this procedure will

converge. This will be estimated using the ”best” seed, which will be defined below.

Consider the case of an unbiased reconstruction result. To estimate the best possible

Credo N tot
iter Seed

C1R 1 Cscd-llh,ACER,ToI

C4C1 5 C1R

C8C4 13 C4C1

C16R 16 Cscd-llh,ACER,ToI

C16C16 32 C16R

C16T 16 ”best seed”

Figure 7.7: SCII: seeding scheme to study sensitivity of reconstruction results on
iterations

performance, one can use the true parameters C0 of the Cascade, we want to recon-

struct, as seed. This will improve the previous result, in case of insufficient accuracy

of the ice model. To make sure that the Gaussian distributions, which will be centered

around C0, represent global minima, several iterations are needed. When using the true

parameters as seed the resolutions will therefore either remain stable or decrease with

increasing number of iterations,

As we have seen in Figure 7.4, the result of C4C1 is biased in x (µ∆x = 1.1m) and

z (µ∆z = 3.4m). We interpreted the values of each Cascade parameter, at which the

corresponding distributions in Figure 7.4 are centered, as the preferred solution (the

position of a global minimum in the likelihood space) of Credo. This solution should

then especially be preferred over the position of the problematic side peaks, we observed.

Hence the “best” seed will be the true parameters, corrected for the bias in the distri-

bution of the corresponding variable. We use the bias, observed in the C16R (same as

C8C4) results (Fig. 7.8), to calculate the following best seed values for C16T:

• Xi
best = Xi

SC + µ∆xi = (13.1 m, 179.3 m,−202.1 m)

• Ebest = 〈ECredo〉 = 527 TeV

• θbest = 0.0◦

Figure 7.8 shows a comparison between the results for C8C4 and C16R. The distribu-
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Figure 7.8: SCII: Resolution and bias as obtained by C16R and C8C4; ∆E
〈EC4C1〉 (top

left), ∆z (top right), ∆x (center left), ∆y (center right), ∆θ (bottom left), ∆θ zoomed
(bottom right); bright DOMs removed

tions of ∆E
〈EC4C1〉 are shown in the top left plot. No difference between C8C4 (13-iterations

in total) and C16R (16-iterations in total) is observed. This confirms the observation

previously made, that after removing bright DOMs the reconstructed energy is stable

against the number of iterations and the best resolution is already achieved after 1-

iteration (Figure 7.4, top left plot).
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The top right plot of Figure 7.8 shows the reconstruction results of C8C4 and C16R for

the z-component. The distributions are similar. The difference between the correspond-

ing values for the resolution σ∆z = 0.3 m and bias µ∆z = 3.5 m (C16R,C8C4) and the

ones obtained by C4C1 as shown in Figure 7.4 (top right, σ∆z = 0.4 m, µ∆z = 3.4 m) are

neglegibile. However a small difference is observed in the normalization. That means,

that increasing the number of iterations helps to recover a handful of events, for which

the minimizer was stuck in a local minimum for C4C1.

The distributions of ∆x (center left) and ∆y (center right) are given in Figure 7.8. In

both cases even the small increase in iterations from 13 (C8C4) to 16 (C16R) reduces

the amount of miss reconstructed events (visible as tails in the distributions). Hence

they add to the main peak of C16R without changing the resolution (σ∆x = 0.4 m,

σ∆y = 0.3 m) and bias (µ∆x = 1.2 m, µ∆y = 0.1 m). As was the case for the z-component,

the differences between those parameters and the ones obtained for C4C1 (Figure 7.4)

are neglegibile. The main improvement compared to C4C1 is given by the strong reduc-

tion of the contribution of the side peak structure, formed by misreconstructed events.

The zenith distribution of C16R and C8C4 is shown at the bottom of Figure 7.8. The

only difference between both is given by the relative contribution of events in the main

peak θCredo < 2◦ (Ngood ) and the second peak at 17◦ < θCredo < 21◦ (Nbad). For C16R

we find a ratio of Nbad/Ngood = 11%, while for C8C4 Nbad/Ngood = 22% holds. This is a

strong improvement compared to the case of C4C1 (Figure 7.4) with Nbad/Ngood = 45%.

To determine the best possible result, we compare C16C16 to C16T in Figure 7.9.

As one can see, after 32 iterations (C16C16) for all parameters (energy, vertex, zenith)

Credo converges at its best possible result (C16T). The tails visible in the distributions

of ∆x (center left), ∆y (center right) as well as the second peak in zenith θ become

almost neglegibile in both cases. The achieved resolutions and biases for all parame-

ters remain stable at the ones obtained before (Figure 7.8). This results in a fraction

Nbad/Ngood = 7% for C16C16 and Nbad/Ngood = 5% in the limiting case C16T.

A quantitative summary of the results of this section can be found in table 7.1, showing

the improvements in the ratio Nbad/Ngood. Table 7.2 shows the stability of the reso-

lution and bias as obtained from fitting the main peaks of the respective distributions

to gaussian distributions. An event-by-event comparison showed remarkable agreement

between the results obtained by C16C16 and C16T for the well reconstructed events

Ngood. The reconstructed energies are in agreement within σ∆E
E
∼ 0.2%, while the re-

constructed vertex components agree within σ∆xi ∼ 0.1 m.

The sensitivity of the Credo reconstruction results for Standard Candle events on the

number of iterations, observed in this section, by far exceeded the sensitivity found in
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Figure 7.9: SCII: Resolution and Bias as obtained by C16T and C16C16; ∆E
〈EC4C1〉

(top left), ∆z (top right), ∆x (center left), ∆y (center right), ∆θ (bottom left), ∆θ
zoomed (bottom right); bright DOMs removed

section 6.4, where we studied simulated neutrino events. For Monte Carlo data, this

sensitivity mainly concerned the achieved resolutions. No strong impact on the shapes

of the corresponding distributions was observed, i.e. the distributions after removing

bright DOMs were found to be gaussian. In sec. 6.4 we attributed the remaining sen-

sitivity on the number of iterations to be caused by differences between the ice models
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used during simulation and reconstruction. This interpretation was based on the fact,

that in section 6.5 the reconstruction was shown to be stable against those changes,

when the reconstruction was based on the true ice model. In addition the contribution

of failed reconstructions, previously observed, vanished.

We think that this difference between our Standard Candle and Monte Carlo results is

to be expected, mainly for several reasons. First the Standard Candle emits photons

at a wavelength of 337 nm only. At this wavelength the description of scattering and

absorption in the SPICE1 ice model, which was used throughout this section, is based

on an extrapolation from the values obtained by fitting in-situ LED data at 400 nm.

This extrapolation in turn relies on AMANDA1 measurements, which did not reach the

depth at which SCII operates. Second and more importantly the simulated photons,

used to determine the arrival time distributions and their normalization for a cascade

with parameters C0 in Photonics, follow the Cherenkov spectrum, which differs from

the monochromatic emission of the Standard Candle. Although the amount of radi-

ated cherenkov photons increases with frequency, when convoluted with the spectral

acceptance of the DOM, the Photonics results will be dominated by photons around

∼ 390 nm. Given that those deficiencies are expected to be larger than any difference

between SPICE1 and SpiceMie, it is not a surprise, that the reconstruction performance

for Standard Candle events, as found in sec. 7.3, is more sensitive to the amount of

iterations, than the results obtained based on simulated neutrino events in sec. 6.4.

As discussed in sec. 6.5 in the context of sample B (Monte Carlo Events, below the

dust layer), when the ice model, used during reconstruction, differs from the true ice

properties, a contribution of failed fits is expected, especially below the dust layer (∼
8%). This was attributed to be due to the insufficient accuracy in the vertex seed,

provided by Cscd-llh below the dust layer. As shown in table 7.1 (NFailed and Nd>500 m)

such a contribution (∼ 10%) also exists for various reconstruction results obtained for

SCII, which are directly or indirectly related to a Cscd-llh seed. Based on the Cscd-llh

seed C1R and C16R reconstruct a number Nd>500m of events to lie outside the detection

volume of IceCube. For those events subsequent reconstructions (C4C1, C8C4 C16C16)

are very likely to fail, because of the extremely bad seed. This problem can either be

resolved by improving the ice model of use (see sec. 6.5) or by improving the seed. The

influence of the latter is visible for C16T. The contribution of such events decreased from

∼ 10% (C16R) to 1.5% (C16T). Hence most of the difference between C16C16 and C16T

can be attributed to be due to his problem. If we remove the affected events from the

respective samples, the fraction of Ngood/Ntot improves from 83% to 90% for C16C16,

which is to be compared to a change from 92% to 94% for of C16T. Hence further

1AMANDA is the small predecessor of IceCube, deployed at depths between 1500 m and 1900 m



Chapter 7. Cascade Reconstruction Performance for Standard Candle Data 113

improvements due to increasing the number of iterations beyond 32 will be negligibile.

Settings Ngood Nbad NConverged NFailed Nd>500m

Credo1R 70 458 991 9 93

Credo4C1 522 235 920 71 24

Credo8C4 700 153 910 10 14

Credo16R 786 90 1000 0 95

Credo16C16 832 62 927 73 22

Credo16T 923 50 1000 0 14

Table 7.1: SCII: Ngood and Nbad for various Credo settings; In addition Number of
Converged Reconstructions NConverged, Number of events with failed fits NFailed
and Number of extremely miss reconstructed vertices Nd>500 m are given

Settings µ∆x ± σ∆x [m] µ∆y ± σ∆y [m] µ∆z ± σ∆z [m] σ∆E
E

Credo1R * * 3.1± 0.4 1.8%

Credo4C1 1.1± 0.5 0.0± 0.4 3.4± 0.4 1.8%

Credo8C4 1.2± 0.4 0.1± 0.3 3.5± 0.3 1.7%

Credo16R 1.2± 0.4 0.1± 0.3 3.5± 0.3 1.8%

CredoC16C16 1.2± 0.4 0.1± 0.3 3.5± 0.3 1.8%

Credo16T 1.1± 0.3 0.1± 0.3 3.5± 0.3 1.7%

Table 7.2: SCII: Resolution and Bias for various Credo settings; Values obtained
from fitting the main peaks of the respective distributions to gaussian distributions;
* The distribution does not show gaussian peaks
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Chapter 8

Summary and Outlook

One of the primary goals of IceCube, a telescope detecting Cherenkov light in an in-

strumented ice volume of 1 km3 at the South Pole, is to observe the flux of high-energy

cosmic neutrinos and anti-neutrinos from astrophysical sources. The (anti-)neutrino

spectrum near the characteristic energy Eν ≈ 6.3 PeV of the Glashow resonance, the

interaction of anti-neutrinos with atomic electrons via ν̄ee
− → W−, is of particular

interest, since it offers the unique possibility to determine the contribution from elec-

tron anti-neutrinos. Such a flux, if observed, provides new constraints on the possible

production mechanisms for high-energy (anti-)neutrinos in astrophysical sources. The

observation of extra-terrestrial (anti-)neutrinos at even higher energies may furthermore

make it possible to probe the electroweak structure of nucleons at energies beyond the

reach of current collider experiments.

The dominant signatures of neutrino interactions at the Glashow Resonance in IceCube

are particle showers, originating from hadronic W− decay with a combined branching

ratio of ∼ 70%. The remaining ∼ 30% originate in equal amounts from leptonic decays,

with W− → e− + ν̄e channel producing an electromagnetic shower, W− → µ− + ν̄µ a

track, and W− → τ− + ν̄τ various signatures related to the subsequent τ decay. In this

work, we described first IceCube performance studies with advanced reconstruction algo-

rithms for (anti-)neutrino induced particle showers (cascades) in the energy range of the

Glashow Resonance using simulations as well as data obtained by pulsing an in-situ laser.

The simulations consisted of the generation of events, simulated detector response, and

reconstruction with the existing two most-advanced IceCube algorithms named Credo

and Monopod. Only hadronic signatures were considered in the simulations, since it

was found in the starting phase of this work, that the simulation of leptonic channels
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yielded unphysical results1. The initially discrepant energies for ν̄e-induced cascades

reconstructed by Credo and Monopod were reconciled by using consistent descriptions

for the light yield and propagation in the Antarctic ice. We furthermore studied the

influence of repeated reconstruction passes (iterations), of the modeling of the ice prop-

erties and illumination of different detector regions, and of readings from the digital

optical modules (DOMs), that operated at high input currents, thus leading to a non-

linear response (saturation). The latter was found to have the strongest impact on the

cascade reconstruction. The removal of saturated DOM readings prior to the recon-

struction was found to result in a cascade energy estimate that is robust against the

number of iterations of the reconstruction. The loss of timing information from these

DOMs was shown to have only a modest impact on the accuracy of the reconstructed

cascade position and zenith angle. For cascades at the Glashow resonance that are

well contained in the IceCube instrumented volume, we achieved a Credo energy reso-

lution of 10% < σ (∆E/E) < 14% depending on the ice model and the cascade position

within the detector. A correctable bias was found in the mean reconstructed energy

of −12% < µ (∆E/E) < −6%, depending on the ice model and the cascade position

within the detector. Stronger biases were found for the reconstructed shower position

and the zenith angle, θ, of the incident flux as reconstructed from the cascade signature.

The position resolution was found to be 1.1 m < σ (∆x, y, z) < 4.2 m and the angular

resolution 8◦ < θRMS < 27◦. We thus conclude from our Monte Carlo simulations that

resonant interactions of electron anti-neutrinos with atomic electrons in the IceCube

detector can be reconstructed with a relative energy resolution better than 15% and

directional sensitivity better than 30◦. Future simulations studies would include an ex-

tension to partially contained signal events and background rejection.

To verify the above conclusions without reliance on Monte Carlo simulations, we studied

the performance of the Credo cascade reconstruction algorithm from data obtained by

pulsing an in-situ laser, named Standard-Candle-II (SCII), that is deployed on one of

the IceCube detector strings and faces downwards. We analyzed data recorded with

a constant 1% of the maximum brightness, corresponding to an average reconstructed

energy of 527 TeV. This brightness level was chosen in order to keep the number of

saturated DOM readings at a manageable level. After excluding saturated DOM read-

ings from the reconstruction, we found an energy resolution of ∆E/E = 1.8% for laser

events, independent of the number of iterations. The reconstruction of positions and

directions were found to rely crucially on iterations, possibly because of differences in

the propagation of photons with wavelengths of λ = 400 nm, as entered the method,

and with the laser frequency of λ = 337 nm in ice. A new determination of photon

1This has since been resolved for the µ decay channel, and the τ branch is being resolved as this
thesis was written in the Fall of 2012.
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response at the laser frequency and subsequent reconstruction are needed to confirm or

disprove this statement. After 32 iterations, the reconstructed zenith angle was found to

have adequately converged and a resolution of θ < 2◦ was obtained for 83% of all SCII

events. This fraction was 92%, when the reconstructed best fit values are used as initial

condition in Credo. We obtained vertex resolutions of 0.3 m < σ (∆x, y, z) < 0.4 m for

these events and observed a systematic difference of 3.7 m between the reconstructed and

known SCII position. Our analysis of the data obtained with SCII thus qualitatively

confirms the conclusions from our Monte Carlo simulations. Quantitatively, the SCII

data present a best-case scenario. This analysis constitutes a first proof-of-principle

based on data, that IceCube has angular sensitivity for high energy cascades.

Based on our present understanding of cascade reconstruction in IceCube, we anticipate

to be able to observe 1 − 2 contained cascade events per year at the Glashow resonance

energy for an electron anti-neutrino flux E2Φ = 1.0 × 10−8 GeV · cm−2 · s−1 · sr−1 con-

sistent with current flux limits [78]. Analysis of partially contained cascade signals could

double this rate, provided that adequate reconstruction and background rejection can be

achieved, without a significant loss of detection efficieny. IceCube intends to operate its

recently completed instrument well into the next decade and we thus look forward to the

actual observation of the Glashow resonance, or alternatively to significantly sharpened

limits on the flux of high-energy extra-terrestrial neutrinos.
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Appendix A

Firmware Problems in Run

117411

For Run 117411, version 442 of the mainboard firmware controlling the FPGA logic

was used, which later was shown to be problematic. If a local coincidence criterion is

satisfied, ATWD recording of 450 ns is initiated, which causes a 29µs deadtime for this

ATWD chip during digitization (sec. 3.3). However during Run 117411 ATWD digiti-

zation was triggered, whenever the discriminator threshold value, was exceeded without

checking for LC. This lead to cases, in which a random noise hit, produced in the time

gap between two Standard Candle flashes, by accident triggers fADC+ATWD recording

(instead of fADC only). Since for a signal event the ATWD typically records the main

fraction of the measured charge, the respective DOM would miss a significant fraction

of the Standard Candle light in such a case. An example of this effect is shown in figure

A.1.

In this Figure the waveforms for DOMs 39 (left) and 40 (right) on string 55 are shown

Figure A.1: SCII: Example ATWD waveform affected by a ATWD deadtime issue
(left), to be compared to the waveform of the neighboring DOM (right), which is not
affected

for one SCII event. Since DOM 40 is closer to the Standard Candle one would expect

it to be launched before DOM 39. In contrast the ATWD waveform of DOM 40 starts
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at t = 10093 ns whereas DOM 39 already detected a signal at t = 9852 ns. In addition

DOM 39 only measures a total charge of 402 p.e., while DOM 40 detected 2150 p.e.. Such

a large difference can not be explained by the distance of 17 m between both DOMs.

Since the total charge observed by DOM 39 is less then 10 times the average total charge

of all DOMs for that event (10·〈qtot〉DOMs = 1050 p.e.), this DOM has not been removed

from the reconstruction for that event (see sec. 7.3). However on average over all events

DOM 39 recorded a total charge of 〈qtot〉DOM39
Events = 1382 p.e. and hence would have been

removed. Due to the missing charge, it did not happen. The same is true for the other

three events, for which less than eight DOMs have been removed. We will now investi-

gate the influence of that problem on the reconstruction results, presented in section 7.3.

The total charge qotot observed in DOM o should sample from a poisson distribu-

Figure A.2: SCII: Distribution of the amount of DOMs, marked as affected by
deadtime problems for different criteria

tion p (qotot) = µ
qotot
o e−µo

qotot!
with µo being the mean of the total expected charge. Due to

the pulse-per-pulse stability of the Standard Candle one can in a good approximation

calculate µo from the SCII data as the mean total charge 〈qotot〉 of all 1000 cascades.

Since with increasing µpo the poisson distribution is increasingly well described by a

gaussian distribution with µgo = µpo and standard deviation σgo =
√
µpo we identify af-

fected DOMs by the requirement ∆qotot = |qotot − 〈qotot〉| > 5 ·σg with σg =
√
〈qotot〉. Since

this argument only holds for µo � 10 p.e., only DOMs with 〈qotot〉 > {50, 75, 100} [p.e.]

will be considered. For example 79 DOMs satisfy 〈qotot〉 > 75p.e.. The distribution of

the number of DOMs, which have been marked by those criteria in a single event, is

shown in Figure A.2. More than 30% of all events contain at least one DOM with an

expected total charge〈qo〉 > 50 p.e., which is marked as problematic. The effect on the
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Figure A.3: SCII: reconstructed zenith distributions of Credo (C4C1); Potentially
deadtime bug affected events are removed for different criteria, see text; (Left:) Re-
moved events with ∆qotot > 5σ and required total charge 〈qotot〉 > {50, 75, 100} [p.e.];
(Right:) Removed events with qotot > 75 p.e. and ∆qotot > {3, 4, 5}σ

reconstruction result is negligible, as shown in Figure A.3. In the left plot of Figure A.3

the Credo (C4C1) reconstructed zenith distributions are shown, with events, containing

at least one DOM with a deviation of ∆qotot > 5σg while the total charge of that DOM

on average was 〈qotot〉 > q (with q ∈
{

25, 50, 75, 100, 105
}

[p.e.]), being removed. Since

no DOM observed more charge than 105 p.e. the corresponding curve shows the case of

no cut being applied.

On the right side of Figure A.3 the Credo (C4C1) zenith distribution is shown, when

events, with an average observed total charge of 〈qotot〉 > 75 p.e., which in addition have

shown larger deviations from 〈qotot〉 than N ·σg (with N ∈
{

2, 3, 4, 5, 104
}

), are removed.

The last value was chosen artificially large to show the case without any cut.

None of those combinations significantly improved the ratio Nbad/Ngood.

Affected DOMs will introduce penalty terms into the likelihood, as discussed in the case

of saturation effects (sec. 7.3). However not observing an influence of the deadtime

problem on the reconstruction result, while observing strong effects due to saturation

is not in tension. The absolute value of the likelihood does not impact the best fitting

hypothesis, but the likelihood ratio between competing hypotheses does. In case of of

saturation, several DOMs clustering around the true hypothesis contribute to penalty

terms, thus making hypotheses different from the true hypothesis to be preferred. In

case of the deadtime problem less DOMs are affected, which due to noise being random

in nature, are not correlated with each other in space. The correlation between the

penalty terms and the position of the corresponding DOM relative to the position of the

true vertex is significantly weaker than in case of saturation.



Bibliography 120

Bibliography

[1] F. Halzen and S. R. Klein. “Invited Review Article: IceCube: An instrument for

neutrino astronomy”. Review of Scientific Instruments, 81(8):081101, 2010.

[2] J. Beringer et al. “The Review of Particle Physics: Cosmic Rays”. Phys. Rev. D86,

010001, 2012.
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