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An Abstract of 

Investigation of Factors that Control Droplet Formation in Microfluidic Cross-Junctions Using 

the Lattice Boltzmann Method  

by 

Jason Pellegrino 

Master of Science 

in 

Materials Science and Engineering 

Stony Brook University 

2012 

Microfluidics could potentially provide a cheaper and more effective alternative to current 

industrial and laboratory fluid management techniques due to the large surface area-to-volume ratios; 

however, optimization of the flow conditions necessary for precise droplet generation is required for 

any segmented flow application.    The Shan-Chen multicomponent multiphase Lattice Boltzmann 

method was used to simulate droplet formation conditions and provide insight about the conditions for 

different flow regimes like streaming, threading, and stable droplet generation.  For the range of 

numerically stable flow conditions tested, the combined effects of the Capillary number and velocity 

ratio were demonstrated to be the process drivers for the cross-junction droplet size while the other 

dimensionless numbers had a less significant effect.    Future studies include the analysis of other 

multiphase models to improve the numerical stability and reduce spurious velocities.  In addition, there 

has already been some success in incorporating tracer particles into cross-junction droplets to quantify 

mixing during droplet coalescence.  Further improvements will incorporate suspended magnetic 

particles to simulate the afforded mixing and separation capabilities.
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1. Introduction   

Interest in the field of microfluidics has been growing due to the breadth of reported applications 

and the potential benefits for efficient and cheap analytical and industrial processes.  Often, the terms 

“lab-on-a-chip” devices and “Micro Total Analysis Systems” (µTAS) are used as keywords because they 

capture the overlying goal for the field – to perform a host of laboratory operations on the micron scale 

in order to decrease costs and increase throughput.   The cost reductions will be realized from the 

cheap, versatile and uniform fabrication techniques, which will produce devices with smaller footprints 

and smaller consumable requirements.   The superior precision afforded by the associated large surface-

to-volume ratios will also facilitate automated high-throughput synthesis and screening methods.   The 

relatively large surface areas will grant improved control over the small diffusion lengths, increased 

exposures for surface-based assays, and predictable flow velocities for controlled mixing and interface 

management [1,2,3].  However, in order for such microfluidic systems to compete with current 

commercially available methods such as automated liquid handling systems or lateral flow strips, they 

will need to provide a viable alternative for certain fundamental operations such as precision fluid 

volume management, mixing, incubation, and indexing [3].   

One of the most prevalent methods for precision management of small volumes in microchannels 

involves ���
����� multiphase flow – structured droplets of one phase partition the desired 

components (e.g. biological entities, reagents, chemical reactions etc.) from a second immiscible carrier 

phase.      Such methods have been documented for a wide variety of applications ranging from 
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inorganic nanoparticle synthesis [4,5,6], to cellular and sub-cellular mechanics and reaction kinetics [7], 

and to organic microreactors [8,9,10].   For example, Ahmed et al. (2006) reported that organic synthesis 

reactions in segmented flow microchannels had faster reaction rates as compared to reactions in 

homogenous (single phase) microreactors or bulk flasks [11].  They attributed the enhanced reaction 

rates to the suspected vortices generated within each phase of the segmented flow.  A schematic of the 

T-junction used for their droplet generation can be seen in Figure 1.  Although the T-junction 

configuration used to generate the drop segments is one of the simplest and most established designs, 

they had to optimize the microchannel geometries, sizes, and flow rates in order to achieve proper 

reagent addition and sufficient mixing for their particular chemical system.   

 Song et al. (2006) used segmented flow to provide precise measurements for blood-clotting times, 

which has clinical implications for anticoagulant drug dosing and point-of-care devices [12].  In order to 

provide better control for the titration of the anticoagulant into the blood droplets, they tested several 

microchannel designs and found that they were able to maintain the best control over the coagulation 

reaction with careful control of the surface tension of the microchannel walls.  By introducing a 

hydrophobic Teflon coating to the main channel, the blood samples were encapsulated by the carrier 

fluid to prevent any sample adsorption to the channel walls.  The novel aspect of their setup involved 

the addition of a hydrophilic side-channel that maintained a droplet of the titrant within the intersection 

until it coalesced with an incoming blood droplet.  In addition to the optimization of the flow rates and 

Figure 1. A schematic of the T-junction configuration used for droplet generation in 

reference [11]. 
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geometries, this method also required experimental determination of the proper flow conditions for 

droplet synchronization between the different source channels [12].   

A variation of another well documented method for combining reactants in well-defined droplet 

segments was utilized by Liau et al (2005) to perform reactions within high-concentration biological 

solutions mimicking intracellular conditions [13].  While T-junctions involve the perpendicular 

intersection of two inlet streams and an outlet stream, cross-junction devices generally incorporate an 

additional inlet stream to create a four-way cross-junction.   A schematic for the cross-junction 

configuration can be seen in Figure 2.   

Liau et al. (2005) found that the two symmetrically opposing streams in the cross junction reduced wall 

contamination, prevented swirling at the point of plug formation, and allowed them to produce smaller 

droplets of their highly viscous solutions [13].    What was unique about their experimental setup was 

that they used three converging streams to combine their reactants just prior to the droplet dispersion 

at the cross-junction and they experimented with protrusions on a downstream serpentine section of 

the capillary walls to enhance mixing within the droplets.  Again, their study required experimentation 

Main Inlet  

Dispersed Fluid  

Lateral Inlet 

Carrier 

Fluid 

Outlet 

 

Lateral Inlet 

Carrier 

Fluid 

Figure 2. A schematic of the cross-junction configuration used for droplet generation 

in reference [13] and for the simulations described in this study. 
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with the geometries and flow conditions in order to optimize the balance between the droplet 

formation mechanisms with proper reactant ratios and the downstream mixing dynamics.   

An interesting variant of the cross-junction was also used to enhance a process for yet another 

completely different technology sector – to perform controlled CdS nanoparticle synthesis reactions.   

Hung et al. (2006) reported the production of smaller and more monodisperse nanoparticles as 

compared to conventional mixing methods [14].  In order to maintain precise control over reactant 

additions, they modified the cross-junction in order to alternate droplet generation between the two 

opposing inlets at the four-way junction.  By integrating a diverging channel immediately downstream 

from the junction to promote drainage of the carrier fluid, they were able to dictate the fusion of the 

droplets from the two different reactant streams.  By varying the flow conditions and the geometry, 

they were able to achieve different sized droplets with different ratios between the number of drops 

formed from each opposing inlet.  However, they found that their control of the droplet sizes and ratios 

were limited by the conditions required for droplet coalescence [14].   

While each of these segmented flow applications span a wide breadth of technology fields, they all 

share several core features for liquid handling; however, a better understanding of the microfluidic 

dynamics is required in order to extend these basic functionalities to any generic process.  In particular, 

each of these systems requires methods for dispensing droplets with precise volumes, combining 

droplets or injecting components into a particular phase, and controlling the mixing of components.  

Without a universal method to implement all these functionalities, each microfluidic system would have 

to be tailor made to suit the specific application.  Therefore, an understanding of the relative velocity 

and pressure fields for each phase would be required to predict the droplet sizes (reaction volumes), the 

conditions for droplet coalescence, the rates for reagent injection into a plug, and the mixing/reaction 

kinetics for a particular chemical system.     Because even the more fundamental microfluidic operations 
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are governed by a large set of experimental parameters and involve complex geometries/flow-fields, 

numerical simulations are often required to fill in the gaps between modern empirical and theoretical 

analyses.   With so many considerations for the design of a custom microfluidic system, the predictions 

from numerical simulations provide valuable savings from excessive costs during empirical investigation, 

especially when dealing with expensive reagents.  In addition,  numerical simulations not only 

supplement empirical testing and theory but also provide a medium in which new ideas can be tested 

for which there are no current techniques. 

The Lattice Boltzmann Method (LBM) is a suitable technique for predicting microfluidic flows 

because it can calculate complex dynamics and geometries on a “mesoscopic” scale [15].  While 

traditional computational fluid dynamics approaches involve the calculation of the macroscopic 

conservation equations in discrete space, they often experience difficulties when trying to implement 

features arising from microscopic origins like surface wetting or interfacial slip [16].   Furthermore, the 

traditional macroscopic multiphase flow simulations can become computationally demanding as they 

require additional algorithms to track the moving interfaces and prevent the surface discontinuity from 

becoming smoothed-out during the iterative averaging process [17,18, 19].  On the other hand, 

molecular dynamics approaches easily incorporate micro-scale behaviors because they track the 

evolution of individual molecules with interaction potentials.  However, such microscopic methods are 

even more computationally demanding as each molecule has at least six degrees of freedom – three 

spatial components and three velocity components.  Therefore, molecular dynamic simulations are 

usually limited to small number of molecules tracked over a small number of time increments [16, 20].  

Finally, the LBM acts as a compromise between the macroscopic and microscopic dynamics because it 

tracks the evolution of fictitious packets of fluid as particle distribution functions, which eliminates the 

need for statistical averaging of the molecular fluctuations and allows facile recovery of the macroscopic 
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variables of interest.  In addition, one of the pillars of LBM is that the dynamics are based on the concept 

of “relaxation towards local equilibrium,” which allows each fluid node to be solved independently 

making the method very efficient with parallel processing.   Further details for the local equilibrium 

paradigm and the LBM theory will be discussed in the following section.  
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2. Lattice Boltzmann Theory 

2.1 Streaming and Space Discretization 

In order to understand how the evolution of these abstract fluid packets provides insight for 

complex fluid flows, it is necessary to understand how space and time are discretized in the Lattice 

Boltzmann (LB) method.   In lattice based methods, space is discretized into regularly distributed nodes 

each containing a particle population for each of the vectors that connect neighboring nodes. For each 

iteration of the simulation, the particle populations are passed between each neighboring nodes 

according to the predefined vectors that connect them – this passing of information is called the 

streaming step.  Therefore, if one focuses on a particular node, it acts as a central hub to calculate the 

interaction of all the particles entering that point in space from the adjacent nodes.   Figure 3 provides a 

schematic for the lattice with eight nearest neighbors used in this study. It has been dubbed the D2Q9 

lattice because it is two-dimensional and contains nine particle populations per node (a population that 

travels to/from each of the eight nearest neighbors and a population that stays at the node).  There can 

be many choices for the structure of the lattice; however, the D2Q9 model has been used extensively 

for two-dimensional simulations because it provides sufficient symmetry to recover the desired partial 

differential equations (e.g. Navier-Stokes equation for incompressible flows) with second order 

approximation accuracy and because the square unit cells are amenable to the array indexing typically 

used for computer data structures [21, 22].     
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While space is segregated into regular nodes, time is broken into evenly spaced intervals according to 

each iteration of particle interaction calculations across the entire lattice.  In other words, at each time 

step, a calculation of the momentum change from the “collision” between all the impinging fluid 

particles is performed and hence the need for Boltzmann’s mathematical description of kinetic theory.    

 

2.2 Kinetic theory and Maxwell-Boltzmann Distribution 

      The Boltzmann Equation was established to provide a mathematical description of the macroscopic 

observable quantities for gasses based on a statistical analysis of the underlying microscopic behavior.  

By treating the gas molecules like hard spheres undergoing inelastic collisions, Boltzmann was able to 
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employ classical mechanics to describe quantities like temperature and pressure in terms of the 

number, mass, and velocity of gas molecules [23].  In order to describe the transient motions of such a 

large number of molecules (at least the order of Avogadro’s number, 10
23

), Boltzmann considered the 

evolution of a probability density function rather than tracking the motions of the individual molecules.    

Consider a system with just one particle.  At any particular instant in time, the function ����, �,���� �������� 
would describe the probability of finding a molecule or fluid packet within a particular region of space, 

�� ± ���, with momentum in the range ���  about ��.  If one were to add  − 1 particles to the system, 

each of these particles would have the opportunity to interact, and therefore we would require 

��#����, �,���� �� distribution functions to describe the effects of the N-body system on one another [15, 23].  

Although there would be just as many possible distribution functions as there are particles in the 

system, Boltzmann focused on the one-body distribution function through the assumption of “molecular 

chaos” – the particles spend most of the time in free trajectories and only interact over very minute 

time-periods from short-range two-body potentials [15].  With a large number of molecules undergoing 

such chaotic motion, one molecule cannot be distinguished from another, and therefore the one-body 

distribution function could be used to describe the probability distribution for the choice of any one 

molecule.  This assumption gains validity for phenomena that can be characterized by small Knudsen 

numbers – a number that describes the ratio between the typical distance the molecules have to span 

before experiencing a collision ($%&'(	*+&&	,'-.) and the characteristic distance that defines macroscopic 

gradients ($/.'+'/-&+01/): 

 2� = 	 $%*,$/ . (2.1) 

Given the set of initial conditions for the one-body distribution function with no intermolecular 

collisions, one would be able to describe the location and velocity of the particles for all time points 
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because they would stream along their initial trajectories.  Thus, over the course of some time interval, 

∆�, the probability distribution function for particles with mass, 
, would evolve according to: 

 ���� 	+	�� 
⁄ ∆�, �	����, � +	∆�� − ����, �,���� �� 	= 0. (2.2) 

Without collisions, there would be no change in the velocity distribution over time and the particles 

would just change in their positions.  This represents the streaming process – knowledge of the velocity 

distribution in space allows one to predict the trajectories of the particles.  However, if two-particles 

were to collide, the transfer of momentum would alter the particles’ trajectories and the resulting 

distribution functions.  Therefore, Boltzmann defined the collision operator as the differential change in 

the distribution function as a result of these two body interactions and an arbitrary external force, 9�. 
 �:�� 	+	�� 
	 ∙⁄ ∆�, �	���� +	9� ∙ 	∆�, � +	∆�< − ����, �,���� �� 	= Ω���∆� (2.3) 

Ω��� = 	 lim∆-→BC�:�� 	+	�� 
 ∙⁄ ∆�, �	���� +	9�∆�, � +	∆�< − ����, �,���� ��∆� D =	 EF- +	�� 
⁄ ∙ FG�	 +	9�F,�	H����, �,���� �� 

The convenient implementation of this collision operator is one of the critical features that makes LBM 

so versatile and computationally efficient with parallel computing.   The local (independent from 

neighboring nodes) implementation of the collision operator allows for different domains of the lattice 

to be divvied among multiple processors so that the calculations are performed resourcefully.  In order 

to provide insight into the local operations of each node, one must begin with the concept of local 

equilibrium – the case when the collision operator has no impact on the distribution functions.   As a 

result of particle collisions, some of the particles starting from position �� will not stream to the position 

�� 	+	�� 
 ∙⁄ �� (loss of particles), and some particles from other positions will undergo collisions that 

cause them to arrive at  �� 	+	�� 
 ∙⁄ �� (gain of particles) [22].  Therefore, local equilibrium occurs when 

the collision operator is rendered inconsequential from perfectly balanced particle gains and losses.   
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From the assumption of molecular chaos, the balance between the particle gains and losses from 

collisions can be described by the one-body distribution functions that fit the form: 

 

 �I′�J′	 				= 					 �I�J (2.4) 

 

 

where the �′ distributions represent the inverse collision that lead to particle gains and the numeral 

subscripts demark the two different particle populations experiencing the collision [15].  Taking the 

logarithm of both sides reveals that the local equilibrium distribution function, ln �&K, is an additive 

collision invariant, which provides insight to the functional form and the necessary parameters.  Since 

the equilibrium distribution function remains constant for all collision processes, it should only depend 

on the properties such as mass, momentum, and energy that are conserved for any collision event.  

Therefore, the additive nature of ln �&K suggested the form:  

 �&K = 	��L	MNOPOMIJQPR�		 (2.5) 

where A, S', and C are five Lagrangian multipliers that represent the dependence on the conserved 

hydrodynamic fields and �'	is the Cartesian components of the particle velocity vector, ��, for a = 1,2 in 

two dimensions [15].    Because the mass, momentum, and energy are conserved by definition of the 

moments of the distribution functions, they are applied to solve for the unknown coefficients:    

  Mass:             	T���, �� = 
	 U ����, �,���� �����  

 Momentum:  	T���, �� ∙ V���, �� = 
	 U �� ∙ ����, �,���� ����� (2.6) 

Gains from 

Inverse 

Collision 

Losses from 

Direct 

Collision 
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             Energy:       T����, �� = %
J U���J 	 ∙ 	����, �,���� �����  

 

where T  is the macroscopic fluid density (mass per unit volume), V�� is the macroscopic flow velocity, and 

T� is the energy density.   As a result, we arrive at the well-established Maxwell-Boltzmann distribution 

for D spatial dimensions [24]: 

 �&K = 	T	 W 
2YZ[\
]J 	 ∙ 	 �^_%PRJ`a b

 (2.7) 

where Z is Boltzmann’s constant, and T is the macroscopic temperature for the collection of gas 

molecules.   Although this distribution describes the condition for local equilibrium, it does not mean 

that flow velocities and temperatures have achieved steady state – the physical interpretation for local 

equilibrium become more tangible upon analysis of the different time scales for the fluid particle 

interactions.  The relaxation to local equilibrium involves the smoothing of the erratic molecular 

velocities into a continuous distribution function, which occurs at a must faster time scale compared to 

global equilibration [15].    

 

2.3 Discrete Collisions 

In order to apply the notion of local equilibrium to the numerical approximations of the Lattice 

Boltzmann method, a suitable method for discretizing the distribution functions according to the lattice 

structure is required to preserve the desired hydrodynamics.  Even with the molecular chaos 

assumptions, the two-body collisions still involve non-linear integral calculations; therefore, further 

simplifications were made to facilitate numerical methods.  The monumental paper by Bhatnagar, Gross, 
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and Krook, suggested a suitable approximation for the collision operator in which the distribution 

functions undergo a linear relaxation towards local equilibrium according to [25]: 

 ΩNcd =	−	� − �&Ke = 	−	f	��1 − �1&K� (2.8) 

where e is the relaxation time, f is the collision frequency (inverse of the relaxation time) used for 

numerical calculations, and the g subscript indexes each of the discrete lattice velocities for g = 0	⋯i −
1 (i = 9	for the D2Q9 lattice used in the present study).   In order for the macroscopic variables, 

represented by the moments of the distribution functions, and the equilibrium distribution function to 

translate into the discrete lattice space, the functions have to be weighted according to the different 

lattice velocity magnitudes.  For example, in the D2Q9 model, there are three different lattice velocities, 

�k��� , associated with each node:  the “rest” velocity, �B����	, has zero velocity as it does not stream any 

information to the neighboring nodes, �I���� through �l���� have magnitudes of 1 lattice unit per time-step Wmn-0\ 

because they  stream to the adjacent nodes along the directions parallel to the axes of the lattice, and �o���� 
through �p���� have magnitudes of √2 

mn
-0 because they stream in the direction along the diagonal 

hypotenuse of the isosceles right triangle formed by the lattice axes.  In order to recover the 

conservation laws in discrete space, the moments are weighted according to the velocity magnitude 

using the Gauss-Hermite quadrature [26]: 

 q = 	r 	s�
K_I

1tB
�k���	�	�1	�	�	�,����	�k	����, �� (2.9) 

where  s�	�k���	� is a polynomial of �k��� depending on the moment order, and �1	are the weighting constants 

that scale the distributions according to their magnitude.  Therefore, the moments become [26]: 
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 T���, �� = r 	
K_I

1tB
�1  

 TV�����, �� = 	r 	
K_I

1tB
	�k���	�1 (2.10) 

 T����, �� = 12r 	
K_I

1tB
	�k���J	�1  

where �1 is the dimensionless directionally weighted distribution function.    

The directional weighting constants are calculated through the preservation of the equilibrium 

function.  Since the speed of sound is a measureable property of the lattice and is the characteristic 

velocity for the dimensionless Mach number formulation, it can be related to the characteristic speed 

for the gas molecules of the of the equilibrium Maxwell-Boltzmann distribution at a known temperature  

according to [26]: 

 �0J =	Z[
 = u[ (2.11) 

where �0 is the speed of sound in the lattice, and R is the universal gas constant.  Typically, the speed of 

sound is measured by introducing a density perturbation within the lattice and measuring the number of 

time steps it takes to propagate over a known distance.  The speed of sound is another lattice 

dependent property as its value is subject to the choice of weighting constant for the rest particle – 

conversion of streamed particles into rest particles during the local equilibration impedes the 

propagation density perturbations.   Substituting the above relation for the speed of sound (Equation 

2.11) into the equilibrium Maxwell-Boltzmann distribution (Equation 2.7) and using the Taylor series 

expansion of exp	y− n���R_	Jn���	∙/�
J	/zR {	one gets [26]: 
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 �&K =		 T2YZ[ 	 ∙ exp |− ��J2�0J} |1 −
V��J2	�0J 	+ 	

V�� 	 ∙ ���0J +	�V�� 	 ∙ ���J2�0l } + 	~�V���� (2.12) 

By inserting this equation into the third order Hermite polynomial for Gaussian quadrature with: 

 s���	� = �G%��( (2.13) 

where �G and �� refer to the Cartesian components of the particle velocity, and the exponents 
, � 

refer to the moment order weight function and the number of different weight constants used to define 

the quadrature, the result is:    

 �&K = 		T�1 |1 − V��J2	�0J 	+	
V�� 	 ∙ ���0J +	�V�� 	 ∙ ���J2�0l } (2.14) 

with the following weighting constants [26]: 

 								l� 	���	g = 0  

 	�1 =									 19 	���	g = 1	⋯ 	4 (2.15) 

 																	 136 	���	g = 5	⋯ 	8  

Because the dimensionless formulation of the simulation captures the magnitudes of the relative 

physical phenomena, the physical properties, like the magnitudes of the velocity vectors and forces, 

should not depend on the choice of coordinate system and should therefore be unaffected by 

translational and rotational transformations.  This choice of weightings is sufficient because it ensures 

translational (Galilean) and rotational invariance and results the following relation for the D2Q9 lattice 

speed of sound [27]: 

 �0J =	 �3 (2.16) 
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where � = 	1 mn-0	 for the present investigation.  With a complete description of the lattice and the 

collision process, the discrete Boltzmann equation becomes: 

 ���� 	+	�k���∆�	, � +	∆�� − ����	, �� = 	−	f	��1 − �1&K� (2.17) 

 

 

2.4 Boundary Conditions 

While the rules for information transfer between the lattice nodes have been established 

through the collision and streaming operators, boundaries require certain exceptions to these rules.  

When a node that experiences the collisions from fluid particles is at the edge of the lattice or adjacent 

to a non-fluid node, that node misses some of the particle distributions that should have streamed from 

the edge or the non-fluid node.  Therefore, a different set of dynamics is implemented at the boundaries 

to account for the missing information.  While there are several different types of boundary conditions 

with different methods of implementation reported in the literature, the boundary conditions can be 

grouped into two general categories: open and closed boundaries.  For open boundaries, the fluid 

particles are free to stream across the artificial boundary, while for closed boundaries, there is no mass 

flux in the direction normal to the boundary.  In the present study, Dirichlet conditions are used for open 

boundaries, and no-slip conditions are used for the closed boundaries. 

 

2.4.1 No-Slip Boundary Conditions 

The most widely used boundary condition for the interface between a liquid and a solid surface 

is the no-slip condition, which implies that the fluid velocity relative to the wall is zero [28].   Consider 
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the fluid node [x,y] adjacent so the solid boundary in Figure 4.  In order to induce a zero velocity 

condition between [x,y] and the nearest neighbor solid nodes [x-1, y+1],  [x-1, y], and [x-1, y-1], one 

would only need to determine the appropriate values for the populations �I, �o, and �p that would 

stream in from solid boundary because all the other populations would come from the naturally 

evolving adjacent fluid nodes.   Note that the adjacent nodes in Figure 4 are labeled with the opposite 

fi’s compared to Figure 3 because the vectors are pointed towards the node of interest.  In addition to 

these unspecified populations, the fluid node [x,y] adjacent to the boundary would also be losing the	��, 

��, and �� populations that would stream out of the fluid domain.  The local velocity is the sum of all the 

directional distribution functions at a point in space; therefore, the simplest way to annihilate the sum 

of the populations that traverse the boundary is to have the flux of populations entering the fluid 

domain diametrically oppose the flux of population leaving the domain. 

 
Figure 4.  A representation of the missing particle populations that need to be solved for at 

a bounce-back boundary with a normal vector pointing in the positive x-direction.  The 

grey, hatched-out nodes represent the bounce-back nodes of the solid boundary, and the 

white, unfilled nodes represent the fluid nodes that undergo typical BGK dynamics. 
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As a result, the most popular no-slip boundary method became known as the bounce-back method 

because the probability densities leaving the fluid domain are reversed in orientation back into domain.  

Referring back to the orientation in Figure 4, the bounce-back scheme employed throughout this 

investigation allowed the fluid nodes adjacent to the boundaries to collide and stream the ��, ��, and 

��populations to the bounce-back nodes; however, the bounce-back nodes would undergo a different 

set of dynamics.  While the fluid nodes are undergoing the collision step, the bounce-back nodes just 

copy the values from the incoming populations to the outgoing populations with the opposite 

orientation according to: 

 �I,�G_I,��,-MI	 = 	��,�G,��,-  

 �o,�G_I,�_I�,-MI =	��,�G,��,- (2.18) 

 �p,�G_I,�MI�,-MI =	��,�G,��,-  

Therefore, the populations that are bounced-back are involved in the fluid node collisions at the 

subsequent time step.   Since the lattice velocity is 1	 mn-0 , the velocity components can be calculated 

from the components of the lattice vectors according to: 

 TV� =r�1��1 =
p

1tB
	0 (2.19) 

where �1� is the Cartesian component (� = �, �) of the velocity vector defined in Table 1 according to 

the D2Q9 lattice depicted in Figure 3 above. 

Table 1.  Velocity vector components for the nine vectors of the D2Q9 model  

 ������ �I���� �J���� ������ �l���� �o���� ������ ������ �p���� 
�1,G 0 1 0 -1 0 1 -1 -1 1 

�1,� 0 0 1 0 -1 1 1 -1 -1 
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As a result, the velocity at the boundary interface is annihilated according to: 

 VG = 1T ��I +	�o + �p −	�� − �� − ��� = 0 (2.20) 

 V� = 1T ��J +	�o + �� −	�l − �� − �p� = 	�J −	�l = 0  

Since the flux is annihilated during the streaming phase between time-steps, the location of the no-slip 

boundary is considered to be at the mid-way plane between the solid and fluid nodes, which has been 

demonstrated to produce second-order accuracy [15].  

 

2.4.2 Dirichlet Boundary Conditions 

In the literature, flows within the microchannels are typically driven using syringe pumps that 

generate constant volumetric flows.  Since the flow profiles are generally fully-developed or steady-state 

by the time the fluid reaches the junctions due to the relatively low velocities, this paper does not 

consider any entry effects - the simulation domain captures only the space where the phenomena of 

interest occur (e.g. droplet generation).   Because the lattice artificially terminates at locations along the 

microchannels where steady flow is assumed to have been achieved, a “steady-state” fluid velocity or 

pressure was imposed at the open boundaries.     
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Zhou and He devised a method for imposing Dirichlet boundary conditions – a set of conditions 

for the particle distributions missing from the lattice edge that ensure a constant values for the 

macroscopic velocities or pressures [29].  First, Zou and He identified that the edge of the D2Q9 lattice 

presents four unknown quantities (Figure 5): the �I, �o, �p populations from the missing nodes at the 

lattice edge, and only one of the macroscopic moments that is the sum of the unknown populations.  In 

order provide closure to the problem with a system of four equations, they made two key assumptions:  

the velocity component tangent to the boundary is null and the non-equilibrium portions of the 

distribution functions normal to the boundary cancel out. 

For the inlet boundaries, a constant pressure value say, T1(, was imposed.  Rearranging the first 

line of Equation 2.10 so that the unknown populations are on the left-hand side one gets: 

Figure 5. A representation of the missing particle populations (red vectors) that need to be 

solved for at a Zou-He Dirichlet open boundary with a normal vector pointing in the 

positive x-direction.  The grey, hatched-out nodes represent the bounce-back nodes an 

arbitrary solid boundary 
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 �I + �o + �p = T1( − ��B + �J + �� + �l + �� + ��� (2.21) 

For the simulations in this paper, it is safe to assume that the y-component of the inlet velocity is zero 

since the upstream fluid should develop Poisuelle flow.   

Therefore, 

 �J − �l + �o + �� − �� − �p = 0 (2.21) 

or  

 �o − �p = �l − �J − �� + �� (2.22) 

 The last unknown is the x-component of the velocity moment, VG, which can be defined in a similar 

manner from the second line of Equation 2.10: 

 T1(VG = �I − �� + �o − �� − �� + �p (2.23) 

or 

 �I + �o + �p = T1(VG + �� + �� + �� (2.24) 

Setting the equations for the unknowns distribution functions in Equations 2.21 and 2.24 equal, we can 

solve for the unknown velocity moment [29]. 

 V�����, �� = |		1 − ��B + �J + �l + 2��� + �� + ����T1( 	 , 0		} (2.25) 

To solve for the unknown distribution functions, Zou and He made the assumption that: 

 �I − �I&K = �� − ��&K (2.26) 

Or  

 �I = �� + :�I&K − ��&K< (2.27) 
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The annihilation of the non-equilibrium particle fluxes seems like a reasonable assumption considering 

the imposed steady-state boundary density.  Substituting Equation 2.14 for the equilibrium 

distributions, one solves for the first unknown distribution function: 

 �I = �� + 23T1(VG (2.28) 

To solve for �o, the expression for the zero velocity y-component (Equation 2.22) is solved for �p:  

 �p = �o − 	�l + �J + �� − �� (2.29) 

This expression, along with the expression for �I is substituted into the Equation 2.23: 

 T1(VG = ^�� + 23T1(VGb − �� + �o − �� − �� + ��o − 	�l + �J + �� − ���  

 T1(VG = 23T1(VG + 2�o − 2��−	�l + �J (2.30) 

 �o = �� + 12 ��l − �J� + 16T1(VG  

The distribution function, �p, is solved in a similar fashion: 

 �� = �o − 	�l + �J + �� − �p  

 T1(VG = ^�� + 23T1(VGb − �� + �o − �� − ��o − 	�l + �J + �� − �p� +	�p (2.31) 

 T1(VG = 23T1(VG − 2�� + 2�p+	�l − �J  

 �p = �� + 12 ��J − �l� + 16T1(VG  

The application of the constant velocity Dirichlet boundary conditions follows an identical formulation 

with the same assumptions; however, in this scenario, one of the velocity components is imposed while 

the expression for the density is derived.  Thus, they produce identical relations. 
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2.5 Shan-Chen Multicomponent Multiphase Dynamics 

The LBM was chosen to model the segmented microfluidic flows because of the simplicity, 

efficiency, and versatility of the multiphase models.   There are several different LBM multiphase 

schemes reported throughout the literature including the color gradient model [30], the free energy 

model [31], and the Shan-Chen model [32].  While each of these methods has advantages and 

disadvantages depending on the application, the Shan-Chen model was employed in this study because 

it has been well established in the literature for modeling capillary flows where surface tension 

phenomena are critical [33,34,35].    In addition, the model is easily implemented with parallel 

processing through the addition of a force term that preserves the local nature of the dynamics.  The 

austerity of the model also allows for additional couplings with tracer scalars or particle suspension.   

However, the biggest drawback with the method is the occurrence of artificial velocities at the fluid 

interfaces, which will be addressed later in the discussion. 

 For the two-component model, two lattices are defined for the entire simulation domain, one 

for each of the components.     Each lattice obeys the discrete Boltzmann equation for streaming and 

collisions [32]: 

 �1��x�� + ck���∆�, � + ∆�� = �1��x��, �� − f�E�1����, �� − �1�,&K�x��, ��H (2.32) 

where the �	superscript indexes the distribution functions for each component (� = 2	for the present 

case) and each lattice has its own respective relaxation parameter.   Similarly, the moments are 

distinguished for each lattice to calculate the density and velocity for each respective fluid.  However, 

there is a slight modification to the equilibrium distribution to account for fluid-fluid and solid-fluid 

interactions.  An interaction potential is introduced through the equilibrium velocity term that generates 

a repulsive force at the interface between the two components [32]: 
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 �1�,&K�x��, �� = �1T� �1 + ck��� ∙ u���
&K

�0J + :ck��� ∙ u���&K<J2�0l − u���&KJ2�0J � (2.33) 

The new equilibrium velocity, u���&K, represents the common velocity modified by the force term: 

 u���&K = u��� + F���f�T� (2.34) 

with the velocities from both lattices averaged according to: 

 u��� = ∑ f�T�u����∑ f�T��  (2.35) 

It is important to point out that there are three different contributions to the force term, F���, in the 

scope of this investigation:  the liquid-liquid cohesive force, the solid-liquid adhesion force, and the body 

force (e.g. buoyancy forces or gravity) where:  

 F��� = 	F���/�.&01�( +	F���'�.&01�( +	F������� (2.36) 

The cohesive force is calculated according to: 

 F���/�.&01�(�x��, �� = −T��x��, ��	�r�1T���x�� + c�1∆��c�11
 (2.37) 

where G represents the fluid-fluid interaction parameter and the T�  versus T��  represents the distinction 

between density of the fluid experiencing the force from the density of a different fluid component.  The 

interaction parameter is important because it provides some flexibility in adjusting the interfacial 

surface tension between the two fluids.  To provide some insight into the mechanism of the fluid-fluid 

coupling, consider the hypothetical case of a flat fluid-fluid interface with a normal vector pointing in the 

positive x-direction in Figure 6.  If the densities for both fluids are equal to unity on either side of the 

interface (containing zero dissolved density of the opposing component), and the interface is infinitely 

thin, then the nodes adjacent to the interface would experience: 
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 F��//�.&01�( = �−�6 , 0� (2.38) 

 F���/�.&01�( = ��6 , 0�  

Thus both fluids would experience a force oriented towards their own respective fluid.  However, this 

force term does not act as a cohesive force in the classical sense because its magnitude depends on the 

distance away from the interface.  If you now consider fluid molecules in the body of the fluid away from 

the interface in the previous example, the sum of the weighted opposing densities, and thus the 

cohesive force, would now be zero.  Opposed to the classical notion of cohesive force arising from 

intermolecular attractions (such as van der Waals forces), the Shan-Chan force potential is considered to 

have a repulsive nature because it only forces fluids away from the interface – akin to hydrophobic 

interactions.  

 

Figure 6. Representation of an ideal interface in the Shan-Chen multicomponent, multiphase lattice coupling.  

This is only a hypothetical situation since the Shan-Chen model typically cannot exclude all density of one 

phase from another.  In addition, there is usually a finite thickness of the interface where the transition from 

high to low density spans across several lattice units 
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The adhesion force can be calculated in a similar fashion: 

 F���'�.&01�(�x��, �� = −T��x��, ��	�r�1T�'mm,���x�� + c�1∆��c�11
 (2.39) 

where T�'mm is an artificial density attributed explicitly to the bounce-back nodes solely for the 

manipulation of the solid-fluid surface tension – this density is not used in any of the collision or 

streaming dynamics.  This method provides an easy and effective alternative to the method commonly 

described in the literature, which requires building a sub-routine that checks for presence of adjacent 

bounce-back nodes in order to apply a separate force calculation because the typical bounce-back nodes 

have no meaningful density.     

The dynamics of the Shan-Chen LBM can be verified through the use of the Chapman-Enskog 

expansion.  In order to relate the collision and streaming evolutions to the established partial 

differential equations like the Navier-Stokes equation, perturbation theory is utilized to separate the 

events that occur on different timescales.  For example, the particle level relaxation to local equilibrium 

occurs over shorter time scales as compared to the macroscopic gradient smoothing for global 

equilibrium.  Therefore, the distribution function and the space/time derivatives are expanded to 

different orders of �, a sufficiently small parameter that is usually interpreted as the Knudsen number 

because it is necessarily small in order for Boltzmann’s molecular chaos assumption to hold [27]:  

 �1 = �1�B� + 	��1�I� 	+ 	�J�1�J� + 		~����  

 F- = 	�F-I 	+	�JF-J + 		~���� (2.40) 

 ∇	���� = 	�∇	�����I� + 	~��J�  
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The different magnitude components of the distribution functions and gradients are scaled by their 

order in the Knudsen number so that they can all be treated at the same level.  Therefore, these 

expansions are inserted into the Taylor expansion of the standard Boltzmann evolution equation and the 

terms of the same order in	� are balanced.  It is assumed that the collision operator does not have a 

constant contribution for the ~�1� term because it depends on the gradients of the densities; therefore, 

the equilibrium distribution given in Equation 2.14 is used for the first order term of the distribution 

function expansion, which allows the macroscopic differential equations to be expressed in terms of the 

lattice Boltzmann variables [36].  Shan and Doolen (1995) performed this analysis on the Shan-Chen 

multicomponent model and were able to group the lattice Boltzmann dynamics terms to recover the 

macroscopic continuity and Navier-Stokes equations: 

 
FTF� + ∇ ∙ �Tu��� = 0 (2.41) 

 T |Fu��F� + �u�� ∙ ∇�u��} = −∇T + ∇ ∙ �T��∇u�� + ∇u��a�� + Tg��  

where �	is the fluid pressure, ¡	is the kinematic viscosity, and ρu�� is defined as the total momentum and 

ρ is the total density for both fluids combined.  In terms of the lattice Boltzmann parameters these 

values were identified as: 

 ¡� =	�0J	 ^ 1f� −	
12b  

 � = 	 �0J	 �rT� +	r����T�T�� 	����
� (2.42) 

 Tu�� =rr�1��1 + 12rF����1�
  

 T =rT��
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Thus the Chapman-Enskog expansion completes the description of the relevant macroscopic variables in 

terms of the distribution functions. 
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3. Droplet Formation in Microfluidic  

      Cross-Junctions 

 
3.1 Dimensionless Formulation 

Dimensionless formulations provide an appropriate place to start for any fluid dynamics 

discussion.  An analysis of the relative forces occurring for a particular physical phenomena not only 

helps reduce the number of variables required to describe the system, but also helps pinpoint the 

driving factors that need to be controlled to produce a desired result.   For most microfluidic systems, 

the small confined length scales exacerbate the effects from viscous and interfacial forces; therefore, a 

different set of dimensionless numbers are used to describe the dynamics compared to typical 

macroscopic flows.   For example, consider the Reynolds number: 

 u� = 	TV��/$/�  (3.1) 

where � is the dynamic viscosity, V��/ is a characteristic velocity and $/  is a characteristic length both of 

which are specified by convention for a particular system.  The Reynolds number is typically employed 

to distinguish different macroscopic flow regimes; however, the small velocities and length scales in 

microchannels typically limit the fluid to Stoke’s flow.  This suggests that the magnitude of the viscous 

forces greatly exceed the magnitude of the inertial forces.  Similarly, the Bond number is generally small 

as the interfacial forces trump gravity.  Because these values have such small magnitudes, they generally 

provide negligible contributions to microfluidic phenomena [16, 37].  Therefore, the Capillary number is 
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often a suitable dimensionless number to characterize microfluidic flows because it represents the 

relative magnitudes of the dominant viscous and surface tension effects.  The Capillary number is 

defined as: 

 £¤ = 	�V��/¥  (3.2) 

where ¥ is the fluid-fluid interfacial tension.  Another relevant dimensionless quantity sometimes used 

to characterize microfluidic flows is the Weber number: 

 ¦� =	TV��/J$/¥  (3.3) 

which is a measure of the relative contributions from inertial and interfacial effects.  However, it should 

be noted that the Weber number becomes important for relatively larger flow velocities because of the 

second order dependence.   Additional relevant dimensionless groupings become apparent from the 

dimensional analysis of a specific microfluidic system.     

 Droplet generation represents the most fundamental functionality for all segmented flow 

microfluidic applications; therefore, this paper focuses on the hydrodynamics of one of the more simple 

yet versatile methods – the cross junction.  It has been demonstrated that the cross-junction geometry 

can be used over a range of viscosities and surface tensions and with different flow configurations [4, 

13, 38, 39].  Although this geometry is versatile, as with most other microfluidic devices, there are 

numerous parameters that need to be considered.  For the basic cross-junction design with two lateral 

continuous phase inlets, a main dispersed phase inlet, and a common outlet (See Figure 2), eleven 

measurable parameters were identified that affect the resulting droplet length: the widths of the lateral 

and main inlets (	/	 and 	� 	), the lateral and main channel average inlet velocity magnitudes (�/	and 

��	), the viscosities of the continuous and dispersed phases (�/ 	and �/), the densities for both phases 
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(T/  and T�), and the liquid-liquid, continuous phase-solid, and dispersed phase-solid interfacial tensions 

(¥/,�	, ¥/,0	, ¥�,0	).  Application of Buckingham’s Pi Theorem suggests that the droplet size calculation can 

be reduced from eleven measured parameters to eight dimensionless variables because there are three 

fundamental dimensions (mass, length, time) [40].   Therefore, the dimensionless expression for droplet-

formation takes the form: 

 �§ = 	 $�+�,	� = ��u�, £¤,¦�, cos� , 	ª, �«, �̌, T«� (3.4) 

where � is the dimensionless droplet length, � is the contact angle for the droplet phase ,  	ª  is the 

dimensionless channel width ratio, �« is the ratio of the average inlet velocities, �̌ is the ratio of the 

continuous and dispersed phase viscosities, and T« is the ratio of the densities.  The additional 

dimensionless variables used the following conventions: 

 cos � = 	¥/,0 −	¥�,0¥/,�   

 	ª =		�	/   

 �« = 	���/  (3.5) 

 �̌ = 	 ���/   

 T« = 	T�T/   

In accordance with the literature, some of these parameters have larger effects on the droplets size 

compared to others.  For example, the Reynolds and Weber numbers were determined to be sufficiently 

small where their effects were considered negligible [16,41].  In addition, the density ratio is usually very 

close to unity and would not experience large fluctuations in magnitude for the different chemical 
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systems.   Therefore, this paper will mainly focus on the effects of the capillary number, the contact 

angle, channel width ratio, the inlet flow velocity ratio, and the viscosity ratio.   

 

3.2 Empirical Investigations of the Cross-Junction Dimensionless Parameters 

 Several authors have investigated the effects of the capillary number on the cross-junction and 

flow-focusing geometries.  It should be noted that the cross-junction and flow-focusing geometries 

generate drops using the same mechanisms; in the four-way junctions, the viscous stresses of the 

encroaching continuous phase compete with the capillary pressure at the interface of the dispersed 

phase, which are the forces that are compared by the Capillary number [42].  However, the flow-

focusing geometry is distinguished from the base cross junction because the outlet has a constricting 

orifice.    Generally, the capillary number is defined using the inlet velocity and viscosity of the more 

viscous phase with the interfacial tension between the two fluid phases [42].  At low Capillary numbers 

(Ca< < 1), the interfacial tension dominates, and therefore the droplet sizes depend more on the 

geometry of the device [41].  On the other hand, at high Capillary numbers (Ca >>1), viscous effects 

dominate leading to different droplet deformation regimes [42].  These relations have been observed 

experimentally for both the cross-junction and flow-focusing geometries.  Tan et al. (2008) 

demonstrated a decrease in droplet size with increasing Capillary numbers in the cross-junction 

configuration [38].  For the flow-focusing geometry, Lee et al. 2009 demonstrated how the Capillary 

number could be used to distinguish the different droplet generation regimes.  Going from low to higher 

Capillary numbers they observed transitions from squeezing to threading to dripping regimes for nearly 

all the viscosity ratios [41].    
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 There have several papers that experimented with different surface tensions and wetting 

conditions for the segmented microfluidic flows [43,44,45].  The three general wetting scenarios in the 

literature involve microfluidic devices where: the dispersed phase is wetting while the continuous phase 

is non-wetting, the dispersed phase is non-wetting while continuous phase is wetting, or the both 

phases partially wet.  For example, Nisisako et al. (2002) demonstrated how it is impossible to create 

encapsulated droplets in a microchannel when the dispersed phase wets the wall [43].  When the 

continuous phase preferentially wets over the dispersed phase, droplets can be generated that retain a 

thin layer of the continuous phase that separate the droplets from the wall [44].  These encapsulated 

droplets that nearly fill the channel were coined “plugs.” Finally, when both fluids partially wet the 

microchannel walls, Dreyfus (2003) reported erratic droplet formations where the droplets were able to 

adhere to the channel walls [45]. 

   In terms of the geometrical configurations, we are unaware of any present paper that 

investigated the effect of the channel width ratio for the cross-junction.  However, Lee et al. 2009 

conducted a thorough investigation of the flow-focusing design geometries [41].  The asymmetry of the 

flow-focusing design introduces more geometrical parameters; however, the authors chose to focus on 

the expansion ratio, which was defined as the ratio between the outlet channel diameter and the orifice 

diameter.   They found that smaller expansion diameters led to higher maximum velocities at the center 

of the outlet channel, which had a significant impact on the threading droplet formation regime.  The 

larger velocities extended the thread lengths further through the orifices, resulting in smaller droplets 

[41]. 

 One of the most easily controlled parameters for droplet generation in the cross-junction and 

flow-focusing designs is the flow rate ratio; therefore, there are numerous papers that have explored 

this effect.  Tan et al. (2008) achieved smaller plug sizes with smaller flow velocity ratios (larger 
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continuous phase velocities compare to the dispersed phase velocities) for the cross-junction geometry 

[38].  When the flow ratio was small with large capillary numbers, a streaming regime was observed 

where plugs no longer formed; instead, a laminar stream of the dispersed phase traveled down the 

outlet channel sandwiched between the two continuous phases in contact with the channel walls.  For 

the flow-focusing design, Anna et al. (2003) and Lee et al. (2009) also reported that the droplet diameter 

generally decreased with decreasing inlet velocity ratios [41, 46].  Nie et al. (2008) reported the same 

trend for a range of viscosity ratios [47]. 

 Lastly, several papers have also demonstrated the impact of the viscosity ratio on the droplet 

formation mechanism and resulting size.  For example, Tan et al. (2008) found that increasing the 

viscosity of the continuous phase (or decreasing the viscosity ratio) led to slightly smaller droplet sizes 

[38]. For the flow-focusing design, Nie et al. (2008) found that the viscosity of the dispersed phase had a 

larger impact on the droplet size [47].  While they did not observe any uniform impact of the viscosity 

ratio on droplet size, they did notice that the higher viscosities for the dispersed phase were less 

sensitive to changes in the inlet velocity ratio.   

 

3.3 LBM Investigations of the Dimensionless Parameters in Microfluidic simulations 

There have been several recent papers that have employed the Lattice Boltzmann Method to 

investigate droplet formation at microfluidic junctions [16, 39, 48, 49].  However, these methods have 

typically employed the color gradient or free-energy LBM schemes in an attempt to reduce the spurious 

velocities at the interface.   While these methods were successful in reducing the size of the spurious 

currents, they reduced the local nature of the simulation and created additional computational cost.  In 
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addition, none of the papers addressed the impacts of the wetting regimes and device geometry on the 

droplet formation.   

 Dupin et al. (2006) investigated several parameters of the flow-focusing design using a variation 

of a color-gradient flavor of LBM [49].  This method is generally based on calculating the direction of the 

color-gradient (each phase is represented by a different color) and maximizing the flux of particle 

distributions against this diffusional gradient.  While the method resulted in the desired reduction of 

spurious velocities and their results matched well with the findings of Anna (2003), their paper 

expressed little discussion about the flow conditions required to achieve the different droplet sizes and 

formation regimes.  In addition, the paper only conducted simulations using a preferential wetting 

condition for the continuous phase [49]. 

 Wu et al (2008) employed a variation of the color-gradient method to simulate droplet 

formation in the cross-junction design in both 2D and 3D [39, 48].  Similarly to Dupin et al.’s (2006) work, 

Wu et al. (2008) was able to reduce the spurious currents and adopted the same wetting convention.  

From their simulations, they were able to identify three stages of droplet formation: expansion, necking, 

and figuration.  Similar to the literature reviewed above, they observed smaller drops at higher 

frequencies with larger capillary number flow.  It should be noted that they used the viscosity and inlet 

velocity of the dispersed phase for their Capillary number calculations.  In addition, they investigated the 

effect of the Weber number.  As expected, the Weber number had less of an impact on droplet 

formation at low inlet velocities; however, its effects became measurable for higher flows [39]. 

 Most recently, Liu and Zhang (2011) used a free-energy model to simulate droplet formation at 

a cross-junction [16].   Instead of the color-gradient approach, they used a variation of the Ginzburg-

Landau free energy method initially developed by Swift (1996) in which phase separation is induced 
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according to natural thermodynamic parameters.  Similar to the papers described above, they were able 

to reduce spurious velocities at the interface and employed the continuous phase wetting convention.  

In their paper, they focused on the dimensionless capillary number, inlet velocity ratio, and viscosity 

ratio.   In their analysis of the effects of the capillary number, they observed trends similar to Tan et al 

(2008)’s findings of smaller droplets from higher capillary flows.  It should be noted that these authors 

used the viscosity and inlet velocity of the continuous phase for their Capillary number calculations 

instead of the dispersed phased convention used by Wu et al. (2008).  For the flow-rate ratio, they also 

made observations consistent with the literature; however, they identified a critical capillary number at 

which the droplet diameter no longer follows a power-law relation and the effect of the flow rate ratio 

weakens.   Above a capillary number of 0.024, the droplet diameter was independent of the flow rate 

ratio.  Finally, for the viscosity ratio, they observed a weak dependence of the droplet diameter similar 

to the findings from Tan et al. (2008).  The droplets became slightly smaller for increased viscosity ratios 

[16]. 

In this present study, the multicomponent multiphase Shan-Chen Lattice Boltzmann model was 

used to investigate the factors that controlled the size of the droplets generated by the cross-junction.  

Each of the parameters identified through the above dimensional analysis will be addressed, and the 

results will be compared to the empirical and numerical findings from the literature.  Because the forces 

simulated by the Shan-Chen interaction parameter and the bounce back wall densities have a large 

impact on the surface tensions, the fluid immiscibility, and the range of flow velocities that provide 

numerically stable results, the proper choice of these parameters was first verified by contact angle 

measurements.  For the cross-junction experiments, the boundary conditions prevented direct control 

of the inlet velocities; therefore, various Capillary number and flow ratios were tested for fixed contact 
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angles, viscosity ratios, and channel width ratios.  The droplet sizes were measured for conditions that 

produced stable droplet generation and compared using contour plots. 
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4. Results and Discussion 

All of the simulations discussed below were coded in C++ using the Palabos open source libraries 

(http://www.palabos.org/).  Data visualization and multiphase interface measurements were achieved 

using Paraview open source scientific visualization software (http://www.paraview.org/). 

 

4.1 Contact Angle Measurement 

In order to investigate the effects of surface tension on the cross-junction droplet formation, the 

lattice Boltzmann interaction parameters needed to be correlated to the macroscopic contact angle.  

Huang et al. (2007) proposed a version of Young’s contact angle relation in terms of the Shan-Chen force 

terms: 

 cos � = 	�'�0,/ −	�'�0,�� WT� −	T/2 \  (4.1) 

where the  �'�0,�  is the wall adhesion parameters for the dispersed phase, �'�0,/ is the wall interaction 

parameter for the continuous phase, G is the fluid-fluid interaction parameter, T� is the density of the 

dispersed phase, and T/  is the density of the continuous phase dissolved within the droplet phase [50].   
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Because the present study employed a bounce-back wall density method instead of 

independent wall interaction parameters, Equation 4.1 was modified slightly to demonstrate that the 

contact angle no longer depended on the interaction parameter G:    

 cos � = 	2�T�'mm,� −	T�'mm,/�T� −	T/ =	2	∆T�'mmT� −	T/  (4.2) 

where T�'mm,� and	T�'mm,/ are the artificial bounce-back densities imposed for the dispersed and 

continuous fluid lattices. Comparing Equations 4.1 and 4.2, it should be noted that the dispersed and 

continuous phase wall densities are reversed in the numerator because the dispersed phase wall 

interaction term depends on the continuous phase bounce back wall density.     

The contact angle predictions were verified with numerical simulations using the same method 

described by Huang et al (2007) [50].  A 200x100 size lattice was created with bounce-back boundaries 

at the top and bottom lattice edges and periodic boundaries at the left and right edges.  Periodic 

boundaries simply transfer the distribution functions that leave from the left lattice edge to the right 

lattice edge (and vice versa) to create an effectively continuous domain.  An initial rectangular shaped 

droplet of size 40x20 l.u. was placed in contact with lower bounce back surface at the mid-point, and the 

dimensions of the resulting droplet were measured after 24,000 iterations.  The measurements followed 

the method outlined by Huang et al. 2007 in which the base and height of the droplets are used to 

calculate the contact angles according to Equations 4.3 [50]: 

 u =	4­J + SJ8­  (4.3) 

 � = 	 S2�u − ­�  

where R is the radius of the droplet, � is the contact angle, H is the height of the droplet away from the 

bounce back wall at the droplet midpoint, and B is the width of the droplet base in contact with the wall.  
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The contact angle was varied by changing the effective densities for the bounce-back walls according to 

Equation 4.2. 

 

 

 

 

 

 

 

 

Figure 7 demonstrates how the contact angle measurements were in excellent agreement with 

the values predicted from just the imposed bounce-back wall densities.   The contact angles depicted in 

Figure 7 were representative of those used in the cross-junction experiments.  The most challenging part 

of the of the contact angle measurements was determining the droplet’s base and height, which most 

likely introduced the largest source of error.  Huang et al. (2007) defined the interface location as the 

position where the dispersed droplet density reached half of the bulk droplet density [50].  In a similar 

fashion, the interface was defined by averaging the points closest to the transition region that had a 

density within 90% of the maximum and 110% of the minimum densities along the base and height 
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Figure 7.  The contact angles predicted using Equation 4.2 and the contact angles measured though 24000 TS of a Shan-Chen LBM 

simulation were in agreement; thus, the Shan-Chen model provided sufficient control for this dimensionless parameter.  The 

contact angle was specified a priori through the manipulation of the bounce-back wall densities independent of the interaction 

parameter. 
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vectors.   The contact angle was found to be independent of the value of the Shan-Chen interaction 

parameter G (G =1.3 and G=2 used) as long as the requirement, 1.6 < GρT < 2.0, prescribed by Huang et 

al. (2007), was fulfilled where ρT is the total sum of both fluid densities at each node [50].  The values for 

ρT, and thus the value of (ρd – ρc) used in the contact angle measurements, were controlled by choosing 

appropriate initialization densities for the droplet and the continuous fluids.  

 

4.2 Cross-Junction Simulations 

4.2.1 Limits of the Shan-Chen model 

The use of a force term to implement the immiscible fluid repulsion places a constraint on the 

velocities used for the immiscible flow simulations.   The immiscible fluid repulsion and solid surface 

interactions are implemented using a force term that is added to the equilibrium velocity (see Equations 

2.34, 2.37, and 2.39); therefore, the combined effects from the forces and fluid velocities need to be 

below a critical value in order for the low Mach number assumption to hold.  When this assumption is 

violated, the simulation becomes unstable and the velocities can exponentiate towards positive and 

negative infinity.  This makes the choice of a proper interaction parameter, G, extremely important as it 

determines the magnitude of all the Shan-Chen fluid forces.  In order to promote a wider range of 

feasible fluid velocities, one would choose a value of G as low as possible.  However, there is a critical 

value of G required for phase separation to occur.  Increasing the value of G beyond this critical value 

increases the effective fluid immiscibility and decreases the width of the fluid-fluid interface.   Sukop and 

Thorne (2006) and Huang et al. (2007) reported that a good compromise between these opposing 

requirements is when 1.6 < GρT < 2.2 [22, 50].  This suggestion and some additional trial and error 
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yielded G = 1.3 as a suitable interaction parameter that maintained immiscibility for the range of the 

density and velocity fluctuations during the cross-junction droplet formations. 

Another limitation of the Shan-Chen model was the choice of suitable boundary conditions for 

immiscible fluid injection.  Proper constant velocity conditions have yet to be identified for the Shan-

Chen model since both lattices require some density at each boundary and the effects of the lattice 

interaction needs to be accounted for in terms of the velocity correction [51].  To further elucidate the 

problem, consider the case of the cross-junction where one wishes to inject only the dispersed phase at 

the main inlet.  Both lattices exist across the entire simulation domain, but the repulsion force is not 

strong enough to completely eliminate all of the continuous phase particle populations from the regions 

with high dispersed phase densities – similar to natural diffusion, there is a huge entropic energy cost to 

maintain a perfectly pure phase, and as result, there is always some amount of continuous phase 

particle densities throughout the lattice.  This means that one cannot arbitrarily set the continuous 

phase density to zero at the dispersed phase injection site.  Even if the continuous phase is set to a 

negligible density, this establishes a density/pressure gradient for the continuous phase that opposes 

the desired flow direction for the dispersed phase.  In addition, one cannot set the velocity of the 

continuous phase to zero at the boundary since the zero velocity condition is disrupted by the velocity 

correction from the interaction potential.   

A suitable boundary condition for the injection of a single fluid in multicomponent fluid flow was 

proposed by Latt et al. (2004) in which they created a “semi-permeable” membrane for selective flow of 

a desired phase [52].  The semi-permeable membrane was created by imposing a bounce-back boundary 

for one lattice phase with a Zou-He constant density boundary for the injected phase.  For the injection 

of dispersed phase, a bounce-back boundary across the main inlet on the continuous phase lattice 

induces a zero velocity condition and prevents any outflow of particle densities.  In order for the 
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dispersed phase to penetrate into the channel that is initially occupied by the continuous phase, Sukop 

and Thorne (2006) and Latt (2004) suggested the inclusion of a body force to help exclude the 

continuous phase, which was considered analogous to a pressure gradient [22, 52].  In addition to the 

inlet body force, the imposed ρwall,c bounce back density at the semi-permeable boundary provides some 

control of the lattice interaction at the interface, which can be used to manipulate the boundary velocity 

for the dispersed phase.  As a result, the constant-density, semi-permeable boundary conditions made it 

difficult to control the Capillary numbers for the injection of each respective phase especially since the 

resulting inlet velocities were affected by the interaction of the impinging flows.  Because the outlet 

density experiences large fluctuations depending on which phase is exiting, a Zou-He constant velocity 

boundary condition was applied for the outlet.  Therefore, with the stability restrictions imposed by 

both the interaction parameter and the boundary conditions, the flow conditions used in the analysis of 

the cross-junction droplet formation were the result of trial and error for stable flow conditions.  A 

systematic analysis of the boundary condition parameters and the resulting flow conditions will be 

addressed in future studies.   

Finally, one of the most glaring inaccuracies of the Shan-Chen model is the presence of spurious 

velocities at the fluid interfaces.  Shan (2006) suggested that the artificial velocities are a result of the 

lack of isotropy of the D2Q9 lattice with the curved fluid interfaces – the insufficient symmetry of the 

repulsive force terms are not completely balanced, which results in residual velocities [53].  Figure 8 

demonstrates a typical velocity field immediately after droplet generation.  The magnitudes of the 

spurious velocities greatly exceed the magnitudes of the minute capillary flows.  Such large spurious 

velocities limit the cross junction to small Capillary and Weber numbers.  Nonetheless, the plug-like 

flow-field in the dispersed and continuous phases is in agreement with the velocity field reported by Wu 

et al. 2008 even when the spurious currents were reduced by using a color-gradient based method [39].  
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Furthermore, Wu et al. (2008) verified the plug-like flow-fields with micro-PIV measurements of a 

fabricated cross-junction.  However, it should be pointed out that the plug-like flow contradicts the 

studies that suggest the presence of diametric vortices within the droplet that are believed to promote 

mixing as it traverse the capillary channel [7,54].  This could be due to the lack of the thin lubrication 

layer of the continuous phase between the droplet and the capillary wall in the cross-junction trials 

reported in this paper.    

 

4.2.2  Cross-Junction Flow Regimes 

Within the flow-velocity limitations of the Shan-Chen model, there were distinct flow patterns 

identified throughout all the cross-junction trials:  retraction, streaming, threading, and droplet 

generation.  Except for the retraction case, these scenarios have been documented in the literature 

Droplet Interfaces 

Figure 8.  A typical velocity field observed after the generation of a droplet.  The artificial 

large vectors at the fluid interfaces are the spurious velocities that result from the lack of 

isotropy from the repulsive force terms in the Shan-Chen model. 
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[38,39, 41].  The retraction regime describes a scenario where the droplet phase retracts back into main 

inlet when the impinging lateral channel pressure is too high.  Because this scenario is the result of 

imbalanced constant density boundary conditions and is of little commercial merit, it will not receive 

any further discussion.        

  The streaming regime was observed when the Capillary number was sufficiently high and the 

volumetric flows through the main and lateral channels were nearly balanced.  Figure 9 shows the 

typical flow conditions that resulted in a cross-junction streaming regime.    At higher Capillary numbers, 

viscous forces gain importance and distort the droplet interface.  When the volumetric flow rates for 

both phases, ®/  and ®�, are balanced, the droplet phase interface is projected down the main channel 

balanced by the flow of the continuous phase on either side.  In two dimensions, the volumetric flow 

rate ratio can be defined by the velocity ratio and the channel width ratio: 

 ®̄ = 	®�®/ =	
��	�2�/	/ =	

��	
2  (4.4) 

The factor of 2 in the denominator comes from the fact that there are two lateral channels volumes for 

the one main channel volume; therefore, streaming was observed when ®	°  neared 0.5.   
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Another scenario that has commercial merit is the threading regime.  Similar to the streaming case, the 

Capillary numbers that produce threading are sufficiently high to distort the droplet interface; however, 

droplets pinch off from the thread tip.  Figure 10 demonstrates a typical flow condition that induced 

threading.   This regime has the potential benefit of rapid generation of small droplets since the 

dispersed phase doesn’t retract to reform the rounded interface after pinching off a droplet.  Lee et al. 

(2009) focused on characterizing the threading regime in flow focusing devices because it resulted in the 

Figure 9. Density field of a typical Shan-Chen LBM simulation resulting in the streaming regime where the inlet 

volumetric flow rates are nearly balanced.  The slight imbalance results in fluctuations in the stream thickness 

with time.  ±
 = 0.62, ²
	= 1.35 and ³´µ = 8.4e-4.  Equation 4.4 gives ¶° = ·. ¸� 

 

Figure 10.  Density field of a typical Shan-Chen LBM simulation resulting in the threading regime.  A second 

droplet is forming at the thread tip almost immediately after the preceding droplet.  Threading typically 

occurred at larger Capillary numbers with ±
 	≈ º. In this simulation, ³´³ = 8.0e-4,  ±
 = .997, »¼½¾ = .1, and ¿
 

=.54 
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rapid generation of the smallest precise droplets [41].  Similar to the findings in this paper, there was a 

critical capillary number for the threading regime with smaller droplets produced at higher capillary 

numbers.  However, the threading scenario required extremely precise control of the flow velocities in 

order to generate droplets with precise volumes.  Threading that resulted in uniform droplet generation 

was observed in the cross-junction configuration when �� was very close to unity, and because the flow 

velocities were very difficult to control in the simulations described in this paper, the threading regime 

almost always resulted in non-uniform droplet generation.   

The typical droplet generation regime that was the focus of this study is depicted in Figure 11.  

In accordance with empirical findings and the LBM simulations of Wu et al (2008) and Liu and Zhang 

(2011), the three distinct phases of the uniform droplet generation regime was observed: expansion, 

necking, and figuration [16, 39]. 

 

 

 

(a) (b) (c) 
Figure 11. The three main stages of the uniform droplet generation regime.  (a) Expansion of the droplet into the channel 

builds up the pressure in the lateral channel. (b) the accumulated lateral channel pressure differential overcomes the 

droplet surface tension creating a neck within the dispersed phase.  (c) the neck collapses with the droplet pinching off and 

the interfacial tension rapidly regenerates the curved droplet surface   

 



48 

 

 

4.2.3 Effect of Capillary Number and Flow Ratio on Droplet Size 

Consistent with the literature review, the Capillary number and the flow ratio demonstrated the 

most significant effects on the size of the droplets generated using the cross-junction configuration.  

Because the Shan-Chen model provides precise control of the contact angle (verified in Section 3), fluid 

viscosity (Equation 2.42), and geometry, these parameters were fixed while the inlet bounce-back 

densities, the inlet body-forces, and the outlet velocity were varied to manipulate the inlet flow rates.  It 

was found that a critical balance between the inlet body-force parameters was required to prevent 

retraction of the droplet phase; however, it was observed that the body force term had a negligible 

impact on the Capillary number and flow ratios.  The inlet densities for both phases were kept at T	= 1 to 

reflect the minimal density difference typically observed between to the two phases.  
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Figure 12.  The measured inlet velocities at the lateral and main channels fluctuated over the course of one period of droplet 

generation.  The critical points in the velocity profiles near 300,000 TS represent the transition from the necking to pinch-off 

phase.  The largest magnitude spikes near 303,000 were associated with the retraction of the dispersed phase after pinch-off 

and the restoration of the continuous phase dominant flow. 
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The dimensionless numbers were calculated using the average velocities measured at a distance 

of two channel widths upstream from the junction.  The averages were taken over a square box that 

spanned across the respective dispersed and continuous phase channel inlets.   Figure 12 shows the 

measurements for main channel and lateral channel inlet velocities over the course of one period of 

droplet generation.  The fluctuations in the velocities occur at regular periods that coincide with the 

different phases of droplet generations.  The steady increase in velocity from 280,000 to about 299,000 

time steps represents the expansion phase.  The growth of the droplet is accompanied with a steady 

growth of the main inlet velocity coupled with the gradual decline of the lateral channel average velocity 

due to the droplet obstructing the lateral flow.  At about 300,000 TS, necking began resulting in 

reversing the dip in the lateral velocity and the maximum in the main channel velocity as the clogged 

lateral flow impinges upon the dispersed phase.  At about 302,600 TS, the droplet pinched off, which 

resulted in a small sharp spike in both velocities.  The impinging lateral flow dominated again causing 

the droplet to retract back into main channel at 303,300 which is accompanied by the large spike into 

negative velocities.   Finally, the main channel rapidly regains velocity as the dispersed phase reenters 

the junction and the cycle begins again.    

As a result of these fluctuations, the calculation of the dimensionless numbers relied on the time 

averaged values for measured quantities.  Comparing the velocity vs. time profiles that resulted in the 

generation of different sized drops revealed that the smaller drops had smaller spikes in the main inlet 

velocity with respect to both magnitude and duration; therefore, these fluctuations needed to be 

included in the measurement averages in order to observe the effects of the flow velocities.  Thus, the 

reported Capillary numbers and flow ratios reflect the average velocities across the channel widths and 

the time average over one period of droplet generation.  In addition, this method is in agreement with 
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the empirical measurement methodology as the volumetric flow rates imposed by the pumps during 

microchannel experiments reflect both a spatial and temporal average velocity.   

Figure 13 demonstrates how the capillary number and flow rate ratio determine the size of the 

droplet.  The interpolation method described for the contact angle measurements was also used to 

determine the location of the droplet interface for the droplet size measurements. The droplet size was 

determined by measuring the length of the plug at the midpoint of the outlet channel. To analyze the 

combined effects of the Capillary and velocity ratio on the droplet size, a distance method of 

interpolation within the Minitab statistical analysis software was used to generate contour plots using a 

distance power of three.   The largest droplets (�§  > 8 in the upper left corner of Figure 13) were 

produced when the average main inlet velocity was 5 times larger than the lateral inlet velocity and the 

capillary number of the continuous (carrier) phase was relatively low (£¤Q  = 2.7e
-4

).  These conditions 

allow the dispersed phase to eject more fluid before the lower lateral flow can impinge upon the 

dispersed phase obstruction.  Conversely, larger Capillary numbers for the continuous phase and smaller 

velocity ratios resulted in smaller droplets (�§	~	1   in the lower right corner of Figure 13).    Larger 

capillary numbers reflect larger magnitudes of the viscous forces, which facilitate droplet pinch off, and 

lower flow ratios reflect the greater extent of continuous phase impingement on the droplets.  These 

observations are consistent with the Lee et al (2009), Tan et al (2008), Liu and Zhang (2011) and Wu 

(2008).  In addition, it should be noted that smaller (�§	~	1)   drops were also generated at relatively low 

capillary numbers if the flow ratio was low enough; however, these droplets had much longer periods of 

formation.  Droplets with lengths less than one main channel width were never observed. 

Possible sources of error were identified in the methodology for the droplet size, capillary 

number, and flow ratio measurements used to construct Figures 13, 14, and 15.  To start, the sample 

population is by no means an exhaustive attempt to quantify the effects of the flow ratio and Capillary 
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number.  With the limited control of the inlet flow rates due to the semi-permeable pressure boundary 

conditions and the velocity constraints of the Shan-Chen model, the data was clustered near the highest 

stable capillary numbers and lowest flow ratios (before retraction of the dispersed phase) in an attempt 

to generate the smallest drops possible.  Such small drops would facilitate future studies focusing on 

droplet mixing for chemical reactions and the subsequent purification of the reaction products.  The 

droplet size measurement was prone to errors associated with the precise identification of the interface 

locations described in the contact angle measurement section.  In addition, the measurements of the 

average flow velocity and Capillary numbers were prone to errors associated with the sampling method.  

In an effort to conserve computer memory, measurements were typically taken every 1000 time steps.  

As a result, some of the rapid fluctuations in velocity were excluded from the time averaging depending 

on whether the sampling rate was in synch with the droplet generation frequency.   
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4.2.4 Effect of Contact angle, Channel width ratio, and Viscosity Ratio 

The remaining dimensionless parameters (cos �, 	
 , and �̂) were observed to have less of an 

effect on the size of the droplets generated by the cross-junction compared to the Capillary number and 

flow ratio.  Figure 14 shows a comparison of the contour plots for the droplet sizes generated when 

manipulating the boundary flow conditions for different fixed values of the contact angle, the lateral 

channel width, and the lattice viscosities.   
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Changing these fixed values typically required a set of optimization experiments to determine a new set 

of stable boundary conditions within the velocity constraints of the Shan-Chen model.  As a result, direct 

comparison of the same flow conditions for different values of the viscosity ratio, contact angle, and 

channel width ratio was difficult to achieve.  Therefore the effects of these dimensionless parameters 

were compared using the contour plots generated for the stable range of flow conditions using the two 

known critical factors (£¤/ and ��) for the graph axes.  

Qualitatively, the contour plots all display the same trends for �� and £¤/ independent of the 

other dimensionless parameter values: smaller drops were formed at larger £¤/ and lower ��.  Because 

the interpolation method is most accurate within the range of the supplied data and each data-set has a 

different range of flow condition trials, the contour plots have different axes range.  Therefore, Figure 

14(a) was chosen as the base contour plot for comparison of the simulations with different	cos �, 	
 , and 

�̂ values because it represented the largest area in £¤/ , �� space.  Overlaying the points from Figures 

14(b), 14(c), and 14(d) on the base plot Figure 14(a) demonstrated that the base contour plot with cos � 

= 0.1, 	
  = 1.4 and �̂ = 0.54 was sufficient in predicting the droplet sizes when only one of the fixed 

parameters was changed independently.  An example of such an overlay comparison is seen in Figure 

15, which compares the droplet size interpolation for two different contact angles.    



54 

 

 

 

 

 

 

 

 

 

 

 

The Capillary number and flow rate ratios had the largest impact on the droplet size for the sampled 

flow conditions, which is in agreement with the findings of Liu Zhang (2011), Lee et al (2009), and Tan et 

al (2008).   Qualitatively, the contact angle, viscosity ratio, and channel width ratio were observed to 

have an impact on the conditions that define the transitions between the different flow regimes.  For 

example, in the case of the large contact angle (���� = -0.4), threading appeared to occur at wider range 

of flow conditions, most likely due to the fact that the dispersed phase was less apt to fill the channel 

width to form a stable plug.  The limited sample size and scattered flow conditions attributed to the 
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limitations of the Shan-Chen model made it difficult to generate a phase diagram that would quantify 

the shifts in the cross-junction flow regimes.      
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 5.  Conclusions and Future Work 

 In summary, the segmented flow microfluidics could potentially provide a cheaper and more 

effective alternative to current industrial and laboratory fluid management techniques – the relatively 

large surface area-to-volume ratios have been demonstrated to provide precise control over reactant 

volumes, mixing, incubation, and indexing for a wide range of applications.  An understanding of the 

flow conditions required for precise droplet generation is necessary for any segmented flow application 

and was therefore the focus of this study.    The Shan-Chen multicomponent multiphase Lattice 

Boltzmann method was used to simulate droplet formation conditions because it adequately captures 

the surface tension effects that are dominant in microfluidic settings.  This model provided sufficient 

control for the contact angles; however, the lack of control of the inlet velocities and the flow 

restrictions from the large interfacial spurious velocities made it difficult to cover a broad range of flow 

conditions.   Nonetheless, different droplet formation regimes were observed: retraction, streaming, 

threading, and stable generation.  For the range of numerically stable flow conditions tested, the effects 

of the Capillary number, inlet velocity ratio, contact angle, viscosity ratio, and channel width ratio on the 

size of the resulting droplets were consistent with the trends described in the literature.  The combined 

effects of the Capillary number and velocity ratio were demonstrated to be the process drivers for the 

cross-junction droplet size while the other dimensionless numbers had a less significant effect.    

Qualitatively, the contact angle, viscosity ratio, and channel width ratio were observed to shift the flow 

conditions for transitions between the stable droplet generation, streaming, and threading regimes; 
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however, the scattered flow conditions made it difficult to generate a phase diagram for such 

transitions. 

 Future work will focus on improving the stability of the model.  This will entail the investigation 

of the color gradient and free energy models described in the literature.  The reduced magnitude of 

spurious velocities will allow a wider range of numerically stable flow conditions, which facilitates the 

generation of a phase diagram that will characterize the effect of the contact angle, viscosity ratio, and 

channel width on the transitions between different flow regimes.  In addition, rigorous analysis of the 

constant velocity boundary conditions will be conducted to establish suitable control of the 

microchannel inlet velocities for the coupled multicomponent model.  Furthermore, understanding the 

mechanism for droplet formation is only a starting point for modeling the segmented flow microfluidic 

reaction applications published in the literature – see references [7, 13, 55, 56] for examples.  Therefore, 

future studies will involve the inclusion of tracer or suspended particles in order to better quantify the 

mixing kinetics within the droplets and the flow conditions required for efficient chemical reactions.   

 Some effort has already been started towards the inclusion of tracer particles into the current 

Shan-Chen LBM scheme.   To start, the combined convection and diffusion of the tracer was verified by 

simulating Taylor-Aris dispersion for different Péclet numbers.  For capillary flow, the dimensionless 

Péclet number characterizes the ratio between convective and diffusive contributions defined by: 

 Á� = ��	�Â-  (5.1) 

where  �� is the average inlet velocity of the dispersed phase, 	� is the channel width of the dispersed 

phase, and Â- is the diffusion coefficient of the tracer lattice, which is defined by the same equation for 

the lattice viscosity in equation 2.42.   Taylor (1953) reported the measurements of higher effective 

diffusion coefficients when a solute was injected into tube with laminar Poiseuille flow [57]; the 
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effective diffusion coefficient was later named the dispersion coefficient.  Based on empirical findings, 

he was able to derive an expression for the mass flux according to: 

 ® = �£ + Â∗ F£F� (5.2) 

 
Â∗Â = 1 +	Á�J210  

where Q is the mass flux of solute along the tube axis, C is the average concentration of solute across 

the tube cross-section, D is the diffusion coefficient of the solute in the solvent, and D* is the dispersion 

coefficient [22, 58].  In addition to the molecular diffusion in both the radial and axial directions, the 

solute convects at different rates along the tube axis depending on the radial location due to the 

parabolic velocity profile.   The effective increase in the observed diffusion coefficient, now known as 

the dispersion coefficient, was attributed to the shear between the velocity lamina.  Figure 16 

demonstrates how the tracer convection/diffusion scheme adequately captures the Taylor-Aris 

dispersion; the Péclet numbers tested represent the limits of the range for accurate dispersion 

measurements (√210	< Pe < Ä 	�Å  ), where L is the length of the channel [22, 58]. 
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Figure 16. A Comparison of the Taylor-Aris Disperision coefficient measured after 16,000 TS in a 

250x23 l.u. slit with Poiseuille flow to the Dispersion Coefficient predicted using equation 5.2.  The 

inset picture on the upper left-hand corner depicts a representative Taylor Dispersion experiment. 
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Once control over the relative diffusive and convective contributions to the tracer dispersion 

was established, the tracer model was applied to a configuration consisting of two opposing cross-

junctions generating droplets that met head-on at a T-junction.   In the Shan-Chen/tracer coupling, the 

range of stable tracer diffusion coefficients appeared to be linked to the host lattice viscosity, which 

limited the simulations to relatively low Péclet numbers.  As a result, tracer diffusion was significant, and 

the droplets became fully mixed before reaching the outlet boundary when they met head-on.  

Interestingly, when the outlet flow velocity was sufficiently low, the resulting back pressure caused 

interference between the opposing cross-junctions and the droplet generation became out of synch.  

This phenomenon has been documented in the literature, and provides one of the greatest challenges 

to scaling the microfluidic platforms for higher throughputs – running multiple devices and functional 

features in parallel causes a significant degree of interaction amongst the capillary flows [7, 59, 60].  

Figure 17 depicts the mixing for the cases where the droplets met head-on at T-junction or when there 

was a phase lag between the droplet formations.   

 

 

Figure 17. Tracer concentrations Shan-Chen LBM simulations with the inclusion of a tracer lattice that satisfies the 

advection/diffusion dynamics of Equation 5.2.  Two parallel cross-junctions produce droplets that meet at a T-junction 

(a) Depicts the scenario when the droplets meet head-on, and the mixing upon droplet coalescence at the T-junction is 

symmetric.  (b) Increased back pressure at the outlet causes droplet formation between the two cross-junctions to 

become out of synch.  When the droplets did not meet head-on, the droplet was observed to require longer times for 

complete mixing. 

(a) (b) 



60 

 

 

Therefore, future studies will include further development of the models to quantify droplet mixing.  In 

particular, the goal is to include suspended particles that disperse purely from convective forces.  The 

droplet mixing will then be quantified by measuring the number of time steps required for the spatial 

concentration distribution to reach an equilibrium value.  Such particles can also be used to simulate 

microfluidic applications that employ functionalized magnetic particles to promote mixing within 

droplets and capture reaction products. 
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