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Abstract of the Thesis 

3D Scanning Using Consumer-Grade Depth Sensors: Methods and Applications 

by 

Carlos Orrego 

Master of Science 

in 

Computer Science 

Stony Brook University 

2012 

A 3D scanner is a device that analyzes a real world object and generates a point cloud 

describing the surface of such object, possibly including color information as well. However, 

these devices are expensive, fragile, large, and usually require especially adapted facilities to 

house them. 

The advent of inexpensive depth sensors such as Kinect provide new opportunities to 

bridge the existing gap between systems that offer good scanning quality and systems that are 

affordable. 

The objective of this thesis is to use Kinect as a 3D scanner.  We achieve this goal by 

exploring techniques to generate point clouds from depth maps, and triangulation methods to 

construct meshes from point clouds.  However, depth maps are not noise-free. To deal with this 

noise, we explore different depth map reconstruction and smoothing techniques. We then 

measure their effectiveness in reducing the noise and enhancing the quality of the generated 

model. 

The main contribution of this work is an acquisition and processing pipeline that allows 

for capture and generation of accurate 3D models whose quality is comparable to those generated 

by expensive scanner devices.  

We show that the accuracy of our acquisition system is on par with higher resolution 

scanners. We also demonstrate applications for our method by capturing a data set of human 

faces and generating an Active Appearance Model from this data set.    
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Chapter 1  

Introduction 

A 3D scanner is a device that analyzes a real world object and generates a point cloud 

describing the surface of such object, possibly including color information as well. Applications 

for 3D scanning are present in many fields, from architecture to topography, art preservation, 

movies and video games, industrial inspection, object recognition, etc. 

Unfortunately, most 3D scanners are large and expensive devices that require to be 

installed in special facilities. For example, the Cyberware 3030 scanner, currently part of the 3D 

Scanning Lab, uses a great amount of space and requires a special setup. Even the smaller 

custom structured-light scanner present in the same laboratory is rather large and requires a 

dedicated port for data transfer.  

 

Figure 1: Scanner devices. Cyberware 3030 scanner (left); custom structured-light scanner (right) 

 While the aforementioned devices offer very good scanning quality, they have some 

drawbacks. For example, subjects must be taken to the lab for scanning. Also, because of their 
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size these scanners have a limited range of movement, reducing the number of possible scanning 

targets. Also, relocation of the scanner is not an easy task. 

Another issue is price. The Cyberware 3030 scanner is currently priced at $63,200
1
, with 

additional expenses for setup and maintenance. Clearly these prices are out of reach for 

individuals or even small institutions. 

Ideally, for some applications we would want to have scanners that a) are less expensive 

than current alternatives; b) are portable; c) can be easily replaced in case of failure at a 

reasonable cost and d) can acquire 3D models whose quality is comparable to their more 

expensive counterparts. 

The goal of this thesis is to build an acquisition system that addresses these issues using 

commercially available depth sensors.  

 The Kinect sensor is the first of a set of commercial-grade depth sensors that appeared in 

the market (others include for example the ASUS Xtion PRO and the eBox sensor). It is 

currently priced at $149.99
2
. In this work we use this device as the cornerstone for an 

inexpensive 3D acquisition system. 

 However, while the use of Kinect solves the problems of pricing and portability, it comes 

with its own set of challenges, such as lower resolution textures and noisy depth maps. In this 

work we address such difficulties by testing and applying different methods to produce high 

quality 3D models. 

 The main contributions of this thesis are: 

 Discussion and selection of techniques to filter and segment low resolution and noisy 

depth data (Chapter 5). 

 Quality assessment of point clouds acquired with Kinect with respect to clouds 

acquired with higher resolution scanners, and techniques to reduce the acquisition 

error (Chapter 6). 

 Discussion and selection of triangulation techniques for the generation of 3D meshes 

from the acquired data (Chapter 7). 

                                                 

 

1
 Information retrieved from http://www.cyberware.com/pricing/domesticPriceList.html 

2
 http://www.microsoftstore.com/store/msstore/en_US/pd/Kinect-for-Xbox-360/productID.216507400 
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 An acquisition and processing pipeline for capture and generation of accurate 3D 

models whose quality is comparable to those generated by expensive scanner devices. 

The proposed system embodies the best methods and algorithms discussed and tested 

in this work (Chapter 8). 

 We also test the proposed capture pipeline in a real application. The application consists 

of the construction of an active appearance model. For this we acquire and process human faces 

using our system, we train the model and we test its accuracy in approximating new 

observations. 

 The rest of this thesis is structured as follows: Chapter 2 surveys previous and related 

work in the context of 3D scanning using inexpensive commercially available hardware; Chapter 

3 introduces concepts related to 3D scanning techniques and the Kinect sensor; Chapter 4 

describes different frameworks and libraries available for Kinect, and our data capture 

application; Chapter 5 discusses several restoration techniques for noisy depth maps; Chapter 6 

compares point clouds from Kinect with higher resolution scanners and proposes smoothing 

algorithms to reduce the acquisition error; Chapter 7 examines triangulation methods to generate 

a mesh from a point cloud;  Chapter 8 presents applications for our method; Finally, Chapter 9 

concludes this thesis, summarizing the work presented in previous chapters and discussing some 

directions for future research. 
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Chapter 2  

Related Work 

Several techniques have been developed over the years for 3D reconstruction. Important 

to our study are techniques ranging from methods that employ a single image [1], [2]; methods 

that work with stereo images [3], [4]; methods that use laser range finders [5] to methods that 

make use of structured light patterns [6]. 

Methods that use structured light usually require a camera and a projector [6], [7]. 

Although these methods help to reduce the final price of the acquisition system, cameras and 

projectors used are generally expensive, when compared to an integrated system that appeared 

recently: Kinect. 

Since its inception, Kinect became instantly popular due to its technical capabilities, 

accessible price and all its possible applications in the computer vision field. Soon enough, work 

utilizing this device begun to emerge, the majority of it related to pose detection [8], gesture 

recognition for new interfaces [9] and human activity recognition [10]. 

With respect to 3D reconstruction, there are many works in the web that use Kinect to 

generate point clouds and even mesh generation attempts, but surprisingly there are not many 

publications that address this topic. Tong et al. [11] propose a system to perform full body 

capture using an array of Kinects. However, this method requires careful arrangement of the 

devices, and a special mounting platform, suffering from the same issue of space requirement as 

specialized scanners. Another issue is the quality of the generated model: the distance at which 

the sensors are located with respect to the subject (1 m) implies that the level of identifiable 

features in the acquired model is very low, thus rendering this approach unsuitable for 

applications requiring a higher level of identifiable details. 

The work of Smisek and Padja [12] explores the Kinect hardware, geometric model and 

calibration. A rig with a Kinect and two standard photo cameras is used to capture different 

views and depth information from a single scene. Depth information is used then to enhance the 

results of a stereo from motion approach. While this work utilizes depth map as a fundamental 
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input for the proposed method, there is no mention of the noisy nature of the depth map and 

consequently no actions are taken regarding to that issue. 

Cui et al. [13], [14] present a superresolution-based approach to perform shape 

acquisition using time-of-flight cameras and a Kinect device. Registration of different point 

clouds is performed using the ICP algorithm. Though their approach maintains the overall shape 

and appearance of the scanned object, the reconstruction error in the obtained model is in the 

order of centimeters when contrasted with a 3D laser scanner. 

Some other works involve scene reconstruction using multiple views. In [15], the authors 

present a point cloud alignment approach. They first capture and generate point clouds for 

different views of the same scene. Then they compute SIFT descriptors for each scene and use 

RANSAC to select the best matching feature points. Their approach does not consider any kind 

of smoothing or triangulation after the matching step. 

In the same line, one of the most recognized works by Newcombe et al. is KinectFusion 

[16], a real-time interactive scene acquisition system using a single device. It can reconstruct 

dynamic scenes by having the user move the camera around the room. A dense point cloud is 

created by this movement, and the generated model is refined with every new captured frame. 

This approach works well with static scenes where exposition time is not an issue, however, the 

method fails in the presence of large displacements and/or occlusions. While this method 

generates quality models by leveraging on the high density of points captured over time, scene 

stability cannot be guaranteed for long periods of time when capturing targets that cannot be still 

all the time. This is the case of human subjects, for example. 

In the industrial field, Geomagic
3
, a 3D software provider, presented at CES 2012 a 

system in early stages of development that “enables an instant 3D image of visitors at the event 

to be automatically turned into a 3D model and printed out on a 3D printer during the [CES] 

show.” While the accompanying video shows a 3D model being obtained using a Kinect device 

and then printed using a 3D printer, the company did not mention any further details about the 

specifics of how the model is generated or any post-processing algorithms employed. 

                                                 

 

3
 http://www.geomagic.com 
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Chapter 3  

3D Scanning and Kinect 

 Several techniques exist for the acquisition of the shape of a 3D object. Of such 

techniques, we focus primarily on two of them: time-of-flight scanners and structured light 

scanners. We do so because their principles and ideas are very important to understand the 

fundamentals of the device that we are interested in: Kinect. In this chapter, we first explain the 

basics of 3D data acquisition from the perspective of the aforementioned methods, to then shift 

our attention to the Kinect sensor and its technical characteristics. 

Time-of-flight Scanners 

A time-of-flight scanner is a scanner that uses a light probe to measure distance [17]. The 

main principle behind it is to measure the time it takes for a laser pulse to travel and return to the 

sensor. Since the speed of light is a known constant, range (distance) can then be measured using 

the following formula: 

  
  

 
 

Where   is the speed of light and   is the time the light pulse traveled. 

Another approach is to use a continuous beam of laser radiation of a known 

wavelength   . In this case, distance is measured by measuring the phase shift between the 

emitted and reflected pulse: 

  
       

 
 

 Where   is the integer number of wavelengths,   is the known wavelength of the pulse, 

and     
 

  
   is the fractional part of the wavelength phased by the phase angle  . 

Since both these approaches only detect one point at a time, a rotating mirror is used to 

capture scenes. A typical commercial time-of-flight scanner can detect between 10,000 and 

100,000 points per second. 
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Figure 2: Two kinds of laser measuring. a) pulse laser; b) continuous laser. Image from [17]. 

 

 Time-of-flight scanners require the subject to be still during the process, as any amount 

of movement while a frame is captured will result in distortion from motion. This is due to the 

fact that different points are captured during different time intervals. In consequence, this kind of 

scanner is usually attached to a rigid surface, limiting its variety of applications. 

 On the other hand, the range of these devices is really big (in the order of km); therefore 

they are the obvious choice when it comes to scanning large static targets. 

Structured-Light Scanners 

Stereoscopic systems work by finding the relationship between two cameras having a 

different view of the same image. An object point position can be calculated from these two 

different views if the position of said object is known in both cameras. The problem of making 

sure that a point in one view corresponds exactly to a point in the second view is known as the 

correspondence problem.  

The correspondence problem can be lessened by replacing the second camera by a 

structured light source [18]. Structured-light scanners are a type of scanner that works by 

projecting a predefined light pattern into the scene and acquiring that pattern back using a 

camera. Distance is then computed by analyzing the distortion of the captured pattern against the 

projected light pattern [6]. 

a) b) 
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Figure 3: Structured-light scanning. Π is the image plane, Π’ is the pattern projected onto the object. X is a point in  

the object. Image from [19]. 

Following Figure 3, the range (distance)   of a point   from a camera   can be expressed 

by the triangulation principle [20] as: 

   
      

        
 

Given       the problem then is to determine the correspondence between the projected 

pattern and the acquired image. Determination of such correspondences depends on the choice of 

pattern. While a more complete list of  pattern kinds can be found in [20] and [21], the most 

relevant categories and some example patterns are: 

 Sequential projections: Binary code, Gray code, phase shift 

 Continuous varying pattern: Rainbow 3D Camera 

 Stripe Indexing: Color coded stripes, segmented stripes 

 Grid Indexing: Pseudo-random binary dots, color coded grid 

Multi-shots methods such as sequential projections require multiple frames to compute 

depth values, thus requiring objects in the scene to remain static. Single-shot methods, on the 

other hand, can compute depth values using a single frame, at the expense of being less accurate 

than multi-shots methods; however these methods usually work better in the presence of moving 

targets. 

The accuracy of structured-light scanners is determined by the size of the pattern and –at 

a lesser level for most applications- by the wavelength of light. Range is short (usually not 

α θ 

R 
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greater than 10 meters) due to light dispersion and other phenomena that affect the amount of 

light captured by the camera. 

 

 

Figure 4: Structured-light scanning setup, process and result. Image from  [22]. 

Microsoft Kinect Sensor 

 The Microsoft Kinect sensor is the first general consumer-grade structured-light camera 

to hit the market. It is a game-oriented device which incorporates an RGB camera, an infrared 

camera and a microphone array.  

The RGB camera is a 24-bit camera that supports multiple resolutions (320x240 pixels at 

30 Hz, 640x480 pixels at 30 Hz and 1280x1024 pixels at 15 Hz). The infrared camera is an 11-

bit camera that supports resolutions of 640x480 pixels at 30 Hz and 1280x1024 pixels at 10 Hz. 

Depth images however are limited to 320x240 or 640x480 pixels, both at 30 Hz. Frame rate at 

higher resolutions is limited by the USB port bandwidth. 

 

Figure 5: Kinect sensor. a) the device itself; b) RGB camera view; c) infrared camera view. The speckle pattern  

can be seen in the image. 

 Depth sensing is achieved by projecting an infrared speckle pattern using an infrared 

emitter [23]. This is a patented single-shot grid-indexing method similar to pseudo-random 

a) b) c) 
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binary dots. The use of infrared light avoids the issues produced by structured-light pattern 

scanners that use light in the visible spectrum, allowing the device to capture RGB and depth 

scenes at the same time. The projected pattern is captured by the infrared camera and depth is 

calculated by the sensor’s firmware. All processing is done by the device. 

Table 1 resumes the technical specifications of the device: 

 

Sensor  Color and depth-sensing lenses 

 Voice microphone array 

 Tilt motor for sensor adjustment 

Field of View  Horizontal field of view: 57 degrees 

 Vertical field of view: 43 degrees 

 Physical tilt range: ± 27 degrees 

 Depth sensor range: 1.2m - 3.5m 

Data Streams  320x240 11-bit IR @ 30 Hz 

 640x480 11-bit IR @ 30 Hz 

 1280x1024 11-bit IR @ 10 Hz 

 320x240 16-bit depth @ 30 Hz 

 640x480 16-bit depth @ 30 Hz 

 320x240 24-bit color @ 30 Hz 

 640x480 24-bit color @ 30 Hz 

 1280x1024 24-bit color @ 15 Hz 

 16-bit audio @ 16 kHz 

Table 1: Kinect Technical Specifications. 
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Chapter 4  

Building a Kinect 3D Acquisition System 

Due to the complexity of the device at hand, it is a daunting task to try and build every 

part of the system ourselves. Instead, we leverage basic functionality such as device access and 

raw stream processing to third party libraries built specifically for that purpose, focusing our 

attention on building higher level functionality into our applications. In this chapter we present 

and discuss different framework alternatives in existence. We also introduce our data capture 

application, which is one of the cornerstones of this work. 

Kinect Framework Selection 

The Microsoft Kinect sensor was initially developed for use with the XBOX 360 

Console. However, shortly after the device was released different groups started working to 

allow the device to be used on a computer. Time has passed since, and nowadays there are three 

different main frameworks in existence. 

OpenKinect
4
 is commonly signalled as the first attempt to bring Kinect support to the 

PC/Mac. It is a community effort with no commercial support, and as such, the amount of 

supported features is rather limited. Among the supported features are: access to depth and RGB 

streams, and control of LED and motors. Also, there are unofficial patches to tweak different 

device parameters, such as the auto-exposure time of the RGB camera. While OpenKinect lacks 

of any higher-level tracking facilities present in other frameworks, it allows for low-level access 

to the device, has a very small memory footprint and it is supported in multiple platforms. 

OpenNI
5
 is the open-sourced version of PrimeSense's original sensor code. It does not 

support Kinect natively, but there is an independently maintained driver for it. It supports low-

level access to depth, RGB and IR streams, and high-level features such as body recognition and 

skeleton tracking. OpenNI is well supported by community members and also by an industry-led 

                                                 

 

4
 OpenKinect is available at http://www.openkinect.org 

5
 OpenNI is available at http://www.openni.org 
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consortium of companies. OpenNI provides ports for all major computing platforms. It also 

supports a variety of sensors besides Kinect, such as the Asus Xtion PRO. 

Microsoft Kinect SDK for Windows
6
 is the official SDK released and supported by 

Microsoft. Its first version was released several months after the other frameworks first appeared. 

The goal of this framework is to support the creation of applications that make use of Kinect’s 

body tracking and voice recognition capabilities. In this context, it offers access to the depth 

stream, RGB stream and skeleton tracking but no access to the IR stream. Also, the first beta 

version did not support registration between depth and RGB, situation that changed with the 

release of version 1.0. This framework is only available on Windows. 

All frameworks were evaluated before and while building the capture and processing 

application. OpenKinect was deemed not suitable because it did not support any kind of tracking 

facilities. While Kinect SDK supported body segmentation and skeleton tracking, at the time of 

evaluation it did not provide registration between the depth camera and the RGB camera, thus 

rendering this framework not suitable for our purposes. OpenNI was chosen because it supported 

all of the required functionality needed to build our 3D acquisition application. 

The Data Capture Application 

General Description 

 The data capture application evolved from a simple frame grabber to a 2.5D video 

(RGB+Depth) recorder. The current version was built in C++ and kept as simple as possible to 

allow for video capture at 30 fps on medium range hardware. For face capture, it can use 

OpenNI's body tracking and automatically find and track the user's head position. For other 

applications, the user can interactively select a region of interest. 

                                                 

 

6
 Kinect SDK is available at http://www.microsoft.com/en-us/kinectforwindows 
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Figure 6: The data capture application. 

The application shows both RGB image and depth image in a distance-colored scale. It 

can also access the Kinect motor to tilt the camera up or down as desired. 

Capturing Data 

Using the application is simple. Upon initialization, both the depth and RGB images are 

shown. To perform data capture, the user can either use the head tracking feature or select a 

region of interest by hand. Camera tilt can be adjusted as well if necessary using the buttons 

located in the last row.  

Once a region of interest has been selected by either method, the user can press the “Start 

Saving” button to start capturing frames. Pressing this button again stops the recording process, 

and the files are saved in the specified folder. 

Data Format 

The application saves data in a binary file, and also saves a JPEG file with the RGB 

information for every frame captured. The kind of data saved and the format of the binary file are 

shown in Table 2. 
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Field Name Size (bytes) Description 

Width 4 Width (in pixels) of the region of interest in the 

current frame. 

Height 4 Height (in pixels) of the region of interest in the 

current frame. 

Top 4 Distance (in pixels) of the region of interest from 

the top of the image. 

Left 4 Distance (in pixels) of the region of interest from 

the left of the image. 

Horizontal Resolution 4 Horizontal resolution (in pixels) of the current 

frame. 

Vertical Resolution 4 Vertical resolution (in pixels) of the current 

frame. 

Projection Parameter 

(X) 

4 Convenience projection parameter. Its value 

is       
  . 

Projection Parameter 

(Y) 

4 Convenience projection parameter. Its value 

is       
  . 

XYDepth         Point cloud        values from depth 

information in world coordinates. 

RGB       Image captured by the RGB camera. 

Table 2: Description of fields saved by the data capture application. 
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Chapter 5  

From Depth Maps to Point Clouds 

Depth maps obtained from a Kinect device are noisy by nature, and contain holes in areas 

where the sensor cannot reliably determine depth values. Also, captured scenes often contain 

more than just the object or objects we are interested in.  

In this chapter we examine techniques to enhance the quality of acquired depth maps. We 

also consider segmentation methods to focus on objects of interest, to finally construct a point 

cloud from the resulting depth map. 

Hole-Filling for Depth Maps 

Inpainting is a technique that attempts to recover lost or deteriorated parts of images and 

videos. In the real world, its applications are usually linked to art restoration. In the digital world, 

inpainting methods attempt to reconstruct damaged (noisy) parts of an image or to remove 

unwanted objects [24]. 

 Borrowing from the Image Processing and Graphics community, we attempt to apply 

inpainting techniques to fill holes in the depth map. The use of inpainting as a hole-filling 

technique is not new, as can be seen in [25], [26]. In this work we tested two different inpainting 

approaches. 

Diffusion-based Inpainting 

 This is the most common inpainting method. Several approaches such as [24], [27], [28] 

implement some variation of this technique, whose core ideas are: Starting from an inpainting 

mask (usually user-selected), the algorithm attempt to reconstruct the region   by smoothly 

propagating color information inwards from the region boundary    following a certain 

direction  ⃗⃗ . That is: 

         ⃗⃗⃗⃗        ⃗⃗       
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 Where   ⃗⃗⃗⃗       is a measure of the change in the information in the image, and  ⃗⃗  is the 

direction of such change. A common smooth measure is the discrete Laplacian operator. The 

direction  ⃗⃗  is chosen so it propagates linear structures (isophotes in the literature). Given a 

point     , the discretized gradient vector gives the direction of the largest spatial change. 

Rotated by 90°, it gives the smallest spatial change, which coincides with the direction of the 

isophotes.  

 Given      , the neighborhood around a point   , a first-order approximation of   is 

given by: 

                         

 For all          . A point   is filled as a function of all points          and a 

normalized weight function       . 

     
∑                                    

∑                
 

 Where the weight function        is composed of a directional component that ensures 

greater contribution from pixels closer to the propagation direction; a geometric distance 

component that decreases contribution of pixels geometrically farther from  ; and a level set 

distance component that increases the contribution of pixels closer to the region contour Ω. 

 

Figure 7: Inpainting methods. a) FMM Inpainting. The reconstruction process starts at the boundary   , following 

the normal inwards Ω. Image from [24]; b) Exemplar-based Inpainting. For a patch around pixel p, candidates are  

selected and blank pixels are filled with pixels from the patch with the highest confidence. Image from [29]. 

a) b) 
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Exemplar-based Inpainting 

Exemplar-based inpainting techniques generate new texture by sampling and copying 

color values from the source image. The Exemplar-based inpainting algorithm in [29] is a patch-

based technique (contrary to diffusion-based techniques that are usually pixel-based techniques). 

The algorithm maintains a color value per pixel (the actual pixel color or ‘empty’, if the pixel has 

not been filled yet) and a confidence value per pixel. This confidence value becomes constant 

once the pixel is filled.  

The algorithm works by computing a priority queue of patches to be filled. This queue is 

sorted to prefer patches that are the continuation of strong edges and are surrounded by high-

confidence pixels. Formally, priority is defined as: 

              

Where      is the confidence term and      is the data term for a given pixel  . The 

confidence term is a measure of the amount of reliable information surrounding a pixel, biased 

towards patches that have more of their pixels already filled and further preferring patches with 

pixels filled early on. The data term is a function of the strength of isophotes around the region 

boundary in each iteration of the algorithm. The idea is to prefer the filling of linear structures 

first as in diffusion inpainting techniques. 

Once a patch has been selected for filling, the whole image is searched for a similar patch 

that minimizes the sum of squared distances with respect to the patch being filled. After choosing 

an appropriate patch, pixels that lie inside the region Ω are filled with pixels from the selected 

patch. This process is repeated until there are no more patches left to fill.  

Method Comparison 

We compared the methods of Fast Marching Method (FMM) Inpainting [28] and 

Exemplar-based Inpainting [29] for the reconstruction of holes in depth maps
7
. For this, several 

adjustments to the algorithms had to be made, especially regarding the treatment of depth map 

information. 

                                                 

 

7
 An implementation of Criminisi’s method can be found at http://www.cc.gatech.edu/~sooraj/inpainting/. For 

Telea’s method, an implementation is present in the OpenCV library. 

http://www.cc.gatech.edu/~sooraj/inpainting/
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  Depth maps have discrete values roughly between 0 and 10000, and can be represented as 

16-bit grayscale images. Unfortunately, this mode is not standard, and the algorithms tested were 

written to work with standard image modes (usually, 8-bit grayscale or 24-bit RGB). To 

overcome this limitation, we modified the algorithms to work with depth information. 

 The tests involved the reconstruction of hand-made holes in a depth map. Results are 

compared against a hole-free ground-truth model using mean square error. Figure 8 and Table 3 

show the tests and results.   

 

Figure 8: Inpainting test images. a) simple thin lines, b) more complex and bigger holes and c) holes scattered all over  

the image. 

 

  MSE 

  Base Error 
Exemplar 
Inpainting 

FMM 
Inpainting 

Test 1 3221.067 0.005 0.014 

Test 2 8809.714 1.429 1.235 

Test 3 16195.130 0.251 0.219 
Table 3: Inpainting tests error. 

 From the tests can be seen that while exemplar-based inpainting shows less error in the 

first test, it is surpassed by FMM inpainting in the following and more complex tests. This results 

are probably due to the fact that exemplar-based inpainting works with image patches. While 

patches can be a good solution for the reconstruction of color images, depth maps represent in 

this case the shape of relatively smooth surfaces. The use of patches would then introduce 

unwanted discontinuities, thus increasing the error. On the other hand, FMM inpainting ensures 

a) b) c) 
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the smoothness of the reconstruction. For this reason this is the method we choose and use in the 

rest of this work. 

Depth Map Segmentation 

 After reconstructing missing areas in the depth map, the next step is to segment and 

extract the object(s) of interest from the scene. We made a qualitative assessment of three 

different segmentation methods. 

Average-based segmentation 

This segmentation method will discard pixels farther away from the sensor than the mean 

depth value of the selected area. This process works well with faces, where usually the face is 

closer to the sensor than the rest of the body. However, this method does not take into account 

the orientation of the face. Segmentation results are therefore distorted when the subject is not 

facing the sensor.  

k-Means Segmentation 

 This algorithm attempts to find clusters within the depth map using the k-means 

clustering method [30], with    . Before clustering, the background is eliminated from the 

scene by filtering depth values larger than a threshold defined as the mean depth plus one 

standard deviation. Then, clustering is performed and the cluster whose centroid is closer to the 

center of the region of interest (or the head position, if tracking is enabled) is selected as the head 

cluster. 

Grabcut Segmentation 

 The Grabcut Segmentation method [31] is a semi-automatic segmentation algorithm that 

requires minimal user interaction. This technique uses both region and boundary information 

contained in an image in order to perform segmentation by “cutting the graph” following a least-

energy path. This energy is defined so that its minimum value corresponds to areas where a good 

segmentation can be made. 

  We apply this method by defining the subject as our region of interest and refining by 

marking foreground and background regions as required. For our tests, we show only the first 
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iteration of the algorithm after the region of interest is defined, without marking any foreground 

or background regions, but results improve considerably with more detailed user intervention. 

Method Comparison 

 We compared all three methods
8
 to segment faces under three different pose situations: 

facing the sensor, looking to the right and looking up. Our qualitative results in Figure 9 show 

that different methods work better for certain situations than others. For example, all methods 

work acceptably well when the subject is facing the sensor, but the results are mixed for when 

the subject is looking up. Since there is no method that outperforms the rest by an ample margin, 

we perform segmentation method selection on a case by case basis after analyzing the specific 

requirements for every application. 

 

Figure 9: Segmentation Methods. In each row, a) original image; b) Average segmentation; c) k-means segmentation;  

d) grabcut segmentation 

 

                                                 

 

8
For comparison, we used the implementation of k-means clustering present in the Point Cloud library, and  the 

implementation of the Grabcut algorithm present in the OpenCV library. 

a) d) b) c) 
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Point Cloud Generation 

 The final step after performing hole-filling and segmentation is to generate a point cloud 

from the depth map. 

Depth and RGB Registration 

 Cameras that register depth and RGB images are at a certain distance from each other; 

hence they capture slightly different views of the same scene. Registration of depth and RGB 

cameras is necessary if we want to extract color information for each point in the depth map. 

Registration of the depth and RGB cameras and projection of depth points into the RGB image 

plane is achieved as follows: 

 Calculate        , the relative rotation between the cameras and        , the relative 

translation between the cameras. 

                   
  

                      
       

 Back-project depth image points into the IR camera’s coordinate system, apply 

transformation to the RGB camera’s coordinate system, and finally project the point onto 

the RGB camera image. 

       
     

                         

              

 

In practice this procedure is implemented by the underlying framework using pre-

calculated shift tables where the position of a depth pixel in the RGB image space is indexed 

according to its position and depth value. 

The calibration values used by each framework that provides registration are usually 

adequate. In [32] a joint stereo calibration approach is presented and registration is compared to 

that provided by OpenNI. Their results show that the calibration values used by that framework 

are accurate, as their re-projection error was similar. 
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Figure 10: Registration of depth and RGB image. 

From the Image Plane to Sensor Coordinates 

 The final step involves the transformation of a point             where       is the 

position of the point in the image plane,   is the depth of the point and   is the color of the point. 

The transformation is given by: 

   
       

  
 

   
       

  
 

     

 Where              are the intrinsic camera parameters. The point is also assigned the 

color value  . This process is repeated for every valid point in the registered depth map. 



 

 

23 

 

 

Chapter 6  

Point Cloud Smoothing 

 Kinect uses a speckle light pattern to capture depth, which is calculated based on the 

position and intensity of the reflected infrared light. Because of this, depth measurements are less 

accurate in areas with poor reflection or where diffraction occurs, such as zones perpendicular to 

the sensor or around the edges of objects [33].   

Given the relative low resolution of the sensor, noisy measurements have a big impact in 

the overall quality of the generated model. In this chapter, we explore how Kinect compares 

against a higher resolution 3D scanner. We also examine smoothing methods that aim to reduce 

the noise in the acquired point cloud, using the aforementioned high-resolution point cloud as a 

ground truth for our tests. 

Kinect vs. Scanner 

 To test the accuracy of Kinect we captured scans of a face-shaped mask with a custom 

structured-light scanner. This scanner uses a phase-shift pattern to acquire images, and has a 

resolution of 640x480 pixels.  Specific details about this device can be found in [7]. We also 

captured and generated a point cloud of the same mask using Kinect, with no further post-

processing.  

 

Figure 11: Two scans of a face-shaped mask. a) acquired with a high resolution scanner; b) acquired with Kinect. 

 

a) b) 
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 Figure 11 shows two scans of the face-shaped mask. It can be seen clearly that there is a 

difference in resolution between the two scans. Table 4 shows statistics for each device. 

Device Points Resolution 

M.C.L. Scanner 78159 ~0.2 mm 

Kinect 15472 ~1 mm 

Table 4: Number of points and resolution for each scan. 

 If we assume the higher resolution scan as a ground truth, we are interested then in the 

accuracy error that a raw Kinect scan has with respect to the established baseline. For this, we 

first align the scans using the ICP algorithm. Then for each point in the smallest cloud, we obtain 

the distance to its nearest neighbor. With these distances, we can compute the error in terms of 

the mean squared distance and    Norm, as Table 5 shows. 

MSE (   Distance) 6.70382 

Average 1.47027 

Std. Dev. 2.1313 

   Norm 24.0844 

Table 5: Error for a raw scan. 

Figure 12 shows a distance map for the Kinect scan. As can be seen, the greatest 

differences are around the nose area of the mask, the corner of the eyes and some spurious 

outliers around the borders.  
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Figure 12: Distance map for raw scan. 

Point Cloud Smoothing Methods 

 We consider two smoothing techniques: Laplacian smoothing and Windowed Sinc 

smoothing. 

Laplacian Smoothing 

 A common diffusion smoothing method is Laplacian smoothing. This method 

incrementally moves points in the cloud in the direction of the Laplacian. The Laplacian operator 

can be linearly approximated at each vertex by the umbrella operator [34]: 

      ∑       

    

      

Where    is the 1-ring neighborhood of the vertex   , and     is the weight of the edge 

       corresponding to the vertex   , with ∑          . 

In our tests, the weighting scheme      |  |⁄  was used, and three iterations of the 

algorithm were performed. 
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Windowed Sinc Smoothing 

 Taubin proposes the use of a traditional signal processing approach to perform point 

cloud smoothing [35]. This technique adjusts the position of each point using a windowed sinc 

interpolation kernel.  

 The main idea here is to use a low-pass filter to relax the mesh. In traditional filter 

design, the ideal low-pass filter transfer function is approximated using a trigonometric 

polynomial approximation by truncating its Fourier series. 

 A sinc window is used because it reduces the Gibbs overshooting effect produced by 

directly truncating the Fourier series. The filter used then becomes: 

     

   

 
   (   

 ⁄ )    ∑
          

  
      

 ⁄  

 

   

 

Where        are the window coefficients. The tested implementation uses a Hamming 

window. 

To further improve the algorithm, the shrinkage effect is reduced by first performing a 

topological and geometric analysis of the cloud, and selecting feature edges. A feature edge 

occurs when the angle between the two surface normals of a polygon sharing an edge is greater 

than a certain angle α. In our tests,      . Vertices are then classified as simple (no feature 

edges attached to it), interior (exactly two feature edges attached to it) or fixed. 

Once the classification is known, the vertices are smoothed differently. Fixed vertices are 

not smoothed at all. Simple vertices are smoothed normally. Interior vertices are smoothed only 

along their two connected edges, and only if the angle between the edges is less than a certain 

angle β. In our tests,        

Method Comparison 

 We compared
9
 the two aforementioned smoothing methods against the ground-truth 

higher resolution scan of a face mask previously taken with the Motion Capture Lab scanner.  

 As we did at the beginning of this chapter for the raw Kinect scan, we measured the mean 

squared error and    Norm in point correspondences for each smoothed point cloud.  

                                                 

 

9
 We used the implementation of the Windowed Sinc filter present in the VTK library. 
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Smoothing Method 

None Laplacian Windowed Sinc 

MSE (   Distance) 6.70382 7.9046 6.10081 

   Norm (Distances) 24.0844 33.1252 24.0844 

Table 6: Smoothing comparison results. 

 As can be extracted from the results in Table 6 and seen in Figure 13, windowed sinc 

smoothing presents the best visual response while maintaining the most prominent features of the 

face mask. This method reduces the overall mean squared error and also prevents shrinkage, a 

known effect when using Laplacian smoothing (and the most likely cause of the error increase 

using this method).  

Another interesting result is that while the overall error is reduced by windowed sinc, we 

observe that the    distance remains the same. This is due to the vertex classification part of the 

algorithm, where border vertices are not smoothed to reduce the shrinking effect previously 

mentioned.  

 

Figure 13: Visual comparison of smoothing methods. a) high-resolution scan; b) low-resolution Kinect scan, no  

smoothing; c) low-resolution scan, Laplacian smoothing; d) low-resolution scan, Windowed Sinc smoothing. 

 

a) d) b) c) 
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 The distance map in Figure 14 shows how both smoothing methods work. While in the 

case of Laplacian smoothing the error is actually increased around the borders by the shrinking 

effect, windowed sinc avoids this problem. Also, by maintaining features, windowed sinc 

isolates and reduces zones with high error. In the rest of this work, we use windowed sinc 

smoothing. 

 

Figure 14: Distance maps for smoothing methods. a) Laplacian smoothing; b) windowed sinc smoothing 

 

a) b) 
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Chapter 7  

From Point Clouds to 3D Models 

After the acquisition and processing of a point cloud, the final step required to obtain a 

3D structure is to generate a triangulation from this cloud. The final reconstruction step is to 

generate a triangle mesh from our point cloud.  

Triangulation of a point set is an important problem with applications that go beyond 

graphics. The quality of the generated mesh is important as well. For example, applications such 

as finite element simulation in CAD/CAM require triangular meshes of bounded aspect ratio to 

avoid ill-conditioning and discretization errors [36]. Several different triangulation methods have 

been proposed in the past as surveyed in [37], but none of them can guarantee quality 

triangulations for any given point set. In this chapter we present, discuss and compare three 

different triangulation techniques. 

Mesh Generation 

 For this work we considered three triangulation algorithms, two popular methods and a 

proposed simple triangulation method for organized point clouds. 

Marching Cubes with Algebraic Point Set Surfaces 

The Marching Cubes Algorithm [38] is a well-known algorithm for surface 

reconstruction, which solves the reconstruction problem by forming a facet approximation to an 

isosurface through a scalar field sampled on a rectangular 3D voxel [39]. In the tested 

implementation, the surface is approximated at each voxel by using a moving least squares 

spherical fit to the point cloud data in the context of the APSS framework presented in [40], [41]. 

Then, the voxel intersection points are calculated and triangles are generated from the 

approximated surface. Quality and number of triangles are determined by the chosen voxel size. 
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Figure 15: Example of generated polygons (facets) as a function of voxel size. Image by Paul Bourke. 

Ball Pivoting Algorithm 

 The Ball Pivoting Algorithm [42] generates a triangle mesh from a point cloud. Given the 

point cloud and the estimated normal at each point, the algorithm begins finding a seed triangle 

such that a ball of radius   touches its vertices and no other point lies inside this ball. The 

algorithm then adds points by rotating the ball around a pivot point and connecting those points 

touched by the ball. Triangles are generated when three points become connected. While the 

algorithm has no problem connecting points whose distance is smaller than  , for points farther 

than   the algorithm will generate holes. This issue can be solved by applying multiple passes of 

the algorithm increasing the ball radius after each pass, but our experiments showed that this 

require extreme fine tuning to avoid creating artifacts. Quality in this case is determined by the 

ball radius  . 

 

Figure 16: Ball pivoting in two dimensions. Points are connected by pivoting a ball around nearby points. The second  

image shows how a small ball radius creates holes in the reconstructed surface. The last image shows how a large ball 

radius will lead to artifacts in the reconstructed mesh. Image from [42]. 

Simple Organized Point Cloud Triangulation 

 The proposed triangulation method takes advantage of the fact that point clouds captured 

from a Kinect device are organized as a two-dimensional array of points. Because the 
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perspective projection transformation to obtain world-space coordinates for each point in the 

depth map is homographic, resulting      coordinates for any point   preserve the spatial 

relation to its neighbors with respect to the original depth map.  

This algorithm generates triangles considering only the closest neighbors of a point   as 

follows: for each valid point     , its neighborhood                             is considered. 

From this neighborhood, two triangle configurations are possible. We define pivot points 

                    if points              are valid points. This configuration generates 

triangles                 and                     if and only if all the points in   ,    are 

valid. If points              are not valid then a second possible configuration    

                 is tried. This configuration generates triangles                   and 

                  if the points are valid. A valid point is a point whose   coordinate is 

defined. If no pivot configuration is valid, no triangles are generated. 

 

 

Figure 17: Triangles generated by the Simple Organized algorithm. After three iterations: a) initial point cloud; b) two  

triangles generated using the first pivot rule; c) one triangle generated using the first pivot rule; d) a triangle generated  

using the second pivot rule. 

Method Comparison 

 We compared
10

 the three previously exposed triangulation techniques measuring the 

quality of the generated triangles. For applications that involve numerical methods, the error 

bound is kept low if the triangles are as close as equilateral triangles [43]. Thus, it makes sense to 

measure triangle quality with respect to the properties of the equilateral triangle. It is also 

desirable that the generated triangle meshes are a visually plausible representation of the scanned 

                                                 

 

10
 We used the implementation of Marching Cubes and Ball Pivoting present in MeshLab. 

a) d) b) c) 
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surface. For this, we expect the triangulation to be smooth with respect to the surface and that it 

contains no holes in the viewing direction of the sensor. 

 Several triangle quality measures have been developed over the past years as surveyed in 

[44]. For this work we selected measures that include different properties of a triangle such as 

the inner angles, side length, inradius and circumradius. We also measured angle distribution in 

the generated mesh. Table 7 shows the selected measures. All mea sures are normalized with 

respect to the ideal values of an equilateral triangle. This means that values closer to 1 are better. 

   

Measure Description 

     
 

     

 
 

     is the smallest angle of a triangle. 

    
    

    
 

          are the length of the shortest and longest edge of a 

triangle, respectively. 

     
 √  

  
    

    
  

           are the edges of a triangle;   is the area of the 

triangle. 

    
  

 
 

  is the circumradius of a triangle;  is the inradius. 

    
 √  

    
 

  is the inradius of a triangle;      is the longest edge. 

Table 7: Quality measures for triangles. 

 Table 8 shows the results for each method. Figure 18 shows the distribution of angles in 

the generated triangles for each method.  

 

Quality 
Measure 

Triangulation Methods 

Marching Cube APSS Ball Pivoting Simple Organized 

            

     
 0.491 0.491 0.648 0.163 0.591 0.193 

    0.497 0.497 0.642 0.128 0.589 0.169 

     0.651 0.651 0.815 0.150 0.760 0.182 

    0.620 0.620 0.779 0.181 0.723 0.199 

    0.278 0.278 0.347 0.074 0.322 0.085 
Table 8: Results for triangle quality measurement. 
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Figure 18: Angle distribution for each triangulation method. 

 

Figure 19: Triangulation methods. a) Marching Cube (APSS); b) Ball Pivoting; c) Simple Organized. Top row: full  

view of a generated mesh. Bottom row: a close-up of the nose zone. 

 According to our triangle quality measurement, the method that generates the best 

triangles is the Ball Pivoting Algorithm. However, in terms of visual quality, both Marching 
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Cubes and Ball Pivoting generate meshes with holes in them. This can be seen in Figure 19. On 

the other hand, our Simple Organized Point Cloud method generates a good mesh with no holes. 

While holes can be closed using mesh editing software, our method requires no user intervention 

or supervision. 

Our method also generates triangles with quality similar to Ball Pivoting. Similarly as 

Figure 18 shows, there is a similar distribution of angles in both Ball Pivoting and Simple 

Organized Point. We decided to use our method because it generates good quality and hole-free 

meshes automatically. 
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Chapter 8  

Applications 

After reviewing, discussing, testing and selected methods and algorithms for 3D 

scanning, the next logic step is to show the effectiveness of those techniques in an application. In 

this chapter we introduce a face capture and processing pipeline which utilizes all of the 

techniques discussed so far in this work. We then use this processing pipeline to acquire a dataset 

of human faces. We finally generate an active appearance model from this dataset and test its 

generalization capability to approximate new observations. 

A Face Capture and Processing Pipeline 

 Our proposed pipeline is composed of sequential instances of the methods and algorithms 

presented so far in this work, along with new techniques devised to help enhance the quality of 

static sequences. Figure 20 shows a diagram of the proposed system. 

Acquisition 
(Chapter 4)

Frame 
Averaging

Depth Map 
Inpainting 

(Chapter 5)

Depth Map 
Segmentation 

(Chapter 5)

Point Cloud 
Generation 
(Chapter 5)

Outlier 
Removal

Point Cloud 
Smoothing 
(Chapter 6)

Mesh 
Generation 
(Chapter 7)

 

Figure 20: Face capture and processing pipeline 

 The first step in our processing pipeline is to acquire color and depth information of the 

face from a static subject. For this, we use the application presented in Chapter 4 to acquire a 

short video sequence. 

 After the sequence has been acquired, we average the color image and depth map where 

it contains valid values. With this we attempt to extract the greatest amount of information from 

the depth map, exploiting the fact that we are working with static sequences. 
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Figure 21: RGB and depth averaging. a), b), c) individual noisy frames from a sequence. Black pixels indicate values  

where depth values are invalid; d) reconstructed frame from a sequence. 

 

 On average, every individual frame of our sample sequence contains 50733 valid pixels, 

while the reconstructed frame contains 53252 valid points. This represents a 5% increment in the 

number of available pixels. Given the low resolution and limitations of the Kinect sensor this 

increase in the amount of usable data is significant. 

 Once we have the recovered depth map, we apply the FMM inpainting technique 

described in Chapter 5. We then perform semi-automatic segmentation by means of the Grabcut 

segmentation algorithm also portrayed in Chapter 5. 

 

Figure 22: Inpainting and segmentation. a) RGB and depth images after inpainting and before segmentation; 

b) RGB and depth images after Grabcut segmentation. 

 

 After segmentation, we construct a point cloud employing the method presented in 

Chapter 5. Before generating a mesh, we apply a statistical outlier removal filter. This filter 

calculates for each point the average distance and standard deviation using the first 500 nearest-

a) 

a) 

d) 

b) 

b) c) 
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neighbors. It then deletes points that are farther away than three times the standard deviation 

from its closest neighbor. 

 Finally, we apply the windowed sinc smoothing method depicted in Chapter 6, and we 

obtain our final model by generating a mesh applying the simple organized triangulation 

algorithm illustrated in Chapter 7. 

Building an Active Appearance Model 

Active Appearance Models 

 The concept of an Active Appearance Model (AAM) was first proposed in [45]. Active 

Appearance Model are non-linear, generative and parametric models of a certain visual 

phenomenon [46]. While there are several classes of AAMs, in this work we focus on 

Independent AAMs. 

 An Independent AAM models the shape and appearance of a class of objects 

independently from each other. We represent shape of a face with a vector 

                                   as the concatenation of the         coordinates 

of all   vertices. We also represent appearance with a texture 

vector                                 , the concatenation of the        color 

information for all   vertices. For a model containing   faces, we can then express a new face as 

a linear combination of these faces as in [47]: 

      ∑    

 

   

 

      ∑    

 

   

 

 With ∑   ∑    . In practice, data compression and dimensionality reduction is 

achieved by performing Principal Component Analysis (PCA) [48] on the training data set. We 

can then express our model in terms of the average face and the eigenvectors of the covariance 

matrix: 

 

       ̅      
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       ̅      

Model Training 

 Our data set consists of 35 face scans of Caucasian females acquired using our face 

acquisition pipeline.  

 Before training can be performed, we have to bring the faces into correspondence. For 

this, we first correct all faces for rotation and translation using the ICP algorithm. 

To perform registration, we select an arbitrary face as a temporary reference and register 

every other sample against this face. Since every scan has a rather different configuration 

(different number of points, different boundaries, etc.) it is difficult to perform non-rigid 

registration in   . All of our samples are genus zero surfaces, therefore we can perform surface 

uniformization by computing a conformal map       [49], [50] from the surface to the unit 

disk. We then center this map on the tip of the nose and correct for rotation by applying Mobius 

transformations. 

 

Figure 23: Conformal mapping. a) original face; b) conformal map to the unit disk. Irregular boundaries in a) become  

regular in b). 

,  

Once we have conformal maps for every face, we find shape and appearance 

correspondences as follows: given a chosen reference face    , for every new face    shape 

correspondences       are found by performing a nearest neighbor search for every point in 

  .  

Appearance is computed with respect to the reference face    by first calculating a 

Delaunay triangulation for    . Then we calculate barycentric coordinates       for every 

a) b) 
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corresponding point from    with respect to this triangulation. We can finally compute the 

interpolated color with respect to the color of the vertices of the surrounding triangle          

as: 

        
     

     
  

 

Figure 24: Registration of two different face scans. a) points mapped to the unit disk; b) nearest-neighbor selection of  

correspondent points; c) Delaunay triangulation for color interpolation. 

 

The final step is to compute the mean shape and mean appearance  ̅  ̅ and to apply PCA 

to our shape and appearance sample matrices to obtain the covariance eigenvectors      . With 

a complete model, we can compute the average face as shown in Figure 25. 

 

Figure 25: Average face. 

Fitting the model to a new face 

 To fit a new captured face, first we follow the same process as we did for our training 

data.  Then, to generate an approximate representation of the new face using our model, we find 

the minimum error between the new and the generated face in terms of shape and appearance: 

   |         | 

a) b) c) 
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   |         | 

 Where       are the shape and appearance errors respectively. We define our error 

metric as the sum of squared distances. We find the parameters       that minimize the quantities: 

       
 

‖         ‖
 
 

       
 

‖         ‖
 
               

 We performed leave-one-out cross-validation to test how well our model generalizes to 

fit new data. Figure 26 shows cases of successful fitting and a failure case. It is worth noting how 

the model can generalize for different skin colors and illumination variation, as can be seen from 

the first two images of Figure 26. 

 

Figure 26: Approximation of new faces. a) and b) show good approximations; c) a failure case.  

Left: original scan. Right: Fitted model.  

 

Exploring the effect of data 

 We tested the effects of the number of samples on the overall fitting error. For this, we 

trained our model several times, each time modifying the number of available samples. We then 

computed the mean fitting error by performing leave-one-out cross-validation for the number of 

available samples. The following graph shows the normalized fitting error versus the number of 

samples in the model. 

a) b) c) 
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Figure 27: Fitting error vs. Number of samples. 

 It can be observed that the error decreases as the number of samples increases, as 

expected; however, the number of samples available is enough to make this error converge. This 

means that there is still room for great improvement for this model adding a relatively small 

number of new samples. 
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Chapter 9  

Conclusions 

 In this thesis we explored the possibilities of acquiring 3D models with Kinect. We 

proposed and developed a system to acquire image and depth information. After exploring the 

characteristics of the Kinect sensor, we examined the challenges associated with it. 

 The core of this work was devoted to deal with such challenges. We proposed the use of 

image inpainting techniques to fill holes in depth maps. After testing different methods, we 

selected the fast-marching method inpainting technique. We also tested different depth map 

segmentation methods.  

 For point cloud smoothing, after testing different algorithms we selected windowed sinc 

smoothing. Finally, we proposed a triangulation method for organized point clouds and tested it 

against established triangulation methods, showing its superiority for our needs. 

 We compared the accuracy of generated scans against a higher resolution scanner device. 

While the resolution of Kinect is low, our results showed that it is enough to observe fine detail 

in most applications. Quality-wise, it is on par with higher resolution devices.  

For this work we developed tools for data capture and processing. We organized such 

tools in a processing pipeline that makes use of all the tools and techniques discussed throughout 

this work.  

As a way to test the effectiveness of our methods, we captured a dataset of human faces 

and created an active appearance model of such faces. We showed that the scanning resolution 

achieved by our system is enough to capture distinctive detail in faces.  

There are different areas where improvement can be made in future research. For 

example in the case of scanning static objects, the acquisition system could be augmented by 

allowing the device to be moved around the target, a technique already in use in other systems. 

This would increase the amount of available points. If this were the case, our triangulation 

method would need to be revised to deal with unorganized clouds.  

To improve scanning, multiple Kinects could be used. This can be useful in the presence 

of occlusions, moving targets, or small targets where a single device is insufficient to acquire 
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enough detail. The use of multiple devices involves a calibration step that would go against the 

goal of portability, but can left as an option.  

With respect to our active appearance model, better conformal registration could be 

achieved by the use of constrained Mobius transformations. For this, landmarks need to be 

specified on each face. This can be realized either manually or automatically using one of the 

many techniques in existence. 

New depth sensors are appearing in the market. For now, the technical characteristics of 

those sensors are expected to be similar to Kinect. However, we expect to see higher resolution 

sensors to hit the market in the near future. The presented scanning system can benefit almost 

immediately of the availability of such sensors. 
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