

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

3D Scanning Using Consumer-Grade Depth Sensors: Methods and Applications

A Thesis Presented

by

Carlos Orrego

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2012

ii

Stony Brook University

The Graduate School

Carlos Orrego

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Dimitris Samaras

Associate Professor, Computer Science Department

Xianfeng David Gu

Associate Professor, Computer Science Department

Tamara Berg

Assistant Professor, Computer Science Department

This thesis is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

iii

Abstract of the Thesis

3D Scanning Using Consumer-Grade Depth Sensors: Methods and Applications

by

Carlos Orrego

Master of Science

in

Computer Science

Stony Brook University

2012

A 3D scanner is a device that analyzes a real world object and generates a point cloud

describing the surface of such object, possibly including color information as well. However,

these devices are expensive, fragile, large, and usually require especially adapted facilities to

house them.

The advent of inexpensive depth sensors such as Kinect provide new opportunities to

bridge the existing gap between systems that offer good scanning quality and systems that are

affordable.

The objective of this thesis is to use Kinect as a 3D scanner. We achieve this goal by

exploring techniques to generate point clouds from depth maps, and triangulation methods to

construct meshes from point clouds. However, depth maps are not noise-free. To deal with this

noise, we explore different depth map reconstruction and smoothing techniques. We then

measure their effectiveness in reducing the noise and enhancing the quality of the generated

model.

The main contribution of this work is an acquisition and processing pipeline that allows

for capture and generation of accurate 3D models whose quality is comparable to those generated

by expensive scanner devices.

We show that the accuracy of our acquisition system is on par with higher resolution

scanners. We also demonstrate applications for our method by capturing a data set of human

faces and generating an Active Appearance Model from this data set.

iv

Table of Contents

List of Figures .. vi

List of Tables .. vii

Chapter 1 Introduction .. 1

Chapter 2 Related Work.. 4

Chapter 3 3D Scanning and Kinect ... 6

Time-of-flight Scanners .. 6

Structured-Light Scanners .. 7

Microsoft Kinect Sensor ... 9

Chapter 4 Building a Kinect 3D Acquisition System ... 11

Kinect Framework Selection... 11

The Data Capture Application .. 12

General Description .. 12

Capturing Data .. 13

Data Format .. 13

Chapter 5 From Depth Maps to Point Clouds ... 15

Hole-Filling for Depth Maps .. 15

Diffusion-based Inpainting ... 15

Exemplar-based Inpainting ... 17

Method Comparison.. 17

Depth Map Segmentation ... 19

Average-based segmentation .. 19

k-Means Segmentation .. 19

Grabcut Segmentation ... 19

v

Method Comparison.. 20

Point Cloud Generation... 21

Depth and RGB Registration .. 21

From the Image Plane to Sensor Coordinates ... 22

Chapter 6 Point Cloud Smoothing .. 23

Kinect vs. Scanner .. 23

Point Cloud Smoothing Methods .. 25

Laplacian Smoothing .. 25

Windowed Sinc Smoothing .. 26

Method Comparison.. 26

Chapter 7 From Point Clouds to 3D Models .. 29

Mesh Generation ... 29

Marching Cubes with Algebraic Point Set Surfaces ... 29

Ball Pivoting Algorithm .. 30

Simple Organized Point Cloud Triangulation... 30

Method Comparison.. 31

Chapter 8 Applications ... 35

A Face Capture and Processing Pipeline .. 35

Building an Active Appearance Model... 37

Active Appearance Models ... 37

Model Training ... 38

Fitting the model to a new face ... 39

Exploring the effect of data... 40

Chapter 9 Conclusions .. 42

References ... 44

vi

List of Figures

Figure 1: Scanner devices. .. 1

Figure 2: Two kinds of laser measuring. .. 7

Figure 3: Structured-light scanning. ... 8

Figure 4: Structured-light scanning setup, process and result. ... 9

Figure 5: Kinect sensor. .. 9

Figure 6: The data capture application.. 13

Figure 7: Inpainting methods. ... 16

Figure 8: Inpainting test images. ... 18

Figure 9: Segmentation Methods. ... 20

Figure 10: Registration of depth and RGB image. ... 22

Figure 11: Two scans of a face-shaped mask. .. 23

Figure 12: Distance map for raw scan. ... 25

Figure 13: Visual comparison of smoothing methods. ... 27

Figure 14: Distance maps for smoothing methods. .. 28

Figure 15: Example of generated polygons (facets) as a function of voxel size. 30

Figure 16: Ball pivoting in two dimensions. ... 30

Figure 17: Triangles generated by the Simple Organized algorithm. ... 31

Figure 18: Angle distribution for each triangulation method. .. 33

Figure 19: Triangulation methods. .. 33

Figure 20: Face capture and processing pipeline .. 35

Figure 21: RGB and depth averaging. .. 36

Figure 22: Inpainting and segmentation. .. 36

Figure 23: Conformal mapping. .. 38

Figure 24: Registration of two different face scans. ... 39

Figure 25: Average face. ... 39

Figure 26: Approximation of new faces. .. 40

Figure 27: Fitting error vs. Number of samples. ... 41

vii

List of Tables

Table 1: Kinect Technical Specifications. .. 10

Table 2: Description of fields saved by the data capture application. .. 14

Table 3: Inpainting tests error. .. 18

Table 4: Number of points and resolution for each scan. ... 24

Table 5: Error for a raw scan. ... 24

Table 6: Smoothing comparison results. ... 27

Table 7: Quality measures for triangles. ... 32

Table 8: Results for triangle quality measurement. .. 32

viii

Acknowledgments

I would like to thank my advisor, Dimitris Samaras, for his guidance throughout the

development of this thesis. Without his knowledge and support, this work would have been a

much more difficult task to accomplish. I would also like to thank the members of my

dissertation committee, Prof. Xianfeng David Gu and Prof. Tamara Berg for their support and

invaluable feedback.

Thanks to all my family members, those who are here in the US and those who are back

in Chile. It is good to have relatives around, and they certainly made things easier for me with

their good will and care.

I would also like to thank my girlfriend Elizabeth. Her patience and support were

fundamental to conclude this work. She also had an outstanding role in helping me find subjects

willing to participate in my experiments. Thank you!

Finally, I want to thank all professors in the Computer Vision group, and special thanks

to the graduate students in the Computer Vision Lab, always available to help. Good luck to all

of them with their work. You guys rock!

1

Chapter 1

Introduction

A 3D scanner is a device that analyzes a real world object and generates a point cloud

describing the surface of such object, possibly including color information as well. Applications

for 3D scanning are present in many fields, from architecture to topography, art preservation,

movies and video games, industrial inspection, object recognition, etc.

Unfortunately, most 3D scanners are large and expensive devices that require to be

installed in special facilities. For example, the Cyberware 3030 scanner, currently part of the 3D

Scanning Lab, uses a great amount of space and requires a special setup. Even the smaller

custom structured-light scanner present in the same laboratory is rather large and requires a

dedicated port for data transfer.

Figure 1: Scanner devices. Cyberware 3030 scanner (left); custom structured-light scanner (right)

 While the aforementioned devices offer very good scanning quality, they have some

drawbacks. For example, subjects must be taken to the lab for scanning. Also, because of their

2

size these scanners have a limited range of movement, reducing the number of possible scanning

targets. Also, relocation of the scanner is not an easy task.

Another issue is price. The Cyberware 3030 scanner is currently priced at $63,200
1
, with

additional expenses for setup and maintenance. Clearly these prices are out of reach for

individuals or even small institutions.

Ideally, for some applications we would want to have scanners that a) are less expensive

than current alternatives; b) are portable; c) can be easily replaced in case of failure at a

reasonable cost and d) can acquire 3D models whose quality is comparable to their more

expensive counterparts.

The goal of this thesis is to build an acquisition system that addresses these issues using

commercially available depth sensors.

 The Kinect sensor is the first of a set of commercial-grade depth sensors that appeared in

the market (others include for example the ASUS Xtion PRO and the eBox sensor). It is

currently priced at $149.99
2
. In this work we use this device as the cornerstone for an

inexpensive 3D acquisition system.

 However, while the use of Kinect solves the problems of pricing and portability, it comes

with its own set of challenges, such as lower resolution textures and noisy depth maps. In this

work we address such difficulties by testing and applying different methods to produce high

quality 3D models.

 The main contributions of this thesis are:

 Discussion and selection of techniques to filter and segment low resolution and noisy

depth data (Chapter 5).

 Quality assessment of point clouds acquired with Kinect with respect to clouds

acquired with higher resolution scanners, and techniques to reduce the acquisition

error (Chapter 6).

 Discussion and selection of triangulation techniques for the generation of 3D meshes

from the acquired data (Chapter 7).

1
 Information retrieved from http://www.cyberware.com/pricing/domesticPriceList.html

2
 http://www.microsoftstore.com/store/msstore/en_US/pd/Kinect-for-Xbox-360/productID.216507400

3

 An acquisition and processing pipeline for capture and generation of accurate 3D

models whose quality is comparable to those generated by expensive scanner devices.

The proposed system embodies the best methods and algorithms discussed and tested

in this work (Chapter 8).

 We also test the proposed capture pipeline in a real application. The application consists

of the construction of an active appearance model. For this we acquire and process human faces

using our system, we train the model and we test its accuracy in approximating new

observations.

 The rest of this thesis is structured as follows: Chapter 2 surveys previous and related

work in the context of 3D scanning using inexpensive commercially available hardware; Chapter

3 introduces concepts related to 3D scanning techniques and the Kinect sensor; Chapter 4

describes different frameworks and libraries available for Kinect, and our data capture

application; Chapter 5 discusses several restoration techniques for noisy depth maps; Chapter 6

compares point clouds from Kinect with higher resolution scanners and proposes smoothing

algorithms to reduce the acquisition error; Chapter 7 examines triangulation methods to generate

a mesh from a point cloud; Chapter 8 presents applications for our method; Finally, Chapter 9

concludes this thesis, summarizing the work presented in previous chapters and discussing some

directions for future research.

4

Chapter 2

Related Work

Several techniques have been developed over the years for 3D reconstruction. Important

to our study are techniques ranging from methods that employ a single image [1], [2]; methods

that work with stereo images [3], [4]; methods that use laser range finders [5] to methods that

make use of structured light patterns [6].

Methods that use structured light usually require a camera and a projector [6], [7].

Although these methods help to reduce the final price of the acquisition system, cameras and

projectors used are generally expensive, when compared to an integrated system that appeared

recently: Kinect.

Since its inception, Kinect became instantly popular due to its technical capabilities,

accessible price and all its possible applications in the computer vision field. Soon enough, work

utilizing this device begun to emerge, the majority of it related to pose detection [8], gesture

recognition for new interfaces [9] and human activity recognition [10].

With respect to 3D reconstruction, there are many works in the web that use Kinect to

generate point clouds and even mesh generation attempts, but surprisingly there are not many

publications that address this topic. Tong et al. [11] propose a system to perform full body

capture using an array of Kinects. However, this method requires careful arrangement of the

devices, and a special mounting platform, suffering from the same issue of space requirement as

specialized scanners. Another issue is the quality of the generated model: the distance at which

the sensors are located with respect to the subject (1 m) implies that the level of identifiable

features in the acquired model is very low, thus rendering this approach unsuitable for

applications requiring a higher level of identifiable details.

The work of Smisek and Padja [12] explores the Kinect hardware, geometric model and

calibration. A rig with a Kinect and two standard photo cameras is used to capture different

views and depth information from a single scene. Depth information is used then to enhance the

results of a stereo from motion approach. While this work utilizes depth map as a fundamental

5

input for the proposed method, there is no mention of the noisy nature of the depth map and

consequently no actions are taken regarding to that issue.

Cui et al. [13], [14] present a superresolution-based approach to perform shape

acquisition using time-of-flight cameras and a Kinect device. Registration of different point

clouds is performed using the ICP algorithm. Though their approach maintains the overall shape

and appearance of the scanned object, the reconstruction error in the obtained model is in the

order of centimeters when contrasted with a 3D laser scanner.

Some other works involve scene reconstruction using multiple views. In [15], the authors

present a point cloud alignment approach. They first capture and generate point clouds for

different views of the same scene. Then they compute SIFT descriptors for each scene and use

RANSAC to select the best matching feature points. Their approach does not consider any kind

of smoothing or triangulation after the matching step.

In the same line, one of the most recognized works by Newcombe et al. is KinectFusion

[16], a real-time interactive scene acquisition system using a single device. It can reconstruct

dynamic scenes by having the user move the camera around the room. A dense point cloud is

created by this movement, and the generated model is refined with every new captured frame.

This approach works well with static scenes where exposition time is not an issue, however, the

method fails in the presence of large displacements and/or occlusions. While this method

generates quality models by leveraging on the high density of points captured over time, scene

stability cannot be guaranteed for long periods of time when capturing targets that cannot be still

all the time. This is the case of human subjects, for example.

In the industrial field, Geomagic
3
, a 3D software provider, presented at CES 2012 a

system in early stages of development that “enables an instant 3D image of visitors at the event

to be automatically turned into a 3D model and printed out on a 3D printer during the [CES]

show.” While the accompanying video shows a 3D model being obtained using a Kinect device

and then printed using a 3D printer, the company did not mention any further details about the

specifics of how the model is generated or any post-processing algorithms employed.

3
 http://www.geomagic.com

6

Chapter 3

3D Scanning and Kinect

 Several techniques exist for the acquisition of the shape of a 3D object. Of such

techniques, we focus primarily on two of them: time-of-flight scanners and structured light

scanners. We do so because their principles and ideas are very important to understand the

fundamentals of the device that we are interested in: Kinect. In this chapter, we first explain the

basics of 3D data acquisition from the perspective of the aforementioned methods, to then shift

our attention to the Kinect sensor and its technical characteristics.

Time-of-flight Scanners

A time-of-flight scanner is a scanner that uses a light probe to measure distance [17]. The

main principle behind it is to measure the time it takes for a laser pulse to travel and return to the

sensor. Since the speed of light is a known constant, range (distance) can then be measured using

the following formula:

Where is the speed of light and is the time the light pulse traveled.

Another approach is to use a continuous beam of laser radiation of a known

wavelength . In this case, distance is measured by measuring the phase shift between the

emitted and reflected pulse:

 Where is the integer number of wavelengths, is the known wavelength of the pulse,

and

 is the fractional part of the wavelength phased by the phase angle .

Since both these approaches only detect one point at a time, a rotating mirror is used to

capture scenes. A typical commercial time-of-flight scanner can detect between 10,000 and

100,000 points per second.

7

Figure 2: Two kinds of laser measuring. a) pulse laser; b) continuous laser. Image from [17].

 Time-of-flight scanners require the subject to be still during the process, as any amount

of movement while a frame is captured will result in distortion from motion. This is due to the

fact that different points are captured during different time intervals. In consequence, this kind of

scanner is usually attached to a rigid surface, limiting its variety of applications.

 On the other hand, the range of these devices is really big (in the order of km); therefore

they are the obvious choice when it comes to scanning large static targets.

Structured-Light Scanners

Stereoscopic systems work by finding the relationship between two cameras having a

different view of the same image. An object point position can be calculated from these two

different views if the position of said object is known in both cameras. The problem of making

sure that a point in one view corresponds exactly to a point in the second view is known as the

correspondence problem.

The correspondence problem can be lessened by replacing the second camera by a

structured light source [18]. Structured-light scanners are a type of scanner that works by

projecting a predefined light pattern into the scene and acquiring that pattern back using a

camera. Distance is then computed by analyzing the distortion of the captured pattern against the

projected light pattern [6].

a) b)

8

Figure 3: Structured-light scanning. Π is the image plane, Π’ is the pattern projected onto the object. X is a point in

the object. Image from [19].

Following Figure 3, the range (distance) of a point from a camera can be expressed

by the triangulation principle [20] as:

Given the problem then is to determine the correspondence between the projected

pattern and the acquired image. Determination of such correspondences depends on the choice of

pattern. While a more complete list of pattern kinds can be found in [20] and [21], the most

relevant categories and some example patterns are:

 Sequential projections: Binary code, Gray code, phase shift

 Continuous varying pattern: Rainbow 3D Camera

 Stripe Indexing: Color coded stripes, segmented stripes

 Grid Indexing: Pseudo-random binary dots, color coded grid

Multi-shots methods such as sequential projections require multiple frames to compute

depth values, thus requiring objects in the scene to remain static. Single-shot methods, on the

other hand, can compute depth values using a single frame, at the expense of being less accurate

than multi-shots methods; however these methods usually work better in the presence of moving

targets.

The accuracy of structured-light scanners is determined by the size of the pattern and –at

a lesser level for most applications- by the wavelength of light. Range is short (usually not

α θ

R

B

9

greater than 10 meters) due to light dispersion and other phenomena that affect the amount of

light captured by the camera.

Figure 4: Structured-light scanning setup, process and result. Image from [22].

Microsoft Kinect Sensor

 The Microsoft Kinect sensor is the first general consumer-grade structured-light camera

to hit the market. It is a game-oriented device which incorporates an RGB camera, an infrared

camera and a microphone array.

The RGB camera is a 24-bit camera that supports multiple resolutions (320x240 pixels at

30 Hz, 640x480 pixels at 30 Hz and 1280x1024 pixels at 15 Hz). The infrared camera is an 11-

bit camera that supports resolutions of 640x480 pixels at 30 Hz and 1280x1024 pixels at 10 Hz.

Depth images however are limited to 320x240 or 640x480 pixels, both at 30 Hz. Frame rate at

higher resolutions is limited by the USB port bandwidth.

Figure 5: Kinect sensor. a) the device itself; b) RGB camera view; c) infrared camera view. The speckle pattern

can be seen in the image.

 Depth sensing is achieved by projecting an infrared speckle pattern using an infrared

emitter [23]. This is a patented single-shot grid-indexing method similar to pseudo-random

a) b) c)

10

binary dots. The use of infrared light avoids the issues produced by structured-light pattern

scanners that use light in the visible spectrum, allowing the device to capture RGB and depth

scenes at the same time. The projected pattern is captured by the infrared camera and depth is

calculated by the sensor’s firmware. All processing is done by the device.

Table 1 resumes the technical specifications of the device:

Sensor  Color and depth-sensing lenses

 Voice microphone array

 Tilt motor for sensor adjustment

Field of View  Horizontal field of view: 57 degrees

 Vertical field of view: 43 degrees

 Physical tilt range: ± 27 degrees

 Depth sensor range: 1.2m - 3.5m

Data Streams  320x240 11-bit IR @ 30 Hz

 640x480 11-bit IR @ 30 Hz

 1280x1024 11-bit IR @ 10 Hz

 320x240 16-bit depth @ 30 Hz

 640x480 16-bit depth @ 30 Hz

 320x240 24-bit color @ 30 Hz

 640x480 24-bit color @ 30 Hz

 1280x1024 24-bit color @ 15 Hz

 16-bit audio @ 16 kHz

Table 1: Kinect Technical Specifications.

11

Chapter 4

Building a Kinect 3D Acquisition System

Due to the complexity of the device at hand, it is a daunting task to try and build every

part of the system ourselves. Instead, we leverage basic functionality such as device access and

raw stream processing to third party libraries built specifically for that purpose, focusing our

attention on building higher level functionality into our applications. In this chapter we present

and discuss different framework alternatives in existence. We also introduce our data capture

application, which is one of the cornerstones of this work.

Kinect Framework Selection

The Microsoft Kinect sensor was initially developed for use with the XBOX 360

Console. However, shortly after the device was released different groups started working to

allow the device to be used on a computer. Time has passed since, and nowadays there are three

different main frameworks in existence.

OpenKinect
4
 is commonly signalled as the first attempt to bring Kinect support to the

PC/Mac. It is a community effort with no commercial support, and as such, the amount of

supported features is rather limited. Among the supported features are: access to depth and RGB

streams, and control of LED and motors. Also, there are unofficial patches to tweak different

device parameters, such as the auto-exposure time of the RGB camera. While OpenKinect lacks

of any higher-level tracking facilities present in other frameworks, it allows for low-level access

to the device, has a very small memory footprint and it is supported in multiple platforms.

OpenNI
5
 is the open-sourced version of PrimeSense's original sensor code. It does not

support Kinect natively, but there is an independently maintained driver for it. It supports low-

level access to depth, RGB and IR streams, and high-level features such as body recognition and

skeleton tracking. OpenNI is well supported by community members and also by an industry-led

4
 OpenKinect is available at http://www.openkinect.org

5
 OpenNI is available at http://www.openni.org

12

consortium of companies. OpenNI provides ports for all major computing platforms. It also

supports a variety of sensors besides Kinect, such as the Asus Xtion PRO.

Microsoft Kinect SDK for Windows
6
 is the official SDK released and supported by

Microsoft. Its first version was released several months after the other frameworks first appeared.

The goal of this framework is to support the creation of applications that make use of Kinect’s

body tracking and voice recognition capabilities. In this context, it offers access to the depth

stream, RGB stream and skeleton tracking but no access to the IR stream. Also, the first beta

version did not support registration between depth and RGB, situation that changed with the

release of version 1.0. This framework is only available on Windows.

All frameworks were evaluated before and while building the capture and processing

application. OpenKinect was deemed not suitable because it did not support any kind of tracking

facilities. While Kinect SDK supported body segmentation and skeleton tracking, at the time of

evaluation it did not provide registration between the depth camera and the RGB camera, thus

rendering this framework not suitable for our purposes. OpenNI was chosen because it supported

all of the required functionality needed to build our 3D acquisition application.

The Data Capture Application

General Description

 The data capture application evolved from a simple frame grabber to a 2.5D video

(RGB+Depth) recorder. The current version was built in C++ and kept as simple as possible to

allow for video capture at 30 fps on medium range hardware. For face capture, it can use

OpenNI's body tracking and automatically find and track the user's head position. For other

applications, the user can interactively select a region of interest.

6
 Kinect SDK is available at http://www.microsoft.com/en-us/kinectforwindows

13

Figure 6: The data capture application.

The application shows both RGB image and depth image in a distance-colored scale. It

can also access the Kinect motor to tilt the camera up or down as desired.

Capturing Data

Using the application is simple. Upon initialization, both the depth and RGB images are

shown. To perform data capture, the user can either use the head tracking feature or select a

region of interest by hand. Camera tilt can be adjusted as well if necessary using the buttons

located in the last row.

Once a region of interest has been selected by either method, the user can press the “Start

Saving” button to start capturing frames. Pressing this button again stops the recording process,

and the files are saved in the specified folder.

Data Format

The application saves data in a binary file, and also saves a JPEG file with the RGB

information for every frame captured. The kind of data saved and the format of the binary file are

shown in Table 2.

14

Field Name Size (bytes) Description

Width 4 Width (in pixels) of the region of interest in the

current frame.

Height 4 Height (in pixels) of the region of interest in the

current frame.

Top 4 Distance (in pixels) of the region of interest from

the top of the image.

Left 4 Distance (in pixels) of the region of interest from

the left of the image.

Horizontal Resolution 4 Horizontal resolution (in pixels) of the current

frame.

Vertical Resolution 4 Vertical resolution (in pixels) of the current

frame.

Projection Parameter

(X)

4 Convenience projection parameter. Its value

is
 .

Projection Parameter

(Y)

4 Convenience projection parameter. Its value

is
 .

XYDepth Point cloud values from depth

information in world coordinates.

RGB Image captured by the RGB camera.

Table 2: Description of fields saved by the data capture application.

15

Chapter 5

From Depth Maps to Point Clouds

Depth maps obtained from a Kinect device are noisy by nature, and contain holes in areas

where the sensor cannot reliably determine depth values. Also, captured scenes often contain

more than just the object or objects we are interested in.

In this chapter we examine techniques to enhance the quality of acquired depth maps. We

also consider segmentation methods to focus on objects of interest, to finally construct a point

cloud from the resulting depth map.

Hole-Filling for Depth Maps

Inpainting is a technique that attempts to recover lost or deteriorated parts of images and

videos. In the real world, its applications are usually linked to art restoration. In the digital world,

inpainting methods attempt to reconstruct damaged (noisy) parts of an image or to remove

unwanted objects [24].

 Borrowing from the Image Processing and Graphics community, we attempt to apply

inpainting techniques to fill holes in the depth map. The use of inpainting as a hole-filling

technique is not new, as can be seen in [25], [26]. In this work we tested two different inpainting

approaches.

Diffusion-based Inpainting

 This is the most common inpainting method. Several approaches such as [24], [27], [28]

implement some variation of this technique, whose core ideas are: Starting from an inpainting

mask (usually user-selected), the algorithm attempt to reconstruct the region by smoothly

propagating color information inwards from the region boundary following a certain

direction ⃗⃗ . That is:

 ⃗⃗⃗⃗ ⃗⃗

16

 Where ⃗⃗⃗⃗ is a measure of the change in the information in the image, and ⃗⃗ is the

direction of such change. A common smooth measure is the discrete Laplacian operator. The

direction ⃗⃗ is chosen so it propagates linear structures (isophotes in the literature). Given a

point , the discretized gradient vector gives the direction of the largest spatial change.

Rotated by 90°, it gives the smallest spatial change, which coincides with the direction of the

isophotes.

 Given , the neighborhood around a point , a first-order approximation of is

given by:

 For all . A point is filled as a function of all points and a

normalized weight function .

∑

∑

 Where the weight function is composed of a directional component that ensures

greater contribution from pixels closer to the propagation direction; a geometric distance

component that decreases contribution of pixels geometrically farther from ; and a level set

distance component that increases the contribution of pixels closer to the region contour Ω.

Figure 7: Inpainting methods. a) FMM Inpainting. The reconstruction process starts at the boundary , following

the normal inwards Ω. Image from [24]; b) Exemplar-based Inpainting. For a patch around pixel p, candidates are

selected and blank pixels are filled with pixels from the patch with the highest confidence. Image from [29].

a) b)

17

Exemplar-based Inpainting

Exemplar-based inpainting techniques generate new texture by sampling and copying

color values from the source image. The Exemplar-based inpainting algorithm in [29] is a patch-

based technique (contrary to diffusion-based techniques that are usually pixel-based techniques).

The algorithm maintains a color value per pixel (the actual pixel color or ‘empty’, if the pixel has

not been filled yet) and a confidence value per pixel. This confidence value becomes constant

once the pixel is filled.

The algorithm works by computing a priority queue of patches to be filled. This queue is

sorted to prefer patches that are the continuation of strong edges and are surrounded by high-

confidence pixels. Formally, priority is defined as:

Where is the confidence term and is the data term for a given pixel . The

confidence term is a measure of the amount of reliable information surrounding a pixel, biased

towards patches that have more of their pixels already filled and further preferring patches with

pixels filled early on. The data term is a function of the strength of isophotes around the region

boundary in each iteration of the algorithm. The idea is to prefer the filling of linear structures

first as in diffusion inpainting techniques.

Once a patch has been selected for filling, the whole image is searched for a similar patch

that minimizes the sum of squared distances with respect to the patch being filled. After choosing

an appropriate patch, pixels that lie inside the region Ω are filled with pixels from the selected

patch. This process is repeated until there are no more patches left to fill.

Method Comparison

We compared the methods of Fast Marching Method (FMM) Inpainting [28] and

Exemplar-based Inpainting [29] for the reconstruction of holes in depth maps
7
. For this, several

adjustments to the algorithms had to be made, especially regarding the treatment of depth map

information.

7
 An implementation of Criminisi’s method can be found at http://www.cc.gatech.edu/~sooraj/inpainting/. For

Telea’s method, an implementation is present in the OpenCV library.

http://www.cc.gatech.edu/~sooraj/inpainting/

18

 Depth maps have discrete values roughly between 0 and 10000, and can be represented as

16-bit grayscale images. Unfortunately, this mode is not standard, and the algorithms tested were

written to work with standard image modes (usually, 8-bit grayscale or 24-bit RGB). To

overcome this limitation, we modified the algorithms to work with depth information.

 The tests involved the reconstruction of hand-made holes in a depth map. Results are

compared against a hole-free ground-truth model using mean square error. Figure 8 and Table 3

show the tests and results.

Figure 8: Inpainting test images. a) simple thin lines, b) more complex and bigger holes and c) holes scattered all over

the image.

 MSE

 Base Error
Exemplar
Inpainting

FMM
Inpainting

Test 1 3221.067 0.005 0.014

Test 2 8809.714 1.429 1.235

Test 3 16195.130 0.251 0.219
Table 3: Inpainting tests error.

 From the tests can be seen that while exemplar-based inpainting shows less error in the

first test, it is surpassed by FMM inpainting in the following and more complex tests. This results

are probably due to the fact that exemplar-based inpainting works with image patches. While

patches can be a good solution for the reconstruction of color images, depth maps represent in

this case the shape of relatively smooth surfaces. The use of patches would then introduce

unwanted discontinuities, thus increasing the error. On the other hand, FMM inpainting ensures

a) b) c)

19

the smoothness of the reconstruction. For this reason this is the method we choose and use in the

rest of this work.

Depth Map Segmentation

 After reconstructing missing areas in the depth map, the next step is to segment and

extract the object(s) of interest from the scene. We made a qualitative assessment of three

different segmentation methods.

Average-based segmentation

This segmentation method will discard pixels farther away from the sensor than the mean

depth value of the selected area. This process works well with faces, where usually the face is

closer to the sensor than the rest of the body. However, this method does not take into account

the orientation of the face. Segmentation results are therefore distorted when the subject is not

facing the sensor.

k-Means Segmentation

 This algorithm attempts to find clusters within the depth map using the k-means

clustering method [30], with . Before clustering, the background is eliminated from the

scene by filtering depth values larger than a threshold defined as the mean depth plus one

standard deviation. Then, clustering is performed and the cluster whose centroid is closer to the

center of the region of interest (or the head position, if tracking is enabled) is selected as the head

cluster.

Grabcut Segmentation

 The Grabcut Segmentation method [31] is a semi-automatic segmentation algorithm that

requires minimal user interaction. This technique uses both region and boundary information

contained in an image in order to perform segmentation by “cutting the graph” following a least-

energy path. This energy is defined so that its minimum value corresponds to areas where a good

segmentation can be made.

 We apply this method by defining the subject as our region of interest and refining by

marking foreground and background regions as required. For our tests, we show only the first

20

iteration of the algorithm after the region of interest is defined, without marking any foreground

or background regions, but results improve considerably with more detailed user intervention.

Method Comparison

 We compared all three methods
8
 to segment faces under three different pose situations:

facing the sensor, looking to the right and looking up. Our qualitative results in Figure 9 show

that different methods work better for certain situations than others. For example, all methods

work acceptably well when the subject is facing the sensor, but the results are mixed for when

the subject is looking up. Since there is no method that outperforms the rest by an ample margin,

we perform segmentation method selection on a case by case basis after analyzing the specific

requirements for every application.

Figure 9: Segmentation Methods. In each row, a) original image; b) Average segmentation; c) k-means segmentation;

d) grabcut segmentation

8
For comparison, we used the implementation of k-means clustering present in the Point Cloud library, and the

implementation of the Grabcut algorithm present in the OpenCV library.

a) d) b) c)

21

Point Cloud Generation

 The final step after performing hole-filling and segmentation is to generate a point cloud

from the depth map.

Depth and RGB Registration

 Cameras that register depth and RGB images are at a certain distance from each other;

hence they capture slightly different views of the same scene. Registration of depth and RGB

cameras is necessary if we want to extract color information for each point in the depth map.

Registration of the depth and RGB cameras and projection of depth points into the RGB image

plane is achieved as follows:

 Calculate , the relative rotation between the cameras and , the relative

translation between the cameras.

 Back-project depth image points into the IR camera’s coordinate system, apply

transformation to the RGB camera’s coordinate system, and finally project the point onto

the RGB camera image.

In practice this procedure is implemented by the underlying framework using pre-

calculated shift tables where the position of a depth pixel in the RGB image space is indexed

according to its position and depth value.

The calibration values used by each framework that provides registration are usually

adequate. In [32] a joint stereo calibration approach is presented and registration is compared to

that provided by OpenNI. Their results show that the calibration values used by that framework

are accurate, as their re-projection error was similar.

22

Figure 10: Registration of depth and RGB image.

From the Image Plane to Sensor Coordinates

 The final step involves the transformation of a point where is the

position of the point in the image plane, is the depth of the point and is the color of the point.

The transformation is given by:

 Where are the intrinsic camera parameters. The point is also assigned the

color value . This process is repeated for every valid point in the registered depth map.

23

Chapter 6

Point Cloud Smoothing

 Kinect uses a speckle light pattern to capture depth, which is calculated based on the

position and intensity of the reflected infrared light. Because of this, depth measurements are less

accurate in areas with poor reflection or where diffraction occurs, such as zones perpendicular to

the sensor or around the edges of objects [33].

Given the relative low resolution of the sensor, noisy measurements have a big impact in

the overall quality of the generated model. In this chapter, we explore how Kinect compares

against a higher resolution 3D scanner. We also examine smoothing methods that aim to reduce

the noise in the acquired point cloud, using the aforementioned high-resolution point cloud as a

ground truth for our tests.

Kinect vs. Scanner

 To test the accuracy of Kinect we captured scans of a face-shaped mask with a custom

structured-light scanner. This scanner uses a phase-shift pattern to acquire images, and has a

resolution of 640x480 pixels. Specific details about this device can be found in [7]. We also

captured and generated a point cloud of the same mask using Kinect, with no further post-

processing.

Figure 11: Two scans of a face-shaped mask. a) acquired with a high resolution scanner; b) acquired with Kinect.

a) b)

24

 Figure 11 shows two scans of the face-shaped mask. It can be seen clearly that there is a

difference in resolution between the two scans. Table 4 shows statistics for each device.

Device Points Resolution

M.C.L. Scanner 78159 ~0.2 mm

Kinect 15472 ~1 mm

Table 4: Number of points and resolution for each scan.

 If we assume the higher resolution scan as a ground truth, we are interested then in the

accuracy error that a raw Kinect scan has with respect to the established baseline. For this, we

first align the scans using the ICP algorithm. Then for each point in the smallest cloud, we obtain

the distance to its nearest neighbor. With these distances, we can compute the error in terms of

the mean squared distance and Norm, as Table 5 shows.

MSE (Distance) 6.70382

Average 1.47027

Std. Dev. 2.1313

 Norm 24.0844

Table 5: Error for a raw scan.

Figure 12 shows a distance map for the Kinect scan. As can be seen, the greatest

differences are around the nose area of the mask, the corner of the eyes and some spurious

outliers around the borders.

25

Figure 12: Distance map for raw scan.

Point Cloud Smoothing Methods

 We consider two smoothing techniques: Laplacian smoothing and Windowed Sinc

smoothing.

Laplacian Smoothing

 A common diffusion smoothing method is Laplacian smoothing. This method

incrementally moves points in the cloud in the direction of the Laplacian. The Laplacian operator

can be linearly approximated at each vertex by the umbrella operator [34]:

 ∑

Where is the 1-ring neighborhood of the vertex , and is the weight of the edge

 corresponding to the vertex , with ∑ .

In our tests, the weighting scheme | |⁄ was used, and three iterations of the

algorithm were performed.

26

Windowed Sinc Smoothing

 Taubin proposes the use of a traditional signal processing approach to perform point

cloud smoothing [35]. This technique adjusts the position of each point using a windowed sinc

interpolation kernel.

 The main idea here is to use a low-pass filter to relax the mesh. In traditional filter

design, the ideal low-pass filter transfer function is approximated using a trigonometric

polynomial approximation by truncating its Fourier series.

 A sinc window is used because it reduces the Gibbs overshooting effect produced by

directly truncating the Fourier series. The filter used then becomes:

 (

 ⁄) ∑

 ⁄

Where are the window coefficients. The tested implementation uses a Hamming

window.

To further improve the algorithm, the shrinkage effect is reduced by first performing a

topological and geometric analysis of the cloud, and selecting feature edges. A feature edge

occurs when the angle between the two surface normals of a polygon sharing an edge is greater

than a certain angle α. In our tests, . Vertices are then classified as simple (no feature

edges attached to it), interior (exactly two feature edges attached to it) or fixed.

Once the classification is known, the vertices are smoothed differently. Fixed vertices are

not smoothed at all. Simple vertices are smoothed normally. Interior vertices are smoothed only

along their two connected edges, and only if the angle between the edges is less than a certain

angle β. In our tests,

Method Comparison

 We compared
9
 the two aforementioned smoothing methods against the ground-truth

higher resolution scan of a face mask previously taken with the Motion Capture Lab scanner.

 As we did at the beginning of this chapter for the raw Kinect scan, we measured the mean

squared error and Norm in point correspondences for each smoothed point cloud.

9
 We used the implementation of the Windowed Sinc filter present in the VTK library.

27

Smoothing Method

None Laplacian Windowed Sinc

MSE (Distance) 6.70382 7.9046 6.10081

 Norm (Distances) 24.0844 33.1252 24.0844

Table 6: Smoothing comparison results.

 As can be extracted from the results in Table 6 and seen in Figure 13, windowed sinc

smoothing presents the best visual response while maintaining the most prominent features of the

face mask. This method reduces the overall mean squared error and also prevents shrinkage, a

known effect when using Laplacian smoothing (and the most likely cause of the error increase

using this method).

Another interesting result is that while the overall error is reduced by windowed sinc, we

observe that the distance remains the same. This is due to the vertex classification part of the

algorithm, where border vertices are not smoothed to reduce the shrinking effect previously

mentioned.

Figure 13: Visual comparison of smoothing methods. a) high-resolution scan; b) low-resolution Kinect scan, no

smoothing; c) low-resolution scan, Laplacian smoothing; d) low-resolution scan, Windowed Sinc smoothing.

a) d) b) c)

28

 The distance map in Figure 14 shows how both smoothing methods work. While in the

case of Laplacian smoothing the error is actually increased around the borders by the shrinking

effect, windowed sinc avoids this problem. Also, by maintaining features, windowed sinc

isolates and reduces zones with high error. In the rest of this work, we use windowed sinc

smoothing.

Figure 14: Distance maps for smoothing methods. a) Laplacian smoothing; b) windowed sinc smoothing

a) b)

29

Chapter 7

From Point Clouds to 3D Models

After the acquisition and processing of a point cloud, the final step required to obtain a

3D structure is to generate a triangulation from this cloud. The final reconstruction step is to

generate a triangle mesh from our point cloud.

Triangulation of a point set is an important problem with applications that go beyond

graphics. The quality of the generated mesh is important as well. For example, applications such

as finite element simulation in CAD/CAM require triangular meshes of bounded aspect ratio to

avoid ill-conditioning and discretization errors [36]. Several different triangulation methods have

been proposed in the past as surveyed in [37], but none of them can guarantee quality

triangulations for any given point set. In this chapter we present, discuss and compare three

different triangulation techniques.

Mesh Generation

 For this work we considered three triangulation algorithms, two popular methods and a

proposed simple triangulation method for organized point clouds.

Marching Cubes with Algebraic Point Set Surfaces

The Marching Cubes Algorithm [38] is a well-known algorithm for surface

reconstruction, which solves the reconstruction problem by forming a facet approximation to an

isosurface through a scalar field sampled on a rectangular 3D voxel [39]. In the tested

implementation, the surface is approximated at each voxel by using a moving least squares

spherical fit to the point cloud data in the context of the APSS framework presented in [40], [41].

Then, the voxel intersection points are calculated and triangles are generated from the

approximated surface. Quality and number of triangles are determined by the chosen voxel size.

30

Figure 15: Example of generated polygons (facets) as a function of voxel size. Image by Paul Bourke.

Ball Pivoting Algorithm

 The Ball Pivoting Algorithm [42] generates a triangle mesh from a point cloud. Given the

point cloud and the estimated normal at each point, the algorithm begins finding a seed triangle

such that a ball of radius touches its vertices and no other point lies inside this ball. The

algorithm then adds points by rotating the ball around a pivot point and connecting those points

touched by the ball. Triangles are generated when three points become connected. While the

algorithm has no problem connecting points whose distance is smaller than , for points farther

than the algorithm will generate holes. This issue can be solved by applying multiple passes of

the algorithm increasing the ball radius after each pass, but our experiments showed that this

require extreme fine tuning to avoid creating artifacts. Quality in this case is determined by the

ball radius .

Figure 16: Ball pivoting in two dimensions. Points are connected by pivoting a ball around nearby points. The second

image shows how a small ball radius creates holes in the reconstructed surface. The last image shows how a large ball

radius will lead to artifacts in the reconstructed mesh. Image from [42].

Simple Organized Point Cloud Triangulation

 The proposed triangulation method takes advantage of the fact that point clouds captured

from a Kinect device are organized as a two-dimensional array of points. Because the

31

perspective projection transformation to obtain world-space coordinates for each point in the

depth map is homographic, resulting coordinates for any point preserve the spatial

relation to its neighbors with respect to the original depth map.

This algorithm generates triangles considering only the closest neighbors of a point as

follows: for each valid point , its neighborhood is considered.

From this neighborhood, two triangle configurations are possible. We define pivot points

 if points are valid points. This configuration generates

triangles and if and only if all the points in , are

valid. If points are not valid then a second possible configuration

 is tried. This configuration generates triangles and

 if the points are valid. A valid point is a point whose coordinate is

defined. If no pivot configuration is valid, no triangles are generated.

Figure 17: Triangles generated by the Simple Organized algorithm. After three iterations: a) initial point cloud; b) two

triangles generated using the first pivot rule; c) one triangle generated using the first pivot rule; d) a triangle generated

using the second pivot rule.

Method Comparison

 We compared
10

 the three previously exposed triangulation techniques measuring the

quality of the generated triangles. For applications that involve numerical methods, the error

bound is kept low if the triangles are as close as equilateral triangles [43]. Thus, it makes sense to

measure triangle quality with respect to the properties of the equilateral triangle. It is also

desirable that the generated triangle meshes are a visually plausible representation of the scanned

10
 We used the implementation of Marching Cubes and Ball Pivoting present in MeshLab.

a) d) b) c)

32

surface. For this, we expect the triangulation to be smooth with respect to the surface and that it

contains no holes in the viewing direction of the sensor.

 Several triangle quality measures have been developed over the past years as surveyed in

[44]. For this work we selected measures that include different properties of a triangle such as

the inner angles, side length, inradius and circumradius. We also measured angle distribution in

the generated mesh. Table 7 shows the selected measures. All mea sures are normalized with

respect to the ideal values of an equilateral triangle. This means that values closer to 1 are better.

Measure Description

 is the smallest angle of a triangle.

 are the length of the shortest and longest edge of a

triangle, respectively.

 √

 are the edges of a triangle; is the area of the

triangle.

 is the circumradius of a triangle; is the inradius.

 √

 is the inradius of a triangle; is the longest edge.

Table 7: Quality measures for triangles.

 Table 8 shows the results for each method. Figure 18 shows the distribution of angles in

the generated triangles for each method.

Quality
Measure

Triangulation Methods

Marching Cube APSS Ball Pivoting Simple Organized

 0.491 0.491 0.648 0.163 0.591 0.193

 0.497 0.497 0.642 0.128 0.589 0.169

 0.651 0.651 0.815 0.150 0.760 0.182

 0.620 0.620 0.779 0.181 0.723 0.199

 0.278 0.278 0.347 0.074 0.322 0.085
Table 8: Results for triangle quality measurement.

33

Figure 18: Angle distribution for each triangulation method.

Figure 19: Triangulation methods. a) Marching Cube (APSS); b) Ball Pivoting; c) Simple Organized. Top row: full

view of a generated mesh. Bottom row: a close-up of the nose zone.

 According to our triangle quality measurement, the method that generates the best

triangles is the Ball Pivoting Algorithm. However, in terms of visual quality, both Marching

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%

Angle Distribution

Organized MC APSS Ball Pivoting

a) b) c)

34

Cubes and Ball Pivoting generate meshes with holes in them. This can be seen in Figure 19. On

the other hand, our Simple Organized Point Cloud method generates a good mesh with no holes.

While holes can be closed using mesh editing software, our method requires no user intervention

or supervision.

Our method also generates triangles with quality similar to Ball Pivoting. Similarly as

Figure 18 shows, there is a similar distribution of angles in both Ball Pivoting and Simple

Organized Point. We decided to use our method because it generates good quality and hole-free

meshes automatically.

35

Chapter 8

Applications

After reviewing, discussing, testing and selected methods and algorithms for 3D

scanning, the next logic step is to show the effectiveness of those techniques in an application. In

this chapter we introduce a face capture and processing pipeline which utilizes all of the

techniques discussed so far in this work. We then use this processing pipeline to acquire a dataset

of human faces. We finally generate an active appearance model from this dataset and test its

generalization capability to approximate new observations.

A Face Capture and Processing Pipeline

 Our proposed pipeline is composed of sequential instances of the methods and algorithms

presented so far in this work, along with new techniques devised to help enhance the quality of

static sequences. Figure 20 shows a diagram of the proposed system.

Acquisition
(Chapter 4)

Frame
Averaging

Depth Map
Inpainting

(Chapter 5)

Depth Map
Segmentation

(Chapter 5)

Point Cloud
Generation
(Chapter 5)

Outlier
Removal

Point Cloud
Smoothing
(Chapter 6)

Mesh
Generation
(Chapter 7)

Figure 20: Face capture and processing pipeline

 The first step in our processing pipeline is to acquire color and depth information of the

face from a static subject. For this, we use the application presented in Chapter 4 to acquire a

short video sequence.

 After the sequence has been acquired, we average the color image and depth map where

it contains valid values. With this we attempt to extract the greatest amount of information from

the depth map, exploiting the fact that we are working with static sequences.

36

Figure 21: RGB and depth averaging. a), b), c) individual noisy frames from a sequence. Black pixels indicate values

where depth values are invalid; d) reconstructed frame from a sequence.

 On average, every individual frame of our sample sequence contains 50733 valid pixels,

while the reconstructed frame contains 53252 valid points. This represents a 5% increment in the

number of available pixels. Given the low resolution and limitations of the Kinect sensor this

increase in the amount of usable data is significant.

 Once we have the recovered depth map, we apply the FMM inpainting technique

described in Chapter 5. We then perform semi-automatic segmentation by means of the Grabcut

segmentation algorithm also portrayed in Chapter 5.

Figure 22: Inpainting and segmentation. a) RGB and depth images after inpainting and before segmentation;

b) RGB and depth images after Grabcut segmentation.

 After segmentation, we construct a point cloud employing the method presented in

Chapter 5. Before generating a mesh, we apply a statistical outlier removal filter. This filter

calculates for each point the average distance and standard deviation using the first 500 nearest-

a)

a)

d)

b)

b) c)

37

neighbors. It then deletes points that are farther away than three times the standard deviation

from its closest neighbor.

 Finally, we apply the windowed sinc smoothing method depicted in Chapter 6, and we

obtain our final model by generating a mesh applying the simple organized triangulation

algorithm illustrated in Chapter 7.

Building an Active Appearance Model

Active Appearance Models

 The concept of an Active Appearance Model (AAM) was first proposed in [45]. Active

Appearance Model are non-linear, generative and parametric models of a certain visual

phenomenon [46]. While there are several classes of AAMs, in this work we focus on

Independent AAMs.

 An Independent AAM models the shape and appearance of a class of objects

independently from each other. We represent shape of a face with a vector

 as the concatenation of the coordinates

of all vertices. We also represent appearance with a texture

vector , the concatenation of the color

information for all vertices. For a model containing faces, we can then express a new face as

a linear combination of these faces as in [47]:

 ∑

 ∑

 With ∑ ∑ . In practice, data compression and dimensionality reduction is

achieved by performing Principal Component Analysis (PCA) [48] on the training data set. We

can then express our model in terms of the average face and the eigenvectors of the covariance

matrix:

 ̅

38

 ̅

Model Training

 Our data set consists of 35 face scans of Caucasian females acquired using our face

acquisition pipeline.

 Before training can be performed, we have to bring the faces into correspondence. For

this, we first correct all faces for rotation and translation using the ICP algorithm.

To perform registration, we select an arbitrary face as a temporary reference and register

every other sample against this face. Since every scan has a rather different configuration

(different number of points, different boundaries, etc.) it is difficult to perform non-rigid

registration in . All of our samples are genus zero surfaces, therefore we can perform surface

uniformization by computing a conformal map [49], [50] from the surface to the unit

disk. We then center this map on the tip of the nose and correct for rotation by applying Mobius

transformations.

Figure 23: Conformal mapping. a) original face; b) conformal map to the unit disk. Irregular boundaries in a) become

regular in b).

,

Once we have conformal maps for every face, we find shape and appearance

correspondences as follows: given a chosen reference face , for every new face shape

correspondences are found by performing a nearest neighbor search for every point in

 .

Appearance is computed with respect to the reference face by first calculating a

Delaunay triangulation for . Then we calculate barycentric coordinates for every

a) b)

39

corresponding point from with respect to this triangulation. We can finally compute the

interpolated color with respect to the color of the vertices of the surrounding triangle

as:

Figure 24: Registration of two different face scans. a) points mapped to the unit disk; b) nearest-neighbor selection of

correspondent points; c) Delaunay triangulation for color interpolation.

The final step is to compute the mean shape and mean appearance ̅ ̅ and to apply PCA

to our shape and appearance sample matrices to obtain the covariance eigenvectors . With

a complete model, we can compute the average face as shown in Figure 25.

Figure 25: Average face.

Fitting the model to a new face

 To fit a new captured face, first we follow the same process as we did for our training

data. Then, to generate an approximate representation of the new face using our model, we find

the minimum error between the new and the generated face in terms of shape and appearance:

 | |

a) b) c)

40

 | |

 Where are the shape and appearance errors respectively. We define our error

metric as the sum of squared distances. We find the parameters that minimize the quantities:

‖ ‖

‖ ‖

 We performed leave-one-out cross-validation to test how well our model generalizes to

fit new data. Figure 26 shows cases of successful fitting and a failure case. It is worth noting how

the model can generalize for different skin colors and illumination variation, as can be seen from

the first two images of Figure 26.

Figure 26: Approximation of new faces. a) and b) show good approximations; c) a failure case.

Left: original scan. Right: Fitted model.

Exploring the effect of data

 We tested the effects of the number of samples on the overall fitting error. For this, we

trained our model several times, each time modifying the number of available samples. We then

computed the mean fitting error by performing leave-one-out cross-validation for the number of

available samples. The following graph shows the normalized fitting error versus the number of

samples in the model.

a) b) c)

41

Figure 27: Fitting error vs. Number of samples.

 It can be observed that the error decreases as the number of samples increases, as

expected; however, the number of samples available is enough to make this error converge. This

means that there is still room for great improvement for this model adding a relatively small

number of new samples.

0

100000

200000

300000

400000

500000

600000

700000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Er
ro

r

 Number of samples

Cross-validation Mean Shape Error

0

200

400

600

800

1000

1200

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Er
ro

r

Number of Samples

Cross-validation Mean Appearance
Error

42

Chapter 9

Conclusions

 In this thesis we explored the possibilities of acquiring 3D models with Kinect. We

proposed and developed a system to acquire image and depth information. After exploring the

characteristics of the Kinect sensor, we examined the challenges associated with it.

 The core of this work was devoted to deal with such challenges. We proposed the use of

image inpainting techniques to fill holes in depth maps. After testing different methods, we

selected the fast-marching method inpainting technique. We also tested different depth map

segmentation methods.

 For point cloud smoothing, after testing different algorithms we selected windowed sinc

smoothing. Finally, we proposed a triangulation method for organized point clouds and tested it

against established triangulation methods, showing its superiority for our needs.

 We compared the accuracy of generated scans against a higher resolution scanner device.

While the resolution of Kinect is low, our results showed that it is enough to observe fine detail

in most applications. Quality-wise, it is on par with higher resolution devices.

For this work we developed tools for data capture and processing. We organized such

tools in a processing pipeline that makes use of all the tools and techniques discussed throughout

this work.

As a way to test the effectiveness of our methods, we captured a dataset of human faces

and created an active appearance model of such faces. We showed that the scanning resolution

achieved by our system is enough to capture distinctive detail in faces.

There are different areas where improvement can be made in future research. For

example in the case of scanning static objects, the acquisition system could be augmented by

allowing the device to be moved around the target, a technique already in use in other systems.

This would increase the amount of available points. If this were the case, our triangulation

method would need to be revised to deal with unorganized clouds.

To improve scanning, multiple Kinects could be used. This can be useful in the presence

of occlusions, moving targets, or small targets where a single device is insufficient to acquire

43

enough detail. The use of multiple devices involves a calibration step that would go against the

goal of portability, but can left as an option.

With respect to our active appearance model, better conformal registration could be

achieved by the use of constrained Mobius transformations. For this, landmarks need to be

specified on each face. This can be realized either manually or automatically using one of the

many techniques in existence.

New depth sensors are appearing in the market. For now, the technical characteristics of

those sensors are expected to be similar to Kinect. However, we expect to see higher resolution

sensors to hit the market in the near future. The presented scanning system can benefit almost

immediately of the availability of such sensors.

44

References

[1] D. Hoiem, A. A. Efros, and M. Hebert, “Automatic photo pop-up,” ACM Transactions on

Graphics, vol. 24, no. 3, p. 577, 2005.

[2] M. Wilczkowiak, E. Boyer, and P. Sturm, “Camera calibration and 3D reconstruction

from single images using parallelepipeds,” Proceedings Eighth IEEE International

Conference on Computer Vision ICCV 2001, vol. 1, no. C, pp. 142-148, 1999.

[3] A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo

pairs,” Machine Vision and Applications, vol. 12, no. 1, pp. 16-22, 2000.

[4] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A Comparison and

Evaluation of Multi-View Stereo Reconstruction Algorithms,” 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Volume 1 CVPR06, vol.

1, no. c, pp. 519-528, 2001.

[5] P. Axelsson, “Processing of laser scanner data—algorithms and applications,” ISPRS

Journal of Photogrammetry and Remote Sensing, vol. 54, no. 2–3, pp. 138-147, 1999.

[6] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,”

pp. 195-202, Jun. 2003.

[7] Y. Wang et al., “High Resolution Acquisition, Learning and Transfer of Dynamic 3-D

Facial Expressions,” Computer Graphics Forum, vol. 23, no. 3, pp. 677-686, Sep. 2004.

[8] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion capture using a

single time-of-flight camera,” IEEE CONFERENCE ON COMPUTER VISION AND

PATTERN RECOGNITION (CVPR), 2010.

[9] L. Gallo, A. P. Placitelli, M. Ciampi, and V. P. Castellino, “Controller-free exploration of

medical image data: Experiencing the Kinect,” Performance Computing, pp. 1-6, 2011.

[10] A. S. Jaeyong Sung, Colin Ponce, Bart Selman, “Unstructured Human Activity Detection

from RGBD Images,” International Conference on Robotics and Automation (ICRA),

2012.

[11] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3D Full Human Bodies Using

Kinects,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 4, pp.

643-650, Apr. 2012.

[12] J. Smisek, M. Jancosek, and T. Pajdla, 3D with Kinect. IEEE, 2011, pp. 1154-1160.

45

[13] Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-

of-flight camera,” in 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2010, pp. 1173-1180.

[14] Y. Cui and D. Stricker, “3D shape scanning with a Kinect,” in ACM SIGGRAPH 2011

Posters on - SIGGRAPH ’11, 2011, p. 1.

[15] P. Joubert and W. Brink, “Scene Reconstruction from Uncontrolled Motion using a Low

Cost 3D Sensor,” in Proceedings of the Twenty-Second Annual Symposium of the Pattern

Recognition Association of South Africa, 2011, pp. 13-18.

[16] R. A. Newcombe et al., KinectFusion: Real-time dense surface mapping and tracking, vol.

7, no. 10. IEEE, 2011, pp. 127-136.

[17] J. Shan and C. K. Toth, Topographic Laser Ranging and Scanning: Principles and

Processing. CRC Press, 2009, pp. 3-10.

[18] J. Batlle, J. Batlle, E. Mouaddib, and J. Salvi, “Recent progress in coded structured light

as a technique to solve the correspondence problem: a survey,” NCE PROBLEM: A

SURVEY, PATTERN RECOGNITION, vol. 31, no. 7. pp. 963 - 982, 1998.

[19] Z. Liu and Z. Zhang, Face Geometry and Appearance Modeling: Concepts and

Applications. Cambridge University Press, 2011, pp. 45-47.

[20] J. Geng, “Structured-light 3D surface imaging: a tutorial,” Advances in Optics and

Photonics, vol. 3, no. 2, p. 128, 2011.

[21] J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light

systems,” Pattern Recognition, vol. 37, no. 4, pp. 827-849, Apr. 2004.

[22] D. Lanman and G. Taubin, “Build your own 3D scanner,” in ACM SIGGRAPH ASIA 2009

Courses on - SIGGRAPH ASIA ’09, 2009, pp. 1-94.

[23] A. Shpunt and Z. Zeev, “Three-dimensional sensing using speckle patterns,” U.S. Patent

US 2009/0096783 A12007.

[24] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” Proceedings

of the 27th annual conference on Computer graphics and interactive techniques

SIGGRAPH 00, vol. 35, no. 4, pp. 417-424, 2000.

[25] S. Salamanca, P. Merch, A. Adan, C. Cerrada, and E. Pérez, “Filling Holes in 3D Meshes

using Image Restoration Algorithms,” in International Symposium on 3D Data Processing

Visualization and Transmission, 2008.

46

[26] K.-jung Oh, S. Yea, and Y.-sung Ho, “Hole-Filling Method Using Depth Based In-

Painting For View Synthesis in Free Viewpoint Television (FTV) and 3D Video,”

Proceedings Picture Coding Symposium PCS Chicago USA, pp. 1-4, 2009.

[27] M. Bertalmio, M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-Stokes, fluid

dynamics, and image and video inpainting,” PROC. IEEE COMPUTER VISION AND

PATTERN RECOGNITION (CVPR), vol. 1, pp. 355 - 362, 2001.

[28] A. Telea, “An image inpainting technique based on the fast marching method,” Journal of

Graphics Tools, vol. 9, no. 1, pp. 23 - 34, 2004.

[29] A. Criminisi, P. Perez, and K. Toyama, “Region Filling and Object Removal by

Exemplar-Based Image Inpainting,” IEEE Transactions on Image Processing, vol. 13, no.

9, pp. 1200-1212, Sep. 2004.

[30] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006, pp. 423-430.

[31] C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: interactive foreground extraction

using iterated graph cuts,” Computer, vol. 23, no. 3, pp. 309–314, 2004.

[32] D. H. C, J. Kannala, and J. Heikkil, “Accurate and Practical Calibration of a Depth and

Color Camera Pair,” CAIP, vol. LNCS 6855, pp. 437-445, 2011.

[33] G. Borenstein, Making Things See: 3D Vision with Kinect, Processing, Arduino, and

MakerBot (Google eBook). O’Reilly Media, Inc., 2012, pp. 52-55.

[34] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive multi-resolution

modeling on arbitrary meshes,” Proceedings of the 25th annual conference on Computer

graphics and interactive techniques SIGGRAPH 98, vol. 98, no. Annual Conference

Series, pp. 105-114, 1998.

[35] G. Taubin, “A signal processing approach to fair surface design,” in Proceedings of the

22nd annual conference on Computer graphics and interactive techniques -

SIGGRAPH ’95, 1995, pp. 351-358.

[36] T. K. Dey, C. L. Bajaj, and K. Sugihara, “On good triangulations in three dimensions,”

Proceedings of the first ACM symposium on Solid modeling foundations and CADCAM

applications SMA 91. ACM Press, pp. 431-441, 1991.

[37] S. J. Owen, “A Survey of Unstructured Mesh Generation Technology,” 7th International

Meshing Roundtable, vol. 3, no. 6, p. 25, 1998.

[38] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface

construction algorithm,” Computer, vol. 21, no. 4, pp. 163-169, 1987.

47

[39] P. Bourke, “Polygonising a scalar field.” [Online]. Available:

http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise.

[40] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Transactions on

Graphics, vol. 26, no. 3, p. 23, Jul. 2007.

[41] G. Guennebaud, M. Germann, and M. Gross, “Dynamic Sampling and Rendering of

Algebraic Point Set Surfaces,” Computer Graphics Forum, vol. 27, no. 2, pp. 653-662,

Apr. 2008.

[42] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, and S. Member, “The

Ball-Pivoting Algorithm for Surface Reconstruction,” IEEE TRANSACTIONS ON

VISUALIZATION AND COMPUTER GRAPHICS, vol. 5, pp. 349 - 359, 1999.

[43] T. K. Dey, “Good triangulations in the plane,” in Proc 2nd Canad Conf Comput Geom,

1990, pp. 102-106.

[44] J. Sarrate, J. Palau, and A. Huerta, “Numerical representation of the quality measures of

triangles and triangular meshes,” Communications in Numerical Methods in Engineering,

vol. 19, no. 7, pp. 551-561, Apr. 2003.

[45] G. J. Edwards, C. J. Taylor, and T. F. Cootes, “Interpreting face images using active

appearance models,” Proceedings Third IEEE International Conference on Automatic

Face and Gesture Recognition, pp. 300-305, 1998.

[46] I. Matthews and S. Baker, “Active Appearance Models Revisited,” International Journal

of Computer Vision, vol. 60, no. 2, pp. 135-164, Nov. 2004.

[47] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D faces,” in

Proceedings of the 26th annual conference on Computer graphics and interactive

techniques - SIGGRAPH ’99, 1999, pp. 187-194.

[48] J. Shlens, “A Tutorial on Principal Component Analysis,” Measurement, vol. 51, no.

10003, p. 52, 2005.

[49] X. Gu and S.-T. Yau, “Computing conformal structures of surfaces,” Communications in

Information and Systems, vol. 2, no. 2, pp. 121-145, 2002.

[50] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau, “Genus zero surface

conformal mapping and its application to brain surface mapping.,” IEEE Transactions on

Medical Imaging, vol. 23, no. 8, pp. 949-958, 2003.

