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Abstract of the Dissertation

Traffic Driven Analysis of Cellular and WiFi Networks

by

Utpal Kumar Paul

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

Since the days Internet traffic proliferated, measurement, monitoring and anal-

ysis of network traffic have been critical to not only the basic understanding of

large networks, but also to seek improvements in resource management, traffic

engineering and security. At the current times traffic in wireless local and

wide area networks are facing similar upsurge. This calls for a similar vigor in

traffic analysis studies. This thesis focuses on several traffic analysis studies in

both cellular data networks and WiFi LANs. The broad goal is (i) to improve

the understanding of the traffic dynamics, to explore structures in the traf-

fic to help cost-effective monitoring and building of new traffic management

strategies — in the context of cellular networks, and (ii) understanding the

interference properties and detecting misbehavior — in the context of WiFi

networks.

We first use a large-scale data set collected inside a nationwide 3G cellular

data network and conduct a detailed measurement analysis of network resource

usage and subscriber behavior. We characterize subscriber mobility and tem-

poral activity patterns and identify their relation to traffic volume. We also

investigate how efficiently radio resources are used by different subscribers as

well as by different applications. Our analysis using different statistical tech-

niques shows existence of significant spatial correlation in radio resource usage

in the base stations. We also use the concept of Granger Causality to un-

derstand the underlying functional connectivity and flow of influence in the
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network. Broadly, our observations deliver important insights into network-

wide resource usage.

Next, we propose a new traffic management technique for cellular data

networks to improve networks’ resource crisis situation in the face of expo-

nential increase in mobile data traffic volume. Here we consider the existence

of a higher-layer, agent-based scheduling system that could potentially delay

scheduling of low priority flows at peak loads. The priorities are assumed to

be user or application tagged, either automatically or manually. The general

goal is to potentially move the low priority flows in time and space oppor-

tunistically to reduce the overall resource needs. We develop and evaluate two

scheduling schemes. Simulation results using our large-scale cellular network

trace data show the potential of these approaches in reducing base station

resource requirements.

Next, we present a scalable traffic measurement and monitoring technique

for cellular data networks. We use a machine learning technique to learn

the underlying conditional dependence structure in the base station traffic

loads to show how such probabilistic models can be used to reduce the traffic

monitoring efforts. The broad goal is to exploit the model to develop a spatial

sampling technique that estimates the loads on all the base stations based on

actual measurements only on a small subset of base stations. To understand

the tradeoff between the accuracy and monitoring complexity better, we also

study the use of this modeling approach on real applications. Two applications

are studied – energy saving and opportunistic scheduling. They show that

load estimation via such modeling is quite effective in reducing the monitoring

burden.

In the last part of our thesis, we turn our attention to WiFi networks. We

present a tool to estimate the interference between nodes and links in a live

WiFi network by passive monitoring of wireless traffic. Our approach requires

deploying multiple sniffers across the network to capture wireless traffic traces.

These traces are then analyzed using a machine learning approach to infer the

carrier-sense relationship between network nodes. We also demonstrate an

important application of this tool-detection of selfish carrier-sense behavior.

This is based on identifying any asymmetry in carrier-sense behavior between
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node pairs and finding multiple witnesses to raise confidence. We evaluate

the tool using extensive experiments and simulation which demonstrate the

effectiveness of both the applications.
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Chapter 1

Introduction

For the last two decades, traffic measurement and analysis have been one of

the major fields of research in the networking community. Specifically, the

Internet has gained a lot from this understanding. A lot has been learnt about

traffic and connectivity properties of the Internet [27, 33, 57, 137], benefiting

the design of network architectures, protocols and devices such as routers and

switches. Moreover, a wide range of important problems including traffic engi-

neering, anomaly detection, attack detection, traffic forecasting and capacity

planning have been addressed. This has been critical in handling the traffic

surge in the Internet. Broadband cellular networks and WiFi networks are

currently experiencing similar traffic surges and can benefit from similar vigor

in measurement and analysis. In this dissertation, our focus is on analyz-

ing cellular data networks and WiFi networks by conducting extensive traffic

measurement, analysis and modeling.

Cellular networks have become one of the most popular means of com-

munication and data access now-a-days. Traditionally, cellular networks were

used for voice-based communication and they were designed primarily to sup-

port constant rate voice-based traffic. Recently there is a substantial increase

in speed and capacity in 3G networks. For example, GSM [19] based HSPA

WCDMA based HSPA (High Speed Packet Access) networks and CDMA [18]

based EVDO (Evolution-Data Optimized) networks are quite common. Higher

capacity networks such as LTE [12] and WiMax [56] are also emerging. Out

of 6.8 billion world population, the number of mobile phone subscriptions has

1



crossed the 5 billion mark in 2010, roughly 1 billion of them already broadband

capable [14]. A new ecosystem of devices (e.g., smart-phones, e-readers and

tablets), software (apps) and services (e.g., cloud computing) is fueling the

growth of mobile data. Predictions from industry analysts indicate that the

volume of data through cellular data networks will increase exponentially in

near future [13, 6]. In terms of numbers, these forecasts suggest that cellular

data traffic volume will reach several exabytes per month by 2014 (1 exabyte

= 1 million terabytes), roughly equaling the traffic volume in the entire global

Internet back in 2006. By any means all these are stupendous numbers. But

the capacity of the network is not increasing at the same rate, even with the

introduction of the latest technologies.

While operators are scrambling to add capacity, there is an apparent lack

of understanding of the nature of mobile traffic in the large scale. Most of

the prior studies on cellular data network characterize network performance

and capacity based on small scale measurements done in the client side of

the network. For example, Joyce et al. [75] have presented single cell and

network capacity measurements using a commercial network in UK. Yao et

al. [141] have evaluated bandwidth predictability for HSDPA networks. Tan

et al. [132] have studied the capacity of 3G networks in terms of throughput,

latency, video and voice call handling ability. These studies capture the perfor-

mance of the network from a narrow perspective. To understand the network

usage pattern and subscriber behavior from a global perspective, a large scale

comprehensive analysis of an operational 3G data network needs to be done.

Though there are few such analyses in literature based on voice calls [138],

cellular data networks lack such detailed investigation. Such understanding

can give answers to different questions regarding subscriber traffic dynamics,

spatial and temporal behavior of network resource usage. It is only recently

that a limited number of papers [81, 112, 105] had made an attempt to under-

stand the global view of the network. Researchers have also proposed several

analysis approaches that are focused on specific applications, such as energy

saving [59] or network trouble shooting [74].
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1.1 Focus of the Dissertation

In this dissertation, we focus on understanding traffic dynamics in cellular data

networks both from spatial and temporal perspectives. We posit that under-

standing of the mobile data traffic via measurement and analysis is critical for

resource management and future development of wireless broadband access

networks, just like the Internet measurement research. Our goal is to discover

any possible structure or relationships in the network so that we can develop

a comprehensive knowledge of resource usage in cellular data networks. Such

understanding will bring new insights that in turn will help to deploy and

manage future generation cellular data networks.

Instead of just limiting our focus in understanding the dynamics of the

network and subscribers, we also investigate how to improve the user perceived

performance in the network and identify possible and efficient mechanism to

cope with the exponential growth of mobile data usage. This is imperative as

adding resources and increasing capacity in the network with the same pace

may not be cost effective. We consider this as an immediate challenge to

the capacity of the cellular data networks and develop a traffic management

scheme as an alternative to address the problem, as oppoesed to plainly in-

creasing capacity in the network. The current traffic outburst in cellular data

networks poses another issue for the service providers. It is now a complex

problem to do real time measurement and monitoring of the network because

of its large volume and size. Thus we also focus on designing scalable traffic

measurement and monitoring techniques that can aid the service providers in

efficient resource management.

Wireless Local Area Networks (WLANs) also have become commonplace,

especially on university and corporate campuses, and increasingly in public

WiFi hotspots as well. Even with the presence of cellular data networks, WiFi

is often preferred because of license-free operation that makes the access costs

much lower. WiFi performance is also typically much superior, especially in the

indoor settings. This is why most of the mobile devices including smart phones,

tablets are equipped with network adapters that can access one or more types

of IEEE 802.11 network. Understanding usage patterns in WiFi networks is
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critical for those who develop, deploy, and manage WLAN technology, as well

as those who develop systems and application software for wireless networks.

There has been a large body of works focusing on characterizing the usage

patterns and performance in live WiFi networks by collecting and analyzing

network traces. Representative sutdies in this space includes [35, 94, 85, 68].

There are also a number of measurement studies for the purpose of learning

various properties of live network such as congestion [73], protocol behavior in

a hotspot setting [122], etc. The DAIR system also proposes mechanisms for

troubleshooting [22] and security [23].

But still there is lot to learn and investigate in WiFi networks. Specifically,

understanding interference in WiFi networks is still an important problem.

Poor WiFi performance is often attributed to wireless interference in highly

loaded networking scenarios. While a lot of research has been conducted in

understanding wireless interference in a theoretical context, real network de-

ployments are yet to gain from it. Learning the interference relationship among

network elements can help the system managers to perform capacity planning

and appropriate radio resource management, such as assignment of channels,

transmit power levels or directions when using directional antennas. But this

should be done in the most unobtrusive fashion possible — without disturbing

the live network and doing any active measurement. In this dissertation, our

focus is to develop an approach to estimate the interference between nodes

and links in a live wireless network by passive monitoring of wireless traffic.

Another important aspect of WiFi networks that has not been adequately

addressed is the possible ways of ‘cheating’ in the protocol design. There are

nearly not enough effort to police the spectrum to ensure that all radio devices

follow a prescribed protocol or rule and to develop techniques so that selfish

behavior can be detected. With the advent of programmability in radios, it is

becoming easier for wireless network nodes to cheat to obtain an unfair share

of the bandwidth by manipulating different MAC layer protocol parameters

in different ways. In this dissertation, we focus on designing a solution to

detect one such behavior, selfish carrier-sensing behavior where a node raises

the CCA (clear channel assessment) threshold for carrier sensing, or simply

does not sense carrier (possibly randomly to avoid detection). Just like the
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previous case of learning interference relationship in the network, we like to

develop the detection mechanism in a completely passive manner.

1.2 Contributions

1.2.1 Understanding Traffic in Cellular Data Networks

In this dissertation, we present one of the first large scale studies of cellular data

networks. Our goal here is to develop an understanding of the nature of the

spatio-temporal traffic dynamics in cellular data networks by developing mod-

els from large-scale measurement data collected from a nation-wide network.

We analyze individual subscriber behavior and base station characteristic in

terms of traffic generation and total load, and observe significant asymme-

try. We characterize subscriber mobility and temporal activity patterns and

identify their relation to traffic volume. We observe significant asymmetry in

resource usage among subscribers and applications. We also analyze the net-

work traffic from the of view of the base stations and find significant temporal

and spatial variations in different parts of the network, while the aggregated

behavior appears predictable. These observations can be important for the ser-

vice providers in efficient protocol design, resource and spectrum management

as well as better pricing plan.

We also extend our focus to understand the spatial characteristics in re-

source usage in cellular data networks. We use a broad range of state-of-the-art

tools for modeling, learning, clustering, predicting and forecasting developed

within the statistical machine learning community. We observe the existence

of significant spatial correlation in resource usage among the base stations us-

ing different statistical techniques in the network. We then use this relation

to cluster the base stations. Such clustering should help the network provider

in resource planning, as the provider now can think in terms of clusters or

groups instead of individual base stations. We use the concept of Granger

causality [62] to understand the underlying functional connectivity and flow of

influence in the network. This understanding can be helpful in predicting the

base stations loads, and thus allocating the spectrum accordingly in advance.
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1.2.2 Traffic Management and Monitoring in Cellular

Data Networks

Accommodating the exponential increase in traffic volume is now becoming

a challenge for the service providers as increasing network capacity involves

major capital investment in terms of new spectrally efficient technology, ad-

ditional spectrum and/or additional base stations. This is why new traffic

management techniques are needed to improve network and user perceived

performance. We consider prioritizing traffic flows and propose a higher-layer,

agent based scheduling system that could potentially delay scheduling of low

priority flows at peak loads. The general goal is to potentially move the low

priority flows in time and space opportunistically to reduce the overall re-

source needs. We develop and evaluate two scheduling schemes — one based

on a straightforward greedy method that requires real-time load monitoring

and the other based on model-based estimation of future traffic loads and sub-

scriber mobility based on historical data. The ultimate goal of this approach

is to accommodate a significant number of additional subscribers in the same

network without expending any additional resource.

On the other hand, the exponential growth of traffic volume is not only

raising the capacity issue, but also creating problems for the network providers

for real time monitoring of the network. Given this situation, it is imperative

that scalable traffic measurement and monitoring techniques be developed to

aid various resource management methods. We approach this problem from

modeling perspective. We learn the underlying dependency relationship of load

among the base stations in the network using a machine learning technique.

The idea is to exploit the model to develop a spatial sampling technique that

estimates the loads on all the base stations based on actual measurements

only on a small subset of base stations. This approach has the similarity in

typical network monitoring technique by sampling packets or flows to reduce

the overhead. But here we use the concept of sampling at a higher level in the

context of spatially separated entities like base stations to make it scalable.
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1.2.3 Interference Relationship and Selfish Behavior in

WiFi Networks

Deconstructing interference relationship in WiFi network is critical for the

network administrator to improve network performance. Several theoretical

works and techniques requiring active measurement have been proposed in

literature. But the concern here is to understand the interference relationship

among network nodes and links in a live network in the most unobtrusive

fashion possible. We propose an approach of deploying a set of sniffers in the

network and collecting network trace. These traces are then analyzed using a

machine learning technique to infer the sender-side interference. This coupled

with an estimation of collision probabilities helps us to deduce the interference

relationships.

We observe that this interference relationship can be used to identify

a certain type of selfish behavior where a selfish node in the network does

not carrier-sense proporly. This is based on identifying any asymmetry in

carrier-sense behavior (sender-side interference) between node pairs and find-

ing multiple witnesses to raise confidence. Here the asymmetry in carrier-sense

behavior means that between a given pair of nodes, while one node can sense

the transmission of the other node, the converse is not true. We also propose

two simple heuristics to choose proper witness nodes while identifying a selfish

node. The network administrator can use our approach as a toolbox with two

important applications: understanding the interference properties, and detect-

ing selfish behavior in an arbitrary WiFi network, regardless of the topology

or architecture.

1.3 Outline

The rest of the dissertation is organized as follows. First, we present our

analysis to understand the traffic dynamics both from network and subscriber

perspective in cellular data network in Chapter 2. Then we continued our

analysis with specific focus only on understanding the spatial relationship in

resource usage in the cellular data network in Chapter 3. Then we shift our
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focus on designing efficient resource management and monitoring techniques

in the network. In Chapter 4, we propose and evaluate a new traffic manage-

ment scheme to improve the user perceived performance and reduce resource

requirement in the network. In Chapter 5, we present an efficient and scalable

monitoring approach in the cellular data network by learning the underlying

probabilistic model of the network. In Chapter 6, we propose a tool of pas-

sive monitoring of WiFi network with two applications of understanding the

interference properties, and detecting selfish behavior in an arbitrary WiFi

network. Finally, we conclude in Chapter 7.
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Chapter 2

Traffic Dynamics in Cellular

Data Networks

2.1 Introduction

Cellular networks have become one of the most popular means of communi-

cation and data access now-a-days because of their wide spread coverage and

availability. As mentioned in Chapter 1, the volume of data through cellular

data networks is increasing exponentially. In order to support such increases,

it is important to understand the traffic dynamics and its impact on resource

allocation on the service provider’s network. This will lead to better resource

planning and network designs that finally benefit the end users.

There have been several works in the past that study spectrum usage and

application characteristics in cellular data networks (see, e.g, [110, 119, 95]).

Most of these prior studies try to understand wireless spectrum usage and char-

acterize network performance and capacity using small scale measurements

using a few mobile clients. To understand the network usage pattern and

subscriber behavior, a large scale comprehensive measurement and analysis

of network-wide data traffic must be performed. Though there have been a

few studies recently based on network-wide data collected ‘in-network’ such

as [138, 81], these studies consider voice traffic [138] or users’ browsing behav-

ior [81]. A detailed network-wide study of data traffic is still lacking.
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Our focus in this chapter is to address this limitation and provide a

measurement-driven analysis of the data traffic collected at the core of a

nation-wide 3G network. Our goal is to provide answers to important questions

regarding subscriber traffic patterns, subscriber mobility, and spatio-temporal

behavior of network resource usage. The answers to such questions are very

important from the network providers’ perspective in case of resource man-

agement specifically spectrum allocation and network design.

Our study in this chapter is organized as follows: We present the network

architecture and data collection procedure in Section 2.2. We focus on the

spatial and temporal dynamics of data traffic from both the subscriber’s (Sec-

tion 2.3) and the network’s (Section 2.4) perspectives. We examine individ-

ual subscriber behavior and usage patterns. We also characterize subscriber

mobility and temporal activity patterns, and analyze their relationships to

subscriber traffic. From the network’s perspective, we study traffic patterns

at different parts of the network (base stations) and understand spatial and

temporal dynamics. Finally, we describe the implications of our observations

related to traffic spread, mobility and efficiency in connection to subscriber

pricing, protocol design, spectrum allocation and energy savings (Section 2.5).

2.2 Network Architecture and Data Collec-

tion

The CDMA based cellular data network architecture standardized by the

3GPP2 [18] standardization body is shown in Figure 1. The mobile station

(MS) functions as the IP client device that a mobile user (subscriber) uses

to connect to the Internet through the cellular data network. The subscriber

accesses the data network through the Base Transceiver Station (BTS) (also

called base station) using a wireless channel allocated for communication. The

Base Station Controller (BSC) or Radio Network Controller (RNC) controls

allocation of radio resources for each subscriber and routes packets to and

from the subscriber to the core network. Both the BTS and BSC (or RNC)

constitute the Radio Access Network (RAN). The Packet Data Serving Node
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Figure 1: Architecture of a CDMA data network.

(PDSN) acts as the gateway from the RAN to the public or private packet

network. In a simple IP network, it directly acts as the gateway to the public

Internet. In the case of mobile IP network, it can be configured as a Home

Agent (HA) or a foreign agent (FA). The Home Agent serves as the IP an-

chor for the subscriber and forwards any data from the public internet to the

subscriber through the appropriate network elements. It also provides seam-

less mobility for each subscriber inside the cellular data network. The AAA

(Authentication, Authorization and Accounting) server is used to authenti-

cate and authorize each subscriber for network access and to store data usage

statistics.

The data set used in this work spans one week in 2007 and consists of all

data traffic associated with the entire subscriber base (in the order of hundreds

of thousands) in a nation-wide network with thousands of base stations. It

is collected from the core of the cellular data network by tapping at the link

between the FA and HA and at the link between FA and AAA server. The red

color arrows in Figure 1 show the points where packets are captured. All data

packet and various signalling and accounting packets are captured and later
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post processed using a tool. 1 The packet capture device uses general purpose

multi-core computer with four high speed endace packet capture cards [9]

that can capture packets at a maximum speed of 4 Gbps. By tapping south

of HA, the IP-IP data packets that are tunneled between the HA and FA

as well as the mobile IP (MIP) signaling packets are obtained. Similarly,

RADIUS accounting packets are collected by tapping at the link between FA

and AAA server. The captured MIP and RADIUS signaling packets are used

to determine when a mobile connects and disconnects to the network and when

it hands off between different base stations. Our entire packet capture only

logs the packet headers and not the user payload.

Signaling and data packets are associated to create subscriber sessions. A

subscriber session for each subscriber2 is defined as the time between subscriber

mobile IP registration and de-registration with a HA. A subscriber session is

identified by a tuple that consists of the subscriber IP address and the IP

address of the HA it is connected to. Within each subscriber session, the data

traffic for each subscriber is accumulated as flow records. A flow is defined by a

five tuple consisting for the source IP, destination IP, source port, destination

port and protocol. For TCP flows, the flow starts when a TCP SYN packet

is received and ends when a TCP FIN packet is received. For UDP flows, the

first packet of the flow starts the flow and the flow ends when it does not get

any packet for 30 minutes. This is because UDP flows do not have any explicit

packets to identify termination of the flow.

In CDMA networks, a subscriber requests and is in turn allocated a radio

channel whenever it has data to send. The allocated radio channel is revoked

by the network when the subscriber is dormant for certain period known as the

dormancy period (typically about 10 seconds) that is configurable for different

networks [18]. A subscriber can go between active (with a channel allocated)

and dormant state multiple times within a single mobile IP session. We call the

amount of time a subscriber holds onto a radio channel (regardless of whether

1For proprietary reasons, we are unable to provide further details about the network
location, data set, packet capture and post-processing techniques. This is not unusual in
recent published network-wide studies [138]. In any case, the missing details are not relevant
to understanding our analysis for commercially operated networks.

2The terms ‘client’, ‘user’ and ’subscriber’ are used interchangeably in this dissertation.
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it actually communicates) as the airtime. Effectively, the airtime gives us the

amount of time a subscriber uses network radio resources. This will play a

role in our later analysis. For studying base station loads, all sectors in that

base station are combined. Finally, the signaling packets we capture provide

enough information for us to track base station and the cell sector the mobile

is associated to at all time instants. This provides us with a rich data set to

study subscriber mobility. In this aspect, our data set is far richer than that

used in some related literature [61, 138].

2.3 Subscriber Traffic Dynamics

We study the behavior of mobile subscribers in terms of the traffic they

generate, their mobility and their activity on the temporal scale. We draw

relations between traffic generated by subscribers to their mobility as well as

activity level. Finally, we present important implications of subscriber traffic

dynamics on resource planning in cellular data networks.

2.3.1 Subscriber Traffic Distribution

We start with analyzing the amount of traffic generated by subscribers in

the network. Figure 2(a) shows the cumulative distribution function (CDF)

of traffic generated per subscriber. Each curve represents data for one day

in a week. This figure shows a wide range of traffic generated by different

subscribers in the network. The median traffic generated is close to 100 KB

per day. However, there are heavy users who generate as high as 10 GB per

day (105 × median) as well as light users generating less than 1 KB per day.

We see the CDF slightly shifted towards the left for weekends (Saturday and

Sunday) indicating less traffic relative to working days. We also present a

normalized view of traffic over a percentage of subscribers in Figure 2 (b).

It is interesting to see that only 1% of the subscribers (out of approximately

about 500K unique subscribers who appear in each day) create more than 60%

of the daily network traffic and less than 10% of the subscribers create 90%
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Figure 2: (a) CDF of total traffic volume (in bytes) per subscriber per day.
(b) CDF of normalized traffic over the percentage of subscriber per day.

of the daily network traffic. This points to a significant imbalance of network

usage among subscribers with few subscribers hogging the much of the network

resource. Later, we will pay specific attention to mobility and network activity

of these subscribers.

2.3.2 Subscriber Mobility

In our data set, we do not have access to precise location of subscribers. Our

captured data set also does not have signal strength related information (as we

capture packets at the IP layer in the core network) to help in radio localiza-

tion. However, the signaling packets we capture provide enough information

for us to track base station and the cell sector the mobile is associated to at

all time instants. This provides us with a rich data set to study subscriber

mobility based on the timestamped sequence of the base station he/she is con-

nected to. We have this data in all times instants regardless of whether the

subscriber is actually communicating. In this aspect, our data set is far richer

than that used in some related literature [61, 138].

2.3.2.1 Base Stations Visited

Figure 3 shows the CDF of the number of distinct base stations visited by

each subscriber in a day. Note that the distribution is very similar in the
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Figure 3: CDF of the number of distinct base stations visited by a subscriber
in each day.

weekdays, while the distribution in the weekends is somewhat different. Note

the tendency of a lesser degree of mobility on weekends. Overall, the mobility

is low in terms of the number of distinct base stations visited. Roughly, 60% of

the users are mostly stationary (i.e., constrained within a cell) and over 95%

of the users travel across less than 10 base stations in a day. On the other

hand, the highest number of distinct base stations visited by a user in a day

is 93. However, such highly mobile users who visit more than 50 distinct base

stations in a day are very few, less than 0.01% of daily users. To understand

the mobility of subscribers further, we study the extent of the distance they

travel next.

2.3.2.2 Radius of Gyration

The above data only captures the number of base stations visited, but not

the physical extent of travel. To capture physical distance traveled we use a

concept called the radius of gyration [61]. The radius of gyration is the linear

size occupied by a subscriber’s trajectory. It is computed by averaging the

displacement of the recorded locations of the subscriber from a central point.

The central point is the center of mass of the entire trajectory. Note that this

captures how widely the subscribers move as opposed to the actual distance

traveled. For example, traveling in a circle continuously visiting the same
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Figure 4: (a) CDF of radius of gyration (rg). (b) Radius of gyration versus
duration of computation for subscribers categorized into 4 groups according to
their final rg at the end of the seven-day period. (c) Probability distribution
of time to returning to the same location. (d) A Zipf distribution showing the
probability of finding a subscriber at different locations that are ranked on
the basis of their visit frequencies. The subscribers are categorized in terms
of how many distinct locations they visit during the seven-day period.

sequence of base stations does not increase the radius of gyration but a long

distance travel on a straight line does. Radius of gyration has traditionally

been used to study human mobility, as in a recent influential study [61]. The

radius of gyration [61] is defined as,

rg =

√

√

√

√

1

n

n
∑

i=1

(−→r i −
−→r cm)2, (1)

where −→r i represents the i = 1, 2, . . . , n locations recorded for a given user

describing his/her trajectory. Recall that the locations are simply the locations
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of the base stations to which the mobile is connected. −→r cm = 1
n

∑n
i=1

−→r i is

the center of mass point of the user’s trajectory.

Figure 4(a) shows the CDF of rg, where rg is calculated for each subscriber

for the entire 7 day time period. We see approximately 53% of subscribers are

practically static and almost 98% of subscribers have radius of gyration less

than 100 miles. This reasserts the low level of mobility for the majority of

subscribers. The probability distribution function of subscriber mobility rep-

resented by the radius of gyration can be well approximated with a truncated

power-law :

P (rg) = (rg + r0g)
−βr exp(−rg/κ), (2)

with r0g = 2.8 mile, βr = 1.7 and κ = 170 mile. We note that a similar

qualitative trend was observed in [61].

Note that the radius of gyration computation requires use of certain dura-

tion of time (t) during which the subscriber trajectory is used for the compu-

tation. It is expected that the longer the duration t the larger is the radius of

gyration rg(t). A saturation would indicate that some sort of boundary of the

movement area has been reached. To study this, we plot ‘average’ rg(t) with

increasing t until the entire seven-day period (168 hours) is exhausted [61].

Subscribers are categorized into four different groups based on their final rg

value at the end of the seven-day period. See Figure 4(b). Note that the

radius of gyration on average comes to a saturation point relatively quickly, in

just a few days. Also, users with larger radius of gyration need longer time to

saturate.

We further investigate the reason for the quick saturation of the radius

of gyration by measuring the ‘return probability’ for each subscriber as the

probability that a subscriber returns after t hours to the same position [61].

Figure 4 (c) shows the distribution having relative peaks at 24th, 48th and

72nd hours. It indicates the periodic nature of human mobility with a 24-hour

period and tendency of returning to the same location periodically. This is also

the inherent reason for radius of gyration saturating after a few days.

To understand how predictable the subscriber location is, we rank each

location a subscriber visits on the basis of the number of times he/she is found
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there [61]. For example, a location with rank L = 1 indicates the most-

visited location of the selected subscriber. For each subscriber we create the

list of locations where he/she is found in the ascending order of the rank.

Figure 4 (d) is the Zipf distribution showing the probability distribution of

the visit frequency of locations ranked L. The figure shows the results for four

categories of subscribers that visit 5, 10, 30 or 50 distinct locations. It also

shows that the distribution can be well approximated by ∼ 1
L
irrespective of

the category. Note also that people spend roughly 30% of their time in their

top two preferred locations. This clearly shows that even when subscribers

move between multiple locations, they can be found in their ‘favorite’ location

with high probability.

2.3.3 Relating Subscriber Mobility and Traffic

Now, a natural question is to relate the subscriber mobility and the volume

of traffic they generate. We categorize subscribers based on the two mobility

metrics used in the previous section: (i) number of locations (base stations)

visited and (ii) radius of gyration. This simply categorizes subscribers based

on their degree of mobility. For each category of subscribers, we plot the CDF

of traffic volume generated per day in Figure 5. A careful reader will note

that while the plot lines appear similar, due to the log-scale of the horizontal

axis, there is actually significant difference in traffic volume for different cat-

egories. The trend is that more mobile subscribers generate more traffic, with

the median traffic generated by subscribers in the highest mobility category be-

ing roughly twice that of the subscribers in the lowest mobility category. This

correlation of mobility and traffic has implications in resource planning and

spectrum management. While our current results describe only aggregated

behavior, our future work will consider finer grain behavior based on timings

of movement and timings of traffic generated.

2.3.4 Subscriber Temporal Activity

We describe the temporal activity of subscribers by the number of days in a

week or number of hours in a day that they generate traffic. This addresses

18



 0

 20

 40

 60

 80

 100

102 103 104 105 106 107 108 109

C
D

F

Traffic volume (bytes)

1 loc.
5 loc.

10 loc.
30 loc.
50 loc.

 0

 20

 40

 60

 80

 100

103 104 105 106 107 108 109 1010

C
D

F

Traffic volume (bytes)

0<=rg<= 5
6<=rg<= 20

21<=rg<= 50
51<=rg<= 100

rg>100

(a) (b)

Figure 5: (a) CDF of traffic generated per day by subscribers of different
category based on number of locations (base stations) visited in a day. (b)
CDF of traffic generated per day by subscribers of different category based on
radius of gyration.

basic questions such as whether the subscribers generate traffic frequently or

only occasionally. Figure 6(a) shows the CDF of the number of days sub-

scribers generate traffic. We see that about 34% of the subscribers generate

traffic on all 7 days of a week. It is interesting to note that about 45% of

total number of subscribers generate traffic only on three or less number of

days in a week. To understand the hourly activity of subscribers, we plot

the distribution of hours among peak hours (8 AM to 8 PM) in a work day

(i.e., Mon-Fri) the subscribers generate traffic. Figure 6(b) shows about 28%

of subscribers generate traffic only in a single hour among this set of peak

hours. A typical subscriber (median) is active in 4 different hours during the

peak hours in a day. The high level conclusion here is that a large fraction of

subscribers generate traffic only in few days a week and only in a few hours

within the day.

To understand the temporal activity of subscribers at a much finer gran-

ularity, we study the distribution of ‘airtime’ used by each subscriber. This

term requires some explanation. In the commonly used 3G standards (3GPP

or 3GPP2), a subscriber requests and is in turn allocated a radio channel3

whenever it has data to send. The allocated radio channel is revoked by the

3We use the term ‘radio channel’ to refer to any radio resource allocated to the mobile
such as code, frequency or time slot.

19



 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7

C
D

F

Number of days appeared

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9  10  11  12

C
D

F

Number of hours appeared

(a) (b)

Figure 6: (a) CDF of number of days in a week subscribers generate traffic.
(b) CDF of number of hours among peak hours (8 AM to 8 PM) subscribers
generate traffic.
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Figure 7: CDF of airtime among subscribers.

network when the subscriber is dormant for certain period known as the dor-

mancy period (typically about 10 seconds) [39] that is configurable for different

networks. A subscriber can go between active (with a channel allocated) and

dormant state multiple times within a single mobile IP session. We refer the

amount of time a subscriber holds onto a radio channel (regardless of whether

it actually communicates) as the airtime. Effectively, the airtime gives us the

amount of time a subscriber uses radio and spectrum resources.

Figure 7 shows the CDF of airtime among all subscribers. We see a

significant variation in the amount of airtime used by different subscribers.
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Figure 8: (a) CDF of occurrence for the heavy users in days in a week. (b)
CDF of occurrence for the heavy users in hours among peak hours.

The median usage is about 100 sec. in a day. Interestingly, there are few

subscribers (less than 1%) that use almost 24 hours of airtime in a day. About

90% of subscribers use less than 1000 sec. of airtime. The median is about 100

sec. Weekend usage is typically lower compared to weekday usage. In general,

we see that a typical subscriber occupies the radio channel only for a short

duration in the entire day. This is consistent with our previous observation

that the median traffic volume per subscriber per day is not significant while

there are a small number of ‘heavy hitters’ that consume a significant amount

of network resource. Such statistics can help providers develop effective pricing

structures.

2.3.5 Relating Subscriber Activity and Traffic

In this section, we draw relation between the traffic generated by subscribers

and how frequently they appear in the trace. We particularly focus on the

‘heavy users’ as they are the ones that transmit bulk of the traffic. Here, the

heavy users are the subset of subscribers that are within the top 5000 in at least

one day in the week based on the traffic volume. Recall from Section 2.3.1 that

about 1% of subscribers send about 60% of traffic. The number 5000 forms

roughly 1% of the number of subscribers that generate traffic in a typical day.

Figure 8 (a) shows the number of days these heavy users generate traffic.

Interestingly, we see that almost 50-60% of the heavy users generate traffic
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Figure 9: CDF of effective bit rate for subscribers categorized by traffic gen-
erated per day.

only on one day in the entire week. This result is different from the percent-

age of subscribers (about 28%) generating traffic only on one day considering

all subscribers as shown in 2.3.4. This shows that most heavy users are not

habitual, but actually quite sporadic. In Figure 8 (b), we show the distribution

of hourly activity of heavy user during peak hours (8 AM to 8 PM). This plot

shows that a typical heavy user appear in 4 to 6 different hours during the peak

hours in the days they generate traffic. This distribution is not significantly

different from the distribution of the entire set of subscribers.

It is also interesting to look at how efficiently subscribers use radio re-

sources, and whether there is any difference between the low and high volume

users. To do this, we define a metric called ‘effective bit rate’. This is the

ratio between the amount of traffic generated by subscribers to the airtime

(time actually occupying the radio channel irrespective of traffic generated)

used by them. This metric tells us how efficiently the allocated radio channel

is used for sending traffic. Figure 9 shows the CDF of effective bit rate with

subscribers categorized based on the amount of daily traffic they generate. We

can clearly see that subscribers generating less traffic have progressively poorer

effective bit rate. This may be due to the applications used by subscribers

not fully utilizing the allocated channel bandwidth. Even the effective bit rate

of a typical high volume subscriber (≥ 100 MB) is approximately 20 Kbps

which is much less compared to the maximum nominal bit rate that could be
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Figure 10: Effective bit rate for popular applications.

supported. For a low volume subscriber, it is roughly 0.5 Kbps.

To investigate the reason for poor efficiency, we identify the most popular

applications (that account for 75% of total daily traffic among all subscribers)

and study their channel efficiencies. See Figure 10. Only TCP based appli-

cations are considered so that the flow start and stop instants can be clearly

identified. During the lifetime of each flow the number of bits transmitted and

the total airtime consumed are used to compute the effective bit rate. Port

numbers in the packet headers are used to identify the application type. For

http we also track the server IP addresses to identify the sites visited. Statistics

for a few popular sites (google, microsoft and yahoo) are shown separately.

Note that applications like VPN, https (used for secure connection) and

http (for sites other than the popular ones such as google, microsoft and ya-

hoo) have the poorest efficiency, while P2P and http for certain popular sites

(yahoo) have the best efficiency. The median difference between VPN and

P2P is over an order of magnitude (note the log nature of the horizontal axis).

Broadly, it appears that the enterprise applications generate much less traf-

fic compared to other applications for the same airtime consumed. The likely

reason for this is that such applications tend to use the network sporadically

(e.g., frequent use of keep-alive messages in VPN) and/or typically are not

high throughput applications. Considering the nature of the dormancy period
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Figure 11: (a) Aggregate load on the network on each day of the week. (b)
Breakdown of total load in a single day in 4 hour periods.

in 3G networks it it easy to see that channel usage will be inefficient in such

applications. On the other hand, high throughput applications like P2P down-

loads or http browsing on certain popular sites tend to send more data during

their allocated airtime. Overall again, all applications have significantly poorer

effective bit rate compared to nominal bit rates of the underlying physical layer

technology, implying significant scope of protocol improvements across layers.

More will be discussed on this in Section 2.5.

2.4 Base Station Traffic Dynamics

In this section we turn our attention to the network behavior as a whole
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or in terms of network components (base stations) instead of focusing on sub-

scribers.

2.4.1 Aggregate Load

First, we characterize the aggregate load in the entire network considered.

Figure 11(a) presents the total traffic split into upload and download for each

day of the week. As expected, weekends see a lesser load. Also, downloads

dominate relative to uploads with more than 75% of daily load coming from

download traffic. We also break down the traffic load on the network in a

single day into 4 hour periods, as shown in Figure 11(b). We can see that the

load on the network is relatively low in the early morning hours, and roughly

similar during the day and the evening.

2.4.2 Base Station Load Distribution

Next, we analyze the volume of daily traffic load for each base station. Fig-

ure 12(a) shows the CDF of the daily load (in bytes) of each base station for

each day. It shows that roughly about 80% of the base stations are loaded in

the range of 1-100MB per day and 10% of the base stations are highly loaded

(more than 100MB per day). Figure 12(b) shows the CDF of daily base sta-

tion loads normalized by the total network load. It shows that 10% of the

base stations experience roughly about 50-60% of the aggregate traffic load. In

both cases, weekend behavior is slightly different than weekday behavior. The

load imbalance seems more pronounced in weekends. This great imbalance of

the base station loads indicates that a more careful cell planning is possibly

needed. Network providers may use smaller cells or microcells at the hotspots

to even out the imbalance.

2.4.3 Spatial Characteristics

Our goal here is to identify whether the network load is spatially correlated.

Such investigation can potentially help the provider to allocate resources ap-

propriately. This can also be helpful in predicting the load of a spatially
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Figure 12: (a) CDF of actual daily traffic (in bytes) per base station. (b) CDF
of normalized traffic per base station.
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Figure 14: Aggregated network load in each hour and hourly load of three top
loaded base stations. Note that they use two different scales.

separated region given the load of another region. We do preliminary tests

and data exploration to investigate the spatial charateristics of network load.

A deeper analysis for understanding the spatial relationship is presented in

Chapter 3.

We investigate the spatial charateristics of network load using Voronoi

cells. Each Voronoi cell corresponds to the geographic region of each base

station’s coverage. Figure 13 shows the aggregate load in bytes for each cell

in a typical day in log10 scale for two geographically separated regions in the

studied network. Each region is 100 mile × 100 mile and includes major city

centers as well as suburban areas. Note higher density of Voronoi cells in

certain areas (city centers) signifying some degree of cell planning. We can

readily see again that the cells are not uniformly loaded in space. The load

differentials can extend several orders of magnitude. There does appear to be

some degree of negative correlation between the Voronoi cell size and load.

This is expected as large Voronoi cells mean sparsely located base stations,

implying sparser population density. Though no significant spatial correlation

between adjacent cells is observed via visual inspection of similar plots for all

days, different result comes up when spatial relation is invesigated in Chapter 3

using strong statistical techniques.
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Figure 15: Peak hour of each cell in a single day in two geographically separated
regions.

2.4.4 Temporal Characteristics

2.4.4.1 Load

We summarize the hourly load of each base station for the whole 7 day period.

Figure 14 shows the hourly aggregate load of the entire network and then top

three highly loaded base stations. The aggregate network load exhibits a nice

periodic behavior with relatively high loads during the day and the lowest

load during midnight. On the contrary, individual base station loads do not

show that much periodicity. Also, the load curve varies significantly among

individual base stations with their peaks occurring at different times of the

day.

We then investigate how the network load varies temporally as well as

spatially. To do this, we determine the peak hour of each base station in the

day. The peak hour of a base station is the hour in which the given base station

has the highest load among its own hourly loads of the day. Figure 15 shows

the peak hour of each cell for the same two geographic regions described in

Section 3.2 for a typical day. It shows that base stations have widely different

peak hours that without further analysis appear somewhat random. Once

again note the lack of spatial correlation.
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Figure 16: Auto-correlation Function on the network load in time series.

2.4.4.2 Auto-correlation

For rigorous analysis of the periodic behavior describing the network load we

evaluate temporal correlation for a load metric. This will enable us understand

the underlying trends and seasonal variations better. We represent the hourly

aggregate load as time series for the whole network and also for top three base

stations used in Section 2.4.4.1. Each time series thus has 168 data points for

the 7 day period. Figure 16 shows the auto-correlation function (e.g., cross-

correlation of the time series with itself) of these time series at different lags.

Note that the plot shows a high degree of temporal correlation. Again the high

peaks occur at 24 hour intervals and low peaks at 12 hour intervals. This is

consistent with diurnal human activity patterns. Note that the positive peaks

are very pronounced relative to the negative peaks and also the slow decreasing

trend of the peaks with increasing lag. The high degree of correlation of

network load at the same time of day can have tremendous implication in

network resource management techniques. On the other hand, the individual

base station loads do not show good temporal correlation (neither positive not

negative) and the periodicity is also missing.
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2.5 Summary of Observations and Practical

Implications

We now summarize our key observations and identify important practical im-

plications on network planning and protocol design in cellular data networks.

2.5.1 Key Observations

1) Traffic Load: There is a significant traffic imbalance both from individual

subscriber’s and base station’s view point. Few subscribers and also few base

stations carry a significant fraction of the total load. Less than 10% of sub-

scribers generate 90% of the load, while 10% of base stations carry 50-60%

of the load. The subscribers appear to be sporadic users of the network, the

heavy users being more so. A typical heavy user only appears occasionally,

but generates a large amount of traffic.

2) Mobility: A large fraction of subscribers have limited mobility (roughly

half of them being practically static moving within just one mile). The mo-

bility also exhibits periodic behavior with high probability of returning to the

same location at the same time of the day. Overall, the mobility is highly

predictable. Interestingly, the more mobile subscribers tend to generate more

traffic.

3) Efficiency: Effective bit rate is poor due to the intermittency of data

transfers and channel dormancy effects. Efficiency is poorer for low volume

users relative to high volume users. This could be tied to the types of appli-

cations they use. For example, enterprise applications appear to have much

poorer effective bit rate relative to P2P.

4) Correlations: Aggregate network load exhibits excellent periodic behavior

and temporal correlation, but individual base stations do not exhibit such

properties in any significant extent.

2.5.2 Implications

1) Subscriber Pricing and Usage Pattern: An unlimited data plan with flat

rate pricing is not efficient both from the carrier’s perspective as well as the
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majority of subscribers’ perspective. The CDF shown in Figure 2 can be used

as a guidance to create ‘tiered’ rate plans. The idea of tiered rate plans are

becoming popular [3] to provide different pricing options based on data us-

age. One of our future works is to devise optimal pricing schemes based on

subscriber usage and available network capacity. Also, sporadic network use

by high volume subscribers can create poor experience for other subscribers if

such usage occurs during peak periods. This can be alleviated by providing

high volume subscribers some incentives (e.g., lower pricing during off-peak

hours) to move their load to other times.

2)‘Wireless-Friendly’ Protocol Design: The highly predictable nature of the

mobility pattern can be exploited by innovative cloud-based content delivery

applications. The idea is to cache the content of particular interest to a sub-

scriber close to the edge of the network where the subscriber can be found with

high probability [47]. This reduces the latency in accessing the content to a

large extent. Location based services and targeted ad-services can exploit such

highly predictable mobility pattern to optimize their performance. Further, it

is clear that the network protocols and applications designed for general wired

Internet usage are not very ’wireless-friendly,’ using valuable channel air time

very poorly. This inefficiency is much higher in enterprise applications. Inno-

vative protocols that make use of the wireless channel more efficiently need to

designed. We note that some recent research targeting energy usage addresses

a similar issue (see, e.g., [89]).

3) Spectrum Allocation and Energy Savings: The high degree of variability

in base station loads has important implication on spectrum allocation and

energy saving schemes in the network. New energy saving schemes such as

adaptively turning on/off certain carriers or radios in base stations based on

the load experienced need to be developed. In Section 2.4.4, we noted that the

peak hours of different cells vary a lot, which advocates dynamic allocation

of spectrum resources to highly loaded cells during their peak hours. One of

our future work will be to model the demand characteristics on different cells

in cellular data networks based on measurements for a long period of time
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and feed the model as inputs to dynamic spectrum allocation algorithms such

as [131].

2.6 Related Work

There have been field measurement studies on 3G networks mainly focusing on

the performance of data traffic, but only from the point of view of individual

client devices. Representative works in this space are measurement studies on

commercial WCDMA 3G/UMTS networks in [110], performance evaluation

of GPRS and UMTS networks in [119], various forms of TCP performance

evaluation in [88], [95] and [83], and cross layer studies in [139]. In addition,

Joyce et al. [75] have presented single cell and network capacity measurements

using a commercial network in UK. Yao et al. [141] have evaluated bandwidth

predictability for HSDPA networks. Tan et al. [132] have studied the capacity

of 3G networks in terms of throughput, latency, video and voice call handling

ability. The authors in [36] have evaluated multimedia streaming through mea-

surements taken from real networks (GSM, GPRS and UMTS). Performance

of push-to-talk applications have been evaluated in [34] on 3G networks. The

above studies do not use the global view of the network as a whole and a

broader analysis of the subscriber behaviors are missing.

Such global views have been pursued only in a limited number of papers.

The authors in [71] have carried out spectrum measurements in 2G and 3G

bands during the 2006 Soccer World Cup in two German cities. They have

shown that the change of spectrum usage is related to specific events. In [121],

a measurement-based spectrum modeling approach has been developed using

spatial statistics and random fields. The authors in [63] have shown the dis-

tribution of voice call duration analyzing the call logs from a cellular GSM

provider. The authors in [138] have presented a large scale measurement anal-

ysis to characterize the primary usage in cellular voice network. In [81] the

browsing behavior of mobile users in a large scale 3G data network has been

analyzed. In contrast to these papers, our focus in this chapter is purely on

data traffic behavior in the context of resource usage.
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Finally, studying human mobility from cellular network data is an impor-

tant component of this chapter, as mobility directly impacts resource usage.

Much of our analysis has been motivated by Barabasi and co-authors’ influen-

tial work on this topic [61, 30]. They have studied human mobility patterns

based on the voice call records over a six-month period of 100,000 anonymized

mobile phone users. They have concluded that human trajectories show a high

degree of temporal and spatial regularity. In [65] an analysis of user mobil-

ity patterns is presented based on data traffic traces from a major regional

CDMA2000 cellular network. The overall mobility was found to be limited.

Pathirana et al. [102] have presented a technique to predict the trajectory of a

user in a variant of GSM network. Authors in [30] have investigated the human

dynamics and social interactions, and focused on the occurrence of anomalous

events. None of these works, however, directly relate the users’ mobility to

network access behavior and network usage patterns.

2.7 Conclusions

In our knowledge, our work presented in this chapter is the first major study in

measurement analysis of subscriber and network behavior in a large scale 3G

data network. We have made several important observations related to traffic

load, mobility and resource efficiency. We have indicated the implications

of these observations in pricing, protocol design and resource management.

Our future work will target (i) analysis for longer periods of time as well as

in finer grain, (ii) addressing the topics highlighted in the discussions about

implications in Section 2.5.
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Chapter 3

Spatial Characteristics of Traffic

in Cellular Data Networks

3.1 Introduction

In the previous chapter, we have studied the traffic dynamics from the sub-

scriber and network perspectives as well as its impact on spectrum allocation

using a large scale data traffic collected at the core of a nation-wide 3G net-

work [105]. Our focus in this chapter is to continue analysis on the same data

set, but focus on the spatial properties and causal relationships in the network.

We specifically focus on ‘spatially significant behavior’ in terms of the resource

usage on the network infrastructure (i.e., cells or base stations (BS)). Our goal

is to provide answers to important questions regarding i) how, or if at all,

radio resource usage at base stations are spatially correlated, ii) how base sta-

tions can be clustered based on the similarity of their resource usage patterns,

and iii) whether causal influence exists in the network in that a base station

influences the load on other neighboring base stations. These questions are

important from the network providers’ perspectives specifically in the context

of resource (including spectrum) management and planning. Our hope is that

our analysis will lead to a better understanding of such behaviors prompting

new resource planning, spectrum allocation and network design techniques.

The reminder of the chapter is organized as follows. Section 3.2 focuses on
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the spatial correlations among base stations. We present an optimal clustering

of the base stations based on their resource usage in Section 3.3. In Section 3.4,

we investigate the underlying causal structure of the network. Section 3.5

describes the related work, and Section 3.6 concludes the chapter.

3.2 Spatial Correlation

We study different techniques to understand the spatial characteristic in cellu-

lar network. The results indicate that there is significant spatial correlation in

the network. We also study two metrics representing network resource usage

to use in our analysis.

Traffic load in terms of bytes is the most used metric to describe resource

usage in a network. In 3G cellular networks, another metric, ‘airtime’, can

provide a more realistic indication of spectrum usage. In the commonly used

3G standards (3GPP) [19] or 3GPP2) [18]), a subscriber requests and is in

turn allocated a radio channel whenever it has data to send. The allocated

radio channel is revoked by the network when the subscriber is dormant for a

certain period, modeled using the so-called ‘inactivity timer’ (typically about

10 seconds) [39]. The inactivity timer is configurable for different networks [19,

18]. A subscriber can go between active and dormant state multiple times

within a single mobile IP session. We refer the amount of time a subscriber

holds onto a radio channel (regardless of whether it actually communicates)

as the ‘airtime.’ Effectively, the airtime gives us the actual amount of time a

subscriber uses radio and spectrum resources.

From this simple understanding, traffic load and airtime should be highly

correlated. However, our analysis (not reported here) has shown that this is

not the case always. A recent study analyzed the relationship between load

and airtime at least indirectly [112]. It shows that a significant portion (up

to 45.3%) of the channel time is wasted idling. The fundamental reason for

this inefficiency is the use of a common inactivity timer value regardless of the

nature of traffic [112].

Given this background, we use airtime for our analysis as it is more di-

rectly related to the radio resource usage for the current generation networks.
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Figure 17: CDF of cross-correlation between pairs of base stations (all pairs
as well as pairs within different ranges) based on airtime for different summa-
rizatio granularity.

Further exposition of traffic load vs. airtime question is left for a different

work. An interested reader can also refer to [112] for existing studies in this

regard. We will use the time series of airtime (sec) for two summarization

granularities: 1 hour and 10 mins, for each base station for the entire 7 days

period. The goal of using two different granularity is to check whether the

spatial characteristics depend on the summarization interval. Because of the

similar nature of the resulting plots, we will sometimes present the 1 hour data

only in the plots.

We will now use the concept of cross-correlation to investigate the nature

of spatial correlation of resource usage in the network. Cross-correlation is a

standard statistical method of estimating the degree to which two time series

are correlated [8, 28]. We compute the cross-correlation of zero lag between

various pairs of base stations using the time series of airtime. Figure 17 shows

the CDF of cross-correlation for all pairs of base stations as well as pairs of base

stations within different ranges for both 1 hour and 10 mins granularities. Note

that cross-correlation, in general, between pairs of base stations is relatively

high with the 1 hour interval showing a somewhat higher cross-correlation

(median around 0.55 for 1 hour interval and 0.4 for 10 min interval). Also,

when categorized into groups of base stations that are within different distances
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from each other, closer base stations show significantly higher cross-correlation.

For example, for base stations that are within 2 miles from each other the

median cross-correlation for 1 hour interval is around 0.7.

Given that there is a noticeable degree of spatial significance in the cross-

correlation study, we study the spatial correlation property using another an-

gle with the help of the ‘Moran’s I’ statistic [98]. Moran’s I is a popularly

used measure of spatial autocorrelation. It measures how correlated a spatial

phenomenon is along space similarly as temporal autocorrelation measures

correlation along time. Several earlier works (e.g., [121]) use Moran’s I to in-

vestigate spatial behavior. A concept of distance is used to indicate proximity

and is used as ‘weights’ in the formula. Moran’s I is defined as:

I =
N

∑

i

∑

j wij

∑

i

∑

j wij(xi − x)(xj − x)
∑

i(xi − x)2
, (3)

where x is the random variable studied, x being the sample mean, xi’s are

the observations. wij is the weight associated with each pair (xi, xj) and N

is the number of observations. Here, the random variable x is the hourly

load on a base station. As common with Moran’s I studies, we use binary

weights: wij = 1, when the base stations are in close proximity (a threshold

of 2 miles is used), else wij = 0. We then plot the Moran’s I metric for

hourly loads of all base stations in the network on a temporal scale. Figure

18 shows the Moran’s I indices for each hour using our hourly data. The plot

has been smoothened to remove noise by using a sliding window averaging

with a window size of 4 hours. The plot shows high values (varying from

0.2 to 0.6) indicating significant spatial correlation. However, the periodic

behavior with a diurnal cycle is interesting. It appears that while temporal

usage patterns of base stations may be very different and might even miss

periodicity (Section 2.4.4.2), there is a general tendency for proximate base

station loads to be more correlated when the loads are high.

Next, to investigate the temproral aspect, we want to check whether the

correlation varies on the time of the day. To do that we split the day in 6

time periods. Figure 19 shows the CDFs of cross-correlation for pair of base

stations within 2 miles based on hourly airtime for each time period. It also

shows the CDF considering the whole time series. Note that the correlation is
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Figure 18: Moran’s I values plotted on a temporal scale based on airtime on
all base stations.
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Figure 19: CDF of cross-correlation of pairs of base stations based on airtime,
categorized into different time periods in the day. Only base station pairs
within 2 miles are considered.

higher than the overall correlation during the day time and lower during the

night time. This is consistent to the Moras’s I values.

3.3 Clustering Base Stations

One can think of the pairwise cross-correlation as a similarity measure between

base stations. It will be interesting to find out whether we can cluster base

stations based on this measure and how such clusters look. The base stations
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within each cluster then exhibit similar behavior in terms of resource usage.

Understanding the nature of such clusters can help the network provider in

resource planning, as the provider now can think in terms of clusters or groups

instead of individual base stations. The spatial nature of such clusters would be

also interesting. For example, if the clusters form large connected components,

then it demonstrates spatial significance. This has significant implication in

terms of spectrum allocation. This, for example, shows that one can find large

geographic regions, as opposed to base stations, that have correlated resource

usage behavior.

We use ‘spectral clustering’ for clustering base stations. Spectral cluster-

ing is a powerful technique to partition points (in our case, base stations) into

disjoint clusters such that points in the same cluster having a high degree of

similarity (i.e., correlation) and points in different clusters having low degree

of similarity [99, 143, 21]. The clustering algorithm works on the basis of a

‘similarity matrix.’ In our case, the similarity matrix is constructed using the

pair-wise cross-correlation values for all pairs of base stations, thus forming a

matrix.

We use the spectral clustering technique as presented in [99, 143]. The

limitation of this technique is that the number of desired clusters needs to

be specified. To compute the ‘optimum’ number of clusters, we follow the

technique proposed in [143], where the algorithm self-tunes itself.

We get 4 clusters as the optimum for hourly data and 5 clusters for 10

min interval data. As the results for both the intervals are somewhat similar,

we only show the results for 1 hour interval. Figure 20 shows the clustering

output for a sample geographic region of size 110 mile × 110 mile. The map is

partitioned into Voronoi cells. Each Voronoi cell approximates the geographic

region of one base station’s coverage. The color of each Voronoi cell indicates

its cluster. The Voronoi cells widely vary in size – denser in downtowns/city

centers and sparser in suburbs. We have also provided zoomed-in versions of

two of the denser areas in the map.

Visual inspection of these colored maps reveals some degree of spatial con-

nectedness of the clusters. Particularly, the ‘blue’ and ‘cyan’ clusters exhibit

significant connectedness. Also, note that the ‘blue’ cluster is quite prevalent
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Figure 20: (a) Spectral clustering of base stations in a 110 mile× 110 mile re-
gion shown by coloring of the corresponding Voronoi cells. Four different colors
represent four clusters. (b) and (c) are the zoomed-in versions of the densely
deployed base stations in the two areas indicated by red dotted rectangles in
(a) on the left and right side, respectively.
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Figure 21: CDF of the distance be-
tween two neighboring base stations
in each cluster.
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Figure 22: Fraction of neighbor pairs
that are in the same cluster, catego-
rized on distance.

in the dense (downtown) areas, followed by the ‘cyan’ cluster. The sparser

areas, on the other hand, have contributions from all clusters, though ‘cyan’

appears somewhat more prevalent. Figure 21 shows the CDF of the distances

between the neighboring base stations in each cluster. The same cluster color

is used as before for easy readability. Note that the ‘blue’ cluster is the most

densely packed (small cells). The ‘brown’ and ‘yellow’ clusters are mostly

concentrated in the suburbs and thus less densely packed (larger cells). This

indicates that there is some relationship between cell size and the cluster it

belongs to. There is a tendency of cells of similar sizes to cluster together.

Finally, to further analyze the spatial connectedness of the clusters, we

investigate the probability of a neighboring pair being in the same cluster.

Overall, about 40% of the neighbor pairs are grouped in the same cluster.

We also calculate this probability for neighbor pairs at different distances.

Figure 22 shows that the neighbors that are geographically closer have a higher

tendency to be in the same cluster (upto almost 50%).

3.4 Causality

From correlations, we turn to functional influences in this section. An im-

portant metric to understand the underlying functional connectivity in the
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network is the ‘causal influence’ among the base stations. To keep the com-

putational requirements reasonable, we do this investigation among the neigh-

boring base stations only. The causality relationship among the neighboring

base stations can be helpful in predicting the base stations’ loads, and thus

allocate the spectrum accordingly in advance. While there are many avenues

to pursue this, we use the notion of Granger causality [62], a statistical concept

used to measure causality between a pair of time series.

3.4.1 Granger Causality

Granger causality (G-causality) determines whether one time series is useful in

forecasting another [62]. According to G-causality, one stochastic variable X2

‘Granger-causes’ another stochastic variable X1 if the information in the past

of X2 helps predict the future of X1 with a better accuracy than is possible

when considering only information in the past of X1 alone [62, 128]. In other

words, there is a Granger causality from X2 to X1, if X2 provides statistically

significant information about the future value of X1. Such causality relation

is not symmetric, meaning that ‘X2 Granger-causes X1’ does not necessarily

imply ‘X1 Granger-causes X2’.

Granger causality was originally used in the field of economics to study

the relationship between different economic variables such as GDP, oil price,

stock market price, unemployment rate and so on [48, 69]. Recently there

has been a growing interest in the field of neuroscience for using G-causality

to identify causal interactions in neural data (see, e.g., [127, 129]). Use of

Granger causality in communication network measurement and analysis is,

however, rare. The lone example we have found is a recent study using Granger

causality to understand the relationship between building occupants’ energy

usage and their IP traffic [82].
We now present the formal definition of Granger causality. Suppose, we

have two time series X1(t) and X2(t) both of length T . We can describe the
two time series using a bivariate autoregressive model [128]:

X1(t) =

p
∑

i=1

A11,iX1(t− i) +

p
∑

i=1

A12,iX2(t− i) + ε1(t). (4)
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Figure 23: CDF of model order for each pair of base stations.

X2(t) =

p
∑

i=1

A21,iX1(t− i) +

p
∑

i=1

A22,iX2(t− i) + ε2(t). (5)

Here, p < T is the maximum number of lagged or past observations of X2

(or X1) used to predict the current value of X1 (or X2) at time t. It is called

the model order and is provided as a parameter to the model. There are

different criteria to determine the appropriate model order, p, so that the data

can be represented correctly. Among them, Bayesian Information Criterion

(BIC) [126] or the Akaike Information Criterion (AIC) [20] are mostly used.

The matrix, A = {Amn,i} contains the model coefficients and ε1 and ε2 are the

prediction errors or residuals. By definition, X2(X1) Granger-causes X1(X2),

if all the coefficients A12(A21) are non-zero (in other words, if the variance of

error term ε1(ε2) is significantly reduced by the inclusion of X2(X1) in the

first (second) equation). It is important to check whether the causality is

statistically significant or not. This can be done using the F-test [128]. To

become statistically significant the F-statistic value should be greater than

a critical value of the F-distribution for some desired significance threshold,

between 0 and 1. A significance threshold closer to zero indicates a stricter

test.

In our context, the time series for airtime consumed for a pair of neigh-

boring (in the Voronoi sense) base stations describe the behavior of the two
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Figure 24: CDF of unit causal density of each base station.

variables X1 and X2. We have used the ‘Granger Causal Connectivity Analy-

sis’ toolbox [128] for MATLAB for our analysis. Akaike Information Criterion

(AIC) is used to find the model order p. For the statistical significance test we

use 0.05 as the critical value. We test the causality for every neighboring pair

of base stations in both directions. In our analysis, 32% of the neighbor pairs

show significant causality at least in one direction for 1 hour interval data.

This number increases to 40% when airtime is summarized to 10 min interval.

One can conclude that roughly for one third of the neighboring base station

pairs there is casuality at least in one direction that is statistically significant.

Figure 23 shows the distribution of model orders for each pair of base stations.

Note that model order is generally low (median is 5-7) for both the intervals.

To understand the causal properties of the network as a whole, we define a

causality graph using the pair-wise causal relations [82]. The Granger causality

graph is a directed graph G = (V,E) where V is the set of vertices, E is the set

of edges.Each base station in the network becomes a node in the graph. There

is an edge from node a to b in the graph, that is (a, b) ∈ E, if the corresponding

base stations are neighbors in the voronoi construction and there is significant

Granger causality from a to b. The causal graph allows us to explore an

interesting set of causal properties [128] that we will describe now.
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3.4.2 Causal Density

The causal density of the dynamics of a system is a global measure of causal in-

teractivity [128]. It is a single index showing the mean causality over the whole

network. High values of causal density indicate that the network elements are

globally coordinated in their activity. It is defined as the average G-causality

over all the pairs of base stations considered. Causal density bounded in [0,1]

gives the average count of significant Granger causality over the whole network.

The causal density can be defined using the causality graph as follows:

Causal density =

∑

a∈V

∑

b∈V−{a} I[(b, a) ∈ E]
∑

a∈V |Na|
(6)

where Na defines the set of neighbors of base station corresponding to node

a in the voronoi sense and I is the indicator function. In our analysis we get

causal density equal to 0.322 and 0.4 for 1 hour and 10 min interval data,

respectively. This indicates existence of statistically significant G-causality on

average.

A similar term, unit causal density can be defined to find the interaction

locally for each base station [128]. This indicates how a base station is causally

involved with its surrounding base stations. It is the sum of causal interactions

around a base station normalized by its number of neighbors. A node with

high unit causal density can be viewed as causal hub. Figure 24 shows the

distribution of unit causal density. The median of causal density is 0.5 (0.7)

and around 20% (40%) of the base stations have causal density greater than

1 for 1 hour (10 min) interval, which indicates significant G-causality with at

least 50% of neighbors in either direction.

3.4.3 Causal Flow and Causal Path

It is interesting to explore which base stations produce more causal influence

on its neighbors and which are the sink base stations, i.e., are mostly influenced

by its neighbors. The concept of causal flow is used to discover this. Causal

flow of a base station is the difference of causal interaction by it to its neighbors

and causal interaction pointed to it by its neighbors [128]. In the context of
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Figure 25: CDF of causal flow.
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Figure 26: CDF of path lengths in the causal graph.

the causality graph, the causal flow of a node, a is the difference between its

out-degree (number of edges from node a) and in-degree (number of edges

into node a). A node with highly positive causal flow can be viewed as causal

source and highly negative causal flow can be viewed as causal sink. Figure 25

shows the CDF of causal flows of the base stations in our network. It shows

that about 30% of the base stations have large causal flow – either positive

(≥ 2) or negative (≤ −2). This observation is similar for both the intervals.

Next we investigate how the influence from one base station propagates
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Figure 27: (a) CDF of average absolute error percentage in prediction and (b)
CDF of improvement in prediction.

or flows in the network. The paths in the causality graph indicate these flows.

This somehow indicates the order in which the forecasting and resource alloca-

tion should be done for the base stations in the network. We define the causal

path as a path in the causality graph. We enumerate all such causal paths in

the causality graph. Figure 26 shows the CDF of causal path length in the

causality graph for both intervals. It shows the presence of very long paths in

the graph. The median is around 15 and the 90-percentile path length is 37.

In our future work, we plan to investigate whether the causal flow prop-

erties as well as the causal paths have any ‘out-of-band’ property. We are

interested in identifying the causal sources and sinks on the map and correlat-

ing them with various forms of GIS data. We also like to investigate whether

causal paths follow major roadways or neighborhoods with special properties.

3.4.4 Load Prediction using Causality Relations

Recall that a base station’s load can be predicted better using the past in-

formation of other base stations that ‘Granger-cause’ the first one. Here, we

show how knowledge of causality improves prediction. To do the prediction,

we use the Auto-regressive Moving Average (ARMA) [4] model. We only use
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the one-hour interval summarization data. First, for each base station we cre-

ate the model using its own load of the first 4 weekdays and predict the load

of each hour of the fifth weekday of our data set. Next, we do the same us-

ing the past load of all the neighboring base stations with causal relationship

along with its own history. Figure 27(a) shows the CDF of average absolute

error percentage in prediction of each base station using both the techniques,

while Figure 27(b) shows the CDF of improvement in prediction (the differ-

ence of average absolute error) of each base station. The plots show significant

improvement in prediction when causal influences are taken into account.

3.5 Related Work

Relatively few papers have analyzed cellular network characteristics using a

large scale measurement as this. The authors in [63] have shown the dis-

tribution of voice call durations analyzing the call logs from a cellular GSM

provider. In a recent work [25], the authors have developed a tool to generate

synthetic mobile network traffic using different data sets and models providing

partial information about mobility and calling patterns. The authors in [30]

have investigated some aspects of human dynamics and social interactions us-

ing large scale mobile phone records. The authors in [112] have characterized

the settings of operational state machine that guides the radio resource alloca-

tion policy in a UMTS network. They have used actual cellular data traces for

the investigation. The authors in [74] have analyzed customer tickets collected

from a large cellular network to identify potential network problems. The au-

thors in [81] have grouped users and browsing profile simultaneously using real

mobile network data collected from a large 3G cellular service provider. The

authors in [138] have presented a large scale measurement analysis to char-

acterize the primary usage in cellular voice network. They have investigated

the spatial correlation in the network but in a limited scope. In our earlier

work [105] presented in Chapter 2 we have used the same data set as in this

work and analyzed individual subscriber behaviors, subscriber mobility, and

base station traffic dynamics at length.
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3.6 Observations and Conclusion

In our knowledge, our work presented in this chapter is the first major study

in measurement analysis of a large-scale 3G cellular data network with specific

focus on spatial correlation and causality properties. We have made several

important observations that have implications in network resource managa-

ment:

1. There is a significant amount of spatial correlation for base stations that

are in close proximity. These correlations are time sensitive. They in-

crease during high traffic times (midday) and fall during low traffic times

(midnight).

2. Spectral clustering based on cross-correlation shows that cells of similar

sizes and in the same neighborhoods have a tendency to be clustered

together. Also, the number of clusters was found to be small.

3. There is a statistically significant causal structure in the network affect-

ing roughly one-third of the base stations. Causal paths tend to be long,

indicating long chains of influence in the network.

The above observations can help develop future analysis and forecast-

ing tools to better provision the network, and for better spectrum and radio

resource management and planning. For example, spatially significant correla-

tion in the network load indicates that for many monitoring purposes it may be

sufficient to sample loads sparsely across time and space. Since there are only

few clusters, these techniques can be made quite attractive. This will in effect

reduce the network monitoring burden on the part of the operator. Existence

of causal influence between neighboring base stations indicates that load fore-

casting techniques need to use past loads of neighbors for better prediction.

Such forecasting may be useful in various resource management decisions, in-

cluding spectrum management and energy conservation. The model order is

typically small, meaning that one does not need to go too much into the past

and thus archiving burden is not significant. Further, the existence of long

causal paths is interesting and needs to be examined carefully with respect to

available out of band information, such as nature of neighborhoods.
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Chapter 4

Prioritizing Traffic flows and

Opportunistic Scheduling

4.1 Introduction

Considering the situation of exponential increase in traffic volume and the

analysis presented in the previous chapters, it is a challenge for the service

providers to accommodate the traffic as increasing network capacity involves

major capital investment in terms of new spectrally efficient technology, ad-

ditional spectrum and/or additional base stations. As the network resource

is limited and can not be increased readily, it is important for the service

providers to come up with a plan to tackle the traffic out-burst.

As reported in previous studies [25, 105], the load under a base station in

a cellular data network fluctuates during the day, following a diurnal pattern,

very high during the peak period (mid day) and typically low during the off-

peak period (late night). The difference of traffic volume between peak and

off-peak period is also very high. Due to this high variance in load, base station

resources are under-utilized for a significant period during the day. Dynamic

resource allocation can address this situation. But this does not quite solve

the issue of capacity limitation, as during the peak period all base stations

must allocate all available resources to accommodate the traffic. We take the

approach of addressing this issue in the higher layer by shifting some traffic load
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from peak to off-peak periods in an opportunistic fashion. The goal is to reduce

the peak-to-average ratio of traffic load in the network – ideally flattening the

load curve as much as possible. This enables the provider to accommodate

more users in the network without investing in capacity improvement. The

basic idea is not unlike recent efforts in developing smart electric grids [125, 97]

where there is an interest in reducing peak load by shifting load towards off-

peak hours when electricity is cheaper. But in our case, the temporal shift

of the load also prompts the opportunity of spatial movement considering the

mobility of the subscriber. This should reduce the variance of load under a

base station and also lower the peak of the load curve while serving the same

total load. This evidently allows the service provider to accommodate more

users in the network without any direct investment on capacity.

4.1.1 Approach

In this chapter, we consider a model where a fraction of network flows identified

by the subscribers can be delayed. Flows of this category are treated with low

priority. Interactive applications and most of the short-lived flows like mail

reading or http browsing may not fall into this category. Possible examples

of low priority flows are media download/upload, P2P flows etc., that can

tolerate a reasonable amount of delay without hurting the user experience any

significantly. The subscriber can specify a deadline by which he/she wants the

service to be provided and network makes a best-effort to find appropriate spot

in time and space to fulfill the request. The rest of the traffic in the network

is treated as high priority and they are served immediately. This model allows

the network to move around the low priority traffic both in space and time, and

schedule them with the availability of spare resource of the currently associated

base station of the corresponding subscriber.

The above approach provides two clear benefits:

i. Moving low priority traffic from a congested space-time point to another

that has the capacity to carry the traffic; this allows the high priority

traffic to be served with better performance.

ii. Reducing peak resource requirements by removing the load from the
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peak period to off-peak period; and thus indirectly allowing the network

to make room for more users.

Our focus in this chapter is to evaluate the model described above and

analyze the feasibility of two simple approaches to schedule the low priority

traffic: (i) greedy scheduling approach and (ii) modeling-based approach. We

evaluate the waiting time of the low priority traffic and also analyze the effect

on high priority traffic. We also investigate how much the model can reduce

the resource requirement in the network. The evaluation is done using a trace-

driven simulation on a large-scale data traffic collected at the core of a nation-

wide 3G network for our analysis. The data set spans one week in 2007 and

consists of all data traffic associated with the entire subscriber base (in the

order of hundreds of thousands) in a nation-wide network with thousands

of base stations. All generated data packet headers (but not including user

payloads) and various signaling and accounting packets are captured, archived

and later post processed using a tool we have developed to gather all the flow

level information. This is the same data set we used in our earlier works [105,

106] presented in Chapter 2 and 3.

The rest of the chapter is organized as follows. We describe our model

and scheduling strategy in Section 4.2. We present our analysis using the

greedy scheduling-based approach in Section 4.3 and describe the modeling-

based approach in Section 4.4. We describe the implications both from the

perspective of network provider and subscriber in Section 4.5. We discuss

related work in Section 4.6 and conclude in Section 4.7.

4.2 Overall Approach

4.2.1 Model Description

We use an abstract model of the base station behavior to help us analyze op-

portunistic scheduling. A number of base stations covers a geographic region.

A subscriber moves in the network and associates to a single base station at

any time instant. When a subscriber creates a flow, the associated base station

allocates radio resource (channel) for that flow. Here flow means TCP or UDP
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Figure 28: Overall idea of opportunistic scheduling of low priority flows. The
color in each cell indicates the congestion level in that cell. Red means highly
congested and green means no congestion. The trajectory of a subscriber is
shown. The low priority flow is served when the congestion level at the cell is
low.

flow (upload or download). If the subscriber moves from one cell to another,

hand off takes place and all the ongoing flows are now served by the new base

station. In the current cellular network design, all regular flows are treated

equally (i.e., ‘high priority’ in our terminology), meaning that they need to

be served immediately. Base stations need to be equipped with enough re-

source to accommodate all such flows, especially in the peak period. A flow

arriving in a congested situation either gets dropped or served with a poor

performance.

In our model, we introduce a second category of flow priority. These flows

have ‘low priority’ and can be delayed and scheduled opportunistically based

on the resource availability. Figure 28 shows the overall idea. A subscriber
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creating a flow tags it with low priority and informs an ‘agent’ running higher

in the hierarchy inside the core network. This agent also tracks individual base

station loads and is responsible for scheduling the low priority flows. The agent

uses its knowledge of the base station loads and also the estimated mobility of

corresponding subscribers for the actual scheduling decisions. Note that low

priority flows may need to wait for being scheduled by the agent and even after

the start, it may need to be defered/suspended and resumed later for multiple

times until it is completely served. This means that low priority flows may

be served in chunks, as demonstrated in Figure 28. The subscriber can also

specify a time window for a low priority flow within which the flow needs to

be completed. The agent considers this time window as a deadline for that

low priority flow and tries to schedule the flow accordingly.

There are many ways to implement such an agent-based scheduling at a

higher layer. For example, there could be a counterpart of this agent running

on the mobile device as well. This counterpart coordinates scheduling with

the agent in the core network. The control information can be exchanged

as higher layer packets (with high priority). While at the high level, the

core idea is similar to QoS scheduling and such scheduling could potentially

be done at the radio layer – depending on the actual technology used, our

unique approach solely performs the scheduling at the higher layer (at flow

level) at a coarse granularity. This makes the approach completely agnostic to

underlying radio technology. This also enables easy integration of application-

specific information with the scheduling. For example, photo upload on a social

network could be non-urgent and can be scheduled at a later time, while emails

must be downloaded immediately.

4.2.2 Approach

We assume that a fraction of the flows created by the subscribers is marked

as low priority flows. We consider two different approaches for scheduling the

low priority flows.
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Greedy Scheduling Approach is a simple approach where the agent

monitors the load of the base station at a suitable granularity where the cor-

responding subscriber of the low priority flow is associated with and starts

the flow whenever there is any spare capacity available. While the idea it-

self is straightforward keeping track of each of the base station’s load for a

large number of low priority flows may create an extra overhead of control

message traffic in the network. We discuss about this approach in more detail

along with the results of our simulation run in Section 4.3. This greedy ap-

proach demonstrates the maximum potential of improvement via opportunistic

scheduling.

Modeling Based Scheduling Approach schedules the low priority

flows using a predictive model of base station loads and subscriber mobility.

This makes it more practical as load measurements can happen at a coarser

granularity and continuous real time load information is not needed. It mod-

els the mobility pattern of each subscriber in the network to predict their

locations. It also models the load on each base station in the network and

determines the opportunistic time spots of each base station where low pri-

ority flows can be scheduled. Using these two models, low priority flows are

scheduled using a network flow-based problem formulation. While practical,

this approach can suffer from modeling error. We discuss about this approach

in more detail in Section 5.2.

We investigate how these approaches can help us in reducing the resource

requirements in the network. To evaluate this, we assign a lower capacity

to each base station in our simulation run and estimate the effect on both

high and low priority flows for the same traffic as in our trace. The goal here

is to schedule low priority flows so that high priority flows remain relatively

unaffected and low priority flows suffer only reasonable delays.

4.2.3 Data Set

Our data set provides a range of information for each flow created by sub-

scribers including the start time, flow duration in seconds and number of bytes

transferred. It also provides the information of the corresponding subscriber
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and the base station where the flow is initiated. It keeps track of the mobil-

ity information of each subscriber regardless of flow creation. Thus, we have

knowledge of all handoffs.

To perform any scheduling, we need to have some idea of the capacity

of the base stations. However, this information is not directly available from

the data set. We model the capacity, Cj, of a base station j as the maximum

aggregate throughput of the base station observed during the span of the data

trace. While this may not be perfectly accurate, this indeed provides a lower

bound on the capacity. Thus, we will at best underestimate performance.

We also model the flows and their resource requirement. Our data set

keeps track of the total number of bytes transferred and duration for each

flow. From this information, we calculate the average throughput, T avg
i for each

flow i. Along with that our data set also provides the maximum throughput,

Tmax
ij achieved for each flow, i during its life-time under a base station, j. We

consider this as an indication of the channel quality for that flow under that

particular base station. Our flow-model suggests that each flow, scheduled

under a base station, is served with a fraction of its maximum throughput.

That is, a flow i scheduled under base station j is served with a throughput of

σTmax
ij , where 0 < σ ≤ 1. At any instance of time, all flows under a base station

j are served with the same fraction that is determined using this formulation:

If
∑

i T
max
ij ≤ Cj, then σ = 1; else σ is such that

∑

i σT
max
ij = Cj.

The value of σ depends on the availability of the resources, specifically

on the number of active flows in the base station. Since our trace does not

have any packet level information, it is assumed that each flow is served with

a constant throughput (rate) that depends on σ. The rate (or, σ) is changed

at discrete points of time – at flow arrival or departure. A flow departs when

all the bits specified in the trace are served.

To demonstrate the accuracy of the above capacity and flow rate models,

we do a round of validation test via a simulation run. We use the data set

as is without any priority enforcement of the flows and with full capacity of

the base stations as modeled above. The goal is to simulate the flows with

the arrival time and transmitted number of bytes as specified in the trace and

investigate the deviation of the flow duration in the simulation with respect
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Figure 29: CDF of the deviation of flow duration in the simulation from that
recorded the trace of each flow. Here, all the flows are treated with same
priority.

to the recorded flow duration in the date set for each flow. Figure 29 plots

the distribution of this deviation. More than 80% of the flows follow the same

timeline as in the trace and among the rest of the flows, most of them deviate

only marginally. This indicates the effectiveness of the model we will use in

the simulation.

Low priority flows are introduced under a base station based only on

either of the scheduling approaches discussed in next two sections. Only the

spare capacity after serving all the high priority flows with σ = 1 (as discussed

above) is distributed among all the currently assigned low priority flows. If

there is no spare capacity available, the low priority flows must wait. More on

this will be discussed for each approach in the respective sections.

Our data set keeps track of the total number of bytes transferred and dura-

tion for each flow. From this information, we calculate the average throughput,

T avg
i for each flow i. Along with that our data set also provides the maximum

throughput, Tmax
i achieved for each flow, i during its life-time under a base sta-

tion, j. We consider this as an indication of channel quality for that flow under

that particular base station. Our flow-model suggests that each flow, sched-

uled under a base station, is served with a fraction of its maximum throughput.
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That is, a flow i scheduled under base station j is served with a throughput

of σTmax
ij , where 0 < σ ≤ 1. At an instance of time, all the flows under a base

station j are served with same fraction which is obtained using this formula-

tion:
∑

i σT
max
ij ≤ Cj, 0 < σ ≤ 1. The value of σ needs to be changed based

on the availability of the resource, specifically at the arrival and departture of

any flow under the base station. We assume that when a flow is scheduled with

some resource, it is served constantly with the specified throughput until that

rate is changed or the size of the data transmission for that flow is over the

total number of bytes as specified in the trace. This may not be realistic as in

real protocol physical resource such as channels which are assigned to mobile

devices can be time shared among multiple flows and acquisition of physical

resources should depend on the packet generation behavior of the flow.

To demonstrate the effectiveness of our capacity and flow model, we do a

sanity checking by a simulation run. We use the data set without any priority

enforcement of the flows and with full capacity of the base stations observed

from the trace. The goal is to simulate the flows with the arrival time and

transmitted bytes as specified in the trace and investigate the variation of flow

duration in the simulation with respect to the flow duration in the date set for

each flow. Figure 29 plots the distribution of the variation of flow duration.

More than 80% of the flows follow the same timeline as in the trace and among

the rest of the flows, most of them are deviated marginally. This indicates the

effectiveness of the model of our simulation.

Low priority flows are introduced under a base station based only on either

of the scheduling approaches discussed in next two sections. Only the spare

capacity after the high priority flows are distributed among all the currently

assigned low priority flows. More on this will be discussed for each approach

in the respective sections.

4.3 Greedy Scheduling Approach

In this section, we describe the greedy scheduling approach. We also develop

a trace driven simulator to evaluate the approach using our data set described

before. Our goal is to quantify the benefit that this model provides in terms
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Figure 30: Flow chart describing the greedy scheduling approach.

of reducing resource requirement using the greedy approach.

4.3.1 Approach

The greedy scheduling approach is described below. Also, see the flow chart

in Figure 44.

• High priority flows are treated in the regular fashion. They start im-

mediately after arrival. All the active high priority flows under a base

station share the total capacity so that each of these flows is served with

its own required capacity based on the availability.

• Upon arrival of a low priority flow from a subscriber, the agent checks

whether there is any spare capacity under the base station where the sub-

scriber is currently associated. If there is no capacity available, the flow

is stored in a queue where all such low priority flows wait to be served.

Otherwise, the flow starts immediately with the capacity available.

• An active low priority flow is deferred in case of an arrival of an high

priority flow under the same base station having no spare capacity. The

deferred low priority flow is stored in the queue with its current status.
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• For each of the low priority flows waiting in the queue, the agent always

checks for any spare capacity under the base station where the corre-

sponding subscriber is associated with. Whenever the agent finds an

opportunity under a base station, it starts a low priority flow from the

waiting list with the capacity available.

• When a subscriber having active flows hands off from one base station

to another, all the active high priority flows (if any) of that subscriber

are first accommodated under the new base station. It may require to

defer a number of active low priority flows under the new base station to

accommodate the migrating high priority flows. If the mobile subscriber

has any low priority flow being served by the old base station, the agent

makes a decision about that flow based on the available capacity of the

new base station.

We have developed an event-driven queueing simulator to study the im-

pact of opportunistic scheduling. To classify flows into high and low priority

we take the following approach. We assume that short-lived flows are of imme-

diate need and cannot be delayed (e.g., http browsing or email reading). On

the other hand, the subscriber could be incentivized to delay long-lived flows

(e.g., large download or P2P traffic). We consider flows longer than 1500 sec

as long-lived flows, where the overall average flow duration among all the flows

is 150 sec. In our data set, around 12% of flows are such long-lived flows. A

random subset of such flows (about 8% of all flows in the network) is chosen

as low priority for our simulation.

The throughput of the individual high priority flows varies depending on

the load. As mentioned in the previous section, each high priority flow is

assigned a fraction (σ) of its maximum throughput. In the simulation, a low

priority flow is started under a base station only if all the current high priority

flows are being served with their maximum throughput (i.e., σ = 1) and the

base station still has spare capacity. The spare capacity of the base station

is distributed among the active low priority flows under that base station.

The number of low priority flows under a base station is incremented as long

as each of the active low priority flows under that base station achieves at
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least its average throughput, T avg
i . Arrival of a new high priority flow under

a base station may need to suspend zero or more low priority flows depending

on the capacity situation. In the case when there is no active low priority

flow under the base station, the new flow is accommodated only by adjusting

the throughput of other high priority flows, if required. On the other case,

a number of active low priority flows under the base station is suspended to

start the new high priority flow with its maximum throughput.

Our goal of this evaluation is to investigate how the model and the greedy

approach can reduce the resource requirement in the network. To do this, we

study what would happen to the incoming flows if the base station capacities

were reduced. We do the simulation study for capacities such as 20%, 50%,

80% of the actual capacity of the base stations as determined from the trace

and also provide the 100% results as the base case. The idea is to study the

impact on the flows with reduced capacity base stations. If the impact is

acceptable, e.g., low priority flows are not delayed substantially and only few

high priority flows are impacted, this would indicate that more subscribers

could be accommodated with the provisioned capacity.

4.3.2 Simulation Results

With flow prioritization and opportunistic scheduling, it is possible that high

priority flows end early relative to their actual end times in the trace. This is

because they are expected to receive higher throughputs during service. Low

priority flows on the other hand are likely to be deferred, possibly multiple

times, and thus would end late relative to its actual end time in the trace. We

use the term ‘delay’ for a low priority flow to indicate the difference between

its end times in the simulation run and the actual trace (end time in simulation

minus end time in trace). We use the term ‘gain’ for the high priority flows

to indicate the same thing, but in the opposite direction (end time in trace

minus end time in simulation).

Figure 31(a) shows the effect of greedy scheduling on the low priority flows

for different (reduced) capacity assignments of the base stations. Note that

the average delay of low priority flows is 1200 sec (20 min) when the capacity
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Figure 31: Effect on the low priority flows in the greedy scheduling approach.
75% of the long-lived flows ( 8% of all flows) are assumed low-priority.
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Figure 32: Effect on the high priority flows in the greedy scheduling approach.
75% of the long-lived flows (8% of all flows) are assumed low-priority. The
rest are high priority.
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of base stations is made half of the actual. This is comparable to the original

flow duration of long-lived flows in the data set as evident in Figure 31(b) that

shows the delay of each flow normalized by its flow duration specified in the

data set. On the other hand, Figure 32 shows the gain of the high priority flows

in actual and normalized fashion. Note that more than half of the flows are

unimpacted and and over one third of the flows show gain in varying degrees

depending on the capacity of the base stations. A negligibly small fraction of

high priority flows are negatively impacted for capacities 100%, 80% and 50%.

This fraction is only noticeable (about 5%) for the 20% capacity case.

4.3.3 Critique of Greedy Scheduling

While the greedy scheduling approach is straightforward, the approach as de-

scribed requires the agent to monitor the load on the base stations on a con-

tinuous basis, looking for scheduling opportunities. This naturally requires a

significant amount of control information to be passed around among the base

stations and the agent. This could be a significant overhead on the network,

especially during the peak periods. Managing all the low priority flows in the

network by a single agent may also be a scalability issue. Also, a low priority

flow may suffer from a large number of suspend/resume operation incurring

an extra processing overhead on the network. This can potentially introduce

thrashing. Much of these issues can, however, be addressed via well-known

techniques, such as choosing more granular measurement/scheduling intervals

to reduce control overhead and choosing load thresholds to make scheduling

decisions for low priority flows to reduce thrashing. But these can also nega-

tively impact the performance advantage.

However, the greedy scheduling evaluation does indeed point out the sig-

nificant capacity advantage that can be obtained just by lower the scheduling

priority of a small number of flows.
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4.4 Modeling Based Scheduling Approach

We propose a modeling based approach to address the practical limitations of

implementing the greedy approach that requires continuous load monitoring.

The modeling based approach relies on the hypothesis that human mobility

and network load are predictable and thus models for them can be created

using historical trace data and off-line analysis. These models are useful in

scheduling low-priority flows. This strategy completely eliminates the need for

continuous real time monitoring. To establish the usefulness of this approach,

we first evaluate how much predictability exists in the load and mobility that

can be gainfully exploited.
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4.4.1 Profiling Base Station Load

We first determine how frequently periods of opportunity arise when the base

station load is ‘low.’ Low is defined as 25% of the capacity, where the capacity

is defined as the maximum load the base station has seen in the entire period

of the trace as before. We do this study in the granularity of an hour. The

Figure 33 shows the CDF of the number of these opportunistic hours of a

base station in each day. Note that a typical base station has at least 16 such

‘opportunistic hours’ in a day and the behaviour is similar among all the week-

days. Weekends, as can be expected, provide more number of opportunistic

hours.

The next question is: Is the set of opportunistic hours of a base station

‘consistent’ (i.e., same hour of day across days)? Figure 34 shows the CDF

of the number of consistent opportunistic hours of each base station among

the 5 weekdays. We kept the weekends out of this as the nature of load in

weekends is different from the weekdays. We see that a typical base station

has 7 opportunistic hours that are consistent among days. This analysis of

base station load indicates that a plenty of scheduling opportunities exists for

low priority flows and much of it is predictable.
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4.4.2 Profiling Subscriber Mobility

We now explore whether similar predictability exists in subscriber mobility.

We model the subscriber trajectories to find out the probability of a subscriber

being at a specific location (that is, in a specific cell) at a given time instance.

To do this, we split each day into time periods (hour in our analysis). For

each period, we measure the total time a subscriber spends in different cells.

Specifically, if the length of the time period is lt, then for each time period ti

of the day, the subscriber is observed for a total of 5 · lt time as profiling is

done using the 5 weekdays in our data set. Suppose, the subscriber is seen at

location j for duration δijk during the the time period ti on day k. We calculate

the probability of the subscriber being in location j during time period ti as

the ratio of
∑5

k=1 δijk and 5 · lt. The distribution is created for each subscriber

for each time period.

Figure 35 shows the CDF of the probability of a subscriber being in the

most likely location at different time periods. Here we consider 1 hour time

period and a few selected periods are shown. The location with the highest

probability (see above) during a time period is chosen as the subscriber’s most

likely location at that time period. Note that a typical subscriber is found in

his most likely location with probability 0.4-0.6 (median values). Note that this

probability increases during the off-peak period. This analysis indicates that

a subscriber’s location can be predicted with a reasonable degree of accuracy.

4.4.3 Scheduling Low Priority Flows

We formulate the problem of scheduling the low priority flows as a network flow

problem [41] using the profiles created for each base station and subscriber.

Here, for scheduling convenience we also assume that each low priority flow

also has a deadline by which it needs to be finished. We construct a network

graph as shown in Figure 36 as follows:

• Each subscriber having at least an unserved low priority flow is respre-

sented as a node ui. Each of these nodes is connected to nodes, marked

as fj, representing low priority flows created by the corresponding sub-

scriber. The weight on this directed edge, denoted as dij is the estimated
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number of bytes to serve the low priority flow.1

• We create an instance bkt for each base station bk at time period t. Each

of these nodes is connected to a sink with a directed edge with weight

ckt denoting the spare capacity available under base station bk at time

period t. This is obtained from the profiles created for each base station

based on historical data or via any other statistical estimation process.

• Node fj representing a low priority flow created by subscriber ui is con-

nected to different base station instances based on the estimated mo-

bility of the subscriber and the deadline of the flow. This means that

fj is connected to bkt if the subscriber ui is likely to be under base sta-

tion bk with reasonably high probability at time period t (t is within

1We assume that such estimation can be done using application layer information or
prior profiling.
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the specified deadline of the flow). The weight of this edge, denoted as

xjkt is a function of the throughput achieved and the duration of the

subscriber’s stay under base station bk in period t. This is an estimation

of the number of bytes the subscriber ui can transmit during his/her

stay under base station bk in period t. This is also modeled from the

historical data.

The scheduling agent constructs this graph periodically with all the low

priority flows waiting with their current states and determine the schedule

by solving this as a special case of the network flow problem where there are

multiple sources and multiple sinks [15]. The subscriber nodes ui act as source

nodes. This formulation makes sure that base stations do not get overloaded

and low priority flows are scheduled with in the specified deadline. As the

scheduling is done by the agent periodically, it can cover up any modeling and

estimation error in subscriber mobility and base station loads. The mobile

device with the subscriber informs the agent about its current location (i.e.,

associated base station) whenever there is a handoff. Based on the location of

the subscriber and the computed schedule, the agent starts any low priority

flow that might be waiting.

4.4.4 Evaluation

We evaluate the above modeling based approach in a similar manner as we

have done it for the greedy scheduling approach: assigning a lower capacity

to the base stations and analyzing the effects on both high and low priority

flows to demonstrate the reduction in resource requirement. Before going into

the real evaluation, we model the load of each base station in the network

to predict the spare capacity at each time period (one hour in our case). As

our evaluation includes assigning lower capacities to the base stations, we also

need to model the base station load for each of the lower capacity assignment.

For each such capacity assignment we simulate the network with all flows in

the data set and model the spare capacity in each time period for each base

station. We also model the mobility of each subscriber by calculating the

probability of the subscriber being under a base station at a specific hour. For
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the purpose of this modeling, we only use the data set of 5 weekdays from our

week-long data. Week-end data is not deemed statistically meaningful as there

are only two days and their nature substantially differs from the weekdays.

For a meaningful evaluation, we will need a long term trace. Since the

trace is relatively short (only 5 weekdays), for evaluation purposes we syn-

thetically augment the trace using established statistical techniques. The aug-

mented data considers all the subscribers and base stations from the original

trace data for the weekdays. The data generation is based on the probabil-

ity of a subscriber creating a flow under a base station within a time period.

Specifically, in the augmented data set – in a given time period within a day –

a base station for a subscriber is chosen randomly based on the probability of

the subscriber’s association with this base station in the original data set at

the same time period. It is assumed that the subscriber will be associated with

this chosen base station for that entire time period. The subscriber creates

flows during this time period according to the probability distribution of the

number of flows the subscriber creates during this period. This determines

the number of flows the subscriber creates. The actual flows are then selected

randomly from the pool of flows for this subscriber for the specific time period

regardless of location.

Just like in the earlier case, we identify a fraction of the long-lived flows

(8% of all the flows in the synthetic data) as the low priority flows. For

each of these flows, a deadline is picked randomly from an window of 1 to

4 hours beyond the arrival time of the flow (with random numbers redrawn

if the chosen deadline is earlier than the original flow end time). Note that

the additional time provided to the flow is comparable to the original flow

duration as we are only considering long-lived flows as low priority. We apply

our approach to schedule the low priority flows using the models created from

our original data set. At the beginning of each hour, we determine a schedule

of all low priority flows that are waiting.2 Note that any low priority flow

arriving in the middle of an hour, will only be scheduled at the beginning of

the next hour. This situation can be improved by choosing a smaller scheduling

2The time period of one hour is chosen to make the computing process tractable. The
scheduling interval can be arbitrary.
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Figure 37: Gain of high priority flows for the modeling based approach.
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Figure 38: Fraction of low priority flows finishing within deadline.

interval. After the schedule computation, the agent will start a low priority

flow according to the schedule at the location of the corresponding subscriber

only if the base station’s current real load is lower or equal to the predicted

load of that base station at that time instance.3 At each scheduling event,

we consider all the low priority flows: either scheduled or newly arrived. This

helps the approach to overcome any modeling error.

Figure 37 shows the average gain of the high priority flows for different

capacity assignments of the base stations. The average gain of high priority

flows is around 27 seconds when the capacity of base stations is made half.

3Note that this does require checking on the monitored load in real time. But this needs
to be done only when a scheduled low priority flow is about to be started. If load estimations
are sufficiently accurate, such checking may be avoidable.
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Figure 39: Fraction flow-size of lows priority flows remaining after deadline.

This is similar to what we have observed for greedy approach. This is un-

derstandable as in both cases the high priority flows are benefiting in similar

fashion with more available resources. As the low priority flows are scheduled

by the deadlines, the delay of the low priority flows may not be interesting

to analyze. On the hand, it may be interesting to see what fraction of low

priority flows gets finished by the deadline. Figure 38 shows about 80% of

the low priority flows are finished by the deadline specified for the case when

base station capacity is made half of its original capacity. This shows the po-

tential of the scheduling approach. We also investigate what fraction of each

flow served after the deadline. For each of the low priority flows that cannot

72



meet the deadline, we calculate the fraction of flow size in terms of number of

bytes served after the deadline. Figure 39 shows the average fraction of flows

remining after the deadline. Note that the remaining portion is not significant

(about 15%) even when the capacity is made half.

Note that even with the assignment of full capacity, that is, with fraction

of capacity = 1, a small fraction of low priority flows can not meet the deadline.

Our investigation suggests that this is due to the modeling and prediction error.

Moreover, the deadlines of the low priority flows are picked randomly and is

not correlated to original flow duration.

4.4.5 Critique

The modeling based approach is more practical as it does not require any real-

time load measurement Instead it relies on historical data to derive load and

mobility estimates. It considers the global network-wide scenario as opposed to

the previous greedy approach where each base station is treated in an isolated

fashion. Many wireless providers do collect subscriber/base station specific

load information in various forms for network monitoring. Thus, off-line use of

such data to create profiles as used in the above evaluation is entirely plausible.

Scalability of global scheduling can still be an issue. But the network can

always be partitioned in smaller parts and scheduling can be done in each of

these parts independently to address scalability issues.

4.5 Discussion

We now summarize our key observations and identify important practical im-

plications both from the perspectives of the network provider and the sub-

scriber:

1) Better Service: Normally subscribers may experience poor service during

the peak periods due to network congestion. Flows can be dropped or served

with very poor rate due to congestion. A frustrated subscriber can try multiple
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times to initiate communication possibly leading to more congestion. Exist-

ing networks do not have any built-in mechanism for service differentiation

and treats all flows equally. The proposed mechanisms provide a higher-layer,

agent based mechanism to provide service differentiation based on a simple

prioritization of flows. We have shown that existing load can be served even

with half the capacity with only modest delays on the low priority flows and

little or no negative impact on high priority flows, and sometimes with some

positive impact.

2) Subscriber Pricing and Incentivization: Providers are moving away from

unlimited data plans and replacing them with tiered plans as cellular data net-

works are becoming more popular. This is evidently focused towards manag-

ing the network load better. With the opportunistic scheduling, the providers

could provide incentives to subscribers to tag (automatically via apps, or via

a profile driven approach, or even manually) flows as low priority. A possible

incentive could be that low priority flows are not metered to count as a part

of total data usage by the subscriber. This provides a semblance of unlimited

data plan to the subscriber and may attract more customers to the provider’s

network.

3) Reducing Resource Requirement: Our analysis with both the approaches

shows that the resource requirement of base stations can be reduced signifi-

cantly considering only a small fraction of flows with low priority. We believe

that this can be reduced even more if the fraction of low priority flows in-

creases. The service provider can utilize the spare capacity to accommodate

more high priority flows, in other words, more new subscribers in the network.

4.6 Related Work

Our work in this chapter has some level of similarity with the broad topic of

quality of service scheduling and load balancing, as we propose to move low

priority flows both spatially and temporally. This general idea has been widely

used where wireless resources are redistributed in form of channel assignment
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rather than traffic [44, 55, 91]. A large body of work on scheduling approaches

on link layer is also available [136, 90, 49, 43]. In contrast, our work deals

with the load shifting problem at a higher layer and at the flow level. We

focus on scheduling of flows, specially low priority flows either in parts or in

whole ignoring the low level issues such as power, interference, radio resources,

packet level scheduling. Similar load shifting studies have been done in other

contexts, such as power savings (see, e.g., [109, 59]).

There are different pieces of work dealing with the priority scheduling

in wireless networks. The authors in [140] have proposed a technique to set

priority among the source stations in ad hoc network. The authors in [76]

have devised an distributed priority scheduling in packet level for the nodes

in ad hoc networks. The authors in [80] have modeled the arrival of flows in a

base station as a queueing model with priority set between its own flows and

flows arrived because of handoff. Our work is different from these set of works

as we set priorities on the flows by using application layer information and

deal with the opportunistic scheduling of low priority flows. A similar work,

but in a different context has been done targeting TCP, where the authors

have developed a variation of the regular TCP, called ‘TCP-low priority,’ in

order to to utilize excess network bandwidth distributedly as compared to the

fair-share bandwidth in regular TCP [86].

4.7 Conclusion

In this chapter, we have explored an avenue to reduce the peak load in cellular

data networks. The idea is to treat certain flows as low priority and delay

scheduling such flows if the base station has reached its capacity limits. Low

priority flows are to be scheduled opportunistically based on the available

capacity. The main goal of this model is to move traffic from the peak periods

to off-peak periods that potentially reduces the average-to-peak ratio of load

under base stations. We have presented two approaches to schedule the low

priority flows. The first one is a straightforward greedy approach, but needs

continuous monitoring of base station load in order to determine scheduling

opportunities. The second one is a modeling based approach where models
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are created to predict subscriber location (base station) and base station loads

based on historical data. This approach reduces the need for monitoring, but

can potentially suffer from inaccurate estimates. Our analysis indicates that

the capacity requirements at the base station can be reduced significantly – by

as much as a factor of two – with only modest added delays on the low priority

flows. If low priority flows are those that are long-lived and delay-tolerant

such delays would be perfectly acceptable to the applications, but would be

beneficial for addressing the data overloads in the base stations. Further, this

will help the providers to accommodate more subscribers without augmenting

the network capacity. Our future work will also involve incentive and pricing

schemes to make this realistic. The future work will also consider the actual

design of the agent-based system that can perform the opportunistic scheduling

proposed in this study.
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Chapter 5

Learning Probabilistic Models

with Applications to Resource

Management

5.1 Introduction

With the growing popularity of broadband capable mobile devices, an increas-

ing share of the world’s end-user network traffic is being carried by broadband

wireless networks. Managing this explosion in traffic volume and ever grow-

ing expansion of cellular network has now become a challenge for the service

providers. It needs constant monitoring of the network via large-scale mea-

surement and analysis. The measurement and analysis themselves are compli-

cated as large volumes of data from large geographically distributed networks

need to be collected, possibly at various layers of protocol stack. Scalable

techniques to collect such data is challenging with ever increasing traffic vol-

umes and data rates. From early days of Internet measurements, ‘sampling’

has been widely used to reduce the data collection efforts for measurement

data [144, 107, 38, 70, 52]. While many of these techniques are also relevant

for cellular data, the nature of traffic in a large-scale, geographically distributed

wireless network is much more nuanced. For example, it is intimately related

to base station locations, wireless propagation, wireless resources/capacity,
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subscriber mobility and characteristics of the end devices. These provide a de-

gree of richness where interesting modeling problems can be posed and solved

to address various challenges.

The case in point is building of a spatial model where we seek probabilis-

tic relationships among the base station loads across space. Using statistical

machine learning tools we build such a model using measurement data and

demonstrate how this model is useful in ‘spatial sampling,’ – i.e., describing

the loads on all base stations given the measured1 loads only on a small sub-

set of base stations. Obviously, for any form of model-based data reduction

approach such as this there is a trade-off between accuracy and complexity of

data collection. It is not always clear what type of accuracy is appropriate

unless it is tied to an application. Thus, we also study the applicability of

this model for two applications – (i) energy savings [59] and (ii) opportunistic

scheduling [103].

5.1.1 Modeling Conditional Dependencies

The general modeling approach uses statistical machine learning tools. We as-

sume that the base station loads are time sequences of multi-variate Gaussian

random variables. We do ensure that the Gaussian assumption is reason-

able in our context. Then we estimate the ‘inverse covariance matrix’ of this

multi-variate distribution using the given training data of base station load

measurements. The inverse covariance matrix essentially describes the model.

Zero matrix elements denote ‘conditional independence’ among the related

variables denoting lack of influence. A sparser matrix provides a model that

is more readily interpretable and can possibly explain various forms of influ-

ence among the variables (base station loads) useful to the network designer.

They also tend to have less variance in the sense that different training data

is less likely to change the model substantially. To this end, machine learning

literature has a strong focus on building relatively sparse models that also

adequately explain the data [67].

1We use the terms such as ’measured,’ ’observed,’ ‘monitored,’ and ’sampled’
interchangeably.
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This estimation of the inverse covariance matrix is computationally in-

volved for large dimensional data (the number of variables is equal to the

number of base stations that could be large) [145]. Various computational

problems also arise in the estimation process when the number of samples is

not adequate [130]. With some experiments with various other techniques, we

have found that the technique based on Least Absolute Shrinkage and Selec-

tion Operator or ‘Lasso’ [134] is well-suited for our modeling problem. Lasso is

commonly used in connection with linear regression for ‘regularization.’ At a

high level, regularization prevents model overfitting for the given training data

by introducing a penalty function to encourage creation of sparser models, i.e.,

models that describe the dependent variables adequately but using a smaller

number of independent variables. Prior work has shown that Lasso effectively

estimates a relatively sparse inverse covariance matrix [100, 135].

5.1.2 Estimating Base Station Loads and Applications

Once the model is learnt, it is used to estimate the base stations’ loads. The

idea is that the load of only a subset of the base stations will be monitored,

the model will estimate the load of the rest of the base stations. The overall

accuracy of the prediction depends on the number of observed base stations as

well as the individual base stations that are monitored. We propose a simple

greedy heuristic to choose the subset of base stations that should be monitored

to improve the accuracy of the prediction. We also investigate whether base

stations with certain property should be sampled to improve the overall accu-

racy of the prediction. Finally, we analyze how much accuracy is important.

To this end, we study two different resource management applications — (i)

energy savings [59] and (ii) opportunistic scheduling [103]. Both applications

normally require monitoring of base station loads. Thus, studying impact on

the applications when the loads are partly estimated and only partly mea-

sured is a good way to understand how much estimation error is acceptable.

Our study shows very minor impact even when the loads on a relatively small

subset of base stations are actually measured.

The rest of this chapter is organized as follows. The modeling approach

79



is described in Section 5.2. The data set and the learning steps are presented

in Section 5.3. We demonstrate the load estimation based on the model and

present an approach to select the set of base stations to sample in Section 5.4.

We present the effect of accuracy of the prediction from the application’s

point of view in Section 5.5. The related works and conclusions are presented

in Sections 5.6 and 5.7, respectively.

5.2 Modeling Approach

5.2.1 Basics

The loads on the set Γ of n base stations are assumed to be modeled via a

multi-variate Gaussian-distributed random variable

X = (X1, . . . , Xn) ∼ N (µ,Σ),

where µ is the mean vector and Σ is the covariance matrix. The broad goal is

to estimate the ‘inverse covariance matrix’ Σ−1, given a set of p observations

of this multi-variate random variable (training data). The inverse covariance

matrix is a powerful modeling tool. One can learn the conditional indepen-

dence structure of the distribution from this inverse covariance matrix. Assume

Γ = {1, . . . , n} is the index set denoting the base stations. If Σ−1
ij = 0, then

the load variables Xi and Xj are conditionally independent, given the other

variables XΓ\{i,j}. Additionally, a load variable Xi, given the set of variables

XNi
, such that Ni ⊆ Γ\{i}, j ∈ Ni and Σ−1

ij 6= 0, is conditionally independent

of rest of the variables [58].

In our work, we would like to estimate the load of all base stations in

Γ given the load of a subset, say S. We would do this simply by exploiting

the structure of their inter-dependence expressed via the Σ−1 matrix. The

estimate for base station i, given the load XS of base stations in S, i /∈ S, can

be computed as the conditional mean [16]:

µi|S(XS) = µi − ΣiiΣ
−1
iS (XS − µS). (7)

Note that the covariance relationship is required to calculate the conditional

mean. The following steps are used.
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1. The model is learnt by estimating the inverse covariance matrix using

the data set of p observations (training data). The ‘principle of persi-

mony’ in machine learning suggests use of the simplest models (i.e., using

the minimum number of variables that adequately explain the observa-

tions) [40]. This reduces model complexity as well as expected model

variance. In this context, if the inverse covariance matrix is relatively

sparse, it provides a more ‘interpretable’ model as conditional depen-

dence of a variable is now on fewer number of other variables. Statistical

machine learning literature has considered this issue vigorously and sev-

eral methods have been developed. We use the concept of the Least

Absolute Shrinkage and Selection Operator (Lasso) [134] to learn the

model. More will be said about the Lasso in Section 5.2.2.

2. Once the covariance matrix is learnt, it can be used estimate the load of

all base stations using only observations from subset, S, by using Equa-

tion (7). The subset size, |S|, plays an important role in the accuracy of

the estimation. It is also important to select S carefully, as some base

stations may play a greater role in the estimation that the others. We

will present our approach of selecting base stations in Section 5.4.

5.2.2 The Lasso

In statistics and machine learning, linear regression analysis focuses on mod-

eling linear relationships between a dependent variable and one or more in-

dependent variables or predictors given a set of observations. Ordinary least

square (OLS) estimates have been very popular in linear regression. They

are obtained by straightforward minimization of the residual squared error.

However, OLS suffers from poor prediction accuracy (typically produces large

variance even though bias is low) and inability to produce a sparse model (i.e.,

all variables are included in the model) [67].

A significant research effort has gone in the machine learning community

to improve on the OLS estimate. The ‘Least Absolute Shrinkage and Selection

Operator’ or the ‘Lasso’ [134] has emerged as a robust and computationally

efficient technique that can provide good balance between bias and variance

81



while producing a sparse model. The Lasso works by jointly minimizing the

empirical error and imposed penalty. The penalty is formulated using a ‘reg-

ularization’ term that uses a parametrized L1 penalty function that can lead

to sparse solutions. However, obtaining such models through classical model

selection methods usually involves heavy combinatorial search. The Lasso,

however, is computationally efficient even when a large number of variables

and observations are involved [145, 124], such as in our case. Lasso can also

be very effective in situations where the number of predictors or variables are

much larger than the observations. This has been shown in the case of genomic

data [130, 60]. This is important as models may need to be created with only

short term observation data available.

Assume the standard representation of linear regression:

Yp = Xpβ
p + εp, (8)

where Yp is the p × 1 response matrix of the observed variable and Xp =

(Xp
1 , X

p
2 , · · · , X

p
n) is the p× n design matrix where Xp

i is the set of p samples

of ith predictor variable. εp = (ε1, ε2, · · · , εp)T is a column vector of i.i.d.

random variables with mean 0 representing measurement noise. βp is the

column vector of model coefficients that to be estimated via regression. The

Lasso estimates βp as

β̂(λ) = argmin
β

‖Yp −Xpβ‖
2
2 + λ‖β‖1, (9)

where ‖.‖1 and ‖.‖2 stand for the L1 and L2 norms of a vector. The parameter

λ controls the amount of regularization applied to the estimate. It is easy to

see that using λ = 0 reverses the Lasso problem to OLS. On the other hand, a

very large λ completely shrinks β̂ to 0 thus leading to the empty or null model.

In general, moderate values of λ cause shrinkage of the solutions towards 0,

and some coefficients may end up being exactly 0.

In an n-dimensional multivariate case, the model can be created by fitting

a Lasso model to each variable, modeled as response, using the others as

predictors. Denote the model coefficients now as an n×nmatrix β̂, where each

row β̂i denotes the vector of coefficients used for modeling the i-th variable

Xi. It can be shown that the elements of β̂ are determined by the inverse
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covariance matrix Σ−1 [96]. Specifically, β̂i
j = −Σ̂−1

i,j /Σ̂
−1
i,i , i 6= j. (β̂i

j = 0, for

i = j.) This provides a mechanism to estimate Σ̂−1 given estimate of β̂.

5.2.3 Regularization

The model provided by the Lasso includes the regularization parameter, λ.

It is important to choose the right value of λ. We use a standard validation

approach to determine λ using the ‘likelihood’ estimate. Given a model and

some observed outcomes, the likelihood L, measures the probability of gener-

ating those observed outcomes by that model. As standard practice, we use

the concept of log-likelihood [11]. Given a multivariate Normal distribution

N (µ,Σ) and a set of observed samples X, the log-likelihood is determined by:

ln(L) =
1

2
[− ln |Σ| − n ln(2π)]−

1

2p

p
∑

l=1

(X l − µ)TΣ−1(X l − µ). (10)

Here, p denotes the number of samples from each variable, n is the number

of variables and X l denotes the vector of l-th sample from all variables. The

idea is to do a cross-validation for each λ by using a small part of observa-

tions set aside for this purpose (and not used in model building). The model

corresponding to the λ that maximizes the log-likelihood is to be chosen.

5.3 Data Processing and Learning

We use the same data set used in our earlier work [105, 106] presented in

previous chapters. The data set consists of flow-level data (TCP or UDP)

collected at the core of a nation wide cellular network for a one week period.

We use a set of 400 base stations covering a 75×84 miles geographic region that

include both a busy downtown and surrounding sub-urban areas. The available

data spans only 1 week. Since we have observed in our earlier work [105, 106]

that network behavior is significantly different in the weekends compared to

the weekdays, we focus on weekdays only in this work. (Use of weekends will

limit us to much fewer samples).
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Figure 40: Distribution of the residual loads after the fitting for all base sta-
tions combined.

5.3.1 Preprocessing

The load variables that are input to the model are simply the volume of data

seen by each base station at given intervals. A 2 hour interval is used for

this study. Thus each base station load is a simple time series Yi of length

12 × 5 = 60 covering the 5 day period. However, 60 samples are considered

too few to construct a robust model of dimension 400. Thus, a bootstrapping

method is used to generate more samples that has the same statistics. To

generate such samples, the load is again summarized as above, but now at

a much smaller – 10 mins interval. A new 2 hour load sample is formed by

using 12 samples randomly chosen from these 10 mins interval samples and

then summed up. Only those 10 min interval samples are used to draw from

that are within the same 2 hour period. In other words, 10 min samples from

an 8-10AM period are used to generate a synthetic sample of load in that

period only. This method provides a long time series of load variables, Yi, for

every base station i every 2 hour period for all weekdays for an assumed 1 year

period. These bootstrapped samples are used only to learn the model. The

real data set Y = {Yi} is still used for evaluation.

Prior work has observed that traffic loads in cellular networks have strong
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Figure 41: (a) Log-likelihood of models obtained by Lasso for different values
of the regularization parameter λ. Separate models are created for different
parts of the day. (b) Log-likelihood plotted versus model density.

diurnal variations [105], peaking during mid day and having a lean period

during the middle of the night. This pattern obviously is not symptomatic

of i.i.d. Gaussian assumptions that the modeling approach is based on. To

address this, we fit a load curve to each base station with a time dependent

function fi
(t) and then calculate the residuals as Ri = {Ri

(t) = Yi
(t) − fi

(t)}.

Figure 40 shows the PDF of the residuals of all the base stations combined.

It shows the expected ball-shaped form and can be assumed Gaussian. We have

also confirmed this using the Jarque-Bera hypothesis test [10] of normality.

The residual data of each base station, Ri, is now normalized so that the

mean and the standard deviation of each base station load sample become 0

and 1, respectively. This normalized data set (say, X = {Xi}) is now used to

learn the model.

One more step remains. It is unclear at the outset whether a single

model representing all times in a day is appropriate. This is simply because

the influence structures in the model could vary. We found some preliminary

evidence of such temporal dependencies in our earlier work, albeit in other

contexts [106]. Note also that the modeling approach we are considering does

not capture any temporal aspect in spite of the use of time series as an input. In

particular, the order of the multi-variate samplesX(t1) andX(t2) are immaterial
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Figure 42: Comparison of the model obtained using Lasso technique to ran-
domly constructed model. Only the 10AM-2PM period is considered here.

to the model. To ensure that errors do not creep in due to temporal changes

in the model, we create separate models for each 4 hour period of the day.2

Thus, essentially we will learn 6 separate models instead of one single model.

We split the data set X accordingly.

5.3.2 Learning

Now, we learn the model separately for each 4 hour period during the day.

This step essentially estimates the regression coefficients β̂ per Equation 9 for

each base station i using the rest of the base stations as predictors (see the

last para in Section 5.2.2). Computational procedures as described in [17] are

used. We do this for a range of values of the regularization parameter λ and

then perform a cross-validation as described in Section 5.2.3. Figure 41(a)

shows the log-likelihood for different λ values for different 4 hour periods of

day.

2The 4 hour assumption is somewhat arbitrary at this point. The assumption is that the
model does not deviate significantly during this 4 hour.
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Figure 43: Average edge length in the model graph for each base station in
the network. The base station location is shown in the geographic space and
the edge length is color coded. (a) Edge length is distance in miles between
the pair of base stations. (b) Edge length is in number of hops in the shortest
path between the pair of base stations in the Voronoi graph of the base station
locations.

To choose the right value of λ we study the tradeoff between model accu-

racy (represented by log-likelihood) and model complexity. We capture com-

plexity by a density measure, defined as the number of non-zero terms in

the inverse covariance matrix divided by the matrix size. Decreasing λ will

obviously increase density, but should generally improve the log-likelihood.

Our goal is to empirically look for a λ value that provides a low density but

with still a small enough value of log-likelihood. Figure 41(b) shows the log-

likelihood versus density plot. The subplots (a) and (b) together show that

beyond λ ≈ 102, reduction of λ unnecessarily increases density with little im-

provement in log-likelihood. Thus, this value is used for further analysis. The

density for this choice λ is quite small, about 0.15.

As an added validation, we also want to establish that the Lasso is doing

something ‘useful,’ in particular, it is not simply choosing an arbitrary set of

coefficients to make non-zero. To establish this, we compare the Lasso-based

technique with a random model. The random model simply assumes that

each base station is conditionally dependent on only a random subset of base
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stations and thus makes only the respective entries in the inverse covariance

matrix non-zero. For a given choice of λ the model densities are kept equal,

i.e., the size of the random subset is same as the number of non-zero estimates

as determined by Lasso. The value of non-zero estimates in the random model

is determined by standard covariance estimation [7]. Figure 42 shows the

effectiveness of Lasso technique with respect to the random model in terms

of log-likelihood. Here we have shown only one time period, 10AM-2PM for

brevity. Note that the log-likelihood of the randomly constructed model goes

down very fast with the increase of λ compared to the model obtained using

Lasso. This demonstrates the effectiveness of Lasso in choosing the set of

predictors and the coefficients.

5.3.3 Model Analysis

Here, we analyze some properties of the model we just learnt. For a better

understanding, the model can be represented as a graphG = (V,E) where each

node, i ∈ V represents a base station and there is an edge (i, j) ∈ E if and

only if Σ−1
ij 6= 0. This is a standard representation in the field of probabilistic

graphical models [96].

To understand the structure of conditional dependency, we calculate the

average edge length for each node. We use two definitions of edge length for

each edge – (i) physical distance (in miles) between the two base stations, (ii)

distance in number of hops in the shortest path between the two base stations

in the Voronoi graph3 of base station locations. This can be more appropriate

sometimes if the spatial density of the base stations vary widely. The hop-

wise shortest path distance captures distance in the physical neighborhood

graph. Figures 43(a) and (b) show the locations of the base stations in the

map and color codes its average edge length using the above definitions. Note

that densely populated region (downtown area) has a relatively smaller edge

length relative to the sparsely populated region (rural/suburban) using either

definition. This observation is in line with our conclusions in prior work that

3Two base stations are adjacent in the Voronoi graph if their corresponding Voronoi cells
have a common contiguous boundary.
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Figure 44: Errors for various base station selection strategies. Expected max-
imum squared error is shown for the greedy strategy, average and minimum
squared errors for the random selection and expected maximum squared error
for the load-based strategy.

spatially significant influence structures exist in cellular network traffic [105,

106].

5.4 Estimating Base Station Loads

In this section we use the models learnt in the previous section to estimate

the load of the base stations. Recall that our goal is spatial sampling, i.e.,

measure loads on a subset of the base stations to estimate the rest. We present

an approach to select the subset of base stations that should be sampled and

evaluate the error in predicting the load of the rest of the base stations.

Before we go forward, note that the models we have learnt so far are in

terms of the normalized residuals (X). See Section 5.3.1. Simple transforma-

tions will produce it for actual residuals (Ri’s) and then the actual loads (Yi’s).

Thus, assuming that the distribution of the normalized residuals is given by

N (0,Σx(ı)) where ı denotes the time period. The distribution N (µy(ı),Σy(ı))
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for the period ı for the real data is obtained by doing the following transfor-

mations.

Σy(ı) = A · Σx(ı) · AT , (11)

µy(ı) = µr(ı) + µf(ı). (12)

Here A is a diagonal matrix with the standard deviations of the residual data,

µr(ı) is the mean vector of the residual data {Ri} and µf(ı) is the mean vector

of the fitting function. We will now use this distribution to select which base

station should be sampled and evaluate the prediction error for the rest of the

base stations.

5.4.1 Selecting Base Stations to Sample

Given samples XS from the base stations in set S ⊂ Γ, we want to estimate the

load of all other base stations in Γ\S as conditional means using Equation (7).

Now, the question is which base stations to select for S. A smaller set means

less monitoring complexity at the risk of higher estimation errors.4 To evaluate

our approach, for each selection of S, we calculate the estimated maximum

squared error, Errmax = E[maxi/∈S(Yi − µ
y(ı)
i|S (YS))

2], over all base stations i

to be estimated. Here Yi is the load of base station i. Our goal is to determine,

for each selection of |S|, the actual S that minimizes the above Errmax.

The approach we undertake uses simulation and a brute force search. We

reduce the search complexity using a greedy selection heuristics. For the simu-

lation, a set of samples for each base station is generated using the distribution

(obtained using equation (11) and (12)). The greedy heuristic works as follows.

Initially, S is an empty set. For a given value of |S|, the heuristic gradually

expands S by inserting one new base station in S at a time until the limit of

|S| is reached. In each iteration, the heuristic picks every other base station

that is not already in S and estimates the maximum error Errmax if the new

base station added to S. The inclusion of the base station that minimizes the

estimated error is actually inserted in S.

4The set S may not be the same for different time periods as different models are learnt
for different time periods.
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Figure 45: Scatterplot of the rank of a base station in greedy heuristic and its
average load.

Figure 44 shows the maximum error for this greedy approach for different

sizes of S. For brevity, we show the plot for only one period, 10AM-2PM.

We also investigate how the random selection of the base stations perform

compared to the greedy heuristic. Here, base stations are selected randomly

for S. For each size of S, we repeat the process of random selection 500 times.

Figure 44 also shows the average and minimum expected squared error for

different size of S. Note that greedy approach is significantly better than the

random selection. Moreover, the estimated error reduces sharply with the

increase of the size of S.

We also investigate whether there is any property that makes a base sta-

tion more likely to be picked in the set S to be monitored. To do that we

consider the sequence in which base stations are inserted into the set S in the

greedy heuristic approach. We call this the ‘node rank’. The base station that

is selected first has node rank = 1 and other base stations have higher ranks.

Figure 45 shows the node rank of each base station and its average load. Note

that there is a tendency of choosing heavily loaded base stations first. To delve

more into this, we calculate the estimated maximum squared error as before

where the set S is selected based on the average load of the base stations. We
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Figure 46: Average squared error in estimation considering the original data
set.

plot the results back in Figure 44. Note that the error is only incrementally

worse than what we observed for greedy approach for different sizes of S. This

is of significant practical relevance, as operators can simply choose the monitor

the k most highly loaded base stations if they can afford to monitor only k

base stations.

5.4.2 Overall Accuracy of Estimation

So far, we use the samples generated from the distribution to select the

base stations to observe. We now evaluate the accuracy of the estima-

tion. To do that we use the original data set Y and base station selec-

tion sequence by the greedy approach. We calculate the squared error as
1
T

∑T
t=1[

1
n

∑n
i=1(Y

t
i − µt

i|S(Y
t
S))

2]. Here µt
i|S(Y

t
S) denotes the conditional mean

of base station i given the observations of base stations in S for the time in-

stance t. Different models and different sequence of observed base stations are

used for the data of different parts of the day. Figure 46 shows the overall error

for different sizes of S. The errors at different time periods are also shown. Er-

rors are generally higher during the day while they are much lower during the

night (10PM-2AM). Generally speaking, the errors become very small when
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Figure 47: Comparison of the outcomes of the energy saving algorithm [59]
when using (i) original data set and (ii) original data only for a set of base
stations and estimations for the rest.

at least 50% of the base stations are sampled. This is very encouraging as this

shows the possibility of cutting down monitoring effort by at least half. We

will show in the next section that practical applications can work with even

lesser sampling.

5.5 Impact of Estimation Accuracy on Appli-

cations

In the proceeding sections we have developed and analyzed a probabilistic

model of the traffic load on cellular base stations that enables the cellular

provider to sample the load only on a subset of base stations to estimate the

load on the others. The goal is to reduce the complexity of the monitoring

infrastructure. As expected, the estimation error increases when the sampled

subset is small. See Figure 46. However, the tradeoff presented in this figure

does not directly say what subset size is appropriate, or in other words, what

type of estimation errors are tolerable. Obviously, there is no general answer

to this question as this is intimately related to the applications where the load
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estimations are actually used. In this section, we use two resource/traffic man-

agement applications that rely on load measurements and analyze the impact

on their performances when some of the actual measurements are replaced

by estimations. This sheds light on the appropriate size of the sampled sub-

set. For example, some applications may be relatively robust to estimation

errors, where a smaller subset could be appropriate. Others may have entirely

different characteristics.

5.5.1 Application 1: Energy Savings

The first application we study uses load information to save energy expenditure

at the base stations [59]. Energy is saved by turning off a subset of base

stations and adjusting the transmission power of the other base stations so

that there is no coverage hole. The constraint here is that no base station gets

overloaded. We use the algorithm presented in [59] where power is allocated

adaptively, depending on the users’ demand. Given the load information and

the number of subscribers under each base station, the algorithm decides which

base stations to turn off and adjusts the transmission power of other active base

stations so that all subscribers’ demands in terms of throughput requirements

are met. Since the subscriber locations are not available in the data set, the

evaluation uses the assumption that the locations are distributed randomly in

the originally associated base station’s coverage area. The channel quality and

capacity are calculated based on the SINR model and Shanon’s Law. These

assumptions are not central to the technique, but are made in our work as

lower layer information is not available in our data set.

The algorithm is run twice – (i) once with the original data set Y = {Yi},

the five-day long load information of each base station for each two hour period,

and (ii) again assuming that only a set of S base stations uses original data

and the rest use estimates based on the described approach. Different values

of |S| is used for the evaluation. For each value, the actual selection of S

uses the greedy approach discussed in the previous section. Based on the load

inputs – either actual or estimated as may be the case – the algorithm makes

a decision, at the granularity of 2 hours, whether the base stations should be
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on or off, and if on what would be the transmit power level of the base station.

The differences in the algorithm’s outcome will depend on estimation errors.

Assuming that the ideal outcome is the one obtained with the original data,

the difference in the outcome with the estimated data shows the impact of the

estimation error.

We represent the difference in the two outcomes using the average number

of base stations that are in different states (on or off) in each 2 hour period

Figure 47 (using the left Y-axis) show this for different size of the selected set

S. Note that out of 400 base stations, only 18 base stations are in different

states when just one base station is sampled whereas 8 base stations are in

different states when 50 base stations, i.e., one-fourth of the total number of

base stations are sampled. This difference becomes miniscule (only 4) when

half of all base stations are sampled. This demonstrates the accuracy of our

prediction for different size of observed base stations in terms of the decision

making from the application perspective. We also calculate the total absolute

power difference of base station power assignments for each 2 hour period and

Figure 47 (using the right Y-axis) shows the average. As the power required

to keep a base station on (about 200W) is significantly higher than the power

requirements for transmission, absolute power difference has a similar nature

as number of base stations in different states. Based on this analysis, the

provider now can decide about the tolerable level of error in power saving and

monitor the appropriate set of base stations to achieve the required level of

accuracy.

5.5.2 Application 2: Opportunistic Traffic Scheduling

Now, we consider another application, opportunistic traffic scheduling in the

context of cellular data network [103]. The idea here is to reduce the peak-

traffic load and reduce the peak-to-average load ratios in cellular data networks

by using a higher-layer priority-based scheduling. Assume that all flows (TCP

or UDP) to or from the mobile device are tagged either high or low priority.

This tagging can be done manually or automatically based on a profile, depend-

ing on types of applications generating such flows. If the estimated load at the
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Figure 48: Fraction of low priority flows finishing within deadline in the op-
portunistic traffic scheduling application [103].

associated base station is high enough (e.g., near capacity) low priority flows

are delayed and opportunistically scheduled later when the estimated load is

low. A higher layer agent on the infrastructure side can do such scheduling

based on load estimates. It uses specific higher layer signalling with its coun-

terpart running on the mobile device to do the actual invocation/suspension

of flows. High priority flows, on the other hand, are served immediately as is

normal in today’s network. In the specific technique we consider [103] a notion

of ‘deadline’ is used for the low-priority flows to aid in scheduling. Note that

essentially the technique moves low priority flows temporally and also spatially

(if the user moves) from peak to off-peak periods. The general goal is to serve

the same load with lesser network capacity (or conversely, serve more load

with the same capacity).

One of the approaches to schedule the low priority flows in [103] uses load

prediction. In this approach, base stations’ loads and subscribers’ mobility are

predicted using appropriate models. We have shown in [103] how the schedul-

ing problem now essentially boils down to solving a network flow problem.

Needless to say, the effectiveness of the approach depends on the accuracy of

the predictions. This is because scheduling decisions are taken at course-grain

time epochs based on estimates of future loads and scheduling decisions cannot
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be altered based on real-time measurements in order to keep the complexity

of the system manageable.

We now evaluate the effect of prediction accuracy from the perspective

of this application. The predicted load of base stations using our approach is

provided to the scheduler. Different sets of predicted data are used for different

number of sampled base stations. We run a trace driven simulation on our

data set for a selected set of low priority flows and scheduling is done based on

the predicted data. All relevant details appear in [103]. Since the interest here

is only to evaluate the accuracy of load prediction, we assume that mobility

information of the subscribers are known and need not be predicted. This is

to avoid any error influencing the results due to errors in mobility prediction.

The performance measure here is the fraction of low priority flows that

finishes within the specified deadline. Figure 48 shows this information for

different number of observed base stations. Multiple plots are shown with

artificially reducing the base station capacities. This is to evaluate whether

a lower network capacity can still carry the offered load effectively. Note

that more low priority flows finish by their deadlines as the accuracy of the

prediction improves when more base stations are observed. Note also the

impact of reducing the number of observed base stations is very small. For

example, for capacities 100% and 80% of the original the error is within a few

percent even with just one-quarter of the base stations observed. The error is

almost negligible when half of the base stations are observed.

5.6 Related Work

5.6.1 Sampling Network Load

Use of sampling to monitor network behavior has been widely used in the In-

ternet measurement community. See, for example [50] for a review. Much of

the focus has been on packet sampling. A straightfoward approach is system-

atic packet sampling where packets are sampled according to a deterministic

function. In some cases systematic sampling can perform better than random

sampling [66]. Widely deployed original Cisco NetFlow tool [5] uses systematic
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sampling. The potential problems of systematic sampling are avoided by using

independent, randomly generated triggers in order to select packets [144, 107].

There is also a concept of probabilistic sampling where samples are chosen in

accordance to a pre-defined selection probability [146]. Another line of thought

is to do adaptive sampling as the sampling rate influences the accuracy of es-

timation procedure [38, 37]. The authors in [53] have proposed the idea to

sample packets based on a hash function computed over the packet content.

to reconstruct the trajectory of packets having same hash value. But just by

doing packet sampling, accurate flow level information may not be estimated

in practice. The authors in [70] have introduced the concept of flow sampling.

The authors in [51] and [52] have proposed size-dependent flow sampling where

flows of byte size greater than a threshold are sampled with probability 1 and

the others are sample with the probability proportional to their size. Similar

approach has been used in [54, 84]. We have used the concept of sampling at

a higher level in the context of spatially separated entities like base stations.

Similar ideas have been used in [46], but in the context of data acquisition of

sensor networks.

5.6.2 Cellular Network Data Analysis

Only a limited number of papers have analyzed cellular network characteristics

to understand the global view. The authors in [112] have characterized the

settings of operational state machine that guides the radio resource allocation

policy in a UMTS network. They have used actual cellular data traces for the

investigation. The authors in [74] have analyzed customer tickets collected

from a large cellular network to identify potential network problems. The au-

thors in [81] have grouped users and browsing profile simultaneously using real

mobile network data collected from a large 3G cellular service provider. The

authors in [138] have presented a large scale measurement analysis to charac-

terize the primary usage in cellular voice network. They have investigated the

spatial correlation in the network but in a limited scope. The authors in [111]

analyzed the feasibility of web caching in the context of cellular network us-

ing network-wide data. In our earlier work [105] presented in Chapter 2 we
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have analyzed individual subscriber behaviors, subscriber mobility, and base

station traffic dynamics at length using a superset of the data set used in this

work. We also have investigated various forms of spatial relationships among

base station loads [106] presented in Chapter 3. However, none of these works

explicitly used any form of sampling to reduce the monitoring load or data

collection effort in the network.

5.7 Conclusions

Building scalable techniques for measurement-driven analysis of large cellular

networks is an important problem. This chapter addresses this issue by using

probabilistic modeling techniques to capture the nature of conditional depen-

dences in the traffic load on cellular base stations. Using available machine

learning tools and trace data collected from a cellular network we have shown

how to construct such models with a sparse structure. While such modeling

may have many uses, we specifically have used the modeling approach for spa-

tial sampling. The idea is to reduce the measurement burden in the network,

with only a subset of base stations monitored and the rest estimated using the

model. With trace data from a network of 400 base stations, we have shown

the steps taken to build the model and analyzed the properties of the model as

an error versus complexity tradeoff. Finally, we have used two resource/traffic

management related applications to show the impact of using such modeling

for load estimation. This part of the analysis shows that the impact on the

applications is relatively minor even when a small fraction of the network is

actually monitored.

Statistical machine learning offers many modeling techniques that can be

gainfully used to learn structural properties of the network data. The modeling

approach we considered is ‘spatial’ and does not directly capture ‘temporal’

properties. To capture possible temporal variations during the day, we took

a brute force approach by building separate models for different parts of the

day. Our future work will include temporal aspects in the model directly to

provide a further degree of robustness.
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Chapter 6

Passive Monitoring of WiFi

Networks with Applications

6.1 Introduction

In this chapter, we shift our focus from cellular network to WiFi network and

present a technique to model and understand the wireless interference between

network nodes and links in realistic WiFi network deployments 1. The goal is

to do this in the most unobtrusive fashion possible: (i) Without installing any

monitoring software on the network nodes : this is motivated by practicality

as many APs are often closed devices, and clients may not be always be privy

to new software; (ii) Using a completely passive technique: This is important

as active measurements impact (and are impacted by) network traffic.

To achieve these goals, our approach uses a distributed set of ‘sniffers’

that capture and record wireless frame traces. We then analyze the trace to

understand the interference relations. While this is true that this approach

requires additional hardware for measurement, this can be viewed as a form

of third-party solution. Such independent third-party solutions for wireless

monitoring are not uncommon in industry [1, 2]. The research community has

also provided similar approaches. See, for example, DAIR [22, 23], Jigsaw [35]

and Wit [94]. While these approaches provide many monitoring solutions,

1The early part of the work in this chapter was done in collaboration with Anand Kashyap
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they still do not provide fundamental understanding of interference relations

between network nodes and links.

Aside from understanding interference relationships, there are other ap-

plications of the technique we develop. Certain types of selfish behaviors can

be detected via this approach — an example we will demonstrate. A selfish

node can gain unfair share of the available bandwidth by manipulating differ-

ent MAC protocol parameters, such as the clear channel assessment (CCA)

threshold, or the backoff window size. This can deliver an unfair bandwidth

advantage to a selfish node [108] and can be used to even launch a denial

of service attack. A node, for example, can be selfish by raising the CCA

threshold. This can effectively disable its carrier sensing and creates more

transmission opportunities for the selfish node. This can also cause collisions,

and thereby force the other transmitters in the vicinity to perform backoff.

While the selfish node itself may also undergo a collision, the backoff period

will be shorter as it will not freeze its backoff counter when carrier sensing is

disabled. We can detect the selfish carrier-sense behavior using the pair-wise

interference relationships discovered by the proposed technique. In our knowl-

edge, this problem has been explored only in one paper [108], that provides a

limited solution using a non-passive technique.

6.1.1 Approach

A set of ‘sniffers’ are deployed to collect traffic traces from a live network. The

traffic traces are then merged using existing merging techniques for distributed

sniffer traces [142, 94, 35].2 Then, we use a machine learning based approach to

analyze the merged traces to infer sender-side interference relationships. It also

determines the receiver-side interferences. See Figure 49. More specifically, the

approach determines for each link (or node), which other links (or nodes) it

interferes with, as well as the extent or degree of interference.

For detecting selfish behavior, we use the sender-side interference relation

to identify asymmetric behavior between network nodes. This means that

between a given pair of nodes, while one node can sense the transmission of

2These techniques also infer and add the packets that are missing from the merged trace.
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Figure 49: Overview of the approach.

the other node, the converse is not true. The main idea of our approach is that

significant asymmetry in favour of a specific node when witnessed persistently

by multiple other nodes is indicative of selfish behaviour. This is because such

asymmetry may be very unusual due to normal wireless channel effects.

Our approach can be used as a ‘toolbox’ with two important applications:

understanding the interference properties, and detecting selfish behavior in an

arbitrary WiFi network, regardless of the topology or architecture. System

managers can use this tool to perform capacity planning and appropriate ra-

dio resource management, such as assignment of channels, transmit power

levels or directions when using directional antennas. In addition, this tool can

act as a ‘police’ to detect the malicious user activity and can provide a signifi-

cant insight about WiFi interference behavior in large installations, potentially

influencing future standards design.

Because of its passive nature, our approach is dependent on the sufficiency

of the available network traffic. The most important challenge is to make
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accurate estimation of interference for traffic of unknown and arbitrary nature,

especially in presence of low load in the network. Also, accurate identification

is very challenging when a selfish node exhibits probabilistic behavior to avoid

detection.

We discuss related work in Section 6.2 and the broad approach in Sec-

tion 6.3. The details of the HMM formulation are covered in Section 6.4.

Section 6.5 contains the experimental evaluations for interference relation. Sec-

tion 6.6 defines the metric to identify selfish nodes and Section 6.7 presents the

experimental evaluations for selfish carrier-sensing detection. We will conclude

in Section 6.8.

6.2 Related Work

6.2.1 Analyzing Interference

Interference in an 802.11 wireless network can be readily measured by putting

saturated traffic on two links simultaneously and measuring the aggregate

throughput. The decrease in throughput due to interference from the other

transmission indicates the amount of interference. This approach ordinarily

needs O(n4) measurements for an n node network. However, [101] outlines

a method to do this with only O(n2) measurements. More sophisticated ap-

proaches do not perform direct measurements as above, but uses certain mod-

eling steps to reduce the number of measurements to O(n). The idea here is

to (i) measure Received Signal Strength (RSS) on each link using broadcast

beacons, (ii) perform a profiling study describing the deferral and packet cap-

ture behavior of the radio interface, (iii) develop a suitable MAC layer model.

Together the above can estimate interference between active links and link ca-

pacities in presence of interfering traffic. There are different variations of this

basic approach presented in [120, 78, 113] which need active measurement.

While the requirement of a quiet, interference-free environment to do RSS

measurements makes these methods unrealistic in live networks, the method

presented in [120] can model interference by doing measurement even in the

presence of external interference. However, the profiling needs to be done
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apriori.

In addition to the above, there are various sundry works on evaluating

interference characteristics in an 802.11 network. For example, in [72], the

authors investigate the impact of carrier sensing. In [31], the authors develop

a model for the physical layer capture. In [42], the authors show that pairwise

interference modeling is often not accurate and multiple interferers must be

accounted for. In [93], the authors present an inference tool to infer the activity

share among a set of conflicting links. In [79], we present our approach of

indentifying interference relations, but with limited evaluation.

6.2.2 Detecting MAC-Layer Misbehavior in 802.11

Most of the existing MAC layer misbehavior detection techniques only attempt

to detect one type of selfish behavior: backoff manipulation in 802.11. They

use different methods, such as game theoretic approach [29], Sequential Prob-

ability Ratio Test (SPRT) [115], non-parametric cumulative sum (CUSUM)

test [133], coordination from the receiver [87] to identify backoff manipula-

tion or to restrict the sender from being selfish. DOMINO [117] can detect

other misbehaviors in addition to backoff manipulation, e.g., sending ’scram-

bled frames’, using smaller DIFS and using oversized NAV. None of these

techniques can detect selfish carrier-sense behavior and thus can be comple-

mentary to the approach described in this paper.

Manipulation of the carrier-sense behavior is harder to detect. This is

because normal fluctuations of wireless channel must be distinguished from

manipulated carrier sensing. In our knowledge, only one paper [108] has ad-

dressed this issue before our work in [104]. The technique proposed in [108]

relies on a strong assumption that the selfish node that has increased its CCA

threshold is unlikely to correctly recognize low power transmissions from the

AP as legitimate packets. Thus, by sending low power probes, the AP can

potentially detect such nodes. This assumption implies that packet recep-

tion with power lower than CCA threshold is not possible, as such packets are

treated as noise. However, the attacker can avoid detection by simply changing

the CCA threshold only when it transmits a packet and reverting back to the
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normal threshold right after the transmission.3 Also, depending on how the

radio transceiver is designed, packet reception success may not be dependent

on the CCA threshold. Also, this technique is not passive.

6.2.3 Use of Distributed Sniffers

Techniques based on using distributed sniffers can be found in a number of

measurement studies for the purpose of learning various properties of live

network such as congestion [73], protocol behavior in a hotspot setting [122, 35,

94], etc. The DAIR system also uses such an approach for troubleshooting [22]

and security [23]. More details on similar related works appear in Section II-

B of [79]. In this chapter, we employ a technique similar to [142] to merge

individual traces into a unified trace. However, unlike all the previous studies,

our focus is on learning the interference relations and detecting selfish carrier-

sense behavior in the network.

6.3 Overall Approach

6.3.1 Problem Statement

In 802.11, interference can occur either at the ’sender side’ or at the ’receiver

side’ (or both) [78]. Sender side interference pertains to deferral due to carrier

sensing. In this case, one node freezes its backoff counter and waits when it

senses the second node’s transmission. In case of receiver side interference,

overlapped packet transmission causes collisions at the receiver. This requires

packet retransmission. In both cases, the sender additionally has to go through

a backoff period, when the medium must be sensed idle.4 The net effect of the

interference is reduction of throughput capacity of the network.

Our general goal is to understand the deferral behavior that accounts for

the sender side interference. To detect selfish carrier-sense behavior, we need

3There may indeed be a latency issue that can slow down the selfish node if such changes
are frequent. But we do not consider this to be a fundamental issue.

4We are assuming that the reader has an overall idea of the 802.11 MAC protocol. Specific
details will be brought up as necessary.
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to identify the asymmetry in the deferral behavior. The deferral behavior

between two nodes, X and Y is said to be asymmetric if Y defers for X ’s

transmission and X does not defer for Y ’s, or vice versa. Such asymmetry is

possible in wireless networks due to interface heterogeneity. But it is simply

unlikely that a node X demonstrates similar asymmetry with many such Y s

in the same direction. Our strategy is to flag such nodes as potentially selfish,

with degree of selfishness indicated by extent of asymmetries exhibited and

the number of such Y s (called ‘witnesses’).

For modeling convenience, we consider interference between node or link

pairs only. Note that it will allow us to capture the ‘physical interference’ [64]

where a given link is interfered collectively by a set of other links, not by a

single link alone. This is due to the additive nature of the received power.

However, pairwise consideration can still be quite powerful in practice. Also,

in reality the probability of having multiple concurrent packet transmission is

very small even when there are many active flows in the network. For exam-

ple, the authors in [94] analyzed a major trace collected during the SIGCOMM

2004 conference and found that only 0.45% of packets actually overlapped in

transmission. This limits the usefulness of having a more elaborate higher

order model for deconstructing interference relationship. On the other hand,

pair-wise relationship can be enough for our method of detecting selfish carrier-

sense behaviour. We do note that this simplification is not fundamental to our

basic technique. The technique can be extended, albeit with higher computa-

tional cost, to physical interference.

In wireless networks, interference is better expressed in terms of probabili-

ties because of the inherent fluctuation of the signal power due to fading effects

and probabilistic dependency of error rates with SINR (signal to interference

plus noise ratio). Prior measurement and modeling studies have elaborated on

this aspect [101, 78]. Thus, in this work we estimate via passive monitoring

the non-binary, pairwise interference between any two network nodes or links,

in terms of probability of interference. For any link pair, the probability of

interference is given by:

pd + (1− pd)pc, (13)

where pd is the ‘probability of deferral’ between the senders, and pc is the
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‘probability of collision’ at the receivers if both senders transmit together.5 See

also Figure 49. When considering node pairs only, probability of interference

is just pd, assuming symmetric interference between these two nodes.

If one of the nodes in a node pair shows selfish carrier-sense behavior, the

sender-side interference (pd) should be very asymmetric. Thus, our next goal

is to quantify the asymmetry for each pair of nodes in the network. For a given

pair of nodes, X and Y , we estimate the probability Pdef(X, Y ) that node X

defers to node Y ’s transmission. We do this estimation for all node pairs in ei-

ther direction. As mentioned before, significant asymmetry in this probability

indicates possible selfishness. Let us assume that there is asymmetry in favor

of X , i.e., Pdef(X, Y ) << Pdef(Y,X). If this is also witnessed by more nodes

such as Z, i.e., there exists several Z 6= Y such that Pdef(X,Z) << Pdef(Z,X)

we have more confidence that X is behaving in a selfish manner.

6.3.2 Discussions

To estimate the interference relations between a given pair of nodes, our tech-

nique needs to have instances when simultaneous transmissions are attempted

by the two nodes. The conjecture here is that if one observes the live network

traffic for a long enough period, enough of such instances will be available

for each node pair. Our goal is to (i) identify such instances, and (ii) in-

fer the deferral behaviors during such instances. There are several challenges

here. First, creating a complete and accurate trace is itself a difficult problem.

There are many approaches proposed in literature to create a complete trace.

But for our technique, incomplete trace may suffice as long as it is statisti-

cally similar to the complete trace. Second, unknown load of the nodes makes

it harder to estimate the deferral behavior. In our apprach, we utilize the

strategy of analyzing inter-packet times which can provide certain confidence.

Third, heuristics can be used to infer the deferral behavior. But straightfor-

ward heuristics may have limited power. More details about these challenges

appear in [79].

5This definition ignores ACKs for modeling and notational convenience as in [101, 78],
and is not a limitation. We indeed use unicast traffic with ACKs for evaluation.
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6.3.3 Approach

We need to come up with a rigorous statistical modeling approach to determine

deferral behavior among network nodes. Our basic approach is as follows. We

model the 802.11 MAC layer operations of two sender nodes in the network

(say, X , Y ) via a Markov chain. The parameters of this chain (essentially the

state transition probabilities) are estimated from the observed trace using an

approach based on the Hidden Markov Model (HMM) [114]. These parameters

in turn can estimate the deferral probabilities. We devote the entire next

section describing the HMM-based approach.

6.4 Hidden Markov Model For Sender-side In-

teractions

A hidden Markov model (HMM) [114] represents a system as a Markov chain

with unknown parameters. Here the states of the Markov chain are not directly

visible, but some observation symbols influenced by the states are visible. The

unknown parameters (such as the state transition probabilities of the Markov

chain) can be learnt using different standard methods [114, 45, 24] with the

help of the observed sequence of observation symbols. Various machine learn-

ing applications such as pattern, speech and handwriting recognition have used

HMM technique. We will be using the HMM approach for modeling interac-

tions between a pair of senders in an 802.11 network and inferring sender-side

interference relations (deferral behavior) between them.

6.4.1 Markov Chain

Each sender in 802.11 MAC protocol can be modeled as a Markov chain [26, 79]

as shown in Figure 50. A sender node, say X , is found in one of the following

four states - ‘idle,’ ‘backoff,’ ‘defer,’ and ‘transmit.’ The essence of the 802.11

MAC protocol lies in these four states. We intentionally ignore interframe

spacings (e.g., DIFS) to keep the chain simple. In the rest of the paper, we

call the 4 states I, B, D, and T, respectively for the sake of brevity. The

108



CS=0, Q=1

Q=0C CC
S

=
1
,

C
S

=
0
,

CS=0

Q
=

1

Q
=

1

CS=1

Figure 50: State transition diagram for a single sender. CS = 0 (CS=1) means
that the carrier is sensed idle (busy). Q = 0 (Q =1) means that the interface
packet queue is empty (non-empty).

high level description of this chain can be found in [79]. Note that the state

transition probability between B and D of the corresponding sender node

is influenced by the states of other nodes (i.e., transmitting or not) in the

network, and the deferral probabilities between the sender and these nodes.

Similar argument applies for the transition probabilities from I to D and T,

and transition probabilities from T to D and B.

Since the state transitions of the Markov chain for a given sender is im-

pacted by the transmissions from other nodes, a Markov model of a single

sender is not enough to get the complete picture of the network behavior. In-

stead, a combined Markov model needs to be considered. Here, each state is a

tuple consisting of states of individual nodes. Such a Markov chain would be

intractable as it would lead to a state space explosion with exponential num-

ber of states. Since we focus mainly on determining the pairwise interference

relationships, and our technique to detect selfish behavior needs only pair-wise

deferral behavior, we can restrict ourselves to the consideration of a combined

Markov chain for only a pair of nodes, say X and Y . Each state in this Markov

chain is a 2-tuple consisting of the states of X and Y . For example, the state
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where X transmits and Y defers would be 〈T,D〉. Out of 16 possible states in

theory, 5 states are not legal (e.g., 〈D,D〉, 〈D,B〉 etc.6), leaving 11 possible

states. See Figure 51 for the 2-node combined Markov chain. (Only the solid

lines indicate valid transitions. The dotted transition lines will be discussed

later.)

The state transition probabilities between certain states in this Markov

chain are determined by the deferral probabilities between X and Y . For

example, transition probabilities from state 〈B,B〉 to state 〈T,D〉 or 〈T,B〉

would depend on deferral probability of Y with respect to X . Let us explain

this using an example. Assume that Y carrier senses X (or Y can sense X ’s

transmission) perfectly. Then when X moves from B to T state (i.e., starts

transmitting as soon as the backoff interval is over), Y must also move from B

to D as it defers to X ’s transmission by freezing its backoff countdown timer.

If instead Y never carrier senses X , it will remain in the B state. The deferral

probability of X and Y depends on the number of instances when either of

the nodes moves to D state.

Note again that this combined Markov chain is specified for a node pair

only, as we are interested in pair-wise interference. This process can be re-

peated for all pairs to determine the all-pair sender-side interference. We filter

out the packets of just the two senders under consideration for analysis, and

ignore the other packets. This may misinterpret an active node, deferring

for a third node’s transmission, as idle, and we may miss an opportunity to

interpret the interaction between the particular pair as interfering or non-

interfering. But, it is important to note that this does not create any incorrect

interpretation. Recent studies [94] show that the number of instances of 3 or

more nodes simultaneously being active is much less than that of only a pair

of nodes being active. Thus, we should get enough instances of just a pair of

nodes being active in a long trace. An alternate but computationally expen-

sive method could try to identify portions of the trace where only the senders

in a node pair being considered are active.

6Note that this Markov chain assumes only two nodes X and Y interact. Thus, for
example, the state 〈D,D〉 is not possible as both nodes cannot defer at the same time.
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Figure 51: Markov model of the combined MAC Layer behavior of two nodes
(sender side only). Note that some arrows are bidirectional.

6.4.2 Observation Symbols

The state transition probabilities of the combined Markov chain depend on

the deferral behavior between the two nodes under consideration. Thus, if we

can learn the unknown state transition probabilities, this will in turn provide

us the deferral relations. But the states of this Markov chain are not directly

visible in the packet trace. Instead a set of observation symbols are visible.

There are four possible observation symbols in the trace depending on whether

X or Y transmits:

i: neither X , nor Y transmitting.

x: X transmitting.
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y: Y transmitting.

xy: both X and Y transmitting.

We thus need to map each of the 11 states in this Markov chain to one of the

four observation symbols. This mapping obviously is not unique as more than

one state can map to the same observation symbol. For example, both states

〈I, I〉 and 〈B,B〉 map to the symbol i. Similarly, both 〈B,T〉 and 〈D,T〉 map

to symbol y. The difficulty here is that backoff cannot be distinguished from

defer or idle periods. This ambiguity can be reduced by using a heuristic that

exploits the time duration of various observation symbols. This is elaborated

below.

A backoff interval in 802.11 lasts for an integral number of slots (20 µs

in 802.11b) chosen randomly from a window of 0 to 31 slots (for first back-

off stage7). This knowledge can be used to distinguish between backoff and

idle/defer periods. The conjecture here is that defer and idle periods are very

unlikely (though not impossible) to be within this bounded interval and also

last for an integral number of slots like backoff period. But this strategy re-

quires the clock accuracy within few microsecond, which demands specialized

technique.

We thus use a weaker heuristic in this work that does not require strong

clock accuracy. We assume that defer/idle periods are always longer than 31

slots and backoffs are always equal or shorter. This, however, introduces errors

for very short idle time and small 802.11 frames with airtime less than 31 slots

(620 µs for 802.11b8). These sources of error make the results presented in the

next sections as only a lower bound on the accuracy obtainable by the base

technique. We keep this as our future work to remove the timing inaccuracy

by using more sophisticated technique.

7As a simplification, we develop the model only for the first backoff stage here. This
implicitly assumes that retransmissions are rare (which has been true in our experiments).
The general approach can be extended to handle multiple backoff stages by observing the
number of retransmissions in the trace.

8This means TCP packets with payload less than 400 bytes in 802.11b.
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Based on the above weaker heuristic, each observation symbol (except xy)

can be classified into two types. The symbol i can be either is or il, corre-

sponding to short (≤ 31 slots) and long (> 31 slots) respectively. According

to the heuristic, is is most likely output by 〈B,B〉 state, while il is most likely

output by 〈I, I〉 state, for example. Similarly, the symbols x and y can be

either xs and xl, and ys and yl, respectively to differentiate among the activ-

ities (defer/idle or backoff) of the non-transmitting node during that period.

Figure 51 shows the observation symbols for each state.

The heuristic described above helps us to distinguish between backoff and

idle/defer periods. However, we still cannot differentiate between idle and

defer. For this reason, both the states 〈T, I〉 and 〈T,D〉 map to the same

observation symbol xl. This implies that the transition from state 〈T, I〉 to

state 〈T,D〉 will not be visible in the merged trace as there is no change in the

observation symbol. Thus any transition from state 〈T, I〉 to any other state,

for example, state 〈I,B〉 via state 〈T,D〉 will not be correctly interpreted.

To overcome this problem, we force transition links from state 〈T, I〉 to states

which have incoming transition from state 〈T,D〉. We refer to these links as

virtual links. Similarly, we also add virtual links from state 〈I,T〉 symmet-

rically. Figure 51 shows the virtual links in the model in dotted lines. After

we calculate the transition probabilities of the model using the technique de-

scribed in the following subsection, we remove such virtual links and distribute

the probability on each such virtual link to the corresponding sequence of valid

transition links. See the appendix for a detailed elaboration of this technique.

Each packet in the merged packet trace is timestamped with the arrival

time at the sniffer along with other information including the id of the sender,

size of the packet, and the rate at which it was transmitted. We parse this

information in the trace to obtain the sequence of observation symbols for the

two senders under consideration. Based on this sequence, we use the following

technique to learn the state transition probabilities of the Markov chain, that

in turn will provide the probability of interference between the senders.
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6.4.3 Formal Specification and Learning

We now formally describe the HMM using standard notations [114]. The HMM

consists of the following:

• Set S of N states, where N = 11. S is given by:

S = {Si} = {〈I, I〉, 〈B, I〉, 〈T, I〉, 〈I,B〉, 〈I,T〉,

〈B,B〉, 〈T,D〉, 〈T,B〉, 〈D,T〉, 〈B,T〉, 〈T,T〉}.

• Set V of M observation symbols, where M = 7. V is given by: V =

{is, il, xs, xl, ys, yl, xy}.

• Matrix A of state transition probabilities, indicated by A = [aij ], where

aij is the transition probability from state Si to Sj. This matrix is

unknown at the outset and will be determined. Note that some state

transitions are invalid and such aij is set to 0. Such transitions are not

shown in Figure 51.

• Matrix B of observation symbol probabilities, indicated by B = [bjk],

where bjk is the probability that the observation symbol is vk for state

Sj. In our case, observation symbols are deterministic for each state.

However, they are not unique. The mapping from states to symbols are

shown in a table within Figure 51.

• Vector π of the initial state distribution, indicated by π = [πi], where

πi is the probability of initial state being Si. We use πi = 1/N for all

i, 1 ≤ i ≤ N .

The above specification defines the HMM, λ = (A,B, π). The packet trace

provides the observation sequence O = O1, O2, · · ·OT , where each observation

Ot ∈ V , and T is the number of observations in the sequence.

Given the above HMM λ and the observation sequence O, our goal is to

learn the model parameters λ = (A,B, π) that maximize P (O|λ). This is a

difficult problem, and there is no optimal algorithm for it. We can, however,

use the expectation-modification (EM) algorithm, which is an iterative method

to determine λ, such that P (O|λ) is locally maximized. The EM algorithm
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alternates between an expectation (E) step, which computes the model pa-

rameters most likely to produce the observation, and a modification (M) step,

which computes the maximum likelihood of model parameters across multiple

E steps [45]. We use the well-known Baum-Welch method, which is a type of

EM algorithm, based on the forward-backward algorithm developed by Baum

et. al. [24]. The method ensures that in every estimation step, we find a

model which is more likely to produce the observation. Thus, if we estimate

the parameters of the model λ to get λ, then P (O|λ) ≥ P (O|λ).

While initializing the state transition probabilities in Baum-Welch

method, we asssign equal probability to all the outgoing valid transitions from

each state. This ensures that there is no initial bias in the model towards in-

terfering or non-interfering pair of nodes. This also aids in quick convergence

of the method. We deal with the problems of numeric inaccuracies because

of continued multiplications of certain small fractions by using the scaling

technique in the procedure [92].

Let Π = [Πi] be the stationary (steady state) distribution of the states.

After learning the transition probabilities A = [aij], Π = [Πi] can be deter-

mined as Π = limn→∞ πAn. The convergence is guaranteed as A is a stochastic

matrix.

6.4.4 Interference Relations

6.4.4.1 Learning Sender Side Interference

Transitions into any state with a defer component (i.e., states such as 〈D, ∗〉

and 〈∗,D〉) indicate interference. Similarly, transitions into any state of the

set {〈B,T〉, 〈T,B〉, 〈T,T〉} indicate absence of interference. Thus the sender

side interference can be interpreted as the total probability of transition into

the interfering states. If we represent Πi’s as P (I, I), P (B, I) etc, the deferral

probability, pd, is given by,

P (D,T) + P (T,D)

P (D,T) + P (T,D) + P (B,T) + P (T,B) + P (T,T)
. (14)

The above expression essentially captures the probability of being in the inter-

fering states when one of the two nodes is transmitting. Here, we are assuming
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a symmetric link between a node pair. In reality, links may be asymmetric, and

the above expression can be easily modified to consider asymmetric deferral

probabilities. This is discussed in Section 6.6.1.

6.4.4.2 Learning Receiver Side Interference

The receiver-side interference causes collisions that can be detected relatively

easily by tracking retransmissions in the trace.9 One can identify retrans-

mitted packets by observing the set ‘retransmit bit’ in the frame header. A

retransmitted frame, say R, can be correlated back to the original frame, say

P , that has not been received correctly as both these frames carry the same

sequence number. Any frame S from a different sender overlapping with P is

a potential cause of collision. If P does not overlap with any other frame, the

packet loss is due to wireless channel errors rather than collisions [118, 94].

Because of the probabilistic nature of packet capture, sufficient statistics need

to be built up to determine receiver-side interference. This is because frames

like S and P – even when overlapping – may not always result in a collision.

Thus, the receiver-side interference between two links, or in other words, the

probability of collision pc can be determined as the ratio of the collision count

and the overlapped-frame count.

6.5 Evaluating Interference Relations

We will now evaluate the effectiveness of our approach to infer interference

relations by a series of evaluations. We will use a mix of different scenarios

starting from careful micro-benchmarking to using large and congested wire-

less network traces. For the benefit of the reader, we summarize the various

scenarios we will use in Table 1.

9For unicast transmissions only. However, unicasts are much more frequent relative to
broadcasts in a real network packet trace.
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Sec. Scenario Trace Trace Nature of Interference
# type source traffic evaluation

6.5.1 Micro- Experimental Collected UDP broadcast Sender-
benchmarking by authors (diff. rates) side

6.5.2 NS2 Simulation Collected Short TCP Sender-
simulations by authors transfers side

6.5.3 Departmental Experimental Collected Long HTTP Sender- &
WLAN by authors downloads receiver-side

6.5.4 SIGCOMM Experimental Externally Real Sender- &
2004 trace obtained traffic mix receiver-side

Table 1: Summary of evaluation scenarios used in the paper to infer interfer-
ence relations.

6.5.1 Micro-benchmark for Sender-side Interference

We first describe a set of micro-benchmarking experiments. Here two senders

transmitting broadcast traffic are used to specifically evaluate the sender-side

interference using carefully controlled load. We evaluate for a range of in-

terference scenario by positioning the senders at different locations. We also

compare our micro-benchmarking experiments to infer sender-side interference

with two other possible methods described below.

6.5.1.1 Comparison Points

A) Profile based method (PROFILE): This technique is specifically based on

[120, 78] and needs active measurements. It creates a profile for each device in

the network with specific interface card used. Profiling is done by collecting a

large number of measurements using a pair of devices to create the correlation

between the received signal strength (RSS) and the probability of deferral.

This needs to be repeated for all different cards used in a network. Later the

profile can be used to estimate the probability of deferral between two nodes

by measuring the average RSS values between them and doing a lookup on

the profile. As this technique is expected to be quite accurate, we use this as

a benchmark.

B) Moving window based method (WINDOW(t)): This is a simple heuristic
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that may need extensive parameter tuning. In this technique, a moving time

window of size t seconds over the combined packet trace is maintained. For

each window position, we analyze only the packets inside the window and infer

whether the nodes considered interfere or not (see below). Finally, we count

the number of window instances where the nodes interfere, and obtain the

probability of deferral as a fraction.

Specifically, we use the following approach.

• Only consider windows that have packets from both nodes. (We do not

want to consider windows that have mostly one node transmitting and

the other silent.)

• Determine the saturation throughput Tsat. This is tricky and will depend

on the transport protocol and packet sizes used.

• The aggregated throughput Tobs of the two nodes in the window being

considered is calculated. If Tobs > Tsat−δ1, then the window is considered

saturated, otherwise the window is considered unsaturated.

• A saturated time window is marked non-interfering if Tobs > Tsat + δ2.

• The parameters δ1 and δ2 are needed to ride out measurement noises and

are tuned.

• Probability of deferral is the fraction of saturated time windows that are

marked interfering.

6.5.1.2 Micro-benchmarking with Two Nodes

Our micro-benchmark experiment consists of a setup with two senders and

two sniffers.

Each sniffer is co-located with a sender to guarantee that all frames are

captured. Both the senders and sniffers have 802.11 radios. All the cards

used have Atheros chipsets, and the popular MadWiFi driver is used. We also

use a ‘beacon’ node, whose sole responsibility is to transmit 802.11 beacons

at regular intervals to provide a common time base needed for merging the
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Figure 52: Combined performance results for 11 chosen scenarios for two node
experiments.(a) Measured probability of deferral for different scenarios; (b)
CDF of error in estimating probability of deferral.

traces. In a normal deployment, these beacons will be supplied by existing

APs.

For the experiments, we configure all the four radios in the same channel.

The choice of channel is immaterial. We also set the sender radios in ‘ad hoc’

mode and the sniffer nodes in ‘monitor’ mode. All experiments are done for

802.11b using the PHY-layer data rate of 11Mbps. A large packet size (1470

bytes) is chosen for the experiments. This is because, with smaller packets,

the sniffers cannot capture all packets in our low-cost embedded hardware,

likely due to inefficiencies in interrupt processing. Tcpdump is used for packet

capture in the sniffers.

We create a range of interference scenarios by positioning one sender-

sniffer pair fixed at one location, and moving the other to various locations

in the building. For each scenario, we perform the following measurements.

First, we measure the actual probability of deferral between the nodes. To do

that, we follow the method in [101] briefly described below. We let each sender,

configured with saturated UDP traffic, broadcast in isolation for a minute, and

measure their throughputs in isolation. We then let them broadcast together

with saturated traffic, and measure their throughputs again. The ratio of

the sum of throughputs when the senders broadcast together to the sum of

throughputs when the senders broadcast in isolation is defined as BIR, or
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Figure 53: NS2 simulation results showing CDF of error in deferral probability
estimates for the (a) sparse and (b) dense networks.

the broadcast interference ratio [101]. Note 0.5 ≤ BIR ≤ 1. The ‘measured’

probability of deferral is estimated as 1/BIR− 1.

We also collected the RSS measurements at each sender for each scenario

when the other sender broadcasts in isolation. This is used to estimate the

probability of deferral using the PROFILE method described above. The

profiling of each interface card have been independently done using a method

similar to [78].

Next, we conduct a series of experiments with varying traffic load in

the following fashion for each scenario to evaluate HMM and WINDOW (t)

methods. The senders are configured to broadcast UDP packets simultane-

ously for one minute with 10 different load levels ranging from 0.1 Mbps to

6 Mbps. The PHY-layer bit rate is chosen to be 11 Mbps; thus, 6 Mbps for each

node means saturated load. Meanwhile, each sniffer captures all the packets

it hears in that duration. The packet trace from each sniffer is merged using

the techniques described earlier, and this combined trace is used to estimate

the probability of deferral using the HMM and the WINDOW (t) methods.

The later is repeated for three different window sizes (t= 0.01s, 0.1s, 1s).

We make such measurements for 11 different locations of the senders,

creating 11 different scenarios. The distribution of the measured probability

of deferral at different locations is presented in Figure 52(a). For each scenario,

10 different values of offered load are used between 0.1 Mbps and 6 Mbps, thus
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creating 110 measurements for HMM and the WINDOW (t) methods, and

11 measurements (one for each scenario only) for the PROFILE method. The

distribution (CDF) of errors (‘estimated’ – ‘measured’ probability of deferral)

is plotted for all three methods in Figure 52(b). Note that theHMM approach

is quite competitive with the PROFILE method. In fact, it is slightly better

overall for the particular distribution of deferral probabilities. The reason for

this is that the PROFILE method uses profiles for interface card models,

rather than from the specific cards used in the experiments [78], even though

it uses RSS measurements on the actual network with the actual cards used.

Variations between individual cards can lead to modeling errors.

The root mean square error (RMSE) values are 0.165 and 0.208 forHMM

and PROFILE, respectively. The RMSE values for WINDOW (t) methods

is 0.385, 0.408, and 0.402 for t = 0.01s, 0.1s, and 1s respectively. We have noted

before, however, that the PROFILE method is impractical for analyzing live

network traffic and it also requires access to the network nodes.

Overall, HMM is quite competitive with PROFILE, but requires only

passive measurements. The experience with the window-based method is quite

variable. It is also quite sensitive to choice of window size.

6.5.2 Simulation-based Evaluation

Simulations let us create arbitrary topologies and interference conditions eas-

ily. However, the physical layer (including interface behavior for carrier sense

and packet capture) implementation is often idealized or unrealistic in simu-

lations. To address this issue, we use an extended version of the ns2 simulator

that includes realistic measurement-based models [77]. These models were

validated against experimental results showing excellent accuracy [77].

For the sake of completeness, we note that the enhancements in ns2 in [77]

are done specifically in the following physical layer components – (i) radio

propagation model, (ii) deferral or carrier sense model, and (iii) packet recep-

tion model. For (i), models are derived from real measurements in a testbed.

For (ii) and (iii), measurement-based profiles of a testbed are created where

every value of RSS is mapped to a deferral probability and every value of
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SNR is mapped to receive probability, respectively. These profiles make the

interference relations between links non-binary.

We consider two scenarios, where 20 nodes are uniformly and randomly

distributed in a 200m×200m area and a 100m×100m area. These two scenarios

produce different topologies: sparse and dense. We generate traffic by creating

one-hop TCP flows on randomly chosen feasible links. Both the inter-arrival

time and duration of flows are chosen from an exponential distribution. For

the results presented here (See Figure 53), the simulations were run for 180s,

the average duration of each flow was 5s, and the average inter-arrival time

between flows was varied from 2.5s to 1s, such that the average load in the

network varies from 2 to 5 flows.

In Figure 53 we show the CDF of the estimation error (as before) for

the probability of deferral between node pairs. CDFs for both HMM and

WINDOW (t) methods are presented for the sparse and dense network. The

PROFILE approach is not shown here as it would be perfectly accurate in

the simulator (as the simulator’s deferral model itself uses the same profile

model). From the plots note that HMM performs significantly better than the

window-based method. Average RMSE value for the HMM method is about

0.1, while the average RMSE value for the better of the two window-based

methods is about 0.4. Note again the accuracy of the window-based method

is quite sensitive to window sizes.

6.5.3 Complete Evaluation on WLAN

Here, we provide a complete evaluation – both sender and receiver sides. These

experiments are done on an active WLAN with 7 APs spread over two floors

of the Computer Science department building of Stony Brook University. 7

laptops are used as clients. Each client fetches a large file via HTTP download

using a unicast link for about 20 mins. This simulates real network traffic

that are sniffed using 9 sniffers (Soekris single board computers with 802.11

miniPCI cards with Atheros chipset and with external USB flash memory to

store packet traces). The sniffers are deployed based on convenience, i.e., near

a power outlet and in the rooms that we have regular access to. However, an
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Figure 54: Estimated and measured probabilities of deferral for the 16 test
cases with the departmental WLAN.

attempt was made to keep them as close to the APs as possible.

16 client laptop pairs are considered for evaluation. All of these pairs as-

sociate with two different APs. Unlike the micro-benchmarking experiments,

the default auto-rate control with 802.11b is used. Also, the 802.11 frames are

now unicast with ACK. RTS/CTS is disabled. For each pair, the probability

of interference between the pair of download links (AP to client) is ‘estimated’

using equation 13. First, the probability of deferral (pd) is estimated using the

HMM-based method using the merged sniffed traffic traces from all sniffers.

Second, the probability of collisions (pc) is estimated by observing the re-

transmissions for overlapped packets as described in Section 6.4.4.2. However,

in all cases, retransmissions were rare, typically less than 1% of frames were

retransmitted. This is consistent with prior experimental observations [94].

Thus, pc could be safely ignored with pd alone determining the probability of

interference.

For validation, pd is ‘measured’ via the BIR method described in the

previous subsection. For these measurements, simultaneous saturated UDP

traffics on the downlinks are used for about 2 mins. The validation results are

shown in Figure 54 as a scatterplot. Note the high degree of predictability of

the estimation in this real-life experiment. The straight line is the least square
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Figure 55: Interference analysis of the SIGCOMM 2004 trace: (a) CDF of
probability of interference between clients associated with the same AP and
different APs; (b) comparison of interference between the associated AP and
another AP.

fit with the condition that the line passes through 0. Note that it is very close

to the y = x line. The R2 value for this line is 0.88 showing a good fit.

A careful reader will notice a slight bias at the low end of the deferral

probabilities. The HMM method consistently overestimates deferral proba-

bility, when the probability is very small. We have also observed this in our

micro-benchmarking though it does not show up in the CDF plots. The reason

for this is the heuristic we used in our modeling (Section 6.4.2) that defer/idle

periods are always assumed longer than 31 slots. When there is little interfer-

ence, often idle periods could be shorter than backoffs. If they are misclassified

as backoffs, the possibility of misclassifying some idle states as defer increases.

As discussed in Section 6.4.2, a stronger heuristic using more accurate clocks

could address this issue.

6.5.4 Using Large-Scale Wireless Traces

Encouraged by the strong validation results in the departmental WLAN trace

analysis, we use the wireless network trace collected at the SIGCOMM 2004

conference [94] for demonstrating powerful capabilities of our tool. The trace

was obtained from the CRAWDAD archive [123]. The SIGCOMM 2004 confer-

ence was 4 days long and was attended by more than 500 attendees. During
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busy periods, several simultaneously active flows were not uncommon [94].

The WLAN under consideration in this trace had 5 APs – three on channel

1, one on channel 8 and the other one on channel 11. Five sniffers were used

each with three wireless interfaces. Two of them listened on channel 1 and

11, respectively, and the third one listened either on channel 8 or 6 [94]. We

consider only channel 1 in this work.

First, we analyze the probability of interference between client-to-AP links

where the clients are associated with the same AP. For this analysis, we pick

random pairs of clients associated with the same AP and find a 20 min long

period when they are both simultaneously active. In Figure 55(a) we plot

the CDF of the probability of interference for 1990 such randomly chosen

link pairs. This shows that the interference is well-distributed over the entire

range showing roughly similar probabilities of (mostly) interfering clients and

(mostly) non-interfering clients. This indicates that a significant number of

‘hidden’ clients associate with the same AP. However, these hidden clients

almost never collide. Collision probability is found to be minuscule (less than

0.4%). Thus, probability of interference is again controlled by the deferral

probability alone.

Next, we do a similar analysis but for pairs of clients that associate with

different APs. This study is exhaustive instead of a random sampling as the

number of such pairs is relatively small (154). In Figure 55(a) note that almost

75% of such client pairs do not interfere at all and about 5% interfere strongly.

The rest are in between. This indicates that the association control works

quite well. This point is further elaborated in Figure 55(b) where we show a

comparison of the deferral probability of 120 randomly selected clients with its

associated AP and with another random AP. In a good deployment we would

normally expect the latter to be small and the former to be much higher than

the latter. However, we see that while the interference with the associated

AP is higher about 90% of the cases (indicating a good association control),

the other AP often presents significant interference. This can indicate, for

example, a poor channel assignment.
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6.6 Detecting Selfish Behavior

In this section, we demonstrate how the interference relationship can be used

to detect selfish carrier-sense behavior and define a metric to quantize the

selfishness of a node. We also define the characteristic of an effective witness

and introduce two simple heuristics to identify effective witnesses.

6.6.1 Detecting Asymmetric Behavior

To detect selfish carrier-sense behavior, we need to identify asymmetric be-

havior. This can be detected using the following fashion. The probability that

X has a packet to transmit and it defers while Y transmits is given by

Pdef(X, Y ) =
P (D,T)

P (D,T) + P (B,T) + P (T,T)
. (15)

The opposite probability (i.e., Y has a packet to transmit and it defers while

X transmits) is likewise

Pdef(Y,X) =
P (T,D)

P (T,D) + P (T,B) + P (T,T)
. (16)

The difference between Pdef(X, Y ) and Pdef(Y,X) characterizes asymmetry.

Larger the difference, higher is the asymmetry. Due to the nature of our

approach, the asymmetry is tested between a node pair at a time. A positive

(negative) difference indicates that Y (X) gets a bandwidth advantage due

to asymmetric carrier sensing. In our evaluation, we have used the difference

with a simple normalization as the ‘metric of asymmetry,’ η(X, Y ), except

when the two probabilities are both close to zero. Thus, when both Pdef(X, Y )

and Pdef(Y,X) < ǫ (ǫ was chosen to 0.01 in the evaluations), the metric of

asymmetry, η(X, Y ), is given by,

Pdef(Y,X)− Pdef(X, Y ), (17)

else it is given by,
Pdef(Y,X)− Pdef(X, Y )

max(Pdef(Y,X), Pdef(X, Y ))
. (18)

Note that η(X, Y ) = −η(Y,X).
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6.6.2 Selecting Witnesses

In general, each network node X must be evaluated for selfish behavior. By

default, every other node Y acts as a witness and the above metric of asym-

metry is evaluated for the pair (X, Y ). Thus, for each network node X , we

take the average of the metric of asymmetry η(X, Y ) over all the witnesses Y

that provide a positive value. The negative values are discounted as they will

be accounted when Y is evaluated with X as the witness. We call this average

the ‘selfishness metric’. We will evaluate this metric later in our simulations.

However, if X and Y are not within carrier sense range of each other

(i.e., they never hear each other), Y cannot serve as an effective witness. This

is because P (D,T) or P (T,D) would evaluate to zero. (In practice, due to

measurement noise, they evaluate to a very small value close to zero.) Thus,

the metric of asymmetry is zero. While this is correct, this does present a

problem. Assume that X is indeed selfish in a 4 node network and witness Y1

detects a very large (i.e., η(X, Y1) is close to 1) metric of asymmetry. However,

witnesses Y2 and Y3 do not hear X at all (and vice versa). They offer the

metric (η(X, Y2) and η(X, Y3)) as close to 0. Here witness Y1 is an effective

witness while witness Y2 and Y3 are ineffective witnesses. Without any further

information, if we aggregate these measures using an average, we obtain a

low confidence in X ’s selfishness (about 0.3 in this example), even when we

have one perfect witness and the other witnesses are clearly ineffective. On

the other hand, relying on a single witness (e.g., Y1) that points to a severe

asymmetry may not be right as this may simply be due to random wireless

channel/interface effects and not due to a systematic selfish behavior. Thus,

this can raise false alarms.

This problem cannot be addressed without some additional knowledge of

the network topology regarding which node can serve as an effective witness.

Ideally, we should only rely on witnesses that are within the carrier sensing

range from a potential selfish node. The more such nodes, the better.

To address this issue, we use two simple heuristics named as H1 and H2.

For heuristic H1, we assume that the sniffer locations are known, as well as

some bounds on the carrier sense range (RC) and transmit range (RT ) for the

network nodes. Then the sniffers that are separated by at least RC + 2RT
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distance, must sniff nodes that cannot hear each other. Thus in other words,

for a node X sniffed by a sniffer SX
10 and another node Y sniffed by a sniffer

SY , node Y will not be an effective witness of node X if SX and SY are

separated by at least RC+2RT distance. This simple heuristic eliminates many

nodes that should not serve as witness to each other. Note that this may not

remove all ineffective witnesses, and if the bounds are incorrect, this technique

may even remove some effective witnesses. But this technique is practical and

easy to use, and at minimum eliminates a large number of far-away witnesses

that cannot be effective by being outside the carrier-sense range.

For heuristic H2, we do not even need to assume anything. In H2, Y is an

effective witness of X , if they are both sniffed by a common sniffer. H2 will

surely remove all the ineffective witnesses, and may also remove some effective

witnesses.

For any given heuristic, for each network node X we take the average of

the metric of asymmetry η(X, Y ) over all the nodes Y that are selected as

effective witnesses by the heuristic and that provide a positive value for η.

Then we calculate the ‘selfishness metric’ by a simple averaging.

6.7 Evaluating Selfish Carrier-Sense Detec-

tion

In this section we evaluate our technique to detect selfish carrier-sense behav-

ior. We have performed two sets of evaluations: (i) a set of microbenchmarking

experiments to understand the effectiveness of the approach and (ii) a set of

ns2 simulations to study larger networks and complex selfish behaviors.

6.7.1 Experiments

The experiments essentially achieve careful micro-benchmarking using similar

setup described in Section 6.5.1.2. Only two network links are used but wireless

channel quality, traffic load and selfish behaviors are varied over a wide range.

10We say a node is sniffed by a sniffer, when the packets transmitted from the node can
be heard by the sniffer
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One transmitter is configured as ‘selfish’; the other transmitter is regular and

acts as the sole ‘witness.’ A sniffer node, located in close proxomity of each

transmitter, monitors the traffic on corresponding link. In this experiment we

use 802.11a and channel 52 with 6 Mbps PHY layer rate and a large packet size

(1470 bytes). We use Soekris boards as the transmitters and laptops running

linux as sniffers.

A node achieves selfishness by not sensing carrier before transmitting. To

make a node selfish, we have used the antenna switching technique described

in [32]. There are two antenna connectors on 802.11 interface for diversity

where either of them can be selected for receiving/transmitting using driver-

level command. We have connected one antenna to one connector, kept the

other connector unconnected. Selecting the unconnected antenna as the re-

ceiving antenna effectively disables carrier sense.11 The impact of the selfish

behavior can be varied by simply varying the distance between the selfish and

witness nodes. A close distance means the witness node is impacted signif-

icantly due the selfish behavior as the RSS at the witness node is high. A

large distance means that RSS is low and often the witness node cannot hear

the selfish node due to channel fading, and thus the selfishness causes little

impact.

The benchmarking experiments are performed by increasing the distance

between the two transmitters (selfish and witness) from a very small value at

steps of 3 ft in 28 discrete steps. For each position, (i) the average SNR from

the selfish to the witness transmitter is measured, and (ii) UDP packets are

transmitted at different offered loads on their respective links for 60 sec. We

use offered loads of 6 and 4 Mbps, denoting high and low loads, respectively.

We experiment with both loads on the selfish node, while the witness node

has only high load.

Figure 56 plots the estimated metric of asymmetry η for the <selfish,

witness> node pair for each of the experiments. The plots are color-coded

based on the load. The asymmetry is clearly higher with higher SNR. Note

11Note that selfishness can also be achieved by resetting the CCA threshold as in [108].
However, in our hardware we have found that the antenna switching technique is more
foolproof than using an increased CCA threshold.
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Figure 56: Experimental results with varying load on the selfish node.

that with lower load on the selfish node the asymmetry tends to be somewhat

lower as expected. Also, note significantly lower asymmetry when the SNR is

very high (i.e., nodes are very close). This is an artifact of our experimental

technique. The selfish node starts picking up some signal at close ranges even

when the antenna is disconnected, and thus it stops being selfish. So, much

lower asymmetry is detected for very high SNRs.

Note that the above two node micro-benchmarking is sufficient to derive

an insight into what would happen in a multiple node network. Essentially,

nodes still need to be evaluated in a pair wise fashion. For each potential selfish

node, we need to evaluate the metric of asymmetry with each possible witness

node independently. Note again (as discussed in Section 6.3), we are currently

considering pairwise interference only. But several other issues remain to be

evaluated – (i) how to effectively combine the metric of asymmetry for a selfish

node as provided by multiple witness nodes into a single measure, defined as

‘selfishness metric’ in Section 6.6.2, (ii) how suitable are the witness nodes. We

will explore these issues via a packet level simulation using the ns2 simulator.
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6.7.2 Simulations

Ns2 simulations let us implement various degrees of selfishness, where the

selfish node senses carrier with only a certain probability. We use the term

degree of selfishness (Ps) to indicate that the selfish node senses carrier with

probability equal to 1− Ps. Ns2 simulations also make it easier to investigate

larger networks, where there are many nodes, possibly with more than one

selfish node with varying traffic and degrees of selfishness.

In our simulated scenario, there are 40 network nodes distributed ran-

domly in a square region. We chose a deployment typical of dense WiFi client

distribution in indoor office environments, assuming that there is one node in

300 sq. feet on average. The default ns2 wireless channel model is extended to

include shadowing [116] effects. This introduces randomness in the transmis-

sion range of a node instead of making it a perfect disk. Shadowing parameters

are taken from [77] where a set of measurements was done to model such pa-

rameters in an indoor environment. A set of feasible network links are chosen

randomly and 1-hop UDP flows are generated with randomly chosen loads (be-

tween 0.5-1 Mbps). Each flow is active (and then inactive) only for a random

interval of time. Both intervals are chosen from an exponential distribution

with a mean of 5 sec. Note that the exact traffic parameters are not important

for our work. All that is important is that enough traffic is recorded so that

for each pair of nodes that are potentially within the carrier sense range there

are concurrent packet transmission attempts. This ensures that any possible

selfish node will find enough witnesses.

We deploy a set of 10 sniffers at random locations. Among the 40 network

nodes, 1, 2 or 3 nodes are selfish. The degree of selfishness is varied. For each

pair of nodes, we evaluate the metric of asymmetry by using the procedure in

Section 6.4. For each network node X , we measure the selfishness metric in

three ways as discussed in Section 6.6.2: (i) using all possible witness nodes

(also called “no heuristic” case), (ii) using witness nodes based on heuristic

H1, and (iii) based on heuristic H2.

Figure 57 plots the selfishness metric of each node in the scenario with

one selfish node with varying degree of selfishness where the witness nodes are

selected using heuristic H2. Note that the metric has a very visible peak only
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Figure 57: Simulation results for a 40 node network. Node 2 is the only selfish
node. The estimated selfishness metric using heuristic H2 is shown for each
node for each of the 6 sets of simulations that are run with different degree of
selfishness of node 2.
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for the selfish node. The values of metric for the selfish nodes are roughly

similar to the degree of selfishness.

Because of space limitation we do not present the similar plots for the

scenarios with 2 and 3 selfish nodes using different heuristics. We instead

show the overall statistics that summarizes how good our detection is. For

each scenario and for each type of witness node identification technique, we

evaluate for each node the ‘estimation error’ as the algebraic difference between
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Figure 59: Simulation results for the sparse network.

the computed selfishness metric and the actual degree of selfishness of that

node. All nodes (selfish and regular) are included. The estimation error is

plotted as a CDF in Figure 58. Nine plots are shown for three techniques used

to identify the witness nodes and for three different numbers of selfish nodes.

The CDF shows that the estimation error is very small in general and heuristic

H2 performs somewhat better than the other two techniques in general.

In this scenario, the heuristics do not perform much better than the no

heuristic case, because the no heuristic case itself performs very well. The

reason for this is the high density of the network. To demonstrate the power

of the heuristics we consider a sparser network with 40 nodes distributed ran-

domly in squared region with one node in 1500 sq. feet on average. Different

scenarios are created by varying the number of selfish nodes (1, 2 or 3) with

degree of selfishness = 1. Because of the sparsity of the network we now have

to deploy more sniffers to capture all network traffic. So, this time we deploy

40 sniffers randomly as before. Figure 59 shows the average estimated self-

ishness metric measured in three ways as before only for the selfish node(s).

Note that as expected (i) estimation becomes better when we identify witness

nodes using the heuristics in comparison to using all the nodes as witnesses;

(ii) H2 is generally a better heuristic, and (iii) estimation becomes worse with

a larger number of selfish nodes. The reason for H2 performing better is that

it only considers effective witnesses, while H1 may include ineffective witnesses

as well. The reason for the third observation is that selfish nodes cannot be
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used to correctly identify other similarly selfish nodes.

6.8 Conclusions

In this chapter, we have investigated a novel machine learning-based approach

to estimate interference and to detect selfish carrier-sense behavior in an 802.11

network. The technique uses a merged packet trace collected via distributed

sniffing. It then recreates the MAC layer interactions on the sender-side

between network nodes via a machine learning approach using the Hidden

Markov Model. This coupled with an estimation of collision probability on

the receiver-side is helpful in inferring the probability of interference in the

network links. Significant asymmetry in the sender-side interaction in favor

of a particular node witnessed by multiple other nodes indicates selfishness.

The power of this technique is that it is purely passive and does not require

any access to the network nodes. Although our technique works offline, it can

be used periodically every few minutes (for example). Moreover, interference

relationship can be used for efficient network design and capacity allocation.

It can be used as a third-party solution for detecting MAC-layer misbehavior

in 802.11 networks. Evaluations show the effectiveness of the tool for both the

applications.

There are indeed some limitations of the technique as presented here. So

far, we have estimated deferral behavior assuming only pairwise interference

and have ignored physical interference (see discussions in Section 6.3.1) argu-

ing that the improvement in accuracy will be relatively minor. Also, 802.11

retransmissions were ignored in the modeling to reduce complexity. These are

not fundamental limitations and can be accommodated with higher compu-

tational cost, but are likely unnecessary. So long as enough of the common

baseline case that we modeled indeed show up in the traffic trace, we will have

a very good estimation accuracy. Our future work will include more evalua-

tions to demonstrate this aspect. We will also study the impact of inaccuracy

in trace gathering.
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Chapter 7

Conclusions

In this dissertation, we have focused on to understand the traffic dynamics of

cellular data networks and proposed several approaches both for broadband

cellular and WiFi networks to help the service provider and the administra-

tor with improved traffic management, resource allocation and monitoring

schemes. We have used a large scale data set collected inside a nation-wide

3G network for our cellular network analysis and evaluation of our approaches.

This has made sure that our analysis has the global view of the network from

the perspective of the service provider. Specifically, we have made the follow-

ing contributions.

• First, we have conducted a detailed analysis to understand the traffic

dynamics in cellular data networks both from the subscriber and net-

work perspective. We have analyzed individual subscriber behaviors,

characterized subscriber mobility and temporal activity patterns, and

identified their relation to traffic volume. We have investigated the ef-

ficiency in radio resource usage by different subscribers as well as by

different applications. We also have analyzed the network traffic from

the point of view of the base stations and found significant temporal and

spatial variations in different parts of the network. Our observations

have delivered important insights into network-wide resource usage and

indicated implications in pricing, protocol design and resource and spec-

trum management.
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• Then, we have shifted our focus to investigate the spatial characteristics

of network resource usage in cellular data networks. We have started

with characterizing the spatial correlation in radio resource usage using

different statistical techniques. We have used the notion of spectral

clustering to show how base stations can be clustered based on how

correlated they are in terms of radio resource usage. We also have used

the concept of Granger causality to understand the underlying functional

connectivity and flow of influence in the network. We have showed that

roughly one-third of neighboring base station pairs exhibit statistically

significant Granger causality, and long causal paths exist in the network.

Our observations can lead to development of new techniques for network

monitoring and resource management in future cellular data networks.

• We have proposed a new traffic management technique to improve net-

work and user perceived performance. We have considered the existence

of a higher-layer, agent-based scheduling system that can potentially de-

lay scheduling of low priority flows at peak loads. The idea is to poten-

tially move the low priority flows in time and space opportunistically to

reduce the overall resource needs. We have developed and evaluated two

scheduling schemes and demonstrated the potential of these approaches

in reducing base station resource requirements. This indicates that the

provider can potentially accommodate a significant number of additional

subscribers in the same network without expending any additional re-

source if only a small fraction of flows is treated as low priority.

• We have proposed an approach to develop a spatial sampling technique

that estimates the loads on all the base stations based on actual measure-

ments only on a small subset of base stations. We have used a machine

learning technique to learn the underlying conditional dependence and

independence structure in the base station traffic loads and exploited

the model to reduce the traffic monitoring efforts. We have taken special

care to develop a sparse model that focuses on capturing only key de-

pendences. We have demonstrated the trade offs between accuracy and

monitoring complexity from the perspective of two real applications.
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• Finally, we have presented a tool to estimate the interference between

nodes and links in a live WiFi network by passive monitoring of wireless

traffic using a set of sniffers. We have used a machine learning approach

to analyze the trace to infer the carrier-sense relationship between net-

work nodes. We also have demonstrated an important application of

this tool–detection of selfish carrier-sense behavior. This is based on

identifying any asymmetry in carrier-sense behavior between node pairs

and finding multiple witnesses to raise confidence. We have evaluated

the effectiveness of the tool for both the applications using extensive

experiments and simulation.
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